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Bart De Schutter

Abstract

This is the list of errata and some corrections for the PhD thesis “Max-Algebraic
System Theory for Discrete Event Systems” (Fac. Applied Sciences, K.U.Leuven, Belgium,
Feb. 1996) of Bart De Schutter.
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Line -12: The equation number “(1.5)” at the end of this line should be removed.
Line -18: “to only” should be replaced by “the only”.

Line 7: “Axz = 1" should be replaced by “A® z =10b".

Line 8: “Ryax is not a group” should be replaced by “(R., @) is not a group”.
Line 24: “detqy AV e” should be replaced by “dets, AV e”.

Line 25: “detq, AV e” should be replaced by “detsy, AV e”.

Figure 3.2

Change the upper part of the dotted line that represents the intersection of G, and
G5 by a full line.

Change the upper part of the dotted line that indicates the intersection of G and
G, by a full line.
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Line 15: the words “are contained” should be removed.

Line -8: “{1,2,...,p}” should be replaced by “{1,2,...,n}".
Line -2: “j =1,2,...,n” should be replaced by “i =1,2,...,n”.
Line -1: “e2” should be replaced by “es”.

Line 2 of Adjacency Test 2: “e2” should be replaced by “es”.

7

Line -10: “¢,” should be replaced by “x.” and “e,” should be replaced by “z.”

(twice).

p. 157 Line -10: “54, 54]” should be replaced by “54, 56]”.

. 158 Line -6: “a;jA ;;” should be replaced by “a; @ A ;7.
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Line 1: “triple” should be replaced by “4-tuple”.

Line 15: “triple” should be replaced by “4-tuple”.

Line 12: “State Realization” should be replaced by “State Space Realization”.
Line 23: “numbers” should be replaced by “number”.

Line -4: “1,2” should be replaced by “1,2”, i.e. the font style should be changed.
Line -14: “cancelation” should be replaced by “cancellation”.

Line 11: “If” should be replaced by “If usue — pops # 0 and if”.

Line -14: “algebra” should be replaced by “Algebra”.

In the first line after formula (7.12) the words “for all #” might be put before “lim a; =

1—00
¥

g7

In formula (7.13) the entry on the last row and the last column of the matrix
G(n,i,k,c,s) should be a 1 instead of a 0.

Line 5: “exponentials” should be replaced by “exponents”.
Line 8: “then” should be replaced by “that”.

In the heading of this page the word “Chapter” has to be replaced by “Appendix”.
This also holds for the other even numbered pages in the ranges pp. 236242, pp. 288-
304 and pp. 308-314.

Line -7: The words “that contains” may be added before « ymax{dome Apy| pEC}r.

Line 2: “1 € Z” should be replaced by “1 € J”.

Line 10: Add “®” between “c;” and “ge" R (both on the left-hand side and the
right-hand side of the equation).

Line 10: Add “®” between “c;” and “ye" (both on the left-hand side and the
right-hand side of the equation).

Line -6: “for i =1,2,...,n” should be replaced by “for i =1,2,...,0".

There is an error in the formulation and the proof of Lemma C.1.4. See Section 2.1
for a corrected version.

. 279-281 Since there was an error in the formulation and the proof of Lemma C.1.4,

the proof of Lemma 6.3.7 is not entirely correct anymore. However, by taking into
account the last statement of Lemma 2.4, which is the corrected version of Lemma
C.1.4 (see Section 2.1), and by using a reasoning that is similar to the current one, it
can be shown that Lemma 6.3.7 still holds.



p- 287 Line -4: “with a negative dominant exponent” should be added after the word “se-
ries”.
Line -2: “a; € R” should be replaced by “a; < 0”.
Remark: Note that this correction does not invalidate the proofs of Lemma 7.3.2
and Proposition 7.3.3 since there Lemma D.1.1 has been applied only on series with
a negative dominant exponent.

p. 288 Lines 1-4 (“Since f(x) ...also converges absolutely.”) should be removed.
In lines 5-8, “c;” should be replaced by “a;”, “v;” should be replaced by “«;” and
“¢ =17 should be replaced by “i = 07.
Lines 9-10: “, which ...in [K,00).” should be replaced by “.”.

p- 288 Line 6: “<” should be replaced by “<”.

p. 327 Line 3 of reference [147]: “the the” should be replaced by “the”.

2 Corrections

2.1 The corrected version of Lemma C.1.4 on p. 275

The following two technical lemmas will be used in the proof of the corrected version of
Lemma C.1.4.

Lemma 2.1 Consider m ultimately geometric sequences hy, ..., hy with rates different from
e. Let ¢; be the period of h; and let \; be the rate of h; fori=1,....m. Ifg=h1 @& - D hp,
and if ¢ =lem(cy, ..., ¢n) then

dK €N, Ivg,...,Ye—1 € {A1,..., Am} such that

Jketets = fys®c ® Gkers Jorallk > K and for s=0,...,¢c—1. (1)

Furthermore, there exists at least one index s € {0,...,c— 1} such that the smallest s for

which (1) holds is equal to EB i
i=1

Lemma 2.2 Consider m ultimately geometric sequences hy, ..., hy, with rates different from
€. Let ¢; be the period of h; and let \; be the rate of h; fort=1,2,....m. Ifg=h1®...Qhp
and if ¢ =lem(cq, ..., ¢m) then

dK €N, 3v0,...,7%-1 € R such that
ketets = 7% ® Gketrs Jorallk > K and for s=0,...,c—1. (2)
There exists at least one index s € {0,1,...,c— 1} such that the smallest s for which (2)
holds is equal to é Xi. Moreover, for k* large enough {gi};- . can be written as a finite

i=1
sum of ultimately geometric sequences with rates A\; and periods c;.



Proof of Lemma 2.1: In this proof we always assume that i € {1,...,m}, s,s* €
{0,...,¢—1} and k,l € N. Since each sequence h; is ultimately geometric, there exists
an integer K such that (hi)g4c, = )\,@CZ ® (h;)g for all £ > K and for all i. Hence,

(hi)kape, = M @ (hy)r  forall pe N, for all k > K and for all i. (3)

Since ¢ = lem(eq, . . ., ¢y ) there exist positive integers wy, . .., wy,, such that ¢ = wj¢; for all i.
Select L € N with L¢ > K. Consider an arbitrary index s. Since Lc+ s > K, it follows from
(3) that

I—L)w;c; l—L)c
(=0 ® (hi)Lets = /\z‘®( ) ® (i) Lets (4)

for all [ > L and for all 4. Define Ny = {i| (hi)rc+s 7 € }. We consider two cases:

(Pi)icrs = (M) Lot (1= Lywie; = Ai®

o If Ny =0 then (h;)rc+s = € for all i and thus also (h;);.rs = € for all [ > L and for all

i by (4). Hence, gj.1s = € for all [ > L. So if we set 75 = A1 and select K > K ey

then (1) holds for this case.

o If Ny # () then we define v, = max \; and iy = argm%x{(hi)Mﬂ ‘ A = fys}. By
1E€Ng 1E€ENg

(4) we have (h;)ie+s = (hi)Le+s + (I — L)cA; for all | > L and for all . Furthermore,
Ni, = A for all i, and € # (hi,)pers = (hi)Letrs for all @ with A; = 5. So if we define
hi c+s hz c+s
Ky = L 4+ max| 0, max (( Jiets = (M) Lot
1€EN, C('Ys — )\1)
i7 Vs

have (h;,)ic+s = (hi)iers for all I > K, and all i. Hence, gjcqs = (h;, )jess for all I > K.
As a consequence, (1) also holds for this case if we select K > K.

)) with max () = 0 by definition, then we

So if we define K = max (Ko, K1,...,K.—1) then (1) holds for all s.

m
Assume @ i = Aj. Since \; # €, there exists at least one index s* such that (hj)rcqs+ 7 €.

i=1
Since gieys+ = (Ri )iers+ for alll > K and since A = A;_, is the rate of h; ., v, = A\i. = A is
also the smallest 7, for which (1) holds. O

Proof of Lemma 2.2: For sake of simplicity, we shall only prove the lemma for the case
m = 2. The proof for m > 2 follows similar lines.

In this proof we always assume that r,s € {0,...,c— 1}, p,q,i,k € N.

Since h; and ho are ultimately geometric, there exists an integer L such that

(hi) Letpets = )\i®pc ® (hi)Lets for all p,r and ¢t = 1,2 (5)

(cf. (4) with { = L + p). We have

Lete—1 k—Lc—c Lete—1
(h1 @ ho)g, = @ (h1)i ® (h2)k—i ® GB (h1)i ® (h2)k—i ® @ (h1)k—i ® (h2);  (6)
=0 i=Lete =0

for all k > 2(Lc+ ¢). Now we consider an arbitrary term of the second max-plus-algebraic of
(6). Let k > 2(Lc+c)and i € {Lc+ec,...,k — Lc— c}. Select p,q,r, s such that i = Le+pe+r



and k —i = Lc+ ge+ s. It is easy to verify that we have o®” @ %7 < a®™ ™ g B®p+q for
all a, 8 € R, and all p,q € N. Hence,

(h1)i @ (h2)k—i = M @ (M) Letr ® Ap®! ® (h2)Le+ts (by (5))
( S g g2 ) ® () eve @ (h2)Loss
—+q)c +q)c
)\1®(p 2 (hl)Lc+r & (h )Lc—l—s ©® )\2®(p q) & (hl)Lc—l-'r & (hZ)Lc+s

<
< (hl)LC—H" (h2)Lc+(p+q)c+s (hl)Lc+(p+q)c+r ® (h2)LC+s (by (5))

Since Le+7r < Le+c—1and Le+7r+ Le+s+(p+q)c = k, the term (A1) Letr @ (h2) Lot (pg)ets
also appears in the first max-plus-algebraic sum of (6). Similarly, it can be shown that
(P1) Let-(p+q)etr @ (h2)Lets also appears in the third max-plus-algebraic sum of (6). So the
second max-plus-algebraic sum in (6) is redundant and can be omitted.

Now we define the sequences f; j fori =0,..., Lc+cand j = 1,2 with (f1;)r = (h1)i® (h2)k—i
and (f2i)r = (h1)g—i ® (h2);. The sequences f; ; are ultimately geometric with rate \; and
cyclicity ¢;. As shown above, the terms of hy ® hy coincide with @ fi,j for k large enough.

,L"j
Therefore, we can now apply Lemma 2.1 provided that we select K such that K > 2(Lc+c). O

Note that in general we do not have ~5 = @ X; for all indices s in Lemma 2.1 as is shown
i=1
by the following example.

Example 2.3 Consider the ultimately geometric sequences

h1=0,¢,1,3,64,6,¢£,7,9,¢,10,...
ho =0,¢,0,¢,0,¢,0,¢,0,¢,0,¢, ...

with Ay =1, ¢; =3, A2 =0 and ¢y = 2. We have
h1 ®hy =0,6e,1,3,0,4,6,¢,7,9,0,10,12,¢,13, 15,0, 16, . ..

This sequence is ultimately periodic with ¢ = lem(cy, ¢2) = lem(2,3) = 6. Furthermore, the
smallest ~,s for which (1) holds are y1 = 73 = 74 = 7% = 1, 72 = € and 75 = 0. Note that
E=vm MDAl =100=1and e =y & {1, \2} = {1,0}. O

Lemma 2.4 (Corrected version of Lemma C.1.4) Let A € R™™ be a matriz of the
form

Ap f:112 /:hl
i 6 A?Q Ay 1)

e £ .. A
where the matrices An, c, Ay are square and z'rr:educz’ble. Let \; and c; be respectively the
maz-plus-algebraic eigenvalue and the cyclicity of Ay fori=1,...,1. Define sets aq, ..., o



such that Aaiaj = Aij for all i,j with i < j.
Define

Sij = { {ioy--vis} C{1,...,1} |i=ip<i1 <...<is=j and

Ai,,irﬂ#é‘ for r=0,...,s—1}

iy = U 0l

YES;;
A — ) WdteTy} af Ly # 0,
“ {6} Zf Fij == @ 5
lem{c; |t €Ty} if Tyj #0 and ¢y # 0 for some t € Ty,
Cii =
/ 1 otherwise,,

for all i,j with i < j. We have

Vije {1, withi>j: (A@’“) = Epixn, forallk€N. (8)

;o

Moreover, there exists an integer K € N such that

vie {1,...,1}: (A@’”Ci) 2\ (A@k) forallk > K 9)

[e7Xe 73 [e 7107

and
Vi, je{1,... [} with i < j,Yp € a;,¥q € o, I0,. .., Ve;;—1 € Nij such that

~kcijtcij J jekcii
(AP ) o g (A forall k> K and for s =0, ey~ 1.
pg pq
(10)

Furthermore, for each combination i,j,p,q with i < j, p € o; and q € «;, there ewists at
least one index s € {0,...,¢;j — 1} such that the smallest 5 for which (10) holds is equal to
max A;j.

Remark 2.5 Let us give a graphical interpretation of the sets S;; and I';;. Let C; be the
m.s.c.s. of Q(A) that corresponds to Ay for i = 1,...,1. So «; is the vertex set of Cj.

If {ip = 4,i1,...,is = j} € Si; then there exists a path from a vertex in C;. to a vertex in
C;,_, foreach r € {1,...,s}. Since each m.s.c.s. C; of G(A) is strongly connected, this implies
that there exists a path from a vertex in C; to a vertex in C; that passes through C;,_,, C;,_,,

.y Gy

If S;; = () then there does not exist any path from a vertex in C; to a vertex in C;.

The set I';; is the set of indices of the m.s.c.s.’s of g(A) through which some path from a
vertex of C; to a vertex of C; passes. O

Proof of Lemma 2.4: Since the matrices Ay,q, are irreducible, we have (9).

Recall that (fl®k)ij is equal to the maximal weight over all paths of length &k from j to ¢ in



Figure 1: Hlustration of the proof of Lemma 2.4. There exists a path from vertex us of m.s.c.s.
C; to vertex vg of m.s.c.s. C; that passes through the m.s.c.s.’s C;,_, C;,_,, ..., Cj;.

~

G(A) where the maximal weight is equal to € by definition if there does not exist any path of
length k from j to i. Let C; be the m.s.c.s. of g(A) that corresponds to A for i = 1,...,1.
Since Aaiaj = En;xn; if © > j, there are no arcs from any vertex of Cj to a vertex in Cj. As
a consequence, (8) holds.

Now consider 4,7 € {1,...,1} with i < j. We distinguish three cases:

If T';; = () then there does not exist a path from a vertex in C; to a vertex in C;. Hence,

(A@)k)aa_ = Ep;xn; for all k € N. Since in this case we have Aj; = {e} and ¢;; = 1,
10

this implies that (10) and the last statement of the lemma hold if I';; = 0.

IfT';; # 0 and A;; = {¢} then Ay = [e] and ¢; = 1 for all t € T';;. So there exist paths
from a vertex in Cj to a vertex in C;, but each path passes only through m.s.c.s.’s that
consist of one vertex and contain no loop. Such a path passes through at most #I';
of such m.s.c.s.’s (C; and C; included). This implies that there does not exist a path
with a length larger than or equal to #1I';; from a vertex in Cj; to a vertex in C;. Hence,

(A®k)aiaj = Enyxn; for all k > #I';;. Furthermore, ¢;; = 1 since ¢; = 1 for all ¢ € T'y;.
Hence, (10) and the last statement of the lemma also hold if I';; = 0 and A;; = {e}.

Finally, we consider the case with I';; # () and A;; # {e}. Select an arbitrary vertex p
of C; and an arbitrary vertex q of C;. For each set v = {ig,...,is} € S;; we define

S(y) = {(U,V)‘U: {ug, ..., us}, V.="{vo,...,vs}, us = q, vo = p, and

Up € O, Vpy1 € 0,y and (A)y,e, ., # € for r = O,...,s} .



So if (U,V) € S(v) with U = {uo,...,us} and V = {wp,...,vs} then there exists a
path from ¢ to p that passes through m.s.c.s. C;, for r =0, ..., s and that enters C; at
vertex u, for r =0,...,s — 1 and that exits from C;_ through vertex v, forr =1,...,s
(see also Figure 1). Hence, we have

( ) @ @ g, U, V) for all k € N,

V€S (UV)ES(y

where

g(fy’ U’ V) - @ (As?);?s)puo ® (Aioil)uom ® (Aﬁfll )v1u1 ®...
p07~~~’ps€N
o+ ... +ps=k—s

& (Ais_1i5)us—1vs ® (Aifj)vsq (11)

with the empty max-plus-algebraic sum equal to € by definition. Each term of the
max-plus-algebraic sum in (11) represents the maximal weight over all paths from ¢ to
p that consist of the concatenation of paths of length p, from vertex u, to vertex v, of
C;, for r =0,...,s and paths of length 1 from vertex v, of Cj,_, to vertex u, of C;,
for r = 0,...,s where by definition the maximal weight is equal to ¢ if no such paths

exist. Note that if \;. = ¢ for some r then every term in the max-plus-algebraic sum
(11) for which p, > 0 will be equal to e. Furthermore, since 2’ = by definition, this
means that each factor of the form (A® ) _— for which )\; =€ may be removed from
the max-plus-algebraic sum (11). Note that indices ¢ for which At = € or equivalently
¢t = 1 do not influence the value of ¢;;. Also note that since I';; # () and A;; # {e} we
have at least one combination v, U,V for which the sequence (11) has a rate \;, that is
different from e¢.

Since A; ;, is irreducible, we have

(A?;IZ:F%LTUT =\, ®Cz7 (Ai’:r)vrur for k large enough .
Hence, if g(v,U, V) is different from e, i.e. if it still contains terms after the factors
for which \;, = ¢ have been removed, g(vy,U, V) is a max-plus-algebraic product of
ultimate geometric sequences with rates \;, # € and periods ¢;,. From Lemma 2.2 it
follows that g(v, U, V) is an ultimately periodic sequence and that for k* large enough
{(9(,U,V)), }22ye can be written as the max-plus-algebraic sum of a finite number

of ultimately geometric sequences with rates \;, # ¢ and periods ¢;,. So {(/1®k )pa )} heso
is a max-plus-algebraic sum of ultimately geometric sequences with rates \;. # ¢ and
periods ¢;,. Hence, it follows from Lemma 2.1 that (10) and the last statement of the
lemma hold. O

Corollary 2.6 Let Ae R2*™ be a matriz of the form (7) where the matrices Ay, Ago, ...,
Ay are square and irreducible. Let \; and ¢; be respectively the max-plus-algebraic eigenvalue
and the cyclicity of Ay fori=1,...,1. Let a;, Aij and c;; be defined as in Lemma 2.4. Then



there exists an integer K such that

Vi,je{l,...,l} withi>j, Vp € o;,Vq € a;j, Is € {0,...,¢;j — 1} such that

~ _kciits+tci; ~ keciitsteii+1 ~
<A®” T AT e ... e A®

kci]- +s+2c;;—1 >
pq

k‘Cij-f—S kcij+s+1

i A A A okcijtstej—1
g e (40 & A® & @ AT ok > K
Pq
where \;j = max A;;.
Proof: This is a direct consequence of the last statement of Lemma 2.4. O

The following example shows that the lem in the definition of ¢;; in Lemma 2.4 is necessary
(Lemma 4 of [1] incorrectly uses max instead of lem.).

Example 2.7 Consider the matrix

h

I
oo o oo o|on
oo o oo|lo oo

M OO0 0 O

MM O O O M
Mm|m O Ofm MM
M| O O O M

MO m O|h MM

This matrix is in max-plus-algebraic Frobenius normal form and its block structure is in-
dicated by the vertical and horizontal lines. The precedence graph of A is represented in
Figure 2. The sets and variables of Lemma 2.4 have the following values for A: a; = {1},
Qg = {2,3}, a3 = {4,5,6}, a4 = {7}, )\1 = )\4 =g, )\2 = /\3 = 0, Cl = C4 = 1, Cy = 2 and
c3 = 3. Now we consider the ultimate behavior of the sequence {(A@’k)alm};o:o. Note that
Sia = {{2},{3}}, T1a = {2,3}, T'a3 = {0}, and c¢14 = lem(c, c3) = lem(2,3) = 6. We have

{(fl‘gk)alm};":o = ¢,0,60,0,0,¢,0,¢,0,0,0,¢,0,¢,0,0,0,¢,0,£,0,0,0, ...

The period of this sequence is given by ¢14 = 6 = lem(cg, c3). Hence, the lem in the definition
of ¢;; in Lemma 2.4 is really necessary. O

The following example shows that the sequence { (121®k)¢j}2°:1 is in general not ultimately
geometric (Lemma 4 of [1] and the original version of Lemma C.1.4 on p. 275 incorrectly

e . . 2ok . . .
state that if i < j then the matrix sequence {A®" }}° ; is ultimately geometric).

Example 2.8 We construct the matrix A from the matrix A of Example 2.7 by replacing
a23 by 2 and keeping all other entries. Now we have Ao = 1. The values of the other variables
and sets of Lemma 2.4 are the same as for the matrix A of Example 2.7. We have

<k
{(A°Naras ooy = €,0,6,2,0,4,¢,6,¢,8,0,10,¢,12,¢,14,0,16,¢,18,¢, 20,0, 22, . ...

This sequence is ultimately periodic with period c14 = 6 and with rates v = v =€, 11 =
<k . :

13 =75 =1 = A2 and 74 = 0 = A\g. So the sequence {(A®");;};2, is in general not ultimately

geometric. O

10



Figure 2: The precedence graph G(A) of the matrix A of Example 2.7. All the arcs have
weight 0.
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