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Abstract: State space transformations in the max-algebraic system theory for Discrete

Event Systems (DES) are discussed. Some transformations between different realizations

of a given impulse response of a DES are suggested and their limitations are illustrated.

It is explained why a general result seems hard to prove.

Résumé: Nous discutons certaines transformations d’état dans la théorie des systèmes

pour une classe de systèmes à évènements discrets (SED). On propose des transformations

entre différentes réalisations de la réponse impulsionelle d’un SED max-algébrique

donné. Nous illustrons les limitations de ces transformations et nous expliquons pourquoi

un resultat général sera difficile à prouver.
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1. INTRODUCTION

A class of Discrete Event Systems (DES), e.g. sys-

tems which involve synchronization, can be described

by linear models provided that the usual addition is

replaced by maximization and multiplication by ad-

dition. The resulting algebraic structure is called the

max-algebra and a max-algebraic system theory has

been developed for this class of DES, see (Baccelli et

al., 1992).

One of the problems in the system theory for DES

is the minimal realization problem. Given an impulse

response of a system, find a state space description of

minimal dimension of which the behavior is equal to

the given impulse response. The minimal realization

problem for DES was introduced in (Olsder, 1986),

see also (Olsder and de Vries, 1988). Other results

are given in e.g. (Cuninghame-Green, 1991), (Wang et

al., 1995), and (De Schutter and De Moor, 1995). Up
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until now however, no general solution of the minimal

realization problem exists.

In conventional system theory a state space transfor-

mation always exists between two minimal realiza-

tions of a given impulse response. It is investigated

whether a similar statement holds true in the max-

algebraic system theory of DES. Since in the max-

algebra the inverse of a matrix only exists for a small

class of matrices, the search for state space transfor-

mations will be extended to the symmetrized max-

algebra, which is the linear closure of the max-algebra.

The symmetrized max-algebra was first introduced in

(Max Plus, 1990), see also (Baccelli et al., 1992) and

(Gaubert, 1992).

This paper is organized as follows. In section 2

the max-algebra and the symmetrized max-algebra

are discussed. Furthermore the linear, in max-algebra

sense, models for a class of DES are introduced. In

section 3 the minimal realization problem is discussed

and it is shown why the similarity transformation

problem is of interest. This problem will be discussed



in section 4. First some results from conventional sys-

tem theory are recalled. Then possible similarity trans-

formations for max-algebraic systems are introduced.

In section 5 some concluding remarks are made. An

extended version of this paper appears as (de Vries et

al., 1997).

2. MAX-ALGEBRA AND EXTENSIONS

In this section a brief overview of the max-algebra

and of the symmetrized max-algebra is given. For an

extensive discussion see (Baccelli et al., 1992).

Let ε = −∞ and Rε = R ∪ {ε}. For a,b ∈ Rε the

operations ⊕ and ⊗ are defined by

a⊕b = max(a,b)

a⊗b = a+b .

The set Rε together with the operations ⊕ and ⊗ will

be denoted by Rmax and is called the max-algebra. In

Rmax, ε is the neutral element for ⊕ while the neutral

element for ⊗ is 0.

The max-algebra operations are extended to matrices

as follows. If A,B ∈ R
m×n
ε then (A⊕B)i j = ai j ⊕ bi j

for all i, j. For A ∈ R
m×p
ε and B ∈ R

p×n
ε , (A⊗B)i j =

p
⊕

k=1

aik⊗bk j for all i, j. Let En or just E denote the n×n

max-algebraic unit matrix. Its entries are: Ei j = ε for

i 6= j and Eii = 0 (i, j = 1, . . . ,n).

A problem with Rmax is that there exist no inverse

elements w.r.t. ⊕. Therefore, in (Max Plus, 1990)

Smax, the linear closure of Rmax, is introduced. This

structure is called the symmetrized max-plus algebra.

Here the basic notions of Smax are given.

The set S consists of the following three sub-sets: S⊕ =
Rε , the max-positive numbers; S⊖ = {⊖a | a ∈ Rε},

the max-negative numbers; and S
• = {a• = a⊕ (⊖a) |

a ∈ Rε}, the balanced numbers. The elements in the

set S∨ = S
⊕ ∪S

⊖ will be called signed. For x,y ∈ Rε

let

x⊕ (⊖y) = x if x > y ,

x⊕ (⊖y) =⊖y if x < y ,

x⊕ (⊖y) = x• if x = y .

Furthermore, for any x,y ∈ S holds

⊖(x⊕ y) = (⊖x)⊕ (⊖y), x⊗ (⊖y) =⊖(x⊗ y),

(⊖x)⊗ (⊖y) = x⊗ y, ⊖(⊖x) = x .

These properties allow us to write a⊕ (⊖b) = a⊖b.

Let a ∈ S. Define its max-positive part a⊕ and its max-

negative part a⊖ as follows. If a ∈ S
⊕ then a⊕ = a and

a⊖ = ε . If a ∈ S
⊖ then a⊕ = ε and a⊖ = a. If a ∈ S

•,

∃b ∈R such that a⊕ = a⊖ = b. Any element a ∈ S can

then be written as a = a⊕⊖a⊖.

Since ⊖ is not cancellative, a ⊖ a 6= ε for a 6= ε ,

balances (∇) are used in the symmetrized max-algebra

instead of equalities. For a,b ∈ S the balance relation

is defined as

a ∇ b ⇔ a⊕⊕b⊖ = a⊖⊕b⊕ .

From this definition it follows that for a,b,c ∈ S

a ∇ b⊕ c ⇔ a⊖ b ∇ c. This implies that a ∇ b ⇔ a⊖
b ∇ ε . For a,b ∈ S

∨ it follows that a ∇ b ⇔ a = b.

These results imply a• = a⊖a ∇ ε . A problem with the

balance relation is that it is not transitive, e.g. 1 ∇ 1•,

1• ∇ ⊖1 but 1 ∇/ ⊖1.

The extension of Smax to matrices is similar to the

extension of Rmax to matrices. In Smax the determinant

of an n × n matrix A is defined (as usual) as, see

(Baccelli et al., 1992),

det(A) =
⊕

σ

sgn(σ)⊗
n

⊗

i=1

Aiσ(i) ,

where sgn(σ) is the signature of the permutation σ .

If σ is even, sgn(σ) = 0. If σ is odd, sgn(σ) = ⊖0.

Next, define the transpose of the matrix of cofactors

A♮ by A
♮
i j = cof ji(A), where cof ji(A) is equal to the

determinant of the matrix obtained from A by deleting

its j-th row and i-th column. This matrix satisfies A⊗
A♮

∇ det(A)⊗ En (Baccelli et al., 1992, Thm. 3.76).

The ‘inverse’ of a matrix A, denoted by A#, is then

defined as A# ⊗det(A) = A♮, provided that det(A)∇/ ε .

Within the max-algebra structure, a class of Discrete

Event Systems can be described by linear equations,

see e.g. (Cohen et al., 1985) and (Baccelli et al., 1992)

as follows

x(k+1) = A⊗ x(k)⊕B⊗u(k) (1)

y(k) =C⊗ x(k) . (2)

For a production network xi(k) typically denotes the

time instant machine i becomes active for the k-th

time, u(k) denotes the time instants outside resources

become available and y(k) the time instants at which

the k-th production cycle is finished. The entries of

A, B and C represent transportation and/or production

times. A model of the form (1)–(2) will be character-

ized by the triple (A,B,C) of system matrices. In this

paper only single input single output (SISO) systems

are considered.

If a max-algebraic unit impulse, defined by u(k) = ε

for k 6= 0 and u(0) = 0, is applied to the system (1)–

(2) and if x0 = ε , the output of the system becomes

y(k) =C⊗Ak−1 ⊗B (k ≥ 1). Define

gk =C⊗Ak−1 ⊗B k = 1,2, . . . (3)

These values are called the Markov parameters and

the sequence {gk}
∞

k=1 is the impulse response of the

system.

3. THE MINIMAL REALIZATION PROBLEM

The minimal realization problem is the following.

Given a sequence of Markov parameters {gk}
∞

k=1, find



matrices A, B, C such that C ⊗ Ak−1 ⊗ B = gk for

k = 1,2, . . . and such that the dimension of A is as

small as possible.

A starting point is the construction of the semi-infinite

Hankel matrix H corresponding with the Markov pa-

rameters {gk}
∞

k=1 and given by

H =











g1 g2 g3 . . .
g2 g3 g4 . . .
g3 g4 g5 . . .
...

...
...

. . .











.

Let H., j denote the j-th column of H.

The following theorem is an adaptation of a similar

theorem from conventional linear system theory (see

e.g. (Sontag, 1990)).

Theorem 1. Given an impulse response {gk}
∞

k=1 such

that for the corresponding Hankel matrix

H.,i ⊕a1 ⊗H.,i−1 ⊕·· ·⊕an ⊗H.,i−n ∇ ε , (4)

for i > n, ai ∈ S and where n is the smallest integer

for which this or another dependency of this form is

possible. Then the triple

A =

















ε 0 ε . . . ε

...
. . .

. . .
. . .

...
...

. . .
. . . ε

ε . . . . . . ε 0

⊖an . . . . . . ⊖a1

















, B =











g1

g2

...

gn











,

C =
(

0 ε . . . ε
)

(5)

is a minimal realization of {gk}
∞

k=1 which satisfies

C⊗Ak−1 ⊗B ∇ gk , k = 1,2, . . . (6)

PROOF. Direct calculation shows that the impulse

response of the given system balances the given im-

pulse response. Suppose a lower dimensional real-

ization exists. Then a smaller number of successive

columns of the Hankel matrix are linear independent

since the resulting A-matrix satisfies its own charac-

teristic equation (see (Olsder and Roos, 1988) and (De

Schutter, 1996)) which contradicts the statement of the

theorem. ✷

Remark: Since in general a relation of the form (6)

instead of (3) holds, the realization given by (5) will be

called a minimal balancing realization. The realization

given by (5) will be referred to as the realization in

companion form.

The use of Theorem 1 seems to be rather limited since

the entries of the matrix A in (5) are not necessarily in

Rε . The problem now becomes whether from (5) a re-

alization of the given impulse response can be derived

such that the entries of the resulting matrices are all

in Rε . In conventional system theory a state space or

similarity transformation is used to transform the re-

alization in companion form to a desired form. There-

fore, similarity transformations in the max-algebraic

system theory will be discussed.

The following proposition provides another similarity

between conventional system theory and the max-

algebraic system theory for DES. The result is used

in the next section.

Proposition 2. Let the triple (A,B,C) be a minimal

balancing realization of order n of a given sequence of

Markov parameters {gk}
∞

k=1. Define matrices O and R

as follows

O =











C

C⊗A
...

C⊗An−1











, R =
(

B A⊗B . . . An−1 ⊗B
)

.

Then det(O)∇/ ε and det(R)∇/ ε .

PROOF. See (de Vries et al., 1997). ✷

In conventional system theory a minimal realization

is both reachable and observable. For max-algebraic

systems there is no such interpretation.

Proposition 2 is valid for matrices in Smax. For ma-

trices with entries in Rε this proposition only holds

if the minimal balancing realization and a minimal

realization for which all entries of the system matrices

are in Rε , are of the same order.

The opposite of Proposition 2 is not true. If a realiza-

tion is not minimal, this does not necessarily imply

that either det(O)∇ ε or det(R)∇ ε , see (de Vries et

al., 1997).

4. SIMILARITY TRANSFORMATIONS

4.1 Conventional system theory

In conventional system theory, see e.g. (Sontag, 1990),

it is known that when a similarity transformation

is applied to the system, represented by the triple

(A1,B1,C1), the resulting system (A2,B2,C2) will

have the same behavior as the original system. Fur-

thermore, it is known that between any two minimal

realizations (A1,B1,C1) and (A2,B2,C2) of a given

impulse response a similarity transformation exists.

If the similarity transformation is represented by an

invertible matrix T then the relation between the two

systems is in both cases given by A1 = TA2T−1, B1 =
T B2, C1 =C2T−1.

In the max-algebra the inverse of a matrix only exists

for matrices which can be written as the product of

a diagonal matrix and a permutation matrix. Only

for such matrices state space transformations can be

defined in a similar way as in the conventional system



theory. Therefore, a more general formulation will be

given in which no inverse matrices are needed.

4.2 A transformation in the max-algebra

In (De Schutter, 1996) two transformations are pro-

posed which make it possible to derive system equiva-

lence for a broader class of triples of system matrices.

But it is also shown that such transformations may not

exist between two different realizations of the same

impulse response. Here a more general transformation

is introduced.

Proposition 3. Let the triples (A1,B1,C1) and (A2,B2,
C2) be such that: T ⊗A2 = A1 ⊗T , T ⊗B2 = B1 and

C2 = C1 ⊗ T , for some matrix T . Then both triples

are equivalent (i.e. they exhibit the same input/output

behavior).

PROOF. It follows that C2 ⊗Ak
2 ⊗B2 =C1 ⊗Ak

1 ⊗B1

by substituting the given relations. ✷

It can also be shown that two triples (A1,B1,C1) and

(A2,B2,C2) are equivalent when a matrix S exists such

that S ⊗ A1 = A2 ⊗ S, S ⊗ B1 = B2 and C1 = C2 ⊗
S. The matrices S and T do not have to be square.

Unfortunately, these transformations may not always

exist between two different realizations of the same

impulse response.

Example 4. Consider the following triples

A1 =

(

6 9

0 5

)

, B1 =

(

0

−4

)

, CT
1 =

(

9

15

)

, (7)

A2 =

(

6 10

−1 5

)

, B2 =

(

0

−4

)

, CT
2 =

(

9

15

)

. (8)

Both triples are minimal realizations of

{gk}
∞

k=1 = 11,16,21,27,33,39,45,51, . . . (9)

Between (A1,B1,C1) and (A2,B2,C2) a state space

transformation T exists such that T ⊗ A2 = A1 ⊗ T ,

T ⊗B2 = B1 and C2 =C1 ⊗T . The matrix

T =

(

0 4

−6 0

)

(10)

satisfies these relations. It can be shown that no matrix

S ∈R
2×2
ε exists such that S⊗A1 = A2⊗S, S⊗B1 = B2

and C1 =C2 ⊗S.

Another minimal realization of (9) is,

A5 =

(

6 10

0 5

)

, B5 =

(

0

−4

)

, CT
5 =

(

8

15

)

. (11)

It turns out that the equations T ⊗ A5 = A1 ⊗ T ,

T ⊗ B5 = B1 and C5 = C1 ⊗ T with the entries of

the matrix T as the unknowns, do not have a so-

lution. Hence, there is no T -transformation between

(A1,B1,C1) and (A5,B5,C5). It can also be shown that

no S-transformation exists.

Since a state space transformation cannot always be

found in the max-algebra, we will extend our search

to the symmetrized max-algebra.

4.3 Balancing similarity transformations

From conventional system theory it is known (see

(Sontag, 1990)) that between two minimal realizations

(A1,B1,C1) and (A2,B2,C2) of an impulse response a

unique state space transformation exists. The transfor-

mation matrix T is given by (for SISO systems) T =
(O1)

−1O2 = R1(R2)
−1 in which Oi and Ri (i = 1,2)

are the observability respectively the controllability

matrices of the given systems. In the following similar

results are derived for systems in the max-algebra.

Proposition 5. Let the triple (A′,B′,C′) be an n-

dimensional realization of a sequence of Markov pa-

rameters {gk}
∞

k=1 such that all entries of the matrices

are in Rε . Let (A,B,C) be the n-dimensional minimal

balancing realization of the same sequence in compan-

ion form. Assume that A′ satisfies the characteristic

equation of A. Then a transformation matrix T such

that T ⊗A′
∇ A⊗T , T ⊗B′

∇ B, C′
∇C⊗T is given by

T =











C′

C′⊗A′

...

C′⊗ (A′)n−1











. (12)

PROOF. Some computations show that T ⊗A′
∇ A⊗

T where it is used that A′ satisfies the characteristic

equation of A. Furthermore, it follows immediately

that T ⊗ B′ = B and C ⊗ T = C′. Note that equality

holds in these relations. ✷

In the following conjecture a possible similarity trans-

formation between any two minimal realizations of a

given impulse response is given. Only for a part of this

conjecture a proof exists yet.

Conjecture 6. Let (A1,B1,C1) and (A2,B2,C2) be two

minimal realizations and let (A,B,C) be the minimal

balancing realization of a sequence of Markov pa-

rameters. If A1 and A2 are of the same order as A

and satisfy the characteristic equation of A, then a

state space transformation matrix T exists such that

T ⊗ B2 ∇ B1 and C2 ∇C1 ⊗ T . Under certain condi-

tions T also satisfies T ⊗ A2 ∇ A1 ⊗ T . Transforma-

tion matrices are given by T = To = O#
1 ⊗ O2 with

Oi =











Ci

Ci ⊗Ai

...

Ci ⊗An−1
i











and T = Tr = R1 ⊗ (R2)
# with

Ri =
(

Bi Ai ⊗Bi . . . An−1
i ⊗Bi

)

(i = 1,2).



PROOF. Since the triples are minimal realizations,

(O1)
# and (R2)

# exist according to Proposition 2.

Since both triples are realizations of the same se-

quence of Markov parameters it follows that O1 ⊗
B1 = O2 ⊗B2 and hence (O1)

# ⊗O1 ⊗B1 = (O1)
# ⊗

O2 ⊗B2. Since (O1)
# ⊗O1 ∇ E, this implies B1 ∇ To ⊗

B2. Similarly it is shown that C2 ∇C1 ⊗Tr.

Let (A,B,C) be the realization according to Theorem

1. From Proposition 5 it follows that C1 =C⊗O1 and

C2 = C ⊗ O2. Multiplication of the former equality

with (O1)
# ⊗O2 yields C1 ⊗ (O1)

# ⊗O2 = C⊗O1 ⊗
(O1)

# ⊗O2 ∇C ⊗O2 = C2. Analogously it is shown

that B1 ∇ Tr ⊗B2.

The relations T ⊗A2 ∇ A1⊗T with T = To respectively

T = Tr remain to be shown. A major problem in

this case is the fact that the balance relation is not

necessarily transitive. In (de Vries et al., 1997) some

rather technical conditions are derived which should

be satisfied. ✷

Remark: For the triple (A,B,C) given by (5) in Theo-

rem 1 O = En. So the transformation in Proposition 5

is a special case of the transformation in Conjecture 6.

Example 7. Consider the triples (7) and (11). In Ex-

ample 4 it was shown that no S- or T -transformation

exist between these triples. But

To =

(

0 5⊖5

⊖(−6) 0

)

, (13)

satisfies To ⊗A5 ∇ A1 ⊗To, B1 ∇ To ⊗B5, C5 ∇C1 ⊗To.

It turns out that indeed To = (O1)
# ⊗O5.

Another transformation matrix between (A1,B1,C1)
and (A5,B5,C5) is given by the matrix Tr = R1 ⊗R#

5 =
(

0 4•

−5• 0

)

. Note that Tr ∇ To.

Transformation matrices To and Tr between (A1,B1,C1)
and (A2,B2,C2) given by (8) are

To =

(

0 5•

−6• 0

)

and Tr =

(

0 4•

−5• 0

)

.

Again To ∇ Tr. Note that the matrix T , given by (10),

satisfies both T ∇ To and T ∇ Tr. It is conjectured that

such a result holds in general.

Example 8. Consider the following sequence of Markov

parameters

{gk}
∞

k=1 = 3,5,8,9,14,15,20,21, . . . (14)

A relation between those parameters is given by

gi+3 ⊖ 2 ⊗ gi+2 ⊖ 6 ⊗ gi+1 ⊕ 8 ⊗ gi ∇ ε , i = 1,2, . . .
There is no relation of the form (4) between any three

consecutive Markov parameters. According to Theo-

rem 1 a minimal balancing realization is given by

A =





ε 0 ε

ε ε 0

⊖8 6 2



, B =





3

5

8



, CT =





0

ε

ε



 .

A realization of {gk}
∞

k=1 which does have all its entries

in Rε is given by the triple

A1 =





2 ε ε

ε 1 3

0 3 ε



, B1 =





1

ε

0



, CT
1 =





2

ε

2



 .

According to Proposition 5 a similarity transformation

between (A,B,C) and (A1,B1,C1) is

T =





C1

C1 ⊗A1

C1 ⊗A2
1



=





2 ε 2

4 5 ε

6 6 8



 .

With this matrix T it follows that

T ⊗A1 =





4 5 ε

6 6 8

8 11 9



, A⊗T =





4 5 ε

6 6 8

10• 11 10•





and hence T ⊗A1 ∇ A⊗T . Since A⊗T contains bal-

anced entries T ⊗ A1 6== A ⊗ T . Furthermore, T ⊗
B1 = B and C⊗T =C1.

Another triple which realizes (14) is

A2 =





2 1 0

1 1 3

0 3 1



, B2 =





0

−3

−1



, CT
2 =





3

1

3



 .

A transformation matrix To between (A1,B1,C1) and

(A2,B2,C2) is given by

To = O#
1 ⊗O2 =





1 −1• 1•

0• 1 0•

−1• −1• 1



 .

The matrix Tr = R1 ⊗ R#
2 is another transformation

matrix. It also satisfies Tr ∇ To.

It is not completely clear under which conditions

Conjecture 6 is valid. In the following example it does

not hold.

Example 9. Consider the systems

A1 =





5 −1 0

3 −3 5

−3 −3 −4



, B1 =





−1

0

0



, CT
1 =





−3

0

2





and

A2 =





ε ε 5

−2 ε 0

0 ε 5



, B2 =





0

−5

−5



, CT
2 =





2

7

2



 .

Both systems are minimal realizations of

{gk}
∞

k=1 = 2,5,7,12,17,22,27,32,37,42, . . .

With matrix To from Conjecture 6 it follows

To ⊗A2 =





4 ε 9

5 ε 9•

2• ε 7•



, A1 ⊗To =





4 6• 9

5 ⊖6 7•

1• 4 1•



 .

So, in this case To ⊗A2 ∇/ A1 ⊗To. A reason could be

that between any four consecutive Markov parameters

several relations are possible. Therefore, it is possi-

ble that there exist two realizations (A1,B1,C1) and



(A2,B2,C2) of which A1 and A2 have different char-

acteristic equations, as in this example, both satisfy

Ci ⊗Ak−1
i ⊗Bi = gk for i = 1,2 and k = 1,2, . . . Note

that T ⊗B2 ∇ B1 and C2 ∇C1 ⊗T .

5. CONCLUDING REMARKS

In this paper similarity transformations between dif-

ferent realizations of a given impulse response were

discussed. In certain cases the existence of a similarity

transformation could be proved. The transformations

which were found resemble the transformations which

exist in the conventional system theory. There is no

general result yet. The intransitivity of the balance

relation is the major obstacle. It is not obvious how to

solve this problem, since the intransitivity of the bal-

ance relation follows immediately from its definition.
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