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Abstract

We consider a class of queueing systems that can operate in

several modes; in each mode the queue lengths exhibit a lin-

ear growth until a specified upper or lower level is reached,

after which the queue length stays at that level until the end

of the mode. We present some methods to determine the op-

timal switching time instants that minimize a criterion such

as average queue length, worst case queue length, average

waiting time, and so on. We show that if there is no up-

per saturation then for some objective functions the optimal

switching scheme can be computed very efficiently.

1 Introduction

Hybrid systems arise from the interaction between continu-

ous variable systems and discrete event systems. In general

we could say that a hybrid system can be in one of several

modes whereby in each mode the behavior of the system

can be described by a system of difference or differential

equations, and that the system switches from one mode to

another due to the occurrence of events. There are many

frameworks to model, analyze and control hybrid systems

(see, e.g. [1, 7, 2]). We shall consider a special class of

hybrid systems that can be analyzed using a special math-

ematical programming problem that is called the extended

linear complementarity problem (ELCP).

This paper is organized as follows. In Section 2 we intro-

duce the class of first order linear hybrid system with satu-

ration. We derive a model that describes the queue lengths

at the switching time instants. In Section 3 we show that

computing the optimal switching time instants in general

leads to an non-convex optimization problem or to an ELCP.

Next we show that if there is no upper saturation then for

some objective functions the optimal switching scheme can

be computed very efficiently. Furthermore, by making some

approximations the problem becomes a linear programming

problem. The resulting approximate solution can be used as

the initial point for solving the original optimization prob-

lem. We conclude this paper with an illustrative example.

2 A class of switched linear systems with saturation

Consider a system consisting of several queues. The evo-

lution of the system is characterized by consecutive phases.

In each phase or mode the length of each queue exhibits

a linear growth or decrease until a certain upper or lower

saturation level is reached; then the queue length stays con-

stant until the end of the phase. A system the behavior of

which satisfies this description will be called a first order

linear hybrid system with saturation. A typical example of

such a system is a traffic signal controlled intersection pro-

vided that we use a continuous approximation for the queue

lengths (see Section 5 and [4]). For a traffic signal con-

trolled intersection the lower bound for the queue lengths

is 0. The upper bound could correspond to the maximal

available storage space due to the distance to the preceding

junction or to the layout of the intersection. We could as-

sume that if this upper bound is reached then newly arriving

cars take another route to get to their destination. Another

example of a first order linear hybrid system with saturation

is a system consisting of several fluid containers that are

connected by tubes with valves and that have two outlets

— one at the bottom (with a tube that leads to another fluid

container), and one at the top (so that the fluid level in the

containers can never exceed a given level), — provided that

we assume that the increase or decrease of the fluid levels is

linear if the system is not saturated.

In analogy with a traffic signal controlled intersection, we

will use the word “queue lengths” to refer to the state vari-

ables of a first order linear hybrid system. Note however

that our definition of a first order linear hybrid system with

saturation is not limited to queuing systems only. Let M be

the number of “queues”. The length of queue i at time t is

denoted by qi(t). Let αa
i,k, αd

i,k, li,k and ui,k be respectively

the arrival and tdeparture rate for queue i in phase k, and the

lower and upper bound for the queue length qi in phase k.

The net queue length growth rate αi,k for queue i in phase

k is given by αi,k = αa
i,k −αd

i,k. The evolution of the system

begins at time t0. Let t1, t2, . . . be the time instants at which

the system switches from one phase to another. The length

of the kth phase is equal to δk = tk+1 − tk. We assume that

0 6 li,k+1 6 qi(tk+1) 6 ui,k+1 for all i,k such that the queue

lengths are always nonnegative and such that there are no

sudden jumps in the queue lengths due a change in the sat-

uration level at one of the switching time instants.

For queue i we have

dqi(t)

dt
=

{

αi,k if li,k < qi(t)< ui,k

0 otherwise,
(1)



for t ∈ (tk, tk+1). This implies that the evolution of the queue

lengths at the switching time instants is given by

qi(tk+1) = max
(

min (qi(tk)+αi,kδk, ui,k), li,k
)

for k = 0,1, . . . So if we define qi,k = qi(tk) and if we intro-

duce the dummy variables zi,k, we obtain

zi,k+1 = min(qi,k +αi,kδk, ui,k)

qi,k+1 = max(zi,k+1, li,k) .

If we define column vectors zk,qk,αk, lk,uk ∈ R
M×1 such

that (zk)i = zi,k, (qk)i = qi,k, and so on, then this results in

zk+1 = min(qk +αkδk,uk) (2)

qk+1 = max(zk+1, lk) (3)

for k = 0,1, . . .

3 Optimal switching schemes for linear hybrid systems

with saturation

Let N ∈ N. Now we want to compute an optimal switching

sequence t0, . . . , tN that minimizes a criterion J such as:

• (weighted) average queue length over all queues:

J1 =
M

∑
i=1

wi

1

tN − t0

∫ tN

t0

qi(t)dt , (4)

• (weighted) average queue length over the worst queue:

J2 = max
i

(

wi

1

tN − t0

∫ tN

t0

qi(t)dt

)

, (5)

• (weighted) worst case queue length:

J3 = max
i, t

(

wi qi(t)
)

, (6)

• (weighted) average “waiting time” over all queues:

J4 =
M

∑
i=1

wi

∫ tN

t0

qi(t)dt

N−1

∑
k=0

αa
i,kδk

, (7)

• (weighted) average “waiting time” over the worst queue:

J5 = max
i













wi

∫ tN

t0

qi(t)dt

N−1

∑
k=0

αa
i,kδk













, (8)

where wi > 0 for all i. We can impose extra conditions such

as minimum and maximum durations for the switching time

intervals, minimum or maximum queue lengths, and so on.

This leads to the following problem:

minimize
δ0,...,δN−1

J (9)

subject to

δmin,k 6 δk 6 δmax,k for k = 0, . . . ,N −1, (10)

qmin,k 6 qk+1 6 qmax,k for k = 0, . . . ,N −1 (11)

zk+1 = min(qk +αkδk, uk) for k = 0, . . . ,N −1, (12)

qk+1 = max(zk+1, lk) for k = 0, . . . ,N −1. (13)

where δmin,k (δmax,k) is the minimum (maximum) length

of the kth switching time interval (tk, tk+1), and (qmin,k)i
(

(qmax,k)i

)

is the minimum (maximum) queue length for

queue i at time instant tk+1.

Now we discuss some methods to solve problem (9) – (13).

First we consider (12) for an arbitrary index k. This equation

can be rewritten as follows:

zk+1 6 qk +αkδk

zk+1 6 uk

zi,k+1 = qi,k +αi,kδk or zi,k+1 = ui,k for all i ,

or equivalently

qk +αkδk − zk+1 > 0 (14)

uk − zk+1 > 0 (15)

(qk +αkδk − zk+1)i (uk − zk+1)i = 0 for all i . (16)

Since a sum of nonnegative numbers is equal to 0 if and

only if all the numbers are equal to 0, (16) is equivalent to:

(qk +αkδk − zk+1)
T (uk − zk+1) = 0 . (17)

We can repeat this reasoning for (13) and for each index k.

So if we define

xq =







q1

...

qN






, xz =







−z1

...

−zN






, xδ =







δ0

...

δN−1






,

it is easy to verify that we finally get a problem of the form

minimize
xδ

J (18)

subject to

Axq +Bxz +Cxδ +d > 0 (19)

Exq +Fxz +g > 0 (20)

Hxq +Kxδ + l > 0 (21)

(Axq +Bxz +Cxδ +d)T (Exq +Fxz +g) = 0 . (22)

Equations (19), (20) and (22) correspond to (14), (15) and

(17) respectively and to similar equations derived from (13),

and the system of linear inequalities (21) contains the con-

ditions (10) and (11).



The system (19) – (22) is a special case of an Extended Lin-

ear Complementarity Problem (ELCP) [3]. In [3] we have

developed an algorithm to compute a parametric description

of the complete solution set of an ELCP. Once this para-

metric description has been obtained, we can compute for

which combination of the parameters the objective function

J reaches a global minimum. Our computational experi-

ments have shown that in most cases the determination of

the optimal values of the parameters for the objective func-

tions J1, J2, J3, J4 and J5 is a well-behaved problem in the

sense that using a local minimization routine starting from

different initial points almost always yields the same numer-

ical result (within a certain tolerance). However, the general

ELCP is an NP-hard problem [3] and the algorithm of [3]

to compute the solution set of a general ELCP requires ex-

ponential execution times. This implies that the full-ELCP

approach sketched above is not feasible if the number of

phases N is large. The following approaches can be used to

compute suboptimal switching schemes for cases where the

full-ELCP approach is not practicable:

• multi-start local optimization:

The objective functions J1 up to J5 do not explicitly de-

pend on xq and xz since for given q0, αi,k’s, li,k’s and ui,k’s,

the components of xq and xz are uniquely determined

by xδ . Therefore we can consider (9) – (13) as a con-

strained optimization problem in xδ where the constraints

(11) – (13) are nonlinear constraints. Alternatively, these

constraints can be taken into account by adding an extra

penalty term to the objective function J if qi,k < (qmin,k)i

or qi,k > (qmax,k)i. If we use the penalty functions ap-

proach, the only remaining constraints on xδ are the sim-

ple upper and lower bound constraints (10). The major

disadvantage of these two approaches is that in general

the minimization routine will only return a local mini-

mum. Our computational experiments have shown that it

is necessary to run the constrained local minimization al-

gorithm several times — each time with a different initial

starting point —in order to obtain the global minimum.

• multi-ELCP approach:

If N is large, we could consider a smaller number Ns of

phases, compute the optimal switching strategy for the

first Ns phases using the full-ELCP method, implement

the first step(s) of this strategy, afterwards compute the

optimal switching strategy for the next Ns phases, imple-

ment the first step(s) of this strategy, and so on. We call

this approach the multi-ELCP approach. Since the EL-

CPs for a horizon of Ns phases will be much smaller than

the ELCP for N phases, the multi-ELCP approach will be

tractable in practice even if N is large. Note that in gen-

eral this approach will only give a suboptimal solution.

Note that we can also use a linear hybrid system with sat-

uration as an approximate model if we have a hybrid sys-

tem with saturation in which the queue length growth or

decrease rates are slowly time-varying: we can approx-

imate time-varying rate functions by piecewise-constant

functions. Although in general we do not know the exact

behavior of these functions in advance the behavior can of-

ten be predicted on the basis of historical data and mea-

surements. Also note that we do not know the lengths of

the phases in advance. In order to determine the average

rates for each phase, we could therefore first assume that all

phases have equal length. Then we compute an optimal or

suboptimal switching scheme and use the result to get bet-

ter estimates of the lengths of the phases and thus also of

the average queue length growth rates in each phase, which

can then be used as the input for another optimization run.

If necessary we could repeat this process in an iterative way.

4 Optimal and suboptimal switching schemes for

systems with saturation at a lower level only

In this section we consider linear hybrid systems with satu-

ration at the lower level only (So ui,k = ∞ for all i,k.) Fur-

thermore, we assume that there are only upper bound con-

straints for the queue lengths; so we do not impose extra

lower bound conditions on the queue lengths (or equiva-

lently we assume that qmin,k 6 lk for all k). In that case the

optimal switching problem (9) – (13) reduces to

minimize
xδ

J (23)

subject to

δmin,k 6 δk 6 δmax,k for k = 0, . . . ,N −1, (24)

qk+1 6 qmax,k for k = 0, . . . ,N −1 (25)

qk+1 = max(qk +αkδk, lk) for k = 0, . . . ,N −1. (26)

We call this problem P . We define the “relaxed” problem

P̃ corresponding to the problem P as:

minimize
xq,xδ

J (27)

subject to

δmin,k 6 δk 6 δmax,k for k = 0, . . . ,N −1, (28)

qk+1 6 qmax,k for k = 0, . . . ,N −1 (29)

qk+1 > qk +αkδk for k = 0, . . . ,N −1, (30)

qk+1 > lk for k = 0, . . . ,N −1. (31)

So compared to the original problem we have replaced (26)

by relaxed equations of the form (14) – (15) without taking

(16) or (17) into account. As a consequence, xq and xδ

are not directly coupled any more. Note that in general it

is easier to solve the relaxed problem P̃ than the problem

P since the set of feasible solutions of P̃ is a convex set,

whereas the set of feasible solutions of P is in general not

convex since (26) is a non-convex constraint.

We say that the function J is a monotonic function of xq if

for every xδ with positive components and for every x̃q, x̂q

with x̃q 6 x̂q, we have J(x̃q,xδ ) 6 J(x̂q,xδ ). The follow-

ing proposition shows that for monotonic objective func-

tions any optimal solution of the relaxed problem P̃ can be

transformed into an optimal solution of the problem P .



Proposition 4.1 Let the objective function J be a mono-

tonic function of xq and let (x∗q,x
∗
δ ) be an optimal solution

of P̃ . If we define x
♯
q such that

q
♯
1 = max (q0 +αkδ ∗

0 , l0) (32)

q
♯
k+1 = max (q♯k +αkδ ∗

k , lk) for k = 1, . . . ,N −1. (33)

then (x♯q,x
∗
δ ) is an optimal solution of the problem P .

Proof : Let (x∗q,x
∗
δ ) be an optimal solution of P̃ and let

x
♯
q be defined by (32) – (33). Clearly, (x♯q,x

∗
δ ) is a feasi-

ble solution of P̃ . Since x∗q satisfies (30) – (31), we have

q∗k+1 >max(q∗k +αkδ ∗
k , lk) for all k. Hence, q

♯
1 6 q∗1 and thus

also q
♯
k 6 q∗k for all k. As a consequence, we have x

♯
q 6 x∗q

and thus also J(x♯q,x
∗
δ ) 6 J(x♯q,x

∗
δ ) since J is a monotonic

function of xq. Since (x♯q,x
∗
δ ) is a feasible solution of P̃

and since (x∗q,x
∗
δ ) is an optimal solution of P̃ , this implies

that (x♯q,x
∗
δ ) is also an optimal solution of P̃ .

The set of feasible solutions of P is a subset of the set of

feasible solutions of P̃ . Hence, the minimal value of J over

the set of feasible solutions of P̃ will be less than or equal

to the minimal value of J over the set of feasible solutions

of P . Since (x♯q,x
∗
δ ) is a feasible solution of P and an op-

timal solution of P̃ , this implies that (x♯q,x
∗
δ ) is an optimal

solution of P . ✷

Since the objective functions J1, J2, J3, J4 and J5 do not ex-

plicitly depend on xq, they are by definition monotonic func-

tions of xq. This implies that we can use Proposition 4.1 to

transform the optimal switching problem for the objective

functions J1 up to J5 into an optimization problem with a

convex feasible set. Although the objective functions J1 up

to J5 are in general not convex functions of xδ , our computa-

tional experiments have shown that they are smooth enough,

so that selecting different starting points for the local min-

imization routine almost always leads to more or less the

same numerical result. Furthermore, the minimization rou-

tine converges quickly and the resulting solution is almost

always optimal (see also Section 5).

In [4] we have considered a special class of first order linear

hybrid systems with saturation at the lower level only. Al-

though we did not yet use Proposition 4.1 there, we made

some approximations that also lead to suboptimal switching

schemes that can be computed very efficiently. The approx-

imation techniques used in [4] can easily be extended to the

class of first order linear hybrid systems with saturation at

the lower level only that is considered in this paper. We shall

present the main results of this technique here.

For a given q0 and t0, we define the function q̃i(·,xq,xδ ) as

the piecewise-affine function with breakpoints (tk,qi,k) for

k = 0, . . . ,N. The approximate objective functions J̃1, J̃2, J̃3,

J̃4 and J̃5 are also defined by (4) – (8) but with qi replaced by

q̃i. Now it can be shown that J̃1 and J̃4 are strictly monotonic

functions of xq and in that case any optimal solution of P̃ is

also an optimal solution of P . We can even make a further

approximation of J̃1 and J̃4 that will lead to a problem that

can be solved very efficiently. Since q̃i is a piecewise-affine

with breakpoints (tk,qi,k) for k = 0, . . . ,N, we have

∫ tk+1

tk

q̃i(t,xq,xδ )dt =
δk

2
(qi,k +qi,k+1) .

Hence,

J̃1(xq,xδ ) =
M

∑
i=1

wi

N−1

∑
k=0

δk(qi,k +qi,k+1)

2(δ0 + . . .+δN−1)
. (34)

Sometimes we already have a good idea about the relative

lengths of the different phases (in a traffic signal situation

we know, e.g. that the green phases will be much longer

than the amber phases). If we assume that δk = ρkδ̄ for all

k and for some yet unknown δ̄ , then (34) leads to:

J̃1(xq,xδ ) ≈
M

∑
i=1

wi

( ρ0

2R
qi,0 +

N−1

∑
k=1

ρk−1 +ρk

2R
qi,k +

ρN−1

2R
qi,N

)

def
= Ĵ1(xq) .

with R =
N−1

∑
k=0

ρk. Note that Ĵ1 is an affine function of xq.

We can use a similar reasoning to obtain an affine approx-

imation of the objective function J̃4. Since wi > 0 for all i

and ρk > 0 for all k, Ĵ1 and Ĵ4 are strictly monotonic func-

tions of xq. As a consequence, any optimal solution of P̃

with objective function Ĵ1 and Ĵ4 will also be an optimal so-

lution of P . This implies that the optimal switching prob-

lem then reduces to a linear programming problem, which

can be solved efficiently using a simplex method or an inte-

rior point method. Note that the assumption on the relative

lengths is only used to simplify the objective function; it

will not be included explicitly in the linear programming

problem. As a consequence, the optimal δk’s do not neces-

sarily have to satisfy the assumption on the relative lengths.

Note that the approximate solutions obtained using the ob-

jective functions J̃l or Ĵl with l ∈ {1,4} can be used as start-

ing points for a local minimization routine applied to the

problem P̃ with the objective function Jl .

5 Example

In order to illustrate the effectiveness of Proposition 4.1 we

shall use the different approaches presented in this paper

to design an optimal switching scheme for a traffic signal

controlled intersection and compare the results.

We consider an intersection of two two-way streets (see Fig-

ure 1). There are four lanes L1, L2, L3 and L4, and on each

corner of the intersection there is a traffic signal (T1, T2, T3

and T4). For each traffic signal there are three subsequent



Period T1 T2 T3 T4

t0–t1 red green red green

t1–t2 red amber red amber

t2–t3 green red green red

t3–t4 amber red amber red

t4–t5 red green red green

t5–t6 red amber red amber

...
...

...
...

...

Table 1: The traffic signal switching scheme.

phases: green, amber, and red. The switching scheme for

the intersection is given in Table 1. Since all the cars will

leave the queue in lane Li provided that we make the length

of the green phase in lane Li large enough, we have lk = 0

for all k. We assume that there is no saturation at the up-

per level, either due to the fact that there is enough buffer

space before the traffic signal in each lane or due to the fact

that we impose additional maximal queue length conditions

such that qmax,k 6 uk.

In order to obtain a model that is amenable to mathemati-

cal analysis, we shall make two extra assumptions that will

result in a simple model that can be analyzed very easily

and for which we can efficiently compute (sub)optimal traf-

fic signal switching schemes using the methods presented

in Section 4. From now on we make the following assump-

tions (see also [4]):

• the queue lengths are continuous variables,

• the average arrival and departure rates of the cars are con-

stant or slowly time-varying.

Let λi be the average arrival rate of cars in lane Li, and let

L1

L2

L3

L4
T1

T2 T3

T4

Figure 1: A traffic signal controlled intersection of two two-way

streets.

µ
green
i (µamber

i ) be the departure rate of cars in lane Li when

the traffic signal Ti is green (amber). If we define

αa
i,k = λi

αd
i,k =











0 if Ti is red in (tk, tk+1)

µ
green
i if Ti is green in (tk, tk+1)

µamber
i if Ti is amber in (tk, tk+1)

for all i,k, then the relation between the switching time in-

stants and the queue lengths is described by a system of

equations of the form (26) and then we can use the tech-

niques presented in Sections 3 and 4 to compute optimal

and suboptimal traffic signal switching schemes.

Now consider the intersection of Figure 1 with the switch-

ing scheme of Table 1 and with the following data1 λ1 =
0.24, λ2 = 0.12, λ3 = 0.17, λ4 = 0.13, µ

green
1 = 0.5,

µ
green
2 = µ

green
4 = 0.4, µ

green
3 = 0.45, µamber

1 = µamber
3 =

0.05, µamber
2 = µamber

4 = 0.03, q0 = [ 21 17 14 9 ]T and

qmax,k = [ 25 20 25 20 ]T for all k. The minimum and

maximum length of the green phases are respectively 6 and

60, and the length of the amber phase is fixed at 3. Let

w = [2 1 2 1 ]T . We want to compute a traffic signal switch-

ing sequence t0, . . . , t7 that minimizes J4, the weighted av-

erage waiting time over all queues.

We have computed an optimal solution x∗δ ,ELCP
obtained

using the ELCP method, a solution x∗δ ,constr
using con-

strained optimization with nonlinear constraints, a solu-

tion x∗δ ,penalty
using constrained optimization with a penalty

function, a multi-ELCP solution x∗δ ,multi
with Ns = 3, a so-

lution x∗δ ,relaxed
for the relaxed problem P̃ with objective

function J4, a solution x∗δ ,approx
for the relaxed problem P̃

with approximate objective function J̃4, and a linear pro-

gramming solution x∗δ ∗,linear
that minimizes Ĵ4 with the lin-

ear objective function obtained by assuming that the length

of the green phases is 10 times the length of the amber

phases. In Table 2 we have listed the value of the objec-

tive function J4 for the various switching interval vectors x∗δ
and the CPU time needed to compute the switching interval

vectors on a Sun Ultra 10 300 MHz workstation with the op-

timization routines called from MATLAB and implemented

in C or Fortran. The CPU time values listed in the table

are average values over 10 experiments. For x∗δ ,constr
and

x∗δ ,penalty
we have listed the best solution over respectively 5

and 20 runs2 with random initial points; the indicated CPU

time is the time needed for the total number of runs. For

x∗δ ,relaxed
and x∗δ ,approx

different starting points always lead

to more or less the same numerical value of the final objec-

tive function. Therefore, we have only performed one run

with an arbitrary random initial point here.

In this example the ELCP solution is only given as a ref-

1All times will be expressed in seconds and all rates in vehicles per

second.
2This choice for the number of runs is based on the typical variation in

the value of the final values of objective values for the different runs.



x∗δ J4(x
∗
δ ) CPU time

x∗δ ,ELCP
343.54 1824.83

x∗δ ,constr
343.54 144.35

x∗δ ,penalty
345.70 147.58

x∗δ ,multi
346.29 19.44

x∗δ ,relaxed
343.54 1.12

x∗δ ,approx
344.58 1.12

x∗δ ,linear
352.77 0.59

Table 2: The values of the objective functions J4 and the CPU

time needed to compute the (sub)optimal switching in-

terval vectors of the example of Section 5.

erence since the CPU time needed to compute the opti-

mal switching interval vector using the ELCP algorithm

of [3] increases exponentially as the number of phases N

increases. This implies that the full-ELCP approach should

never be used in practice, but one of the other methods

should be used instead. If we look at Table 2 then we see

that if we take the trade-off between optimality and effi-

ciency into account, then the x∗δ ,relaxed
solution — which is

based on Proposition 4.1 — is clearly the most interesting.

In the simple traffic signal set-up discussed above we did

not make a distinction between cars that turn left, right or

that go straight ahead. However, the approach presented in

this paper can also be applied to more complex traffic signal

switching schemes such as, e.g. one consisting of four main

phases with amber phases in between where in the first main

phase cars on the north-south axis can go straight ahead or

turn right, in the next main phase they can turn left, and

in the next two main phases the same process is repeated

for the traffic on the east-west axis. As a consequence, the

method of this paper can also be used to efficiently com-

pute suboptimal traffic signal switching schemes for a more

complex intersection and/or switching scheme than the one

presented above.

For more information on other traffic models and on traffic

signal control the interested reader is referred to [5, 6, 8].

and to the references given therein.

6 Conclusions and future research

We have introduced a class of hybrid systems with first

order linear dynamics subject to saturation and derived a

model that describes the evolution of the queue lengths at

the switching time instants. We have shown how the Ex-

tended Linear Complementarity Problem (ELCP) can be

used to determine optimal switching schemes. We have also

discussed several other techniques to compute (sub)optimal

switching schemes for systems with saturation at the lower

level only. If the objective function is a monotonic func-

tion of the queue lengths, then the optimal switching prob-

lem can be transformed into an optimization problem with a

convex feasible set and then the optimal switching scheme

can be computed very efficiently. We have illustrated these

approach by computing (sub)optimal switching schemes for

a traffic signal controlled intersection.

An important topic for future research is the extension of

the results obtained in this paper to networks of depen-

dent queues, i.e. to situations in which the outputs of some

queues are connected to the inputs of some other queues. If

we use a moving horizon strategy in combination with a de-

centralized control solution, we can still apply the approach

given in this paper and use measurements from one queue

to predict the arrival rates at the other queues provided that

we know the routing rates and the traveling times from one

queue to another. Other topics for further research include:

development of other efficient algorithms and/or approxi-

mations to compute optimal switching strategies for other

objective functions than the ones considered in this paper,

development of efficient algorithms for the special cases of

the ELCP that appear in the analysis of specific classes of

first order linear hybrid systems with saturation, and investi-

gation of the use of the ELCP and approximations to control

other classes of hybrid systems.
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