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Abstract

Model predictive control (MPC) is a very popular controller

design method in the process industry. An important advan-

tage of MPC is that it allows the inclusion of constraints on

the inputs and outputs. Usually MPC uses linear discrete-

time models. In this paper we extend MPC to a class of

discrete event systems, i.e. we present an MPC framework

for max-plus-linear systems. In general the resulting opti-

mization problem is nonlinear and nonconvex. However, if

the control objective and the constraints depend monoton-

ically on the outputs of the system, the MPC problem can

be recast as problem with a convex feasible set. If in addi-

tion the objective function is convex, this leads to a convex

optimization problem, which can be solved very efficiently.

1 Introduction

Process industry is characterized by always tighter prod-

uct quality specifications, increasing productivity demands,

new environmental regulations and fast changes in the eco-

nomical market. In the last decades Model Predictive Con-

trol (MPC) has shown to respond in an effective way to

these demands in many practical process control applica-

tions and is therefore widely accepted in process industry.

An important advantage of MPC is that the use of a finite

horizon allows the inclusion of additional constraints on the

inputs and outputs.

Traditionally MPC uses linear discrete-time models for the

process that has to be controlled. In this paper we extend

and adapt the MPC framework to a class of discrete event

systems. In general models that describe the behavior of a

discrete event system are nonlinear in conventional algebra.

However, there is a class of discrete event systems — the

max-plus-linear discrete event systems — that can be de-

scribed by a model that is “linear” in the max-plus algebra

[1, 5]. We will develop an MPC framework for max-plus-

linear discrete event systems.

2 Model predictive control

In this section we give a short introduction to MPC for lin-

ear discrete-time systems. Since we will only consider the

deterministic, i.e. noiseless, case for max-plus-linear sys-

tems, we will also omit the noise terms in this introduction

to MPC. More extensive information on MPC can be found

in [3, 4, 8, 10].

Consider a plant with m inputs and l outputs that can be

modeled by a state space description of the following form:

x(k+1) = Ax(k)+Bu(k) (1)

y(k) =Cx(k) . (2)

A system that can be modeled by (1) – (2) will be called a

plus-times-linear (PTL) model since the basic operations in

this model are addition and multiplication.

Define ũ(k) = [ uT (k) . . . uT (k + Np − 1) ]T and ỹ(k) =
[ ŷT (k+ 1|k) . . . ŷT (k+Np|k) ]

T where ŷ(k+ j|k) is the es-

timate of the output at time k+ j based on the information

available at time k and Np is the prediction horizon. In MPC

a performance index or cost criterion J is formulated that

reflects the reference tracking error (Jout) and the control ef-

fort (Jin) [3]:

J = Jout +λJin

=
Np

∑
j=1

(ỹ(k)− r̃(k))T(ỹ(k)− r̃(k))+λ ũT (k)ũ(k) (3)

where r̃ is a reference signal and λ is a nonnegative scalar.

In MPC the input is taken to be constant from a certain point

on: u(k+ j) = u(k+Nc−1) for j = Nc, . . . ,Np−1 where Nc

is the control horizon. The use of a control horizon leads to a

reduction of the number of optimization variables. This re-

sults in a decrease of the computational burden, a smoother

controller signal (because of the emphasis on the average

behavior rather than on aggressive noise reduction), and a

stabilizing effect (since the output signal is forced to its

steady-state value).

The MPC problem is defined as follows:

Find at each time instant k the input sequence

{u(k), . . . ,u(k+Nc −1)} that minimizes the performance

index J subject to the linear constraint

E(k)ũ(k)+F(k)ỹ(k)6 h(k) (4)

with E(k) ∈ R
p×mNp , F(k) ∈ R

p×lNp , h(k) ∈ R
p for some

integer p, and subject to the control horizon constraint

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1.



MPC uses a receding horizon principle. This means

that after computation of the optimal control sequence

{u(k), . . . ,u(k+Nc −1)}, only the first control sample u(k)
will be implemented, subsequently the horizon is shifted

one sample and the optimization is restarted with new in-

formation of the measurements.

By successive substitution of (1), estimates of the future val-

ues of the output can be computed [3, 10], which leads to

ỹ(k) = Hũ(k)+g(k) with

H=











CB 0 . . . 0

CAB CB . . . 0
...

...
. . .

...

CANp−1 CANp−2B . . . CB











, g(k)=











CA

CA2

...

CANp











x(k).

The parameters Np, Nc and λ are the three basic tuning pa-

rameters of the MPC algorithm:

• The prediction horizon Np is related to the length of the

step response of the process, and the time interval [1,Np]
should contain the crucial dynamics of the process.

• The control horizon Nc ≤ Np forces the control sig-

nal to a constant value (u(k + j) = u(k + Nc − 1) for

j = Nc, . . . ,Np). An important effect of a small control

horizon (Nc ≪ Np) is the smoothing of the control sig-

nal (which can become very wild if Nc = Np). The con-

trol signal is then rapidly forced towards its steady-state

value, which is important for stability properties. An-

other important consequence of decreasing Nc is the re-

duction in computational effort, because the number of

optimization parameters reduces. Typically Nc is taken

equal to the model order of the system.

• The parameter λ makes a trade-off between the objec-

tives of tracking error (Jout) and control effort (Jin). The

parameter λ is usually chosen as small as possible, 0 in

most cases. In many cases (e.g. for nonminimum phase

systems), the choice λ = 0 will lead to stability problems

and so λ should be chosen as the smallest positive value

that still results in a stabilizing controller.

3 Max-plus algebra and max-plus-linear systems

3.1 Max-plus algebra

The basic operations of the max-plus algebra are maximiza-

tion (represented by ⊕) and addition (represented by ⊗):

x⊕ y = max(x,y) and x⊗ y = x+ y

for x,y ∈ Rε
def
= R∪{−∞}. Define ε = −∞. The structure

(Rε ,⊕,⊗) is called the max-plus algebra. The operations ⊕
and ⊗ are called the max-plus-algebraic addition and max-

plus-algebraic multiplication respectively since many prop-

erties and concepts from linear algebra can be translated to

the max-plus algebra by replacing + by ⊕ and × by ⊗ (see

[1, 5]). The kth max-plus-algebraic power of x is denoted

by x⊗k
and corresponds to kx in conventional algebra.

The basic max-plus-algebraic operations are extended to

matrices as follows. If A,B ∈ R
m×n
ε and C ∈ R

n×p
ε then

(A⊕B)i j = ai j ⊕bi j and (A⊗C)i j =
n

⊕

k=1

aik ⊗ ck j

for all i, j. The max-plus-algebraic matrix power of A ∈

R
n×n
ε is defined as follows: A⊗k

= A⊗A⊗ . . .⊗A (k times).

3.2 Max-plus-linear systems

In [1, 5] it has been shown that there is a class of discrete

event systems that can be modeled by a max-plus-algebraic

model of the following form:

x(k+1) = A⊗ x(k) ⊕ B⊗u(k) (5)

y(k) =C⊗ x(k) (6)

with A∈R
n×n
ε , B∈R

n×m
ε and C ∈R

l×n
ε where m is the num-

ber of inputs and l the number of outputs. The index k is

called the event counter. For a manufacturing system, u(k)
would typically represent the time instants at which raw ma-

terial is fed to the system for the (k+1)th time, x(k) the time

instants at which the machines start processing the kth batch

of intermediate products, and y(k) the time instants at which

the kth batch of finished products leaves the system. Note

the analogy between the models (1) – (2) and (5) – (6). A

discrete event system that can be modeled by (5) – (6) will

be called a max-plus-linear system (MPL system) since the

basic operations in this model are maximization and addi-

tion.

4 Model predictive control for MPL systems

In this section we extend and adapt the MPC framework

from PTL systems to MPL systems. If possible we use ana-

log constraints and cost criteria for both types of systems.

However, as we shall see, in some cases different constraints

and cost criteria are more appropriate.

4.1 Evolution of the system

If we know the state of the system x(k) then for a given

input sequence {u(k), . . . ,u(k+Np −1)} we can determine

the estimates for the outputs of the system as follows. If we

define H and g(k) as in Section 2 but with the conventional

matrix product and zero matrix replaced by the max-plus-

algebraic matrix product and the max-plus-algebraic zero

matrix1 respectively, we have ỹ(k) = H ⊗ ũ(k)⊕g(k) .

4.2 Cost criterion

Recall that the MPC cost criterion for PTL systems can be

written as J = Jout +λJin, where Jout is related to the track-

ing error and Jin is related to the control effort. Now we

discuss some possible choices for Jout and Jin for MPL sys-

tems.

1I.e., a matrix for which all entries are equal to ε .



4.2.1 Tracking error or output cost criterion Jout:

A straightforward translation of the tracking error cost cri-

terion used in MPC for PTL systems would yield

Jout =
(

ỹ(k)− r̃(k)
)T

⊗
(

ỹ(k)− r̃(k)
)

= 2

Np
⊕

j=1

l
⊕

i=1

(

ŷi(k+ j|k)− ri(k+ j)
)

. (7)

Note that this objective function does not force the differ-

ence between ŷ(k+ j|k) and r(k+ j) to be small since there

is no absolute value in (7). If the due dates r for the fin-

ished products are known and if we have to pay a penalty

for every delay, a better suited cost criterion is the tardiness:

Jout,1 =
Np

∑
j=1

l

∑
i=1

max(ŷi(k+ j|k)− ri(k+ j),0) .

For perishable goods we want to minimize the differences

between the due dates and the actual output time instants:

Jout,2 =
Np

∑
j=1

l

∑
i=1

|ŷi(k+ j|k)− ri(k+ j)| .

If we want to balance the output rates, we could consider

the following cost criterion:

Jout,3 =
Np

∑
j=2

l

∑
i=1

|∆2ŷi(k+ j|k)| ,

where ∆ is the difference operator.

4.2.2 Input cost criterion Jin: A straightforward

translation of the input cost criterion ũT (k)ũ(k) would lead

to a minimization of the input time instants. Since this

could result in internal buffer overflows, a better objective

is to maximize the input time instants. For a manufacturing

system, this would correspond to a just-in-time production

scheme, in which raw material is fed to the system as late

as possible. As a consequence, the internal buffer levels are

kept as low as possible. Note that this also leads to a no-

tion of stability if we let instability for the manufacturing

system correspond to internal buffer overflows. So for MPL

systems an appropriate cost criterion is

Jin,0 =−ũT (k)ũ(k) .

Other objective functions that lead to a maximization of the

input time instants are

Jin,1 =−
Np

∑
j=1

m

∑
i=1

ui(k+ j−1)

or

Jin,2 =
Np

∑
j=1

m

∑
i=1

∣

∣( max
i=1,...,l

ŷi(k+ j|k))−ui(k+ j−1)
∣

∣ ,

which minimizes the differences between the input time in-

stants and the last output time instant of each batch. If we

want to balance the input rates we could take

Jin,3 =
Np−1

∑
j=1

l

∑
i=1

|∆2ui(k+ j)| .

4.3 Constraints

A straightforward translation of the linear constraint (4)

used in MPC for PTL systems yields

E(k)⊗ ũ(k) ⊕ F(k)⊗ ỹ(k)6 h(k) . (8)

Typical other constraints are:

a1(k+ j)6 ∆u(k+ j−1)6 b1(k+ j) (9)

a2(k+ j)6 ∆ŷ(k+ j|k)6 b2(k+ j) (10)

ŷ(k+ j|k)6 r(k+ j) . (11)

Let us now show that all these constraints can be recast as a

linear constraint of the form

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) (12)

for appropriately defined matrices and vectors Ac(k), Bc(k),
cc(k). It is easy to verify that the constraints (9) – (11) can

be written in this form. If we eliminate the output estimates

from (8) and if we take into account that each term in the

resulting max-plus-algebraic summation has to be less than

or equal to h(k), we obtain a set of conditions of the form

P⊗u(k+ i)6 h(k) . (13)

Note that there is also a constant term involving x(k) but

if this term is not less than or equal to h(k) the problem is

infeasible, and otherwise this constant term can be omitted.

It is easy to verify that (13) is satisfied if and only if pvw +
uw(k+ i)6 hv(k) for all v,w. Since this is a constraint of the

form (12), (8) can also be recast as a linear constraint of the

form (12).

Since for MPL systems the input sequence corresponds to

occurrence times of consecutive events, it should always be

nondecreasing. Therefore, we also have to add the condition

∆u(k+ j)> 0 for j = 0, . . . ,Np −1.

4.4 Evolution of the input beyond the control horizon

In MPC for PTL systems the input should stay constant

from the certain point k +Nc on. For MPL systems such

a condition would not be very useful since the input se-

quences should normally be increasing. Therefore, we

change this condition as follows: the feeding rate should

stay constant beyond event step k + Nc, i.e. ∆u(k + j) =
∆u(k + Nc − 1) for j = Nc, . . . ,Np − 1, or equivalently

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1.

4.5 The standard MPC problem for MPL systems

If we combine the material of previous subsections, we fi-

nally obtain the following problem:

min
ũ(k)

J (14)



subject to ỹ = H ⊗ ũ⊕g(k) (15)

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) (16)

∆u(k+ j)> 0 for j = 0 . . . ,Np −1 (17)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1, (18)

which will be called the max-plus-algebraic MPC problem

for event step k.

Other design control design methods for MPL systems are

discussed in [1, 2, 5, 9]. Note that in contrast to the max-

plus-algebraic MPC method, these methods do not allow the

inclusion of constraints of the form (16), (17) or (18).

5 Algorithms for the max-plus-algebraic MPC problem

5.1 The ELCP approach

In general the problem (14) – (18) is a nonlinear nonconvex

optimization problem. Note that although the constraints

(16) – (18) are convex in ũ and ỹ, the constraint (15) is in

general not convex. We could use standard multi-start non-

linear nonconvex local optimization methods to compute the

optimal MPC policy. In [7] we show that the set of feasi-

ble solutions defined by (15) – (18) coincides with the so-

lution set of an Extended Linear Complementarity problem

(ELCP) [6]. In [6] we have also developed an algorithm to

compute a compact parametric description of the solution

set of an ELCP. In order to determine the optimal MPC pol-

icy we have to determine for which values of the parameters

the objective function J over the solution set of the ELCP

that corresponds to (15) – (18) reaches its global minimum.

The algorithm of [6] to compute the solution set of a gen-

eral ELCP requires exponential execution times. This im-

plies that the ELCP approach sketched above is not feasible

if Nc, m or l are large.

5.2 Monotonically nondecreasing objective functions

and constraints

Now we consider the relaxed MPC problem which is also

defined by (14) – (18) but with the =-sign in (15) replaced

by a >-sign. Note that the set of feasible solutions of the

relaxed MPC problem is convex. As a consequence, the

relaxed problem is much easier to solve numerically.

We say that a function F is a monotonically nondecreas-

ing function of y if ȳ 6 y̌ implies that F(ȳ) 6 F(y̌). If the

objective function J and the linear constraints are monoton-

ically nondecreasing as function of ỹ (this is the case for

J = Jout,1, Jin,0, Jin,1, Jin,3, or their variants in which one or

more summations are replaced by max-plus-algebraic sum-

mations, and e.g. (Bc)i j > 0 for all i, j), then the optimal

solution of the relaxed MPC problem can be transformed

into a solution of the original MPC problem:

Theorem 5.1 Let the objective function J and mapping ỹ→
Bc(k)ỹ be monotonically nondecreasing functions of ỹ. Let

(ũ∗, ỹ∗) be an optimal solution of the relaxed MPC problem.

If we define ỹ♯ = H ⊗ ũ∗⊕ g(k) then (ũ∗, ỹ♯) is an optimal

solution of the original MPC problem.

Proof: First we show that (ũ∗, ỹ♯) is a feasible solution

of the original MPC problem. Clearly, (ũ∗, ỹ♯) satisfies the

constraints (15), (17) and (18). Since ỹ∗ > H ⊗ ũ∗⊕g(k) =
ỹ♯ and since the mapping ỹ → Bc(k)ỹ is monotonically non-

decreasing, we have

Ac(k)ũ
∗+Bc(k)ỹ

♯
6 Ac(k)ũ

∗+Bc(k)ỹ
♯
6 cc(k) .

So (ũ∗, ỹ♯) also satisfies the constraint (16). Hence, (ũ∗, ỹ♯)
is a feasible solution of the original MPC problem. Since

the set of feasible solutions of the original MPC problem

is a subset of the set of feasible solutions of the relaxed

MPC problem, we have J(ũ, ỹ) > J(ũ∗, ỹ∗) for any feasible

solution (ũ, ỹ) of the original problem. Hence, J(ũ∗, ỹ♯) >
J(ũ∗, ỹ∗). On the other hand, we have J(ũ∗, ỹ♯) 6 J(ũ∗, ỹ∗)
since ỹ♯ 6 ỹ∗ and since J is a monotonically nondecreas-

ing function of ỹ. As a consequence, we have J(ũ∗, ỹ♯) =
J(ũ∗, ỹ∗), which implies that (ũ∗, ỹ♯) is an optimal solution

of the original MPC problem.

So if Theorem 5.1 applies the optimal MPC policy can be

computed very efficiently. If in addition the objective func-

tion is convex (e.g. J = Jout,1 or its variants, or J = Jin,1),

we finally get a convex optimization problem. Since Jin,1 is

a linear function, the problem even reduces to a linear pro-

gramming problem for J = Jin,1, which can be solved very

efficiently.

Note that we can always obtain an objective function that

is a monotonically nondecreasing by eliminating ỹ(k) from

the expression for J using (15) before relaxing the problem.

However, some properties (such as convexity or linearity)

of the original objective function may be lost in that way.

6 Example

We consider a production system that can be modeled by the

following state space model (see [7] for more information):

x(k+1) =





9 ε ε

ε 10 ε

18 20 7



⊗ x(k) ⊕





2

0

11



⊗u(k)

y(k) =
[

ε ε 7
]

⊗ x(k) .

Let us now compare the efficiency of the several meth-

ods discussed in Section 5 when solving one step of the

MPC problem for the objective function J = Jout,1+0.1Jin,1

with the additional constraints 1 6 ∆u(k + j) 6 10 for

j = 0, . . . ,Nc − 1. We take Nc = 4 and Np = 6. As-

sume that k = 0, x(0) = [ 0 0 11 ]T , u(0) = 0, r =
[ 35 40 45 55 65 85 ]T . Note that the objective function J

and the linear constraints are monotonically nondecreasing

as a function of y so that we can apply Theorem 5.1.



Table 1: The values of the objective function J (for Nc = 4) and

the CPU time (for Nc = 4,5,6) needed to compute the

optimal input sequence vectors for the example of Sec-

tion 6.

ũopt J(ũopt) CPU time

(Nc = 4) Nc = 4 Nc = 5 Nc = 6

ũelcp -14.600 1.765 3.320 7.535

ũnlcon -14.597 8.842 10.415 11.160

ũpenalty -14.600 10.864 12.078 14.170

ũrelaxed -14.600 0.301 0.342 0.430

ũlp -14.600 0.017 0.019 0.019

We have computed a solution ũelcp obtained using the ELCP

method and the ELCP algorithm of [6], a solution ũnlcon us-

ing nonlinear constrained optimization, a solution ũpenalty

using linearly constrained optimization with a penalty func-

tion for the nonlinear constraints, a solution ũrelaxed for the

relaxed MPC problem, and a linear programming solution

ũlp. For the nonlinear constrained optimization we have

used a sequential quadratic programming algorithm, and for

the linear optimization a variant of the simplex algorithm. In

the second and the third column of Table 1 we have listed

the value of the objective function J for the various input se-

quence vectors ũ and the CPU time needed to compute them

on a Pentium II 300 MHz PC running Linux with the opti-

mization routines called from MATLAB and implemented

in C. We have also listed the CPU times for Nc = 5 and

Nc = 6 (with all other variables keeping the same values as

above). The CPU time values listed in the table are aver-

age values over 10 experiments. For ũnlcon and ũpenalty we

have listed the best solution over 10 runs2 with random ini-

tial points; the indicated CPU time is the time needed for

the 10 runs. For the optimization over the solution set of the

ELCP and for ũrelaxed different starting points always lead to

more or less the same numerical value of the final objective

function. Therefore, we have only performed one run with

an arbitrary random initial point for these cases.

The CPU time needed to compute the optimal switching in-

terval vector using the ELCP algorithm of [6] increases ex-

ponentially as the number of variables increases (see also

Table 1). So the ELCP approach cannot be used on-line

in practice if the control horizon or the number of inputs

or outputs are large. In that case one of the other methods

should be used instead. If we look at Table 1 then we see

that the ũlp solution — which is based on Theorem 5.1 — is

clearly the most interesting.

2This choice for the number of runs is based on the typical variation in

the value of the final values of objective values for the different runs.

7 Conclusion

In this paper we have extended the popular MPC framework

from linear discrete-time systems to max-plus-linear dis-

crete event systems. The reason for using an MPC approach

for max-plus-linear systems is the same as for conventional

linear systems: MPC allows the inclusion of constraints on

the inputs and outputs, it is an easy-to-tune method, and it

is flexible for structure changes (since the optimal strategy

is recomputed every time step or event step so that model

changes can be taken into account as soon as they are iden-

tified).

We have extensively discussed the analogies and differences

between the objective functions and constraints in the con-

ventional MPC problem and in the max-plus-algebraic MPC

problem. We have also presented some methods to solve the

max-plus-algebraic MPC problem. In general this leads to

a nonlinear nonconvex optimization problem. If the objec-

tive function and the constraints are monotonically nonde-

creasing functions of the output, then we can relax the MPC

problem to problem with a convex set of feasible solutions.

If in addition the objective function is convex or linear, this

leads to a problem that can be solved very efficiently.

Topics for future research include the extension of the

current MPC framework to nondeterministic max-plus-

algebraic models, and an elaborate determination of the in-

fluences of the tuning parameters λ , Np and Nc.
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