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Abstract

This is the list of errata and some corrections for the PhD thesis “Max-Algebraic
System Theory for Discrete Event Systems” (Fac. Applied Sciences, K.U.Leuven, Belgium,
Feb. 1996) of Bart De Schutter.

1 List of errata

p. 6 Line -12: The equation number “(1.5)” at the end of this line should be removed.

p. 24 Line -18: “to only” should be replaced by “the only”.

p. 37 Line 7: “Ax = b” should be replaced by “A⊗ x = b”.

p. 42 Line 8: “Rmax is not a group” should be replaced by “(Rε,⊕) is not a group”.

p. 47 Line 24: “det⊕ A∇ ε” should be replaced by “det⊕ A∇/ ε”.

p. 47 Line 25: “det⊕ A∇ ε” should be replaced by “det⊕ A∇/ ε”.

p. 57 Figure 3.2
Change the upper part of the dotted line that represents the intersection of Gα and
Gδ by a full line.
Change the upper part of the dotted line that indicates the intersection of Gδ and
Gγ by a full line.
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p. 58 Line 15: the words “are contained” should be removed.

p. 62 Line -8: “{1, 2, . . . , p}” should be replaced by “{1, 2, . . . , n}”.

p. 66 Line -2: “j = 1, 2, . . . , n” should be replaced by “i = 1, 2, . . . , n”.

p. 75 Line -1: “e2” should be replaced by “e2”.

p. 76 Line 2 of Adjacency Test 2: “e2” should be replaced by “e2”.

p. 93 Line -10: “cu” should be replaced by “xc” and “eu” should be replaced by “xe”
(twice).

p. 157 Line -10: “54, 54]” should be replaced by “54, 56]”.

p. 158 Line -6: “αjA.,ij” should be replaced by “αj ⊗A.,ij”.
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p. 161 Line 1: “triple” should be replaced by “4-tuple”.

p. 161 Line 15: “triple” should be replaced by “4-tuple”.

p. 169 Line 12: “State Realization” should be replaced by “State Space Realization”.

p. 171 Line 23: “numbers” should be replaced by “number”.

p. 193 Line -4: “1,2” should be replaced by “1, 2”, i.e. the font style should be changed.

p. 195 Line -14: “cancelation” should be replaced by “cancellation”.

p. 196 Line 11: “If” should be replaced by “If µ3µ6 − µ2µ5 6= 0 and if”.

p. 197 Line -14: “algebra” should be replaced by “Algebra”.

p. 198 In the first line after formula (7.12) the words “for all i” might be put before “ lim
i→∞

ai =

ε”.

p. 199 In formula (7.13) the entry on the last row and the last column of the matrix
G(n, i, k, c, s) should be a 1 instead of a 0.

p. 208 Line 5: “exponentials” should be replaced by “exponents”.

p. 209 Line 8: “then” should be replaced by “that”.

p. 235 In the heading of this page the word “Chapter” has to be replaced by “Appendix”.
This also holds for the other even numbered pages in the ranges pp. 236–242, pp. 288–
304 and pp. 308–314.

p. 236 Line -7: The words “that contains” may be added before “zmax{dom⊕ Aϕϕ | ϕ∈Ck
n}”.

p. 238 Line 2: “1 ∈ I” should be replaced by “1 ∈ J ”.

p. 238 Line 10: Add “⊗” between “ck” and “A⊗
n−k

” (both on the left-hand side and the
right-hand side of the equation).

p. 238 Line 10: Add “⊗” between “ck” and “λ⊗
n−k

” (both on the left-hand side and the
right-hand side of the equation).

p. 275 Line -6: “for i = 1, 2, . . . , n” should be replaced by “for i = 1, 2, . . . , l”.

p. 275 There is an error in the formulation and the proof of Lemma C.1.4. See Section 2.1
for a corrected version.

p. 279–281 Since there was an error in the formulation and the proof of Lemma C.1.4,
the proof of Lemma 6.3.7 is not entirely correct anymore. However, by taking into
account the last statement of Lemma 2.4, which is the corrected version of Lemma
C.1.4 (see Section 2.1), and by using a reasoning that is similar to the current one, it
can be shown that Lemma 6.3.7 still holds.
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p. 287 Line -4: “with a negative dominant exponent” should be added after the word “se-
ries”.
Line -2: “ai ∈ R” should be replaced by “ai < 0”.
Remark: Note that this correction does not invalidate the proofs of Lemma 7.3.2
and Proposition 7.3.3 since there Lemma D.1.1 has been applied only on series with
a negative dominant exponent.

p. 288 Lines 1–4 (“Since f(x) . . . also converges absolutely.”) should be removed.
In lines 5–8, “ci” should be replaced by “ai”, “γi” should be replaced by “αi” and
“i = 1” should be replaced by “i = 0”.
Lines 9–10: “, which . . . in [K,∞).” should be replaced by “.”.

p. 288 Line 6: “<” should be replaced by “6”.

p. 327 Line 3 of reference [147]: “the the” should be replaced by “the”.

2 Corrections

2.1 The corrected version of Lemma C.1.4 on p. 275

The following two technical lemmas will be used in the proof of the corrected version of
Lemma C.1.4.

Lemma 2.1 Consider m ultimately geometric sequences h1, . . . , hm with rates different from
ε. Let ci be the period of hi and let λi be the rate of hi for i = 1, . . . ,m. If g = h1 ⊕ · · · ⊕ hm
and if c = lcm(c1, . . . , cm) then

∃K ∈ N, ∃γ0, . . . , γc−1 ∈ {λ1, . . . , λm} such that

gkc+c+s = γs
⊗
c
⊗ gkc+s for all k > K and for s = 0, . . . , c− 1 . (1)

Furthermore, there exists at least one index s ∈ {0, . . . , c− 1} such that the smallest γs for

which (1) holds is equal to
m
⊕

i=1

λi.

Lemma 2.2 Consider m ultimately geometric sequences h1, . . . , hm with rates different from
ε. Let ci be the period of hi and let λi be the rate of hi for i = 1, 2, . . . ,m. If g = h1⊗ . . .⊗hm
and if c = lcm(c1, . . . , cm) then

∃K ∈ N, ∃γ0, . . . , γc−1 ∈ Rε such that

gkc+c+s = γs
⊗
c
⊗ gkc+s for all k > K and for s = 0, . . . , c− 1 . (2)

There exists at least one index s ∈ {0, 1, . . . , c− 1} such that the smallest γs for which (2)

holds is equal to
m
⊕

i=1

λi. Moreover, for k∗ large enough {gk}
∞
k=k∗ can be written as a finite

sum of ultimately geometric sequences with rates λi and periods ci.
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Proof of Lemma 2.1 : In this proof we always assume that i ∈ {1, . . . ,m}, s, s∗ ∈
{0, . . . , c− 1} and k, l ∈ N. Since each sequence hi is ultimately geometric, there exists
an integer K such that (hi)k+ci = λi

⊗
ci
⊗ (hi)k for all k > K and for all i. Hence,

(hi)k+pci = λi
⊗
pci

⊗ (hi)k for all p ∈ N, for all k > K and for all i . (3)

Since c = lcm(c1, . . . , cm) there exist positive integers w1, . . . , wm such that c = wici for all i.
Select L ∈ N with Lc > K. Consider an arbitrary index s. Since Lc+ s > K, it follows from
(3) that

(hi)lc+s = (hi)Lc+s+(l−L)wici = λi
⊗
(l−L)wici

⊗ (hi)Lc+s = λi
⊗
(l−L)c

⊗ (hi)Lc+s (4)

for all l > L and for all i. Define Ns = { i | (hi)Lc+s 6= ε}. We consider two cases:

• If Ns = ∅ then (hi)Lc+s = ε for all i and thus also (hi)lc+s = ε for all l > L and for all

i by (4). Hence, glc+s = ε for all l > L. So if we set γs = λ1 and select K > Ks
def
= L

then (1) holds for this case.

• If Ns 6= ∅ then we define γs = max
i∈Ns

λi and is = argmax
i∈Ns

{

(hi)Lc+s

∣

∣λi = γs
}

. By

(4) we have (hi)lc+s = (hi)Lc+s + (l − L)cλi for all l > L and for all i. Furthermore,
λis > λi for all i, and ε 6= (his)Lc+s > (hi)Lc+s for all i with λi = γs. So if we define

Ks = L+max

(

0, max
i∈Ns
λi 6=γs

((hi)Lc+s − (his)Lc+s

c(γs − λi)

)

)

with max ∅ = 0 by definition, then we

have (his)lc+s > (hi)lc+s for all l > Ks and all i. Hence, glc+s = (his)lc+s for all l > Ks.
As a consequence, (1) also holds for this case if we select K > Ks.

So if we define K = max(K0,K1, . . . ,Kc−1) then (1) holds for all s.

Assume

m
⊕

i=1

λi = λj . Since λj 6= ε, there exists at least one index s∗ such that (hj)Lc+s∗ 6= ε.

Since glc+s∗ = (his∗ )lc+s∗ for all l > K and since λ = λis∗ is the rate of his∗ , γs = λis∗ = λj is
also the smallest γs for which (1) holds. ✷

Proof of Lemma 2.2 : For sake of simplicity, we shall only prove the lemma for the case
m = 2. The proof for m > 2 follows similar lines.
In this proof we always assume that r, s ∈ {0, . . . , c− 1}, p, q, i, k ∈ N.
Since h1 and h2 are ultimately geometric, there exists an integer L such that

(hi)Lc+pc+s = λi
⊗
pc

⊗ (hi)Lc+s for all p, r and i = 1, 2 (5)

(cf. (4) with l = L+ p). We have

(h1 ⊗ h2)k =
Lc+c−1
⊕

i=0

(h1)i ⊗ (h2)k−i ⊕
k−Lc−c
⊕

i=Lc+c

(h1)i ⊗ (h2)k−i ⊕
Lc+c−1
⊕

i=0

(h1)k−i ⊗ (h2)i (6)

for all k > 2(Lc+ c). Now we consider an arbitrary term of the second max-plus-algebraic of
(6). Let k > 2(Lc+c) and i ∈ {Lc+ c, . . . , k − Lc− c}. Select p, q, r, s such that i = Lc+pc+r
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and k − i = Lc + qc + s. It is easy to verify that we have α⊗
p
⊗ β⊗

q
6 α⊗

p+q
⊕ β⊗

p+q
for

all α, β ∈ Rε and all p, q ∈ N. Hence,

(h1)i ⊗ (h2)k−i = λ1
⊗
pc

⊗ (h1)Lc+r ⊗ λ2
⊗
qc

⊗ (h2)Lc+s (by (5))

6

(

λ1
⊗
(p+q)c

⊕ λ2
⊗
(p+q)c

)

⊗ (h1)Lc+r ⊗ (h2)Lc+s

6 λ1
⊗
(p+q)c

⊗ (h1)Lc+r ⊗ (h2)Lc+s ⊕ λ2
⊗
(p+q)c

⊗ (h1)Lc+r ⊗ (h2)Lc+s

6 (h1)Lc+r ⊗ (h2)Lc+(p+q)c+s ⊕ (h1)Lc+(p+q)c+r ⊗ (h2)Lc+s (by (5)).

Since Lc+r 6 Lc+c−1 and Lc+r+Lc+s+(p+q)c = k, the term (h1)Lc+r⊗(h2)Lc+(p+q)c+s

also appears in the first max-plus-algebraic sum of (6). Similarly, it can be shown that
(h1)Lc+(p+q)c+r ⊗ (h2)Lc+s also appears in the third max-plus-algebraic sum of (6). So the
second max-plus-algebraic sum in (6) is redundant and can be omitted.
Now we define the sequences fi,j for i = 0, . . . , Lc+c and j = 1, 2 with (f1,i)k = (h1)i⊗(h2)k−i

and (f2,i)k = (h1)k−i ⊗ (h2)i. The sequences fi,j are ultimately geometric with rate λj and

cyclicity cj . As shown above, the terms of h1 ⊗ h2 coincide with
⊕

i,j

fi,j for k large enough.

Therefore, we can now apply Lemma 2.1 provided that we selectK such thatK > 2(Lc+c). ✷

Note that in general we do not have γs =

m
⊕

i=1

λi for all indices s in Lemma 2.1 as is shown

by the following example.

Example 2.3 Consider the ultimately geometric sequences

h1 = 0, ε, 1, 3, ε, 4, 6, ε, 7, 9, ε, 10, . . .

h2 = 0, ε, 0, ε, 0, ε, 0, ε, 0, ε, 0, ε, . . .

with λ1 = 1, c1 = 3, λ2 = 0 and c2 = 2. We have

h1 ⊕ h2 = 0, ε, 1, 3, 0, 4, 6, ε, 7, 9, 0, 10, 12, ε, 13, 15, 0, 16, . . .

This sequence is ultimately periodic with c = lcm(c1, c2) = lcm(2, 3) = 6. Furthermore, the
smallest γss for which (1) holds are γ1 = γ3 = γ4 = γ6 = 1, γ2 = ε and γ5 = 0. Note that
ε = γ2 6= λ1 ⊕ λ2 = 1⊕ 0 = 1 and ε = γ2 6∈ {λ1, λ2} = {1, 0}. ✷

Lemma 2.4 (Corrected version of Lemma C.1.4) Let Â ∈ R
n×n
ε be a matrix of the

form

Â =











Â11 Â12 . . . Â1l

ε Â22 . . . Â2l
...

...
. . .

...

ε ε . . . Âll











(7)

where the matrices Â11, . . . , Âll are square and irreducible. Let λi and ci be respectively the
max-plus-algebraic eigenvalue and the cyclicity of Âii for i = 1, . . . , l. Define sets α1, . . . , αl
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such that Âαiαj
= Âij for all i, j with i 6 j.

Define

Sij =
{

{i0, . . . , is} ⊆ {1, . . . , l}
∣

∣ i = i0 < i1 < . . . < is = j and

Âirir+1
6= ε for r = 0, . . . , s− 1

}

Γij =
⋃

γ∈Sij

γ

Λij =

{

{λt|t ∈ Γij} if Γij 6= ∅ ,

{ε} if Γij = ∅ ,

cij =

{

lcm{ct | t ∈ Γij } if Γij 6= ∅ and ct 6= 0 for some t ∈ Γij ,

1 otherwise ,

for all i, j with i < j. We have

∀i, j ∈ {1, . . . , l}with i > j :
(

Â⊗
k
)

αiαj

= εni×nj
for all k ∈ N . (8)

Moreover, there exists an integer K ∈ N such that

∀i ∈ {1, . . . , l} :
(

Â⊗
k+ci

)

αiαi

= λi
⊗
ci
⊗
(

Â⊗
k
)

αiαi

for all k > K (9)

and

∀i, j ∈ {1, . . . , l}with i < j, ∀p ∈ αi, ∀q ∈ αj , ∃γ0, . . . , γcij−1 ∈ Λij such that
(

Â⊗
kcij+cij+s

)

pq
= γs

⊗
cij

⊗
(

Â⊗
kcij+s

)

pq
for all k > K and for s = 0, . . . , cij − 1 .

(10)

Furthermore, for each combination i, j, p, q with i < j, p ∈ αi and q ∈ αj, there exists at
least one index s ∈ {0, . . . , cij − 1} such that the smallest γs for which (10) holds is equal to
maxΛij.

Remark 2.5 Let us give a graphical interpretation of the sets Sij and Γij . Let Ci be the
m.s.c.s. of G(Â) that corresponds to Âii for i = 1, . . . , l. So αi is the vertex set of Ci.
If {i0 = i, i1, . . . , is = j} ∈ Sij then there exists a path from a vertex in Cir to a vertex in
Cir−1

for each r ∈ {1, . . . , s}. Since each m.s.c.s. Ci of G(Â) is strongly connected, this implies
that there exists a path from a vertex in Cj to a vertex in Ci that passes through Cis−1

, Cis−2
,

. . . , Ci1 .
If Sij = ∅ then there does not exist any path from a vertex in Cj to a vertex in Ci.
The set Γij is the set of indices of the m.s.c.s.’s of G(Â) through which some path from a
vertex of Cj to a vertex of Ci passes. ✸

Proof of Lemma 2.4 : Since the matrices Âαiαi
are irreducible, we have (9).

Recall that (Â⊗
k
)ij is equal to the maximal weight over all paths of length k from j to i in
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u0

v0

ur−1

vr−1
ur

vr ur+1

vr+1

us

vs

G(Â)

Ci = Ci0

Cj = Cis

Cir−1

Cir Cir+1

Figure 1: Illustration of the proof of Lemma 2.4. There exists a path from vertex us of m.s.c.s.
Cj to vertex v0 of m.s.c.s. Ci that passes through the m.s.c.s.’s Cis−1

, Cis−2
, . . . , Ci1 .

G(Â) where the maximal weight is equal to ε by definition if there does not exist any path of
length k from j to i. Let Ci be the m.s.c.s. of G(Â) that corresponds to Âii for i = 1, . . . , l.
Since Âαiαj

= εni×nj
if i > j, there are no arcs from any vertex of Cj to a vertex in Ci. As

a consequence, (8) holds.
Now consider i, j ∈ {1, . . . , l} with i < j. We distinguish three cases:

• If Γij = ∅ then there does not exist a path from a vertex in Cj to a vertex in Ci. Hence,
(

Â⊗
k)

αiαj
= εni×nj

for all k ∈ N. Since in this case we have Λij = {ε} and cij = 1,

this implies that (10) and the last statement of the lemma hold if Γij = ∅.

• If Γij 6= ∅ and Λij = {ε} then Âtt = [ε ] and ct = 1 for all t ∈ Γij . So there exist paths
from a vertex in Cj to a vertex in Ci, but each path passes only through m.s.c.s.’s that
consist of one vertex and contain no loop. Such a path passes through at most #Γij

of such m.s.c.s.’s (Cj and Ci included). This implies that there does not exist a path
with a length larger than or equal to #Γij from a vertex in Cj to a vertex in Ci. Hence,
(

A⊗
k)

αiαj
= εni×nj

for all k > #Γij . Furthermore, cij = 1 since ct = 1 for all t ∈ Γij .

Hence, (10) and the last statement of the lemma also hold if Γij = ∅ and Λij = {ε}.

• Finally, we consider the case with Γij 6= ∅ and Λij 6= {ε}. Select an arbitrary vertex p
of Ci and an arbitrary vertex q of Cj . For each set γ = {i0, . . . , is} ∈ Sij we define

S(γ) =
{

(U, V )
∣

∣U = {u0, . . . , us}, V = {v0, . . . , vs}, us = q, v0 = p, and

ur ∈ αir , vr+1 ∈ αir+1
and (Â)urvr+1

6= ε for r = 0, . . . , s
}

.
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So if (U, V ) ∈ S(γ) with U = {u0, . . . , us} and V = {v0, . . . , vs} then there exists a
path from q to p that passes through m.s.c.s. Cir for r = 0, . . . , s and that enters Cir at
vertex ur for r = 0, . . . , s− 1 and that exits from Cir through vertex vr for r = 1, . . . , s
(see also Figure 1). Hence, we have

(

Â⊗
k
)

pq
=

⊕

γ∈Sij

⊕

(U,V )∈S(γ)

g(γ, U, V ) for all k ∈ N0

where

g(γ, U, V ) =
⊕

p0,...,ps∈N
p0+ ...+ps=k−s

(

Â⊗
p0

i0i0

)

pu0
⊗
(

Âi0i1

)

u0v1
⊗
(

Â⊗
p1

i1i1

)

v1u1
⊗ . . .

⊗
(

Âis−1is

)

us−1vs
⊗
(

Â⊗
ps

isis

)

vsq
(11)

with the empty max-plus-algebraic sum equal to ε by definition. Each term of the
max-plus-algebraic sum in (11) represents the maximal weight over all paths from q to
p that consist of the concatenation of paths of length pr from vertex ur to vertex vr of
Cir for r = 0, . . . , s and paths of length 1 from vertex vr+1 of Cir+1

to vertex ur of Cir

for r = 0, . . . , s where by definition the maximal weight is equal to ε if no such paths
exist. Note that if λir = ε for some r then every term in the max-plus-algebraic sum

(11) for which pr > 0 will be equal to ε. Furthermore, since ε⊗
0
= 0 by definition, this

means that each factor of the form
(

Â⊗
pr

irir

)

urvr
for which λir = ε may be removed from

the max-plus-algebraic sum (11). Note that indices t for which λt = ε or equivalently
ct = 1 do not influence the value of cij . Also note that since Γij 6= ∅ and Λij 6= {ε} we
have at least one combination γ, U, V for which the sequence (11) has a rate λir that is
different from ε.
Since Âirir is irreducible, we have

(

Â⊗
k+cir

irir

)

vrur

= λir
⊗
cir ⊗

(

Â⊗
k

irir

)

vrur

for k large enough .

Hence, if g(γ, U, V ) is different from ε, i.e. if it still contains terms after the factors
for which λir = ε have been removed, g(γ, U, V ) is a max-plus-algebraic product of
ultimate geometric sequences with rates λir 6= ε and periods cir . From Lemma 2.2 it
follows that g(γ, U, V ) is an ultimately periodic sequence and that for k∗ large enough
{
(

g(γ, U, V )
)

k
}∞k=k∗ can be written as the max-plus-algebraic sum of a finite number

of ultimately geometric sequences with rates λir 6= ε and periods cir . So {(Â⊗
k
)pq}

∞
k=0

is a max-plus-algebraic sum of ultimately geometric sequences with rates λir 6= ε and
periods cir . Hence, it follows from Lemma 2.1 that (10) and the last statement of the
lemma hold. ✷

Corollary 2.6 Let Â ∈ R
n×n
ε be a matrix of the form (7) where the matrices Â11, Â22, . . . ,

Âll are square and irreducible. Let λi and ci be respectively the max-plus-algebraic eigenvalue
and the cyclicity of Âii for i = 1, . . . , l. Let αi, Λij and cij be defined as in Lemma 2.4. Then
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there exists an integer K such that

∀i, j ∈ {1, . . . , l}with i > j, ∀p ∈ αi, ∀q ∈ αj , ∃s ∈ {0, . . . , cij − 1} such that
(

Â⊗
kcij+s+cij

⊕ Â⊗
kcij+s+cij+1

⊕ . . . ⊕ Â⊗
kcij+s+2cij−1

)

pq
=

λij
⊗
cij

⊗
(

Â⊗
kcij+s

⊕ Â⊗
kcij+s+1

⊕ . . . ⊕ Â⊗
kcij+s+cij−1

)

pq
for all k > K ,

where λij = maxΛij.

Proof : This is a direct consequence of the last statement of Lemma 2.4. ✷

The following example shows that the lcm in the definition of cij in Lemma 2.4 is necessary
(Lemma 4 of [1] incorrectly uses max instead of lcm.).

Example 2.7 Consider the matrix

A =





















ε 0 ε 0 ε ε ε

ε ε 0 ε ε ε 0
ε 0 ε ε ε ε ε

ε ε ε ε ε 0 0
ε ε ε 0 ε ε ε
ε ε ε ε 0 ε ε

ε ε ε ε ε ε ε





















.

This matrix is in max-plus-algebraic Frobenius normal form and its block structure is in-
dicated by the vertical and horizontal lines. The precedence graph of A is represented in
Figure 2. The sets and variables of Lemma 2.4 have the following values for A: α1 = {1},
α2 = {2, 3}, α3 = {4, 5, 6}, α4 = {7}, λ1 = λ4 = ε, λ2 = λ3 = 0, c1 = c4 = 1, c2 = 2 and

c3 = 3. Now we consider the ultimate behavior of the sequence {(A⊗
k
)α1α4

}∞k=0. Note that
S14 =

{

{2}, {3}
}

, Γ14 = {2, 3}, Γ23 = {0}, and c14 = lcm(c2, c3) = lcm(2, 3) = 6. We have

{(Ã⊗
k
)α1α4

}∞k=0 = ε, 0, ε, 0, 0, 0, ε, 0, ε, 0, 0, 0, ε, 0, ε, 0, 0, 0, ε, 0, ε, 0, 0, 0, . . .

The period of this sequence is given by c14 = 6 = lcm(c2, c3). Hence, the lcm in the definition
of cij in Lemma 2.4 is really necessary. ✷

The following example shows that the sequence {(Â⊗
k
)ij}

∞
k=1 is in general not ultimately

geometric (Lemma 4 of [1] and the original version of Lemma C.1.4 on p. 275 incorrectly

state that if i < j then the matrix sequence {Â⊗
k
}∞k=0 is ultimately geometric).

Example 2.8 We construct the matrix Ã from the matrix A of Example 2.7 by replacing
a23 by 2 and keeping all other entries. Now we have λ2 = 1. The values of the other variables
and sets of Lemma 2.4 are the same as for the matrix A of Example 2.7. We have

{(Ã⊗
k
)α1α4

}∞k=0 = ε, 0, ε, 2, 0, 4, ε, 6, ε, 8, 0, 10, ε, 12, ε, 14, 0, 16, ε, 18, ε, 20, 0, 22, . . .

This sequence is ultimately periodic with period c14 = 6 and with rates γ0 = γ2 = ε, γ1 =

γ3 = γ5 = 1 = λ2 and γ4 = 0 = λ4. So the sequence {(Â⊗
k
)ij}

∞
k=0 is in general not ultimately

geometric. ✷
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Figure 2: The precedence graph G(A) of the matrix A of Example 2.7. All the arcs have
weight 0.
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