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On the ultimate behavior of the sequence

of consecutive powers of a matrix

in the max-plus algebra

Bart De Schutter
∗

Abstract

We study the sequence of consecutive powers of a matrix in the max-plus algebra, which
has maximum and addition as its basic operations. If the matrix is irreducible then it is
well known that the ultimate behavior of the sequence is cyclic. For reducible matrices
the ultimate behavior is more complex, but it is also cyclic in nature. We will give a
detailed characterization of the rates and periods of the ultimate behavior for a general
matrix.

Keywords: max-plus algebra, sequence of matrix powers, ultimate behavior

1 Introduction

We consider the sequence of consecutive powers of a matrix in the max-plus algebra, which
has maximum and addition as basic operations. The ultimate behavior of such a sequence has
already been studied in detail by several authors if the matrix is irreducible (see [1, 5, 7, 8] and
the references therein). For reducible matrices it has been shown that the ultimate behavior
is periodic [8, 9]. We will extend these results (and correct the results of [7] and [13]) by
completely characterizing the rates and periods of the ultimate behavior of the entries of the
sequence of consecutive powers of a general max-plus-algebraic matrix.

Our main motivation for studying this problem lies in the max-plus-algebraic system
theory for discrete event systems. Typical examples of discrete event systems are flexible
manufacturing systems, telecommunication networks, parallel processing systems, traffic con-
trol systems and logistic systems. The class of discrete event systems essentially consists
of man-made systems that contain a finite number of resources (e.g. machines, communica-
tions channels, or processors) that are shared by several users (e.g. product types, informa-
tion packets, or jobs) all of which contribute to the achievement of some common goal (e.g.
the assembly of products, the end-to-end transmission of a set of information packets, or a
parallel computation) [1]. There are many modeling techniques for discrete event systems,
such as (extended) state machines, max-plus algebra, formal languages, automata, temporal
logic, generalized semi-Markov processes, Petri nets, computer simulation models and so on
(see [1, 4, 12, 11] and the references cited therein). In general models that describe the behav-
ior of a discrete event system are nonlinear in conventional algebra. However, there is a class
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of discrete event systems – the max-plus-linear discrete event systems – that can be described
by a model that is “linear” in the max-plus algebra [1, 5, 6]. The model of a max-plus-linear
discrete event system can be characterized by a triple of matrices (A,B,C), which are called
the system matrices of the model. The ultimate behavior of the system matrix A determines
the ultimate behavior of the max-plus-linear discrete event system [1, 6].

This paper is organized as follows. In Section 2 we introduce some notation and we give
a short introduction to the max-plus algebra and to graph theory. We also discuss the con-
nection between max-plus-algebraic matrix operations and graph theory. In Section 3 we
characterize the rates and periods of the ultimate behavior of the entries of the sequence of
consecutive powers of a general max-plus-algebraic matrix. Finally we present some conclu-
sions in Section 4.

2 Notation and definitions

2.1 Notation

The set of the real numbers is denoted by R, the set of the nonnegative integers by N, and
the set of the positive integers by N0. The number of elements of a set γ is denoted by #γ.
The least common multiple of the elements of a set γ of positive integers is denoted by lcm γ.

Let A ∈ R
m×n. The entry on the ith row and the jth column of A is denoted by aij or

(A)ij . If α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n}, then Aαβ is the submatrix of A obtained by
removing all rows not indexed by α and all columns not indexed by β.

2.2 Max-plus algebra

The basic operations of the max-plus algebra are the maximum (represented by ⊕) and the
addition (represented by ⊗):

x⊕ y = max(x, y)

x⊗ y = x+ y

with x, y ∈ R ∪ {−∞}. Define ε = −∞ and Rε = R ∪ {ε}. The operations ⊕ and ⊗ are
extended to matrices as follows. If A,B ∈ R

m×n
ε and C ∈ R

n×p
ε then we have

(A⊕B)ij = aij ⊕ bij

(A⊗ C)ij =

p
⊕

k=1

aik ⊗ ckj

for all i, j. Note that these definitions resemble the definitions of the sum and the product of
matrices in linear algebra but with ⊕ instead of + and ⊗ instead of ×. This analogy is one
of the reasons why we call ⊕ the max-plus-algebraic addition and ⊗ the max-plus-algebraic
multiplication. For more information on the analogies and differences between max-plus
algebra and linear algebra the interested reader is referred to [1, 6].

The matrix εm×n is the m × n max-plus-algebraic zero matrix: (εm×n)ij = ε for all
i, j. The matrix En is the n × n max-plus-algebraic identity matrix: (En)ii = 0 for all
i and (En)ij = ε for all i, j with i 6= j. If we permute the rows or the columns of En,
we obtain a max-plus-algebraic permutation matrix. For a max-plus-algebraic permutation
matrix P ∈ R

n×n
ε we have P ⊗ P T = P T ⊗ P = En.
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Let k ∈ N. The kth max-plus-algebraic power of x ∈ R is denoted by x⊗
k
and corresponds

to kx in conventional algebra. If k > 0 then ε⊗
k
= ε. We have ε⊗

0
= 0 by definition. The

max-plus-algebraic matrix power of A ∈ R
n×n
ε is defined as follows:

A⊗
0
= En and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . .

Consider sequences hi = {(hi)k}
∞
k=0 for i = 1, . . . ,m with (hi)k ∈ Rε for all i, k. The

max-plus-algebraic sum g = h1 ⊕ . . . ⊕ hm is defined by gk = (h1)k ⊕ . . . ⊕ (hm)k. The
max-plus-algebraic product g = h1 ⊗ . . .⊗ hm is defined by

gk =
⊕

k1,...,km∈N
k1+...+km=k

(h1)k1 ⊗ . . .⊗ (hm)km .

Definition 2.1 (Ultimately geometric sequence) We say that the sequence {gk}
∞
k=0 is

ultimately geometric if

∃K ∈ N, ∃c ∈ N0, ∃λ ∈ Rε such that ∀k > K : gk+c = λ⊗
c
⊗ gk . (1)

The term “ultimately geometric” was introduced by Gaubert in [8, 9]. Note that “geometric”
has to be understood in the max-plus-algebraic sense: the terms of the sequence are max-plus-
multiplied by a constant factor cλ. If g is an ultimately geometric sequence then the smallest
possible c for which (1) holds is called the period of g. The smallest possible corresponding λ

is then called the rate of g. Note that {ε}∞k=0 has period 1 and rate ε.

Definition 2.2 (Ultimately periodic sequence) We say that the sequence {gk}
∞
k=0 is ul-

timately periodic if

∃K ∈ N, ∃c ∈ N0, ∃λ0, . . . , λc−1 ∈ Rε such that

gkc+c+s = λs
⊗
c
⊗ gkc+s for all k > K and for s = 0, . . . , c− 1 . (2)

If g is an ultimately periodic sequence then the smallest possible c for which (2) holds is
called the period of g. The smallest possible corresponding λss are called the rates of g. In
general the max-plus-algebraic sum of ultimately geometric sequences is ultimately periodic.
The reverse also holds: every ultimately periodic sequence can be considered as the max-plus-
algebraic sum of ultimately geometric sequences [8, 9].

Let us now illustrate the concepts defined above by an example.

Example 2.3 Consider the sequence

g = {gk}
∞
k=0 = 0, 0, 0, 2, ε, 0, 8, ε, 6, 14, ε, 12, 20, ε, 18, . . .

This sequence is ultimately geometric with rate λ = 2 and period c = 3 since gk+3 = 2⊗
3
⊗gk =

6⊗ gk = 6 + gk for all k > 3. The sequence

h = {hk}
∞
k=0 = ε, 0, 1, 0, 2, 0, 3, 0, 4, . . .

is ultimately periodic with period c = 2 and rates λ0 =
1

2
and λ1 = 0 since h2k+2 =

(

1

2

)

⊗
2

⊗ h2k = 1⊗ h2k and h2k+2+1 = 0⊗
2
⊗ h2k+1 = h2k+1 for all k > 1.

It is easy to verify that h can be written as the max-plus-algebraic sum of the ultimately
geometric sequences h1 = ε, ε, 1, ε, 2, ε, 3, ε, 4. . . . and h2 = ε, 0, ε, 0, ε, 0, ε, 0, ε, . . . Note that

the rates of h1 and h2 are respectively
1

2
and 0, and that their period is equal to 2. ✷
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2.3 Max-plus-algebra and graph theory

We assume that the reader is familiar with basic concepts of graph theory such as directed
graph, loop, circuit, elementary circuit and so on (see e.g. [1, 14]).

If we have a directed graph G with vertex set V = {1, 2, . . . , n} and if we associate a real
number wij with each arc (j, i) of G, then we say that G is a weighted directed graph. We
call wij the weight of the arc (j, i). Note that the first subscript of wij corresponds to the
final (and not the initial) vertex of the arc (j, i). With every weighted directed graph G with
vertex set V = {1, 2, . . . , n} there corresponds a matrix A ∈ R

n×n
ε such that aij = wij if there

is an arc (j, i) in G with weight wij and aij = ε if there is no arc (j, i) in G. We say that G is
the precedence graph of A, denoted by G(A).

Let A ∈ R
n×n
ε . The weight of a path i1 → i2 → · · · → il in G(A) is defined as the

sum of the weights of the arcs that compose the path. Let us now give a graph-theoretic
interpretation of the max-plus-algebraic matrix power. If k ∈ N0 then we have

(A⊗
k
)ij =

⊕

i1,...,ik−1

aii1 ⊗ ai1i2 ⊗ . . .⊗ aik−1j

= max
i1,...,ik−1

(aii1 + ai1i2 + · · ·+ aik−1j )

for all i, j. Hence, (A⊗
k
)ij is the maximal weight of all paths of G(A) of length k that have

j as their initial vertex and i as their final vertex — where the maximal weight is equal to ε

by definition if there does not exist a path of length k from j to i.
The average weight of a circuit is defined as the weight of the circuit divided by its length.

A circuit is called critical if it has maximum average weight. The critical graph Gc(A) of A
consists of those vertices and arcs of G(A) that belong to some critical circuit of G(A).

We say that G(A) is strongly connected if for any two different1 vertices vi, vj of G(A)
there exists a path from vi to vj . A maximal strongly connected subgraph (m.s.c.s.) Gsub of
G(A) is a strongly connected subgraph that is maximal, i.e. if we add an extra vertex (and
some extra arcs) of G(A) to Gsub then Gsub is no longer strongly connected. The matrix A is
called irreducible if G(A) is strongly connected.

The cyclicity of an irreducible matrix A is equal to the greatest common divisor of the
lengths of all the elementary circuits of the Gc(A). If the graph Gc(A) contains no circuits
then the cyclicity is equal to 1 by definition. Note that the 1 × 1 max-plus-algebraic zero
matrix [ε ] is the only max-plus-algebraic zero matrix that is irreducible and that its cyclicity
is equal to 1. The following theorem gives a relation between the cyclicity of an irreducible

matrix A and the ultimate behavior of the sequence {A⊗
k
}∞k=0.

Theorem 2.4 If A ∈ R
n×n
ε is irreducible, then

∃λ ∈ Rε, ∃k0 ∈ N such that ∀k > k0 : A⊗
k+c

= λ⊗
c
⊗A⊗

k

where c is the cyclicity of A.

Proof : See e.g. Theorem 1.2.3 of [8]. �

1Most authors do not add the extra condition that the vertices should be different. However, this definition,
which was taken from [1], makes some of the subsequent definitions, theorems and proofs easier to formulate.
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The number λ that appears in Theorem 2.4 is called the max-plus-algebraic eigenvalue of A
and it corresponds to the maximal average weight over all elementary circuits of G(A).

The following theorem is the max-plus-algebraic analogue of a well-known result from
matrix algebra that states that any square matrix can be transformed into a block upper
diagonal matrix with irreducible blocks by simultaneously reordering the rows and columns
of the matrix (see e.g. [1, 3, 10] for the proof of this theorem and for its interpretation in
terms of graph theory):

Theorem 2.5 If A ∈ R
n×n
ε then there exists a max-plus-algebraic permutation matrix P ∈

R
n×n
ε such that the matrix Â = P ⊗ A ⊗ P T is a max-plus-algebraic block upper triangular

matrix of the form

Â =











Â11 Â12 . . . Â1l

ε Â22 . . . Â2l
...

...
. . .

...

ε ε . . . Âll











(3)

with l > 1 and where the matrices Â11, . . . , Âll are square and irreducible. The matrices
Â11, . . . , Âll are uniquely determined to within simultaneous permutation of their rows and
columns, but their ordering in (3) is not necessarily unique.

The form in (3) is called the max-plus-algebraic Frobenius normal form of A. If A is irreducible
then there is only one block in (3) and then A is a max-plus-algebraic Frobenius normal form
of itself. Each diagonal block of Â corresponds to an m.s.c.s. of G(Â). If Â = P ⊗A⊗ P T is
the max-plus-algebraic Frobenius normal form of A, then we have A = P T ⊗ Â⊗ P since P

is a max-plus-algebraic permutation matrix. Hence,

A⊗
k
= (P T ⊗ Â⊗ P )

⊗
k

= P T ⊗ Â⊗
k
⊗ P for all k ∈ N . (4)

3 The ultimate behavior of the sequence {A⊗
k
}∞k=0

If A ∈ R
n×n
ε is irreducible the ultimate behavior of {A⊗

k
}∞k=0 is characterized by Theorem

2.4. For a general matrix A it has already been shown in [8] that the sequences {(A⊗
k
)ij}

∞
k=0

are ultimately periodic. An essentially equivalent result has been obtained independently
by Bonnier-Rigny and Krob in [2] for the structure (N ∪ {+∞},min,+), which is called the
tropical semiring and which is strongly related to the max-plus-algebra. Now we will extend
these results and give a detailed characterization of rates and periods of the entries of the

sequence {A⊗
k
}∞k=0 for a general matrix A.

The following two technical lemmas will be used in the proof of the main theorem. Their
proofs can be found in the appendix.

Lemma 3.1 Consider m ultimately geometric sequences h1, . . . , hm with rates different from
ε. Let ci be the period of hi and let λi be the rate of hi for i = 1, . . . ,m. If g = h1 ⊕ · · · ⊕ hm
and if c = lcm(c1, . . . , cm) then

∃K ∈ N, ∃γ0, . . . , γc−1 ∈ {λ1, . . . , λm} such that
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gkc+c+s = γs
⊗
c
⊗ gkc+s for all k > K and for s = 0, . . . , c− 1 . (5)

Furthermore, there exists at least one index s ∈ {0, . . . , c− 1} such that the smallest γs for

which (5) holds is equal to
m
⊕

i=1

λi.

Lemma 3.2 Consider m ultimately geometric sequences h1, . . . , hm with rates different from
ε. Let ci be the period of hi and let λi be the rate of hi for i = 1, . . . ,m. If g = h1 ⊗ . . .⊗ hm
and if c = lcm(c1, . . . , cm) then

∃K ∈ N, ∃γ0, . . . , γc−1 ∈ Rε such that

gkc+c+s = γs
⊗
c
⊗ gkc+s for all k > K and for s = 0, . . . , c− 1 . (6)

There exists at least one index s ∈ {0, 1, . . . , c− 1} such that the smallest γs for which (6)

holds is equal to
m
⊕

i=1

λi. Moreover, for k∗ large enough {gk}
∞
k=k∗ can be written as a finite

sum of ultimately geometric sequences with rates λi and periods ci.

If Â is a max-plus-algebraic normal form of A, then it follows from (4) that we may consider

the sequence {Â⊗
k
}∞k=0 instead of {A⊗

k
}∞k=0 if we want to study the ultimate behavior of

the sequence of consecutive powers of A. The following theorem, which is an extension of
Theorem 2.4 and a corrected version of Lemma 4 of [13] and of Lemma C.1.4 of [7] characterizes

the rates and periods of the ultimate behavior of {Â⊗
k
}∞k=0:

Theorem 3.3 Let Â ∈ R
n×n
ε be a matrix of the form (3) where the matrices Â11, . . . , Âll

are square and irreducible. Let λi and ci be respectively the max-plus-algebraic eigenvalue and
the cyclicity of Âii for i = 1, . . . , l. Define sets α1, . . . , αl such that Âαiαj

= Âij for all i, j
with i 6 j.
Define

Sij =
{

{i0, . . . , is} ⊆ {1, . . . , l}
∣

∣ i = i0 < i1 < . . . < is = j and

Âirir+1
6= ε for r = 0, . . . , s− 1

}

Γij =
⋃

γ∈Sij

γ

Λij =

{

{λt|t ∈ Γij} if Γij 6= ∅ ,

{ε} if Γij = ∅ ,

cij =

{

lcm{ct | t ∈ Γij } if Γij 6= ∅ and ct 6= 0 for some t ∈ Γij ,

1 otherwise ,

for all i, j with i < j. We have

∀i, j ∈ {1, . . . , l}with i > j :
(

Â⊗
k
)

αiαj

= εni×nj
for all k ∈ N . (7)
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Moreover, there exists an integer K ∈ N such that

∀i ∈ {1, . . . , l} :
(

Â⊗
k+ci

)

αiαi

= λi
⊗
ci
⊗
(

Â⊗
k
)

αiαi

for all k > K (8)

and

∀i, j ∈ {1, . . . , l}with i < j, ∀p ∈ αi, ∀q ∈ αj , ∃γ0, . . . , γcij−1 ∈ Λij such that
(

Â⊗
kcij+cij+s

)

pq
= γs

⊗
cij

⊗
(

Â⊗
kcij+s

)

pq
for all k > K and for s = 0, . . . , cij − 1 . (9)

Furthermore, for each combination i, j, p, q with i < j, p ∈ αi and q ∈ αj, there exists at
least one index s ∈ {0, . . . , cij − 1} such that the smallest γs for which (9) holds is equal to
maxΛij.

Remark 3.4 Let us give a graphical interpretation of the sets Sij and Γij . Let Ci be the
m.s.c.s. of G(Â) that corresponds to Âii for i = 1, . . . , l. So αi is the vertex set of Ci.
If {i0 = i, i1, . . . , is = j} ∈ Sij then there exists a path from a vertex in Cir to a vertex in
Cir−1

for each r ∈ {1, . . . , s}. Since each m.s.c.s. Ci of G(Â) is strongly connected, this implies
that there exists a path from a vertex in Cj to a vertex in Ci that passes through Cis−1

, Cis−2
,

. . . , Ci1 .
If Sij = ∅ then there does not exist any path from a vertex in Cj to a vertex in Ci.
The set Γij is the set of indices of the m.s.c.s.’s of G(Â) through which some path from a
vertex of Cj to a vertex of Ci passes. ✸

Proof of Theorem 3.3 : Since the matrices Âαiαi
are irreducible (8) is a direct consequence

of Theorem 2.4.
Recall that (Â⊗

k
)ij is equal to the maximal weight over all paths of length k from j to i in

G(Â) where the maximal weight is equal to ε by definition if there does not exist any path of
length k from j to i. Let Ci be the m.s.c.s. of G(Â) that corresponds to Âii for i = 1, . . . , l.
Since Âαiαj

= εni×nj
if i > j, there are no arcs from any vertex of Cj to a vertex in Ci. As

a consequence, (7) holds.
Now consider i, j ∈ {1, . . . , l} with i < j. We distinguish three cases:

• If Γij = ∅ then there does not exist a path from a vertex in Cj to a vertex in Ci. Hence,
(

Â⊗
k)

αiαj
= εni×nj

for all k ∈ N. Since in this case we have Λij = {ε} and cij = 1,

this implies that (9) and the last statement of the theorem hold if Γij = ∅.

• If Γij 6= ∅ and Λij = {ε} then Âtt = [ε ] and ct = 1 for all t ∈ Γij . So there exist paths
from a vertex in Cj to a vertex in Ci, but each path passes only through m.s.c.s.’s that
consist of one vertex and contain no loop. Such a path passes through at most #Γij

of such m.s.c.s.’s (Cj and Ci included). This implies that there does not exist a path
with a length larger than or equal to #Γij from a vertex in Cj to a vertex in Ci. Hence,
(

A⊗
k)

αiαj
= εni×nj

for all k > #Γij . Furthermore, cij = 1 since ct = 1 for all t ∈ Γij .

Hence, (9) and the last statement of the theorem also hold if Γij = ∅ and Λij = {ε}.

• Finally, we consider the case with Γij 6= ∅ and Λij 6= {ε}. Select an arbitrary vertex p

of Ci and an arbitrary vertex q of Cj . For each set γ = {i0, . . . , is} ∈ Sij we define

S(γ) =
{

(U, V )
∣

∣U = {u0, . . . , us}, V = {v0, . . . , vs}, us = q, v0 = p, and

7



u0

v0

ur−1

vr−1
ur

vr ur+1

vr+1

us

vs

G(Â)

Ci = Ci0

Cj = Cis

Cir−1

Cir Cir+1

Figure 1: Illustration of the proof of Theorem 3.3. There exists a path from vertex us of
m.s.c.s. Cj to vertex v0 of m.s.c.s. Ci that passes through the m.s.c.s.’s Cis−1

, Cis−2
, . . . , Ci1 .

ur ∈ αir , vr+1 ∈ αir+1
and (Â)urvr+1

6= ε for r = 0, . . . , s
}

.

So if (U, V ) ∈ S(γ) with U = {u0, . . . , us} and V = {v0, . . . , vs} then there exists a
path from q to p that passes through m.s.c.s. Cir for r = 0, . . . , s and that enters Cir at
vertex ur for r = 0, . . . , s− 1 and that exits from Cir through vertex vr for r = 1, . . . , s
(see also Figure 1). Hence, we have

(

Â⊗
k
)

pq
=

⊕

γ∈Sij

⊕

(U,V )∈S(γ)

g(γ, U, V ) for all k ∈ N0

where

g(γ, U, V ) =
⊕

p0,...,ps∈N
p0+ ...+ps=k−s

(

Â⊗
p0

i0i0

)

pu0
⊗
(

Âi0i1

)

u0v1
⊗
(

Â⊗
p1

i1i1

)

v1u1
⊗ . . .

⊗
(

Âis−1is

)

us−1vs
⊗
(

Â⊗
ps

isis

)

vsq
(10)

with the empty max-plus-algebraic sum equal to ε by definition. Each term of the
max-plus-algebraic sum in (10) represents the maximal weight over all paths from q to
p that consist of the concatenation of paths of length pr from vertex ur to vertex vr of
Cir for r = 0, . . . , s and paths of length 1 from vertex vr+1 of Cir+1

to vertex ur of Cir

for r = 0, . . . , s where by definition the maximal weight is equal to ε if no such paths
exist. Note that if λir = ε for some r then every term in the max-plus-algebraic sum

(10) for which pr > 0 will be equal to ε. Furthermore, since ε⊗
0
= 0 by definition, this

8



means that each factor of the form
(

Â⊗
pr

irir

)

urvr
for which λir = ε may be removed from

the max-plus-algebraic sum (10). Note that indices t for which λt = ε or equivalently
ct = 1 do not influence the value of cij . Also note that since Γij 6= ∅ and Λij 6= {ε} we
have at least one combination γ, U, V for which the sequence (10) has a rate λir that is
different from ε.
Since Âirir is irreducible, we have

(

Â⊗
k+cir

irir

)

vrur

= λir
⊗
cir ⊗

(

Â⊗
k

irir

)

vrur

for k large enough

by Theorem 2.4. Hence, if g(γ, U, V ) is different from ε, i.e. if it still contains terms
after the factors for which λir = ε have been removed, g(γ, U, V ) is a max-plus-algebraic
product of ultimate geometric sequences with rates λir 6= ε and periods cir . From
Lemma 3.2 it follows that g(γ, U, V ) is an ultimately periodic sequence and that for
k∗ large enough {

(

g(γ, U, V )
)

k
}∞k=k∗ can be written as the max-plus-algebraic sum of

a finite number of ultimately geometric sequences with rates λir 6= ε and periods cir .

So {(Â⊗
k
)pq}

∞
k=0 is a max-plus-algebraic sum of ultimately geometric sequences with

rates λir 6= ε and periods cir . Hence, it follows from Lemma 3.1 that (9) and the last
statement of the theorem hold. �

The following example shows that the lcm in the definition of cij in Theorem 3.3 is necessary
(Lemma 4 of [13] incorrectly uses max instead of lcm.).

Example 3.5 Consider the matrix

A =





















ε 0 ε 0 ε ε ε

ε ε 0 ε ε ε 0
ε 0 ε ε ε ε ε

ε ε ε ε ε 0 0
ε ε ε 0 ε ε ε

ε ε ε ε 0 ε ε

ε ε ε ε ε ε ε





















.

This matrix is in max-plus-algebraic Frobenius normal form and its block structure is in-
dicated by the vertical and horizontal lines. The precedence graph of A is represented in
Figure 2. The sets and variables of Theorem 3.3 have the following values for A: α1 = {1},
α2 = {2, 3}, α3 = {4, 5, 6}, α4 = {7}, λ1 = λ4 = ε, λ2 = λ3 = 0, c1 = c4 = 1, c2 = 2 and

c3 = 3. Now we consider the ultimate behavior of the sequence {(A⊗
k
)α1α4

}∞k=0. Note that
S14 =

{

{2}, {3}
}

, Γ14 = {2, 3}, Γ23 = {0}, and c14 = lcm(c2, c3) = lcm(2, 3) = 6. We have

{(A⊗
k
)α1α4

}∞k=0 = ε, 0, ε, 0, 0, 0, ε, 0, ε, 0, 0, 0, ε, 0, ε, 0, 0, 0, ε, 0, ε, 0, 0, 0, . . .

The period of this sequence is given by c14 = 6 = lcm(c2, c3). Hence, the lcm in the definition
of cij in Theorem 3.3 is really necessary. ✷

The following example shows that the sequence {(Â⊗
k
)ij}

∞
k=1 is in general not ultimately

geometric (Lemma 4 of [13] and Lemma C.1.4 of [7] incorrectly state that if i < j then the

matrix sequence {Â⊗
k
}∞k=0 is ultimately geometric).
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1
2

3

4

5 6

7

G(A)

Figure 2: The precedence graph G(A) of the matrix A of Example 3.5. All the arcs have
weight 0.

Example 3.6 We construct the matrix Ã from the matrix A of Example 3.5 by replacing
a23 by 2 and keeping all other entries. Now we have λ2 = 1. The values of the other variables
and sets of Theorem 3.3 are the same as for the matrix A of Example 3.5. We have

{(Ã⊗
k
)α1α4

}∞k=0 = ε, 0, ε, 2, 0, 4, ε, 6, ε, 8, 0, 10, ε, 12, ε, 14, 0, 16, ε, 18, ε, 20, 0, 22, . . .

This sequence is ultimately periodic with period c14 = 6 and with rates γ0 = γ2 = ε, γ1 =

γ3 = γ5 = 1 = λ2 and γ4 = 0 = λ4. So the sequence {(Â⊗
k
)ij}

∞
k=0 is in general not ultimately

geometric. ✷

Corollary 3.7 Let Â ∈ R
n×n
ε be a matrix of the form (3) where the matrices Â11, Â22, . . . ,

Âll are square and irreducible. Let λi and ci be respectively the max-plus-algebraic eigenvalue
and the cyclicity of Âii for i = 1, . . . , l. Let αi, Λij and cij be defined as in Theorem 3.3.
Then there exists an integer K such that

∀i, j ∈ {1, . . . , l}with i > j, ∀p ∈ αi, ∀q ∈ αj , ∃s ∈ {0, . . . , cij − 1} such that
(

Â⊗
kcij+s+cij

⊕ Â⊗
kcij+s+cij+1

⊕ . . . ⊕ Â⊗
kcij+s+2cij−1

)

pq
=

λij
⊗
cij

⊗
(

Â⊗
kcij+s

⊕ Â⊗
kcij+s+1

⊕ . . . ⊕ Â⊗
kcij+s+cij−1

)

pq
for all k > K ,

where λij = maxΛij.

Proof : This is a direct consequence of the last statement of Theorem 3.3. �

4 Conclusions

In this paper we have given a detailed characterization of the rates and periods of the ultimate
behavior of the sequence of consecutive matrix powers of a general max-plus-algebraic matrix
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as a function of structural parameters of the matrix such as its size, its Frobenius normal form,
and the eigenvalues and cyclicities of the diagonal blocks in the Frobenius normal form. This
result extends and corrects previously known results. We have only considered the ultimate
behavior of the sequence. An important open question and topic for future research is the
characterization of both the length and the evolution of the transient behavior of the sequence
as a function of the structural parameters of the matrix.
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Appendix: Proofs of Lemmas 3.1 and 3.2

Proof of Lemma 3.1 : In this proof we always assume that i ∈ {1, . . . ,m}, s, s∗ ∈
{0, . . . , c− 1} and k, l ∈ N. Since each sequence hi is ultimately geometric, there exists
an integer K such that (hi)k+ci = λi

⊗
ci
⊗ (hi)k for all k > K and for all i. Hence,

(hi)k+pci = λi
⊗
pci

⊗ (hi)k for all p ∈ N, for all k > K and for all i . (11)

Since c = lcm(c1, . . . , cm) there exist positive integers w1, . . . , wm such that c = wici for all i.
Select L ∈ N with Lc > K. Consider an arbitrary index s. Since Lc+ s > K, it follows from
(11) that

(hi)lc+s = (hi)Lc+s+(l−L)wici = λi
⊗
(l−L)wici

⊗ (hi)Lc+s = λi
⊗
(l−L)c

⊗ (hi)Lc+s (12)

for all l > L and for all i. Define Ns = { i | (hi)Lc+s 6= ε}. We consider two cases:

• If Ns = ∅ then (hi)Lc+s = ε for all i and thus also (hi)lc+s = ε for all l > L and for all

i by (12). Hence, glc+s = ε for all l > L. So if we set γs = λ1 and select K > Ks
def
= L

then (5) holds for this case.

• If Ns 6= ∅ then we define γs = max
i∈Ns

λi and is = argmax
i∈Ns

{

(hi)Lc+s

∣

∣λi = γs
}

. By

(12) we have (hi)lc+s = (hi)Lc+s + (l − L)cλi for all l > L and for all i. Furthermore,
λis > λi for all i, and ε 6= (his)Lc+s > (hi)Lc+s for all i with λi = γs. So if we define

Ks = L+max

(

0, max
i∈Ns
λi 6=γs

((hi)Lc+s − (his)Lc+s

c(γs − λi)

)

)

with max ∅ = 0 by definition, then we

have (his)lc+s > (hi)lc+s for all l > Ks and all i. Hence, glc+s = (his)lc+s for all l > Ks.
As a consequence, (5) also holds for this case if we select K > Ks.

So if we define K = max(K0,K1, . . . ,Kc−1) then (5) holds for all s.

Assume
m
⊕

i=1

λi = λj . Since λj 6= ε, there exists at least one index s∗ such that (hj)Lc+s∗ 6= ε.

Since glc+s∗ = (his∗ )lc+s∗ for all l > K and since λ = λis∗ is the rate of his∗ , i.e. the smallest
λ for which (1) holds, γs = λis∗ = λj is also the smallest γs for which (5) holds. �

Proof of Lemma 3.2 : For sake of simplicity, we shall only prove the lemma for the case
m = 2. The proof for m > 2 follows similar lines.
In this proof we always assume that r, s ∈ {0, . . . , c− 1}, p, q, i, k ∈ N.
Since h1 and h2 are ultimately geometric, there exists an integer L such that

(hi)Lc+pc+s = λi
⊗
pc

⊗ (hi)Lc+s for all p, r and i = 1, 2 (13)

(cf. (12) with l = L+ p). We have

(h1 ⊗ h2)k =

Lc+c−1
⊕

i=0

(h1)i ⊗ (h2)k−i ⊕
k−Lc−c
⊕

i=Lc+c

(h1)i ⊗ (h2)k−i ⊕
Lc+c−1
⊕

i=0

(h1)k−i ⊗ (h2)i (14)

for all k > 2(Lc + c). Now we consider an arbitrary term of the second max-plus-algebraic
sum of (14). Let k > 2(Lc + c) and i ∈ {Lc+ c, . . . , k − Lc− c}. Select p, q, r, s such that
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i = Lc + pc + r and k − i = Lc + qc + s. It is easy to verify that we have α⊗
p
⊗ β⊗

q
6

α⊗
p+q

⊕ β⊗
p+q

for all α, β ∈ Rε and all p, q ∈ N. Hence,

(h1)i ⊗ (h2)k−i = λ1
⊗
pc

⊗ (h1)Lc+r ⊗ λ2
⊗
qc

⊗ (h2)Lc+s (by (13))

6

(

λ1
⊗
(p+q)c

⊕ λ2
⊗
(p+q)c

)

⊗ (h1)Lc+r ⊗ (h2)Lc+s

6 λ1
⊗
(p+q)c

⊗ (h1)Lc+r ⊗ (h2)Lc+s ⊕ λ2
⊗
(p+q)c

⊗ (h1)Lc+r ⊗ (h2)Lc+s

6 (h1)Lc+r ⊗ (h2)Lc+(p+q)c+s ⊕ (h1)Lc+(p+q)c+r ⊗ (h2)Lc+s (by (13)).

Since Lc+r 6 Lc+c−1 and Lc+r+Lc+s+(p+q)c = k, the term (h1)Lc+r⊗(h2)Lc+(p+q)c+s

also appears in the first max-plus-algebraic sum of (14). Similarly, it can be shown that
(h1)Lc+(p+q)c+r ⊗ (h2)Lc+s also appears in the third max-plus-algebraic sum of (14). So the
second max-plus-algebraic sum in (14) is redundant and can be omitted.
Now we define the sequences fi,j for i = 0, . . . , Lc+c and j = 1, 2 with (f1,i)k = (h1)i⊗(h2)k−i

and (f2,i)k = (h1)k−i ⊗ (h2)i. The sequences fi,j are ultimately geometric with rate λj and

cyclicity cj . As shown above, the terms of h1 ⊗ h2 coincide with
⊕

i,j

fi,j for k large enough.

Therefore, we can now apply Lemma 3.1 provided that we selectK such thatK > 2(Lc+c). �

Note that in general we do not have γs =
m
⊕

i=1

λi for all indices s in Lemma 3.1 as is shown

by the following example.

Example A.1 Consider the ultimately geometric sequences

h1 = 0, ε, 1, 3, ε, 4, 6, ε, 7, 9, ε, 10, . . .

h2 = 0, ε, 0, ε, 0, ε, 0, ε, 0, ε, 0, ε, . . .

with λ1 = 1, c1 = 3, λ2 = 0 and c2 = 2. We have

h1 ⊕ h2 = 0, ε, 1, 3, 0, 4, 6, ε, 7, 9, 0, 10, 12, ε, 13, 15, 0, 16, . . .

This sequence is ultimately periodic with c = lcm(c1, c2) = lcm(2, 3) = 6. Furthermore, the
smallest γss for which (5) holds are γ0 = γ2 = γ3 = γ5 = 1, γ1 = ε and γ4 = 0. Note that
ε = γ1 6= λ1 ⊕ λ2 = 1⊕ 0 = 1 and ε = γ1 6∈ {λ1, λ2} = {1, 0}. ✷
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