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Optimal control of a class of linear hybrid systems
with saturation: Addendum

Bart De Schutter

Abstract

In this addendum we give some extra propositions, proofs and results of numerical ex-
periments in connection with the design of (sub)optimal switching time sequences for a
class of first order linear hybrid systems with saturation that we have introduced in the
paper “Optimal control of a class of linear hybrid systems with saturation” [A-1] (by B.
De Schutter, SIAM Journal on Optimization and Control, vol. 38, no. 3, pp. 835–851,
2000).

All references in this addendum that are not preceded by a capital letter A, B or C refer to
sections, equations, etc. of the paper [A-1].

A Additional remarks for [A-1]

A.1 Model

The model derived in [A-1] can accommodate varying amber durations. However, in many
countries the amber time is fixed by regulation (e.g. to 3 s in France). If we assume that the
duration of the amber phase is fixed, then we can adapt our model and reduce the number
of variables (see also [8]).

A.2 Systems with varying rate functions

In [A-1] we have already explained that the MPC approach also allows us to deal with slowly-
varying rate functions by updating the model after each switching and re-computing the
optimal switching sequence.

Even if the rates are assumed to be non-constant within one MPC step, we can still use our
approach if we approximate the time-varying rate functions by piecewise constant functions.
Although in general we do not know the exact behavior of these functions in advance the
behavior can often be predicted on the basis of historical data and measurements. Also note
that we do not know the lengths of the phases in advance. In order to determine the average
rates for each phase, we could therefore first assume that all phases have equal length. Then
we compute an optimal or suboptimal switching time sequence and use the result to get better
estimates of the lengths of the phases and thus also of the average queue length growth rates
in each phase, which can then be used as the input for another optimization run. If necessary
we could repeat this process in an iterative way.

Also note that in practice there is always some uncertainty and variation in time of the
queue length growth rates, which makes that in general computing the exact optimal switching
time sequence is utopian. Moreover, in practice we are more interested in quickly obtaining a
good approximation of the optimal switching time sequence than in spending a large amount
of time to obtain the exact optimal switching time sequence.
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Figure A.1: The functions qi (full line) and q̃i (dashed line) for a queue with a decrease phase
and a subsequent positive growth phase and without saturation at an upper level. Note that
in the growth phase the functions qi and q̃i coincide.

A.3 Approximations of the objective functions

Let l ∈ {1, 4}. The value of the objective functions Jl and J̃l introduced in Sections 3.2 and
4.2 depends on the surface under the functions qi and q̃i respectively. For a traffic signal
controlled intersection where the traffic signals alternate between green and red (with a short
amber phase in between) we will usually have a queue length evolution that is similar to the
one represented in Figure A.1. An optimal traffic signal switching scheme implies the absence
of long periods in which no cars wait in one lane (i.e. qi(t) = 0) while in the other lanes the
queue lengths increase. So in that case the surface under the function q̃i will be a reasonable
approximation of the surface under the function qi and then the optimal value of J̃l will be a
reasonably good approximation of the optimal value of Jl.

Since q̃i is a piecewise-affine with breakpoints (tk, qi,k) for k = 0, 1, . . . , Np, we have

∫ tk+1

tk

q̃i(t, xq, xδ)dt =
δk

2
(qi,k + qi,k+1)

and thus

J̃1(xq, xδ) =
M
∑

i=1

(

wi

2(δ0 + δ1 + . . .+ δNp−1)

Np−1
∑

k=0

δk(qi,k + qi,k+1)

)

.

B Additional numerical experiments and simulations for the
example of Section 5.2

The switching interval vectors of the example of Section 5.2 are given by

x∗δ,elcp = [ 10.04 3.00 38.75 3.00 39.88 3.00 70.00 3.00 ]T

x∗δ,nlcon = [ 10.04 3.00 30.75 3.00 39.88 3.00 70.94 3.00 ]T

x∗δ,penalty = [ 10.04 3.00 30.75 3.00 39.88 3.00 70.94 3.00 ]T

x∗δ,relaxed = [ 10.04 3.00 38.75 3.00 39.88 3.00 70.94 3.00 ]T

x∗δ,approx = [ 10.04 3.00 38.75 3.00 39.88 3.00 70.94 3.00 ]T
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Figure A.2: The queue lengths in the various lanes as a function of time for the traffic signal
switching sequence that corresponds to the switching interval vector x∗δ,elcp of the example of
Section 5.2. The * signs on the time axis correspond to the switching time instants.
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Figure A.3: The queue lengths in the various lanes as a function of time for an integer queue
length simulation for the traffic signal switching sequence that corresponds to the switching
interval vector x∗δ,elcp. The integer queue length functions are plotted in full lines and their
continuous approximations in dotted lines.
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J1(x
∗

δ) CPU time

x∗δ Nc = 4 Nc = 6 Nc = 10 Nc = 4 Nc = 6 Nc = 10

x∗δ,elcp 70.69 54.14 – 4.10 485.04 –

x∗δ,nlcon 70.69 54.14 46.41 115.31 169.59 282.82

x∗δ,penalty 70.69 54.14 46.41 9.59 20.92 39.28

x∗δ,relaxed 79.69 54.14 46.41 0.16 0.26 0.50

x∗δ,approx 70.81 56.24 53.66 2.73 2.96 3.73

x∗δ,lp 70.69 54.14 47.54 0.14 0.15 0.19

Table A.1: The values of the objective functions J1 and the CPU time needed to compute
the (sub)optimal switching interval vectors of the example of Section 5.2 for Nc = 4, 6 and
10.

x∗δ,lp = [ 10.04 3.00 38.75 3.00 38.81 3.00 68.89 3.00 ]T .

The evolution of the queue lengths for the optimal switching interval vector x∗δ,elcp is repre-
sented in Figure A.2. In Figure A.3 we have plotted the results of an integer queue length
simulation for the traffic signal switching strategy that corresponds to the optimal switching
interval vector x∗δ,elcp. The effective average queue length over all lanes for this simulation is
45.17.

In order to show how the control horizon Nc influences the performance of the methods
presented in [A-1] we have computed optimal and suboptimal switching time intervals for
three different values of Nc: 4, 6 and 10. The other data and parameters have the same
values as in Section 5.2. In Table A.1 we have given the optimal value of the objective
function J1 and the CPU time needed to compute the solution. We have not computed the
ELCP solution for Nc = 10, since this would require too much CPU time.

We see again that the x∗δ,approx solution offers the best trade-off between efficiency and
optimality.

While performing numerical experiments for the example of Section 5.2 and for similar
examples, we noticed the following:

• The determination of the minimum value of J1 over the solution set of the ELCP is a
well-behaved problem in the sense that using a local minimization routine starting from
different initial points almost always yields the same numerical result (within a certain
tolerance). In a typical experiment in which for each face we computed the minimal
value of the objective function for 20 random starting points, for almost every face 10
or more decimal places of the final objective function were the same. Therefore, we
have only considered one run with an arbitrary random initial point for each face for
the ELCP solution in Table 2.

• In order to obtain a good approximation to the optimal switching time vector using
nonlinear constrained optimization or a penalty function approach, it is necessary to
run the local minimization algorithm several times each time with a different initial
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starting point. In general a local minimization run for the approach that uses nonlinear
constraints requires less time than a run for the penalty function approach. However,
the nonlinear constraints approach requires more different starting points to obtain a
good approximation of the global optimum than the penalty function approach.

• Apart from the quadratic penalty function defined by

Fpenalty = 10 000

Np
∑

k=1

M
∑

i=1

(

max
(

0, (qk)i − (qmax,k)i
)

)2
, (A.1)

we have also used linear, exponential and mixed penalty functions in the penalty func-
tion approach. However, for the applications considered here the penalty function de-
fined by (A.1) leads to the best performance.

• The relaxed problem (which has a convex feasible set) is much easier to solve using multi-
start local optimization than the original problem (which has a non-convex feasible set).
In a typical experiment for x∗δ,relaxed with 20 random starting points the first 11 decimal
places of the final objective function J1 always had the same value. For x∗δ,approx the first
9 decimal places always had the same value. This implies that in practice performing one
run with an random starting point is sufficient to obtain the globally optimal solution
for x∗δ,relaxed and x∗δ,approx.

C A generalization

C.1 A more general class of systems

In this section we show that the results of Sections 3 and 4 can be extended to a more general
class of systems that can be described by equations of the form

qk+1 = max
(

min(Akqk +Bkuk, b
us
k ), blsk

)

(A.2)

for k = 0, 1, 2, . . . where Ak ∈ R
M×M , Bk ∈ R

M×L, and uk ∈ R
L for some integer L. Note

that (3) is a special case of (A.2) with Ak = I, Bk = αk, uk = δk and L = 1.
Note that the description (A.2) does not correspond to a switched continuous time system

the behavior of which is described by

dqi(t)

dt
=

{

(Akqi(t) +Bkuk)i if blsi,k < qi(t) < busi,k

0 otherwise,
(A.3)

for t ∈ (tk, tk+1) and for i = 1, 2, . . . ,M . Indeed, for M = 1 (A.3) results in

qk+1 =







max
(

min
(

(qk +A−1
k Bkuk)e

Ak(tk+1−tk) −A−1
k Bkuk, b

us
k

)

, blsk

)

if Ak 6= 0

max
(

min
(

qk +Bkuk(tk+1 − tk), b
us
k

)

, blsk

)

if Ak = 0 .

For M > 1 the relation between qk+1, qk and tk+1 − tk is even more complex.
For the class of systems described by (A.2) the optimization problem that has to be solved

in each major MPC step is given by:

minimize
u0,u1,...,uNc−1

J (A.4)
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subject to

uk = uk−Kc
for k = Nc, Nc + 1, . . . , Np − 1, (A.5)

umin,k 6 uk 6 umax,k for k = 0, 1, . . . , Np − 1, (A.6)

qmin,k 6 qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1 (A.7)

zk+1 = min(Akqk +Bkuk, b
us
k ) for k = 0, 1, . . . , Np − 1, (A.8)

qk+1 = max(zk+1, b
ls
k ) for k = 0, 1, . . . , Np − 1. (A.9)

where umin,k and umax,k are respectively the minimum and the maximum values of uk.
Using the same reasoning as in Section 3.3 we can show that the system (A.5) – (A.9) can

be reformulated as an ELCP of the form

Axq +Bxz + Cxu + d > 0 (A.10)

Exq + Fxz + g > 0 (A.11)

Hxq +Kxu + l > 0 (A.12)

(Axq +Bxz + Cxu + d)T (Exq + Fxz + g) = 0 , (A.13)

for appropriately defined matrices A, B, C, E, F , H, K and vectors d, g, l and with

xu =











u0
u1
...

uN−1











.

If we introduce additional linear equality or inequality constraints on the components of xu,
we still obtain an ELCP. The additional linear inequality constraints lead to extra inequalities
in (A.12), and the additional linear equality constraints lead to an extra equation of the form
Pxu + q = 0, which also fits in the ELCP framework.

Now we can determine optimal input sequences using the ELCP approach or using multi-
start local optimization.

C.2 Optimal and suboptimal input sequences for systems with saturation
at a lower level only

In this section we consider systems with saturation at the lower level only. So busi,k is equal to

∞ for all i, k, or equivalently (qmax,k)i 6 busi,k for all i, k. We also assume that qmin,k 6 blsk for
all k, i.e. we do not impose extra lower bound conditions on the queue lengths. Furthermore,
we assume that (Ak)ij > 0 for all i, j, k. Note that the latter assumption always holds for the
class of first order linear hybrid systems that has been introduced in Section 3.1 since for this
class we have Ak = I for all k. The problem (A.4) – (A.9) then reduces to

minimize
xu

J

subject to

uk = uk−Kc
for k = Nc, Nc + 1, . . . , Np − 1,
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umin,k 6 uk 6 umax,k for k = 0, 1, . . . , Np − 1,

qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1

qk+1 = max(Akqk +Bkuk, b
ls
k ) for k = 0, 1, . . . , Np − 1.

We call this problem Pg. We define the “relaxed” problem P̃g corresponding to the problem
Pg as:

minimize
xq ,xu

J

subject to

uk = uk−Kc
for k = Nc, Nc + 1, . . . , Np − 1,

umin,k 6 uk 6 umax,k for k = 0, 1, . . . , Np − 1,

qk+1 6 qmax,k for k = 0, 1, . . . , Np − 1

qk+1 > Akqk +Bkuk for k = 0, 1, . . . , Np − 1,

qk+1 > blsk for k = 0, 1, . . . , Np − 1.

Note that xq and xu are not directly coupled any more. The set of feasible solutions of P̃g is
a convex set, whereas the set of feasible solutions of Pg is in general not convex. Therefore,
the relaxed problem P̃g will in general be easier to solve than the problem Pg.

The following proposition shows that for monotonically nondecreasing objective functions
any optimal solution of the relaxed problem P̃g can be transformed into an optimal solution
of the problem Pg.

Proposition C.1 Let the objective function J be a monotonically nondecreasing function of

xq and let (x∗q , x
∗

u) be an optimal solution of P̃g. If we define x
♯
q such that

q
♯
1 = max(A0q0 +B0u

∗

0, b
ls
0 )

q
♯
k+1 = max(Akq

♯
k +Bku

∗

k, b
ls
k ) for k = 1, 2, . . . , N − 1.

then (x♯q, x∗u) is an optimal solution of the problem Pg.

Proof : This proof is analogous to the proof of Proposition 4.1. The only difference is that
now we have to include the fact that (Ak)ij > 0 for all i, j, k in order to prove by induction

that q♯k 6 q∗k for k = 1, 2, . . . , Np. ✷

Since the objective functions J1, J2, J3, J4 and J5 do not explicitly depend on xq, we have
Jl(x̃q, xu) = Jl(x̂q, xu) for any x̃q, x̂q and for l ∈ {1, 2, 3, 4, 5}. This implies that J1, J2, J3,
J4 and J5 are monotonically nondecreasing functions of xq. So we can use Proposition C.1
to transform the optimal control problem for the objective functions J1 up to J5 into an
optimization problem with a convex feasible set.

The optimal solution of problem P̃g will in general not be a feasible solution of Pg, unless
J is a monotonically increasing function of xq:

Proposition C.2 If J is a monotonically increasing function of xq then any optimal solution

of the relaxed problem P̃g is also an optimal solution of the problem Pg.

Proof : This proof is similar to the proof of Proposition 4.2. ✷
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