
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:98-03

Designing optimal timing and sequencing
strategies for a continuous steel foundry∗

B. De Schutter

If you want to cite this report, please use the following reference instead:
B. De Schutter, “Designing optimal timing and sequencing strategies for a continuous
steel foundry,” Proceedings of the European Control Conference 1999 (ECC’99),
Karlsruhe, Germany, 5 pp., Aug.–Sept. 1999. Paper 160 / BP-2.6.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/98_03

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/98_03


DESIGNING OPTIMAL TIMING AND SEQUENCING

STRATEGIES FOR A CONTINUOUS STEEL FOUNDRY

B. De Schutter

Control Laboratory, Fac. of Information Technology and Systems

Delft University of Technology, P.O. Box 5031

2600 GA Delft, The Netherlands

fax: +31-15-278.66.79, email: b.deschutter@its.tudelft.nl

Keywords: optimal timing, optimal sequencing, genetic algo-

rithms, tabu search

Abstract

In this paper we consider a typical case study of a continu-

ous steel making process. More specifically, we consider the

part of a steel plant consisting of the furnace, the secondary

steel making units and the continuous caster. First we write

down a model for the evolution of the system. Then we de-

velop some techniques to design (sub)optimal timing and se-

quencing schemes for this system. The methods we use in-

clude a mixture of linear programming, genetic algorithms,

tabu search and heuristics.

1 The set-up of the system

Consider the part of a continuous steel production process that

consists of an electric arc furnace (EAF), a convertor, two vac-

uum oxygen decarburization units (VODs) that operate in par-

allel, a waiting ladle (WL) and a continuous casting unit (CC)

(see Figure 1). In the next paragraph we shall describe the

different steps in this process. A description of steel produc-

tion processes from a control engineering point of view can be

found in [9]. Note that the techniques developed in this paper

can also be applied to basic-oxygen-furnace-based processes.

The system works in batches1. Let us now describe the

path followed by the kth batch. All times will be expressed

in minutes. The raw material of the kth batch (scrap or pig

iron) is inserted into the EAF at time tEAF(k) and stays there

during dEAF(k) minutes. Then it is transported to the convertor

(with a waiting stage if necessary). This takes d1(k) minutes.

The kth batch enters the convertor at time tCNV(k) and stays

there for dCNV(k) minutes. Then it is transferred to the VOD

that is currently empty, which takes d2(k) minutes. The VODs

work in parallel. So if the kth batch goes to the first VOD, then

the (k+ 1)-st batch goes to the second VOD, and vice versa.

1A typical batch weighs around 150 tonnes.

The kth batch stays in the VOD for dVOD(k) minutes. Then

it is transferred to the waiting ladle. At time tCC(k) the liquid

steel is then fed to the continuous casting plant. The difference

between the time instant at which the kth batch leaves the VOD

and the time instant at which it is fed to the CC is denoted by

dWL(k). The CC setup time for the kth batch is d3(k), and the

casting time for the kth batch is dCC(k).
The times d1,min(k), d1,max(k), d2,min(k), d2,max(k),

dWL,min(k), dWL,max(k) are hard lower and upper bounds for

d1(k), d2(k), dWL(k) respectively that are imposed by techno-

logical and process constraints. Let w(k) be the desired width

of the kth finished product that leaves the CC and let h(k) be its

height. The CC setup time d3(k) has to satisfy the following

constraints:

d3(k)> dwc,min if w(k−1) 6= w(k) (1)

d3(k)> dhc,min if h(k−1) 6= h(k) (2)

either d3(k) = 0

or d3(k)> dbreak,min

}

if







w(k−1) = w(k)

and

h(k−1) = h(k) ,

(3)

where dwc,min is the minimal setup time after a width change,

dhc,min is the minimal setup time after a height change, and

dbreak,min is the minimal setup time after a break in between

two consecutive batches.

Since as soon as a batch leaves an EAF the next batch is

fed to the EAF, the evolution of the system can be described

by the following system of equations:

tEAF(k) = tEAF(k−1)+dEAF(k−1) (4)

tCNV(k) = max(tEAF(k)+dEAF(k)+d1,min(k),

tCNV(k−1)+dCNV(k−1)) (5)

tVOD(k) = max(tCNV(k)+dCNV(k)+d2,min(k),

tVOD(k−2)+dVOD(k−2)) (6)

tCC(k) = max(tVOD(k)+dVOD(k)+dWL,min(k),

tCC(k−1)+dCC(k−1)+d3(k)) . (7)

Note that the presence of two VODs that work in parallel im-

plies the use of the index k− 2 instead of k− 1 on the right-



EAF

VOD 1

VOD 2

scrap

pig iron

convertor

WL

CC

billets

blooms

slabs

dEAF

d1

d2

dVOD

dCC

dWL

dCNV

Figure 1: The part of a steel plant consisting of the furnace (EAF), the secondary steel making units (convertor and VODs), the

waiting ladle (WL) and the continuous caster (CC).

hand side of (6). The effective transportation and waiting

times for the kth batch are now given by:

d1(k) = tCNV(k)− tEAF(k)−dEAF(k)

d2(k) = tVOD(k)− tCNV(k)−dCNV(k)

dWL(k) = tCC(k)− tVOD(k)−dVOD(k) .

The casting time for the kth batch is given by the following

formula:

dCC(k) =
W (k)

ρ w(k)h(k)v(k)
,

where W (k) is the weight of the batch, ρ is the density of the

product and v(k) is the prescribed casting velocity, which in

our case is a piecewise linear function of the width and the

height of the finished product.

Since the cost of renewing the refractory covering of the

waiting ladle is one of the main factors in the overall produc-

tion process, and since the speed of deterioration of the cov-

ering is proportional to the total waiting time, we want the

minimize the following objective function:

J =
N

∑
k=1

dWL(k) ,

where N is the number of batches to be scheduled.

2 Optimal timing schemes

In this section we assume that the order of the batches is fixed

and we compute suboptimal timing schemes for the given se-

quence. In the next section we shall then discuss how subopti-

mal sequencing schemes can be computed.

We shall use d1(k) and d3(k) as the control variables. In

our case study, we did not use d2(k) as an additional control

variable, but we set it to the constant value d2. If we then know

the initial values tEAF(k0) and tCC(k0) then the evolution of the

system can be computed using the equations given above.

Note that the either-or condition (3) introduces a combi-

natorial aspect in the problem. Therefore, we shall first ap-

proach the problem without taking this condition into account.

2.1 Optimal timing schemes without taking the

condition (3) into account

If we do not consider condition (3) and if we make no ex-

tra assumptions then the system of equations (4) – (7) together

with the upper and lower bound constraints can be recast as

an Extended Linear Complementarity System (ELCP) [3]. In

general the solution set of an ELCP consists of faces of a poly-

hedron. After computing this solution set using the algorithm

of [3], we could then minimize the objective function J over

each of the faces and then select the global optimum. This

is the approach we have also used in [4] to compute optimal

signal switching schemes for traffic signal controlled intersec-

tions. Since the general ELCP with rational data is NP-hard

[2, 3], this approach is not feasible in practice, especially if

the number of batches N is large.

However, if we take care that the following conditions

are always satisfied (which will be the case in practice or can

be effected by considering the conditions as extra constraints

on the control variables d1(k) and d3(k)):

tCNV(k)> tCNV(k−1)+dCNV(k−1) (8)

tVOD(k)> tVOD(k−2)+dVOD(k−2) (9)

tCC(k)> tVOD(k)+dVOD(k)+dWL,min(k) (10)

then the system (4) – (7) can be rewritten as:

tEAF(k) = tEAF(k−1)+dEAF(k−1)

tCNV(k) = tEAF(k)+dEAF(k)+d1(k)

tVOD(k) = tCNV(k)+dCNV(k)+d2

tCC(k) = tCC(k−1)+dCC(k−1)+d3(k) .

It is easy to verify that the problem of minimizing the objective

function J subject to these evolution equations and subject to



(1) – (2), (8) – (10), the upper and lower bound constraints and

the condition d3(k)> 0, can be recast as a linear program (LP)

which can be solved efficiently using (variants of) the simplex

method or using an interior point method [8].

2.2 Optimal timing schemes with condition (3)

Let K = {k1,k2, . . . ,kK} be the set of indices k for which

w(k−1) = w(k) and h(k−1) = h(k).
The first heuristic approach to obtain suboptimal timing

schemes is to first set d3(k) = 0 for all k ∈ K and d1(k) =
d1,min for all k. Then we select the lowest index k ∈ K for

which the constraint dWL,min 6 dWL(k + 1) 6 dWL,max is vi-

olated and we determine d1(k) and/or d3(k) > dbreak,min such

that the constraint holds. However, this approach does not al-

ways lead to a valid solution.

In the second heuristic approach we first solve the LP

problem of the Section 2.1. Then we select a threshold τ and

we consider a new LP consisting of the LP of Section 2.1 aug-

mented with the following constraints:

d3(k)> dbreak,min if d3,LP(k)> τ

d3(k) = 0 if d3,LP(k)6 τ

for k ∈K where d3,LP is the LP solution. Solving this new LP

then yields a valid, suboptimal timing scheme.

The best heuristic solution will be selected as an initial

solution. Let us now consider some techniques to improve this

solution.

Since the problem we want to solve is a combinatorial

problem, we propose to use an approach that is based on ge-

netic algorithms [1, 7]. Note that we can code each possible

combination resulting from condition (3) by a binary string b

consisting of K bits, where we add the following constraints to

the LP of Section 2.1:

d3(ki) = 0 if bi = 0

d3(ki)> dbreak,min if bi = 1 .

This will lead again to an LP, which can be solved efficiently.

Now we can use genetic algorithms to gradually improve

the timing sequence. We have implemented a genetic algo-

rithm with elitist recombination, niching through crowding,

restricted mating and adaptive crossover (see, e.g., [10]). Dur-

ing the evolution of the genetic algorithm we display the best

solution obtained so far and we allow the human operator to

stop the algorithm as soon as she thinks that sufficient im-

provement has been obtained.

Note that considering all possible combinations resulting

from condition (3) would require solving 2K LPs, which is

obviously not feasible if K is large.

3 Optimal sequencing schemes

Let us now discuss some methods to compute optimal se-

quencing schemes. Since this is again a combinatorial prob-

lem and since enumerating and evaluating all possible combi-

nations is not tractable, we now present to some methods to

obtain suboptimal solutions.

The first heuristic approach we could use consists in sort-

ing the batches lexicographically2 according to their width and

height.

The second heuristic approach is a “best fit” approach.

We start with a given sequence and we compute the corre-

sponding optimal value of J (using, e.g., the second heuristic

approach of Section 2.2). Let this optimal value be J1. Then

we insert the second batch before the first batch and compute

again the corresponding optimal value of J. Let this optimal

value be equal to J2. Next we restore the original order and

insert the third batch before the first batch and we compute

again the optimal value of J which we assign to J3. We re-

peat this process for the other batches. This leads to the values

J3, J4, . . . , JN . Note that we can reduce the number of com-

putations by taking into account that if w(k− 1) = w(k) and

h(k− 1) = h(k) then we have Jk−1 = Jk. Now we select the

best batch kbest, i.e., the batch that leads to the largest decrease

in J: kbest = argmin
k

Jk, and we insert batch kbest before batch

1. The position of this batch is then fixed, and we repeat the

process for the remaining N −1 batches, and so on. It is easy

to verify that the computational complexity of this approach is

at most O(N2CLP) where CLP is the computational complexity

of the LP of Section 2.1.

We use again the best heuristic solution as an initial solu-

tion and then we gradually improve this solution. Currently we

are also investigating tabu search methods [5, 6], genetic algo-

rithms and decomposition methods3 to determine (sub)optimal

switching schemes.

Note that while determining the optimal sequence we can

also use one or more of the methods of Section 2.2 to simulta-

neously obtain an optimal timing scheme. If we use a genetic

algorithm based approach we could merge the binary coding

of the sequence with the binary coding given in Section 2.2

and simultaneously optimize the timing and the sequence of

the batches. We have also developed some local improvement

methods that consider pairs or triplets of consecutive batches

and that use very simple algebraic expressions to determine

whether changing the position or timing of the batches within

the pair or the triplet yields a lower value for the objective

function J.

4 Implementation and results

We have implemented the methods presented above in a Mat-

lab graphical user interface (GUI), that can be used to simulate

the system, to display the results graphically and to compute

the optimal timing and sequencing scheme. In Figure 4 we

2So batch ki comes before batch k j if w(ki) < w(k j) or if w(ki) = w(k j)
and h(ki)< h(k j).

3I.e., first dividing the batches in smaller groups that will be kept together

and then determining the optimal sequence of the groups and the optimal se-

quence within the groups.



show a screen shot of this GUI. The GUI is a modular sys-

tem and allows the user to change almost every parameter that

is used in the simulations and in the optimization. Currently,

both English and Dutch are supported; other languages can

easily be incorporated. The user can also select the method

and the level (timing, sequence, or timing and sequence) of

optimization. During the optimization the best value of the ob-

jective function obtained so far is displayed so that the human

operator can monitor the procedure and stop the optimization

if sufficient improvement has been obtained.

In order to facilitate the acceptance of our tool in the ac-

tual manufacturing process and among the operators, we have

developed the GUI so that it functions as a guide or an advisor

rather than as a solution generator. We allow the human oper-

ator to change the resulting scheme according to his own in-

sights. Furthermore, the built-in simulator enables the human

operator to examine the effects of various changes he makes

to the current timing and sequencing scheme.

In our case study we were able to reduce the total waiting

ladle time J with up to 16 % for a typical production run. Since

cost of renewing the refractory covering of the waiting ladle is

one of the main factors in the overall cost of the production

process, this means that substantial gains can be obtained by

using our tool.

5 Conclusions and further research

In this paper we have developed methods to design timing and

sequencing schemes for the part of a continuous steel making

process consisting of the furnace, the secondary steel making

units and the continuous caster. Since computing the glob-

ally optimal scheme is not feasible in practice, we have pre-

sented methods to compute suboptimal timing and sequenc-

ing schemes using heuristic methods, linear programming re-

laxations, genetic algorithms, tabu search and decomposition

methods. We have implemented these techniques in a Matlab

GUI. A practical example shows that using the techniques pre-

sented in this paper can lead to a significant reduction of the

overall production cost in a continuous steel foundry.

In our future research we will focus on developing

other efficient algorithms to compute suboptimal timing and

sequencing schemes, on incorporating the knowledge now

present in the human schedulers into our methods, and on fur-

ther developing and extending our Matlab GUI tool.

References

[1] L. Davis, ed., Handbook of Genetic Algorithms. New

York: Van Nostrand Reinhold, 1991.

[2] B. De Schutter, Max-Algebraic System Theory for Dis-

crete Event Systems. PhD thesis, Faculty of Applied Sci-

ences, K.U.Leuven, Leuven, Belgium, Feb. 1996.

[3] B. De Schutter and B. De Moor, “The extended lin-

ear complementarity problem,” Mathematical Program-

ming, vol. 71, no. 3, pp. 289–325, Dec. 1995.

[4] B. De Schutter and B. De Moor, “Optimal traffic light

control for a single intersection,” European Journal of

Control, vol. 4, no. 3, pp. 260–276, 1998.

[5] F. Glover, “Tabu search: A tutorial,” Interfaces, vol. 20,

no. 4, pp. 74–94, 1990.

[6] F. Glover and M. Laguna, Tabu Search. Boston, Mas-

sachusetts: Kluwer Academic Publishers, 1997.

[7] D.E. Goldberg, Genetic Algorithms in Search, Optimiza-

tion and Machine Learning. Reading, Massachusetts:

Addison-Wesley, 1989.

[8] Y. Nesterov and A. Nemirovskii, Interior-Point Polyno-

mial Algorithms in Convex Programming. Philadelphia,

Pennsylvania: SIAM, 1994.

[9] D. Popovic and V.P. Bhatkar, Distributed Computer Con-

trol for Industrial Automation. New York: Marcel

Dekker, 1990.

[10] D. Thierens, Analysis and Design of Genetic Algorithms.

PhD thesis, Faculty of Applied Sciences, K.U.Leuven,

Leuven, Belgium, May 1995.



Figure 2: Screen shot of our Matlab GUI.


