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Abstract. First we give a short description of the Extended Linear
Complementarity Problem (ELCP), which is a mathematical program-
ming problem. We briefly discuss how this problem can be used in the
analysis of discrete event systems and continuous variable systems. Next
we show that the ELCP can also be used to model and to analyze hybrid
systems. More specifically, we consider a traffic-light-controlled intersec-
tion, which can be considered as a hybrid system. We construct a model
that describes the evolution of the queue lengths in the various lanes (as
continuous variables) as a function of time and we show that this leads to
an ELCP. Furthermore, it can be shown that some problems in the anal-
ysis of another class of hybrid systems, the “complementary-slackness
systems”, also lead to an ELCP.

1 Introduction

The main purpose of this paper is to show that the Extended Linear Comple-
mentarity Problem (ELCP) — which is a kind of mathematical programming
problem — can be used to model and to analyze certain classes of hybrid sys-
tems. The formulation of the ELCP arose from our research on discrete event
systems. Furthermore, the ELCP can also be used to analyze some classes of
continuous variable systems (i.e., systems that can be modeled using difference
or differential equations). Since hybrid systems can be considered as a merge of
discrete event systems and continuous variable systems, this leads to the question
as to whether the ELCP can also be used in the analysis of hybrid systems. We
show that this is indeed the case. More specifically, we consider a traffic-light-
controlled intersection — which can be considered as a simple hybrid system. We
show that the evolution of the queue lengths at a traffic-light-controlled intersec-
tion can be described by an ELCP. Furthermore, the ELCP can also be used to
model another class of hybrid systems, the so-called “complementary-slackness
systems”.

⋆ Senior research assistant with the F.W.O. (Fund for Scientific Research-Flanders).
⋆⋆ Research associate with the F.W.O.



This paper is organized as follows. In Section 2 we introduce the Extended
Linear Complementarity Problem. In Section 3 we briefly discuss how the ELCP
can be used to model and to analyze certain classes of discrete event systems,
continuous variable systems and hybrid systems. In Section 4 we consider a
traffic-light-controlled intersection and we show how the evolution of the queue
lengths in this system can be described by an ELCP. Finally, we present some
conclusions and directions for future research in Section 5.

2 The Extended Linear Complementarity Problem

The Extended Linear Complementarity Problem (ELCP) is an extension of the
Linear Complementarity Problem, which is one of the fundamental problems in
mathematical programming [3]. The ELCP is defined as follows:

Given A ∈ IRp×n, B ∈ IRq×n, c ∈ IRp, d ∈ IRq and m subsets φ1, φ2, . . . ,
φm of {1, 2, . . . , p}, find x ∈ IRn such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax ≥ c and Bx = d, or show that no such x exists.

Equation (1) represents the complementarity condition of the ELCP. One possi-
ble interpretation of this condition is the following: since Ax ≥ c, (1) is equivalent
to

∀j ∈ {1, 2, . . . ,m} :
∏

i∈φj

(Ax− c)i = 0 .

So we could say that each set φj corresponds to a group of inequalities of Ax ≥ c

and that in each group at least one inequality should hold with equality, i.e., the
corresponding residue should be equal to 0:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

In general, the solution set of the ELCP defined above consists of the union of
faces of the polyhedron defined by the system of linear equations and inequalities
(Ax ≥ c and Bx = d) of the ELCP. In [6, 7] we have developed an algorithm
to compute the complete solution set of an ELCP. This algorithm yields a de-
scription of the solution set of an ELCP by vertices, extreme rays and a basis of
the linear subspace corresponding to the largest affine subspace of the solution
set. In that way it provides a geometrical insight in the entire solution set of the
ELCP and related problems.

We shall now give a brief description of the ELCP algorithm of [6, 7]. The
algorithm consists of two parts:

– First we determine the set of (finite) vertices X fin, the set of extreme rays
X ext and a basis X cen of the linear subspace corresponding to the largest



affine subspace of the solution set of the ELCP. This is done by iteratively
solving the system Ax ≥ c, Bx = d, whereby in the kth step (k = 1, 2, . . . , p+
q) we compute the intersection of the current solution set with the half-space
or hyperplane determined by the kth inequality or equality. We also remove
solutions that do not satisfy the complementarity condition.

– Next we determine the set Λ of maximal cross-complementary pairs of sub-
sets of X ext and X fin. A pair (X ext

s ,X fin
s ) is cross-complementary if the sum

of any nonnegative combination of the elements of X ext
s and any convex com-

bination of the elements of X fin
s satisfies the complementarity condition.

The set Λ is determined using a kind of backtracking algorithm: we start
with a pair of the form (∅, {xf

k}) with xf
k ∈ X fin and then we keep on adding

new elements of X ext and X fin to the current pair in a systematic way until
we obtain a pair that is not cross-complementary any more1. In that case we
do a backtracking step. This continues until we have obtained all maximal
cross-complementary pairs.

Now any solution x of the ELCP can be written as

x =
∑

xc

k
∈X cen

λkx
c
k +

∑

xe

k
∈X ext

s

κkx
e
k +

∑

xf

k
∈X fin

s

µkx
f
k (2)

for some pair (X ext
s ,X fin

s ) ∈ Λ with λk ∈ IR, κk ≥ 0, µk ≥ 0 and
∑

k

µk = 1.

For more information on the ELCP algorithm and for a worked example the
interested reader is referred to [6].

In [6, 7] we have also shown that the general ELCP with rational data is an
NP-hard problem.

3 The ELCP and discrete event systems and continuous

variable systems

In this section we briefly discuss how the ELCP can be used in the analysis
of certain classes of discrete event systems (such as max-linear discrete event
systems) and of certain classes of continuous variable systems (such as, e.g.,
piecewise-linear resistive electrical circuits).

3.1 The ELCP and max-linear time-invariant discrete event systems

Typical examples of discrete event systems (DESs) are flexible manufacturing
systems, subway traffic networks, parallel processing systems, telecommunication

1 It can be shown that it is sufficient to test only one combination of the elements of
X

ext
s and X

fin
s to determine whether the pair (X ext

s ,X fin
s ) is cross-complementary or

not.



networks and logistic systems. The class of the DESs essentially contains man-
made systems that consist of a finite number of resources (e.g., machines, commu-
nications channels, or processors) that are shared by several users (e.g., product
types, information packets, or jobs) all of which contribute to the achievement of
some common goal (e.g., the assembly of products, the end-to-end transmission
of a set of information packets, or a parallel computation).

One of the most characteristic features of a DES is that its dynamics are
event-driven as opposed to time-driven: the behavior of a DES is governed by
events rather than by ticks of a clock. An event corresponds to the start or
the end of an activity. If we consider a production system then possible events
are: the completion of a part on a machine, a machine breakdown, or a buffer
becoming empty.

In general, the description of the behavior of a DES leads to a model that is
nonlinear in conventional algebra. However, there exists a class of DESs for which
the model is “linear” when we express it in the max-plus algebra [1, 2, 4], which
has maximization and addition as basic operations. DESs that can be described
by such a “linear” model are called max-linear DESs. Loosely speaking we could
say that the class of max-linear DESs corresponds to the class of deterministic
time-invariant DESs in which only synchronization and no concurrency occurs.

The basic operations of the max-plus algebra are maximization (represented
by ⊕) and addition (represented by ⊗). There exists a remarkable analogy be-
tween the basic operations of the max-plus algebra on the one hand, and the
basic operations of conventional algebra (addition and multiplication) on the
other hand. As a consequence many concepts and properties of conventional al-
gebra (such as Cramer’s rule, eigenvectors and eigenvalues, the Cayley-Hamilton
theorem, . . . ) also have a max-plus-algebraic analogue (see, e.g., [1]). Further-
more, this analogy also allows us to translate many concepts, properties and
techniques from conventional linear system theory to system theory for max-
linear time-invariant DESs. However, there are also some major differences that
prevent a straightforward translation of properties, concepts and algorithms from
conventional linear algebra and linear system theory to max-plus algebra and
max-plus-algebraic system theory for DESs.

If we write down a model for a max-linear DES and if we use the symbols
⊕ and ⊗ to denote maximization and addition2 we obtain a description of the
following form:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (3)

y(k) = C ⊗ x(k) , (4)

where x is the state vector, u the input vector and y the output vector. For a
manufacturing system u(k) would typically represent the time instants at which

2 For matrices A and B these operations are defined by (A ⊕ B)ij = aij ⊕ bij and

(A⊗B)ij =
⊕

k

aik⊗bkj . Note that these definitions closely resemble the definitions

of matrix sum and matrix product of conventional algebra but with + replaced by
⊕ and × replaced by ⊗.



raw material is fed to the system for the (k + 1)st time; x(k) the time instants
at which the machines start processing the kth batch of intermediate products;
and y(k) the time instants at which the kth batch of finished products leaves the
system. In analogy with the state space model for linear time-invariant discrete-
time systems, a model of the form (3) – (4) is called a max-linear time-invariant

state space model.
Let x, r ∈ IR. The rth max-plus-algebraic power of x is denoted by x⊗

r
and

corresponds to rx in conventional algebra.
Now consider the following problem:

Given p1 + p2 positive integers m1, . . . , mp1+p2
and real numbers aki,

bk and ckij for k = 1, . . . , p1 + p2, i = 1, . . . ,mk and j = 1, . . . , n, find
x ∈ IRn such that

mk
⊕

i=1

aki ⊗
n

⊗

j=1

xj
⊗
ckij

= bk for k = 1, . . . , p1 , (5)

mk
⊕

i=1

aki ⊗
n

⊗

j=1

xj
⊗
ckij

≤ bk for k = p1 + 1, . . . , p1 + p2 . (6)

We call (5) – (6) a system of multivariate max-plus-algebraic polynomial equalities

and inequalities. Note that the exponents may be negative or real.
In [6, 10] we have shown that the problem of solving a system of multivari-

ate max-plus-algebraic polynomial equalities and inequalities can be recast as
an ELCP. This enables us to solve many important problems that arise in the
max-plus algebra and in the system theory for max-linear DESs such as: com-
puting max-plus-algebraic matrix factorizations, performing max-plus-algebraic
state space transformations, computing state space realizations of the impulse
response of a max-linear time-invariant DES, constructing matrices with a given
max-plus-algebraic characteristic polynomial, computing max-plus-algebraic sin-
gular value decompositions, computing max-plus-algebraic QR decompositions,
and so on [6–10].

Although the analogues of these problems in conventional algebra and linear
system theory are easy to solve, the max-plus-algebraic problems are not that
easy to solve and for almost all of them the ELCP approach is at present the
only way to solve the problem.

For more information on the max-plus-algebra and on max-plus-algebraic
system theory for discrete event systems the interested reader is referred to [1,
2, 4, 6, 15] and the references given therein.

3.2 The ELCP and piecewise-linear resistive electrical circuits

In this section we consider electrical circuits that may contain the following el-
ements: linear resistive elements, piecewise-linear (PWL) resistors (the resistors
are not required to be either voltage or current controlled), and PWL controlled
sources (all four types) with one controlling variable (the characteristics may
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Fig. 1. A one-dimensional PWL curve in IR2 characterized by n + 1 breakpoints x0,
. . . , xn and two directions d0 and d1. The points on this curve can be parameterized
by (7) where λ is a real continuous parameter.

be multi-valued). These electrical circuits can be considered as examples of con-
tinuous variable systems (i.e., systems that can be modeled using difference or
differential equations). In this section we shall show that by using an intelli-
gent parameterization of the PWL characteristics the equations that describe
the relations between the voltages and currents in these electrical circuits can be
reformulated as (a special case of) an ELCP. For sake of simplicity we consider
only two-terminal resistors since they can be described by a one-dimensional
PWL manifold3.

If x is a vector, then we define x+ = max(x, 0) and x− = max(−x, 0), where
the operations are performed componentwise. An equivalent definition is:

x = x+ − x− , x+, x− ≥ 0 , (x+)Tx− = 0 .

It is easy to verify that a one-dimensional PWL curve in IR2 characterized
by n+1 breakpoints x0, . . . , xn and two directions d0 and d1 (see Figure 1) can
be parameterized as follows [5, 23]:

x = x0 + d0λ
− + (x1 − x0)λ

+ +
n
∑

k=2

(xk − 2xk−1 + xk−2)(λ− k + 1)+ +

(d1 − xn + xn−1)(λ− n)+ , (7)

3 If we allow multi-terminal nonlinear resistors, which can be modeled by higher-
dimensional PWL manifolds, we shall also obtain an ELCP (See [5]).



with λ ∈ IR. Introducing auxiliary variables λi = λ − i yields a description of
the following form:

x = x0 +Ay− +By+

C(y+ − y−) = d

y+, y− ≥ 0

(y+)T y− = 0

where

y− =
[

λ− λ−

1 . . . λ−
n

]T

y+ =
[

λ+ λ+
1 . . . λ+

n

]T

A− = [ d0 0 . . . 0 ]

A+ = [ 0 x1 − x0 x2 − 2x1 + x0 . . . d1 − xn + xn−1 ]

B =











1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...
. . .

...
1 0 0 . . . −1











c = [ 1 2 . . . n ]
T

.

If we extract all nonlinear resistors out of the electrical circuit, the resulting
N -port contains only linear resistive elements and independent sources. As a
consequence, the relation between the branch currents and voltages of this N -
port is described by a system of linear equations. If we combine these equations
with the PWL descriptions (7) of the nonlinear resistors, we finally get a system
of the form:

Mw+ +Nw− = q , w+, w− ≥ 0 , (w+)T (w−) = 0 , (8)

where the vector w contains the parameters λ and λi of the PWL descriptions
of all the nonlinear resistors. It is easy to verify that (8) can be considered as (a
special case of) an ELCP. If we solve (8), we get the complete set of operating
points of the electrical circuit.

In a similar way we can determine the driving-point characteristic (i.e., the
relation between the input current and the input voltage) and the transfer char-
acteristics of the electrical circuit [23].

In general, the behavior of an electrical network consisting of linear resistors,
capacitors, inductors, transformers, gyrators and ideal diodes can be described
by a model of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)



subject to the conditions

y(t) ≥ 0, u(t) ≥ 0, (y(t))Tu(t) = 0 (9)

(see, e.g., [19]). In order to compute the stationary points of such an electrical
circuit, we add the condition ẋ(t) = 0, which leads to a Linear Complementarity
Problem [19]. If we replace (9) by more general conditions of the form wi ≥ 0,
zi ≥ 0, wizi = 0, where wi and zi are components of u, y or x, then we get (a
special case of) an ELCP.

3.3 The ELCP and hybrid systems

In Sections 3.1 and 3.2 we have shown that the ELCP arises in the analysis
of certain classes of discrete event systems and continuous variable systems.
Since hybrid systems arise from the interaction between discrete event systems
and continuous variable systems, and since they exhibit characteristics of both
discrete event systems and continuous variable systems, this leads to the question
as to whether the ELCP can also play a role in the modeling and analysis of
certain classes of hybrid systems. In the next section we shall show that this
is indeed the case: we study a traffic-light-controlled intersection, which can be
considered as a simple hybrid system. The evolution of the queue lengths in this
hybrid system can be described by an ELCP.

Furthermore, in [19, 21, 22] Schumacher and van der Schaft consider another
class of hybrid systems — the “complementary-slackness systems” — typical
examples of which are electrical networks with diodes, or mechanical systems
subject to geometric inequality constraints. They develop a method to deter-
mine the uniqueness of smooth continuations and to solve the associated mode
selection problem for complementary-slackness systems. When the underlying
system is a linear system, then this leads to a Linear Dynamic Complementarity
Problem which can also be considered as a special case of the ELCP [11].

Hence, the ELCP can indeed be used in the analysis of certain classes of
hybrid systems.

4 Traffic-light-controlled intersections

4.1 The set-up and the model of the system

Consider a single intersection of two two-way streets with controllable traffic
lights on each corner (see Figure 2). For sake of brevity and simplicity we make
the following assumptions:

– the traffic lights can either be red or green,
– the average arrival and departure rates of the cars are constant or slowly

time-varying,
– the queue lengths are continuous variables.

These assumptions deserve a few remarks:



– Adding an all-red or amber phase leads to a similar, but more complex model
(see [12]).

– If we keep in mind that one of the main purposes of the model that we shall
derive, is the design of optimal traffic light switching schemes, then assuming
that the average arrival and departure rates are constant is not a serious
restriction, provided that we use a moving horizon strategy: we compute the
optimal traffic light switching scheme for, say, the next 10 cycles, based on a
prediction of the average arrival and departure rates (using data measured
during the previous cycles) and we apply this scheme during the first of the
10 cycles, meanwhile we update our estimates of the arrival and departure
rates and compute a new optimal scheme for the next 10 cycles, and so on.

– Designing optimal traffic light switching schemes is only useful if the arrival
and departure rates of vehicles at the intersection are high. In that case,
approximating the queue lengths by continuous variables only introduces
small errors. Furthermore, in practice there is also some uncertainty and
variation in time of the arrival and departure rates, which makes that in
general computing the exact optimal traffic light switching scheme is utopian.
Moreover, in practice we are more interested in quickly obtaining a good
approximation of the optimal traffic light switching scheme than in spending
a large amount of time to obtain the exact optimal switching scheme.

Let us now continue with the description of the set-up of the system. There are
four lanes L1, L2, L3 and L4, and on each corner of the intersection there are
traffic lights (T1, T2, T3 and T4). The average arrival rate of cars in lane Li is
λi. When the traffic light is green, the average departure rate in lane Li is µi.
Let t0, t1, t2, t3, . . . be the time instants at which the traffic lights switch from
green to red or vice versa. The traffic light switching scheme is shown in Table 1.
Define δk = tk+1 − tk. Let li(t) be the queue length (i.e., the number of cars
waiting) in lane Li at time instant t.

Let us now write down the equations that describe the relation between the
switching time instants and the queue lengths as continuous variables.

Consider lane L1. When the traffic light T1 is red, there are arrivals at lane
L1 and no departures. As a consequence, we have

dl1(t)

dt
= λ1 (10)

Period T1 T2 T3 T4

t0 – t1 red green red green

t1 – t2 green red green red

t2 – t3 red green red green
...

...
...

...
...

Table 1. The traffic light switching scheme.
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Fig. 2. A traffic-light-controlled intersection of two two-way streets.

for t ∈ (t2k, t2k+1) with k ∈ IN, and

l1(t2k+1) = l1(t2k) + λ1δ2k

for k = 0, 1, 2, . . .
When the traffic light T1 is green, there are arrivals and departures at lane L1.
Since then the net queue growth rate is λ1 −µ1 and since the queue length l1(t)
cannot be negative, we have

dl1(t)

dt
=

{

λ1 − µ1 if l1(t) > 0

0 if l1(t) = 0
(11)

for t ∈ (t2k+1, t2k+2) with k ∈ IN. So

l1(t2k+2) = max
(

l1(t2k+1) + (λ1 − µ1)δ2k+1, 0
)

for k = 0, 1, 2, . . .
Note that we also have

l1(t2k+1) = max
(

l1(t2k) + λ1δ2k, 0
)

for k = 0, 1, 2, . . . since l1(t) ≥ 0 for all t.
We can write down similar equations for l2(tk), l3(tk) and l4(tk).
So if we define

xk =









l1(tk)
l2(tk)
l3(tk)
l4(tk)









, b1 =,









λ1

λ2 − µ2

λ3

λ4 − µ4









, b2 =









λ1 − µ1

λ2

λ3 − µ3

λ4









,



then we have

x2k+1 = max(x2k + b1δ2k, 0) (12)

x2k+2 = max(x2k+1 + b2δ2k+1, 0) (13)

for k = 0, 1, 2, . . .

Remarks:

– The traffic-light-controlled intersection can be considered as a hybrid system
that has the time and the queue lengths as state variables, and that can
operate in two regimes characterized by differential equations of the form
(10) or (11) depending on the value of a discrete control variable that can
have the value “red” or “green”.

– The model we have derived is different from the models used by most other
researchers due to the fact that we consider red-green cycle lengths that may
vary from cycle to cycle. Furthermore, we consider non-saturated intersec-
tions, i.e., we allow queue lengths to become 0 during the green cycle. Some
authors (see, e.g., [16, 20]) only consider models for oversaturated intersec-
tions, i.e., they do not allow queue lengths to become equal to 0 during the
green cycle. In that case the maximum operator that appears in (12) – (13) is
not necessary any more, which leads to a simpler description of the behavior
of the system. However, in [13] we have shown that, when we want to design
optimal traffic light switching schemes, applying a model for oversaturated
intersections to a non-saturated intersection in general does not lead to an
optimal traffic light switching scheme.

4.2 Link with the ELCP

Let us now show that the system (12) – (13) can be reformulated as an ELCP.
First consider (12) for an arbitrary index k. This equation can be rewritten as
follows:

x2k+1 ≥ x2k + b1δ2k

x2k+1 ≥ 0

(x2k+1)i = (x2k + b1δ2k)i or (x2k+1)i = 0 for i = 1, 2, 3, 4 ,

or equivalently

x2k+1 − x2k − b1δ2k ≥ 0

x2k+1 ≥ 0

(x2k+1 − x2k − b1δ2k)i (x2k+1)i = 0 for all i .

Since a sum of nonnegative numbers is equal to 0 if and only if all the numbers
are equal to 0, this system of equations is equivalent to:

x2k+1 − x2k − b1δ2k ≥ 0



x2k+1 ≥ 0
4

∑

i=1

(x2k+1 − x2k − b1δ2k)i (x2k+1)i = 0 .

We can repeat this reasoning for (13) and for each index k.
If we consider N switching time instants and if we define

x∗ =











x1

x2

...
xN











and δ∗ =











δ0
δ1
...

δN−1











,

we finally get a description of the form

Ax∗ +Bδ∗ + c ≥ 0 (14)

x∗ ≥ 0 (15)

(Ax∗ +Bδ∗ + c)Tx∗ = 0 . (16)

It is easy to verify that the system (14) – (16) is a special case of an ELCP.
Now we can compute traffic light switching schemes that minimize objective

functions such as

– (weighted) average queue length over all queues:

J1 =

4
∑

i=1

wi

∫ tN

t0

li(t) dt

tN − t0
,

– (weighted) worst case queue length:

J2 = max
i, t

(wi li(t)) ,

– (weighted) average waiting time over all queues:

J3 =

4
∑

i=1

wi

∫ tN

t0

li(t) dt

λi(tN − t0)
,

and so on, where wi > 0 for all i. Furthermore, we can impose extra conditions
such as minimum and maximum durations for the green and the red time4,
maximum queue lengths5, and so on. This leads to the following problem:

minimize J (17)

4 A green time that is too short is wasteful. If the red time is too long, drivers tend
to believe that the signals have broken down.

5 This could correspond to an upper bound on the available storage space due to the
distance to the preceding junction or to the layout of the intersection.



subject to

δmin,r ≤ δ2k ≤ δmax,r for k ∈ α(N) (18)

δmin,g ≤ δ2k+1 ≤ δmax,g for k ∈ β(N) (19)

xk ≤ xmax for k = 1, 2, . . . , N (20)

x2k+1 = max(x2k + b1δ2k, 0) for k ∈ α(N) (21)

x2k+2 = max(x2k+1 + b2δ2k+1, 0) for k ∈ β(N) , (22)

with

α(N) =

{

0, 1, . . . ,

⌊

N − 1

2

⌋}

and β(N) =

{

0, 1, . . . ,

⌊

N

2

⌋

− 1

}

,

where ⌊x⌋ is the largest integer that is less than or equal to x.
It can be shown [13] that the objective function J2 (i.e., the (weighted) worst
case queue length) is convex as a function of the δk’s, which implies that problem
(17) – (22) with J = J2 can be solved efficiently (if there is no upper bound on the
queue lengths, or if we deal with constraint (20) by introducing a convex penalty
term if some components of xmax are finite). However, the objective functions
J1 and J3 are neither convex nor concave. Our computational experiments have
shown that in order to solve problem (17) – (22) with J = J1 or J = J3 using
constrained optimization (with, e.g., sequential quadratic programming) several
initial starting points are necessary to obtain the global minimum.

Using the procedure given above the system (18) – (22) can be rewritten as
a system of the form

Ax∗ +Bδ∗ + c ≥ 0 (23)

x∗ ≥ 0 (24)

Ex∗ +Dδ∗ + f ≥ 0 (25)

(Ax∗ +Bδ∗ + c)Tx∗ = 0 , (26)

which is again a special case of an ELCP. In order to determine the optimal traffic
light switching scheme we could first determine the solution set of the ELCP and
then minimize the objective function J over this solution set. Our computational
experiments have shown that the determination of the minimum value of the
objective functions J1 and J3 is a well-behaved problem in the sense that using
a local minimization routine (that uses, e.g., sequential quadratic programming)
starting from different initial points always yields the same numerical result
(within a certain tolerance). Furthermore, it can be shown [13] that J2 is a
convex function of the parameters λk, κk and µk that characterize the solution
set of the ELCP (cf. (2)).

The algorithm of [6, 7] to compute the solution set of a general ELCP requires
exponential execution times. This implies that the approach sketched above is
not feasible if the number of switching cycles N is large. However, in [12] we
have developed efficient methods to determine suboptimal traffic light switching
schemes for the model (23) – (26): for the objective functions J1 (i.e., (weighted)



average queue length) and J3 (i.e., (weighted) average waiting time) we can make
some approximations that transform the problem into an optimization problem
over a convex feasible set, or even into a linear programming problem. This
approach is computationally very efficient and yields suboptimal solutions that
approximate the global optimal solution very well.

For more information on other models that describe the evolution of the
queue lengths at a traffic-light-controlled intersection and on optimal traffic light
control the interested reader is referred to [14, 17, 18, 20] and the references given
therein.

5 Conclusions and further research

We have introduced the Extended Linear Complementarity Problem (ELCP)
and indicated how it can be used in the modeling and analysis of certain classes
of discrete event systems, continuous variable systems and hybrid systems. More
specifically, we have shown that for a traffic-light-controlled intersection the evo-
lution of the queue lengths at the switching time instants can be described by
an ELCP.

Topics for further research include: development of efficient algorithms for
the special cases of the ELCP that appear in the analysis of specific classes of
hybrid systems, investigation of the use of the ELCP to model and to analyze
other classes of hybrid systems, and extension of our model for a traffic-light-
controlled intersection to networks of intersections.
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