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ABSTRACT

One of the open problems in the max-plus-algebraic sys-
tem theory for discrete event systems is the minimal re-
alization problem. We consider a simplified version of
the general minimal realization problem: the boolean
minimal realization problem, i.e., we consider models in
which the entries of the system matrices are either equal
to the max-plus-algebraic zero element or to the max-
plus-algebraic identity element. We show that the corre-
sponding decision problem (i.e., deciding whether or not
a boolean realization of a given order exists) is decid-
able, and that the boolean minimal realization problem
can be solved in a number of elementary operations that
is bounded from above by an exponential of the square
of (any upper bound of) the minimal system order.

INTRODUCTION

The max-plus-algebra [1, 2], which has maximization and
addition as its basic operations, is one of the frameworks
that can be used to model a class of discrete event sys-
tems (DESs). Typical examples of DESs are flexible man-
ufacturing systems, telecommunication networks, paral-
lel processing systems and logistic systems. One of the
characteristic features of DESs, as opposed to continu-
ous variable systems (i.e., systems the behavior of which

1This research was carried out while the first author was
working at ESAT-SISTA, K.U.Leuven, Belgium.

can be described by difference or differential equations),
is that their dynamics are event-driven as opposed to
time-driven: the behavior of a DES is governed by events
rather than by ticks of a clock. An event corresponds to
the start or the end of an activity. If we consider a pro-
duction system then possible events are: the completion
of a part on a machine, a machine breakdown, or a buffer
becoming empty.

In general, models that describe the behavior of a
DES are nonlinear, but there exists a class of DESs — the
max-linear DESs — for which the model becomes “lin-
ear” when we formulate it in the max-plus algebra [1, 2].
Loosely speaking we could say that this class corresponds
to the class of deterministic DESs in which only synchro-
nization and no concurrency occurs.

There exists a remarkable analogy between the ba-
sic operations of the max-plus algebra (maximization and
addition) on the one hand, and the basic operations of
conventional algebra (addition and multiplication) on the
other hand. As a consequence, many concepts and prop-
erties of conventional algebra and linear system theory
also have a max-plus-algebraic analogue [1]. This anal-
ogy also allows us to translate many concepts, properties
and techniques from conventional linear system theory
to max-plus-algebraic system theory. However, there are
also some major differences that prevent a straightfor-
ward translation of properties, concepts and algorithms
from conventional linear algebra and linear system the-
ory to max-plus algebra and max-plus-algebraic system
theory.

One of the open problems in the max-plus-alge-
braic system theory for DESs is the minimal realiza-
tion problem: given the impulse response of a max-linear
DES, determine a model of smallest possible size the im-
pulse response of which coincides with the given impulse
response. In this paper we shall consider a simplified
version of the general minimal realization problem: the
boolean minimal realization problem. We derive a lower
bound for the minimal system order of a boolean max-
linear DES as a function of the length of the transient
part of its impulse response. Furthermore, we show that
the problem of deciding whether or not a boolean real-
ization with a given order of a given impulse response
exists, is decidable. We also show that the boolean min-
imal realization problem can be solved in a number of
operations that is bounded from above by an exponen-
tial of the square of (any upper bound of) the minimal
system order.

MAX-PLUS ALGEBRA

The basic operations of the max-plus algebra are the
maximum (represented by @) and the addition (repre-
sented by ®):

TBy max(z, y)

rR®Y = T+Yy
with z,y € R. The reason for choosing the symbols &

and ® to represent respectively maximization and ad-
dition is that many properties from conventional linear



algebra can be translated to the max-plus algebra sim-
ply by replacing + by @ and X by ®. Therefore, we
call @ the max-plus-algebraic sum and ® the max-plus-
algebraic product.

Define ¢ = —o0 and R, = RU {e}. The structure
(R, ®, ®) is called the max-plus algebra. Note that in
the max-plus algebra € and 0 play the role of respectively
0 and 1 in conventional algebra: ¢ is the identity element
for @ and is absorbing for ®, and 0 is the identity element
for ®.

The operations @ and ® are extended to matrices
as follows. If A,B c RZ‘X" then (A (&) B)ij = a;; D bij
for all 4,5. If A € RI**? and B € RE*"™ then (A® B);; =

P

@ a;r @ bij for all 4,j. Note that these definitions re-
genllble the definitions of matrix sum and matrix product
in conventional algebra but with + replaced by & and
x replaced by ®. The matrix E,,xn is the max-plus-
algebraic zero matrix: (8m><n)ij = ¢ for all i,j. The
matrix F, is the max-plus-algebraic identity matrix: we
have (E,)i;; = 0 for all ¢ and (F,);; = € for all 4,5 with
i

The kth max-plus-algebraic matrix power of a ma-
trix A € RI*™ with k € N is defined as follows:

0

A% =B, A% = A9A®. . ®9A ifk>0.
’ ——— —

k times

Define B = {0,¢}. A matrix with entries in B is called a
max-plus-algebraic boolean matrix.

In order to define the cyclicity of a max-plus-alge-
braic matrix we first need some definitions from graph
theory. A directed graph is called strongly connected if
for any two different vertices v;, v; there exists a path
from v; to v;. A maximal strongly connected subgraph
(m.s.c.s.) of a directed graph is a strongly connected
subgraph that is maximal.

The cyclicity of an m.s.c.s. is the greatest com-
mon divisor of the lengths of all the circuits of the given
m.s.c.s. If an m.s.c.s. or a graph contains no circuits then
its cyclicity is equal to 0 by definition. The cyclicity ¢(G)
of a graph G is the least common multiple of the nonzero
cyclicities of its m.s.c.s.’s.

Consider A € RI*™. The precedence graph of A,
denoted by G(A), is a weighted directed graph with set
of vertices {1,...,n} and an arc (j,4) with weight a;; for
each a;; # . The average weight of a path in G(A) is de-
fined as the sum of the weights of the arcs that compose
the path divided by the length of the path. An elemen-
tary circuit of G(A) is called critical if it has maximum
average weight among all circuits. The critical graph
G°(A) consists of those nodes and arcs of G(A) that be-
long to a critical circuit of G(A).

The cyclicity of a matrix A € RI*™ is denoted by
¢(A) and is equal to the cyclicity of the critical graph of
the precedence graph of A. So c(A) = ¢(G°(A)). If A €
B"*™ then every circuit in G(A) is critical, which implies
that c¢(A) = ¢(G°(A)) = ¢(G(A)). For the cyclicity of a
general matrix we have the following upper bound [4]:

Lemma 1 If A € RI*™ then c(A) < exp (n)

e

Remark 2 Another upper bound that is more complex
but tighter for large n can be found in [12] (See also
[4]). o

For max-plus-algebraic boolean matrices we have [8]:

Theorem 3 If A € B"*" and if c is the cyclicity of A,
then A% = 42" for all k > 2n% — 3n + 2.

MAX-PLUS-ALGEBRAIC SYSTEM THEORY

There is a class of DESs that can be modeled by a max-
plus-algebraic model of the following form [1, 2]:

zk+1) = A®xk) ® Bou(k) (1)
yk) = Coux(k) . 2)

The vector x represents the state, u is the input vector
and y is the output vector of the system. Since the model
(1) = (2) closely resembles the state space model for lin-
ear time-invariant discrete-time systems, a DES that can
be modeled by (1) —(2) will be called a maz-linear time-
invariant DES (MLTI DES).

The number of components of the state vector x
is the order of the state space model. The matrices A,
B and C are called the system matrices of the model.
We shall characterize a model of the form (1)—(2) by
the triple (A4, B,C') of system matrices. A system with
one input and one output is called a single-input single-
output (SISO) system. A system with more than one
input and more than one output is called a multi-input
multi-output (MIMO) system.

A max-plus-algebraic unit impulse is a sequence
{ek}zozo defined by: eg =0 and ex = ¢ for k = 1,2,...
If we apply a max-plus-algebraic unit impulse to the ith
input of the system, and if we assume that z(0) = E,.x1,
we get y(k) = C® Pt ® B.; as the output of the
DES, where B.; is the ith column of B. This output is
called the impulse response due to a max-plus-algebraic

impulse at the ith input. Since y(k) corresponds to the

e k—
ith column of the matrix Gx_1 = C' @ A® ! ® B, the

sequence {Gk}:;o is called the impulse response of the
DES. In the remainder of this paper we shall use the
symbol G as a abbreviated notation for {Gk}:’zo.

The impulse response of an MLTI DES can be char-

acterized as follows:

Theorem 4 If G is the impulse response of an MLTI
DES with m inputs and | outputs then we have

vie{l,...,l},vje€{1,...,m},3c € Ny,
A1, ..., A € Re,3ko € N such that Vk € N :

(Grotheters—1)ij = As® @ (Grothers—1)ij  (3)

fors=1,...,c.

Proof: This is a direct consequence of Corollary 1.1.9
of [9, p. 166] or of Proposition 1.2.2 of [10]. O

A sequence G that exhibits a behavior of the form (3)
is called wultimately periodic. The smallest possible ¢ for
which (3) holds is called the period of G. If G is the im-
pulse response of an MLTI DES and if the triple (A, B, C)
is a state space realization of the DES, then the period
of GG is a divisor of the cyclicity of A.



Proposition 5 A sequence G with Gy, € RX™ for all k
is the impulse response of an MLTI DES if and only if it
is ultimately periodic.

Proof: See [1, 9, 10] for the SISO case and [3, 6] for the
MIMO case. O

In order to get a concise, unique representation of an ul-
timately periodic sequence we now introduce a new con-
cept, the so-called canonical representation of an ulti-
mately periodic sequence. We shall only do this for a
sequence of real numbers. The extension to sequences
of matrices is straightforward. Consider an ultimately
periodic sequence of real numbers g = {gx}, . First
we determine the smallest possible ¢ € Ny for which (3)
holds. The \,’s are then defined uniquely? (up to a cir-
cular permutation of the indices). Next, we determine
the smallest possible ko € N such that (3) holds for all
k > 0. Now we can uniquely represent the sequence g
by the (ko + 2¢+ 1)-tuple (¢, A1,..., A, Go, - - -, Ghgte—1)-
The subsequence go, . . . , gk, —1 Will be called the transient
part of g.

Now consider the following problem:

Given an ultimately periodic sequence G with Gy €
RX™ for all k and an integer r, find, if possible, ma-
trices A € RIX", B € RZ*™ and C' € RX" such that
(A, B,C) is a realization of G, i.e., Gy = C®A®]C ® B
for all kK € N.

This problem is called the state space realization problem.
If we make r as small as possible, then the problem is
called the minimal state space realization problem and
the resulting value of r is called the minimal system order.

The minimal state space realization problem for
MLTI DESs has been studied by many authors and for
some specific cases the problem has been solved [3, 7,
11, 13]. However, at present it is still an open problem
whether there exist tractable methods to solve the gen-
eral minimal state space realization problem. Since the
general minimal realization problem is still an open prob-
lem, we consider a simplified version of this problem in
the next section.

BOOLEAN MINIMAL REALIZATION

An MLTI DES for which all the terms of the impulse re-
sponse are max-plus-algebraic boolean matrices is called
a boolean MLTI DES. It is easy to verify that if we have
an rth order state space realization (A, B, C) of a boolean
MLTI DES where the entries of A, B, C belong to R,
then there also exists an rth order state space realization
(A, B,C) such that the entries of A, B and C belong to
B.

The following corollaries are direct consequences of The-
orem 3.

Corollary 6 Consider a boolean MLTI DES with min-
imal system order n and impulse response G. Let c be
the period of G. Then we have Gri+c. = Gy for all k >
2n® — 3n + 2.

2Provided that for a subsequence of the form e, ¢, e, ...,
we take Ag equal to €.

Corollary 7 Let G and F' be impulse responses of boolean
MLTI DESs with minimal system order less than or equal
to n. Let c be the mazimum of the period of G and the
period of F. If Gy, = F), fork=0,...,2n> = 3n+1+¢
then Gy = Fy, for all k € N.

Corollary 7 gives an upper bound on the number of terms
that two boolean impulse responses should have in com-
mon in order to coincide completely.

A lower bound for the minimal system order

At present there do not exist efficient (i.e., polynomial
time) algorithms to compute a non-trivial lower bound
for the minimal system order for a given ultimately peri-
odic sequence. However, for a boolean impulse response
the following lemma provides an easily computable lower
bound:

Lemma 8 Let G be the impulse response of a boolean
MLTI DES with minimal system order mn. Let c be the
period of G. Let L be the length of the transient part of
G, i.e., L is equal to the smallest integer K for which
we have Giye = Gi for all k > K. If L > 2 then n >
3++V8L -7

1 .

Proof: From Corollary 6 it follows that
L<2n®—3n+2. (4)

If is easy to verify that this condition holds for every

n€Nif L=0orif L =1. So from now on we assume

that L > 2. The zeros of the function f defined by f(n) =

3+V8L -7
4

2n? —3n 42— L are n; =
3—+V8L -7
always positive, the function f will be nonnegative if n >

n1. Hence, condition (4) will only be satisfied if n > n;.
)

and ny =

Since ne < 0 if L > 2 and since n is

Complexity of the boolean minimal realization
problem

Let us now consider the following two problems:

e the boolean realization decision problem (BRDP):
Given an ultimately periodic sequence G with G €
B'*™ in its canonical representation and an integer
r, does there exist an rth order boolean state space
realization of G? This problem will be denoted by
BRDP(G,r).

e the boolean minimal realization problem (BMRP):
Given an ultimately periodic sequence G with G €
B'™ in its canonical representation, compute a mini-
mal state space realization of G. This problem will be
denoted by BMRP(G).

Proposition 9 Let G be an ultimately periodic sequence
with Gy, € BY™™ for all k and let » € N. The problem
BRDP(G,r) is decidable using a finite number of elemen-
tary operations (such as addition, subtraction, multipli-
cation, division, mazimum, minimum and comparison).



Proof: Since G is an ultimately periodic sequence, it
corresponds to the impulse response of a boolean MLTI
DES. Let n be the minimal system order of this system.
In [5] we have shown that an upper bound n, for n can
be computed in a finite number of steps. If r > n, then
there exists an rth order state space realization of G and
then the answer to the BRDP(G,r) is affirmative.

From now on we assume that r < ny,. Let ¢ be the period
of G. Define K = Qn?l — 3nu + 1+ c. If we have an rth
order state space realization characterized by the triple
of system matrices (A4, B, C') and if C®A®k ®B = G}, for
all k¥ < K then it follows from Corollary 7 that (A, B, C)
is an rth order state space realization of G.

This implies that the BRDP(G,r) is equivalent to check-
ing whether or not the following system of equations has
a solution:

C®A®" @B =G

with A € B"X", B € B"™*™ and C € B*". If we write out
(5), we get

T rk—1 T
B Pere @ an® " @by = (Gr)y

p,g=1 s=1 w,v=1

fork=0,...K , (5)

where Yipgsuv 1S the number of times that a.. appears in

the sth term of (A®k)pq. If we put the entries of A, B and
C in one large column vector z of length L = (r+m+1)r,
if we put the entries of the Gi’s in one large column
vector d of length M = Im(K + 1) and if we reformulate
everything in conventional algebra, we obtain

max (ki1 1 + Qgiz T2 + -+ arirzr) =di . (6)

The system of equations (6) with kK = 0,..., M can be
solved using an exhaustive search method: First we select
for the first equation a term for which the maximum is
reached, and we eliminate a variable if possible. Then
we select for the second equation a term for which the
maximum is reached, and so on, until we either find a
solution or reach an inconsistent system of equations. In
the latter case we backtrack and select another candidate
for the maximizing term in the equation where the last
choice was made. This continues until we either find a
solution (which yields an rth order state space realization
of G), or have exhausted all possible choices, in which
case the system cannot be solved (which implies that no
rth order state space realization of G exists). Hence, we
can give an answer to BRDP(G,r) using a finite number
of elementary operations. m]

Remark 10 In the formulation of Proposition 9 we have
used the concept “decidability” in a rather loose and in-
formal way. However, it can be verified that our use of
decidability corresponds to the formal concept of decid-
ability in the Turing machine sense. &

If x € R then [z] is the smallest integer that is larger
than or equal to x.

Proposition 11 Let G be an ultimately periodic sequence
with G € BX™ for all k. Let ny be an upper bound® for

3See [5, 10] for a finite upper bound for the minimal system
order that can be computed efficiently.

the minimal system order of the MLTI DES the impulse
response of which coincides with G. Then BMRP(G) can
be solved in a number of elementary operations that is
bounded from above by the function f defined by

f(nu,l,m) = 2Km2r(l +r) gritrim+D) (7)

r=1

with K = [Qnﬁ — 3ny + 2+ exp (%)-‘ . Moreover,

2
u

flra, l,m) <"

(8)
with y = 3mH+3,

Proof: Since G is ultimately periodic it corresponds
to the impulse response of an MLTI DES. Furthermore,
since all the entries of the G’s are in B, G also corre-
sponds to the impulse response of a boolean MLTI DES.
Assume that the minimal system order of the boolean
MLTI DES we are looking for is equal to n. Let nj be a
lower bound for the minimal system order (that is, e.g.,
obtained by using Lemma 8).

If ¢ is the period of G, then ¢ < exp (g) by Lemma 1.

Hence, ¢ < exp (E) If we have a sequence F' that
is the impulse resp%nse of an rth order boolean MLTI
DES with r < ny, then by Corollary 7 it suffices to check
whether the first K terms of F' and G are equal in order
to decide whether F' and G coincide.

Now we can apply the following procedure which is com-
bination of an incremental search procedure* (for the sys-
tem order) combined with an enumerative procedure (for
the entries of the system matrices). We start with a guess
r for the minimal system order that is equal to n;. Then
we consider all possible triples (A, B,C) with A € B™*",
B e B™™ and C € B*". For each triple we consider the
finite sequence F = {C' ® A®* ® B}Z:Ol. If the terms of
this sequence are equal to the first K terms of G, then
the triple (A, B,C) is a minimal state space realization
of G and r is the minimal system order. Otherwise, we
consider the next triple (A4, B, C'). Note that the number
of triples that should be considered is less than or equal
to 272+ (m+)  For each triple (A, B, C') we have to com-
pute at most K terms of the sequence F' and compare
them with the corresponding term of G. It is easy to
verify that this can be done using a number of additions
or comparisons that is less than or equal to

Kim(2r — 1)+ (K — )rm(2r — 1) + Kim
= Kilm(2r) + (K — 1)rm(2r — 1)
< Klm2r + Krm2r
<2Kmr(r+1) .

If all th order triples have been considered and no state
space realization of G has been found yet, we augment r
and repeat the procedure described above.

Since ny is an upper bound for the minimal system order,
this procedure will ultimately lead to a minimal state
space realization of (G. Note that in the worst case r
ranges from 1 to ny.

4We could also have used a binary search procedure.



As a consequence, the number of elementary operations
that is needed to solve BMRP(G) in bounded from above
by the function f defined by (7).

Furthermore, it can be verified that (8) holds for all
N, L, m € No. O

It is still an open problem whether there exist polynomial
time algorithms to solve the BRDP and the BMRP.

CONCLUSIONS

In the paper we have considered the minimal state space
realization problem for max-linear time-invariant discrete
event systems. More specifically we have directed our at-
tention to the boolean minimal realization problem. First
we have derived an efficiently computable lower bound
for the minimal system order of a boolean max-linear dis-
crete event system. Next we have shown that the decision
problem that corresponds to the boolean minimal real-
ization problem is decidable. Finally we have shown that
the boolean minimal realization problem can be solved
in a number of operations that is bounded from above
by an exponential of the square of the minimal system
order.

In our future research we hope to extend some of
the results of this paper to general max-linear time-in-
variant discrete event systems.
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