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Abstract

Discrete event systems (DESs) are systems in which the state changes only at
discrete points in time in response to the occurrence of particular events. Typ-
ical examples of DESs are: flexible manufacturing systems, telecommunication
networks, parallel processing systems and traffic control systems. One of the
frameworks that can be used to model and to analyze certain types of DESs
is the max-plus algebra, which has maximization and addition as basic opera-
tions. In this thesis we develop tools for solving some fundamental problems
in the max-algebraic system theory for DESs.

First we introduce a mathematical programming problem: the Extended
Linear Complementarity Problem (ELCP). We develop an algorithm to find
all the solutions of an ELCP.

We show that the problem of solving a system of multivariate max-algebraic
polynomial equalities and inequalities is equivalent to an ELCP. This enables us
to solve many other max-algebraic problems such as computing max-algebraic
matrix factorizations, performing max-algebraic state space transformations,
computing state space realizations of the impulse response of a max-linear
time-invariant DES, computing max-algebraic singular value decompositions
and QR decompositions, and so on.

We also study the max-algebraic characteristic polynomial and state space
transformations for max-linear time-invariant DESs. Next we develop a method
to solve the minimal state space realization problem for max-linear time-invari-
ant DESs. First we use our results on the max-algebraic characteristic polyno-
mial to develop a procedure to determine a lower bound for the minimal system
order of a max-linear time-invariant DES. Then we show that the ELCP can be
used to compute all fixed order partial state space realizations and all minimal
state space realizations of the impulse response of a max-linear time-invariant
DES.

Finally we prove the existence of max-algebraic analogues of two basic ma-
trix decompositions from linear algebra: the singular value decomposition and
the QR decomposition.
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Korte Inhoud

Een discrete-gebeurtenissysteem (DGS) is een systeem waarin de toestands-
overgangen veroorzaakt worden door gebeurtenissen die op discrete tijdstip-
pen plaatsvinden. Typische voorbeelden van DGS’en zijn: flexibele produktie-
systemen, telecommunicatienetwerken en spoorwegnetwerken. Bepaalde types
DGS’en kunnen gemodelleerd en geanalyseerd worden met behulp van de zoge-
naamde max-plus-algebra. De basisbewerkingen van de max-plus-algebra zijn
het maximum en de optelling. In dit proefschrift ontwikkelen we een aantal
technieken om enkele belangrijke problemen uit de max-algebräısche systeem-
theorie voor DGS’en op te lossen.

Eerst stellen we een wiskundige-programmatieprobleem voor: het Uitge-
breide Lineaire Complementariteitsprobleem (ULCP). We ontwikkelen een al-
goritme om alle oplossingen van een ULCP te bepalen.

Vervolgens tonen we aan dat het oplossen van een stelsel multivariabele
max-algebräısche veeltermvergelijkingen en veeltermongelijkheden equivalent
is met het oplossen van een ULCP. Dit stelt ons in staat om een aantal an-
dere max-algebräısche problemen op te lossen zoals b.v. het berekenen van
max-algebräısche matrixfactorisaties, het bepalen van max-algebräısche toe-
standsruimtetransformaties, het berekenen van toestandsruimterealisaties van
de impulsresponsie van een max-lineair tijdsinvariant DGS, het berekenen van
max-algebräısche singuliere-waardenontbindingen en QR-ontbindingen, . . . .

We bestuderen de max-algebräısche karakteristieke veelterm en toestands-
ruimtetransformaties voor max-lineaire tijdsinvariante DGS’en. Vervolgens
ontwikkelen we een methode om het minimale-toestandsruimterealisatiepro-
bleem voor max-lineaire tijdsinvariante DGS’en op te lossen. Steunend op onze
resultaten i.v.m. de max-algebräısche karakteristieke veelterm ontwikkelen we
een techniek om een ondergrens voor de minimale systeemorde van een max-
lineair tijdsinvariant DGS te bepalen. Daarna tonen we aan dat het ULCP kan
gebruikt worden om alle partiële toestandsruimterealisaties van een bepaalde
orde en alle minimale toestandsruimterealisaties van de impulsresponsie van
een max-lineair tijdsinvariant DGS te berekenen.

Tenslotte bewijzen we het bestaan van max-algebräısche equivalenten van
twee belangrijke matrixontbindingen uit de lineaire algebra: de singuliere-waar-
denontbinding en de QR-ontbinding.
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Notation

Here we list some of the symbols and acronyms that occur frequently in this
thesis and with which the reader might not be familiar. The numbers in the
last column refer to the page on which the symbol or concept in question is
defined.

List of Symbols

Sets

∅ the empty set
#S cardinality of the set S
S ⊆ T S is a subset of T
S ⊂ T S is a proper subset of T
N set of the nonnegative integers: N = {0, 1, 2, . . . }
N0 set of the positive integers: N0 = N \ {0}
Z set of the integers
Q set of the rational numbers
R set of the real numbers
R+ set of the nonnegative real numbers
R0 set of the real numbers except for 0: R0 = R \ {0}
R+

0 set of the positive real numbers: R+
0 = R+ \ {0}

C set of the complex numbers
[a, b] closed interval in R: [a, b] = {x ∈ R | a 6 x 6 b }
(a, b) open interval in R: (a, b) = {x ∈ R | a < x < b }
Ckn set of all the subsets with cardinality k of the set

{1, 2, . . . , n}
33

Pn set of the permutations of the set {1, 2, . . . , n} 33
Pn,even set of the even permutations of the set {1, 2, . . . , n} 34
Pn,odd set of the odd permutations of the set {1, 2, . . . , n} 34

Functions

f :D → T function with domain of definition D and target T 32
dom f domain of definition of the function f 32

v



vi Notation

log x natural logarithm of x

O(f) any real function g such that lim sup
x→∞

|g(x)|
f(x)

is finite 32

bxc largest integer less than or equal to x 32
∼ asymptotic equivalence 193

Matrices and Vectors

Rm×n set of the m by n matrices with real entries
Rn set of the real column vectors with n components:

Rn = Rn×1

AT transpose of the matrix A
In n by n identity matrix
Om×n m by n zero matrix
ai ith component of the vector a 32
aα subvector of the vector a consisting of the compo-

nents indexed by α
32

aij , (A)ij entry of the matrix A on the ith row and the jth
column

32

Ai,. ith row of the matrix A 32
A.,j jth column of the matrix A 32
Aαβ submatrix of the matrix A consisting of the rows in-

dexed by α and the columns indexed by β
32

Aα,. submatrix of the matrix A consisting of the rows in-
dexed by α

32

‖A‖F Frobenius norm of the matrix A 192
‖A‖2 2-norm of the matrix A 192

Extended Linear Complementarity Problems (ELCPs)

X cen a minimal complete set of central generators of the
solution set of an ELCP

94

X ext a minimal complete set of extreme generators of the
solution set of an ELCP

94

X fin a minimal complete set of finite points of the solution
set of an ELCP

94

Λ the set of ordered pairs of maximal cross-complemen-
tary subsets of X ext and X fin

94

Max-Plus Algebra

⊕ max-algebraic addition 34
⊗ max-algebraic multiplication 34

max-algebraic division 35
ε zero element for ⊗: ε = −∞ 35



Notation vii

x⊗
r

rth max-algebraic power of x 35
En n by n max-algebraic identity matrix 35
εm×n m by n max-algebraic zero matrix 35

A⊗
k

kth max-algebraic power of the matrix A 36
Rε R ∪ {−∞} 35
S set of the max-real numbers 44
T set of the max-complex numbers 196
S⊕ set of the max-positive or max-zero numbers 44
S	 set of the max-negative or max-zero numbers 44
S∨ set of the max-signed numbers: S∨ = S⊕ ∪ S	 44
S• set of the balanced numbers 44
Rmax max-plus algebra: Rmax = (Rε,max,+) 35
Smax symmetrized max-plus algebra: Smax = (S,⊕,⊗) 44
Tmax max-complex max-plus algebra: Tmax = (T,⊕,⊗) 197
	 max-algebraic minus operator 43
(·)• balance operator 43
∇ balance relation 43
x⊕ max-positive part of x 44
x	 max-negative part of x 44
|x|

⊕
max-absolute value of x 43

‖A‖
⊕

max-algebraic norm of the matrix A 45
sgn⊕ (σ) max-algebraic signature of the permutation σ 46
det⊕A max-algebraic determinant of the matrix A 46
rank⊕ (A) max-algebraic minor rank of the matrix A 47
rank⊕,wc (A) max-algebraic weak column rank of the matrix A 158
rank⊕,cc (A) max-algebraic consecutive column rank of the matrix

A
165

Max-algebraic State Space Realizations

H(G) block Hankel matrix that corresponds to the impulse
response G

158

Rr(G,N) set of the rth order state space realizations of the first
N Markov parameters of the impulse response G

170

Rr(G) set of the rth order state space realizations of the
impulse response G

173

Rnor
r (G,N) set of the normalized rth order state space realiza-

tions of the first N Markov parameters of the impulse
response G

173

Rnor
r (G) set of the normalized rth order state space realiza-

tions of the impulse response G
173

Miscellaneous

G(A) precedence graph of the matrix A 39



viii Notation

dimV dimension of the vector space V 54
L(P) lineality space of the polyhedron P 54
(
n

k

)

binomial coefficient:

(
n

k

)

=
n!

(n− k)! k! 33

We use 2 to indicate the end of a proof or an example, and 3 to indicate the
end of a remark.

Remark: The notation we use for the max-algebraic symbols corresponds to
a large extent to that of [3], which is one of the basic references in the field of
the max-plus algebra. Nevertheless, there are a few differences that are mainly
caused by the fact that we use concepts from both conventional algebra and
max-plus algebra in this thesis. The main differences are:

• We have added ⊕ as a subscript in symbols such as det⊕ , rank⊕ , sgn⊕,
‖·‖

⊕
, . . . that are used to indicate max-algebraic concepts in order to

avoid confusion with similar symbols for linear algebra concepts.

• We use a⊗
r

instead of ar to denote the max-algebraic power. Further-
more, we never omit the ⊗ sign.

• We do not use e to denote the identity element for ⊗ in Rε and S. Instead
we use its numerical value (0) to avoid confusion with the number e =
exp(1).

• We use a⊕ and a	 instead of a+ and a− to denote the max-positive and
the max-negative part of a ∈ S. 3

Acronyms

DES Discrete Event System 1
ELCP Extended Linear Complementarity Problem 59
MACP Max-Algebraic Characteristic Polynomial 140
MIMO Multiple Input Multiple Output 156
LCP Linear Complementarity Problem 58
QRD QR Decomposition 192
SISO Single Input Single Output 156
SVD Singular Value Decomposition 193
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Max-Algebräısche
Systeemtheorie voor
Discrete-Gebeurtenis-
systemen

Nederlandse samenvatting

Hoofdstuk 1: Inleiding

Een discrete-gebeurtenissysteem is een asynchroon systeem met toestandsover-
gangen die veroorzaakt worden door gebeurtenissen, die op discrete tijdstip-
pen plaatsvinden. Typische voorbeelden van discrete-gebeurtenissystemen zijn:
flexibele produktiesystemen, telecommunicatienetwerken, spoorwegnetwerken
en computerbesturingssystemen. Een gebeurtenis is dan b.v. het afwerken van
een onderdeel op een machine, het aankomen van een boodschap of een trein,
of de beëindiging van een opdracht.

Voor het beschrijven en bestuderen van discrete-gebeurtenissystemen is er
reeds een breed scala van modellen en modelleringstechnieken beschikbaar, zo-
als Markovketens, Petrinetten, wachtlijnnetwerken, uitgebreide-toestandsma-
chines, veralgemeende semi-Markovprocessen, max-plus-algebra, formele talen,
perturbatie-analyse, computersimulatie, . . . [3, 13, 80, 81, 94, 112, 131, 132,
155]. Elk van deze methodologieën heeft zo zijn voor- en nadelen en het ant-
woord op de vraag welke methode het meest aangewezen is, hangt af van het
te modelleren systeem en van wat we nadien met het resulterende model willen
uitrichten. Eén van de belangrijkste overwegingen die hierbij in beschouwing
moeten genomen worden, is modelleerkracht tegenover analyseerbaarheid: het
blijkt immers dat hoe nauwkeuriger een bepaald model het gedrag van het
gegeven systeem beschrijft, hoe moeilijker het is om analytisch uitspraken te
doen over de eigenschappen van dat model. In ons onderzoek gebruiken wij
max-algebräısche modellen om het gedrag van discrete-gebeurtenissystemen te
beschrijven. Alhoewel we op deze manier slechts een beperkte klasse discrete-
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gebeurtenissystemen kunnen beschrijven, laten deze modellen ons wel toe om
een groot aantal eigenschappen van het gegeven systeem analytisch te bepalen.

De elementen van de max-plus-algebra zijn de reële getallen en −∞. De
basisbewerkingen van de max-plus-algebra zijn het maximum (voorgesteld door
⊕) en de optelling (voorgesteld door ⊗). Het blijkt dat er een merkwaardige
analogie bestaat tussen de basisbewerkingen van de max-plus-algebra aan de
ene kant en de basisbewerkingen uit de conventionele algebra — de optelling
en de vermenigvuldiging — aan de andere kant. Heel wat eigenschappen en
stellingen uit de conventionele (lineaire) algebra zijn na het vervangen van +
door ⊕ en van × door ⊗ immers ook geldig in de max-plus-algebra.

Bovendien kunnen we voor bepaalde types van discrete-gebeurtenissyste-
men — die kunnen omschreven worden als tijdsinvariante deterministische
discrete-gebeurtenissystemen waarin de volgorde van de gebeurtenissen en de
lengte van de activiteiten vaststaan of op voorhand bepaald kunnen worden
— een toestandsruimtebeschrijving opstellen die lineair is in de max-plus-
algebra [3, 20, 33]:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (0.1)

y(k) = C ⊗ x(k) , (0.2)

waarbij de vector x de toestand voorstelt (de componenten van x(k) geven
de tijdstippen aan waarop de verschillende gebeurtenissen voor de k-de keer
plaatsvinden). De vector u bevat de ingangstijden en de vector y bevat de
uitgangstijden. Voor een produktiesysteem komen de componenten van x(k)
b.v. overeen met de tijdstippen waarop de machines aan het k-de contingent
produkten beginnen te werken, de componenten van u(k) geven aan wanneer
de grondstoffen voor het (k−1)-de contingent produkten in het systeem werden
gebracht en de componenten van y(k) geven aan wanneer het k-de contingent
afgewerkte produkten het systeem verlaat. Discrete-gebeurtenissystemen die
met een model van de vorm (0.1) – (0.2) kunnen beschreven worden, worden
max-lineaire tijdsinvariante discrete-gebeurtenissystemen genoemd.

Het eerste doel van ons onderzoek is om uitgaande van de analogie tus-
sen de max-plus-algebra en de conventionele algebra en van de analogie tus-
sen de beschrijving (0.1) – (0.2) en de toestandsruimtebeschrijving voor lineaire
tijdsinvariante systemen te onderzoeken welke concepten, technieken en algorit-
men uit de lineaire systeemtheorie kunnen overgedragen worden naar de max-
algebräısche systeemtheorie voor discrete-gebeurtenissystemen. Ondanks de
sterke gelijkenissen bestaan er echter ook grote verschillen tussen de max-plus-
algebra en de conventionele algebra. Daardoor kunnen we de eigenschappen
en de methodes van de lineaire systeemtheorie niet zo maar mechanisch over-
nemen. Dit heeft tot gevolg dat de max-algebräısche systeemtheorie helemaal
nog niet zo sterk ontwikkeld als de lineaire systeemtheorie. In ons onderzoek
hebben wij dan ook getracht om methodes en technieken te ontwikkelen voor
het oplossen van enkele fundamentele problemen uit de max-algebräısche sys-
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teemtheorie voor discrete-gebeurtenissystemen. Eén van de open problemen in
de max-algebräısche systeemtheorie die we in dit kader bestudeerd hebben is
het minimale-realisatieprobleem voor max-lineaire tijdsinvariante discrete-ge-
beurtenissystemen: gegeven de impulsresponsie van een systeem van de vorm
(0.1) – (0.2) met onbekende systeemmatrices, zoek A, B en C waarbij de di-
mensie van A zo klein mogelijk moet zijn. Het minimale-realisatieprobleem
kan beschouwd worden als één van de centrale problemen van dit proefschrift.
In het kader van ons onderzoek in verband met dit probleem hebben wij ook de
max-algebräısche karakteristieke veelterm, max-algebräısche toestandsruimte-
transformaties en max-algebräısche matrixfactorisaties bestudeerd. Daarnaast
hebben we, met het oog op het ontwikkelen van methodes voor de identifica-
tie van discrete-gebeurtenissystemen, ook onderzoek verricht in verband met
max-algebräısche equivalenten van twee matrixfactorisaties uit de lineaire alge-
bra die een belangrijke rol spelen in een aantal identificatie-algoritmen voor
lineaire systemen [138, 139, 140, 142]: de QR-ontbinding en de singuliere-
waardenontbinding.

Bij dit onderzoek viel ons op dat vele van de optredende max-algebräısche
problemen konden geherformuleerd worden als een wiskundige-programmatie-
probleem dat wij het Uitgebreide Lineaire Complementariteitsprobleem
(ULCP) genoemd hebben. Dit probleem komt neer op het oplossen van een
stelsel lineaire vergelijkingen en ongelijkheden waarin een aantal groepen on-
gelijkheden voorkomen waarbij er in elke groep ten minste één ongelijkheid
voldaan moet zijn met gelijkheid. Wij hebben aangetoond dat het probleem
van het oplossen van een stelsel multivariabele max-algebräısche veeltermverge-
lijkingen en veeltermongelijkheden geherformuleerd kan worden als een ULCP
en omgekeerd. Dit stelt ons in staat om de volgende max-algebräısche proble-
men op te lossen:

• het berekenen van max-algebräısche matrixfactorisaties,

• het berekenen van toestandsruimtetransformaties voor max-lineaire tijds-
invariante discrete-gebeurtenissystemen,

• het berekenen van minimale of partiële realisaties van de impulsresponsie
van een max-lineair tijdsinvariant discrete-gebeurtenissysteem,

• het berekenen van matrices met een gegeven max-algebräısche karakte-
ristieke veelterm,

• het berekenen van de max-algebräısche QR-ontbinding of de max-alge-
bräısche singuliere-waardenontbinding van een matrix,

• . . .

Alhoewel de problemen uit de lineaire algebra en de lineaire systeemtheorie die
met deze max-algebräısche problemen overeenkomen vaak zeer gemakkelijk op
te lossen zijn, is dit niet het geval voor de max-algebräısche problemen. Voor
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stelsel multivariabele max-alge-
bräısche veeltermvergelijkingen
en veeltermongelijkheden

matrices met
een gegeven max-
algebräısche ka-
rakteristieke veel-
term

minimale of par-
tiële realisaties

toestandsruimte-
transformaties

Uitgebreide Lineaire Com-
plementariteitsprobleem

max-algebräısche
matrixfactorisa-
ties

Figuur 0.1: De verbanden tussen het ULCP en enkele max-algebräısche pro-
blemen die in dit proefschrift aan bod komen.

bijna al de bovenvermelde max-algebräısche problemen is de ULCP-benadering
op dit moment de enige manier om het probleem op te lossen.

Het verband tussen enkele van de bovenvermelde problemen is weergege-
ven in Figuur 0.1. We zullen de relaties tussen deze problemen nu wat nader
bespreken. We hebben reeds gezegd dat het ULCP en het oplossen van een
stelsel multivariabele max-algebräısche veeltermvergelijkingen en veeltermon-
gelijkheden equivalent zijn. Een gegeven matrix factoriseren als een produkt
van twee of meer matrices is een speciaal geval van het oplossen van een stelsel
multivariabele max-algebräısche veeltermvergelijkingen en veeltermongelijkhe-
den en kan dus ook opgelost worden met behulp van een ULCP. We kunnen
een toestandsruimtemodel met systeemmatrices A, B en C en begintoestand
x0 transformeren in een equivalent toestandsruimtemodel door een factorisa-

tie te bepalen van de blokmatrices

[
A
C

]

of
[
A B x0

]
. We zullen ook

aantonen dat het berekenen van matrices met een gegeven max-algebräısche
karakteristieke veelterm ook kan gebeuren met behulp van een ULCP.
Voor het bepalen van minimale of partiële realisaties van de impulsresponsie
van een max-lineair tijdsinvariant discrete-gebeurtenissysteem zullen we ver-
schillende methodes voorstellen. De eerste methode kan beschouwd worden als
een uitgebreide max-algebräısche matrixfactorisatie. De tweede methode is een
twee-stapsmethode waarin eerst de A-matrix bepaald wordt met behulp van
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haar max-algebräısche karakteristieke veelterm, vervolgens worden dan de B-
en de C-matrix bepaald via een variant van de uitgebreide matrixfactorisatie
die in de eerste methode gebruikt wordt. Tenslotte kunnen we in sommige ge-
vallen ook toestandsruimtetransformaties gebruiken om een minimale realisatie
van de impulsresponsie van een max-lineair tijdsinvariant discrete-gebeurtenis-
systeem te berekenen, op voorwaarde natuurlijk dat we reeds over een andere
(niet-minimale) realisatie van dit systeem beschikken.

Laten we nu wat nader ingaan op de belangrijkste resultaten die in dit
proefschrift worden voorgesteld.

Hoofdstuk 2: Achtergrondinformatie

In dit hoofdstuk geven we een inleiding tot de max-plus-algebra en de gesym-
metriseerde max-plus-algebra. We behandelen ook enkele basisbegrippen uit de
systeemtheorie voor max-lineaire tijdsinvariante discrete-gebeurtenissystemen.

Om de lezer toe te laten de rest van deze samenvatting te kunnen volgen,
zullen we nu kort enkele van de belangrijkste definities en begrippen behandelen
die in dit hoofdstuk van het proefschrift voorgesteld worden.
De basisbewerkingen van de max-plus-algebra werden reeds vermeld:

x⊕ y = max (x, y)

x⊗ y = x+ y

voor x, y ∈ R ∪ {−∞}. We definiëren ε = −∞ en Rε = R ∪ {ε}. De max-
algebräısche macht is als volgt gedefinieerd:

a⊗
r

= ra

met a, r ∈ R.
De bewerkingen ⊕ en ⊗ worden als volgt uitgebreid tot matrices:

(A ⊕ B)ij = aij ⊕ bij = max(aij , bij)

(A ⊗ B)ij =
⊕

k

aik ⊗ bkj = max
k

(aik + bkj)

voor alle i, j. Bovendien geldt: A⊗
k

= A⊗A⊗ . . .⊗A
︸ ︷︷ ︸

k keer

.

De matrix En is de n× n max-algebräısche eenheidsmatrix. De matrix εm×n

is de m× n max-algebräısche nulmatrix.
Alhoewel er geen symmetrische elementen bestaan voor de ⊕-bewerking,

kunnen we toch een soort symmetrisatie van de max-plus-algebra doorvoeren.
Dit geeft aanleiding tot het invoeren van de 	-bewerking, die kan beschouwd
worden als een max-algebräısche versie van de−-bewerking. Het symmetriseren
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betekent ook dat we =-tekens moeten vervangen door ∇-tekens (de ∇-relatie
kan beschouwd worden als een afgezwakte versie van de gelijkheidsrelatie). Nu
kunnen we de volgende verzamelingen invoeren:

• de verzameling van de max-positieve elementen en ε: S⊕ = Rε ,

• de verzameling van de max-negatieve elementen en ε: S	 = {	a | a ∈
Rε } ,

• de verzameling van de gebalanceerde elementen: S• = {a• = a ⊕ (	a) |
a ∈ Rε } .

We definiëren S = S⊕ ∪ S	 ∪ S• en S∨ = S⊕ ∪ S	.
Tenslotte behandelen we nog enkele begrippen uit de systeemtheorie voor

max-lineaire tijdsinvariante discrete-gebeurtenissystemen, d.w.z. voor discrete-
gebeurtenissystemen die kunnen beschreven worden met behulp van een model
van de vorm

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (0.3)

y(k) = C ⊗ x(k) (0.4)

met begintoestand x(0) = x0. In deze samenvatting zullen we een model van
de vorm (0.3) – (0.4) karakteriseren door het drietal (A,B,C).
Voor de eenvoud beschouwen we nu even een systeem met één ingang en één
uitgang. Als we een max-algebräısche eenheidsimpuls:

e(k) =

{

0 als k = 0 ,

ε als k 6= 0 ,

aan de ingang aanleggen en als x(0) = εn×1, dan bekomen we

x(1) = B, x(2) = A⊗B, . . . , x(k) = A⊗
k−1 ⊗B, . . . .

Dit betekent dat

y(k) = C ⊗A⊗
k−1 ⊗B voor alle k ∈ N0 .

Definieer nu Gk = C ⊗ A⊗
k ⊗ B. De rij {Gk}∞k=0 wordt de impulsresponsie

van het discrete-gebeurtenissysteem genoemd aangezien ze overeenkomt met de
uitgang ten gevolge van een max-algebräısche eenheidsimpuls aan de ingang.

Hoofdstuk 3: Het Uitgebreide Lineaire Comple-
mentariteitsprobleem

Tijdens ons onderzoek viel ons op dat een groot aantal max-algebräısche pro-
blemen eigenlijk te herleiden is tot het oplossen van een stelsel multivariabele
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max-algebräısche veeltermvergelijkingen en veeltermongelijkheden. Dit pro-
bleem kan op zijn beurt geherformuleerd worden als een wiskundige-program-
matieprobleem, dat wij het Uitgebreide Lineaire Complementariteitsprobleem
(ULCP) genoemd hebben en dat als volgt gedefinieerd is :

Gegeven A ∈ Rp×n, B ∈ Rq×n, c ∈ Rp, d ∈ Rq en m deelverzamelingen φ1,
φ2, . . . , φm van {1, 2, . . . , p}, bepaal een vector x ∈ Rn zodat

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (0.5)

met Ax > c en Bx = d .

Dit probleem is een uitbreiding van het Lineaire Complementariteitsprobleem
(LCP), dat één van de basisproblemen van het wiskundig programmeren is [30].

Laten we de voorwaarde (0.5) eens even van naderbij bekijken. Aangezien
Ax > c zullen alle factoren die in (0.5) voorkomen niet-negatief zijn. Dit heeft
tot gevolg dat alle termen van de sommatie ook niet-negatief zijn. Opdat een
som van niet-negatieve termen gelijk aan 0 zou kunnen zijn, moet elk van de
termen gelijk zijn aan 0. Dit betekent dat voorwaarde (0.5) equivalent is met
de volgende voorwaarde:

∏

i∈φj

(Ax− c)i = 0 voor j = 1, 2, . . . ,m . (0.6)

Dit betekent op zijn beurt dat in elke verzameling φj er minstens één index i
moet zitten zodat (Ax− c)i = 0 of nog (Ax)i = ci, wat wil zeggen dat de i-de
ongelijkheid van het stelsel Ax > c voldaan is met gelijkheid.
Daarom kunnen we de volgende interpretatie geven aan voorwaarde (0.5):

Elke verzameling φj komt overeen met een groep ongelijkheden uit het
stelsel Ax > c en in elke groep moet ten minste één ongelijkheid voldaan
zijn met gelijkheid.

Hieruit volgt dat de oplossingsverzameling van een ULCP in het algemeen
bestaat uit een unie van zijvlakken van een veelvlak.

We hebben reeds gezegd dat het ULCP een uitbreiding is van het LCP.
In het proefschrift tonen we aan dat vele andere uitbreidingen van het LCP
kunnen beschouwd worden als speciale gevallen van het ULCP. Aangezien de
oplossingsverzameling van elke lineaire uitbreiding van het LCP bestaat uit de
unie van zijvlakken van een veelvlak en aangezien de unie van een willekeurige
verzameling zijvlakken van een willekeurig veelvlak kan beschreven worden met
behulp van een ULCP, beweren wij dat elke lineaire uitbreiding van het LCP
een speciaal geval is van het ULCP.

Wij ontwikkelen een algoritme dat ons in staat stelt om de volledige oplos-
singsverzameling van een ULCP te beschrijven. In dit algoritme wordt in elke
stap een nieuwe vergelijking of ongelijkheid van het stelsel Ax > c en Bx = d
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in beschouwing genomen en wordt de doorsnede bepaald van de halfruimte of
het hypervlak dat gedefinieerd wordt door de nieuwe vergelijking of ongelijk-
heid en het veelvlak dat gedefinieerd wordt door de vorige vergelijkingen en
ongelijkheden. Dit levert dan uiteindelijk een beschrijving op van de oplos-
singsverzameling met behulp van eindige punten, generatoren voor de extreme
stralen en een basis voor de lineaire deelruimte geassocieerd met de maximale
affiene deelruimten van de oplossingsverzameling. Een voorbeeld zal verduide-
lijken wat we hiermee bedoelen.

Voorbeeld 0.0.1 Beschouw het volgende ULCP:

Bepaal x, y, z ∈ R zodat

(x+ y + 1)(−x− y + 1)(z + 1) = 0 (0.7)

met

x+ y > −1 (0.8)

−x− y > −1 (0.9)

z > −1 . (0.10)

We definiëren de volgende vlakken:

α =
{[

x y z
]T ∈ R3

∣
∣
∣ x+ y = −1

}

β =
{[

x y z
]T ∈ R3

∣
∣
∣ − x− y = −1

}

γ =
{[

x y z
]T ∈ R3

∣
∣
∣ z = −1

}

en de volgende rechte:

A =
{[

x y z
]T ∈ R3

∣
∣
∣ x+ y = 0 en z = 0

}

.

In Figuur 0.2 hebben we het veelvlak P voorgesteld dat gedefinieerd wordt door
het stelsel (0.8) – (0.10). De zijvlakken van het veelvlak hebben we Gα, Gβ en
Gγ genoemd: Gα = P ∩ α, Gβ = P ∩ β en Gγ = P ∩ γ. De doorsnede van Gβ
en het yz-vlak hebben we L genoemd.
Het is duidelijk dat elke oplossing van het ULCP tot P moet behoren. Als we
nu de voorwaarde (0.7) in rekening brengen, dan zien dat de som van de x- en
de y-component van een oplossing 1 of −1 moet zijn of dat de z-component −1
moet zijn. Dit betekent dat de oplossingen van het ULCP op de zijvlakken van
P moeten liggen. Als we nu de volgende punten definiëren:

xf
1 =





−1
0
−1



 , xf
2 =





1
0
−1



 , xe
1 =





0
0
1



 , xc
1 =





1
−1

0



 ,
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xf
2

Gγ

P

xc
1
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x
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z

xf
1

Figuur 0.2: De oplossingsverzameling van het ULCP van Voorbeeld 1.

dan kan elk willekeurig punt vα van Gα geschreven worden als

vα = λxc
1 + κxe

1 + xf
1 (0.11)

met λ ∈ R en κ > 0. Elk willekeurig punt vβ van Gβ kan geschreven worden
als

vβ = λxc
1 + κxe

1 + xf
2 (0.12)

met λ ∈ R en κ > 0. Elk willekeurig punt vγ van Gγ kan geschreven worden
als

vγ = λxc
1 + µ1x

f
1 + µ2x

f
2 (0.13)

met λ ∈ R, µ1, µ2 > 0 en µ1 + µ2 = 1.

Dit betekent dat elke oplossing v =
[
x y z

]T
van het ULCP kan geschre-

ven worden als een combinatie van de vorm (0.11), (0.12) of (0.13) met λ ∈ R,
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κ, µ1, µ2 > 0 en µ1 + µ2 = 1.
De punten xf

1 en xf
2 zijn eindige punten van de oplossingsverzameling van het

ULCP. De vector xe
1 is een generator voor de extreme stralen (zoals b.v. de

halfrechte L). Aangezien elke rechte die behoort tot Gα ∪ Gβ ∪ Gγ evenwij-
dig is met de vectorrechte A, is A de lineaire deelruimte geassocieerd met de
maximale affiene deelruimten van de oplossingsverzameling van het ULCP. De
verzameling {xc

1} is een basis voor de rechte A. 2

In de praktijk kan het door ons ontwikkelde algoritme enkel toegepast worden
op niet al te omvangrijke ULCP’s: de uitvoeringstijd van het algoritme stijgt
immers exponentieel met het aantal onbekenden en polynomiaal met het aantal
vergelijkingen en ongelijkheden. Daarom moet er zeker gezocht worden naar
efficiëntere algoritmen om één oplossing van een ULCP te vinden. Dit zal echter
geen gemakkelijke opgave zijn, aangezien het ULCP een NP-hard probleem is:
dit betekent dat het waarschijnlijk zeer moeilijk of zelfs onmogelijk zal zijn om
snelle, efficiënte algoritmen te ontwikkelen om het algemene ULCP op te lossen.

Hoofdstuk 4: Toepassingen van het Uitgebreide
Lineaire Complementariteitsprobleem in de
Max-Plus-Algebra

Beschouw het volgende probleem:

Gegeven p1 + p2 positieve natuurlijke getallen m1, m2, . . . , mp1+p2 en
reële getallen aki, bk en ckij voor k = 1, 2, . . . , p1 + p2, i = 1, 2, . . . ,mk en
j = 1, 2, . . . , n, bepaal x ∈ Rn zodat

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk voor k = 1, 2, . . . , p1 , (0.14)

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

6 bk voor k = p1 + 1, p1 + 2, . . . , p1 + p2 . (0.15)

Dit probleem wordt een stelsel multivariabele max-algebräısche veeltermverge-
lijkingen en veeltermongelijkheden genoemd. Merk op dat de exponenten ook
negatief of reëel mogen zijn.

Beschouw nu één vergelijking van het type (0.14). Als we een dergelijke
vergelijking herschrijven met behulp van de conventionele bewerkingen +, ×
en max dan bekomen we

max
i=1,... ,mk



 aki +

n∑

j=1

ckijxj



 = bk .
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Dit betekent dat

aki +

n∑

j=1

ckijxj 6 bk voor i =, 1, 2, . . . ,mk

waarbij voor ten minste één index i de waarde van het linkerlid van de onge-
lijkheid gelijk moet zijn aan bk.
Dit betekent dat (0.14) beschouwd kan worden als een stelsel van p1 groepen
lineaire ongelijkheden waarbij in elke groep ten minste één ongelijkheid voldaan
moet zijn met gelijkheid.
Op een gelijkaardige wijze vinden we dat (0.15) beschouwd kan worden als een
stelsel van p2 groepen lineaire ongelijkheden (zonder extra voorwaarde).
We hebben dus nu een stelsel van lineaire vergelijkingen en ongelijkheden
waarin een aantal groepen ongelijkheden voorkomen waarbij er in elke groep
ten minste één ongelijkheid voldaan moet zijn met gelijkheid, m.a.w. we heb-
ben een ULCP.
Omgekeerd kan ook aangetoond worden dat elke ULCP kan geherformuleerd
worden als een stelsel multivariabele max-algebräısche veeltermvergelijkingen
en veeltermongelijkheden. Zo komt de ULCP van Voorbeeld 0.0.1 overeen
met het volgende — zeer eenvoudige — stelsel multivariabele max-algebräısche
veeltermvergelijkingen en veeltermongelijkheden:

Bepaal x, y, z ∈ R zodat x⊗
−1 ⊗ y⊗

−1 ⊕ x⊗ y ⊕ z⊗
−1

= 1 .

Hiermee hebben we dus aangetoond dat het ULCP equivalent is met een stelsel
multivariabele max-algebräısche veeltermvergelijkingen en veeltermongelijkhe-
den.
In het proefschrift leiden we ook een methode af om oplossingen van een stelsel
multivariabele max-algebräısche veeltermvergelijkingen en veeltermongelijkhe-
den te vinden waarvan sommige componenten gelijk zijn aan ε. Dit stelt ons
in staat om alle oplossingen van een probleem van de vorm (0.14) – (0.15) te
vinden. Dit betekent ook dat we het ULCP kunnen gebruiken om een aantal
belangrijke problemen in de max-plus-algebra en de max-min-plus-algebra op
te lossen, zoals

• het berekenen van max-algebräısche matrixfactorisaties:

Gegeven een matrix T ∈ Rm×n
ε en een positief natuurlijk getal l,

bepaal P ∈ Rm×l
ε en Q ∈ Rl×nε zodat T = P ⊗Q .

Factorisaties van T als een produkt van drie of meer matrices ook kun-
nen berekend worden met behulp van het ULCP. Bovendien kunnen
we ook een bepaalde structuur voor de factoren opleggen: diagonaal,
bovendriehoeks-, symmetrisch, . . . .

• het oplossen van een stelsel max-lineaire vergelijkingen in de gesymme-
triseerde max-plus-algebra:
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Gegeven A ∈ Sm×n en b ∈ Sm, bepaal x ∈ (S∨)n zodat A⊗ x ∇ b.

of

Gegeven A ∈ Sm×n, bepaal x ∈ (S∨)n zodat A⊗ x ∇ b en ‖x‖
⊕

= 0.

• het construeren van matrices met een gegeven max-algebräısche karakte-
ristieke veelterm (zie Hoofdstuk 5),

• het bepalen van toestandsruimtetransformaties voor max-lineaire tijdsin-
variante discrete-gebeurtenissystemen (zie Hoofdstuk 6),

• het berekenen van minimale toestandsruimterealisaties voor max-lineaire
tijdsinvariante discrete-gebeurtenissystemen (zie Hoofdstuk 6),

• het berekenen van max-algebräısche singuliere-waardenontbindingen en
max-algebräısche QR-ontbindingen (zie Hoofdstuk 7),

• het oplossen van gemengde max-min-problemen:

Gegeven positieve natuurlijke getallen mk,mkl1 voor k = 1, 2, . . . ,m
en l1 = 1, 2, . . . ,mk en reële getallen akl1l2 , bk en ckl1l2j voor k =
1, 2, . . . ,m, l1 = 1, 2, . . . ,mk, l2 = 1, 2, . . . ,mkl1 en j = 1, 2, . . . , n,
bepaal x ∈ Rn zodat

mk⊕

l1=1

′
mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j

= bk (0.16)

voor k = 1, 2, . . . ,m ,

waarbij de ⊕′-bewerking als volgt gedefinieerd is:

x⊕′ y = min(x, y)

voor x, y ∈ Rε.
De ULCP-aanpak kan ook gebruikt worden indien sommige vergelijkingen
in (0.16) ongelijkheden zijn in plaats van gelijkheden.

• het oplossen van max-max- en max-min-problemen:

Gegeven positieve natuurlijke getallen mk, pk voor k = 1, 2, . . . ,m
en reële getallen aki, bkij , ckl en dklj voor k = 1, 2, . . . ,m, i =
1, 2, . . . ,mk, j = 1, 2, . . . , n en l = 1, 2, . . . , pk, bepaal x ∈ Rn zodat

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

=

pk⊕

l=1

ckl ⊗
n⊗

j=1

xj
⊗
dklj

(0.17)

voor k = 1, 2, . . . ,m.

De ULCP-aanpak kan ook gebruikt worden indien sommige vergelijkingen
in (0.17) ongelijkheden zijn in plaats van gelijkheden of indien sommige
van de

⊕
-sommaties vervangen worden door

⊕′
-sommaties.
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Hoofdstuk 5: De Max-Algebräısche Karakteris-
tieke Veelterm

In dit hoofdstuk kijken we naar nodige en voldoende voorwaarden voor de
coëfficiënten van de max-algebräısche karakteristieke veelterm van een matrix
met elementen in Rε. Voor matrices met een dimensie die kleiner is dan 5, zijn
we erin geslaagd om nodige en voldoende voorwaarden voor de coëfficiënten
van de max-algebräısche karakteristieke veelterm af te leiden. Bovendien be-
schikken we over analytische uitdrukkingen die ons in staat stellen om, indien
de coëfficiënten van een gegeven max-algebräısche veelterm aan de nodige en
voldoende voorwaarden voldoen, een matrix te bepalen waarvan de max-alge-
bräısche karakteristieke veelterm gelijk is aan de gegeven max-algebräısche veel-
term. Voor het algemene geval (d.w.z. voor matrices met een dimensie groter
dan of gelijk aan 5) hebben we enkel nodige voorwaarden voor de coëfficiënten
van de max-algebräısche karakteristieke veelterm kunnen afleiden.
Beschouw nu het volgende probleem:

Gegeven een max-algebräısche veelterm van de vorm

λ⊗
n ⊕

n⊗

k=1

bk ⊗ λ⊗
n−k

,

bepaal een matrix A ∈ Rn×nε zodat de max-algebräısche karakteristieke
veelterm van A gelijk is aan de gegeven max-algebräısche veelterm.

In het proefschrift tonen we aan dat dit probleem geherformuleerd kan wor-
den als een stelsel van multivariabele max-algebräısche veeltermvergelijkingen
en veeltermongelijkheden. Dit betekent dat we het ULCP kunnen gebruiken
om een matrix met een gegeven max-algebräısche karakteristieke veelterm te
construeren.

Hoofdstuk 6: Toestandsruimtetransformaties en
Toestandsruimterealisatie voor Max-Lineaire
Tijdsinvariante Discrete-Gebeurtenissystemen

In het eerste deel van dit hoofdstuk onderzoeken we toestandsruimtetransfor-
maties voor max-lineaire tijdsinvariante discrete-gebeurtenissystemen. We ver-
trekken van een gegeven drietal (A,B,C) en een begintoestand x0. Nu willen
we een ander drietal (Ã, B̃, C̃) en een bijbehorende begintoestand x̃0 bepa-
len zodat beide drietallen met hun overeenkomstige begintoestanden hetzelfde
ingangs-uitgangsgedrag beschrijven.
Net zoals voor lineaire systemen kan men voor max-lineaire tijdsinvariante
discrete-gebeurtenissystemen (max-algebräısche) gelijkvormigheidstransforma-
ties gebruiken om een drietal (A,B,C) met bijbehorende begintoestand x0 om
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te zetten in een equivalent drietal (Ã, B̃, C̃) met bijbehorende begintoestand
x̃0:

Ã = T ⊗A⊗ T⊗
−1
, B̃ = T ⊗B, C̃ = C ⊗ T⊗

−1
en x̃0 = T ⊗ x0 .

Aangezien de klasse van de matrices die inverteerbaar zijn in de max-plus-
algebra zeer klein is, is het bereik van deze max-algebräısche gelijkvormigheids-
transformaties beperkt. Wij stellen twee nieuwe transformaties voor die kunnen
beschouwd worden als een uitbreiding van max-algebräısche gelijkvormigheids-
transformaties maar die een veel groter bereik hebben. De eerste transformatie,
de L-transformatie, vertrekt van een factorisatie van de matrices A en C als

A = Â⊗ L en C = Ĉ ⊗ L .

Als we nu de volgende matrices en de volgende vector definiëren:

Ã = L⊗ Â, B̃ = L⊗B, C̃ = Ĉ en x̃0 = L⊗ x0 ,

dan beschrijft het drietal (Ã, B̃, C̃) met begintoestand x̃0 hetzelfde ingangs-
uitgangsgedrag als het drietal (A,B,C) met begintoestand x0.
De tweede transformatie, de M -transformatie, is de duale transformatie van de
L-transformatie. Zij vertrekt van een factorisatie van de matrices A en B en
de vector x0 als

A = M ⊗ Â, B = M ⊗ B̂ en x0 = M ⊗ x̂0 .

Nu resulteert

Ã = Â⊗M, B̃ = B̂, C̃ = C ⊗M en x̃0 = x̂0

in een equivalent drietal met bijbehorende begintoestand.
Aangezien deze transformaties vertrekken van een max-algebräısche matrixfac-
torisatie, kunnen we ze berekenen met behulp van een ULCP.

In het tweede deel van dit hoofdstuk behandelen we het minimale-realisatie-
probleem voor max-lineaire tijdsinvariante discrete-gebeurtenissystemen:

Gegeven de impulsresponsie {Gk}∞k=0 van een max-lineair tijdsinvariant

discrete-gebeurtenissysteem, bepaal matrices A, B en C met zo klein mo-

gelijke dimensies zodat C ⊗A⊗
k ⊗B = Gk voor k = 0, 1, 2, . . . .

In Figuur 0.3 hebben we de verschillende stappen van de door ons ontwikkelde
methodes om dit probleem op te lossen voorgesteld.
Eerst bepalen we een ondergrens voor de minimale systeemorde — dit is de
kleinst mogelijke afmeting van de A-matrix over de verzameling van alle rea-
lisaties van de gegeven impulsresponsie. Voor de eenvoud veronderstellen we
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Bepaling van een ondergrens
voor de minimale systeemorde:
- via de max-algebräısche

minorrang
- via de max-algebräısche

karakteristieke vergelijking

twee-stapsmethode
directe methode

Bepaling van B en C:

1. partiële toestandsruimte-
realisaties
- via een ULCP

2. toestandsruimterealisaties
van de volledige impuls-
responsie
- via één of meer ULCP’s

Bepaling van A, B en C:

1. partiële toestandsruimte-
realisaties
- via een ULCP

2. toestandsruimterealisaties
van de volledige impuls-
responsie
- via één of meer ULCP’s

Bepaling van A uitgaande van
haar max-algebräısche karakte-
ristieke veelterm:
- via formules
- via een heuristisch algoritme
- via een ULCP

Impulsresponsie

Figuur 0.3: Een overzicht van de methodes om het minimale-realisatieprobleem
voor max-lineaire tijdsinvariante discrete-gebeurtenissystemen op te lossen.

eerst dat we te maken hebben met een systeem met één ingang en één uit-
gang. Met de termen van de gegeven impulsresponsie {gk}∞k=0 construeren we
de volgende Hankelmatrix:

H =








g0 g1 g2 . . .
g1 g2 g3 . . .
g2 g3 g4 . . .
...

...
...

. . .








.

De max-algebräısche minorrang van H is een ondergrens voor de minimale
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systeemorde [54, 56]. In het proefschrift stellen we een alternatieve manier
voor om een ondergrens voor de minimale systeemorde te bepalen waarbij we
gebruik maken van de resultaten van Hoofdstuk 5. We zoeken naar een relatie
van de vorm

r⊕

i=0

ai ⊗H.,k+r−i ∇ ε∞×1 voor k = 1, 2, 3, . . . (0.18)

zodat de coëfficiënten a0, a1, . . . , ar overeenkomen met de coëfficiënten van de
max-algebräısche karakteristieke veelterm van een matrix met elementen in Rε.
Merk op dat hier de nodige en/of voldoende voorwaarden voor de coëfficiënten
van de max-algebräısche karakteristieke veelterm van een matrix met elementen
in Rε die werden afgeleid in Hoofdstuk 5, van pas komen. De kleinst mogelijke
r waarvoor we een relatie van de vorm (0.18) kunnen vinden die overeenkomt
met de max-algebräısche karakteristieke veelterm van een matrix met elemen-
ten in Rε, is een ondergrens voor de minimale systeemorde. Deze methode
kan gemakkelijk uitgebreid worden naar systemen met meer dan één ingang of
uitgang.
In de eerste methode voor het bepalen van de systeemmatrices worden A, B
en C tegelijkertijd berekend. Deze methode hebben wij de directe methode
genoemd. Ze bestaat uit twee grote stappen. In de eerste stap van de di-
recte methode gaan we op zoek naar partiële realisaties van de r-de orde van
de gegeven impulsresponsie: voor een bepaalde N ∈ N0 bepalen we matrices
A ∈ Rr×rε , B ∈ Rr×mε en C ∈ Rl×rε zodat

C ⊗A⊗
k ⊗B = Gk voor k = 0, 1, . . . , N − 1 . (0.19)

Aangezien dit kan beschouwd worden als een soort van uitgebreide max-alge-
bräısche matrixfactorisatie kunnen we het ULCP gebruiken om partiële reali-
saties van de gegeven impulsresponsie te bepalen.
In de tweede stap van de directe methode voor het bepalen van de systeemma-
trices kijken we dan hoe de verzameling van de partiële realisaties van de eerste
N termen van de impulsresponsie evolueert als N naar∞ streeft. Hierbij doen
zich twee gevallen voor:

- Vanaf een bepaalde N verandert de verzameling van de partiële realisaties
niet meer. Dit betekent dat we vanaf dan realisaties van de volledige
impulsresponsie hebben.

- De verzameling van de partiële realisaties wordt steeds kleiner en kleiner
naarmate N toeneemt, maar de limiet wordt niet bereikt voor een eindige
waarde van N . In dit geval kunnen we na het invoeren van een aantal
normalisaties toch gemakkelijk bepalen wat de uiteindelijke limietverza-
meling zal zijn. Na het wegwerken van de normalisaties bekomen we dan
de verzameling van alle realisaties van de gegeven impulsresponsie.
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Aangezien de ULCP’s die in de directe methode optreden vaak zo groot zijn dat
ze in de praktijk niet op te lossen zijn met ons algoritme, bespreken we ook een
twee-stapsmethode voor het bepalen van de systeemmatrices die in veel kleinere
ULCP’s resulteert. In plaats van A, B en C tegelijkertijd te bepalen, kunnen
we eerst de A-matrix bepalen vertrekkende van de coëfficiënten a0, a1, . . . , ar
van haar max-algebräısche karakteristieke veelterm die uit (0.18) volgen. Dit
kan gebeuren met behulp van de formules die in Hoofdstuk 5 werden afgeleid,
met behulp van het heuristisch algoritme van Appendix B of met behulp van
een ULCP. Vervolgens bepalen we B en C via (0.19) waarbij de matrix A nu
geen onbekende meer is. Hierbij gebruiken we dan dezelfde procedure als in de
directe methode: eerst bepalen we partiële realisaties en vervolgens kijken we
dan wat er gebeurt als N naar ∞ streeft. In het proefschrift tonen we echter
aan dat niet voor alle mogelijke A-matrices die uit de eerste stap kunnen volgen,
er B- en C-matrices kunnen gevonden worden zodat (A,B,C) een realisatie is
van de gegeven impulsresponsie. Dit houdt in dat de twee-stapsmethode niet
altijd gebruikt kan worden. Daarom hebben we in Figuur 0.3 het pad dat met
deze methode overeenkomt met streepjeslijnen aangegeven.

Hoofdstuk 7: De Singuliere-Waardenontbinding
en de QR-Ontbinding in de Gesymmetriseerde
Max-Plus-Algebra

In dit hoofdstuk bewijzen we het bestaan van een soort max-algebräısche
singuliere-waardenontbinding die als volgt gedefinieerd is:

Beschouw een matrix A ∈ Sm×n. Dan bestaan er een max-algebräısche
diagonaal matrix Σ ∈ Rm×n

ε en matrices U ∈ (S∨)m×m en V ∈ (S∨)n×n

zodat

A ∇ U ⊗ Σ⊗ V T (0.20)

UT ⊗ U ∇ Em (0.21)

V T ⊗ V ∇ En (0.22)

‖A‖
⊕

> σ1 > σ2 > . . . > σr (0.23)

waarbij r = min(m,n) en σi = (Σ)ii voor i = 1, 2, . . . , r.
Elke “ontbinding” van de vorm (0.20) waarbij Σ een max-algebräısche di-
agonaal matrix is, waarbij U en V matrices zijn met elementen in S∨ en
waarbij aan de voorwaarden (0.21) – (0.23) voldaan is, wordt een max-al-
gebräısche singuliere-waardenontbinding (SWO) van A genoemd.

We tonen aan dat de max-algebräısche SWO van een matrix kan berekend
worden met behulp van een ULCP. We geven ook aan hoe de max-algebräısche
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SWO gebruikt zou kunnen worden in een procedure voor het identificeren van
een max-lineair tijdsinvariant discrete-gebeurtenissysteem vertrekkende van de
gemeten impulsresponsie van het systeem, d.w.z. in een situatie waarbij we niet
over de exacte impulsresponsie beschikken, maar wel over de impulsresponsie
met ruis erop gesuperponeerd. Naar analogie met SWO-gebaseerde methodes
voor het bepalen van een (benadering van) de minimale systeemorde op basis
van een gemeten ingangs-uitgangsgedrag zouden we de max-algebräısche SWO
kunnen gebruiken voor het schatten van de minimale systeemorde van een
max-lineair tijdsinvariant discrete-gebeurtenissysteem op basis van de gemeten
impulsresponsie.

Alhoewel wij in [42] reeds het bestaan van de max-algebräısche SWO hebben
bewezen, wordt in dit hoofdstuk een volledig nieuwe bewijstechniek ontwikkeld
om het bestaan van de max-algebräısche SWO aan te tonen. Met behulp van
deze bewijstechniek kan op vrij eenvoudige wijze ook het bestaan van een aantal
andere matrixontbindingen aangetoond worden die max-algebräısche equivalen-
ten zijn van matrixontbindingen uit de lineaire algebra. Om dit te illustreren
bewijzen wij ook het bestaan van de max-algebräısche QR-ontbinding, die als
volgt gedefinieerd is:

Beschouw een matrix A ∈ Sm×n. Dan bestaan er een matrix Q ∈ (S∨)m×m

en een max-algebräısche bovendriehoeksmatrix R ∈ (S∨)m×n zodat

A ∇ Q⊗R (0.24)

QT ⊗Q ∇ Em (0.25)

‖R‖
⊕

6 ‖A‖
⊕
. (0.26)

Elke “ontbinding” van de vorm (0.24) waarbij R een max-algebräısche bo-
vendriehoeksmatrix is, waarbij de elementen van Q en R tot S∨ behoren
en waarbij aan de voorwaarden (0.25) – (0.26) voldaan is, wordt een max-
algebräısche QR-ontbinding van A genoemd.

Op analoge wijze kan het bestaan van een max-algebräısch equivalent van de
eigenwaardenontbinding voor symmetrische matrices, de LU-ontbinding, de
Schurontbinding, enz. bewezen worden. Al deze matrixontbindingen kunnen
ook berekend worden met behulp van een ULCP.

Om het bestaan te bewijzen van de bovenvermelde max-algebräısche ma-
trixontbindingen steunen we op een verband tussen de gesymmetriseerde max-
plus-algebra en een ring van reële functies met optelling en vermenigvuldiging
als basisbewerkingen. Door dit verband uit te breiden naar complexe functies
kunnen we de verzameling van de max-complexe getallen invoeren en de bewer-
kingen ⊕ en ⊗ ook uitbreiden tot max-complexe getallen. Dit resulteert in een
uitgebreide max-algebräısche structuur waarin dan nog meer matrixontbindin-
gen zouden kunnen gedefinieerd worden die max-algebräısche equivalenten zijn
van complexe matrixontbindingen uit de lineaire algebra.
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Hoofdstuk 8. Besluiten en Open Problemen

Eén van de voornaamste doelstellingen van ons onderzoek was het verder ont-
wikkelen van de max-algebräısche systeemtheorie voor max-lineaire tijdsinva-
riante discrete-gebeurtenissystemen. Daartoe hebben we een aantal problemen
bestudeerd die allemaal op de ene of de andere manier verband houden met
het minimale-toestandsruimterealisatieprobleem voor max-lineaire tijdsinvari-
ante discrete-gebeurtenissystemen.

We hebben aangetoond dat vele fundamentele max-algebräısche proble-
men die opduiken bij allerlei mogelijke oplossingsmethodes voor het minimale-
realisatieprobleem (en andere problemen uit de max-algebräısche systeemtheo-
rie voor discrete-gebeurtenissystemen) geherformuleerd kunnen worden als een
wiskundige-programmatieprobleem: het Uitgebreide Lineaire Complementari-
teitsprobleem (ULCP). Daarom hebben we het ULCP uitvoerig bestudeerd en
een algoritme ontwikkeld om alle oplossingen van een ULCP te bepalen. Dit
heeft ons uiteindelijk in staat gesteld om een oplossingsmethode te ontwikkelen
voor het minimale-realisatieprobleem, dat als één van de belangrijkste basis-
problemen uit de systeemtheorie voor max-lineaire tijdsinvariante discrete-ge-
beurtenissystemen kan beschouwd worden. Op een gelijkaardige wijze kunnen
we ook heel wat andere max-algebräısche problemen oplossen zoals b.v. het
berekenen van max-algebräısche matrixfactorisaties, het construeren van ma-
trices met een gegeven max-algebräısche karakteristieke veelterm, het bepalen
van toestandsruimtetransformaties voor max-lineaire tijdsinvariante discrete-
gebeurtenissystemen, het berekenen van max-algebräısche singuliere-waarden-
ontbindingen of max-algebräısche QR-ontbindingen van een gegeven matrix,
enz.
Daarnaast hebben we ook nog enkele resultaten bekomen in verband met de
complexiteit van het ULCP, de max-algebräısche karakteristieke veelterm, toe-
standsruimtetransformaties voor max-lineaire tijdsinvariante discrete-gebeurte-
nissystemen en matrixontbindingen in de gesymmetriseerde max-plus-algebra.

Laat ons nu even de belangrijkste open problemen en enkele suggesties voor
verder onderzoek vermelden.
Wij hebben nog geen algemene nodige en voldoende voorwaarden kunnen aflei-
den voor de coëfficiënten van de max-algebräısche karakteristieke veelterm van
een matrix waarvan de elementen tot Rε behoren.
We weten niet of er toestandsruimtetransformaties bestaan die een willekeu-
rige (minimale) toestandsruimterealisatie omzetten in een andere willekeurige
(minimale) toestandsruimterealisatie.
We weten ook niet of het mogelijk is om, gegeven de impulsresponsie {Gk}∞k=0

van een max-lineair tijdsinvariant discrete-gebeurtenissysteem, op een eenvou-
dige wijze het minimaal aantal termen N0 te bepalen zodat elke realisatie van
de rij G0, G1, . . . , GN0−1 een realisatie is van de volledige impulsresponsie.
De techniek die gebruikt werd om het bestaan van de max-algebräısche singu-
liere-waardenontbinding en de max-algebräısche QR-ontbinding te bewijzen,



xxxii Summary in Dutch

kan ook gebruikt worden om het bestaan van max-algebräısche equivalenten
van reële en complexe matrixontbindingen uit de lineaire algebra te bewijzen.
We zouden nog moeten onderzoeken of en hoe deze max-algebräısche matrix-
ontbindingen kunnen gebruikt worden in de max-algebräısche systeemtheorie.
In de praktijk kunnen we met het door ons ontwikkelde ULCP-algoritme slechts
niet al te omvangrijke ULCP’s oplossen aangezien de uitvoeringstijd van ons al-
goritme snel toeneemt als het aantal variabelen, vergelijkingen of ongelijkheden
stijgt. Bovendien geeft ons algoritme alle oplossingen van een ULCP terwijl
we voor vele problemen vaak reeds tevreden zijn met één oplossing. Daarom
is één van de belangrijkste opdrachten voor verder onderzoek het ontwikkelen
van efficiënte algoritmen voor het bepalen van één oplossing van een ULCP
of van de max-algebräısche problemen die wij in dit proefschrift behandeld
hebben. Aangezien het ULCP en dus ook het bepalen van een oplossing van
een stelsel multivariabele max-algebräısche veeltermvergelijkingen en veelterm-
ongelijkheden NP-harde problemen zijn, is het zeer onwaarschijnlijk dat we
een algoritme met een polynomiale uitvoeringstijd zullen kunnen vinden voor
het oplossen van deze problemen. We weten echter niet of andere max-alge-
bräısche problemen zoals het bepalen van een max-algebräısche matrixfactori-
satie, het berekenen van een toestandsruimterealisatie van de impulsresponsie
van een max-lineair tijdsinvariant discrete-gebeurtenissysteem, het berekenen
van een max-algebräısche singuliere-waardenontbinding van een gegeven ma-
trix, enz. ook NP-harde problemen zijn. Dit zou zeker onderzocht moeten
worden. Met het oog op de verdere toepassing van onze resultaten is het van
het hoogste belang dat er voor elk van deze problemen efficiënte algoritmen
ontwikkeld worden. Hierbij zouden we gebruik kunnen maken van het feit dat
wij nu de geometrische structuur van de oplossingsverzameling van deze pro-
blemen kennen.
Tenslotte zouden we ook kunnen nagaan in hoeverre de in dit proefschrift be-
komen resultaten toepasbaar zijn op en uitbreidbaar zijn naar discrete-gebeur-
tenissystemen die niet met behulp van een max-lineair tijdsinvariant model
kunnen beschreven worden.

Appendices

De appendices bevatten extra informatie, bijkomende voorbeelden en bewijzen
die niet erg instructief zijn of die te lang waren om in de hoofdtekst te worden
opgenomen.
In Appendix A bespreken we een alternatieve versie van de max-algebräısche
karakteristieke vergelijking van een matrix waarvan de elementen tot Rε beho-
ren.
Appendix B bevat de bewijzen van enkele stellingen uit Hoofdstuk 5. In deze
appendix stellen we ook een hypothese voor in verband met de max-algebräısche
karakteristieke veelterm van een matrix waarvan de elementen tot Rε behoren.
Vertrekkende van deze hypothese ontwikkelen we vervolgens een heuristisch al-
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goritme om een matrix met een gegeven max-algebräısche karakteristieke veel-
term te construeren.
In Appendix C bewijzen we enkele lemma’s uit Hoofdstuk 6.
Appendix D bevat de bewijzen van enkele stellingen uit Hoofdstuk 7. Daarnaast
stellen we in deze appendix ook enkele uitbreidingen van de max-algebräısche
SWO en de max-algebräısche QR-ontbinding voor. We tonen aan dat deze uit-
gebreide max-algebräısche matrixontbindingen eveneens met behulp van een
ULCP kunnen berekend worden.
In Appendix E geven we een informele inleiding tot de gesymmetriseerde max-
plus-algebra. In deze appendix geven we ook een aantal uitgewerkte voorbeeld-
jes waarin de eigenschappen van de belangrijkste bewerkingen en relaties uit
de gesymmetriseerde max-plus-algebra gëıllustreerd worden.





Chapter 1

Introduction and
Motivation

In this chapter we first give a short introduction to discrete event systems.
After giving some motivation as to why one would want to use mathematical
models of discrete event systems, we concentrate on the max-plus algebra, the
framework we use to model a certain class of discrete event systems. In order
to give the reader an idea of the kind of discrete event systems that can be
described by a max-algebraic model we present some worked examples in which
we derive the equations that describe the behavior of the given discrete event
system. To conclude this chapter we give an overview of the main contributions
of this thesis. We discuss the overall structure of the thesis and the relations
between the different problems that will be treated in it.

1.1 Discrete Event Systems

In recent years both industry and the academic world have become more and
more interested in techniques to model, analyze and control complex systems
such as flexible manufacturing systems, telecommunication networks, parallel
processing systems, traffic control systems, logistic systems and so on. This
kind of systems are typical examples of discrete event systems (DESs), the
subject of an emerging discipline in system and control theory. The class of
the DESs essentially contains man-made systems that consist of a finite number
of resources (e.g. machines, communications channels, processors, . . . ) that are
shared by several users (e.g. product types, information packets, jobs, . . . ) all of
which contribute to the achievement of some common goal (e.g. the assembly of
products, the end-to-end transmission of a set of information packets, a parallel
computation, . . . ).

One of the most characteristic features of a DES is that its dynamics are
event-driven as opposed to time-driven: the behavior of a DES is governed by

1
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events rather than by ticks of a clock. An event corresponds to the start or the
end of an activity. If we consider a production system then possible events are:
the completion of a part on a machine, a machine breakdown, a buffer becoming
empty, and so on. Events occur at discrete time instants. Intervals between
events are not necessarily identical; they can be deterministic or stochastic.

In general the dynamics of DESs are characterized by “synchronization” and
“concurrency”. Synchronization requires the availability of several resources at
the same time (e.g. before we can assemble a product on a machine, the machine
has to be idle and the various parts have to be available; before a specific job can
be executed in a parallel processing system the processor and all the necessary
input data have to be available, . . . ). Concurrency appears when at a certain
time a user has to choose among several resources (e.g. in a production system
a job may be executed on one of the several machines that can handle that
job and that are idle at that time, in a data-driven parallel processing system
a job may be executed on one of the several processors that are available at
that time or that will soon become available, . . . ). DESs typically exhibit
an asynchronous behavior with much parallelism and interaction with their
environment, and they usually have a complex, hierarchical structure.

When we want to (re)design a system or develop a controller to ensure
that a system meets certain requirements, or when we want to verify or op-
timize the behavior of a system, we should represent our knowledge about
the properties and the behavior of the system in a model that allows us to
study and to predict the performance of the system. There are many mod-
eling and analysis techniques for DESs, such as queuing theory, (extended)
state machines, max-plus algebra, formal languages, automata, temporal logic,
generalized semi-Markov processes, Petri nets, perturbation analysis, com-
puter simulation and so on. For more information and for tutorial articles
on DESs and the techniques mentioned above the interested reader is referred
to [3, 5, 13, 17, 20, 27, 80, 81, 94, 97, 112, 130, 131, 132, 155] and the references
cited therein. All these modeling and analysis techniques have particular advan-
tages and disadvantages and it really depends on the system we want to model
and on the goals we want to achieve which one of the above methodologies best
suits our needs. When we have to select the most appropriate method, then one
of the most important trade-offs that we normally have to take into account is
modeling power versus decision power: the more accurate the model is, the less
we can analytically say about its properties. If we consider for example Petri
nets, one of the most powerful mathematical modeling frameworks for DESs,
then a complete analytic solution is usually not available. Furthermore, some
of the problems encountered in Petri net analysis are “undecidable”[112, 131],
i.e. for these problems there cannot exist generally applicable algorithms that
solve the problem. On the other side, the max-algebraic approach allows us
to determine and to analyze many properties of the system, but this approach
can only be applied to the subclass of DESs that can be described by a max-
linear time-invariant model. Loosely speaking we could say that this subclass
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corresponds to the class of deterministic time-invariant1 DESs in which only
synchronization and no concurrency occurs (In the next section we shall present
some simple examples of DESs that can be modeled with the max-plus algebra
in order to give the reader a more accurate idea of the types of DESs that can
be described by a max-linear time-invariant model).

Up to now the most widely used technique to study DESs certainly is com-
puter simulation. One of the major disadvantages of computer simulation is
that it is computationally rather demanding since it requires a high degree
of detail in the model. However, this also leads to a high degree of corre-
spondence between the model and the real system. Another disadvantage of
computer simulation is that it does not always give us a real understanding
of the effects of parameter changes on properties such as robustness, stability,
optimality of the system performance, and so on. Therefore, we often prefer
to use mathematical models that are more suited for mathematical analysis.
The main appeal of a mathematical description of a given system lies in the
existence of efficient algorithms to evaluate the system performance. This is a
significant advantage over time-consuming and expensive simulation, which is
usually required to obtain the same information. Furthermore, analytic tech-
niques also provide a better insight in the effects of parameter changes on the
properties of the system. However, as we have already mentioned, we have to
take into account that there is a trade-off between the accuracy of our model
on the one hand and the techniques available for analysis on the other hand.
Therefore, we normally use a mixture of analytic methods, approximations,
heuristics and computer simulation when we want to study the properties and
the behavior of a DES or when we want to design a controller for it.

There are three major levels of modeling for DESs: the logical level, the
temporal level and the stochastic level. Logical models (such as (untimed)
Petri nets and finite state machines) are used in order to study properties that
concern event ordering only. If we are interested in the time instants at which
the events occur then we use temporal models (such as timed Petri nets and
max-algebraic models). Stochastic models (such as generalized semi-Markov
processes) are used if we want to determine the expected behavior of the system
under some given statistical conditions. The models we use in this thesis are
situated on the temporal level.

Although in general DESs lead to a non-linear description in conventional
algebra, there exists a subclass of DESs for which this model becomes “linear”
when we formulate it in the max-plus algebra (See Section 1.2). Such a model
will be called max-linear. In this thesis we concentrate on the class of DESs
that can be described by max-linear time-invariant state space models.

The basic operations of the max-plus algebra are maximization and addi-
tion. There exists a remarkable analogy between the basic operations of the
max-plus algebra on the one hand, and the basic operations of conventional
algebra (addition and multiplication) on the other hand. As a consequence

1A system is said to be time-invariant if its response to a certain input sequence does not

depend on absolute time.
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many concepts and properties of conventional algebra (such as the Cayley-
Hamilton theorem, eigenvectors and eigenvalues, Cramer’s rule, . . . ) also have
a max-algebraic analogue. Furthermore, this analogy also allows us to trans-
late many concepts, properties and techniques from conventional linear system
theory to system theory for max-linear time-invariant DESs. However, there
are also some major differences that prevent a straightforward translation of
properties, concepts and algorithms from conventional linear algebra and linear
system theory to max-plus algebra and max-algebraic system theory for DESs.

In the early sixties the fact that certain classes of DESs can be described
by max-linear models has been discovered independently by a number of re-
searchers, among whom Cuninghame-Green [31, 32] and Giffler [60, 61, 62].
An account of the pioneering work of Cuninghame-Green on max-algebraic
system theory for DESs has been given in [33]. Related work has been done
by Gondran and Minoux [66, 67, 68, 69, 70]. In the late eighties the topic
attracted new interest due to the research of Cohen, Dubois, Moller, Quadrat,
Viot [19, 20, 22, 24, 26, 109, 110] and Olsder [115, 116, 117, 118, 122, 125, 126],
which resulted in the publication of [3]. Another major contribution to this
field is the work of Gaubert [53, 54, 55, 56, 57, 58].

It should be pointed out that compared to linear system theory the max-
algebraic system theory for DESs is at present far from fully developed; much
research on this topic is still needed in order to get a complete system the-
ory. We hope that the research presented in this thesis will contribute to the
extension and the enhancement of the max-algebraic system theory for DESs.

1.2 Discrete Event Systems and Max-Plus Al-
gebra

Let us now show by some simple examples how certain classes of DESs can be
modeled using the max-plus algebra. The main goal of this section is to give
the reader an idea of what types of DESs can be described by a max-linear
time-invariant model.

First we give a very short introduction to the basic concepts of the max-plus
algebra that will be used in this section. A more elaborate introduction will be
given in Section 2.2.
The elements of the max-plus algebra are the real numbers and ε

def
= −∞. The

basic operations of the max-plus algebra are maximization (represented by ⊕)
and addition (represented by ⊗). So we have

x⊕ y = max (x, y)

x⊗ y = x+ y

for x, y ∈ Rε
def
= R ∪ {ε}. Note that x⊕ ε = x = ε⊕ x for all x ∈ Rε.

The operations ⊕ and ⊗ are extended to matrices as follows:

(A ⊕ B)ij = aij ⊕ bij = max(aij , bij)



1.2. Discrete Event Systems and Max-Plus Algebra 5

(A ⊗ B)ij =
⊕

k

aik ⊗ bkj = max
k

(aik + bkj)

for all i, j.
As has already been mentioned earlier on, one of the main reasons for choosing
the symbols ⊕ and ⊗ to represent the basic operations of the max-plus algebra
is that there exists a remarkable analogy between ⊕ and +, and between ⊗ and
×. In this section we shall see that by using these symbols we shall be able to
write down a state space description of the form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ (k) (1.1)

y(k) = C ⊗ (k) (1.2)

to describe the behavior of certain types of DESs.
Now we show how the behavior of some simple DESs such as various pro-

duction systems, a railroad system and a queuing system can be described
using the max-plus algebra.

Example 1.2.1 : A simple production system

P1

P2

-

-

PPPPPPPPPq

���������1 P3
-

u(k)

y(k)

t1 = 2

t2 = 0

t3 = 1

t4 = 0

t5 = 0

d1 = 5

d2 = 6

d3 = 3

Figure 1.1: A simple production system.

Consider the system of Figure 1.1. This production system consists of 3 pro-
cessing units: P1, P2 and P3. Raw material is fed to P1 and P2, processed and
sent to P3 where assembly takes place. The processing times for P1, P2 and
P3 are respectively d1 = 5, d2 = 6 and d3 = 3 time units. We assume that it
takes t1 = 2 time units for the raw material to get from the input source to P1

and that it takes t3 = 1 time unit for the finished products of processing unit
P1 to reach P3. The other transportation times (t2, t4 and t5) are assumed
to be negligible. At the input of the system and between the processing units
there are buffers with a capacity that is large enough to ensure that no buffer
overflow will occur. Initially all buffers are empty and none of the processing
units contains raw material or intermediate products.
A processing unit can only start working on a new product if it has finished pro-
cessing the previous one. We assume that each processing unit starts working
as soon as all parts are available. We define:
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• u(k): time instant at which raw material is fed to the system for the
(k + 1)st time,

• xi(k): time instant at which the ith processing unit starts working for
the kth time,

• y(k): time instant at which the kth finished product leaves the system.

Let us now determine the time instant at which processing unit P1 starts work-
ing for the (k+1)st time. If we feed raw material to the system for the (k+1)st
time, then this raw material is available at the input of processing unit P1 at
time t = u(k)+2. However, P1 can only start working on the new batch of raw
material as soon as it has finished processing the current, i.e. the kth batch.
Since the processing time on P1 is d1 = 5 time units, the kth intermediate
product will leave P1 at time t = x1(k)+5. Since P1 starts working on a batch
of raw material as soon as the raw material is available and the current batch
has left the processing unit, this implies that we have

x1(k + 1) = max(x1(k) + 5, u(k) + 2 ) (1.3)

for all k ∈ N0. The condition that initially processing unit P1 is empty and
idle corresponds to the initial condition x1(0) = ε since then it follows from
(1.3) that x1(1) = u(0) + 2, i.e. the first batch of raw material that is fed to
the system will be processed immediately (after a delay of 2 time units needed
to transport the raw material from the input to P1).
Using a similar reasoning we find the following expressions for the time instants
at which P2 and P3 start working for the (k+1)st time and for the time instant
at which the kth finished product leaves the system:

x2(k + 1) = max(x2(k) + 6, u(k) + 0 ) (1.4)

x3(k + 1) = max(x1(k + 1) + 5 + 1, x2(k + 1) + 6 + 0, x3(k) + 3 ) (1.5)

= max(x1(k) + 11, x2(k) + 12, x3(k) + 3, u(k) + 8 ) (1.6)

y(k) = x3(k) + 3 + 0 (1.7)

for all k ∈ N0. The condition that initially all buffers are empty corresponds
to the initial condition x1(0) = x2(0) = x3(0) = ε.
Let us now rewrite the evolution equations of the production system using the
symbols ⊕ and ⊗. It is easy to verify that (1.3) can be rewritten as

x1(k + 1) = 5⊗ x1(k) ⊕ 2⊗ u(k) .

Note that we do not need extra brackets in this expression to indicate the order
of evaluation of the operations ⊕ and ⊗ since ⊗ has a higher priority than ⊕.
Equations (1.4) – (1.7) result in

x2(k + 1) = 6⊗ x2(k) ⊕ u(k)
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x3(k + 1) = 11⊗ x1(k) ⊕ 12⊗ x2(k) ⊕ 3⊗ x3(k) ⊕ 8⊗ u(k)
y(k) = 3⊗ x3(k) .

If we rewrite these evolution equations in max-algebraic matrix notation, we
obtain

x(k + 1) =





5 ε ε
ε 6 ε

11 12 3



⊗ x(k) ⊕





2
0
8



⊗ u(k)

y(k) =
[
ε ε 3

]
⊗ x(k)

where x(k) = [ x1(k) x2(k) x3(k) ]
T

. Note that this is a model of the form
(1.1) – (1.2).
In Section 2.4 we shall use this production system to illustrate some of the
max-algebraic techniques that can be used to analyze max-linear time-invariant
DESs. 2

Example 1.2.2 Let us now discuss some other situations that occur in pro-
ductions systems and that can be described by a model of the form (1.1) – (1.2).
In the figures of this example we shall use circles to represent buffers with an
“infinite” capacity, i.e. a capacity that is large enough to ensure that no buffer
overflow will occur. Buffers with a finite capacity will be represented by rectan-
gular boxes with rounded corners. The capacity of the buffer will be indicated
above the box. Processing units will be represented by square boxes. The
processing time will be indicated above the box.
A processing unit can only start working on a new product if it has finished
processing the previous one. If a processing unit has finished processing a
product and if the output buffer of the processing unit is full, then the finished
product stays in the internal buffer of the processing unit. This implies that
as long as its output buffer stays full, a processing unit cannot start processing
a new product. Each processing unit starts processing a new product as soon
as all parts are available and its internal buffer is empty. The transportation
times are assumed to be negligible.
For Types 1 through 4 that will be discussed below, we assume that ui(k),
xi(k) and yi(k) are defined as follows:

• ui(k): time instant at which raw material is fed to the ith input of the
system for the (k + 1)st time,

• xi(k): time instant at which the ith processing unit starts working for
the kth time,

• yi(k): time instant at which a finished product leaves the ith output of
the system for the kth time.
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Now we discuss some elementary subsystems that can be found in production
systems and we state the equations that describe the behavior of these sub-
systems. We assume that xi(k) = ε for all nonpositive k’s, i.e. initially all the
buffers are empty and all the processing units are idle.

Type 1: Serial production

Here we have two processing units P1 and P2 that are connected in series (See
Figure 1.2). Between P1 and P2 there is a buffer with a finite capacity N1.

- m - P1
-

�



�
	

- P2
-u(k) x1(k) x2(k) y(k)

d1 d2N1

Figure 1.2: A production system with serial production.

Since the output buffer of processing unit P1 has a capacity of N1 parts, P1 can
only start processing the (k+1)st part if the (k−N1)th part has left the output
buffer of P1, i.e. after processing unit P2 has started processing the (k−N1)th
part. Therefore, we have

x1(k + 1) = max(u(k), x1(k) + d1, x2(k −N1) )

x2(k + 1) = max(x2(k) + d2, x1(k + 1) + d1 )

y(k) = x2(k) + d2 .

Type 2: Assembly

Now we consider a situation in which one processing unit (Pn+1) assembles the
intermediate parts that come from the other processing units (P1, P2, . . . , Pn)
(See Figure 1.3). Here we have

xi(k + 1) = max(xi(k) + di, ui(k), xn+1(k −Ni) ) for i = 1, 2, . . . , n,

- l - P1
-

�



�
	 S

S
S

SSw- l - P2
-

�



�
	

-

- l - Pn
-

�



�
	

�
�

�
�

��7
Pn+1

-

u1(k)

u2(k)

un(k)

x1(k)

x2(k)

xn(k)

d1

d2

dn

...
...

N1

N2

Nn

xn+1(k)
dn+1

y(k)

Figure 1.3: A production system in which assembly takes place.
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xn+1(k + 1) = max(x1(k + 1) + d1, x2(k + 1) + d2, . . . , xn(k + 1) + dn,

xn+1(k) + dn+1 )

y(k) = xn+1(k) + dn+1 .

Type 3: Splitting

Consider the production system of Figure 1.4. In this system the output of one
processing unit (P0) is distributed to the other processing units (P1, P2, . . . ,
Pn). This situation can be described by

x0(k + 1) = max(x0(k) + d0, u(k), x1(k −N1), x2(k −N2), . . . ,

xn(k −Nn) )

xi(k + 1) = max(xi(k) + di, x0(k + 1) + d0) for i = 1, 2, . . . , n,

yi(k) = xi(k) + di for i = 1, 2, . . . , n .

- l - P0
�

�
�
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-
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- Pn
-

u(k) x0(k)

x1(k)

x2(k)

xn(k)

y1(k)

y2(k)

yn(k)

d0

d1

d2

dn

...
...

N1

N2

Nn

Figure 1.4: A production system with splitting.

Type 4: Parallel production

Assume that we have a system with 3 processing units (P0, P1 and P2) and
with the following routing rule:

• the odd numbered parts that leave processing unit P0 go to processing
unit P1,

• the even numbered parts that leave processing unit P0 go to processing
unit P2.

This system is represented in Figure 1.5. If we define

• uo(k): time instant at which part 2k − 1 is fed to the system,

• ue(k): time instant at which part 2k is fed to the system,

• xo
0(k): time instant at which part 2k − 1 enters processing unit P0,
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- l - P0









-
�
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- P1
-

J
J

JJ -
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- P2
-

uo(k)

ue(k)

xo
0(k)

xe
0(k)

x1(k)

x2(k)

y1(k)

y2(k)

d0

d1

d2

part 1, 3, 5, . . .

part 2, 4, 6, . . .

N1

N2

Figure 1.5: A production system with parallel production.

• xe
0(k): time instant at which part 2k enters processing unit P0,

then the behavior of the system can be described by

xo
0(k + 1) = max(xe

0(k) + d0, u
o(k + 1), x1(k −N1) )

xe
0(k + 1) = max(xo

0(k + 1) + d0, u
e(k + 1), x2(k −N2) )

x1(k + 1) = max(x1(k) + d1, x
o
0(k + 1) + d0 )

x2(k + 1) = max(x2(k) + d2, x
e
0(k + 1) + d0 )

y1(k) = x1(k) + d1

y2(k) = x2(k) + d2 .

Note that uo
0(k) = u(2k − 2) and ue

0(k) = u(2k − 1) for all k ∈ N0.

If there is a routing rule that imposes a fixed routing (such as e.g. the routing
rule that has been used above), then the resulting model will be a max-linear
and time-invariant model of the form (1.1) – (1.2). However, if there is no
fixed routing (i.e. if e.g. a part that leaves a processing unit goes to the first
idle processing unit of the next stage of the production process or to the first
empty or non-full buffer) then we get in general a time-varying description that
depends on the state of the system and that is not max-linear.

Type 5: Flexible production with a fixed sequence of activities

Here we shall not treat the general case but we shall consider a more specific
example (See also Example 1.2.4).
Suppose that we have a system with 3 processing units (P1, P3 and P4) in
which two types of parts (T1 and T2) are produced (See Figure 1.6).

There are 4 different activities: A part of type T1 is first processed on processing
unit P1 (activity 1) and then on processing unit T3 (activity 3). A part of type
T2 is first processed on processing unit P1 (activity 2) and then on processing
unit P4 (activity 4). The sequence of parts on processing unit P1 is: P1, P2,
P1, P2, . . . . The processing time for activity i is di.
If we define
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Figure 1.6: Flexible production with a fixed sequence of activities.

• ui(k): time instant at which raw material for a part of type Ti is fed to
the system for the (k + 1)st time,

• xi(k): time instant at which activity i starts for the kth time,

• yi(k): time instant at which a finished product of type Ti leaves the
system,

then we have

x1(k + 1) = max(x2(k) + d2, u1(k), x3(k −N3) )

x2(k + 1) = max(x1(k + 1) + d1, u2(k), x4(k −N4) )

x3(k + 1) = max(x3(k) + d3, x1(k + 1) + d1 )

x4(k + 1) = max(x4(k) + d4, x2(k + 1) + d2 )

y1(k) = x3(k) + d3

y2(k) = x4(k) + d4 .

In this case the condition that there has to be a fixed sequence of activities is
also necessary to get a final model that is of the form (1.1) – (1.2).

If we have a system that consists of a combination of subsystems of Types 1
to 5 and for which there is a fixed sequence of activities, then the behavior of
this system can in general be described by a model of the form

x(k + 1) = A0 ⊗ x(k + 1) ⊕ A1 ⊗ x(k) ⊕ . . . ⊕
Aq ⊗ x(k − q) ⊕ B ⊗ u(k) (1.8)

y(k) = C ⊗ x(k) . (1.9)

Now we substitute the x(k + 1) on the right-hand side of (1.8) by the entire
right-hand side and we keep on repeating this until the x(k + 1) disappears
(which will always happen if the system contains no loops without delay). In
the next example we shall present a numerical example of this procedure. If
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we also define a new augmented state vector x̃(k) =








x(k)
x(k − 1)

...
x(k − q)








then we get

a description of the form (1.1) – (1.2). 2

Example 1.2.3 : A railroad system

6A

34

1 2

5

D

C

B

Figure 1.7: A railroad network.

Consider the railroad network of Figure 1.7. There are 4 stations in this railroad
network (A, B, C and D) that are connected by 6 single tracks. There are two
trains available. The first train follows the route A → B → C → D → A and
the second train follows the route B → D → B. We assume that there exists
a periodic timetable that schedules the earliest departure times of the trains.
The period of this timetable is T = 60 minutes. So if a departure of a train from
station B is scheduled at 5.18 a.m., then there is also scheduled a departure of
a train from station B at 6.18 a.m., 7.18 a.m., . . . . Table 1.1 summarizes the
information in connection with the traveling and the departure times. All the
times are measured in minutes. The indicated departure times are the earliest
departure times in the initial station of the track expressed in minutes after
the hour. The first period starts at time t = 0. At the beginning of the first
period the first train is in station A and the second train is in station B.

Suppose that we have to guarantee the following connections in order to allow
the passengers to change trains:

- the train on track 2 has to wait for the train on track 6,

- the train on track 4 has to wait for the train on track 5,

- the train on track 5 has to wait for the train on track 1,

- the train on track 6 has to wait for the train on track 3.
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Track From To Traveling Scheduled
station station time departure time

modulo 60

1 A B 15 00

2 B C 10 18

3 C D 10 30

4 D A 12 45

5 B D 18 20

6 D B 18 50

Table 1.1: The traveling and the departure times for the railroad network of
Example 1.2.3.

The passengers get 2 minutes to change trains. Each train departs as soon as
all the connections are guaranteed, the passengers have gotten the opportunity
to change over and the earliest departure time indicated in the timetable has
passed. We assume that in the first period all the trains depart according to
schedule. We define:

• xi(k): time instant at which the train departs from the initial station of
track i for the kth time.

Now we write down the equations that describe the evolution of the xi(k)’s.
First we consider the train on track 1 and we determine x1(k), the time instant
at which this train departs from station A for the kth time. At the beginning
of the first period the train is in station A. So if k is equal to 1, the train
departs from station A at time t = 0. If k is greater than 1, the train departs
from station A (for the kth time) as soon as it has arrived in station A (for the
(k − 1)st time) and the earliest departure time indicated in the timetable has
passed. The train arrives in station A for the (k−1)st time at the time instant
given by x4(k − 1) + 12. Since the system operates under a periodic timetable
with period T , the kth departure time of the train on track 1 according to the
timetable is 0 + kT . So if we set x4(0) = ε, then we have

x1(k) = max(x4(k − 1) + 12, 0 + kT ) for all k ∈ N0 .

The train on track 1 will arrive for the kth time in station B at time t =
x1(k) + 15. If k is greater than 1, the train has to wait for the passengers of
the train on track 6, which arrives in station B at time t = x6(k− 1)+18. The
passengers have 2 minutes to change trains. According to the timetable the
train on track 2 can only depart after time t = 18 + kT . Hence,

x2(k) = max(x1(k) + 15, x6(k − 1) + 18 + 2, 18 + kT ) for all k ∈ N0
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with x6(0) = ε. Using a similar reasoning we find

x3(k) = max(x2(k) + 10, 30 + kT )

x4(k) = max(x3(k) + 10, x5(k) + 18 + 2, 45 + kT )

x5(k) = max(x1(k) + 15 + 2, x6(k − 1) + 18, 20 + kT )

x6(k) = max(x3(k) + 10 + 2, x5(k) + 18, 50 + kT )

for all k ∈ N0. If we define

A0 =











ε ε ε ε ε ε
15 ε ε ε ε ε
ε 10 ε ε ε ε
ε ε 10 ε 20 ε

17 ε ε ε ε ε
ε ε 12 ε 18 ε











, A1 =











ε ε ε 12 ε ε
ε ε ε ε ε 20
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε 18
ε ε ε ε ε ε











,

x(k) =











x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)











, u(k) =











0 + kT
18 + kT
30 + kT
45 + kT
20 + kT
50 + kT











, x(0) =











ε
ε
ε
ε
ε
ε











,

then the evolution of the system is described by

x(k) = A0 ⊗ x(k) ⊕ A1 ⊗ x(k − 1) ⊕ u(k) (1.10)

for all k ∈ N0. Expression (1.10) is an implicit equation in x(k). If we substitute
the x(k) on the right-hand side of this equation by the entire right-hand side,
we get

x(k) = A0 ⊗
(
A0 ⊗ x(k) ⊕ A1 ⊗ x(k − 1) ⊕ u(k)

)
⊕ A1 ⊗ x(k − 1) ⊕ u(k)

= A0
⊗

2 ⊗ x(k) ⊕
(
A0 ⊕ E

)
⊗
(
A1 ⊗ x(k − 1) ⊕ u(k)

)

where E is the max-algebraic identity matrix (eii = 0 for all i and eij = ε for

all i, j with i 6= j) and where A⊗
k

represents the kth max-algebraic matrix
power of A.
After n substitutions we obtain

x(k) = A0
⊗
n+1 ⊗ x(k) ⊕

(

A0
⊗
n ⊕ A0

⊗
n−1 ⊕ . . .

⊕ A0 ⊕ E
)

⊗
(

A1 ⊗ x(k − 1) ⊕ u(k)
)

. (1.11)

Define A∗
0 = E ⊕ A0 ⊕ A0

⊗
2 ⊕ . . . . Since all the entries of the matrices
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A0
⊗

4
, A0

⊗
5
, A0

⊗
6
, . . . are equal to ε, we have

A∗
0 = E ⊕ A0 ⊕ A0

⊗
2 ⊕ A0

⊗
3

=











0 ε ε ε ε ε
15 0 ε ε ε ε
25 10 0 ε ε ε
37 20 10 0 20 ε
17 ε ε ε 0 ε
37 22 12 ε 18 0











.

So for any n > 3 equation (1.11) is equivalent to

x(k) = A∗
0 ⊗A1 ⊗ x(k − 1) ⊕ A∗

0 ⊗ u(k) .

Hence,

x(k) = A⊗ x(k − 1) ⊕ B ⊗ u(k)

with

A = A∗
0 ⊗A1 =











ε ε ε 12 ε ε
ε ε ε 27 ε 20
ε ε ε 37 ε 30
ε ε ε 49 ε 40
ε ε ε 29 ε 18
ε ε ε 49 ε 42











and B = A∗
0 .

Now we can determine various properties of the system such as stability, de-
lays, settling time, sensitivity with respect to change-over time, shortest paths,
critical paths, and so on (See [7, 8, 9]). This enables us to answer questions
such as: How do perturbations propagate through the system and how long
does it take before they have completely disappeared? What are the crucial
parts of the system that determine the “speed” of the system? If extra trains
become available, on which lines should they preferably be employed? What is
the maximal amount with which the change-over time can be increased without
endangering the stability of the system? 2

The following example is taken from [3] (See also [19]). We have only changed
the phrasing a little bit to make it consistent with the previous examples.

Example 1.2.4 : A multi-product manufacturing system
We consider a manufacturing system that consists of three machines (M1, M2

and M3). In this manufacturing system three different types of parts (T1, T2

and T3) are produced according to a certain product mix. The routes followed
by the various types of parts are depicted in Figure 1.8. Parts of type T1 first
visit machine M2 and then they go to M3. Parts of type T2 enter the system via
machine M1, then they go to machine M2 and they leave the system through
machine M3. Parts of type T3 first visit machine M1 and then they go to M2.
We make the following assumptions:
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T2

M1 M2 M3

T1

T3

Figure 1.8: The routing of the various types of parts along the machines.

u4(k) u5(k)

(T3,M2)(T2,M2)(T1,M2)

(T3,M1)(T2,M1)

(T1,M3) (T2,M3)

d3 = 3

d6 = 4

d4 = 2

d7 = 3

d1 = 1

d5 = 3

d2 = 5

u1(k)

u2(k)

u3(k)

y2(k)

y1(k)

y3(k)

u6(k)

y6(k)y5(k)y4(k)

Figure 1.9: The sequence and the duration of the various activities.

• The parts are carried around on pallets. There is one pallet available for
each part type.

• We assume that the transportation times are negligible and that there
are no set-up times on the machines when they switch from one part type
to another.

• The sequencing of the various part types on the machines is known: On
machine M1 we first process a part of type T2 and then a part of type
T3. On machine M2 the sequence is: T1, T2, T3. On machine M3 the
sequence is: T1, T2.

The information about the sequence and the duration of the various activities
is represented in Figure 1.9. In this figure we have represented the activities by
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ordered pairs of the form (Ti, Mj) meaning that a part of type Ti is processed on
machine Mj . The arcs represent the precedence constraints between activities.
At the bottom right of the activities we have indicated the duration of the
activity. Note that in the figure the activities are numbered from the left to
the right and from the top to the bottom. So activity 1 is (T2, M1) and activity
7 is (T2, M3).
In order to simplify the process of deriving the evolution equations of this
system, we shall first look at what happens in one cycle of the production
process. We define:

• ui(k): time instant at which machine Mi is available for the first activity
that should be performed on it in the kth production cycle for i = 1, 2, 3,

• uj(k): time instant at which the raw material for a part of type Tj−3 is
available in the kth production cycle for j = 4, 5, 6,

• xi(k): time instant at which activity i starts in the kth production cycle
for i = 1, 2, . . . , 7,

• yi(k): time instant at which machine Mi has finished processing the
last part of the kth production cycle that should be processed on it for
i = 1, 2, 3,

• yj(k): time instant at which the finished product of type Tj−3 of the kth
production cycle has been completed for j = 4, 5, 6.

Using a reasoning that is similar that the one that has been used in the previous
examples we find that the relation between u(k), x(k) and y(k) is given by

x(k) = A0 ⊗ x(k) ⊕ B0 ⊗ u(k) (1.12)

y(k) = C0 ⊗ x(k) (1.13)

with

A0 =













ε ε ε ε ε ε ε
1 ε ε ε ε ε ε
ε ε ε ε ε ε ε
1 ε 3 ε ε ε ε
ε 5 ε 2 ε ε ε
ε ε 3 ε ε ε ε
ε ε ε 2 ε 4 ε













, B0 =













0 ε ε ε 0 ε
ε ε ε ε ε 0
ε 0 ε 0 ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε 0 ε ε ε
ε ε ε ε ε ε













and

C0 =











ε 5 ε ε ε ε ε
ε ε ε ε 3 ε ε
ε ε ε ε ε ε 3
ε ε ε ε ε 4 ε
ε ε ε ε ε ε 3
ε ε ε ε 3 ε ε











.
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Since (1.12) is an implicit equation in x(k), we apply the same technique as
in Example 1.2.3 to eliminate the x(k) on the right-hand side of this equation.
This yields:

x(k) = A∗
0 ⊗B0 ⊗ u(k) .

After a machine has finished a sequence of products it starts with the next
sequence. Since we assume that there are no set-up times, this implies that
the output time instants y1(k), y2(k), y3(k) of the kth cycle of the production
process are the input time instants u1(k + 1), u2(k + 1), u3(k + 1) of the
(k + 1)st cycle. If a pallet on which a part of type Ti was mounted leaves the
last machine through which it should pass in the current production cycle, the
finished product is removed and the empty pallet immediately goes back to
the starting point to pick up a new part of type Ti. Since we assume that the
transportation times are negligible, this implies that the output time instants
y4(k), y5(k), y6(k) of the kth cycle of the production process are the input
time instants u4(k+ 1), u5(k+ 1), u6(k+ 1) of the (k+ 1)st cycle. So we have
u(k + 1) = y(k) for all k ∈ N0. Hence,

y(k + 1) = C0 ⊗ x(k + 1)

= C0 ⊗A∗
0 ⊗B0 ⊗ u(k + 1)

= A⊗ y(k)

with

A = C0 ⊗A∗
0 ⊗B0 =











6 ε ε ε 6 5
9 8 ε 8 9 8
6 10 7 10 6 ε
ε 7 4 7 ε ε
6 10 7 10 6 ε
9 8 ε 8 9 8











.

If we define a new state vector x̃(k) = y(k), then we see that this cyclic produc-
tion system can also be described by a model of the form (1.1) – (1.2) but now
the model is autonomous i.e. there is no external input that controls the behav-
ior of the system. So in this case the B matrix is equal to the max-algebraic
zero matrix: bij = ε for all i, j. 2

Finally, we present an example of a DES that cannot be described by a time-
invariant model of the form (1.1) – (1.2). This example has also been taken
from [3]. We have only changed the explanation somewhat to make it consistent
with the previous examples.

Example 1.2.5 : A queuing system
Consider the queuing system of Figure 1.10. This system consists of 4 servers
(S1, S2, S3 and S4) that are connected in series. The system has an input
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S1 S2 S3 S4

Figure 1.10: A queuing system with 4 servers and 1 input buffer.

buffer with a capacity that is large enough to ensure that the buffer will never
be full. Each customer is to be served by S1, S2, S3 and S4, in this order.
If a customer arrives into the input buffer, if the input buffer is empty and if
server S1 is idle, then this customer is served immediately by S1. Between the
servers there are no buffers. This implies that if server Si (i = 1, 2 or 3) has
finished serving the kth customer but Si+1 is still busy serving the (k − 1)st
customer, then Si cannot start serving the (k + 1)st customer. This customer
has to wait until Si+1 starts serving the kth customer. We assume that the
traveling times between the servers are negligible. Define:

• u(k): time instant at which the (k+ 1)st customer arrives into the input
buffer of the queuing system,

• xi(k): time instant at which server Si starts serving the kth customer,

• τi(k): number of time units it takes for server Si to serve the kth cus-
tomer.

Note that the service times are not constant but depend on the customer.
Server Si can only start serving the (k + 1)st customer if the following three
conditions are fulfilled:

• server Si has finished serving the kth customer,

• if i 6= 4 then Si+1 is idle,

• if i 6= 1 then Si−1 has finished serving the (k + 1)st customer; and if
i = 1 then the (k+ 1)st customer has arrived into the input buffer of the
system.

Hence,

x(k + 1) = A0(k + 1)⊗ x(k + 1) ⊕ A1(k)⊗ x(k) ⊕ B0 ⊗ u(k) (1.14)

with

A0(k + 1) =







ε ε ε ε
τ1(k + 1) ε ε ε

ε τ2(k + 1) ε ε
ε ε τ3(k + 1) ε






,

A1(k) =







τ1(k) 0 ε ε
ε τ2(k) 0 ε
ε ε τ3(k) 0
ε ε ε τ4(k)







and B0 =







0
ε
ε
ε







.
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If we assume that initially all the servers are idle and the input buffer is empty
then we have x1(0) = x2(0) = x3(0) = x4(0) = ε.
Since (1.14) is an implicit equation in x(k + 1) we apply the repeated-substi-
tution technique that has also been used in the previous examples to eliminate
the x(k + 1) on the right-hand side of this equation. This leads to

x(k + 1) = A(k)⊗ x(k) ⊕ B(k)⊗ u(k) (1.15)

with

A(k) = (A0(k + 1))∗ ⊗A1(k) and B(k) = (A0(k + 1))∗ ⊗B

where

(A0(k + 1))∗ =







0 ε ε ε

τ1(k + 1) 0 ε ε

τ1(k + 1)⊗ τ2(k + 1) τ2(k + 1) 0 ε

τ1(k + 1)⊗ τ2(k + 1)⊗ τ3(k + 1) τ2(k + 1)⊗ τ3(k + 1) τ3(k + 1) 0







.

Note that (1.15) resembles (1.1) but that in contrast to (1.1) the system ma-
trices in (1.15) depend on k, i.e. they are time-varying. 2

The results of the examples given above can be generalized: if we limit ourselves
to time-invariant deterministic DESs in which the sequence of the events and
the duration of the activities are fixed or can be determined in advance (such
as repetitive production processes), then the behavior of the system can be
described by equations of the form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (1.16)

y(k) = C ⊗ x(k) (1.17)

for all k ∈ N0 with an initial condition x(0) = x0. We call (1.16) – (1.17) an
nth order state space model. The vector x represents the state, u is the input
vector and y is the output vector of the system. The description (1.16) – (1.17)
closely resembles the conventional state space description

x(k + 1) = Ax(k) + Bu(k) (1.18)

y(k) = Cx(k) (1.19)

for discrete linear time-invariant systems. Furthermore, in Section 2.4 we shall
show that the input-output behavior of DESs that can be described by a model
of the form (1.16) – (1.17) is max-linear in the sense that if the input sequences
u1 and u2 yield the output sequences y1 and y2 respectively, then the input
sequence α⊗u1 ⊕ β⊗u2 yields the output sequence α⊗y1 ⊕ β⊗y2. Therefore,
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we call DESs that can be described by a state space model of the form (1.16) –
(1.17) max-linear time-invariant DESs. The analogy between (1.16) – (1.17)
and (1.18) – (1.19) is also one of the reasons why the symbols ⊕ and ⊗ are used
to represent the basic operations of the max-plus algebra.

The class of DESs that can be described by a max-linear time-invariant
model consists of time-invariant deterministic DESs in which the sequence of
the events and the duration of the activities are fixed or can be determined in
advance. In this kind of DESs we essentially only have synchronization and
no concurrency. Synchronization requires the availability of several resources
at the same time and this typically leads to the appearance of the maximum
operation in the description of the system as has been shown in the examples
given above. When at a certain time a user has to choose among several
resources we have concurrency. This occurs e.g. when we have a routing that is
not fixed but that depends on the state of the system. This phenomenon cannot
be described by a max-linear time-invariant model. This implies that the class
of the DESs that can be described by a max-linear time-invariant model is
only a small subclass of the class of all the DESs. On the other hand, for this
kind of DESs there are many efficient analytic methods available to determine
and to analyze the properties of the system since we can use the properties
of the max-plus algebra to analyze max-linear time-invariant models in a very
efficient way (as opposed to e.g. computer simulation where, before we can
determine the steady-state behavior of a given DES, we first have to simulate
the transient behavior, which in some cases might require a rather large amount
of computation time). In Section 2.4 we shall present some analytic methods
for DESs that can be described by a max-linear time-invariant model.

If we allow variable or stochastic processing and transportation times and
variable routing, we can still describe the system by a max-algebraic model [2,
3, 119, 120, 123, 124] but it will not be time-invariant and max-linear any more,
which means that it will become more difficult to analyze the properties of the
system analytically.

For more information on max-algebraic modeling of production systems,
timetable dependent transportation networks, queuing systems, array proces-
sors and other types of DESs the interested reader is referred to [3, 7, 8, 18,
19, 20, 21, 23, 25, 32, 95, 117].

1.3 General Survey of the Thesis and Chapter
by Chapter Overview

1.3.1 General Survey

The overall goal of this thesis is to develop some tools that can be used in sys-
tem theory for max-linear time-invariant DESs. One of the starting points of
our research is the analogy between the state space description for linear time-
invariant systems and the state space description for max-linear time-invariant



22 Chapter 1. Introduction and Motivation

DESs (cf. Section 1.2). We have already mentioned that there exists a remark-
able analogy between the basic operations of the max-plus algebra and the
conventional operations addition and multiplication, and that they have many
properties in common. Nevertheless, there are also some differences that pre-
vent a straightforward translation of properties, concepts and algorithms from
linear system theory to system theory for max-linear time-invariant DESs. This
is one of the reasons why at present the max-algebraic system theory for DESs
is not fully developed yet. Therefore, we have intensively studied one of the
major open problems in max-algebraic system theory: the minimal state space
realization problem for max-linear time-invariant DESs. In connection with
this problem we have also studied the max-algebraic characteristic polynomial,
max-algebraic state space transformations and max-algebraic matrix factoriza-
tions. Furthermore, as a first step towards the development of methods for the
identification of DESs we have also studied max-algebraic analogues of matrix
decompositions that are an important tool in many contemporary algorithms
for the identification of linear systems (See e.g. [96, 98, 138, 139, 140, 142] and
the references cited therein): the QR decomposition and the singular value de-
composition. We found that many of the problems that arose in our research
could be considered as special cases of a more general problem, viz. solving
a system of multivariate max-algebraic polynomial equalities and inequalities,
which could in its turn be reformulated as a mathematical programming prob-
lem: the Extended Linear Complementarity Problem. This problem consists
in solving a system of linear equalities and inequalities in which there are some
groups of inequalities where in each group at least one equality should hold
with equality.

Let us now give an overview of the structure of this thesis and of the con-
nections between the problems that will be treated in it.

This thesis consists of three major parts (See Figure 1.11). The first part of
the thesis is oriented towards mathematical programming. In this part we in-
troduce the Extended Linear Complementarity Problem (ELCP), which is a
generalization of one of the fundamental problems in mathematical program-
ming: the Linear Complementarity Problem. We shall show that many max-
algebraic problems can be reformulated as an ELCP. Therefore, the first part
of this thesis is the stepping stone for the next parts.
The second part of the thesis deals with the max-plus algebra. The main
topic of this part is the minimal state space realization problem for max-linear
time-invariant DESs. In this part we also treat the connection between the
ELCP and max-algebraic problems. Furthermore, we present some results on
the max-algebraic characteristic polynomial and on state space transformations
for max-linear time-invariant DESs.
In Part 3 we discuss some matrix decompositions in the symmetrized max-plus
algebra. These decompositions are max-algebraic versions of basic matrix de-
compositions from linear algebra such as the singular value decomposition and
the QR decomposition.
Part 1 is linked to Parts 2 and 3 by the fact that many problems in the max-plus
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Figure 1.11: The relations between Chapters 3 to 7.

algebra and in the symmetrized max-plus algebra can be reformulated as an
ELCP. We shall use the ELCP as a mathematical tool to describe and to solve
many of the max-algebraic problems that will be treated in this thesis. We
shall show that the problem of solving a system of multivariate max-algebraic
polynomial equalities and inequalities can be reformulated as an ELCP and
vice versa. This will enable us to solve many other max-algebraic problems
such as:

• calculating max-algebraic matrix factorizations,

• performing state space transformations for max-linear time-invariant
DESs,

• determining minimal or partial state space realizations of the impulse
response of a max-linear time-invariant DES,

• constructing matrices with a given max-algebraic characteristic polyno-
mial,

• calculating max-algebraic singular value decompositions and max-alge-
braic QR decompositions,

• . . .
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system of multivariate max-
algebraic polynomial equalities
and inequalities

state space
transformations

matrices with a
given max-
algebraic charac-
teristic polyno-
mial

Extended Linear Complemen-
tarity Problem

max-algebraic
matrix factoriza-
tions

minimal or par-
tial state space
realizations

Figure 1.12: The connections between the ELCP and some of the max-algebraic
problems that will be treated in this thesis.

Although the analogues of these problems in conventional algebra and linear
system theory are easy to solve, the max-algebraic problems are not that easy
to solve and for almost all of them the ELCP approach is at present to only
way to solve the problem.

Let us now take a closer look at the connections between some of the prob-
lems mentioned above (See Figure 1.12). We have already mentioned that the
ELCP and solving a system of multivariate max-algebraic polynomial equalities
and inequalities are equivalent. Factorizing a given matrix as the max-algebraic
product of two or more matrices can be considered as a special case of solving
a system of multivariate max-algebraic polynomial equalities and inequalities,
and therefore we can use the ELCP to compute max-algebraic matrix factor-
izations. We can transform a state space model that is characterized by the
system matrices A, B, C and the initial condition x0 into an equivalent state

space model by determining a factorization of the matrix

[
A
C

]

or the matrix
[
A B x0

]
. We shall also show that the ELCP can be used to compute

matrices with a given max-algebraic characteristic polynomial.
We shall discuss several methods to determine minimal and partial state space
realizations of the impulse response of a max-linear time-invariant DES. The
first method can be considered as a kind of extended max-algebraic matrix
factorization and can thus be solved using the ELCP approach. The second
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method is a two-step method in which we first determine the A matrix starting
from its max-algebraic characteristic polynomial; next the matrices B and C
are determined using an extended max-algebraic matrix factorization that is a
simplified variant of the matrix factorization that is used in the first method.
Sometimes we can also use max-algebraic state space transformations to com-
pute minimal state space realizations of the impulse response of a max-linear
time-invariant DES (provided that we already have a state space description
of the given system at our disposal).

1.3.2 Chapter by Chapter Overview

Now we briefly summarize the contents and main results of each chapter of this
thesis.

Chapter 2: Background Material

In this introductory chapter we first present some of the notations we use in
this thesis. Next we give an introduction to the max-plus algebra and the
symmetrized max-plus algebra. We also discuss some of the relations between
the max-plus algebra and graph theory. Finally we present some analysis tech-
niques for DESs that can be described by a max-linear time-invariant state
space model and we apply these techniques to an example.

Chapter 3: The Extended Linear Complementarity Prob-
lem

In this chapter we present a mathematical programming problem that we have
called the Extended Linear Complementarity Problem (ELCP). This problem
consists in finding a solution of a system of linear equalities and inequalities in
which there are some groups of inequalities where in each group at least one
equality should hold with equality. As has already been said earlier on, the
ELCP is an important mathematical tool that will be used frequently in the
next chapters.

First we show that the ELCP can be considered as a unifying framework
for the Linear Complementarity Problem and some of its generalizations. We
also study the general solution set of the ELCP and we give a geometrical
characterization of this solution set. Next we derive an algorithm to find all
the solutions of an ELCP. Finally, we discuss the performance of this algorithm
and we show that the ELCP is an NP-hard problem.

Chapter 4: Applications of the Extended Linear Comple-
mentarity Problem in the Max-Plus Algebra

In this chapter we prove that the problem of finding all finite solutions of a
system of multivariate max-algebraic polynomial equalities and inequalities is
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equivalent to an ELCP. We also show that many other max-algebraic prob-
lems such as calculating max-algebraic matrix factorizations, solving systems
of max-linear “equations” in the symmetrized max-plus algebra, mixed max-
min problems, max-max and max-min problems can be reformulated as an
ELCP.

Chapter 5: The Max-Algebraic Characteristic Polynomial

The subject of this chapter is the max-algebraic characteristic polynomial of
a matrix with entries in Rε (Rε = R ∪ {−∞}). First we derive necessary
conditions for the coefficients of the max-algebraic characteristic polynomial
of a matrix with entries in Rε. For max-algebraic polynomials with a degree
that is less than or equal to 4 we derive necessary and sufficient conditions
for the coefficients such that the given max-algebraic polynomial corresponds
to the max-algebraic characteristic polynomial of a matrix with entries in Rε

and we also indicate how this matrix can be constructed. Finally, we show
that the problem of constructing a matrix with entries in Rε that has a given
max-algebraic polynomial as its max-algebraic characteristic polynomial can
be reformulated as an ELCP.

Chapter 6: State Space Transformations and State Space
Realization for Max-Linear Time-Invariant Discrete Event
Systems

In this chapter we use results of all the preceding chapters to develop a method
to solve one of the basic problems in max-algebraic system theory for DESs:
the minimal state space realization problem.

In the first part of this chapter we discuss max-algebraic state space trans-
formations. These transformations allow us to transform a given max-algebraic
state space model of a max-linear time-invariant DES into an equivalent state
space model, i.e. a state space model that describes the same input-output
behavior as the original model. We introduce two types of state space trans-
formations that can be considered as an extension of max-algebraic similarity
transformations and we show that these transformations can be computed using
an ELCP.

In the second part of this chapter we treat the minimal state space real-
ization problem for max-linear time-invariant DESs: we present a procedure
to construct the system matrices of a state space model of a max-linear time-
invariant DES starting from its impulse response and such that the dimension
of the system matrices is as small as possible. Let us briefly discuss the vari-
ous procedures to solve this problem that will be presented in this thesis (See
Figure 1.13). We start from the impulse response of the DES. First we use
the results of Chapter 5 to determine the minimal system order. The system
matrices A, B and C will be determined by solving one or more ELCPs.
In the first method to determine the system matrices, A, B and C will be
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Determination of B and C:

1. partial state space realiza-
tions
- via an ELCP

2. state space realizations of
the entire impulse response
- via ELCPs

direct method
two-step method

Determination of a lower bound
for the minimal system order:
- via the max-algebraic rank
- via the max-algebraic

characteristic equation

Determination of A, B and C:

1. partial state space realiza-
tions
- via an ELCP

2. state space realizations of
the entire impulse response
- via ELCPs

Determination of A starting
from its max-algebraic charac-
teristic equation:
- via formulas
- via a heuristic algorithm
- via an ELCP

Impulse response

Figure 1.13: An overview of the methods to solve the minimal state space
realization problem for max-linear time-invariant DESs that will be presented
in this thesis.

computed simultaneously using a kind of extended max-algebraic matrix fac-
torization. This method will be called the direct method. This method consists
of two major steps: first we determine partial state space realizations of the
given impulse response, i.e. we look for realizations of the first, say N , terms
of the impulse response. In the second major step we determine how the set of
the partial state space realizations evolves as N goes to ∞. This will result in
state space realizations of the entire impulse response. We shall illustrate this
procedure with some worked examples.
We also present another method to determine the system matrices. This
method is a two-step method in which we first determine the A matrix starting
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from its max-algebraic characteristic polynomial (using the formulas of Chap-
ter 5, the heuristic algorithm of Appendix B or an ELCP). Next the matrices
B and C are determined using an extended max-algebraic matrix factorization
that is a simplified variant of the matrix factorization that is used in the first
method. However, we shall show that this two-step method cannot always be
used — that is why we have used dashed lines in Figure 1.13 for the arcs that
correspond to the two-step method — since it is possible that for some matrices
A that result from the first step it is impossible to determine matrices B and
C such that the triple of system matrices (A,B,C) yields a state space model
of the given impulse response.

Chapter 7: The Singular Value Decomposition and the QR
Decomposition in the Symmetrized Max-Plus Algebra

In many linear algebra algorithms and in many contemporary algorithms for
the identification of linear systems the QR decomposition (QRD) and the sin-
gular value decomposition (SVD) play an important role. In this chapter we
shall develop a method to define and to prove the existence of max-algebraic
analogues of these basic matrix factorizations. In [42] we have already proved
the existence of the SVD in the symmetrized max-plus algebra. However, the
alternative proof technique that will be presented in this chapter has the ad-
vantage that it can easily be adapted to prove the existence of max-algebraic
analogues of many other matrix decompositions from linear algebra such as
e.g. the eigenvalue decomposition for symmetric matrices, the LU decomposi-
tion, the Schur decomposition, the Hessenberg decomposition and so on. We
shall also indicate how the max-algebraic SVD might be used in a procedure
to solve the identification problem for max-linear time-invariant DESs.
In this chapter we first present a link between a ring of real functions and
the symmetrized max-plus algebra. This leads to a further extension of the
max-plus algebra that will correspond to a ring of complex functions. Then we
use the link between the ring of real functions and the symmetrized max-plus
algebra to define the SVD and the QRD in the symmetrized max-plus algebra
and to prove the existence of these matrix decompositions. Next we derive
some properties of the max-algebraic SVD. Finally we show that the problem
of finding all the max-algebraic SVDs or all the max-algebraic QRDs of a given
matrix can also be reformulated as an ELCP.

Appendices

The appendices contain additional information and examples. Proofs that are
not instructive or that were too long to be included in the main body of the
text have also been put in the appendices.
In Appendix A we discuss an alternative version of the max-algebraic charac-
teristic equation of a matrix.
Appendix B contains the proofs of some of the propositions of Chapter 5. In
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this appendix we also present a heuristic algorithm to construct matrices with
a given max-algebraic characteristic polynomial.
In Appendix C we prove some of the lemmas of Chapter 6.
In Appendix D we prove some propositions of Chapter 7. We also propose
some extensions of the max-algebraic SVD and the max-algebraic QRD. We
show that these extended max-algebraic matrix decompositions can also be
computed using the ELCP approach.
Appendix E contains an informal introduction to the symmetrized max-plus
algebra. In this appendix we also give some extra worked examples of the basic
operations and relations of the symmetrized max-plus algebra.





Chapter 2

Background Material

In this section we present some background material on the max-plus alge-
bra, the symmetrized max-plus algebra and system theory for max-linear time-
invariant discrete event systems. In Section 2.1 we introduce some notations
and definitions that will be used in this thesis. Next we give a concise intro-
duction to the max-plus algebra. In Section 2.3 we address the symmetrized
max-plus algebra, which is an extension of the max-plus algebra. In Section 2.4
we give a short introduction to system theory for max-linear time-invariant dis-
crete event systems.

Chapter 3 does not require any of the background material that will be
presented in this section except maybe for the notation we use to denote sub-
matrices of a given matrix (see Section 2.1). Especially in Chapter 5 the no-
tations and definitions in connection with permutations that will be presented
in Section 2.1 might be useful.
For Chapters 4 through 7 a basic knowledge of the max-plus algebra and an ele-
mentary knowledge of the symmetrized max-plus algebra is necessary. Readers
that are familiar with the max-plus algebra, the symmetrized max-plus alge-
bra and the basic concepts of max-algebraic system theory may want to skip
Sections 2.2, 2.3 and 2.4 or go through them very quickly. Note that in Ap-
pendix E we shall give an informal introduction to the symmetrized max-plus
algebra whereas in Section 2.3 a more formal derivation of the symmetrized
max-plus algebra will be given. Therefore, readers that are not interested in a
formal derivation of the symmetrized max-plus algebra might skip the first part
of Section 2.3, read Appendix E instead and afterwards return to Section 2.3
to have a look at definitions of concepts like max-algebraic determinant, max-
linear independence, etc. that will be presented at the end of that section.

31
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2.1 Notations and definitions

We assume that the reader is familiar with symbols like ∅, ⊆, ⊂, #, N, N0, R,
Rn, Rm×n, . . . (The definitions of these and other symbols can be found on
pp. v–vi).

Now we present some notations and definitions that are specific to this
thesis.

We use f :D → T to indicate that f is a function with domain of definition D
and target T . Sometimes we also use the symbol f(·) to represent a function.
The domain of definition of the function f is denoted by dom f and the value
of f in x ∈ dom f is denoted by f(x). Since a function f can also be considered
as a set of ordered pairs { (x, y) |x ∈ dom f and y = f(x)}, the union of two
functions can be defined as follows: if f and g are functions and if dom f ∩
dom g = ∅, then f ∪ g is a function with domain of definition dom f ∪ dom g
and with

(f ∪ g)(x) =

{

f(x) if x ∈ dom f ,

g(x) if x ∈ dom g .

If f and g are two real functions and if ∞ is an accumulation point of both

dom f and dom g, then we say that g = O(f) if lim sup
x→∞

|g(x)|
f(x)

is finite. If

x ∈ R then bxc is the largest integer that is less than or equal to x.

We use “vector” as a synonym for “matrix with one column”. So in this thesis
we have Rn ≡ Rn×1.
Let a be a vector with n components. The ith component of a is denoted by
ai. If α ⊆ {1, 2, . . . , n} then aα is the subvector of a obtained by removing all
the components of a that are not indexed by α.
Let A be an m by n matrix. Then aij or (A)ij is the entry on the ith row
and the jth column of A. We use Ai,. to denote the ith row of A and A.,j to
denote the jth column of A. Let α ⊆ {1, 2, . . . ,m} and β ⊆ {1, 2, . . . , n}. The
submatrix of A obtained by removing all rows of A that are not indexed by α
and all columns that are not indexed by β is denoted by Aαβ . The submatrix of
A obtained by removing all rows of A except for those indexed by α is denoted
by Aα,..
If the off-diagonal entries of a matrix D ∈ Rm×n are equal to 0 then we say
that D is a diagonal matrix. A matrix R ∈ Rm×n is an upper triangular matrix
if rij = 0 for all i, j with i > j. Note that D and R are not necessarily square
matrices. A permutation matrix is square matrix with exactly one entry that
is equal to 1 in each row and in each column and where the other entries are
equal to 0.
Let a, b ∈ Rn. The order relation for vectors is defined as follows: we have
a 6 b if and only if ai 6 bi for i = 1, 2, . . . , n. Furthermore, a > 0 means that
ai > 0 for i = 1, 2, . . . , n. Likewise, a = 0 means that ai = 0 for i = 1, 2, . . . , n
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Figure 2.1: The graph of a cyclic permutation.

and a 6= 0 means that there exists an index i ∈ {1, 2, . . . , n} such that ai 6= 0.

Let k, n ∈ N. We use Ckn to represent the set of all subsets with k elements of the

set {1, 2, . . . , n}. The number of elements of Ckn is given by

(
n

k

)

=
n!

(n− k)! k! .

The set of all the permutations of {1, 2, . . . , n} is denoted by Pn. An element
σ of Pn will be considered as a mapping from {1, 2, . . . , n} to {1, 2, . . . , n}.
Consider a subset {i1, i2, . . . , ik} of {1, 2, . . . , n}. If τ is a permutation of the
set {i1, i2, . . . , ik} such that

τ(i1) = i2, τ(i2) = i3, . . . , τ(ik−1) = ik, τ(ik) = i1 ,

then we say that τ is a cyclic permutation or a cycle of length k. The graph of
this permutation is represented in Figure 2.1.

If a permutation of {1, 2, . . . , n} is not a cycle, we can decompose it uniquely
into r elementary cycles τ1, τ2, . . . , τr for some r > 1 with dom τi∩dom τj = ∅
for all i, j with i 6= j. If li is the length of τi for i = 1, 2, . . . , r then we have
r∑

i=1

li = n.

Example 2.1.1 Let σ ∈ P4 be defined by σ(1) = 4, σ(2) = 2, σ(3) = 3 and
σ(4) = 1. The graph of this permutation is represented in Figure 2.2.

τ21

2

4 3

τ1

τ3

Figure 2.2: The graph of the permutation σ of Example 2.1.1.
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This permutation can be decomposed into three elementary cycles: τ1, τ2 and
τ3 with dom τ1 = {1, 4}, dom τ2 = {2}, dom τ3 = {3} and τ1(1) = 4, τ1(4) = 1,
τ2(2) = 2, τ3(3) = 3. 2

The parity of a permutation can be determined in various ways. If we combine
e.g. the results given on pp. 100–101 of [11], we get the following property,
which for us will serve as a definition of the parity of a permutation:

Lemma 2.1.2 (Parity) The parity of a permutation is equal to the parity of
the number of its elementary cycles of even length.

Let n ∈ N. If n is even then a cyclic permutation σc ∈ Pn is odd since there
is one elementary cycle of even length. If n is odd then a cyclic permutation
σc ∈ Pn is even since there are no elementary cycles of even length.
The permutation σ of Example 2.1.1 is odd since it has one elementary cycle
of even length, viz. τ1.
The set of the even permutations of {1, 2, . . . , n} is denoted by Pn,even and the
set of the odd permutations of {1, 2, . . . , n} is denoted by Pn,odd.

2.2 The Max-Plus Algebra

In this section we give an introduction to the max-plus algebra. Most of the
material presented in this section is selected from [3, 33], where a complete
overview of the max-plus algebra can be found.

2.2.1 Terminology

First we have to make some remarks on the terminology used in this thesis:

• We use the term “algebra” or “algebraic structure” to indicate a set of
elements with a number of operations that can be performed on these
elements.

• Whenever we speak about conventional algebra, we refer to the algebra
of the real (or the complex) numbers with addition and multiplication as
basic operations.

• The term “max-algebraic” and the prefix “max-” will be used to indicate
properties and concepts that pertain to the max-plus algebra Rmax, which
will be introduced in this section, and its extensions Smax and Tmax, which
will be introduced in Sections 2.3 and 7.2 respectively.

2.2.2 Basic Operations

The basic max-algebraic operations are defined as follows:

x⊕ y = max (x, y) (2.1)

x⊗ y = x+ y (2.2)
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for x, y ∈ R ∪ {−∞}. The reason for using these symbols is that there is a
remarkable analogy between ⊕ and addition and between ⊗ and multiplication:
many concepts and properties from conventional linear algebra (such as the
Cayley-Hamilton theorem, eigenvectors and eigenvalues, Cramer’s rule, . . . )
can be translated to the (symmetrized) max-plus algebra by replacing + by ⊕
and × by ⊗ (See also Section 7.2). Therefore, we also call ⊕ the max-algebraic
addition, or max-addition for short. Likewise, we call ⊗ the max-algebraic
multiplication or max-multiplication. The resulting algebraic structure Rmax =
(R ∪ {−∞},⊕,⊗) is called the max-plus algebra. Define Rε = R∪{−∞}. The

zero element for ⊕ in Rε is represented by ε
def
= −∞ . So x⊕ ε = x = ε⊕ x for

all x ∈ Rε.
Let r ∈ R. The rth max-algebraic power of x ∈ R is denoted by x⊗

r
and

corresponds to rx in conventional algebra. If x ∈ R then x⊗
0

= 0 and the

inverse element of x w.r.t. ⊗ is x⊗
−1

= −x. There is no inverse element for
ε since ε is absorbing for ⊗. If r > 0 then ε⊗

r
= ε. If r < 0 then ε⊗

r
is not

defined. In this thesis we have ε⊗
0

= 0 by definition.
The max-algebraic division operation is defined as follows:

if x, y ∈ Rε and y 6= ε then
x

y
= x⊗ y⊗

−1
.

If y is equal to ε then
x

y
is not defined .

The rules for the order of evaluation of the max-algebraic operators are sim-
ilar to those of conventional algebra. So max-algebraic power has the highest
priority, and max-algebraic multiplication and division have a higher priority
than max-algebraic addition.

The matrix En is the n by n max-algebraic identity matrix:

(En)ii = 0 for i = 1, 2, . . . , n ,

(En)ij = ε for i = 1, 2, . . . , n and j = 1, 2, . . . , n with i 6= j .

The m by n max-algebraic zero matrix is represented by εm×n: we have
(εm×n)ij = ε for all i, j. If the size of the max-algebraic identity matrix
or the max-algebraic zero matrix is not specified, it should be clear from the
context.
The off-diagonal entries of a max-algebraic diagonal matrix D ∈ Rm×n

ε are
equal to ε: dij = ε for all i, j with i 6= j. A matrix R ∈ Rm×n

ε is a max-
algebraic upper triangular matrix if rij = ε for all i, j with i > j. If we
permute the rows or the columns of the max-algebraic identity matrix, we ob-
tain a max-algebraic permutation matrix.
The max-algebraic operations are extended to matrices in the usual way. So if
α ∈ Rε and if A,B ∈ Rm×n

ε then

(α⊗A)ij = α⊗ aij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n
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and

(A⊕B)ij = aij ⊕ bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

If A ∈ Rm×p
ε and B ∈ Rp×nε then

(A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

Let k ∈ N. The kth max-algebraic power of a matrix A ∈ Rn×n
ε is defined

recursively as follows:

A⊗
k

= A⊗
k−1 ⊗A if k > 0 ,

A⊗
0

= En .

One of the major differences between conventional algebra and max-plus al-
gebra is that in general there do not exist inverse elements w.r.t. ⊕ in Rmax.
This also means that in general matrices are not invertible either.

Proposition 2.2.1 A matrix T ∈ Rn×nε is invertible in the max-plus algebra
(or max-invertible for short) if and only if it can be factorized as T = D ⊗ P
where D ∈ Rn×nε is a max-algebraic diagonal matrix with non-ε diagonal entries
and P ∈ Rn×nε is a max-algebraic permutation matrix.

Proof : See [33]. 2

It is easy to verify that if a matrix T ∈ Rn×n
ε can be factorized as T = D ⊗ P

with D a max-algebraic diagonal matrix with non-ε diagonal entries and P a
max-algebraic permutation matrix then it can also be factorized as T = P̃ ⊗ D̃
with D̃ a max-algebraic diagonal matrix with non-ε diagonal entries and P̃ a
max-algebraic permutation matrix.
If D is a square max-algebraic diagonal matrix with non-ε diagonal entries

then its max-algebraic inverse D⊗
−1

is a max-algebraic diagonal matrix with

(D⊗
−1

)ii = −dii for all i. If P is a permutation matrix then P⊗
−1

= PT . If

T = D ⊗ P then T⊗
−1

= P⊗
−1 ⊗D⊗

−1
.

Example 2.2.2 Consider T =





ε ε 3
−2 ε ε
ε 0 ε



. This matrix is max-invertible

since it can be written as T = D ⊗ P with D =





3 ε ε
ε −2 ε
ε ε 0



 and P =





ε ε 0
0 ε ε
ε 0 ε



. We have D⊗
−1

=





−3 ε ε
ε 2 ε
ε ε 0



 and P⊗
−1

=





ε 0 ε
ε ε 0
0 ε ε



.

Hence, T⊗
−1

= P⊗
−1 ⊗D⊗

−1
=





ε 2 ε
ε ε 0
−3 ε ε



 . 2
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Let A ∈ Rn×nε and b ∈ Rnε . We say that x ∈ Rnε is a subsolution of the system
of max-linear equations A⊗x = b if A⊗x 6 b. Although the system A⊗x = b
does not always have a solution, it always possible to determine the greatest
subsolution if we allow components that are equal to ∞ in the solution and if
we assume that ε⊗∞ =∞⊗ ε = ε by definition (See also Section 4.2.4). For
sake of simplicity and to avoid expressions like ε− ε, we assume from now on
that all the components of b are finite. The greatest subsolution x̂ of Ax = b
is given by

x̂j = min
i

( bi − aij ) for j = 1, 2, . . . , n

where min ∅ =∞ by definition.
A solution x̃ of the problem

minimize max
i
| bi − (A⊗ x)i |

is then given by

x̃ = x̂⊗ δ

2
with δ = max

i
( bi − (A⊗ x̂)i ) . (2.3)

We have max
i
| bi − (A⊗ x̃)i | =

δ

2
.

The max-plus algebra is a typical example of a class of algebraic structures
called dioids, which are defined as follows:

Definition 2.2.3 (Dioid) A dioid is a set D endowed with two operations ⊕
(called “addition”) and ⊗ (called “multiplication”) such that

∀x, y, z ∈ D : (x⊕ y)⊕ z = x⊕ (y ⊕ z)

∀x, y ∈ D : x⊕ y = y ⊕ x

∀x ∈ D : x⊕ x = x

∃ε ∈ D : ∀x ∈ D : x⊕ ε = x = ε⊕ x

∀x, y, z ∈ D : (x⊗ y)⊗ z = x⊗ (y ⊗ z)

∃e ∈ D : x⊗ e = x = x⊗ e

∀x ∈ D : x⊗ ε = ε⊗ x = ε

∀x, y, z ∈ D : x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)

(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z) .
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So in a dioid the additive operation ⊕ is associative, commutative and idempo-
tent and it has a zero element; the multiplicative operation ⊗ is associative and
its has an identity element; the additive zero element is absorbing for ⊗; and ⊗
is left and right distributive w.r.t. ⊕. Examples of dioids are: (R∪{∞},min,+),
([0, 1],max, ·), (R∪{−∞,∞},max,min) and ({true, false},∨,∧) where ∨ is the
logical “or” operator and ∧ is the logical “and” operator. In the next section
we shall encounter some more examples of dioids.
A dioid (D,⊕,⊗) is called commutative if the multiplicative operation ⊗ is
commutative in D. The max-plus algebra and the other dioids mentioned
above are commutative dioids. The structure (Rn×n

ε ,⊕,⊗) with n ∈ N \ {0, 1}
is also a dioid, but it is not a commutative dioid.
More information on dioids can be found in [3, 33, 54, 66, 67, 68, 69, 70, 109,
110, 143, 144, 145] and the references given therein.

2.2.3 Connection with Graph Theory

There exists a close relation between dioids and graphs [3, 66, 68]: e.g. many al-
gorithms for determining the shortest path in a graph have a nice interpretation
in terms of the min-plus algebra (R∪ {∞},min,+). In this subsection we first
give a short introduction to graph theory and next we give a graph-theoretic
interpretation of some basic max-algebraic operations and concepts.

A graph G is defined as an ordered pair (V,E), where V is a set of elements
called vertices and E is a set of (unordered) pairs of vertices. The elements of E
are called edges. A directed graph G is defined as an ordered pair (V,A), where
V is a set of vertices and A is a set of ordered pairs of vertices. The elements
of A are called arcs. A loop is an arc of the form (v, v).
When we make a drawing of a graph, we represent the vertices by dots that
are labeled with the name of the vertex they represent. Edges and loops are
represented by (curved) line segments that connect the dots that correspond to
the initial and the final vertex. Arcs that are no loops are also represented by
(curved) line segments that connect the dots that correspond to the initial and
the final vertex, but now the line segment has an arrow at the end to indicate
the direction of the arc. Let us illustrate this with an example. In Figure 2.3
we have drawn the directed graph G1 = (V1,A1) with V1 = {v1, v2, v3} and
A1 = {(v1, v1), (v1, v2), (v2, v1), (v2, v3), (v3, v1), (v3, v3)}.

Let G = (V,A) be a directed graph with V = {v1, v2, . . . , vn}. A path of
length l (l ∈ N0) is a sequence of vertices vi1 , vi2 , . . . , vil such that (vik , vik+1

)
∈ A for k = 1, 2, . . . , l − 1. We represent this path by vi1 → vi2 → . . . → vil .
Vertex vi1 is the initial vertex of the path and vil is the final vertex of the path.
When the initial and the final vertex of a path coincide, we have a circuit.
An elementary circuit is a circuit in which no vertex appears more than once,
except for the initial vertex, which appears exactly twice. A directed graph
G = (V,A) is called strongly connected if for any two different vertices vi,
vj ∈ V there exists a path from vi to vj .
In the directed graph G1 of Figure 2.3 v1 → v2 → v3 → v1 is a path of length
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v1

v3

v2

Figure 2.3: The graphical representation of the directed graph G1.

3. This path is also an elementary circuit. Clearly, G1 is strongly connected.
If we have a directed graph G = (V,A) with V = {1, 2, . . . , n} and if we

associate a real number aij with each arc (j, i) ∈ A, then we say that G is a
weighted directed graph. We call aij the weight of the arc (j, i). Note that the
first subscript of aij corresponds to the final (and not the initial) vertex of the
arc (j, i). In the drawing of a weighted directed graph the arcs are labeled with
their weights.

Definition 2.2.4 (Precedence graph) Consider A ∈ Rn×n
ε . The precedence

graph of A, denoted by G(A), is a weighted directed graph with vertices 1, 2,
. . . , n and an arc (j, i) with weight aij for each aij 6= ε.

It easy to verify that every weighted directed graph corresponds to the prece-
dence graph of an appropriately defined matrix with entries in Rε.

Let G = (V,A) be a weighted directed graph with V = {1, 2, . . . , n}. The
weight of a path i1 → i2 → . . .→ il is defined as the sum of the weights of the
arcs that compose the path: ai2i1 + ai3i2 + . . . + ailil−1

. The average weight
of a circuit is defined as the weight of the circuit divided by the length of the
circuit.

Now we can give a graph-theoretic interpretation of the max-algebraic ma-
trix power. Let A ∈ Rn×nε . If k ∈ N0 then we have

(A⊗
k
)ij = max

i1,i2,... ,ik−1

(aii1 + ai1i2 + . . .+ aik−1j )

for all i, j. Hence, (A⊗
k
)ij is the maximal weight of all paths of G(A) of length

k that have j as their initial vertex and i as their final vertex — where we
assume that if there does not exist a path of length k from j to i the maximal
weight is equal to ε by definition.

Definition 2.2.5 (Irreducibility) A matrix A ∈ Rn×n
ε is called irreducible

if its precedence graph is strongly connected.

If we reformulate this in the max-plus algebra then a matrix A ∈ Rn×n
ε is

irreducible if

(A⊕A⊗
2 ⊕ . . .⊕A⊗

n−1
)ij 6= ε for all i, j with i 6= j ,
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since this condition means that for two arbitrary vertices i and j of G(A) with
i 6= j there exists at least one path (of length 1, 2, . . . or n − 1) from j to i.
Note that it is not necessary to consider paths with a length that is greater
than n− 1.

Example 2.2.6 Consider

A =





−2 1 ε
1 0 1
ε 0 2



 .

The precedence graph of A is represented in Figure 2.4.

0

3

2

-2

1
1

1

1
0

2

Figure 2.4: The precedence graph of the matrix A of Example 2.2.6.

We have

A⊗
2

=





2 1 2
1 2 3
1 2 4



 .

Since (A⊗
2
)33 is equal to 4, the maximal weight of all paths of length 2 from

vertex 3 to vertex 3 should be equal to 4. Let us verify this. There are two
paths of length 2 from vertex 3 to vertex 3: 3→ 3→ 3 with weight 2 + 2 = 4
and 3→ 2→ 3 with weight 1 + 0 = 1. So the maximal weight of all paths of
length 2 from vertex 3 to vertex 3 is really equal to 4.
The matrix A is irreducible since for any two different vertices i and j of G(A)

there exists a path from i to j or since all the off-diagonal entries of A ⊕ A⊗
2

are finite. 2

Definition 2.2.7 (Max-algebraic eigenvalue, max-algebraic eigenvec-
tor) Let A ∈ Rn×nε . If there exist a number λ ∈ Rε and a vector v ∈ Rnε
with v 6= εn×1 such that A ⊗ v = λ ⊗ v then we say that λ is a max-algebraic
eigenvalue of A and that v is a corresponding max-algebraic eigenvector of A.

It can be shown that every square matrix with entries in Rε has at least one
eigenvalue (See e.g. [3]). However, in contrast to linear algebra, the number of
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max-algebraic eigenvalues of an n by n matrix is in general less than n. If a
matrix is irreducible, it has is only one eigenvalue (See e.g. [20]).

The max-algebraic eigenvalue has the following graph-theoretic interpreta-
tion. Consider A ∈ Rn×nε . If λmax is the maximal average weight over all
elementary circuits of G(A), then λmax is a max-algebraic eigenvalue of A. Ev-
ery circuit of G(A) with an average weight that is equal to λmax is called a
critical circuit. For formulas and algorithms to determine max-algebraic eigen-
values and eigenvectors the interested reader is referred to [3, 10, 20, 91] and
the references cited therein.

Theorem 2.2.8 If A ∈ Rε is irreducible, then

∃k0 ∈ N, ∃c ∈ N0 such that ∀k > k0 : A⊗
k+c

= λ⊗
c ⊗A⊗

k

where λ is the (unique) max-algebraic eigenvalue of A.

Proof : See e.g. [3, 20, 56]. 2

Example 2.2.9 Consider again the matrix A of Example 2.2.6. The elemen-
tary circuits of G(A) are listed in Table 2.1.

Circuit Length Weight Average weight

1→ 1 1 −2 −2

2→ 2 1 0 0

3→ 3 1 2 2

1→ 2→ 1 2 2 1

2→ 3→ 2 2 1 0.5

Table 2.1: The elementary circuits of the precedence graph of the matrix A of
Example 2.2.9.

The maximum average weight is 2. Hence, λmax = 2 is a max-algebraic eigen-

value of A. The vector v =
[

0 1 2
]T

is a max-algebraic eigenvector of A
that corresponds to the max-algebraic eigenvalue λmax since

A⊗ v =





−2 1 ε
1 0 1
ε 0 2



⊗





0
1
2



 =





2
3
4



 = 2⊗





0
1
2



 = λmax ⊗ v .

Since

A⊗
2

=





2 1 2
1 2 3
1 2 4



 , A⊗
3

=





2 3 4
3 3 5
3 4 6



 , A⊗
4

=





4 4 6
4 5 7
5 6 8



 ,
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A⊗
5

=





5 6 8
6 7 9
7 8 10



 , A⊗
6

=





7 8 10
8 9 11
9 10 12



 , A⊗
7

=





9 10 12
10 11 13
11 12 14



 ,

A⊗
8

=





11 12 14
12 13 15
13 14 16



 , . . . ,

we have A⊗
k+1

= 2⊗A⊗
k

for k = 5, 6, 7, . . . . 2

2.3 The Symmetrized Max-Plus Algebra

One of the major differences between conventional algebra and the max-plus
algebra is that there exist no inverse elements w.r.t. ⊕ in Rε: if x ∈ Rε then
there does not exist an element yx ∈ Rε such that x ⊕ yx = ε = yx ⊕ x,
except when x is equal to ε. So Rmax is not a group. Therefore, we now
introduce Smax [3, 54, 106], which is a kind of symmetrization of the max-plus
algebra. This can be compared with the extension of N to Z. In Section 7.2 we
shall show that Rmax corresponds to a set of nonnegative real functions with
addition and multiplication as basic operations and that Smax corresponds to a
set of real functions with addition and multiplication as basic operations. Since
the ⊕ operation is idempotent, we cannot use the conventional symmetrization
technique since every idempotent group reduces to a trivial group [3, 106].
Nevertheless, it is possible to adapt the method of the construction of Z from
N to obtain “balancing” elements rather than inverse elements.

In the following paragraphs we shall give a formal introduction to Smax. An
more intuitive and informal introduction can be found in Appendix E. Readers
that are not familiar with Smax might wish to read this appendix first in order
to get an idea of the purpose of this symmetrization and of the basic properties
of the operators and relations that appear in it.

We shall restrict ourselves to a short introduction to the most important
features of Smax. This introduction is based on [3, 54, 106]. First we introduce

the “algebra of pairs”. We consider the set of ordered pairs Pε def
= Rε×Rε with

operations ⊕ and ⊗ that are defined as follows:

(x, y)⊕ (w, z) = (x⊕ w, y ⊕ z)

(x, y)⊗ (w, z) = (x⊗ w ⊕ y ⊗ z, x⊗ z ⊕ y ⊗ w)

for (x, y), (w, z) ∈ Pε and where the operations ⊕ and ⊗ on the right-hand sides
correspond to maximization and addition as defined in (2.1) and (2.2). The
reason for also using ⊕ and ⊗ on the left-hand sides is that these operations
correspond to ⊕ and ⊗ as defined in Rε as we shall see later on. It is easy to
verify that in Pε the ⊕ operation is associative, commutative and idempotent,
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and its zero element is (ε, ε); that the ⊗ operation is associative, commutative
and distributive w.r.t. ⊕; that the identity element of ⊗ is (0, ε); and that the
zero element (ε, ε) is absorbing for ⊗. Hence, the algebraic structure (Pε,⊕,⊗)
is a commutative dioid. We call the structure (Pε,⊕,⊗) the algebra of pairs.
If u = (x, y) ∈ Pε then we define the max-absolute value of u as |u|

⊕
= x ⊕ y

and we introduce two unary operators 	 (the max-algebraic minus operator)
and ( · )• (the balance operator) such that 	u = (y, x) and u• = u ⊕ (	u) =
(|u|

⊕
, |u|

⊕
). We have

u• = (	u)• = (u•)
•

(2.4)

u⊗ v• = (u⊗ v)• (2.5)

	(	u) = u (2.6)

	(u⊕ v) = (	u)⊕ (	v) (2.7)

	(u⊗ v) = (	u)⊗ v (2.8)

for all u, v ∈ Pε. The last three properties allow us to write u 	 v instead of
u⊕(	v). Since the properties (2.6) – (2.8) resemble properties of the − operator
in conventional algebra, we could say that the 	 operator in the algebra of pairs
can be considered as the analogue of the− operator in conventional algebra (See
also Section 7.2). As for the order of evaluation of the max-algebraic operators,
the max-algebraic minus operator has the same, i.e. the lowest, priority as
the max-algebraic addition operator. Furthermore, an expression of the form

	
⊕

i

. . . should be interpreted as 	
(
⊕

i

. . .

)

.

In conventional algebra we have x− x = 0 for all x ∈ R, but in the algebra of
pairs we have u	 u = u• 6= (ε, ε) for all u ∈ Pε unless u is equal to (ε, ε), the
zero element for ⊕ in Pε. Therefore, we introduce a new relation:

Definition 2.3.1 (Balance relation) Consider u = (x, y), v = (w, z) ∈ Pε.
We say that u balances v, denoted by u∇v, if x⊕ z = y ⊕ w.

We have u	 u = u• = (|u|
⊕
, |u|

⊕
) ∇ (ε, ε) for all u ∈ Pε. The balance relation

is reflexive and symmetric but it is not transitive since e.g. (2, 1)∇ (2, 2) and
(2, 2)∇ (1, 2) but (2, 1)∇/ (1, 2). Hence, the balance relation is not an equiva-
lence relation and we cannot use it to define the quotient set of Pε by ∇ (as
opposed to conventional algebra where (N × N)/= yields Z). Therefore, we
introduce another relation that is closely related to the balance relation and
that is defined as follows: if (x, y), (w, z) ∈ Pε then

(x, y)B(w, z) if

{

(x, y) ∇ (w, z) if x 6= y and w 6= z ,

(x, y) = (w, z) otherwise.
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Note that if u ∈ Pε then we have u	 u B/ (ε, ε) unless u is equal to (ε, ε). It is
easy to verify that B is an equivalence relation that is compatible with the ⊕
and ⊗ operations defined in Pε, with the balance relation ∇ and with the 	,
| · |

⊕
and ( · )• operators. We can distinguish between three kinds of equivalence

classes generated by B:

• (w,−∞) = { (w, x) ∈ Pε |x < w }, called max-positive;

• (−∞, w) = { (x,w) ∈ Pε |x < w }, called max-negative;

• (w,w) = { (w,w) ∈ Pε }, called balanced.

The class (ε, ε) is called the max-zero class.
Now we define the quotient set S = Pε/B. The algebraic structure Smax =
(S,⊕,⊗) is also a commutative dioid. We call Smax the symmetrized dioid
of the max-plus algebra, or the symmetrized max-plus algebra for short. By

associating (w,−∞) with w ∈ Rε, we can identify Rε with the set of max-
positive or max-zero classes denoted by S⊕. The set of max-negative or max-
zero classes {	w |w ∈ S⊕} will be denoted by S	 and the set of balanced

classes {w• |w ∈ S⊕} will be represented by S•. This results in the following

decomposition: S = S⊕∪S	∪S•. Note that the max-zero class (ε, ε) corresponds
to ε. The max-positive elements, the max-negative elements and ε are called
signed. Define S∨ = S⊕∪S	. Note that S⊕∩S	∩S• =

{
(ε, ε)

}
and ε = 	ε = ε•.

These notations allow us to write e.g. 2⊕ (	4) instead of (2,−∞)⊕ (−∞, 4).
Since (2,−∞) ⊕ (−∞, 4) = (2, 4) = (−∞, 4), we have 2 ⊕ (	4) = 	4. In
general, if x, y ∈ Rε then we have

x⊕ (	y) = x if x > y , (2.9)

x⊕ (	y) = 	y if x < y , (2.10)

x⊕ (	x) = x• . (2.11)

Now we give some extra properties of balances that will be used in the next
chapters.
An element with a 	 sign can be transferred to the other side of a balance as
follows:

Proposition 2.3.2 ∀a, b, c ∈ S : a	 c∇ b if and only if a∇ b⊕ c .

If both sides of a balance are signed, we may replace the balance by an equality:

Proposition 2.3.3 ∀a, b ∈ S∨ : a∇ b ⇒ a = b .

Let a ∈ S. The max-positive part a⊕ and the max-negative part a	 of a are
defined as follows:
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• if a ∈ S⊕ then a⊕ = a and a	 = ε ,

• if a ∈ S	 then a⊕ = ε and a	 = 	a ,

• if a ∈ S• then there exists a number x ∈ Rε such that a = x• and then
a⊕ = a	 = x.

So a = a⊕ 	 a	 and a⊕, a	 ∈ Rε. Note that a decomposition of the form
a = x	 y with x, y ∈ Rε is unique if it is required that either x 6= ε and y = ε;
x = ε and y 6= ε; or x = y. Hence, the decomposition a = a⊕ 	 a	 is unique.
Note that |a|

⊕
= a⊕ ⊕ a	 for all a ∈ S. We say that a ∈ S is finite if |a|

⊕
∈ R.

If |a|
⊕

= ε then we say that a is infinite.
Definition 2.3.1 can now be reformulated as follows:

Proposition 2.3.4 ∀a, b ∈ S : a∇ b if and only if a⊕ ⊕ b	 = a	 ⊕ b⊕ .

We shall also use the following property:

Proposition 2.3.5 ∀a, b ∈ S : |a⊕ b|
⊕

= |a|
⊕
⊕ |b|

⊕
and |a⊗ b|

⊕
= |a|

⊕
⊗

|b|
⊕

.

The balance relation is extended to matrices in the usual way: if A,B ∈ Sm×n

then A∇B if aij∇ bij for i = 1, . . . ,m and j = 1, . . . , n. Propositions 2.3.2
and 2.3.3 can be extended to the matrix case as follows:

Proposition 2.3.6 ∀A,B,C ∈ Sm×n : A	 C ∇B if and only if A∇B ⊕ C .

Proposition 2.3.7 ∀A,B ∈ (S∨)m×n : A∇B ⇒ A = B .

We conclude this section with a few extra examples that illustrate the concepts
defined above. Additional examples can be found in Appendix E.

Example 2.3.8 We have 2⊕ = 2, 2	 = ε and (5•)⊕ = (5•)	 = 5. Hence,
2∇ 5• since 2⊕ ⊕ (5•)	 = 2⊕ 5 = 5 = ε⊕ 5 = 2	 ⊕ (5•)⊕.
We have 2∇/ 	5 since 2⊕ ⊕ (	5)	 = 2⊕ 5 = 5 6= ε = ε⊕ ε = 2	 ⊕ (	5)⊕. 2

Example 2.3.9 Consider the balance x ⊕ 2 ∇ 5 . From Proposition 2.3.2 it
follows that this balance can be rewritten as x∇ 5	 2 or x∇ 5 since 5	 2 = 5
by (2.9).
If we want a signed solution, the balance x∇ 5 becomes an equality by Propo-
sition 2.3.3. This yields x = 5.
The balanced solutions of x∇ 5 are of the form x = t• with t ∈ Rε. We have
t•∇ 5 or equivalently t = 5⊕ t if and only if t > 5.
So the solution set of x⊕ 2 ∇ 5 is given by {5} ∪ { t• | t ∈ Rε, t > 5 } . 2

Definition 2.3.10 (Max-algebraic norm) Let a ∈ Sn. The max-algebraic
norm of a is defined by

‖a‖
⊕

=

n⊕

i=1

|ai|⊕ .
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The max-algebraic norm of a matrix A ∈ Sm×n is defined by

‖A‖
⊕

=

m⊕

i=1

n⊕

j=1

|aij |⊕ .

If α ∈ S, a ∈ Sn and A ∈ Sm×n then we have ‖α⊗ a‖
⊕

= |α|
⊕
⊗ ‖a‖

⊕
and

‖α⊗A‖
⊕

= |α|
⊕
⊗ ‖A‖

⊕
.

The max-algebraic vector norm corresponds to the p-norms from linear algebra
(See e.g. [65, 82]) since

‖a‖
⊕

=

(
n⊕

i=1

|ai|⊕
⊗
p

)⊗

1
p

for every a ∈ Sn .

The max-algebraic matrix norm corresponds to both the Frobenius norm and
the p-norms from linear algebra (See e.g. [65, 82]) since we have

‖A‖
⊕

=





m⊕

i=1

n⊕

j=1

|aij |⊕
⊗

2





⊗
1
2

for every A ∈ Sm×n

and also ‖A‖
⊕

= max
‖x‖⊕=0

‖A⊗ x‖
⊕

(The maximum is reached for x = On×1).

Definition 2.3.11 (Max-algebraic signature) If σ is a permutation, then
the max-algebraic signature of σ is defined as follows:

sgn⊕ (σ) =

{

0 if σ is even,

	0 if σ is odd.

Definition 2.3.12 (Max-algebraic determinant) Consider a matrix A ∈
Sn×n. The max-algebraic determinant of A is defined by

det⊕A =
⊕

σ∈Pn

sgn⊕ (σ)⊗
n⊗

i=1

aiσ(i) .

If α ∈ S and A ∈ Sn×n then we have det⊕A
T = det⊕A and det⊕ (α ⊗ A) =

α⊗
n ⊗ det⊕A .

Let us now illustrate Definition 2.3.12 by an example:

Example 2.3.13 Consider the matrix A of Example 2.2.6 :

A =





−2 1 ε
1 0 1
ε 0 2



 .
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The max-algebraic determinant of A can be determined as follows:

det⊕A = a11 ⊗ a22 ⊗ a33 ⊕ a12 ⊗ a23 ⊗ a31 ⊕ a13 ⊗ a21 ⊗ a32 	

a11 ⊗ a23 ⊗ a32 	 a12 ⊗ a21 ⊗ a33 	 a13 ⊗ a22 ⊗ a31

= (−2)⊗ 0⊗ 2 ⊕ 1⊗ 1⊗ ε ⊕ ε⊗ 1⊗ 0 	

(−2)⊗ 1⊗ 0 	 1⊗ 1⊗ 2 	 ε⊗ 0⊗ ε

= 0⊕ ε⊕ ε	 (−1)	 4	 ε

= 	4 . 2

Definition 2.3.14 (Max-algebraic minor rank) Let A ∈ Sm×n. The max-
algebraic minor rank of A, rank⊕ (A), is the dimension of the largest square
submatrix of A the max-algebraic determinant of which is not balanced.

Theorem 2.3.15 Let A ∈ Sn×n. The system of homogeneous max-linear bal-
ances A⊗ x∇εn×1 has a non-trivial signed solution if and only if det⊕A∇ ε.
Proof : See [54]. 2

Algorithms to solve systems of the formA⊗x∇ b orA⊗x∇εn×1 withA ∈ Sn×n

and b ∈ Sn can be found in [54, 106].
Consider m vectors a1, a2, . . . , am ∈ Rnε and m numbers α1, α2, . . . , αm ∈ Rε.

A combination of the form
m⊕

i=1

αi ⊗ ai is called a max-linear combination of

the vectors a1, a2, . . . , am.

Definition 2.3.16 (Max-linear independence) We say that a set of vec-
tors { ai ∈ Sn | i = 1, 2, . . . ,m } is max-linearly independent if the only signed

solution of

m⊕

i=1

αi ⊗ ai ∇ εn×1 is α1 = α2 = . . . = αm = ε . Otherwise, we

say that the vectors a1, a2 , . . . , am are max-linearly dependent.

So if A ∈ Sn×n then the columns of A are max-linearly independent if and
only if det⊕A∇ ε. Since det⊕A = det⊕A

T the rows of A are max-linearly
independent if and only if det⊕A∇ ε.

2.4 An Introduction to System Theory for
Max-Linear Time-Invariant Discrete Event
Systems

In this section we give a short introduction to system theory for max-linear
time-invariant DESs.
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In Section 1.2 we have shown by some simple examples that time-invariant
deterministic DESs in which the sequence of the events and the duration of
the activities are fixed or can be determined in advance (such as repetitive
production processes), can be described by an nth order state space model of
the form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (2.12)

y(k) = C ⊗ x(k) (2.13)

for all k ∈ N0 with an initial condition x(0) = x0 and where A ∈ Rn×nε ,
B ∈ Rn×mε and C ∈ Rl×nε .

Now we present some analysis techniques for DESs that can be described
by a model of the form (2.12) – (2.13).

First we determine the input-output behavior of the DES. We have

x(1) = A⊗ x(0) ⊕ B ⊗ u(0)

x(2) = A⊗ x(1) ⊕ B ⊗ u(1)

= A⊗
2 ⊗ x(0) ⊕ A⊗B ⊗ u(0) ⊕ B ⊗ u(1)

...

x(k) = A⊗
k ⊗ x(0) ⊕

k−1⊕

i=0

A⊗
k−i−1 ⊗B ⊗ u(i) for k = 0, 1, 2, . . .

where the empty max-algebraic sum

−1⊕

i=0

. . . is equal to εn×1 by definition.
Hence,

y(k) = C ⊗A⊗
k ⊗ x(0) ⊕

k−1⊕

i=0

C ⊗A⊗
k−i−1 ⊗B ⊗ u(i) (2.14)

for k = 0, 1, 2, . . . .
Consider two input sequences u1 = {u1(k)}∞k=0 and u2 = {u2(k)}∞k=0. Let
y1 = {y1(k)}∞k=1 be the output sequence that corresponds to the input sequence

u1 (with initial condition x1,0) and let y2 = {y2(k)}∞k=1 be the output sequence

that corresponds to the input sequence u2 (with initial condition x2,0). Let
α, β ∈ Rε. From (2.14) it follows that the output sequence that corresponds to
the input sequence α⊗u1 ⊕ β⊗u2 = {α⊗u1(k) ⊕ β⊗u2(k)}∞k=0 (with initial

condition α⊗ x1,0 ⊕ β ⊗ x2,0) is given by α⊗ y1 ⊕ β ⊗ y2. This explains why
DESs that can be described by a model of the form (2.12) – (2.13) are called
max-linear.

Now we assume that x(0) = εn×1. For the production system of Exam-
ple 1.2.1 this would mean that all the buffers are empty at the beginning
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and for the railroad system of Example 1.2.3 this would mean that in the
first period the trains depart from each station at the time specified by the

timetable. Let p ∈ N0. If we define Y =
[
y(1) y(2) . . . y(p)

]T
and

U =
[
u(0) u(1) . . . u(p− 1)

]T
, then (2.14) results in

Y = H ⊗ U

with

H =








C ⊗B ε . . . ε
C ⊗A⊗B C ⊗B . . . ε

...
...

. . .
...

C ⊗A⊗
p−1 ⊗B C ⊗A⊗

p−2 ⊗B . . . C ⊗B








.

For the production system of Example 1.2.1 this means that if we know the
time instants at which raw material is fed to the system, we can compute the
time instants at which the finished products will leave the system.
If we know the vector Y of latest times at which the finished products have
to leave the system, we can compute the vector U of (latest) time instants at
which raw material has to be fed to the system by solving the system of max-
linear equations H ⊗ U = Y , if this system has a solution, or by determining
the greatest subsolution of H ⊗ U = Y .
However, if we have perishable goods it is sometimes better to minimize the
maximal deviation between the desired and the actual finishing times. In this
case we have to solve the following problem:

minimize max
i
| (Y −H ⊗ U )i | .

This problem can be solved using formula (2.3).

Let i ∈ {1, 2, . . . ,m}. A max-algebraic unit impulse is a sequence that is
defined as follows:

e(k) =

{

0 if k = 0 ,

ε if k 6= 0 ,

for k = 0, 1, 2, . . . . If we apply a max-algebraic unit impulse to the ith input
of the system and if we assume that x(0) = εn×1 then we get

y(k) = C ⊗A⊗
k−1 ⊗B.,i for k = 1, 2, 3, . . .

as the output of the DES. This output is called the impulse response due to a
max-algebraic impulse at the ith input. Note that y(k) corresponds to the ith

column of the matrix Gk−1
def
= C ⊗ A⊗

k−1 ⊗ B for k = 1, 2, 3, . . . . Therefore,
the sequence {Gk}∞k=0 is called the impulse response of the DES. The Gk’s are
called the impulse response matrices or Markov parameters.
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We can give the following physical interpretation to the impulse response of
the production system of Example 1.2.1. At first all the internal buffers of
the system are empty. Then we start feeding raw material to the input buffer
and we keep on feeding raw material at such a rate that the input buffer never
becomes empty. The time instants at which finished products leave the system
correspond to the terms of the impulse response.

Now we consider the autonomous DES described by

x(k + 1) = A⊗ x(k)

y(k) = C ⊗ x(k)

with x(0) = x0.
For the production system of Example 1.2.1 this means that we start from a
situation in which some internal buffers and all the input buffer are not empty
at the beginning (if x0 6= εn×1) and that afterwards the raw material is fed to
the system at such a rate that the input buffers never become empty. For the
railroad system of Example 1.2.3 autonomous behavior means that the trains
depart from a station as soon as the train they should wait for has arrived and
the passengers have changed trains, but they do not take the timetable into
account.
If the system matrix A is irreducible, then we can calculate the “ultimate” be-
havior of the autonomous DES by solving the max-algebraic eigenvalue problem
A⊗ v = λ⊗ v. By Theorem 2.2.8 there exist integers k0 ∈ N and c ∈ N0 such
that x(k + c) = λ⊗

c ⊗ x(k) for all k > k0. This means that

xi(k + c)− xi(k) = cλ for i = 1, 2, . . . , n and for all k > k0 . (2.15)

This “ultimate” behavior will be called cyclic.
From (2.15) it follows that for a production system λ will be the average du-
ration of a cycle of the production process when the system has reached its

cyclic behavior. The average production rate will then be equal to
1

λ
. This

also enables us the calculate the utilization levels of the various machines in
the production process. Furthermore, some algorithms to compute the eigen-
value also yield the critical paths of the production process and the bottleneck
machines.
If the system matrix is not irreducible the analysis is more complicated (cf. The-
orem 6.1.3 and Section C.1).

Now we apply the analysis techniques that have been discussed in this
subsection to the production system of Example 1.2.1.

Example 2.4.1 Consider the production system of Example 1.2.1.

Define Y =
[
y(1) y(2) y(3) y(4)

]T
and U =

[
u(0) u(1) u(2) u(3)

]T
.

If x(0) = ε3×1 then we have Y = H ⊗ U with
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H =







11 ε ε ε
16 11 ε ε
21 16 11 ε
27 21 16 11







.

If we feed raw material to the system at time instants u(0) = 0, u(1) = 9,
u(2) = 12, u(3) = 15, the finished products will leave the system at time
instants y(1) = 11, y(2) = 20, y(3) = 25 and y(4) = 30 since

H ⊗







0
9

12
15







=







11
20
25
30







.

If the finished parts should leave the system before time instants 17, 19, 24 and
27 and if we want to feed the raw material to the system as late as possible,
then we should feed raw material to the system at time instants 0, 6, 11, 16
since the greatest subsolution of

H ⊗ U =







17
19
24
27







is Û =
[
0 6 11 16

]T
. The actual output times Ŷ are given by Ŷ =

H ⊗ Û =
[
11 17 22 27

]T
. Note that the largest deviation δ between

the desired and the actual output times is equal to 6. The input times that

minimize this deviation are given by Ũ = Û ⊗ δ

2
= Û ⊗ 3 =

[
3 9 14 19

]T
.

The corresponding output times are given by Ỹ =
[
14 20 25 30

]T
. Note

that the largest deviation between the desired finishing and the actual finishing

times is now equal to
δ

2
= 3.

The impulse response of the system is given by

{gk}∞k=0 = 11, 16, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, . . . .

Although the system matrix A is not irreducible, the system does exhibit an
ultimately cyclic behavior of the form (2.15) with λ = 6 and c = 1. It is easy to
verify that λ corresponds to the largest average circuit weight of the precedence
graph of A (See Figure 2.5) and to the largest max-algebraic eigenvalue of A.
If we feed raw material to the system at a rate such that the input buffer never
becomes empty, then after a finite number of production cycles, the difference
between xi(k+1) and xi(k) will be equal to 6 for all processing units Pi. So the

average production rate of the system is
1

6
, i.e. every 6 times units a finished

part leaves the production system.
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2

6

11 12

1

3

3

5

Figure 2.5: The precedence graph of the matrix A of Example 2.4.1.

The utilization level θi of processing unit Pi is defined by θi =
di
λ

for i = 1, 2, 3.

Hence, θ1 =
5

6
≈ 83%, θ2 =

6

6
= 100% and θ3 =

3

6
= 50%. This means that

when the system has reached its cyclic behavior, processing unit P3 will be idle
during half of the time, whereas processing unit P2 will be fully occupied. This
means that processing unit P2 is the bottleneck machine. This is also revealed
by the fact that the critical circuit of the precedence graph of the system matrix
A is given by 2→ 2. 2

For more information on the analysis of max-linear time-invariant DESs such
as production systems, timetable dependent transportation networks, queuing
systems, array processors and other types of DESs the interested reader is
referred to [3, 7, 8, 9, 17, 18, 19, 20, 21, 23, 25, 26, 53, 54, 59, 117].

Remark: Clearly, one of the main advantages of an analytic (max-algebraic)
model of a DES is that it enables us to derive some properties of the system
(in particular the asymptotic behavior) fairly easily, whereas in some cases
computer simulation might require a rather large amount of computation time
(especially if the system exhibits a long transient behavior). 3

2.5 Conclusion

In this chapter we have presented some necessary background material in con-
nection with the max-plus algebra, the symmetrized max-plus algebra, graph
theory and max-algebraic system theory.
We have introduced the basic operations of max-plus algebra and stated some
definitions, theorems and properties that will be used in the remainder of this
thesis. We have also given a graph-theoretic interpretation of some max-
algebraic concepts. Next we have given an introduction to the symmetrized
max-plus algebra. Finally we have presented some elementary analysis tech-
niques for max-linear time-invariant discrete event systems and applied these
techniques to an example.



Chapter 3

The Extended Linear
Complementarity Problem

In this chapter we introduce the Extended Linear Complementarity Problem
(ELCP), which is an extension of the Linear Complementarity Problem, one of
the fundamental problems of mathematical programming. We show that the
ELCP can be viewed as a unifying framework for the Linear Complementarity
Problem and its various extensions.

In the next chapters we shall show that many max-algebraic problems such
as solving a system of multivariate max-algebraic polynomial equalities and
inequalities, calculating max-algebraic matrix factorizations, performing max-
algebraic state space transformations, determining state space realizations for
max-linear time-invariant discrete event systems, calculating matrix decompo-
sitions in the symmetrized max-plus algebra and so on, can be reformulated as
an ELCP. We derive an algorithm to find all solutions of an ELCP. This algo-
rithm will yield a description of the complete solution set of an ELCP by finite
points, generators for extreme rays and a basis for the linear subspace associ-
ated with the maximal affine subspaces of the solution set of the ELCP. In that
way it provides a geometrical insight in the solution set of the max-algebraic
problems mentioned above.

This chapter is organized as follows. In Section 3.1 we introduce the nota-
tions and some of the concepts and definitions that will be used in this chapter.
We also present the Linear Complementarity Problem. In Section 3.2 we intro-
duce the Extended Linear Complementarity Problem and show how it is linked
to the LCP and its various extensions. In Section 3.3 we make a thorough
study of the solution set of the general homogeneous ELCP and in Section 3.4
we develop an algorithm to find all solutions of an ELCP. Next we discuss the
performance of this algorithm and the computational complexity of the ELCP.
We conclude with two worked examples in which we illustrate our ELCP algo-
rithm.

53
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3.1 Introduction

In this section we give some definitions in connection with polyhedra and we
present some examples that illustrate these definitions. We also introduce the
Linear Complementarity Problem.

3.1.1 Definitions

The dimension of a vector space V is denoted by dimV.
Consider a set of vectors S = {a1, a2, . . . , al} with a1, a2, . . . , al ∈ Rn and let

a =

l∑

i=1

αiai. If αi ∈ R for all i then a is a linear combination of the vectors

of S. If αi > 0 for all i, we have a positive combination. If αi > 0 for all i, we
have a nonnegative combination. A nonnegative combination that also satisfies
l∑

i=1

αi = 1 is called a convex combination.

Definition 3.1.1 (Polyhedron) A polyhedron is the solution set of a finite
system of linear inequalities.

Definition 3.1.2 (Polyhedral cone) A polyhedral cone is the set of solu-
tions of a finite system of homogeneous linear inequalities.

The definitions of the remainder of this subsection are based on [134].
Let the polyhedron P be defined by P = {x ∈ Rn |Ax > b}. If c ∈ Rn with
c 6= 0 and δ = max{ cTx |Ax > b}, then the hyperplane {x | cTx = δ } is called
a supporting hyperplane of P.

Definition 3.1.3 (Face) A subset F of a polyhedron P is called a face of P
if F = P or if F is the intersection of P with a supporting hyperplane of P.

Note that each face of a nonempty polyhedron is also a nonempty polyhedron.
The dimension of a face of a polyhedron is the dimension of the affine hull of
that face. So if P = {x ∈ Rn |Ax > b}, then each k-dimensional face of P
is the intersection of P and n − k linearly independent hyperplanes from the
system Ax = b.

Definition 3.1.4 (Minimal face) A minimal face of a polyhedron P is a face
that does not contain any other face of P.

Definition 3.1.5 (Lineality space) Let P be a polyhedron defined by P =
{x |Ax > b}. The lineality space of P, denoted by L(P), is defined by L(P) =
{x |Ax = 0}.
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So the lineality space of a polyhedron is the linear subspace associated with
the largest affine subspace of P. If P = {x |Ax > b} then we have dimL(P) =
n − rank (A). Let t = dimL(P). If t is equal to 0 then P is called a pointed
polyhedron. The minimal faces of P are translations of L(P). Hence, the
dimension of a minimal face of P is equal to t. In this thesis points of L(P)
are called central generators of P. We say that a set of central generators is
minimal and complete if it is a basis for L(P), i.e. if it consists of t linearly
independent vectors. If G is a face of dimension t+1 of P then G = L(P)+L,
where L is a line segment or a half-line. If P is pointed, then G is called an
edge if L is a line segment, and an extreme ray if L is a half-line.

Now consider a polyhedral cone K defined by K = {x |Ax > 0}. Clearly,
the only minimal face of K is its lineality space. Let t be the dimension of
L(K). A face of K of dimension t+ 1 is called a minimal proper face. If G is a
minimal proper face of K and if e ∈ G with e 6∈ L(K), then any arbitrary point
u of G can be represented as

u =
∑

ck∈C

λkck + κe with λk ∈ R for all k and κ > 0

where C is a minimal complete set of central generators of K. We call e an
extreme generator that corresponds toG. The polyhedral coneK can be written
as K = Kred +L(K) where Kred is a pointed polyhedral cone. Each point of an
arbitrary extreme ray of Kred is an extreme generator of K. If C is a minimal
complete set of central generators of K and if E is a minimal complete set
of extreme generators of K, i.e. a set obtained by selecting exactly one point
of each minimal proper face of K, then any arbitrary point u of K can be
represented uniquely as

u =
∑

ck∈C

λkck +
∑

ek∈E

κkek with λk ∈ R and κk > 0 for all k .

Now consider the polyhedron P = {x |Ax > b}. Let KP be the polyhedral
cone defined by KP = {y |Ay > 0}. If F1, F2, . . . , Fr are the minimal faces

of P and if we select a point xf
k from Fk for k = 1, 2, . . . , r then for any point

x of P there exists a point u ∈ KP such that x can be written as

x = u+

r∑

k=1

µkx
f
k with µk > 0 for all k and

r∑

k=1

µk = 1 .

Let k ∈ {1, 2, . . . , r}. We say that the point xf
k is a finite point that corresponds

to Fk. The set X fin = {xf
1, x

f
2, . . . , x

f
r} is called a minimal complete set of finite

points of P. Let X cen be a minimal complete set of central generators of KP

and let X ext be a minimal complete set of extreme generators of KP . Then any
point x of P can be represented uniquely as

x =
∑

xc
k
∈X cen

λkx
c
k +

∑

xe
k
∈X ext

κkx
e
k +

∑

xf
k
∈X fin

µkx
f
k
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y

e1

c1

x

Gα

Gβ

K

z

e2

Figure 3.1: The polyhedral cone K of Example 3.1.7.

with λk ∈ R, κk > 0, µk > 0 for all k and
∑

k

µk = 1. We say that X cen is

a minimal complete set of central generators of P and that X ext is a minimal
complete set of extreme generators of P. Note that X cen is a basis of L(P).

Definition 3.1.6 (Adjacency) Two minimal faces of a polyhedron P are
called adjacent if they are contained in one face of dimension t + 1, where
t = dimL(P).
Two minimal proper faces of a polyhedral cone K are called adjacent if they
are contained in one face of dimension t + 2, where t = dimL(K). Extreme
generators corresponding to these faces are then also called adjacent.

Let us now illustrate the concepts that have been introduced above with a few
examples.

Example 3.1.7 Consider the polyhedral cone K that is defined by

K =
{[

x y z
]T ∈ R3

∣
∣
∣ − 11x+ 4z > 0 and x+ 3z > 0

}

.

Let α and β be the planes defined by

α =
{[

x y z
]T ∈ R3

∣
∣
∣ − 11x+ 4z = 0

}

β =
{[

x y z
]T ∈ R3

∣
∣
∣ x+ 3z = 0

}

Let Gα and Gβ be the parts of respectively α and β that lie above the x-y
plane. In Figure 3.1 we have represented the polyhedral cone K and the half-
planes Gα and Gβ .
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P

Gδ

Gβ

xe
1

x

z

xf
2 y

Gα
Gγ

xf
1

xe
2

Figure 3.2: The polyhedron P of Example 3.1.8.

The x-y plane, α and β are supporting hyperplanes of K. The y axis is a face
of dimension 1 of K. Clearly, the y axis is a minimal face of K. Furthermore,
the y axis is also the lineality space of K. The half-planes Gα and Gβ are faces
of dimension 2 of K. So they are minimal proper faces of K.

The point c1 =
[

0 4 0
]T

belongs to L(K) and therefore it is a central

generator of K. The set {c1} is a minimal complete set of central generators

of K. The point e1 =
[

2 −2 5.5
]T

lies in Gα and it does not belong
to L(K). Therefore, it is an extreme generator of Gα. Likewise, the point

e2 =
[
−3 0 1

]T
is an extreme generator of Gβ . The set {e1, e2} is a

minimal complete set of generators of K.
The extreme generators e1 and e2 of K are adjacent since the corresponding
minimal proper faces Gα and Gβ are contained in one face of dimension 3, viz.
K itself. 2

Example 3.1.8 Consider the polyhedron P defined by

P =
{[

x y z
]T ∈ R3

∣
∣
∣ y > 1, x 6 1, 2y − 3z 6 2 and x > 0

}

.

Let α, β, γ and δ be the planes defined by

α =
{[

x y z
]T ∈ R3

∣
∣
∣ y = 1

}

β =
{[

x y z
]T ∈ R3

∣
∣
∣ x = 1

}
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γ =
{[

x y z
]T ∈ R3

∣
∣
∣ 2y − 3z = 2

}

δ =
{[

x y z
]T ∈ R3

∣
∣
∣ x = 0

}

Let Gα, Gβ , Gγ and Gδ be the intersection of P and α, β, γ and δ respectively.
In Figure 3.2 we have represented the polyhedron P and the sets Gα, Gβ ,
Gγ and Gδ. Note that in reality the polyhedron P extends infinitely in the
direction of the positive z axis.

We have L(P ) = ∅. So P is a pointed polyhedron. Define xf
1 =

[
1 1 0

]T

and xf
2 =

[
0 1 0

]T
. The sets {xf

1} and {xf
2} are faces of dimension 0 of

P. The intersection of Gα and Gβ is a face of dimension 1 of P, and Gα, Gβ ,
Gγ and Gδ are faces of dimension 2 of P.

Define xe
1 =

[
0 0 1

]T
and xe

2 =
[

0 1.5 1
]T

. The set {xf
1, x

f
2} is a

minimal complete set of finite points of P, and the set {xe
1, x

e
2} is a minimal

complete set of extreme generators of P.
The minimal faces {xf

1} and {xf
2} of P are adjacent since they are contained

are contained in one face of dimension 1, viz. the line segment xf
1x

f
2. 2

3.1.2 The Linear Complementarity Problem

One of the possible formulations of the Linear Complementarity Problem (LCP)
is the following [30]:

Given M ∈ Rn×n and q ∈ Rn, find w, z ∈ Rn such that

w, z > 0 (3.1)

w = q +Mz (3.2)

zTw = 0 , (3.3)

or show that no such w and z exist.

Note that if w and z are solutions of the LCP then it follows from (3.1) and
(3.3) that

ziwi = 0 for i = 1, 2, . . . , n .

As a consequence, we have

wi > 0 ⇒ zi = 0 and zi > 0 ⇒ wi = 0 for i = 1, 2, . . . , n ,

i.e. the zero patterns of w and z are complementary. Therefore, condition (3.3)
is called the complementarity condition.
The LCP has numerous applications such as quadratic programming problems,
determination of the Nash equilibrium of a bimatrix game problem, the market
equilibrium problem, the optimal invariant capital stock problem, the optimal
stopping problem, etc. [30]. This makes the LCP one of the fundamental prob-
lems of mathematical programming.
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3.2 The Extended Linear Complementarity
Problem

In this section we introduce the Extended Linear Complementarity Problem
and we establish a link between this problem and the Linear Complementar-
ity Problem. We also show that many generalizations of the Linear Comple-
mentarity Problem can be considered as special cases of the Extended Linear
Complementarity Problem.

3.2.1 Problem Formulation

Consider the following problem:

Given A ∈ Rp×n, B ∈ Rq×n, c ∈ Rp, d ∈ Rq and m subsets φ1, φ2, . . . ,
φm of {1, 2, . . . , p}, find x ∈ Rn such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (3.4)

subject to

Ax > c (3.5)

Bx = d , (3.6)

or show that no such x exists.

In Section 3.2.3 we shall show that this problem is an extension of the Linear
Complementarity Problem. Therefore, we call it the Extended Linear Com-
plementarity Problem (ELCP). We shall show that (3.4) is a generalization of
the complementarity condition (3.3) of the LCP. Therefore, we say that (3.4)
represents the complementarity condition of the ELCP. One possible interpre-
tation of this condition is the following. Since Ax > c, all the terms in (3.4)
are nonnegative. Hence, condition (3.4) is equivalent to

∏

i∈φj

(Ax− c)i = 0 for j = 1, 2, . . . ,m .

So we could say that each set φj corresponds to a group of inequalities of Ax > c
and that in each group at least one inequality should hold with equality, i.e. the
corresponding residue should be equal to 0:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

Let ψ1, ψ2, . . . , ψr be subsets of {1, 2, . . . , p}. If we have a condition of the
form

r∏

j=1

(
∑

i∈ψj

(Ax− c)i
)

= 0 (3.7)
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instead of (3.4), we still have an ELCP since (3.7) can always be rewritten as
a condition of the form (3.4). Condition (3.7) can be interpreted as follows:
there are r groups of linear inequalities and there should be at least one group
in which all the inequalities hold with equality.

Example 3.2.1 Consider the following ELCP:

Find x, y, z ∈ R such that

(y − 1)x + (−x+ 1)x + (−2y + 3z + 2)x = 0 (3.8)

subject to

y > 1 (3.9)

−x > −1 (3.10)

−2y + 3z > −2 (3.11)

x > 0 . (3.12)

Let the polyhedron P and its faces Gα, Gβ , Gγ and Gδ be defined as in Exam-
ple 3.1.8 (See also Figure 3.2). Note that P is the polyhedron defined by the
system of linear inequalities (3.9) – (3.12). So any solution of the ELCP will
belong to P.
The complementarity condition (3.8) is satisfied for all the points of P that
have an x component that is equal to 0. Hence, every point of Gδ is a solution
of the ELCP defined by (3.8) – (3.12).
Let us now consider points of P that do not belong to Gδ, i.e. that have a
positive x component. Clearly, for these points condition (3.8) can only be
satisfied if we have

y − 1 = 0 and −x+ 1 = 0 and −2y + 3z + 2 = 0 ,

i.e. if the point lies on the intersection of Gα, Gβ and Gγ . This implies that
the point xf

1 is also a solution of the given ELCP.
So the solution set of the ELCP is given by {xf

1} ∪Gδ . 2

3.2.2 The Homogeneous ELCP

Consider the following problem:

Given P ∈ Rp×n, Q ∈ Rq×n and φ1, φ2, . . . , φm ⊆ {1, 2, . . . , p}, find a
non-trivial vector u ∈ Rn such that

m∑

j=1

∏

i∈φj

(Pu)i = 0 (3.13)

subject to Pu > 0 and Qu = 0, or show that no such u exists.
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This problem is called the homogeneous ELCP. Note that this problem always
has the trivial solution u = On×1.
Consider the ELCP defined by (3.4) – (3.6). If we introduce a real number
α > 0 and if we define

u =

[
x
α

]

, P =

[
A −c

O1×n 1

]

and Q =
[
B −d

]
,

then we get a homogeneous ELCP. In Section 3.4 we shall develop an algorithm
to solve the homogeneous ELCP. Once we have computed the solutions of the
homogeneous ELCP, we can extract the solutions of the original ELCP.
It is sometimes advantageous to use an alternative form of the complementarity
condition: since Pu > 0, condition (3.13) is equivalent to

∏

i∈φj

(Pu)i = 0 for j = 1, 2, . . . ,m . (3.14)

3.2.3 Link with the LCP

The LCP can be considered as a particular case of the ELCP: if we set x =
[
w
z

]

, A = I2n, B = [ In −M ], c = O2n×1, d = q and φj = {j, j + n} for

j = 1, 2, . . . , n in the formulation of the ELCP, we get an LCP.

3.2.4 Link with the Horizontal LCP

A problem that is slightly more general than the LCP is the Horizontal Linear
Complementarity Problem (HLCP), which can be formulated as follows [30]:

Given M , N ∈ Rn×n and q ∈ Rn, find non-trivial w, z ∈ Rn such that

w, z > 0

Mz +Nw = q

zTw = 0 .

The term horizontal is used to characterize the geometric shape of the matrix
[
M N

]
since the number of rows of this matrix is less than the number of

columns. It is obvious that the HLCP is also a particular case of the ELCP.

3.2.5 Link with the Vertical LCP

In [28] Cottle and Dantzig introduced a generalization of the LCP that is
now called the Vertical Linear Complementarity Problem (VLCP) and that is
defined as follows [30]:
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Let M ∈ Rm×n with m > n and let q ∈ Rm. Suppose that M and q are
partitioned as follows:

M =








M1

M2

...
Mn








and q =








q1
q2
...
qn








with Mi ∈ Rmi×n and qi ∈ Rmi for i = 1, 2, . . . , n and with

n∑

i=1

mi = m.

Now find z ∈ Rn such that

z > 0

q +Mz > 0

zi

mi∏

j=1

(qi +Miz)j = 0 for i = 1, 2, . . . , n .

Since the number of rows of M is greater than or equal to the number of
columns of M , this problem is a vertical generalization of the LCP.

The VLCP is also a particular case of the ELCP: take x = z, A =

[
In
M

]

,

B = [ ], c =

[
On×1

−q

]

, d = [ ] and φj = {j, sj + 1, sj + 2, . . . , sj + mj} for

j = 1, 2, . . . , n with s1 = m and sj+1 = sj +mj for j = 1, 2, . . . , n− 1.

3.2.6 Link with the GLCP

In [39, 40] De Moor introduced the following Generalized Linear Complemen-
tarity Problem (GLCP):

Given Z ∈ Rp×n and m subsets φ1, φ2, . . . , φm of {1, 2, . . . , p}, find a
non-trivial u ∈ Rn such that

m∑

j=1

∏

i∈φj

ui = 0

subject to u > 0 and Zu = 0 .

Now we show that the homogeneous ELCP and the GLCP are equivalent: that
is, if we can solve the homogeneous ELCP, we can also solve the GLCP and
vice versa.

Theorem 3.2.2 The homogeneous ELCP and the GLCP are equivalent.
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Proof : The GLCP is a special case of the homogeneous ELCP since setting
P = In and Q = Z in the formulation of the homogeneous ELCP yields a
GLCP.

Now we prove that a homogeneous ELCP can be transformed into a GLCP.
First we consider the sign decomposition of u: u = u+ − u− with u+, u− > 0
and (u+)Tu− = 0. We define a vector of nonnegative slack variables s ∈ Rp

such that s = Pu = Pu+ − Pu−. Clearly, the complementarity condition
m∑

j=1

∏

i∈φj

(Pu)i = 0 is equivalent to
m∑

j=1

∏

i∈φj

si = 0. Since the components of

u+, u− and s are nonnegative, we can combine the condition

m∑

j=1

∏

i∈φj

si = 0

and the condition (u+)Tu− = 0. This yields a new complementarity condition:
n∑

i=1

u+
i u

−
i +

m∑

j=1

∏

i∈φj

si = 0. Finally, we define n + m sets φ′
1, φ

′
2, . . . , φ′n+m

such that

φ′j =

{

{j, j + n} if j ∈ {1, 2, . . . , n} ,
{i+ 2n | i ∈ φj−n} if j ∈ {n+ 1, n+ 2, . . . , n+m} .

This leads to the following GLCP:

Find v =





u+

u−

s



 such that

n+m∑

j=1

∏

i∈φ′
j

vi = 0

subject to v > 0 and

[
P −P −Ip
Q −Q Oq×p

]

v = 0 .

If we have determined a solution of this GLCP, we can obtain a solution u of
the homogeneous ELCP by setting u = u+ − u−.

Hence, we have proved that the homogeneous ELCP and the GLCP are equiv-
alent. 2

In [39] an algorithm has been derived to find all solutions of a GLCP. Since the
GLCP and the homogeneous ELCP are equivalent, we could use that algorithm
to solve an ELCP. However, this approach has a few drawbacks:

• To convert the homogeneous ELCP into a GLCP we have introduced ad-
ditional variables: the components of u− and the slack variables (Since u+

and u have the same dimension, we assume that u+ replaces u and there-
fore we do not consider the components of u+ as additional variables).
The introduction of extra variables increases the complexity of the prob-
lem. The execution time of the algorithm of [39] increases rapidly as the
number of unknowns increases (See also Sections 3.4.5 and 3.4.6). There-
fore, it is not advantageous to have a large number of variables. Since the
number of intermediate solutions and the required storage space also grow
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rapidly as the number of variables grows, the problem can even become
intractable in practice if the number of variables is too large. Moreover,
we do not need the extra slack variables, since they will be dropped at
the end anyway.

• In Section 3.4 we shall show that the solution set of a GLCP can be
characterized by a set E of generators of the extreme rays of the solu-
tion set and a set Γ of “cross-complementary” subsets of E (See also
Remark 3.4.13). Even if there is no redundancy in the description of the
solution set of the GLCP after dropping the slack variables, it is possible
that the transition from u+ and u− to u results in redundant generators.
It is also possible that some of the cross-complementary subsets can be
merged. This means that in general we do not get a minimal description
of the solution set of the ELCP.

We certainly do a great deal of unnecessary work if we use the detour via
the GLCP. Therefore, we shall develop a separate algorithm to compute the
complete solution set of an ELCP. If we use this algorithm, we do not have
to introduce extra variables. Furthermore, this algorithm will yield a concise
description of the solution set and it will also be much faster than the algorithm
that uses the transformation into a GLCP.

3.2.7 Link with Other Generalizations of the LCP

In [72] Gowda and Sznajder have introduced the Generalized Order Linear
Complementarity Problem (GOLCP) and the Extended Generalized Order Lin-
ear Complementarity Problem (EGOLCP). The EGOLCP is defined as follows:

Given k+1 matrices B0, B1, . . . , Bk ∈ Rn×n and k+1 vectors b0, b1, . . . ,
bk ∈ Rn, find x ∈ Rn such that

(B0x+ b0) ∧ (B1x+ b1) ∧ . . . ∧ (Bkx+ bk) = 0

where ∧ is the entrywise minimum: if x, y ∈ Rn then x ∧ y ∈ Rn and
(x ∧ y)i = min (xi, yi) for i = 1, 2, . . . , n.

If we take B0 = In and b0 = On×1 then we have a GOLCP.
Now we show that the EGOLCP is also a special case of the ELCP:
Since the entrywise minimum of the vectors B0x+ b0, B1x+ b1, . . . , Bkx+ bk
is equal to 0, we should have Bix > −bi for i = 1, 2, . . . , k, and for every
j ∈ {1, 2, . . . , n} there should exist at least one index i such that (Bix+bi)j = 0.

So if we put all matrices Bi in one large matrix A =






B0

...
Bk




 and all vectors bi

in one large vector c =






−b0
...
−bk




 and if we define n sets φ1, φ2, . . . , φn such
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that φj = {j, j + n, . . . , j + kn} for j = 1, 2, . . . , n, we get an ELCP:

Given A, c and φ1, φ2, . . . , φn, find x ∈ Rn such that
n∑

j=1

∏

i∈φj

(Ax−c)i = 0

subject to Ax > c ,

that is equivalent to the original EGOLCP.

The Extended Linear Complementarity Problem of Mangasarian and Pang [71,
102]:

Given M , N ∈ Rm×n and a polyhedral set P ⊆ Rm, find x, y ∈ Rn such
that

x, y > 0

Mx−Ny ∈ P

xT y = 0 ,

is also a special case of the ELCP:
We may assume without loss of generality that P can be represented as P =
{u ∈ Rm |Au > b} for some matrix A ∈ Rl×m and some vector b ∈ Rl. Hence,
the condition Mx−Ny ∈ P is equivalent to AMx−ANy > b. So if we define

v =

[
x
y

]

, we get the following ELCP:

Given A, M and N , find v ∈ R2n such that
n∑

i=1

vivi+n = 0 subject to

v > 0 and
[AM −AN ] v > b .

Furthermore, it is easy to show that the Generalized LCP of Ye [153]:

Given A, B ∈ Rm×n, C ∈ Rm×k and q ∈ Rm, find x, y ∈ Rn and z ∈ Rk

such that

x, y, z > 0

Ax+By + Cz = q

xT y = 0 ;
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the mixed LCP [30]:

Given A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m, D ∈ Rm×n, a ∈ Rn and b ∈ Rm,
find u ∈ Rn and v ∈ Rm such that

v > 0

a+Au+ Cv = 0

b+Du+Bv > 0

vT (b+Du+Bv) = 0 ;

the Extended Horizontal LCP of Sznajder and Gowda [137]:

Given k + 1 matrices C0, C1, . . . , Ck ∈ Rn×n, q ∈ Rn and k − 1 vectors
d1, d2, . . . , dk−1 ∈ Rn with positive components, find x0, x1, . . . , xk ∈ Rn

such that

C0x0 = q +

k∑

j=1

Cjxj

x0, x1, . . . , xk > 0

dj − xj > 0 for j = 1, 2, . . . , k − 1

xT0 x1 = 0

(dj − xj)Txj+1 = 0 for j = 1, 2, . . . , k − 1 ;

and the generalization of the LCP alluded to in [48]:

Given n integers m1, m2, . . . , mn ∈ N0, n matrices A1, A2, . . . , An with
Ai ∈ Rp×mi for all i and a vector b ∈ Rp, find x1, x2, . . . , xn with xi ∈ Rmi

for all i such that

n∑

i=1

mi∏

j=1

(xi)j = 0

n∑

i=1

Aixi 6 b

xi > 0 for j = 1, 2, . . . , n ;

are also special cases of the ELCP.
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Conclusion: As can be seen from this and the previous subsections, the ELCP
can be considered as a unifying framework for the LCP and its various gener-
alizations.

The underlying geometrical explanation for the fact that all these generaliza-
tions of the LCP are particular cases of the ELCP is that they all have a
solution set that consists of the union of faces of a polyhedron, and that the
union of any arbitrary set of faces of an arbitrary polyhedron can be described
by an ELCP (See Theorem 3.4.16).
For more information on the LCP and the various generalizations discussed
above and for applications, properties and methods to solve these problems the
interested reader is referred to [28, 29, 30, 39, 40, 48, 49, 71, 72, 73, 84, 85, 101,
102, 107, 113, 136, 137, 141, 150, 153, 154] and the references therein.

Finally, we also want to remark that there also exist nonlinear extensions of
the LCP, such as e.g. the Nonlinear Complementarity Problem (NCP), which
is defined as follows:

Given a mapping f : Rn → Rn, find x ∈ Rn such that x > 0, f(x) > 0 and
xT f(x) = 0 .

More information on the NCP and other nonlinear extensions of the LCP can
be found in [29, 30, 79, 88, 89, 128] and the references therein.

3.3 The Solution Set of the Homogeneous
ELCP

In this section we discuss some properties of the solution set of the homogeneous
ELCP:

Given P ∈ Rp×n, Q ∈ Rq×n and m subsets φ1, φ2, . . . , φm of {1, 2, . . . , p},
find a non-trivial vector u ∈ Rn such that

m∑

j=1

∏

i∈φj

(Pu)i = 0 (3.15)

subject to

Pu > 0 (3.16)

Qu = 0 . (3.17)

Note that a homogeneous ELCP can be considered as a system of homogeneous
linear equalities and inequalities subject to a complementarity condition. The
solution set of the system of homogeneous linear equalities and inequalities
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(3.16) – (3.17) is a polyhedral cone K. Let C be a minimal complete set of central
generators of K and let E be a minimal complete set of extreme generators of
K. In Section 3.1 we have already said that any point u of K can be represented
uniquely as

u =
∑

ck∈C

λkck +
∑

ek∈E

κkek with λk ∈ R and κk > 0 for all k .

If c is a central generator then Pc = 0. By analogy we call all points u ∈ K
that satisfy Pu = 0 central solutions of (3.16) – (3.17) and all points u ∈ K for
which Pu 6= 0 non-central solutions. Note that if e is an extreme generator
then we have Pe 6= 0.
Later on we shall show that any solution u of the homogeneous ELCP can be
written as

u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0 for all k

for some Es ⊆ E (See Theorem 3.4.11).
In the next section we shall present an algorithm to compute C and E . But first
we give some properties of the solution set of the homogeneous ELCP defined
by (3.15) – (3.17).

Proposition 3.3.1 If c is a central solution of the system of homogeneous
linear inequalities and equalities (3.16) – (3.17), then λc is a solution of the
homogeneous ELCP defined by (3.15) – (3.17) for every λ ∈ R.

Proof : Let λ ∈ R. Since c is a central solution of (3.16) – (3.17), we have

m∑

j=1

∏

i∈φj

(P (λc))i =

m∑

j=1

∏

i∈φj

λ(Pc)i = 0 .

Furthermore, P (λc) = λ(Pc) = 0 > 0 and Q(λc) = λ(Qc) = 0. So λc is a
solution of the homogeneous ELCP. 2

Note that every central solution of (3.16) – (3.17) automatically satisfies the
complementarity condition.

Proposition 3.3.2 If u is a solution of the homogeneous ELCP defined by
(3.15) – (3.17) then κu is also a solution of the homogeneous ELCP for every
κ > 0.

Proof : Let κ > 0. We have

m∑

j=1

∏

i∈φj

(P (κu))i =

m∑

j=1

∏

i∈φj

κ(Pu)i
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=
m∑

j=1

κ#φj

∏

i∈φj

(Pu)i

= 0 (by (3.14)) .

Since Pu > 0 and κ > 0, we have P (κu) = κ(Pu) > 0. Furthermore, Q(κu) =
κ(Qu) = 0. Hence, κu is a solution of the homogeneous ELCP. 2

Now we prove that extreme generators (or non-central solutions) that do not
satisfy the complementarity condition cannot yield a solution of the ELCP. In
our ELCP algorithm such generators will therefore immediately be discarded.

Proposition 3.3.3 Let C be a minimal complete set of central generators of
the polyhedral cone K defined by (3.16) – (3.17) and let E be a minimal complete
set of generators of K. Suppose that el ∈ E does not satisfy complementarity
condition (3.15). Let Es be an arbitrary subset of E with el ∈ Es. Then any

combination of the form u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0

for all k and κl > 0 will not satisfy the complementarity condition.

Proof : If el does not satisfy the complementarity condition then we have

m∑

j=1

∏

i∈φj

(Pel)i 6= 0 .

Since Pel > 0, this is only possible if

∃j ∈ {1, 2, . . . ,m} such that ∀i ∈ φj : (Pel)i 6= 0 . (3.18)

Consider a combination of the form u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek with λk ∈ R

and κk > 0 for all k and κl > 0. Now we show by contradiction that u does
not satisfy the complementarity condition.
Assume that u satisfies the complementarity condition. Then we have

m∑

j=1

∏

i∈φj

(

P

(
∑

ck∈C

λkck +
∑

ek∈Es

κkek

))

i

= 0

or equivalently

m∑

j=1

∏

i∈φj

(
∑

ck∈C

λk(Pck)i +
∑

ek∈Es

κk(Pek)i

)

= 0 .

We have Pc = 0 for all c ∈ C. Hence,

m∑

j=1

∏

i∈φj



κl(Pel)i +
∑

ek∈Es\{el}

κk(Pek)i



 = 0 .
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Since Pek > 0 and κk > 0 for all k and since κl > 0, this is only possible if

∀j ∈ {1, 2, . . . ,m} ,∃i ∈ φj such that κl(Pel)i +
∑

ek∈Es\{el}

κk(Pek)i = 0 .

Since κl > 0, this condition can only be satisfied if

∀j ∈ {1, 2, . . . ,m} ,∃i ∈ φj such that (Pel)i = 0 .

But this is in contradiction with (3.18). Hence, our assumption was wrong,
which means that u does not satisfy the complementarity condition. 2

Note that Proposition 3.3.3 also holds if E would have been a set of non-central
solutions of (3.16) – (3.17).

3.4 An Algorithm to Find All Solutions of an
ELCP

In this section we derive an algorithm to find all solutions of a general ELCP.
As was already indicated in Section 3.2.2 we first solve the corresponding homo-
geneous ELCP and afterwards we extract the solutions of the original ELCP.
So now we consider a homogeneous ELCP. To enhance the efficiency of the
algorithm we first extract the inequalities of Pu > 0 that appear in the com-
plementarity condition and put them in P1u > 0. The remaining inequalities
are put in P2u > 0. If we also adapt the sets φ1, φ2, . . . , φm accordingly, we
get an ELCP of the following form:

Given P1 ∈ Rp1×n, Q ∈ Rq×n, P2 ∈ Rp2×n and m subsets φ1, φ2, . . . , φm
of {1, 2, . . . , p1}, find a non-trivial u ∈ Rn such that

m∑

j=1

∏

i∈φj

(P1u)i = 0 (3.19)

subject to

P1u > 0 (3.20)

Qu = 0 (3.21)

P2u > 0 . (3.22)

Note that

m⋃

j=1

φj = {1, 2, . . . , p1}.

The ELCP algorithm consists of 3 parts:
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Part 1: Find all solutions of P1u > 0 that satisfy the complementarity con-
dition. We describe the solution set of this problem with central and
extreme generators.

Part 2: Take the conditions Qu = 0 and P2u > 0 into account.

Part 3: Determine which combinations of the central and the extreme genera-
tors are solutions of the ELCP: i.e. determine the “cross-complemen-
tary” sets.

Now we go through the algorithm part by part. We shall give the different parts
of the algorithm in their most rudimentary form. In the remarks after each
algorithm we shall indicate how the numerical stability and the performance of
the algorithm can be improved.

3.4.1 Determining All Solutions of a System of Linear
Inequalities that Also Satisfy a Complementarity
Condition

The algorithm of this subsection is an extension and adaptation of the double
description method of [111] to find all solutions of a system of linear inequalities.
We have adapted it to get a more concise description of the solution set and
we have added tests to reject solutions that do not satisfy the complementarity
condition. In this algorithm we take a new inequality into account in each
major step and we determine the intersection of the current polyhedral cone
— described by a minimal complete set of central generators C and a minimal
complete set of extreme generators E — with the half-space determined by the
new inequality. Generators that do not satisfy the complementarity condition
are immediately removed.
We give the algorithm to compute C and E in a pseudo programming language.
We use ← to indicate an assignment. Italic text inside braces is meant to be a
comment.

Algorithm 1: Solve a system of linear inequalities subject to a com-
plementarity condition.

Input: p1, n, P1 ∈ Rp1×n, m, {φj}mj=1

Initialization:

C ← { ci | ci = (In).,i for i = 1, 2, . . . , n }
E ← ∅
Pnec ← [ ]

Main loop:

for k = 1, 2, . . . , p1 do { The rows of P1 are taken one by one. }
∀s ∈ C ∪ E : res(s)← (P1)k,. s { Compute the residues. }
C+← { c ∈ C | res(c) > 0 }
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C−← { c ∈ C | res(c) < 0 }
C0← { c ∈ C | res(c) = 0 }
E+← { e ∈ E | res(e) > 0 }
E−← { e ∈ E | res(e) < 0 }
E0← { e ∈ E | res(e) = 0 }
if C+ = ∅ and C− = ∅ and E− = ∅ then { Case 1 }
{ The kth inequality is redundant. }
E ← E0 ∪ { e ∈ E+ | e satisfies the partial complementarity

condition }
else

if C+ = ∅ and C− = ∅ then { Case 2 }
E ← E0 ∪ { e ∈ E+ | e satisfies the partial complemen-

tarity condition }
for all pairs (e+, e−) ∈ E+ × E− do

if e+ and e− are adjacent then

enew ← res(e+)e− − res(e−)e+

if enew satisfies the partial complementarity

condition then

E ← E ∪ { enew }
end if

end if

end for

else { Case 3 }
C ← C0

E ← E0

C+ ← C+ ∪ {−s | s ∈ C− }
∀s ∈ C− : res(−s)← −res(s) { Adapt the residues. }
Take an arbitrary generator c ∈ C+.

if c satisfies the partial complementarity condition then

E ← E ∪ {c}
end if

∀c+ ∈ C+ \ {c} : C ← C ∪ { res(c+)c− res(c)c+ }
for all e ∈ E+ ∪ E− do

enew ← res(c)e− res(e)c do

if enew satisfies the partial complementarity condition

then

E ← E ∪ { enew }
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end if

end for

end if

Add the kth row of P1 to Pnec.

end if

end for

Output: C, E , Pnec

Remarks

1. If s1 and s2 are two generators at the beginning of the kth pass through
the main loop of the algorithm and if res(s1) res(s2) < 0 , then the vector

s = |res(s1)| s2 + |res(s2)| s1 (3.23)

will satisfy (P1)k,.s = 0. In other words, s will lay in the hyperplane
defined by the kth row of P1.

Proof : Without loss of generality we may assume that res(s1) > 0 and
res(s2) < 0. Then we have

(P1)k,.s = (P1)k,. (|res(s1)|s2 + |res(s2)|s1)

= (P1)k,. (res(s1)s2 − res(s2)s1)

= res(s1)(P1)k,.s2 − res(s2)(P1)k,.s1

= res(s1) res(s2)− res(s2) res(s1)

= 0 . 2

Note that s will also belong to the polyhedral cone that is defined by
the first k − 1 inequalities of the system P1u > 0 since it is a positive
combination of s1 and s2.
In our algorithm we have worked out the absolute values in (3.23), which
leads to the different expressions for constructing new generators.

2. In each pass through the main loop we have to combine intermediate
generators. Therefore, it is advantageous to have as few intermediate
generators as possible. The complementarity test is one way to reject
generators. We cannot use the full complementarity condition (3.13)
when we are processing the kth inequality since this complementarity
condition takes all inequalities into account. However, if we consider
the equivalent complementarity condition (3.14) then it is obvious that
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we can apply the condition for φj as soon as we have considered all
inequalities that correspond to that particular φj . That is why we use a
partial complementarity test. In the kth pass the partial complementarity
condition is:

∏

i∈φj

(P1u)i = 0 for all j such that φj ⊆ {1, 2, . . . , k} . (3.24)

If there are no sets φj such that φj ⊆ {1, 2, . . . , k} then the partial com-
plementarity condition is satisfied by definition.
New generators are constructed by taking positive combinations of other
generators as is indicated by (3.23). By Proposition 3.3.3, which is also
valid for the partial complementarity condition, any generator that does
not satisfy the (partial) complementarity condition cannot yield a gen-
erator that satisfies the complementarity condition. Therefore, we can
reject such generators immediately.
Since central generators automatically satisfy the complementarity con-
dition, we only have to check the extreme generators. We can even be
more specific. In fact, we only have to test new extreme generators and
extreme generators that have a non-zero residue:

Proposition 3.4.1 If e ∈ E0 in pass k of Algorithm 1 and if e satisfies
the partial complementarity condition of pass k−1, then e will also satisfy
the partial complementarity condition of pass k.

Proof : If e ∈ E0 then (P1)k,.e = 0 or equivalently (P1e)k = 0 and thus

∏

i∈φj

(P1e)i = 0 for all j such that k ∈ φj . (3.25)

Since e satisfies the partial complementarity condition of pass k − 1, we
have

∏

i∈φj

(P1e)i = 0 for all j such that φj ⊆ {1, 2, . . . , k − 1} . (3.26)

If we combine (3.25) and (3.26), we obtain

∏

i∈φj

(P1u)i = 0 for all j such that φj ⊆ {1, 2, . . . , k} .

So e satisfies the partial complementarity condition of pass k. 2

3. The matrix Pnec is used to determine whether two extreme generators are
adjacent. Since we do not want any redundancy in the description of the
solution set, we only combine adjacent extreme generators. Note that at
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the beginning of the kth pass Pnec contains all the inequalities that define
the current polyhedral cone. It is obvious that we do not have to include
redundant inequalities in Pnec.
Let K be the polyhedral cone defined by K = {u |Pnecu > 0 } at the be-
ginning of pass k. Let CK be a minimal complete set of central generators
of K, let EK be a minimal complete set of extreme generators of K and
let t = dimL(K) = #CK.
The zero index set I0(e) of an extreme generator e ∈ EK is defined as
follows:

I0(e) = { i | (Pnec e)i = 0 } .

Now we derive necessary and sufficient conditions for two extreme gener-
ators e1 and e2 of the polyhedral cone K to be adjacent.
If e1 and e2 are adjacent then by Definition 3.1.6 there exist two minimal
proper faces G1 and G2 of K with e1 ∈ G1 and e2 ∈ G2 and a (t + 2)-
dimensional face F of K such that G1 ⊂ F and G2 ⊂ F . This means
that both e1 and e2 have to belong to the same (t+ 2)-dimensional face
F of K. Since F is the intersection of K and n − t− 2 linearly indepen-
dent hyperplanes from the system Pnec u = 0, this leads to the following
proposition:

Proposition 3.4.2 (Necessary condition for adjacency) A neces-
sary condition for two extreme generators e1 and e2 of the polyhedral cone
K = {u ∈ Rn |Pnec u > 0 } to be adjacent is that the zero index sets of e1
and e2 contain at least n− t− 2 common indices where t = dimL(K).

Since F is a (t + 2)-dimensional face of K and since e1 ∈ G1 ⊂ F and
e2 ∈ G2 ⊂ F , we have

F =

{

x

∣
∣
∣
∣
x =

∑

ck∈C

λkck + κ1e1 + κ2e2 with λk ∈ R for all k

and with κ1, κ2 > 0

}

.

Since e1 and e2 belong to F and since there is exactly one extreme gener-
ator in EK for each minimal proper face of K, there are no other extreme
generators in EK that also belong to F . Hence,

Proposition 3.4.3 (Necessary and sufficient condition for adja-
cency) Let EK be a minimal complete set of extreme generators of
the polyhedral cone K = {u |Pnec u > 0 }. Two extreme generators
e1, e2 ∈ EK are adjacent if and only if there is no extreme generator
e ∈ EK \ {e1, e2} such that I0(e1) ∩ I0(e2) ⊆ I0(e) .
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The conditions of Propositions 3.4.2 and 3.4.3 can be considered as an
extension and a generalization of the necessary and/or sufficient condi-
tions for the adjacency of two extreme generators of a pointed polyhedral
cone that are given in [105] and in [39, 40, 141].
In general E and EK do not always coincide since it is possible that some
of the elements of EK have already been eliminated from E in a previ-
ous pass through the main loop of the ELCP algorithm because they did
not satisfy the (partial) complementarity condition. This means that in
general the condition of Proposition 3.4.3 with EK replaced by E is not
a sufficient condition any more since we do not consider all the elements
of EK.
Therefore, we apply the following procedure in our ELCP algorithm to
determine whether 2 extreme generators e1, e2 ∈ E are adjacent:

Adjacency Test 1: First we determine the common zero indices. If
there are less than n− t− 2 common zero indices then e1 and e2 are
not adjacent.

Adjacency Test 2: Next we test whether there is an extreme generator
e ∈ E \ {e1, e2} such that I0(e1) ∩ I0(e2) ⊆ I0(e) . If such a
generator exists then e1 and e2 are not adjacent.

Note that the first test takes far less time to perform than the second
especially if the number of extreme generators is large. That is why we
use Adjacency Test 1 first.
Central generators are never rejected because they always satisfy the
(partial) complementarity condition. This means that at the beginning
of pass k the current set C is a basis of L(K). So the number t that is
used in Adjacency Test 1 is equal to #C.
It is possible that two non-adjacent extreme generators pass Adjacency
Test 2 if some other extreme generators of K have already been elimi-
nated. However, in that case the following proposition provides a suffi-
cient condition for adjacency.

Proposition 3.4.4 Let E be the set of extreme generators at the begin-
ning of pass k of Algorithm 1. If two non-adjacent extreme generators
e1, e2 ∈ E pass Adjacency Test 2, then any arbitrary positive combination
of e1 and e2 will not satisfy the (partial) complementarity condition.

Proof : Since adjacency only depends on the extreme generators, we
may assume without loss of generality that there are no central genera-
tors.
Let ψ = {1, 2, . . . , k − 1} and let K be the polyhedral cone defined by
K =

{
u
∣
∣ (P1)ψ,. u > 0

}
=
{
u
∣
∣Pnec u > 0

}
.

If φj ∩ ψ = ∅ for all j, then the partial complementarity condition was
always satisfied by definition in the previous passes. Hence, no extreme
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generator of K has been eliminated, which means that E is still a min-
imal complete set of extreme generators of K and that the condition of
Proposition 3.4.3 is still a necessary and sufficient condition for adjacency.
Therefore, non-adjacent extreme generators cannot pass Adjacency Test
2.
If at least one set φj has a nonempty intersection with ψ, then there
was a partial complementarity condition in pass k− 1. Since this partial
complementarity condition requires that some of the inequalities of the
system (P1)ψ,. u > 0 hold with equality, only points on the border of K
satisfy the partial complementarity condition; interior points of K do not
satisfy the partial complementarity condition. Now consider a face F of
K that contains both e1 and e2. Note that F itself is also a polyhedral
cone. The non-adjacent generators e1 and e2 can only pass Adjacency
Test 2 if another extreme generator of F has already been eliminated
because it did not satisfy the partial complementarity condition of one
of the previous passes. Since either all points of F satisfy the partial
complementarity condition of pass k − 1 or only points on the border of
F satisfy the partial complementarity condition of pass k− 1, this means
that any arbitrary positive combination e of the non-adjacent extreme
generators e1 and e2 — which always lies in the interior of F — does
not satisfy the partial complementarity condition of pass k − 1. As a
consequence, e will not satisfy the partial complementarity condition of
pass k either. 2

So if two non-adjacent generators e1 and e2 pass both adjacency tests,
then the combination enew = |res(e1)| e2 + |res(e2)| e1 will not satisfy
the (partial) complementarity condition and as a consequence, it will be
rejected. Therefore, no redundant generators will be created. Hence, Al-
gorithm 1 will result in a minimal complete set of extreme generators of
the solution set of the homogeneous ELCP defined by (3.19) and (3.20).
Together the two adjacency tests and the test on the partial complemen-
tarity condition provide necessary and sufficient conditions for adjacency.

The final Pnec is also considered as an output of this algorithm since
we need it in the second part of the ELCP algorithm, when we process
P2u > 0.

4. Let ψ = {1, 2, . . . , k − 1}. If c ∈ C at the beginning of pass k then both c
and −c are solutions of (P1)ψ,. u > 0. We have res(−c) = (P1)k,. (−c) =
−(P1)k,. c = −res(c). So if c ∈ C+ then −c ∈ C− and vice versa. This
explains why we may set C+ ← C+ ∪ {−s | s ∈ C− } in the third step of
Case 3 and why we have adapted the residues in the fourth step. After
that step all the central generators have a nonnegative residue.

5. If we multiply a central or an extreme generator by a positive real number,
it stays a central or an extreme generator by Propositions 3.3.1 and 3.3.2.
This means that we can normalize all new generators after each pass



78 Chapter 3. The Extended Linear Complementarity Problem

through the main loop in order to avoid problems such as overflow.
To avoid problems arising from round-off errors it is better to test the
residues against a threshold τ > 0 instead of against 0 when determining
the sets C+, C−, C0, E+, E− and E0.

6. If both C and E are empty after a pass through the main loop, we may
stop the algorithm. In that case the homogeneous ELCP will not have
any solutions except for the trivial solution u = On×1.

For more information on the method used to find all solutions of a system of
linear inequalities the interested reader is referred to [111]. One of the main
differences between our algorithm and the double description method of [111]
is that we only store one version of each central generator c, whereas in the
double description method both c and −c are stored. We have also added the
test on the (partial) complementarity condition to eliminate as many generators
as soon as possible.

3.4.2 The Remaining Equality and Inequality Constraints

The next algorithm is an adaptation of Algorithm 1. Since we have already
processed all rows of P1 in Algorithm 1, we can now test for the full comple-
mentarity condition.

Algorithm 2: Take the equality constraints into account.

Input: p1, q, n, m, P1 ∈ Rp1×n, Q ∈ Rq×n, {φj}mj=1, C, E , Pnec
Main loop:

for k = 1, 2, . . . , q do { The rows of Q are taken one by one. }
∀s ∈ C ∪ E : res(s)← Qk,. s { Compute the residues. }
C+← { c ∈ C | res(c) > 0 }
C−← { c ∈ C | res(c) < 0 }
C0← { c ∈ C | res(c) = 0 }
E+← { e ∈ E | res(e) > 0 }
E−← { e ∈ E | res(e) < 0 }
E0← { e ∈ E | res(e) = 0 }
if C+ = ∅ and C− = ∅ and E+ = ∅ and E− = ∅
then { Case 1 }
{ The kth equation is redundant. }

else

if C+ = ∅ and C− = ∅ then { Case 2 }
E ← E0

for all pairs (e+, e−) ∈ E+ × E− do

if e+ and e− are adjacent then
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enew ← res(e+)e− − res(e−)e+

if enew satisfies the complementarity condition

then

E ← E ∪ { enew }
end if

end if

end for

else { Case 3 }
C ← C0

E ← E0

C+ ← C+ ∪ {−s | s ∈ C− }
∀s ∈ C− : res(−s)← −res(s) { Adapt the residues. }
Take an arbitrary generator c ∈ C+.

∀c+ ∈ C+ \ {c} : C ← C ∪ {res(c+)c− res(c)c+}
for all e ∈ E+ ∪ E− do

enew ← res(c)e− res(e)c

if enew satisfies the complementarity condition then

E ← E ∪ { enew }
end if

end for

end if

end if

end for

Output: C, E

Remarks

1. Now we do not have to add rows of Q to Pnec since after the kth pass
through the main loop every generator s will satisfy Q{1,... ,k},.s = 0. So
adding the kth row of Q to Pnec would yield the same extra element in
all zero index sets. As a consequence, Adjacency Test 1 for the kth pass
of Algorithm 2 becomes: if there are less than n− (k−1)− t−2 common
indices in the zero index sets of e1 and e2 then e1 and e2 are not adjacent.

2. The main difference with Algorithm 1 is that now we have to satisfy
equality constraints. That is why we only keep those generators that
have a zero residue, whereas in Algorithm 1 we kept all generators with
a positive or a zero residue.

3. If we construct new generators, we immediately test whether the full
complementarity condition is satisfied. We do not have to test the gen-
erators that are copied from the previous loop since they already satisfy
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the complementarity condition. Since each new central generator c will

still satisfy P1c = 0 and thus also
m∑

j=1

∏

i∈φj

(P1c)i = 0, we only have to

test new extreme generators.

4. If we would only have been interested in obtaining one solution of the
homogeneous ELCP, we could have used the equality constraints to elim-
inate some of the variables. However, since we want a minimal description
of the entire solution set of the ELCP with central and extreme genera-
tors, we do not eliminate any variables.

To take the remaining inequalities into account we apply Algorithm 1 again but
we skip the initialization step and continue with the sets C and E that resulted
from Algorithm 2 and the matrix Pnec from Algorithm 1. Adjacency Test 1
now becomes: if there are less than n− q− t− 2 common indices in I0(e1) and
I0(e2) then e1 and e2 are not adjacent. In the main loop we only have to test
whether newly constructed extreme generators satisfy the full complementarity
condition.
The resulting sets C and E are called respectively a minimal complete set of cen-
tral generators of (the solution set of) the homogeneous ELCP and a minimal
complete set of extreme generators of (the solution set of) the homogeneous
ELCP.

To avoid unnecessary computations and to limit the required amount of storage
space, it is advantageous to have as few intermediate generators as possible.
That is why we have split the inequalities of Pu > 0 up into two groups and
why we process Qu = 0 before P2u > 0:

• The complementarity condition is one way to reject generators. There-
fore, we already use a partial complementarity condition in Algorithm
1. This also explains why we have removed the inequalities that did not
appear in the complementarity condition and put them in P2u > 0: this
allows us to apply the partial complementarity test as soon as possible.

• Next we further reduce the solution set by taking the extra equality and
inequality constraints into account. Unless we have a priori knowledge
about the coefficients of the equalities and the inequalities and about the
structure of the solution set of the system of equalities and inequalities, it
is quite reasonable to assume that an equality will yield less intermediate
generators than an inequality, since for an equality we only retain existing
extreme generators with a zero residue in the first step of Case 2, whereas
for an inequality we retain all existing extreme generators with a positive
or a zero residue. That is why we first take Qu = 0 into account instead
of P2u > 0.

Since a minimal complete set of central generators of the homogeneous ELCP



3.4. An Algorithm to Find All Solutions of an ELCP 81

is a basis for the null space of the matrix





P1

Q
P2



, we could determine the set

C before executing Algorithms 1 and 2. Once C = {c1, c2, . . . , cr} has been
determined, the lineality space of the solution set of the ELCP can be removed
by adding the additional constraint

[
c1 c2 . . . cr

]T
u = 0 (3.27)

to the system of linear equalities and inequalities of the ELCP. Then we could
set

C ← a basis for the null space of
[
c1 c2 . . . cr

]T
(3.28)

in the initialization step of Algorithm 1. Since (3.27) is a system of r homoge-
neous linear equalities, we also have to include an extra term −r in Adjacency
Test 1. This should be compared with the term −q that is added in Adjacency
Test 1 when we take the inequalities of the system P2u > 0 into account. Note
that we could select an orthonormal basis in (3.28) to augment the numerical
stability of the algorithm.

In order to reduce the effects of error propagation we could regularly recom-
pute the central and extreme generators. This could be done as follows. For
each central and extreme generator s we first construct a system S(s) of homo-
geneous linear equalities and inequalities: for a central generator S(s) consists
of all the equalities and inequalities considered so far but with the inequalities
transformed into equalities; for an extreme generator S(s) consists of all the
equalities and inequalities considered so far but with the inequalities indexed
by the zero index set of s transformed into equalities. Next we determine the
point of the solution set of S(s) that is the nearest to s. Note that we could
use an iterative algorithm to solve S(s) with s as the starting point for the
algorithm.

3.4.3 The Cross-Complementary Sets

Let K be the polyhedral cone defined by P1u > 0, Qu = 0 and P2u > 0.
As a direct consequence of the way in which C and E are constructed, every
combination of the form

u =
∑

ck∈Cs

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0 for all k (3.29)

where Cs is an arbitrary subset of C and Es is an arbitrary subset of E , belongs to
K. The complementarity condition requires that in each group of inequalities
of P1u > 0 that corresponds to some φj at least one inequality holds with
equality. As a consequence, the complementarity condition is satisfied either
by all the points of K (if all the φj ’s are empty) or only by points that lie
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on the border of K (if at least one of the φj ’s is not empty). Since we have
only rejected generators that did not satisfy the complementarity condition and
hence certainly would not yield solutions of the ELCP, any arbitrary solution
of the homogeneous ELCP can be represented by (3.29) for some Cs ⊆ C and
some Es ⊆ E .

However, if we take arbitrary subsets of C and E then in general not ev-
ery combination of the form (3.29) will be a solution of the ELCP. The com-
plementarity condition determines for which subsets of C and E (3.29) will
yield a solution of the homogeneous ELCP. This is where the concept “cross-
complementarity” arises.
In [39, 40] two solutions of a GLCP are called cross-complementary if every
nonnegative combination of these solutions satisfies the complementarity con-
dition. This definition can be extended to an arbitrary number of solutions.
However, for the ELCP we have to adapt this definition as follows.

Definition 3.4.5 (Cross-complementarity) A set S of solutions of the ho-
mogeneous ELCP defined by (3.19) – (3.22) is called cross-complementary if
every sum of an arbitrary linear combination of the central solutions in S and
an arbitrary nonnegative combination of the non-central solutions in S :

u =
∑

sk∈Sc

λksk +
∑

sk∈Snc

κksk with λk ∈ R and κk > 0 for all k (3.30)

where Sc = { s ∈ S | P1s = 0 and P2s = 0} and Snc = { s ∈ S | P1s 6=
0 or P2s 6= 0}, satisfies the complementarity condition.

If all the elements of a set S are cross-complementary then we say that S is a
cross-complementary set.
Note that every combination of the form (3.30) always belongs to K. So if S is
a cross-complementary set then every combination of the form

u =
∑

sk∈Sc

λksk +
∑

sk∈Snc

κksk with λk ∈ R and κk > 0 for all k

where Sc = { s ∈ S | P1s = 0 and P2s = 0} and Snc = { s ∈ S | P1s 6=
0 or P2s 6= 0} is a solution of the ELCP.
Now we present a method to determine the maximal sets of cross-complemen-
tary solutions. The following proposition tells us that we can always set Cs = C
in (3.29).

Proposition 3.4.6 Let C be a minimal complete set of central generators of a
homogeneous ELCP. If u1 is a solution of the homogeneous ELCP then the set
C ∪ {u1} is cross-complementary.

Proof : Assume that the homogeneous ELCP is defined by (3.19) – (3.22).
Define a set A such that

A =

{

R if u1 is a central solution of (3.20) – (3.22),

R+ if u1 is a non-central solution of (3.20) – (3.22).
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So now we have to prove that any combination of the form u =
∑

ck∈C

λkck+µu1

with λk ∈ R for all k and with µ ∈ A satisfies the complementarity condition.
We have

m∑

j=1

∏

i∈φj

(

P1

(
∑

ck∈C

λkck + µu1

))

i

=

m∑

j=1

∏

i∈φj

(
∑

ck∈C

λk(P1ck)i + µ(P1u1)i

)

=
m∑

j=1

∏

i∈φj

(0 + µ(P1u1)i) (since P1ck = 0)

=

m∑

j=1

µ#φj

∏

i∈φj

(P1u1)i

= 0 (by (3.14) with P replaced by P1) .

This means that C ∪ {u1} is a cross-complementary set. 2

So now we only have to consider the extreme generators. The following propo-
sition tells us that we only have to test one positive combination to deter-
mine whether a set of extreme generators (or non-central solutions) is cross-
complementary or not:

Proposition 3.4.7 Let e1, e2, . . . , ek be arbitrary extreme generators (or
non-central solutions) of a homogeneous ELCP. Then κ1e1 +κ2e2 + . . .+κkek
satisfies the complementarity condition for all κ1, κ2, . . . , κk > 0 if and only
if there exist µ1, µ2, . . . , µk > 0 such that µ1e1 + µ2e2 + . . .+ µkek satisfies
the complementarity condition.

Proof : Since the proof of the “only if” part is trivial, we only prove the “if”
part.
Assume that the homogeneous ELCP is defined by (3.19) – (3.22). If there exist
positive real numbers µ1, µ2, . . . , µk such that µ1e1 +µ2e2+ . . .+µkek satisfies
the complementarity condition then we have

∏

i∈φj

(

P1

(
k∑

l=1

µlel

))

i

= 0 for j = 1, 2 . . . ,m

or equivalently

∏

i∈φj

(
k∑

l=1

µl(P1el)i

)

= 0 for j = 1, 2, . . . ,m
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and thus

∑

(ψ1,ψ2,... ,ψk)∈Ψ(k,j)

k∏

l=1

∏

i∈ψl

µl(P1el)i = 0 for j = 1, 2, . . . ,m (3.31)

where Ψ(k, j) is the set of all possible k-tuples of k disjoint subsets of φj the
union of which is equal to φj :

Ψ(k, j) =

{

(ψ1, ψ2, . . . , ψk)

∣
∣
∣
∣
ψ1, ψ2, . . . , ψk ⊆ φj ;

k⋃

l=1

ψl = φj and

∀l1, l2 ∈ {1, 2, . . . , k} : if l1 6= l2 then ψl1 ∩ ψl2 = ∅
}

,

and where the empty product
∏

i∈∅

. . . is equal to 1 by definition. Note that we

also allow empty subsets ψl in the definition of Ψ(k, j).
From (3.31) it follows that

∑

(ψ1,ψ2,... ,ψk)∈Ψ(k,j)





(
k∏

l=1

µ#ψl

l

)(
k∏

l=1

∏

i∈ψl

(P1el)i

)

 = 0

for j = 1, 2, . . . ,m. Since µl > 0 and (P1el)i > 0 for l = 1, 2, . . . , k, this is only
possible if

∀(ψ1, ψ2, . . . , ψk) ∈ Ψ(k, j) :
k∏

l=1

∏

i∈ψl

(P1el)i = 0 (3.32)

for j = 1, 2, . . . ,m.
Now we show that κ1e1 + κ2e2 + . . .+ κkek also satisfies the complementarity
condition for all nonnegative real numbers κ1, κ2, . . . , κk. Using the same
reasoning as for µ1e1 + µ2e2 + . . .+ µkek we find

m∑

j=1

∏

i∈φj

(

P1

(
k∑

l=1

κlel

))

i

=

m∑

j=1

∑

(ψ1,ψ2,... ,ψk)∈Ψ(k,j)





(
k∏

l=1

κ#ψl

l

)(
k∏

l=1

∏

i∈ψl

(P1el)i

)



= 0 (by (3.32)) . 2

To determine whether a set of extreme generators of a homogeneous ELCP is
cross-complementary we take an arbitrary positive combination of these gen-
erators. If the combination satisfies the complementarity condition then the
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Figure 3.3: The cross-complementarity graph Gc of Example 3.4.8.

generators are cross-complementary. If the combination does not satisfy the
complementary condition then the generators cannot be cross-complementary.

The cross-complementarity graph Gc that corresponds to a set of extreme
generators E of a homogeneous ELCP is defined as follows. The set of vertices
of Gc is {v1, v2, . . . , v#E}. So we have one vertex vk for each extreme generator
ek ∈ E . There is an edge between two different vertices vk and vl if the
corresponding extreme generators ek and el are cross-complementary. A subset
V of vertices of a graph such that any two vertices of V are connected by an edge
is called a clique. A maximal clique is a clique that is not a subset of any other
clique of the graph. In contrast to what has been suggested in [40], finding
all cross-complementary solutions does not amount to detecting all maximal
cliques of the cross-complementarity graph Gc, as will be shown by the following
trivial example.

Example 3.4.8 Consider the following GLCP:

Find x ∈ R4 such that x1 x2 x3 x4 = 0 subject to x1 − x2 = 0 and x > 0.

Define

e1 =







1
1
0
0






, e2 =







0
0
1
0







and e3 =







0
0
0
1







.

The set {e1, e2, e3} is a minimal complete set of extreme generators of the
GLCP. The set {e1, e2} is a set of cross-complementary solutions, and the
same goes for {e2, e3} and {e3, e1}.
The cross-complementarity graph Gc that corresponds to the set {e1, e2, e3} is
represented in Figure 3.3. Clearly, {v1, v2, v3} is a clique of this graph. How-
ever, the corresponding set of extreme generators {e1, e2, e3} is not a cross-

complementary set since e1 + e2 + e3 = [ 1 1 1 1 ]
T

does not satisfy the com-
plementarity condition. 2

To find all cross-complementary solutions we have to construct all maximal
cross-complementary subsets Es of E . For Example 3.4.8 this would yield E1 =
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{e1, e2} , E2 = {e2, e3} and E3 = {e3, e1}.
We can save much time if we make some extra provisions, as will be shown by
the following propositions.

Proposition 3.4.9 Let E be a minimal complete set of extreme generators of
a homogeneous ELCP. If e1 ∈ E satisfies P1e1 = 0 then e1 belongs to every
maximal cross-complementary subset of E.
Proof : Suppose that the homogeneous ELCP is defined by (3.19) – (3.22).
Assume that Es ⊆ E \ {e1} is a cross-complementary set. Now we show that
Es ∪ {e1} is also a cross-complementary set. We have to prove that every
nonnegative combination of the elements of Es ∪ {e1}:

u = κe1 +
∑

ek∈Es

κkek with κ > 0 and κk > 0 for all k

satisfies the complementarity condition.
Since Es is a cross-complementary set, we have

m∑

j=1

∏

i∈φj

(

P1

(
∑

ek∈Es

κkek

))

i

= 0 . (3.33)

We have
m∑

j=1

∏

i∈φj

(P1u)i

=

m∑

j=1

∏

i∈φj

(

P1

(

κe1 +
∑

ek∈Es

κkek

))

i

=
m∑

j=1

∏

i∈φj



 κ(P1e1)i +

(

P1

(
∑

ek∈Es

κkek

))

i





=
m∑

j=1

∏

i∈φj

(

P1

(
∑

ek∈Es

κkek

))

i

(since P1e1 = 0)

= 0 (by (3.33)) .

So Es ∪ {e1} is a cross-complementary set. Hence, e1 will belong to every
maximal cross-complementary subset of E . 2

Proposition 3.4.10 Let E be a minimal complete set of extreme generators
of the homogeneous ELCP defined by (3.19) – (3.22) and let e1, e2 ∈ E. If we
have

∀i ∈ {1, 2, . . . , p1} : (P1e1)i = 0 if and only if (P1e2)i = 0 , (3.34)

then e1 will belong to a maximal cross-complementary subset of E if and only
if e2 also belongs to that subset.
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Proof : Consider an arbitrary subset Es of E \ {e1, e2}. First we prove that
if the set Es ∪ {e1} is cross-complementary then Es ∪ {e1, e2} is also cross-
complementary.
If the set Es∪{e1} is cross-complementary then every nonnegative combination
of its elements satisfies the complementarity condition. This means that

u = e1 +
∑

ek∈Es

ek = e1 + vs

with vs =
∑

ek∈Es

ek, satisfies the complementarity condition:

∏

i∈φj

(P1(e1 + vs))i = 0 for j = 1, 2, . . . ,m

or

∏

i∈φj

((P1e1)i + (P1vs)i) = 0 for j = 1, 2, . . . ,m

and thus

∑

ψ∈P(φj)

∏

i∈ψ

(P1e1)i
∏

i∈φj\ψ

(P1vs)i = 0 for j = 1, 2, . . . ,m (3.35)

where P(φj) is the set of all the subsets of φj . Since (P1e1)i > 0 and (P1vs)i > 0
for all i, (3.35) can only hold if

∀ψ ∈ P(φj) :
∏

i∈ψ

(P1e1)i
∏

i∈φj\ψ

(P1vs)i = 0 for j = 1, 2, . . . ,m

or equivalently

∀ψ ∈ P(φj) :
(
∃i ∈ ψ such that (P1e1)i = 0

)
or

(
∃i ∈ φj\ψ such that (P1vs)i = 0

)

for j = 1, 2, . . . ,m. But if (P1e1)i = 0 then also (P1e2)i = 0 and thus
(P1(e1 + e2))i = 0. This leads to

∀ψ ∈ P(φj) :
(
∃i ∈ ψ such that (P1(e1 + e2))i = 0

)
or

(
∃i ∈ φj\ψ such that (P1vs)i = 0

)

for j = 1, 2, . . . ,m, and consequently

∏

i∈φj

(P1(e1 + e2 + vs))i = 0 for j = 1, 2, . . . ,m .
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Hence, the positive combination

v = e1 + e2 + vs = e1 + e2 +
∑

ek∈Es

ek

of the elements of Es ∪ {e1, e2} satisfies the complementarity condition. From
Proposition 3.4.7 it follows that the set Es ∪ {e1, e2} is cross-complementary.

To prove the “only if” part we interchange e1 and e2 and repeat the above
reasoning. 2

This leads to the following procedure for determining the maximal cross-com-
plementary subsets of a set of extreme generators E of a homogeneous ELCP.
First we put all the generators e ∈ E that satisfy P1e = 0 in a set E0. By Propo-
sition 3.4.9 these generators will belong to every maximal cross-complementary
subset of E . Next we define an equivalence relation ∼ on E \ E0:

e1 ∼ e2 if ∀i ∈ {1, 2, . . . , p1} :
(
(P1e1)i = 0

)
⇔
(
(P1e2)i = 0

)
,

and we construct the corresponding equivalence classes. We take one repre-
sentative out of each equivalence class and we put all the representatives in
a set Ered. Suppose that Ered = {e1, e2, . . . , er}. If we define sl = P1el for
l = 1, 2, . . . , r and S = {s1, s2, . . . , sr}, then sl > 0 for all sl ∈ S. For any
subset {e1, e2, . . . , ek} of Ered, for any i ∈ {1, 2, . . . , p1} and for any µ1, µ2,
. . . , µk > 0, we have

(

P1

(
k∑

l=1

µlel

))

i

=

k∑

l=1

µl(P1el)i =

k∑

l=1

µl(sl)i .

Therefore, there is a one-to-one correspondence between the maximal cross-
complementary subsets of Ered and the maximal cross-complementary subsets
of S. Note that S is a minimal complete set of extreme generators of the
following GLCP:

Given φ1, φ2, . . . , φm, find s ∈ Rp1 such that

m∑

j=1

∏

i∈φj

si = 0 subject to

s > 0.

Therefore, we now present an algorithm to determine the set Γ of the maximal
cross-complementary subsets of a set S of extreme generators of the solution
set of a GLCP. In the description of this algorithm we also use a(i) to represent
the ith component of a vector a and A(i, j) to represent the entry on the ith
row and the jth column of a matrix A. The operator ∨ represents the entrywise
binary “or”.
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Algorithm 3: Determine the maximal cross-complementary subsets
of a set of extreme generators of a GLCP.

Input: m, S, {φj}mj=1

Initialization:

Γ← ∅
{ Construct the binary equivalents: }
B ← { bk | bk = binary(sk), sk ∈ S }
{ Construct the cross-complementarity matrix: }
cross← O#B×#B

for k = 1, 2, . . . ,#B − 1

for l = k + 1, k + 2, . . . ,#B
if ( bk ∨ bl ) satisfies the binary complementarity condition

then

cross(k, l)← 1

else

cross(k, l)← 0

end if

end for

end for

depth← 1

start← O(#B+1)×1

last← O(#B+1)×1

last(1)← #B
vertices← O#B×#B

∀k ∈ {1, 2, . . . ,#B} : vertices(1, k)← k

Main loop:

while depth > 0 do

start(depth)← start(depth) + 1

b←
depth
∨

d=1

bvertices(d,start(d))

{ Determine the vertices for the next depth: }
current vertex← vertices(depth, start(depth))

next depth← depth+ 1

start(next depth)← 0

last(next depth)← 0

for k = start(depth) + 1, . . . , last(depth) do

new vertex← vertices(depth, k)
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if cross(current vertex, new vertex) = 1 then

if ( b ∨ bnew vertex ) satisfies the binary complementarity

condition then

last(next depth)← last(next depth) + 1

vertices(next depth, last(next depth))← new vertex

end if

end if

end for

{ If the next depth does not contain any vertices, then the current }
{ cross-complementary set cannot be extended any more. }
if last(next depth) > 0 then

depth← next depth

else

{ If the current set is a maximal cross-complementary set, }
{ we add it to Γ. }

Snew ←
depth
⋃

d=1

{svertices(d,start(d))}

if ∀Ss ∈ Γ : Snew 6⊆ Ss then

Γ← Γ ∪ {Snew}
end if

{ Check whether the current set contains all the remaining }
{ vertices, otherwise return to the previous point where a }
{ choice was made: }
if start(1) + depth− 1 = #B then

depth← 0

else

while start(depth) = last(depth) do

depth← depth− 1

end while

end if

end if

end while

Output: Γ = {S1,S2, . . . }

Remarks

1. This algorithm is an adaptation of the enumerative algorithm of [12]
to determine a maximum clique of a graph, i.e. a clique of maximum
cardinality. Note that each maximum clique of a graph is also a maximal
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clique, but in general the reverse is not true.

2. In this algorithm we present the information about which pairs of extreme
generators are cross-complementary by the cross-complementarity matrix
cross. We have

cross(k, l) =

{

1 if ek and el are cross-complementary and if k > l ,

0 otherwise.

Note that when we test whether cross(current vertex, new vertex) is
equal to 1, we always have new vertex > current vertex. Therefore,
we have only constructed the strictly upper triangular part of the cross-
complementarity matrix.
In order to make the explanation easier to follow, we shall not use the
cross-complementarity matrix cross when we describe the main steps of
this algorithm in the next remarks and in Example 3.6.2, but we shall
explain everything in terms of the cross-complementarity graph Gc that
corresponds to S.

3. We start with a set that contains one vertex of Gc and we keep adding
extra vertices as long as the corresponding set of extreme generators stays
cross-complementary. If no vertices can be added without violating the
cross-complementarity, we have found a maximal cross-complementary
set. Then we go back to the last point were a choice was made and we
repeat the procedure.

4. If we encounter a set that is not cross-complementary, then any superset
of that set cannot be cross-complementary by Proposition 3.3.3, which
is also valid if el is a nonnegative combination of extreme generators
or equivalently if el is a non-central solution of the system of equalities
and inequalities of the ELCP. So once we have found a set that is not
cross-complementary, we do not have to add extra vertices any more.

5. If the current set cannot be extended any more, we check whether it is
a maximal cross-complementary set. Because of the order in which the
maximal cross-complementary sets are processed it is impossible that the
current set is a superset of a set that is already in Γ. So we only have to
test whether the new set is a subset of one of the sets in Γ.

6. As was mentioned in [39] the cross-complementarity test can be done in
binary arithmetic only:
First we replace each generator s ∈ S by its binary equivalent binary(s),
which is defined as follows:

if s ∈ Rn and if b = binary(s) ∈ Rn then bi =

{

0 if |si| 6 τ ,

1 if |si| > τ ,
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where τ > 0 is a threshold.
We also adapt the complementarity condition. In the binary comple-
mentarity condition we use binary “and” (∧) instead of multiplication
and binary “or” (∨) instead of addition. So if the complementarity con-

dition is

m∑

j=1

∏

i∈φj

si = 0, then the binary complementarity condition is

m∨

j=1

∧

i∈φj

(bi = 0).

We have already included this technique in our algorithm since it will be
much faster than doing everything in floating point arithmetic. Note that
we can also use this technique in Algorithms 1 and 2.
To determine whether two (or more) solutions are cross-complementary
we first construct a new vector by taking the componentwise binary “or”
of the binary equivalents of the solutions and then we test whether this
vector satisfies the binary complementarity condition.

7. If we are only interested in obtaining one solution of an ELCP, we can
skip Algorithm 3. However, this is certainly not the most efficient way
to get one solution of an ELCP (See also Section 3.4.5).

For additional information about this algorithm the interested reader is referred
to [12].

Once we have found the maximal cross-complementary sets of extreme genera-
tors of the GLCP, we reconstruct the corresponding maximal cross-complemen-
tary subsets of E by replacing each sk in each subset Ss by the corresponding
ek and all the other members of the equivalence class of ek. If we also add all
the elements of E0 to each subset, we finally get Γ̃, the set of maximal cross-
complementary subsets Es of extreme generators of the homogeneous ELCP.
Now we can characterize the solution set of the homogeneous ELCP:

Theorem 3.4.11 Let C be a minimal complete set of central generators of
a homogeneous ELCP, let E be a minimal complete set of extreme genera-
tors of the homogeneous ELCP and let Γ̃ be the set of the maximal cross-
complementary subsets of E. Then u is a solution of the homogeneous ELCP
if and only if there exists a set Es ∈ Γ̃ such that

u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0 for all k .

This leads to:

Proposition 3.4.12 In general the solution set of a homogeneous ELCP con-
sists of the union of faces of a polyhedral cone.

Remark 3.4.13 The main difference between the ELCP and the GLCP is
that the solution set of a homogeneous ELCP consists of the union of faces
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of a polyhedral cone — which means that it can contain a linear subspace —
whereas the solution set of a GLCP is the union of faces of a pointed polyhedral
cone, which means that it cannot contain a linear subspace. Hence, there never
are (non-trivial) central solutions in the solution set of a GLCP.
The algorithm of [39, 40, 141] to compute the solution set of a GLCP starts
with

C ← ∅
E ← { ei | ei = (In).,i for i = 1, 2, . . . , n}
Pnec ← In

and directly goes to Algorithm 2 and skips all the steps that deal with central
generators. 3

3.4.4 Solutions of the Original General ELCP

Now we explain how the solutions of the original general ELCP defined by
(3.4) – (3.6) can be retrieved from the solutions of the corresponding homoge-
neous ELCP.

Any solution u of the homogeneous ELCP has the following form: u =

[
xu
αu

]

with αu > 0. First we normalize all the central and the extreme generators
that have a non-zero α component:

• If c is a central generator then we automatically have αc = 0.

• For an extreme generator e there are two possibilities: either αe = 0
or αe > 0. If αe = 0, we leave e as it is. If αe > 0, we divide each
component of e by αe such that the α component of e becomes 1. By
Proposition 3.3.2 the new e will still be a solution of the homogeneous
ELCP.
This results in two groups of extreme generators: E ext = { e ∈ E |αe = 0 }
and Efin = { e ∈ E |αe = 1 }. Later on we shall see that the elements of
Eext correspond to extreme generators of the solution set of the original
ELCP, whereas the elements of Efin correspond to finite solutions of the
original ELCP.

Let X cen = { cu | c ∈ C }, X ext = { eu | e ∈ Eext } and X fin = { eu | e ∈ Efin }.
For each Es ∈ Γ̃ we construct the corresponding sets X ext

s ⊆ X ext and X fin
s ⊆

X fin. All the ordered pairs
(
X ext
s ,X fin

s

)
for which X fin

s is not empty, are put in
a set Λ. Finally, we remove all the generators xe

k ∈ X ext that do not appear in
one of the ordered pairs

(
X ext
s ,X fin

s

)
∈ Λ.

Let P be the polyhedron defined by the system of linear equalities and in-
equalities of the original ELCP. There exists a pointed polyhedron Pred with
P = Pred +L(P) such that the elements of X ext are extreme generators of Pred

and such that the elements of X fin are finite points of Pred. Now we can give
the following geometrical interpretation to the sets X cen, X ext, X fin and Λ:
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• X cen is a basis for the lineality space of P. We call X cen a minimal
complete set of central generators of (the solution set of) the ELCP.

• X ext is a set of extreme generators of Pred that satisfy the complemen-
tarity condition. We say that X ext is a minimal complete set of extreme
generators of (the solution set of) the ELCP.

• X fin is the set of the finite vertices of Pred that satisfy the complemen-
tarity condition. We call X fin a minimal complete set of finite points of
(the solution set of) the ELCP.

• Λ is the set of ordered pairs of maximal cross-complementary subsets of
X ext and X fin. Each ordered pair

(
X ext
s ,X fin

s

)
∈ Λ determines a face Fs

of Pred that belongs to the solution set of the ELCP: X ext
s is a minimal

complete set of extreme generators of Fs and X fin
s is the set of the finite

vertices of Fs.

For the ELCP of Example 3.2.1 we have X cen = ∅, X ext = {xe
1, x

e
2}, X fin =

{xf
1, x

f
2} and Λ =

{(
∅, {xf

1}
)
,
(
{xe

1, x
e
2}, {xf

2}
)}

.

Theorem 3.4.14 Let X cen be a minimal complete set of central generators of
a general ELCP, let X ext be a minimal complete set of extreme generators of
the ELCP, let X fin be a minimal complete set of finite points of the ELCP and
let Λ be the set of ordered pairs of maximal cross-complementary subsets of
X ext and X fin. Then x is a solution of the ELCP if and only if there exists an
ordered pair

(
X ext
s ,X fin

s

)
∈ Λ such that

x =
∑

xc
k
∈X cen

λkx
c
k +

∑

xe
k
∈X ext

s

κkx
e
k +

∑

xf
k
∈X fin

s

µkx
f
k (3.36)

with λk ∈ R, κk > 0, µk > 0 for all k and
∑

k

µk = 1.

Proof : Suppose that the ELCP is defined by (3.4) – (3.6) and that X cen =

{xc
1, x

c
2, . . . , x

c
r}, X ext = {xe

1, x
e
2, . . . , x

e
t}, X fin = {xf

1, x
f
2, . . . , x

f
v} and Λ =

{
(X ext

1 ,X fin
1 ), (X ext

2 ,X fin
2 ), . . . , (X ext

w ,X fin
w )
}
. Define

ck =

[
xc
k

0

]

for k = 1, 2, . . . , r ,

eek =

[
xe
k

0

]

for k = 1, 2, . . . , t ,

efk =

[
xf
k

1

]

for k = 1, 2, . . . , v ,

Eext
s = { eek |xe

k ∈ X ext
s } for s = 1, 2, . . . , w ,
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Efin
s = { efk |xf

k ∈ X fin
s } for s = 1, 2, . . . , w .

If we set C = {c1, c2, . . . , ct}, Eext = {ee1, ee2, . . . , eet}, Efin = {ef1, ef2, . . . , efv},
and Γ̃ =

{
Eext
1 ∪Efin

1 , Eext
2 ∪Efin

2 , . . . , Eext
w ∪Efin

w

}
, then C is a minimal complete

set of central generators of the homogeneous ELCP H that corresponds to the
original general ELCP, Eext is a set of extreme generators of H that have an
α component that is equal to 0, Efin is a minimal complete set of extreme
generators of H that have an α component that is equal to 1, and Γ̃ is the set
of maximal cross-complementary subsets of E ext ∪ Efin such that in each set
Eext
s ∪ Efin

s ∈ Γ̃ there is at least one generator with a non-zero α component.
Note that Eext ∪ Efin is not necessarily a complete set of extreme generators of
H since in the construction of X ext we have removed all the extreme generators
that were derived from extreme generators of H that had an α component that
was equal to 0, but that did not appear in one of the pairs

(
X ext
s ,X fin

s

)
∈ Λ.

First we prove the “if” part of the theorem.
Let τ = { k |xe

k ∈ X ext
s } and let ϕ = { k |xf

k ∈ X fin
s }. Now we have to prove

that any combination of the form

x =

r∑

k=1

λkx
c
k +

∑

k∈τ

κkx
e
k +

∑

k∈ϕ

µkx
f
k

with λk ∈ R, κk > 0, µk > 0 for all k and
∑

k∈ψ

µk = 1 is a solution of the
original ELCP.
If we define

u =

r∑

k=1

λkck +
∑

k∈τ

κke
e
k +

∑

k∈ϕ

µke
f
k ,

then u is a solution of H. Moreover, if u =

[
xu
αu

]

, then xu = x and

αu =
r∑

k=1

λk · 0 +
∑

k∈τ

κk · 0 +
∑

k∈ϕ

µk · 1 =
∑

k∈ϕ

µk = 1 .

Since H is the homogeneous ELCP that corresponds to the original ELCP and
since xu = x and αu = 1, this implies that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 , Ax− c > 0 and Bx− d = 0 .

Hence, x is a solution of the original ELCP.

Now we prove the “only if” part of the theorem.
We have to show that any solution of the general ELCP can be written as a
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combination of the form (3.36) for some ordered pair
(
X ext
s ,X fin

s

)
∈ Λ with

λk ∈ R, κk > 0, µk > 0 for all k and
∑

k

µk = 1. Consider an arbitrary

solution x of the general ELCP and construct u =

[
x
1

]

. Since x is a solution

of the original general ELCP, u is a solution of H. Since u has a non-zero α
component, there exists an index s ∈ {1, 2, . . . , w} such that

u =

r∑

k=1

λkck +




∑

k∈χ

κke
e
k +

∑

k∈ψ

µke
f
k





with λk ∈ R, κk > 0, µk > 0 for all k and where χ = { k | eek ∈ Eext
s } and

ψ = { k | efk ∈ Efin
s }. Hence,

x =

r∑

k=1

λkx
c
k +

∑

k∈χ

κkx
e
k +

∑

k∈ψ

µkx
f
k .

Furthermore, since

αu = 1 =
r∑

k=1

λk · 0 +
∑

k∈χ

κk · 0 +
∑

k∈ψ

µk · 1 ,

we have
∑

k∈ψ

µk = 1. 2

The following proposition is a direct consequence of Theorem 3.4.14 and of the
way in which the sets X cen, X ext, X fin and Λ have been constructed.

Proposition 3.4.15 In general the solution set of an ELCP consists of the
union of faces of a polyhedron.

We can also reverse this proposition:

Theorem 3.4.16 The union of any arbitrary set F of faces of an arbitrary
polyhedron P can be described by an ELCP.

Proof : First we assume that P is nonempty. As a consequence, F is also
nonempty. Let P be defined by P = {x |Ax > c} with A ∈ Rp×n and c ∈ Rp,

and let F be the union of the faces in F : F =
⋃

Fi∈F

Fi. Define m = #F .

Consider an arbitrary face Fi ∈ F . If ki is the dimension of Fi, then Fi is the
intersection of P and n− ki linearly independent hyperplanes from the system
Ax = c. Let φi be the set of the indices that correspond to these hyperplanes.
Hence, Fi = {x |Ax > c and (Ax− c)j = 0 for all j ∈ φi }. Since Ax− c > 0,
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this can be rewritten as Fi =

{

x

∣
∣
∣
∣
Ax > c and

∑

j∈φi

(Ax− c)j = 0

}

.

If we repeat this reasoning for each face Fi ∈ F , then we find that F coincides
with the solution set of the following ELCP:

Given A, c and φ1, φ2, . . . , φm, find x ∈ Rn such that

m∏

i=1

(
∑

j∈φi

(Ax− c)j
)

= 0 (3.37)

subject to Ax > c.

Equation (3.37) can always be rewritten as a sum of products. So it really
represents a complementarity condition.

If P and thus also F are empty, we can take an infeasible system of linear
inequalities for Ax > c and (Ax− c)1 = 0 as complementarity condition. 2

One of the most important common characteristics of the LCP and the various
generalizations discussed in Section 3.2 is that in general the solution set of
all these problems is the union of faces of a polyhedron. Proposition 3.4.15
and Theorem 3.4.16 state that with every union of faces of a polyhedron there
corresponds an ELCP and vice versa. Therefore, we claim that ELCP can be
considered as the most general linear extension of the LCP.

Remark 3.4.17 For a homogeneous ELCP that corresponds to a general
ELCP we can already take the constraint α > 0 into account at the begin-
ning of the ELCP algorithm by setting

C ← { ci | ci = (In).,i for i = 1, 2, . . . , n− 1 }
E ← { e1 | e1 = (In).,n }
Pnec ← (In)1,.

in the initialization step of Algorithm 1.
Moreover, if we determine the maximal cross-complementary subsets of the set
E of extreme generators of the homogeneous ELCP that corresponds to the
original general ELCP, we are only interested in maximal cross-complementary
subsets Es of E that contain at least one generator with a non-zero α component
since then Efin

s will be nonempty. Therefore, it is advantageous to order the
extreme generators of the homogeneous ELCP such that all the generators with
a non-zero α component have a lower index than the generators with a zero
α component. In that case we do not have to determine all the sets of cross-
complementary extreme generators, but we can stop Algorithm 3 as soon as we
have considered all the sets that contain at least one generator with a non-zero
α component. 3
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3.4.5 The Performance of the ELCP Algorithm

In each pass through the main loops of Algorithms 1 and 2 we have to make
combinations of intermediate generators. This means that the execution time
of these algorithms strongly depends on the number of new generators that
are created in each pass. Experiments show that the execution time and the
required amount of storage space grow rapidly as the number of variables and
(in)equalities grows. However, the execution time and the storage space re-
quirements of the ELCP algorithm do not only depend on the number of vari-
ables and (in)equalities but also on the structure of the solution set and the
order in which the (in)equalities are processed.
In [105] Mattheiss and Rubin have given a survey and a comparison of methods
for finding all vertices of polytopes or polyhedra with an empty lineality space.
The worst case behavior of Algorithms 1 and 2 can be compared with these

algorithms if we would take

p
∏

i=1

(Ax − c)i = 0 as complementarity condition

since this means that at least one inequality should hold with equality or that
every point that lies on the border of the polyhedron defined by Ax > c is a
solution of the ELCP. Note that we may assume that there are no central gener-
ators since we can first determine a minimal complete set of central generators
by solving the system of homogeneous linear equations Ax = 0 and Bx = 0,
and then remove the central generators from the solution set of the ELCP by
imposing the condition that the other solutions have to be orthogonal to the
central generators. Mattheiss and Rubin report execution times of the order
O(vρ) with ρ = 1.418 and v the number of vertices of the polyhedron for the
Chernikova algorithm, which is a special case of the double description method:
the Chernikova algorithm requires the additional constraint x > 0 (Note that
this implies that the polyhedron is pointed; so there are no central generators).
By the upper bound conjecture [105] we have the following least upper bound
for the number of vertices of a polytope defined by p (irredundant) inequality
constraints in an n-dimensional space:




p−

⌊
n+ 1

2

⌋

p− n



 +




p−

⌊
n+ 2

2

⌋

p− n



 .

This means that in the worst case the number of vertices v can be O
(

pbn
2 c
)

if
p� n� 1.
Fortunately, we can already use Proposition 3.3.3 to reject extreme generators
that do not satisfy the (partial) complementarity condition during the iteration
process. This means that on average the execution times of our algorithm will
be considerably less than the ones reported in [105].
The execution time of Algorithm 3 depends strongly on the structure of the
solution set and on the number of extreme generators of the GLCP.
Since the execution time of our ELCP algorithm depends on so many factors,
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it is difficult to give a neat characterization of the computational complexity as
a function of the number of variables and (in)equalities. In the next subsection
we present the results of some representative experiments that confirm what
we have said above.

3.4.6 Some Computational Results

For the first three series of experiments discussed in this subsection we have
used the following procedure to construct random ELCPs that had at least
one solution. Suppose that we have to construct an ELCP with n variables,
p inequalities and at most m terms in the complementarity condition. First
we determine a random matrix A ∈ Rp×n and a random vector u ∈ Rn with
entries that are uniformly distributed in the interval (−1, 1), a random vector
δ ∈ Rp with entries that are uniformly distributed in the interval (0, 1), and m
random nonempty subsets φ1, φ2, . . . , φm of {1, 2, . . . , p} (It is possible that

φi ⊆ φj for some i, j ∈ {1, 2, . . . ,m} with i 6= j). Next we define Φ =

m⋃

j=1

φj

and a vector c ∈ Rp such that

ci =

{

(Au)i if i ∈ Φ ,

(Au)i − δ otherwise.

This results in the following ELCP:

Given A, c and φ1, φ2, . . . , φm, find x ∈ Rn such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c.

The vector u will be a solution of this ELCP.
In all the experiments we have taken Remark 3.4.17 into account. The exper-
iments have been performed on an HP 9000 Model 712/80 workstation with
64 MB internal memory and with the algorithms implemented in C and called
from MATLAB (using the MEX-file facility). In order to augment the legibility
of the plots that show the results of the first three series of experiments and
to emphasize the evolution of the average CPU time in function of the various
parameters, we have connected adjacent measurement points by straight lines
instead of plotting the individual measurement points.

In the first experiment we have constructed 3000 random ELCPs using the
method described above with a fixed number of variables n = 5 and at most
m = 4 terms in the complementarity condition. For each ELCP the number of
inequalities p was chosen randomly from the set {1, 2, . . . , 20}. In Figure 3.4
we have plotted the average CPU time used by our ELCP algorithm to deter-
mine the central and extreme generators of the random ELCPs as a function
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Figure 3.4: The average CPU time t1,2 (in seconds) used by Parts 1 and 2
of the ELCP algorithm as a function of the total number of inequalities p for
random ELCPs with n = 5, 10 or 15 variables.

of the number of inequalities p. Next we have repeated this experiment with
n = 10 and n = 15. The results of these experiments have also been plotted in
Figure 3.4.
Note that each curve consists of two pieces with a different slope and that the
change of slope occurs in the neighborhood of the point where the number
of inequalities is equal to the number of variables. This can be explained as
follows. In the first passes through the main loop of the ELCP algorithm the
number of inequalities that have already been processed is less than the number
of variables, which implies that there are still central generators. Therefore,
we are most of the time in Case 3 of the algorithm, where we have to combine
one central generator with all the other central and extreme generators that
have a non-zero residue. However, if the number of inequalities that have been
processed exceeds the number of variables there are in general no more central
generators left, which means that we are in Case 2 of the algorithm. In this
case we have to combine all the pairs of extreme generators with positive and
negative residues, which takes more time. Moreover, in Case 3 each central or
extreme generator can generate at most one new central or extreme generator,
whereas in Case 2 an extreme generator can generate more than one new gen-
erator, which results in a cumulative effect since this means that in the next
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Figure 3.5: The average CPU time t1,2 (in seconds) used by Parts 1 and 2
of the ELCP algorithm as a function of the total number of variables n for
random ELCPs with p = 10, 15 or 20 inequalities.

pass — in which we will probably also be in Case 2 — the number of possible
combinations will in general be much larger than in the current pass.

In the second series of experiments we have first constructed 3000 random
ELCPs using the method described above but now with a fixed number of
inequalities p = 10 and at most m = 4 terms in the complementarity condition.
The number of variables n was chosen randomly from the set {1, 2, . . . , 25}.
This experiment was repeated for p = 15 and p = 20. The results of these
experiments have been plotted in Figure 3.5. Note that there also is a change
of slope in this case.

The first and the second series of experiments show that if the number
of inequalities p is (much) smaller than the number of variables n or if p is
(much) larger than n, the average execution time of Parts 1 and 2 of our ELCP
algorithm for random ELCPs depends polynomially on p (for a fixed n) and
more or less exponentially on n (for a fixed p).

We have also examined the performance of Algorithm 3. Recall that in order
to determine the maximal sets of cross-complementary extreme generators of a
homogeneous ELCP we transform the extreme generators of the homogeneous
ELCP into extreme generators of a GLCP by multiplying them with the ma-
trix P1 (cf. Section 3.4.3). As a consequence, the number of variables n of the
ELCP will not influence the execution time of Algorithm 3. Therefore, we have
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Figure 3.6: The average CPU time t3 (in seconds) used by Algorithm 3 as a
function of the number next of extreme generators of the corresponding GLCP
for random ELCPs with p = 10, 30 or 50 inequalities.

taken a fixed number of variables n = 5 for all the random ELCPs of this series
of experiments. We have only determined the maximal cross-complementary
sets of extreme generators of the homogeneous ELCP that contained at least
one extreme generator with a non-zero α component (cf. Remark 3.4.17). In
order to limit the time needed to perform the experiments we have only de-
termined the cross-complementary sets if the number of extreme generators of
the corresponding GLCP did not exceed 25. For all the ELCPs there were
at most m = 4 terms in the complementarity condition. For each value of
p ∈ {10, 30, 50} we have continued constructing random ELCPs until we had
obtained 3000 ELCPs for which the corresponding homogeneous ELCP had at
least 1 extreme generator with a non-zero α component and for which the cor-
responding GLCP had at most 25 extreme generators. In Figure 3.6 we have
plotted the average CPU time used by Algorithm 3 as a function of the number
of extreme generator of the GLCP. Clearly, the execution time of the algorithm
to determine the maximal cross-complementary sets of extreme generators of
a GLCP depends more or less exponentially on the number of extreme gener-
ators. The experiments show that the influence of the number of inequalities
on the execution time of Algorithm 3 is not very strong.

The order in which the inequalities are processed is also important. We
shall illustrate this for the ELCP of Example 7.5.5 (with ξ = 1000). First
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Figure 3.7: The number of intermediate extreme generators next,int as a func-
tion of the pass k for Parts 1 and 2 of our ELCP algorithm applied to the ELCP
of Example 7.5.5 with the inequalities processed in “normal” and in “reversed”
order.

we have used Parts 1 and 2 of our ELCP algorithm to determine the central
and extreme generators of the corresponding homogeneous ELCP. Next we
have applied the ELCP algorithm again but in both Part 1 and Part 2 of the
algorithm we have processed the inequalities in the reversed order, i.e. starting
with the last inequality of respectively P1u > 0 and P2u > 0 instead of with
the first inequality. In Figure 3.7 we have plotted the number of intermediate
extreme generators next,int as a function of the pass k. In order to augment the
legibility of the plot we have also connected adjacent measurement points by
straight lines in this plot instead of plotting the sequence of discrete points. For
both the “normal” and the “reversed” order we have processed the inequality
α > 0 first (cf. Remark 3.4.17). The average number of intermediate extreme
generators for the “normal” order is about 70.5 compared to 149.7 for the
“reversed” order. As a consequence, the CPU time needed to process the
inequalities in the “reversed” order is much larger than the CPU time needed for
the “normal” order: the average execution times over 10 runs of the algorithm
on an HP 9000 Model 712/80 workstation are respectively 13.60 s and 1.727 s
(with standard deviations 0.18 s and 0.013 s).
Note that we have not plotted the number of intermediate central generators
since this number can only decrease during the execution of the algorithm
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and since the number of intermediate central generators hardly influences the
execution time of our ELCP algorithm.
This experiment shows that the order in which the inequalities and equalities
are processed can strongly influence the execution time of the ELCP algorithm
and the number of intermediate extreme generators (and thus also the required
amount of storage space). It is still an open question how the optimal order
can be determined.

Remark 3.4.18 For the ELCPs that correspond to the max-algebraic prob-
lems that will be treated in the next chapters, we have noticed the same depen-
dence of the execution time of our ELCP algorithm on the number of variables,
(in)equalities and extreme generators as for random ELCPs. However, in gen-
eral the structure of the solution set of these problems is more regular than
that of random ELCPs. This also means that for most of these problems it is
possible to determine an order in which the (in)equalities should be processed
that is more or less optimal for all instances of the given problem. As a con-
sequence, our ELCP algorithm on average performs much better for ELCPs
derived from these max-algebraic problems than for random ELCPs. 3

3.4.7 Some Alternative Solution Methods

From the above we can conclude that our ELCP algorithm is not well suited for
large ELCPs with a large number of variables and (in)equalities or a complex
solution set. For such kind of systems one could try to develop algorithms that
only search one solution, since in many cases we do not need all solutions. Now
we briefly discuss some possible approaches to find one solution of the ELCP
defined by (3.4) – (3.6):

• Global minimization [103]:
The ELCP can be reformulated as a constrained optimization problem:

Given A, B, c, d and φ1, φ2, . . . , φm, find a vector x that minimizes

m∑

j=1

∏

i∈φj

(Ax− c)i (3.38)

subject to Ax > c and Bx = d .

So we have to minimize the left-hand side of the complementarity con-
dition over the equality and inequality constraints. Since all the factors
(Ax−c)i in (3.38) are nonnegative, the object function is always nonneg-
ative. The value of the object function will be equal to 0 in a solution of
the ELCP.
However, in practice there appear to be many local minima that are not
a global minimum. In general the solutions of the ELCP always lie on
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the border of the polyhedron defined by Ax > c and Bx = d. This causes
extra problems in connection with convergence to a global minimum. The
interested reader is referred to e.g. [63, 129] for methods and algorithms
for constrained optimization.

• Systems of polynomial equations:
By introducing dummy variables the ELCP can be transformed into a
system of multivariate polynomial equations. Consider an arbitrary index
i ∈ {1, 2, . . . , p}. If we introduce a dummy variable si then the ith
inequality of the system Ax > c can be transformed into an equality:
Ai,.x − s2i = ci. Note that si = 0 if and only if Ai,.x = ci. If we repeat
this reasoning for each inequality, then we find that the complementarity
condition results in

m∑

j=1

∏

i∈φj

si = 0 .

So the ELCP can be reformulated as the following unconstrained system
of polynomial equations:

Given A, B, c, d and φ1, φ2, . . . , φm, find x ∈ Rn and s ∈ Rp such
that

m∑

j=1

∏

i∈φj

si = 0

Ai,.x− s2i = ci for i = 1, 2, . . . , p ,

Bx = d .

An advantage of this approach is that the Jacobian of this system of equa-
tions can be calculated analytically and evaluated efficiently, which means
that we can apply algorithms that use derivatives to solve the system of
nonlinear equations. In general such algorithms are faster and more re-
liable than algorithms that do not use information on the derivatives or
that compute the derivatives numerically. But on the other hand we
have introduced extra variables, which makes the problem more difficult
to solve.

• Combinatorial solution:
We select one index ij out of each set φj for j = 1, 2, . . . ,m. Each index
ij corresponds to an inequality of Ax > c that should hold with equality.
Define α = {i1, i2, . . . , im} and αc = {1, 2, . . . , p} \ α. Now we have to
find a solution of the following system of linear equalities and inequalities:

Aα,.x = cα

Aαc,.x > cαc

Bx = d .
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If this system of equalities and inequalities has no solution, we select
another combination of indices i1, i2, . . . , im that has not yet been con-
sidered and we repeat the procedure.
Since this algorithm is essentially combinatorial, it will not be very effi-
cient in practice.

• Adaptations and extensions of the existing methods for LCPs and GLCPs
of e.g. [1, 30, 87, 107, 108, 128, 136, 150, 153, 154]. We could also try to
adapt and extend these algorithms to solve special cases of the general
ELCP.

However, in the next section we shall show that the ELCP is intrinsically a
computationally hard problem.

3.5 The Complexity of the ELCP

In this section we discuss the complexity of the ELCP and we show that devel-
oping efficient algorithms to solve the general ELCP is not an easy (and maybe
even an impossible) task. But first we give an elementary and informal descrip-
tion of some basic concepts of the theory of “NP-completeness”. The interested
reader is referred to [52] for an extensive treatment of NP-completeness.

A decision problem is a problem that has only two possible solutions: either
the answer “yes” or the answer “no”. A search problem is a problem for which
we either have to give a solution or have to establish that the problem has
no solution. The ELCP is an example of a search problem. We say that a
problem can be solved in polynomial time if there exists an algorithm to solve
the problem such that the execution time of the algorithm is bounded from
above by a polynomial in the size (or the input length) of the given problem
instance.
Loosely speaking, the class P consists of the decision problems that can be
solved by a polynomial time algorithm. A decision problem belongs to the
class NP if a nondeterministic algorithm can guess a “proof” that would show
that the answer to the decision problem is “yes” and then verify in polynomial
time whether this guess really proves that the answer to the problem is “yes”.
The NP-complete problems are the “hardest” problems in NP in the sense that
an NP-complete problem can only be solved in polynomial time if the class
P would coincide with the class NP. Furthermore, if any single NP-complete
problem can be solved in polynomial time, then all problems in NP can be
solved in polynomial time. With the present state of knowledge it is still an
open question whether the class P coincides with the class NP. However, since
no NP-complete problem is known to be solvable in polynomial time despite
the efforts of many excellent researchers, it is widely conjectured that no NP-
complete problem can be solved by a polynomial time algorithm.
If the decision problem that corresponds to a search problem is NP-complete
then the search problem is called NP-hard. NP-hard problems are even harder
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to solve than NP-complete problems: they cannot not be solved in polynomial
time unless the class P would coincide with the class NP.

Theorem 3.5.1 In general the ELCP with rational data is an NP-hard prob-
lem.

Proof : First we consider the decision problem that corresponds to an ELCP
with rational data:

Given A ∈ Qp×n, B ∈ Qq×n, c ∈ Qp, d ∈ Qq and m subsets φ1, φ2, . . . ,
φm of {1, 2, . . . , p}, does there exist a vector x ∈ Qn such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c and Bx = d ?

This problem will be called the ELCP decision problem (EDP). The EDP
belongs to NP: a nondeterministic algorithm can guess a vector x and then
check in polynomial time whether x satisfies the complementarity condition
and the system of linear equalities and inequalities. Chung [16] has proved
that the decision problem that corresponds to the LCP with rational data is
in general an NP-complete problem. Since the LCP is a special case of the
ELCP, the EDP is also NP-complete. This means that in general the ELCP
with rational data is NP-hard. 2

Since Chung [16] has also proved that the decision problem that corresponds
to the LCP with rational data is in general NP-complete in the strong sense,
the general ELCP with rational data is NP-hard in the strong sense. This
means that the general ELCP with rational data cannot be solved by a pseudo-
polynomial time algorithm — i.e. an algorithm that runs in time bounded from
above by a polynomial in the size of the given instance of the problem and the
maximum absolute value of the numerators and the denominators occurring in
the given instance of the problem [51, 52] — unless P = NP.

Now we show that in general the ELCP with rational data can be solved in
polynomial time if and only if P = NP.

Theorem 3.5.2 The general ELCP with rational data is an NP-easy problem,
i.e. if P = NP then the general ELCP with rational data can be solved in
polynomial time.

Proof : Consider the following ELCP with rational data (ELCPQ for short):

Given A ∈ Qp×n, B ∈ Qq×n, c ∈ Qp, d ∈ Qq and m subsets φ1, φ2, . . . ,
φm of {1, 2, . . . , p}, find x ∈ Qn such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c and Bx = d .
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If x ∈ Qn is a solution of this problem then in each subset φj with j ∈
{1, 2, . . . ,m} there is at least one index ij such that (Ax)ij = cij . We se-
lect exactly one index ij that satisfies this condition out of each set φj for
j = 1, 2, . . . ,m and we put these indices in the set θ. If we know θ then we can
construct a solution of the ELCPQ by solving the following system of linear
equalities and inequalities:

Aθ,.x = cθ (3.39)

Aθc,.x > cθc (3.40)

Bx = d (3.41)

where θc = {1, 2, . . . , p} \ θ. Note that a system of linear equalities and in-
equalities with rational data, if solvable, always has a solution with rational
components.
Now we introduce the ELCP extension problem (EEP), which is defined as
follows:

Given A ∈ Qp×n, B ∈ Qq×n, c ∈ Qp, d ∈ Qq, m subsets φ1, φ2, . . . , φm
of {1, 2, . . . , p}, k ∈ {1, 2, . . . ,m}, and a set θk ⊆ {1, 2, . . . , p} such that

∀j ∈ {1, 2, . . . , k} : ∃ij ∈ φj such that ij ∈ θk

and such that the system of linear equalities and inequalities

Aθk,.x = cθk

Aθc
k
,.x > cθc

k

Bx = d

where θc
k = {1, 2, . . . , p} \ θk, has a solution,

can θk be completed to a complete set θ with θk ⊆ θ ⊆ {1, 2, . . . , p} such
that

∀j ∈ {1, 2, . . . ,m} : ∃ij ∈ φj such that ij ∈ θ

and such that the system of linear equalities and inequalities (3.39) – (3.41)
has a solution?

It is obvious that if the solution of this decision problem is “yes” if and only if
the corresponding ELCPQ has a solution. In that case we call θk an extendible
partial set.
Note that the EEP belongs to NP: a nondeterministic algorithm can guess a set
θ and then check in polynomial time whether this set satisfies the conditions
stated above.
Now we need the concept of Turing reducibility [52, p. 111]: “A polynomial
time Turing reduction (or simply Turing reduction) from a search problem Π
to a search problem Π′ is an algorithm A that solves Π by using a hypothetical
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subroutine S for solving Π′ such that, if S were a polynomial time algorithm
for Π′, then A would be a polynomial time algorithm for Π.” This will be
denoted by Π ∝

T
Π′. This definition can also be applied to decision problems,

since a decision problem can be considered as a search problem with “yes” and
“no” as possible answers. Note that the relation ∝T is transitive.
If a problem Π is in NP and if problem Π′ is NP-complete, then we have
Π ∝

T
Π′ [52]. Since EDP is NP-complete (cf. the proof of Theorem 3.5.1), we

have EEP ∝
T

EDP.

Now we are going to prove that ELCPQ ∝T
EEP.

Suppose that S is a subroutine for solving the EEP. Now we are going to use
this subroutine to solve a given instance of the ELCPQ either by determining
that the ELCP has no solution or by constructing a sequence of extendible
partial sets θ1, θ2, . . . , θm such that θ = θm is a set that contains at least
one index out of each set φ1, φ2, . . . , φm and such that the system of linear
equalities and inequalities (3.39) – (3.41) has a solution.
We start with θ1 = {r1} where r1 ∈ φ1. Then we use the subroutine S to de-
termine whether the set θ1 is an extendible partial set. If the answer is “yes”,
we continue with the next step in which we shall determine θ2. If the answer
is “no”, we set θ1 = {r2} with r2 ∈ φ1 \ {r1} and we use the subroutine S to
determine whether the set θ1 now is an extendible partial set. If the answer is
again “no”, we set θ1 = {r3} with r3 ∈ φ1 \ {r1, r2} and so on. We continue
until we encounter an extendible partial set or until all the elements of φ1 have
been considered. In the latter case, we know that the ELCPQ does not have a
solution. Note that in the worst case scenario, we have to use the subroutine
S #φ1 times where #φ1 6 p.
Assume that we have found an extendible partial set θ1 = {i1}. If i1 ∈ φ2, we
set θ2 = θ1 and we go to the next step. Otherwise, we select an index s1 ∈ φ2

and we set θ2 = θ1∪{s1}. Then we use the subroutine S to determine whether
the set θ2 is an extendible partial set. If the answer is “yes”, we go to the
next step and if the answer is “no”, we continue with θ2 = θ1 ∪ {s2} where
s2 ∈ φ2 \{s1} and so on. Since we already know that θ1 is an extendible partial
set there will exist an index i2 ∈ φ2 such that θ2 = θ1 ∪ {i2} is an extendible
partial set. So if the first #φ2 − 1 elements of φ2 do not yield an extendible
partial set, the remaining element must yield an extendible partial set. This
means that in order to determine θ2 we have to use the subroutine S at most
#φ2 − 1 times where φ2 − 1 6 p.
We continue until we finally get a complete set θ = θm. If the ELCPQ has a
solution, the set θ can now be used to determine a solution of the ELCPQ by
solving the system of linear equalities and inequalities (3.39) – (3.41). This can
be done in polynomial time (See e.g. [90, 92, 114]).
Since we have made less than mp calls to the subroutine S, we may conclude
that if S were a polynomial time algorithm for the EEP, then the algorithm
described above would be a polynomial time algorithm for the ELCPQ. Hence,
ELCPQ ∝T

EEP. Since EEP ∝
T

EDP and since ∝
T

is transitive, we have
ELCPQ ∝T

EDP.
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Since EDP is NP-complete, this means that the ELCPQ can be solved in poly-
nomial time if P = NP. 2

Corollary 3.5.3 The general ELCP with rational data is an NP-equivalent
problem, i.e. the general ELCP with rational data can be solved in polynomial
time if and only if P = NP.

Proof : This is a direct consequence of Theorems 3.5.1 and 3.5.2. 2

3.6 Worked Examples of the ELCP Algorithm

In this section we give two worked examples that illustrate our ELCP algo-
rithm. In the first example we solve a simple ELCP with Algorithms 1 and 2.
However, for this small-sized ELCP we do not get enough extreme generators
to demonstrate Algorithm 3. Therefore, we give a second example in which
we show how to determine all maximal sets of cross-complementary extreme
generators of a GLCP.

Example 3.6.1 : Determination of the central and the extreme gen-
erators

Consider the following ELCP:

Given

P =





1 0 0 1
−1 2 −1 −1

0 −3 1 −2



 and Q =
[

2 1 0 4
]
,

find u ∈ R4 such that

(Pu)1 (Pu)2 + (Pu)2 (Pu)3 = 0 (3.42)

subject to

Pu > 0 (3.43)

Qu = 0 . (3.44)

Since all the inequalities of Pu > 0 appear in the complementarity condition,
we do not have to split Pu > 0.
First we process the inequalities of Pu > 0:

Initialization

We set

c0,1 =







1
0
0
0






, c0,2 =







0
1
0
0






, c0,3 =







0
0
1
0






, c0,4 =







0
0
0
1







.
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k = 1

The residues of the central generators are given by

res(c0,1) = 1 , res(c0,2) = 0 , res(c0,3) = 0 , res(c0,4) = 1 .

Hence, C+ = {c0,1, c0,4}, C0 = {c0,2, c0,3} and C− = E+ = E− = E0 = ∅.
Since C+ is not empty, we go to Case 3 of Algorithm 1. First we put the
elements of C0 in C: c1,1 = c0,2 and c1,2 = c0,3. Since C− is empty, we
do not have to transfer elements from C− to C+. We set c = c0,1. Since
no group of inequalities has been processed completely yet, c satisfies the
partial complementarity condition by definition. Therefore, we put it in E :
e1,1 = c = c0,1. Finally, we combine c = c0,1 and c0,4 and put the result in
C:

c1,3 = res(c0,4)c0,1 − res(c0,1)c0,4 = c0,1 − c0,4 .

This leads to

c1,1 =







0
1
0
0






, c1,2 =







0
0
1
0






, c1,3 =







1
0
0
−1






, e1,1 =







1
0
0
0







.

k = 2

We have

res(c1,1) = 2 , res(c1,2) = −1 , res(c1,3) = 0 , res(e1,1) = −1 .

So C+ = {c1,1}, C− = {c1,2}, C0 = {c1,3}, E− = {e1,1} and E+ = E0 = ∅.
Since C+ is not empty, we go again to Case 3. We put c1,3 in C: c2,1 = c1,3
and we transfer −c1,2 to C+. The generator c = c1,1 satisfies the partial

complementarity condition (Pu)1 (Pu)2 = 0 since P{1,2},.c1,1 =
[

0 2
]T

.
Therefore, we put it in E : e2,1 = c1,1. We combine c = c1,1 and −c1,2 and
we transfer the result to C:

c2,2 = res(−c1,2)c1,1 − res(c1,1)(−c1,2) = c1,1 + 2c1,2 .

The combination of c = c1,1 and e1,1 satisfies the partial complementarity
condition and therefore we also put it to E :

e2,2 = res(c1,1)e1,1 − res(e1,1)c1,1 = 2e1,1 + c1,1 .

This yields

c2,1 =







1
0
0
−1






, c2,2 =







0
1
2
0






, e2,1 =







0
1
0
0






, e2,2 =







2
1
0
0







.
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k = 3

Using the same procedure as in the previous steps we find

c3,1 = c2,1 + 2c2,2 , e3,1 = c2,1 , e3,2 = 2e2,1 + 3c2,1 , e3,3 = 2e2,2 + 3c2,1 .

This results in

c3,1 =







1
2
4
−1






, e3,1 =







1
0
0
−1






, e3,2 =







3
2
0
−3






, e3,3 =







7
2
0
−3







.

We do not have to reject any of the extreme generators since they all satisfy
the complementarity condition.

Since we did not encounter redundant inequalities, we have Pnec = P . Now we
take the equality Qu = 0 into account:

k = 1

We have

res(c3,1) = 0 , res(e3,1) = −2 , res(e3,2) = −4 , res(e3,3) = 4 .

So C0 = {c3,1}, E+ = {e3,3}, E− = {e3,1, e3,2} and C+ = C− = E0 = ∅.
Since C+ = C− = ∅, we go to Case 2 of Algorithm 2. All the elements of C
stay in C:

c4,1 = c3,1 =
[

1 2 4 −1
]T

.

Now we have to determine which pairs of extreme generators are adjacent.
The zero index sets of the extreme generators are given by

I0(e3,1) = {1, 2} , I0(e3,2) = {1, 3} , I0(e3,3) = {2, 3} .

If we consider Adjacency Test 1 then a necessary condition for two extreme
generators to be adjacent is that their zero index sets have n−t−2 = 4−1−
2 = 1 common element (Note that t is equal to 1 since at the beginning of
this pass the minimal complete set of central generators C contained exactly
one element). This means that all possible combinations of two different
extreme generators pass Adjacency Test 1. Since we have not rejected any
extreme generators, Adjacency Test 2 still yields a necessary and sufficient
condition for adjacency. Since I0(e3,3) ∩ I0(e3,1) = {2} 6⊆ {1, 3} = I0(e3,2) ,
the generators e3,3 and e3,1 are adjacent. If we combine them, we get a new
extreme generator that satisfies the complementarity condition:

e4,1 = 4e3,1 + 2e3,3 =
[

18 4 0 −10
]T

with Pe4,1 =
[

8 0 8
]T

. For the combination

e = 4e3,2 + 4e3,3 =
[

40 16 0 −24
]T
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of the adjacent generators e3,3 and e3,2, we have Pe =
[

16 16 0
]T

.
Since e does not satisfy the complementarity condition, we discard it.

Now we have C =
{ [

1 2 4 −1
]T
}

and E =
{ [

18 4 0 −10
]T
}

.

Hence, every combination of the form

u = λ







1
2
4
−1







+ κ







18
4
0

−10







with λ ∈ R and κ > 0

is a solution of the ELCP defined by (3.42) – (3.44). 2

Since the determination of the maximal cross-complementary sets of extreme
generators of an ELCP essentially reduces to the determination of the maximal
cross-complementary sets of extreme generators of a GLCP, we demonstrate
Algorithm 3 for a GLCP.

Example 3.6.2 : Determination of the maximal cross-complementary
sets of extreme generators

Consider the following GLCP:

Given Z =
[

1 −1 0 −1 −1
]
, find u ∈ R5 such that

u2 u3 u5 + u3 u4 = 0 (3.45)

subject to u > 0 and Zu = 0.

The extreme generators of the solution set of this GLCP are

e1 =









1
1
0
0
0









, e2 =









0
0
1
0
0









, e3 =









1
0
0
1
0









and e4 =









1
0
0
0
1









.

Now we use Algorithm 3 to determine which nonnegative combinations of these
extreme generators are solutions of the GLCP.

• First we transform every generator into its binary equivalent. Since the
generators are already binary, we can leave them as they are. The binary
complementarity condition is given by

(

(b2 = 0) ∨ (b3 = 0) ∨ (b5 = 0)
)

∧
(

(b3 = 0) ∨ (b4 = 0)
)

(3.46)

where b = binary(u).
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Figure 3.8: The cross-complementarity graph Gc for Example 3.6.2.

• Next we construct the cross-complementarity matrix, i.e. we determine
which pairs of extreme generators are cross-complementary.
The generators e1 and e2 are cross-complementary since

e1 ∨ e2 =
[

1 1 1 0 0
]T

satisfies the binary complementarity condition (3.46).
However, e2 and e3 are not cross-complementary since

e2 ∨ e3 =
[

1 0 1 1 0
]T

does not satisfy the binary complementarity condition.
We check all other combinations of two different extreme generators and
put the results in the cross-complementarity matrix cross.
To make the subsequent steps easier to follow we have represented the
cross-complementarity graph Gc that corresponds to {e1, e2, e3, e4} in
Figure 3.8. Recall that an edge between two vertices vk and vl of Gc

indicates that the corresponding extreme generators ek and el are cross-
complementary.

• In Algorithm 3 we keep track of our progress by using lists of vertices
to be investigated for each depth. These lists are stored in the matrix
vertices: the dth row of vertices contains the vertices for depth d. The
column index for the first vertex of the list for depth d is start(d), and the
column index for the last vertex is last(d). In our explanation the ordered
set Ld will represent the list of vertices for depth d. After start(depth) is
incremented in the first step of the main loop, we have

Ld =
(
vvertices(d,start(d)), vvertices(d,start(d)+1), . . . , vvertices(d,last(d))

)
.

If the current depth is equal to d, then the set of extreme generators that
we are investigating corresponds to the set obtained by taking the first
vertex of each list Li for i = 1, 2, . . . , d.

• We start with a list of vertices for depth 1: L1 = (v1, v2, v3, v4).
Vertex v1 is the first vertex in the list L1. Therefore, we look for other
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vertices of L1 that are connected by an edge to v1. Since the vertices v2,
v3 and v4 satisfy this condition, we get L2 = (v2, v3, v4).
The first vertices of L1 and L2 are v1 and v2 respectively, which means
that the set of extreme generators that we are currently investigating is
{e1, e2}. Now we try to extend this set. The only other vertex in L2

that is connected to both v1 and v2 is v4. So we check whether the set
{e1, e2, e4} is cross-complementary. This is not the case since

e1 ∨ e2 ∨ e4 =
[

1 1 1 0 1
]T

does not satisfy the binary complementarity condition. So we do not find
any vertices for depth 3, which means that the current set {e1, e2} cannot
be extended any more. Since Γ is empty, {e1, e2} is a maximal cross-
complementary set. Therefore, we put it in Γ. This yields Γ =

{
{e1, e2}

}
.

• Now we return to the previous point where a choice has been made: we
remove vertex 2 from L2. This results in L2 = (v3, v4).
Now we are investigating the set {e1, e3}. Since v4 is connected to both
v1 and v3, we check whether

e1 ∨ e3 ∨ e4 =
[

1 1 0 1 1
]T

satisfies the binary complementarity condition. Since this is the case,
we add vertex v4 to the list of depth 3: L3 = (v4). Since there is only
one vertex in L3, we cannot extend the current set {e1, e3, e4}. Since
{e1, e3, e4} is not a subset of the set {e1, e2} ∈ Γ, we have again found
a maximal cross-complementary set that should be added to Γ. This
results in Γ =

{
{e1, e2}, {e1, e3, e4}

}
.

• We return to previous point where a choice has been made: we go again
to depth 2 and we remove v3 from L2. Hence, L2 = (v4).
The current set of extreme generators is {e1, e4}. Since there are no more
vertices left for the next depth, the current set cannot be extended any
further. However, since {e1, e4} is a subset of the set {e1, e3, e4} ∈ Γ,
{e1, e4} is not a maximal cross-complementary set and therefore we do
not put it in Γ.

• Now we go back to depth 1, remove vertex v1 from L1 and so on.

Finally we get

Γ =
{
{e1, e2}, {e1, e3, e4}, {e2, e4}

}
.

This means that any combination of the form u = κ1e1 + κ2e2, u = κ1e1 +
κ3e3 +κ4e4 or u = κ2e2 +κ4e4 with κ1, κ2, κ3, κ4 > 0 is a solution of the given
GLCP.
We see again that determining all maximal cross-complementary sets of ex-
treme generators does not amount to determining all the maximal cliques of
the cross-complementarity graph Gc since {v1, v2, v4} is a maximal clique of Gc

but {e1, e2, e4} not a cross-complementary set. 2
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3.7 Conclusion

In this chapter we have presented the Extended Linear Complementarity Prob-
lem (ELCP) and established a link between the ELCP and other linear com-
plementarity problems. We have shown that the ELCP can be considered as
a unifying framework for the Linear Complementarity Problem and its various
generalizations. Furthermore, we have made a thorough study of the solution
set of the general ELCP and developed an algorithm to find all solutions of
an ELCP. Since our algorithm yields all solutions, it provides a geometrical
insight in the solution set of an ELCP and other problems that can be reduced
to an ELCP. On the other hand, this also leads to large computation times
and storage space requirements if the number of variables and (in)equalities is
large or if the ELCP has a complex solution set.

We have presented the results of some experiments that illustrate the in-
fluence of various parameters on the performance of our ELCP algorithm. We
have also shown that the general ELCP with rational data is NP-hard (and
NP-equivalent), which means that it is a computationally hard problem.

Although our algorithm yields all solutions of an ELCP, we are not always
interested in obtaining all solutions of an ELCP. Therefore, it might be inter-
esting to develop (heuristic) algorithms that yield only one solution. This will
be a topic for further research. Furthermore, we could also investigate which
subclasses of the ELCP can be solved by (pseudo-)polynomial time algorithms.



Chapter 4

Applications of the
Extended Linear
Complementarity Problem
in the Max-Plus Algebra

In this chapter we show that the problem of finding all finite solutions of a
system of multivariate max-algebraic polynomial equalities and inequalities can
be transformed into an ELCP and vice versa. This enables us to find all
solutions of a system of multivariate max-algebraic polynomial equalities and
inequalities. Moreover, it also provides an insight in the geometrical structure
of the solution set and in the computational complexity of this problem.

In this chapter and in the next chapters we shall show that many problems
in the max-plus algebra, the symmetrized max-plus algebra and the max-min-
plus algebra such as calculating max-algebraic matrix factorizations, perform-
ing max-algebraic state space transformations, constructing matrices with a
given max-algebraic characteristic polynomial, determining partial state space
realizations for max-linear time-invariant discrete event systems, and so on, can
be reformulated as a system of multivariate max-algebraic polynomial equalities
and inequalities and thus also as an ELCP.

This chapter is organized as follows. In Section 4.1 we show that the prob-
lem of solving a system of multivariate max-algebraic polynomial equalities
and inequalities is equivalent to an ELCP and in Section 4.2 we discuss some
max-algebraic problems that can be reformulated as an ELCP.

117
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4.1 Systems of Multivariate Max-Algebraic Po-
lynomial Equalities and Inequalities

In this next section we show that a system of multivariate max-algebraic poly-
nomial equalities and inequalities can be transformed into an ELCP and vice
versa.

4.1.1 Problem Formulation

Consider the following problem:

Given p1 + p2 integers m1, m2, . . . , mp1+p2 ∈ N0 and real numbers aki, bk
and ckij for k = 1, 2, . . . , p1 + p2, i = 1, 2, . . . ,mk and j = 1, 2, . . . , n, find
x ∈ Rn such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk for k = 1, 2, . . . , p1 , (4.1)

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

6 bk for k = p1 + 1, p1 + 2, . . . , p1 + p2 , (4.2)

or show that no such x exists.

We call (4.1) – (4.2) a system of multivariate max-algebraic polynomial equalities
and inequalities. Note that the exponents may be negative or real. If xj does
not appear in the ith term of the kth equation then the exponent ckij is equal
to 0. In the next subsection we shall show that problem (4.1) – (4.2) can be
transformed into an ELCP and vice versa.

4.1.2 A Connection between Systems of Multi-
variate Max-Algebraic Polynomial Equalities and
Inequalities and Extended Linear Complementarity
Problems

Theorem 4.1.1 A system of multivariate max-algebraic polynomial equalities
and inequalities is equivalent to an Extended Linear Complementarity Problem.

Proof : First we show that a system of multivariate max-algebraic polynomial
equalities and inequalities can be transformed into an ELCP.
Consider one equation of the form (4.1) :

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk
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with k ∈ {1, 2, . . . , p1}. In conventional algebra this equation is equivalent to
the system of linear inequalities

aki +
n∑

j=1

ckijxj 6 bk for i = 1, 2, . . . ,mk

where at least one inequality should hold with equality.
If we transfer the aki’s to the right-hand side and if we define dki = bk − aki
for i = 1, 2, . . . ,mk, we get the following system of a linear inequalities:

n∑

j=1

ckijxj 6 dki for i = 1, 2, . . . ,mk

where at least one inequality should hold with equality.
So (4.1) will lead to p1 groups of linear inequalities where in each group at least
one inequality should hold with equality.
Using the same reasoning equations of the form (4.2) can also be transformed
into a system of linear inequalities, but without an extra condition.
If we define p1+p2 matrices C1 , C2, . . . , Cp1+p2 and p1+p2 column vectors d1,
d2, . . . , dp1+p2 such that (Ck)ij = ckij and (dk)i = dki for k = 1, 2, . . . , p1 +p2,
i = 1, 2, . . . ,mk and j = 1, 2, . . . , n then our original problem is equivalent to
p1+p2 groups of linear inequalities Ckx 6 dk where there has to be at least one
inequality that holds with equality in each group Ckx 6 dk for k = 1, 2, . . . , p1.

Now we put all the Ck’s in one large matrix A =








−C1

−C2

...
−Cp1+p2








and all the dk’s

in one large vector c =








−d1

−d2

...
−dp1+p2








. We also define p1 sets φ1, φ2, . . . , φp1

such that φj = {sj + 1, sj + 2, . . . , sj +mj} for j = 1, 2, . . . , p1 where s1 = 0
and sj+1 = sj +mj for j = 1, 2, . . . , p1 − 1. Problem (4.1) – (4.2) then results
in the following ELCP:

Given A, c and φ1, φ2, . . . , φp1 , find x ∈ Rn such that

p1∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c, or show that no such x exists.

Note that if any of the mk’s in (4.1) is equal to 1 we get a linear equality
instead of a system of linear inequalities. These equalities can be removed
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from Ax > c and from the complementarity condition and be put in Bx = d.
Although this is not really necessary, it will certainly enhance the efficiency of
the ELCP algorithm when we use it to solve the ELCP that corresponds to
problem (4.1) – (4.2).

Now we prove that an ELCP can also be transformed into a system of multi-
variate max-algebraic polynomial equalities and inequalities.
Consider the following ELCP:

Given A ∈ Rp×n, B ∈ Rq×n, c ∈ Rp, d ∈ Rq and m subsets φ1, φ2, . . . ,
φm of {1, 2, . . . , p}, find x ∈ Rn such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c and Bx = d.

First we define Φ =
m⋃

j=1

φj and Φc = {1, 2, . . . , p} \ Φ. There are three cases

that should be considered:

1. Groups of linear inequalities where at least one inequality should hold
with equality:

n∑

k=1

aikxk > ci for all i ∈ Φ (4.3)

with

∏

i∈φj

(Ax− c)i = 0 for j = 1, 2, . . . ,m , (4.4)

where we have used the alternative formulation of the complementarity
condition. Equation (4.3) is equivalent to

ci +
n∑

k=1

(−aik)xk 6 0 for all i ∈ Φ .

If we rewrite everything in max-algebraic notation and if we also take
condition (4.4) into account, we get m multivariate max-algebraic poly-
nomial equalities:

⊕

i∈φj

ci ⊗
n⊗

k=1

xk
⊗

(−aik)
= 0 for j = 1, 2, . . . ,m .
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2. Linear equalities:

n∑

k=1

bikxk = di for i = 1, 2, . . . , q .

These equations can be transformed into q multivariate max-algebraic
polynomial equalities:

di ⊗
n⊗

k=1

xk
⊗

(−bik)
= 0 for i = 1, 2, . . . , q .

3. The remaining linear inequalities:

n∑

k=1

aikxk > ci for all i ∈ Φc

can be transformed into one multivariate max-algebraic polynomial in-
equality:

⊕

i∈Φc

ci ⊗
n⊗

k=1

xk
⊗

(−aik)
6 0 .

So an ELCP can be transformed into a system of multivariate max-algebraic
polynomial equalities and inequalities and vice versa. 2

Since a system of multivariate max-algebraic polynomial equalities and inequal-
ities can be transformed into an ELCP and vice versa, the solution set of a sys-
tem of multivariate max-algebraic polynomial equalities and inequalities can
be characterized by the following two propositions:

Proposition 4.1.2 Let X cen be a minimal complete set of central generators
of the ELCP that corresponds to a system of multivariate max-algebraic polyno-
mial equalities and inequalities, let X ext be a minimal complete set of extreme
generators of the ELCP, let X fin be a minimal complete set of finite points of
the ELCP and let Λ be the set of ordered pairs of maximal cross-complementary
subsets of X ext and X fin. Then x is a (finite) solution of the system of multi-
variate max-algebraic polynomial equalities and inequalities if and only if there
exists an ordered pair

(
X ext
s ,X fin

s

)
∈ Λ such that

x =
∑

xc
k
∈X cen

λkx
c
k +

∑

xe
k
∈X ext

s

κkx
e
k +

∑

xf
k
∈X fin

s

µkx
f
k (4.5)

with λk ∈ R, κk > 0, µk > 0 for all k and
∑

k

µk = 1.
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Proposition 4.1.3 In general the set of the (finite) solutions of a system of
multivariate max-algebraic polynomial equalities and inequalities consists of the
union of faces of a polyhedron.

We have only considered finite coefficients and solutions with finite components
in the formulation of problem (4.1) – (4.2). This was necessary to avoid prob-
lems arising from taking negative max-algebraic powers of ε. This assumption
also allows us to transform problem (4.1) – (4.2) into an ELCP without causing
problems arising from products like 0 · ε.
We could allow some of the aki’s to be equal to ε. However, if aki is equal to
ε, then the corresponding term is also equal to ε, which means that it just dis-
appears. Hence, the assumption that all the aki’s are finite is not restrictive.
Later on we shall show that the ELCP approach can also be used to solve
problem (4.1) – (4.2) if some of the bk’s are equal to ε or if there (only) exist
solutions for which some of the components are equal to ε. But first we consider
the case where all the bk’s are finite and we show that if problem (4.1) – (4.2)
has a solution then it also has a finite solution.

Proposition 4.1.4 Let S be a system of multivariate max-algebraic polyno-
mial equalities and inequalities with finite right-hand sides. If there exists a
solution x of S, then there also exists a solution x̃ of S with finite components.

Proof : If all the components of x are finite, we set x̃ = x and then x̃ is a
finite solution of S.
From now on we assume that x has at least one component that is equal to
ε. Suppose that S is defined by (4.1) – (4.2). Define Ψ = { j |xj = ε } and
Ψc = {1, 2, . . . , n} \ Ψ. Since negative max-algebraic powers of ε are not
defined, x can only be a solution of S if ckij > 0 for all k, i and all j ∈ Ψ.
Now we define x̃ ∈ Rn such that

x̃j =

{

xj if j ∈ Ψc ,

M if j ∈ Ψ ,

where M is a real number the exact value of which will be chosen later on: we
shall select the value of M such that x̃ will be a solution of S.
Let us now determine under which conditions x̃ will be a solution of S. Since
ckij > 0 for all k, i and all j ∈ Ψ, the left-hand sides of the system (4.1) – (4.2)
can only increase if we replace x by x̃. Now we determine conditions on M
such that the left-hand sides do not increase if we replace x by x̃. If we select
M such that

aki ⊗
n⊕

j=1

x̃⊗
ckij

j 6 bk (4.6)

for all k, i, then the left-hand sides of (4.1) – (4.2) will not change if we replace
x by x̃ and then x̃ will be a solution of S.
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Consider arbitrary indices k and i. Since all the components of x̃ are finite,
(4.6) can be rewritten as

aki +
∑

j∈Ψc

ckij x̃j +
∑

j∈Ψ

ckij x̃j 6 bk ,

which is in its turn equivalent to

aki +
∑

j∈Ψc

ckijxj +
∑

j∈Ψ

ckijM 6 bk . (4.7)

If
∑

j∈Ψ

ckij is equal to 0, then ckij = 0 for all j ∈ Ψ since ckij > 0 for all j ∈ Ψ.

So in that case we have
⊕

j∈Ψ

x̃⊗
ckij

j = 0 =
⊕

j∈Ψ

xj
⊗
ckij

and since x is a solution

of S, this means that condition (4.6) is satisfied.

From now on we assume that
∑

j∈Ψ

ckij 6= 0. Hence,
∑

j∈Ψ

ckij > 0. As a conse-

quence, condition (4.7) can be rewritten as

M 6

bk − aki −
∑

j∈Ψc

ckijxj

∑

j∈Ψ

ckij

(4.8)

The right-hand side of this expression is defined since bk, aki and
∑

j∈Ψc

ckijxj

are finite and since
∑

j∈Ψ

ckij 6= 0.

A sufficient condition for (4.6) to hold is that (4.8) is satisfied for all k, i for

which
∑

j∈Ψ

ckij 6= 0. If
∑

j∈Ψ

ckij = 0 for all k, i then we may choose an arbitrary

value for M , e.g. M = 0. So if we select M such that

M = min














bk − aki −
∑

j∈Ψc

ckijxj

∑

j∈Ψ

ckij

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

j∈Ψ

ckij 6= 0







∪ {0}







, (4.9)

then x̃ is a solution of S. Since the right-hand side of (4.9) is finite, M is finite.
As a consequence, the components of x̃ are also finite. 2

Let S be a system of multivariate max-algebraic polynomial equalities and in-
equalities with finite right-hand sides. From Proposition 4.1.4 it follows that if
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S has a solution then we can use the ELCP approach to find a solution of S.
Now we present a procedure to reconstruct the solutions of S that have com-
ponents that are equal to ε. We shall use the following proposition:

Proposition 4.1.5 Let S be a system of multivariate max-algebraic polyno-
mial equalities and inequalities with finite right-hand sides. If x is a solution
of S that has components that are equal to ε, then there exists a solution x̃ of
S with finite components and a vector v ∈ Rn such that every combination of
the form x(η) = x̃+ ηv with η ∈ R+ is also a solution of S.

Proof : Let x̃ ∈ Rn be the finite solution of S obtained by applying the
procedure of the proof of Proposition 4.1.4 and let Ψ = { j |xj = ε }. Since the
right-hand side of (4.9) is actually only an upper bound for M , we still have
a solution of S if we replace every component of x̃ that is equal to M by an
arbitrary real number that is less than M . So if we define v ∈ Rn such that

vj =

{

−1 if j ∈ Ψ ,

0 otherwise,

then every combination of the form x(η) = x̃+ηv with η ∈ R+ is also a solution
of S. 2

Although Proposition 4.1.5 states that every solution of S that has components
that are equal to ε corresponds to the point at infinity of a ray that lies entirely
in the solution set of S, the reverse is not necessarily true as is shown by the
following example.

Example 4.1.6 Consider the following problem:

Find x ∈ R2
ε such that x1 ⊗ x2 = 0 and x2 6 0 . (4.10)

Obviously, x(η) =
[
η −η

]T
is a solution of this problem for every η ∈ R+.

So if L is the ray defined by L = {x(η) | η ∈ R+}, then L is a subset of the

solution set of problem (4.10). However, the point at infinity of L:
[
∞ ε

]T

clearly is not a solution of (4.10) since this point does not belong to R2
ε. This

point is not even a solution in the max-min-plus algebra since we have∞⊗ε = ε
by definition (cf. Section 4.2.4).
Note that it is easy to verify that (4.10) can only have finite solutions. 2

Let S be a system of multivariate max-algebraic polynomial equalities and
inequalities of the form (4.1) – (4.2) with finite right-hand sides. Let Υ =
{ j | ckij > 0 for all k, i }. Since every solution of S that has components that
are equal to ε corresponds to the point at infinity of some ray that lies entirely
in the solution set of S, we can reconstruct the solutions of S that have com-
ponents that are equal to ε by allowing some of the λk’s or the κk’s in (4.5) to
become infinite. However, we have to take care that this does not cause any
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problems arising from taking negative max-algebraic powers of ε. So only com-
ponents indexed by Υ are allowed to be equal to ε. Furthermore, the solutions
should only have infinite components that are equal to ε = −∞. Components
that are equal to ∞ are not allowed since ∞ does not belong to Rε. Solutions
obtained in this way will correspond to points at infinity of the polyhedron P
defined by the system of linear equalities and inequalities of the ELCP that
corresponds to S. This limit technique will be illustrated in Example 4.1.9.

Remark 4.1.7 Let S be a system of multivariate max-algebraic polyno-
mial equalities and inequalities of the form (4.1) – (4.2). Let Υ = { j | ckij >

0 for all k, i }.
If some of the bk’s are equal to ε, then S cannot have finite solutions. However,
we can still use the ELCP approach to solve S if we use the following proce-
dure. We introduce a positive real number ξ and we transform every equation

of the form
⊕

i

ti = ε or
⊕

i

ti 6 ε into
⊕

i

ti 6 −ξ . Now we have a system

S(ξ) of multivariate max-algebraic polynomial equalities and inequalities with
finite right-hand sides that can be solved using the ELCP approach. If we let ξ
go to ∞ and if we see how the solution set of the intermediate ELCPs evolves,
we obtain the solutions of S.
Since the right-hand sides of the linear inequalities of the intermediate ELCPs
depend linearly on ξ, the corresponding hyperplanes shift parallelly as ξ varies.
This implies that if ξ is large enough the components of the finite points of
the solution set of the intermediate ELCPs will depend affinely on ξ, i.e. if ξ
is large enough then the ith component of any finite point x(ξ) of S(ξ) can be
written as xi(ξ) = aiξ+bi for some ai, bi ∈ R. Furthermore, if ξ is large enough
then the solution set of all the intermediate ELCPs can be described by the
same minimal complete sets of central and extreme generators. So in order to
determine how the solution set of the intermediate ELCPs evolves as ξ tends
to ∞, we only have to solve a finite number of intermediate ELCPs: we solve
intermediate ELCPs for some values ξ1, ξ2, . . . , ξr of ξ until we notice that
from a certain value of ξ on the minimal complete sets of central and extreme
generators do not change any more and the components of the finite points
depend affinely on ξ.
Note that we have to take care that in this way we do not create solutions with
components that are equal to ∞ or solutions with components that are equal
to ε but that are not indexed by Υ. Sometimes it is useful to normalize the
representation of the solution set of the intermediate ELCPs in order to be able
to see how the solution set evolves as ξ increases (See also Section 6.3.3).
Since the ⊕ operation hides small numbers from larger numbers, we could also
use the following threshold procedure. First we select a positive real number ξ

that is several orders of magnitude larger than
α+ β + γ

δ
where

α = max
{
|aki|

∣
∣ aki is finite

}

β = max
{
|bk|

∣
∣ bk is finite

}
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γ = max
{
|ckij |

∣
∣ ckij is finite

}

δ = min{ ckij | ckij > 0} .
This heuristic rule for selecting ξ is based on expression (4.9).
Once we have found a solution x of S(ξ), we replace every negative component
of x that has the same order of magnitude as ξ and that is not bounded from
below by ε provided that in this way only components indexed by Υ are replaced
by ε and provided that x has no positive components of the same order of
magnitude as ξ. Note that positive components of the same order of magnitude
as ξ would have to be replaced by∞, but∞ does not belong to Rε. If one uses
this threshold technique, it is advisable to check whether the resulting solutions
are truly solutions of S since it is possible that wrong results are obtained if ξ
is not large enough.
In Example 4.2.1 we shall illustrate both the limit and the threshold technique
that have been discussed in this remark. 3

Proposition 4.1.8 Solving a general system of multivariate max-algebraic po-
lynomial equalities and inequalities with rational data is an NP-hard problem.

Proof : In the proof of Theorem 4.1.1 we have shown that a system of multi-
variate max-algebraic polynomial equalities and inequalities can be transformed
into an ELCP. The time to perform this transformation is polynomial in the
size of the problem. Furthermore, if the data of the system of multivariate
max-algebraic polynomial equalities and inequalities are rational the data of
the corresponding ELCP are also rational. By Theorem 3.5.1 the general ELCP
with rational data is an NP-hard problem. Therefore, solving a system of multi-
variate max-algebraic polynomial equalities and inequalities with rational data
is in general also an NP-hard problem. 2

In a similar way we can also prove that solving a system of multivariate max-
algebraic polynomial equalities and inequalities with rational data is in general
an NP-equivalent problem.

4.1.3 A Worked Example

Now we give an example in which we show how the ELCP apporach can be
used to find all solutions of a system of multivariate max-algebraic polynomial
equalities and inequalities. Other examples can be found in [41, 47].

Example 4.1.9 Let S be the following system of multivariate max-algebraic
polynomial equalities and inequalities:

7⊗ x1
⊗

4 ⊗ x3
⊗

2 ⊗ x4
⊗
−2 ⊗ x5 ⊕ 6⊗ x1

⊗
−3 ⊗ x2

⊗
−1 ⊕

x2
⊗
−2 ⊗ x3

⊗
3 ⊗ x4

⊗
−3 ⊗ x5 = 4 (4.11)

3⊗ x2
⊗

2 ⊗ x3
⊗

2 ⊗ x4
⊗
−2 ⊗ x5

⊗
2 ⊕ 5⊗ x1 ⊗ x2

⊗
3

= 3 (4.12)

1⊗ x1
⊗
−2 ⊗ x3

⊗
3 ⊗ x4

⊗
−3 ⊗ x5 6 5 (4.13)
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with x ∈ R5.
Consider the first term of (4.11). In conventional algebra, this term is equal to

7 + 4x1 + 2x3 − 2x4 + x5 .

The other terms can be transformed in a similar way. Each term has to be less
than or equal to 4 and at least one of the three terms has to be equal to 4.
So we get a group of three inequalities in which at least one inequality should
hold with equality. If we also take (4.12) and (4.13) into account, we get the
following ELCP:

Given

A =











−4 0 −2 2 −1
3 1 0 0 0
0 2 −3 3 −1
0 −2 −2 2 −2
−1 −3 0 0 0

2 0 −3 3 −1











and c =











3
2
−4

0
2
−4











,

find x ∈ R5 such that

(Ax− c)1 (Ax− c)2 (Ax− c)3 + (Ax− c)4 (Ax− c)5 = 0

subject to Ax > c.

The ELCP algorithm of Section 3.4 yields the generators and the finite points
of Table 4.1 and the pairs of maximal cross-complementary subsets of Table 4.2.
Any finite solution of S can now be expressed as

x = λ1x
c
1 +

∑

xe
k
∈X ext

s

κkx
e
k +

∑

xf
k
∈X fin

s

µkx
f
k

for some s ∈ {1, 2, . . . , 5} with λ1 ∈ R, κk > 0, µk > 0 for all k and
∑

k

µk = 1.

Let us now construct a solution of S that has components that are equal to ε.
The only variables for which all the exponents in (4.11) – (4.13) are nonnegative
are x3 and x5. Hence, only the 3rd and the 5th component of the solutions of
S are allowed to become equal to ε. Let L1 be the ray defined by

L1 = {xf
1 + ηxe

4 + ηxe
5 | η ∈ R+ }

=
{[

1 −1 0 8 9− 2η
]T
∣
∣
∣ η ∈ R+

}

.

Since
(
{xe

4, x
e
5}, {xf

1}
)

is an ordered pair of cross-complementary subsets of X ext

and X fin, all the (finite) points of L1 are solutions of S. The point at infinity

of L1 is given by v1 =
[
1 −1 0 8 ε

]T
. Since only the 5th component of v1

is equal to ε, v1 is a solution of S.
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X cen X ext X fin

xc
1 xe

1 xe
2 xe

3 xe
4 xe

5 xf
1 xf

2

x1 0 3 3 1 0 0 1 1

x2 0 −1 −1 −3 0 0 −1 −1

x3 1 0 0 0 0 0 0 0

x4 1 13 −10 7 1 −1 8 −9

x5 0 14 −32 10 1 −3 9 −25

Table 4.1: The generators and the finite points of the ELCP of Example 4.1.9.

s X ext
s X fin

s

1 {xe
1, x

e
2} {xf

1, x
f
2}

2 {xe
1, x

e
3} {xf

1}
3 {xe

2, x
e
5} {xf

2}
4 {xe

3, x
e
4} {xf

1}
5 {xe

4, x
e
5} {xf

1, x
f
2}

Table 4.2: The pairs of maximal cross-complementary subsets of the sets X ext

and X fin of the ELCP of Example 4.1.9.

Now consider the ray L2 = {xf
1 + ηxe

5 | η ∈ R+ }. All the (finite) points of
L2 are solutions of S. However, the point at infinity of L2, which is given by

v2 =
[
1 −1 0 ε ε

]T
is not a solution of S since the 4th component of v2 is

equal to ε. 2

4.2 Other Max-Algebraic Problems that Can
Be Reformulated as an ELCP

In this section we treat some max-algebraic problems that can be reformulated
as a system of multivariate max-algebraic polynomial equalities and inequali-
ties. These problems can thus be solved using the ELCP approach (where we
have to take Remark 4.1.7 into account). In general the solution set of the
problems treated in this section consists of the union of faces of a polyhedron.
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4.2.1 Max-Algebraic Matrix Factorizations

Consider the following problem:

Given a matrix T ∈ Rm×n
ε and an integer l ∈ N0, find P ∈ Rm×l

ε and
Q ∈ Rl×nε such that T = P ⊗Q , or show that no such factorization exists.

So we have to find pik and qkj for i = 1, 2, . . . ,m, j = 1, 2, . . . , n and k =
1, 2, . . . , l such that

l⊕

k=1

pik ⊗ qkj = tij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

This can clearly be considered as a system of multivariate max-algebraic poly-
nomial equations in the pik’s and the qkj ’s. Note that all the exponents are
nonnegative.
The homogeneous ELCP that corresponds to this system of multivariate max-
algebraic polynomial equations has ml+ nl+ 1 variables: the entries of P and
Q and one extra variable α to make the ELCP homogeneous. The number of
inequalities of the ELCP is equal to mnl + 1.
It is obvious that if we take l too small, the problem will not have any solutions.
In fact, the smallest value of l for which the problem still has a solution corre-
sponds to the max-algebraic Schein rank of T and is denoted by rank⊕,Schein (T ).
We always have rank⊕ (T ) 6 rank⊕,Schein (T ) [54].
The ELCP approach can also be used to compute the factorization of T as the
max-algebraic product of a given number of matrices with specified sizes:

Given a matrix T ∈ Rm×n
ε and k + 1 integers l1, l2, . . . , lk+1 ∈ N0 with

l1 = m and lk+1 = n, find matrices P1, P2, . . . , Pk with Pi ∈ R
li×li+1
ε for

i = 1, 2, . . . , k such that T = P1 ⊗ P2 ⊗ . . .⊗ Pk .

Furthermore, it is also possible to impose a certain structure on the composing
matrices (e.g. triangular, diagonal, Hessenberg, . . . ).

Example 4.2.1 Consider the matrix

T =





9 7
ε 5
3 −3



 .

Let us factorize this matrix as T = P ⊗Q with P ∈ R3×2
ε and Q ∈ R2×2

ε . We
put all the variables in one large column vector x:

x =
[
p11 p12 p21 p22 p31 p32 q11 q12 q21 q22

]T
.

Since t21 is equal to ε, we apply the technique of Remark 4.1.7 and we replace
the equation p21 ⊗ q11 ⊕ p22 ⊗ q21 = ε by p21 ⊗ q11 ⊕ p22 ⊗ q21 6 −ξ. As
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X cen X ext X fin

xc
1 xc

2 xe
1 xe

2 xe
3 xe

4 xe
5 xe

6 xe
7 xe

8 xf
1 xf

2

p11 −1 0 0 0 0 0 0 0 0 0 0 0

p12 0 −1 0 0 0 0 0 0 0 0 7 3

p21 −1 0 −1 0 0 0 0 0 0 0 −1009 −2

p22 0 −1 0 −1 0 0 0 0 0 0 5 −1006

p31 −1 0 0 0 −1 0 0 0 0 0 −6 −10

p32 0 −1 0 0 0 −1 0 0 0 0 −3 −3

q11 1 0 0 0 0 0 −1 0 0 0 9 −998

q12 1 0 0 0 0 0 0 −1 0 0 3 7

q21 0 1 0 0 0 0 0 0 −1 0 −1005 6

q22 0 1 0 0 0 0 0 0 0 −1 0 0

Table 4.3: The generators and the finite points of the ELCP of Example 4.2.1
for ξ = 1000.

s X ext
s X fin

s

1 {xe
1, x

e
4, x

e
7} {xf

1}
2 {xe

1, x
e
6, x

e
7} {xf

1}

s X ext
s X fin

s

3 {xe
2, x

e
3, x

e
5} {xf

2}
4 {xe

2, x
e
5, x

e
8} {xf

2}

Table 4.4: The pairs of maximal cross-complementary subsets of the sets X ext

and X fin of Example 4.2.1.

explained in Remark 4.1.7 there are two methods to obtain the solutions of the
ELCP that corresponds to ξ =∞.

Let us first use the threshold technique. If we set ξ = 1000, the ELCP
algorithm of Section 3.4 yields the generators and the finite points of Table 4.3
and the pairs of maximal cross-complementary subsets of Table 4.4. Since all
the exponents in the system of multivariate max-algebraic polynomial equalities
and inequalities that corresponds to T = P ⊗ Q are nonnegative, every entry
of P and Q is allowed to become equal to ε. Consider xf

1. The p21 and the q21
component of xf

1 are negative numbers of the same order of magnitude as ξ.
Since

(
{xe

1, x
e
7}, {xf

1}
)

is an ordered pair of cross-complementary subsets of X ext

and X fin, the p21 and the q21 component of xf
1 are not bounded from below.

Furthermore, xf
1 has no positive components of the same order of magnitude as

ξ. Therefore we replace the p21 and the q11 component of xf
1 by ε. This yields
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X fin

xf
1 xf

2

p11 0 0

p12 7 3

p21 −1010 −2

p22 5 −1007

p31 −6 −10

p32 −3 −3

q11 9 −999

q12 3 7

q21 −1006 6

q22 0 0

X fin

xf
1 xf

2

p11 0 0

p12 7 3

p21 −1011 −2

p22 5 −1008

p31 −6 −10

p32 −3 −3

q11 9 −1000

q12 3 7

q21 −1007 6

q22 0 0

X fin

xf
1 xf

2

p11 0 0

p12 7 3

p21 −1012 −2

p22 5 −1009

p31 −6 −10

p32 −3 −3

q11 9 −1001

q12 3 7

q21 −1008 6

q22 0 0

(a) ξ = 1001 (b) ξ = 1002 (c) ξ = 1003

Table 4.5: The finite points of the ELCP of Example 4.2.1 for ξ =
1001, 1002, 1003.

the following factorization of T :

T =





0 7
ε 5
−6 −3



⊗
[

9 3
ε 0

]

. (4.14)

We can also apply the same reasoning to xf
2. For xf

2 we have to replace the p22

and the q11 component by ε. It is easy to verify that this also results in a valid
factorization of T .

Alternatively, we can use the limit technique to compute max-algebraic
matrix factorizations of T . If we use the ELCP algorithm of Section 3.4 to
compute the solution set of the ELCP for some values of ξ that are greater
than 1000, then we see that for any ξ > 1000 the central and the extreme
generators are always the same as those of Table 4.3. In Table 4.5 we have
listed the finite points of the solution set of the ELCP for some values of ξ that
are greater than 1000. Since we know that the components of the finite points
depend affinely on ξ if ξ is large enough, we conclude that the finite points are
given by

xf
1(ξ) =

[
0 7 −ξ − 9 5 −6 −3 9 3 −ξ − 5 0

]T

xf
2(ξ) =

[
0 3 −2 −ξ − 6 −10 −3 −ξ + 2 7 6 0

]T

for any ξ > 1000. The pairs of maximal cross-complementary subsets are the
same as those of Table 4.4 for any ξ > 1000 but with xf

1 and xf
2 replaced by
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X̃ cen X̃ ext X̃ fin

x̃c
1 x̃c

2 x̃e
1 x̃e

2 x̃e
3 x̃e

4 x̃f
1 x̃f

2

p11 −1 0 0 0 0 0 0 0

p12 0 −1 0 0 0 0 7 3

p21 −1 0 0 0 0 0 ε −2

p22 0 −1 0 0 0 0 5 ε

p31 −1 0 −1 0 0 0 −6 −10

p32 0 −1 0 −1 0 0 −3 −3

q11 1 0 0 0 0 0 9 ε

q12 1 0 0 0 −1 0 3 7

q21 0 1 0 0 0 0 ε 6

q22 0 1 0 0 0 −1 0 0

Table 4.6: The generators and the “finite” points of the ELCP of Example 4.2.1
for ξ =∞.

xf
1(ξ) and xf

2(ξ) respectively. If we take the limit of xf
1(ξ) for ξ going ∞, we

obtain again factorization (4.14).
Since the p21 component of xf

1 tends to ε as ξ tends to∞, xe
1 becomes redundant

when ξ goes to ∞. This also holds for xe
2, x

e
5 and xe

7. So if we define x̃e
1 = xe

3,
x̃e

2 = xe
4, x̃

e
3 = xe

6 and x̃e
4 = xe

8, and x̃c
i = xc

i and x̃f
i = lim

ξ→∞
xf
i(ξ) for i = 1, 2, then

the set of solutions that corresponds to ξ = ∞ is described by the generators
and the “finite” points of Table 4.6 and the set

Λ̃ =
{(
{x̃e

2}, {x̃f
1}
)
,
(
{x̃e

3}, {x̃f
1}
)
,
(
{x̃e

1}, {x̃f
2}
)
,
(
{x̃e

4}, {x̃f
2}
)}

of ordered pairs of maximal cross-complementary subsets of X̃ ext and X̃ fin.
Any combination of the form

x = λ1 x̃
c
1 + λ2 x̃

c
2 + κk x̃

e
k + x̃f

k

with
(
X̃ ext
k , X̃ fin

k

)
∈ Λ̃ and with λ1, λ2 ∈ R and κk > 0 corresponds to a

factorization P ⊗Q of T with P ∈ R3×2
ε and Q ∈ R2×2

ε .
Now can use the same limit technique as the one used for systems of multivariate
max-algebraic polynomial equalities and inequalities with finite right-hand sides
to obtain other solutions that have components that are equal to ε. Consider
e.g. the combination x(η) = ηx̃e

2 + x̃f
1 with η ∈ R+. If we take the limit of x(η)

for η going to ∞, we get the following factorization:

T =





0 7
ε 5
−6 ε



⊗
[

9 3
ε 0

]

. 2
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4.2.2 Systems of Max-Linear Balances

In this subsection we address the following problem:

Given A ∈ Sm×n and b ∈ Sm, find x ∈ (S∨)n such that A⊗ x ∇ b.

Now we show that this problem can be reformulated as a system of multivariate
max-algebraic polynomial equalities and inequalities and that it can be solved
using the ELCP approach.
First we assume that all the components of b are finite. The condition that the
entries of x have to be signed leads to

x⊕

i ⊗ x	

i = ε for i = 1, 2, . . . , n . (4.15)

If we extract the max-positive and the max-negative parts of A, b and x, then
Ax ∇ b can be rewritten as

(A⊕ 	A	)⊗ (x⊕ 	 x	) ∇ b⊕ 	 b	.

If we write out the max-multiplications in this expression and if we use Propo-
sition 2.3.6, we get

A⊕ ⊗ x⊕ ⊕ A	 ⊗ x	 ⊕ b	 ∇ A⊕ ⊗ x	 ⊕ A	 ⊗ x⊕ ⊕ b⊕ .

Both sides of this balance are signed. So by Proposition 2.3.7 we may replace
the balance by an equality:

A⊕ ⊗ x⊕ ⊕ A	 ⊗ x	 ⊕ b	 = A⊕ ⊗ x	 ⊕ A	 ⊗ x⊕ ⊕ b⊕ . (4.16)

Now we define a vector p ∈ Rnε such that

p = A⊕ ⊗ x⊕ ⊕ A	 ⊗ x	 ⊕ b	 . (4.17)

From (4.16) it follows that we also have

p = A⊕ ⊗ x	 ⊕ A	 ⊗ x⊕ ⊕ b⊕ . (4.18)

Since we have assumed that all the components of b are finite, the components
of p are also finite and their max-algebraic inverses are defined. If we work out
the max-multiplications in (4.17) and (4.18) and if we transfer the components
of p to the other side, we get

n⊕

j=1

a⊕

ij ⊗ x⊕

j ⊗ pi⊗
−1 ⊕

n⊕

j=1

a	

ij ⊗ x	

j ⊗ pi⊗
−1 ⊕ b	i ⊗ pi⊗

−1
= 0 (4.19)

n⊕

j=1

a⊕

ij ⊗ x	

j ⊗ pi⊗
−1 ⊕

n⊕

j=1

a	

ij ⊗ x⊕

j ⊗ pi⊗
−1 ⊕ b⊕i ⊗ pi⊗

−1
= 0 (4.20)
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for i = 1, 2, . . . ,m.
Clearly, equations (4.15) and (4.19) – (4.20) constitute a system of multivari-
ate max-algebraic polynomial equalities. Using the technique explained in Sec-
tion 4.1 and by taking Remark 4.1.7 into account, we can transform this system
of multivariate max-algebraic polynomial equalities into an ELCP. The corre-
sponding homogeneous ELCP will have 2n + m + 1 variables and consist of
2m(2n + 1) + n + 1 − 2nε inequalities where nε is the total number of entries
of A⊕ and A	 that are equal to ε.

Note that if some of the components of b are not finite it is possible that
some of the corresponding components of p are also not finite, which means
that their max-algebraic inverses are not defined. In that case we have to use
a technique that is similar to the one that has been discussed in Remark 4.1.7:
we replace the infinite components of b by (−ξ)• and then see how the solution
set of the resulting ELCP evolves as ξ goes to ∞.
Once we have determined a solution of the ELCP that corresponds to ξ =∞,
we extract the x⊕

i ’s and the x	

i ’s and we set xi = x⊕

i 	 x	

i for i = 1, 2, . . . , n.
Since the components of p are dummy variables that do not appear in the
balance A ⊗ x ∇ b, there will be no problems arising from taking negative
max-algebraic powers of ε. Obviously, we still have to take care that we do
not create solutions with components that are equal to ∞ when we use this
technique.

The problem of finding a normalized solution a system of homogeneous max-
linear balances:

Given A ∈ Sm×n, find x ∈ (S∨)n such that A⊗ x ∇ εm×1 and ‖x‖
⊕

= 0 ,

can also be solved using the ELCP approach.

Remark 4.2.2 If we only need one solution of a system of (homogeneous)
max-linear balances, we normally do not have to use the ELCP technique
since there exist more efficient algorithms to find one solution of a system of
(homogeneous) max-linear balances (See [3, 54, 106]). 3

4.2.3 Other Problems in Rmax and Smax

In the next chapters we shall show that the following problems can also be
reformulated as an ELCP or solved using the ELCP approach:

• performing max-algebraic state space transformations (See Section 6.2),

• determining partial or minimal state space realizations of the impulse
response of a max-linear time-invariant DES (See Section 6.3),

• constructing matrices with a given max-algebraic characteristic polyno-
mial (See Section 5.4),

• determining a singular value decomposition or a QR decomposition of a
matrix in the symmetrized max-plus algebra (See Section 7.5).
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4.2.4 Mixed Max-Min Problems

We can also use the technique of Section 4.1 to solve mixed max-min problems.
Let us first introduce the max-min-plus algebra, which is an extension of the
max-plus algebra. Let R = R ∪ {−∞,∞}. We still have x⊕ y = max(x, y) for
all x, y ∈ R. The ⊕′ operation in R is defined as follows: x⊕′ y = min(x, y) for
all x, y ∈ R. We extend the definition of the ⊗ operation such that

x⊗ y = x+ y for all x, y ∈ R \ {−∞} ,
x⊗ (−∞) = (−∞)⊗ x = −∞ for all x ∈ R .

The resulting structure (R,⊕,⊕′,⊗) is called the max-min-plus algebra. As for
the order of evaluation of the max-algebraic operators, the ⊕′ operator has the
same priority as the ⊕ operator. For more information about the max-min-plus
algebra, the interested reader is referred to [33, 37, 38, 74, 119, 120, 121].
Consider the following problem:

Given integers mk,mkl1 ∈ N0 for k = 1, 2, . . . ,m and l1 = 1, 2, . . . ,mk and
real numbers akl1l2 , bk and ckl1l2j for k = 1, 2, . . . ,m, l1 = 1, 2, . . . ,mk,
l2 = 1, 2, . . . ,mkl1 and j = 1, 2, . . . , n, find a vector x ∈ Rn that satisfies

mk⊕

l1=1

′
mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j

= bk for k = 1, 2, . . . ,m , (4.21)

or show that no such vector exists.

Note that just like in the formulation of a system of multivariate max-algebraic
polynomial equalities and inequalities in Section 4.1 we have only considered
finite coefficients and solutions with finite components in the formulation of
this problem.
Now we show that problem (4.21) can also be reformulated as an ELCP. If we
define

tkl1 =

mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j

(4.22)

for k = 1, 2, . . . ,m and l1 = 1, 2, . . . ,mk, we get

mk⊕

l1=1

′
tkl1 = bk for k = 1, 2, . . . ,m . (4.23)

If we assume that the bk’s are finite, then the tkl1 ’s are also finite. Therefore,
their max-algebraic inverses exist and (4.22) can be rewritten as

mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j ⊗ tkl1⊗

−1
= 0 (4.24)
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for k = 1, 2, . . . ,m and l1 = 1, 2, . . . ,mk. Each equation of the form

mk⊕

l1=1

′
tkl1 =

bk is equivalent to a system of linear inequalities of the form

tkl1 > bk for l1 = 1, 2, . . . ,mk

where at least one inequality should hold with equality. So (4.23) yields m
groups of inequalities where in each group at least one inequality should hold
with equality.

Equations of the form (4.24) are multivariate max-algebraic polynomial
equations and can thus also be rewritten as groups of linear inequalities where
in each group at least one inequality should hold with equality.
This means that the combined max-min problem (4.21) can be transformed
into an ELCP.
We can also use this technique for systems of combined max-min equations of
the form

⊕

l1

′ ⊕

l2

⊕

l3

′
. . .
⊕

lq

akl1l2...lq ⊗
n⊗

j=1

xi
⊗
ckl1l2...lqj

= bk for k = 1, 2, . . . ,m ,

or for analogous equations but with ⊕ replaced by ⊕′ and vice versa or when
some of the equalities are replaced by inequalities.

4.2.5 Max-Max and Max-Min Problems

In this section we consider systems of max-algebraic equations that also have
multivariate max-algebraic polynomials (instead of constants) on the right-
hand side. Since we are working in Rmax, we cannot simply transfer terms
from the right-hand side to the left-hand side as we would do in conventional
algebra. However, these problems can also be transformed into an ELCP using
a technique that is similar to the one used in Section 4.2.4.
Consider the following problem:

Given integers mk, pk ∈ N0 for k = 1, 2, . . . ,m and real numbers aki, bkij ,
ckl and dklj for k = 1, 2, . . . ,m, i = 1, 2, . . . ,mk, j = 1, 2, . . . , n and
l = 1, 2, . . . , pk, find x ∈ Rn such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

=

pk⊕

l=1

ckl ⊗
n⊗

j=1

xj
⊗
dklj

(4.25)

for k = 1, 2, . . . ,m.

We define m dummy variables t1, t2, . . . , tm such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

= tk for k = 1, 2, . . .m .
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Since the aki’s and the bkij ’s are finite and since the components of x are
finite, the tk’s are also finite and therefore their max-algebraic inverses exist.
So problem (4.25) is equivalent to

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij ⊗ tk⊗

−1
= 0 for k = 1, 2, . . . ,m ,

pk⊕

l=1

ckl ⊗
n⊗

j=1

xj
⊗
dklj ⊗ tk⊗

−1
= 0 for k = 1, 2, . . . ,m .

This is a system of multivariate max-algebraic polynomial equalities that can
be transformed into an ELCP.

Using an analogous reasoning we can also transform problems that contain
a mixture of equations of the following forms into an ELCP:

•
⊕

i

′
li(x) =

⊕

i

ri(x)

•
⊕

i

′
li(x) =

⊕

i

′
ri(x)

•
⊕

i

′
li(x) 6

⊕

i

ri(x)

•
⊕

i

′
li(x) >

⊕

i

ri(x)

•
⊕

i

li(x) 6
⊕

i

ri(x)

•
⊕

i

′
li(x) 6

⊕

i

′
ri(x)

where li(x) and ri(x) are max-algebraic monomials of the form ai⊗
n⊗

j=1

xj
⊗
bij

.

Remark 4.2.3 Other problems such as solving a system of max-linear equa-
tions, solving eigenvalue problems in the max-plus algebra, determining the
roots of a max-algebraic characteristic polynomial and so on can also be trans-
formed into an ELCP, but for these problems there are already efficient al-
gorithms available, especially if we only want one solution (See e.g. [3, 9, 33,
54]). 3

4.3 Conclusion

We have demonstrated that many problems in the max-plus algebra, the sym-
metrized max-plus algebra and the max-min-plus algebra such as solving a
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system of multivariate max-algebraic polynomial equalities and inequalities,
calculating max-algebraic matrix factorizations, solving a system of max-linear
balances, mixed max-min problems, max-max problems and max-min problems
can be transformed into an ELCP. This gives us an insight in the geometrical
structure of the solution set of these problems. This insight could be used
to develop more efficient algorithms to solve these problems or to solve par-
ticular subclasses of the general problem of solving a system of multivariate
max-algebraic polynomial equalities and inequalities.

Our ELCP algorithm yields all solutions of the ELCP that corresponds to
a given max-algebraic problem. However, sometimes finding one solution suf-
fices. Therefore, it might be interesting to develop (heuristic) algorithms that
determine only one solution as we have done for the construction of matrices
with a given MACP [43] (See also Section B.4).

It could also be interesting to make a more thorough study of the class of
problems that can be reduced to solving a system of multivariate max-algebraic
polynomial equalities and inequalities and to determine the computational com-
plexity of the problems that belong to this class. We already know that in
general the ELCP and the problem of solving a system of multivariate max-
algebraic polynomial equalities and inequalities are NP-hard. However, it is
still an open question whether the other problems that have been treated in
this chapter are also NP-hard.



Chapter 5

The Max-Algebraic
Characteristic Polynomial

In this chapter we determine necessary and for some cases also sufficient con-
ditions for a max-algebraic polynomial with coefficients in S to be the max-
algebraic characteristic polynomial of a matrix with elements in Rε. We also
show that the problem of finding a matrix that has a given max-algebraic poly-
nomial as its max-algebraic characteristic polynomial can be reformulated as
an ELCP.

This chapter is organized as follows. In Section 5.1 we define the max-
algebraic characteristic polynomial of a matrix and we give some definitions
and properties. In Section 5.2 we derive necessary conditions for the coefficients
of the max-algebraic characteristic polynomial of a matrix with entries in Rε.
In Section 5.3 we give necessary and sufficient conditions for the coefficients of
the max-algebraic characteristic polynomial of a matrix with entries in Rε and
with a dimension that is less than or equal to 4. Later on these results will be
used to determine a lower bound for the minimal order of a state space descrip-
tion of a max-linear time-invariant DES (See Section 6.3.1). In Section 5.4 we
show that the problem of constructing a matrix with a max-algebraic charac-
teristic polynomial that is equal to a given max-algebraic polynomial can be
reformulated as an ELCP.

5.1 Introduction

In this section we give the definitions and some properties of the max-algebraic
characteristic equation and the max-algebraic characteristic polynomial.

Definition 5.1.1 (Max-algebraic characteristic equation) Consider a
matrix A ∈ Sn×n. The max-algebraic characteristic equation of A is given
by det⊕ (A	 λ⊗ En)∇ ε.

139
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Consider a matrix A ∈ Rn×nε . Let λ ∈ Rε be a max-algebraic eigenvalue of
A and let v ∈ Rnε be a corresponding max-algebraic eigenvector. Then we
have A ⊗ v = λ ⊗ v and thus also A ⊗ v∇λ ⊗ v, which can be rewritten as
(A	 λ⊗En)⊗ v∇εn×1 by Proposition 2.3.6. This means that the system of
homogeneous max-linear balances (A 	 λ ⊗ En) ⊗ x∇εn×1 has a non-trivial
signed solution. Hence, det⊕ (A 	 λ ⊗ En)∇ ε by Theorem 2.3.15. So every
max-algebraic eigenvalue of A is a “root” of the max-algebraic characteristic
equation of A.

Consider A ∈ Sn×n. Since det⊕ (A	λ⊗En) = (	0)
⊗
n
⊗det⊕ (λ⊗En	A)

and since we have x∇ ε ⇔ 	x∇ ε for all x ∈ S, the max-algebraic character-
istic equation of A may also be represented by det⊕ (λ⊗ En 	A)∇ ε .

Proposition 5.1.2 Consider a matrix A ∈ Sn×n. If we write the formula

det⊕ (λ⊗ En 	A)∇ ε out, we get λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k ∇ ε with

ak = (	0)
⊗
k
⊗
⊕

ϕ∈Ck
n

det⊕Aϕϕ

or

ak = (	0)
⊗
k ⊕

{i1,... ,ik}∈Ck
n

⊕

σ∈Pk

sgn⊕ (σ)⊗
k⊗

r=1

airiσ(r)
(5.1)

for k = 1, 2, . . . , n.

Proof : These formulas are the max-algebraic equivalent of similar formulas for
the coefficients of the characteristic polynomial of a matrix in linear algebra. 2

Let A ∈ Sn×n. The max-algebraic polynomial λ⊗
n ⊕

n⊕

k=1

ak⊗λ⊗
n−k

obtained

by writing out det⊕ (λ⊗En	A) is called the max-algebraic characteristic poly-

nomial (MACP) of A. Since the coefficient of λ⊗
n

is equal to 0 (the identity
element for ⊗), we say that this polynomial is a monic max-algebraic polyno-

mial. From (5.1) it follows that a1 =
n⊕

i=1

aii and an = (	0)
⊗
n
⊗ det⊕A .

Theorem 5.1.3 (Cayley-Hamilton) In Smax every square matrix satisfies

its max-algebraic characteristic equation: if A ∈ Sn×n and if λ⊗
n ⊕

n⊕

k=1

ak ⊗

λ⊗
n−k ∇ ε is the max-algebraic characteristic equation of A, then we have

A⊗
n ⊕

n⊕

k=1

ak ⊗A⊗
n−k ∇εn×n .
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Proof : See [109]. 2

Let us illustrate these definitions and properties by an example:

Example 5.1.4 Consider again the matrix A of Example 2.2.6 :

A =





−2 1 ε
1 0 1
ε 0 2



 .

In Example 2.3.13 we have already calculated the max-algebraic determinant
of A: det⊕A = 	4.
The coefficients of the MACP of A are given by

a1 = 	a11 	 a22 	 a33 = 	(−2)	 0	 2 = 	2

a2 = det⊕A{1,2},{1,2} ⊕ det⊕A{1,3},{1,3} ⊕ det⊕A{2,3},{2,3}

= det⊕

[
−2 1

1 0

]

⊕ det⊕

[
−2 ε
ε 2

]

⊕ det⊕

[
0 1
0 2

]

= −2	 2⊕ 0	 ε⊕ 2	 1 = 2•

a3 = 	det⊕A = 4 ,

and therefore the max-algebraic characteristic equation of A is given by

λ⊗
3 	 2⊗ λ⊗

2 ⊕ 2• ⊗ λ ⊕ 4∇ ε .
The max-algebraic eigenvalue λ = 2 that has been calculated in Example 2.2.9
satisfies the max-algebraic characteristic equation of A since

2⊗
3 	 2⊗ 2⊗

2 ⊕ 2• ⊗ 2 ⊕ 4 = 6 	 6 ⊕ 4• ⊕ 4 = 6•∇ ε .

Furthermore,

A⊗
3 	 2⊗A⊗

2 ⊕ 2• ⊗A ⊕ 4⊗ E3

=





2 3 4
3 3 5
3 4 6



 ⊕





	4 	3 	4
	3 	4 	5
	3 	4 	6



 ⊕





0• 3• ε
3• 2• 3•

ε 2• 4•



 ⊕





4 ε ε
ε 4 ε
ε ε 4





=





4• 3• 4•

3• 4• 5•

3• 4• 6•



 ∇ε3×3 .

So A satisfies its max-algebraic characteristic equation. 2
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Proposition 5.1.5 Every monic nth degree max-algebraic polynomial is the
MACP of an n by n matrix with entries in S.

Proof : It is easy to verify that the monic max-algebraic polynomial

λ⊗
n ⊕ a1 ⊗ λ⊗

n−1 ⊕ . . . ⊕ an−1 ⊗ λ ⊕ an

is the MACP of the matrix

A =










ε 0 ε . . . ε
ε ε 0 . . . ε
...

...
...

. . .
...

ε ε ε . . . 0
	an 	an−1 	an−2 . . . 	a1










. 2

In the next section we shall see that not every monic max-algebraic polynomial
corresponds to the MACP of a matrix with entries in Rε.

5.2 Necessary Conditions for the Coefficients of
the Max-Algebraic Characteristic Polyno-
mial of a Matrix with Entries in Rε

The aim of this section is to derive necessary conditions for the coefficients of
the MACP of a matrix with entries in Rε. Since some of the proofs of the
propositions of this section and of the next section are rather tedious and not
very instructive, we have put these proofs in an appendix (Appendix B).

Proposition 5.2.1 If A ∈ Rn×nε and if the MACP of A is given by λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

, then a1 ∈ S	.

Proof : Since a1 = 	
n⊕

i=1

aii with aii ∈ Rε for all i, we have a1 ∈ S	. 2

Lemma 5.2.2 Let l ∈ N0. Any even permutation σ2l,even of 2l elements can
be decomposed into two even permutations σ2m+1,even and σ2l−2m−1,even of an
odd number of elements with m ∈ N, or into two odd permutations σ2p,odd and
σ2l−2p,odd of an even number of elements with p ∈ N0:

σ2l,even = σ2m+1,even ∪ σ2l−2m−1,even or σ2l,even = σ2p,odd ∪ σ2l−2p,odd .

Any odd permutation σ2l+1,odd of 2l+1 elements can be decomposed into an even
permutation σ2q+1,even of an odd number of elements and an odd permutation
σ2l−2q,odd of an even number of elements with q ∈ N:

σ2l+1,odd = σ2q+1,even ∪ σ2l−2q,odd .
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Proof : First we consider σ2l,even. This is an even permutation of an even
number of elements. Therefore, it follows from Lemma 2.1.2 that σ2l,even is
not a cyclic permutation. Hence, it can be decomposed into elementary cycles.
Suppose that there are ce elementary cycles τ e

1 , τ e
2 , . . . , τ e

ce with an even length,
and co elementary cycles τ o

1 , τo
2 , . . . , τo

co with an odd length. Let ne
i be the

length of τ e
i for i = 1, 2, . . . , ce and let no

i be the length of τ o
i for i = 1, 2, . . . , co.

Let ne
tot =

ce∑

i=1

ne
i and let no

tot =

co∑

i=1

no
i . Since the parity of σ2l,even is even,

ce should also be even by Lemma 2.1.2. Since ne
tot is always even and since

ne
tot + no

tot = 2l, no
tot is even. Therefore, co is also even. Now we distinguish

between two cases: ce = 0 and ce 6= 0.
If ce = 0 then co 6= 0 since 2l 6= 0. Take an arbitrary elementary cycle τ o

j of odd
length. We have no

j = 2m+ 1 for some m ∈ N. By Lemma 2.1.2 the parity of
τo
j is even and therefore we represent τ o

j by σ2m+1,even. The other elementary
cycles form a permutation with 0 cycles of even length. So they correspond to
an even permutation of the remaining 2l−2m−1 elements that will be denoted
by σ2l−2m−1,even.
If ce 6= 0, we take one elementary cycle, say τ e

k , of even length. We have ne
k = 2p

for some p ∈ N0. Since the parity of τ e
k is odd by Lemma 2.1.2, we represent

τ e
k by σ2p,odd. The remaining elementary cycles constitute a permutation with

an odd number (ce − 1) of cycles of even length: σ2l−2p,odd.
Hence, σ2l,even can be decomposed as σ2m+1,even∪σ2l−2m−1,even or as σ2p,odd∪
σ2l−2p,odd with m ∈ N and p ∈ N0.

Now we consider σ2l+1,odd . This is an odd permutation of an odd number
of elements. Hence, it is not a cyclic permutation and it can be decomposed
into elementary cycles. We define ce, co, τ e

1 , τ e
2 , . . . , τ e

ce , τ
o
1 , τo

2 , . . . , τo
co , n

e
1,

ne
2, . . . , ne

ce , n
o
1, n

o
2, . . . , no

co , n
e
tot and no

tot in the same way as in the first part
of this proof. Since the parity of σ2l+1,odd is odd, ce should also be odd. Since
ne

tot is always even and since ne
tot + no

tot = 2l+ 1 is odd, no
tot is odd. Hence, co

is odd. This implies that co 6= 0. Let us take one elementary cycle τ o
r of odd

length. We have no
r = 2q + 1 for some q ∈ N. Since τ o

r is an even permutation
of 2q + 1 elements, we represent it by σ2q+1,even. The other elementary cycles
correspond to a permutation with ce cycles of even length. Since ce is odd, this
permutation is an odd permutation of 2l − 2q elements: σ2l−2q,odd .
Hence, σ2l+1,odd = σ2q+1,even ∪ σ2l−2q,odd . 2

Now we extract the max-positive contributions to (5.1) and put them in apos
k ;

the max-negative contributions to (5.1) are collected in aneg
k . This leads to

apos
1 = ε (5.2)

aneg
1 =

n⊕

i=1

aii (5.3)
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and

apos
2l =

⊕

{i1,i2,... ,i2l}∈ C2l
n

⊕

σ∈P2l,even

2l⊗

r=1

airiσ(r)
(5.4)

aneg
2l =

⊕

{i1,i2,... ,i2l}∈ C2l
n

⊕

σ∈P2l,odd

2l⊗

r=1

airiσ(r)
(5.5)

apos
2l+1 =

⊕

{i1,i2,... ,i2l+1}∈C2l+1
n

⊕

σ∈P2l+1,odd

2l+1⊗

r=1

airiσ(r)
(5.6)

aneg
2l+1 =

⊕

{i1,i2,... ,i2l+1}∈C2l+1
n

⊕

σ∈P2l+1,even

2l+1⊗

r=1

airiσ(r)
(5.7)

for l = 1, 2, . . . ,

⌊
n

2

⌋

where the empty max-algebraic sum
⊕

ϕ∈∅

. . . is equal to

ε by definition.

Proposition 5.2.3 Let A ∈ Rn×nε and let apos
k and aneg

k be defined by (5.4) –

(5.7) for k = 2, 3, . . . , n. Then we have apos
k 6

b k
2 c⊕

r=1

aneg
r ⊗ aneg

k−r for k =

2, 3, . . . , n.

Proof : Let l ∈
{

1, 2, . . . ,

⌊
n

2

⌋}

. First we consider (5.4). The terms of

apos
2l are generated by even permutations of 2l elements. By Lemma 5.2.2 such

permutations can be decomposed into two even permutations of an odd number
of elements or into two odd permutations of an even number of elements. So if
we consider all possible concatenations of two even permutations σ2m+1,even and

σ2l−2m−1,even of an odd number of elements (which corresponds to

l−1⊕

m=0

aneg
2m+1⊗

aneg
2l−2m−1) or two odd permutations σ2p,odd and σ2l−2p,odd of an even number

of elements (which corresponds to

l⊕

p=1

aneg
2p ⊗ aneg

2l−2p), we are sure that we have

included all the terms of apos
2l . In other words, apos

2l 6

2l−1⊕

r=1

aneg
r ⊗ aneg

2l−r . Since

(aneg
r ⊗ aneg

2l−r) ⊕ (aneg
2l−r ⊗ aneg

r ) = aneg
r ⊗ aneg

2l−r for all r, we have

apos
2l 6

l⊕

r=1

aneg
r ⊗ aneg

2l−r . (5.8)
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Now we consider (5.6). The terms of apos
2l+1 are generated by odd permutations

of 2l + 1 elements. Lemma 5.2.2 states that permutations of that sort can be
decomposed into an odd permutation of an even number of elements and an
even permutation of an odd number of elements. Using the same reasoning as
for apos

2l , we find

apos
2l+1 6

l⊕

r=1

aneg
r ⊗ aneg

2l+1−r . (5.9)

If we combine (5.8) and (5.9), we obtain apos
k 6

b k
2 c⊕

r=1

aneg
r ⊗ aneg

k−r for all k. 2

We do not have similar expressions for the aneg
k ’s since some of the generating

permutations for the aneg
k ’s are cyclic permutations, and cyclic permutations

cannot be decomposed into two or more elementary cycles.

When we calculate the coefficients of the MACP of a matrix, we normally
use the simplification rules (2.9) and (2.10) during the calculation. Let k ∈
{1, 2, . . . , n}. In general we only know the max-positive part a⊕

k and the max-
negative part a	

k of ak instead of apos
k and aneg

k . Therefore, we now transform
Proposition 5.2.3 into a property of a⊕

k and a	

k . We can extract a⊕

k and a	

k from
apos
k and aneg

k as follows:

a⊕

k = apos
k and a	

k = ε if apos
k > aneg

k ,

a⊕

k = ε and a	

k = aneg
k if apos

k < aneg
k ,

a⊕

k = apos
k and a	

k = aneg
k if apos

k = aneg
k .

We have ak = apos
k 	 aneg

k = a⊕

k 	 a	

k , apos
k 6 a⊕

k , aneg
k 6 a	

k and |ak|⊕ =

apos
k ⊕ aneg

k = a⊕

k ⊕ a	

k for all k. From Proposition 5.2.1 or from (5.2) it follows
that we always have a⊕

1 = apos
1 = ε and a	

1 = aneg
1 .

Proposition 5.2.4 If A ∈ Rn×nε and if the MACP of A is given by λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

, then we have

a⊕

k 6

b k
2 c⊕

r=1

(a⊕

r ⊕ a	

r )⊗ (a⊕

k−r ⊕ a	

k−r) for k = 2, 3, . . . , n .

Proof : Consider an arbitrary k ∈ {2, 3, . . . , n}. Since a	
r 6 |ar|⊕ for all r,

Proposition 5.2.3 leads to

a⊕

k 6 apos
k 6

b k
2 c⊕

r=1

|ar|⊕ ⊗ |ak−r|⊕
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6

b k
2 c⊕

r=1

(a⊕

r ⊕ a	

r )⊗ (a⊕

k−r ⊕ a	

k−r) . 2

We even have a more stringent property:

Proposition 5.2.5 Let A ∈ Rn×nε and let the MACP of A be given by λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

. For any k ∈ {1, 2, . . . , n} at least one of the following state-

ments holds :

(1) a⊕

k 6

b k
2 c⊕

r=1

a	

r ⊗ a	

k−r

(2) a⊕

k <

b k
2 c⊕

r=2

a⊕

r ⊗ a⊕

k−r

(3) a⊕

k <

k−1⊕

r=2

a⊕

r ⊗ a	

k−r .

Proof : Consider an arbitrary k ∈ {2, 3, . . . , n}. By Proposition 5.2.3 there

exists an index s ∈
{

1, 2, . . . ,

⌊
k

2

⌋}

such that a⊕

k 6 apos
k 6 aneg

s ⊗ aneg
k−s . We

have either aneg
s = a	

s or aneg
s < a⊕

s , and either aneg
k−s = a	

k−s or aneg
k−s < a⊕

k−s.

This means that at least one of the following inequalities holds:

(1) a⊕

k 6 a	

s ⊗ a	

k−s 6

b k
2 c⊕

r=1

a	

r ⊗ a	

k−r

(2) a⊕

k < a⊕

s ⊗ a⊕

k−s 6

b k
2 c⊕

r=2

a⊕

r ⊗ a⊕

k−r

(3) a⊕

k < a	

s ⊗ a⊕

k−s ⊕ a⊕

s ⊗ a	

k−s 6

k−1⊕

r=2

a⊕

r ⊗ a	

k−r .

Note that in the max-algebraic sums of (2) and (3) we start from r = 2 instead
of r = 1 since a⊕

1 = ε. 2

Propositions 5.2.4 and 5.2.5 give necessary conditions for the coefficients of a
max-algebraic polynomial to be the MACP of a matrix with entries in Rε.
For max-algebraic polynomials of degree greater than or equal to 4, we have
the following extra necessary conditions:
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Proposition 5.2.6 Let A ∈ Rn×nε with n > 4 and let λ⊗
n ⊕

n⊕

k=1

ak⊗λ⊗
n−k

be

the MACP of A. Then the coefficients of this max-algebraic polynomial always
fall into exactly one of the following three cases:

Case A: a⊕

4 6 a	

1 ⊗ a	

3 or a⊕

4 < a	

1 ⊗ a⊕

3 ,

Case B: a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 and a⊕

4 6 a	

2 ⊗ a	

2 and

( a	

1 = ε or a⊕

2 = ε or a	

4 = a⊕

4 ) ,

Case C: a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 and a⊕

4 6 a	

2 ⊗ a	

2 and

a⊕

2 6= ε and a	

4 = ε .

Proof : See Section B.1, where also some additional necessary conditions for
the coefficients of the MACP of a matrix with entries in Rε can be found. 2

5.3 Necessary and Sufficient Conditions for the
Coefficients of the Max-Algebraic Charac-
teristic Polynomial of a Matrix with Entries
in Rε

Now we give some necessary and sufficient conditions for the coefficients of the
MACP of a matrix with entries in Rε and with a dimension that is less than
or equal to 4. If we have a monic max-algebraic polynomial with a degree that
is less than or equal to 4, then the results of this section will enable us to

1. check whether the given max-algebraic polynomial can be the MACP of
a matrix with entries in Rε, and,

2. if the necessary and sufficient conditions are satisfied, construct a matrix
with entries in Rε such that its MACP is equal to the given max-algebraic
polynomial.

For max-algebraic polynomials with a degree that is less than or equal to 4, we
give an analytic description of the matrix we are looking for. For max-algebraic
polynomials with a degree that is greater than 4 we have not yet found sufficient
conditions. But in Section B.4 we shall state a conjecture based on the results
of this section and then use this conjecture to develop a heuristic algorithm
that will in most cases find a matrix with a MACP that is equal to a given
max-algebraic polynomial.

In the next subsections we shall case by case determine necessary and suf-
ficient conditions for

λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k
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to be the MACP of a matrix with entries in Rε and indicate how such a matrix
can be found.
Define

κi,j =







a⊕

j

a	

i

if a	

i 6= ε ,

ε if a	

i = ε ,

for i = 1, 2, . . . , n− 1 and j = i+ 1, i+ 2, . . . , n.

5.3.1 The 1 by 1 Case

Proposition 5.3.1 The only necessary and also sufficient condition for λ⊕ a1

to be the MACP of a 1 by 1 matrix with entries in Rε is a⊕

1 = ε.
The matrix [a	

1 ] has the given max-algebraic polynomial as its MACP.

Proof : By Proposition 5.2.1 the condition a⊕

1 = ε is a necessary. And since
the matrix [a	

1 ] has λ⊕ a1 as its MACP if a⊕

1 = ε, the condition a⊕

1 = ε is also
sufficient. 2

5.3.2 The 2 by 2 Case

Proposition 5.3.2 The necessary and also sufficient conditions for λ⊗
2⊕ a1⊗

λ ⊕ a2 to be the MACP of a 2 by 2 matrix with entries in Rε are

a⊕

1 = ε (5.10)

a⊕

2 6 a	

1 ⊗ a	

1 . (5.11)

The matrix B =

[
a	

1 a	

2

0 κ1,2

]

has the given max-algebraic polynomial as its

MACP.

Proof : By Propositions 5.2.1 and 5.2.4 the conditions a⊕

1 = ε and a⊕

2 6 a	

1⊗a	

1

are necessary.
Now we show that the conditions (5.10) – (5.11) are sufficient by proving that
if these conditions are satisfied then the matrix B has the given max-algebraic
polynomial as its MACP.
If a⊕

2 6 a	

1 ⊗ a	

1 then we always have κ1,2 6 a	

1 since

κ1,2 =







a⊕

2

a	

1

6 a	

1 if a	

1 6= ε ,

ε 6 a	

1 if a	

1 = ε .
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If a⊕

2 6 a	

1 ⊗ a	

1 holds then a	

1 = ε implies that a⊕

2 = ε and thus also κ1,2 = ε.
Now we prove that a	

1 ⊗ κ1,2 = a⊕

2 . We have

a	

1 ⊗ κ1,2 =







a	

1 ⊗
a⊕

2

a	

1

= a⊕

2 if a	

1 6= ε ,

ε⊗ ε = ε = a⊕

2 if a	

1 = ε .

If λ⊗
2 ⊕ b1 ⊗ λ ⊕ b2 is the MACP of B then we have

b1 = 	a	

1 	 κ1,2 = 	a	

1 = a1

b2 = a	

1 ⊗ κ1,2 	 a	

2 = a⊕

2 	 a	

2 = a2 .

Hence, B has the given max-algebraic polynomial as its MACP. 2

5.3.3 The 3 by 3 Case

Proposition 5.3.3 The necessary and also sufficient conditions for λ⊗
3⊕ a1⊗

λ⊗
2 ⊕ a2⊗ λ ⊕ a3 to be the MACP of a 3 by 3 matrix with entries in Rε are

a⊕

1 = ε (5.12)

a⊕

2 6 a	

1 ⊗ a	

1 (5.13)

a⊕

3 6 a	

1 ⊗ a	

2 or a⊕

3 < a	

1 ⊗ a⊕

2 . (5.14)

The matrix B =





a	

1 a	

2 a	

3

0 κ1,2 κ1,3

ε 0 ε



 has the given max-algebraic polynomial

as its MACP.

Proof : By Propositions 5.2.1 and 5.2.5 the conditions are necessary.

Assume that λ⊗
3 ⊕ b1 ⊗ λ⊗

2 ⊕ b2λ ⊕ b3 is the MACP of B and that the
conditions (5.12) – (5.14) are satisfied.
From the proof of Proposition 5.3.2 we already know that κ1,2 6 a	

1 and a	

1 ⊗
κ1,2 = a⊕

2 . Analogously we can prove that a	

1 ⊗ κ1,3 = a⊕

3 since if (5.14) holds
and if a	

1 = ε, we also have a⊕

3 = ε .

Now we prove that κ1,3 6 a	

2 if a	

2 > a⊕

2 and that κ1,3 < a⊕

2 if a	

2 < a⊕

2 .

If a	

2 > a⊕

2 then (5.14) implies that a⊕

3 6 a	

1 ⊗ a	

2 . Hence,

κ1,3 =







a⊕

3

a	

1

6 a	

2 if a	

1 6= ε ,

ε 6 a	

2 if a	

1 = ε .

On the other hand, if a	

2 < a⊕

2 then (5.14) implies that a⊕

3 < a⊕

2 ⊗ a	

1 . Hence,

a	

1 6= ε and κ1,3 =
a⊕

3

a	

1

< a⊕

2 .
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As a consequence, we always have a⊕

2 	 a	

2 	 κ1,3 = a⊕

2 	 a	

2 .

This leads to the following expressions for the coefficients of the MACP of B:

b1 = 	a	

1 	 κ1,2 = 	a	

1 = a1

b2 = a	

1 ⊗ κ1,2 	 a	

2 	 κ1,3 = a⊕

2 	 a	

2 	 κ1,3 = a⊕

2 	 a	

2 = a2

b3 = a	

1 ⊗ κ1,3 	 a	

3 = a⊕

3 	 a	

3 = a3 .

Hence, B has the given max-algebraic polynomial as its MACP. 2

5.3.4 The 4 by 4 Case

Proposition 5.3.4 Consider the max-algebraic polynomial

λ⊗
4 ⊕ a1 ⊗ λ⊗

3 ⊕ a2 ⊗ λ⊗
2 ⊕ a3 ⊗ λ ⊕ a4 . (5.15)

Assume that the coefficients of this max-algebraic polynomial satisfy the neces-
sary conditions of Proposition 5.2.6. The (additional) necessary and sufficient
conditions for (5.15) to be the MACP of a 4 by 4 matrix with entries in Rε

are:

a⊕

1 = ε (5.16)

a⊕

2 6 a	

1 ⊗ a	

1 (5.17)

a⊕

3 6 a	

1 ⊗ a	

2 or a⊕

3 < a	

1 ⊗ a⊕

2 (5.18)

for Case A: no extra conditions (5.19)

for Case B: a	

1 ⊗ a⊕

4 6 a	

2 ⊗ a⊕

3 or a	

1 ⊗ a⊕

4 < a	

2 ⊗ a	

3 (5.20)

for Case C: a	

1 ⊗ a⊕

3 = a	

2 ⊗ a⊕

2 and a	

1 ⊗ a⊕

4 = a	

2 ⊗ a⊕

3 . (5.21)

If these necessary and sufficient conditions are satisfied, the following matrices
have the given max-algebraic polynomial as their MACP :

BA =







a	

1 a	

2 a	

3 a	

4

0 κ1,2 κ1,3 κ1,4

ε 0 ε ε
ε ε 0 ε







for Case A ,

BB =







a	

1 a	

2 a	

3 a	

4

0 κ1,2 κ1,3 ε
ε 0 ε κ2,4

ε ε 0 ε







for Case B ,

BC =







a	

1 a	

2 ε ε
0 ε ε ε
ε 0 κ2,3 κ2,4

ε ε 0 ε







for Case C .

Proof : See Section B.2. 2
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Let us now illustrate the properties of this and the previous section with some
examples.

Example 5.3.5 Consider the monic max-algebraic polynomial λ⊗
4	 3⊗λ⊗

3	
4⊗ λ⊗

2 	 8⊗ λ ⊕ 12 .
We have

a⊕

4 = 12 > 11 = 3⊗ 8 = a	

1 ⊗ a	

3

a⊕

4 = 12 > ε = 3⊗ ε = a	

1 ⊗ a⊕

3

a⊕

4 = 12 > 8 = 4⊗ 4 = a	

2 ⊗ a	

2 .

Since the coefficients do not satisfy the conditions of one of the three possible
cases of Proposition 5.2.6, the given max-algebraic polynomial cannot be the
MACP of a matrix with entries in Rε. 2

Example 5.3.6 Consider λ⊗
4 	 1⊗ λ⊗

3 	 5⊗ λ⊗
2 ⊕ 6⊗ λ ⊕ 8• .

We have

a⊕

4 = 8 > ε = 1⊗ ε = a	

1 ⊗ a	

3

a⊕

4 = 8 > 7 = 1⊗ 6 = a	

1 ⊗ a⊕

3

a⊕

4 = 8 6 10 = 5⊗ 5 = a	

2 ⊗ a	

2

a⊕

2 = ε .

Hence, we are in Case B. The necessary and sufficient conditions of Proposi-
tion 5.3.4 for Case B are fulfilled since

a⊕

1 = ε

a⊕

2 = ε 6 2 = 1⊗ 1 = a	

1 ⊗ a	

1

a⊕

3 = 6 6 6 = 1⊗ 5 = a	

1 ⊗ a	

2

a	

1 ⊗ a⊕

4 = 1⊗ 8 = 9 6 11 = 5⊗ 6 = a	

2 ⊗ a⊕

3 .

The matrix

B =







1 5 ε 8
0 ε 5 ε
ε 0 ε 3
ε ε 0 ε







has the given max-algebraic polynomial as its MACP. 2
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5.4 Construction of Matrices with a Given
Max-Algebraic Characteristic Polynomial

Consider the following problem:

Given a monic max-algebraic polynomial with coefficients in S:

λ⊗
n ⊕

n⊗

k=1

ak ⊗ λ⊗
n−k

, (5.22)

find a matrix B ∈ Rn×nε such that the MACP of B is equal to the given
max-algebraic polynomial.

Let B ∈ Rn×nε and let λ⊗
n ⊕

n⊕

k=1

bk ⊗ λ⊗
n−k

be the MACP of B. Note that

we always have b1 ∈ S	. So if a1 6∈ S	 then (5.22) cannot be the MACP of a
matrix with entries in Rε.
Consider the formulas (5.2) – (5.7) for the max-positive contribution bpos

k and
the max-negative contribution bneg

k to bk for k = 1, 2, . . . , n. The expressions
for the bpos

k ’s and the bneg
k ’s are max-algebraic sums of max-algebraic products

of entries of B. So these expressions are in fact multivariate max-algebraic
polynomial expressions. We have to find the entries of the matrix B such that
bpos
k 	 bneg

k = ak for k = 1, 2, . . . , n.

For each k ∈ {1, 2, . . . , n} there are three possible cases:

1. if ak ∈ S⊕, we should have
{
bpos
k = |ak|⊕
bneg
k < |ak|⊕ ,

2. if ak ∈ S	, we should have
{
bpos
k < |ak|⊕
bneg
k = |ak|⊕ ,

3. if ak ∈ S•, we should have
{
bpos
k = |ak|⊕
bneg
k = |ak|⊕ .

Note that it is always possible to transform the strict inequalities into non-strict
inequalities by subtracting a small positive real number δ from the right-hand
side. This leads to a combination of multivariate polynomial equalities and
inequalities in the max-plus algebra with the entries of B as unknowns.

Lemma 5.4.1 Let

λ⊗
n ⊕

n⊗

k=1

ak ⊗ λ⊗
n−k

, (5.23)

be a monic max-algebraic polynomial with coefficients in S. If the coefficients
a1, a2, . . . , an are finite and if there exists a matrix B ∈ Rn×n

ε such that
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the MACP of B is equal to (5.23), there also exists a matrix B̃ ∈ Rn×nε with
finite entries such that the MACP of B̃ is equal to the given max-algebraic
polynomial.

Proof : We have already shown that if (5.23) is the MACP of B the vector
x obtained by putting all the entries of B in a large column vector is a solu-
tion of a system of multivariate max-algebraic polynomial equalities and strict
inequalities with the ak’s as right-hand sides. Assume that the MACP of B

is given by λ⊗
n ⊕

n⊕

k=1

bk ⊗ λ⊗
n−k

. Let bpos
k and bneg

k be the value of respec-

tively the max-positive and the max-negative contribution to bk obtained by
evaluating the formulas (5.2) – (5.7) for k = 1, 2, . . . , n. Define

D =
{
|ak|⊕ − b

neg
k

∣
∣ k ∈ {1, 2, . . . , n} , ak ∈ S

⊕ and bneg
k 6= ε

}
∪

{
|ak|⊕ − b

pos
k

∣
∣ k ∈ {1, 2, . . . , n} , ak ∈ S

	 and bpos
k 6= ε

}
∪
{

1
}

and d = minD. Note that d > 0. Now we have

bpos
k = |ak|⊕ and bneg

k 6 |ak|⊕ − d if ak ∈ S
⊕ ,

bpos
k 6 |ak|⊕ − d and bneg

k = |ak|⊕ if ak ∈ S
	 ,

bpos
k = |ak|⊕ and bneg

k = |ak|⊕ if ak ∈ S• ,

for every k ∈ {1, 2, . . . , n}.
So the vector x is also a solution of a system S of multivariate max-algebraic
polynomial equalities and non-strict inequalities. Since d and the coefficients
a1, a2, . . . , an are finite, the right-hand sides of S are also finite. From Proposi-
tion 4.1.4 it follows that S also has a solution x̃ with finite components. There-
fore, there exists a matrix B̃ ∈ Rn×nε with finite entries and with a MACP that
is equal to (5.23). 2

Hence, the problem of finding a matrix B with a given MACP can also be
reformulated as an ELCP and solved with the ELCP algorithm of Section 3.4.
If we do not find a solution then our estimate of δ was too large. In that case
we have to decrease δ and repeat the procedure.
If the given max-algebraic polynomial has degree n, the resulting homogeneous
ELCP has n2 +1 variables: the entries of the matrix B and an extra variable α
to make the ELCP homogeneous (cf. Section 3.2.2). The number of inequalities
of the ELCP will grow very rapidly as the degree of the given max-algebraic
polynomial grows: in a straightforward implementation (without removal of
redundant inequalities) the number N(n) of inequalities of the ELCP that
corresponds to a max-algebraic polynomial of degree n is given by

N(n) = n+ 1 +
n∑

k=2

n!

(n− k)! .
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We have e(n! − n) 6 N(n) 6 en! + 1. Since in general the execution time of
the ELCP algorithm of Section 3.4 depends more or less exponentially on the
number of variables and polynomially on the number of inequalities, this means
that the ELCP approach in connection with our ELCP algorithm cannot be
used in practice to construct a matrix with a given MACP.

In Section B.4 we shall present a heuristic algorithm to find a matrix with a
given MACP. Note however that this heuristic algorithm will not always yield
a result, even if one exists. Since not every monic nth degree max-algebraic
polynomial with coefficients in S will be the MACP of a matrix with entries in
Rε, it is advisable to determine whether a solution can exist before starting the
algorithm, i.e. we should first check whether the coefficients of the given max-
algebraic polynomial satisfy the necessary conditions of Sections 5.2 and 5.3.

5.5 Conclusions

In this chapter we have derived some necessary conditions for the coefficients of
the max-algebraic characteristic polynomial of a matrix with entries in Rε. For
matrices with a dimension that is less than or equal to 4 we have also derived
necessary and sufficient conditions for the coefficients of the max-algebraic char-
acteristic polynomial. So if we have a max-algebraic polynomial with a degree
that is less than or equal to 4 then we can check whether this max-algebraic
polynomial can be the max-algebraic characteristic polynomial of a matrix with
entries in Rε and construct such a matrix, if it exists. For square matrices with
a dimension that is greater than 4 we have not yet found necessary and sufficient
conditions for the coefficients of the max-algebraic characteristic polynomial.

Furthermore, we have also shown that the problem of constructing a matrix
with a given max-algebraic characteristic polynomial can be reformulated as
an ELCP. However, since the size of the resulting ELCP is enormous even for
max-algebraic polynomials with a small degree, this approach is not workable
in practice.



Chapter 6

State Space
Transformations and State
Space Realization for
Max-Linear Time-Invariant
Discrete Event Systems

After introducing some definitions in Section 6.1, we discuss state space trans-
formations for max-linear time-invariant discrete event systems in Section 6.2.
We also show how the ELCP can be used to compute these state space trans-
formations. In order to analyze systems it is advantageous to have a compact
description. Therefore, and also because it is one of the fundamental open
problems in max-linear system theory for discrete event systems, we address
the minimal state space realization problem for max-linear time-invariant dis-
crete event systems. The aim of the minimal state space realization problem
for a max-linear time-invariant discrete event system is to find a max-algebraic
state space model of minimal size of the impulse response of the system. In
Section 6.3 we present a procedure to determine the minimal system order of
a max-linear time-invariant discrete event system given its impulse response.
We show how the ELCP can be used to solve the problem of finding all fixed
order partial state space realizations and all minimal state space realizations
of a given impulse response. In Section 6.4 we illustrate the techniques of
Sections 6.2 and 6.3 with some worked examples.
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6.1 Introduction

In this section we present some definitions and theorems in connection with
state space models and impulse responses of max-linear time-invariant DESs.

Consider a max-linear time-invariant DES that can be described by the
following nth order state space model:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (6.1)

y(k) = C ⊗ x(k) (6.2)

with A ∈ Rn×nε , B ∈ Rn×mε and C ∈ Rl×nε . We shall characterize a model of
this form by the triple (A,B,C) of system matrices. If the initial condition
x(0) is available then we characterize the model by the 4-tuple (A,B,C, x(0)).
A system with one input and one output is called a single input single output
(SISO) system. A system with more than one input and more than one output
is called a multiple input multiple output (MIMO) system.

Definition 6.1.1 (Equivalent state space realizations) We say that the
triples (A,B,C) and (Ã, B̃, C̃) are equivalent if the corresponding state space
models have the same impulse response, i.e. if

C ⊗A⊗
k ⊗B = C̃ ⊗ Ã⊗

k ⊗ B̃ for all k ∈ N .

Two 4-tuples (A,B,C, x(0)) and (Ã, B̃, C̃, x(0)) are called equivalent if the cor-
responding state space models have the same input-output behavior for the given
initial condition, i.e. if

C ⊗A⊗
k ⊗B = C̃ ⊗ Ã⊗

k ⊗ B̃ and C ⊗A⊗
k ⊗ x(0) = C̃ ⊗ Ã⊗

k ⊗ x̃(0)

for all k ∈ N.

Note that if (A,B,C, x(0)) and (Ã, B̃, C̃, x̃(0)) are two state space realizations
of a max-linear time-invariant DES then the matrices A and Ã do not neces-
sarily have the same size.

Definition 6.1.2 (Ultimately geometric impulse response)
Let {Gk}∞k=0 be the impulse response of a max-linear time-invariant DES. If

∃k0 ∈ N, ∃c ∈ N0, ∃λ ∈ Rε such that ∀k > k0 : Gk+c = λ⊗
c ⊗Gk , (6.3)

then we say that the impulse response {Gk}∞k=0 is ultimately geometric.

The term “ultimately geometric” was introduced by Gaubert in [56, 58]. Note
that “geometric” has to be understood in the max-algebraic sense: the Markov
parameters are max-multiplied by a constant factor.
If G = {Gk}∞k=0 is an ultimately geometric sequence then the smallest possible
c for which (6.3) holds is called the period of G.
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Suppose that we have a DES that can be characterized by a triple (A,B,C).
A sufficient but not necessary condition for the impulse response of this DES
to be ultimately geometric is that A is irreducible (cf. Theorem 2.2.8). This
will e.g. be the case for a DES without separate independent subsystems and
with a cyclic behavior or with feedback from the output to the input (such
as e.g. a flexible production system in which the parts are carried around on
a limited number of pallets that circulate in the system [20]). As was shown
in Example 2.4.1 ultimately geometric behavior can also occur if the system
matrix A is not irreducible.

In general, the impulse response of a max-linear time-invariant DES can be
characterized by the following theorem:

Theorem 6.1.3 If {Gk}∞k=0 is the impulse response of a max-linear time-
invariant DES with m inputs and l outputs then

∀i ∈ {1, 2, . . . , l} ,∀j ∈ {1, 2, . . . ,m} ,∃c ∈ N0,

∃λ1, λ2, . . . , λc ∈ Rε,∃k0 ∈ N such that ∀k > k0 :

(Gkc+c+s−1)ij = λs
⊗
c ⊗ (Gkc+s−1)ij for s = 1, 2, . . . , c . (6.4)

Proof : This is a direct consequence of e.g. Corollary 1.1.9 of [54, p. 166] or
of Proposition 1.2.2 of [56] (See also Section C.1). 2

If a sequence G = {Gk}∞k=0 exhibits a behavior of the form (6.4) then we say
that the sequence G is ultimately periodic.

Proposition 6.1.4 A sequence G = {Gk}∞k=0 with Gk ∈ Rl×mε for all k is the
impulse response of a max-linear time-invariant DES if and only if it is an
ultimately periodic sequence.

Proof : A proof of this proposition for SISO systems can be found in e.g. [3,
54, 54].
For MIMO systems the “only if” part corresponds to Theorem 6.1.3. Therefore,
we only have to prove the “if” part. Consider arbitrary indices i ∈ {1, 2, . . . , l}
and j ∈ {1, 2, . . . ,m}. Since G is ultimately periodic, the sequence gij =
{(Gk)ij}∞k=0 is also ultimately periodic. From the first part of this proof, it fol-
lows that gij is the impulse response of a max-linear time-invariant SISO DES.
Let (Aij , Bij , Cij) be a realization of this system. If we repeat this reasoning
for all pairs of indices (i, j) with i ∈ {1, 2, . . . , l} and j ∈ {1, 2, . . . ,m} and if
define block matrices A, B, C such that

A =















A11 ε . . . ε ε . . . ε
ε A12 . . . ε ε . . . ε
...

...
. . .

...
...

...
ε ε . . . A1m ε . . . ε
ε ε . . . ε A21 . . . ε
...

...
...

...
. . .

...
ε ε . . . ε ε . . . Alm














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B =

















B11 ε . . . ε
ε B12 . . . ε
...

...
. . .

...
ε ε . . . B1m

B21 ε . . . ε
ε B22 . . . ε
...

...
...

ε ε . . . Blm

















C =








C11 C12 . . . C1m ε ε . . . ε
ε ε . . . ε C21 C22 . . . ε
...

...
...

...
...

...
ε ε . . . ε ε ε . . . Clm








,

then (A,B,C) is a realization of G. 2

If G = {Gk}∞k=0 is the impulse response of time-invariant max-linear DES then
we call the (semi-infinite) block Hankel matrix

H(G)
def
=








G0 G1 G2 . . .
G1 G2 G3 . . .
G2 G3 G4 . . .
...

...
...

. . .








the (block) Hankel matrix that corresponds to the impulse response G. This
matrix will play an important role in the procedures to determine lower and
upper bounds for the minimal system order (See Section 6.3.1).

Definition 6.1.5 (Max-algebraic weak column rank) Let A ∈ Rm×n
ε . If

A 6= εm×n then the max-algebraic weak column rank of A is defined by

rank⊕,wc (A) = min
{

#I
∣
∣
∣ I ⊆ {1, 2, . . . , n} and ∀k ∈ {1, 2, . . . , n} ,

∃l ∈ N0, ∃i1, i2, . . . , il ∈ I, ∃α1, α2, . . . , αl ∈ Rε

such that A.,k =

l⊕

j=1

αjA.,ij

}

.

If A = εm×n then we have rank⊕,wc (A) = 0.

A more formal definition of the max-algebraic weak column rank of a matrix
can be found in e.g. [54, 56]. Efficient methods to compute the max-algebraic
weak column rank of a matrix are described in [33, 35, 54].
If A ∈ Rm×n

ε then we have rank⊕ (A) 6 rank⊕,wc (A).
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Example 6.1.6 Consider the matrix

A =







0 2 ε 0
7 9 3 7
ε 5 6 9
2 4 0 3







.

It is obvious that the first column of A cannot be written as a max-linear com-
bination of the other columns of A. This also holds for the third column of A.
However, the second and the fourth column of A are max-linear combinations
of the first and the third column:

A.,2 = 2⊗A.,1 ⊕ (−1)⊗A.,3 and A.,4 = A.,1 ⊕ 3⊗A.,3 .

This implies that I = {1, 3} is a minimal set of column indices such that every
column of A can be written as a max-linear combination of the columns that
are indexed by I. Hence, rank⊕,wc (A) = 2. 2

6.2 Transformation of State Space Models

In this section we present some theorems and propositions in connection with
max-algebraic state space transformations. We shall again encounter these
theorems and propositions when we look at the set of all the equivalent state
space realizations of a given impulse response in Example 6.4.1.

If the 4-tuples (A,B,C,ε) and (Ã, B̃, C̃,ε) are equivalent, then the triples
(A,B,C) and (Ã, B̃, C̃) are also equivalent. This means that all the theorems
and propositions on equivalent 4-tuples of this section can also be reformulated
for equivalent triples.

Proposition 6.2.1 (Max-algebraic similarity transformation) Let T ∈
Rn×nε be max-invertible. If (A,B,C, x(0)) is an nth order state space realization

of a max-linear time-invariant DES then (T⊗A⊗T⊗
−1
, T⊗B, C⊗T⊗

−1
, T⊗

x(0)) is an equivalent realization.

Proof : Consider an arbitrary k ∈ N. We have

(

C ⊗ T⊗
−1
)

⊗
(

T ⊗A⊗ T⊗
−1
)⊗

k

⊗
(

T ⊗B
)

= C ⊗ T⊗
−1 ⊗ T ⊗A⊗

k ⊗ T⊗
−1 ⊗ T ⊗B

= C ⊗A⊗
k ⊗B .

Using a similar reasoning we also find

(

C ⊗ T⊗
−1
)

⊗
(

T ⊗A⊗ T⊗
−1
)⊗

k

⊗
(

T ⊗ x(0)
)

= C ⊗A⊗
k ⊗ x(0) .
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Hence, (A,B,C, x(0)) and (T ⊗ A ⊗ T⊗
−1
, T ⊗ B, C ⊗ T⊗

−1
, T ⊗ x(0)) are

equivalent realizations. 2

Corollary 6.2.2 If (A,B,C, x(0)) is a state space realization of a max-linear
time-invariant DES then the 4-tuple (A, α⊗B, (−α)⊗C, α⊗x(0)) with α ∈ R

is an equivalent realization.

Proof : Apply Proposition 6.2.1 with T = α ⊗ En and thus T⊗
−1

= α⊗
−1 ⊗

En = (−α)⊗ En. 2

The transformation of Proposition 6.2.1 is the max-algebraic equivalent of the
similarity transformation of conventional linear algebra and linear system the-
ory. We can give the following interpretation to max-algebraic similarity trans-
formations. Assume that we have an nth order state space model of the form
(6.1) – (6.2) with a state space vector x. Let T ∈ Rn×n

ε be max-invertible. If
we apply a max-algebraic similarity transformation with T to the given state
space model, then the state space vector x̃ of the resulting state space model
satisfies x̃ = T ⊗ x. By Proposition 2.2.1 the matrix T can be factorized as
T = D⊗P with D a max-algebraic diagonal matrix with finite diagonal entries
and P a max-algebraic permutation matrix. If we define x̂ = P ⊗ x then we
have x̃ = D ⊗ x̂. Right max-multiplication of x by the permutation matrix P
corresponds to a permutation of the components of x. In conventional algebra
we have x̃i = x̂i + dii for i = 1, 2, . . . , n. So the D matrix corresponds to a
translation of the origin of the state space. Hence, a max-algebraic similarity
transformation corresponds to a permutation of the coordinates followed by a
translation of the origin of the state space.

Since the class of max-invertible matrices is rather limited, max-algebraic
similarity transformations have a limited scope. For linear time-invariant sys-
tems all the minimal state space realizations are related by similarity trans-
formations [86]. However, in Example 6.4.1 we shall show that in general two
arbitrary minimal state space realizations of a given max-linear time-invariant
DES are not always related by max-algebraic similarity transformations.

The class of invertible matrices in Smax can also be characterized as the
set of all the matrices that can be written as the max-algebraic product of a
max-algebraic diagonal matrix with finite diagonal entries and a max-algebraic
permutation matrix. So if we transfer the problem to Smax, we are not much
better off either. Furthermore, an approach based on Smax has two other major
drawbacks. First of all we get balances instead of equalities in Smax. Moreover,
it is not trivial to find a similarity transformation such that the resulting system
matrices will have entries that belong to Rε. This means that in general we
cannot transfer the results back to Rmax.

Therefore, we now present a method to perform state space transforma-
tions that is entirely based on Rmax. A part of this approach — the L-
transformations — was hinted at but not proved in [109]. We extend it such
that the dimension of the state space vector can change. We also add another
type of transformations: the M -transformations.
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Theorem 6.2.3 (L-transformation) Let the triple (A,B,C, x(0)) be an nth
order state space realization of a max-linear time-invariant DES. Let L ∈ Rp×n

ε

be a common factor of A and C such that A = Â ⊗ L and C = Ĉ ⊗ L. Then
the 4-tuple (Ã, B̃, C̃, x̃(0)) with

Ã = L⊗ Â, B̃ = L⊗B, C̃ = Ĉ and x̃(0) = L⊗ x(0) (6.5)

is an equivalent realization.

Proof : Consider an arbitrary k ∈ N. We have

C̃ ⊗ Ã⊗
k ⊗ B̃ = Ĉ ⊗

(

L⊗ Â
)⊗

k

⊗ L⊗B

= Ĉ ⊗ L⊗
(

Â⊗ L
)⊗

k

⊗B

= C ⊗A⊗
k ⊗B .

Analogously, we find C̃ ⊗ Ã⊗
k ⊗ ˜x(0) = C ⊗A⊗

k ⊗ x(0) .
This means that (A,B,C, x(0)) and (Ã, B̃, C̃, x̃(0)) are equivalent state space
realizations. 2

We can also use the dual of this theorem:

Theorem 6.2.4 (M-transformation) Let the triple (A,B,C, x(0)) be an nth
order state space realization of a max-linear time-invariant DES. Let M ∈ Rn×p

ε

be a common factor of A, B and x(0) such that A = M ⊗ Â, B = M ⊗ B̂ and
x(0) = M ⊗ x̂(0). Then the 4-tuple (Ã, B̃, C̃, x̃(0)) with

Ã = Â⊗M, B̃ = B̂, C̃ = C ⊗M and x̃(0) = x̂(0)

is an equivalent realization.

If we are considering triples instead of 4-tuples — i.e. if we are considering
equivalent realizations of an impulse response — we do not have to include the
condition x(0) = M ⊗ x̂(0) = M ⊗ x̃(0) when we determine M since we always
have εn×1 = M ⊗ εp×1.
Let (A,B,C, x(0)) be an nth order state space realization of a max-linear time-
invariant DES. To obtain another state space realization of the given system,
we try to find a factorization

[
A
C

]

=

[
Â

Ĉ

]

⊗ L or
[
A B x(0)

]
= M ⊗

[

Â B̂ x̂(0)
]

with L ∈ Rp×nε or M ∈ Rn×pε . These matrix factorizations can be considered as
systems of multivariate max-algebraic equalities with the entries of Â, Ĉ and
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L, or Â, B̂, x̂(0) and M as unknowns (cf. Section 4.2.1). This means that we
can use the ELCP approach to determine Â, Ĉ and L or Â, B̂, x̂(0) and M .

Even if p = n, the matrices L and M are not necessarily max-invertible.
So in general L-transformations and M -transformations are not max-algebraic
similarity transformations. However, L-transformations and M -transforma-
tions can be considered as a generalization of max-algebraic similarity trans-
formations since if L is max-invertible then (6.5) results in

Ã = L⊗A⊗ L⊗
−1
, B̃ = L⊗B, C̃ = C ⊗ L⊗

−1
and x̃(0) = L⊗ x(0) ,

and since an analogous result holds for M -transformations if M is max-invert-
ible.

If p = n then L or M will be square and then the 4-tuple (Ã, B̃, C̃, x̃(0))
will also be an nth order realization. If we take a rectangular L or M matrix,
we can change the dimension of the state space vector and get a pth order state
space model. It is obvious that p always has to be greater than or equal to the
minimal system order since otherwise it is impossible to find a common factor
of A and C or of A, B and x(0).

Suppose that we can transform the 4-tuple (A1, B1, C1, x1(0)) into the 4-
tuple (A2, B2, C2, x2(0)) with an L-transformation. Then it follows from (6.5)
that

[
A2 B2 x2(0)

]
= L⊗

[

Â B̂ x̂(0)
]

where B̂ = B1 and x̂(0) = x1(0). Furthermore,

A1 = Â⊗ L and C1 = Ĉ ⊗ L = C2 ⊗ L .

This implies that we can go back from (A2, B2, C2, x2(0)) to (A1, B1, C1, x1(0))
by an M -transformation with M = L. Hence, L-transformations and M -
transformations can be considered as inverse transformations. However, in
Example 6.4.1 we shall show that L-transformations and M -transformations in
general do not yield the entire set of all equivalent state space realizations in
one step.

In the next section we demonstrate how the set of all the minimal state
space realizations of a given impulse response can be determined.

6.3 The Minimal State Space Realization Prob-
lem

Consider a max-linear time-invariant DES with m inputs and l outputs that
can be described by an nth order state space model of the form (6.1) – (6.2).
Suppose that the system matrices A, B and C of this system are unknown, and
that we only know the impulse response {Gk}∞k=0. How can we construct A, B
and C from the sequence {Gk}∞k=0? This process is called state space realization.
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If we make the dimension of A minimal, then the dimension of A is equal to
the minimal system order and the triple (A,B,C) is a minimal state space
realization of {Gk}∞k=0. Note that in general a minimal state space realization
is not unique since Corollary 6.2.2 implies that any non-trivial impulse response
has infinitely many equivalent (minimal) state space realizations.

There are several reasons why we study the minimal state space realiza-
tion problem for max-linear time-invariant DESs. First of all this problem is
the max-algebraic equivalent of one of the most elementary problems in lin-
ear system theory. Note however that for max-linear time-invariant DESs this
problem is far more difficult to solve than for linear time-invariant systems.
Apart from further enhancing the system theory for max-linear time-invariant
DESs the solution of the minimal realization problem can also be seen as the
first step towards identification of DESs. Finally the technique presented in
this section can also be used to reduce the order of existing state space models.

The minimal state space realization problem for max-linear time-invariant
DESs has been studied by many authors and for some specific cases the problem
has been solved [35, 36, 54, 56, 115, 116, 122, 133, 146, 147, 148]. Related results
can be found in [151, 152].

If certain conditions are satisfied then there exist efficient algorithms to
compute a minimal state space realization, e.g.

• if the impulse response g = {gk}∞k=0 of a SISO DES exhibits a “uniformly
up-terrace” behavior [146, 147, 148], i.e. if g consists of M subsequences
with lengths n1, n2, . . . , nM and increments c1, c2, . . . , cM respectively
such that

gk+1 = gk + ci for i = 1, 2, . . . ,M and k = ti, . . . , ti + ni − 1 ,

with nM = +∞, t1 = 0 and ti+1 = ti + ni and ci+1 > ci for i =
1, 2, . . . ,M − 1.

• if the impulse response {gk}∞k=0 of a SISO DES has finite Markov parame-
ters and exhibits a “strictly convex” transient behavior and an ultimately
geometric behavior with period 1 [36], i.e. if there exists an integer k0 ∈ N

and a real number λ such that

gk+1 − gk > gk − gk−1 for k = 0, 1, . . . , k0 ,

gk+1 = λ⊗ gk for k = k0, k0 + 1, . . . .

The methods given in [35, 54, 56, 133] do not always yield a minimal realization.
In [115, 116, 122] Olsder uses a transformation from the max-plus algebra to a
ring of sums of exponentials with conventional addition and multiplication as
basic operations (This transformation is related to the mapping that we shall
present in Section 7.2). Next he solves the realization problem in conventional
algebra and transforms the results back to the max-plus algebra. However,
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it is not always obvious how and whether a realization can be constructed
that can be mapped back to a realization with entries in Rε (instead of S

(cf. Section 7.2)). Note that this problem is related to the case of max-algebraic
similarity transformations with entries that belong to S: in that case it is
also not trivial to obtain a realization with entries that belong to Rε (See
Section 6.2).

In this section we shall present a method that will always result in a min-
imal state space realization. If we use the ELCP algorithm of Section 3.4 to
solve the resulting ELCP, we can — at least theoretically — compute all the
minimal state space realizations of a given impulse response. Moreover, our
method works for both SISO and MIMO systems. However, the major draw-
back of our method is that at this moment there are no efficient, polynomial
time algorithms available to solve some of the subproblems encountered in this
approach.

Let G = {Gk}∞k=0 be an ultimately periodic sequence with Gk ∈ Rl×mε for
all k. So by Proposition 6.1.4 G is the impulse response of a max-linear time-
invariant DES. We shall construct minimal state space realizations of G in three
steps. First we determine a lower bound for the minimal system order; next we
determine all the minimal state space realizations of a finite subsequence of G
(i.e. we solve the partial realization problem) and finally we construct all the
minimal state space realizations of the full sequence.

6.3.1 Determination of the Minimal System Order

We shall use the following lemma the proof of which is trivial:

Lemma 6.3.1 Let A ∈ Rn×nε , B ∈ Rn×mε and C ∈ Rl×nε . If A satisfies an

equation of the form

n⊕

i=0

ai ⊗ A⊗
n−i ∇ εn×n (e.g. its max-algebraic charac-

teristic equation) then the Markov parameters of the DES that corresponds to

the triple (A,B,C) satisfy

n⊕

i=0

ai ⊗Gk+n−i ∇ εl×m for all k ∈ N.

We could use the following theorem [54, 56] to determine a lower bound for the
minimal system order:

Theorem 6.3.2 If G is the impulse response of a time-invariant max-linear
DES, then the max-algebraic minor rank of H(G) is a lower bound for the
minimal system order.

It is still an open question whether it is possible to develop efficient algorithms
to determine the max-algebraic minor rank of a matrix.

Therefore, we now present an alternative method to obtain a lower bound
for the minimal system order. Parts of this method have also been used by
other authors in [35, 133] and in a slightly different form in [116, 122]. Our
main contribution is that we enhance the method by including our results on the
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necessary and/or sufficient conditions of Sections 5.2 and 5.3 for the coefficients
of the MACP of a matrix with entries in Rε.

First we develop this approach for SISO systems. So we have to solve the
following problem:

Given the impulse response g = {gk}∞k=0 of a max-linear time-variant SISO
DES, what is the minimal dimension of the system matrix A over the set
of all state space realizations (A,B,C) of the given impulse response?

We shall use the following proposition:

Proposition 6.3.3 If g is the impulse response of a SISO max-linear time-
invariant DES with minimal system order n and if H = H(g), then we have
det⊕Hαβ ∇ ε for any α ⊆ N0 with #α > n and for any β = {j + 1, j +
2, . . . , j + (#α)} with j ∈ N.

Proof : Let (A,B,C) be an nth order state space realization of g. Since A
is a matrix with entries in Rε, there also exists a signed version of the max-
algebraic characteristic equation of A in which all the coefficients are signed
(See [116] and Section A.1). The Cayley-Hamilton theorem also holds for this
signed version of the max-algebraic characteristic equation. This means that
the columns of H also satisfy an expression of the form

n⊕

i=0

bi ⊗H.,k+n−i ∇ ε∞×1 for all k ∈ N0

where the coefficients b1, b2, . . . , bn are signed and where b0 = 0. Hence, every
system of max-linear balances of the form Hαβ ⊗ v ∇ ε∞×1 with α ⊆ N0 and
#α > n and with β = {j + 1, j + 2, . . . , j + (#α)} and j ∈ N has at least

one non-trivial signed solution, namely
[
bn bn−1 . . . b0 ε . . . ε

]T
.

Hence, it follows from Theorem 2.3.15 that det⊕Hαβ∇ ε. 2

Note that Proposition 6.3.3 is in fact a direct consequence of Theorem 6.3.2.
However, we have given a separate proof for this proposition since the reasoning
given in this proof will be used in the alternative procedure to obtain a lower
bound for the minimal system order.
Let M be a p by q matrix. If α ⊆ {1, 2, . . . , p} and if β = {j+1, j+2, . . . , j+l}
for some j ∈ N and some l ∈ N0 with j 6 q − 1 and l 6 q − j, then Mαβ is
called a consecutive column submatrix of M . So Proposition 6.3.3 states that
the dimension of the largest square consecutive column submatrix of H(g) that
has a non-balanced max-algebraic determinant is less than or equal to the
minimal system order. We represent this dimension by rank⊕,cc (H(g)):

Definition 6.3.4 (Max-algebraic consecutive column rank)
Let P ∈ Sm×n. The max-algebraic consecutive column rank of P , denoted by
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rank⊕,cc (P ), is the dimension of the largest square consecutive column subma-
trix of P that has a max-algebraic determinant that is not balanced:

rank⊕,cc (P ) = max
{

#γ
∣
∣ γ ⊆ N0, 1 6 #γ 6 min(m,n) with

∃j ∈ {0, 1, . . . , n− (#γ)} such that det⊕ Pγδ∇/ ε

where δ = {j + 1, j + 2, . . . , j + (#γ)}
}

where max ∅ is equal to 0 by definition.

Let P ∈ Sm×n. We could also define the max-algebraic consecutive row
rank of P , rank⊕,cr (P ). However, in this section we only determine ranks
of Hankel matrices, which are symmetric, and therefore we only need the max-
algebraic consecutive column rank: if P = P T then rank⊕,cc (P ) = rank⊕,cr (P ).
Note that in general we have rank⊕,cc (P ) 6= rank⊕,cr (P ) and rank⊕,cc (P ),
rank⊕,cr (P ) 6 rank⊕ (P ).

Let H = H(g). Suppose that the max-algebraic characteristic equation of

the unknown system matrix A is given by

n⊕

i=0

ai ⊗ λ⊗
n−i∇ ε . As a direct

consequence of Theorem 5.1.3 and Lemma 6.3.1, we have

n⊕

i=0

ai ⊗H.,k+n−i ∇ ε∞×1 for all k ∈ N0 . (6.6)

To determine a lower bound for the minimal system order we try to find a
relation of the form (6.6) among the columns of H with a minimal number of
terms. This number of terms will be a first estimate of the lower bound for the
minimal system order. Since we know that the entries of the system matrix A
belong to Rε, we look for coefficients that correspond to a matrix with entries
in Rε. So the ai’s should satisfy the necessary and/or sufficient conditions of
Sections 5.2 and 5.3.

This leads to the following procedure to determine a lower bound r for
the minimal system order of the max-linear time-invariant SISO DES that
corresponds to a given ultimately periodic sequence g = {gk}∞k=0:

First we construct a p by q Hankel matrix

H̃ =








g0 g1 . . . gq−1

g1 g2 . . . gq
...

...
. . .

...
gp−1 gp . . . gp+q−2








with p and q large enough: p, q � n, where n is the real (but unknown)
minimal system order. If we do not take p and q large enough, the lower
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bound that we shall obtain will still be less than or equal to the minimal
system order. Note that H̃ is a submatrix of H(g).
Now we try to find r and a0, a1, . . . , ar such that the columns of H̃ satisfy
an expression of the form

r⊕

i=0

ai ⊗ H̃.,k+r−i ∇ ε∞×1 for k = 1, 2 . . . , q − r . (6.7)

We start with r equal to rank⊕,cc (H̃). Let H̃γδ be an r by r consecutive

column submatrix of H̃ such that det⊕ H̃γδ∇/ ε. Assume that δ = {j+1, j+
2, . . . , j+ r} with j+ r < q. Let i ∈ {1, 2, . . . , p}\γ and define α = γ∪{i}
and β = δ ∪ {j + r+ 1}. We have det⊕ H̃αβ∇ ε. So by Theorem 2.3.15 the
system of homogeneous max-linear balances

H̃αβ ⊗ v ∇ εr+1× 1 (6.8)

has a (signed) solution. We look for a solution v =
[
ar ar−1 . . . a0

]T

that corresponds to the max-algebraic characteristic equation of a matrix
with entries in Rε. An algorithm to compute a non-trivial signed solution
of a system of homogeneous max-linear balances can be found in [54]. Note
that we could also use the ELCP approach to determine all (finite) solutions
of the system of homogeneous max-linear balances (6.8) (cf. Section 4.2.2).
Once we have found a solution of (6.8), we normalize the a0 component
to 0 and then we check if the necessary and/or sufficient conditions of
Sections 5.2 and 5.3 for the coefficients of the MACP of a matrix with
entries in Rε are satisfied. Note that v should not necessarily be a signed
solution: a signed solution would correspond to the signed version of the
max-algebraic characteristic equation.
If we cannot find any solution of (6.8) that satisfies the necessary and/or
sufficient conditions of Sections 5.2 and 5.3, we augment r and repeat the
procedure. Note that even if the necessary conditions are satisfied we do
not necessarily have coefficients that correspond to a matrix with entries
in Rε.
We continue until we get a relation of the form (6.7) among the columns
of H̃.
Since g is ultimately periodic, it corresponds to a max-linear time-invariant
DES. Since we have assumed that p, q � n, this means that we can always
find a relation of the form (6.7) by gradually augmenting r. The r that
results from this procedure is a lower bound for the minimal system order,
since it corresponds to the smallest possible number of terms in a relation
of the form (6.7) among the columns of H̃.

The efficiency of this approach depends on many factors:

• In general, we have rank⊕,cc (H̃) 6 rank⊕ (H̃). However, this does not
necessarily mean that the lower bound of Theorem 6.3.2 is better than
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the lower bound obtained by the procedure presented above, since it
is possible that there does not exist a relation of the form (6.7) with
r = rank⊕ (H̃) terms among the columns of H̃.

• At present, we have to use minor inspection to compute rank⊕ (H̃) and
rank⊕,cc (H̃). This implies that with the current algorithms it takes much

more time to compute rank⊕ (H̃) than to compute rank⊕,cc (H̃) since

there are

(
r

p

)(
r

q

)

minors of size r in H̃ compared to

(
r

p

)

(q + 1− r)
consecutive column submatrices of size r.

• Finally, we have to remark that the algorithm of [54] for solving a system
of homogeneous max-linear balances does not yield all solutions. So if
the solution provided by this algorithm does not satisfy the necessary
conditions for the coefficients of the MACP of a matrix with entries in
Rε, we do not know for sure whether there exists a solution that satisfies
these necessary conditions.
However, (6.8) can be transformed into a system of max-algebraic poly-
nomial equalities and inequalities (cf. Section 4.2.2). Hence, we could use
the ELCP algorithm to find all finite solutions of (6.8) but then it is pos-
sible that from a computational point of view the alternative procedure
to determine a lower bound for the minimal system order is not attractive
any more. Therefore, there certainly is a need for efficient algorithms to
find all solutions of a system of homogeneous max-linear balances.

These remarks clearly illustrate the need for efficient, polynomial time algo-
rithms to solve some basic numerical problems in Rmax and Smax such as com-
puting the max-algebraic minor rank of a matrix or determining all solutions
of a system of homogeneous max-linear balances. The answer to the question
as to which of these two problems can be solved most efficiently determines
which of the two methods to determine a lower bound for the minimal system
order should be preferred.
Furthermore, the results of Chapter 5 should be extended such that necessary
and sufficient conditions for the MACP of a matrix of any size with entries in
Rε are obtained.

If the given impulse response is ultimately geometric, we can use the following
theorem [35, 54, 56] to determine an upper bound for the minimal system order:

Theorem 6.3.5 Let g be the impulse response of a max-linear time-invariant
SISO DES with g 6= {ε}∞k=0. If g is ultimately geometric then the max-algebraic
weak column rank of H(g) is an upper bound for the minimal system order.

A comparison of the upper bound of this theorem and the lower bound of The-
orem 6.3.2, and some illustrative examples can be found in [54, 56]. In [54, 56]
Gaubert has also given a generalization of Theorem 6.3.5 for impulse responses
that are not ultimately geometric (See Section C.3).
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If s is the upper bound for the minimal system order obtained by using Theo-
rem 6.3.5 or its generalization, then there exist efficient methods to construct
an sth order state space realization of the given impulse response [35, 54, 56].

The alternative procedure to determine a lower bounded for the minimal system
order of a max-linear time-invariant SISO DES based on the max-algebraic
characteristic equation can be extended to the MIMO case. Then we have to
find a relation of the form

r⊕

i=0

ai ⊗Gk+r−i ∇ εl×m for all k ∈ N

with a minimal number of terms and with a0 = 0 and where the coefficients
a1, a2, . . . , ar satisfy the necessary and/or sufficient conditions of Sections 5.2
and 5.3 for the coefficients of the MACP of a matrix with entries in Rε.

6.3.2 The Partial State Realization Problem

Now we consider the partial realization problem: we try to determine a realiza-
tion that fits the first N Markov parameters of the sequence G = {Gk}∞k=0 for
some N ∈ N0. Suppose that r is a lower bound for the minimal system order
(obtained e.g. by using one of the techniques discussed in Section 6.3.1). We
have to find A ∈ Rr×rε , B ∈ Rr×mε and C ∈ Rl×rε such that

C ⊗A⊗
k ⊗B = Gk for k = 0, 1, . . . , N − 1 . (6.9)

If we write out the equations of the form (6.9), we get

r⊕

p=1

cip ⊗ bpj = (G0)ij

for i = 1, 2, . . . , l and j = 1, 2, . . . ,m, and

r⊕

p=1

r⊕

q=1

cip ⊗ (A⊗
k
)pq ⊗ bqj = (Gk)ij (6.10)

for i = 1, 2, . . . , l, j = 1, 2, . . . ,m and k = 1, 2, . . . , N − 1.
Since

(A⊗
k
)pq =

r⊕

i1=1

r⊕

i2=1

. . .

r⊕

ik−1=1

api1 ⊗ ai1i2 ⊗ . . .⊗ aik−1q ,

equation (6.10) can be rewritten as

r⊕

p=1

r⊕

q=1

rk−1
⊕

s=1

cip ⊗
r⊗

u=1

r⊗

v=1

auv
⊗
γkpqsuv ⊗ bqj = (Gk)ij (6.11)
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where γkpqsuv is the number of times that auv appears in the sth term of

(A⊗
k
)pq. Note that if auv does not appear in that term we have γkpqsuv = 0

since a⊗
0

= 0 · a = 0, the identity element for ⊗. If we use the fact that
x ⊕ x = x and x ⊗ y 6 x ⊗ x ⊕ y ⊗ y for all x, y ∈ Rε, we can remove many
redundant terms. Suppose that after removing the redundant terms, there are
wkij terms left in (6.11). Note that wkij 6 rk+1.
If we put the entries of A, B and C in one large vector x of length r(r+m+ l),
we have to solve a system of multivariate max-algebraic polynomial equations
of the following form:

r⊕

p=1

r(r+m+l)
⊗

q=1

xq
⊗
δ0ijpq

= (G0)ij (6.12)

wkij⊕

p=1

r(r+m+l)
⊗

q=1

xq
⊗
δkijpq

= (Gk)ij (6.13)

for i = 1, 2, . . . , l, j = 1, 2, . . . ,m and k = 1, 2, . . . , N − 1. If all the impulse
response matrices have finite entries then it follows from Proposition 4.1.4 that
(6.12) – (6.13) always has a finite solution. This solution can be found using
the ELCP approach. If some impulse response matrices have entries that are
equal to ε, we can also use the ELCP approach to solve the system of max-
algebraic polynomial equalities (6.12) – (6.13) if we apply the threshold or the
limit procedure described in Remark 4.1.7. Note that all the exponents in
(6.12) – (6.13) are nonnegative.
Once we have found a solution of (6.12) – (6.13), we extract the entries of the
system matrices A, B and C from x. This results in a partial realization of
the given impulse response. If we do not get any solutions, then r is less than
the minimal system order, i.e. it is not possible to describe the given impulse
response with an rth order state space model. In that case we augment r and
we repeat the above procedure until we finally get a solution.

Now we can characterize the set of all finite partial state space realizations
of a given impulse response:

Proposition 6.3.6 Let r ∈ N. In general the set of all finite rth order partial
state space realizations of the impulse response of a max-linear time-invariant
DES with finite Markov parameters corresponds to the union of faces of a poly-
hedron in the x space, where x is the vector obtained by putting the components
of the system matrices in one large column vector.

The set of all the rth order state space realizations of the first N Markov
parameters of G will be denoted by Rr(G,N). So

Rr(G,N) =
{

(A,B,C)
∣
∣
∣A ∈ Rr×rε , B ∈ Rr×mε , C ∈ Rl×rε and

C ⊗A⊗
k ⊗B = Gk for k = 0, 1, . . . , N − 1

}

.
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6.3.3 Realizations of the Entire Impulse Response

Let r be a lower bound for the minimal system order and suppose thatRr(G,N)
is nonempty for all N ∈ N0. If we want to find all rth order state space
realizations of G, we have to determine lim

N→∞
Rr(G,N). When N becomes

larger and larger, there are two possible situations that can occur:

(1) there exists an index N0 ∈ N0 such that Rr(G,N) = Rr(G,N0) for all
N > N0;

(2) the sequence {Rr(G,N)}∞N=1 does not become stationary after a finite
number of terms.

The first situation typically occurs if G is ultimately geometric. Unfortunately,
it is not obvious how N0 can be determined without explicitly computing
the terms of the sequence {Rr(G,N)}∞N=1. Therefore, we start with an ar-

bitrary integer Ñ ∈ N and we construct the sequence Rr(G, Ñ), Rr(G, Ñ +1),
Rr(G, Ñ+2), . . . and we check whether this sequence becomes stationary from
a certain index Ñ0 on. It is obvious that we have to take our estimate of Ñ large
enough. In practice it appears that we should at least include the transient
behavior and the first cycles of the geometric behavior.

Case (2) occurs if G is not ultimately geometric since then G cannot be
realized by a triple (A,B,C) with an irreducible A matrix. So A has to contain
entries that are equal to ε. Since Rr(G,N) always contains finite elements for
any N ∈ N (under the assumption that all the entries of the Markov parameters
are finite), the sequence {Rr(G,N)}∞N=1 cannot reach its limit after a finite
numbers of terms in this case. However, we can still use the ELCP approach
by applying a limit procedure and by observing how Rr(G,N) evolves as N
goes to∞. In the limit some of the entries of the system matrix A will become
equal to ε. In order to be able to determine to evolution of Rr(G,N) as N goes
to ∞ it is advisable to perform certain normalizations and to sort the extreme
generators and the finite points lexicographically1 before listing them.

Lemma 6.3.7 Consider an arbitrary minimal realization (A,B,C) of the im-
pulse response G of a max-linear time-invariant DES. If L∗(G) is the set of
the smallest possible values for the λs’s in (6.4) and if maxL∗(G) 6= ε, then
maxL∗(G) is equal to the largest max-algebraic eigenvalue of A.

Proof : See Section C.1. 2

Lemma 6.3.8 Consider A ∈ Rn×nε . If λ is the largest max-algebraic eigen-
value of A and if λ 6= ε then there exists a max-invertible matrix T ∈ Rn×n

ε

such that
∥
∥T ⊗A⊗ T⊗

−1∥
∥

⊕
= λ.

Proof : See Section C.2. 2

1A vector x ∈ Rn is lexicographically greater than or equal to a vector y ∈ Rn if and only

if the first non-zero component of x − y is greater than or equal to 0.
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Proposition 6.3.9 Let G be the impulse response of a max-linear time-in-
variant DES, and let L∗(G) be the set of the smallest possible values for the
λs’s in (6.4). Let (A,B,C) be a minimal state space realization of G and let
n be the minimal system order. If λ = maxL∗(G) and if λ 6= ε, then there
exists a max-algebraic similarity transformation that transforms (A,B,C) in

an equivalent state space realization (Ã, B̃, C̃) of G with ‖Ã‖
⊕

= λ, ‖B̃‖
⊕

= 0
and ã11 > ã22 > . . . > ãnn.

Proof : Since (A,B,C) is a minimal state space realization of G, the maximal
max-algebraic eigenvalue of A is equal to λ by Lemma 6.3.7. Furthermore, since
λ 6= ε, B has at least one finite entry. Hence, ‖B‖

⊕
is finite. By Lemma 6.3.8

there exists a max-invertible matrix T such that
∥
∥T ⊗A⊗ T⊗

−1∥
∥

⊕
= λ. If we

define Â = T ⊗A⊗ T⊗
−1

, B̂ = T ⊗B and Ĉ = C ⊗ T⊗
−1

, then (Â, B̂, Ĉ) is a
realization of G by Proposition 6.2.1. We have ‖Â‖

⊕
= λ. Furthermore, ‖B̂‖

⊕

is finite.
Now we define α = ‖B̂‖

⊕
, Ā = Â, B̄ = (−α) ⊗ B̂ and C̄ = α ⊗ Ĉ. By

Corollary 6.2.2 (Ā, B̄, C̄) is also a realization of G. Moreover, ‖Ā‖
⊕

= λ and

‖B̄‖
⊕

= ‖(−α)⊗ B̂‖
⊕

= (−α)⊗ ‖B̂‖
⊕

= (−α)⊗ α = 0.

Finally, we reorder the diagonal entries of Â as follows. Let σ be a permutation
of {1, 2, . . . , n} such that āσ(i)σ(i) > āσ(i+1),σ(i+1) for i = 1, 2, . . . , n− 1. Now
we define a max-algebraic permutation matrix P ∈ Rn×n

ε such that pij = 0 if

j = σ(i) and pij = ε if j 6= σ(i). If we define Ã = P ⊗ Ā ⊗ P⊗
−1

then the

diagonal entries of Ã are sorted in descending order. If we also define B̃ = P⊗B̄
and C̃ = C̄ ⊗ P⊗

−1
, then (Ã, B̃, C̃) is a realization of G by Proposition 6.2.1.

Since the transformation from Ā to Ã and from B̄ to B̃ corresponds to a
permutation of the rows and the columns of Ā and a permutation of the rows
of B̄, we have ‖Ã‖

⊕
= ‖Ā‖

⊕
= λ and ‖B̃‖

⊕
= ‖B̄‖

⊕
= 0. 2

So by applying max-algebraic similarity transformations we can always bring
a minimal state space realization into a normalized form. Therefore, we may
always add the following extra constraints to the system of multivariate max-
algebraic polynomial equalities (6.12) – (6.13) if we are computing minimal state
space realizations:

r⊕

i=1

r⊕

j=1

aij = λ (6.14)

r⊕

i=1

m⊕

j=1

bij = 0 (6.15)

aii > ai+1,i+1 for i = 1, 2, . . . , r − 1 , (6.16)

where λ = maxL∗(G) 6= ε (Note that λ can only be equal to ε if Gk = εl×m
for all k).
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So instead of determining the evolution of Rr(G,N), we determine the evolu-
tion of

Rnor
r (G,N)

def
=
{
(A,B,C) ∈ Rr(G,N)

∣
∣ ‖A‖

⊕
= λ, ‖B‖

⊕
= 0 and

a11 > a22 > . . . > arr
}
.

Once we have determined Rnor
r (G)

def
= lim

N→∞
Rnor
r (G,N), we can reconstruct

the elements of the set Rr(G)
def
= lim

N→∞
Rr(G,N) by applying max-algebraic

similarity transformations to the elements of Rnor
r (G):

Rr(G) =

{(

T ⊗A⊗ T⊗
−1
, T ⊗B,C ⊗ T⊗

−1
)
∣
∣
∣
∣
(A,B,C) ∈ Rnor

r (G) and

T ∈ Rr×rε is max-invertible

}

.

This procedure will be illustrated in Example 6.4.3.
If the above procedure does not yield a realization of the complete impulse

response, we have to augment r and repeat the procedure of Sections 6.3.2
and 6.3.3 until we finally get a solution.

Remark 6.3.10 If we already have a state space realization of the given
impulse response, we could try to use L-transformations or M -transformations
with the lower bound r as the number of rows of L or the number of columns
of M to get a minimal realization. If we do not get any solutions, we could
augment r and repeat the procedure until we would finally get a solution.
However, in Example 6.4.1 we shall show that it is not always possible to
obtain a minimal state space realization in this way: if we use the procedure
described in this remark then it is possible that the system order of the final
solution is greater than the minimal system order. 3

6.3.4 Computational Complexity and Algorithmic As-
pects

As already indicated before, the execution time and the storage space require-
ments of the ELCP algorithm depend on the number of variables and inequal-
ities. For the minimal realization problem the number of variables and in-
equalities grows rapidly when the minimal system order increases or when the
number of Markov parameters that should be considered increases. Therefore,
the ELCP algorithm in its present form is not well suited to solve the minimal
state space realization problem for DESs with a large minimal system order
or with a long and complex transient behavior. Moreover, we are not always
interested in finding all minimal realizations.

Note that we can also apply the normalization technique of Section 6.3.3 if
we compute partial realizations of an ultimately geometric impulse response.
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This will reduce the solution set of the resulting ELCP and it will in general
result in faster execution times for our ELCP algorithm (provided that the
inequalities that correspond to the extra conditions (6.14) – (6.15) are processed
before the inequalities that correspond to the system (6.12) – (6.13)).

Sometimes it is possible to determine the system matrices in two steps.
First we construct the system matrix A starting from the coefficients a1, a2,
. . . , ar that result from the procedure to determine a lower bound r for the
minimal system order. If r is less than or equal to 4, we can use the propositions
of Section 5.3 to construct A. Otherwise, we can use the heuristic algorithm of
Section B.4 to construct A. Once we have determined A, we can determine the
matrices B and C by solving a system of max-algebraic polynomial equalities
that is similar to the system (6.12) – (6.13). However, since the entries of A are
known, the number of variables and inequalities of the corresponding ELCP
will be considerably smaller than the ELCP that would result from the “direct”
approach in which the matrices A, B and C are determined simultaneously.
As a consequence, solving the ELCP for B and C will require far less CPU
time than solving the full ELCP that would result from the direct approach.
However, we shall show in Example 6.4.2 that for some matrices A that have a

MACP that is equal to λ⊗
r ⊕

r⊕

i=1

ai⊗λ⊗
r−i

we cannot find matrices B and C

such that the triple (A,B,C) is a (partial) state space realization of the given
impulse response, even if r is equal to the minimal system order.

Since the method to solve the ELCP is an iterative process where in each
step a new (in)equality is taken into account, we can make use of the special
structure of our problem to speed up the algorithm. To each Markov parameter
there corresponds a group of linear inequalities of the homogeneous ELCP.
After each group we can test whether the impulse responses of the solutions of
the ELCP that corresponds to that group and all the previous groups match
the desired impulse response. If this is the case we do not have to take the other
groups of inequalities into account, since they will automatically be satisfied.
This means that we can start with a small number of Markov parameters and
gradually take more and more groups of inequalities into account. Note that we
do not have to start all over again for each new group since we can continue with
the central and the extreme generators of the solution set of the homogeneous
ELCP that corresponds to the whole of all the previous groups of inequalities.

Since we have one group of inequalities for each Markov parameter that we
take into consideration and since the computational complexity increases as the
number of inequalities grows, it is important to use as few Markov parameters as
possible. But if we take too few Markov parameters, we can get solutions with
an impulse response that does not coincide entirely with the desired impulse
response. In Example 6.4.2 we shall show that in order to obtain a realization
of the first N Markov parameters it is not always necessary to solve the full
system of multivariate max-algebraic polynomial equalities that corresponds
to the sequence G0, G1, . . . , GN−1: sometimes it is sufficient to consider
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the reduced system obtained by removing all the multivariate max-algebraic
polynomial equalities that correspond to one or more Markov parameters of the
sequence G0, G1, . . . , GN−1. However, it is still an open question how we can
determine a minimal set of Markov parameters such that any minimal state
space realization of this minimal set is also a realization of the entire impulse
response.

6.4 Worked Examples

In this section we illustrate the procedure of the previous section with some
examples. For the first example we also give an interpretation of the solution
set of the minimal state space realization problem in terms of the theorems on
state space transformations of Section 6.2. The second and the third example
will show that our ELCP technique can be used to find minimal realizations in
cases that are not covered by the authors cited in Section 6.3.

Example 6.4.1 We consider again the max-linear time-invariant DES of Ex-
ample 1.2.1. This system can be realized by the triple (A,B,C) with

A =





5 ε ε
ε 6 ε

11 12 3



 , B =





2
0
8



 and C =
[
ε ε 3

]
.

We are going to construct all equivalent minimal state space realizations of this
DES starting from its impulse response, which is given by

g = {gk}∞k=0 = 11, 16, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75 . . . .

This impulse response is ultimately geometric since gk+1 = 6⊗gk for all k > 2.
First we determine a lower bound for the minimal system order. Let H = H(g).
Consider the following 8 by 8 submatrix of H:

H̃ = H{1,2,... ,8},{1,2,... ,8} =















11 16 21 27 33 39 45 51
16 21 27 33 39 45 51 57
21 27 33 39 45 51 57 63
27 33 39 45 51 57 63 69
33 39 45 51 57 63 69 75
39 45 51 57 63 69 75 81
45 51 57 63 69 75 81 87
51 57 63 69 75 81 87 93















.

The max-algebraic minor rank of H̃ is equal to 2.
The max-algebraic consecutive column rank of H̃ is also equal to 2. The max-

algebraic determinant of H̃{1,3},{1,2} =

[
11 16
21 27

]

is not balanced. We add
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one row and one column and then we look for a solution of the system of
max-linear balances

H̃{1,2,3},{1,2,3} ⊗ v =





11 16 21
16 21 27
21 27 33



⊗





a2

a1

a0



 ∇ ε3×1 .

If we use the algorithm of [54] to solve this balance and if we normalize the a0

component of the resulting solution, we obtain a0 = 0, a1 = 	6, a2 = 11. This
solution satisfies the necessary and sufficient conditions of Proposition 5.3.2
for the coefficients of the MACP of a 2 by 2 matrix with elements in Rε since
a⊕

1 = ε and a⊕

2 = 11 6 12 = 6⊗ 6 = a	

1 ⊗ a	

1 . This solution also corresponds
to a stable relation among the columns of H̃:

H̃.,k+2 ⊕ 11⊗ H̃.,k = 6⊗ H̃.,k+1 for k = 1, 2, . . . , 6 .

It is easy to verify that this relation also holds for all the columns of the full
matrix H.
So the minimal system order is greater than or equal to 2.
Let us now compute the max-algebraic weak column rank of H in order to
obtain an upper bound for the minimal system order. It is impossible to find
a number α ∈ Rε and an index i ∈ N0 \ {1} such that H.,1 = α ⊗ H.,i. It
is also impossible to find a number β ∈ Rε and an index j ∈ N0 \ {3} such
that H.,3 = β ⊗ H.,j . This implies that rank⊕,wc (H) is greater than 1. We
can express every column of H as a max-linear combination of H.,1 and H.,3:
H.,2 = 5⊗H.,1 ⊕ (−6)⊗H.,3 and H.,k = (6(k−3))⊗H.,3 for all k > 4. Hence,
rank⊕,wc (H) = 2. So the minimal system order is less than or equal to 2 by
Theorem 6.3.5.
This implies that the minimal system order is equal to 2.

Now we consider the sequence {R2(g,N)}∞N=1. If we use the ELCP algo-
rithm of Section 3.4 to solve the system of max-algebraic polynomial equalities
that corresponds to R2(g,N), we get the generators and the finite points of
Table 6.1 and the pairs of maximal cross-complementary subsets of Table 6.2
for any N > 5. Hence, R2(g) = R2(g,N) = R2(g, 5) for all N > 5. This means
that the generators and the finite points of Table 6.1 and the pairs of maximal
cross-complementary subsets of Table 6.2 also describe the set of all 2nd order
state space realizations of g.
If we consider the set R2(g,N) with N < 5, some combinations of the genera-
tors and the finite points only yield a partial realization of the given impulse
response: they only fit the first N Markov parameters.
If we remove all the inequalities that correspond to one or more of the Markov
parameters of the sequence g0, g1, g2, g3, g4 from the ELCP for N = 5, some
combinations of the generators and the finite points of the solution set of the
resulting ELCP do not result in a state space realization of the given impulse
response. Hence, {g0, g1, g2, g3, g4} is a minimal set of Markov parameters such
that any minimal state space realization of this set is also a realization of g.
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X cen X ext X fin

xc
1 xc

2 xe
1 xe

2 xe
3 xe

4 xe
5 xe

6 xf
1 xf

2

a11 0 0 0 0 0 0 0 0 6 5

a12 1 0 −1 0 0 0 0 0 10 10

a21 −1 0 0 −1 0 0 0 0 0 0

a22 0 0 0 0 0 0 0 0 5 6

b1 0 1 0 0 −1 0 0 0 0 0

b2 −1 1 0 0 0 −1 0 0 −4 −6

c1 0 −1 0 0 0 0 −1 0 9 11

c2 1 −1 0 0 0 0 0 −1 15 15

Table 6.1: The generators and the finite points that correspond to the set
R2(g,N) of Example 6.4.1 for N > 5.

s X ext
s X fin

s

1 {xe
1, x

e
2} {xf

1}
2 {xe

1, x
e
2} {xf

2}
3 {xe

1, x
e
4} {xf

2}
4 {xe

1, x
e
5} {xf

1}

s X ext
s X fin

s

5 {xe
2, x

e
3} {xf

1}
6 {xe

2, x
e
6} {xf

2}
7 {xe

3, x
e
5} {xf

1}
8 {xe

4, x
e
6} {xf

2}

Table 6.2: The pairs of maximal cross-complementary subsets of the sets X ext

and X fin of Example 6.4.1 for N > 5.

Any finite minimal realization of g can now be expressed as

x =















a11

a12

a21

a22

b1
b2
c1
c2















= λ1x
c
1 + λ2x

c
2 + κ1x

e
i1

+ κ2x
e
i2

+ xf
j1

(6.17)

for some s ∈ {1, 2, . . . , 8}, λ1, λ2 ∈ R and κ1, κ2 > 0 with xe
i1
, xe
i2
∈ X ext

s and

xf
j1
∈ X fin

s . Expression (6.17) shows that the set of all the finite minimal state
space realizations of g corresponds to the union of 8 faces of a polyhedron in
the x space.

A state space realization for which some of the entries of A, B or C are
infinite can be obtained by allowing some of the coefficients in (6.17) to become
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infinite (if we take care that in this way we do not introduce entries that
are equal to ∞). Since all the exponents of the system of multivariate max-
algebraic polynomial equalities that defines the setR2(g) are nonnegative, there
will never be problems arising from taking negative max-algebraic powers of ε.
The combination ηxe

1 + ηxe
2 + xf

1 with η ∈ R+ of the extreme generators and
the finite point of the ordered pair (X ext

1 ,X fin
1 ) corresponds to

A =

[
6 10− η
−η 5

]

, B =

[
0
−4

]

and C =
[

9 15
]
.

If we take the limit for η going to ∞, we get

A =

[
6 ε
ε 5

]

, B =

[
0
−4

]

and C =
[

9 15
]
,

which also is a realization of g.

Let us now give an interpretation of the central generators and the finite points
of Table 6.1 in terms of the theorems on state space transformations of Sec-
tion 6.2.
Generator xc

1 corresponds to a max-algebraic similarity transformation with

T =

[
0 ε
ε −1

]

. Generator xc
2 corresponds to the equivalence of Corollary 6.2.2

or to a max-algebraic similarity transformation with T =

[
1 ε
ε 1

]

. The triple

that corresponds to xf
2 can be obtained from the triple that corresponds to xf

1

by a max-algebraic similarity transformation with T =

[
ε 4
−6 ε

]

. The set

of combinations of the central generators and one of the finite points of the
solution set of the ELCP:

S =
{
x
∣
∣x = λ1x

c
1 + λ2x

c
2 + xf

1 or x = λ1x
c
1 + λ2x

c
2 + xf

2 with λ1, λ2 ∈ R
}
,

corresponds to a full class of 2nd order state space realizations of g that are
linked by max-algebraic similarity transformations. But in this way we cannot
construct the entire set of all minimal state space realizations since e.g. the
combination xf

1 + xe
1 does not belong to S.

Let (Ai, Bi, Ci) be the realization that corresponds to xf
1 +xe

i for i = 1, 2, 5.
The triple (A1, B1, C1) can be obtained from the triple that corresponds to

xf
1 by an L-transformation with e.g. L =

[
0 4
−6 0

]

, Â =

[
6 9
0 5

]

and

Ĉ =
[

9 15
]
.

The triple (A1, B1, C1) can be obtained from (A2, B2, C2) by an L-transforma-
tion, and (A2, B2, C2) can be obtained from (A5, B5, C5) by an M -transforma-
tion, but it is not possible to transform (A5, B5, C5) into (A1, B1, C1) with an
L-transformation or an M -transformation. So starting from an arbitrary real-
ization, we cannot get the set of all equivalent minimal state space realizations
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in one step by applying L-transformations or M -transformations.
Furthermore, it is also impossible to find an L-transformation or an M -trans-
formation that transforms the original 3rd order state space model into a 2nd
order model. 2

The next example will show that the two-step approach to find a minimal state
space realization of a given impulse response does not always yield a solution,
even if one exists. This example will also show that it is not always necessary to
solve the full system of multivariate max-algebraic polynomial equalities that
corresponds to the first, say N , Markov parameters of the impulse response
{Gk}∞k=0 of a max-linear time-invariant DES in order to obtain a minimal
state space realization of the sequence G0, G1, . . . , GN−1.

Example 6.4.2 Consider a DES that can be described by a max-linear time-
invariant state space model with system matrices

A =





2 ε ε
ε 1 3
0 3 ε



 , B =





1
ε
0



 and C =
[

2 ε 2
]
. (6.18)

The impulse response of this system is:

g = {gk}∞k=0 = 3, 5, 8, 9, 14, 15, 20, 21, 26, 27, 32, 33, . . . .

Since gk+2 = 6⊗gk = 3⊗
2⊗gk for all k > 2, g is an ultimately geometric impulse

response with period 2. Since there are two different alternating increments
in the ultimately geometric behavior: 1 and 5, we cannot use the techniques
of [36, 146, 147, 148] to compute a minimal state space realization of g.
Let H = H(g) and let

H̃ = H{1,2,... ,8},{1,2,... ,8} =















3 5 8 9 14 15 20 21
5 8 9 14 15 20 21 26
8 9 14 15 20 21 26 27
9 14 15 20 21 26 27 32

14 15 20 21 26 27 32 33
15 20 21 26 27 32 33 38
20 21 26 27 32 33 38 39
21 26 27 32 33 38 39 44















.

We have rank⊕ (H̃) = rank⊕,cc (H̃) = 3. The max-algebraic determinant of the

3 by 3 submatrix H̃{1,2,3},{1,2,3} of H̃ is not balanced. If we use the algorithm
of [54] to compute a solution of the system of max-linear homogeneous balances

H̃{1,2,3,4},{1,2,3,4} ⊗







a3

a2

a1

a0






∇ ε4×1
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and if we normalize the a0 component of the result, we obtain

a0 = 0, a1 = 	2, a2 = 	6 and a3 = 8 . (6.19)

This solution satisfies the necessary and sufficient conditions for the coefficients
of the MACP of a 3 by 3 matrix with elements in Rε (cf. Proposition 5.3.3)
since

a⊕

1 = ε

a⊕

2 = ε 6 4 = 2⊗ 2 = a	

1 ⊗ a	

1

a⊕

3 = 8 6 8 = 2⊗ 6 = a	

1 ⊗ a	

2 .

This solution also corresponds to a stable relation among the columns of H̃:

H̃.,k+3 ⊕ 8⊗ H̃.,k = 2⊗ H̃.,k+2 ⊕ 6⊗ H̃.,k+1

for k = 1, 2, . . . , 5 . This relation also holds for all the columns of H.
We have rank⊕,wc (H) = 4. So the upper bound of Theorem 6.3.5 is not tight
for this example.

Let us also use the normalizations (6.14) –(6.16) in this example. Since

gk+2 = 6 ⊗ gk = 3⊗
2 ⊗ gk for all k > 2, the set L∗(g) of the smallest possible

values for the λs’s in (6.4) is given by L∗(g) = {3}. Since it follows from
Lemma 6.3.7 that the largest max-algebraic eigenvalue of the A matrix of any
minimal state space realization of g will be equal to 3, we have

Rnor
3 (g,N) =

{
(A,B,C) ∈ R3(g,N)

∣
∣ ‖A‖

⊕
= 3, ‖B‖

⊕
= 0 and

a11 > a22 > a33

}
.

Now we consider the sequence {Rnor
3 (g,N)}∞N=1. If we use the ELCP algorithm

of Section 3.4 to solve the system of max-algebraic polynomial equalities that
corresponds to Rnor

3 (g,N), we get the extreme generators and the finite points
of Table 6.3 and the pairs of maximal cross-complementary subsets of Table 6.4
for any N > 6. There are no central generators. For N < 6 some solutions
only fit the first N Markov parameters. If we solve the reduced ELCP that
only consists of the inequalities that correspond to subsequence g0, g1, g2, g3,
g5 of g or to the subsequence g0, g1, g2, g4, g5, we obtain the same solutions
as for the sequence g0, g1, . . . , gN−1 with N > 6. If we consider an arbitrary
subset S of S1 = {g0, g1, g2, g3, g5} or S2 = {g0, g1, g2, g4, g5}, then S does not
always result in a realization of the entire impulse response g. Hence, S1 and
S2 are minimal sets of Markov parameters that are needed in order to get a
minimal state space realization of the entire impulse response g.
This shows that it is not always necessary to consider the entire sequence G0,
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X ext

xe
1 xe

2 xe
3 xe

4 xe
5 xe

6 xe
7 xe

8 xe
9 xe

10 xe
11 xe

12

a11 0 0 0 0 0 0 0 0 0 0 0 0

a12 −1 −1 0 0 0 0 0 0 0 0 0 0

a13 −1 0 −1 0 0 0 0 0 0 0 0 0

a21 0 0 0 −1 −1 0 0 0 0 0 0 0

a22 0 0 0 0 0 −1 0 0 0 0 0 0

a23 0 0 0 0 0 0 0 0 0 0 0 0

a31 0 0 0 −1 0 0 −1 0 0 0 0 0

a32 0 0 0 0 0 0 0 0 0 0 0 0

a33 0 0 0 0 0 −1 0 −1 0 0 0 0

b1 −1 0 0 0 0 0 0 0 0 0 0 0

b2 0 0 0 −1 0 0 0 0 −1 0 0 0

b3 0 0 0 −1 0 0 0 0 0 −1 0 0

c1 1 0 0 0 0 0 0 0 0 0 0 0

c2 0 0 0 1 0 0 0 0 0 0 −1 0

c3 0 0 0 1 0 0 0 0 0 0 0 −1

X fin

xf
1 xf

2 xf
3 xf

4 xf
5 xf

6 xf
7 xf

8 xf
9 xf

10

a11 2 2 2 2 2 2 2 2 2 2

a12 3 3 3 2 1 0 0 −1 −1 −2

a13 3 3 2 3 0 1 −1 0 −2 −1

a21 −1 −2 0 −1 2 1 3 2 3 3

a22 1 1 1 1 1 1 1 1 1 1

a23 3 3 3 3 3 3 3 3 3 3

a31 −2 −1 −1 0 1 2 2 3 3 3

a32 3 3 3 3 3 3 3 3 3 3

a33 1 1 1 1 1 1 1 1 1 1

b1 0 0 0 0 0 0 −1 −1 −2 −2

b2 −5 −3 −4 −2 −2 0 −2 0 −2 0

b3 −3 −5 −2 −4 0 −2 0 −2 0 −2

c1 3 3 3 3 3 3 4 4 5 5

c2 3 5 2 4 0 2 0 2 0 2

c3 5 3 4 2 2 0 2 0 2 0

Table 6.3: The generators and the finite points of the set Rnor
3 (g,N) of Exam-

ple 6.4.2 for N > 6.
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s X ext
s X fin

s

1 {xe
1, x

e
2, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9} {xf

5, x
f
7, x

f
9}

2 {xe
1, x

e
2, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10} {xf

6, x
f
8, x

f
10}

3 {xe
1, x

e
2, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
11} {xf

5, x
f
7, x

f
9}

4 {xe
1, x

e
2, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
12} {xf

6, x
f
8, x

f
10}

5 {xe
1, x

e
2, x

e
3, x

e
5, x

e
7, x

e
8, x

e
9, x

e
11} {xf

5, x
f
7, x

f
9}

6 {xe
1, x

e
2, x

e
3, x

e
5, x

e
7, x

e
8, x

e
10, x

e
12} {xf

6, x
f
8, x

f
10}

7 {xe
1, x

e
2, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9, x

e
11} {xf

5, x
f
7, x

f
9}

8 {xe
1, x

e
2, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10, x

e
12} {xf

6, x
f
8, x

f
10}

9 {xe
1, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9, x

e
11} {xf

5, x
f
7, x

f
9}

10 {xe
1, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10, x

e
12} {xf

6, x
f
8, x

f
10}

11 {xe
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9} {xf

1, x
f
3, x

f
5}

12 {xe
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10} {xf

2, x
f
4, x

f
6}

13 {xe
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
8, x

e
11} {xf

1, x
f
3, x

f
5}

14 {xe
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
8, x

e
12} {xf

2, x
f
4, x

f
6}

15 {xe
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
8, x

e
9, x

e
11} {xf

1, x
f
3, x

f
5}

16 {xe
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
8, x

e
10, x

e
12} {xf

2, x
f
4, x

f
6}

17 {xe
2, x

e
3, x

e
4, x

e
5, x

e
7, x

e
8, x

e
9, x

e
11} {xf

1, x
f
3, x

f
5}

18 {xe
2, x

e
3, x

e
4, x

e
5, x

e
7, x

e
8, x

e
10, x

e
12} {xf

2, x
f
4, x

f
6}

19 {xe
2, x

e
3, x

e
4, x

e
6, x

e
7, x

e
8, x

e
9, x

e
11} {xf

1, x
f
3, x

f
5}

20 {xe
2, x

e
3, x

e
4, x

e
6, x

e
7, x

e
8, x

e
10, x

e
12} {xf

2, x
f
4, x

f
6}

21 {xe
2, x

e
3, x

e
5, x

e
6, x

e
8, x

e
9, x

e
11} {xf

5, x
f
7, x

f
9}

22 {xe
2, x

e
3, x

e
5, x

e
6, x

e
8, x

e
10, x

e
12} {xf

6, x
f
8}

23 {xe
2, x

e
3, x

e
6, x

e
7, x

e
8, x

e
9, x

e
11} {xf

5, x
f
7}

24 {xe
2, x

e
3, x

e
6, x

e
7, x

e
8, x

e
10, x

e
12} {xf

6, x
f
8, x

f
10}

25 {xe
2, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9, x

e
11} {xf

1, x
f
3, x

f
5}

26 {xe
2, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10, x

e
12} {xf

4, x
f
6}

27 {xe
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9, x

e
11} {xf

3, x
f
5}

28 {xe
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10, x

e
12} {xf

2, x
f
4, x

f
6}

Table 6.4: The pairs of maximal cross-complementary subsets of the sets X ext

and X fin of Example 6.4.2 for N > 6.
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G1, . . . , GN−1 to find all minimal state space realizations of (the firstN Markov
parameters of) a given impulse response {Gk}∞k=0.
The system matrices A, B and C of (6.18) can be obtained by performing
a max-algebraic similarity transformation with T = 1 ⊗ E3 on the realization
(Ã, B̃, C̃) that corresponds to the point at infinity of the ray L1 = { ηxe

2+ηxe
3+

xe
4 + ηxe

5 + ηxe
8 + ηxe

9 + ηxe
11 + xf

5 | η ∈ R+ } generated by extreme generators
and a finite point of the ordered pair

(
X ext

15 ,X fin
15

)
. We have

Ã = lim
η→∞





2 1− η −η
1− η 1 3

0 3 1− η



 = A

B̃ = lim
η→∞





0
−3− η
−1



 = (−1)⊗B

C̃ =
[

3 1− η 3
]

= 1⊗ C .

Now we try to use the two-step method to construct a minimal realization
(A1, B1, C1) of g. First we construct a matrix A1 such that the coefficients of
its MACP are given by (6.19). From Proposition 5.3.3 it follows that we can
take e.g.

A1 =





2 6 ε
0 ε 6
ε 0 ε



 .

Since A1
⊗

2
=





6 8 12
2 6 ε
0 ε 6



, the condition C1 ⊗ A1
⊗

2 ⊗ B1 = g2 = 8 implies

that C1 ⊗ B1 6 2. But then we cannot have C1 ⊗ B1 = g1 = 3. Therefore, it
is impossible to find matrices B1 and C1 such that (A1, B1, C1) ∈ R3(g,N) if
N > 3.
Now consider the matrix

A2 =





2 ε ε
0 ε 6
ε 0 ε



 .

The coefficients of the MACP of A2 are also given by (6.19). However, for this
matrix it is possible to find matrices B2 and C2 such that (A2, B2, C2) ∈ R3(g).
The solution set of the ELCP that corresponds to the system of max-algebraic

equalities C2⊗A2
⊗
k ⊗B2 = gk for k = 0, 1, . . . , N − 1 can be described by the

generators and the finite points of Table 6.5 and the pairs of maximal cross-
complementary subsets of Table 6.6 for any N > 6.

Generator x̂f
1 yields B2 =





6
5
0



 and C2 =
[
−3 −3 −2

]
. The triple
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X̂ cen X̂ ext X̂ fin

x̂c
1 x̂e

1 x̂e
2 x̂e

3 x̂e
4 x̂e

5 x̂f
1 x̂f

2

b1 1 −1 0 0 0 0 6 5

b2 1 0 −1 0 0 0 5 1

b3 1 0 0 −1 0 0 0 0

c1 −1 1 0 0 0 0 −3 −2

c2 −1 0 0 0 −1 0 −3 −3

c3 −1 0 0 0 0 −1 −2 2

Table 6.5: The generators and the finite points that correspond to the set of all
finite matrices B2 and C2 of Example 6.4.2 such that (A2, B2, C2) ∈ R3(g,N)
for N > 6.

s X̂ ext
s X̂ fin

s

1 {x̂e
1, x̂

e
2} {x̂f

2}
2 {x̂e

1, x̂
e
3} {x̂f

1}
3 {x̂e

1, x̂
e
4} {x̂f

2}

s X̂ ext
s X̂ fin

s

4 {x̂e
1, x̂

e
5} {x̂f

1}
5 {x̂e

2, x̂
e
4} {x̂f

2}
6 {x̂e

3, x̂
e
5} {x̂f

1}

Table 6.6: The pairs of maximal cross-complementary subsets of the sets X̂ ext

and X̂ fin of Example 6.4.2.

(A2, B2, C2) can be brought into a normalized form by a performing a max-

algebraic similarity transformation with T =





−8 ε ε
ε −5 ε
ε ε −2



 (cf. Proposi-

tion 6.3.9). This yields the triple (Ã2, B̃2, C̃2) ∈ Rnor
3 (g) with

Ã2 =





2 ε ε
3 ε 3
ε 3 ε



 , B̃2 =





−2
0
−2



 and C̃2 =
[

5 2 0
]
.

It is easy to verify that the triple (Ã2, B̃2, C̃2) corresponds to the point at
infinity of the ray L2 = { ηxe

2 + ηxe
3 + ηxe

6 + ηxe
7 + xf

10 | η ∈ R+ } generated by
extreme generators and a finite point of the ordered pair

(
X ext

2 ,X fin
2

)
. 2

Example 6.4.3 Here we consider the sequence

g = {gk}∞k=0 = 0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, 0, 13, 0, 15, . . .
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of an example of [54, 56]. This sequence is not ultimately geometric, but it
does exhibit an ultimately periodic behavior since we have

g2k+2 = 0⊗
2 ⊗ g2k and g2k+3 = 1⊗

2 ⊗ g2k+1 for all k ∈ N .

So it follows from Proposition 6.1.4 that there exists a max-linear time-invariant
SISO DES that has g as its impulse response.
Let H = H(g). Both the max-algebraic minor rank and the max-algebraic
consecutive column rank of H̃ are equal to 3. If we use the procedure that has
been described in Section 6.3.1, we find e.g. the following stable relation among
the columns of H

H.,k+3 ⊕ 2⊗H.,k = H.,k+2 ⊕ 2⊗H.,k+1 for all k ∈ N0 .

The coefficients of this relation satisfy the necessary and sufficient conditions for
the coefficients of the MACP of a 3 by 3 matrix with entries in Rε. Therefore,
we conclude that the minimal system order is greater than or equal to 3.
Since g is not ultimately geometric, we cannot apply Theorem 6.3.5. However, if
we use the generalization of this theorem by Gaubert, we find that the minimal
system order is less than or equal to 3 (See Example C.3.2).
This implies that the minimal system order is equal to 3.

Let us now use the ELCP approach to construct the set of all 3rd order state
space realizations of g. Since g is not ultimately geometric, it cannot be realized
by a triple (A,B,C) for which all the entries of A are finite. Therefore, we shall
determine how the set Rnor

3 (g,N) evolves as N goes to∞. The set L∗(g) of the
smallest possible values for the λs’s in (6.4) is given by L∗(g) = {0, 1}. Since
max L∗(g) = 1, the largest max-algebraic eigenvalue of the system matrix A of
any minimal state space realization (A,B,C) of g is equal to 1 by Lemma 6.3.7.
This means that Rnor

3 (g,N) =
{

(A,B,C) ∈ R3(g,N)
∣
∣ ‖A‖

⊕
= 1, ‖B‖

⊕
=

0 and a11 > a22 > a33

}
.

If we use the ELCP algorithm of Section 3.4 to solve the ELCP that corresponds
to Rnor

3 (g,N), we get the extreme generators and the finite points of Table 6.7
and the pairs of maximal cross-complementary subsets of Table 6.8 for any N >

5. There are no central generators. We have Rnor
3 (g, 2l+1) = Rnor

3 (g, 2l+2) for
all l > 2. Note that the components of the finite points of Rnor

3 (g,N) depend

affinely on l where l =

⌊
N − 1

2

⌋

.

If l goes to ∞ then only xf
5(l) and xf

6(l) have components that are bounded
from above. Define x̃f

1 = lim
l→∞

xf
5(l) and x̃f

2 = lim
l→∞

xf
6(l). Note that all the

extreme generators except for x̃e
1

def
= xe

1 and x̃e
2

def
= xe

4 become redundant when l
goes to ∞. As a consequence, the set Rnor

3 (g) = lim
N→∞

Rnor
3 (g,N) corresponds

to the extreme generators and the “finite” points of Table 6.9 and the set

Λ̃ =
{(
{x̃e

1}, {x̃f
1}
)
,
(
{x̃e

1}, {x̃f
2}
)
,
(
{x̃e

2}, {x̃f
1}
)
,
(
{x̃e

2}, {x̃f
2}
)}
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X ext(l)

xe
1 xe

2 xe
3 xe

4 xe
5 xe

6 xe
7 xe

8 xe
9 xe

10 xe
11 xe

12

a11 0 0 0 0 0 0 0 0 0 0 0 0

a12 −1 −1 0 0 0 0 0 0 0 0 0 0

a13 −1 0 −1 0 0 0 0 0 0 0 0 0

a21 0 0 0 −1 −1 0 0 0 0 0 0 0

a22 0 0 0 0 0 −1 0 0 0 0 0 0

a23 0 0 0 0 0 0 0 0 0 0 0 0

a31 0 0 0 −1 0 0 −1 0 0 0 0 0

a32 0 0 0 0 0 0 0 0 0 0 0 0

a33 0 0 0 0 0 −1 0 −1 0 0 0 0

b1 −1 0 0 0 0 0 0 0 0 0 0 0

b2 0 0 0 −1 0 0 0 0 −1 0 0 0

b3 0 0 0 −1 0 0 0 0 0 −1 0 0

c1 1 0 0 0 0 0 0 0 0 0 0 0

c2 0 0 0 1 0 0 0 0 0 0 −1 0

c3 0 0 0 1 0 0 0 0 0 0 0 −1

X fin(l)

xf
1(l) xf

2(l) xf
3(l) xf

4(l) xf
5(l) xf

6(l) xf
7(l) xf

8(l) xf
9(l) xf

10(l)

a11 0 0 0 0 0 0 0 0 0 0

a12 1 1 1 0 2−2l 1−2l 3−4l 2−4l 2−4l 1−4l

a13 1 1 0 1 1−2l 2−2l 2−4l 3−4l 1−4l 2−4l

a21 2−4l 1−4l 2−4l 3−4l 1−2l 2−2l 0 1 1 1

a22 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l

a23 1 1 1 1 1 1 1 1 1 1

a31 1−4l 2−4l 3−4l 2−4l 2−2l 1−2l 1 0 1 1

a32 1 1 1 1 1 1 1 1 1 1

a33 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l 1−2l

b1 0 0 0 0 0 0 1−2l 1−2l −2l −2l

b2 −4l −2l 1−2l 1−4l 0 −2l 0 −2l 0 −2l

b3 −2l −4l 1−4l 1−2l −2l 0 −2l 0 −2l 0

c1 0 0 0 0 0 0 2l−1 2l−1 2l 2l

c2 2l 0 −1 2l−1 −2l 0 −2l 0 −2l 0

c3 0 2l 2l−1 −1 0 −2l 0 −2l 0 −2l

Table 6.7: The generators and the finite points of the sets Rnor
3 (g, 2l + 1) and

Rnor
3 (g, 2l + 2) of Example 6.4.3 for l > 2.
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s X ext
s (l) X fin

s (l)

1
{
xe

1, x
e
2, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9, x

e
12

} {
xf

6(l), x
f
8(l), x

f
10(l)

}

2
{
xe

1, x
e
2, x

e
3, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10, x

e
11

} {
xf

5(l), x
f
7(l), x

f
9(l)
}

3
{
xe

2, x
e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
8, x

e
9, x

e
12

} {
xf

1(l), x
f
4(l), x

f
6(l)
}

4
{
xe

2, x
e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
8, x

e
10, x

e
11

} {
xf

2(l), x
f
3(l), x

f
5(l)
}

Table 6.8: The pairs of maximal cross-complementary subsets of the sets
X ext(l) and X fin(l) of Example 6.4.3 for l > 2.

X̃ ext X̃ fin

x̃e
1 x̃e

2 x̃f
1 x̃f

2

a11 0 0 0 0

a12 −1 0 ε ε

a13 −1 0 ε ε

a21 0 −1 ε ε

a22 0 0 ε ε

a23 0 0 1 1

a31 0 −1 ε ε

a32 0 0 1 1

a33 0 0 ε ε

b1 −1 0 0 0

b2 0 −1 0 ε

b3 0 −1 ε 0

c1 1 0 0 0

c2 0 1 ε 0

c3 0 1 0 ε

Table 6.9: The generators and the “finite” points of the set Rnor
3 (g) of Exam-

ple 6.4.3.

of ordered pairs of maximal cross-complementary subsets of X̃ ext and X̃ fin.

The elements of R3(g) can now be reconstructed from Rnor
3 (g) by applying

max-algebraic similarity transformations to the elements of Rnor
3 (g).

In Example C.3.2 we shall use the technique of [54, 56] to construct a 3rd
order state space realization (A1, B1, C1) of the given impulse response. Note
however that since this technique is based on (an extension of) Theorem 6.3.5,
it will only result in a minimal state space realization of the given impulse
response if the upper bound given by this theorem is equal to the minimal
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system order, which is not always the case (See e.g. Example 6.4.2). We have

A1 =





0 ε ε
ε ε 2
ε 0 ε



 , B1 =





0
0
ε



 and C1 =
[

0 ε 1
]
.

The triple (A1, B1, C1) can be brought into a normalized form by performing

a max-algebraic similarity transformation with T =





0 ε ε
ε 0 ε
ε ε 1



 (cf. Propo-

sition 6.3.9). This results in the triple (Ã1, B̃1, C̃1) ∈ Rnor
3 (g) with

Ã1 =





0 ε ε
ε ε 1
ε 1 ε



 , B̃1 =





0
0
ε



 and C̃1 =
[

0 ε 0
]
.

Note that the triple (Ã1, B̃1, C̃1) corresponds to the “finite” point x̃f
1. 2

For other examples with SISO systems the interested reader is referred to [43,
44, 45]. In [46] we have given an example with a MIMO system.

6.5 Conclusion

In this chapter we have used the fact that a system of multivariate max-
algebraic polynomial equations can be transformed into an ELCP to perform
state space transformations for max-linear time-invariant discrete event sys-
tems. Next we have presented a method to solve the minimal state space
realization problem for max-linear time-invariant discrete event systems. This
method consists of three major steps. First we determine a lower bound for the
minimal system order. Then we construct (minimal) state space realizations
of a finite subsequence of the impulse response of the discrete event system
and finally we construct minimal state space realizations of the entire impulse
response. We have shown that we can use the ELCP to compute all fixed order
partial state space realizations of a given impulse response. We can also use
the ELCP to determine all minimal state space realizations of a given impulse
response. These procedures have been illustrated with some worked examples.

We have also briefly indicated how the constructive proofs of the proposi-
tions of Section 5.3 on the coefficients of the max-algebraic characteristic poly-
nomial of a matrix with entries in Rε or the heuristic algorithm of Section B.4
can sometimes be used to find a minimal state space realization of a given im-
pulse response with a two-step method. In this method we only consider one
solution for the system matrix A. As a consequence, this approach results in
much smaller ELCPs than the direct approach in which the system matrices
A, B and C are determined simultaneously. Therefore, the two-step approach
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allows us to tackle larger problems than the direct approach. However, the
two-step approach does not always yield a solution, even if there exists one.

We have to admit that using the ELCP approach to solve the minimal state
space realization problem for max-linear time-invariant discrete event systems
is not a very elegant method. However, by showing that the partial state
space realization problem can be reformulated as an ELCP we have gained
an insight in the geometrical structure of the set of all fixed order state space
realizations of a given impulse response. We hope that this insight will lead
to the development of more efficient algorithms to solve the partial or the
minimal state space realization problem for max-linear time-invariant discrete
event systems or to solve special cases of these problems. One of the main
characteristics of the ELCP algorithm of Section 3.4 is that it finds all solutions.
Since this also leads to large computation times and storage space requirements
if the number of variables and (in)equalities is large, it would be useful to
develop methods that find only one solution.

It is still an open question how the smallest possible N such that any mini-
mal state space realization of the firstN Markov parameters is also a realization
of the entire impulse response can be determined. Furthermore, we do not yet
know how to determine a minimal set of Markov parameters such that any
minimal state space realization of this set is also a realization of the entire
impulse response.





Chapter 7

The Singular Value
Decomposition and the QR
Decomposition in the
Symmetrized Max-Plus
Algebra

In [126] Olsder and Roos have used asymptotic equivalences to show that every
matrix has at least one max-algebraic eigenvalue and to prove a max-algebraic
version of Cramer’s rule and of the Cayley-Hamilton theorem. We shall extend
and formalize their technique and use it to define the singular value decompo-
sition and the QR decomposition in the symmetrized max-plus algebra.

After introducing some new concepts and definitions in Section 7.1, we es-
tablish a link between a ring of real functions (with conventional addition and
multiplication as basic operations) and the symmetrized max-plus algebra in
Section 7.2. We also introduce a further extension of the max-plus algebra
that will correspond to a ring of complex functions. In Section 7.3 we use the
link between the ring of real functions and the symmetrized max-plus alge-
bra to define the singular value decomposition and the QR decomposition of
a matrix in the symmetrized max-plus algebra and to prove the existence of
these decompositions. In Section 7.4 we study some properties of the max-
algebraic singular value decomposition. Next we discuss a possible application
of the max-algebraic singular value decomposition in connection with the iden-
tification problem for max-linear time-invariant discrete event systems. In Sec-
tion 7.5 we show that the problem of finding all max-algebraic singular value
decompositions or all max-algebraic QR decompositions of a given matrix can
also be solved using the ELCP approach.

191
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7.1 Introduction

In this section we give some definitions that will be needed in the next sections.
If x, y ∈ Rnε then xT ⊗ y is called the max-algebraic inner product of x and y.
A function f : D → R with D ⊆ R is called a real function. Likewise, we say
that a function F̃ : D → Rm×n with D ⊆ R is a real m by n matrix-valued
function.
The 2-norm of the vector a is defined by ‖a‖2 =

√
aT a .

A matrix A ∈ Rn×n is called orthogonal if ATA = In.
Consider a matrix A ∈ Rm×n. The Frobenius norm of A is given by

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

a2
ij .

The 2-norm of A is defined by ‖A‖2 = max
‖x‖2=1

‖Ax‖2 . We have

1√
n
‖A‖F 6 ‖A‖2 6 ‖A‖F . (7.1)

If U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices then we have ‖UA‖F =
‖AV ‖F = ‖A‖F and rankA = rank (UA) = rank (AV ).
Now we briefly discuss two basic matrix factorizations from linear algebra:
the QR decomposition and the singular value decomposition. These decom-
positions are used in many linear algebra algorithms (See e.g. [65] and the
references cited therein) and in many contemporary algorithms for the identifi-
cation of linear systems (See e.g. [96, 98, 138, 139, 140, 142] and the references
cited therein). The proofs of the theorems and the properties given below can
be found in e.g. [65, 82].

Theorem 7.1.1 (QR decomposition) If A ∈ Rm×n then there exist an or-
thogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n such
that

A = QR . (7.2)

Factorization (7.2) is called the QR decomposition (QRD) of A.
Let A ∈ Rm×n. If QR is a QRD of A, then ‖A‖F = ‖R‖F since Q is an
orthogonal matrix.

Theorem 7.1.2 (Singular Value Decomposition) Let A ∈ Rm×n and let
r = min(m,n). Then there exists a diagonal matrix Σ ∈ Rm×n and two or-
thogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = U ΣV T (7.3)

with σ1 > σ2 > . . . > σr > 0 where σi = (Σ)ii for i = 1, 2, . . . , r.
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Factorization (7.3) is called the singular value decomposition (SVD) of A. The
diagonal entries of Σ are called the singular values of A. The columns of U are
called the left singular vectors of A and the columns of V are called the right
singular vectors of A. In the remainder of this chapter and in Appendix D
σi will always represent the ith diagonal element of the matrix Σ, and ui will
always represent the ith column of the matrix U . Likewise, vi will represent
the ith column of V . We shall also use this notation for the max-algebraic
SVD.
The singular values of a matrix A ∈ Rm×n are unique. Singular vectors cor-
responding to simple singular values are also uniquely determined (apart from
the sign). If two or more singular values coincide, only the linear subspace
generated by the corresponding singular vectors is well determined: any choice
of sets {u1, u2, . . . , um} and {v1, v2, . . . , vn} of orthonormal basis vectors such
that ATui = σivi and Avi = σiui for i = 1, 2, . . . ,min(m,n) yields valid sets of
singular vectors. If σ1 is the largest singular value of A then σ1 = ‖A‖2. The
number of non-zero singular values of A is equal to the rank of A.

Definition 7.1.3 (Analytic function) Let f be a real function and let α ∈ R

be an interior point of dom f . Then f is analytic in α if the Taylor series of f
with center α exists and if there is a neighborhood of α where this Taylor series
converges to f .
A real function f is analytic in an interval [α, β] ⊆ dom f if it is analytic in
every point of that interval.
A real matrix-valued function F̃ is analytic in [α, β] ⊆ dom F̃ if all its entries
are analytic in [α, β].

If a real function f is analytic in [α, β] ⊆ dom f then it is also continuous on
[α, β].

Definition 7.1.4 (Asymptotic equivalence) Let f and g be real functions
and let α ∈ R ∪ {∞} be an accumulation point of dom f and dom g. We say
that f is asymptotically equivalent to g in the neighborhood of α, denoted by

f(x) ∼ g(x), x→ α, if lim
x→α

f(x)

g(x)
= 1.

If β ∈ R is an accumulation point of dom f and if there exists a real number
δ > 0 such that ∀x ∈ (β − δ, β + δ) \ {β} : f(x) = 0 then f(x) ∼ 0, x→ β.

If ∞ is an accumulation point of dom f , we say that f(x) ∼ 0, x→∞ if there
exists a real number K such that ∀x > K : f(x) = 0.

Let F̃ and G̃ be real m by n matrix-valued functions and let α ∈ R ∪ {∞} be
an accumulation point of dom F̃ and dom G̃. Then F̃ (x) ∼ G̃(x), x→ α if
f̃ij(x) ∼ g̃ij(x), x→ α for i = 1, 2, . . . ,m and j=1,2, . . . ,n.

The main difference with the conventional definition of asymptotic equivalence
is that Definition 7.1.4 also allows us to say that a function is asymptotically
equivalent to 0.
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7.2 A Link between Conventional Algebra and
the Symmetrized Max-Plus Algebra

In [126] Olsder and Roos have used a kind of link between conventional algebra
and the max-plus algebra based on asymptotic equivalences to show that every
matrix has at least one max-algebraic eigenvalue and to prove a max-algebraic
version of Cramer’s rule and of the Cayley-Hamilton theorem. In this section we
extend and formalize this link. We also introduce the max-complex numbers,
which yields a further extension of the max-plus algebra.

In this chapter we shall frequently encounter functions that are asymptoti-
cally equivalent to an exponential of the form νexs for s→∞. Since we want
to allow exponents that are equal to ε, we set eεs equal to 0 for all positive real
values of s by definition. We also define the following classes of functions:

R+
e =

{

f : R+
0 → R+

∣
∣
∣ f(s) =

n∑

i=0

µie
xis with n ∈ N,

µi ∈ R+
0 and xi ∈ Rε for all i

}

Re =
{

f : R+
0 → R

∣
∣
∣ f(s) =

n∑

i=0

νie
xis with n ∈ N,

νi ∈ R0 and xi ∈ Rε for all i
}

Ce =
{
f + gj

∣
∣ f, g ∈ Re

}

where j is the imaginary unit (j2 = −1). It is easy to verify that (Re,+, ·) and
(Ce,+, ·) are rings.
For all x, y, z ∈ Rε we have

x⊕ y = z ⇔ exs + eys ∼ cezs , s→∞

x⊗ y = z ⇔ exs · eys = ezs for all s ∈ R+
0

where c = 1 if x 6= y and c = 2 if x = y. We shall extend this link between
(R+

e ,+, ·) and Rmax that has already been used in [115, 116, 122, 125, 126] —
and under a slightly different form in [34] — to Smax. If x ∈ Rε then F(x, ·) is
a function with domain of definition R+

0 and with

F(x, s) = µexs

F(	x, s) = −µexs

F(x•, s) = νexs
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for all s ∈ R+
0 , where µ is an arbitrary positive real number or parameter, and

where ν is an arbitrary real number or parameter different from 0. Note that
F(ε, ·) = 0 since we have eεs = 0 for all s ∈ R+

0 by definition.

To reverse the mapping F(x, ·) we have to take lim
s→∞

log( | F(x, s) | )
s

and adapt

the max-algebraic sign depending on the sign of the coefficient of the exponen-
tial. So if f is a real function, if x ∈ Rε and if µ is a positive real number or if
µ is a parameter that can only take on positive real values then we have

f(s) ∼ µexs , s→∞ ⇒ R(f) = x

f(s) ∼ −µexs , s→∞ ⇒ R(f) = 	x

where R is the reverse mapping of F . If ν is a parameter that can take on any
non-zero real value then we have

f(s) ∼ νexs , s→∞ ⇒ R(f) = x• .

Note that the reverse mapping always yields a signed result if the coefficient of
exs is a number (and not a parameter).
For all a, b, c ∈ S we have

a⊕ b = c ⇒ F(a, s) + F(b, s) ∼ F(c, s) , s→∞ (7.4)

F(a, s) + F(b, s) ∼ F(c, s) , s→∞ ⇒ a⊕ b ∇ c (7.5)

a⊗ b = c ⇔ F(a, s) · F(b, s) = F(c, s) for all s ∈ R+
0 (7.6)

for an appropriate choice of the µ and the ν coefficients in F(c, s) in (7.4) and
in (7.6) from the left to the right. The balance in (7.5) results from the fact
that we can have cancelation of equal terms with opposite sign in (R+

e ,+, ·)
whereas this is in general not possible in the symmetrized max-plus algebra
since ∀a ∈ S \ {ε} : a	 a 6= ε. So we have the following correspondences:

(R+
e ,+, ·) ↔ (Rε,⊕,⊗) = Rmax

(Re,+, ·) ↔ (S,⊕,⊗) = Smax .

Now we extend the mapping F to matrices as follows. If A ∈ Sm×n then
Ã = F(A, ·) is a real m by n matrix-valued function with domain of definition
R+

0 and with ãij(s) = F(aij , s) for all i, j for some choice of the µ and the
ν coefficients. Note that the mapping is performed entrywise — it is not a
matrix exponential ! The reverse mappingR is extended to matrices in a similar
way: if Ã is a real matrix-valued function with entries that are asymptotically
equivalent to an exponential in the neighborhood of∞, then (R(Ã))ij = R(ãij)
for all i, j. If A, B and C are matrices with entries in S, we have

A⊕B = C ⇒ F(A, s) + F(B, s) ∼ F(C, s) , s→∞ (7.7)
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F(A, s) + F(B, s) ∼ F(C, s) , s→∞ ⇒ A⊕B ∇ C (7.8)

A⊗B = C ⇒ F(A, s) · F(B, s) ∼ F(C, s) , s→∞ (7.9)

F(A, s) · F(B, s) ∼ F(C, s) , s→∞ ⇒ A⊗B ∇ C (7.10)

for an appropriate choice of the µ’s and the ν’s in F(C, s) in (7.7) and (7.9).

Example 7.2.1 Let A =

[
0 ε
	1 	2

]

and B =

[
−3 1

2• 	0

]

. Hence,

A ⊗ B =

[
−3 1

4• 2•

]

. In general we have F(A, s) =

[
µ1 0
−µ2 e

s −µ3 e
2s

]

,

F(B, s) =

[
µ4 e

−3s µ5 e
s

ν1 e
2s −µ6

]

and F(A⊗B, s) =

[
µ7 e

−3s µ8 e
s

ν2 e
4s ν3 e

2s

]

for all

s ∈ R+
0 with µ1, µ2, . . . , µ8 ∈ R+

0 and ν1, ν2, ν3 ∈ R0. Furthermore,

F(A, s) · F(B, s) =

[
µ1 µ4 e

−3s µ1 µ5 e
s

−µ2 µ4 e
−2s − ν1 µ3 e

4s (−µ2 µ5 + µ3 µ6) e
2s

]

for all s ∈ R+
0 .

If we take

µ7 = µ1 µ4 , µ8 = µ1 µ5 , ν2 = −ν1 µ3 and ν3 = −µ2 µ5 + µ3 µ6 ,

then we have F(A, s) · F(B, s) ∼ F(A⊗B, s) , s→∞.

If we take µi = 1 for i = 1, 2, . . . , 6 and ν1 = 1, we get

F(A, s) · F(B, s) ∼
[
e−3s es

−e4s 0

]

def
= C̃(s) , s→∞ .

The reverse mapping results in C = R(C̃) =

[
−3 1
	4 ε

]

. Note that A⊗B ∇ C.

Taking µi = i for i = 1, 2, . . . , 6 and ν1 = −1 leads to

F(A, s) · F(B, s) ∼
[

4e−3s 5es

3e4s 8e2s

]

def
= D̃(s) , s→∞ .

The reverse mapping results in D = R(D̃) =

[
−3 1

4 2

]

and again we have

A⊗B ∇D. 2

We can extend the link between (Re,+, ·) and Smax even further by introducing
the “max-complex” numbers. First we define k̄ such that k̄ ⊗ k̄ = 	0. This
yields T = { a⊕ b⊗ k̄ | a, b ∈ S }, the set of the max-complex numbers. The set
S ⊂ T is the set of the max-real numbers and Rε ⊂ S ⊂ T is the set consisting of
ε and the max-positive max-real numbers. Using a method that is analogous to
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the method that is used to construct C from R we get the following calculation
rules:

(a⊕ b⊗ k̄) ⊕ (c⊕ d⊗ k̄) = (a⊕ c) ⊕ (b⊕ d)⊗ k̄

(a⊕ b⊗ k̄) ⊗ (c⊕ d⊗ k̄) = (a⊗ c	 b⊗ d) ⊕ (a⊗ d⊕ b⊗ c)⊗ k̄

where a, b, c and d ∈ S. This results in the structure Tmax = (T,⊕,⊗). It is
easy to verify that Tmax is a commutative dioid.
If a, b ∈ S and if f and g are real functions that are asymptotically equivalent
to an exponential in the neighborhood of ∞, we define

F(a⊕ b⊗ k̄, ·) = F(a, ·) + F(b, ·)j

R(f + g j) = R(f)⊕R(g)⊗ k̄

where j is the imaginary unit. This leads to the following correspondence:

(Ce,+, ·) ↔ (T,⊕,⊗) = Tmax .

We shall not further elaborate this correspondence between (Ce,+, ·) and Tmax

since it will not be needed in the remainder of this thesis. Note however that
we can use Tmax to define max-algebraic analogues of matrix decompositions
from linear algebra for real or complex matrices (such as the eigenvalue decom-
position or the Jordan decomposition).

7.3 Existence Proof for the Singular Value De-
composition in the Symmetrized Max-Plus
algebra

In [42] we have used the mapping from (Re,+, ·) to Smax and the reverse map-
ping to prove the existence of a kind of singular value decomposition in Smax.
In this section we present an alternative proof for the existence theorem of the
max-algebraic SVD. The major advantage of the new proof technique that will
be developed in this section over the one of [42] is that it can easily be extended
to prove the existence of many other matrix decompositions in the symmetrized
max-plus algebra such as e.g. the max-algebraic QR decomposition.
In this section we first introduce a class Se of functions that can be written as
a sum or a series of exponentials if the argument is large enough. This class of
functions is closed under elementary operations such as additions, multiplica-
tions, subtractions, divisions, square roots and absolute values. We prove that
for a matrix with entries in Se there exists a QR decomposition with entries
that also belong to Se. Next we use these results to prove the existence of
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max-algebraic analogues of the SVD and the QRD. We conclude this section
with a worked example.

The entries of the matrices that are used in the alternative existence proof
for the max-algebraic SVD that will be presented in this section are sums or
series of exponentials. Therefore, we first study some properties of this kind of
functions.

Definition 7.3.1 (Sum or series of exponentials) Let Se be the set of real
functions that are analytic and that can be written as a (possibly infinite, but
absolutely convergent) sum of exponentials in a neighborhood of ∞:

Se =
{

f :A→ R

∣
∣
∣ A ⊆ R, ∃K ∈ R+

0 such that [K,∞) ⊆ A and

f is analytic in [K,∞) and either

∀x > K : f(x) =

n∑

i=0

αie
aix (7.11)

with n ∈ N, αi ∈ R0, ai ∈ Rε for all i and a0 > a1 > . . . > an ; or

∀x > K : f(x) =
∞∑

i=0

αie
aix (7.12)

with αi ∈ R0, ai ∈ R, ai > ai+1, lim
i→∞

ai = ε for all i and

where the series converges absolutely for every x > K
}

.

If f ∈ Se then the largest exponent in the sum or the series of exponentials
that corresponds to f is called the dominant exponent of f .
Recall that by definition we have eεs = 0 for all s ∈ R+

0 . Since we allow
exponents that are equal to ε = −∞ in the definition of Se, the zero function
also belongs to Se. Since we require that the sequence of the exponents that
appear in (7.11) or (7.12) is decreasing and since the coefficients cannot be equal
to 0, any sum of exponentials of the form (7.11) or (7.12) that corresponds to
the zero function consists of exactly one term: e.g. 1 · eεx.
If f ∈ Se is a series of the form (7.12) then the set {ai | i = 0, 1, . . . ,∞}
has no finite accumulation point since the sequence {ai}∞i=0 is decreasing and
unbounded from below. Note that series of the form (7.12) are related to
(generalized) Dirichlet series [100].
The behavior of the functions in Se in the neighborhood of ∞ is given by the
following property:

Lemma 7.3.2 Every function f ∈ Se is asymptotically equivalent to an expo-
nential in the neighborhood of ∞:

f ∈ Se ⇒ f(x) ∼ α0e
a0x , x→∞
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for some α0 ∈ R0 and some a0 ∈ Rε.

Proof : See Section D.1. 2

The set Se is closed under some basic operations:

Proposition 7.3.3 If f and g belong to Se then ρf , f + g, f − g, fg, f l and
|f | also belong to Se for any ρ ∈ R and any l ∈ N.
Furthermore, if there exists a real number P such that f(x) 6= 0 for all x > P

then the functions
1

f
and

g

f
restricted to [P,∞) also belong to Se.

If there exists a real number Q such that f(x) > 0 for all x > Q then the

function
√

f restricted to [Q,∞) also belongs to Se.

Proof : See Section D.2. 2

Let Ã and R̃ be real m by n matrix-valued functions and let Q̃ be a real m
by m matrix-valued function. Suppose that these matrix-valued functions are
defined in J ⊆ R. If Q̃(s) R̃(s) = Ã(s), Q̃T (s) Q̃(s) = Im and R̃(s) is an
upper triangular matrix for all s ∈ J then we say that Q̃R̃ is a path of QR
decompositions of Ã on J . A path of SVDs is defined in a similar way.
Note that if Q̃R̃ is a path of QR decompositions of Ã on J then we have
‖R̃(s)‖F = ‖Ã(s)‖F for all s ∈ J .

Proposition 7.3.4 If Ã ∈ Sm×n
e then there exists a path of QR decompositions

Q̃R̃ of Ã for which the entries of Q̃ and R̃ belong to Se.

Proof : Let A ∈ Rm×n. To compute the QR decomposition QR of A we can
use an algorithm based on Givens rotations (See e.g. [65]). A Givens rotation
is characterized by an n by n matrix of the form

G(n, i, k, c, s) =


















1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . c . . . s . . . 0 ← row i
...

...
...

. . .
...

...
0 0 . . . −s . . . c . . . 0 ← row k
...

...
...

...
. . .

...
0 0 . . .

↑
column

i

0 . . .

↑
column

k

0 . . . 0


















(7.13)

with i, k ∈ {1, 2, . . . , n} and where c = cos(θ) and s = sin(θ) for some θ. So
if G = G(n, i, k, c, s) then we have Gii = Gkk = c, Gik = −s, Gki = s; all the
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other entries of G are the same as those of the identity matrix In. Consider
an arbitrary θ ∈ R and let c = cos(θ) and s = sin(θ). It is easy to verify that
G(n, i, k, c, s) is an orthogonal matrix and that left multiplication of a vector
x ∈ Rn by GT (n, i, k, c, s) corresponds to a counterclockwise rotation of θ ra-
dians in the xi-xk plane.
In the Givens QR algorithm we apply Givens rotations to A such that the
entries of the strictly lower triangular part of A are zeroed column by column
until we finally obtain an upper triangular matrix. We now give the Givens
QR algorithm in its most elementary form (i.e. without paying attention to
efficiency and without the refinements necessary to avoid overflow and to guar-
antee numerical stability). We use the same notation as the one that has been
used in Section 3.4 to describe the ELCP algorithm.

The Givens QR algorithm

Input: m, n, A ∈ Rm×n

R← A

Q← Im

for j = 1, 2, . . . , n do

for i = m,m− 1, . . . , j + 1 do

δ ←
√

r2i−1,j + r2ij

if δ 6= 0 then

c← ri−1,j

δ

s← −rij
δ

Q← QG(m, i− 1, i, c, s)

R ← GT (m, i− 1, i, c, s)R

end if

end for

end for

Output: Q, R

The operations used in this algorithm are additions, multiplications, subtrac-
tions, divisions and square roots.
So if we apply this algorithm to a matrix-valued function Ã with entries in
Se then the entries of the resulting matrix-valued functions Q̃ and R̃ will also
belong to Se by Proposition 7.3.3. 2

Now we give an alternative proof for the existence theorem of the max-algebraic
SVD:

Theorem 7.3.5 (Existence of the SVD in Smax) Let A ∈ Sm×n and let
r = min(m,n). Then there exist a max-algebraic diagonal matrix Σ ∈ Rm×n

ε
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and matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T (7.14)

with UT ⊗ U ∇ Em, V T ⊗ V ∇ En and ‖A‖
⊕

> σ1 > σ2 > . . . > σr where
σi = (Σ)ii for i = 1, 2, . . . , r.
Every decomposition of the form (7.14) that satisfies the above conditions is
called a max-algebraic singular value decomposition of A.

Proof : If A ∈ Sm×n has entries that are not signed, we can always define a
matrix Â ∈ (S∨)m×n such that

âij =

{

aij if aij is signed,

|aij |⊕ if aij is not signed,

for all i, j. Since |âij |⊕ = |aij |⊕ for all i, j, we have ‖Â‖
⊕

= ‖A‖
⊕
. Moreover,

we have ∀a, b ∈ S : a ∇ b ⇒ a• ∇ b, which means that if Â ∇ U ⊗ Σ ⊗ V T
then also A ∇ U ⊗Σ⊗ V T . Therefore, it is sufficient to prove this theorem for
signed matrices A.

So from now on we assume that A is signed. Define c = ‖A‖
⊕
.

If c = ε then A = εm×n. If we take U = Em, Σ = εm×n and V = En, we have
A = U ⊗Σ⊗ V T , UT ⊗U = Em, V T ⊗ V = En and σ1 = σ2 = . . . = σr = ε =
‖A‖

⊕
. So U ⊗ Σ⊗ V T is a max-algebraic SVD of A.

From now on we assume that c 6= ε. We may assume without loss of generality
that m > n: if m < n, we can apply the subsequent reasoning to AT since

A ∇ U ⊗ Σ ⊗ V T if and only if AT ∇ V ⊗ ΣT ⊗ UT . So U ⊗ Σ ⊗ V T is a

max-algebraic SVD of A if and only if V ⊗ ΣT ⊗ UT is a max-algebraic SVD
of AT .

Now we distinguish between two different situations depending on whether or
not all the aij ’s have a finite max-absolute value. In Remark 7.3.6 we shall
explain why this distinction is necessary. Note that is proof is rather long: it
will end on p. 209.

Case 1: All the aij ’s have a finite max-absolute value.

First we construct Ã = F(A, ·). Hence, ãij(s) = γije
cijs for all s ∈ R+

0 and
for all i, j with γij ∈ R0 and cij = |aij |⊕ ∈ Rε for all i, j. Note that the

entries of Ã belong to Se.
We are going to use Kogbetliantz’s SVD algorithm [93] to construct a path of
SVDs Ũ Σ̃Ṽ T of Ã. In the next paragraphs we shall describe Kogbetliantz’s
SVD algorithm for matrices with real entries. This algorithm can be consid-
ered as an extension of Jacobi’s method for the computation of the eigenvalue
decomposition of a real symmetric matrix. The explanation below is mainly
based on [15] and [78].
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The off-norm of a matrix M ∈ Rm×n is defined by

‖M‖off =

√
√
√
√
√

n∑

i=1

n∑

j=1
j 6=i

m2
ij

where the empty sum is equal to 0 by definition (So if M is a 1 by 1 matrix
then we have ‖M‖off = 0).
Let B ∈ Rm×n with m > n. Before applying Kogbetliantz’s SVD algorithm
we compute a QRD of B:

B = Q

[
R

O(m−n)×n

]

where R is an n by n upper triangular matrix.
Now we apply Kogbetliantz’s SVD algorithm to R. In this algorithm a
sequence of matrices is generated as follows:

U0 = In , V0 = In , S0 = R,

Uk = Uk−1Gk , Vk = Vk−1Hk , Sk = GTk Sk−1Hk for k = 1, 2, 3, . . .

such that ‖Sk‖off decreases monotonously as k increases. So Sk tends more
and more to a diagonal matrix as the iteration process progresses. The
absolute values of the diagonal entries of Sk will converge to the singular
values of R as k goes to ∞.
The matrices Gk and Hk are Givens matrices of the form (7.13) and their
parameters are chosen such that (Sk)ikjk = (Sk)jkik = 0 for some ordered
pair of indices (ik, jk). As a result we have

‖Sk‖2off = ‖Sk−1‖2off − (Sk−1)
2
ikjk
− (Sk−1)

2
jkik

.

Since the matrices Gk and Hk are orthogonal for all k ∈ N0, we have

‖Sk‖F = ‖R‖F , R = UkSkV
T
k , UTk Uk = In and V Tk Vk = In (7.15)

for all k ∈ N.
We use the row-cyclic version of Kogbetliantz’s SVD algorithm: in each
cycle the indices ik and jk are chosen such that the entries in the strictly
upper triangular part of the Sk’s are selected row by row. This yields the
following sequence for the ordered pairs of indices (ik, jk):

(1, 2)→ (1, 3)→ . . .→ (1, n)→ (2, 3)→ (2, 4)→ . . .→ (n− 1, n) .

One full cycle (1, 2)→ . . .→ (n− 1, n) is called a sweep. Note that a sweep

corresponds to N =
(n− 1)n

2
iterations. Sweeps are repeated until Sk
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becomes diagonal. If we have an upper triangular matrix at the beginning
of a sweep then we shall have a lower triangular matrix after the sweep and
vice versa. In order to keep the description of the algorithm short and simple
we shall transpose the matrix S and switch U and V after each sweep. This
ensures that S is always upper triangular at the beginning of a sweep.
For triangular matrices the row-cyclic Kogbetliantz algorithm as it will be
given below is globally convergent [50, 78]. Furthermore, for triangular
matrices the convergence of this algorithm is quadratic if k is large enough [4,
14, 76, 77, 127]:

∃K ∈ N such that ∀k > K : ‖Sk+N‖off 6 γ ‖Sk‖2off (7.16)

for some constant γ that does not depend on k, under the assumption that
diagonal entries that correspond to the same singular value or that are af-
filiated with the same cluster of singular values occupy successive positions
on the diagonal. This assumption is not restrictive since we can always
reorder the diagonal entries of Sk by inserting an extra step in which we
select a permutation matrix P̂ ∈ Rn×n such that the diagonal entries of
Sk+1 = P̂TSkP̂ exhibit the required ordering. Note that ‖Sk+1‖F = ‖Sk‖F.

If we define Uk+1 = UkP̂ and Vk+1 = VkP̂ then Uk+1 and Vk+1 are orthog-
onal since P̂T P̂ = In. We also have

Uk+1Sk+1V
T
k+1 =

(

UkP̂
) (

P̂TSkP̂
) (

P̂TV Tk

)

= UkSkV
T
k = R .

Furthermore, once the diagonal entries have the required ordering, they hold
it provided that k is sufficiently large [76].
If we define S = lim

k→∞
Sk, U = lim

k→∞
Uk and V = lim

k→∞
Vk then S is a diagonal

matrix, U and V are orthogonal matrices and USV T = R.
We make all the diagonal entries of S nonnegative by multiplying S with
an n by n diagonal matrix D with dii = 1 if sii > 0 and dii = −1 if sii < 0
for i = 1, 2, . . . , n. Next we construct a permutation matrix P such that
the diagonal entries of P TSDP are arranged in descending order. If we
define UR = UP , SR = PTSDP and VR = V D−1P , then UR and VR are
orthogonal, the diagonal entries of SR are nonnegative and ordered and

URSRV
T
R = (UP )

(
PTSDP

) (
PTD−1V T

)
= USV T = R .

Hence, URSRV
T
R is an SVD of R. If we define

UB = Q

[
UR On×(m−n)

O(m−n)×n Im−n

]

, SB =

[
SR

O(m−n)×n

]

and VB = VR ,

then UBSBV
T
B is an SVD of B.

We now give the row-cyclic Kogbetliantz algorithm for upper triangular ma-
trices (without paying attention to efficiency and without the refinements
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necessary to avoid overflow and to guarantee numerical stability). The in-
puts of the algorithm are an upper triangular matrix R ∈ Rn×n and a
tolerance ξ > 0. The algorithm then computes orthogonal vectors U and V
and an almost diagonal matrix S = UTRV such that ‖S‖off 6 ξ ‖R‖F.

The row-cyclic Kogbetliantz algorithm

Input: n, R ∈ Rn×n, ξ

S0 ← R

U0← In

V0 ← In

k ← 0

η ← ξ ‖R‖F
upper ← 1

while ‖Sk‖off > η do

for i = 1, 2, . . . , n− 1 do

for j = i+ 1, i+ 2, . . . , n do

if (Sk)ij 6= 0 then

if (Sk)jj = 0 then

τ ← (Sk)ii
(Sk)ij

if |τ | < 1 then

tψ ← τ

cφ ← 0

sφ← 1

else

tψ ← −
1

τ
cφ ← 1

sφ← 0

end if

else

δ ← (Sk)
2
jj − (Sk)

2
ii + (Sk)

2
ij

if δ = 0 then

tψ ← 1

else

t2ψ ←
2 (Sk)ii (Sk)ij

δ

tψ ←
t2ψ

1 +
√

1 + t2ψ2

end if
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tφ ←
(Sk)ij + (Sk)ii tψ

(Sk)jj

cφ←
1

√

1 + t2φ
sφ← cφtφ

end if

cψ ←
1

√

1 + t2ψ
sψ ← cψtψ

Sk+1 ← GT (n, i, j, cφ, sφ) Sk G(n, i, j, cψ, sψ)

Uk+1← Uk G(n, i, j, cφ, sφ)

Vk+1 ← Vk G(n, i, j, cψ, sψ)

else

Sk+1 ← Sk

Uk+1← Uk

Vk+1 ← Vk

end if

k ← k + 1

end for

end for

Sk ← STk
T ← Vk

Vk ← Uk

Uk← T

upper ← 1− upper
end while

if upper = 1 then

S ← Sk

U← Uk

V ← Vk

else

S ← STk
U← Vk

V ← Uk

end if

Output: U , S, V

Now we use the row-cyclic Kogbetliantz algorithm to construct a path of
SVDs Ũ Σ̃Ṽ T of Ã. In order to prove convergence of the row-cyclic Kog-
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betliantz algorithm when applied to matrices with entries in Se, we need
a matrix-valued function for which all the terms of all the entries have
negative exponents. Therefore, we define a matrix-valued function B̃ with
dom B̃ = R+

0 such that B̃(s) = e−(c+1)sÃ(s) for all s ∈ R+
0 . Hence,

b̃ij(s) = γije
−bijs for all s ∈ R+

0 and for all i, j with bij = c + 1 − cij > 0

for all i, j. Obviously, the entries of B̃ are in Se. Note that the dominant
exponent of ‖B̃‖F is negative.

Let J ⊆ R+
0 . If Ũ S̃Ṽ T is a path of SVDs of B̃ on J and if Σ̃ is a real m by

n matrix-valued function with dom Σ̃ = J such that Σ̃(s) = e(c+1)sS̃(s) for
all s ∈ J then Ũ Σ̃Ṽ T is a path of SVDs of Ã on J .
In order to determine a path of SVDs of B̃, we first compute a path of QRDs
of B̃ on R+

0 :

B̃ = Q̃

[

R̃
O(m−n)×n

]

where R̃ is an n by n upper triangular matrix-valued function. By Proposi-
tion 7.3.4 the entries of Q̃ and R̃ belong to Se.
Now we use the row-cyclic Kogbetliantz algorithm to compute a path of
SVDs of R̃. The operations used in this algorithm are additions, multipli-
cations, subtractions, divisions, square roots and absolute values. So if we
apply this algorithm to a matrix with entries in Se, the entries of all the
matrices generated during the iteration process also belong to Se by Propo-
sition 7.3.3.
If f , g and h belong to Se then they are asymptotically equivalent to an ex-
ponential in the neighborhood of∞ by Lemma 7.3.2. So if L is large enough,
then f(L) > 0 and g(L) > h(L) imply that f(s) > 0 and g(s) > h(s) for all
s ∈ [L,∞). This is one of the reasons that Kogbetliantz’s SVD algorithm
and other algorithms from linear algebra also work for matrices with entries
that belong to Se instead of R.
Let S̃k, Ũk and Ṽk be the matrix-valued functions that are computed in
the kth pass through the main loop of the algorithm. The dominant ex-
ponents of all the entries of R̃ are negative since ‖R̃‖F = ‖B̃‖F. Since

‖S̃k‖F = ‖R̃‖F by (7.15), the dominant exponents of the entries of S̃k are
also negative. Therefore it follows from (7.16) that the largest dominant
exponent of the off-diagonal entries of S̃k approximately (at least) doubles
each N passes provided that k is large enough. So the dominant exponents
of the off-diagonal entries of S̃k become more and more negative as the itera-
tion progresses. Furthermore, since the Frobenius norm of S̃k stays constant
during the iteration, the exponents of the updates (S̃k)ii − (S̃k−1)ii of the
diagonal entries also approximately double each N passes. If we assume that
the terms of the sums or the series that correspond to the diagonal entries
of S̃k are ordered such that the exponents form a decreasing sequence, more
and more successive terms of the sums or the series that correspond to the
diagonal entries of S̃k stay constant as the iteration process progresses. This
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also holds for the sums or the series that correspond to the entries of Ũk
and Ṽk.
In theory the row-cyclic Kogbetliantz algorithm should run forever in order
to produce a path of exact SVDs of B̃. However, since we are mainly in-
terested in the asymptotic behavior of the singular values and the entries of
the singular vectors of B̃, we may stop the iteration process as soon as the
dominant exponents of the matrix-valued functions obtained at the end of
consecutive sweeps do not change any more. Furthermore, we are not really
interested in a path of exact SVDs of B̃. Assume that we have performed
p sweeps of the row-cyclic Kogbetliantz algorithm. Let ∆̃p be the diagonal

matrix-valued function obtained by removing the off-diagonal entries of S̃pN
after the pth sweep, making all diagonal entries nonnegative and arranging
them in descending order, and adding m− n zero rows (cf. the transforma-
tions that were used to go from S to SB on p. 203). Let X̃p and Ỹp be the
matrix-valued functions obtained by applying the corresponding transfor-
mations to ŨpN and ṼpN respectively. If we define a matrix-valued function

C̃p = X̃p∆̃pỸ
T
p , we have a path of exact SVDs of C̃p on some interval [L,∞).

This means that we may stop the iteration process as soon as

b̃ij(s) ∼ (C̃p(s))ij , s→∞ for all i, j . (7.17)

Let Ũ S̃Ṽ T be a path of approximate SVDs of B̃ on some interval [L,∞)
that was obtained by the procedure given above. Since we have performed
a finite number of elementary operations on the entries of B̃, the entries of
Ũ , S̃ and Ṽ belong to Se.

If we define a matrix-valued function Σ̃ with dom Σ̃ = [L,∞) such that
Σ̃(s) = e(c+1)sS̃(s) for all s ∈ [L,∞), then we have

Ã(s) ∼ Ũ(s) Σ̃(s) Ṽ T (s) , s→∞ (7.18)

ŨT (s) Ũ(s) = Im for all s > L (7.19)

Ṽ T (s) Ṽ (s) = In for all s > L . (7.20)

The diagonal entries of Σ̃ and the entries of Ũ and Ṽ belong to Se and are
thus asymptotically equivalent to an exponential in the neighborhood of ∞
by Lemma 7.3.2.
Now we apply the reverse mapping R in order to obtain a max-algebraic
SVD of A. Since we have used numbers instead of parameters for the coef-
ficients of the exponentials in F(A, ·), the coefficients of the exponentials in
the singular values and the entries of the singular vectors are also numbers.
Therefore, the reverse mapping only yields signed results. If we define

Σ = R(Σ̃) , U = R(Ũ) , V = R(Ṽ ) and σi = (Σ)ii = R(σ̃i) for all i ,
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then Σ is a max-algebraic diagonal matrix and U and V have signed entries.
If we apply the reverse mapping R to (7.18) – (7.20), we get

A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em and V T ⊗ V ∇ En .

The σ̃i’s are nonnegative in [L,∞) and therefore we have σi ∈ Rε for all i.
Since the σ̃i’s are ordered in [L,∞), their dominant exponentials are also
ordered. Hence, σ1 > σ2 > . . . > σr.
We have ‖Ã(s)‖F ∼ γecs, s→∞ for some γ > 0 since c = ‖A‖

⊕
is the

largest exponent that appears in the entries of Ã. Hence, R
(

‖Ã‖F
)

=

c = ‖A‖
⊕
. By (7.1) we have

1√
n
‖Ã‖F 6 ‖Ã‖2 6 ‖Ã‖F in [L,∞). Since

σ̃1(s) ∼ ‖Ã(s)‖2, s→∞ and since the mapping R preserves the order, this
leads to ‖A‖

⊕
6 σ1 6 ‖A‖

⊕
and consequently, σ1 = ‖A‖

⊕
.

Case 2: Not all the aij ’s have a finite max-absolute value.

First we construct a sequence {Al}∞l=1 of m by n matrices such that

(Al)ij =

{

aij if |aij |⊕ 6= ε ,

‖A‖
⊕
− l if |aij |⊕ = ε ,

for all i, j. So the entries of the matrices Al are finite and ‖A‖
⊕

= ‖Al‖⊕
for all l ∈ N0. Furthermore, lim

l→∞
Al = A.

Now we construct the sequence {Ãl}∞l=1 with Ãl = F(Al, ·) for l = 1, 2, 3, . . .

where we take the same coefficients γij for all the Ãl’s. We compute a path

of approximate SVDs Ũl Σ̃l Ṽ
T
l of each Ãl using the method of Case 1 of

this proof.
In general, it is possible that for some of the entries of the Ũl’s and the Ṽl’s
the sequence of the dominant exponents and the sequence of the correspond-
ing coefficients have more than one accumulation point (since if two or more
singular values coincide the corresponding left and right singular vectors are
not uniquely defined). However, since we use a fixed computation scheme
(the row-cyclic Kogbetliantz algorithm), all the sequences will have exactly
one accumulation point. So some of the dominant exponents will reach a
finite limit as l goes to ∞, while the other dominant exponents will tend to
−∞. If we take the reverse mapping R, we get a sequence of max-algebraic
SVDs {Ul ⊗ Σl ⊗ V Tl }∞l=1 where some of the entries, viz. those that corre-
spond to dominant exponents that tend to −∞, tend to ε as l goes to ∞.
Note that (Σl)ii 6 (Σl)11 = ‖A‖

⊕
for i = 1, 2, . . . , n and for all l ∈ N0.

If we define

U = lim
l→∞

Ul, Σ = lim
l→∞

Σl and V = lim
l→∞

Vl

then we have

A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em and V T ⊗ V ∇ En .
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Since the diagonal entries of all the Σl’s are max-positive or max-zero, or-
dered and less than or equal to ‖A‖

⊕
, the diagonal entries of Σ are also

max-positive or max-zero, ordered and less than or equal to ‖A‖
⊕
. Hence,

U ⊗ Σ⊗ V T is a max-algebraic SVD of A. 2

Remark 7.3.6 Now we explain why we have distinguished between two dif-
ferent cases in the proof of Theorem 7.3.5.

If there exist indices i and j such that aij = ε then b̃ij(s) = 0 for all s ∈ R+
0 ,

which means then we cannot guarantee that condition (7.17) will be satisfied
after a finite number of sweeps. This is why we make a distinction between the
case where all the entries of A are finite and the case where at least one entry
of A is equal to ε.

Let us now show that this argument does not hold for the singular values. If
Ψ̃ is a real matrix-valued function that is analytic in some interval J ⊆ R then
the rank of Ψ̃ is constant in J except in some isolated points where the rank
drops [64]. If the rank of Ψ̃(s) is equal to ρ for all s ∈ J except for some
isolated points then we say that the generic rank of Ψ̃ in J is equal to ρ. The
entries of all the matrix-valued functions created in the row-cyclic Kogbetliantz
algorithm when applied to Ã are real and analytic in some interval [L∗,∞).
Furthermore, for a fixed value of s the matrices Ã(s), B̃(s), R̃(s), S̃1(s), S̃2(s),
. . . all have the same rank since B̃(s) = e(c+1)sÃ(s) and since the matrices
B̃(s), R̃(s), S̃1(s), S̃2(s), . . . are related by orthogonal transformations. So if ρ
is the generic rank of Ã in [L∗,∞) then the generic rank of B̃, R̃, S̃1, S̃2, . . . in
[L∗,∞) is also equal to ρ. If ρ < n then the n− ρ smallest singular values of R̃
will be identically zero in [L∗,∞). However, since R̃, S̃N , S̃2N , . . . are upper
triangular matrices, they have at least n − ρ diagonal entries that are identi-
cally zero in [L∗,∞) since otherwise their generic rank would be greater than
ρ. In fact this also holds for S̃1, S̃2, . . . since these matrix-valued functions are
hierarchically triangular, i.e. block triangular such that the diagonal blocks are
again block triangular, etc. [78]. Furthermore, we have already said that if k is
large enough, diagonal entries do not change their affiliation any more, i.e. if a
diagonal entry corresponds to a specific singular value in the kth pass through
the main loop of the algorithm then it will also correspond to that singular
value in all the next passes. Since the diagonal entries of S̃k are asymptotically
equivalent to an exponential in the neighborhood of∞, this means that at least
n−ρ diagonal entries (with a fixed position) of S̃k, S̃k+1, . . . will be identically
zero in some interval [L,∞) ⊆ [L∗,∞) if k is large enough. Hence, we do not
have to take special precautions if Ã has singular values that are identically
zero in the neighborhood of ∞ since convergence to these singular values in a
finite number of iteration steps is guaranteed.

For inner products of two different columns of Ũ there are no problems either:
these inner products are equal to 0 by construction since the matrix-valued
function Ũk is orthogonal on [L,∞) for all k ∈ N.
This also holds for inner products of two different columns of Ṽ . 3



210 Chapter 7. The max-algebraic SVD and the max-algebraic QRD

Remark 7.3.7 In Section 7.4 we shall explain why the condition σ1 6 ‖A‖
⊕

is
needed in the definition of the max-algebraic SVD (See Example 7.4.1). Note
that there does not appear a similar condition in the definition of the SVD in
linear algebra (cf. Theorem 7.1.2).
In the proof of Theorem 7.3.5 we have in fact proved that σ1 = ‖A‖

⊕
. However,

in Section 7.4 we shall make clear why we have used the condition σ1 6 ‖A‖
⊕

instead in the formulation of Theorem 7.3.5.
When we shall formulate the existence theorem for the max-algebraic QRD,
we shall also use a similar condition. 3

The alternative proof technique that has been used in this section leads to a
proof that is longer than that of [42]. However, since it essentially consists
in applying an algorithm from linear algebra to a matrix with entries in Se,
the proof technique of this section has the advantage that it can also be used
to prove the existence of many other max-algebraic matrix decompositions
fairly easily. Let us illustrate this by showing the existence of a max-algebraic
analogue of the QRD.

Theorem 7.3.8 (Max-algebraic QR decomposition) If A ∈ Sm×n then
there exist a matrix Q ∈ (S∨)m×m and a max-algebraic upper triangular matrix
R ∈ (S∨)m×n such that

A ∇ Q⊗R (7.21)

with QT ⊗Q ∇ Em and ‖R‖
⊕

6 ‖A‖
⊕
.

Every decomposition of the form (7.21) that satisfies the above conditions is
called a max-algebraic QR decomposition of A.

Proof : This is a direct consequence of Proposition 7.3.4. 2

Furthermore, the proof technique of this section can easily be adapted to prove
the existence of a max-algebraic eigenvalue decomposition for symmetric ma-
trices (by using the Jacobi algorithm for the computation of the eigenvalue de-
composition of a real symmetric matrix), a max-algebraic LU decomposition,
a max-algebraic Schur decomposition, a max-algebraic Hessenberg decomposi-
tion and so on (See e.g. [65] for a definition of these decompositions in linear
algebra).

Now we give an example of the computation of a max-algebraic SVD of a
matrix using the mapping F . Another example of this technique can be found
in [42]. An example of the computation of a max-algebraic QRD will be given
in Section D.4.

Example 7.3.9 Consider

A =

[
	0 4

1 	5

]

.
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We shall compute a max-algebraic SVD of A using the mapping F . We define
Ã = F(A, ·) where we set all the coefficients of the exponentials equal to 1. So

Ã(s) =

[
−1 e4s

es −e5s
]

for all s ∈ R+
0 .

Since Ã is a 2 by 2 matrix-valued function, we can compute a path of SVDs
Ũ Σ̃Ṽ T of Ã analytically, e.g. via the eigenvalue decomposition of ÃT Ã (See
e.g. [65, 135]). This yields

Ũ(s) =








−1
√

e2s + 1

es
√

e2s + 1
es

√

e2s + 1

1
√

e2s + 1







∼
[
−e−s 1

1 e−s

]

, s→∞

Σ̃(s) =

[ √

e10s + e8s + e2s + 1 0

0 0

]

∼
[
e5s 0
0 0

]

, s→∞

Ṽ (s) =








1
√

e8s + 1

e4s
√

e8s + 1

−e4s
√

e8s + 1

1
√

e8s + 1







∼
[
e−4s 1
−1 e−4s

]

, s→∞ .

If we apply the reverse mapping R, we get a max-algebraic SVD U ⊗ Σ⊗ V T

of A with

U = R(Ũ) =

[
	(−1) 0

0 −1

]

, Σ = R(Σ̃) =

[
5 ε
ε ε

]

and

V = R(Ṽ ) =

[
−4 0
	0 −4

]

.

We have

U ⊗ Σ⊗ V T =

[
	0 4

1 	5

]

= A

UT ⊗ U =

[
0 (−1)

•

(−1)
•

0

]

∇E2

V T ⊗ V =

[
0 (−4)

•

(−4)
•

0

]

∇E2 .

Note that σ1 = 5 = ‖A‖
⊕
.

We have U ⊗ UT = UT ⊗ U ∇ E2, V ⊗ V T = V T ⊗ V ∇ E2, det⊕ U = 	0∇/ ε
and det⊕ V = 0∇/ ε (cf. Section D.5). 2
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7.4 Properties of the Max-Algebraic SVD

In this section we derive some properties of the max-algebraic SVD and we
indicate how the max-algebraic SVD might be used in the identification of
max-linear time-invariant DESs.

First we show by an example that the condition σ1 6 ‖A‖
⊕

in the definition
of the max-algebraic SVD is necessary in order to obtain singular values that
are bounded from above.

Example 7.4.1 Consider

A =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







.

If we define

U =







0 0 0 0
0 	0 	0 0
0 0 0 	0
0 0 	0 0






, Σ =







σ ε ε ε
ε σ ε ε
ε ε σ ε
ε ε ε σ







and

V =







0 	0 	0 	0
0 0 	0 	0
	0 0 	0 	0

0 	0 0 	0






,

then we have

UT ⊗ U = V T ⊗ V =







0 0• 0• 0•

0• 0 0• 0•

0• 0• 0 0•

0• 0• 0• 0






∇ E4

and

U ⊗ Σ⊗ V T =







σ• σ• σ• σ•

σ• σ• σ• σ•

σ• σ• σ• σ•

σ• σ• σ• σ•







, (7.22)

which means that U ⊗ Σ⊗ V T ∇ A for every σ > 0.
So if the condition σ1 6 ‖A‖

⊕
would not have been included in the definition

of the max-algebraic SVD, (7.22) would be a max-algebraic SVD of A for every
σ > 0. 2
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Likewise, the condition ‖R‖
⊕

6 ‖A‖
⊕

in Theorem 7.3.8 is necessary to bound
the components of R from above:

Example 7.4.2 Consider

A =





	0 0 0
0 	0 0
0 0 0



 .

Without the condition ‖R‖
⊕

6 ‖A‖
⊕

every max-algebraic product of the form

Q⊗R =





	0 0 0
0 	0 0
0 0 	0



⊗





0 ε ρ
ε 0 ρ
ε ε ρ



 =





	0 0 ρ•

0 	0 ρ•

0 0 ρ•





with ρ > 0 would have been a max-algebraic QRD of A. 2

If A ∈ Sm×n and if U⊗Σ⊗V T is a max-algebraic SVD of A then U is a square
matrix with signed entries that satisfies UT ⊗ U ∇ Em. We shall now prove
some properties of this kind of matrices.

Proposition 7.4.3 Consider U ∈ (S∨)m×m. If UT ⊗ U ∇ Em then we have
‖U.,i‖⊕ = 0 for i = 1, 2, . . . ,m.

Proof : Let i ∈ {1, 2, . . . ,m}. Since UT ⊗U ∇ Em, we have (UT ⊗U)ii ∇ 0 .
Hence,

m⊕

k=1

uki
⊗

2 ∇ 0 . (7.23)

Consider an arbitrary index k ∈ {1, 2, . . . , n}. We have

uki
⊗

2
= (u⊕

ki 	 u	

ki)
⊗

2

= (u⊕

ki)
⊗

2
	 u⊕

ki ⊗ u	

ki 	 u	

ki ⊗ u⊕

ki ⊕ (u	

ki)
⊗

2

= (u⊕

ki)
⊗

2
⊕ (u	

ki)
⊗

2

since the entries of U are signed and thus u⊕

ki = ε or u	

ki = ε, which implies
that u⊕

ki ⊗ u	

ki = ε.

So uki
⊗

2
is signed for all k, which means that both sides of the balance (7.23)

are signed. Therefore, it follows from Proposition 2.3.3 that

m⊕

k=1

(

(u⊕

ki)
⊗

2
⊕ (u	

ki)
⊗

2
)

=
m⊕

k=1

uki
⊗

2
= 0 .
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Since (x⊕ y)⊗
2

= x⊗
2 ⊕ y⊗

2
for all x, y ∈ Rε, this results in

m⊕

k=1

(u⊕

ki ⊕ u	

ki)
⊗

2
= 0 . (7.24)

If x ∈ Rε then x⊗
2

is equal to 2x in conventional algebra. Therefore, (7.24) is

equivalent to

m⊕

k=1

(u⊕

ki ⊕ u	

ki) = 0 , and this results in ‖U.,i‖⊕ = 0. 2

Corollary 7.4.4 Consider U ∈ (S∨)m×m. If U ⊗ UT ∇ Em then we have
|uij |⊕ 6 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m.

Now we explain why we really need the symmetrized max-plus algebra Smax

to define the max-algebraic singular value decomposition: we shall show that
the class of matrices with entries in Rε that have max-algebraic SVD in which
U and V have only entries in Rε is rather limited. Let A ∈ Rm×n

ε and let
U ⊗ Σ ⊗ V T be a max-algebraic SVD of A with U ∈ Rm×m

ε and V ∈ Rn×nε .
Since the entries of U are signed, it follows from Proposition 2.3.7 that the
balance UT ⊗ U ∇ Em results in UT ⊗ U = Em. It is easy to verify that
this is only possible if every column and every row of U contains exactly one
entry that is equal to 0 and if all the other entries of U are equal to ε. Hence,
U is max-algebraic permutation matrix. This also holds for V . So U = P1

and V = P2 where P1 and P2 are max-algebraic permutation matrices. As a
consequence, we have A = U ⊗ Σ ⊗ V T = P1 ⊗ Σ ⊗ P T2 . So A has to be a
permuted max-algebraic diagonal matrix.
So only permuted max-algebraic diagonal matrices with entries in Rε have a
max-algebraic SVD with entries in Rε. This could be compared with the class
of real matrices in linear algebra that have an SVD with only nonnegative
entries: using an analogous reasoning one can prove that this class coincides
with the set of the real permuted diagonal matrices. Furthermore, it is obvious
that each SVD in Rmax is also an SVD in Smax.

Proposition 7.4.5 Let A ∈ Sm×n. There always exists a max-algebraic SVD
U ⊗ Σ⊗ V T of A for which σ1 = ‖A‖

⊕
.

Proof : This has already been proved in the proof of Theorem 7.3.5. 2

Theorem 7.3.5 tells us that the max-algebraic singular values of a matrix A are
bounded from above by ‖A‖

⊕
. Furthermore, by Proposition 7.4.5 there always

exists a max-algebraic SVD for which σ1 is equal to this upper bound. The
following proposition tells us when the upper bound for σ1 is tight for all the
max-algebraic SVDs of A:

Proposition 7.4.6 Consider A ∈ Sm×n . If there is at least one signed entry
in A that is equal to ‖A‖

⊕
in max-absolute value then σ1 = ‖A‖

⊕
for every

max-algebraic SVD of A.
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Proof : Consider an arbitrary max-algebraic SVD U ⊗ Σ ⊗ V T of A. So
A ∇ U ⊗Σ⊗ V T . If we extract the max-positive and the max-negative part of
each matrix that appears in this balance, we get

A⊕ 	A	 ∇ (U⊕ 	 U	)⊗ Σ⊗ (V ⊕ 	 V 	)T .

Using Proposition 2.3.6 this balance can be rewritten as

A⊕ ⊕ U⊕ ⊗ Σ⊗ (V 	)T ⊕ U	 ⊗ Σ⊗ (V ⊕)T ∇

A	 ⊕ U⊕ ⊗ Σ⊗ (V ⊕)T ⊕ U	 ⊗ Σ⊗ (V 	)T . (7.25)

Both sides of this balance are signed. So by Proposition 2.3.7 we may replace
the balance by an equality. Let r = min(m,n) and let apq be the signed entry
of A for which |apq|⊕ = ‖A‖

⊕
. Now we consider the equality that corresponds

to the pth row and the qth column of (7.25):

a⊕

pq ⊕
r⊕

k=1

u⊕

pk ⊗ σk ⊗ v	

qk ⊕
r⊕

k=1

u	

pk ⊗ σk ⊗ v⊕

qk =

a	

pq ⊕
r⊕

k=1

u⊕

pk ⊗ σk ⊗ v⊕

qk ⊕
r⊕

k=1

u	

pk ⊗ σk ⊗ v	

qk . (7.26)

First we assume that apq ∈ S⊕. Hence, a	
pq = ε. The entries of U and V are

less than or equal to 0 in max-absolute value by Corollary 7.4.4. Hence,

u⊕

pk, u
	

pk, v
⊕

qk, v
	

qk 6 0 for k = 1, 2, . . . ,m (7.27)

and thus

u⊕

pk ⊗ σk ⊗ v	

qk 6 σk 6 ‖A‖
⊕

and u	

pk ⊗ σk ⊗ v⊕

qk 6 σk 6 ‖A‖
⊕

for k = 1, 2, . . . ,m. So the left-hand side of (7.26) is equal to a⊕
pq = ‖A‖

⊕
,

which means that there has to exist an index l ∈ {1, 2, . . . , r} such that

u⊕

pl ⊗ σl ⊗ v⊕

ql = a⊕

pq or u	

pl ⊗ σl ⊗ v	

ql = a⊕

pq .

From (7.27) it follows that this is only possible if σl > a⊕
pq = ‖A‖

⊕
. Since

‖A‖
⊕

> σ1 > σl, this means that σ1 = σl = ‖A‖
⊕
.

If apq ∈ S	, an analogous reasoning also leads to the conclusion that σ1 =
‖A‖

⊕
. 2

Note that the condition of Proposition 7.4.6 is always satisfied if all the entries
of the matrix A are signed. For a matrix A that does not satisfy the condition
of Proposition 7.4.6 it is possible that there exists a max-algebraic SVD for
which the largest singular value is less than ‖A‖

⊕
as is shown by the following

example:
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Example 7.4.7 Consider A =
[
1•
]
. Then 0⊗ σ ⊗ 0 is a max-algebraic SVD

of A for every σ ∈ Rε with σ 6 1 = ‖A‖
⊕

since 0⊗ σ⊗ 0 = σ ∇ 1• if σ 6 1. 2

So in contrast to the singular values in linear algebra the max-algebraic singular
values are not always unique. This leads to the definition of a maximal max-
algebraic SVD — where all the singular values are as large as possible — and
a minimal max-algebraic SVD — where all the singular values are as small as
possible. The maximal max-algebraic SVD of the matrix A of Example 7.4.7
is given by 0⊗ 1⊗ 0 and the minimal max-algebraic SVD is given by 0⊗ ε⊗ 0.

Proposition 7.4.8 Let A ∈ Sm×n. If U ⊗ Σmax ⊗ V T is a maximal max-

algebraic SVD of A, then we have σmax,1
def
= (Σmax)11 = ‖A‖

⊕

Proof : The definition of the max-algebraic SVD yields an upper bound for
σmax,1: σmax,1 6 ‖A‖

⊕
and Proposition 7.4.5 tells us that this upper bound is

tight. 2

Recall that if C ∈ Rm×n with rank (C) = ρ and if UΣV T is a (conventional)
SVD of C then we have σ1, σ2, . . . , σρ 6= 0 and σρ+1 = σρ+2 = . . . = σr = 0
where r = min(m,n). By analogy we could define a rank based on the max-
algebraic SVD:

Definition 7.4.9 (Max-algebraic SVD rank) Let A ∈ Sm×n and let r =
min(m,n). The max-algebraic SVD rank of A is defined by

rank⊕,SVD(A) = min
{
ρ
∣
∣ U ⊗ Σ⊗ V T is a max-algebraic SVD of A

with σ1, σ2, . . . , σρ 6= ε and

σρ+1 = σρ+2 = . . . = σr = ε
}

(7.28)

where σi = (Σ)ii for i = 1, 2, . . . , r.

So the max-algebraic SVD rank of A ∈ Sm×n is equal to the least number of
non-ε max-algebraic singular values over the set of all the max-algebraic SVDs
of A. Furthermore, if ρA = rank⊕,SVD(A) and if the minimum in (7.28) is

reached for the max-algebraic SVD Û ⊗ Σ̂⊗ V̂ T of A then we have

A ∇
ρA⊕

i=1

σ̂i ⊗ ûi ⊗ v̂Ti (7.29)

where the empty max-algebraic sum

0⊕

i=1

. . . is equal to εm×n by definition.

The max-algebraic sum (7.29) contains the least number of terms over all the

decompositions A ∇
ρ
⊕

i=1

σi⊗ ui⊗ vTi that correspond to a max-algebraic SVD
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U ⊗ Σ ⊗ V T of A. This explains why we have used the condition σ1 6 ‖A‖
⊕

instead of σ1 = ‖A‖
⊕

in Theorem 7.3.5. If the condition σ1 = ‖A‖
⊕

would
have been used then the matrix A of Example 7.4.7 would have only one max-
algebraic SVD: 1• ∇ 0 ⊗ 1 ⊗ 0 with σ1 = 1 6= ε, and then the max-algebraic
SVD rank of A would be equal to 1. However, if we use the condition σ1 6

‖A‖
⊕

in the definition of the max-algebraic SVD then 0 ⊗ ε ⊗ 0 is a minimal
max-algebraic SVD of A and then we have rank⊕,SVD(A) = 0, and this is in
accordance with the fact that A can be written as a max-algebraic sum of the

form (7.29) with 0 terms: A = 1• ∇ ε =
0⊕

i=1

σi ⊗ ui ⊗ vTi .

Consider a matrix C ∈ Rm×n. If UΣV T is a (conventional) SVD of C and
if ρ̂ ∈ N with ρ̂ 6 rank (C), then it can be shown (See e.g. [65]) that the

matrix Rρ̂ =

ρ̂
∑

i=1

σiuiv
T
i is the best rank-ρ̂ approximation of A in the sense

that min
rank(R)=ρ̂

‖C −R‖2 = ‖C −Rρ̂‖2 . By analogy we could also define a

“best rank-ρ̂ approximation” based on the max-algebraic SVD.
Let us now indicate how this approximation could be used in the identification
of max-linear time-invariant DESs.
Suppose that we have a max-linear time-invariant DES with m inputs and l
outputs. Let N ∈ N with N � n where n is the (unknown) minimal system
order of the given system. Let {yi(k)}2N+1

k=1 be the output sequence that is
measured if we apply a unit impulse to the ith input for i = 1, 2, . . . ,m. Define

Ĝk−1 =
[
y1(k) y2(k) . . . ym(k)

]T
for k = 1, 2, . . . , 2N + 1 and let

Ĥ =








Ĝ0 Ĝ1 . . . ĜN
Ĝ1 Ĝ2 . . . ĜN+1

...
...

. . .
...

ĜN ĜN+1 . . . Ĝ2N








.

If there is no noise present then rank⊕ (Ĥ) is a lower bound for the minimal
system order (cf. Theorem 6.3.2). But in the presence of noise Ĥ will almost
always be of full rank. If U ⊗ Σ ⊗ V T is a max-algebraic SVD of Ĥ, then we
have

Ĥ ∇
ρ
⊕

i=1

σi ⊗ ui ⊗ vTi (7.30)

with ρ = (N + 1) min (m, l). If we do not consider all the terms of the right-
hand side of (7.30), i.e. if we stop adding terms in (7.30) as soon as the matrix
A is approximated “accurately” enough, say if ρ = ρ̂, we could use ρ̂ as an
estimate of the minimal system order of the given system. Next we could try
to find a state space realization (A,B,C) of order ρ̂ for which the “difference”
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between the sequence {C⊗A⊗
k⊗B}2Nk=0 and the sequence {Ĝk}2Nk=0 is minimal.

This is of course mainly an intuitive reasoning and there are still many open
questions left such as: When is Ĥ approximated “accurately” enough? How do
we characterize this “accuracy”? How “good” is the estimate of the minimal
system order? What is the best way to characterize the “difference” between

the sequence {C ⊗A⊗
k ⊗B}2Nk=0 and the sequence {Ĝk}2Nk=0? and so on.

7.5 The Max-Algebraic SVD and the ELCP

In this section we show that the problem of determining a max-algebraic SVD
of a given matrix can be reformulated as a system of multivariate max-algebraic
polynomial equalities and inequalities that can be solved using the ELCP ap-
proach. This result also holds for the max-algebraic QRD. For small-sized
matrices this allows us to compute all the max-algebraic SVDs or QRDs of
the given matrix with the ELCP algorithm of Section 3.4. The proof technique
that will be developed in this section can also be used to prove that many other
max-algebraic matrix decompositions in the symmetrized max-plus algebra can
also be computed using the ELCP approach.

Proposition 7.5.1 If A ∈ Sm×n is a matrix with finite entries, i.e. if |aij |⊕ 6=
ε for all i, j, then there exists a max-algebraic SVD of A for which all the
singular values and all the components of the singular vectors are finite.

Proof : See Section D.3. 2

Proposition 7.5.2 If A ∈ Sm×n is a matrix with finite entries, i.e. if |aij |⊕ 6=
ε for all i, j, then there exists a max-algebraic QR decomposition Q ⊗ R of A
for which all the entries of Q and all the entries of the upper triangular part of
R are finite.

Proof : Use a proof that is similar to that of Proposition 7.5.1. 2

We have already shown that the mapping F can be used to compute the max-
algebraic SVD of a matrix A. We could compute a path of SVDs of Ã = F(A, ·)
analytically via the eigenvalue decomposition of ÃT Ã (cf. Example 7.3.9). How-
ever, symbolic calculation of the eigenvalues and eigenvectors of ÃT Ã is not
always possible (especially if the size of the matrix ÃT Ã is greater than 4 since
by Abel’s theorem on algebraic equations there do not exist general formulas
that express the roots of a polynomial of degree 5 or higher in terms of the
coefficients of the polynomial by means of radicals (See e.g. [6, 11])). Further-
more, applying the row-cyclic Kogbetliantz algorithm to Ã as we have done
in the proof of Theorem 7.3.5 is too complicated and arduous in practice. Al-
ternatively, we could compute constant SVDs of Ã in a set of discrete points
and then use interpolation to obtain a path of SVDs Ũ Σ̃Ṽ T of Ã. However,
max-algebraic singular values and components of the max-algebraic singular
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vectors that are asymptotically equivalent to an exponential of the form γecs

with c < 0 in the neighborhood of ∞ will become almost 0 even for relatively
small s. Numerically they are then equal to 0 and they will be mapped to ε
instead of c by the reverse mapping R. Especially in such cases, the ELCP
approach could be considered as an alternative method to compute the max-
algebraic SVD of the given matrix. Note however that if we use the ELCP
algorithm of Section 3.4, this approach is only feasible for small-sized matrices.

Let us now show that the problem of finding a max-algebraic SVD of a matrix
can be reformulated as an ELCP.
The original problem is:

Given A ∈ Sm×n, find a max-algebraic diagonal matrix Σ ∈ Rm×n
ε and

matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T (7.31)

UT ⊗ U ∇ Em (7.32)

V T ⊗ V ∇ En (7.33)

with ‖A‖
⊕

> σ1 > σ2 > . . . > σr, where r = min (m,n) and σi = (Σ)ii for
i = 1, 2, . . . , r.

We shall show that the above conditions can be transformed into a system of
multivariate max-algebraic polynomial equalities and inequalities.

First we assume that all the entries of A are finite. Then it follows from
Proposition 7.5.1 that there exists a max-algebraic SVD of A with finite singular
values and finite singular vectors.
Now we write down the equations that will yield a max-algebraic SVD U ⊗Σ⊗
V T of A with finite singular values and finite singular vectors.
First of all, we want the entries of U and V to be signed:

u⊕

ij ⊗ u	

ij = ε for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m , (7.34)

v⊕

ij ⊗ v	

ij = ε for i = 1, 2, . . . , n and j = 1, 2, . . . , n . (7.35)

If we extract the max-positive and the max-negative parts of each matrix,
(7.31) – (7.33) result in

A⊕ 	A	 ∇ (U⊕ 	 U	)⊗ Σ⊗ (V ⊕ 	 V 	)T (7.36)

(U⊕ 	 U	)T ⊗ (U⊕ 	 U	) ∇ Em (7.37)

(V ⊕ 	 V 	)T ⊗ (V ⊕ 	 V 	) ∇ En (7.38)
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or

A⊕ ⊕ U⊕ ⊗ Σ⊗ (V 	)T ⊕ U	 ⊗ Σ⊗ (V ⊕)T ∇

A	 ⊕ U⊕ ⊗ Σ⊗ (V ⊕)T ⊕ U	 ⊗ Σ⊗ (V 	)T

(U⊕)T ⊗ U⊕ ⊕ (U	)T ⊗ U	 ∇ Em ⊕ (U⊕)T ⊗ U	 ⊕ (U	)T ⊗ U⊕

(V ⊕)T ⊗ V ⊕ ⊕ (V 	)T ⊗ V 	 ∇ En ⊕ (V ⊕)T ⊗ V 	 ⊕ (V 	)T ⊗ V ⊕

by Proposition 2.3.6. Both sides of all the balances are now signed. So by
Proposition 2.3.7 we may replace the balances by equalities. We define three
matrices T ∈ Rm×n

ε , P ∈ Rm×m
ε and Q ∈ Rn×nε such that

T = A⊕ ⊕ U⊕ ⊗ Σ⊗ (V 	)T ⊕ U	 ⊗ Σ⊗ (V ⊕)T (7.39)

P = (U⊕)T ⊗ U⊕ ⊕ (U	)T ⊗ U	 (7.40)

Q = (V ⊕)T ⊗ V ⊕ ⊕ (V 	)T ⊗ V 	 , (7.41)

and thus also

T = A	 ⊕ U⊕ ⊗ Σ⊗ (V ⊕)T ⊕ U	 ⊗ Σ⊗ (V 	)T (7.42)

P = Em ⊕ (U⊕)T ⊗ U	 ⊕ (U	)T ⊗ U⊕ (7.43)

Q = En ⊕ (V ⊕)T ⊗ V 	 ⊕ (V 	)T ⊗ V ⊕ . (7.44)

Note that P and Q are symmetric matrices. Since the max-algebraic singular
values are finite, their max-algebraic inverses are defined. Since the entries
of A, U and V are finite, the entries of T , P and Q are also finite. So their
max-algebraic inverses are also defined.
If we write out the max-algebraic matrix multiplications in (7.39) and (7.42)
and if we transfer the entries of T to the opposite side, we get

a⊕

ij ⊗ tij⊗
−1 ⊕

r⊕

k=1

u⊕

ik ⊗ σk ⊗ v	

jk ⊗ tij⊗
−1 ⊕

r⊕

k=1

u	

ik ⊗ σk ⊗ v⊕

jk ⊗ tij⊗
−1

= 0 (7.45)

a	

ij ⊗ tij⊗
−1 ⊕

r⊕

k=1

u⊕

ik ⊗ σk ⊗ v⊕

jk ⊗ tij⊗
−1 ⊕ (7.46)

r⊕

k=1

u	

ik ⊗ σk ⊗ v	

jk ⊗ tij⊗
−1

= 0 (7.47)
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for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Since P is symmetric and since (Em)ij = 0 if i = j and (Em)ij = ε if i 6= j,
(7.40) and (7.43) lead to

m⊕

k=1

u⊕

ki ⊗ u⊕

kj ⊗ pij⊗
−1 ⊕

m⊕

k=1

u	

ki ⊗ u	

kj ⊗ pij⊗
−1

= 0 (7.48)

m⊕

k=1

u⊕

ki ⊗ u	

kj ⊗ pij⊗
−1 ⊕

m⊕

k=1

u	

ki ⊗ u⊕

kj ⊗ pij⊗
−1

= 0 (7.49)

for i = 1, 2, . . . ,m and j = i+ 1, i+ 2, . . . ,m. Furthermore,

m⊕

k=1

u⊕

ki ⊗ u⊕

ki ⊕
m⊕

k=1

u	

ki ⊗ u	

ki = 0 ⊕
m⊕

k=1

u⊕

ki ⊗ u	

ki ⊕
m⊕

k=1

u	

ki ⊗ u⊕

ki = pii

for i = 1, 2, . . . ,m, or equivalently

m⊕

k=1

(u⊕

ki)
⊗

2
⊕

m⊕

k=1

(u	

ki)
⊗

2
= 0 = pii for i = 1, 2, . . . ,m

since the entries of U are signed.

If x ∈ Rε then x⊗
2

is equal to 2x in conventional algebra. Hence,

m⊕

k=1

u⊕

ki ⊕
m⊕

k=1

u	

ki = 0 for i = 1, 2, . . . ,m . (7.50)

Note that pii = 0 for i = 1, 2, . . . ,m.
Analogously we obtain

n⊕

k=1

v⊕

ki ⊗ v⊕

kj ⊗ qij⊗
−1 ⊕

n⊕

k=1

v	

ki ⊗ v	

kj ⊗ qij⊗
−1

= 0 (7.51)

n⊕

k=1

v⊕

ki ⊗ v	

kj ⊗ qij⊗
−1 ⊕

n⊕

k=1

v	

ki ⊗ v⊕

kj ⊗ qij⊗
−1

= 0 (7.52)

for i = 1, 2, . . . , n and j = i+ 1, i+ 2, . . . , n;

n⊕

k=1

v⊕

ki ⊕
n⊕

k=1

v	

ki = 0 for i = 1, 2, . . . , n (7.53)

and qii = 0 for i = 1, 2, . . . , n.
The condition σ1 6 ‖A‖

⊕
can be rewritten as

‖A‖
⊕
⊗ σ1

⊗
−1

> 0 . (7.54)
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Finally, we order the max-algebraic singular values by requiring that σi > σi+1

for i = 1, 2, . . . , r − 1 or equivalently

σi ⊗ (σi+1)
⊗
−1

> 0 for i = 1, 2, . . . , r − 1 . (7.55)

Expressions (7.34) – (7.35) and (7.45) – (7.55) constitute a system of multivari-
ate max-algebraic polynomial equalities and inequalities. By using the tech-
nique explained in Section 4.1 and by taking Remark 4.1.7 into account we can
transform them into an ELCP. So we can use the ELCP algorithm to find all
the solutions of the system of multivariate max-algebraic polynomial equalities
and inequalities (7.34) – (7.35), (7.45) – (7.55).

The resulting homogeneous ELCP has
5

2
(m2 + n2) − 1

2
(m + n) +mn + r + 1

variables: the max-positive and the max-negative parts of the entries of U and
V , the diagonal entries of Σ, the entries of T , the entries of the upper triangular
part of P and Q and an extra variable α to make the ELCP homogeneous. The
number of inequalities of this ELCP is equal to 2mn(2r + 1) + 2m3 + 2n3 +
m2 + n2 + r + 1 − nε where nε is the total number of entries of A⊕ and A	

that are equal to ε. So if A is an n by n matrix and if all the entries of A are
finite and signed (which implies that nε = n2), we have an ELCP with 6n2 + 1
variables and 8n3 + 3n2 + n+ 1 inequalities.
Recall that any arbitrary solution of an ELCP corresponds to the sum of a
linear combination of the central generators, a nonnegative combination of
cross-complementary extreme generators and a convex combination of cross-
complementary finite points that are also cross-complementary with these ex-
treme generators. Since the max-algebraic singular values are bounded from
above by ‖A‖

⊕
and since the max-absolute values of the components of the

max-algebraic singular vectors are bounded from above by 0, there are no cen-
tral generators in the solution set of the ELCP that corresponds to the system
of multivariate max-algebraic polynomial equalities and inequalities (7.34) –
(7.35), (7.45) – (7.55). Furthermore, since all the components of the solutions
are bounded from above, the components of the extreme generators are less
than or equal to 0. Therefore, the finite points that result from the ELCP
algorithm always correspond to a maximal max-algebraic SVD of A.
Since every matrix with finite entries has at least one max-algebraic SVD with
finite singular values and finite singular vectors by Proposition 7.5.1, the so-
lution set of the ELCP that corresponds to the system (7.34) – (7.35), (7.45) –
(7.55) cannot be empty.

Remark 7.5.3 As explained in Remark 4.1.7 equations of the form x⊕

i ⊗x	

i = ε
will be replaced by equations of the form

x�

i ⊗ x�

i 6 −ξ (7.56)

where ξ is a (large) positive number and where x�

i and x�

i are “finite approx-
imations” of x⊕

i and x	

i respectively. Note that we cannot use x⊕

i and x	

i any
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more in (7.56) since if xi is signed, we always have x⊕

i ⊗ x	

i = ε, which means
that x⊕

i = ε or x	

i = ε. However, we still have xi = x�

i 	 x�

i provided that ξ is
large enough.
As explained in Remark 4.1.7 we can use a limit or a threshold technique
to obtain the solutions of the original system of multivariate max-algebraic
polynomial equalities and inequalities (7.34) – (7.35), (7.45) – (7.55). Since the
solutions of systems of multivariate max-algebraic polynomial equalities and
inequalities that arise from max-algebraic SVDs will always be bounded from
above, there will be no solutions with positive components of the same order of
magnitude as ξ if ξ is large enough. So we shall never create solutions with com-
ponents that are equal to ∞ if we use the limit or the threshold technique. 3

Remark 7.5.4 If some of the entries of A are not finite, we can use the
same technique as in Section 4.2.2 and replace the infinite components of A
by (−ξ)• and then see how the solution set of the resulting ELCP evolves as
ξ tends to ∞. Since the entries of U , V and Σ are bounded from above, this
procedure will never result in solutions with components that are equal to ∞.
Furthermore, since the entries of T , P and Q are dummy variables that do not
appear in the conditions A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em, V T ⊗ V ∇ En and
‖A‖

⊕
> σ1 > σ2 > . . . > σr, there cannot be any problems arising from taking

negative max-algebraic powers of ε. 3

The time and the memory space needed to solve an ELCP with the algorithm
described in Section 3.4 increases rapidly as the number of variables and in-
equalities increases. Therefore, it is advantageous to reduce the number of
variables and inequalities as much as possible.
Let A ∈ Sm×n. If there is a signed entry in A that is equal to ‖A‖

⊕
in max-

absolute value then σ1 = ‖A‖
⊕

by Proposition 7.4.6. So in that case we do not
have to consider σ1 as an unknown.
Let U ⊗ Σ ⊗ V T be a max-algebraic SVD of A, let i ∈ {1, 2, . . . ,m} and let
r = min(m,n). Let us now see what happens if we replace ui (the ith col-
umn of U) by 	ui. Obviously, we still have UT ⊗ U ∇ Em. The balance
A ∇ U ⊗ Σ⊗ V T can be rewritten as

A ∇
r⊕

i=1

σi ⊗ ui ⊗ vTi . (7.57)

If we also replace vi by	vi if i 6 r then (7.57) still holds. So we still have a max-
algebraic SVD of A. This means that we can reduce the number of variables and
inequalities of the ELCP that is used to determine a max-algebraic SVD of A by
requiring that the diagonal entries of U (or V , depending on which one has the
largest dimension) are max-positive or max-zero: u	

ii = ε for i = 1, 2, . . . ,m.
It is obvious that the max-algebraic QRD of a matrix A ∈ Sm×n can also be

computed using the ELCP technique. It is easy to verify that in this case we
can also reduce the number of variables by requiring that the diagonal entries
of Q belong to S⊕.
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Now we use the ELCP approach to compute all the max-algebraic SVDs of
the matrix of Example 7.3.9. An example of the use of the ELCP approach
to compute all the max-algebraic QRDs of a given matrix can be found in
Section D.4.

Example 7.5.5 Consider

A =

[
	0 4

1 	5

]

.

Note that A.,1 and A.,2 are max-linearly dependent since A.,2 = 	4⊗A.,1.
In Example 7.3.9 we have used the mapping F to compute a max-algebraic
SVD of A. Now we use the transformation into a system of multivariate
max-algebraic polynomial equalities and inequalities to compute all the max-
algebraic SVDs of A. We reduce the number of variables by requiring that the
diagonal entries of U belong to S⊕.
We apply the technique of Remark 7.5.3 and we introduce new variables u�

ij

and u�

ij for i = 1, 2 and j = 1, 2 with i 6= j such that u�

ij ⊗ u�

ij 6 −ξ for all i, j
with i 6= j where ξ is a (large) positive number. In a similar way we also define
v�

ij and v�

ij for i = 1, 2 and j = 1, 2. Since u11, u22 ∈ S⊕, we have u⊕

11 = u11,
u⊕

22 = u22 and u	

11 = u	

22 = ε. Therefore, we do not have to replace u⊕

11, u
	

11,
u⊕

22 and u	

22 by new variables. We put all the variables in one large column
vector x:

x =
[
σ1 σ2 u11 u�

12 u�

21 u22 u�

12 u�

21 v�

11 v�

12 v�

21 v�

22

v�

11 v�

12 v�

21 v�

22 t11 t12 t21 t22 p12 q12
]T

.

Note that p11, p22, q11, q22, p21 and q21 are not considered as unknowns since
we already know that p11 = p22 = q11 = q22 = 0 and p21 = p12 and q21 = q12.
If we set ξ equal to 1000, the ELCP algorithm of Section 3.4 yields the gen-
erators and the finite points of Table 7.1 and the pairs of maximal cross-
complementary subsets of Table 7.2. There are no central generators.

Let us now use the threshold technique to recover the solutions of the origi-
nal system of multivariate max-algebraic polynomial equalities and inequalities
S(∞) that describes that set of the max-algebraic SVDs U ⊗ Σ⊗ V T of A for
which the diagonal entries of U belong to S⊕. Consider the generator xf

1. The
components u�

21, u
�

12, v
�

11, v
�

12, v
�

21 and v�

22 are negative numbers of the same
order of magnitude as ξ. These components are not bounded from below since
the extreme generators xe

2, x
e
3, x

e
4, x

e
7, x

e
8, x

e
9 appear in the same ordered pair of

maximal cross-complementary subsets (X ext
1 ,X fin

1 ) as xf
1. There are no positive

components of the same order of magnitude as ξ in xf
1 (This was to be expected

since the max-algebraic singular values are bounded from above by ‖A‖
⊕

= 5
and since the max-absolute values of the components of the max-algebraic sin-
gular vectors are bounded from above by 0). Moreover, the exponents of u�

21,
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X ext X fin

xe
1 xe

2 xe
3 xe

4 xe
5 xe

6 xe
7 xe

8 xe
9 xf

1 xf
2

σ1 0 0 0 0 0 0 0 0 0 5 5

σ2 −1 0 0 0 0 0 0 0 0 0 0

u11 0 0 0 0 0 0 0 0 0 −1 −1

u�

12 0 0 0 0 0 0 0 0 0 0 0

u�

21 0 −1 0 0 0 0 0 0 0 −1000 −1000

u22 0 0 0 0 0 0 0 0 0 −1 −1

u�

12 0 0 −1 0 0 0 0 0 0 −1000 −1000

u�

21 0 0 0 0 0 0 0 0 0 0 0

v�

11 0 0 0 −1 0 0 0 0 0 −996 −996

v�

12 0 0 0 0 −1 0 0 0 0 0 −1000

v�

21 0 0 0 0 0 0 0 0 0 0 0

v�

22 0 0 0 0 0 −1 0 0 0 −4 −996

v�

11 0 0 0 0 0 0 0 0 0 −4 −4

v�

12 0 0 0 0 0 0 −1 0 0 −1000 0

v�

21 0 0 0 0 0 0 0 −1 0 −1000 −1000

v�

22 0 0 0 0 0 0 0 0 −1 −996 −4

t11 0 0 0 0 0 0 0 0 0 0 0

t12 0 0 0 0 0 0 0 0 0 4 4

t21 0 0 0 0 0 0 0 0 0 1 1

t22 0 0 0 0 0 0 0 0 0 5 5

p12 0 0 0 0 0 0 0 0 0 −1 −1

q12 0 0 0 0 0 0 0 0 0 −4 −4

Table 7.1: The generators and the finite points of the ELCP of Example 7.5.5
for ξ = 1000.

s X ext
s X fin

s

1 {xe
1, x

e
2, x

e
3, x

e
4, x

e
7, x

e
8, x

e
9} {xf

1}
2 {xe

1, x
e
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
8} {xf

2}

Table 7.2: The pairs of maximal cross-complementary subsets of the sets X ext

and X fin of Example 7.5.5 for ξ = 1000.
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u�

12, v
�

11, v
�

12, v
�

21 and v�

22 in the system S(∞) are nonnegative. Therefore, we
replace these entries by ε (cf. Remark 4.1.7). This results in

U1 =

[
−1 0
	0 −1

]

, Σ1 =

[
5 ε
ε 0

]

and V1 =

[
	(−4) 0

0 −4

]

. (7.58)

Note that we can also obtain this solution by using the fact that

uij = u�

ij 	 u�

ij =

{

u�

ij if u�

ij > u�

ij ,

u�

ij if u�

ij > u�

ij ,

for all i, j if ξ is large enough, and an analogous expression for the vij ’s. Since

U1 ⊗ Σ1 ⊗ V T1 =

[
0• 4
1 	5

]

∇ A

UT1 ⊗ U1 =

[
0 (−1)

•

(−1)
•

0

]

∇ E2

V T1 ⊗ V1 =

[
0 (−4)

•

(−4)
•

0

]

∇ E2 ,

U1 ⊗ Σ1 ⊗ V T1 really is a max-algebraic SVD of A. So the value that we have
chosen for ξ was large enough.
Since the extreme generator xe

1 belongs to the set X ext
1 , we may replace (Σ1)22

by any nonpositive real number or by ε. This implies that

U ⊗ Σ⊗ V T =

[
−1 0
	0 −1

]

⊗
[

5 ε
ε σ

]

⊗
[
	(−4) 0

0 −4

]T

(7.59)

is a max-algebraic SVD of A for every σ ∈ Rε with σ 6 0.
The decomposition U2⊗Σ2⊗V T2 that corresponds to xf

2 can be obtained from
decomposition (7.58) by replacing (V1).,2 by 	(V1).,2. Note that we may also
replace (Σ2)22 by any nonpositive real number or by ε.
The set of all the max-algebraic SVDs of A can be obtained from U1⊗Σ1⊗V T1
and U2 ⊗ Σ2 ⊗ V T2 by replacing σ2 by a nonpositive real number or by ε; by
replacing the left singular vector u1 by 	u1 and the right singular vector v1
by 	v1; by replacing the left singular vector u2 by 	u2 and the right singular
vector v2 by 	v2; or by a combination of these replacements.
Note that σ1 = 5 = ‖A‖

⊕
for all the max-algebraic SVDs of A (cf. Proposi-

tion 7.4.6).
Taking σ = ε in (7.59) yields a minimal max-algebraic SVD of A. Since
σ1 = 5 and σ2 = ε for all the minimal max-algebraic SVDs of A, we have
rank⊕,SVD(A) = 1.
If we set σ = σmax,2 = 0 in (7.59), we obtain again (7.58) which is thus a
maximal max-algebraic SVD of A. For decomposition (7.59) we have

σ1 ⊗ u1 ⊗ vT1 =

[
	0 4

1 	5

]
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σmax,2 ⊗ u2 ⊗ vT2 =

[
0 −4
−1 −5

]

.

Note that the max-absolute value of each entry of σmax,2⊗u2⊗ vT2 is less than
or equal to the max-absolute value of the corresponding entry of σ1 ⊗ u1 ⊗ vT1 .
The solution of Example 7.3.9 can be obtained by taking σ = ε in (7.59) and
by replacing u1 by 	u1 and v1 by 	v1. 2

7.6 Conclusion

First we have established a link between the ring (Re,+, ·) and the symmetrized
max-plus algebra. We have used this link to introduce the max-complex struc-
ture Tmax, which can be considered as a further extension of the max-plus al-
gebra. Next we have introduced the class Se of functions that are analytic and
that can be written as a sum or a series of exponentials in a neighborhood of∞.
This class is closed under basic operations such as additions, subtractions, mul-
tiplications, divisions, powers, square roots and absolute values. This fact has
then been used to prove the existence of a singular value decomposition (SVD)
and a max-algebraic QR decomposition (QRD) of a matrix in the symmetrized
max-plus algebra. These decompositions are max-algebraic analogues of basic
matrix decompositions from linear algebra that are used in many contempo-
rary algorithms for the identification of linear systems. It is obvious that the
proof technique that has been used to prove the existence of the max-algebraic
SVD and the max-algebraic QRD can also be used to prove the existence of
max-algebraic analogues of many other real matrix decompositions from linear
algebra such as e.g. the eigenvalue decomposition for symmetric matrices, the
LU decomposition, the Schur decomposition, the Hessenberg decomposition
and so on.

We have defined a rank based on the max-algebraic SVD and indicated how
the max-algebraic SVD might be used in the identification of max-linear time-
invariant discrete event systems. Finally we have used the fact that a system of
multivariate max-algebraic polynomial equalities and inequalities can be trans-
formed into an ELCP to derive a method to compute all max-algebraic singular
value decompositions of a matrix. The ELCP technique can also be used to
compute max-algebraic QRDs and other max-algebraic matrix decompositions.

Topics for future research are: further investigation of the properties of
the max-algebraic SVD and the max-algebraic QRD, development of efficient
algorithms to compute a (minimal) max-algebraic SVD of a matrix, and ap-
plication of the max-algebraic SVD and other matrix decompositions in the
system theory for max-linear time-invariant discrete event systems. Further-
more, it is obvious that many other decompositions and properties of matrices
in linear algebra also have a max-algebraic analogue, especially if we make use
of the correspondence between (Ce,+, ·) and Tmax. This will also be a topic for
further research.





Chapter 8

General Conclusions

8.1 Overview of the Contributions

In this thesis we have discussed some topics that were all related in one way
or another to the minimal state space realization problem for max-linear time-
invariant discrete event systems (DESs). One of the foundations of the research
that has been described in this thesis is the analogy between state space de-
scriptions for linear time-invariant systems on the one hand and state space
descriptions for max-linear time-invariant DESs on the other hand. However,
if we compare linear system theory and max-algebraic system theory for DESs,
then we immediately notice that there are not yet max-algebraic analogues or
alternatives for many algorithms and procedures that are frequently used in
linear system theory.

In this thesis we have developed some tools that can be used in the max-
algebraic system theory for DESs. We have shown that many fundamental
max-algebraic problems that arise when one wants to further develop the max-
algebraic system theory for DESs can be cast as a mathematical programming
problem, viz. the Extended Linear Complementarity Problem. This has al-
lowed us to derive a method to solve the minimal state space realization prob-
lem for max-linear time-invariant DESs, which can be considered as one of the
fundamental problems in max-algebraic system theory for DESs.

Let us now briefly review the main contributions of this thesis.
In Chapter 3 we have presented the Extended Linear Complementarity

Problem (ELCP) and established a link between the ELCP and other linear
complementarity problems. We have shown that the ELCP can be considered
as a unifying framework for the Linear Complementarity Problem and its gen-
eralizations. Furthermore, we have made a thorough study of the solution set
of the general ELCP and developed an algorithm to find all the solutions of
an ELCP. We have presented the results of some experiments that show how
factors such as the number of variables, the number of inequalities, the number
of extreme generators and the order in which the inequalities are processed
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influence the execution time of our ELCP algorithm. We have also shown that
the ELCP is an NP-hard problem.

In this thesis we have shown that the ELCP can be considered as a powerful
framework for describing a large class of max-algebraic problems: In Chapter
4 we have proved that the problem of finding all finite solutions of a system of
multivariate max-algebraic polynomial equalities and inequalities is equivalent
to an ELCP. In Chapters 4, 5, 6 and 7 we have used this result to show that
many problems in the max-plus algebra, the symmetrized max-plus algebra and
the max-min-plus algebra such as calculating max-algebraic matrix factoriza-
tions, solving systems of (homogeneous) max-linear balances, performing max-
algebraic state space transformations, determining partial or minimal state
space realizations of the impulse response of a max-linear time-invariant DES,
constructing matrices with a given max-algebraic characteristic polynomial,
determining max-algebraic singular value decompositions or max-algebraic QR
decompositions of a given matrix, mixed max-min problems, max-max and
max-min problems can be reformulated as an ELCP or solved using the ELCP
approach.

In Chapter 5 we have derived necessary conditions for the coefficients of
the max-algebraic characteristic polynomial of a matrix with entries in Rε.
For square matrices with entries in Rε and with a dimension that is less than
or equal to 4 we have also derived necessary and sufficient conditions for the
coefficients of the max-algebraic characteristic polynomial. If we have a max-
algebraic polynomial with a degree that is less than or equal to 4, these results
allow us to check whether the given max-algebraic polynomial can be the max-
algebraic characteristic polynomial of a matrix with entries in Rε, and to con-
struct such a matrix, if it exists. We have also shown that in theory we can
use the ELCP approach to solve the problem of constructing a matrix with a
given max-algebraic characteristic polynomial.

In Chapter 6 we have presented transformations that enable us to find
equivalent max-algebraic state space realizations of the input-output behavior
or the impulse response of a max-linear time-invariant DES. Next we have used
our results on the coefficients of the max-algebraic characteristic polynomial
of a matrix with entries in Rε to derive a procedure to determine the minimal
system order of a max-linear time-invariant DES starting from its impulse re-
sponse. We have shown that we can use the ELCP approach to compute all
fixed order partial state space realizations of a given impulse response. Fur-
thermore, we can also use the ELCP approach to determine all minimal state
space realizations of a given impulse response.

In Chapter 7 we have established a link between a ring of real functions
with conventional addition and multiplication as basic operations and the
symmetrized max-plus algebra. We have used this link to introduce the max-
complex structure Tmax and to prove the existence of the max-algebraic singular
value decomposition (SVD) and the max-algebraic QR decomposition (QRD),
which can be considered as the max-algebraic analogues of two basic matrix
decompositions from linear algebra that arise in many algorithms for solving
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fundamental problems in linear system theory. We have studied some proper-
ties of the max-algebraic SVD and we have indicated how the max-algebraic
SVD might be used in the identification of max-linear time-invariant DESs.
We have also shown that the problem of determining a max-algebraic SVD or
a max-algebraic QRD of a matrix can be solved using the ELCP approach.

Finally we want to remark that for max-linear time-invariant DESs we
can also write down a time-invariant state space model that is “linear” in
the min-plus-algebra (See e.g. [3, 26]). The basic operations of this algebra
are minimization and addition. Since minimization and maximization can be
considered as dual operations, it is obvious that all the results for max-linear
time-invariant models that have been obtained in this thesis can easily be
adapted for min-linear time-invariant models.

8.2 Open Problems and Suggestions for Further
Research

There are still many open problems left and many topics require further inves-
tigation:

We have not yet found general necessary and sufficient conditions for the
coefficients of the max-algebraic characteristic polynomial of a square matrix
of arbitrary size with entries in Rε.

In connection with max-algebraic state space transformations it is still an
open question whether there exist transformations that provide a link between
two arbitrary state space realizations of the input-output behavior or the im-
pulse response of a given max-linear time-invariant DES.

We do not know how to determine a minimal set of Markov parameters
such that any minimal state space realization of this minimal set is also a min-
imal realization of the entire impulse response (without using an enumerative
approach). Furthermore, if the sequence {Rmin(G,N)}∞N=1 of the sets of the
minimal state space realizations of the first N Markov parameters of a given
impulse response G becomes stationary from a certain index N0 on, it is still an
open question whether and how we can determine this index without explicitly
computing the terms of the sequence {Rmin(G,N)}∞N=1.

The technique that has been used to prove the existence of the max-alge-
braic SVD and the max-algebraic QRD can also be used to prove the existence
of a max-algebraic analogue of many other matrix decompositions from linear
algebra such as e.g. the eigenvalue decomposition for symmetric matrices, the
LU decomposition, the Schur decomposition and the Hessenberg decomposi-
tion. The properties of these max-algebraic matrix decompositions certainly
deserve further investigation. We should also determine whether and how these
decompositions can be used in max-algebraic system theory, especially in con-
nection with the minimal state space realization problem and the identification
problem for max-linear time-invariant DESs. Furthermore, we have to develop
efficient algorithms to compute max-algebraic SVDs and other max-algebraic
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matrix decompositions of a given matrix. The properties of the structure Tmax

and max-algebraic matrix decompositions in this extended structure could also
be a topic for further research.

In practice we can only solve small-sized ELCPs with our ELCP algorithm
since the execution time of this algorithm increases very rapidly as the number
of variables and (in)equalities grows. Therefore, there certainly is a need for
more efficient algorithms to find one solution of an ELCP. Since the general
ELCP is an NP-hard problem, it is very unlikely that we can develop a polyno-
mial time algorithm to solve the ELCP. Nevertheless, we could try to develop
efficient algorithms to solve special cases of the ELCP.

In this thesis we have shown that many max-algebraic problems can be re-
formulated as an ELCP or solved using the ELCP approach. By showing that
a problem can be reformulated as an ELCP, we show that in general the set
of all the (finite) solutions of the given problem consists of the union of faces
of a polyhedron. This insight in the geometrical structure of the solution set
of the problem might lead to the development of more efficient algorithms to
solve that particular problem. Although we have shown that in general the
problem of solving a system of multivariate max-algebraic polynomial equali-
ties and inequalities is NP-hard, it may also be interesting to determine which
subclasses of this general problem can be solved by polynomial time algorithms.
Furthermore, it is still an open question whether problems such as determining
a partial or a minimal state space realization of the impulse response of a max-
linear time-invariant DES, constructing a matrix with a given max-algebraic
characteristic polynomial, determining a max-algebraic singular value decom-
position or a max-algebraic QR decomposition of a given matrix, and so on are
also NP-hard.

Since only certain subclasses of DESs can be described by a max-linear
time-invariant state space model, we should also investigate how and whether
the results that have been presented in this thesis can be generalized to DESs
that cannot be described by a max-linear or a time-invariant model such as
DESs with variable or stochastic processing and transportation times, or with
variable routing. It is obvious that the complexity of the basic problems of the
system theory for this kind of DESs will even be higher than the complexity of
the basic problems of the system theory for max-linear time-invariant DESs.

This complexity appears to be one of the inherent characteristics of DESs
and it also explains why there is such a wide gap between theory and practice
in the field of DESs: in almost all frameworks and methodologies to model, to
analyze or to control DESs many basic problems are characterized by the fact
that the execution time of even the most efficient current algorithms to solve
the problem increases exponentially as the size of the problem increases. This
brings us back to the trade-off that was already mentioned in the introduction
of this thesis: the more accurate the model is, the less we can analytically
say about its properties and the more complex the problems related to this
model are. This trade-off is one of the reasons why at present there is such
a wide gap between mathematical theories for DESs on the one hand, and
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the use and the control of DESs in practice on the other hand: the problems
for which the execution time of the most efficient current algorithms to solve
the problem increases exponentially as the size of the problem increases are
precisely those problems for which industry needs solutions and vice versa.
Developing methods to deal with the inherent complexity of the problems that
appear in connection with the modeling, analyzing and controlling of DESs is
certainly one of the major challenges for DES research.

Our work clearly reveals the need for efficient algorithms to solve some basic
max-algebraic problems. We hope that our research will show directions and
possible approaches to develop such algorithms. Moreover, it should be clear
that much research is still needed in order to get a complete system theory
for (max-linear time-invariant) DESs that can be compared with the system
theory for (linear) time-driven systems. We hope that with this work we have
made a contribution to the enhancement of the max-algebraic system theory
for DESs.





Appendix A

The Signed Version of the
Max-Algebraic
Characteristic Equation

In this appendix we discuss an alternative version of the max-algebraic charac-
teristic equation of a matrix that has been introduced by Olsder and Roos [115,
116, 125, 126]. We show that the derivation of Olsder and Roos is not entirely
correct and we give the correct formulas for the coefficients of this alternative
version of the max-algebraic characteristic equation. We also give a counterex-
ample for a conjecture of Olsder [115] in which he states necessary and sufficient
conditions for the coefficients of the alternative version of the max-algebraic
characteristic equation of a matrix with entries in Rε.

A.1 The Signed Version of the Max-Algebraic
Characteristic Equation of a Matrix with
Entries in Rε

In this section we recapitulate the reasoning Olsder and Roos have used in [126]
to derive another version of the max-algebraic characteristic equation of a ma-
trix with entries in Rε (See also [3]). We show where their reasoning goes
wrong and how it can be corrected.

If A ∈ Rn×nε then zA is a real n by n matrix-valued function with domain
of definition R+

0 that is defined by (zA)ij = zaij for i = 1, 2, . . . , n and j =
1, 2, . . . , n. By definition we have zε = 0 for all z ∈ R+

0 . Note that this mapping
is closely related to the mapping F that has been introduced in Section 7.2.
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The dominant of A is defined as follows:

dom⊕A =

{

the highest exponent in det zA if det zA 6= 0 ,

ε otherwise.

The characteristic polynomial of the matrix-valued function zA (in conventional
linear algebra) is given by

det
(
λ(z)In − zA

)
= λn(z) + γ1(z)λ

n−1(z) + . . .+ γn−1(z)λ(z) + γn(z)

with

γk(z) = (−1)k
∑

ϕ∈Ck
n

det zAϕϕ . (A.1)

The Cayley-Hamilton theorem applied to the matrix-valued function zA yields

(zA)n + γ1(z)(z
A)n−1 + . . .+ γn−1(z)(z

A) + γn(z)In = 0 (A.2)

for all z ∈ R+
0 . In [126] Olsder and Roos claim that the highest degree in (A.1)

is equal to max
{
dom⊕Aϕϕ |ϕ ∈ Ckn

}
and that

γk(z) ∼ (−1)k γ̄k z
max{dom⊕ Aϕϕ | ϕ∈Ck

n} , z →∞

where γ̄k is equal to the number of even permutations that contribute to
the highest degree in (A.1) minus the number of odd permutations that con-
tribute to the highest degree. However, the highest degree in (A.1) is not

necessarily equal to max
{
dom⊕Aϕϕ

∣
∣ϕ ∈ Ckn

}
, since if the number of even

permutations that contribute to zmax{dom⊕ Aϕϕ | ϕ∈Ck
n} is equal to the num-

ber of odd permutations that contribute to zmax{dom⊕ Aϕϕ | ϕ∈Ck
n}, the term

zmax{dom⊕ Aϕϕ | ϕ∈Ck
n} disappears. We shall illustrate this with an example:

Example A.1.1 Consider again the matrix A of Example 2.2.6:

A =





−2 1 ε
1 0 1
ε 0 2



 .

The matrix-valued function zA is given by

zA =





z−2 z 0
z 1 z
0 1 z2



 .

We have

det zA{1,2},{1,2} =

[
z−2 z
z 1

]

= z−2 − z2
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det zA{1,3},{1,3} =

[
z−2 0
0 z2

]

= 1

det zA{2,3},{2,3} =

[
1 z
1 z2

]

= z2 − z .

Hence, dom⊕A{1,2},{1,2} = 2, dom⊕A{1,3},{1,3} = 0 and dom⊕A{2,3},{2,3} = 2.
However,

γ2(z) = (−1)2
(
det zA{1,2},{1,2} + det zA{1,3},{1,3} + det zA{2,3},{2,3}

)

= z−2 − z2 + 1 + z2 − z = −z + 1 + z−2 .

So the highest degree in γ2(z) is equal to 1 whereas max
{
dom⊕Aϕϕ

∣
∣ϕ ∈ C2

3

}
=

2 6= 1. 2

The highest degree term in (A.1) can be determined as follows. Define

Γk =

{

ξ

∣
∣
∣
∣
∃{i1, i2, . . . , ik} ∈ Ckn , ∃σ ∈ Pk such that ξ =

k∑

r=1

airiσ(r)

}

for k = 1, 2, . . . , n. For every k ∈ {1, 2, . . . , n} and for every ξ ∈ Γk we define

Ie
k(ξ) = #

{

σ ∈ Pk,even
∣
∣
∣
∣
∃{i1, i2, . . . , ik} ∈ Ckn such that

k∑

r=1

airiσ(r)
= ξ

}

Io
k(ξ) = #

{

σ ∈ Pk,odd

∣
∣
∣
∣
∃{i1, i2, . . . , ik} ∈ Ckn such that

k∑

r=1

airiσ(r)
= ξ

}

Ik(ξ) = Ie
k(ξ)− Io

k(ξ) .

Since (A.1) can be rewritten as

γk(z) = (−1)k
∑

{i1,... ,ik}∈Ck
n

∑

σ∈Pk

sgn (σ)
k∏

r=1

(zA)iriσ(r)

= (−1)k
∑

{i1,... ,ik}∈Ck
n

∑

σ∈Pk

sgn (σ) z

(
k

X

r=1
airiσ(r)

)

,

the highest degree that appears in γk(z) is given by

ck
def
= max{ ξ ∈ Γk | Ik(ξ) 6= 0}

and the coefficients of the characteristic equation of zA satisfy:

γk(z) ∼ (−1)k Ik(ck) z
ck , z →∞ .



238 Chapter A. The Signed Version of the Characteristic Equation

Define γ̂k = (−1)kIk(ck) for k = 1, 2, . . . , n. Let I = { k | γ̂k > 0 } and J =
{ k | γ̂k < 0 }. It is easy to verify that we always have 1 ∈ I.
If A is a square matrix with entries in Rε then we have

(
zA
)k ∼ z

(
A⊗k

)

, z →∞ . (A.3)

As a consequence, (A.2) results in

z

(
A⊗n

)

+
∑

k∈I

γ̂k z
ckz

(
A⊗n−k

)

∼
∑

k∈J

γ̂k z
ckz

(
A⊗n−k

)

, z →∞ .

Since all the terms of this expression have positive coefficients, comparison
of the highest degree terms of corresponding entries on the left-hand and the
right-hand side of this expression leads to the following identity in Rmax:

A⊗
n ⊕

⊕

k∈I

ckA
⊗
n−k

=
⊕

k∈J

ckA
⊗
n−k

.

This equation can be considered as a max-algebraic version of the Cayley-
Hamilton theorem if we would define the max-algebraic characteristic equation
of A as

λ⊗
n ⊕

⊕

k∈I

ckλ
⊗
n−k

=
⊕

k∈J

ckλ
⊗
n−k

. (A.4)

Note that I ∩ J = ∅. If we define

bk =







ck if k ∈ I ,
	ck if k ∈ J ,
ε otherwise,

for k = 1, 2, . . . , n, if we change the equality in (A.4) into a balance and if
we move all the terms to the left-hand side, then (A.4) can be rewritten as

λ⊗
n ⊕

n⊕

k=1

bk ⊗ λ⊗
n−k ∇ ε . Since this balance resembles the max-algebraic

characteristic equation of A and since all the coefficients of this balance are
signed, we call (A.4) the signed version of the max-algebraic characteristic
equation of A.

Let us now calculate the signed version of the max-algebraic characteristic
equation of the matrix A of Example A.1.1.

Example A.1.2 For the matrix

A =





−2 1 ε
1 0 1
ε 0 2




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we have Γ1 = {2, 0,−2}, Γ2 = {2, 1, 0,−2, ε}, Γ3 = {4, 0,−1, ε} and

I1(2) = 1, I1(0) = 1, I1(−2) = 1,

I2(2) = 0, I2(1) = −1, I2(0) = 1, I2(−2) = 1, I2(ε) = −1,

I3(4) = −1, I3(0) = 1, I3(−1) = −1, I3(ε) = 1 .

Hence, c1 = 2, c2 = 1 and c3 = 4. Since γ̂1 = −1, γ̂2 = −1 and γ̂3 = 1,
we have I = {3} and J = {1, 2}. So the signed version of the max-algebraic
characteristic equation of A is:

λ⊗
3 ⊕ 4 = 2⊗ λ⊗

2 ⊕ 1⊗ λ .

Furthermore,

A⊗
3 ⊕ 4⊗ E3 =





4 3 4
3 4 5
3 4 6



 = 2⊗A⊗
2 ⊕ 1⊗A .

So A satisfies the signed version of its max-algebraic characteristic equation.
Note that the max-algebraic eigenvalue λ = 2 that was already calculated in
Example 2.2.9 also satisfies the signed version of the max-algebraic character-
istic equation of A:

2⊗
3 ⊕ 4 = 6 ⊕ 4 = 6 = 6 ⊕ 3 = 2⊗ 2⊗

2 ⊕ 1⊗ 2 . 2

Remarks

1. The signed version of the max-algebraic characteristic equation has only
been derived for matrices with entries in Rε since in general (A.3) does
not hold for a matrix with entries in S or in S∨ (unless we would redefine
the ⊕ operator such that terms with equal max-absolute values but with
opposite signs would be cancelled).

2. The definition of the coefficients ak of the max-algebraic characteristic
equation of A as given by (5.1) and the coefficients ck of the signed
version of the max-algebraic characteristic equation are similar. Apart
from the signs, we could say that the only difference between the ak’s and
the ck’s is that terms with equal max-absolute value but with opposite
signs are cancelled when we calculate the ck’s. As a consequence, we have

ck = |ak|⊕ and k ∈ I if ak is max-positive,

ck = |ak|⊕ and k ∈ J if ak is max-negative,

ck 6 |ak|⊕ if ak is balanced.

A similar reasoning also leads to dom⊕A 6 |det⊕A|⊕.
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3. For the matrix A of Example A.1.1 we have c2 = 1 whereas the dominants
of the principal 2 by 2 submatrices of A: A{1,2},{1,2}, A{1,3},{1,3} and
A{2,3},{2,3} are 2, 0 and 2 respectively. This shows that in general the
dominant cannot be used to define the coefficients of the signed version
of the max-algebraic characteristic equation.

4. Define dk = max{ ξ | ξ ∈ Γk } and δk = Ik(dk) for k = 1, 2, . . . , n. Note

that dk is equal to max
{
dom⊕Aϕϕ |ϕ ∈ Ckn

}
and that δk is equal to γ̄k.

If we follow the formulas of [3, 126] literally, we should set ck equal to dk
if δk = 0 and put k in J .
In [115, 116, 125] a derivation that is similar to that of [126] has been
presented, but there ck was set equal to ε if δk = 0.
However, the following example shows that in general neither of these def-
initions leads to a valid max-algebraic analogue of the Cayley-Hamilton
theorem: when we take these definitions for the coefficients of the max-
algebraic characteristic equation then there exist matrices that do not
satisfy their max-algebraic characteristic equation.

Example A.1.3 For the matrix

A =







ε ε 0 ε
0 0 ε ε
1 1 1 ε
1 1 1 −1







we have d1 = 1, δ1 = 1, d2 = 1, δ2 = 0, d3 = 1, δ3 = 0, d4 = 0 and δ4 = 0.
The definition of [126] would result in

λ⊗
4

= 1⊗ λ⊗
3 ⊕ 1⊗ λ⊗

2 ⊕ 1⊗ λ ⊕ 0 . (A.5)

However, since

A⊗
4

=







3 3 3 ε
2 2 2 ε
4 4 4 ε
4 4 4 −4







and

1⊗A⊗
3 ⊕ 1⊗A⊗

2 ⊕ 1⊗A ⊕ 0⊗ E4 =







3 3 3 ε
2 2 2 ε
4 4 4 ε
4 4 4 0







,

the matrix A does not satisfy (A.5).
The definition of [115, 116, 125] would result in the following max-alge-
braic characteristic equation for A:

λ⊗
4

= 1⊗ λ⊗
3
. (A.6)
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However, since

1⊗A⊗
3

=







3 3 3 ε
2 2 2 ε
4 4 4 ε
4 4 4 −2







,

the matrix A does not satisfy (A.6) either.
The signed version of the max-algebraic characteristic equation of A is
given by

λ⊗
4 ⊕ 0⊗ λ⊗

2
= 1⊗ λ⊗

3
.

Note that A satisfies this equation since

A⊗
4 ⊕ 0⊗A⊗

2
=







3 3 3 ε
2 2 2 ε
4 4 4 ε
4 4 4 −2







= 1⊗A⊗
3
. 2

A.2 A Counterexample for a Conjecture of Ols-
der

In [115] Olsder states that if an equation of the form

λ⊗
3 ⊕ c1 ⊗ λ = c2 ⊗ λ⊗

2 ⊕ c0 (A.7)

has less than three (possibly coinciding) solutions [in Rε]
1, then it cannot be

[the signed version of] the max-algebraic characteristic equation of a matrix
[with entries in Rε]. Next he proposes the following conjecture:

Conjecture A.2.1 A monic equation of degree n with the highest and one
but highest order terms at different sides of the equality sign is [the signed
version of ] a [max-algebraic] characteristic equation of an n× n matrix [with
entries in Rε] if and only if this equation has the maximum number of possibly
coinciding real solutions. With “possibly coinciding” is meant that an arbitrary
small perturbation of the coefficients exists, in the usual ‖·‖2 norm, such that
the perturbed equation has the maximum number of solutions which are all
different.

Now we show by a counterexample that the statement made in [115] about
(A.7) does not hold. Hence, Conjecture A.2.1 does not hold either. Note that
for this example the different (correct and wrong) definitions for the coefficients
of the max-algebraic characteristic equation all yield the same result.

1The words between square brackets have been added to make the formulation consistent

with the one that has been used in the previous section and in the previous chapters.
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−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

λ

λ⊗
3 ⊕ (−3)⊗ λ

(−1)⊗ λ⊗
2 ⊕ 3

Figure A.1: The graphs of the max-algebraic polynomials on the left-hand and
the right-hand side of (A.8).

Example A.2.2 Consider

A =





−1 ε 3
0 −2 ε
ε 0 ε



 .

The different definitions for the coefficients of the max-algebraic characteris-
tic equation discussed in Section A.1 all result in the following max-algebraic
characteristic equation for A:

λ⊗
3 ⊕ (−3)⊗ λ = (−1)⊗ λ⊗

2 ⊕ 3 . (A.8)

In Figure A.1 we have plotted the graphs of the max-algebraic polynomials
on the left-hand and the right-hand side of (A.8). Clearly, (A.8) has only one
simple root, viz. λ∗ = 1. Hence, Olsder’s statement that (A.7) cannot be the
signed version of the max-algebraic characteristic equation of a matrix with
entries in Rε if it has less than three (possibly coinciding) solutions in Rε, does
not hold. As a consequence, Conjecture A.2.1 does not hold either.
The “regular” max-algebraic characteristic equation of the matrix A (cf. Defi-
nition 5.1.1) is given by

λ⊗
3 	 (−1)⊗ λ⊗

2 ⊕ (−3)⊗ λ 	 3 ∇ ε .
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Note that the coefficients of this equation correspond to those of (A.8) and that
they satisfy the necessary and sufficient conditions of Proposition 5.3.3 for the
coefficients of the max-algebraic characteristic equation of a 3 by 3 matrix with
entries in Rε since

a⊕

1 = ε

a⊕

2 = −3 6 −2 = (−1)⊗ (−1) = a	

1 ⊗ a	

1

a⊕

3 = ε 6 ε = (−1)⊗ ε = a	

1 ⊗ a	

2 . 2





Appendix B

Proofs of Some
Propositions of Chapter 5

In this appendix we prove some of the propositions of Chapter 5. We derive an
efficient algorithm to compute the coefficients of the max-algebraic character-
istic polynomial of a max-algebraic upper Hessenberg matrix with zeros on the
first subdiagonal. Next we propose a conjecture on the max-algebraic charac-
teristic polynomial of a matrix with entries in Rε and we develop a heuristic
algorithm to construct matrices with a given max-algebraic characteristic poly-
nomial that is based on this conjecture.

B.1 Proof of Proposition 5.2.6

Let A ∈ Rn×nε and let λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

be the MACP of A. In this

section and in the next section we shall use the following expressions for the
max-positive and the max-negative contributions to the coefficients a1, a2, a3

and a4:

aneg
1 =

⊕

{i1}∈C1
n

ai1i1 (B.1)

apos
2 =

⊕

{j1,j2}∈C2
n

aj1j1 ⊗ aj2j2 (B.2)

aneg
2 =

⊕

{j1,j2}∈C2
n

aj1j2 ⊗ aj2j1 (B.3)

apos
3 =

⊕

{k1,k2,k3}∈C3
n

ak1k1 ⊗ ak2k3 ⊗ ak3k2 (B.4)

245
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aneg
3 =

⊕

{k1,k2,k3}∈C3
n

ak1k1 ⊗ ak2k2 ⊗ ak3k3 ⊕

⊕

{k1,k2,k3}∈C3
n

ak1k2 ⊗ ak2k3 ⊗ ak3k1 (B.5)

apos
4 =

⊕

{l1,l2,l3,l4}∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l3 ⊗ al4l4 ⊕

⊕

{l1,l2,l3,l4}∈C4
n

al1l1 ⊗ al2l3 ⊗ al3l4 ⊗ al4l2 ⊕

⊕

{l1,l2,l3,l4}∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 (B.6)

aneg
4 =

⊕

{l1,l2,l3,l4}∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l4 ⊗ al4l3 ⊕

⊕

{l1,l2,l3,l4}∈C4
n

al1l2 ⊗ al2l3 ⊗ al3l4 ⊗ al4l1 . (B.7)

These expressions can be derived from (5.2) – (5.7).
The following lemma gives some additional necessary conditions for the coeffi-
cients of the MACP of a matrix with entries in Rε.

Lemma B.1.1 Let A ∈ Rn×nε and let λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

be the MACP

of A. If a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 then we have

(1) a⊕

4 6= ε

(2) a⊕

4 =
⊕

{l1,l2,l3,l4}∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3

(3) a	

1 ⊗ a	

1 6 a	

2

(4) a⊕

2 6 a	

2

(5) a⊕

4 6 a	

2 ⊗ a	

2 .

Proof :

(1) We can only have a⊕

4 > a	

1 ⊗ a	

3 if a⊕

4 6= ε.

(2) If a⊕

4 6= ε then a⊕

4 = apos
4 . So it follows from (B.6) that a⊕

4 = t1 ⊕ t2 ⊕ t3
with

t1 =
⊕

{l1,l2,l3,l4}∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l3 ⊗ al4l4
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t2 =
⊕

{l1,l2,l3,l4}∈C4
n

al1l1 ⊗ al2l3 ⊗ al3l4 ⊗ al4l2

t3 =
⊕

{l1,l2,l3,l4}∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 .

Now we prove that a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 imply that a⊕

4 >
aneg
1 ⊗ aneg

3 . By Proposition 5.2.1 we have a	

1 = aneg
1 . If apos

3 > aneg
3 then

we have a⊕

3 > aneg
3 and then a⊕

4 > a	

1 ⊗ a⊕

3 implies that a⊕

4 > aneg
1 ⊗ aneg

3 .
On the other hand, if apos

3 6 aneg
3 then a	

3 = aneg
3 and then a⊕

4 > a	

1 ⊗ a	

3

results in a⊕

4 > aneg
1 ⊗ aneg

3 .
From (B.1) and (B.5) it follows that aneg

1 ⊗ aneg
3 = t4 ⊕ t5 with

t4 =
⊕

{i1}∈C1
n

{k1,k2,k3}∈C3
n

ai1i1 ⊗ ak1k1 ⊗ ak2k2 ⊗ ak3k3

t5 =
⊕

{i1}∈C1
n

{k1,k2,k3}∈C3
n

ai1i1 ⊗ ak1k2 ⊗ ak2k3 ⊗ ak3k1 .

If we compare t1 and t4, we see that every term of t1 also appears in t4.
Hence, t1 6 t4. Analogously, we find that t2 6 t5. If we combine these
inequalities, we get t1 ⊕ t2 6 t4 ⊕ t5 .
We have already shown that the conditions a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 >

a	

1⊗a⊕

3 imply that a⊕

4 > aneg
1 ⊗aneg

3 or equivalently t1 ⊕ t2 ⊕ t3 > t4 ⊕ t5.
If we compare this strict inequality with the inequality t1 ⊕ t2 6 t4 ⊕ t5 ,
we conclude that t1 < t3 and t2 < t3. Hence,

a⊕

4 = t3 =
⊕

{l1,l2,l3,l4}∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 . (B.8)

(3) First we prove that the conditions a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3

imply that a⊕

4 > aneg
1 ⊗ apos

3 : By Proposition 5.2.1 we have a	

1 = aneg
1 .

If aneg
3 > apos

3 then a	

3 > apos
3 and then a⊕

4 > a	

1 ⊗ a	

3 implies that
a⊕

4 > aneg
1 ⊗apos

3 . On the other hand, if aneg
3 < apos

3 then we have a⊕

3 = apos
3

and then a⊕

4 > a	

1 ⊗ a⊕

3 results in a⊕

4 > aneg
1 ⊗ apos

3 .
Suppose that the maximum in (B.8) is reached for l1 = δ1, l2 = δ2, l3 = δ3
and l4 = δ4 and that aδ1δ2 ⊗ aδ2δ1 > aδ3δ4 ⊗ aδ4δ3 . Note that aδ1δ2 , aδ2δ1 ,
aδ3δ4 and aδ4δ3 are different from ε since a⊕

4 6= ε.
We have

aneg
1 ⊗ apos

3 =
⊕

{i1}∈C1
n

{k1,k2,k3}∈C3
n

ai1i1 ⊗ ak1k1 ⊗ ak2k3 ⊗ ak3k2 . (B.9)
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Now we consider the terms of (B.9) for which k2 = δ3 and k3 = δ4. Then
we know that k1 6= δ3 and k1 6= δ4. Since aneg

1 ⊗ apos
3 6 apos

4 , we have

⊕

{i1},{k1}∈C1
n

k1 6=δ3, k1 6=δ4

ai1i1 ⊗ ak1k1 ⊗ aδ3δ4 ⊗ aδ4δ3 6 aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 .

Since aδ3δ4 ⊗ aδ4δ3 6= ε, we can max-divide both terms of this inequality
by aδ3δ4 ⊗ aδ4δ3 . This results in

⊕

{i1},{k1}∈C1
n

k1 6=δ3, k1 6=δ4

ai1i1 ⊗ ak1k1 6 aδ1δ2 ⊗ aδ2δ1 6 aneg
2 . (B.10)

Analogously we find

⊕

{i1},{k1}∈C1
n

k1 6=δ1, k1 6=δ2

ai1i1 ⊗ ak1k1 6 aneg
2 . (B.11)

Since δi 6= δj for all i, j with i 6= j, (B.10) and (B.11) result in

⊕

{i1},{k1}∈C1
n

ai1i1 ⊗ ak1k1 6 aneg
2 .

Hence,

a	

1 ⊗ a	

1 = aneg
1 ⊗ aneg

1 =
⊕

{i1},{k1}∈C1
n

ai1i1 ⊗ ak1k1 6 aneg
2 . (B.12)

By Proposition 5.2.3 we have apos
2 6 aneg

1 ⊗ aneg
1 . If we combine this with

(B.12), we get apos
2 6 aneg

2 or aneg
2 = a	

2 . Hence, a	

1 ⊗ a	

1 6 a	

2 .

(4) Since apos
2 6 aneg

2 , we have a⊕

2 6 a	

2 .

(5) By Proposition 5.2.3 we have apos
4 6 aneg

1 ⊗ aneg
3 ⊕ aneg

2 ⊗ aneg
2 . However,

we already know that apos
4 = a⊕

4 > aneg
1 ⊗ aneg

3 . Therefore, we have
a⊕

4 = apos
4 6 aneg

2 ⊗aneg
2 and thus also a⊕

4 6 a	

2 ⊗a	

2 since a	

2 = aneg
2 if the

conditions of this lemma are satisfied. 2

Now we prove Proposition 5.2.6.

Proof of Proposition 5.2.6 : We have to prove that if A ∈ Rn×n
ε with n > 4

then the coefficients of the MACP of A always fall into exactly one of the
following three cases:
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Case A: a⊕

4 6 a	

1 ⊗ a	

3 or a⊕

4 < a	

1 ⊗ a⊕

3 ,

Case B: a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 and a⊕

4 6 a	

2 ⊗ a	

2 and

( a	

1 = ε or a⊕

2 = ε or a	

4 = a⊕

4 ) ,

Case C: a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 and a⊕

4 6 a	

2 ⊗ a	

2 and

a⊕

2 6= ε and a	

4 = ε .

From Proposition 5.2.5 it follows that

(a) a⊕

4 6 a	

1 ⊗ a	

3 or

(b) a⊕

4 < a	

1 ⊗ a⊕

3 or

(c) a⊕

4 6 a	

2 ⊗ a	

2 or

(d) a⊕

4 < a⊕

2 ⊗ a⊕

2 or

(e) a⊕

4 < a⊕

2 ⊗ a	

2 .

This means that we can distinguish between the following mutually exclusive
cases:

Case 1 : (a) holds or (b) holds.

Case 2 : (a) and (b) do not hold, but (c) holds.

Case 3 : (a), (b) and (c) do not hold, but (d) holds.

Case 4 : (a), (b), (c) and (d) do not hold, but (e) holds.

From Lemma B.1.1(5) it follows that if (a) and (b) do not hold, (c) holds.
Hence, Cases 3 and 4 cannot occur.
Case 1 corresponds to Case A and Case 2 corresponds to Cases B and C.
Assume that we are in Case 2. Now we have to prove that there are two
mutually exclusive subcases: Case B and Case C. By Lemma B.1.1(1) we have
a⊕

4 6= ε in Case 2. Hence, either a	

4 = a⊕

4 or a	

4 = ε.
If a	

1 = ε or a⊕

2 = ε or a	

4 = a⊕

4 , then we are in Case B.
Otherwise, we have a	

1 6= ε, a⊕

2 6= ε and a	

4 = ε. The condition a⊕

2 6= ε implies
that a	

1 6= ε since a⊕

2 6 a	

1 ⊗ a	

1 by Proposition 5.2.4. Hence, we may drop the
condition a	

1 6= ε.
So we have shown that the coefficients of the MACP of A always fall into one
of the three mutually exclusive cases A, B or C. 2

B.2 Proof of Proposition 5.3.4

B.2.1 Necessary Conditions

In this subsection we prove that the conditions of Proposition 5.3.4 for Case B
and Case C are necessary.

First we prove that the conditions for Case B are necessary:
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Proposition B.2.1 Let A ∈ Rn×nε with n > 4 and let λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

be the MACP of A. If a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 then at least one of
the following statements holds :

(1) a	

1 ⊗ a⊕

4 6 a	

2 ⊗ a⊕

3 or

(2) a	

1 ⊗ a⊕

4 < a	

2 ⊗ a	

3 .

Proof : If a⊕

4 > a	

1 ⊗ a	

3 then we have a⊕

4 6= ε and thus a⊕

4 = apos
4 . From (B.1)

and Lemma B.1.1(2) it follows that

aneg
1 ⊗ apos

4 = aneg
1 ⊗ a⊕

4 =
⊕

{i1}∈C1
n

{l1,l2,l3,l4}∈C4
n

ai1i1 ⊗ al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 .

If we combine (B.3) and (B.4), we obtain

aneg
2 ⊗ apos

3 =
⊕

{j1,j2}∈C2
n

{k1,k2,k3}∈C3
n

aj1j2 ⊗ aj2j1 ⊗ ak1k1 ⊗ ak2k3 ⊗ ak3k2 .

Consider an arbitrary term ai1i1 ⊗ al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 of aneg
1 ⊗ apos

4 .
If i1 = l1 or if i1 = l2 then we have i1 6= l3 and i1 6= l4. So in this case the
term ai1i1 ⊗ al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 corresponds to the term of aneg

2 ⊗ apos
3

with e.g. j1 = l1, j2 = l2, k1 = i1, k2 = l3 and k3 = l4.
Otherwise, we have i1 6= l1 and i1 6= l2 and then the term ai1i1 ⊗ al1l2 ⊗ al2l1 ⊗
al3l4 ⊗ al4l3 corresponds to the term of aneg

2 ⊗ apos
3 with e.g. j1 = l3, j2 = l4,

k1 = i1, k2 = l1 and k3 = l2.
So every term of aneg

1 ⊗ apos
4 also appears in aneg

2 ⊗ apos
3 . Hence, aneg

1 ⊗ apos
4 6

aneg
2 ⊗ apos

3 .
We have a	

1 = aneg
1 by Proposition 5.2.1. Since the condition a⊕

4 > a	

1 ⊗ a	

3

implies that a⊕

4 6= ε, we have apos
4 = a⊕

4 . Since a⊕

2 6 a	

2 by Lemma B.1.1(4),
we have aneg

2 = a	

2 .
If apos

3 > aneg
3 then we have a⊕

3 = apos
3 and then aneg

1 ⊗apos
4 6 aneg

2 ⊗apos
3 results

in a	

1 ⊗ a⊕

4 6 a	

2 ⊗ a⊕

3 .
On the other hand, if apos

3 < aneg
3 then a	

3 > apos
3 and this leads to a	

1 ⊗ a⊕

4 <
a	

2 ⊗ a	

3 . 2

The conditions for Case C are also necessary:

Proposition B.2.2 Let A ∈ Rn×nε with n > 4 and let λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

be the MACP of A. If a⊕

4 > a	

1 ⊗ a	

3 and a⊕

4 > a	

1 ⊗ a⊕

3 and a⊕

2 6= ε and
a	

4 = ε then we have

(1) a	

1 ⊗ a⊕

4 = a	

2 ⊗ a⊕

3 and

(2) a	

1 ⊗ a⊕

3 = a	

2 ⊗ a⊕

2 .
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Proof :

(1) By Lemma B.1.1(4) we have a⊕

2 6 a	

2 . Since a⊕

2 6= ε, this implies that
a⊕

2 = a	

2 = apos
2 = aneg

2 in Case C. Furthermore, the condition a⊕

4 >
a	

1 ⊗ a	

3 implies that

a⊕

4 = apos
4 6= ε . (B.13)

Now we prove that the conditions a⊕

4 > a	

1 ⊗ a	

3 , a⊕

4 > a	

1 ⊗ a⊕

3 and
a⊕

2 = a	

2 imply that apos
4 6 apos

3 ⊗ aneg
1 .

We have apos
2 =

⊕

{j1,j2}∈C2
n

aj1j1 ⊗ aj2j2 . Suppose that the maximum is

reached for j1 = γ1 and j2 = γ2. So apos
2 = aγ1γ1 ⊗ aγ2γ2 . Since

apos
2 = aneg

2 =
⊕

{j1,j2}∈C2
n

aj1j2 ⊗ aj2j1 ,

this implies that aj1j2 ⊗aj2j1 6 aγ1γ1 ⊗aγ2γ2 for all j1, j2 ∈ {1, 2, . . . , n}.
By Lemma B.1.1(2) we have

apos
4 = a⊕

4 =
⊕

{l1,l2,l3,l4}∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 . (B.14)

From (B.1) and (B.4) it follows that

aneg
1 ⊗ apos

3 =
⊕

{i1}∈C1
n

{k1,k2,k3}∈C3
n

ai1i1 ⊗ ak1k1 ⊗ ak2k3 ⊗ ak3k2 .

Consider an arbitrary term al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 of apos
4 .

If γ2 = l1 or γ2 = l2, then we have γ2 6= l3 and γ2 6= l4 and then
al1l2⊗al2l1⊗al3l4⊗al4l3 is less than or equal to aγ1γ1⊗aγ2γ2⊗al3l4⊗al4l3 ,
which corresponds to the term of aneg

1 ⊗apos
3 with i1 = γ1, k1 = γ2, k2 = l3

and k3 = l4.
On the other hand, if γ2 6= l1 and γ2 6= l2, then al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3
is less than or equal to the term of aneg

1 ⊗ apos
3 with i1 = γ1, k1 = γ2,

k2 = l1 and k3 = l2.
Hence,

apos
4 6 aneg

1 ⊗ apos
3 . (B.15)

If apos
3 < aneg

3 , we have a	

3 > apos
3 and then the condition a⊕

4 > a	

1 ⊗ a	

3

implies that apos
4 = a⊕

4 > aneg
1 ⊗ apos

3 but this is in contradiction with
(B.15). This means that we always have apos

3 > aneg
3 in Case C. Hence,

a⊕

3 = apos
3 (B.16)
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and thus a⊕

4 6 a	

1⊗a⊕

3 . If we combine this with the condition a⊕

4 > a	

1⊗a⊕

3 ,
we get

a⊕

4 = a	

1 ⊗ a⊕

3 . (B.17)

In general we have a⊕

2 6 a	

1 ⊗ a	

1 by Proposition 5.2.4. However, we also
have a	

1 ⊗ a	

1 6 a	

2 by Lemma B.1.1(3) and since a⊕

2 = a	

2 in Case C, this
implies that

a	

1 ⊗ a	

1 = a⊕

2 = a	

2 (B.18)

in Case C. Hence, a	

1 ⊗ a⊕

4 = a	

1 ⊗ a	

1 ⊗ a⊕

3 = a	

2 ⊗ a⊕

3 .

(2) If a	

4 = ε then aneg
4 < apos

4 since a⊕

4 6= ε (cf. (B.13)). Assume that the
maximum in (B.14) is reached for l1 = δ1, l2 = δ2, l3 = δ3 and l4 = δ4.
Since a⊕

4 6= ε, we have aδ1δ2 ⊗ aδ2δ1 6= ε and aδ3δ4 ⊗ aδ4δ3 6= ε.
Since aneg

4 < apos
4 the first max-algebraic summation on the right-hand

side of (B.7) is also less than apos
4 = aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 . Hence,

⊕

{l1,l2,l3,l4}∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l4 ⊗ al4l3 < aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 .

Now we consider the terms on the left-hand side of this inequality for
which l3 = δ3 and l4 = δ4. We have

⊕

{l1,l2}∈C2
n

l1,l2 6∈{δ1,δ2}

al1l1 ⊗ al2l2 ⊗ aδ3δ4 ⊗ aδ4δ3 < aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 .

Since aδ3δ4 ⊗ aδ4δ3 6= ε, this results in

⊕

{l1,l2}∈C2
n

l1,l2 6∈{δ1,δ2}

al1l1 ⊗ al2l2 < aδ1δ2 ⊗ aδ2δ1 6 aneg
2 = apos

2 . (B.19)

Using an analogous reasoning but with l3 = δ1 and l4 = δ2 we find

⊕

{l1,l2}∈C2
n

l1,l2 6∈{δ3,δ4}

al1l1 ⊗ al2l2 < apos
2 . (B.20)

We have δi 6= δj for all i, j with i 6= j. So if we combine (B.19), (B.20)
and (B.2), we get

apos
2 = aδ1δ1 ⊗ aδ3δ3 ⊕ aδ1δ1 ⊗ aδ4δ4 ⊕ aδ2δ2 ⊗ aδ3δ3 ⊕ aδ2δ2 ⊗ aδ4δ4

since all the other terms of the form aj1j1 ⊗ aj2j2 with {j1, j2} ∈ C2
n are

less than apos
2 by (B.19) and (B.20).
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We may assume without loss of generality that a⊕

2 = apos
2 = aδ1δ1 ⊗ aδ3δ3 .

Now we show by contradiction that a	

1 = aδ1δ1 = aδ3δ3 .
Assume that aδ1δ1 6= aδ3δ3 . We may assume without loss of generality
that aδ1δ1 > aδ3δ3 . This implies that a	

1 > aδ1δ1 and a	

1 > aδ3δ3 and thus
a	

1 ⊗ a	

1 > aδ1δ1 ⊗ aδ3δ3 = a⊕

2 but this is in contradiction with the fact
that a⊕

2 = a	

1 ⊗ a	

1 (cf. (B.18)). Hence, our assumption was wrong and
therefore we have aδ1δ1 = aδ3δ3 .
Since a⊕

2 = a	

1 ⊗ a	

1 in Case C, this implies that

a	

1 = aδ1δ1 = aδ3δ3 .

Since aδ1δ2 ⊗ aδ2δ1 6 aneg
2 = apos

2 = aδ1δ1 ⊗ aδ3δ3 , we have

a⊕

4 = aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3
6 aδ3δ3 ⊗ aδ1δ1 ⊗ aδ3δ4 ⊗ aδ4δ3
6 aneg

1 ⊗ apos
3 = a	

1 ⊗ a⊕

3 (by (B.16)) .

Since a⊕

4 = a	

1 ⊗a⊕

3 by (B.17), all the inequalities in this expression should
be equalities. Since aδ3δ4 ⊗ aδ4δ3 6= ε, this leads to

aδ1δ2 ⊗ aδ2δ1 = aδ3δ3 ⊗ aδ1δ1 = a	

1 ⊗ a	

1 = a	

2 .

Analogously we find a	

2 = aδ3δ4 ⊗ aδ4δ3 .
Hence, a⊕

4 = a	

2 ⊗a	

2 , and since a⊕

2 = a	

2 in Case C and since a	

1 ⊗a⊕

3 = a⊕

4

by (B.17), this results in

a	

1 ⊗ a⊕

3 = a⊕

4 = a	

2 ⊗ a	

2 = a⊕

2 ⊗ a	

2 . 2

B.2.2 Sufficient Conditions

First we derive some extra conditions that automatically follow from the nec-
essary and sufficient conditions stated in Proposition 5.3.4.

Lemma B.2.3 If the numbers a1, a2, a3, a4 ∈ S satisfy the conditions for Case
B or Case C of Proposition 5.2.6 and if they also satisfy all the corresponding
necessary and sufficient conditions of Proposition 5.3.4 then we have

(1) a⊕

4 6= ε

(2) a	

2 6= ε

(3) a⊕

2 6 a	

2

(4) a	

1 ⊗ a	

1 6 a	

2 .

Proof :

(1) The condition a⊕

4 > a	

1 ⊗ a	

3 can only be satisfied if a⊕

4 6= ε .

(2) Since a⊕

4 6 a	

2 ⊗ a	

2 and a⊕

4 6= ε, we have a	

2 6= ε.
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(3) If a	

2 6= ε then a⊕

2 6 a	

2 .

(4) We prove by contradiction that a	

1 ⊗a	

1 6 a	

2 . Assume that a	

2 < a	

1 ⊗a	

1 .
Note that this implies that a	

1 6= ε.
If a	

2 < a	

1 ⊗ a	

1 then the first necessary and sufficient condition for Case
B: a	

1 ⊗a⊕

4 6 a	

2 ⊗a⊕

3 leads to a	

1 ⊗a⊕

4 6 a	

2 ⊗a⊕

3 < a	

1 ⊗a	

1 ⊗a⊕

3 and thus
a⊕

4 < a	

1 ⊗a⊕

3 since a	

1 6= ε. But this is in contradiction with the fact that
a⊕

4 > a	

1 ⊗ a⊕

3 in Case B. The second necessary and sufficient condition of
Case B: a	

1 ⊗ a⊕

4 < a	

2 ⊗ a	

3 would result in a	

1 ⊗ a⊕

4 < a	

1 ⊗ a	

1 ⊗ a	

3 and
thus a⊕

4 < a	

1 ⊗ a	

3 , whereas a⊕

4 > a	

1 ⊗ a	

3 in Case B.
The second necessary and sufficient condition for Case C: a	

1 ⊗ a⊕

4 =
a	

2 ⊗a⊕

3 would lead to a⊕

4 < a	

1 ⊗a⊕

3 , which is impossible since a⊕

4 > a	

1 ⊗a⊕

3

in Case C.
So our initial assumption was wrong. Hence, a	

1 ⊗ a	

1 6 a	

2 . 2

Lemma B.2.4 If the numbers a1, a2, a3, a4 ∈ S satisfy the conditions for Case
C of Proposition 5.2.6 and if they also satisfy both the general and the case-
specific necessary and sufficient conditions for Case C of Proposition 5.3.4,
then we have

(1) a	

1 6= ε

(2) a⊕

2 = a	

2 = a	

1 ⊗ a	

1

(3) a⊕

3 = a	

1 ⊗ a	

2 = (a	

1 )
⊗

3

(4) a⊕

4 = a	

2 ⊗ a	

2 = a	

1 ⊗ a⊕

3 = (a	

1 )
⊗

4

(5) a	

3 = ε .

Proof :

(1) The second general necessary and sufficient condition of Proposition 5.3.4
states that a⊕

2 6 a	

1 ⊗ a	

1 . Since a⊕

2 6= ε in Case C, this implies that
a	

1 6= ε .

(2) Since a⊕

2 6= ε in Case C and since a	

2 6= ε by Lemma B.2.3(2), we have
a⊕

2 = a	

2 .
Furthermore, we have a	

1 ⊗ a	

1 6 a	

2 by Lemma B.2.3(4). If we combine
this with the condition a⊕

2 6 a	

1 ⊗ a	

1 , we get a⊕

2 6 a	

1 ⊗ a	

1 6 a	

2 . Since
a⊕

2 = a	

2 , this results in a⊕

2 = a	

1 ⊗ a	

1 = a	

2 .

(3) If we max-multiply the first necessary and sufficient condition for Case C:
a	

1 ⊗ a⊕

3 = a	

2 ⊗ a⊕

2 by a	

1 , we get a	

1 ⊗ a	

1 ⊗ a⊕

3 = a	

1 ⊗ a	

2 ⊗ a⊕

2 . Since
a	

1 ⊗ a	

1 = a⊕

2 = a	

2 6= ε, this leads to a⊕

3 = a	

1 ⊗ a	

2 = a	

1 ⊗ a	

1 ⊗ a	

1 =

(a	

1 )
⊗

3
.

(4) Using a similar reasoning, the condition a	

1 ⊗ a⊕

4 = a	

2 ⊗ a⊕

3 leads to

a⊕

4 = a	

1 ⊗ a⊕

3 = a	

1 ⊗ (a	

1 )
⊗

3
= (a	

1 )
⊗

4
= a	

2 ⊗ a	

2 .
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(5) We always have a⊕

4 > a	

1 ⊗ a	

3 in Case C. If we combine this with a⊕

4 =
a	

1 ⊗ a⊕

3 and a	

1 6= ε (cf. steps (4) and (1) of this proof), then we get
a⊕

3 > a	

3 . Hence, a	

3 = ε . 2

Now we demonstrate that the conditions of Proposition 5.3.4 are sufficient by
showing that if the coefficients of a given max-algebraic polynomial satisfy
all the conditions for respectively Case A, B or C of Proposition 5.3.4, the
corresponding matrix BA, BB or BC has the given max-algebraic polynomial
as its MACP.

Proposition B.2.5 Consider the max-algebraic polynomial

λ⊗
4 ⊕ a1 ⊗ λ⊗

3 ⊕ a2 ⊗ λ⊗
2 ⊕ a3 ⊗ λ ⊕ a4 . (B.21)

Suppose that the coefficients of this max-algebraic polynomial satisfy the condi-
tions of Proposition 5.2.6. If the following conditions are also satisfied:

a⊕

1 = ε

a⊕

2 6 a	

1 ⊗ a	

1

a⊕

3 6 a	

1 ⊗ a	

2 or a⊕

3 < a	

1 ⊗ a⊕

2

for Case A: no extra conditions

for Case B: a	

1 ⊗ a⊕

4 6 a	

2 ⊗ a⊕

3 or a	

1 ⊗ a⊕

4 < a	

2 ⊗ a	

3

for Case C: a	

1 ⊗ a⊕

3 = a	

2 ⊗ a⊕

2 and a	

1 ⊗ a⊕

4 = a	

2 ⊗ a⊕

3 ,

then the following matrices have (B.21) as their MACP:

BA =







a	

1 a	

2 a	

3 a	

4

0 κ1,2 κ1,3 κ1,4

ε 0 ε ε
ε ε 0 ε







for Case A ,

BB =







a	

1 a	

2 a	

3 a	

4

0 κ1,2 κ1,3 ε
ε 0 ε κ2,4

ε ε 0 ε







for Case B ,

BC =







a	

1 a	

2 ε ε
0 ε ε ε
ε 0 κ2,3 κ2,4

ε ε 0 ε







for Case C .

Proof :
We prove that the MACP

λ⊗
4 ⊕ b1 ⊗ λ⊗

3 ⊕ b2 ⊗ λ⊗
2 ⊕ b3 ⊗ λ ⊕ b4
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of BA, BB or BC coincides with (B.21) if all the conditions for respectively
Case A, B or C are satisfied.
From the proofs of the propositions for the 2 by 2 and the 3 by 3 case we
already know that κ1,2 6 a	

1 , a⊕

2 	 a	

2 	 κ1,3 = a⊕

2 	 a	

2 , a	

1 ⊗ κ1,2 = a⊕

2 and
a	

1 ⊗ κ1,3 = a⊕

3 .

Case A:

First we prove that in this case we have a	

1 ⊗κ1,4 = a⊕

4 and a⊕

3 	a	

3 	κ1,4 =
a⊕

3 	 a	

3 .
If a	

1 = ε then κ1,4 = ε. Furthermore, if a	

1 = ε then a⊕

4 = ε since a⊕

4 6 a	

1 ⊗
a	

3 or a⊕

4 < a	

1 ⊗a⊕

3 in Case A. So if a	

1 = ε then we have a	

1 ⊗κ1,4 = ε = a⊕

4

and κ1,4 = ε and thus also a⊕

3 	 a	

3 	 κ1,4 = a⊕

3 	 a	

3 .

If a	

1 6= ε, then κ1,4 =
a⊕

4

a	

1

and thus a	

1 ⊗ κ1,4 = a⊕

4 . If a	

1 6= ε, then

the condition a⊕

4 6 a	

1 ⊗ a	

3 implies that κ1,4 6 a	

3 , and the condition
a⊕

4 < a	

1 ⊗ a⊕

3 implies that κ1,4 < a⊕

3 . Hence, a⊕

3 	 a	

3 	 κ1,4 = a⊕

3 	 a	

3 also
holds in this case.

As a consequence, we have

b1 = 	a	

1 	 κ1,2 = 	a	

1 = a1

b2 = a	

1 ⊗ κ1,2 	 a	

2 	 κ1,3 = a⊕

2 	 a	

2 	 κ1,3 = a⊕

2 	 a	

2 = a2

b3 = a	

1 ⊗ κ1,3 	 a	

3 	 κ1,4 = a⊕

3 	 a	

3 	 κ1,4 = a⊕

3 	 a	

3 = a3

b4 = a	

1 ⊗ κ1,4 	 a	

4 = a⊕

4 	 a	

4 = a4 .

So (B.21) is the MACP of BA.

Case B:

Since a⊕

4 6 a	

2 ⊗a	

2 in Case B and since a	

2 6= ε by Lemma B.2.3(2), we have
κ2,4 6 a	

2 .

Now we use the necessary and sufficient conditions for Case B to prove that
a	

1 ⊗ κ2,4 6 a⊕

3 if a⊕

3 > a	

3 and that a	

1 ⊗ κ2,4 < a	

3 if a⊕

3 < a	

3 .
If a⊕

3 > a	

3 and if one of the necessary and sufficient conditions for Case B:
a	

1 ⊗a⊕

4 6 a	

2 ⊗a⊕

3 or a	

1 ⊗a⊕

4 < a	

2 ⊗a	

3 is fulfilled, we have a	

1 ⊗a⊕

4 6 a	

2 ⊗a⊕

3 .

Since a	

2 6= ε, this results in a	

1 ⊗ κ2,4 = a	

1 ⊗
a⊕

4

a	

2

6 a⊕

3 .

On the other hand, if a⊕

3 < a	

3 then the necessary and sufficient conditions for
Case B lead to a	

1 ⊗a⊕

4 < a	

2 ⊗a	

3 . As a consequence, we have a	

1 ⊗κ2,4 < a	

3 .
Hence, we always have a⊕

3 ⊕ a	

1 ⊗ κ2,4 	 a	

3 = a⊕

3 	 a	

3 .

Now we prove that under the conditions of Case B we have a	

1 ⊗κ1,2⊗κ2,4 6

a	

4 .
If a	

1 = ε or if a⊕

2 = ε then a	

1 ⊗ κ1,2 ⊗ κ2,4 = ε 6 a	

4 .
Otherwise, we have a	

1 6= ε, a⊕

2 6= ε and a⊕

4 = a	

4 . Since a	

2 6= ε by
Lemma B.2.3(2) this implies that a⊕

2 = a	

2 . Hence, a	

1 ⊗ κ1,2 ⊗ κ2,4 =
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a	

1 ⊗
a⊕

2

a	

1

⊗ a⊕

4

a	

2

= a⊕

4 = a	

4 .

We also have a	

2 ⊗ κ2,4 = a⊕

4 since a	

2 6= ε.

Since the coefficients of the MACP of BB are given by

b1 = 	a	

1 	 κ1,2 = 	a	

1 = a1

b2 = a	

1 ⊗ κ1,2 	 a	

2 	 κ1,3 	 κ2,4 = a⊕

2 	 a	

2 	 κ1,3 	 κ2,4

= a⊕

2 	 a	

2 = a2

b3 = a	

1 ⊗ κ1,3 ⊕ a	

1 ⊗ κ2,4 ⊕ κ1,2 ⊗ κ2,4 	 a	

3

= a⊕

3 ⊕ (a	

1 ⊕ κ1,2)⊗ κ2,4 	 a	

3

= a⊕

3 ⊕ a	

1 ⊗ κ2,4 	 a	

3 = a⊕

3 	 a	

3 = a3

b4 = a	

2 ⊗ κ2,4 	 a	

4 	 a	

1 ⊗ κ1,2 ⊗ κ2,4

= a⊕

4 	 a	

4 	 a	

4 = a4 ,

the max-algebraic polynomial (B.21) is the MACP of BB.

Case C:

We always have a	

2 6= ε in Case C. Furthermore, a	

1 6= ε by Lemma B.2.4(1)
and a⊕

2 = a	

1 ⊗ a	

1 by Lemma B.2.4(2). As a consequence, the condition

a	

1 ⊗a⊕

3 = a	

2 ⊗a⊕

2 implies that κ2,3 =
a⊕

3

a	

2

=
a⊕

2

a	

1

= a	

1 and a	

1 ⊗κ2,3 =

a	

1 ⊗
a⊕

3

a	

2

= a⊕

2 .

Since a⊕

4 6 a	

2 ⊗ a	

2 and a	

2 6= ε in Case C, we have κ2,4 6 a	

2 .

The condition a	

1 ⊗ a⊕

4 = a	

2 ⊗ a⊕

3 leads to a	

1 ⊗ κ2,4 = a	

1 ⊗
a⊕

4

a	

2

= a⊕

3 .

We also have a	

2 ⊗ κ2,3 = a⊕

3 and a	

2 ⊗ κ2,4 = a⊕

4 . Furthermore, a	

3 = ε by

Lemma B.2.4(5). Moreover, a	

4 = ε in Case C.

Now we have

b1 = 	a	

1 	 κ2,3 = 	a	

1 = a1

b2 = a	

1 ⊗ κ2,3 	 a	

2 	 κ2,4 = a⊕

2 	 a	

2 = a2

b3 = a	

1 ⊗ κ2,4 ⊕ a	

2 ⊗ κ2,3 = a⊕

3 = a3

b4 = a	

2 ⊗ κ2,4 = a⊕

4 = a4 .

This means that (B.21) is the MACP of BC. 2
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B.3 The Max-Algebraic Characteristic Polyno-
mial of a Max-Algebraic Upper Hessenberg
Matrix with Zeros on the First Subdiago-
nal

In Chapter 5 and in the previous sections of this appendix we have encountered
matrices with the following structure:

A =












κ0,1 κ0,2 κ0,3 . . . κ0,n−1 κ0,n

0 κ1,2 κ1,3 . . . κ1,n−1 κ1,n

ε 0 κ2,3 . . . κ2,n−1 κ2,n

...
...

...
. . .

...
...

ε ε ε . . . κn−2,n−1 κn−2,n

ε ε ε . . . 0 κn−1,n












. (B.22)

A matrix of this form will be called a max-algebraic upper Hessenberg matrix
with zeros on the first subdiagonal.

Let us now derive some formulas to compute the coefficients of the MACP of
a max-algebraic upper Hessenberg matrix with zeros on the first subdiagonal.
Let A ∈ Rn×nε be a max-algebraic upper Hessenberg matrix of the form (B.22).
Let m ∈ {1, 2, . . . , n} and k ∈ {0, 1, . . . ,m}. We represent the coefficient of

λ⊗
m−k

in the MACP of the submatrix A{1,2,... ,m},{1,2,... ,m} of A by ak(m). So

ak(m) = (	0)
⊗
k
⊗

⊕

{i1,... ,ik}∈Ck
m

det⊕A{i1,... ,ik},{i1,... ,ik} .

Note that

a0(m) = 0 (B.23)

a1(m) = 	
m⊕

i=1

κi−1,i (B.24)

for all m.

We shall use the following lemma:

Lemma B.3.1 Let A ∈ Rn×nε be a max-algebraic upper Hessenberg matrix of
the form (B.22) and let k ∈ {1, 2, . . . , n}. Then we have

(	0)
⊗
s
⊗

⊕

{i1,i2,... ,is}∈Cs
n−k+s

det⊕A{i1,i2,... ,is,n−k+s+1},{i1,i2,... ,is,n}

=

n−k+s⊕

r=n−k

ak−n+r(r)⊗ κr,n (B.25)

for s = 1, 2, . . . , k − 1.
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Proof : We shall prove this lemma by induction. Let us denote the left-hand
side of (B.25) by ρ(s).
Note that the value of s should always be less than or equal to k − 1 since the
row index n− k + s+ 1 should be less than or equal to n.
Define

γi,j =

{

0 if i = j + 1 ,

ε otherwise,

for i = 2, 3, . . . , n and j = 1, 2, . . . , n− 1.
First we prove that (B.25) holds for s = 1. We have

ρ(1) = (	0)⊗
⊕

{i1}∈C1
n−k+1

det⊕A{i1,n−k+2},{i1,n}

= 	
n−k+1⊕

r=1

det⊕

[
κr−1,r κr−1,n

γn−k+2,r κn−k+1,n

]

= 	
n−k+1⊕

r=1

κr−1,r ⊗ κn−k+1,n ⊕
n−k+1⊕

r=1

γn−k+2,r ⊗ κr−1,n .

For any r ∈ {1, 2, . . . , n− k + 1} we have γn−k+2,r = 0 if n − k + 2 = r + 1
and γn−k+2,r = ε otherwise. Hence,

ρ(1) =

(

	
n−k+1⊕

r=1

κr−1,r

)

⊗ κn−k+1,n ⊕ κn−k,n .

By (B.23) and (B.24) this results in

ρ(1) = a1(n− k + 1)⊗ κn−k+1,n ⊕ a0(n− k)⊗ κn−k,n

=
n−k+1⊕

r=n−k

ak−n+r(r)⊗ κr,n .

So (B.25) holds for s = 1.

Let S ∈ {2, 3, . . . , k − 1}. Now we assume that formula (B.25) holds for s =
S − 1 and we prove that it also holds for s = S:

ρ(S) = (	0)
⊗
S
⊗

⊕

{i1,... ,iS}∈CS
n−k+S

det⊕A{i1,... ,iS ,n−k+S+1},{i1,... ,iS ,n}

= (	0)
⊗
S
⊗

⊕

{i1,... ,iS}∈CS
n−k+S

det⊕








κi1−1,i1 . . . κi1−1,iS κi1−1,n

γi2,i1 . . . κi2−1,iS κi2−1,n

...
. . .

...
...

ε . . . γn−k+S+1,iS κn−k+S,n







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= (	0)
⊗
S
⊗

⊕

{i1,... ,iS}∈CS
n−k+S

det⊕A{i1,... ,iS},{i1,... ,iS} ⊗ κn−k+S,n ⊕

(	0)
⊗
S+1
⊗

⊕

{i1,... ,iS}∈CS
n−k+S

γn−k+S+1,iS ⊗ det⊕A{i1,... ,iS},{i1,... ,iS−1,n}

= aS(n− k + S)⊗ κn−k+S,n ⊕

(	0)
⊗
S−1
⊗

⊕

{i1,... ,iS−1}∈CS−1
n−k+S−1

det⊕A{i1,... ,iS−1,n−k+S},{i1,... ,iS−1,n}

since γn−k+S+1,iS = 0 if n− k + S = iS and γn−k+S+1,iS = ε otherwise. By
the induction hypothesis (B.25) holds for s = S − 1. Hence,

ρ(S) = aS(n− k + S)⊗ κn−k+S,n ⊕
n−k+S−1⊕

r=k−n

ak−n+r(r)⊗ κr,n

=

n−k+S⊕

r=n−k

ak−n+r(r)⊗ κr,n .

So now we have proved that (B.25) holds for s = 1, 2, . . . , k − 1. 2

Proposition B.3.2 If A ∈ Rn×nε is a max-algebraic upper Hessenberg matrix
of the form (B.22) then we have

apos
0 (m) = 0 (B.26)

aneg
0 (m) = ε (B.27)

apos
k (m) = apos

k (m− 1) ⊕
m−1⊕

r=m−k

aneg
k−n+r(r)⊗ κr,m (B.28)

aneg
k (m) = aneg

k (m− 1) ⊕
m−1⊕

r=m−k

apos
k−n+r(r)⊗ κr,m (B.29)

for m = 1, 2, . . . , n and k = 1, 2, . . . ,m, where apos
m (m− 1) = aneg

m (m− 1) = ε
for m = 1, 2, . . . , n by definition.

Proof : Formulas (B.26) and (B.27) are a direct consequence of (B.23).
Consider an arbitrary m ∈ {1, 2, . . . , n} and an arbitrary k ∈ {1, 2, . . . ,m}.
We have

ak(m) = (	0)
⊗
k
⊗

⊕

{i1,... ,ik}∈Ck
m

det⊕A{i1,... ,ik},{i1,... ,ik}

= (	0)
⊗
k
⊗

⊕

{i1,... ,ik}∈Ck
m−1

det⊕A{i1,... ,ik},{i1,... ,ik} ⊕
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(	0)
⊗
k
⊗

⊕

{i1,... ,ik−1}∈Ck−1
m−1

det⊕A{i1,... ,ik−1,m},{i1,... ,ik−1,m} .

If we take into account that am(m − 1) = ε by definition and if we use
Lemma B.3.1 with n = m and s = k − 1, we obtain

ak(m) = ak(m− 1) ⊕ (	0)⊗
m−1⊕

r=m−k

ak−m+r(r)⊗ κr,m . (B.30)

If we extract the max-positive and the max-negative contributions to this ex-
pression, we get formulas (B.28) and (B.29). 2

If A ∈ Rn×nε is a max-algebraic upper Hessenberg matrix with zeros on the
first subdiagonal then we can use the recursive formulas of Proposition B.3.2
to develop an efficient algorithm to compute the coefficients of the MACP of
A.
Consider the following scheme:

m = 1 m = 2 m = 3 . . . m = n

k = 1 a1(1) a1(2) a1(3) . . . a1(n)
k = 2 a2(2) a2(3) . . . a2(n)
k = 3 a3(3) . . . a3(n)

...
. . .

...

k = n an(n) .

(B.31)

Note that the coefficient ak(m) is on the (m−k+1)st diagonal of this scheme.
The max-positive and the max-negative contributions to the entries of this
scheme can be computed diagonal by diagonal with formulas (B.28) and (B.29).
The last column of the scheme contains the coefficients of the MACP of A. It is
easy to verify that the complexity of this algorithm to compute the coefficients
of the MACP of a max-algebraic upper Hessenberg matrix A ∈ Rn×n

ε with
zeros on the first subdiagonal is O(n3).

In Section B.4 we shall use the following lemma:

Lemma B.3.3 Let A ∈ Rε be a max-algebraic upper Hessenberg matrix of

the form (B.22) and let λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

be the MACP of A. Let

k ∈ {1, 2, . . . , n}. Then the max-positive and the max-negative contributions to
ak are given by

apos
k =

b k
2 c⊕

l=1

⊕

(i1,... ,i2l,δ1,... ,δ2l)∈Φ(n,k,2l)

2l⊗

s=1

κis−1,is+δs−1 (B.32)
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and

aneg
k =

j

k−1
2

k

⊕

l=0

⊕

(i1,... ,i2l+1,δ1,... ,δ2l+1)∈Φ(n,k,2l+1)

2l+1⊗

s=1

κis−1,is+δs−1 (B.33)

respectively, where the empty max-algebraic sum
0⊕

l=1

. . . is equal to ε by defi-

nition and where

Φ(n, k, l) =
{

(i1, i2, . . . , il, δ1, δ2, . . . , δl)
∣
∣
∣ {i1, i2, . . . , il} ∈ Cln,

i1 < i2 < . . . < il, δ1, δ2, . . . , δl ∈ N0, δs 6 is+1 − is for

s = 1, 2, . . . , l, δl 6 n− il + 1 and

l∑

s=1

δs = k
}

.

Proof : We shall prove by induction that

ak(m) =

k⊕

l=1



(	0)
⊗
l
⊗

⊕

(i1,... ,il,δ1,... ,δl)∈Φ(m,k,l)

l⊗

s=1

κis−1,is+δs−1



 (B.34)

for m = 1, 2, . . . , n and k = 1, 2, . . . ,m. If we extract the max-positive and
max-negative contributions to (B.34) with m = n and k ∈ {1, 2, . . . , n}, we get
formulas (B.32) and (B.33).

First we prove that (B.34) holds for k = 1 and for m = 1, 2, . . . , n. We have

Φ(m, 1, 1) =
{

(i1, δ1)
∣
∣ {i1} ∈ C1

m, δ1 ∈ N0, δ1 6 m− i1 + 1 and δ1 = 1
}

=
{

(s, 1)
∣
∣ s = 1, 2, . . . ,m

}
.

So for k = 1 the right-hand side of (B.34) is equal to (	0) ⊗
m⊕

s=1

κs−1,s,

which is equal to a1(m) by (B.24). So formula (B.34) holds for k = 1 and for
m = 1, 2, . . . , n.

Consider again scheme (B.31). In the first step of this proof we have proved
that formula (B.34) holds for all the coefficients on the first row of this scheme.
Recall that the coefficients of the scheme can be computed diagonal by diagonal
with formula (B.30). Now we prove by induction that (B.34) holds for m =
2, 3, . . . , n and k = 2, 3, . . . ,m.
Let M ∈ {2, 3, . . . , n} and K ∈ {2, 3, . . . ,M}. Assume that (B.34) holds for
all the coefficients ak(m) that are on the (M −K)th diagonal (if K 6= M) and
for all the coefficients ak(m) that are on (M −K+1)st diagonal but that have
smaller k and m indices than aK(M). We now prove that (B.34) also holds for
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aK(M). We start from formula (B.30) with k = K and m = M :

aK(M) = aK(M − 1) 	
M−1⊕

r=M−K

aK−M+r(r)⊗ κr,M . (B.35)

Note that we do not allow k = 0 in (B.34). Therefore, we extract the term of
(B.35) that contains a0(M −K) and put it apart. Since a0(M −K) is equal
to 0, this leads to

aK(M) = aK(M − 1) 	 κM−K,K 	
M−1⊕

r=M−K+1

aK−M+r(r)⊗ κr,M . (B.36)

Assume that K 6= M . By the induction hypothesis the right-hand side of
(B.36) is equal to

K⊕

l=1



(	0)
⊗
l
⊗

⊕

(i1,... ,il,δ1,... ,δl)∈Φ(M−1,K,l)

l⊗

s=1

κis−1,is+δs−1



 	 κM−K,M 	

M−1⊕

r=M−K+1

K−M+r⊕

l=1



 (	0)
⊗
l
⊗

⊕

(i1,... ,il,δ1,... ,δl)∈Φ(r,K−M+r,l)

(
l⊗

s=1

κis−1,is+δs−1

)

⊗ κr,M



 . (B.37)

Let us now see what happens if aK(M) is on the first diagonal of scheme (B.31)
or equivalently if K = M . If K = M , the first term of the right-hand side of
(B.36) is equal to ε by definition (cf. Proposition B.3.2). Now we prove by
contradiction that Φ(M − 1,M, l) = ∅ for l = 1, 2, . . . ,M .
Consider an arbitrary l ∈ {1, 2, . . . ,M}. If (i1, . . . , il, δ1, . . . , δl) ∈ Φ(M −
1,M, l) then we have δ1 6 i2 − i1, δ2 6 i2 − i1, . . . , δl−1 6 il − il−1, δl 6

M − il and thus δ1 + δ2 + . . . + δl 6 M − i1. Since i1 > 1, this implies
that δ1 + δ2 + . . . + δl 6 M − 1, which is in contradiction with the condition
δ1 + δ2 + . . .+ δl = M . Hence, Φ(M − 1,M, l) = ∅.
Since the empty max-algebraic sum

⊕

φ∈∅

. . . is equal to ε by definition, the first

max-algebraic summation of (B.37) is also equal to ε. So we could say that
(B.37) also holds if k = m = K = M .
Now we show that expression (B.37) is equal to

K⊕

l=1



(	0)
⊗
l
⊗

⊕

(i1,... ,il,δ1,... ,δl)∈Φ(M,K,l)

l⊗

s=1

κis−1,is+δs−1



 (B.38)

by proving that every term of (B.37) also appears in (B.38) and vice versa.
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• Since Φ(M − 1,K, l) ⊆ Φ(M,K, l) for all l, every term of the first max-
algebraic summation of (B.37) also appears in (B.38).

• The term 	κM−K,M corresponds to the pair (M−K+1,K) ∈ Φ(M,K, 1).
So this term also appears in (B.37).

• Let r ∈ {M −K + 1,M −K + 2, . . . ,M − 1}, l ∈ {1, 2, . . . ,K −M + r}
and (i1, . . . , il, δ1, . . . , δl) ∈ Φ(r,K −M + r, l). If we define l1 = l + 1,
il1 = r + 1 and δl1 = M − r, then we have

	
(

(	0)
⊗
l
⊗
(

l⊗

s=1

κis−1,is+δs−1

)

⊗ κr,M
)

=

(	0)
⊗
l1 ⊗

l1⊗

s=1

κis−1,is+δs−1 . (B.39)

Since l 6 K−1, we have l1 6 K. Let us prove that (i1, . . . , il1 , δ1, . . . , δl1) ∈
Φ(M,K, l1). Since il1 = r + 1 6 M , {i1, . . . , il} ∈ Clr and i1 < i2 < . . . <
il 6 r, we have {i1, . . . , il1} ∈ ClM and i1 < i2 < . . . < il1 . The condition
δl 6 r − il + 1 results in δl 6 il1 − il1−1. Furthermore, δl1 = M − r ∈ N0

and δl1 6 M − il1 + 1 = M − r. We have δ1 + δ2 + . . .+ δl = K −M + r,
which leads to δ1 + δ2 + . . . + δl1 = (K −M + r) + (M − r) = K. Hence,
(i1, . . . , il1 , δ1, . . . , δl1) ∈ Φ(M,K, l1). As a consequence, term (B.39) also
appears in (B.38).

So now we have proved that every term of (B.37) appears in (B.38).

Now we consider an arbitrary term tlφ of (B.38) that corresponds to a certain
value of l and to the 2l-tuple φ = (i1, . . . , il, δ1, . . . , δl) ∈ Φ(M,K, l).

• If δl 6 M − il then il 6= M since otherwise we would have δl = 0, which
is not allowed. Hence, {i1, . . . , il} ∈ ClM−1. So φ ∈ Φ(M − 1,K, l), which
means that tlφ appears in the first max-algebraic summation of (B.37).

• Now assume that δl > M − il. This is only possible if il + δl − 1 = M .
If l = 1, we have δl = δ1 = K and thus il = M − K + 1. Hence, tlφ =
(	0)⊗ κM−K,M . This term also appears in (B.37).
From now on we assume that l > 1. We define r such that il = r+1 and thus
also δl = M − r. Since δ1 + δ2 + . . .+ δl = K, l > 1 and δ1, δ2, . . . , δl ∈ N0,
we have 1 6 δl 6 K−1. Hence, r ∈ {M −K + 1,M −K + 2, . . . ,M − 1}.
If we define l1 = l − 1, then we have l1 > 1 and

tlφ = (	0)
⊗
l
⊗

l⊗

s=1

κis−1,is+δs−1

= 	
(

(	0)
⊗
l1 ⊗

(
l1⊗

s=1

κis−1,is+δs−1

)

⊗ κr,M
)

. (B.40)
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Since {i1, . . . , il1+1} ∈ Cl1+1
M and i1 < i2 < . . . < il1+1 = r + 1, we have

{i1, . . . , il1} ∈ Cl1r . The condition δl−1 6 il − il−1 results in δl1 6 r −
il1 + 1. Furthermore, δ1 + δ2 + . . . + δl1 = K − δl = K −M + r. Hence,
(i1, . . . , il1 , δ1, . . . , δl1) ∈ Φ(r,K −M + r, l1). Since δ1 + δ2 + . . . + δl1 =
K −M + r and δ1, δ2, . . . , δl1 > 1, we have l1 6 K −M + r. Hence, term
(B.40) also appears in (B.37).

So every term of (B.38) appears in (B.37).

As a consequence, expressions (B.37) and (B.38) are equal, which means that
aK(M) is also equal to (B.38).

Hence, (B.34) holds for m = 1, 2, . . . , n and k = 1, 2, . . . ,m. 2

Let us illustrate formulas (B.32) and (B.33) by writing down the formulas for
the max-positive and the max-negative contributions to the coefficients of the
MACP of the matrix

A =





κ0,1 κ0,2 κ0,3

0 κ1,2 κ1,3

ε 0 κ2,3



 .

We have

apos
1 = ε

aneg
1 = κ0,1 ⊕ κ1,2 ⊕ κ2,3

apos
2 = κ0,1 ⊗ κ1,2 ⊕ κ0,1 ⊗ κ2,3 ⊕ κ1,2 ⊗ κ2,3

aneg
2 = κ0,2 ⊕ κ1,3

apos
3 = κ0,1 ⊗ κ1,3 ⊕ κ0,2 ⊗ κ2,3

aneg
3 = κ0,3 ⊕ κ0,1 ⊗ κ1,2 ⊗ κ2,3 .

If we consider apos
k with k equal to 2 or 3, then we see that each term consists

of an even number of factors; the sum of the differences between the second
and the first index of the factors of each term is equal to k and the sequence
of the indices of the factors of each term is nondecreasing.
Each term of aneg

k with k equal to 1, 2 or 3 consists of an odd number of factors;
the sum of the differences between the second and the first index of each factor
is equal to k and the sequence of the indices of the factors of each term is
nondecreasing.

B.4 A Heuristic Algorithm for the Construc-
tion of Matrices with a Given Max-Alge-
braic Characteristic Polynomial

In this section we present a heuristic algorithm that will in most cases result
in a matrix with entries in Rε and with a MACP that is equal to a given
max-algebraic polynomial.
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Extrapolating the results of Section 5.3 and supported by many examples
we state the following conjecture:

Conjecture B.4.1 If λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

is the MACP of an n by n

matrix with entries in Rε then it is also the MACP of an n by n max-algebraic
upper Hessenberg matrix with zeros on the first subdiagonal.

So this conjecture states that if a given max-algebraic polynomial of degree n
is the MACP of a matrix with entries in Rε, we can always construct a matrix
A ∈ Rn×nε of the form (B.22) such that the MACP of A is equal to the given
polynomial.

If Conjecture B.4.1 would hold, we could use the formulas of Lemma B.3.3 or
Proposition B.3.2 to obtain a system of multivariate max-algebraic polynomial
equalities and inequalities to construct a matrix A ∈ Rn×n

ε of the form (B.22)
with a MACP that coincides with a given monic nth degree max-algebraic
polynomial.

If we take the formulas of Lemma B.3.3, we get an ELCP with
n2

2
+
n

2
+ 1

variables and O

((
3 +
√

5

2

)n
)

inequalities. So this ELCP has less variables

than the full ELCP derived in Section 5.4, which has n2 + 1 variables. The
number of inequalities of the ELCP based on the formulas of Lemma B.3.3
is much smaller than the number of inequalities of the full ELCP, which lies
between e(n!− n) and en! + 1.
The number of inequalities of the ELCP that results from the formulas of
Proposition B.3.2 is O(n3), which is much smaller than the number of in-
equalities of the full ELCP. It is also considerably smaller than the number of
inequalities of the ELCP based on the formulas of Lemma B.3.3. If we use the
ELCP algorithm of Section 3.4 to solve the ELCP then this will have a positive
effect on the execution time of the algorithm. However, this effect is counter-

acted by the fact that there are now
3

2
n2 − 3

2
n + 2 variables: the entries of

the upper triangular part of A, the dummy variables aneg
1 (1), . . . , aneg

1 (n− 1),
apos
k (m), aneg

k (m) for m = 2, . . . , n− 1 and k = 2, . . . ,m and an extra variable
α to make the ELCP homogeneous. So the number of variables of the ELCP
that results from the formulas of Proposition B.3.2 is greater than the number
of variables of the full ELCP derived in Section 5.4 and it is about 2 to 3 times
the number of variables of the ELCP based on the formulas of Lemma B.3.3.
Since in general the average execution time of our ELCP algorithm depends
polynomially on the number of inequalities and more or less exponentially on
the number of variables, the fact that we have more variables in the ELCP
based on the formulas of Lemma B.3.3 completely annihilates the positive ef-
fect of having a much smaller number of inequalities.
Furthermore, experiments show that in general the solution set of an ELCP
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that is based on the formulas of Proposition B.3.2 is so complex that it takes
even more time to solve this ELCP with our ELCP algorithm than to solve
the corresponding full ELCP. In practice it seems that our ELCP algorithm
performs best on ELCPs based on the formulas of Lemma B.3.3.

The ELCP approach based on Conjecture B.4.1 and the formulas of Lemma
B.3.3 allows us to tackle larger problems than the full ELCP approach. How-
ever, the major disadvantage of this approach stays its computational complex-
ity, which means that it can only be used for max-algebraic polynomials with
a small degree.
Therefore, we now present a heuristic algorithm based on Conjecture B.4.1
to construct a matrix B ∈ Rn×nε of the form (B.22) such that the MACP
of B will be equal to a given monic nth degree max-algebraic polynomial

λ⊗
n ⊕

n⊕

k=1

ak ⊗ λ⊗
n−k

. This algorithm will on the average be much faster

than the ELCP-based algorithms and it will allow us to deal with max-algebraic
polynomials with a larger degree. If a result is returned, it is right. But it is
possible that sometimes no result is returned although there is a solution. Note
that it is advisable to check whether the coefficients of the given max-algebraic
polynomial satisfy the necessary conditions of Propositions 5.2.5 and 5.2.6 be-
fore executing the algorithm.

In the initialization step of the heuristic algorithm, we reconstruct the aneg
k ’s

by setting aneg
1 = a	

1 and aneg
k = (−δ) ⊗ a⊕

k ⊕ a	

k = max(a⊕

k − δ, a	

k ) for
k = 2, 3, . . . , n where δ is a small positive real number.
Consider

T1 =











aneg
1 aneg

2 aneg
3 . . . aneg

n−1 aneg
n

0 aneg
1 aneg

2 . . . aneg
n−2 aneg

n−1

ε 0 aneg
1 . . . aneg

n−3 aneg
n−2

...
...

...
. . .

...

ε ε ε . . . 0 aneg
1











and

T2 =










ε ε ε . . . ε
ε µ1,2 µ1,3 . . . µ1,n

ε ε µ2,3 . . . µ2,n

...
...

...
. . .

...
ε ε ε . . . µn−1,n










where

µi,j =







a⊕

j

aneg
i

if aneg
i 6= ε ,

ε if aneg
i = ε .
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In each major step of the heuristic algorithm we shall select entries of T1 and
T2 to compose a new matrix until the MACP of this matrix coincides with the
given max-algebraic polynomial or until all possible choices have been consid-
ered. In the latter case the algorithm will return an empty matrix to indicate
that it did not find a solution.

We shall give the heuristic algorithm in the same pseudo programming
language as the one that has been used to describe the ELCP algorithm of
Section 3.4. We use a function called maxcharpoly to compute some or all

of the coefficients of the MACP of a matrix: if λ⊗
n ⊕

n⊕

k=1

ck ⊗ λ⊗
n−k

is the

MACP of a matrix C ∈ Rn×nε and if 1 6 k 6 n then maxcharpoly(C,k) returns

the column vector
[
c1 c2 . . . ck

]T
. Since all the intermediate matrices that

are constructed in the heuristic algorithm are max-algebraic upper Hessenberg
matrices with zeros on the first subdiagonal, we can use the efficient algorithm
based on Proposition B.3.2 to calculate the coefficients of the MACP of these
matrices.

A heuristic algorithm to construct a matrix with a given MACP

Input: n, a =
[
a1 a2 . . . an

]T
, δ

Initialization:

aneg ← (−δ)⊗ a⊕ ⊕ a	 { Reconstruct the aneg
k ’s. }

{ Construct the µij’s. }
for i = 1, 2, . . . , n− 1 do

if aneg
i 6= ε then

∀j ∈ {i+ 1, i+ 2, . . . , n} : µij ←
a⊕

j

aneg
i

else

∀j ∈ {i+ 1, i+ 2, . . . , n} : µij ← ε

end if

end for

τ ← On×1 { Initialize the offset vector. }
Main loop:

continue← 1

while continue = 1 do

{ Construct a template matrix T that has zeros on the first }
{ subdiagonal and that contains the aneg

k ’s on positions that }
{ are indicated by the offset vector τ . }
T ← εn×n
∀k ∈ {1, 2, . . . , n− 1} : tk+1,k ← 0

∀k ∈ {1, 2, . . . , n} : t1+τk,k+τk
← aneg

k
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B ← T

ok ← 1

col← 2

while ok = 1 and col 6 n do

α← {1, 2, . . . , col}
c← maxcharpoly(B, col)

if c 6= aα then

{ We continue putting one of the µi,col’s in column }
{ col of B until the first col coefficients of the MACP }
{ of B match the first col coefficients of the given }
{ max-algebraic polynomial. }
found← 0

row ← 2

while found = 0 and row 6 col do

if brow,col = ε and µrow−1,col 6= ε then

brow,col ← µrow−1,col

c← maxcharpoly(B, col)

if c = aα then

found← 1

else

brow,col ← ε

end if

end if

row ← row + 1

end while

if found = 0 then

ok ← 0

end if

end if

col← col + 1

end while

if ok = 1 then

continue← 0 { A valid result has been found. }
else

{ Adapt the offset vector. }
pos← 1

maxel← n− 1

while continue = 1 and τpos = maxel do
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pos← pos+ 1

maxel← maxel − 1

if pos = n then

{ All possible offset vectors have been considered }
{ but no solution has been found. }
continue← 0

B ← [ ]

end if

end while

if continue = 1 then

τpos ← τpos + 1

∀k ∈ {1, 2, . . . , pos− 1} : τk ← 0

end if

end if

end while

Output: B

Note that the worst case complexity of this heuristic algorithm is O(n!n5)
where n is the degree of the given max-algebraic polynomial. This means
that in its present form this algorithm should not be used for max-algebraic
polynomials with a large degree. However, experiments have shown that the
average execution time of the heuristic algorithm is considerably smaller than
that of an algorithm that uses the ELCP approach, and that the heuristic
algorithm enables us to deal with max-algebraic polynomials with a larger
degree.

We have tried out the heuristic algorithm as follows. For a given maximal
dimension N we have generated a sequence of random matrices of size n by n
with 5 6 n 6 N and with integer entries distributed uniformly in the interval

Trial Number of N Number of
matrices successful runs

1 20000 8 19989

2 20000 9 19991

3 20000 10 19987

4 20000 11 19987

5 5000 12 5000

Table B.1: The results of some experiments with the heuristic algorithm to
construct a matrix with a given MACP for random matrices of size n by n
with 5 6 n 6 N .
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[−2n, 2n]. Next we have computed the coefficients of the MACP of each of these
matrices and used them as input for the algorithm. The results are summed up
in Table B.1. A run is called successful if the algorithm succeeded in computing
a matrix that had the same MACP as the random matrix. For the 5th trial
we have only considered 5000 matrices in order to limit the time needed to
perform this experiment. If we consider all the runs of the experiment then we
see that the algorithm was successful in about 99.95% of the cases.
In 45 out of the 46 cases where the heuristic algorithm did not return a result,
we managed to transform the original matrix into an upper Hessenberg matrix
with zeros on the first subdiagonal that had same MACP as the original random
matrix by applying transformations that preserve the MACP. In the remaining
case (with n = 6) we had to use the ELCP algorithm based on the formulas of
Lemma B.3.3 to construct an upper Hessenberg matrix with zeros on the first
subdiagonal that had same MACP as the original random matrix.





Appendix C

Proofs of Some Lemmas of
Chapter 6

In this appendix we prove some of the lemmas of Chapter 6. We also state a
generalization by Gaubert of Theorem 6.3.5 and we illustrate this generalized
theorem with an example.

C.1 Proof of Lemma 6.3.7

Before proving Lemma 6.3.7 we first give some additional definitions and lem-
mas.
The least common multiple of two positive integers c1 and c2 is denoted by
lcm(c1, c2). If γ is a set of positive integers then the least common multiple of
the elements of γ is denoted by lcmγ.
Recall that if a matrix A is irreducible then there exist integers k0 ∈ N and
c ∈ N0 such that

A⊗
k+c

= λ⊗
c ⊗A⊗

k
for all k > k0 (C.1)

(cf. Theorem 2.2.8). The smallest possible positive integer c for which (C.1)
holds is called the cyclicity of the matrix A. Note that the only irreducible
matrix that has a max-algebraic eigenvalue that is equal to ε is the 1 by 1
max-algebraic zero matrix [ ε ].

Lemma C.1.1 Let A ∈ Rn×nε be an irreducible matrix with A 6= εn×n. If λ is
the max-algebraic eigenvalue of A and if c is the cyclicity of A then we have

∀i, j ∈ {1, 2, . . . , n} ,∃q0 ∈ N such that

(
A⊗

q0+rc)

ij
= λ⊗

rc ⊗
(
A⊗

q0 )

ij
6= ε for all r ∈ N . (C.2)

273
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Proof : If n is equal to 1, the proof of the lemma is trivial. So from now on
we assume that n > 1.
Since A is irreducible, its precedence graph G(A) is strongly connected. So if we
select two arbitrary different vertices u and v of G(A) then there exists a path
P1 from u to v. There also exists a path P2 from v to u. The concatenation
of P1 and P2 yields a path from u to u. So if we consider two arbitrary (not
necessarily different) vertices v1 and v2 of G(A), then there always exists a path
from v1 to v2.
Consider arbitrary indices i, j ∈ {1, 2, . . . , n}. Let P be a path from vertex j
of G(A) to vertex i of G(A) and let C be a path from vertex i to vertex i. Let
l be the length of P and let m be the length of C. Recall that if k ∈ N0 then

(A⊗
k
)ij is the maximal weight of all paths of G(A) from vertex j to vertex i

with length k; if there does not exist a path from vertex j to vertex i with

length k then (A⊗
k
)ij is equal to ε.

Consider an arbitrary p ∈ N. The concatenation of P and p times C yields a

path from vertex j to vertex i with length l + pm. Hence,
(
A⊗

l+pm)

ij
6= ε for

any p ∈ N.

Since A is irreducible, there exist integers k0 ∈ N and c ∈ N0 such that A⊗
k+c

=

λ⊗
c ⊗ A⊗

k
for all k > k0. So if we select p such that q0

def
= l +mp > k0 then

we have A⊗
q0+rc

= λ⊗
c ⊗ A⊗

q0+(r−1)c
= . . . = λ⊗

rc ⊗ A⊗
q0

for any r ∈ N.
Furthermore, λ 6= ε since A 6= εn×n.

As a consequence, we have
(
A⊗

q0+rc)

ij
= λ⊗

rc ⊗
(
A⊗

q0 )

ij
6= ε for all r ∈ N. 2

Lemma C.1.2 If A ∈ Rn×nε is not irreducible then there exists a max-algebraic
permutation matrix P ∈ Rn×nε such that the matrix Â = P ⊗A⊗P T is a max-
algebraic block upper triangular matrix of the form

Â =








Â11 Â12 . . . Â1l

ε Â22 . . . Â2l

...
...

. . .
...

ε ε . . . Âll








(C.3)

with l > 1 and where the matrices Â11, Â22, . . . , Âll are square and irreducible.

Proof : See e.g. [3]. This lemma is also the max-algebraic equivalent of a
result of [75]. 2

Lemma C.1.3 Consider A ∈ Rn×nε and let T ∈ Rn×nε be a max-invertible

matrix. Then A and T ⊗A⊗ T⊗
−1

have the same max-algebraic eigenvalues.

Proof : First we prove that every max-algebraic eigenvalue of A is also a max-

algebraic eigenvalue of T ⊗ A ⊗ T⊗
−1

. Let λ be a max-algebraic eigenvalue
of A and let x be a corresponding max-algebraic eigenvector. We have

(
T ⊗
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A ⊗ T⊗
−1) ⊗ (T ⊗ x) = T ⊗ A ⊗ x = T ⊗ λ ⊗ x = λ ⊗ (T ⊗ x). So λ is

a max-algebraic eigenvalue of T ⊗ A ⊗ T⊗
−1

(and T ⊗ x is a corresponding
max-algebraic eigenvector).

In order to prove that every max-algebraic eigenvalue of T ⊗A⊗T ⊗
−1

is also a

max-algebraic eigenvalue of A, we define Ã = T⊗A⊗T⊗
−1

and T̃ = T⊗
−1

. Now
it follows from the first part of this proof that every max-algebraic eigenvalue

of Ã is also a max-algebraic eigenvalue of T̃ ⊗ Ã⊗ T̃⊗
−1

= A. 2

Consider A ∈ Rn×nε . Assume that the max-algebraic permutation matrix P
transforms A into a max-algebraic block upper triangular matrix Â = P ⊗
A ⊗ PT of the form (C.3) with l > 1 and where the matrices Â11, Â22, . . . ,
Âll are irreducible. Note that if A is irreducible then we can take P = En.
Furthermore, l is equal to 1 if and only if A is irreducible.
Let λi be the max-algebraic eigenvalue of Âii for i = 1, 2, . . . , l. Although in
general the matrix Â is not uniquely defined, the set {λi | i = 1, 2, . . . , l } will be
the same for any max-algebraic block upper triangular matrix P ⊗A⊗P T with
irreducible diagonal blocks where P is a max-algebraic permutation matrix. So
the set of the max-algebraic eigenvalues of Â11, Â22, . . . , Âll does not depend
on P . This set will be denoted by L(A). Note that L(A) = L(Â).
It can be shown (see e.g. [54]) that every max-algebraic eigenvalue of A belongs
to L(A) and that maxL(A) and λl are always max-algebraic eigenvalues of Â
(and also of A by Lemma C.1.3). So the largest max-algebraic eigenvalue of A
is equal to maxL(A).

The following lemma is an extension of Lemma C.1.1 and a corrected version
of a lemma that can be found in [149]:

Lemma C.1.4 Let Â ∈ Rn×nε be a matrix of the form (C.3) where the ma-
trices Â11, Â22, . . . , Âll are irreducible. Let λi and ci be respectively the
max-algebraic eigenvalue and the cyclicity of Âii for i = 1, 2, . . . , l. Define sets
α1, α2, . . . , αl such that Âαiαj

= Âij for all i, j with i 6 j.
Define

Sij(s) =
{
{i0, i1, . . . , is} ⊂ N

∣
∣ i = i0 < i1 < . . . < is = j and

Âitit+1
6= ε for t = 0, 1, . . . , s− 1

}

for all i, j with i < j and for s = 1, 2, . . . , j − i.
Let λii = λi and cii = ci for i = 1, 2, . . . , n. Define

Sij =
{
t
∣
∣ ∃s ∈ {1, 2, . . . , j − i} and ∃γ ∈ Sij(s) such that t ∈ γ

}

λij =

{

max{λt | t ∈ Sij } if Sij 6= ∅ ,
ε if Sij = ∅ ,

cij =

{

lcm{ ct | t ∈ Sij } if Sij 6= ∅ ,
1 if Sij = ∅ ,
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for all i, j with i < j.
Let i, j ∈ {1, 2, . . . , l} with i 6 j. If λij 6= ε then we have

∀u ∈ αi,∀v ∈ αj ,∃q0 ∈ N such that
((

Â⊗
q0+rcij

)

αiαj

)

uv

= λij
⊗
rcij ⊗

((

Â⊗
q0
)

αiαj

)

uv

6= ε (C.4)

for all r ∈ N.
Furthermore, there exists an integer K ∈ N such that

(

Â⊗
k+cij

)

αiαj

= λij
⊗
cij ⊗

(

Â⊗
k
)

αiαj

(C.5)

for all k > K and for all i, j with i 6 j.

Proof : If l = 1 then (C.4) corresponds to Lemma C.1.1. Furthermore, if l = 1
then (C.5) is a direct consequence of (C.1).

From now on we assume that l > 1. Define Fij(k) = (A⊗
k
)αiαj

for all k ∈ N

and for all i, j with i 6 j.
Consider arbitrary indices i, j ∈ {1, 2, . . . , l} with i 6 j.

We have Fii(k) = Â⊗
k

ii for all k ∈ N. If λii 6= ε then Âii 6= ε and then it follows
from Lemma C.1.1 that

∀u, v ∈ αi,∃q0 ∈ N such that

(
Fii(q0 + rcii)

)

uv
=
(
Â⊗

q0+rcii

ii

)

uv
= λii

⊗
rcii ⊗

(
Â⊗

q0

ii

)

uv

= λii
⊗
rcii ⊗

(
Fii(q0)

)

uv
6= ε for all r ∈ N .

So (C.4) holds for all i, j with i = j.
Furthermore, by Theorem 2.2.8 there exists an integer k0i ∈ N such that Fii(k+

cii) = λii
⊗
cii ⊗ Fii(k) for all k > k0i. So if we select K ∈ N such that K > k0i

for all i then (C.5) holds for all i, j with i = j.
From now on we assume that i 6= j. Then we have

Fij(k) =

j−i
⊕

s=1

⊕

i=i0<i1<...<is=j

⊕

p0,p1,... ,ps∈N
p0+ ...+ps=k−s

Â⊗
p0

i0i0
⊗ Âi0i1 ⊗ Â⊗

p1

i1i1
⊗ . . .

⊗ Âis−1is ⊗ Â⊗
ps

isis

=

j−i
⊕

s=1

⊕

{i0,i1,... ,is}∈Sij(s)

⊕

p0,p1,... ,ps∈N
p0+ ...+ps=k−s

Fi0i0(p0)⊗ Âi0i1 ⊗

Fi1i1(p1)⊗ . . .⊗ Âis−1is ⊗ Fisis(ps) (C.6)
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for all k ∈ N where the empty max-algebraic sum
⊕

{i0,i1,... ,is}∈∅

. . . is equal to

ε by definition.
If Sij = ∅ then we have Fij(k) = ε for all k ∈ N. So (C.5) holds if Sij = ∅.
From now on we assume that Sij 6= ∅.
If λij = ε then we have Âitit = [ ε ] for all t ∈ Sij and then it follows from
(C.6) that Fij(k) = ε for all k ∈ N with k > j − i. So if we select K such that
K > l − 1 then (C.5) also holds if λij = ε and Sij 6= ∅.
From now on we assume that λij 6= ε. Since Sij(s) 6= ∅, there exists an index
iy ∈ Sij such that λij = λiy and cij = wciy for some w ∈ N0.

Consider an arbitrary integer s ∈ {1, 2, . . . , j − i} and an arbitrary set
{i0, i1, . . . , is} ∈ Sij(s) such that iy ∈ {i0, i1, . . . , is}. Since Sij(s) 6= ∅ and

λij 6= ε, there exist indices ut, vt such that (Âit−1it)utvt
6= ε for t = 1, 2, . . . , s.

Let v0 = u and us+1 = v. Define ϕ = { t | Âitit 6= ε } and ϕc = {0, 1, . . . , s}\ϕ.
Note that y ∈ ϕ. If t ∈ ϕc then Âitit = [ ε ], λit = ε and ut+1 = vt. If t ∈ ϕ
then λit 6= ε.
From Lemma C.1.1 it follows that for each t ∈ ϕ there exists an integer pt ∈ N

such that

(
Fitit(pt + rcit)

)

vtut+1
6= ε (C.7)

for all r ∈ N. Recall that ε⊗
0

= 0 by definition. So if we set pt = 0 for all
t ∈ ϕc, then it follows from (C.6) and (C.7) that

(
Fij(p0 + p1 + . . .+ ps + s+ rwciy )

)

uv
>
(
Fi0i0(p0)

)

uu1
⊗

(
Âi0i1

)

u1v1
⊗
(
Fi1i1(p1)

)

v1u2
⊗ . . .⊗

(
Fiyiy (py + rwciy )

)

vyuy+1
⊗ . . .

⊗
(
Âis−1is

)

usvs
⊗
(
Fisis(ps)

)

vsv
6= ε for all r ∈ N . (C.8)

Since λij = λiy > λt for all t ∈ {0, 1, . . . , s}, there exist a set {i0, i1, . . . , is},
an index iy and integers p0, p1, . . . , ps, r0 ∈ N and w ∈ N0 such that (C.8)
holds with equality for all r > r0 and such that cij = wciy . Furthermore,

(
Fiyiy (py + rciy )

)

vyuy+1
= λiy

⊗
rciy ⊗

(
Fiyiy (py)

)

vyuy+1

for all r ∈ N by Lemma C.1.1. So if we define q0 = p0 + p1 + . . .+ pt+ s+ r0ciy
then we have

(
Fij(q0 + rciy )

)

uv
= λiy

⊗
rciy ⊗

(
Fij(q0)

)

uv
6= ε for all r ∈ N . (C.9)

So now we have proved that (C.4) holds for all i, j with i 6 j.

Consider again an arbitrary integer s ∈ {1, 2, . . . , j − i} and an arbitrary set
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{i0, i1, . . . ,is} ∈ Sij(s) such that iy ∈ {i0, i1, . . . , is}. From Theorem 2.2.8 it
follows that for each t ∈ {1, 2, . . . , s} there exists an integer kt ∈ N such that

Fitit(k + cit) = λit
⊗
cit ⊗ Fitit(k) for all k > kt .

If we combine this with (C.6) and if we use the same reasoning as the one that
has been used to prove (C.9) then we find that there exists an integer k0ij ∈ N

such that

Fij(k + cij) = λij
⊗
cij ⊗ Fij(k) for all k > k0ij .

So if we select K ∈ N such that K > k0ij for all i, j with i < j then (C.5) also
holds if λij 6= ε and Sij 6= ∅. 2

Note that the combination of Lemma C.1.2 and Lemma C.1.4 yields a gener-
alization of the cyclicity property (C.1) of irreducible matrices.
Consider a matrix A ∈ Rn×nε . By Lemma C.1.2 there exists a max-algebraic
permutation matrix P that transforms A into a max-algebraic block upper
triangular matrix Â with irreducible diagonal blocks. Since Â = P ⊗ A⊗ P T ,

we have A = P T⊗Â⊗P and thus A⊗
k

= PT⊗Â⊗
k⊗P for all k ∈ N. Left max-

multiplication of a matrix by a max-algebraic permutation matrix corresponds
to a permutation of the rows of the matrix, and right max-multiplication of a
matrix by a max-algebraic permutation matrix corresponds to a permutation
of the columns of the matrix. Therefore, it follows from Lemma C.1.4 that for

any i, j ∈ {1, 2, . . . , n} the sequence {(A⊗
k
)ij}∞k=0 is ultimately geometric.

Let (A,B,C) be a realization of the impulse response G = {Gk}∞k=0 of a
max-linear time-invariant DES with m inputs and p outputs. Consider arbi-
trary indices i, j with i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . ,m}. It is easy to
verify that if all the terms of the sequence {(Gk)ij}∞k=0 are finite then the cor-
responding λs’s in (6.4) are uniquely defined. Only if the sequence {(Gk)ij}∞k=0

contains terms that are equal to ε it is possible that some of the correspond-
ing λs’s in (6.4) are not uniquely defined. In that case we select the smallest
possible value for these λs’s, i.e. ε. For a given impulse response G the set of
the smallest possible values for the λs’s in (6.4) will be denoted by L∗(G).
From Lemma C.1.4 it follows that each finite λ∗

s ∈ L∗(G) corresponds to some
λi ∈ L(A). Now we show that if (A,B,C) is a minimal realization of G and
if λ∗ = maxL∗(G) 6= ε then λ∗ is the largest max-algebraic eigenvalue of A,
i.e. maxL∗(G) = maxL(A).

Proof of Lemma 6.3.7 : Assume that G is the impulse response of a system
with m inputs and p outputs.
First we assume that A is irreducible. Then there exist integers k0 ∈ N and

c ∈ N0 such that A⊗
k+c

= λ⊗
c ⊗ A⊗

k
for all k > k0 where λ is the unique

max-algebraic eigenvalue of A. Hence, Gk+c = λ⊗
c ⊗Gk for all k > k0. Since

maxL∗(G) 6= ε, we have B 6= ε and C 6= ε. As a consequence, we have
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L∗(G) = {λ} and maxL∗(G) = λ.

Now we consider the case where A is reducible. In general we can transform
A into a max-algebraic block upper diagonal matrix of the form (C.3) with l
diagonal blocks. Since the proof for the general case is rather long, we shall
only consider the case l = 2. Note however that the proof that will be presented
here contains all the necessary ingredients to prove the general case.
If l = 2 then there exists a max-algebraic diagonal matrix P such that

Â = P ⊗A⊗ P T =

[
Â11 Â12

ε Â21

]

where Â11 ∈ Rn1×n1
ε and Â22 ∈ Rn2×n2

ε are irreducible. Let λi, ci, αi, λij and
cij for i = 1, 2 and j = 1, 2 with i 6 j be defined as in Lemma C.1.4.

If we define B̂ = P ⊗ B and Ĉ = C ⊗ P T then the triple (Â, B̂, Ĉ) is also
a minimal realization of G by Proposition 6.2.1. Assume that B̂ and Ĉ are
partitioned as follows:

B̂ =

[
B̂11

B̂21

]

and Ĉ =
[

Ĉ11 Ĉ12

]

with B̂i1 ∈ Rni×m
ε and Ĉ1i ∈ Rp×ni

ε for i = 1, 2.

Define F (k) = Â⊗
k

for all k ∈ N. Assume that F (k) is partitioned as follows:

F (k) =

[
F11(k) F12(k)

ε F22(k)

]

where Fij(k) has the same size as Âij for all i, j with i < j.
Let c = lcm(c1, c2). As a consequence of Lemma C.1.4 there exists an integer
k0 ∈ N such that

F11(k + c) = λ1
⊗
c ⊗ F11(k) (C.10)

F22(k + c) = λ2
⊗
c ⊗ F22(k) (C.11)

F12(k + c) = λ12
⊗
c ⊗ F12(k) (C.12)

for all k > k0.
Since

Gk = Ĉ11 ⊗ F11(k)⊗ B̂11 ⊕ Ĉ11 ⊗ F12(k)⊗ B̂21 ⊕ Ĉ12 ⊗ F22(k)⊗ B̂21

for all k ∈ N, it follows from (C.10) – (C.12) that

Gk+c = λ1
⊗
c ⊗ Ĉ11 ⊗ F11(k)⊗ B̂11 ⊕ λ12

⊗
c ⊗ Ĉ11 ⊗ F12(k)⊗ B̂21 ⊕

λ2
⊗
c ⊗ Ĉ12 ⊗ F22(k)⊗ B̂21 (C.13)
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for all k > k0. Note that λ12 = λ1 ⊕ λ2 if Â12 6= ε and λ12 = ε if Â12 = ε.
Therefore, (C.13) implies that L∗(G) ⊆ {λ1, λ2, ε}. Define λ∗ = maxL∗(G).
Since maxL∗(G) 6= ε, we have λ∗ = λ1 or λ∗ = λ2. So if λ1 = λ2 then the
lemma is proved.
From now on we assume that λ1 6= λ2.
We distinguish between two cases: Â12 = ε and Â12 6= ε.

Case 1: Â12 = ε.

We may assume without loss of generality that λ1 > λ2 since we can al-
ways permute the diagonal blocks of Â by performing an additional similar-
ity transformation with a max-algebraic permutation matrix on the triple
(Â, B̂, Ĉ) if necessary.
If Â12 = ε then F12(k) = ε for all k ∈ N. Hence, Gk = Ĉ11 ⊗ F11(k) ⊗
B̂11 ⊕ Ĉ12 ⊗ F22(k)⊗ B̂21 for all k ∈ N. Let us now prove by contradiction
that λ∗ = λ1.
Assume that λ∗ 6= λ1. This implies that λ∗ = λ2 < λ1. Hence, λ1 6= ε.
Now we prove by contradiction that we can only have λ∗ 6= λ1 if Ĉ11 = ε
or B̂11 = ε.
Suppose that Ĉ11 6= ε and B̂11 6= ε. Then there exist indices i1, j1, i2, j2
such that (Ĉ11)i1j1 6= ε and (B̂11)i2j2 6= ε. Since λ1 6= ε, it follows from
Lemma C.1.1 that there exists an integer q0 ∈ N such that

(
F11(q0 + rc)

)

j1i2
= λ1

⊗
rc ⊗

(
F11(q0)

)

j1i2
6= ε for all r ∈ N .

Since λ1 > λ2, this implies that there exists an integer r0 ∈ N such that

(Gq0+rc)i1j2 > λ1
⊗
rc ⊗ (Gq0)i1j2 6= ε for all r > r0 .

But then we have λ∗ = maxL∗(G) > λ1, which is in contradiction with our
assumption that λ∗ < λ1.
So we can only have λ∗ < λ1 if Ĉ11 = ε or B̂11 = ε. However, in that

case we have Gk = Ĉ12 ⊗ Â⊗
k

22 ⊗ B̂21 for all k ∈ N. This implies that

(Â22, B̂21, Ĉ12) is also a realization of G. However, this would contradict

the fact that (Â, B̂, Ĉ) is a minimal realization. Therefore, our assumption
that λ∗ 6= λ1 was wrong.
So if Â12 = ε then we have λ∗ = λ1 = maxL(A).

Case 2: Â12 6= ε.

First we consider the case λ1 > λ2. Hence, λ1 6= ε and λ12 = λ1. Now we
prove by contradiction that λ∗ = λ1.
Assume that λ∗ 6= λ1. Hence, λ∗ = λ2 < λ1. Now we prove by contradiction
that this is only possible if Ĉ11 = ε.
If Ĉ11 6= ε then there exist indices i1 and j1 such that (Ĉ11)i1j1 6= ε. Clearly,

B̂ 6= ε since otherwise we would have Gk = ε for all k ∈ N and thus also
maxL∗(G) = ε. So there exist indices i2, j2, i3, j3 such that (B̂11)i2j2 6= ε or
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(B̂21)i3j3 6= ε. If (B̂11)i2j2 6= ε then we can use the same reasoning as in Case
1 to prove that λ∗ > λ1, which is in contradiction with our assumption that
λ∗ < λ1. So from now on we assume that B̂11 = ε and that (B̂21)i3j3 6= ε.
Since λ12 = λ1 6= ε, c12 = c1 and c = lcm(c1, c2) = wc12 for some w ∈ N0,
it follows from Lemma C.1.4 that there exists an integer q0 ∈ N such that

(
F12(q0 + rc)

)

j1i3
= λ1

⊗
rc ⊗

(
F12(q0)

)

j1i3
6= ε for all r ∈ N .

Since λ1 > λ2, this implies that there exists an integer r0 ∈ N such that

(Gq0+rc)i1j3 > λ1
⊗
rc ⊗ (Gq0)i1j3 6= ε for all r > r0 .

Hence, λ∗ = maxL∗(G) > λ1, but this is also in contradiction with our
assumption that λ∗ < λ1.
So we can only have λ∗ < λ1 if Ĉ11 = ε. However, then we have Gk =

Ĉ12 ⊗ Â⊗
k

22 ⊗ B̂21 for all k ∈ N. So (Â22, B̂21, Ĉ12) is also a realization of G.

Since this contradicts the fact that (Â, B̂, Ĉ) is a minimal realization, our
assumption that λ∗ 6= λ1 was wrong.
So in this case we also have λ∗ = λ1 = maxL(A).

If λ1 < λ2 then we can use a similar reasoning as for the case λ1 > λ2 to
prove that λ∗ = λ2 = maxL(A).

So λ∗ is equal to the largest max-algebraic eigenvalue of A. 2

C.2 Proof of Lemma 6.3.8

Now we prove that if λ 6= ε is the largest max-algebraic eigenvalue of a matrix
A ∈ Rn×nε then there exists a max-invertible matrix T ∈ Rn×n

ε such that
∥
∥T ⊗A⊗ T⊗

−1∥
∥

⊕
= λ.

Proof of Lemma 6.3.8 : First we assume that A is irreducible. Now we
apply a reasoning that is similar to the one used to prove Lemma 3.2.8 of [57]
and Lemma 3.3 of [99]. Let u be a max-algebraic eigenvector of A that corre-
sponds to the max-algebraic eigenvalue λ. Since the matrix A is irreducible, the
components of u are finite [3, 20, 54], which implies that their max-algebraic
inverses are defined. If we define a max-algebraic diagonal matrix T ∈ Rn×n

ε

such that tii = ui
⊗
−1

for i = 1, 2, . . . , n, then T is max-invertible and

∥
∥T ⊗A⊗ T⊗

−1∥
∥

⊕
=

n⊕

i=1

n⊕

j=1

ui
⊗
−1 ⊗ aij ⊗ uj

=

n⊕

i=1



ui
⊗
−1 ⊗





n⊕

j=1

aij ⊗ uj








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=
n⊕

i=1

ui
⊗
−1 ⊗ (A⊗ u)i

=

n⊕

i=1

ui
⊗
−1 ⊗ λ⊗ ui

= λ .

So now we have proved that the lemma holds if A is irreducible.

From now on we assume that A is not irreducible. By Lemma C.1.2 there exists
a max-algebraic permutation matrix P ∈ Rn×n

ε such that Â = P ⊗A⊗P T is a
max-algebraic block upper triangular matrix of the form (C.3) with irreducible
diagonal blocks Â11, Â22, . . . , Âll. Let ni be the number of rows of Âii for
i = 1, 2, . . . , l. Note that Âij ∈ R

ni×nj
ε for all i, j with i 6 j.

Let λi be the max-algebraic eigenvalue of Âii for i = 1, 2, . . . , l. Note that
λ = max {λ1, λ2, . . . , λl}. Let ui be a max-algebraic eigenvector of Âii that
corresponds to the max-algebraic eigenvalue λi for i = 1, 2, . . . , l. Since the
matrices Â11, Â22, . . . , Âll are irreducible, the components of u1, u2, . . . ,
ul are finite. Now we define l diagonal matrices D1, D2, . . . , Dl with Di ∈
Rni×ni
ε for i = 1, 2, . . . , l such that (Di)jj = (ui)j

⊗
−1

for i = 1, 2, . . . , l and
j = 1, 2, . . . , ni. Let

D =








D1 ε . . . ε
ε D2 . . . ε
...

...
. . .

...
ε ε . . . Dl








and

Ā = D ⊗ Â⊗D⊗
−1

=








Ā11 Ā12 . . . Ā1l

ε Ā22 . . . Ā2l

...
...

. . .
...

ε ε . . . Āll








with Āij ∈ R
ni×nj
ε for all i, j with i 6 j. From the first part of this proof it

follows that ‖Āii‖⊕ = λi for all i. Hence,

l⊕

i=1

‖Āii‖⊕ = λ. Now we define l real

numbers α1, α2, . . . , αl such that

α1 = 0

αj = λ⊗
−1 ⊗

(

0 ⊕
(

j−1
⊕

i=1

‖Āij‖⊕ ⊗ αi
))

for j = 2, 3, . . . , l .
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Note that λ⊗
−1

is defined and finite since λ is finite. As a consequence, the
αj ’s are also defined and finite.
The diagonal matrix

D̄ =








α1 ⊗ En1
ε . . . ε

ε α2 ⊗ En2
. . . ε

...
...

. . .
...

ε ε . . . αl ⊗ Enl








is max-invertible since all the αj ’s are finite. If we define

Ã = D̄ ⊗ Ā⊗ D̄⊗
−1

=








Ã11 Ã12 . . . Ã1l

ε Ã22 . . . Ã2l

...
...

. . .
...

ε ε . . . Ãll








with Ãij ∈ R
ni×nj
ε for all i, j with i 6 j then we have Ãii = Āii for all i. Hence,

l⊕

i=1

‖Ãii‖⊕ = λ.

Consider arbitrary indices i, j ∈ {1, 2, . . . , l} with i < j.

If ‖Āij‖⊕ = ε then we have Ãij = Āij = ε and thus ‖Ãij‖⊕ = ε.

Now assume that ‖Āij‖⊕ 6= ε. Since αj > λ⊗
−1 ⊗

∥
∥Āij

∥
∥

⊕
⊗ αi, we have

αj
⊗
−1

6 λ⊗
(
‖Āij‖⊕

)⊗−1

⊗ αi⊗
−1

. (C.14)

We have

‖Ãij‖⊕ = ‖αi ⊗ Āij ⊗ αj⊗
−1‖

⊕

= αi ⊗ ‖Āij‖⊕ ⊗ αj⊗
−1

6 αi ⊗ ‖Āij‖⊕ ⊗ λ⊗
(
‖Āij‖⊕

)⊗−1

⊗ αi⊗
−1

(by (C.14))

6 λ .

So if we define T = D̄ ⊗D ⊗ P , then T is max-invertible, Ã = T ⊗ A⊗ T⊗
−1

and ‖T ⊗A⊗ T⊗
−1‖

⊕
= ‖Ã‖

⊕
=

l⊕

i=1

‖Ãii‖⊕ ⊕
l−1⊕

i=1

l⊕

j=i+1

‖Ãij‖⊕ = λ. 2

C.3 An Upper Bound for the Minimal System
Order

The max-algebraic sum of sequences is defined as follows. If G = {Gk}∞k=0 and
H = {Hk}∞k=0 with Gk, Hk ∈ Rl×mε for all k ∈ N, then G⊕H is also a sequence
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with (G⊕H)k = Gk ⊕Hk for all k ∈ N.
From Theorem 6.1.3 it follows that the impulse response of a max-linear time-
invariant DES can always be considered as the max-algebraic sum of a finite
number of ultimately geometric impulse responses (See also [3, 54, 56]).
Now we state the generalization of Theorem 6.3.5 by Gaubert:

Theorem C.3.1 Let g be the impulse response of a max-linear time-invariant
SISO DES with g 6= {ε}∞k=0. Let g1, g2, . . . , gs be ultimately geometric se-
quences such that g = g1 ⊕ g2 ⊕ . . . ⊕ gs. Then there exists a state space

realization of g of order

s∑

i=1

rank⊕,wc

(
H(gi)

)
.

Proof : See [54, 56]. 2

Example C.3.2 Let us now apply Theorem C.3.1 to the impulse response
g = {gk}∞k=0 of Example 6.4.3. We have

gk =

{

0 if k is even,

k if k is odd,

for k = 0, 1, 2, . . . . Clearly, this sequence is not ultimately geometric. However,
it can be considered as the max-algebraic sum of two ultimately geometric
sequences g1 = {(g1)k}∞k=0 and g2 = {(g2)k}∞k=0 that are defined as follows:

(g1)k = 0 and (g2)k =

{

ε if k is even,

k if k is odd,

for k = 0, 1, 2, . . . . Note that (g1)k+1 = 0 ⊗ (g1)k and (g2)k+2 = 2 ⊗ (g2)k =

1⊗
2 ⊗ (g2)k for all k ∈ N.

If we define H1 = H(g1) and H2 = H(g2), then we have

H1 =












0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .












and H2 =














ε 1 ε 3 ε 5 . . .
1 ε 3 ε 5 ε . . .
ε 3 ε 5 ε 7 . . .
3 ε 5 ε 7 ε . . .
ε 5 ε 7 ε 9 . . .
5 ε 7 ε 9 ε . . .
...

...
...

...
...

...
. . .














.

We have rank⊕,wc

(
H(g1)

)
= 1 since all the columns of H1 are equal to the first

column.
We have (H2).,2k+1 = (2k) ⊗ (H2).,1 and (H2).,2k+2 = (2k) ⊗ (H2).,2 for all
k ∈ N. Furthermore, it is impossible to find a number α ∈ Rε such that
(H2).,1 = α⊗ (H2).,2 or (H2).,2 = α⊗ (H2).,1. Hence, rank⊕,wc (H2) = 2. So it
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follows from Theorem C.3.1 that g can be described by a 3rd order max-linear
time-invariant state space model.

In order to construct a 3rd order state space realization of g, we first con-
struct state space realizations of g1 and g2. It is easy to verify that g1 can be
realized by the triple (A1, B1, C1) = ([ 0 ], [ 0 ], [ 0 ]) and that g2 can be realized
by the triple (A2, B2, C2) with

A2 =

[
ε 2
0 ε

]

, B2 =

[
0
ε

]

and C2 =
[
ε 1

]
.

These realizations have been obtained by applying the methods discussed in [33,
54, 56].
We can merge these two realizations as follows [54, 56]: if we define

A =

[
A1 ε
ε A2

]

=





0 ε ε
ε ε 2
ε 0 ε





B =

[
B1

B2

]

=





0
0
ε





C =
[
C1 C2

]
=
[

0 ε 1
]
,

then (A,B,C) is a realization of g. 2





Appendix D

The Max-Algebraic SVD
and the Max-Algebraic
QRD: Proofs, Examples
and Extensions

First we prove some lemmas and propositions of Chapter 7. Next we give an
example of the calculation of the max-algebraic QRD of a matrix with the
mapping F and with the ELCP approach. Finally we propose some extensions
of the max-algebraic SVD and the max-algebraic QRD and we show that in
theory these extended decompositions can also be computed using the ELCP
approach.

D.1 Proof of Lemma 7.3.2

In this section we show that functions that belong to the class Se are asymp-
totically equivalent to an exponential in the neighborhood of ∞. We shall use
the following lemma:

Lemma D.1.1 If f ∈ Se is a series, i.e. if there exists a positive real number

K such that f(x) =

∞∑

i=0

αie
aix for all x > K with αi ∈ R0, ai ∈ R, ai > ai+1

for all i and where the series converges absolutely for every x > K, then the

series

∞∑

i=0

αie
aix converges uniformly in [K,∞).

287
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Proof : Since f(x) can be written as a series, we have a0 6= ε. Hence,

∞∑

i=0

αie
aix = α0e

a0x

(

1 +

∞∑

i=1

αi
α0

e(ai−a0)x

)

= α0e
a0x

(

1 +

∞∑

i=1

γie
cix

)

with γi =
αi
α0
∈ R0 and ci = ai − a0 < 0 for all i ∈ N0. Since

∞∑

i=0

αie
aiK

converges absolutely,

∞∑

i=1

γie
ciK also converges absolutely.

If x > K then we have ecix 6 eciK for all i ∈ N0 since ci < 0 for all i.

Hence, |γiecix| < |γieciK | for all x > K and for all i ∈ N0. We already know

that
∞∑

i=1

|γieciK | converges. Now we can apply the Weierstrass M -test (See

e.g. [83, 104]). As a consequence, the series
∞∑

i=1

γie
cix converges uniformly in

[K,∞), which implies that the series

∞∑

i=0

αie
aix also converges uniformly in

[K,∞). 2

Proof of Lemma 7.3.2 : If f ∈ Se then there exists a positive real number

K such that f(x) =

n∑

i=0

αie
aix for all x > K with n ∈ N ∪ {∞}, αi ∈ R0

and ai ∈ Rε for all i. If n = ∞ then f is a series that converges absolutely in
[K,∞).
If a0 = ε then there exists a real number K such that f(x) = 0 for all x > K
and then we have f(x) ∼ 0 = 1 · eεx , x→∞ by Definition 7.1.4.

If n = 1 then f(x) = α0e
a0x and thus f(x) ∼ α0e

a0x, x→∞ with α0 ∈ R0

and a0 ∈ Rε.

From now on we assume that n > 1 and a0 6= ε. Then we can rewrite f(x) as

f(x) = α0e
a0x

(

1 +

n∑

i=1

αi
α0

e(ai−a0)x

)

= α0e
a0x( 1 + p(x) )

with p(x) =
n∑

i=1

γie
cix where γi =

αi
α0
∈ R0 and ci = ai−a0 < 0 for all i. Note

that p ∈ Se. Since ci < 0 for all i, we have

lim
x→∞

p(x) = lim
x→∞

(
n∑

i=1

γie
cix

)

=
n∑

i=1

(

lim
x→∞

γie
cix

)

= 0 . (D.1)

If n = ∞ then the series

∞∑

i=1

γie
cix converges uniformly in [K,∞) by Lemma

D.1.1. As a consequence, we may also interchange the summation and the limit



D.2. Proof of Proposition 7.3.3 289

in (D.1) if n =∞ (cf. [83]).
Now we have

lim
x→∞

f(x)

α0ea0x
= lim
x→∞

α0e
a0x(1 + p(x))

α0ea0x
= lim
x→∞

(1 + p(x)) = 1

and thus f(x) ∼ α0e
a0x , x→∞ where α0 ∈ R0 and a0 ∈ R. 2

D.2 Proof of Proposition 7.3.3

In this section we show that Se is closed under elementary operations such as
additions, multiplications, subtractions, divisions, square roots and absolute
values.

Proof of Proposition 7.3.3 : If f and g belong to Se then we may assume
without loss of generality that the domains of definition of f and g coincide,
since we can always restrict the functions f and g to dom f ∩ dom g and since
the restricted functions also belong to Se.
Since f and g belong to Se, there exists a positive real number K such that

f(x) =

n∑

i=0

αie
aix and g(x) =

m∑

j=0

βje
bjx for all x > K

with m,n ∈ N∪{∞}, αi, βj ∈ R0 and ai, bj ∈ Rε for all i, j. If m or n is equal
to ∞ then the corresponding series converges absolutely in [K,∞).
We may assume without loss of generality that both m and n are equal to ∞.
If m or n are finite then we can always add dummy terms of the form 0 · eεx to
f(x) or g(x). Afterwards we can remove terms of the form reεx with r ∈ R to
obtain an expression with non-zero coefficients and decreasing exponents. So
from now on we assume that both f and g are absolute convergent series of
exponentials.

If a0 = ε then we have f(x) = 0 for all x > K, which means that |f(x)| = 0
for all x > K. So if a0 = ε then |f | belongs to Se.
If a0 6= ε then there exists a real number L > K such that either f(x) > 0
or f(x) < 0 for all x > L since f(x) ∼ α0e

a0x , x→∞ with α0 6= 0 by
Lemma 7.3.2. Hence, either |f(x)| = f(x) or |f(x)| = −f(x) for all x > L. So
in this case |f | also belongs to Se.

Since f and g are analytic in [K,∞), the functions ρf , f + g, f − g, f · g and
f l are also analytic in [K,∞) for any ρ ∈ R and any l ∈ N.

Now we prove that these functions can be written as a sum of exponentials or
as an absolutely convergent series of exponentials.
Consider an arbitrary ρ ∈ R. If ρ = 0 then ρf(x) = 0 for all x > K and thus
ρf ∈ Se.

If ρ 6= 0 then we have ρf(x) =

∞∑

i=0

(ραi)e
aix. The series

∞∑

i=0

(ραi)e
aix also



290 Chapter D. The Max-Algebraic SVD: Proofs and Extensions

converges absolutely in [K,∞) and has the same exponents as f(x). Hence,
ρf ∈ Se.

The sum function f + g is a series of exponentials since

f(x) + g(x) =

∞∑

i=0

αie
aix +

∞∑

j=0

βje
bjx .

Furthermore, this series converges absolutely for every x > K. Therefore, the
sum of the series does not change if we rearrange the terms [83]. So f(x)+g(x)
can be written in the form of Definition 7.3.1 by reordering the terms, adding up
terms with equal exponents and removing terms of the form reεx with r ∈ R,
if there are any. If the result is a series then the sequence of exponents is
decreasing and unbounded from below. So f + g ∈ Se.

Since f − g = f + (−1)g, the function f − g also belongs to Se.

The series corresponding to f and g converge absolutely for every x > K.
Therefore, their Cauchy product will also converge absolutely for every x > K
and it will be equal to fg [83]:

f(x)g(x) =
∞∑

i=0

i∑

j=0

αjβi−je
(aj+bi−j)x for all x > K .

Using the same procedure as for f + g, we can also write this product in the
form (7.11) or (7.12). So fg ∈ Se.

Let l ∈ N. If l = 0 then f l = 0 ∈ Se and if l = 1 then f l = f ∈ Se. If l > 1,
we can make repeated use of the fact that fg ∈ Se if f, g ∈ Se to prove that f l

also belongs to Se.

If there exists a real number P such that f(x) 6= 0 for all x > P then
1

f
and

g

f
are defined and analytic in [P,∞). Note that we may assume without loss

of generality that P > K. Furthermore, since the function f restricted to the
interval [P,∞) also belongs to Se, we may assume without loss of generality
that the domain of definition of f is [P,∞).
If f(x) 6= 0 for all x > P then we have a0 6= ε. As a consequence, we can
rewrite f(x) as

f(x) =

∞∑

i=0

αie
aix = α0e

a0x

(

1 +

∞∑

i=1

αi
α0

e(ai−a0)x

)

= α0e
a0x( 1 + p(x) )

with p(x) =

∞∑

i=1

γie
cix where γi =

αi
α0
∈ R0 and ci = ai−a0 < 0 for all i. Note

that p is defined in [P,∞) and that p ∈ Se.

If c1 = ε then p(x) = 0 and
1

f(x)
=

1

α0
e−a0x for all x > P . Hence,

1

f
∈ Se.
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Now assume that c1 6= ε. Since {ci}∞i=1 is a non-increasing sequence of negative
numbers with lim

i→∞
ci = ε = −∞ and since p converges uniformly in [P,∞) by

Lemma D.1.1, we have lim
x→∞

p(x) = 0 (cf. (D.1)). So | p(x) | will be less than

1 if x is large enough, say if x > M . If we use the Taylor series expansion of
1

1 + x
, we obtain

1

1 + p(x)
=

∞∑

k=0

(−1)kpk(x) if |p(x)| < 1 . (D.2)

We already know that p ∈ Se. Hence, pk ∈ Se for all k ∈ N. We have |p(x)| < 1
for all x > M . Moreover, for any k ∈ N the highest exponent in pk is equal
to kc1, which implies that the dominant exponent of pk tends to −∞ as k
tends to ∞. As a consequence, the coefficients and the exponents of more
and more successive terms of the partial sum function sn that is defined by

sn(x) =
n∑

k=0

(−1)kpk(x) for x ∈ [M,∞) will not change any more as n becomes

larger and larger. Therefore, the series on the right-hand side of (D.2) also is
a sum of exponentials:

1

1 + p(x)
=

∞∑

k=0

(−1)k

(
∞∑

i=1

γie
cix

)k

=

∞∑

k=0

die
δix for all x > M .

Note that the set of exponents of this series will have no finite accumulation
point since the highest exponent in pk is equal to kc1. First we prove that

this series also converges absolutely. Define p∗(x) =

∞∑

i=1

|γi|ecix for all x > P .

Since the terms of the series p∗ are the absolute values of the terms of the series
p and since p converges absolutely in [P,∞), p∗ also converges absolutely in
[P,∞). By Lemma D.1.1 p∗ also converges uniformly in [P,∞). Furthermore,
{ci}∞i=1 is a non-increasing and unbounded sequence of negative numbers. As
a consequence, we have lim

x→∞
p∗(x) = 0 (cf. (D.1)). So | p∗(x) | will be less than

1 if x is large enough, say if x > N . Therefore, we have

1

1 + p∗(x)
=

∞∑

k=0

(−1)k (p∗(x))
k

for all x > N .

This series converges absolutely in [N,∞). Since

∞∑

k=0

|di|eδix 6

∞∑

k=0

(
∞∑

i=1

|γi|ecix

)k

=

∞∑

k=0

∣
∣
∣(p∗(x))

k
∣
∣
∣ ,

the series
∞∑

k=0

die
δix also converges absolutely for any x ∈ [N,∞). Since this

series converges absolutely, we can reorder the terms. After reordering the
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terms, adding up terms with the same exponents and removing terms of the
form reεx with r ∈ R if necessary, the sequence of exponents will be decreasing
and unbounded from below.

This implies that
1

1 + p
∈ Se and thus also

1

f
∈ Se.

As a consequence,
g

f
= g

1

f
also belongs to Se.

If there exists a real number Q such that f(x) > 0 for all x > Q then the

function
√

f is defined and analytic in [Q,∞). We may assume without loss
of generality that Q > K and that the domain of definition of f is [Q,∞).

If a0 = ε then we have
√

f(x) = 0 for all x > Q and thus
√

f ∈ Se.

If a0 6= ε then α0 > 0 and then we can rewrite
√

f(x) as
√

f(x) =
√
α0 e

1
2a0x

√

1 + p(x) .

Now we can use the Taylor series expansion of
√

1 + x . This leads to

√

1 + p(x) =

∞∑

k=0

Γ
(

3
2

)

Γ
(

3
2 − k

)
k!

pk(x) if |p(x)| < 1 ,

where Γ is the gamma function. If we apply the same reasoning as for
1

1 + p
,

we find that
√

1 + p ∈ Se and thus also
√

f ∈ Se. 2

D.3 Proof of Proposition 7.5.1

In this section we prove that a matrix A ∈ Sm×n with finite entries always has
a max-algebraic SVD with finite singular values and finite singular vectors.

Proof of Proposition 7.5.1 : Define Ã = F(A, ·). In the proof of Theo-
rem 7.3.5 we have shown that there exists a path of approximate SVDs Ũ Σ̃ Ṽ T

of Ã on some interval [L,∞) where the entries of Ũ , Σ̃ and Ṽ T are asymptoti-
cally equivalent to an exponential in the neighborhood of ∞. If we apply the
reverse mapping R, we obtain a max-algebraic SVD of A: A ∇ U ⊗ Σ⊗ V T .
If all the singular values and all the components of the singular vectors of this
max-algebraic SVD are finite then the proposition is proved.
Now we show how a max-algebraic SVD that contains singular values that are
equal to ε or singular vectors with components that are equal to ε can be trans-
formed into a max-algebraic SVD Û ⊗ Σ̂⊗ V̂ T of A with finite singular values
and vectors. This will be done in three steps. First we make all the singular
values finite, next we make the components of the left singular vectors finite,
and finally we make the components of the right singular vectors finite.

Step 1: We make all the singular values finite.

Let r = min(m,n). Since U ⊗Σ⊗V T is a max-algebraic SVD of A, we have
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a⊕

ij ⊕
r⊕

k=1

u⊕

ik ⊗ σk ⊗ v	

jk ⊕
r⊕

k=1

u	

ik ⊗ σk ⊗ v⊕

jk

= a	

ij ⊕
r⊕

k=1

u⊕

ik ⊗ σk ⊗ v⊕

jk ⊕
r⊕

k=1

u	

ik ⊗ σk ⊗ v	

jk (D.3)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n (cf. (7.26)). Since |aij |⊕ is finite for
all i, j, (D.3) will still hold if we augment some of the terms that appear
in one of the four max-algebraic summations of (D.3) provided that these
terms stay less than or equal to |aij |⊕. Since |ujk|⊕ 6 0 and |vjk|⊕ 6 0 for

all j, k by Corollary 7.4.4, this condition will be satisfied as long as any new
singular value σ̂k that corresponds to a term that has been augmented stays
less than or equal to |aij |⊕. If we define f = min

i,j
|aij |⊕ then f is finite.

Assume that σl = σl+1 = . . . = σr = ε. If we set

σ̂i =

{

σj if i ∈ {1, 2, . . . , l − 1} ,
f if i ∈ {l, l + 1, . . . , r} ,

for i = 1, 2, . . . , r and if Σ̂ is a m by n max-algebraic diagonal matrix with
Σ̂ii = σ̂i for i = 1, 2, . . . , r, then we have A ∇ U ⊗ Σ̂ ⊗ V . Since the σ̂i’s
are ordered and since we did not change the other equations, we now have
a max-algebraic SVD of A for which all the singular values are finite.

Step 2: We make the components of the left singular vectors finite.

Define I = { (i, k) |uik = ε }. Let Û be the matrix obtained by replacing
each entry uik of U that is equal to ε by M or by 	M where M is a negative
real number the exact value of which will be determined later on and where
the exact max-algebraic sign of ûik will also be determined later on. So

ûik =

{

uik if (i, k) 6∈ I ,
M or 	M if (i, k) ∈ I ,

for all i, k. Let ûi be the ith column of Û for i = 1, 2, . . . ,m.
By Corollary 7.4.4 we have |vjk|⊕ 6 0 for all j, k. So if we consider (D.3)

with the σk’s replaced by the σ̂k’s then it is obvious that this equation will
still hold if the entries of the vectors ûi satisfy

|ûik|⊕ = û⊕

ik ⊕ û	

ik 6 min
j
|aij |⊕ − σ̂k for all (i, k) ∈ I . (D.4)

If we define g = min
i,j
|aij |⊕ − σ̂1, then g is finite. Since σ̂k 6 σ̂1 for k =

1, 2, . . . , r, condition (D.4) will be fulfilled if

|ûik|⊕ 6 g for all (i, k) ∈ I . (D.5)
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Since Ũ(s) is an orthogonal matrix for s > L and since the entries of Ũ are
analytic and thus also continuous, we have either det Ũ(s) = 1 or det Ũ(s) =
−1 for all s > L. The entries of an orthogonal matrix always lie in the
interval [−1, 1]. Therefore, all the dominant exponents of the entries of Ũ
are less than or equal to 0. So |det Ũ(s)| can only be equal to 1 for s > L
if there exists a permutation ϕ of the set {1, 2, . . . ,m} such that

m∏

i=1

ũiϕ(i)(s) ∼ c , s→∞

for some c ∈ R0 or equivalently

ũiϕ(i)(s) ∼ ci , s→∞ for i = 1, 2, . . . ,m (D.6)

with c1, c2, . . . , cm ∈ R0. If we apply the reverse mapping R to (D.6), we
get

uiϕ(i) = 0 or uiϕ(i) = 	0 for i = 1, 2, . . . ,m (D.7)

since R(ci) = 0 if ci > 0 and R(ci) = 	0 if ci < 0.
Now we permute the columns of U such that the entries that are equal to
0 in max-absolute value will be on the main diagonal. This can be done
as follows. We define a max-algebraic permutation matrix P ∈ Rm×m

ε such
that

pij =

{

0 if i = ϕ(j) ,

ε otherwise,

for all i, j. If we define W = U ⊗ P then we have

wii = 0 or wii = 	0 for i = 1, 2, . . . ,m .

Let wi be the ith column of W for i = 1, 2, . . . ,m. Since W contains the
same columns as U but in a (possibly) different order, we have wTi ⊗wi∇0
for all i and wTi ⊗wj∇ ε for all i, j with i 6= j. Hence, W T ⊗W ∇Em. From
Proposition 7.4.3 it follows that wTi ⊗ wi = ‖wi‖⊕ = 0 for all i.

Now we copy all the entries of W to Ŵ . We shall update the columns of Ŵ
in two steps. First we shall make all max-algebraic inner products of two
different columns of Ŵ finite. Next we shall make the entries of Ŵ that are
still equal to ε finite.

Step 2a: We make all max-algebraic inner products of two different columns
of Ŵ finite.

Define

h = min
{
|wTi ⊗ wj |⊕

∣
∣wTi ⊗ wj 6= ε

}
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and M = min (g, h− 1) . Note that h and M are finite. Since |wij |⊕ 6 0 for

all i, j by Corollary 7.4.4, we have |wTi ⊗ wj |⊕ 6 0 for all i, j. Hence, h 6 0

and M < 0. Furthermore, if wTi ⊗ wj 6= ε then |wTi ⊗ wj |⊕ > M .

Consider the following algorithm in which some of the entries of Ŵ that are
equal to ε are replaced by M or by 	M :

Input: m, W , Ŵ , M

for i = 1, 2, . . . ,m− 1 do

for j = i+ 1, 2, . . . ,m do

if wTi ⊗ wj = ε then

ŵij ←M

ŵji ← (	M)⊗ ŵii ⊗ ŵjj
end if

end for

end for

Output: Ŵ

Now we prove that this algorithm results in

ŵTi ⊗ ŵj = wTi ⊗ wj if |wTi ⊗ wj |⊕ 6= ε , (D.8)

ŵTi ⊗ ŵj = M• if |wTi ⊗ wj |⊕ = ε . (D.9)

First we prove (D.8).

Assume that wTi ⊗ wj is finite. Later on we shall prove that only infinite

entries of Ŵ are replaced by M or by 	M and that the finite entries of Ŵ
do not change if we execute the algorithm given above. As a consequence,
we have

ŵTi ⊗ ŵj =
⊕

wki 6=ε and wkj 6=ε

ŵki ⊗ ŵkj ⊕
⊕

wki=ε or wkj=ε

ŵki ⊗ ŵkj

=
⊕

wki 6=ε and wkj 6=ε

wki ⊗ wkj ⊕
⊕

wki=ε or wkj=ε

ŵki ⊗ ŵkj

= wTi ⊗ wj ⊕ qij (D.10)

where qij =
⊕

wki=ε or wkj=ε

ŵki ⊗ ŵkj . Since

|ŵki|⊕ 6 M and |ŵkj |⊕ 6 0 if wki = ε ,

|ŵki|⊕ 6 0 and |ŵkj |⊕ 6 M if wkj = ε ,
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we have

|qij |⊕ =
⊕

wki=ε or wkj=ε

|ŵki ⊗ ŵkj |⊕ (by Proposition 2.3.5)

=
⊕

wki=ε or wkj=ε

|ŵki|⊕ ⊗ |ŵkj |⊕ (by Proposition 2.3.5)

6 M

< |wTi ⊗ wj |⊕ .

If we combine this with (D.10), we obtain ŵTi ⊗ŵj = wTi ⊗wj . So the values
of the finite max-algebraic inner products do not change.

Now we prove (D.9).

Assume that wTi ⊗ wj = ε. Then we have wsi ⊗ wsj = ε for s = 1, 2, . . . ,m
or equivalently

wsi = ε or wsj = ε for s = 1, 2, . . . ,m . (D.11)

Since |wii|⊕ and |wjj |⊕ are equal to 0, this implies that both wij and wji
are equal to ε.
It is possible that some of the infinite components of ŵi and ŵj have already
been replaced by M or 	M . However, ŵij and ŵji are still equal to ε since
each ordered pair of indices (i, j) is encountered only once in the algorithm.
So we only replace infinite entries of Ŵ by M or 	M if we execute the
algorithm.
In the algorithm ŵij is replaced by M and ŵji is replaced by (	M)⊗ ŵii⊗
ŵjj . Hence,

|ŵji|⊕ = |(	M)⊗ ŵii ⊗ ŵjj |⊕ = M ⊗ |ŵii|⊕ ⊗ |ŵjj |⊕ = M ⊗ 0⊗ 0 = M

since |a⊗ b|
⊕

= |a|
⊕
⊗ |b|

⊕
for all a, b ∈ S by Proposition 2.3.5.

Since M , ŵii and ŵjj are signed, ŵji is also signed. So either ŵji = M or
ŵji = 	M .
Now we have

ŵTi ⊗ ŵj = ŵii ⊗ ŵij ⊕ ŵji ⊗ ŵjj ⊕
m⊕

s=1
s6=i,s6=j

ŵsi ⊗ ŵsj

= ŵii ⊗M ⊕ (	M)⊗ ŵii ⊗ ŵjj ⊗ ŵjj ⊕ tij (D.12)

where tij =

m⊕

s=1
s6=i,s6=j

ŵsi ⊗ ŵsj . By (D.11) we have

wsi = ε and thus |ŵsi|⊕ 6 M or wsj = ε and thus |ŵsj |⊕ 6 M
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for s = 1, 2, . . . ,m. Furthermore, since |wpq|⊕ 6 0 for all p, q by Corol-
lary 7.4.4 and since M < 0, we have |ŵpq|⊕ 6 0 for all p, q. Hence,
|ŵsi ⊗ ŵsj |⊕ 6 M for all s. As a consequence, we have |tij |⊕ 6 M .
Since ŵjj is signed and since |ŵjj |⊕ = 0, we have either ŵjj = 0 or ŵjj = 	0.
Hence, ŵjj ⊗ ŵjj = 0. Therefore, (D.12) results in

ŵTi ⊗ ŵj = M ⊗ ŵii ⊕ (	M)⊗ ŵii ⊕ tij .

Since ŵii is either 0 or 	0 and since |tij |⊕ 6 M , this leads to

ŵTi ⊗ ŵj = M• ⊕ tij = M• .

So now all max-algebraic inner products of two columns of W̃ are finite.

Step 2b: We make the remaining entries of Ŵ that are equal to ε finite by
replacing them by M .

As already explained above this does not change the value of the finite max-
algebraic inner products ŵTi ⊗ ŵj = wTi ⊗wj . Furthermore, since the other
max-algebraic inner products ŵTi ⊗ ŵj are already equal to M•, their value
does not change either. So (D.8) and (D.9) still hold.

If we define Û = Ŵ ⊗ PT , then Û contains the same columns as Ŵ but in
a (possibly) different order. As a consequence, we have

ûTi ⊗ ûi = uTi ⊗ ui = 0 for all i ,

ûTi ⊗ ûj = uTi ⊗ uj ∇ ε for all i, j with i 6= j and |uTi ⊗ uj |⊕ 6= ε ,

ûTi ⊗ ûj = M• ∇ ε for all i, j with i 6= j and |uTi ⊗ uj |⊕ = ε .

So now we have a finite matrix Û that satisfies ÛT ⊗ Û ∇ Em. Furthermore,
condition (D.5) is satisfied since M 6 g. This implies that (D.3) still holds.
Therefore, we now have a max-algebraic SVD of A with finite singular values
and finite left singular vectors.

Step 3: Finally we make the components of the right singular vectors finite.

Using a reasoning that is analogous to the one of Step 2 of this proof we can
transform the right singular vectors vi into right singular vectors v̂i with
finite entries.

This yields a max-algebraic SVD Û ⊗ Σ̂ ⊗ V̂ of A with finite singular values
and finite singular vectors. 2

Note that we cannot use Proposition 4.1.4 to prove Proposition 7.5.1 since even
if all the entries of A are finite, the system of multivariate max-algebraic poly-
nomial equalities and inequalities consisting of (7.34) – (7.35) and (7.45) – (7.55)
still contains equations with right-hand sides that are equal to ε, viz. (7.34)
and (7.35).
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D.4 A Worked Example of the Max-Algebraic
QRD

In this section we compute a max-algebraic QRD of a matrix, first with the
mapping F and the Givens algorithm, and then with the ELCP approach.

Example D.4.1 Let us compute a max-algebraic QRD of

B =

[
2 	0 −1
	3 1• ε

]

using the mapping F . We define B̃ = F(B, ·) where we take all the coefficients
of the exponentials equal to 1:

B̃(s) =

[
e2s −1 e−s

−e3s es 0

]

for all s ∈ R+
0 .

If we use the Givens QR algorithm, we get a path of QR decompositions Q̃R̃
of B̃ with

Q̃(s) =








e−s
√

1 + e−2s

1
√

1 + e−2s

−1
√

1 + e−2s

e−s
√

1 + e−2s








R̃(s) =








e3s
√

1 + e−2s −es
√

1 + e−2s
e−2s

√

1 + e−2s

0 0
e−s

√

1 + e−2s








for all s ∈ R+
0 . Hence,

Q̃(s) ∼
[
e−s 1
−1 e−s

]

, s→∞

R̃(s) ∼
[
e3s −es e−2s

0 0 e−s

]

, s→∞ .

If we define Q = R(Q̃) and R = R(R̃), we obtain

Q =

[
−1 0
	0 −1

]

and R =

[
3 	1 −2
ε ε −1

]

.

We have

Q⊗R =

[
2 	0 −1
	3 1 (−2)

•

]

∇ B
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QT ⊗Q =

[
0 (−1)

•

(−1)
•

0

]

∇ E2

and ‖R‖
⊕

= 3 = ‖B‖
⊕
.

Note that Q⊗QT = QT ⊗Q∇E2 and det⊕Q = 0 ∇/ ε (cf. Section D.5). 2

Example D.4.2 Now we use the ELCP technique to compute max-algebraic
QRDs of the matrix B of the previous example.
To reduce the number of variables and equations we shall only compute nor-
malized max-algebraic QRDs of B: we require that the diagonal entries of Q
belong to S⊕. Afterwards we shall reconstruct the set of all the max-algebraic
QRDs of B from the set of the normalized max-algebraic QRDs of B.
We introduce a matrix T ∈ R2×3

ε such that T = B⊕ ⊕ Q⊕⊗R	 ⊕ Q	⊗R⊕ and

a symmetric matrix P ∈ R2×2
ε such that P = (Q⊕)T ⊗Q⊕ ⊕ (Q	)T ⊗Q	. Note

that p11 = p22 = 0 since we also have P = E2 ⊕ (Q⊕)T ⊗Q	 ⊕ (Q	)T ⊗Q⊕.
Just like in Example 7.5.5 we apply the technique of Remark 7.5.3 and we
introduce new variables q�

12, q
�

12, q
�

21, q
�

21 and r�

ik, r
�

ik for i = 1, 2 and k = 1, 2, 3
such that

qij = q�

ij 	 q�

ij and q�

ij ⊗ q�

ij 6 −ξ for all i, j with i 6= j ,

rik = r�

ik 	 r�

ik and r�

ik ⊗ r�

ik 6 −ξ for all i, k ,

where ξ is a large positive number. All the variables are put in one large column
vector x:

x =
[
q11 q�

12 q�

21 q22 q�

12 q�

21 r�

11 r�

12 r�

13 r�

22 r�

23

r�

11 r�

12 r�

13 r�

22 r�

23 t11 t12 t13 t21 t22 t23 p12

]T
.

Since B32 is equal to ε, we have to use the procedure given in Remark 7.5.4
and see how the set of the normalized max-algebraic QRDs of the matrix

B(ξ) =

[
2 	0 −1
	3 1• (−ξ)•

]

evolves as ξ goes to ∞.
If we use the ELCP algorithm of Section 3.4 to compute the solution set of the
corresponding ELCP for some values of ξ that are greater than e.g. 1000, then
we observe that the components of the finite points depend affinely on ξ, that
there are no central generators, and that the extreme generators and the pairs
of maximal cross-complementary subsets are the same for all the values of ξ.
For any ξ > 1000, the generators and the finite points are given by Table D.1
and the pairs of maximal cross-complementary subsets are given by Table D.2.
Since the q�

21 component of all the finite points tends to ε as ξ tends to ∞,
xe

1 becomes redundant if ξ goes to ∞. This also holds for xe
2, x

e
5, x

e
7 and xe

9.
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X ext(ξ) X fin(ξ)

xe
1 xe

2 xe
3 xe

4 xe
5 xe

6 xe
7 xe

8 xe
9 xf

1(ξ) xf
2(ξ) xf

3(ξ)

q11 0 0 0 0 0 0 0 0 0 −1 −1 −1

q�

12 0 0 0 0 0 0 0 0 0 0 0 0

q�

21 −1 0 0 0 0 0 0 0 0 −ξ −ξ −ξ
q22 0 0 0 0 0 0 0 0 0 −1 −1 −1

q�

12 0 −1 0 0 0 0 0 0 0 −ξ −ξ −ξ
q�

21 0 0 0 0 0 0 0 0 0 0 0 0

r�

11 0 0 0 0 0 0 0 0 0 3 3 3

r�

12 0 0 −1 0 0 0 0 0 0 1 −ξ−1 −ξ−1

r�

13 0 0 0 0 0 0 0 0 0 −2 −2 −2

r�

22 0 0 0 −1 0 0 0 0 0 −ξ 0 −ξ
r�

23 0 0 0 0 0 0 0 0 0 −1 −1 −1

r�

11 0 0 0 0 −1 0 0 0 0 −ξ−3 −ξ−3 −ξ−3

r�

12 0 0 0 0 0 −1 0 0 0 −ξ−1 1 1

r�

13 0 0 0 0 0 0 −1 0 0 −ξ+2 −ξ+2 −ξ+2

r�

22 0 0 0 0 0 0 0 −1 0 0 −ξ 0

r�

23 0 0 0 0 0 0 0 0 −1 −ξ+1 −ξ+1 −ξ+1

t11 0 0 0 0 0 0 0 0 0 2 2 2

t12 0 0 0 0 0 0 0 0 0 0 0 0

t13 0 0 0 0 0 0 0 0 0 −1 −1 −1

t21 0 0 0 0 0 0 0 0 0 3 3 3

t22 0 0 0 0 0 0 0 0 0 1 1 1

t23 0 0 0 0 0 0 0 0 0 −2 −2 −2

p12 0 0 0 0 0 0 0 0 0 −1 −1 −1

Table D.1: The generators and the finite points of the ELCP of Example D.4.2
for ξ > 1000.

s X ext
s (ξ) X fin

s (ξ)

1 {xe
1, x

e
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
7, x

e
9} {xf

1(ξ), x
f
3(ξ)}

2 {xe
1, x

e
2, x

e
3, x

e
4, x

e
5, x

e
7, x

e
8, x

e
9} {xf

2(ξ), x
f
3(ξ)}

Table D.2: The pairs of maximal cross-complementary subsets of the sets
X ext(ξ) and X fin(ξ) of Example D.4.2 for ξ > 1000.
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Furthermore, we may remove xe
4 from the set X ext

1 and xe
3 from the set X ext

2 if
ξ =∞. So if we define x̃e

1 = xe
3, x̃

e
2 = xe

4, x̃
e
3 = xe

6, x̃
e
4 = xe

8, and x̃f
i = lim

ξ→∞
xf
i(ξ)

for i = 1, 2, 3, then the set of all the normalized QRDs of B is described by the
generators and the “finite” points of Table D.3 and the set

Λ̃ =

{(

{x̃e
1, x̃

e
3}, {x̃f

1, x̃
f
3}
)

,
(

{x̃e
2, x̃

e
4}, {x̃f

2, x̃
f
3}
)}

of ordered pairs of maximal cross-complementary subsets of X̃ ext and X̃ fin.
Note that we have q�

12 ⊗ q�

12 = ε, q�

21 ⊗ q�

21 = ε and r�

ij ⊗ r�

ij = ε for all i, j if
ξ =∞.
The “finite” point x̃f

1 corresponds to

Q1 =

[
−1 0
	0 −1

]

and R1 =

[
3 1 −2
ε 	0 −1

]

. (D.13)

We have

Q1 ⊗R1 =

[
2 0• −1
	3 	1 (−2)

•

]

∇ B

QT1 ⊗Q1 =

[
0 (−1)

•

(−1)
•

0

]

∇ E2

and ‖R1‖⊕ = 3 = ‖B‖
⊕
.

Since x̃e
1 and x̃f

1 are cross-complementary, we may replace (R1)12 by any ρ ∈ R

with ρ 6 1 or by ε.
All the other max-algebraic QRDs of B can be obtained from the normalized
max-algebraic QRDs of B by replacing the first column Q.,1 of the Q matrix
by 	Q.,1 and the first row R1,. of the R matrix by 	R1,., or by replacing Q.,2
by 	Q.,2 and R2,. by 	R2,., or by a combination of these replacements.
If Q2 ⊗R2 and Q3 ⊗R3 are the max-algebraic QRDs of B that correspond to
respectively x̃f

2 and x̃f
3, then the result of Example D.4.1 corresponds to the

max-algebraic QRD of B obtained by setting (R2)22 = ε or (R3)22 = ε. 2

D.5 Extensions of the Max-Algebraic SVD

In this section we propose possible extensions of the definition of the max-
algebraic SVD.
If U ∈ Rm×n then we have UTU = Im if and only if UUT = Im. However, in

the symmetrized max-plus algebra UT ⊗ U ∇ Em does not always imply that
U ⊗ UT ∇ Em as is shown by the following example:

Example D.5.1 Consider

U =







0 0 −1 −1
−1 −1 	0 	0
	0 0 ε −1
ε ε 	0 0







.
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X̃ ext X̃ fin

x̃e
1 x̃e

2 x̃e
3 x̃e

4 x̃f
1 x̃f

2 x̃f
3

q11 0 0 0 0 −1 −1 −1

q�

12 0 0 0 0 0 0 0

q�

21 0 0 0 0 ε ε ε

q22 0 0 0 0 −1 −1 −1

q�

12 0 0 0 0 ε ε ε

q�

21 0 0 0 0 0 0 0

r�

11 0 0 0 0 3 3 3

r�

12 −1 0 0 0 1 ε ε

r�

13 0 0 0 0 −2 −2 −2

r�

22 0 −1 0 0 ε 0 ε

r�

23 0 0 0 0 −1 −1 −1

r�

11 0 0 0 0 ε ε ε

r�

12 0 0 −1 0 ε 1 1

r�

13 0 0 0 0 ε ε ε

r�

22 0 0 0 −1 0 ε 0

r�

23 0 0 0 0 ε ε ε

t11 0 0 0 0 2 2 2

t12 0 0 0 0 0 0 0

t13 0 0 0 0 −1 −1 −1

t21 0 0 0 0 3 3 3

t22 0 0 0 0 1 1 1

t23 0 0 0 0 −2 −2 −2

p12 0 0 0 0 −1 −1 −1

Table D.3: The generators and the “finite” points of the ELCP of Exam-
ple D.4.2 for ξ =∞.

We have

UT ⊗ U =







0 0• (−1)
•

(−1)
•

0• 0 (−1)
•

(−1)
•

(−1)
•

(−1)
•

0 0•

(−1)
•

(−1)
•

0• 0






∇ E4 ,
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but

U ⊗ UT =







0 (−1)
•

0• (−1)
•

(−1)
•

0 (−1)
•

0•

0• (−1)
•

0 −1
(−1)

•
0• −1 0






∇/ E4

since (U ⊗ UT )34 = (U ⊗ UT )43 = −1 ∇/ ε. 2

In the proof of the existence theorem of the max-algebraic SVD we have seen
that for every matrix A ∈ Sm×n (with finite entries) there is at least one
max-algebraic SVD that corresponds to a path of approximate SVDs Ũ Σ̃Ṽ T

of Ã = F(A, ·) on some interval [L,∞). So if s > L then Ũ(s) satisfies both

ŨT (s) Ũ(s) = Im and Ũ(s) ŨT (s) = Im, and Ṽ (s) satisfies both Ṽ T (s) Ṽ (s) =

In and Ṽ (s) Ṽ T (s) = In. Therefore, we could add two extra conditions to the
definition of the max-algebraic SVD: U ⊗ UT ∇ Em and V ⊗ V T ∇ En.

Furthermore, the left singular vectors of the path of approximate SVDs
Ũ Σ̃Ṽ T will be linearly independent in every point of [L,∞) since ŨT (s) Ũ(s) =
Im for every s > L. The right singular vectors will also be linearly independent.
However, in the symmetrized max-plus algebra the condition UT ⊗ U ∇ Em
does not always guarantee that the columns of U are max-linearly independent
— even if the entries U are signed — as is shown by the following example:

Example D.5.2 Consider

U =





0 0 0
0 	0 0
0 0 	0



 .

We have

UT ⊗ U = U ⊗ UT =





0 0• 0•

0• 0 0•

0• 0• 0



 ∇ E3 .

Furthermore, det⊕ U = 0•. So by Theorem 2.3.15 there exists a signed solution
of α1⊗u1 ⊕ α2⊗u2 ⊕ α3⊗u3∇ε3×1 (If we use the algorithm of [54] to solve
this system of homogeneous max-linear balances, we obtain α1 = 0, α2 = 	0
and α3 = 	0). This means that the vectors u1, u2 and u3 are max-linearly
dependent (cf. Definition 2.3.16). 2

If we want the left singular vectors to be max-linearly independent and if we
also want the right singular vectors to be max-linearly independent, we should
have det⊕ U ∇/ ε and det⊕ V ∇/ ε by Theorem 2.3.15. So we could also add
these conditions to the definition of the max-algebraic SVD. Note that these
conditions also imply that the rows of U and V are max-linearly independent
since det⊕ U = det⊕ U

T . This leads to:
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Proposition D.5.3 (The extended max-algebraic SVD) Let A ∈ Sm×n

and let r = min(m,n). Then there exist a max-algebraic diagonal matrix Σ ∈
Rm×n
ε and matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that A ∇ U⊗Σ⊗V T

with UT ⊗ U ∇ Em, U ⊗ UT ∇ Em, V T ⊗ V ∇ En, V ⊗ V T ∇ En; where the
rows and the columns of U and V are max-linearly independent or equivalently
det⊕ U ∇/ ε and det⊕ V ∇/ ε; and with ‖A‖

⊕
> σ1 > σ2 > . . . > σr, where

σi = (Σ)ii for all i.
Every decomposition A ∇ U ⊗ Σ ⊗ V T that satisfies all the conditions given
above is called an extended max-algebraic SVD of A.

It is obvious that we can also add similar conditions to the definition of the
max-algebraic QRD. This leads to:

Proposition D.5.4 (The extended max-algebraic QRD) If A ∈ Sm×n

then there exist a matrix Q ∈ (S∨)m×m and a max-algebraic upper triangular
matrix R ∈ (S∨)m×n such that A∇Q⊗R with QT ⊗Q ∇ Em, Q⊗QT ∇ Em,
det⊕Q ∇/ ε and ‖R‖

⊕
6 ‖A‖

⊕
.

Every decomposition A∇Q ⊗ R that satisfies all the conditions given above is
called an extended max-algebraic QRD of A.

Note that the decompositions that have been computed in Examples 7.3.9
and D.4.1 satisfy all the conditions of respectively Proposition D.5.3 and Propo-
sition D.5.4. Hence, the max-algebraic SVD of Example 7.3.9 is also an ex-
tended max-algebraic SVD and the max-algebraic QRD of Example D.4.1 is
also an extended max-algebraic QRD.

Let us now show that the extended max-algebraic SVD and the extended max-
algebraic QRD also result in a system of multivariate max-algebraic polynomial
equalities and inequalities.
If we use a reasoning similar to the one made for UT ⊗ U ∇ Em, then the
conditions

U ⊗ UT ∇ Em (D.14)

V ⊗ V T ∇ En (D.15)

also yield multivariate max-algebraic polynomial equalities that could be added
to the system (7.34) – (7.35), (7.45) – (7.55).
The conditions det⊕ U ∇/ ε and det⊕ V ∇/ ε can be rewritten as

(det⊕ U)
⊕ ⊗ (det⊕ U)

	
= ε (D.16)

(det⊕ V )
⊕ ⊗ (det⊕ V )

	
= ε (D.17)

where

(det⊕ U)
⊕

=
⊕

ϕ∪ψ∈Pn,even

domϕ∩domψ=∅, # domψ is even

⊗

i∈domϕ

u⊕

iϕ(i) ⊗
⊗

j∈domψ

u	

jψ(j) ⊕
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⊕

ϕ∪ψ∈Pn,odd

domϕ∩domψ=∅, # domψ is odd

⊗

i∈domϕ

u⊕

iϕ(i) ⊗
⊗

j∈domψ

u	

jψ(j)

and

(det⊕ U)
	

=
⊕

ϕ∪ψ∈Pn,even

domϕ∩domψ=∅, # domψ is odd

⊗

i∈domϕ

u⊕

iϕ(i) ⊗
⊗

j∈domψ

u	

jψ(j) ⊕

⊕

ϕ∪ψ∈Pn,odd

domϕ∩domψ=∅, # domψ is even

⊗

i∈domϕ

u⊕

iϕ(i) ⊗
⊗

j∈domψ

u	

jψ(j) .

Analogous expressions exist for (det⊕ V )⊕ and (det⊕ V )	. So (D.16) and (D.17)
can be considered as multivariate max-algebraic polynomial equalities. If we
also add these constraints to the system (7.34) – (7.35), (7.45) – (7.55), we still
have a system of multivariate max-algebraic polynomial equalities and inequal-
ities.

If the matrix A has finite entries, we can use a reasoning that is analogous
to the one of the proof of Proposition 7.5.1 to show that there exists at least
one extended max-algebraic SVD U ⊗ Σ⊗ V T of A with finite singular values
and finite singular vectors that also satisfies (D.14) and (D.15).
As a direct consequence of (D.7) the max-algebraic determinant of the matrix
U of the proof of Proposition 7.5.1 satisfies |det⊕ U |⊕ = 0. Since M < 0 and
since the entries of U are less than or equal to 0 in max-absolute value, the
value of det⊕ U will not change if we replace the infinite entries of U by M or
by 	M . This also holds for V . So we can still use the procedure of the proof of
Proposition 7.5.1 to obtain an extended max-algebraic SVD with finite singular
values and finite singular vectors for a matrix with finite entries.
This means that in theory we can use the ELCP approach to compute all the
extended max-algebraic SVDs of a given matrix. However, we have to point out
that the conditions (D.16) and (D.17) would yield such a large number of extra
inequalities that in practice it will be impossible to solve the resulting ELCP
in a reasonable amount of CPU time with the ELCP algorithm of Section 3.4.

Using a similar reasoning as for the extended max-algebraic SVD it can
be shown that in theory we can still use the ELCP approach to solve the sys-
tem of multivariate max-algebraic polynomial equalities and inequalities that
corresponds to the extended max-algebraic QRDs of a given matrix.





Appendix E

An Informal Introduction
to the Symmetrized
Max-Plus Algebra

In this appendix we give an informal and intuitive introduction to the sym-
metrized max-plus algebra. We also give the solution set of some elementary
balances and we present some extra worked examples that illustrate the proper-
ties of the max-algebraic minus operator, the balance operator and the balance
relation.

E.1 The Symmetrized Max-Plus Algebra

In contrast to linear algebra, there exist no inverse elements with respect to ⊕
in Rmax. Consider e.g. the following equation:

x⊕ 3 = 2 (E.1)

or equivalently

max (x, 3) = 2 .

Clearly, this equation has no solutions in Rε.
Therefore, we now introduce the symmetrized max-plus algebra (Note that
a formal introduction to the symmetrized max-plus algebra can be found in
Section 2.3).

First we define two new elements for every x ∈ Rε: 	x and x•. This gives rise
to three different sets of elements:

• S⊕ = Rε: the set of the max-positive or max-zero numbers,

307
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• S	 = {	x |x ∈ Rε}: the set of the max-negative or max-zero numbers,

• S• = {x• |x ∈ Rε}: the set of the balanced numbers.

This yields the following extension of Rε:

S = S
⊕ ∪ S

	 ∪ S• .

We have ε = 	ε = ε•. Hence, S⊕ ∩ S	 ∩ S• = {ε}. The elements of S⊕ ∪ S	

are called signed.
The ⊕ and the ⊗ operation can be extended to S. The resulting structure
Smax = (S,⊕,⊗) is called the symmetrized max-plus algebra. The symmetrized
max-plus algebra is a dioid.
If x, y ∈ Rε then we have:

x⊕ (	y) = x if x > y , (E.2)

x⊕ (	y) = 	y if x < y , (E.3)

x⊕ (	x) = x• . (E.4)

Furthermore, for any a, b ∈ S we have

a• = (	a)• = (a•)
•

(E.5)

(	a)⊗ (	b) = a⊗ b (E.6)

a⊗ b• = (a⊗ b)• (E.7)

	(	a) = a (E.8)

	(a⊕ b) = (	a)⊕ (	b) (E.9)

	(a⊗ b) = (	a)⊗ b . (E.10)

The last three properties allow us to write a 	 b instead of a ⊕ (	b). Note
that the 	 operator has many properties that are similar to properties of the
− operator from conventional algebra.
If we have to evaluate max-algebraic sums that contain balanced numbers, we
rewrite the balanced numbers as follows:

a• = a	 a (E.11)

and then we apply the properties of ⊕ and the rules (E.2) – (E.4).

Let us illustrate the rules given above with some examples.
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Example E.1.1 We have

	0⊕ 8	 3• = 	0⊕ 8	 (3	 3) (by (E.11))

= 	0⊕ 8	 3⊕ (	(	3)) (by (E.9))

= 	0⊕ 8	 3⊕ 3 (by (E.8))

= 8⊕ 3	 0	 3 (since ⊕ is commutative in S)

= (8⊕ 3)	 (0⊕ 3) (by (E.9))

= 8	 3 (by the definition of ⊕)

= 8 (by (E.2)) . 2

Example E.1.2 We have

(	1)⊗ (4⊕ 7	 9) = (	1)⊗ (7	 9) (by the definition of ⊕)

= (	1)⊗ (	9) (by (E.3))

= 1⊗ 9 (by (E.6))

= 10 (by the definition of ⊗) . 2

Let a ∈ S. The max-positive part a⊕ and the max-negative part a	 of a are
defined as follows:

• if a ∈ S⊕ then a⊕ = a and a	 = ε ,

• if a ∈ S	 then a⊕ = ε and a	 = 	a ,

• if a ∈ S• then there exists a number b ∈ Rε such that a = b• and then
a⊕ = a	 = b.

So we have a = a⊕ 	 a	 and a⊕, a	 ∈ Rε. The max-absolute value of a ∈ S is
defined by |a|

⊕
= a⊕ ⊕ a	.

Example E.1.3 Let a = 	4. Since a ∈ S	, we have a⊕ = ε, a	 = 4 and
|a|

⊕
= 4.

If b = 2• then b ∈ S•. Furthermore, b⊕ = 2, b	 = 2 and |b|
⊕

= 2. 2

Since 	 is not cancellative — i.e. in general a 	 a 6= ε, the zero element for
⊕ — we use balances (∇) instead of equalities in the symmetrized max-plus
algebra. The balance relation is defined as follows:

If a, b ∈ S then we have a∇ b if and only if a⊕ ⊕ b	 = a	 ⊕ b⊕ .

Note that a	 a∇ ε for all a ∈ S.

Example E.1.4 We have 1⊕ = 1, 1	 = ε, (1•)⊕ = (1•)	 = 1. This implies
that 1⊕ ⊕ (1•)	 = 1⊕ 1 = 1 = ε⊕ 1 = 1	 ⊕ (1•)⊕. Hence, 1∇1•.
We have 3∇/ 	0 since 3⊕ ⊕ (	0)	 = 3⊕ 0 = 3 6= ε = ε⊕ ε = 3	 ⊕ (	0)⊕. 2
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For balances we have the following basic rules:

Rule 1: An element with an 	 sign can be transferred to the other side of a
balance as follows:

∀a, b, c ∈ S : a	 c∇ b ⇔ a∇ b⊕ c .

Rule 2: If both sides of a balance are signed then we may replace the balance
by an equality:

∀a, b ∈ S
⊕ ∪ S

	 : a∇ b ⇔ a = b .

In order to illustrate the concepts and the rules that have been introduced
above we shall now check whether the numbers 	3, 2• and 4• are solutions of
the balance

x⊕ 3 ∇ 2 (E.12)

that corresponds to equation (E.1) (with the equality replaced by a balance).

• We have

	3⊕ 3 ∇ 2 ⇔ 3 ∇ 2⊕ 3 (by Rule 1)

⇔ 3 ∇ 3 (by the definition of ⊕)

⇔ 3 = 3 (by Rule 2) ,

and since the last expression holds, 	3 is a solution of the balance (E.12).

• Since

2• ⊕ 3 ∇ 2 ⇔ 2	 2⊕ 3 ∇ 2 (by (E.11))

⇔ 2⊕ 3 ∇ 2⊕ 2 (by Rule 1)

⇔ 3 ∇ 2 (by the definition of ⊕)

⇔ 3 = 2 (by Rule 2)

and since 3 6= 2, 2• is not a solution of (E.12).

• Since

4• ⊕ 3 ∇ 2 ⇔ 4	 4⊕ 3 ∇ 2 (by (E.11))

⇔ 4⊕ 3 ∇ 2⊕ 4 (by Rule 1)

⇔ 4 ∇ 4 (by the definition of ⊕)

⇔ 4 = 4 (by Rule 2) ,

4• is also a solution of (E.12).
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E.2 Some Elementary Balances

Now we give the solution set of some basic balances (with a ∈ R and x ∈ S):

• Consider the balance x∇a. The solution set of this balance is given by

{a} ∪ {b• | b ∈ Rε and b > a} .

• Now consider the balance x∇	a. The solution set of this balance is
given by

{	a} ∪ {b• | b ∈ Rε and b > a} .

• The solution set of the balance x∇a• is given by

{b | b ∈ Rε and b 6 a} ∪ {	c | c ∈ Rε and c 6 a} ∪ {d• | d ∈ Rε} .

• The solution set of x∇ ε is given by

{ε} ∪ {b• | b ∈ Rε} .

Now we can solve the balance (E.12). We have

x⊕ 3 ∇ 2 ⇔ x ∇ 2	 3 (by Rule 1)

⇔ x ∇ 	3 (by (E.3)) .

Hence, the solution set of (E.12) is given by

S = {	3} ∪ {b• | b ∈ Rε and b > 3} .

Note that 	3, 4• ∈ S and 2• 6∈ S, which corresponds to what we have found
above.

E.3 Worked Examples

Now we present some extra worked examples in which we use the results of the
previous section to solve balances.

• The solution set of the balance x ∇ 2 is given by

{2} ∪ {b• | b ∈ Rε and b > 2} .

Therefore, we should have 3• ∇ 2. Let us verify this. Since

3• ∇ 2 ⇔ 3	 3 ∇ 2

⇔ 3 ∇ 2⊕ 3



312 Chapter E. An Informal Introduction to Smax

⇔ 3 ∇ 3

⇔ 3 = 3 ,

we really have 3• ∇ 2.
Note that we could also have verified this using the definition of the
balance relation.

• Consider the balance x ⊕ 4 ∇ 	3. The number x will be a solution of
this balance if and only if

x ∇ 	3	 4 ⇔ x ∇ 	(3⊕ 4)

⇔ x ∇ 	4 .

So x is a solution of the balance if x = 	4 or if x = b• with b ∈ Rε and
b > 4.

• We have

	x⊕ 4• ∇ 5 ⇔ 4	 4	 5 ∇ x

⇔ x ∇ 4	 (4⊕ 5)

⇔ x ∇ 4	 5

⇔ x ∇ 	5 .

So the solution set of the balance 	x⊕ 4• ∇ 5 is given by

{	5} ∪ {b• | b ∈ Rε and b > 5} .

• Consider the balance x⊕ 4	 3 ∇ 6• . The number x is a solution of this
balance if and only if

x ∇ 6	 6	 4⊕ 3 ⇔ x ∇ (6⊕ 3)	 (6⊕ 4)

⇔ x ∇ 6	 6

⇔ x ∇ 6• .

So the solution set of the balance x⊕ 4	 3 ∇ 6• is given by

{b | b ∈ Rε and b 6 6} ∪ {	c | c ∈ Rε and c 6 6} ∪ {d• | d ∈ Rε} .

As an exercise, the reader could now try to verify that the following expressions
hold:

• 4 ∇ 6• ,

• 1• ∇ ε ,

• 3 ∇/ 2• 	 0 ,

• 9	 9⊕ 1 ∇ 5	 8 .
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Conventional algebra Max-plus algebra

+ ↔ ⊕
× ↔ ⊗
0 ↔ ε

1 ↔ 0

Conventional algebra Symmetrized max-plus algebra

− ↔ 	
= ↔ ∇
0 ↔ a• (a ∈ Rε)

Table E.1: Some analogies between conventional algebra and the (symmetrized)
max-plus algebra.

E.4 Some Analogies between Conventional Al-
gebra and the (Symmetrized) Max-Plus Al-
gebra

In Table E.1 we have listed some of the analogies between conventional algebra
and the (symmetrized) max-plus algebra. Let us show by some examples how
this table can be used.
The identity element for + in conventional algebra is 0. From the information
given in the table we can deduce that this corresponds to the fact that the
identity element for ⊕ in the max-plus algebra is ε.
Let us now consider a more complicated example. In conventional linear algebra
the determinant of a matrix A ∈ Rn×n is defined by

detA =
∑

σ∈Pn

sgn (σ)

n∏

i=1

aiσ(i)

with

sgn (σ) =

{

1 if σ is even,

−1 if σ is odd.

If we translate all the operations that appear in these formulas according to the
key given in Table E.1, we obtain the following definition for the max-algebraic
determinant of a matrix A ∈ Sn×n :

det⊕A =
⊕

σ∈Pn

sgn⊕ (σ)⊗
n⊗

i=1

aiσ(i)



314 Chapter E. An Informal Introduction to Smax

with

sgn⊕ (σ) =

{

0 if σ is even,

	0 if σ is odd,

(cf. Definitions 2.3.11 and 2.3.12).
Note however that in the symmetrized max-plus algebra we (often) get balances
instead of equalities. In conventional algebra we have e.g. a−a = 0 for all a ∈ R

whereas in the symmetrized max-plus algebra we have a	 a ∇ ε for all a ∈ S.



Bibliography

[1] F.A. Al-Khayyal, “An implicit enumeration procedure for the general
linear complementarity problem,” Mathematical Programming Study,
vol. 31, pp. 1–20, Sept. 1987.

[2] F. Baccelli, G. Cohen, and B. Gaujal, “Recursive equations and basic
properties of timed Petri nets,” Discrete Event Dynamic Systems: Theory
and Applications, vol. 1, no. 4, pp. 415–439, June 1992.

[3] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, Synchronization
and Linearity. New York: John Wiley & Sons, 1992.

[4] Z. Bai, “Note on the quadratic convergence of Kogbetliantz’s algorithm
for computing the singular value decomposition,” Linear Algebra and Its
Applications, vol. 104, pp. 131–140, 1988.

[5] L. Ben-Naoum, R. Boel, L. Bongaerts, B. De Schutter, Y. Peng, P. Val-
ckenaers, J. Vandewalle, and V. Wertz, “Methodologies for discrete event
dynamic systems: A survey,” Journal A, vol. 36, no. 4, pp. 3–14, Dec.
1995.

[6] G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra. New York:
The Macmillan Company, 3rd ed., 1965.

[7] J.G. Braker, “Max-algebra modelling and analysis of time-table depen-
dent transportation networks,” in Proceedings of the 1st European Control
Conference, Grenoble, France, pp. 1831–1836, July 1991.

[8] J.G. Braker, Algorithms and Applications in Timed Discrete Event Sys-
tems. PhD thesis, Department of Technical Mathematics and Informatics,
Delft University of Technology, Delft, The Netherlands, Dec. 1993.

[9] J.G. Braker, “An extended algorithm for performance evaluation of timed
event graphs,” in Proceedings of the 2nd European Control Conference,
Groningen, The Netherlands, pp. 524–529, June 1993.

[10] J.G. Braker and G.J. Olsder, “The power algorithm in max algebra,”
Linear Algebra and Its Applications, vol. 182, pp. 67–89, 1993.

315



316 Bibliography

[11] D.M. Burton, Abstract Algebra. Dubuque, Iowa: Wm.C. Brown Publish-
ers, 1988.

[12] R. Carraghan and P.M. Pardalos, “An exact algorithm for the maximum
clique problem,” Operations Research Letters, vol. 9, no. 6, pp. 375–382,
Nov. 1990.

[13] C.G. Cassandras, S. Lafortune, and G.J. Olsder, “Introduction to the
modelling, control and optimization of discrete event systems,” in Trends
in Control: A European Perspective (A. Isidori, ed.), pp. 217–291, Berlin,
Germany: Springer-Verlag, 1995.

[14] J.-P. Charlier and P. Van Dooren, “On Kogbetliantz’s SVD algorithm in
the presence of clusters,” Linear Algebra and Its Applications, vol. 95,
pp. 135–160, 1987.

[15] J.-P. Charlier, M. Vanbegin, and P. Van Dooren, “On efficient imple-
mentations of Kogbetliantz’s algorithm for computing the singular value
decomposition,” Numerische Mathematik, vol. 52, pp. 279–300, 1988.

[16] S. Chung, “NP-completeness of the linear complementarity problem,”
Journal of Optimization Theory and Applications, vol. 60, no. 3, pp. 393–
399, Mar. 1989.

[17] G. Cohen, “Dioids and discrete event systems,” in Proceedings of the
11th International Conference on Analysis and Optimization of Systems,
Sophia-Antipolis, France, vol. 199 of Lecture Notes in Control and Infor-
mation Sciences, pp. 223–236, Springer-Verlag, 1994.

[18] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot, “Analyse du comporte-
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[73] O. Güler, “Generalized linear complementarity problems,” Mathematics
of Operations Research, vol. 20, no. 2, pp. 441–448, May 1995.

[74] J. Gunawardena, “Cycle times and fixed points of min-max functions,” in
Proceedings of the 11th International Conference on Analysis and Opti-
mization of Systems, Sophia-Antipolis, France, vol. 199 of Lecture Notes
in Control and Information Sciences, pp. 266–272, Springer-Verlag, 1994.

[75] F. Harary, “A graph theoretic approach to matrix inversion by partition-
ing,” Numerische Mathematik, vol. 4, pp. 128–135, 1962.

[76] V. Hari, “On the quadratic convergence of the serial singular value de-
composition Jacobi methods for triangular matrices,” SIAM Journal on
Scientific and Statistical Computing, vol. 10, no. 6, pp. 1076–1096, Nov.
1989.

[77] V. Hari, “On sharp quadratic convergence bounds for the serial Jacobi
methods,” Numerische Mathematik, vol. 60, no. 3, pp. 375–406, Dec.
1991.
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