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32.1 Description of the problem

Given an arbitrary real sequence {gi}
∞
i=1 elegant necessary and sufficiency con-

ditions are known for the existence of an n×n matrix A, an n× 1 vector b and
a 1× n vector c, for some appropriate n, such that

gi = cAi−1b for i = 1, 2, . . . (32.1)

The elements of A, b and c are supposed to be real numbers. An additional
requirement might be that n, which determines the sizes of A, b and c, must
be as small as possible. In that case n is called the minimal system order and
the triple A, b and c is a minimal realization. Efficient algorithms to calculate
a minimal realization are known (see, e.g., [11]).

The problem considered in this chapter arises when the underlying algebra
is the so-called max-plus algebra [2, 3] rather than the conventional algebra
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tacitly used above. One obtains the max-plus algebra from the conventional
algebra by replacing addition by maximization and multiplication by addition.
These operations are indicated by ⊕ (maximization) and ⊗ (addition). In the
max-plus algebra one for instance has

(

1 4
−3 0

)

⊗

(

5
1

)

=

(

(1⊗ 5)⊕ (4⊗ 1)
(−3⊗ 5)⊕ (0⊗ 1)

)

=

(

6
2

)

.

32.2 Motivation

In conventional system theory the sequence {gi}
∞
i=1 arises as the impulse re-

sponse of the linear, finite-dimensional, discrete-time, time-invariant SISO1

state space description

x(k + 1) = Ax(k) + bu(k) , y(k) = cx(k) .

The problem considered here is to compute a minimal realization and to
characterize the minimal system order for max-plus linear systems, i.e., systems
of the form

x(k + 1) = A⊗ x(k)⊕ b⊗ u(k) , y(k) = c⊗ x(k) . (32.2)

In spite of its misleading simple formulation, this problem has met with formidable
difficulties.

32.3 History and partial results

32.3.1 Characterization of max-plus-algebraic impulse responses

A necessary and sufficient condition for a sequence {gi}
∞
i=1 to be the impulse

response of a system that can be described by a model of the form (32.2) is
that the sequence is ultimately periodic [8, 9], i.e.,

∃m,λ0, . . . , λm−1, k0 such that ∀k ≥ k0 :

gkm+m+s = λ⊗c

s ⊗ gkm+s for s = 0, 1, . . . ,m− 1 .

where λ⊗m

= λ×m.

32.3.2 The minimal system order

We define so-called Hankel matrix H(α, β) of size α× β as

H(α, β) =













g1 g2 . . . gβ
g2 g3 . . . gβ+1

...
...

. . .
...

gα gα+1 . . . gα+β−1













. (32.3)

1SISO: single-input single output. Generalizations to multiple-input multiple-output sys-
tems exist, but will not be emphasized here.
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In conventional system theory the minimal system order is given by the rank
of the Hankel matrix H(∞,∞). However, in contrast to linear algebra the
different notions of rank (like column rank, row rank, minor rank, . . . ) are in
general not equivalent in the max-plus algebra2.

Let H = H(∞,∞). It can be shown [8] that the minimal system order is
equal to the smallest integer r for which there exist an ∞ × r matrix U . an
r ×∞ matrix V and an r × r matrix A such that H = U ⊗ V and U ⊗A = U ,
where U is the matrix obtained by removing the first row of U .

The different notions of matrix rank in the max-plus-algebra can be used
to obtain lower and upper bounds for the minimal system order. The so-called
max-plus-algebraic minor rank and Schein rank ofH provide lower bounds [8, 9].
At present, there are no efficient (i.e., polynomial time) algorithms to compute
the max-plus-algebraic minor rank or the Schein rank of a matrix. The max-
plus-algebraic weak column rank of H provides an upper bound [8, 9]. Efficient
methods to compute this rank are described in [3, 8].

32.3.3 Minimal state space realization: partial results

Transformation to conventional algebra

There exists a transformation from the max-plus algebra to the linear algebra
that is based on the following equivalences:

x⊕ y = z ⇔ exs + eys ∼ cezs , s → ∞ (32.4)

x⊗ y = z ⇔ exs · eys = ezs for all s > 0 (32.5)

with c = 2 if x = y and c = 1 otherwise.
Using this transformation the minimal realization problem in the max-plus

algebra can be mapped to a minimal realization problem for matrices with ex-
ponentials as entries and with conventional addition and multiplication as basic
operations [12, 13]. This implies that we can use the techniques from conven-
tional realization theory to obtain a minimal realization afterwards (try to)
transform the results back to the max-plus algebra. However, only realizations
with positive coefficients for the leading exponentials can be mapped back to
the max-plus algebra, and it is not always obvious how and whether such a
realization can be constructed.

Partial state space realization

The partial minimal realization problem is defined as follows: given a finite
sequence g1, g2, . . . , gN , find A, b and c such that gi = c ⊗ A⊗i−1

⊗ b for
i = 1, 2, . . . , N . It can be shown that this leads to a system of so-called max-
plus-algebraic polynomial equations and that such a system can be recast as
an Extended Linear Complementarity Problem (ELCP) [5, 6]. This enables us
to solve the partial minimal realization problem and by applying some limit
arguments this results in a realization of the entire impulse response. However,
it can be shown that the general ELCP is NP-hard.

2An overview of the relations between the different ranks in the max-plus algebra can found
on p. 122 of [8].
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Special sequences of Markov parameters

For some special cases, e.g., if the sequence {gi}
∞
i=1 exhibits uniformly up-

terrace behavior [16, 17], or if the sequence exhibits a convex transient behavior
and a so-called ultimately geometric behavior with period 1 [4, 10], there exist
methods to efficiently compute minimal state space realizations.

32.4 Related fields

Based on the relations (32.4) and (32.5) it is easy to verify that there exists a
connection between the minimal realization problem in the max-plus algebra
and the minimal realization problem for nonnegative systems. Indeed, some
of the results obtained in system theory for nonnegative systems also hold in
the max-plus algebra (see, e.g., [7]). For more information on the minimal
realization problem for nonnegative systems the reader is referred to [1, 15].

Remark: For a more extended overview of known results, open problems and
additional references in connection with the minimal realization problem in the
max-plus algebra the interested reader is referred to [14].
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