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Optimal Control of a Class of Linear Hybrid

Systems with Saturation

Bart De Schutter
∗

Abstract

We consider a class of first order linear hybrid systems with saturation. A system that
belongs to this class can operate in several modes or phases; in each phase each state
variable of the system exhibits a linear growth until a specified upper or lower saturation
level is reached, and after that the state variable stays at that saturation level until
the end of the phase. A typical example of such a system is a traffic signal controlled
intersection. We develop methods to determine optimal switching time sequences for
first order linear hybrid systems with saturation that minimize criteria such as average
queue length, worst case queue length, average waiting time, and so on. First we show
how the Extended Linear Complementarity Problem (ELCP), which is a mathematical
programming problem, can be used to describe the set of system trajectories of a first order
linear hybrid systems with saturation. Optimization over the solution set of the ELCP
then yields an optimal switching time sequence. Although this method yields globally
optimal switching time sequences, it is not feasible in practice due to its computational
complexity. Therefore, we also present some methods to compute suboptimal switching
time sequences. Furthermore, we show that if there is no upper saturation then for some
objective functions the globally optimal switching time sequence can be computed very
efficiently. We also discuss some approximations that lead to suboptimal switching time
sequences that can be computed very efficiently. Finally, we use these results to design
optimal switching time sequences for traffic signal controlled intersections.
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1 Introduction

Hybrid systems arise from the interaction between continuous variable systems1 and discrete
event systems2. In general we could say that a hybrid system can be in one of several modes
whereby in each mode the behavior of the system can be described by a system of difference
or differential equations, and that the system switches from one mode to another due to the
occurrence of an event. There are many frameworks to model, analyze and control hybrid
systems (see e.g. [14, 11, 1, 17] and the references cited therein). An important trade-off in
this context is that of modeling power versus decision power: the more accurate the model is
the less we can analytically say about its properties. Furthermore, many analysis and control
problems lead to computationally hard problems for even the most elementary hybrid systems
[2]. Therefore, we focus on a specific class of hybrid systems that can be analyzed using a
mathematical programming problem that is called the Extended Linear Complementarity
Problem. More specifically, we study the design of optimal switching time sequences for a
class of first order linear hybrid systems subject to saturation.

This work is an extension of the work reported in [8] in which we developed some algo-
rithms to design optimal traffic signal switching schemes for single intersections. In [8] we only
considered fixed amber durations and we could only efficiently compute suboptimal switching
schemes for approximations of the real objective functions. Now we allow variable durations
for the amber phases, and we show that — if there is no upper saturation — then for certain
objective functions the optimal switching scheme can be computed very efficiently without
making any approximations. Furthermore, in this paper we also consider a more general class
of systems than the traffic signal controlled intersections of [8].

The work reported here is closely related to optimal traffic signal control (see e.g. [10, 13,
15, 16]). The main difference between the model presented in this paper applied to traffic
signal optimization and the models used by most other researchers is that in our approach
the length of the green-amber-red cycles may vary from cycle to cycle, i.e. we optimize over
a fixed number of switch-overs instead of over a fixed number of time steps. This allows us
to optimize not only the split but also the cycle time with continuous optimization variables
(usually the optimization of split and cycle time is performed using boolean variables at each
time step, each variable corresponding to the decision of switching or not the traffic signals
as in UTOPIA, OPAC, SCOOT or SCATS). Our method adds an extra degree of freedom,
which will in general lead to a more optimal switching scheme.

This paper is organized as follows. In Section 2 we discuss model predictive control, which
is the framework in which our approach can be embedded. Next we give the definition and a
brief description of the Extended Linear Complementarity Problem. In Section 3 we introduce
a class of first order linear hybrid systems with saturation. We show that computing the
optimal switching time instants in general leads to a non-convex optimization problem or to
an optimization problem over the solution set of an extended linear complementarity problem.
In Section 4 we show that if there is no upper saturation then for some objective functions
the feasible set of the optimal switching problem can be replaced by a convex set without
changing the optimum. In that case the optimal switching time sequence can be computed
very efficiently. Furthermore, by making some approximations the problem becomes a linear
programming problem. These results will be illustrated in Section 5 in which we compute

1Continuous variable systems are systems that can be described by a difference or differential equation.
2Discrete event systems are asynchronous systems where the state transitions are initiated by events; in

general the time instants at which these events occur are not equidistant.

1



optimal traffic signal switching time sequences for traffic signal controlled intersections.

2 Preliminaries

2.1 Notation

Let a and b be vectors with n components. The ith component of a is denoted by ai or (a)i.
We use a > b to indicate that ai > bi for all i. The maximum operator on vectors is defined
as follows:

(

max(a, b)
)

i
= max(ai, bi) for all i. The minimum operator on vectors is defined

analogously. The zero vector with n components is denoted by 0n, or by 0 if the dimension is
clear from the context. The n by n identity matrix is denoted by In, or by I if the dimension
is clear from the context. The set of the real numbers is denoted by R.

2.2 Model predictive control

Model predictive control (MPC) [3, 4, 9] is a very popular controller design method in the
process industry. An important advantage of MPC is that it allows the inclusion of constraints
on the inputs and outputs, and that it can handle changes in the system parameters by using
a moving horizon approach, in which the model and the control strategy are continuously
updated. We will use the MPC framework to design optimal switching schemes for a class of
hybrid systems. In general the resulting optimization problem is nonlinear and non-convex.
However, if the control objective and the constraints depend monotonically on the outputs
of the system, the MPC problem can be recast as problem with a convex feasible set. As a
consequence, the problem can be solved very efficiently so that on-line computation is feasible.

In each step of the conventional MPC algorithm for discrete-time systems an optimal input
sequence is computed that minimizes a given cost criterion over a given prediction horizon Np.
Furthermore, for the optimization the control input u is taken to be constant from a certain
point on: u(k+j) = u(k+Nc−1) for j = Nc, Nc+1, . . . , Np−1 where Nc is the control horizon
and where k is the first sampling index of the period under consideration. MPC uses a receding
horizon principle: after computation of the optimal control sequence u(k), u(k+1), . . . , u(k+
Nc−1), only the first control input sample u(k) will be implemented; subsequently the horizon
is shifted one sample, the estimates of the state and the parameters of the system are updated
using information coming from new measurements, and the optimization is restarted. Note
that the continuous updating of the model and the estimates of the states also introduces
a kind of feedback in the control system. In general feedback is necessary to obtain good
performance and tracking in most control applications (see e.g. [12] for applications of feedback
control in traffic).

The parameters Np and Nc are the basic tuning parameters of the MPC algorithm:

• In general the prediction horizon Np is selected such that the time interval [k, k+Np−1]
contains the crucial dynamics of the process.

• An important effect of a small control horizon Nc is the smoothing of the control signal
(because of the emphasis on the average behavior rather than on aggressive noise reduc-
tion). The control horizon forces the control signal to a constant value. This also has
a stabilizing effect since the output signal is forced to its steady-state value. Another
important consequence of decreasing Nc is the reduction of the number of optimization
variables, which results in a decrease of the computational effort.
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2.3 The Extended Linear Complementarity Problem

The Extended Linear Complementarity Problem (ELCP) is a mathematical programming
problem which is defined as follows [7]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets φ1, φ2, . . . , φm of
{1, 2, . . . , p}, find x ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax > c and Bx = d, or show that no such x exists.

The ELCP can be considered as a system of linear equations and inequalities (Ax > c,
Bx = d), where there are m groups of linear inequalities (one group for each index set
φj) such that in each group at least one inequality should hold with equality. In [7] we
have developed an algorithm to compute the complete solution set of an ELCP. In general
this solution set consists of the union of a subset of faces of the polyhedron P defined by the
system Ax > c, Bx = d (i.e. the solution set contains all the points of P that satisfy condition
(1)). Our ELCP algorithm yields a compact representation of the solution set of an ELCP by
vertices, extreme rays and a basis of the linear subspace corresponding to the largest affine
subspace of the solution set. In [7] we have also shown that the general ELCP is NP-hard.

In the next section we shall show that the ELCP can be used to determine optimal
switching time instants for a special class of hybrid systems.

3 Optimal switching time sequences for a class of linear hybrid

systems with saturation

3.1 First order linear hybrid systems with saturation

Consider a system the evolution of which is characterized by consecutive phases. In each
phase each state variable of the system exhibits a linear growth or decrease until a certain
upper or lower saturation level is reached; then the state variable stays constant until the end
of the phase. A system the behavior of which satisfies this description will be called a first

order linear hybrid system with saturation.
A typical example of a first order linear hybrid system with saturation is a traffic signal

controlled intersection provided that we use a continuous approximation for the queue lengths
(see Section 5 and [8]). The state variables of this system correspond to the queue lengths in
the different lanes. For a traffic signal controlled intersection the lower bound for the queue
length is equal to 0. The upper bound could correspond to the maximal available storage
space due to the distance to the preceding junction or due to the layout of the intersection.
We assume that if this upper bound is reached then newly arriving cars take another route to
get to their destination. Another example of a first order linear hybrid system with saturation
is a system consisting of several fluid containers that are connected by tubes with valves and
that have two outlets — one at the bottom (with a tube that leads to another fluid container),
and one at the top (so that the fluid level in the containers can never exceed a given level),
— provided that we assume that the increase or decrease of the fluid levels is linear if the
system is not saturated.
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Now we derive the equations that describe the evolution of the state variables in a first
order linear hybrid system with saturation. In analogy with a traffic signal controlled inter-
section, we will use the word “queue lengths” to refer to the state variables of the system.
Note however that our definition of a first order linear hybrid system with saturation is not
limited to queuing systems only.

Let M be the number of “queues”. The length of queue i at time t is denoted by qi(t).
Let αi,k, b

ls
i,k and busi,k be respectively the queue length growth rate for queue i in phase k, the

lower saturation bound for the queue length qi in phase k and the upper saturation bound
for the queue length qi in phase k. The evolution of the system begins at time t0. Let
t1, t2, t3, . . . be the switching time instants, i.e. the time instants at which the system switches
from one phase to another. Note that in general the sequence t0, t1, t2, . . . is not an equidistant

sequence. The length of the kth phase is equal to δk
def
= tk+1 − tk. Note that δk > 0 for all

k. We assume that 0 6 blsi,k+1 6 qi(tk+1) 6 busi,k+1 for all i, k such that the queue lengths are
always nonnegative and such that there are no sudden jumps in the queue lengths due to a
change in the saturation level at one of the switching time instants. For queue i we have

dqi(t)

dt
=

{

αi,k if blsi,k < qi(t) < busi,k

0 otherwise,
(2)

for t ∈ (tk, tk+1). This implies that the evolution of the queue lengths at the switching time
instants is given by

qi(tk+1) = max
(

min(qi(tk) + αi,kδk, b
us
i,k), b

ls
i,k

)

(3)

for k = 0, 1, 2, . . . If we define qi,k = qi(tk) and

qk =











q1,k
q2,k
...

qM,k











, αk =











α1,k

α2,k
...

αM,k











, blsk =











bls1,k
bls2,k
...

blsM,k











, busk =











bus1,k
bus2,k
...

busM,k











,

we obtain the vector equation

qk+1 = max
(

min(qk + αkδk, b
us
k ), blsk

)

. (4)

If we introduce dummy vectors zk, then (3) can be rewritten as

zk+1 = min(qk + αkδk, b
us
k ) (5)

qk+1 = max(zk+1, b
ls
k ) . (6)

3.2 Optimal switching time sequences for linear hybrid systems with sat-
uration

Now we consider the problem of computing an optimal (finite) sequence of switching time
instants for a system described by a system of equations of the form (4) using an MPC
approach.

We may assume without loss of generality that t0 will be the first switching time instant
in each step of the MPC algorithm. Note that this implies that switching time instant t1 of
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the current MPC step will correspond to switching time instant t0 of the next MPC step.
The queue length vector q0 = q(t0) at time t = t0 can be measured3 or estimated. Now we
want to determine the optimal switching time sequence t0, t1, . . . , tNp

for a given performance
criterion J . For the class of systems we consider it makes more sense to replace the condition
that the control input is constant after the control horizon by the condition

δk = δk−Kc
for k = Nc, Nc + 1, . . . , Np − 1, (7)

where Kc is the number of switching phases in one larger cycle of the system (e.g. in traffic
signal control for an intersection of two streets Kc could be equal to 4 corresponding to the
combinations red-green, red-amber, green-red, amber-red for the traffic signals on the crossing
roads (see also Section 5)). Possible performance criteria are:

• (weighted) average queue length over all queues:

J1 =
M
∑

i=1

wi
1

tNp
− t0

∫ tNp

t0

qi(t) dt , (8)

• (weighted) average queue length over the worst queue:

J2 = max
i

(

wi
1

tNp
− t0

∫ tNp

t0

qi(t) dt

)

, (9)

• (weighted) worst case queue length:

J3 = max
i, t

(

wi qi(t)
)

, (10)

• (weighted) average “waiting time” over all queues4:

J4 =
M
∑

i=1

wi

∫ tNp

t0

qi(t) dt

Np−1
∑

k=0

αa
i,kδk

, (11)

• (weighted) average “waiting time” over the worst queue:

J5 = max
i















wi

∫ tNp

t0

qi(t) dt

Np−1
∑

k=0

αa
i,kδk















, (12)

where wi > 0 for all i and αa
i,k is the arrival rate of “customers” for queue i in phase k.

3Note that if we compute the switching time sequence fast enough (i.e. if the computation time is less than
δ0 = t1 − t0) we can wait with computing the optimal sequence until after t0.

4The average waiting time is equal to the total waiting time divided by the number of arrivals. If the
initial and final queue lengths are 0, then the average waiting time for queue i is given by the fraction in the
expression on the right-hand side of (11). So J4 is in fact an approximation of the (weighted) average waiting
time.

5



We can impose extra conditions such as minimum or maximum queue lengths (which
could be useful in order to prevent saturation at the lower or upper level for some queues),
minimum and maximum durations for the switching time intervals, and so on.

This leads to the following optimization problem that should be solved in each MPC step:

minimize
δ0,δ1,...,δNc−1

J (13)

subject to

δk = δk−Kc
for k = Nc, Nc + 1, . . . , Np − 1, (14)

δmin,k 6 δk 6 δmax,k for k = 0, 1, . . . , Nc − 1, (15)

qmin,k 6 qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1, (16)

zk+1 = min(qk + αkδk, b
us
k ) for k = 0, 1, . . . , Np − 1, (17)

qk+1 = max(zk+1, b
ls
k ) for k = 0, 1, . . . , Np − 1, (18)

with q0 = q(t0) and where δmin,k and δmax,k are respectively the minimum and the maximum
values of δk, and (qmin,k)i and (qmax,k)i are respectively the minimum and the maximum queue
lengths for queue i at time instant tk+1.

Remark 3.1 We can also use a first order linear hybrid system with saturation as an approx-
imate model if we have a hybrid system with saturation in which the queue length growth
or decrease rates are slowly time-varying since in MPC we use a moving horizon approach in
which the model of the system and the estimate of the initial condition can be updated at the
beginning of each control cycle. This also introduces a feedback into the control system. ✸

3.3 The Extended Linear Complementarity Problem and optimal switch-
ing time sequences

Now we show that the system (14) – (18) can be reformulated as an ELCP.
Consider (17) for an arbitrary index k. This equation can be rewritten as follows:

zk+1 6 qk + αkδk

zk+1 6 busk

(zk+1)i = (qk + αkδk)i or (zk+1)i = (busk )i for i = 1, 2, . . . ,M ,

or equivalently

qk + αkδk − zk+1 > 0 (19)

busk − zk+1 > 0 (20)

(qk + αkδk − zk+1)i (b
us
k − zk+1)i = 0 for i = 1, 2, . . . ,M (21)

Since a sum of nonnegative numbers is equal to 0 if and only if all the numbers are equal to
0, (21) is equivalent to:

M
∑

i=1

(qk + αkδk − zk+1)i (b
us
k − zk+1)i = (qk + αkδk − zk+1)

T (busk − zk+1) = 0 .

Hence, (17) can be rewritten as
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qk + αkδk − zk+1 > 0 (22)

busk − zk+1 > 0 (23)

(qk + αkδk − zk+1)
T (busk − zk+1) = 0 . (24)

We can repeat this reasoning for (18) and for each index k. So if we define

xq =











q1
q2
...

qNp











, xz =











z1
z2
...

zNp











, xδ =











δ0
δ1
...

δNc−1











,

and if we replace all δk’s with index k > Nc using (14), we finally get a problem of the form

minimize
xδ

J (25)

subject to

Axq +Bxz + Cxδ + d > 0 (26)

Exq + Fxz + g > 0 (27)

Hxq +Kxδ + l > 0 (28)

(Axq +Bxz + Cxδ + d)T (Exq + Fxz + g) = 0 , (29)

for appropriately defined matrices A, B, C, E, F , H, K and vectors d, g, l. Equations
(26), (27) and (29) correspond to (22), (23) and (24) respectively, and the system of linear
inequalities (28) contains the conditions (15) and (16). It is easy to verify that the system
(26) – (29) is (a special case of) an ELCP.

The time evolution of the queue lengths in a first order linear hybrid system with satu-
ration is given by piecewise affine functions. The link between piecewise affine functions and
(ordinary) linear complementarity problems has also been explored by several other authors
(see e.g. [5] and the references therein).

Remark 3.2 If we introduce additional linear equality or inequality constraints on the com-
ponents of xδ such as e.g. a maximum or total duration for the Np phases (δ0+δ1+ · · ·+δNp

6

Tmax or δ0 + δ1 + · · ·+ δNp
= Ttot), maximum or total durations for two or more consecutive

phases (e.g. δ2k + δ2k+1 6 Tmax,k or δ2k + δ2k+1 = Ttot,k), we still obtain an ELCP. The
additional linear inequality constraints lead to extra inequalities in (28), and the additional
linear equality constraints lead to an extra equation of the form Pxδ + q = 0, which also fits
in the ELCP framework. ✸

The ELCP (26) – (29) describes all feasible system trajectories for the first order linear hybrid
system with saturation. In order to determine the optimal switching time sequence we could
minimize the objective function J over the solution set of the ELCP as follows. If we assume
that xq and xδ are bounded

5, then the solution set of the ELCP consists of a union of faces of
the (finite and bounded) polytope defined by (26) – (28). Each face of the polyhedron can be
represented by its vertices, and the points of the face can be written as convex combinations of
these vertices. We could for each face determine for which convex combination of the vertices
the objective function J reaches a global minimum over the face and afterwards select the
overall minimum.

5A sufficient condition for this is that δmin,k and δmax,k are defined and finite for all k.
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However, the general ELCP is an NP-hard problem [7]. Furthermore, the algorithm of [7]
to compute the solution set of a general ELCP requires exponential execution times. This
implies that the ELCP approach sketched above is not feasible if the number of variables is
large. Since the number of variables in the ELCP is equal to 2MNp +Nc, this implies that
the ELCP should not be used if M , Np or Nc are large.

If the ELCP is not tractable, we could either select lower values for Nc and Np (which
would result in less optimal solutions) or we could use multi-start local optimization to deter-
mine the optimal switching scheme. For given Np, Nc, Kc, q0, αi,k’s, b

ls
i,k’s and busi,k’s, the evo-

lution of the system to be optimized is uniquely determined by the sequence δ0, δ1, . . . , δNc−1

since the remaining δk’s, the queue lengths qi(t) and the components of xq and xz are given
by (7), (2), (5) and (6) respectively. Therefore, we can consider (13) – (18) as a constrained
optimization problem in xδ where the constraints (16) – (18) are nonlinear constraints. Alter-
natively, these constraints can be taken into account by adding an extra penalty term to the
objective function J if qi,k < (qmin,k)i or qi,k > (qmax,k)i. If we use the penalty function6 ap-
proach, the only remaining constraints on xδ are the simple upper and lower bound constraints
(15). However, the major disadvantage of the multi-start local minimization approaches dis-
cussed above is that in general the minimization routine will only return a local minimum
and that several starting points are necessary to obtain a good approximation to the global
optimum. Note that the final solution x

opt,curr
δ of the current MPC step can be used to obtain

a good initial solution x
init,next
δ for the next MPC stepping by setting δ

init,next
k = δ

opt,curr
k−1 for

k = 1, 2, . . . , Nc.
Recall that in each MPC step the problem (13) – (18) has to be solved. In order to be able

to do this on-line, it is important to have efficient algorithms to solve the problem. Therefore,
we shall now discuss some other approaches to compute solutions very efficiently if there is
no saturation at the upper level.

4 Optimal and suboptimal switching time sequences for sys-

tems with saturation at a lower level only

4.1 Optimal switching time sequences

In this section we consider systems with saturation at the lower level only. So busi,k is equal to

∞ for all i, k, or equivalently (qmax,k)i 6 busi,k for all i, k. We also assume that qmin,k 6 blsk for
all k, i.e. we do not impose extra lower bound conditions on the queue lengths. The optimal
switching problem (13) – (18) then reduces to

minimize
xδ

J (30)

subject to

δk = δk−Kc
for k = Nc, Nc + 1, . . . , Np − 1, (31)

δmin,k 6 δk 6 δmax,k for k = 0, 1, . . . , Nc − 1, (32)

qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1, (33)

qk+1 = max(qk + αkδk, b
ls
k ) for k = 0, 1, . . . , Np − 1. (34)

6Note that in this case a barrier function approach is not advantageous since the optimal solution will often
lie on the boundary of the feasible region.
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We call this problem P. We define the “relaxed” problem P̃ corresponding to P as:

minimize
xq ,xδ

J (35)

subject to

δk = δk−Kc
for k = Nc, Nc + 1, . . . , Np − 1, (36)

δmin,k 6 δk 6 δmax,k for k = 0, 1, . . . , Nc − 1, (37)

qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1, (38)

qk+1 > qk + αkδk for k = 0, 1, . . . , Np − 1, (39)

qk+1 > blsk for k = 0, 1, . . . , Np − 1. (40)

So compared to the original problem we have replaced (34) by relaxed equations of the form
(22) – (23) without taking (24) into account. As a consequence, xq and xδ are not directly
coupled any more. The set of feasible solutions of P̃ is a convex set, whereas the set of feasible
solutions of P is in general not convex since (34) is a non-convex constraint. Therefore, the
relaxed problem P̃ will in general be easier to solve than the problem P.

The objective function J is a monotonically nondecreasing function of xq if for every xδ
and for every x̃q, x̂q with x̃q 6 x̂q, we have J(x̃q, xδ) 6 J(x̂q, xδ). The following proposition
shows that for monotonically nondecreasing objective functions any optimal solution of the
relaxed problem P̃ can be transformed into an optimal solution of the problem P.

Proposition 4.1 Let the objective function J be a monotonically nondecreasing function of

xq and let (x∗q , x
∗

δ) be an optimal solution of P̃. If we construct x
♯
q such that

q
♯
1 = max(q0 + α0δ

∗

0 , b
ls
0 ) (41)

q
♯
k+1 = max(q♯k + αkδ

∗

k, b
ls
k ) for k = 1, 2, . . . , Np − 1. (42)

then (x♯q, x∗δ) is an optimal solution of the problem P.

Proof : Let (x∗q , x
∗

δ) be an optimal solution of P̃ and let x♯q be defined by (41) – (42). Clearly,

(x♯q, x∗δ) is a feasible solution of P̃. Define q∗0 = q
♯
0 = q0. Since x∗q satisfies (39) – (40), we

have max(q∗k + αkδ
∗

k, b
ls
k ) 6 q∗k+1 for all k. Since q∗0 = q

♯
0, this implies that q

♯
1 6 q∗1 and, by

induction, also that q
♯
k 6 q∗k for k = 2, 3, . . . , Np. As a consequence, we have x

♯
q 6 x∗q and

thus also J(x♯q, x∗δ) 6 J(x∗q , x
∗

δ) since J is a monotonically nondecreasing function of xq. Since

(x♯q, x∗δ) is a feasible solution of P̃ and since (x∗q , x
∗

δ) is an optimal solution of P̃, this implies

that (x♯q, x∗δ) is also an optimal solution of P̃.
The set of feasible solutions of P is a subset of the set of feasible solutions of P̃. Hence, the
minimal value of J over the set of feasible solutions of P̃ will be less than or equal to the
minimal value of J over the set of feasible solutions of P. Since (x♯q, x∗δ) is a feasible solution

of P and an optimal solution of P̃, this implies that (x♯q, x∗δ) is an optimal solution of P. ✷

Recall that the objective functions J1, J2, J3, J4 and J5 do not explicitly depend on xq, since
xq can be computed from xδ (and eliminated from the expressions for the objective functions
before considering the relaxation of P). So we have Jl(x̃q, xδ) = Jl(x̂q, xδ) for any x̃q, x̂q and
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for l ∈ {1, 2, 3, 4, 5}. This implies that J1, J2, J3, J4 and J5 are monotonically nondecreasing
functions of xq. So we can use Proposition 4.1 to transform the optimal switching problem
for the objective functions J1 up to J5 into an optimization problem with a convex feasible
set. The resulting (global) solution of the relaxed problem can then be transformed into an
optimal switching scheme using (41) – (42). Note however that although the feasible set of
the relaxed problem is convex, the objective functions J1 up to J5 are not convex, so that the
overall problem is still non-convex (and thus in general not easily solvable). Therefore, we now
introduce two subsequent approximations of the objective functions J1 and J4 that will lead
to a linear programming problem, which can be solved very efficiently. The resulting solution
can then be used as an initial starting point for the optimization of the relaxed problem.

4.2 A linear programming approximation

The objective function J is a monotonically increasing function of xq if for every xδ and for
every x̃q, x̂q with x̃q 6 x̂q and x̃q 6= x̂q we have J(x̃q, xδ) < J(x̂q, xδ). The optimal solution
of P̃ will in general not be a feasible solution of P, unless J is a monotonically increasing
function of xq:

Proposition 4.2 If J is a monotonically increasing function of xq then any optimal solution

of the relaxed problem P̃ is also an optimal solution of the problem P.

Proof : Let (x∗q , x
∗

δ) be an optimal solution of P̃ and construct (x♯q, x∗δ) as in the proof of

Proposition 4.1. So x
♯
q 6 x∗q and (x♯q, x∗δ) is also a feasible solution of P̃.

Now we show by contradiction that (x∗q , x
∗

δ) is also a feasible solution of P, i.e. that it satisfies

(34). Suppose that (x∗q , x
∗

δ) does not satisfy (34). So x
♯
q 6= x∗q . Since x

♯
q 6 x∗q , this implies

that J(x♯q, x∗δ) < J(x∗q , x
∗

δ), which would mean that (x∗q , x
∗

δ) is not an optimal solution of P̃.
Since this is a contradiction, our initial assumption that (x∗q , x

∗

δ) does not satisfy (34) was
wrong. Hence, (x∗q , x

∗

δ) also is a feasible solution of the problem P. Since the set of feasible

solutions of P is a subset of the set of feasible solutions of P̃, this implies that (x∗q , x
∗

δ) is also
an optimal solution of P. ✷

Note that the objective functions J1, J2, J3, J4 and J5 are not monotonically increasing
functions of xq. Now we introduce some approximations to the objective functions J1 and J4
that are strictly monotonically increasing functions of xq and for which Proposition 4.2 can
be used7. This will lead to suboptimal switching time sequences that can be computed very
efficiently. We will only consider the approximations for J1, but for J4 a similar reasoning
can be made.

For a given q0 and t0, we define the function q̃i(·, xq, xδ) as the piecewise-affine function
with breakpoints (tk, qi,k) for k = 0, 1, . . . , Np. The approximate objective function J̃1 is
also defined by (8) but with qi replaced by q̃i. The value of the objective functions J1 and
J̃1 depends on the surface under the functions qi and q̃i respectively

8. If we are computing
optimal traffic switching sequences, then the surface under the function q̃i will be a reasonable
approximation of the surface under the function qi and then the optimal value of J̃1 will be

7This derivation is an extension of our work in [8] where we have considered a special subclass of first order
linear hybrid systems with saturation at the lower level only. Although we did not yet use Proposition 4.1
there, we did use a proposition that is similar to Proposition 4.2.

8Recall that qi(t) > 0 for all i, t since we have assumed that blsi,k > 0 for all i, k.
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a reasonably good approximation of the optimal value of J1 (see also [6, 8]). Note that the
values of J1 and J̃1 coincide if there is no saturation in the period under consideration. Since
q̃i is a piecewise-affine with breakpoints (tk, qi,k) for k = 0, 1, . . . , Np, we have [6]

J̃1(xq, xδ) =
M
∑

i=1

(

wi

2(δ0 + δ1 + . . .+ δNp−1)

Np−1
∑

k=0

δk(qi,k + qi,k+1)

)

(43)

where δNc
, . . . , δNp−c can be replaced using (7). Since δk > 0 for all k, J̃1 is a monotonically

increasing function of xq, which implies that Proposition 4.2 can be applied.
Now we discuss a further approximation of J̃1 that will lead to a linear programming

problem, which can be solved very efficiently. Sometimes we already have a good idea about
the relative lengths of the different phases (in a traffic signal situation we know e.g. that the
green phases will be much longer than the amber phases). If we assume that δk = ρkδ̄ for all
k and for some yet unknown δ̄, then (43) leads to:

J̃1(xq, xδ) =
M
∑

i=1

wi

2ρtot



ρ0qi,0 +

Np−1
∑

k=1

(ρk + ρk−1)qi,k + ρN−1qi,Np





def
= Ĵ1(xq) .

with ρtot = ρ0 + ρ1 + · · · + ρNp−1. Note that Ĵ1 is an affine function of xq. Since wi > 0

for all i and ρk > 0 for all k, Ĵ1 is a monotonically increasing function of xq. Hence, by
Proposition 4.2 any optimal solution of P̃ with objective function Ĵ1 will also be an optimal
solution of P (with objective function Ĵ1). So the optimal switching problem then reduces to
a linear programming problem, which can be solved efficiently using a simplex or an interior
point method.

Remark 4.3 The values of the ρk’s are usually determined on the basis of an educated
guess. Alternatively, if we have already performed an MPC step, then we can use the shifted
values of the δk’s of the previous MPC step to obtain an initial guess for the current ρk’s.
Furthermore, we could also use an iterative procedure in which we first select values for the
ρk’s, compute the optimal solution, use the resulting δk’s to determine new values for the
ρk’s, after which we can again compute the optimal solution, and so.
Also note that the assumption on the relative lengths (δk = ρkδ̄ for all k) is only used to
simplify the objective function; it will not be included explicitly in the linear programming
problem. So the variables in this problem are still xq and xδ, but the objective only depends
on xq. As a consequence, the optimal δk’s will in general not satisfy the assumption on the
relative lengths (see e.g. Example 5.1). ✸

5 Application: Optimal traffic signal control

5.1 Optimal traffic signal control

In order to illustrate the effectiveness of Proposition 4.1 we shall use the different approaches
presented in this paper to design an optimal switching time sequence for a traffic signal
controlled intersection and compare the results.

Consider an intersection of two two-way streets (see Figure 1) with lanes Li and a traffic
signal Ti on each corner of the intersection (i = 1, 2, 3, 4). The switching time sequence for the
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L1

L2

L3

L4
T1

T2 T3

T4

Figure 1: A traffic signal controlled intersection of two two-way streets.

intersection is given in Table 1. Since queue lengths can never become negative and since all
the cars can leave a queue provided that we make the length of the green phase large enough,
we have blsk = 0 for all k. We assume that there is no saturation at the upper level, either due
to the fact that there is enough buffer space before the traffic signal in each lane or due to
the fact that we impose additional maximal queue length conditions such that qmax,k 6 busk .

In order to obtain a model that is amenable to mathematical analysis, we shall make two
extra assumptions (see also [8]):

• the queue lengths are continuous variables,

• the average arrival and departure rates of the cars are constant or slowly time-varying.

These assumptions deserve a few remarks:

• Recall that the main purpose is to compute optimal traffic signal switching time se-
quences. Designing optimal switching time sequences is only useful if the arrival and
departure rates of vehicles at the intersection are high since then the queue lengths
will in general also be large and then approximating the queue lengths by continuous
variables will introduce only small errors.

• If we keep in mind that one of the main purposes of the model that we shall derive,
is the design of optimal traffic signal switching time sequences, then assuming that the
average arrival and departure rates are constant is not a serious restriction provided
that we use an MPC approach in which we can regularly update the estimates of the
arrival and departure rates and of the state of the system.

Let αa
i be the average arrival rate of cars in lane Li, and let α

d,green
i and α

d,amber
i be the

departure rates of cars in lane Li when the traffic signal Ti is green respectively amber. If we
define

αi,k =











αa
i if Ti is red in (tk, tk+1)

αa
i − α

d,green
i if Ti is green in (tk, tk+1)

αa
i − α

d,amber
i if Ti is amber in (tk, tk+1)
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Period T1, T3 T2, T4

t0–t1 red green

t1–t2 red amber

t2–t3 green red

t3–t4 amber red

t4–t5 red green

t5–t6 red amber
...

...
...

Table 1: The traffic signal switching scheme.

for all i, k, then the relation between the switching time instants and the queue lengths is
described by a system of equations of the form

dqi(t)

dt
=

{

αi,k if blsi,k < qi(t)

0 otherwise.

So the system can be considered as a first order linear hybrid system with lower saturation
only. Hence, we can use the techniques presented in Sections 3.2 and 4 to compute optimal
and suboptimal traffic signal switching schemes.

In the simple traffic signal set-up discussed above we did not make a distinction between
cars that turn left, right or that go straight ahead. However, the approach presented in this
paper can also be applied to more complex set-ups or more complex traffic signal switching
schemes for single intersections such as e.g. the one depicted in Figure 2 which consists of
four main phases with amber phases in between where in the first main phase cars on the
north-south axis can go straight ahead or turn right, in the next main phase they can turn
left, and in the next two main phases the same process is repeated for the traffic on the
east-west axis.

5.2 Worked example

The following traffic signal control example illustrates that using Proposition 4.1 leads to
efficient computation of optimal switching time sequences and that the approximations in-
troduced in Section 4.2 lead to reasonably good suboptimal solutions. Since we are mainly
interested in the computation times, we will consider only one step of the MPC algorithm.

Figure 2: The four main phases of a more complex traffic signal switching scheme. The arrows
indicate possible directions for the cars that receive a green signal.
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All times will be expressed in seconds and all rates in vehicles per second. The numerical
results will be given up to 2 decimal places.

Example 5.1 Consider the intersection of Figure 1 with the switching scheme of Table 1
and with the following data: Np = 14, Nc = 8, αa

1 = 0.23, αa
2 = 0.12, αa

3 = 0.19, αa
4 = 0.11,

α
d,green
1 = 0.50, α

d,green
2 = α

d,green
4 = 0.35, α

d,green
3 = 0.45, α

d,amber
1 = α

d,amber
3 = 0.03,

α
d,amber
2 = α

d,amber
4 = 0.02, q0 = [ 17 12 14 8 ]T and qmax,k = [ 20 15 20 15 ]T for all k. Since

a green-amber-red cycle consists of four consecutive phases (see Table 1) we set Kc = 4.
We want to compute a traffic signal switching sequence t0, t1, . . . , tNc−1 that minimizes J1

with w = [2 1 2 1]T . The minimum and maximum length of the green phases are respectively
9 and 90. Note that for the simple setup of this example and for the objective function J1
it does not make sense to consider a varying amber duration since during the amber phases
the average queue length always increases, which implies that the optimal duration of the
amber phases in this case will always be equal to the given lower bound for the amber phase.
Therefore, we fix the length of the amber phase by setting the minimal and the maximal
length of the amber phases equal to 3.

We have computed an optimal switching interval vector x∗δ,elcp using the ELCP method,
a suboptimal switching vector x∗δ,nlcon using constrained optimization with nonlinear con-

straints9, and a suboptimal solution x∗δ,penalty using constrained optimization10 with a quadratic
penalty function for queue lengths that exceed qmax,k. Based on Propositions 4.1 and 4.2 we
have computed a solution x∗δ,relaxed that minimizes J1 for the relaxed problem P̃ and a solu-

tion x∗δ,approx that minimizes the approximate objective function J̃1 for the relaxed problem

P̃. Finally, we computed a switching interval vector x∗δ,lp that minimizes Ĵ1 for the relaxed

problem P̃ with the affine objective function obtained by assuming that for the east-west
axis the length of the green phases is 1.5 times the length of the red phases and 10 times the
length of the amber phases (Note that this is just a rough guess).

We have used the sequential quadratic programming function e04ucc of the NAG C
Library for the nonlinear optimizations. To solve the linear programming problem we have
used the function e04mfc of the NAG C library, which uses an active set method.

In Table 2 we have listed the value of the objective functions J1, J̃1 and Ĵ1 for the various
switching interval vectors and the CPU time needed to compute the switching interval vectors
on a Pentium II 300 MHz PC running Linux and with 64 MB RAM. The CPU time values
listed in the table are average values over 10 experiments11. All the routines used in the
computations either have been implemented in C or were compiled to object code. As a
consequence, all the CPU times can be considered as a measure for the number of floating
point operations that were needed to compute the various (sub)optimal switching interval
vectors.

Note that the optimal values of J1 and J̃1 differ by about 5%, so that in this case the

9We give the best solution over 20 runs with random initial points. Only 14 runs resulted in a feasible
solution. For these 14 runs the mean of the objective values of the local minima returned by the minimization
routine was 48.50 with a standard deviation of 3.38.

10We give the best solution over 10 runs with random initial points. For the 9 runs that resulted in a feasible
solution, the mean of the objective values was 46.45 with a standard deviation of 0.08.

11For x∗

δ,nlcon we have listed the CPU time needed for 20 runs with random initial points and for x∗

δ,penalty

we have listed the CPU time needed for 10 runs with random initial points (see also footnotes 9 and 10). Note
however that even for a single run the average CPU time needed for these solutions is much higher that the
CPU time needed for the x∗

δ,relaxed solutions.
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x∗δ J1(x
∗

δ) J̃1(x
∗

δ) Ĵ1(x
∗

δ) CPU time

x∗δ,elcp 46.41 49.05 53.66 64 619.07

x∗δ,nlcon 46.41 49.05 53.66 216.71

x∗δ,penalty 46.41 49.05 53.66 29.71

x∗δ,relaxed 46.41 49.05 53.66 0.36

x∗δ,approx 46.41 49.05 53.66 3.56

x∗δ,lp 46.63 49.12 53.62 0.16

Table 2: The values of the objective functions J1, J̃1 and Ĵ1, and the CPU time needed to
compute the (sub)optimal switching vectors of Example 5.1.

optimal value of J̃1 is indeed a reasonably good approximation of the optimal value of J1.
While computing x∗δ,relaxed we only have Nc optimization variables (i.e., the δk’s, since the
qk’s do not appear in the objective function and since they can be eliminated from the
constraints). However, for x∗δ,approx we have Nc +MNp optimization variables (i.e., the δk’s
and the components of the qk’s since in this case the qk’s appear in the objective function
and can thus not be eliminated). This is one of the reasons why the computation of x∗δ,relaxed
requires less CPU time than the computation of x∗δ,approx. Additional numerical experiments
and simulations can be found in [6].

In this example the ELCP solution is only given as a reference since the CPU time needed
to compute the optimal switching interval vector using the ELCP algorithm of [7] increases
exponentially as M , Np or Nc increase (see also [6]). This implies that the ELCP approach
should never be used in practice, but one of the other approaches should be used instead.

If we look at Table 2 then we see that the x∗δ,relaxed solution — which is based on Propo-
sition 4.1 — is clearly the most interesting. If we take the trade-off between optimality and
efficiency into account, the x∗δ,relaxed solution outperforms the solutions obtained using the
other approaches (see also [6]).

If we use an MPC approach then the computation time required for the x∗δ,relaxed solution
is less than the minimum lower bound for the phase lengths, which implies that we can first
measure the queue lengths at t0 and start the computation at time t0. In that way we can
use the exact initial state q0. Note that using the exact initial state q0 (or a good estimate)
also introduces a kind of feedback in the control loop. ✷

6 Conclusions and future research

We have considered the determination of optimal switching time sequences for a class of first
order linear hybrid systems subject to saturation. First we have introduced the Extended
Linear Complementarity Problem (ELCP) and indicated how it can be used to describe the
set of feasible system trajectories for a first order linear hybrid system with saturation. Opti-
mization over the solution set of the ELCP then yields the optimal switching time sequence.
Since the ELCP is NP-hard, we have also discussed several other techniques to compute opti-
mal and suboptimal switching time sequences for first order linear hybrid systems subject to
saturation at the lower level only. We have shown that if the objective function is a monoton-
ically nondecreasing function of the queue lengths, then the optimal switching problem can
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be transformed into an optimization problem with a convex feasible set and then the optimal
switching time sequence can be computed more efficiently. By making some approximations,
the optimal switching problem can even be transformed into a linear programming problem.
We have illustrated these approaches by computing (sub)optimal switching time sequences
for a traffic signal controlled intersection. Since the time required for the computations using
the most efficient approach is less than the minimum time between two consecutive switch-
ings, our method can be used in a model predictive control framework in which the model
of the system and the optimal switching sequence are re-estimated or re-computed after each
switching.

In this paper we have derived methods to optimize quantitative performance measures
such as average or worst case waiting times and queue lengths for a linear hybrid system with
saturation. If we are more interested in qualitative properties such as e.g. safety, we could
use the techniques presented in [18].

An important topic for future research is the extension of the results obtained in this
paper to networks of dependent queues, i.e. a situation where the outputs of some queues will
be connected to the inputs of some other queues. If we use an MPC strategy in combination
with a decentralized control solution, we can apply still the approach given in this paper: if
we know or measure all routing rates12 and all traveling times from one queue to another,
we can use measurements from one queue to predict the arrival rates at the other queues.
Other topics for further research include: development of other efficient algorithms and/or
approximations to compute optimal switching time sequences for first order linear hybrid
systems with saturation, investigation of the use of the ELCP to model and to control other
classes of hybrid systems, and extension of the results presented in this paper to more general
classes of hybrid systems.
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Optimal control of a class of linear hybrid systems
with saturation: Addendum

Bart De Schutter

Abstract

In this addendum we give some extra propositions, proofs and results of numerical ex-
periments in connection with the design of (sub)optimal switching time sequences for a
class of first order linear hybrid systems with saturation that we have introduced in the
paper “Optimal control of a class of linear hybrid systems with saturation” [A-1] (SIAM
Journal on Optimization and Control, vol. 38, no. 3, pp. 835–851, 2000).

All references in this addendum that are not preceded by a capital letter A, B or C refer to
sections, equations, etc. of the paper [A-1].

A Additional remarks for [A-1]

A.1 Model

The model derived in [A-1] can accommodate varying amber durations. However, in many
countries the amber time is fixed by regulation (e.g. to 3 s in France). If we assume that the
duration of the amber phase is fixed, then we can adapt our model and reduce the number
of variables (see also [8]).

A.2 Systems with varying rate functions

In [A-1] we have already explained that the MPC approach also allows us to deal with slowly-
varying rate functions by updating the model after each switching and re-computing the
optimal switching sequence.

Even if the rates are assumed to be non-constant within one MPC step, we can still use our
approach if we approximate the time-varying rate functions by piecewise constant functions.
Although in general we do not know the exact behavior of these functions in advance the
behavior can often be predicted on the basis of historical data and measurements. Also note
that we do not know the lengths of the phases in advance. In order to determine the average
rates for each phase, we could therefore first assume that all phases have equal length. Then
we compute an optimal or suboptimal switching time sequence and use the result to get better
estimates of the lengths of the phases and thus also of the average queue length growth rates
in each phase, which can then be used as the input for another optimization run. If necessary
we could repeat this process in an iterative way.

Also note that in practice there is always some uncertainty and variation in time of the
queue length growth rates, which makes that in general computing the exact optimal switching
time sequence is utopian. Moreover, in practice we are more interested in quickly obtaining a
good approximation of the optimal switching time sequence than in spending a large amount
of time to obtain the exact optimal switching time sequence.
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q̃i

tk tk+1 tk+2

qi,k

qi,k+1
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Figure A.1: The functions qi (full line) and q̃i (dashed line) for a queue with a decrease phase
and a subsequent positive growth phase and without saturation at an upper level. Note that
in the growth phase the functions qi and q̃i coincide.

A.3 Approximations of the objective functions

Let l ∈ {1, 4}. The value of the objective functions Jl and J̃l introduced in Sections 3.2 and
4.2 depends on the surface under the functions qi and q̃i respectively. For a traffic signal
controlled intersection where the traffic signals alternate between green and red (with a short
amber phase in between) we will usually have a queue length evolution that is similar to the
one represented in Figure A.1. An optimal traffic signal switching scheme implies the absence
of long periods in which no cars wait in one lane (i.e. qi(t) = 0) while in the other lanes the
queue lengths increase. So in that case the surface under the function q̃i will be a reasonable
approximation of the surface under the function qi and then the optimal value of J̃l will be a
reasonably good approximation of the optimal value of Jl.

Since q̃i is a piecewise-affine with breakpoints (tk, qi,k) for k = 0, 1, . . . , Np, we have

∫ tk+1

tk

q̃i(t, xq, xδ)dt =
δk

2
(qi,k + qi,k+1)

and thus

J̃1(xq, xδ) =
M
∑

i=1

(

wi

2(δ0 + δ1 + . . .+ δNp−1)

Np−1
∑

k=0

δk(qi,k + qi,k+1)

)

.

B Additional numerical experiments and simulations for the
example of Section 5.2

The switching interval vectors of the example of Section 5.2 are given by

x∗δ,elcp = [ 10.04 3.00 38.75 3.00 39.88 3.00 70.00 3.00 ]T

x∗δ,nlcon = [ 10.04 3.00 30.75 3.00 39.88 3.00 70.94 3.00 ]T

x∗δ,penalty = [ 10.04 3.00 30.75 3.00 39.88 3.00 70.94 3.00 ]T

x∗δ,relaxed = [ 10.04 3.00 38.75 3.00 39.88 3.00 70.94 3.00 ]T

x∗δ,approx = [ 10.04 3.00 38.75 3.00 39.88 3.00 70.94 3.00 ]T

ii



0 50 100 150 200 250 300 350
0

5

10

15

20

 

 

q
u
eu
e
le
n
gt
h

time

q1
q2
q3
q4

Figure A.2: The queue lengths in the various lanes as a function of time for the traffic signal
switching sequence that corresponds to the switching interval vector x∗δ,elcp of the example of
Section 5.2. The * signs on the time axis correspond to the switching time instants.
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Figure A.3: The queue lengths in the various lanes as a function of time for an integer queue
length simulation for the traffic signal switching sequence that corresponds to the switching
interval vector x∗δ,elcp. The integer queue length functions are plotted in full lines and their
continuous approximations in dotted lines.
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J1(x
∗

δ) CPU time

x∗δ Nc = 4 Nc = 6 Nc = 10 Nc = 4 Nc = 6 Nc = 10

x∗δ,elcp 70.69 54.14 – 4.10 485.04 –

x∗δ,nlcon 70.69 54.14 46.41 115.31 169.59 282.82

x∗δ,penalty 70.69 54.14 46.41 9.59 20.92 39.28

x∗δ,relaxed 79.69 54.14 46.41 0.16 0.26 0.50

x∗δ,approx 70.81 56.24 53.66 2.73 2.96 3.73

x∗δ,lp 70.69 54.14 47.54 0.14 0.15 0.19

Table A.1: The values of the objective functions J1 and the CPU time needed to compute
the (sub)optimal switching interval vectors of the example of Section 5.2 for Nc = 4, 6 and
10.

x∗δ,lp = [ 10.04 3.00 38.75 3.00 38.81 3.00 68.89 3.00 ]T .

The evolution of the queue lengths for the optimal switching interval vector x∗δ,elcp is repre-
sented in Figure A.2. In Figure A.3 we have plotted the results of an integer queue length
simulation for the traffic signal switching strategy that corresponds to the optimal switching
interval vector x∗δ,elcp. The effective average queue length over all lanes for this simulation is
45.17.

In order to show how the control horizon Nc influences the performance of the methods
presented in [A-1] we have computed optimal and suboptimal switching time intervals for
three different values of Nc: 4, 6 and 10. The other data and parameters have the same
values as in Section 5.2. In Table A.1 we have given the optimal value of the objective
function J1 and the CPU time needed to compute the solution. We have not computed the
ELCP solution for Nc = 10, since this would require too much CPU time.

We see again that the x∗δ,approx solution offers the best trade-off between efficiency and
optimality.

While performing numerical experiments for the example of Section 5.2 and for similar
examples, we noticed the following:

• The determination of the minimum value of J1 over the solution set of the ELCP is a
well-behaved problem in the sense that using a local minimization routine starting from
different initial points almost always yields the same numerical result (within a certain
tolerance). In a typical experiment in which for each face we computed the minimal
value of the objective function for 20 random starting points, for almost every face 10
or more decimal places of the final objective function were the same. Therefore, we
have only considered one run with an arbitrary random initial point for each face for
the ELCP solution in Table 2.

• In order to obtain a good approximation to the optimal switching time vector using
nonlinear constrained optimization or a penalty function approach, it is necessary to
run the local minimization algorithm several times each time with a different initial
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starting point. In general a local minimization run for the approach that uses nonlinear
constraints requires less time than a run for the penalty function approach. However,
the nonlinear constraints approach requires more different starting points to obtain a
good approximation of the global optimum than the penalty function approach.

• Apart from the quadratic penalty function defined by

Fpenalty = 10 000

Np
∑

k=1

M
∑

i=1

(

max
(

0, (qk)i − (qmax,k)i
)

)2
, (A.1)

we have also used linear, exponential and mixed penalty functions in the penalty func-
tion approach. However, for the applications considered here the penalty function de-
fined by (A.1) leads to the best performance.

• The relaxed problem (which has a convex feasible set) is much easier to solve using multi-
start local optimization than the original problem (which has a non-convex feasible set).
In a typical experiment for x∗δ,relaxed with 20 random starting points the first 11 decimal
places of the final objective function J1 always had the same value. For x∗δ,approx the first
9 decimal places always had the same value. This implies that in practice performing one
run with an random starting point is sufficient to obtain the globally optimal solution
for x∗δ,relaxed and x∗δ,approx.

C A generalization

C.1 A more general class of systems

In this section we show that the results of Sections 3 and 4 can be extended to a more general
class of systems that can be described by equations of the form

qk+1 = max
(

min(Akqk +Bkuk, b
us
k ), blsk

)

(A.2)

for k = 0, 1, 2, . . . where Ak ∈ R
M×M , Bk ∈ R

M×L, and uk ∈ R
L for some integer L. Note

that (4) is a special case of (A.2) with Ak = I, Bk = αk, uk = δk and L = 1.
Note that the description (A.2) does not correspond to a switched continuous time system

the behavior of which is described by

dqi(t)

dt
=

{

(Akqi(t) +Bkuk)i if blsi,k < qi(t) < busi,k

0 otherwise,
(A.3)

for t ∈ (tk, tk+1) and for i = 1, 2, . . . ,M . Indeed, for M = 1 (A.3) results in

qk+1 =







max
(

min
(

(qk +A−1
k Bkuk)e

Ak(tk+1−tk) −A−1
k Bkuk, b

us
k

)

, blsk

)

if Ak 6= 0

max
(

min
(

qk +Bkuk(tk+1 − tk), b
us
k

)

, blsk

)

if Ak = 0 .

For M > 1 the relation between qk+1, qk and tk+1 − tk is even more complex.
For the class of systems described by (A.2) the optimization problem that has to be solved

in each major MPC step is given by:

minimize
u0,u1,...,uNc−1

J (A.4)
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subject to

uk = uk−Kc
for k = Nc, Nc + 1, . . . , Np − 1, (A.5)

umin,k 6 uk 6 umax,k for k = 0, 1, . . . , Np − 1, (A.6)

qmin,k 6 qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1 (A.7)

zk+1 = min(Akqk +Bkuk, b
us
k ) for k = 0, 1, . . . , Np − 1, (A.8)

qk+1 = max(zk+1, b
ls
k ) for k = 0, 1, . . . , Np − 1. (A.9)

where umin,k and umax,k are respectively the minimum and the maximum values of uk.
Using the same reasoning as in Section 3.3 we can show that the system (A.5) – (A.9) can

be reformulated as an ELCP of the form

Axq +Bxz + Cxu + d > 0 (A.10)

Exq + Fxz + g > 0 (A.11)

Hxq +Kxu + l > 0 (A.12)

(Axq +Bxz + Cxu + d)T (Exq + Fxz + g) = 0 , (A.13)

for appropriately defined matrices A, B, C, E, F , H, K and vectors d, g, l and with

xu =











u0
u1
...

uN−1











.

If we introduce additional linear equality or inequality constraints on the components of xu,
we still obtain an ELCP. The additional linear inequality constraints lead to extra inequalities
in (A.12), and the additional linear equality constraints lead to an extra equation of the form
Pxu + q = 0, which also fits in the ELCP framework.

Now we can determine optimal input sequences using the ELCP approach or using multi-
start local optimization.

C.2 Optimal and suboptimal input sequences for systems with saturation
at a lower level only

In this section we consider systems with saturation at the lower level only. So busi,k is equal to

∞ for all i, k, or equivalently (qmax,k)i 6 busi,k for all i, k. We also assume that qmin,k 6 blsk for
all k, i.e. we do not impose extra lower bound conditions on the queue lengths. Furthermore,
we assume that (Ak)ij > 0 for all i, j, k. Note that the latter assumption always holds for the
class of first order linear hybrid systems that has been introduced in Section 3.1 since for this
class we have Ak = I for all k. The problem (A.4) – (A.9) then reduces to

minimize
xu

J

subject to

uk = uk−Kc
for k = Nc, Nc + 1, . . . , Np − 1,
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umin,k 6 uk 6 umax,k for k = 0, 1, . . . , Np − 1,

qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1

qk+1 = max(Akqk +Bkuk, b
ls
k ) for k = 0, 1, . . . , Np − 1.

We call this problem Pg. We define the “relaxed” problem P̃g corresponding to the problem
Pg as:

minimize
xq ,xu

J

subject to

uk = uk−Kc
for k = Nc, Nc + 1, . . . , Np − 1,

umin,k 6 uk 6 umax,k for k = 0, 1, . . . , Np − 1,

qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1

qk+1 > Akqk +Bkuk for k = 0, 1, . . . , Np − 1,

qk+1 > blsk for k = 0, 1, . . . , Np − 1.

Note that xq and xu are not directly coupled any more. The set of feasible solutions of P̃g is
a convex set, whereas the set of feasible solutions of Pg is in general not convex. Therefore,
the relaxed problem P̃g will in general be easier to solve than the problem Pg.

The following proposition shows that for monotonically nondecreasing objective functions
any optimal solution of the relaxed problem P̃g can be transformed into an optimal solution
of the problem Pg.

Proposition C.1 Let the objective function J be a monotonically nondecreasing function of

xq and let (x∗q , x
∗

u) be an optimal solution of P̃g. If we define x
♯
q such that

q
♯
1 = max(A0q0 +B0u

∗

0, b
ls
0 )

q
♯
k+1 = max(Akq

♯
k +Bku

∗

k, b
ls
k ) for k = 1, 2, . . . , N − 1.

then (x♯q, x∗u) is an optimal solution of the problem Pg.

Proof : This proof is analogous to the proof of Proposition 4.1. The only difference is that
now we have to include the fact that (Ak)ij > 0 for all i, j, k in order to prove by induction

that q♯k 6 q∗k for k = 1, 2, . . . , Np. ✷

Since the objective functions J1, J2, J3, J4 and J5 do not explicitly depend on xq, we have
Jl(x̃q, xu) = Jl(x̂q, xu) for any x̃q, x̂q and for l ∈ {1, 2, 3, 4, 5}. This implies that J1, J2, J3,
J4 and J5 are monotonically nondecreasing functions of xq. So we can use Proposition C.1
to transform the optimal control problem for the objective functions J1 up to J5 into an
optimization problem with a convex feasible set.

The optimal solution of problem P̃g will in general not be a feasible solution of Pg, unless
J is a monotonically increasing function of xq:

Proposition C.2 If J is a monotonically increasing function of xq then any optimal solution

of the relaxed problem P̃g is also an optimal solution of the problem Pg.

Proof : This proof is similar to the proof of Proposition 4.2. ✷
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