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Model predictive control for max-plus-linear

discrete event systems ⋆
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The conventional model predictive control
framework is extended and adapted to

max-plus-linear systems, i.e., discrete-event
systems that can be described by models that

are “linear” in the (max,+) algebra.

Abstract

Model predictive control (MPC) is a very popular controller design method in the
process industry. A key advantage of MPC is that it can accommodate constraints
on the inputs and outputs. Usually MPC uses linear discrete-time models. In this
paper we extend MPC to a class of discrete-event systems that can be described
by models that are “linear” in the max-plus algebra, which has maximization and
addition as basic operations. In general the resulting optimization problem are non-
linear and nonconvex. However, if the control objective and the constraints depend
monotonically on the outputs of the system, the model predictive control problem
can be recast as problem with a convex feasible set. If in addition the objective func-
tion is convex, this leads to a convex optimization problem, which can be solved
very efficiently.
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1 Introduction

Process industry is characterized by always tighter product quality specifi-
cations, increasing productivity demands, new environmental regulations and
fast changes in the economical market. In the last decades Model Predictive
Control (MPC), has shown to respond in an effective way to these demands in
many practical process control applications and is therefore widely accepted in
the process industry. Control design techniques such as pole placement, LQG,
H2, H∞, etc. yield optimal controllers or control input sequences for the entire
future evolution of the system. However, extending these methods to include
additional constraints on the inputs and outputs is not easy. An important
advantage of MPC is that the use of a finite horizon allows the inclusion of
such additional constraints. Furthermore, MPC can handle structural changes,
such as sensor or actuator failures and changes in system parameters or system
structure, by adapting the model.

Traditionally MPC uses linear discrete-time models for the process to be con-
trolled. In this paper we extend and adapt the MPC framework to a class
of discrete-event systems. In general, models that describe the behavior of a
discrete-event system are nonlinear in conventional algebra. However, there is
a class of discrete-event systems – the max-plus-linear discrete-event systems
– that can be described by a model that is “linear” in the max-plus algebra
(Baccelli et al., 1992). The max-plus-linear discrete-event systems can be char-
acterized as the class of discrete-event systems in which only synchronization
and no concurrency or choice occurs. So typical examples are serial production
lines, production systems with a fixed routing schedule, and railway networks.

We will develop an MPC framework for max-plus-linear discrete-event sys-
tems. Several other authors have already developed methods to compute op-
timal control sequences for max-plus-linear discrete-event systems (Baccelli et
al., 1992; Boimond and Ferrier, 1996; Libeaut and Loiseau, 1995; Menguy et
al., 1997; Menguy et al., 1998a; Menguy et al., 1998b). The main advantage of
our approach is that it allows to include general linear inequality constraints
on the inputs and outputs of the system.

2 Model predictive control

In this section we give a short introduction to MPC. Since we will only consider
the deterministic, i.e. noiseless, case for max-plus-linear systems (cf. Remark
1), we will also omit the noise terms in this brief introduction to MPC for linear
systems. More extensive information on MPC can be found in (Camacho and
Bordons, 1995; Garćıa et al., 1989).
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Consider a plant with m inputs and l outputs that can be modeled by a state
space description of the form

x(k + 1)=Ax(k) + B u(k) (1)

y(k)=C x(k) . (2)

The vector x represents the state, u the input, and y the output. In order to
distinguish systems that can be described by a model of the form (1) – (2) from
the max-plus-linear systems that will be considered later on, a system that
can be modeled by (1) – (2) will be called a plus-times-linear (PTL) system.

In MPC a performance index or cost criterion J is formulated that reflects the
reference tracking error (Jout) and the control effort (Jin):

J = Jout + λJin

=
Np
∑

j=1

‖(ŷ(k + j|k)− r(k + j)‖2 + λ

Np
∑

j=1

‖u(k + j − 1)‖2 (3)

where ŷ(k+ j|k) is the estimate of the output at time step k+ j based on the
information available at time step k, r is a reference signal, λ is a nonnegative
scalar, and Np is the prediction horizon.

In MPC the input is taken to be constant from a certain point on: u(k+ j) =
u(k + Nc − 1) for j = Nc, . . . , Np − 1 where Nc is the control horizon. The
use of a control horizon leads to a reduction of the number of optimization
variables. This results in a decrease of the computational burden, a smoother
controller signal (because of the emphasis on the average behavior rather than
on aggressive noise reduction), and a stabilizing effect (since the output signal
is forced to its steady-state value).

MPC uses a receding horizon principle. At time step k the future control
sequence u(k), . . . , u(k+Nc − 1) is determined such that the cost criterion is
minimized subject to the constraints. At time step k the first element of the
optimal sequence (u(k)) is applied to the process. At the next time instant
the horizon is shifted, the model is updated with new information of the
measurements, and a new optimization at time step k + 1 is performed.

By successive substitution of (1) in (2), estimates of the future values of the
output can be computed (Camacho and Bordons, 1995). In matrix notation
we obtain:

ỹ(k) = Hũ(k) + g(k)
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with

ỹ(k) =















ŷ(k + 1|k)
...

ŷ(k +Np|k)















, r̃(k) =















r(k + 1)
...

r(k +Np)















, ũ(k) =















u(k)
...

u(k +Np − 1)















,

H =





















CB 0 . . . 0

CAB CB . . . 0
...

...
. . .

...

CANp−1B CANp−2B . . . CB





















, g(k) =





















CA

CA2

...

CANp





















x(k). (4)

The MPC problem at time step k for PTL systems is defined as follows:

Find the input sequence u(k), . . . , u(k+Nc − 1) that minimizes the perfor-
mance index J subject to the linear constraint

E(k)ũ(k) + F (k)ỹ 6 h(k) (5)

with E(k) ∈ R
p×mNp , F (k) ∈ R

p×lNp , h(k) ∈ R
p for some integer p, subject

to the control horizon constraint

u(k + j) = u(k +Nc − 1) for j = Nc, Nc + 1, . . . (6)

Note that minimizing J subject to (5) and (6), boils down to a convex quadratic
programming problem, which can be solved very efficiently.

The parameters Np, Nc and λ are the three basic MPC tuning parameters:
The prediction horizon Np is related to the length of the step response of the
process, and the time interval (1, Np) should contain the crucial dynamics of
the process. The control horizon Nc 6 Np is usually taken equal to the system
order. The parameter λ > 0 makes a trade-off between the tracking error and
the control effort, and is usually chosen as small as possible (while still getting
a stabilizing controller).
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3 Max-plus algebra and max-plus-linear systems

3.1 Max-plus algebra

The basic operations of the max-plus algebra are maximization and addition,
which will be represented by ⊕ and ⊗ respectively:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def
= R∪{−∞}. Define ε = −∞. The structure (Rε,⊕,⊗) is called

the max-plus algebra (Baccelli et al., 1992). The operations ⊕ and ⊗ are
called the max-plus-algebraic addition and max-plus-algebraic multiplication
respectively since many properties and concepts from linear algebra can be
translated to the max-plus algebra by replacing + by ⊕ and × by ⊗.

The matrix εm×n is the m× n max-plus-algebraic zero matrix: (εm×n)ij = ε

for all i, j; and En is the n× n max-plus-algebraic identity matrix: (En)ii = 0
for all i and (En)ij = ε for all i, j with i 6= j. If A,B ∈ R

m×n
ε , C ∈ R

n×p
ε then

(A⊕ B)ij = aij ⊕ bij = max(aij, bij)

(A⊗ C)ij =
n
⊕

k=1

aik ⊗ ckj = max
k

(aik + ckj)

for all i, j. Note the analogy with the conventional definitions of matrix sum
and product. The max-plus-algebraic matrix power of A ∈ R

n×n
ε is defined as

follows: A⊗
0
= En and A⊗

k
= A⊗ A⊗

k−1
for k = 1, 2, . . .

3.2 Max-plus-linear systems

Discrete-event systems with only synchronization and no concurrency can be
modeled by a max-plus-algebraic model of the following form (Baccelli et
al., 1992):

x(k + 1)=A⊗ x(k) ⊕ B ⊗ u(k) (7)

y(k)=C ⊗ x(k) (8)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the number of inputs

and l the number of outputs. Note the analogy of the description (7) – (8)
with the state space model (1) – (2) for PTL systems. An important difference
with the description (1) – (2) is that now the components of the input, the
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output and the state are event times, and that the counter k in (7) – (8) is an
event counter (and event occurrence instants are in general not equidistant),
whereas in (1) – (2) k increases each clock cycle. A discrete-event system that
can be modeled by (7) – (8) will be called a max-plus-linear time-invariant
discrete-event system or max-plus-linear (MPL) system for short.

Remark 1 For PTL systems the influence of noise is usually modeled by
adding an extra noise term to the state and/or output equation. For MPL
models the entries of the system matrices correspond to production times or
transportation times. So instead of modeling noise, (i.e. variation in the pro-
cessing times), by adding an extra max-plus-algebraic term in (7) or (8), noise
should rather be modeled as an additive term to these system matrices. How-
ever, this would not lead to a nice model structure. Therefore, we will use the
max-plus-linear model (7) – (8) as an approximation of a discrete-event system
with uncertainty and/or modeling errors when we extend the MPC framework
to MPL systems. This also motivates the use of a receding horizon strategy
when we define MPC for MPL systems, since then we can regularly update
our model of the system as new measurements become available.

4 Model predictive control for MPL systems

4.1 Evolution of the system

We assume that x(k), the state at event step k, can be measured or estimated
using previous measurements. We can then use (7) – (8) to estimate the evolu-
tion of the output of the system for the input sequence u(k), . . . , u(k+Np−1):

ŷ(k + j|k) = C ⊗ A⊗
j
⊗ x(k) ⊕

j−1
⊕

i=0

C ⊗ A⊗
j−i

⊗B ⊗ u(k + i) ,

or, in matrix notation, ỹ(k) = H ⊗ ũ(k)⊕ g(k) with
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H =





















C ⊗ B ε . . . ε

C ⊗ A⊗B C ⊗B . . . ε
...

...
. . .

...

C ⊗ A⊗
Np−1

⊗B C ⊗ A⊗
Np−2

⊗ B . . . C ⊗B





















,

g(k)=





















C ⊗ A

C ⊗ A⊗
2

...

C ⊗ A⊗
Np





















⊗ x(k) .

Note the analogy between these expressions and the corresponding expressions
(4) for PTL systems.

4.2 Cost criterion

4.2.1 Tracking error or output cost criterion Jout

If the due dates r for the finished products are known and if we have to pay
a penalty for every delay, a well-suited cost criterion is the tardiness:

Jout,1 =
Np
∑

j=1

l
∑

i=1

max(ŷi(k + j|k)− ri(k + j), 0) . (9)

If we have perishable goods, then we could want to minimize the differences
between the due dates and the actual output time instants. This leads to

Jout,2 =
Np
∑

j=1

l
∑

i=1

|ŷi(k + j|k)− ri(k + j)| . (10)

If we want to balance the output rates, we could consider

Jout,3 =
Np
∑

j=2

l
∑

i=1

|∆2ŷi(k + j|k)| (11)

where ∆2s(k) = ∆s(k)−∆s(k − 1) = s(k)− 2s(k − 1) + s(k − 2).

4.2.2 Input cost criterion Jin

A straightforward translation of the input cost criterion ũT (k)ũ(k) would lead
to a minimization of the input time instants. Since this could result in input
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buffer overflows, a better objective is to maximize the input time instants.
For a manufacturing system, this would correspond to a scheme in which
raw material is fed to the system as late as possible. As a consequence, the
internal buffer levels are kept as low as possible. This also leads to a notion
of stability if we let instability for the manufacturing system correspond to
internal buffer overflows. So for MPL systems an appropriate cost criterion is
Jin,0 = −ũT (k)ũ(k) . Note that this is exactly the opposite of the input effort
cost criterion for PTL systems. Another objective function that leads to a
maximization of the input time instants is

Jin,1 = −
Np
∑

j=1

m
∑

i=1

ui(k + j − 1) . (12)

If we want to balance the input rates we could take

Jin,2 =
Np−1
∑

j=1

l
∑

i=1

|∆2ui(ik + j| . (13)

We could replace the summations in (9) – (13) by max-plus-algebraic summa-
tions, or consider weighted mixtures of several cost criteria.

4.3 Constraints

Just as in MPC for PTL systems we can consider the linear constraint

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) . (14)

Furthermore, it is easy to verify that typical constraints for discrete-event sys-
tems are minimum or maximum separation between input and output events:

a1(k + j) 6 ∆u(k + j − 1) 6 b1(k + j) for j = 1, . . . , Nc (15)

a2(k + j) 6 ∆ŷ(k + j|k) 6 b2(k + j) for j = 1, . . . , Np , (16)

or maximum due dates for the output events:

ŷ(k + j|k) 6 r(k + j) for j = 1, . . . , Np , (17)

can also be recast as a linear constraint of the form (14).

Since for MPL systems the input and output sequences correspond to occur-
rence times of consecutive events, they should be nondecreasing. Therefore,
we should always add the condition ∆u(k + j) > 0 for j = 0, . . . , Np − 1 to
guarantee that the input sequences are nondecreasing.
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4.4 The evolution of the input beyond the control horizon

A straightforward translation of the conventional control horizon constraint
would imply that the input should stay constant from event step k + Nc on,
which is not very useful for MPL systems since there the input sequences
should normally be increasing. Therefore, we change this condition as follows:
the feeding rate should stay constant beyond event step k +Nc, i.e.

∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, . . . , Np − 1 , (18)

or ∆2u(k+ j) = 0 for j = Nc, . . . , Np−1. This condition introduces regularity
in the input sequence and it prevents the buffer overflow problems that could
arise when all resources are fed to the system at the same time instant as
would be implied by the conventional control horizon constraint (6).

4.5 The standard MPC problem for MPL systems

If we combine the material of previous subsections, we finally obtain the fol-
lowing problem:

min
ũ(k)

J = min
ũ(k)

Jout,p1 + λJin,p2 (19)

for some Jout,p1 , Jin,p2 subject to

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (20)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) (21)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (22)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (23)

This problem will be called the MPL-MPC problem for event step k. MPL-
MPC also uses a receding horizon principle.

Other design control design methods for MPL systems are discussed in (Baccelli
et al., 1992; Boimond and Ferrier, 1996; Libeaut and Loiseau, 1995; Menguy et
al., 1997; Menguy et al., 1998a; Menguy et al., 1998b). However, these meth-
ods do not allow the inclusion of general linear constraints of the form (21) or
even simple constraints of the form (15) or (16).
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5 Algorithms to solve the MPL-MPC problem

5.1 Nonlinear optimization

In general the problem (19) – (23) is a nonlinear nonconvex optimization prob-
lem: although the constraints (21) – (23) are convex in ũ and ỹ, the constraint
(20) is in general not convex. So we could use standard multi-start nonlinear
nonconvex local optimization methods to compute the optimal control policy.

The feasibility of the MPC-MPL problem can be verified by solving the system
of (in)equalities (20) – (23) 1 . If the problem is found to be infeasible we can
use the same techniques as in conventional MPC and use constraint relaxation
(Camacho and Bordons, 1995). Additional information on these topics can be
found in (De Schutter and van den Boom, 2000).

5.2 The ELCP approach

Now we discuss an alternative approach which is based on the Extended Lin-
ear Complementarity problem (ELCP) (De Schutter and De Moor, 1995).
Consider the ith row of (20) and define Ji = {j |hij 6= ε}. We have ỹi(k) =
max
j∈Ji

(hij + ũj(k), gi(k)) or equivalently

ỹi(k)>hij + ũj(k) for j ∈ Ji

ỹi(k)> gi(k)

with the extra condition that at least one inequality should hold with equality
(i.e. at least one residue should be equal to 0):

(ỹi(k)− gi(k)) ·
∏

j∈Ji

(ỹi(k)− hij − ũj(k)) = 0 . (24)

Hence, equation (20) can be rewritten as a system of equations of the form

Aeỹ(k) + Beũ(k) + ce(k) > 0 (25)
∏

j∈φi

(Aeỹ(k) + Beũ(k) + ce(k))j = 0 for i = 1, . . . , lNp (26)

1 In general this is a nonlinear system of equations but if the constraints depend
monotonically on the output, the feasibility problem can be recast as a linear pro-
gramming problem (cf. Theorem 2).
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for appropriately defined matrices and vectors Ae, Be, ce and index sets φi. We
can rewrite the linear constraints (21) – (23) as

De(k)ỹ(k) + Ee(k)ũ(k) + fe(k)> 0 (27)

Geũ(k) + he =0 . (28)

So the feasible set of the MPC problem (i.e. the set of feasible system trajec-
tories) coincides with the set of solutions of the system (25) – (28), which is
a special case of an Extended Linear Complementarity Problem (ELCP) (De
Schutter and De Moor, 1995). In (De Schutter and De Moor, 1995) we have
also developed an algorithm to compute a compact parametric description of
the solution set of an ELCP. In order to determine the optimal MPC policy
we can use nonlinear optimization algorithms to determine for which values
of the parameters the objective function J over the solution set of the ELCP
(25) – (28) reaches its global minimum. The algorithm of (De Schutter and De
Moor, 1995) to compute the solution set of a general ELCP requires exponen-
tial execution times, which that the ELCP approach is not feasible if Nc is
large.

5.3 Monotonically nondecreasing objective functions

Now consider the relaxed MPC problem which is also defined by (19) – (23)
but with the =-sign in (20) replaced by a >-sign. Note that whereas in the
original problem ũ(k) is the only independent variable since ỹ(k) can be elim-
inated using (20), the relaxed problem has both ũ(k) and ỹ(k) as independent
variables. It is easy to verify that the set of feasible solutions of the relaxed
problem coincides with the set of solutions of the system of linear inequalities
(25), (27), (28). So the feasible set of the relaxed MPC problem is convex.
Hence, the relaxed problem is much easier to solve numerically.

A function F : y → F (y) is a monotonically nondecreasing function if ȳ 6 y̌

implies that F (ȳ) 6 F (y̌). Now we show that if the objective function J and
the linear constraints are monotonically nondecreasing as a function of ỹ (this
is the case for J = Jout,1, Jin,0, Jin,1, or Jin,2, and e.g. Fij > 0 for all i, j), then
the optimal solution of the relaxed problem can be transformed into an optimal
solution of the original MPC problem. So in that case the optimal MPC policy
can be computed very efficiently. If in addition the objective function is convex
(e.g. J = Jout,1 or Jin,1), we finally get a convex optimization problem. Note
that Jin,1 is a linear function. So for J = Jin,1 the problem even reduces to a
linear programming problem, which can be solved very efficiently 2 .

2 It easy to verify that for J = Jout,1, Jout,11, Jout,12 the problem can also be reduced
to a linear programming problem by introducing some additional dummy variables.
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✲u(k) y(k)

t1=2

t2=0

t3=1

t4=0
t5=0

d1=11

d2=12

d3=7

Fig. 1. A simple manufacturing system.

Theorem 2 Let the objective function J and mapping ỹ → F (k)ỹ be mono-
tonically nondecreasing functions of ỹ. Let (ũ∗, ỹ∗) be an optimal solution of
the relaxed MPC problem. If we define ỹ♯ = H ⊗ ũ∗ ⊕ g(k) then (ũ∗, ỹ♯) is an
optimal solution of the original MPC problem.

PROOF. First we show that (ũ∗, ỹ♯) is a feasible solution of the original
problem. Clearly, (ũ∗, ỹ♯) satisfies (20), (22) and (23). Since ỹ∗ > H ⊗ ũ∗ ⊕
g(k) = ỹ♯ and since ỹ → F (k)ỹ is monotonically nondecreasing, we have

E(k)ũ∗ + F (k)ỹ♯ 6 E(k)ũ∗ + F (k)ỹ∗ 6 h(k) .

So (ũ∗, ỹ♯) also satisfies the constraint (21). Hence, (ũ∗, ỹ♯) is a feasible solu-
tion of the original problem. Since the set of feasible solutions of the original
problem is a subset of the set of feasible solutions of the relaxed problem, we
have J(ũ, ỹ) > J(ũ∗, ỹ∗) for any feasible solution (ũ, ỹ) of the original problem.
Hence, J(ũ∗, ỹ♯) > J(ũ∗, ỹ∗). On the other hand, we have J(ũ∗, ỹ♯) 6 J(ũ∗, ỹ∗)
since ỹ♯ 6 ỹ∗ and since J is a monotonically nondecreasing function of ỹ. As
a consequence, we have J(ũ∗, ỹ♯) = J(ũ∗, ỹ∗), which implies that (ũ∗, ỹ♯) is an
optimal solution of the original MPC problem. ✷

6 Example

Consider the production system of Fig. 1. This manufacturing system consists
of three processing units: P1, P2 and P3, and works in batches (one batch for
each finished product). Raw material is fed to P1 and P2, processed and sent
to P3 where assembly takes place. The processing times for P1, P2 and P3 are
respectively d1 = 11, d2 = 12 and d3 = 7 time units. It takes t1 = 2 time units
for the raw material to get from the input source to P1, and t3 = 1 time unit
for a finished product of P1 to get to P3. The other transportation times and
the set-up times are assumed to be negligible. A processing unit can only start
working on a new product if it has finished processing the previous product.
Each processing unit starts working as soon as all parts are available.

The system is described by the following state space model (De Schutter and
van den Boom, 2000):
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













⊗ u(k) (29)

y(k)=
[

ε ε 7

]

⊗ x(k) (30)

with u(k) the time at which a batch of raw material is fed to the system for
the (k+1)th time, xi(k) the time at which Pi starts working for the kth time,
and y(k) the time at which the kth finished product leaves the system.

Let us now compare the efficiency of the methods discussed in Section 5 when
solving one step of the MPC problem for the objective function J = Jout,1+Jin,1
(so λ = 1) with the additional constraints 2 6 ∆u(k + j) 6 12 for j =
0, . . . , Nc − 1. We take Nc = 5 and Np = 8. Assume that k = 0, x(0) =
[ 0 0 10 ]T , u(−1) = 0, and r̃(k) = [ 40 45 55 66 75 85 90 100 ]T .

The objective function J and the linear constraints are monotonically nonde-
creasing as a function of ỹ so that we can apply Theorem 2. We have computed
a solution ũelcp obtained using the ELCP method and the ELCP algorithm
of (De Schutter and De Moor, 1995), a solution ũnlcon using nonlinear con-
strained optimization, a solution ũpenalty using linearly constrained optimiza-
tion with a penalty function for the nonlinear constraints, a solution ũrelaxed

for the relaxed MPC problem, and a linear programming solution ũlinear (cf.
footnote 2). For the nonlinear constrained optimization we have used a se-
quential quadratic programming algorithm, and for the linear optimization a
variant of the simplex algorithm. All these methods result in the same optimal
input sequence:

{uopt}
7
k=0 = 12, 24, 35, 46, 58, 70, 82, 94.

The corresponding output sequence is {yopt(k)}
8
k=1 = 33, 45, 56, 67, 79, 91, 103, 115

and the corresponding value of the objective function is J = −381.

In Table 1 we have listed the CPU time needed to compute the various input
sequence vectors ũ for Nc = 4, 5, 6, 7 on a Pentium II 300 MHz PC with the
optimization routines called from MATLAB and implemented in C (average
values over 10 experiments). For the input sequence vectors that have to be de-
termined using a nonlinear optimization algorithm selecting different (feasible)
initial points always leads to the same numerical value of the final objective
function (within a certain tolerance). Therefore, we have only performed one
run with a random feasible initial point for each of these cases.

The CPU time for the ELCP algorithm of (De Schutter and De Moor, 1995)
increases exponentially as the number of variables increases (see also Table 1).
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Table 1
The CPU time needed to compute the optimal input sequence vectors for the ex-
ample of Section 6 for Nc = 4, 5, 6, 7. For Nc = 7 we have not computed the ELCP
solution since it requires too much CPU time.

CPU time

ũopt Nc = 4 Nc = 5 Nc = 6 Nc = 7

ũelcp 5.525 106.3 287789 —

ũnlcon 0.870 1.056 1.319 1.470

ũpenalty 0.826 0.988 1.264 1.352

ũrelaxed 0.431 0.500 0.562 0.634

ũlinear 0.029 0.030 0.031 0.032

So in practice the ELCP approach cannot be used for on-line computations if
the control horizon or the number of inputs or outputs are large. In that case
one of the other methods should be used instead. If we look at Table 1 then
we see that the ũlinear solution — which is based on Theorem 2 and a linear
programming approach — is clearly the most interesting.

Let us now compare the MPC-MPL method with the other control design
methods mentioned in Section 4.5. In (De Schutter and van den Boom, 2000)
we have used results from (Baccelli et al., 1992) to derive an analytic solu-
tion for two special cases of the MPL-MPC problem. If we use these analytic
solutions we obtain {u1(k)}7k=0 = −3, 9, 21, 33, 45, 57, 68, 79 and {u2(k)}7k=0 =
8, 20, 32, 44, 56, 68, 79, 90. The first solution is not feasible since for this solu-
tion we have u(0) = −3 < 0 = u(−1). This infeasibility is caused by the fact
that the solution aims to fulfill the constraint ỹ(k) 6 r̃(k), which cannot be
met using a nondecreasing input sequence. So other control design methods
that also include this constraint such as (Libeaut and Loiseau, 1995; Men-
guy et al., 1997; Menguy et al., 1998b) would also yield a nondecreasing —
and thus infeasible — input sequence. The second solution is feasible and
the corresponding value of the objective function is J = −358. The con-
trol design method of (Boimond and Ferrier, 1996) leads to {u3(k)}7k=0 =
19, 30, 41, 53, 65, 77, 89, 101, but this input sequence does not satisfy the con-
straints since ∆u(0) = u(0) − u(−1) = 19 66 12. The method of (Menguy et
al., 1998a) results in {u4(k)}7k=0 = 12, 23, 34, 46, 58, 70, 82, 94 with J = −380.

So for this particular case the MPC method and the method of (Menguy et
al., 1998a) outperform the other methods to compute (optimal) input time
sequences for MPL systems. However, the method of (Menguy et al., 1998a)
does not take the input constraint 2 6 ∆u(k + j) 6 12 for j = 0, 1, . . . , 9
into account so that in general this method will not always lead to a feasible
solution. So in general the MPC-MPL method is the only method among the
methods considered in this paper that is guaranteed to yield a feasible solution
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(provided that one exists).

7 Conclusions

We have extended the popular MPC framework from linear discrete-time sys-
tems to max-plus-linear discrete event systems. The reason for using an MPC
approach for max-plus-linear systems is the same as for conventional linear
systems: MPC allows the inclusion of constraints on the inputs and outputs,
it is an easy-to-tune method, and it is flexible for structure changes (since
the optimal strategy is recomputed every time or event step so that model
changes can be taken into account as soon as they are identified). Although
in general the optimization may be complex and time-consuming and should
be performed each event step, the inter-event times are usually sufficiently
long so that the calculation can be performed on-line (especially if the objec-
tive function and the constraints are monotonically nondecreasing and if the
objective function is convex, since then the resulting (relaxed) optimization
problem is convex). We have also presented some methods to solve the max-
plus-algebraic MPC problem. In general this leads to a nonlinear nonconvex
optimization problem. If the objective function and the constraints are non-
decreasing functions of the output, then we can relax the MPC problem to
problem with a convex set of feasible solutions. If in addition the objective
function is convex, this leads to a problem that can be solved very efficiently.

Topics for future research include: investigation of issues (such as prediction)
that arise when we consider MPC for nondeterministic max-plus-algebraic
systems, investigation of the effects of the tuning parameters on the stability
of the controlled system, and determination of rules of thumb for the selection
of appropriate values for the tuning parameters.
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