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Chapter 1

Introduction

This thesis discusses the formal verification of Max-Plus-Linear (MPL) systems. In this
chapter we introduce MPL systems, verification problems, and an application in commu-
nication networks. We further briefly sketch our approach tosolve these problems, which
will be further elaborated throughout the thesis. The explanation of the organization of the
thesis concludes this chapter.

1.1 Motivation

The seminal work in [22, p. ix] characterizes discrete-event dynamic systems as follows:
discrete-event dynamic systems encompass man-made systems consisting of a finite num-
ber of resources (processors or memories, communication channels, machines) shared by
several users (jobs, packets, manufactured objects), which contribute to the achievement of
a common goal (a parallel computation, the end-to-end transmission of a set of packets, the
assembly of a product in an automated manufacturing line). The dynamics of such systems
has to deal with synchronization and with concurrency. Synchronization requires the avail-
ability of several resources or users at the same time, whereas concurrency appears when
some user must choose among several resources at a particular time instant.

Max-Plus-Linear (MPL) systems are a class of discrete-event dynamic systems [22, 40]
with a continuous state space characterizing the timing of the underlying sequential discrete
events. MPL systems are predisposed to describe the evolution of timed event graphs in
the event domain, under the assumption that timing events are linearly dependent (within
the max-plus algebra) on previous event occurrences and (for nonautonomous systems) on
exogenous schedules. MPL systems have a wide range of applications: they have been
employed in the analysis and scheduling of infrastructure networks, such as communication
and railway systems [68], production and manufacturing lines [106, 112], or biological
systems [28].

Timed event graphs are a class of timed Petri nets where each place has a single up-
stream transition and a single downstream transition [22, Sec. 2.5]. These systems describe
synchronization without concurrency. The dynamics can be represented either as a dater or
as a counter. The dater description uses the max-plus algebra and is called an event-domain
description, i.e. the independent variable denotes an event index and the state variable de-
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2 1 Introduction

notes the time of event occurrences. In the max-plus algebra, the “addition” is defined as
the maximization and the “multiplication” is defined as the usual addition. On the other
hand, the counter description uses the min-plus algebra andis called time-domain descrip-
tion, i.e. the independent variable denotes time and the state variable is a counter of events
occurred up to a certain time. As suggested by the name, in min-plus algebra, the “addition”
and “multiplication” are defined as the minimization and as the usual addition, respectively.
The interested reader is referred to [22, Sec. 5.2] for more details.

Over the past three decades, many fundamental problems for MPL systems have been
studied [38, 45, 46, 50, 64, 74, 90, 104]. Classical dynamical analysis of MPL systems is
grounded on their algebraic features [22]. It allows investigating global system properties
such as its transient or asymptotic behaviors, its periodicregimes, or its ultimate dynamical
behavior [45]. Those system properties can be studied by using the spectral theory of system
matrices in the max-plus algebra. Recently some results have appeared on the geometric
theory for MPL systems introduced in [38], such as the computation of different control on
invariant sets [50, 74] and the feedback controller design [90]. The application of model
predictive control in MPL systems has been studied in [46] and the subsequent line of work.

In this thesis we develop an alternative approach to analysis of MPL systems based on
finite-state abstractions. More precisely we consider the following verification problem.
Given an MPL system and a specification, we determine whetherthe MPL system satisfies
the specification. Solution of the verification problem w.r.t. a class of specifications can
be determined by reachability computations. This motivates us to study reachability of
MPL systems. However specifications can express richer properties and be characterized as
formulae in certain temporal logics or as automata.

Reachability analysis is a fundamental problem in the area of formal methods, systems
theory, and performance and dependability analysis. It is concerned with assessing whether
a certain state of a system is attainable from given initial states of the system. The prob-
lem is particularly interesting and compelling over modelswith continuous components –
either in time or in (state) space [16, 18, 25, 32–34, 44, 63, 69, 76, 79, 80, 86, 94–96]. With
regards to MPL systems, reachability analysis from asingleinitial condition has been inves-
tigated in [38, 58, 61] by leveraging the computation of the reachability matrix, which leads
to a parallel with reachability for discrete-time linear dynamical systems. Furthermore, the
existing literature does not deal with backward reachability analysis. Under the requirement
that the set of initial conditions is expressed as a max-pluspolyhedron [60, 120], forward
reachability analysis can be performed over the max-plus algebra. Similar results hold for
backward reachability analysis of autonomous MPL systems,where in addition the system
matrix has to be max-plus invertible.1 To the best of the author’s knowledge, there are no
direct approaches for solving the backward reachability problem of nonautonomous MPL
systems in the max-plus algebra. In this thesis we extend theforward and backward reach-
ability computations of MPL systems by considering an arbitrary set of initial and final
conditions, respectively. Furthermore in both cases, the system matrices do not have to be
max-plus invertible. We leverage the data structure of Difference-Bound Matrices (DBM)
[51] that is easy to manipulate computationally. A DBM is theintersection of finitely many
half-space representations that are characterized by the difference of two variables.

In order to showcase the effectiveness of the developed theory, we apply our abstrac-

1A matrix is max-plus invertible iff there is a single finite element (not equal to−∞) in each row and in each
column.
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tion techniques for MPL systems to verify some properties ofcommunication systems. The
communication systems of interest are modeled using network calculus. Network calculus
makes use of the min-plus algebra to provide strong performance guarantees for determin-
istic communication systems [85]. The main quantities of interest are backlog and virtual
delay. The backlog is the amount of data that is held inside the system. The virtual de-
lay at timet is the amount of time spent inside the system by the data that has entered at
time t, if the data is served after all the data that has entered before timet has been served.
The main network calculus results deal with bounds on the backlog [85, Th. 1.4.1] and
on the virtual delay [85, Th. 1.4.2]. Both of these quantities are highly relevant in control
implementations: the first one is necessary to guarantee theabsence of packet drop-outs,
whereas the latter can be typically assumed to provide a bound for the delay in the feedback
measurements. In this thesis we apply the abstraction techniques to the switching Min-Plus-
Linear (MiPL) representation of network calculus. A switching MiPL system is a system
that can switch between different modes of operation, wherethe dynamics in each mode are
described by MiPL equations.

Stochastic Max-Plus-Linear (SMPL) systems [67, 100, 105] are MPL systems where the
delays between successive events (in the examples above, the processing or transportation
times) are now characterized by random quantities. In practical applications SMPL systems
are more realistic than simple MPL ones: for instance in a model for a railway network,
train running times depend on driver behavior, on weather conditions, and on passenger
numbers at stations. As such they are arguably more suitablymodeled by random variables
than deterministic ones. Only a few approaches have been developed in the literature to
study the steady-state behavior of SMPL systems, for example employing Lyapunov expo-
nents and asymptotic growth rates [20–22, 57, 62, 92, 111]. The Lyapunov exponent of
SMPL systems under some assumptions has been studied in [111], and later these results
have been extended to approximate computations under othertechnical assumptions in [62,
p. 251]. The application of model predictive control and system identification to SMPL
systems, under given structural assumptions, has been studied in [54, 55]. In this thesis we
investigate the use of finite abstractions to study the finite-horizon probabilistic invariance
problem over SMPL systems. The probabilistic invariance problem amounts to determining
the probability of satisfying the invariance property for each allowable initial condition. We
tailor the techniques in [3, 52] to determine the approximate solution of the problem.

1.2 Research Goals and Original Contributions

The broad aim of this PhD research is to develop a novel and general framework for the
formal verification of MPL systems and SMPL systems. In the process, we obtain results
in reachability of MPL systems and apply the abstraction techniques to the investigation of
existing network calculus elements.

Formal verification of MPL systems via finite abstractions.We propose an analysis
method based on finite-state abstractions of autonomous andnonautonomous MPL systems.
We seek to synthesize techniques that are computationally agile by employing a novel repre-
sentation of the quantities into play (regions over state and control spaces, as well as model
dynamics). By expressing general dynamical properties as specifications in a modal logic
such as Linear Temporal Logic (LTL), the abstraction allowsfor the formal verification of
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classes of properties by means of model checking.
Reachability computations of MPL systems.We extend the results in the literature

for forward reachability analysis by considering an arbitrary set of initial conditions. Ad-
ditionally for backward reachability analysis, we are ableto handle nonautonomous MPL
systems and state matrices that are not max-plus invertible. We illustrate the application of
reachability computations over safety and transient analysis of MPL systems.

Implementations.Most abstraction and reachability algorithms have been implemented
as a MATLAB software tool, “Verification via biSimulations of MPL models” (VeriSiMPL,
as in “very simple”), which is freely available for downloadat http://www.sourceforge.net/
projects/verisimpl.

Automatic verification of network properties. We focus on the automatic synthesis of
bounds on the virtual delay and on the backlog of a communication network. Although such
properties can already be analyzed using network calculus tools, the virtue of our approach
lies in its completely automated nature, and in opening the door to the automatic verification
of certain communication topologies, e.g. flow aggregates,which network calculus cannot
easily cope with. Furthermore, the use of abstraction approaches similar to those proposed
for the automatic synthesis of control software, enables the simultaneous verification of
control and communication software over more complex properties than those discussed in
this thesis.

Finite abstractions of SMPL systems.We investigate the use of finite abstractions to
study the finite-horizon probabilistic invariance problemover SMPL systems. The tech-
niques are inspired by [3, 52, 100, 105]. The invariant property characterizes the desired
delay of event occurrences w.r.t. a given schedule.

1.3 Overview of the Thesis

This thesis discusses approaches to analysis that are basedon finite-state abstractions of
MPL systems, switching MiPL systems, and SMPL systems. Additionally for MPL sys-
tems, we also discuss an approach based on reachability analysis. This thesis is organized
as follows:

• Chapter 2 introduces the definition of MPL systems and recalls a few of its basic
properties. A number of related models that are going to be used throughout the
thesis are then briefly discussed: Min-Plus-Linear (MiPL) systems, Switching MiPL
systems, Stochastic MPL (SMPL) systems, Piece-wise Affine (PWA) systems, and
Piecewise Switched Affine (PWSA) systems.

• In Chapter 3 the abstraction procedure of autonomous and nonautonomousMPL
systems is discussed. First of all, some preliminary concepts are introduced such
as Difference-Bound Matrices (DBM), transition systems, Linear Temporal Logic
(LTL), and abstractions. The abstraction procedure consists of a partitioning of the
state space and of determining possible transitions between pairs of partition sets.
A partition-refinement procedure is additionally proposedin order to increase the
abstraction precision. The abstraction algorithms are implemented in theVeriSiMPL
tool.

http://www.sourceforge.net/projects/verisimpl
http://www.sourceforge.net/projects/verisimpl
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1. Introduction

2. Models

3. Abstractions of MPL Systems

5. Verification of Network Calculus Elements

4. Reachability of MPL Systems 6. Abstractions of SMPL Systems

7. Conclusions and Future Research

Fig. 1.1: Relational structure of this thesis. Arrows indicate relations of inter-dependence.

• Computational techniques for reachability analysis of MPLsystems are discussed in
Chapter 4. This chapter covers autonomous and nonautonomous MPL systems, se-
quential and “one-shot” computations of reach tubes and sets respectively, as well as
forward and backward reachability analysis. The reachability algorithms are imple-
mented as a part ofVeriSiMPL.

• In Chapter 5 we discuss the verification of specific properties of networkcalculus
elements. The approach is again based on finite-state abstractions and is an exten-
sion and an application of the techniques elaborated in Chapter 3. The properties of
interest for this study are backlog and virtual delay, and extensions are discussed.

• Chapter 6 studies the finite-horizon probabilistic invariance problem over Stochastic
MPL (SMPL) systems. First SMPL systems are formulated as a discrete-time Markov
processes. Then the formal abstraction techniques of [3, 52] are tailored to SMPL
systems.

• Chapter 7 summarizes the results of this thesis and outlines directions for future
research.

1.4 Publications by the Author

Most of the material presented in Chapters 3-6 of this PhD thesis has appeared in interna-
tional conference proceedings, both in the area of systems &control and in that of formal
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verification, or has been published in peer-reviewed journals. In addition to developing
the theory, we have implemented most algorithms in this thesis as a MATLAB toolbox
VeriSiMPL. The connection between each chapter and the publications is as follows

• Chapter 3 is based on [5–8]

• Chapter 4 is based on [9–11]

• Chapter 5 is based on [43] and [42] where the author is one of the supervisors in the
latter reference

• Chapter 6 is based on [12]



Chapter 2

Models

In this chapter we present a brief overview of Max-Plus-Linear (MPL) systems, followed
by a concise description of some related models, such as Min-Plus-Linear (MiPL) systems,
switching MiPL systems, stochastic MPL systems, Piecewise-Affine (PWA) systems, Piece-
wise Switched Affine (PWSA) systems.

2.1 Max-Plus-Linear Systems

In this section we introduce the syntax and semantics in the max-plus algebra, followed by
a discussion on Max-Plus-Linear (MPL) systems and its properties [22]. DefineR, Rε, and
ε respectively as the set of real numbers,R∪{ε}, and−∞. Forα,β ∈ Rε, introduce the two
operations

α⊕β = max{α,β} and α⊗β = α+ β,

where the elementε is considered to be absorbing w.r.t.⊗ [22, Def. 3.4]. Givenβ ∈ R, the
max-algebraic power ofα ∈R is denoted byα⊗β and corresponds toαβ in the conventional
algebra. In this thesis the usual multiplication symbol× is usually omitted, whereas the
max-algebraic multiplication symbol⊗ is written. The rules for the order of evaluation
of the max-algebraic operators correspond to those of conventional algebra: max-algebraic
power has the highest priority, and max-algebraic multiplication has a higher precedence
than max-algebraic addition [22, Sec. 3.1]. The basic max-algebraic operations are extended
to matrices as follows. IfA,B∈ R

m×n
ε ; C∈ R

m×p
ε ; D ∈ R

p×n
ε ; andα ∈ Rε,

[α⊕A](i, j) = α⊕A(i, j),

[A⊕B](i, j) = A(i, j)⊕B(i, j),

[C⊗D](i, j) =
p

M

k=1

C(i,k)⊗D(k, j),

for all i = 1, . . . ,m and j = 1, . . . ,n. The notationA(i, j) represents the entry of matrixA
at i-th row and j-th column. Notice the analogy between⊕, ⊗ and+, × for matrix and
vector operations in the conventional algebra. Givenm∈ N, them-th max-algebraic power
of A∈ R

n×n
ε is denoted byA⊗m and corresponds toA⊗ ·· ·⊗A (m times). Notice thatA⊗0

7
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is ann-dimensional max-plus identity matrix, i.e. the diagonal and nondiagonal elements
are 0 andε, respectively. In this thesis, the following notation is adopted for reasons of
convenience: a vector with each component that equals to 0 (resp.−∞) is also denoted by 0
(resp.ε). Furthermore the state space is taken to beR

n (rather thanRn
ε), which also implies

that the state matrixA has to be row-finite (cf. Definition 2.2).
An autonomous Max-Plus-Linear (MPL) system [22, Rem. 2.75]is defined as:

x(k) = A⊗x(k−1), (2.1)

whereA ∈ R
n×n
ε , x(k− 1) = [x1(k− 1) . . .xn(k− 1)]T ∈ R

n for k ∈ N. We use the bold
typeset for vectors and tuples, whereas the entries are denoted by the normal typeset with
the same name and index. The independent variablek denotes an increasing event index,
whereas the state variablex(k) defines the (continuous) time of occurrence of thek-th event.
Autonomous MPL systems are characterized by deterministicdynamics, namely they are
unaffected by exogenous inputs in the form of control signals or of environmental non-
determinism.

Many classical concepts of system theory are exportable to MPL systems such as state-
space recursive equations, input-output (transfer) functions, feedback loops, eigenvalue,
eigenvector etc. In this thesis, we focus on max-plus eigenvalue and eigenvectors. As
it will be clear later, the existence of max-plus eigenvalueand eigenvectors depends on
irreducibility of the state matrix. The notion of irreducibility can be defined according to
the precedence (or communication) graph of the state matrix.

Definition 2.1 (Precedence Graph [22, Def. 2.8])The precedence graph ofA ∈ R
n×n
ε ,

denoted byG (A), is a weighted directed graph with vertices 1, . . . ,n and an arc( j, i) with
weightA(i, j) for eachA(i, j) 6= ε. 2

Definition 2.2 (Regular (Row-Finite) Matrix [68, Sec. 1.2])A matrix A∈ R
n×n
ε is called

regular (or row-finite) ifA contains at least one element different fromε in each row. 2

Example Consider the following two-dimensional MPL system that models a simple rail-
way network between two cities [68, Sec. 0.1] (xi(k) is the time of thek-th departure at
stationi for i = 1,2):

x(k) =

[

2 5
3 3

]

⊗x(k−1), or equivalently,

[

x1(k)
x2(k)

]

=

[

max{2+x1(k−1),5+x2(k−1)}
max{3+x1(k−1),3+x2(k−1)}

]

.

(2.2)

The precedence graph ofA is shown in Fig. 2.1 (left) andA is a row-finite matrix. 2

The notion of irreducible matrix, to be used shortly, can be given via that of precedence
graph.

Definition 2.3 (Irreducible Matrix [22, Th. 2.14]) A matrix A∈ R
n×n
ε is called irreducible

if its precedence graphG (A) is strongly connected. 2
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Fig. 2.1: The left and right plots represent precedence and critical graph of matrix A for the
autonomous MPL system in(2.2), respectively.

Recall that a directed graph is strongly connected if for anypair of different verticesi, j
of the graph, there exists a path fromi to j [22, p. 37]. From a max-algebraic perspective,
a matrixA ∈ R

n×n
ε is irreducible if the nondiagonal elements of

Ln−1
k=1 A⊗k are finite (not

equal toε), since this condition means that for two arbitrary vertices i and j of G (A) with
i 6= j there exists at least one path (of length 1, 2, . . . orn−1) from j to i.

Example For the preceding example in (2.2), sinceA(1,2) 6= ε 6= A(2,1), the matrixA
is irreducible. Equivalently, notice that the precedence graph in Fig. 2.1 (left) is strongly
connected. 2

In order to investigate the steady-state or ultimate behavior of an autonomous MPL
system, we employ the concept of critical graph, which is constructed from the precedence
graph.

Definition 2.4 (Critical Graph [22, Def. 3.94])For a matrixA∈ R
n×n
ε , the following no-

tions are defined:
A circuit of the precedence graphG (A) is calledcritical if it has maximum average

weight. Thecritical graphG c(A) consists of those nodes and arcs ofG (A) that belong to a
critical circuit ofG (A). The set of nodes in the critical graph is denoted byV c. The weights
are defined as the usual zero [22, p. 143].

Thecyclicityof a strongly connected graph is the greatest common divisorof the lengths
of all its circuits. The cyclicity of a general graph is the least common multiple of the
cyclicities of all its strongly connected subgraphs. The cyclicity of G c(A) equals to the
valuec defined in Proposition 2.1. From now on, we will call it the cyclicity of A. 2

Example The autonomous MPL system in (2.2) admits the critical circuit {1 → 2→ 1},
which coincides with the critical graph (cf. right plot of Fig. 2.1). Since the critical graph is
strongly connected, the max-plus eigenvector is unique [22, Sec. 3.7.2] up to the max-plus
multiplication by a finite scalar. Furthermore the cyclicity of A is 2, as also results from
Proposition 2.1. 2

If A is irreducible, there exists a unique max-plus eigenvalueλ ∈ R [22, Th. 3.23] and
a corresponding eigenspaceE(A) = {x ∈ R

n : A⊗ x = λ⊗ x} [22, Sec. 3.7.2]. From a
graph-theoretical point of view, the max-plus eigenvalue is defined as the maximum cycle
mean of the associated precedence graph [22, Th. 3.23]. Algorithms have been developed
to compute this quantity, e.g. [36, Sec. 4] and [41]. The eigenspaceE(A) is the max-
plus linear combination of thei-th column ofA+

λ , for i ∈ V c [22, Sec. 3.7.1], whereA+
λ =

L∞
k=1((−λ)⊗A)⊗k. Thus the eigenspace is a max-plus cone [60, Def. 2.1], whichwas

introduced in [120]. Proposition 2.1 impliesA+
λ =

Lk0(A)+c−1
k=1 (A− λ)⊗k, which justifies

thatA+
λ can be computed in finite time.
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Proposition 2.1 (Length of the Transient Part [22, Sec. 3.7]) Let A ∈ R
n×n
ε be an irre-

ducible matrix with max-plus eigenvalueλ ∈ R. There existk0,c∈ N such thatA⊗(k+c) =
λ⊗c⊗A⊗k, for all k ≥ k0. The smallestk0 andc verifying the property are defined as the
length of the transient part1 and the cyclicity, respectively. 2

Proposition 2.1 allows to establish the existence of a periodic behavior. Given an initial
conditionx(0) ∈ R

n, there exists a finitek0(x(0)), such thatx(k+ c) = λ⊗c⊗ x(k), for all
k ≥ k0(x(0)). Notice that we can seek a specific length of the transient part k0(x(0)), in
general less conservative than the globalk0 = k0(A), as in Proposition 2.1. Upper bounds
for the length of the transient partk0 and for its computation have been discussed in [65,
Ths. 10 and 13] and more recently in [31].

The complete set of periodic behaviors are encompassed by the eigenspace ofA⊗c,
wherec is the cyclicity ofA. It is formulated asE(A⊗c) = {x ∈ R

n : A⊗c⊗ x = λ⊗c⊗ x}
and contains the eigenspace ofA, i.e.E(A) ⊆ E(A⊗c).

Example In the numerical example (2.2), from Proposition 2.1 we obtain a max-plus eigen-
valueλ = 4, cyclicity c = 2, and a (global) length of the transient partk0 = 2. The specific
length of the transient part forx(0) = [0,0]T can be computed observing the trajectory
[

0
0

]

,

[

5
3

]

,

[

8
8

]

,

[

13
11

]

,

[

16
16

]

,

[

21
19

]

,

[

24
24

]

,

[

29
27

]

,

[

32
32

]

,

[

37
35

]

,

[

40
40

]

,

[

45
43

]

,

[

48
48

]

, . . .

Notice that the periodic behavior occurs immediately, i.e.k0([0,0]T)= 0, and shows a period
equal to 2, namelyx(2) = 4⊗2⊗ x(0) = 8+ x(0). Furthermore notice thatx(k+ 2) = 8⊗
x(k), for k∈ N∪{0}.

By using [22, Ths. 3.100 and 3.101], the eigenspace ofA is E(A) = {x ∈ R
2 : x1−x2 =

1} and the complete periodic behaviors areE(A⊗2) = {x ∈ R
2 : 0≤ x1−x2 ≤ 2}. 2

For the backward reachability analysis we introduce the quantity k/0(x), for any givenx∈
R

n\E(A⊗c), as the smallestk such that the system of max-plus linear equationsA⊗k⊗x′ = x
does not have a solution. (Practically, there is no pointx′ ∈ R

n that can reachx in k/0
steps or more.) The solution can be computed by using the method in [22, Sec. 3.2.3.2].
Otherwise ifx ∈ E(A⊗c), k/0(x) is set to 0. This (arguably counter-intuitive) definition will
be useful for the ensuing work. It is easy to see that the quantity can be bounded ask/0(x) ≤
k0(A)−k0(x)+1, for eachx ∈ R

n.

Definition 2.5 (Length of Transient Part of a Set)Let X ⊆R
n be a nonempty set,k0(X ) =

maxx∈X k0(x) andk/0(X ) = maxx∈X k/0(x). 2

A nonautonomous MPL system [22, Cor. 2.82] is defined by embedding an external
inputu in the dynamics of (2.1) as:

x(k) = A⊗x(k−1)⊕B⊗u(k), (2.3)

whereA∈ R
n×n
ε , B∈ R

n×m
ε , x(k−1) ∈ R

n, u(k) ∈ R
m, for k∈ N. As suggested in [22, Sec.

2.5.4], the nonautonomous MPL system (2.3) can be transformed into an augmented MPL
system

x(k) = Ā⊗ x̄(k−1), (2.4)

whereĀ = [A,B], x̄(k−1) = [x(k−1)T,u(k)T ]T .

1Length of transient part is also called coupling time [37, 68].
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Example A timetable can be incorporated in (2.2) as the input [68, p. 137]. We obtain a
nonautonomous MPL system

x(k) =

[

2 5
3 3

]

⊗x(k−1)⊕

[

0 ε
ε 0

]

⊗u(k). (2.5)

The augmented MPL system is simply

x(k) =

[

2 5 0 ε
3 3 ε 0

]

⊗ x̄(k−1), (2.6)

wherex(k) ∈ R
2 andx̄(k−1) ∈ R

4, for k∈ N. 2

2.2 Related Models

This section introduces models that are related to MPL systems, and that are going to be used
throughout the thesis. Min-Plus-Linear (MiPL) systems andSwitching Min-Plus-Linear
(MiPL) systems are used to model network calculus elements,whereas Piecewise Switched
Affine (PWSA) systems are used to construct an abstraction ofswitching MiPL systems (cf.
Chapter 5). Finally finite abstractions of Stochastic Max-Plus-Linear (SMPL) systems is
discussed in Chapter 6.

2.2.1 Min-Plus-Linear Systems

Min-Plus-Linear (MiPL) systems are the dual of MPL systems.MiPL systems are the time-
domain description of timed event graph and are based on min-plus algebra, whereas MPL
systems are the event-domain description of timed event graph and are based on max-plus
algebra.

Define R⊤, N⊤ and⊤ respectively asR∪ {⊤}, N∪ {⊤} and +∞. For α,β ∈ R⊤,
introduce the two operations

α⊕′ β = min{α,β}2 and α⊗β = α+ β,

where the element⊤ is considered to be absorbing w.r.t.⊗, namelyα ⊗⊤ = ⊤ for all
α ∈R⊤. Givenβ ∈R, the min-algebraic power ofα ∈R is denoted byα⊗β and corresponds
to αβ in the conventional algebra. The definition of min-algebraic and max-algebraic power
is the same. The rules for the order of evaluation of the min-algebraic operators correspond
to those of conventional algebra: min-algebraic power has the highest priority, and min-
algebraic multiplication has a higher precedence than min-algebraic addition. The basic
min-algebraic operations are extended to matrices as follows. If A,B ∈ R

m×n
⊤ ; C ∈ R

m×p
⊤ ;

D ∈ R
p×n
⊤ ; andα ∈ R⊤,

[α⊕′ A](i, j) = α⊕′ A(i, j),

[A⊕′ B](i, j) = A(i, j)⊕′ B(i, j),

[C⊗′ D](i, j) =
p

M

k=1

′C(i,k)⊗D(k, j),

2For the minimization operator, the author follows the notation used in [108, p. 380].
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for all i = 1, . . . ,mand j = 1, . . . ,n. Notice the analogy between⊕′, ⊗′ and+, × for matrix
and vector operations in the conventional algebra. Givenm∈ N, the m-th min-algebraic
power ofA∈ R

n×n
⊤ is denoted byA⊗′m and corresponds toA⊗′ · · · ⊗′ A (m times). Notice

that A⊗′0 is ann-dimensional min-plus identity matrix, i.e. the diagonal and nondiagonal
elements are 0 and⊤, respectively. In this thesis, the following notation is adopted for
reasons of convenience: a vector with each component that equals to 0 (resp.+∞) is also
denoted by 0 (resp.⊤). Furthermore, the state space is taken to beR

n (rather thanRn
⊤).

Remark In matrix operations, the notation of multiplication operator in max-plus algebra
and min-plus algebra is different, since their definitions are also different. In max-plus
algebra, the addition is defined as maximum, whereas in min-plus algebra, the addition is
defined as minimum. On the other hand in scalar operations, the symbol of max-algebraic
and min-algebraic multiplications are the same, since bothsymbols are interpreted as the
usual addition. 2

A Min-Plus-Linear (MiPL) system is defined as:

x(k) = A⊗′ x(k−1)⊕′B⊗′ u(k), (2.7)

whereA∈ (N⊤ ∪{0})n×n, B∈ (N⊤ ∪{0})n×m, x(k−1) ∈ (N∪{0})n, u(k) ∈ (N∪{0})m,
for k ∈ N. If the input matrixB contains at least a finite (not equal to⊤) element, the
MiPL system is called nonautonomous, otherwise it is calledautonomous. MiPL systems
are used to describe the evolution of timed event graphs in the time domain [22, Sec. 5.2].
Here the independent variablek denotes time. The statex(k) is a counter that represents the
number of “events” observed up to and including timek. Each event is assumed to occur
instantaneously [22, p. 215]. Thusx(·) takes values in the set of nonnegative integers. As
related models, MPL systems are used to describe the evolution of timed event graphs in
the event domain.

Example Consider the following MiPL system representing a simple railway network be-
tween two connected stations [68, Sec. 0.5]. The state variablesxi(k) for i = 1,2 denote the
number of trains that have left stationi up to and including timek:

x1(k) = min{1+x1(k−2),1+x2(k−5)},

x2(k) = min{1+x1(k−3),1+x2(k−3)}.

With the introduction of auxiliary variables the MiPL system can be written as a set of
first-order recurrence relations as in (2.7). 2

2.2.2 Switching Min-Plus-Linear Systems

A switching MiPL system is a discrete-event system that can switch between different
modes of operation, where the dynamics in each mode are described by MiPL equations.
In Petri-net theory, a system with this property is called free choice Petri nets [48]. Let the
switching MiPL system be in modeℓ(k) ∈ {1, . . . ,nm} at stepk, the dynamics are described
by the following MiPL equation

x(k) = A(ℓ(k))⊗′ x(k−1)⊕′B(ℓ(k))⊗′ u(k), (2.8)
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whereA(ℓ(k)) ∈ (N⊤ ∪ {0})n×n, B(ℓ(k)) ∈ (N⊤ ∪ {0})n×m, x(k− 1) ∈ (N∪ {0})n, u(k) ∈
(N∪{0})m, for k ∈ N. If there exists a modeℓ such that the input matrixB(ℓ) contains at
least a finite (not equal to⊤) element, the switching MiPL system is called nonautonomous,
otherwise it is called autonomous. The mode that is active ateach step can be either assumed
as a control variable [109] or assumed to be chosen in a purelynondeterministic fashion,
i.e. the outcome is not known a priori. In the latter case, we cannot control the mode at each
step.

2.2.3 Stochastic Max-Plus-Linear Systems

Stochastic Max-Plus-Linear (SMPL) systems [67, 100, 105] are MPL systems where the
time duration (i.e. the processing or transportation times) are now characterized by random
quantities. An autonomous SMPL system is defined as:

x(k) = A(k)⊗x(k−1), (2.9)

wherex(k− 1) ∈ R
n; each entry of the state matrixA(k) is independent and identically

distributed w.r.t.k ∈ N; andAi j (·) are independent for alli, j ∈ {1, . . . ,n}3. The notation
Ai j (·) represents the entry of matrixA(·) at thei-th row and thej-th column4. We assume
each random variable has fixed support [67, Def. 1.4.1], i.e.the probability ofε is either 0
or 1. The random sequence{Ai j (·)} is then characterized by a given density functionti j (·)
and corresponding distribution functionTi j (·) (cf. Theorem 2.1).

The independent variablek denotes an increasing event index, whereas the state variable
x(k) defines the (continuous) time of occurrence of thek-th event. Since this thesis is based
exclusively on autonomous (that is, not non-deterministic) SMPL systems, the adjective will
be dropped for simplicity.

Example Consider the following SMPL system representing a simple railway network be-
tween two connected stations. The state variablesxi(k) for i = 1,2 denote the time of the
k-th departure at stationi:

x(k) = A(k)⊗x(k−1), A(k) =

[

2+e11(k) 5+e12(k)
3+e21(k) 3+e22(k)

]

or equivalently,

[

x1(k)
x2(k)

]

=

[

max{2+e11(k)+x1(k−1),5+e12(k)+x2(k−1)}
max{3+e21(k)+x1(k−1),3+e22(k)+x2(k−1)}

]

,

(2.10)

where we have assumed thate11(·) ∼ Exp(1), e12(·) ∼ Exp(5/2), e21(·) ∼ Exp(3/2), and
e22(·) ∼ Exp(3/2), andExp(µ) represents the exponential distribution with meanµ. Notice
thatAi j (·) denotes the traveling time from stationj to stationi and amounts to a determin-
istic constant plus a delay modeled by the random variableei j (·). A few sample trajectories
of the SMPL system, initialized atx(0) = [1,0]T , are displayed in Fig. 2.2. Note that when
all random delays are assumed to be equal to zero, the above deterministic system admits
the unique solutionx(k) = x(0)+ 4k = [1+ 4k,4k]T , where 4 is the max-plus eigenvalue
of matrix A, and[1,0]T is the corresponding eigenvector of the deterministic MPL system

3Notice that, for deterministic MPL systems, the matrixA is instead given and time-invariant (cf. Section 2.1).
4Recall that, for time-invariant matrixA, the notation for the entry ati-th row and j-th column isA(i, j) (cf.

page 7).
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Fig. 2.2: Sample trajectories of the SMPL system in(2.10)for 50 discrete steps (horizontal
axis) and both coordinates (vertical axis).

[22]. Such a max-plus eigenvalue can be used as a lower bound for the period of a regular
schedule for the train departures. 2

The next theorem shows that the SMPL system can be described as a discrete-time
homogeneous Markov process. The translation of SMPL systeminto a Markov process
has been discussed in the literature [22, 47, 98, 100, 105]. In the literature [22, Th. 8.44],
[100, p. 300], [105, Prop. 3.1], [47, Th. 3.2], entries of thestate vector are normalized
w.r.t. the first entry, whereas in our work entries of the state vector are normalized w.r.t. a
regular schedule. For didactical purposes, we present the following theorem together with
its complete proof.

Theorem 2.1The SMPL system in (2.9) is fully characterized by the following conditional
density function

tx(x̄|x) =
n
∏
i=1

tx
i (x̄i |x), where

tx
i (x̄i |x) =

n
∑
j=1

[

ti j (x̄i −x j)
n
∏

k=1,k6= j
Tik(x̄i −xk)

]

, for all i ∈ {1, . . . ,n},

for x̄,x ∈ R
n. The notationtx(x̄|x) represents the conditional density function of the next

statex̄ w.r.t. the current statex. The notationtx
i (x̄i |x) represents the conditional density func-

tion of thei-th component of the next state ¯xi w.r.t. the current statex for all i ∈ {1, . . . ,n}.
The notationTi j (·) represents the distribution function associated with the density function
ti j (·) for all i, j ∈ {1, . . . ,n}. 2

Proof The independence property ofAi j (·), for all i, j ∈ {1, . . . ,n}, leads to the multiplica-
tive expression oftx(x̄|x). In order to show the expression of the componentstx

i (x̄i |x), first
we compute thei-th conditional distribution functionTx

i (x̄i |x), then we compute thei-th
conditional density functiontx

i (x̄i |x) by taking the derivative ofTx
i (x̄i |x) w.r.t. x̄i :

Tx
i (x̄i |x) = Pr{max{Ai1+x1, . . . ,Ain +xn} ≤ x̄i |x},

= Pr{Ai1 +x1 ≤ x̄i , . . . ,Ain +xn ≤ x̄i |x},
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=
n

∏
j=1

Pr{Ai j ≤ x̄i −x j |x} =
n

∏
j=1

Ti j (x̄i −x j |x).

The notationTx
i (x̄i |x) represents the conditional distribution function of thei-th component

of the next state ¯xi w.r.t. the current statex for all i ∈ {1, . . . ,n}. Finally one can show by
virtue of simple algebraic manipulations that the derivative of Tx

i (x̄i |x) w.r.t. x̄i coincides
with the expression oftx

i (x̄i |x). 2

2.2.4 Piecewise-Affine Systems

Piece-wise Affine (PWA) systems are characterized by a coverof the state space and by
affine (linear, plus a constant) dynamics within each set of the cover [87, 107]. PWA systems
are well-posed if the next state and the next output are uniquely solvable once the current
state and the current input are specified. PWA systems are sufficiently expressive to model a
large number of physical processes, such as systems with static nonlinearities (for instance,
actuator saturation), and they can approximate nonlinear dynamics with arbitrary accuracy
via multiple linearizations at different operating points[27, p. 1864]. PWA systems have
been studied by several authors [27, 73, 75, 87, 107, 113].

This section discusses PWA systems generated by an autonomous and by a nonau-
tonomous MPL system [66]. The obtained PWA systems are well-posed because the au-
tonomous and nonautonomous MPL systems are also well-posed. The construction of PWA
systems has a combinatorial complexity. In order to improvethe performance, we pro-
pose to use a backtracking approach. The PWA system will playa fundamental role in the
abstraction procedure and reachability analysis of MPL systems.

Every MPL system characterized by a generic row-finite matrix A ∈ R
n×p
ε can be ex-

pressed as a PWA system in the event domain [66, Sec. 3]. The affine dynamics, along
with the corresponding region on the state space, can be constructed from the coefficients
g= (g1, . . . ,gn)∈ {1, . . . , p}n. For eachi, the coefficientgi characterizes the maximum term
in the i-th state equationxi(k) = max{A(i,1)+ x1, . . . ,A(i, p)+ xp}, that isA(i, j) + x j ≤
A(i,gi)+ xgi , for all j = 1, . . . , p5. It follows that the set of states corresponding tog, de-
noted byRg, is

Rg =
n

\

i=1

p
\

j=1

{x ∈ R
n : A(i, j)+x j ≤ A(i,gi)+xgi}. (2.11)

Alternatively, a pointx ∈ R
n is in Rg if maxj=1,...,pA(i, j)+ x j = A(i,gi)+ xgi , for all i =

1, . . . ,n.
The affine dynamics that are active inRg follow directly from the definition ofg (see

previous paragraph) as

xi(k) = xgi (k−1)+A(i,gi), i = 1, . . . ,n. (2.12)

Given a row-finite state matrixA, Algorithm 2.1 describes a general procedure to con-
struct a PWA system corresponding to an autonomous MPL system. Similarly, if we run

5The wayg is defined is closely related to the idea of a policy [36] in Howard’s algorithm, i.e. both definitions
choose a single finite element in each row of matrixA. Howard’s algorithm, also known as the policy iteration algo-
rithm, is an iterative algorithm for computing a generalized eigenmode. This algorithm consists of two parts: value
determination and policy improvement. In value determination, the aim is to determine a generalized eigenmode
from a given matrixA and a given policy.
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the algorithm with the augmented matrix̄A, we obtain a PWA system related to the nonau-
tonomous MPL system. Correspondingly, the parameterp above equalsn or n+ m. On
the side, notice that the affine dynamics associated with a dynamical system generated by
Algorithm 2.1 are a special case of the general PWA dynamics as defined in [107, Sec. 1].

Algorithm 2.1 Generation of a PWA system from a row-finite MPL matrix
Input: A∈ R

n×p
ε , a row-finite max-plus matrix

Output:R,A,B, a PWA system overRp,
whereR is a set of regions andA,B represent a set of affine dynamics

initialize R,A,B with the empty set
for all g∈ {1, . . . , p}n do

generate regionRg according to (2.11)
if Rg is not emptythen

generate matricesAg,Bg s.t.x(k) = Agx(k−1)+Bg corresponding to (2.12)
save the results, i.e.R := R∪{Rg}, A := A ∪{Ag}, B := B∪{Bg}

end if
end for

The crucial observation that allows for an improvement of the complexity is that it is
not necessary to iterate over all possible coefficients as inAlgorithm 2.1. Instead, we can
apply a backtracking technique. In the backtracking approach, the partial coefficients are
(g1, . . . ,gk) for k = 1, . . . ,n and the corresponding region is

R(g1,...,gk) =
k

\

i=1

n
\

j=1

{x ∈ R
n : A(i,gi)+xgi ≥ A(i, j)+x j}.

Notice that if the region associated with some partial coefficient(g1, . . . ,gk) is empty, then
the regions of the corresponding coefficients(g1, . . . ,gn) are also empty, for allgk+1, . . . ,gn.
The set of all coefficients can be represented as a potential search tree. For a 2-dimensional
MPL system, the potential search tree is given in Fig. 2.3 (left). The backtracking algorithm
traverses the tree recursively, starting from the root, in adepth-first order. At each node,
the algorithm checks whether the corresponding region is empty. If the region is empty, the
whole sub-tree rooted at the node is skipped (pruned).

Example With reference to the autonomous MPL example in (2.2), the obtained PWA
system is

x(k) =











































[

1 0
1 0

]

x(k−1)+

[

2
3

]

, if x(k−1) ∈ R(1,1),

[

0 1
1 0

]

x(k−1)+

[

5
3

]

, if x(k−1) ∈ R(2,1),

[

0 1
0 1

]

x(k−1)+

[

5
3

]

, if x(k−1) ∈ R(2,2),

whereR(1,1) = {x ∈ R
2 : x1 − x2 ≥ 3}, R(2,1) = {x ∈ R

2 : 0 ≤ x1− x2 ≤ 3}, andR(2,2) =

{x ∈ R
2 : x1− x2 ≤ 0}, as depicted in Fig. 2.3 (right). RegionR(1,2) does not appear since
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R
2

R(2)

R(2,2)R(2,1)

R(1)

R(1,2)R(1,1)

x1

x2

R(2,1)

R(2,2)

3

R(1,1)

Fig. 2.3: (Left plot) Potential search tree for a 2-dimensional MPL system. (Right plot) Re-
gions associated with the PWA system generated by the autonomous MPL system
in (2.2).

it corresponds to an empty set. As explained above, the affinedynamics corresponding to
a region are characterized by setg: for example the affine dynamics ofR(2,1) are given by
x1(k) = x2(k−1)+5,x2(k) = x1(k−1)+3. Similarly, for the nonautonomous MPL system
(2.5), the nonempty regions of the corresponding PWA systemare: R̄(1,1) = {x̄ ∈ R

4 : x1−

x2 ≥ 3, x1−u1 ≥−2, x1−u2≥−3}; R̄(1,4) = {x̄∈R
4 : x1−x2 ≥ 3, x1−u1 ≥−2, x1−u2 ≤

−3, x2−u2≤−3}; R̄(2,1) = {x̄∈R
4 : 0≤ x1−x2 ≤ 3, x1−u2 ≥−3, x2−u1 ≥−5}; R̄(2,2) =

{x̄∈R
4 : x1−x2 ≤ 0, x2−u1 ≥−5, x2−u2 ≥−3}; R̄(2,4) = {x̄∈R

4 : x1−x2 ≤ 3, x1−u2 ≤

−3, x2−u1 ≥−5, x2−u2 ≤−3}; R̄(3,1) = {x̄ ∈ R
4 : x1−x2 ≥ 0, x1−u1 ≤−2, x1−u2 ≥

−3, x2−u1 ≤−5}; R̄(3,2) = {x̄ ∈ R
4 : x1−x2 ≤ 0, x1−u1 ≤−2, x2−u1 ≤−5, x2−u2 ≥

−3}; R̄(3,4) = {x̄ ∈ R
4 : x1−u1 ≤−2, x1−u2 ≤−3, x2−u1 ≤−5, x2−u2 ≤−3}. 2

Remark Every MiPL system characterized by a generic row-finite matrix A ∈ R
n×p
⊤ can

also be transformed to a PWA system in the time domain. A matrix A∈ R
n×p
⊤ is row-finite

if A contains at least one element different from⊤ in each row (cf. Definition 2.2). The
affine dynamics and the corresponding region on the state space, are constructed from the
coefficientsg = (g1, . . . ,gn) ∈ {1, . . . , p}n. For eachi, the coefficientgi characterizes the
minimum term in thei-th state equationxi(k) = min{A(i,1)+ x1, . . . ,A(i, p)+ xp}, that is
A(i, j)+x j ≥ A(i,gi)+xgi , for all j = 1, . . . , p. It follows that the set of states corresponding
to g, denoted byRg, is

Rg =
n

\

i=1

p
\

j=1

{x ∈ R
n : A(i, j)+x j ≥ A(i,gi)+xgi}.

The affine dynamics that are active inRg follow directly from the definition ofg (see previ-
ous paragraph) as

xi(k) = xgi (k−1)+A(i,gi), i = 1, . . . ,n.

Algorithm 2.1 can be tailored to generate a PWA system from a row-finite MiPL matrix. 2
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Implementation In VeriSiMPL version 1.4, the procedure to construct a PWA system from
an autonomous MPL and MiPL system has been implemented in thefunction mpl2pwa.
In the case of autonomous MPL system, the functionmpl2pwa requires a row-finite state
matrix (Ampl) and generates a PWA system characterized by a collection ofregions (D) and
a set of affine dynamics (A,B). The affine dynamics that are active in thej-th region are
characterized by thej-th column of bothA andB. Each column ofA and the corresponding
column ofB contain the coefficients[g1, . . . ,gn]

T and the constants[A(1,g1), . . . ,A(n,gn)]
T ,

respectively. The data structure ofD will be discussed in Section 3.2.1.
Considering the autonomous MPL example in (2.2), the following MATLAB script gen-

erates the PWA system:

>> Ampl = [2 5;3 3], [A,B,D] = mpl2pwa(Ampl)

It will become clear in Section 3.2.1 that the nonempty regions of the PWA system produced
by the script are:R(1,1) = {x ∈ R

2 : x1 − x2 ≥ 3}, R(2,1) = {x ∈ R
2 : e≤ x1 − x2 ≤ 3},

andR(2,2) = {x ∈ R
2 : x1 − x2 ≤ e}. The affine dynamics corresponding to a regionRg

are characterized byg, e.g. those for regionR(2,1) are given byx1(k) = x2(k− 1) + 5,
x2(k) = x1(k−1)+3.

The functionmpl2pwa can be also used to determine the PWA system generated by an
augmented MPL system. In this case, the input ofmpl2pwa is the augmented matrix and the
output is a PWA system in the augmented spaceR

m+n.
In order to determine a PWA system from an autonomous MiPL system, the function

mpl2pwa is called with two arguments. The first argument is the row-finite state matrix
(Amipl) and the second argument is the Boolean constantfalse. The functionmpl2pwa
can be also used to determine the PWA system generated by an augmented MiPL system.
In this case, the functionmpl2pwa is also called with two arguments, i.e. the augmented
matrix and the Boolean constantfalse. 2

2.2.5 Piecewise Switched Affine Systems

This section discusses Piece-wise Switched Affine (PWSA) systems generated by switch-
ing MiPL systems. PWSA systems are an extension of PWA systems. Recall that PWA
systems are described by a set of affine dynamics defined over acorresponding region in
the state space. In PWSA system, the dynamics that are activein each region are switched
affine. Switched affine dynamics have different modes of operation, where in each mode
the dynamics are affine. The PWSA system will play a key role inthe abstraction procedure
of switching MiPL systems.

Every switching MiPL system characterized by a collection of n× p generic row-finite
matricesA(1), . . . ,A(nm) can be expressed as a PWSA system in the time domain. Let the
PWA system generated byA(ℓ) be characterized byg(ℓ). The switched affine dynamics,
along with the corresponding region on the state space, can be constructed from coefficients
(g(1), . . . ,g(nm)) ∈ {1, . . . , p}n× ·· · × {1, . . . , p}n. The regions of the PWSA system is the
refinement of PWA regions generated by the MiPL dynamics associated with each mode:

R(g(1),...,g(nm)) =
nm
\

ℓ=1

Rg(ℓ) .



2.3 Summary 19

The collection of affine dynamics that is active inR(g(1),...,g(nm)) follows directly from pre-
ceding equation and is given by

xi(k) = x
g
(ℓ)
i

(k−1)+A(i,g(ℓ)
i ), i = 1, . . . ,n, for each modeℓ = 1, . . . ,nm.

Algorithm 2.1 can be used to construct a PWSA system corresponding to a switching
MiPL system. The input matrix is defined as the collection of row-finite matrices stacked
vertically, i.e.[(A(1))T , . . . ,(A(nm))T ]T .

2.3 Summary

In this chapter we have discussed Max-Plus-Linear (MPL) systems and some of its basic
properties. We have then briefly discussed some related models such as Min-Plus-Linear
(MiPL) systems, switching MiPL systems, stochastic MPL systems, Piece-wise Affine
(PWA) systems, and Piecewise Switched Affine (PWSA) systems. We have shown a proce-
dure to generate PWA systems from MPL systems and from MiPL systems. Similarly we
have also shown a procedure to construct PWSA systems from switching MiPL systems.





Chapter 3

Finite Abstractions of
Max-Plus-Linear Systems

In this chapter we develop a framework for formal verification of MPL systems. Specifi-
cally, we check whether an MPL system with a predefined set of initial statesX0 satisfies
an LTL formula over a fixed set of atomic propositionsAP. We propose the following ap-
proach. First a transition system is generated from the given concrete MPL system. Then
we generate an abstract transition system that simulates the transition system. By using
model checking techniques, we next determine whether the abstract transition system satis-
fies the given LTL formula. If the LTL formula is satisfied, theconcrete transition system
also satisfies the LTL formula. Otherwise if the LTL formula is not satisfied, it does not
imply that the concrete transition system does not satisfy the LTL formula. In this case, a
partition refinement technique can be used to obtain a more precise abstraction.

The computational aspects related to the abstraction procedure have been under partic-
ular scrutiny, and have brought to 1) the selection of DBM as aframework for the represen-
tation and manipulation of regions over the state and control spaces; and 2) the use of PWA
representations of the MPL dynamics [66], which nicely couples with quantities expressed
as DBM. The computational costs of the abstraction procedure are discussed in detail and
its overall performance is benchmarked over a case study in Section 3.6.

3.1 Related Work

To the best of the author’s knowledge, this contribution represents the first work on finite-
state abstractions of MPL systems. The approach to attain abstractions developed in this
work is inspired by those developed for other models in [17, 101, 117], and can be in-
terpreted in the context of literature focused on the construction of finite-state (quotient)
models of given systems. The construction of quotient systems has been treated in depth
in [115, Sec. 0.7] and in [116] for time-invariant linear systems. However this technique
cannot be used in our problem because there is no guarantee that the properties of interest
are preserved in the quotient system. Notice that we leverage a PWA representation of the
given MPL dynamics [66] – a particular case of the PWA system used in [117] – to build the

21
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finite-state abstraction. However, techniques for abstractions of PWA systems developed in
the literature [117] do not appear to be directly usable in the context of the models derived
from MPL systems, since spatial boundaries can non-trivially affect the semantics of the
trajectories [117, Rem. 1]. Likewise, related verificationapproaches developed for timed
Petri nets (such as that for safety analysis based on existential zones [4]) do not appear to
being exportable to MPL systems.

3.2 Preliminaries

This section introduces Difference-Bound Matrices (DBM),transition systems modeling
framework, Linear Temporal Logic (LTL) formula, and finallythe notion of abstraction.

3.2.1 Difference-Bound Matrices

This section introduces the definition of a Difference-Bound Matrix (DBM) [51, Sec. 4.1],
its canonical-form representation, and the connection with max-plus polyhedra. DBM will
be used extensively in the abstraction procedure and reachability of MPL systems.

Definition 3.1 (Difference-Bound Matrix) A DBM in R
n is the intersection of finitely

many sets defined byx j −xi ⊲⊳i, j αi, j , where⊲⊳i, j∈ {<,≤} denotes the strictness of the sign,
the specified numberαi, j ∈ R⊤ represents the upper bound, fori, j ∈ {0, . . . ,n} and the
value of the special variablex0 always equal to 0. The sets are characterized by the values
of variablesx1, . . . ,xn, which imply that the sets are a subset ofR

n. 2

The special variablex0 is used to represent bounds over a single variable:xi ≤ α can be
written asxi −x0 ≤ α. In the following, a “stripe” is defined as a DBM that does not contain
x0. Definition 3.1 can be likewise given over the input and augmented spaces.

Implementation VeriSiMPL represents a DBM inRn as a 1×2 cell: the first element is an
(n+1)-by-(n+1) matrix with entries in the real numbers representing the upper boundα,
and the second element is an(n+1)-by-(n+1) matrix with entries in the Boolean domain
representing the value of⊲⊳. More precisely, the(i+1, j +1)-th element represents the upper
bound and the strictness of the sign ofx j −xi , for i = 0, . . . ,n and j = 0, . . . ,n (cf. Definition
3.1).1 The non-strict sign≤ corresponds totrue and the strict sign< corresponds to
false. Furthermore, a collection of DBM is also represented as a 1×2 cell, where the
corresponding matrices are stacked along the third dimension. 2

Each DBM admits an equivalent and unique canonical-form representation, which is
a DBM with the tightest possible bounds [51, Sec. 4.1]. Sincecomputing the canonical-
form representation of a DBM is equivalent to the all-pairs shortest path problem over the
corresponding potential graph [51, Sec. 4.1], the Floyd-Warshall algorithm [56] can be used
over the graph with a complexity that is cubic w.r.t. its dimension.

Example Consider the PWA system generated by the nonautonomous MPL system (2.5).
A few regions are not in the canonical-form representation,and can then be expressed as

1The author was inspired by the definition of precedence graphw.r.t. the state matrix when choosing this
representation.
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follows: cf(R̄(1,4)) = {x̄∈R
4 : x1−x2 ≥ 3, x1−u1 ≥−2, x1−u2 ≤−3, x2−u2 ≤−6, u1−

u2 ≤ −1},cf(R̄(2,1)) = {x̄ ∈ R
4 : 0≤ x1− x2 ≤ 3, x1−u1 ≥ −5, x1−u2 ≥ −3, x2−u1 ≥

−5, x2−u2≥−6},cf(R̄(2,4))= {x̄∈R
4 : x1−x2 ≤ 3, x1−u2≤−3, x2−u1 ≥−5, x2−u2 ≤

−3, u1−u2 ≤ 2},cf(R̄(3,1)) = {x̄ ∈R
4 : x1−x2 ≥ 0, x1−u1 ≤−2, x1−u2 ≥−3, x2−u1 ≤

−5, u1−u2≥−1},cf(R̄(3,2))= {x̄∈R
4 : x1−x2≤ 0, x1−u1≤−5, x2−u1≤−5, x2−u2 ≥

−3, u1−u2 ≥ 2}, where cf is a generic operator yielding the canonical form [51, Sec. 4.1].
Other regions appear already in canonical form, for instance R̄(1,1) = cf(R̄(1,1)). 2

One advantage of the canonical-form representation is thatit is straightforward to com-
pute orthogonal projections w.r.t. a subset of its variables. This is simply performed by
deleting rows and columns corresponding to the complementary variables [51, Sec. 4.1].
The orthogonal projection of a DBM in canonical form is againin canonical form [51, Obs.
1].

Definition 3.2 (Orthogonal Projection) The orthogonal projection w.r.t. the state spaceX
(the input spaceU) of a region in the augmented space is defined asprojX : R

n+m → R
n

(projU : R
n+m → R

m), whereprojX : [xT ,uT ]T 7→ x (projU : [xT ,uT ]T 7→ u). 2

Remark The two terms “the orthogonal projection w.r.t. the state space” and “the orthogo-
nal projection w.r.t. the state variables” are used as synonyms. A similar argument holds for
“the orthogonal projection w.r.t. the input space” and “theorthogonal projection w.r.t. the
input variables”. 2

Another advantage of the canonical-form representation isthat its emptiness can be
checked very efficiently. By using the potential graph representation, the unfeasible sets of
constraints are only those which form a circuit with a strictly negative weight in the graph.
As a consequence, in order to test whether a DBM is empty or not, we simply have to check
for the existence of such a circuit: this can be achieved by the Bellman-Ford algorithm [26,
Sec. 5], which is cubic w.r.t. its dimension. Whenever a DBM is in canonical form, testing
for strictly negative cycles can be reduced to checking whether there is ani such that⊲⊳i,i is
< or αi,i < 0. Thus, the complexity of emptiness checking is linear w.r.t. dimension of the
DBM.

Implementation In VeriSiMPL version 1.4, the Floyd-Warshall algorithm has been imple-
mented in the functionfloyd warshall. Given a collection of finitely many DBM, this
function generates its canonical-form representation. The following MATLAB script com-
putes the canonical-form representation of{x ∈ R

5 : x1 − x2 ≥ 3,x1 − x3 ≥ −2,x1− x4 ≤
−3,x2−x4 ≤−3}:

>> D = cell(1,2)

>> D{1} = [0 Inf Inf Inf Inf;Inf 0 -3 2 Inf;

Inf Inf 0 Inf Inf;Inf Inf Inf 0 Inf;Inf -3 -3 Inf 0]

>> D{2} = [true false false false false;false true true true false;

false false true false false;false false false true false;

false true true false true]

>> Dcf = floyd warshall(D)
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The canonical-form representation (Dcf) is {x ∈ R
5 : x1− x2 ≥ 3,x1− x3 ≥ −2,x1− x4 ≤

−3,x2−x4 ≤−6,x3−x4 ≤−1}. Notice that the bounds ofx2−x4 andx3−x4 are tighter.
The procedure to determine the emptiness of a collection of finitely many DBM has

been implemented in the functiondbm isempty that is included inVeriSiMPL version 1.4.
This function returnstrue if the DBM is empty andfalse if the DBM is not empty. The
following MATLAB script checks whether the DBMD defined above is empty:

>> dbm isempty(D)

The result isfalse which means thatD is not empty. 2

Each region and the corresponding affine dynamics of the PWA system generated by
Algorithm 2.1 (for both autonomous and nonautonomous MPL systems) can be character-
ized by a DBM. From (2.11), each region of the PWA system generated by a row-finite
max-plus matrix is a DBM inRp. Each affine dynamics (2.12) can generate a DBM in
R

p×R
n, which comprises points(x(k− 1),x(k)) ∈ R

p ×R
n such thatx(k) is the image

of x(k− 1), i.e. x(k) = A⊗ x(k− 1). More precisely, the DBM is obtained by rewrit-
ing the expression of the affine dynamics as

Tn
i=1{(x(k− 1),x(k)) : xi(k)− xgi (k− 1) ≤

A(i,gi)}∩
Tn

i=1{(x(k−1),x(k)) : xi(k)−xgi (k−1)≥ A(i,gi)}.
Looking back at the backtracking approach to generate the PWA system (cf. Section

2.2.4), its worst-case complexity can be formulated asO (pn(np+ p3)) [8, p. 3043]. This
happens if the matrix does not have infinite elements and all regions are nonempty. How-
ever, in practice this worst-case is not incurred since manyregions can happen to be empty.

Proposition 3.1 ([8, Th. 1])The image and the inverse image of a DBM with respect to
affine dynamics (in particular the PWA expressions in (2.11)-(2.12) generated by an MPL
system) is a DBM. 2

The general procedure to compute the image of a DBM inR
p w.r.t. affine dynamics

R
p → R

n involves: 1) computing the cross product of the DBM andR
n; then 2) intersect-

ing the cross product with the DBM generated by the expression of the affine dynamics;
3) calculating the canonical form of the obtained intersection; and finally 4) projecting the
canonical-form representation over{x1(k), . . . ,xn(k)}. The complexity of computing the
image depends critically on the third step and isO ((n+ p)3). The illustration of the proce-
dure to compute the image forp = 1 = n is depicted in Fig. 3.1 (left).

Example Let us compute the image of{x ∈ R
2 : 0≤ x1 ≤ 1,0≤ x2 ≤ 1,x1−x2 ≤ 0} w.r.t.

x′1 = x2 +5, x′2 = x2 +3 by using the above procedure. The cross product of the DBM and
R

2 is {(x,x′) ∈ R
4 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1,x1 − x2 ≤ 0}. The intersection of the cross

product and the DBM generated by the expression of the affine dynamics is{(x,x′) ∈ R
4 :

0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1,x1 − x2 ≤ 0,x′1 − x2 = 5,x′2 − x2 = 3}. The canonical form of the
obtained intersection is{(x,x′) ∈ R

4 : 0≤ x1 ≤ 1,0≤ x2 ≤ 1,5≤ x′1 ≤ 6,3≤ x′2 ≤ 4,0≤
x2− x1 ≤ 1,5≤ x′1− x1 ≤ 6,3≤ x′2− x1 ≤ 4,x′1− x2 = 5,x′2− x2 = 3,x′2− x′1 = −2}. The
projection w.r.t.{x′1,x

′
2} is computed by removing all inequalities containingx1 or x2, which

yields{x′ ∈ R
2 : 5≤ x′1 ≤ 6,3≤ x′2 ≤ 4,x′2−x′1 = −2}.

In VeriSiMPL version 1.4, the procedure to compute the image of a DBM w.r.t. an affine
dynamic has been implemented indbm image as a function. This function requires the
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D

D′

D

D′

Fig. 3.1: The left and right plots illustrate the algorithmsto determine the image and inverse
image of a DBM w.r.t. an affine dynamic, respectively.

affine dynamics (A,B) and the DBM (D). The following MATLAB script re-calculates the
numerical example in the preceding paragraph:

>> A = [2;2], B = [5;3]

>> D = cell(1,2)

>> D{1} = [0 1 1;0 0 Inf;0 0 0]

>> D{2} = [true true true;true true false;true true true]

>> Dim = dbm image(A,B,D) 2

Similarly, the general procedure to compute the inverse image of a DBM inR
n w.r.t.

affine dynamicsRp → R
n involves: 1) computing the cross product ofR

p and the DBM;
then 2) intersecting the cross product with the DBM generated by the expression of the
affine dynamics; 3) calculating the canonical form of the obtained intersection; finally 4)
projecting the canonical-form representation over{x1(k−1), . . . ,xp(k−1)}. The complex-
ity of computing the inverse image is againO ((n+ p)3). The illustration of the procedure
to compute the inverse image forp = 1 = n is shown in Fig. 3.1 (right).

Example Let us determine the inverse image of{x′ ∈ R
2 : 0 ≤ x′1 ≤ 1,0≤ x′2 ≤ 1} w.r.t.

x′1 = x1 + 2, x′2 = x1 + 3 by using the discussed procedure. The cross product ofR
2 and

the DBM is{(x,x′) ∈ R
4 : 0 ≤ x′1 ≤ 1,0≤ x′2 ≤ 1}. The intersection of the cross product

and the DBM generated by the expression of the affine dynamicsis {(x,x′) ∈ R
4 : 0≤ x′1 ≤

1,0≤ x′2 ≤ 1,x′1−x1 = 2,x′2−x1 = 3}. The canonical form of the obtained intersection is
{(x,x′) ∈ R

4 : x1 = −2,x′1 = 0,x′2 = 1,x′1−x1 = 2,x′2−x1 = 3,x′2−x′1 = 1}. The projection
w.r.t. {x1,x2} is computed by removing all inequalities containingx′1 or x′2, which yields
{x ∈ R

2 : x1 = −2}.
In VeriSiMPL version 1.4, the procedure to determine the inverse image ofa DBM w.r.t.

an affine dynamic has been implemented in the functiondbm invimage. This function
requires the affine dynamics (A,B), the DBM (D), and dimension of domain of the affine
dynamics. The following MATLAB script re-calculates the numerical example in the pre-
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ceding paragraph:

>> A = [1;1], B = [2;3]

>> D = cell(1,2)

>> D{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D{2} = [true true true;true true false;true false true]

>> Dinv = dbm invimage(A,B,D,2) 2

Computing the image and the inverse image of a DBM (inR
p and inR

n) w.r.t. switched
affine dynamicsRp → R

n can be performed by computing the image and inverse image
w.r.t. each affine dynamics. The complexity of both cases isO (nm(n+ p)3), wherenm is the
number of affine dynamics.

The following procedure computes the image of a DBM inR
p w.r.t. MPL dynamics

characterized byA∈R
n×p
ε or w.r.t. MiPL dynamics characterized byA∈R

n×p
⊤ , and uses the

corresponding PWA system: 1) intersecting the DBM with eachregion of the PWA system;
then 2) computing the image of nonempty intersections according to the corresponding
affine dynamics (cf. Proposition 3.1). The worst-case complexity depends on the last step
and amounts toO (qA(n+ p)3), whereqA is the number of regions in the PWA system
generated by matrixA.

Example Let us compute the image ofX0 = {x ∈ R
2 : 0 ≤ x1 ≤ 1,0≤ x2 ≤ 1} w.r.t. the

MPL system (2.2). The intersection ofX0 and the regions isX0∩R(1,1) = /0, X0∩R(2,1) =
{x : 0≤ x1 ≤ 1,0≤ x2 ≤ 1,0 ≤ x1− x2 ≤ 3}, andX0∩R(2,2) = {x : 0≤ x1 ≤ 1,0≤ x2 ≤
1,x1−x2 ≤ 0}. Skipping the details, the image ofX0∩R(2,1) andX0∩R(2,2) is {x : 5≤ x1 ≤
6,3≤ x2 ≤ 4,x1− x2 = 2} and{x : 5≤ x1 ≤ 6,3≤ x2 ≤ 4,1≤ x1− x2 ≤ 2}, respectively.
Thus the image ofX0 is X1 = {x ∈ R

2 : 5≤ x1 ≤ 6,3≤ x2 ≤ 4,1≤ x1−x2 ≤ 2} as depicted
in Fig. 3.2. 2

Similarly, the inverse image of a DBM inRn w.r.t. the MPL system characterized by
A∈R

n×p
ε or w.r.t. the MiPL system characterized byA∈R

n×p
⊤ can be computed via its PWA

representation: 1) computing the inverse image of the DBM w.r.t. each affine dynamics
of the PWA system (cf. Proposition 3.1); then 2) intersecting the inverse image with the
corresponding region, which is a DBM; finally 3) collecting the nonempty intersections.
The worst-case complexity is quantified again asO (qA(n+ p)3).

Example Let us compute the inverse image ofX0 = {x ∈ R
2 : 0≤ x1 ≤ 1,0≤ x2 ≤ 1} w.r.t.

the MPL system (2.2). Without going into the details, the inverse image ofX0 w.r.t. the
affine dynamics inR(1,1), R(2,1), andR(2,2) is {x : x1 = −2}, {x : −3≤ x1 ≤−2,−5≤ x2 ≤
−4,1≤ x1− x2 ≤ 3}, and /0, respectively. The intersection of the obtained inverse images
with the corresponding region is{x : x1 = −2,x2 ≤ −5}, {x : −3 ≤ x1 ≤ −2,−5≤ x2 ≤
−4,1≤ x1− x2 ≤ 3}, and /0. The inverse image ofX0 is X−1 = {x ∈ R

2 : x1 = −2,x2 ≤
−5}∪{x∈ R

2 : −3≤ x1 ≤−2,−5≤ x2 ≤−4,1≤ x1−x2 ≤ 3} as shown in Fig. 3.2. 2

The image and the inverse image of a DBM w.r.t. switching MiPLdynamics can be
obtained by computing the image and inverse image w.r.t. each MiPL dynamics.

Proposition 3.1 can be extended as follows.



3.2 Preliminaries 27

−4 −2 2 4 6

−6

−4

−2

2

4

X1

X0

X−1

Fig. 3.2: The image and inverse image ofX0 w.r.t. the MPL system in(2.2). The down-
pointing arrow inX−1 indicates a half-line: that set can be expressed as a union
of two DBM.

Corollary 3.1 The image and the inverse image of a union of finitely many DBM w.r.t. an
MPL system or an MiPL system or switching MiPL system are alsoa union of finitely many
DBM. 2

Computing the image and the inverse image of a union ofq DBM w.r.t. an MPL system
or an MiPL system, characterized by matrixA can be done by computing the image and
the inverse image of each DBM w.r.t. the matrix. Thus the complexity of both cases is
O (q(n+ p)3qA). A similar approach can be used to determine the image and inverse image
of a union of finitely many DBM w.r.t. a switching MiPL system.

Remark 3.1 Some of the above results can be generalized to DBM inR
p
ε and to matrices

that are not row-finite by using similar proof techniques. One of them is the following: the
image of a DBM inR

p
ε w.r.t. a matrix inR

n×p
ε is a union of finitely many DBM inRn

ε . 2

We have mentioned an alternative approach to reachability analysis of MPL systems
based on operations over max-plus polyhedra, and emphasized the limitations of such an
approach. A max-plus polyhedron is defined as the max-plus Minkowski sum of a max-
plus cone and a finitely-generated max-plus convex set [15, Sec. 2.2]. Max-plus cones in
R

n
ε , a special case of max-plus polyhedra, are a max-plus linearcombination of finitely

many vectors inRn
ε . Equivalently, a max-plus cone can be represented as the image ofRp

ε
w.r.t. a matrix inR

n×p
ε . Based on Remark 3.1 and by using the homogeneous coordinates

representation [15, Sec. 2.2], one can show the following proposition.

Proposition 3.2Every max-plus cone and max-plus polyhedron can be expressed as a union
of finitely many DBM. 2

Proof Recall that max-plus cones are a max-plus linear combination of finitely many vec-
tors. A max-plus cone can be represented as the image of max-plus linear map governed by
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a max-plus matrix made up of those vectors. Remark 3.1 implies each max-plus cone can
be expressed as a union of finitely many DBM. This result can begeneralized to max-plus
polyhedra since each max-plus polyhedron can be expressed as a max-plus cone by using
homogeneous coordinates representation [15, Sec. 2.2]. 2

As mentioned in [91, p. 1785], each max-plus linear combination of finitely many two-
dimensional vectors is a stripe, which is a particular kind of DBM. For didactical purposes,
we present the following proposition together with its complete proof.

Proposition 3.3Every two-dimensional max-plus cone can be expressed as a DBM. 2

Proof The proof consists of two steps. In the first step, we show thateach max-plus cone
can be formulated as a max-plus linear combination of two vectors. Then we show that any
max-plus linear combination of two vectors can be expressedas a DBM.

We assume the max-plus cone is given byα1 ⊗ x1 ⊕ ·· · ⊕αq ⊗ xq. We show that the
preceding max-plus cone can be expressed as the following max-plus linear combination
αmax⊗xmax⊕αmin⊗xmin, wherexmax,xmin∈{x1, . . . ,xq} such thatxmax

1 −xmax
2 ≥ xk

1−xk
2 and

xmin
1 −xmin

2 ≤ xk
1−xk

2 for all k = 1, . . . ,q. This can be done by showing eachx that satisfies
xmin

1 −xmin
2 ≤ x1−x2 ≤ xmax

1 −xmax
2 can be written as a max-plus linear combination ofxmax

andxmin, i.e. x = αmax⊗ xmax⊕αmin⊗ xmin (cf. Fig. 3.3). By virtue of simple algebraic
manipulations, one can show thatαmax = x1− xmax

1 andαmin = x2− xmin
2 are the solution.

This implies the generatorsx1, . . . ,xq can be expressed as a max-plus linear combination of
xmaxandxmin.

In the second step, we show that the following max-plus coneαmax⊗xmax⊕αmin⊗xmin

can be expressed as the following DBM{x : xmin
1 − xmin

2 ≤ x1 − x2 ≤ xmax
1 − xmax

2 } where
we assumexmax

1 − xmax
2 ≥ xmin

1 − xmin
2 . In the first part, we show that the max-plus cone is

a subset of the DBM, then in the second part, we show that the DBM is a subset of the
max-plus cone.

Let us prove that the max-plus cone is a subset of the DBM. Ifx is a vector in the max-
plus cone, then there existαmax,αmin such thatx = αmax⊗xmax⊕αmin⊗xmin. We will show
thatx is in the DBM by proving thatxmin

1 −xmin
2 ≤ x1−x2 ≤ xmax

1 −xmax
2 . We consider four

possible cases. In each case, we compute the lower and upper bounds ofx1− x2 by using
the corresponding assumptions.

• We assumeαmax+ xmax
1 ≥ αmin + xmin

1 andαmax+ xmax
2 ≥ αmin + xmin

2 . In this case
x1−x2 = xmax

1 −xmax
2 .

• We assumeαmax+ xmax
1 ≥ αmin + xmin

1 andαmax+ xmax
2 ≤ αmin + xmin

2 . Applying the
inequalities results inxmin

1 −xmin
2 ≤ x1−x2 ≤ xmax

1 −xmax
2 .

• We assumeαmax+ xmax
1 ≤ αmin + xmin

1 andαmax+ xmax
2 ≥ αmin + xmin

2 . Combining
both inequalities and the previous assumption, i.e.xmax

1 − xmax
2 ≥ xmin

1 − xmin
2 , yields

xmax
1 −xmax

2 = xmin
1 −xmin

2 . Applying the inequalities results inxmax
1 −xmax

2 ≤ x1−x2 ≤
xmin

1 −xmin
2 .

• We assumeαmax+ xmax
1 ≤ αmin + xmin

1 andαmax+ xmax
2 ≤ αmin + xmin

2 . In this case
x1−x2 = xmin

1 −xmin
2 .
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Fig. 3.3: Graphical illustration of computing the constantsαmax andαmin corresponding to
a vectorx.

Finally the arguments in the first step show that the DBM is a subset of the max-plus cone.
2

As a result, the reachability analysis based on DBM is more general than the one based
on max-plus polyhedra.

3.2.2 Transition Systems

This section introduces transition systems, a (by now) standard class of models to represent
hardware and software systems [23, Sec. 2.1].

Definition 3.3 (Transition System [23, Def. 2.1])A transition systemTS is characterized
by a sextuple(S,Act,−−→, I ,AP,L) where

• S is a set of states,

• Act is a set of actions,

• −−→ ⊆ S×Act×S is a transition relation,

• I ⊆ S is a set of initial states,

• AP2 is a set of atomic propositions, and

• L : S→ 2AP is a labeling function.

TSis called finite ifS, Act, andAPare finite. 2

2The notationAPdoes not represent the multiplication of matrixA and matrixP, unless stated explicitly.
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For convenience, we writes
γ

−−→ s′ instead of(s,γ,s′) ∈−−→. The behavior of a tran-
sition system can be described as follows. The transition system starts in some initial state
s0 ∈ I and evolves according to the transition relation−−→. If a state has more than one
outgoing transition, the “next” transition is chosen in a purely nondeterministic fashion.
Recall that 2AP denotes the power set ofAP. The labeling function relates each state to set
of atomic propositions that are satisfied by the state.

Definition 3.4 (Direct Predecessors and Direct Successors [23, Def. 2.3])Let TS=
(S,Act,−−→, I ,AP,L) be a transition system. Fors∈ S and γ ∈ Act, the set of directγ-
successors ofs is defined as

Post(s,γ) =
{

s′ ∈ S: s
γ

−−→ s′
}

, Post(s) =
[

γ∈Act

Post(s,γ).

The set of directγ-predecessors ofs is defined by

Pre(s,γ) =
{

s′ ∈ S: s′
γ

−−→ s
}

, Pre(s) =
[

γ∈Act

Pre(s,γ). 2

The notations for the sets of direct successors and predecessors are expanded to subsets of
S in the obvious way (i.e. pointwise extension): forC⊆ S, let

Post(C,γ) =
[

s∈C

Post(s,γ), Post(C) =
[

s∈C

Post(s).

The notationsPre(C,γ) andPre(C) are defined in an analogous way:

Pre(C,γ) =
[

s∈C

Pre(s,γ), Pre(C) =
[

s∈C

Pre(s).

A transition systemTS= (S,Act,−−→, I ,AP,L) is called deterministic if|I | ≤ 1 and
|Post(s,γ)| ≤ 1 for all statess and actionsγ [23, Def. 2.5]. A path of transition systemTS
is a sequence of states starting from some initial state; evolves according to the transition
relation; and cannot be prolonged, i.e. either it is infiniteor it is finite but ends in a terminal
state [23, Defs. 2.4 and 3.6]. The set of all paths in transition systemTS is denoted by
Paths(TS). A trace of a path is defined as the finite or infinite word over the alphabet 2AP

obtained by applying the labeling function to the path. The set of traces of transition system
TSis defined as the trace of all paths inTS, i.e.Traces(TS) = trace(Paths(TS)) [23, p. 98].

3.2.3 Linear Temporal Logic

This section introduces (propositional) Linear Temporal Logic (LTL), a logical formalism
that is suited for specifying properties [23, Ch. 5]. The syntax and semantics of LTL will be
discussed.

LTL formulae are recursively defined over a set of atomic propositions, by Boolean
operators, and temporal operators. More formally, the syntax of LTL formulae is defined as
follows:
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Definition 3.5 (Syntax of Linear Temporal Logic [23, Def. 5.1]) LTL formulae over the
setAP of atomic proposition are formed according to the followinggrammar:

ϕ ::= true | a | ϕ1∧ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2

wherea∈ AP. 2

Boolean operators are¬ (negation),∧ (conjunction), and∨ (disjunction), whereas tem-
poral operators are© (next),U (until), 2 (always), and3 (eventually). The until operator
allows to derive the temporal modalities3 and2 [23, p. 232]. The©-modality is a unary
prefix operator and requires a single LTL formula as argument. Formula©ϕ holds at the
current moment, ifϕ holds in the next “step”. TheU-modality is a binary infix operator
and requires two LTL formulae as argument. Formulaϕ1Uϕ2 holds at the current moment,
if there is some future moment for whichϕ2 holds andϕ1 holds at all moments until that
future moment. The3-modality and2-modality is a unary prefix operator and requires a
single LTL formula as argument. The formula3ϕ is satisfied ifϕ will be true eventually in
the future, whereas the formula2ϕ is satisfied ifϕ holds from now on forever. The intuitive
meaning of temporal modalities for a simple case is described in Fig. 3.4.

Safety properties are a class of LTL formulae and often characterized as “nothing bad
should happen” [23, p. 107]. As an example consider a specification of a traffic light with
the usual three phases “red”, “green”, and “yellow”. The requirement that each red phase
should be immediately preceded by a yellow phase is a safety property. Invariant property
is a particular kind of safety properties that is given by a condition for the states. As an
example consider the following specification of a traffic light. The requirement that each
red and green phases should not occur simultaneously is an invariant property.

LTL formulae stand for properties of paths (or in fact their trace). This means that a path
can either fulfill an LTL-formula or not. An infinite path satisfies an LTL formulaϕ if the
trace of the path satisfiesϕ [23, p. 236]. Recall that the trace of an infinite path is an infinite
word over the alphabet 2AP. A transition system satisfies an LTL formula if all paths of the
transition system satisfy the LTL formula [23, p. 237].

3.2.4 Abstractions

Abstraction is a fundamental concept that permits the analysis of large [23, Ex. 7.53] or even
infinite [23, Ex. 7.54] transition systems. An abstraction is identified by a set of abstract
statesŜ; an abstraction functionf , that associates to each (concrete) statesof the transition
systemTSthe abstract statef (s) which represents it; and a setAP of atomic propositions
that label the concrete and abstract states. Abstractions differ in the choice of the set̂S of
abstract states, the abstraction functionf , and the relevant propositionsAP.

Typically an abstract transition system simulates the concrete transition system. Simula-
tion relations are used as a basis for abstraction techniques where the rough idea is to replace
the model to be verified by a smaller abstract model and to verify the latter instead of the
original one. Simulation relations are preorders on the state space requiring that whenevers′

simulatess, states′ can mimic all stepwise behavior ofs, but the reverse is not guaranteed.
The formal definition of the simulation order is given below.

Definition 3.6 (Simulation Order [23, Def. 7.47])Let TSi = (Si ,Acti ,−−→i , Ii ,AP,Li), i =
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atomic prop. a

a arbitrary arbitrary arbitrary arbitrary

. . .

next step©a

arbitrary a arbitrary arbitrary arbitrary

. . .

until aUb

a∧¬b a∧¬b a∧¬b b arbitrary

. . .

eventually ♦a

¬a ¬a ¬a a arbitrary

. . .

always�a

a a a a a
. . .

Fig. 3.4: Intuitive semantics of temporal modalities.

1,2, be transition systems overAP. A simulation for(TS1,TS2) is a binary relationR ⊆
S1×S2 such that

1. for eachs1 ∈ I1 there existss2 ∈ I2 such that(s1,s2) ∈ R

2. for all (s1,s2) ∈ R it holds:

(a) L1(s1) = L2(s2)

(b) if s′1 ∈ Post(s1) then there existss′2 ∈ Post(s2) with (s′1,s
′
2) ∈ R .

Transition systemTS1 is simulated byTS2 (or, equivalently,TS2 simulatesTS1) if there
exists a simulationR for (TS1,TS2). 2

Intuitively speaking,TS1 is simulated byTS2 means for every path inTS1 there exists
a path inTS2 such that their traces coincide. Recall that a path is a sequence of states and
trace is a sequence of subsets ofAP.

We briefly outline the essential ideas of abstractions that are obtained by aggregating
disjoint sets of concrete states into single abstract states. Abstraction functions map con-
crete states onto abstract ones, such that abstract states are associated with equally labeled
concrete states only [23, Def. 7.50].

The abstract transition systemTSf originates fromTSby identifying all states that are
represented by the same abstract state under abstraction function f . An abstract state is
initial whenever it represents an initial concrete state. Similarly, there is a transition from
abstract statef (s) to statef (s′) if there is a transition froms to s′ [23, Def. 7.51].
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Proposition 3.4 ([23, Lem. 7.52])LetTS= (S,Act,−−→, I ,AP,L) be a (concrete) transition
system,Ŝa set of (abstract) states, andf : S→ Ŝan abstraction function. ThenTSf simulates
TS. 2

Proposition 3.5 ([23, Cor. 7.68 and Th. 7.70])Let TS2 simulatesTS1, assumeTS1 does
not have terminal states, letϕ be a linear-time property. IfTS2 satisfiesϕ, thenTS1 also
satisfiesϕ. 2

Informally speaking, linear-time property specifies the admissible (or desired) behavior
of the system under consideration [23, p. 100]. The result also applies to LTL formulae,
since each LTL formula is a linear-time property [23, Defs. 3.10 and 5.6]. In general the
reverse of the preceding proposition is not true. IfTS2 does not satisfyϕ, we cannot deduce
thatTS1 does not satisfyϕ since the trace of paths that violateϕ might be behaviors that
TS1 cannot perform at all.

There is a close connection between abstraction functions and partitions. For the ab-
straction functionf : S→ Ŝ, notice that

S

ŝ∈Ŝ{s : f (s) = ŝ} is a partition ofS. Recall that
there is a connection between equivalence relations and partitions [23, Rem. 7.30]. Let us
construct an abstraction functionf and a set of (abstract) statesŜ from a given equivalence
relation. The set of (abstract) statesŜis defined as the collection of equivalence classes. The
abstraction functionf maps each (concrete) state to the unique equivalence class containing
the (concrete) state.

The bisimulation-quotienting algorithms [23, Sec. 7.3] can be used to obtain a bisimu-
lation quotient transition system if the concrete transition system is finite. In this case, the
initial partition is defined as the partition induced by the abstraction function (see previous
paragraph), which is finer than theAP partition [23, Def. 7.31]. However if the concrete
transition system is infinite, the termination of the algorithms is not guaranteed [23, p. 477].

Definition 3.7 (Bisimulation Equivalence [23, Def. 7.1])For i = 1,2 let TSi be transition
systems overAP, i.e. TSi = (Si ,Acti ,−−→i , Ii ,AP,Li). A bisimulation for(TS1,TS2) is a
binary relationR ⊆ S1×S2 such that

1. for eachs1 ∈ I1 there existss2 ∈ I2 such that(s1,s2) ∈ R and for eachs2 ∈ I2 there
existss1 ∈ I1 such that(s1,s2) ∈ R

2. for all (s1,s2) ∈ R it holds that

(a) L1(s1) = L2(s2)

(b) if s′1 ∈ Post(s1) then there existss′2 ∈ Post(s2) with (s′1,s
′
2) ∈ R

(c) if s′2 ∈ Post(s2) then there existss′1 ∈ Post(s1) with (s′1,s
′
2) ∈ R .

Transition systemsTS1 andTS2 are bisimulation-equivalent (bisimilar, for short) if there
exists a bisimulationR for (TS1,TS2). 2

Bisimulation equivalence denotes the possibility of mutual, stepwise simulation. Bisim-
ulation equivalence preserves all formulae that can be formulated in CTL*, which is strictly
more expressive than LTL [23, p. 469]. This result allows performing model checking on
the bisimulation quotient transition system while preserving both affirmative and negative
outcomes of the model checking.
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As a side note, here the notion of simulation and bisimulation is defined over the state
labels and does not consider the action labels. These notions can be also defined on action
labels rather than state labels. This connection is discussed in [23, Sec. 7.1.2].

3.3 Autonomous Max-Plus-Linear Systems

Recall that the idea of abstraction is to replace a model to beverified by a smaller abstract
model and to verify the latter instead of the original one, where both models are expressed
as transition systems. Let us introduce a transition systemrelated to an autonomous MPL
system.

Definition 3.8 (Transition Systems Associated with Autonomous MPL Systems)Con-
sider an autonomous MPL system (2.1) withX0 as the set of initial conditions and a set of
atomic propositionsAP together with the corresponding labeling functionL. The associated
transition systemTSis a tuple(S,Act,−−→, I ,AP,L) where

• set of statesS is R
n,

• set of actionsAct is {τ},

• there exists a transition relationx τ
−−→ x′ if x′ = A⊗x, and

• set of initial statesI is X0.

In cases where action names are irrelevant, we use a special symbolτ. 2

In this work, we assume the set of states satisfying each atomic proposition is a DBM,
i.e. for eacha∈ AP, the set of states{x : a∈ L(x)} is a DBM. A transition system can be
restricted to a set of states, as defined next.

Definition 3.9 (Restriction of Transition Systems) Consider a transition systemTS=
(S,Act,−−→, I ,AP,L). The restriction ofTSto a nonempty set of statesS′ ⊆ S is defined as
TS′ = (S′,Act′,−−→′, I ′,AP′,L′) with

• set of actionsAct′ = Act,

• transition relation−−→′=−−→∩(S′×Act′×S′),

• set of initial statesI ′ = I ∩S′,

• set of atomic propositionsAP′ = AP, and

• labeling functionL′ = L|S′ .

The notationL|S′ : S′→AP′ describes a restriction of functionL to setS′ defined byL|S′(s′)=
L(s′) for everys′ ∈ S′. 2
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3.3.1 States: Partitioning Procedure

We construct a partition ofSand then the abstraction functionf maps each state in the same
block to a unique abstract state. A partition of a set is a division of the set as a union of
non-overlapping and non-empty subsets, called “blocks” [23, Def. 7.29]. More precisely
we develop an approach to construct a partitionΠ0 of the set of statesS, whereΠ0 is an
AP partition [23, Def. 7.31], each block is a DBM, and the dynamics in each block are
affine. The approach is as follows. We first determine anAPpartition ofS, denoted byΠAP,
where each block is a DBM. Then we determine a partitionΠAD of Swhere each block is a
DBM and the dynamics in each block are affine.3 Finally the partitionΠ0 is defined as the
refinement ofΠAP andΠAD, i.e.RΠ0 = RΠAP ∩RΠAD [23, Rem. 7.30].

The APPartition

We discuss a procedure to generate anAPpartition ofSwhere each block is a DBM. Algo-
rithm 29 in [23] cannot be used because the algorithm requires that the cardinality ofS is
finite. We propose the following approach. First we compute the coarsestAP partition, i.e.
for eacha∈ 2AP we define a block as the inverse image ofa w.r.t. the labeling functionL,
i.e. L−1(a) = {x : L(x) = a} = ∩a∈a{x : a∈ L(x)} \∪a∈2AP\a{x : a∈ L(x)}. Notice that in
general each block is a union of finitely many DBM, since the set difference between two
DBM is a union of finitely many DBM. Finally the coarsestAPpartition is refined such that
each block is a DBM.

Example Suppose thatAP= {a} and the set of states satisfyinga is the following stripe
{x ∈ R

2 : 0 ≤ x1 − x2 < 3}. The coarsestAP partition contains two blocks, i.e.{x : 0 ≤
x1− x2 < 3} and{x : x1− x2 < 0}∪{x : x1− x2 ≥ 3}. Since the latter block is a union of
two DBM, it is refined into two blocks, i.e.{x : x1 − x2 < 0} and{x : x1− x2 ≥ 3}. The
resultingAPpartition contains three blocks, i.e.B1 = {x∈ R

2 : x1−x2 < 0}, B2 = {x∈ R
2 :

0≤ x1−x2 < 3}, andB3 = {x ∈ R
2 : x1−x2 ≥ 3} as shown in Fig. 3.5. The procedure to

construct anAPpartition has not been implemented inVeriSiMPL version 1.4. 2

The AD Partition

We discuss two different approaches to construct a partition of Swhere each block is a DBM
and the dynamics in each block are affine. The first approach generates the partition directly
from the state matrix, whereas the second approach constructs the partition from the regions
of the PWA system generated by the state matrix. By using a tailored refinement procedure,
the second approach leads to a partition that is coarser thanthe one generated by the first
approach (cf. Proposition 3.7).

The First Approach We determine a partition of the state space based on the valueof
A(i, j)+ x j , similar to Section 2.2.4. Given an autonomous MPL system characterized by
a row-finite max-plus matrixA ∈ R

n×n
ε and a genericx ∈ R

n, for notational purposes we
defineWx(i, j) = A(i, j) + x j − [A⊗ x]i . Notice that each element ofWx is nonpositive,

3AD stands for “affine dynamics”; thus,AD does not represent the multiplication of matrixA and matrixD,
unless stated explicitly.
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x1

x2

B2

B1

3

B3

Fig. 3.5: AP partition ofR2 where all blocks are DBM.

depends (given a matrixA) only on x, and that there exists a nonempty set of usual zero
(0) elements in each of its rows. Each region generated by this approach is characterized
by a parameter setf = ( f1, . . . , fn) ∈ (2{1,...,n} \ { /0})n, where fi = { j : Wx(i, j) = 0} = { j :
[A⊗x]i = A(i, j)+x j} for i = 1, . . . ,n. More precisely the region characterized byf, denoted
by Rf , is defined as the set of pointsx ∈ R

n verifying the condition for matrixWx, i.e.
Rf = {x ∈ R

n : Wx(i, j) = 0 iff j ∈ fi for eachi = 1, . . . ,n}.
In order to design a procedure for the proposed approach, we need to characterize each

pointx ∈Rf based on the value ofA(i, j)+x j . For eachi = 1, . . . ,n; j ∈ fi ; and j ′ = 1, . . . ,n;
the following property holds: ifj ′ ∈ fi , thenA(i, j) + x j = A(i, j ′) + x j ′ ; if j ′ /∈ fi , then
A(i, j)+x j > A(i, j ′)+x j ′ . Thus a constructive definition ofRf ⊆ R

n is as follows:

Rf =
n

\

i=1

\

j∈ fi

n
\

j ′=1

{

{x ∈ R
n : A(i, j)+x j = A(i, j ′)+x j ′}, if j ′ ∈ fi ,

{x ∈ R
n : A(i, j)+x j > A(i, j ′)+x j ′}, if j ′ /∈ fi .

(3.1)

Algorithm 3.1 Generation of a partition from a row-finite sta te matrix
Input: A∈ R

n×n
ε , a row-finite max-plus matrix

Output:ΠAD, a partition ofS

initialize ΠAD with the empty set
for all f ∈ (2{1,...,n} \ { /0})n do

generate regionRf according to (3.1)
if Rf is not emptythen

save the region, i.e.ΠAD := ΠAD∪{Rf}
end if

end for

The worst-case complexity of Algorithm 3.1 isO (n3(2n−1)n) [8, p. 3044]. The crucial
observation that allows for an improvement of the complexity is that it is not necessary to
iterate over all possible characterizations off as in Algorithm 3.1. Instead we can apply
the backtracking technique, similar to the one used for Algorithm 2.1. In the backtracking
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2

R({1,2})

R({1,2},{1,2})R({1,2},{2})R({1,2},{1})

R({2})

R({2},{1,2})R({2},{2})R({2},{1})

R({1})

R({1},{1,2})R({1},{2})R({1},{1})

Fig. 3.6: Potential search tree for a 2-dimensional MPL system.

approach, the partial characterizations are( f1, . . . , fk) for k= 1, . . . ,n and the corresponding
region is

R( f1,..., fk) =
k

\

i=1

\

j∈ fi

n
\

j ′=1

{

{x ∈ R
n : A(i, j)+x j = A(i, j ′)+x j ′}, if j ′ ∈ fi ,

{x ∈ R
n : A(i, j)+x j > A(i, j ′)+x j ′}, if j ′ /∈ fi .

Notice that if the region associated with a certain partial characterization( f1, . . . , fk) is
empty, then the regions of the corresponding characterizations( f1, . . . , fn) are also empty,
for all fk+1, . . . , fn. The set of all characterizations can be represented as a potential search
tree. For a 2-dimensional MPL system, the potential search tree is given in Fig. 3.6.

Example Consider the autonomous MPL system in (2.2). The regions generated by the
scheme in Algorithm 3.1 areR({1},{1}) = {x ∈ R

2 : x1 − x2 > 3}, R({1,2},{1}) = {x ∈ R
2 :

x1−x2 = 3}, R({2},{1}) = {x ∈ R
2 : 0 < x1−x2 < 3}, R({2},{1,2}) = {x ∈ R

2 : x1−x2 = 0},
andR({2},{2}) = {x ∈ R

2 : x1−x2 < 0}. The regions are shown in Fig. 3.7 (left).
In VeriSiMPL version 1.4, the procedure to generate anAD partition by using the first

approach (cf. Algorithm 3.1) has been implemented inmpl2pwa part as a function. This
function requires the state matrix (Ampl). This function generates a collection of finitely
many DBM (D,sysD) and the corresponding affine dynamics (A,B). VariablesysD relates
each DBM to the affine dynamics that are active in the DBM. The following MATLAB
script re-calculates the numerical example in the preceding paragraph:

>> Ampl = [2 5;3 3]

>> [A,B,D,sysD] = mpl2pwa part(Ampl) 2

The Second Approach A partition ofScan be also obtained from the regions of the PWA
system generated by the state matrix. The procedure to obtain a partition is not unique: with
focus on memory usage, we propose one that leads to a partition that is coarser than the one
generated by Algorithm 3.1 (cf. Proposition 3.7). Let us start with the following concept.

Definition 3.10 (Adjacent Regions)LetRg andRg′ be regions generated by ann-dimensional
state space matrix. We say that they are adjacent (Rg > Rg′ ) if there exists a singlei ∈
{1, . . . ,n} such thatgi > g′i andg j = g′j for eachj 6= i. 2
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Fig. 3.7: The left and right plots are AD partition of the autonomous MPL system in(2.2)
obtained using the first and second approaches, respectively.

Given a collection of regions generated by the state space matrix using Algorithm 2.1,
the procedure (cf. Algorithm 3.2) works as follows. For eachpair of adjacent regions, their
intersection is combined to the region with higher index.

Algorithm 3.2 Generation of a partition from regions of PWA system
Input: A∈ R

n×n
ε , a row-finite max-plus matrix

Output:ΠAD, a partition ofS

initialize ΠAD with the regions of the PWA system (cf. Algorithm 2.1)
for all Rg,Rg′ ∈ ΠAD do
if Rg > Rg′ then

the intersection is removed from the region with lower index,
i.e.Rg′ := Rg′ \Rg

end if
end for

It has been shown that this procedure generates a partition of S[8, p. 3045]. Proving that
the procedure does not increase the number of regions equates to showing that the set dif-
ference of two adjacent regions is a DBM (cf. Proposition 3.6). The worst-case complexity
of Algorithm 3.2 isO (n2n+1) [8, p. 3045].

Proposition 3.6 ([8, Prop. 3])If Rg > Rg′ , thenRg′ \Rg = Rg′ ∩{x ∈ R
n : A(i,g′i)+ xg′i

>

A(i,gi)+xgi}, which is a DBM. 2

Example Consider the autonomous MPL system in (2.2). The regions generated by the
scheme in Algorithm 3.2 areR′

(1,1) = {x∈R
2 : x1−x2 > 3}, R′

(2,1) = {x∈R
2 : 0< x1−x2 ≤

3}, andR′
(2,2) = {x ∈ R

2 : x1−x2 ≤ 0}. Notice thatR′
(2,2) = R(2,2). The regions are shown

in Fig. 3.7 (right).
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In VeriSiMPL version 1.4, the second approach to generate anAD partition has been
implemented in two functionsmpl2pwa and mpl2pwa refine. Recall that the function
mpl2pwa generates a PWA system from an autonomous MPL system (cf. Section 2.2.4).
The functionmpl2pwa refine refines the PWA regions to obtain a partition. This function
requires a state matrix (Ampl) and the PWA system generated by the state matrix (A,B,D).
This function returns a PWA system (A,B,D) where the PWA regions (D) are a partition of
R

n. The following MATLAB script determines theAD partition of the autonomous MPL
system in (2.2):

>> Ampl = [2 5;3 3]

>> [A,B,D] = mpl2pwa(Ampl)

>> [A,B,D] = mpl2pwa refine(Ampl,A,B,D)

Let us determine the partitionΠ0 of the MPL system (2.2). If we use theΠAD generated
by the first approach,Π0 coincides with theΠAD sinceΠAD is finer thanΠAP. If we use
theΠAD generated by the second approach, one can show thatΠ0 coincides with theΠAD

generated by the first approach.
Finally we define the set of abstract statesŜ, the abstraction functionf , and the labeling

function of the abstract transition systemL f : Ŝ→ 2AP. SinceΠ0 contains 5 blocks,̂S=
{ŝ1, ŝ2, ŝ3, ŝ4, ŝ5}. The abstraction functionf and the labeling functionL f are defined as
follows

f (x) =























ŝ1, if x1−x2 < 0,
ŝ2, if x1−x2 = 0,
ŝ3, if x1−x2 > 3,
ŝ4, if x1−x2 = 3,
ŝ5, if 0 < x1−x2 < 3,

L f (ŝi) =

{

{a}, if i = 2,5,
/0, if i = 1,3,4.

2

The following proposition justifies that the second approach is computationally advan-
tageous, since it generates a coarser partition.

Proposition 3.7The partition generated by the first approach is finer than theone generated
by the second approach. 2

Proof We will prove that each block generated by the second approach is a union of blocks
generated by the first approach [23, p. 476]. Notice that eachblock generated by the second
approach is the set difference between a PWA region and a union of PWA regions (cf.
Algorithm 3.2). Recall that each PWA region is a union of blocks generated by the first
approach, i.e.Rg =

S

f∈F(g) Rf whereF(g) = {f : gi ∈ fi for eachi = 1, . . . ,n} [8, Prop. 2].
It follows that the set difference between a PWA region and a union of PWA regions is also
a union of blocks generated by the first approach, i.e.Rg\

Sq
i=1Rg′i

=
S

f∈F(g)\∪
q
i=1F(g′i)

Rf . 2

3.3.2 Transitions: One-Step Reachability

We investigate a technique to determine the transition relations of the abstract transition
system, that is between two blocks of the partition induced by the abstraction function. The
(concrete) states associated with an abstract state ˆsequals to the inverse image of ˆsw.r.t. the
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abstraction functionf , i.e. f−1(ŝ) = {s : f (s) = ŝ}. Recall thatf−1(ŝ) is a block (or in fact
a DBM) and the dynamics in each block are affine.

If there exists a transition from an outgoing states to an incoming states′ in the con-

crete transition system, i.e.s
γ

−−→ s′, then there is a transition fromf (s) to f (s′) in the

abstract transition system, i.e.f (s)
γ

−−→ f f (s′) [23, Def. 7.51]. Such a transition can be
determined by a forward- or backward-reachability approach. According to the former, we
calculate f−1(ŝ′)∩Post( f−1(ŝ)), whereas if we use the backward approach we compute
f−1(ŝ)∩Pre( f−1(ŝ′)). The nonemptiness of the resulting set characterizes the presence of
a transition from ˆs to ŝ′.

Remark The equivalent terms “image” and “direct successors” are used when the dynam-
ical system is represented as a function and a transition relation, respectively. A similar
argument holds for “inverse image” and “direct predecessors”. 2

In this work we focus on the forward-reachability approach,since it is computationally
more attractive than the backward one. More precisely (cf. Proposition 3.1), since both
approaches leverage the affine dynamics associated with theoutgoing abstract state,4 the
number of direct-successors computations in the forward-reachability approach is linear
w.r.t. the number of abstract states, whereas the number of direct-predecessors computations
in the backward-reachability approach is quadratic w.r.t.the number of abstract states.

With focus on the forward-reachability approach, given an abstract state ˆs we employ
the affine dynamics that are active inf−1(ŝ) to compute the direct successors as

Post( f−1(ŝ)) = {A⊗x : x ∈ f−1(ŝ)}.

Since f−1(ŝ) is a DBM, Post( f−1(ŝ)) is a union of finitely many DBM (cf. page 26). The
complete approach to determine the transitions of the abstract transition system is shown in
Algorithm 3.3, which incurs a worst-case complexity ofO (n3|Ŝ|2) [8, p. 3046].

Example Let us consider a set of initial conditions of the autonomousMPL system in (2.2)
that coincides with the eigenspace, i.e.X0 = {x ∈ R

2 : x1−x2 = 1}. Thus the set of initial
abstract states isI f = {ŝ5} [23, Def. 7.51]. The abstract transition system is shown in Fig.
3.8.

In VeriSiMPL version 1.4, the procedure to determine the transitions of the abstract tran-
sition system has been implemented in the functionts trans. The inputs are a PWA system
(A,B,D,sysD) where the regionsD are a partition of the state space. The output is an adja-
cency matrix that is represented by a sparse Boolean matrix in MATLAB. The entry ati-th
row and j-th column istrue if there is a transition fromj to i, else it is equal tofalse.
The following MATLAB script determines the transitions of the abstract transition system
for the autonomous MPL system in (2.2):

>> Ampl = [2 5;3 3]

>> [A,B,D,sysD] = mpl2pwa part(Ampl)

>> adj = ts trans(A,B,D,sysD)

>> adj([1 3 4 5 2],[1 3 4 5 2])

4The affine dynamics associated with an abstract state ˆs are the ones that are active inf−1(ŝ).
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134 5 2

Fig. 3.8: Abstract transition system where states 1,. . . ,5 represent respectivelŷs1, . . . , ŝ5.
The initial state isŝ5 indicated by an incoming arrow. The grayed statesŝ2, ŝ5

satisfy the atomic proposition a.

Recall that in this example, the initial partitionΠ0 coincides with theAD partition gener-
ated by the first approach. Thus we use the functionmpl2pwa part to generate the initial
partition. However the ordering of regions generated by thefunctionmpl2pwa part and the
one used in the example is different. The last statement is used to re-arrange the ordering of
regions generated by the function such that the ordering coincides with the one used in the
example.

Suppose that we want to verify an invariant condition2a over the abstract transition
system. Recall that invariant condition2a requires thata holds for all reachable states.
According to [23, p. 107], an invariant condition is satisfied by a transition system if and
only if the condition is satisfied by the reachable states. Thus the invariant condition is not
satisfied by the abstract transition system. Recall that this does not imply that the invariant
condition is not satisfied by the concrete transition system. 2

Algorithm 3.3 Computations of the transitions of the abstract transition
system via forward-reachability analysis
Input: Ŝ, a set of abstract states

f : S→ Ŝ, an abstraction function
Output:−−→ f⊆ Ŝ×Act× Ŝ, a transition relation whereAct= {τ} (cf. Definition
3.8 and [23, Def. 7.51])

initialize−−→ f with the empty set
for all ŝ∈ Ŝ do

compute the direct successors of ˆs, i.e.Post( f−1(ŝ))
for all ŝ′ ∈ Ŝ do
if f−1(ŝ′)∩Post( f−1(ŝ)) is not emptythen

define a transition from ˆs to ŝ′, i.e. ŝ
τ

−−→ f ŝ′

end if
end for

end for

3.3.3 Bisimulation-Quotienting Procedure

Having obtained an abstract transition system that simulates the concrete transition system,
it makes sense to attempt deriving an abstract transition system that bisimulates the con-
crete transition system. Theorem 3.2 implies the abstract transition system bisimulates the
concrete transition system if and only if there is one outgoing transition from each abstract
state.
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Theorem 3.2Let TSbe the concrete transition system generated by an autonomous MPL
system andTSf be the abstract transition system induced by an abstractionfunction f :
S→ Ŝ. Binary relationR = {( f (s),s) : s∈ S} is a simulation for(TSf ,TS) if and only if
|Post(ŝ)| = 1 for all ŝ∈ Ŝ. 2

Proof Suppose thatR = {( f (s),s) : s∈ S} is a simulation for(TSf ,TS). Condition 2(b) in
Definition 3.6 means for all(ŝ,s) ∈ R it holds that: ifŝ′ ∈ Post(ŝ), there existss′ ∈ Post(s)
with (ŝ′,s′) ∈ R . If there exists an abstract state ˆssuch that|Post(ŝ)| > 1, then|Post(s)| > 1
for all s that satisfyf (s) = ŝ, which is a contradiction. The contradiction comes from the
fact that|Post(s)| = 1 for all s, because the value ofA⊗x is uniquely defined for allx ∈ R

n

(cf. Definition 3.8). It follows that|Post(ŝ)| = 1 for all abstract states ˆs∈ Ŝ.
We assume|Post(ŝ)|= 1 for all abstract states ˆs∈ Ŝ. Conditions 1 and 2(a) in Definition

3.6 are satisfied becauseR is a simulation for(TS,TSf ). Next we prove that condition
2(b) is also satisfied. Lets∈ S, ŝ= f (s), Post(ŝ) = {ŝ′}, andPost(s) = {s′}. SinceR is a
simulation for(TS,TSf ), then condition 2(b) and the preceding assumption imply(ŝ′,s′) ∈
R . 2

The procedure to generate an abstract transition system that bisimulates the concrete
transition system works as follows. For each abstract stateŝ with more than one outgoing
transition, the corresponding set of statesf−1(ŝ) is refined according to the direct succes-
sors. Then the incoming and outgoing transitions are updated. The preceding steps are
repeated until all abstract states have one outgoing transition.

Let us focus on the refinement step of the procedure. Suppose that an abstract state ˆs
has more than one outgoing transition, i.e.|Post(ŝ)| > 1. The refinement step generates a
partition of f−1(ŝ) according to the direct successors. More precisely for eachŝ′ ∈ Post(ŝ),
we define a block consisting of the set of states such that the direct successor is inf−1(ŝ′),
i.e.{s∈ f−1(ŝ) : f (Post(s)) = ŝ′} = f−1(ŝ)∩Pre( f−1(ŝ′)). Computationally we determine
the inverse image off−1(ŝ′) w.r.t. the affine dynamics that are active inf−1(ŝ), then we
intersect the obtained inverse image withf−1(ŝ). Notice that each block is a DBM since
f−1(ŝ′) is a DBM, the inverse image of a DBM w.r.t. affine dynamics is a DBM, and the
intersection of two DBM is a DBM (cf. Section 3.2.1).

Example Let us apply the procedure to the abstract transition systemin Fig. 3.8. The
set of statesf−1(ŝ5) is partitioned into the following three blocks{x : 0 < x1 − x2 < 2},
{x : x1−x2 = 2}, and{x : 2 < x1−x2 < 3}. After the refinement step, the partitionΠ1 is a
set of 7 blocks.

Next we characterize the abstract transition system associated with the refined partition
Π1. SinceΠ1 contains 7 blocks,̂S′ = {ŝ′1, . . . , ŝ

′
7}. The abstraction functionf ′ and the

labeling functionL f ′ are defined as follows:

f ′(x) =







































ŝ′1, if x1−x2 < 0,
ŝ′2, if x1−x2 = 0,
ŝ′3, if x1−x2 > 3,
ŝ′4, if x1−x2 = 3,
ŝ′5, if 2 < x1−x2 < 3,
ŝ′6, if 0 < x1−x2 < 2,
ŝ′7, if x1−x2 = 2,

L f ′(ŝ
′
i) =

{

{a}, if i = 2,5,6,7,
/0, if i = 1,3,4.
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1
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Fig. 3.9: Abstract transition system where states 1,. . . ,7 represent respectivelŷs′1, . . . , ŝ
′
7.

The initial state isŝ′6 indicated by an incoming arrow. The grayed states
ŝ′2, ŝ

′
5, ŝ

′
6, ŝ

′
7 satisfy the atomic proposition a.

Recall that the set of initial states is{x : x1−x2 = 1}. Thus the set of initial abstract states
is I f ′ = {ŝ′6}. The abstract transition system is depicted in Fig. 3.9 and it bisimulates the
concrete transition system since all abstract states have one outgoing transition (cf. Theorem
3.2).

In VeriSiMPL version 1.4, the partition-refinement procedure has been implemented in
the functionts refine. This function requires the PWA system (A,B,D,sysD) whereD is a
partition ofRn, the adjacency matrix (adj), and finally the upper bound on the number of
blocks of the refined partition. This function generates a collection of regions (D,sysD) and
the corresponding adjacency matrix (adj). Let us re-calculate the numerical example in the
preceding paragraph:

>> Ampl = [2 5;3 3]

>> [A,B,D,sysD] = mpl2pwa part(Ampl)

>> adj = ts trans(A,B,D,sysD)

>> [D,sysD,adj] = ts refine(A,B,D,sysD,adj,1000)

One can see that the ordering of regions generated byts refine and the one used in the
example are the same.

Recall that the invariant condition2a is not satisfied by the abstract transition system
before the refinement (cf. Fig. 3.8). One can check that the invariant condition is satisfied
by the abstract transition system after refinement (cf. Fig.3.9). 2

Unfortunately, such a procedure in general does not necessarily terminate, especially in
the presence of a cycle in the abstract transition system containing an abstract state with
more than one outgoing transition. An upper bound on the number of abstract states can be
used as a stopping criterion. In the remainder of this subsection, sufficient conditions for
the existence of an abstract transition system that bisimulates the concrete transition system
will be discussed.

Proposition 3.8 ([8, Th. 5])Given an irreducible MPL system characterized by matrixA
with cyclicity c. There exists an abstract transition system that bisimulates the concrete
transition system if there exists an abstract transition system that bisimulates the concrete
transition system restricted toE(A⊗c). 2

Proposition 3.9 If the set of states satisfying each atomic proposition is a stripe, there exists
an abstract transition system that bisimulates the concrete transition system generated by a
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two-dimensional irreducible MPL system. 2

Proof Let A denote the system matrix and let the cyclicity bec. We define the concrete tran-
sition system as the transition system associated with the MPL system restricted toE(A⊗c).
We first construct an abstract transition system that bisimulates the concrete transition sys-
tem. Then the claim follows from Proposition 3.8.

Recall that the eigenspace of the irreducible MPL system is amax-plus cone [22, Ths.
3.100 and 3.101]. Proposition 3.3 implies the eigenspace ofa two-dimensional MPL system
is a DBM or in fact a stripe. First we determine the initial partition Π0 of the eigenspace (cf.
Section 3.3.1). The initial partition is defined as the partition (of the eigenspace) generated
by the atomic propositions, i.e.Π0 = ΠAP. In this case, each block is a stripe since the states
satisfying each atomic proposition are a stripe. There is noneed to consider the partition
generated by the affine dynamics since this is a proof and is not going to be implemented.
The periodic behavior of the states in the eigenspace and thefact that each block is a stripe
imply each abstract state has a self loop. From Theorem 3.2, the abstract transition system
bisimulates the concrete transition system. 2

For a higher dimensional irreducible MPL system, the existence of an abstract transi-
tion system that bisimulates the corresponding concrete transition system depends on the
cyclicity of A, as stated in the following result.

Proposition 3.10 Given an irreducible MPL system with state matrixA, if the cyclicity of
A is equal to 1 and the states in the eigenspaceE(A) satisfy the same set of atomic propo-
sitions, then there exists an abstract transition system that bisimulates the corresponding
concrete transition system. 2

Proof We define the concrete transition system as the transition system associated with the
MPL system restricted to the eigenspace. Then we abstract the concrete transition system.
From Theorem 3.2, the abstract transition system bisimulates the concrete transition system.
The conclusion follows from the application of Proposition3.8.

Notice that if the cyclicity ofA is 1 then the eigenspace equals the complete periodic
behaviors, i.e.E(A) = E(A⊗c). Furthermore via [22, Ths. 3.100-3.101] we conclude that
E(A) is a max-plus cone. From Proposition 3.2,E(A) can be expressed as a union of
finitely many stripes that are not necessarily pairwise disjoint: in order to obtain a partition
of E(A) we can employ a generic refinement procedure. In this case, each block of the
partition is a stripe becauseE(A) is a union of finitely many stripes. Since each state in
the eigenspace satisfies the same set of atomic propositions(see the assumption above),
the obtained partition is proposition preserving. There isno need to refine the partition
based on the affine dynamics since this is a proof and is not a procedure that is going to be
implemented. From the periodic behavior of the states in theeigenspace and the fact that
each block is a stripe, each abstract state has a self loop. 2

3.4 Nonautonomous Max-Plus-Linear Systems

We introduce a transition system related to a nonautonomousMPL system. Notice that the
transitions are action abstract in the sense that the transition system does not care which
particular actionu is responsible for the transition of the MPL system.
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Definition 3.11 (Transition Systems Associated with Nonautonomous MPL Systems)
Consider a nonautonomous MPL system (2.3) withX0 as the set of initial conditions,U as
the set of possible inputs, and a set of atomic propositionsAP together with the correspond-
ing labeling functionL. The associated transition systemTSis a tuple(S,Act,−−→, I ,AP,L)
with

• set of statesS= R
n,

• set of actionsAct = {τ},

• there exists a transition relationx τ
−−→ x′ if there exists an inputu ∈ U such that

x′ = A⊗x⊕B⊗u, and

• set of initial statesI = X0.

A special symbolτ is used in cases where action names are irrelevant. 2

The set of states satisfying each atomic proposition is assumed to be a DBM, i.e. for each
a∈AP, the set of states{x : a∈ L(x)} is a DBM. Furthermore the set of allowed inputsU is
also assumed to be a DBM in the input spaceR

m. Practically, this enables expressing upper
or lower bounds on the separation between input events (schedules). If on the other hand
there are no constraints on input events, we defineU = R

m, which is also a DBM.

3.4.1 States: Partitioning Procedure

We construct a partition ofS and then each state in the same block is mapped by the ab-
straction functionf to a unique abstract state. More precisely we develop an approach to
construct a partitionΠ0 of the set of statesS, whereΠ0 is anAP partition [23, Def. 7.31]
and each block is a DBM. The partitionΠ0 is computed by using the procedure to generate
anAPpartition in Section 3.3.1, i.e.Π0 = ΠAP.

Remark Recall that the dynamics that are active in each block of the partitionΠ0 in Section
3.3.1 are affine. This fact is used to simplify the computation of transitions in the abstract
transition system. As it will be clear in Section 3.4.2, in nonautonomous MPL systems, the
computation of transitions in the abstract transition system does not use the dynamics in
each block. 2

Example Suppose thatAP= {a} and the set of states satisfyinga is the following stripe
{x ∈ R

2 : 0≤ x1−x2 < 3}. The resultingAPpartition contains three blocks, i.e.B1 = {x ∈
R

2 : x1 − x2 < 0}, B2 = {x ∈ R
2 : 0 ≤ x1 − x2 < 3}, andB3 = {x ∈ R

2 : x1 − x2 ≥ 3} as
shown in Fig. 3.5.

Let us define the set of abstract statesŜ, the abstraction functionf , and the labeling
function of the abstract transition systemL f : Ŝ→ 2AP. SinceΠ0 = ΠAP contains 3 blocks,
Ŝ= {ŝ1, ŝ2, ŝ3}. The abstraction functionf and the labeling functionL f are defined as
follows

f (x) =







ŝ1, if x1−x2 < 0,
ŝ2, if 0 ≤ x1−x2 < 3,
ŝ3, if x1−x2 ≥ 3,

L f (ŝi) =

{

{a}, if i = 2,
/0, if i = 1,3.

2
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3.4.2 Transitions: One-Step Reachability

We investigate a technique to determine the transition relations of the abstract transition
system, that is between two blocks of the partition induced by the abstraction function. The
(concrete) states associated with an abstract state ˆsequals to the inverse image of ˆsw.r.t. the
abstraction functionf , i.e. f−1(ŝ) = {s : f (s) = ŝ}. Recall thatf−1(ŝ) is a block or in fact
a DBM.

If there exists a transition from an outgoing states to an incoming states′ in the con-

crete transition system, i.e.s
γ

−−→ s′, then there is a transition fromf (s) to f (s′) in the

abstract transition system, i.e.f (s)
γ

−−→ f f (s′) [23, Def. 7.51]. Such a transition can be
determined by a forward- or backward-reachability approach. According to the former, we
calculate f−1(ŝ′)∩Post( f−1(ŝ)), whereas if we use the backward approach we compute
f−1(ŝ)∩Pre( f−1(ŝ′)). The nonemptiness of the resulting set characterizes the presence of
a transition from ˆs to ŝ′.

As in the autonomous case, we focus on the forward-reachability approach, since it
is computationally more attractive than the backward one. Given an abstract state ˆs, we
employ the PWA representation of the augmented matrix to compute the direct successors
as

Post( f−1(ŝ)) = {Ā⊗ x̄ : x̄ ∈ f−1(ŝ)×U },

wheref−1(ŝ)×U denotes the cross product of the setsf−1(ŝ) andU . Sincef−1(ŝ)×U is a
DBM, Post( f−1(ŝ)) is a union of finitely many DBM. The complete approach to determine
the transitions of the abstract transition system is shown in Algorithm 3.3, which incurs a
worst-case complexity ofO ((n+m)3|Ŝ|2qĀ), whereqĀ denotes the number of regions in the
PWA system generated by augmented matrixĀ.

Example Let us considerX0 = {x ∈ R
2 : x1−x2 = 1} as the set of initial conditions of the

nonautonomous MPL system in (2.5). Thus the set of initial abstract states isI f = {ŝ2} [23,
Def. 7.51]. Furthermore the set of possible inputsU = {u ∈ R

2 : 0 < u1− u2 < 2}. The
abstract transition system is shown in Fig. 3.10 (left).

Next we demonstrate the computation of transitions discussed above viaVeriSiMPL ver-
sion 1.4. First we construct anAP partition. The following MATLAB script constructs
anAP partition manually since we have not implemented the procedure to generate anAP
partition inVeriSiMPL version 1.4:

>> D = cell(1,2), D{1} = zeros(3,3,3), D{2} = false(3,3,3)

>> D{1}(:,:,1) = [0 Inf Inf;Inf 0 Inf;Inf 0 0]

>> D{2}(:,:,1) = [true false false;false true false;false false true]

>> D{1}(:,:,2) = [0 Inf Inf;Inf 0 0;Inf 3 0]

>> D{2}(:,:,2) = [true false false;false true true;false false true]

>> D{1}(:,:,3) = [0 Inf Inf;Inf 0 -3;Inf Inf 0]

>> D{2}(:,:,3) = [true false false;false true true;false false true]

Then we construct the PWA system generated by the augmented matrix. This can be done
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Fig. 3.10: The abstract transition system on the left simulates the concrete transition sys-
tem, whereas the abstract transition system on the right bisimulates the concrete
transition system. The initial state is indicated by an incoming arrow. The grayed
states satisfy the atomic proposition a.

by using the functionmpl2pwa (cf. Section 2.2.4):

>> Ampl = [2 5;3 3], Bmpl = [0 -Inf;-Inf 0]

>> [Anon,Bnon,Dnon] = mpl2pwa([Ampl Bmpl])

Finally we determine the transitions. InVeriSiMPL version 1.4, the computation of transi-
tions for nonautonomous MPL systems is performed by the function tsnon trans. This
function requires a partition of the state space (D), PWA system generated by the augmented
matrix (Anon,Bnon,Dnon), and the set of possible inputs (U). This function returns an adja-
cency matrix (adj). The following MATLAB script defines the set of possible inputs and
computes the transitions:

>> U = cell(1,2)

>> U{1} = [0 Inf Inf;Inf 0 0;Inf 2 0]

>> U{2} = [true false false;false true false;false false true]

>> adj = tsnon trans(D,Anon,Bnon,Dnon,U)

Suppose that we want to verify an invariant condition2a over the abstract transition
system. According to [23, p. 107], an invariant condition issatisfied by a transition system
if and only if the condition is satisfied by the reachable states. Notice that the abstract
transition system in Fig. 3.10 can reach state ˆs1 where the propositiona is not satisfied.
Thus the invariant condition is not satisfied by the abstracttransition system. Recall that
this does not imply that the invariant condition is not satisfied by the concrete transition
system. 2

3.4.3 Bisimulation-Quotienting Procedure

Having obtained an abstract transition system that simulates the concrete transition system,
it makes sense to attempt deriving an abstract transition system that bisimulates the concrete
transition system.

Theorem 3.3Let TSbe the concrete transition system generated by a nonautonomous MPL
system andTSf be the abstract transition system induced by an abstractionfunction f : S→
Ŝ. The binary relationR = {( f (s),s) : s∈ S} is a simulation for(TSf ,TS) if and only if
f−1(ŝ) ⊆ Pre( f−1(ŝ′)) for each transition ˆs−−→ f ŝ′. 2
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Proof Notice that conditions 1 and 2(a) in Definition 3.6 are satisfied byR since{(s, f (s)) :
s∈ S} is a simulation for(TS,TSf ). We will show that condition 2(b) is equivalent to
f−1(ŝ) ⊆ Pre( f−1(ŝ′)) for each transition ˆs−−→ f ŝ′.

According to condition 2(b), for all(ŝ,s) ∈ R it holds that: ifŝ′ ∈ Post(ŝ), there exists
s′ ∈ Post(s) with (ŝ′,s′) ∈ R . Equivalently, assuming that there is a transition ˆs−−→ f ŝ′, it
holds that: for alls∈ f−1(ŝ), there existss′ ∈Post(s) with s′ ∈ f−1(ŝ′), i.e.s∈Pre( f−1(ŝ′)).

2

The procedure to generate an abstract transition system that bisimulates the concrete
transition system works as follows. For each transition ˆs−−→ f ŝ′ with f−1(ŝ)\Pre( f−1(ŝ′))
is not empty, the set of statesf−1(ŝ) is refined according toPre( f−1(ŝ′)). Then the incom-
ing and outgoing transitions are updated. The preceding steps are repeated until all transi-
tions satisfy the condition in Theorem 3.3. Unfortunately,such a procedure in general does
not necessarily terminate. As a side note, the procedure to computePre( f−1(ŝ′)) will be
discussed in Section 4.3.

With focus on the refinement step, suppose that there exists atransitionŝ−−→ f ŝ′ such
that f−1(ŝ)\Pre( f−1(ŝ′)) is not empty. The refinement step generates a partition off−1(ŝ)
such that each block is a DBM and each block is either a subset of Pre( f−1(ŝ′)) or not
intersected withPre( f−1(ŝ′)). Our approach is as follows. We first construct a partition of
f−1(ŝ) consisting of two blocks, i.e.f−1(ŝ)∩Pre( f−1(ŝ′)) and f−1(ŝ)\Pre( f−1(ŝ′)). Next
the partition is refined such that each block is a DBM.

Example The abstract transition system in Fig. 3.10 (left) simulates the concrete transition
system since the transition from ˆs2 to ŝ1 does not satisfy the condition in Theorem 3.3. One
can show thatf−1(ŝ2)\Pre( f−1(ŝ1)) = {x ∈ R

2 : 0≤ x1−x2 ≤ 2}.
Let us apply the bisimulation-quotienting procedure to theabstract transition system in

Fig. 3.10 (left). The set of statesf−1(ŝ2) is partitioned into two blocks, i.e.{x : 0≤ x1−x2 ≤
2} and{x : 2 < x1−x2 < 3}. After the refinement step, the partitionΠ1 is a set of 4 blocks.

Next we characterize the abstract transition system associated with the refined partition
Π1. SinceΠ1 contains 4 blocks,̂S′ = {ŝ′1, . . . , ŝ

′
4}. The abstraction functionf ′ and the

labeling functionL f ′ are defined as follows:

f ′(x) =















ŝ′1, if x1−x2 < 0,
ŝ′2, if 0 ≤ x1−x2 ≤ 2,
ŝ′3, if x1−x2 ≥ 3,
ŝ′4, if 2 < x1−x2 < 3,

L f ′(ŝ
′
i) =

{

{a}, if i = 2,4,
/0, if i = 1,3.

Recall that the set of initial states is{x : x1−x2 = 1}. Thus the set of initial abstract states is
I f ′ = {ŝ′2}. The abstract transition system is depicted in Fig. 3.10 (right) and it bisimulates
the concrete transition system since all transitions satisfy the condition in Theorem 3.3.

Let us construct the abstract transition system after the refinement procedure by using
VeriSiMPL version 1.4. The refinement procedure has not been implemented in this version
of VeriSiMPL. The following MATLAB script defines the refined partition manually:

>> D = cell(1,2), D{1} = zeros(3,3,4), D{2} = false(3,3,4)

>> D{1}(:,:,1) = [0 Inf Inf;Inf 0 Inf;Inf 0 0]

>> D{2}(:,:,1) = [true false false;false true false;false false true]
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>> D{1}(:,:,2) = [0 Inf Inf;Inf 0 0;Inf 2 0]

>> D{2}(:,:,2) = [true false false;false true true;false true true]

>> D{1}(:,:,3) = [0 Inf Inf;Inf 0 -3;Inf Inf 0]

>> D{2}(:,:,3) = [true false false;false true true;false false true]

>> D{1}(:,:,4) = [0 Inf Inf;Inf 0 -2;Inf 3 0]

>> D{2}(:,:,4) = [true false false;false true false;false false true]

Then we construct the PWA system generated by the augmented matrix. This can be done
by using the functionmpl2pwa (cf. Section 2.2.4):

>> Ampl = [2 5;3 3], Bmpl = [0 -Inf;-Inf 0]

>> [Anon,Bnon,Dnon] = mpl2pwa([Ampl Bmpl])

Finally we define the set of possible inputs and use the functiontsnon trans (cf. Section
3.4.2) to determine the transitions as follows:

>> U = cell(1,2)

>> U{1} = [0 Inf Inf;Inf 0 0;Inf 2 0]

>> U{2} = [true false false;false true false;false false true]

>> adj = tsnon trans(D,Anon,Bnon,Dnon,U)

Recall that the invariant condition2a is not satisfied by the abstract transition system
before the refinement, cf. Fig. 3.10 (left). One can check that the invariant condition is
satisfied by the abstract transition system after refinement, cf. Fig. 3.10 (right). 2

3.5 Implementation: VeriSiMPL

Most algorithms have been implemented as a MATLAB toolbox, “Verification via biSim-
ulations of MPL models” (VeriSiMPL, as in “very simple”) [5], which is freely available
for download at http://www.sourceforge.net/projects/verisimpl. MPL systems specified in
MATLAB are abstracted to finite-state transition systems. The abstraction procedure runs in
MATLAB and leverages sparse representations, fast manipulations based on vector calcu-
lus, parallel computing toolbox of MATLAB and optimized data structures such as DBM.
The obtained abstraction can be exported to a text file in the PROcess MEta LAnguage
(PROMELA) format. This enables the verification of MPL systems against LTL specifica-
tions within the SPIN model checker [71].

3.6 Computational Benchmark

To the best of the author’s knowledge, there is no tool that can be used to abstract MPL sys-
tems. Thus in order to test the practical efficiency of the proposed algorithms, we compute
the runtime required to perform the abstraction of an MPL system into a finite abstract tran-
sition system, for increasing dimensionsn of the given MPL system. We furthermore keep

http://www.sourceforge.net/projects/verisimpl
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track of the number of states and of transitions of the obtained abstract transition system,
which is directly related to the memory requirement of the technique.

For any givenn, we generate row-finite matricesA with 2 finite elements placed uni-
formly at random in each row, as well as matricesB as column vectors where all elements
are finite. The finite elements are uniformly generated integers taking values between 1 and
100. The set of allowed inputsU is conservatively selected to be equal toR.

The experiments have been run on a 12-core Intel Xeon 3.47 GHzPC with 24 GB of
memory. Over 10 independent experiments, Tables 3.1 and 3.2report the (mean and max-
imum values for the) time needed to construct the abstract transition system, broken down
over the two successive procedures for the generation of theabstract states and the transi-
tions, respectively. The total number of states and of transitions in the abstract transition
system are also reported.

Recall that the first step of the procedure (generation of abstract states) consists of the
partitioning of the state space (Algorithm 3.2) and, for nonautonomous systems, of the con-
struction of a PWA system over the augmented space (Algorithm 2.1), whereas the second
step (generation of transitions) uses forward-reachability analysis to determine transitions
between abstract states.

With regards to autonomous systems, as confirmed by Table 3.1, the bottleneck of the
abstraction procedure resides on the generation of transitions and depends on the number
of partitioning regions that is in the worst case exponential w.r.t. the dimension of the state
space. On the other hand, for nonautonomous systems, as reported in Table 3.2, the com-
putation time for generating the transitions is higher thanin the autonomous case, since the
procedure leverages the PWA system generated by the augmented matrix.

We have also performed similar computations for the case of autonomous systems with
full matricesA (in a max-plus sense), which is likely to generate abstract models with more
states. Elements are again uniformly distributed integerstaking values between 1 and 100.
Analogously to the above results, the bottleneck of the abstraction procedure also resides in
the generation of the transitions. For an 8-dimensional MPLsystem over 10 independent
experiments, the maximum time needed to compute the abstract transition system amounts
to 20.11 minutes, which is made up of 6.90 and 13.21 minutes for generating the partitions
and transitions, respectively.

Remark The abstraction and refinement procedure discussed in this chapter can be also
used for autonomous and nonautonomous Min-Plus-Linear (MiPL) systems. InVeriSiMPL
version 1.4, we have implemented the abstraction procedurefor autonomous and nonau-
tonomous MiPL systems. 2

3.7 Summary

This chapter has introduced a new technique to generate finite abstractions of autonomous
and nonautonomous Max-Plus-Linear (MPL) systems, characterized as finite-state transi-
tion systems. The procedure is based on the partitioning (covering) of the state (input)
space and on the study of the one-step dynamics to relate partitioning regions. The resulting
finite-state abstraction has been shown to either simulate or bisimulate the original MPL
system.



3.7 Summary 51

Table 3.1: Numerical benchmark for autonomous MPL systems.Each entry represents the
mean and maximal values over 10 independent experiments.

size time for time for total total
of MPL generation of generation of number of number of
system abstract states transitions abstract states transitions

3 {0.16;0.23} [sec] {0.47;0.97} [sec] {3.60;6.00} {4.30;13.00}
4 {0.21;0.37} [sec] {0.50;0.89} [sec] {6.20;12.00} {11.40;35.00}
5 {0.26;0.33} [sec] {0.46;1.06} [sec] {8.60;24.00} {13.80;90.00}
6 {0.43;0.51} [sec] {0.47;0.98} [sec] {19.40;36.00} {68.50;191.00}
7 {0.90;1.05} [sec] {0.49;0.91} [sec] {37.20;84.00} {289.30;1278.00}
8 {1.58;1.83} [sec] {0.58;0.97} [sec] {58.00;160.00} {512.30;1927.00}
9 {4.09;4.83} [sec] {0.83;1.44} [sec] {120.00;208.00} {1.75;4.35}×103

10 {9.49;12.85} [sec] {3.14;15.47} [sec] {283.60;768.00} {1.31;8.35}×104

11 {24.85;32.13} [sec] {15.17;46.56} [sec] {613.20;1104.00} {1.87;4.82}×104

12 {1.19;1.94} [min] {1.52;3.61} [min] {1.20;2.03}×103 {4.76;14.08}×104

13 {3.53;5.04} [min] {5.49;15.52} [min] {1.92;3.81}×103 {1.91;8.50}×105

14 {12.03;29.65} [min] {28.21;86.35} [min] {4.16;8.13}×103 {7.83;34.50}×105

15 {53.58;78.31} [min] {1.98;9.45} [hr] {7.42;19.71}×103 {2.05;11.60}×106

Table 3.2: Numerical benchmark for nonautonomous MPL systems. Each entry represents
the mean and maximal values over 10 independent experiments.

size time for time for total total
of MPL generation of generation of number of number of
system abstract states transitions abstract states transitions

3 {0.22;0.29} [sec] {0.52;1.00} [sec] {3.60;6.00} {7.20;16.00}
4 {0.39;0.44} [sec] {0.51;0.99} [sec] {6.20;12.00} {15.30;38.00}
5 {0.88;1.04} [sec] {0.78;1.28} [sec] {8.60;24.00} {21.80;120.00}
6 {2.11;2.63} [sec] {1.84;3.39} [sec] {19.40;36.00} {107.20;364.00}
7 {5.92;8.46} [sec] {8.93;21.63} [sec] {37.20;84.00} {485.00;2520.00}
8 {12.66;18.33} [sec] {30.55;107.43} [sec] {58.00;160.00} {730.30;2578.00}
9 {39.06;55.94} [sec] {5.39;14.71} [min] {120.00;208.00} {2819.40;8742.00}
10 {98.42;141.97} [sec] {43.21;156.55} [min] {206.80;432.00} {6211.60;16996.00}
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The computational complexity of the approach has been fullyquantified and its per-
formance has been tested on a numerical benchmark, which hasdisplayed a bottleneck
that mainly depends on the number of generated partitioningregions. Still, the abstraction
procedure comfortably manages models with reasonable size(15-dimensional, in the au-
tonomous case) and can then be employed to study properties of the original MPL system
in an original manner.



Chapter 4

Reachability Analysis of
Max-Plus-Linear Systems

In this chapter, we discuss a computational approach to reachability analysis of MPL sys-
tems. Given a set of initial states, we characterize and compute its “reach tube,” namely the
collection of set of reachable states (regarded step-wise as “reach sets”). By an alternative
characterization of the MPL dynamics, we show that the exactcomputation of the reach
sets can be performed quickly and compactly by manipulations of DBM, and further derive
worst-case bounds on the complexity of these operations. The approach is also extended to
backward reachability analysis.

4.1 Related Work

Reachability analysis is a fundamental problem in the area of formal methods, systems the-
ory, and performance and dependability analysis. It is concerned with assessing whether a
certain state of a system is attainable from given initial states of the system. The problem is
particularly interesting and compelling over models with continuous components – either in
time or in (state) space. Over the first class of models, reachability has been widely investi-
gated over discrete-space systems, such as with timed automata [16, 25], Petri nets [76, 96],
or hybrid automata [69]. On the other hand, much research hasbeen directed to computa-
tionally push the envelope for reachability analysis of continuous-space models. Among the
many approaches for deterministic dynamical systems, we report here the use of face lifting
[44], the computation of flow-pipes via polyhedral approximations [34], later implemented
in CheckMate [32], the formulation as solution of Hamilton-Jacobi equations [95] (related
to the study of forward and backward reachability [94]), theuse of ellipsoidal techniques
[80], later implemented in [79], the use of differential inclusions [18], and finally the use
of Taylor models [33]. Techniques that have displayed scalability features (albeit at the ex-
pense of precision due to the use of over-approximations) are the use of low-dimensional
polytopes [63] and the computation of reachability using support functions [86].

With regards to MPL systems, reachability analysis from asingle initial condition has
been investigated in [38, 58, 61] by leveraging the computation of the reachability matrix,

53
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which leads to a parallel with reachability for discrete-time linear dynamical systems. It
has been shown in [59, Sec. 4.13] that the reachability problem for autonomous MPL sys-
tems with a single initial condition is decidable – this result does not hold for a general,
uncountable set of initial conditions. Furthermore, the existing literature does not deal with
backward reachability analysis. Under the requirement that the set of initial conditions is
expressed as a max-plus polyhedron [60, 120], forward reachability analysis can be per-
formed over the max-plus algebra. Similar results hold for backward reachability analysis
of autonomous MPL systems, where in addition the system matrix has to be max-plus invert-
ible. Despite the requirements, computationally the approach based on max-plus polyhedra
can be advantageous since its time complexity is polynomial. To the best of the author’s
knowledge, there are no direct approaches for solving the backward reachability problem
of nonautonomous MPL systems in the max-plus algebra. Let usalso mention that reach-
ability analysis has been used to determine a static max-plus linear feedback controller for
a nonautonomous MPL system such that the trajectories lie within a given target tube [13,
Sec. 4.3]. In each event step, the target tube is then defined as a max-plus polyhedron [13,
Eqs. (8) and (11)].

In this chapter we extend the forward and backward reachability computations of MPL
systems by considering an arbitrary set of initial and final conditions, respectively. Further-
more in both cases, the system matrices do not have to be max-plus invertible.

4.2 Forward Reachability Analysis

The goal of forward reachability analysis is to quantify theset of possible states that can be
arrived at under the model dynamics, at a particular event step or over a set of consecutive
events, from a set of initial conditions and possibly under the choice of control actions.
Recall that the state variables in MPL systems define the timeof occurrence of discrete
events (cf. Section 2.1). Two main notions can be introduced.

Definition 4.1 (Reach Set)Given an MPL system and a nonempty set of initial positions
X0 ⊆ R

n, the reach setXN at event stepN > 0 is the set of all states{x(N,x(0)) : x(0)∈ X0}
obtained via the MPL dynamics, possibly by application of any of the allowed controls.2

Definition 4.2 (Reach Tube)Given an MPL system and a nonempty set of initial conditions
X0 ⊆ R

n, the reach tube is defined by the set-valued functionk 7→ Xk for any givenk > 0
whereXk is defined. 2

Unless otherwise stated, in this work we focus onfinite-horizonreachability: in other
words, we compute the reach set for a finite indexN (cf. Definition 4.1) and the reach tube
for k = 1, . . . ,N, whereN < ∞ (cf. Definition 4.2). Thus the reach tube always contains the
reach set. While the reach set can be obtained as a by-productof the (sequential) compu-
tations used to obtain the reach tube, it can be as well calculated by a tailored procedure
(one-shot).

In the computation of the quantities defined above, the set ofinitial conditionsX0 ⊆ R
n

and the set of allowed inputs at each event stepU k ⊆R
m are assumed to be a union of finitely

many DBM and a single DBM, respectively. As it will become clear later, this assumption
will shape the reach setXk at any event stepk > 0 as a union of finitely many DBM. In the
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more general case of arbitrary sets forX0 andU k, these can be over- or under-approximated
by DBM. Notice that MPL dynamics are known to be nonexpansive[68, Lem. 3.10]: thus
if X0 is (overapproximated by) a DBM, possible numerical errors associated with forward-
reachability computations do not accrue [94]. To pin down notations for the complexity
calculations below, we assume thatXk is a union ofqk DBM and in particular that the set of
initial conditionsX0 is a union ofq0 DBM.

4.2.1 Sequential Computation of the Reach Tube

This approach uses the one-step dynamics for autonomous andnonautonomous MPL sys-
tems iteratively. In each step, we make use of the DBM representation and the PWA dy-
namics to compute the successive reach set.

With focus on autonomous MPL systems, given a set of initial conditionsX0, the reach
setXk is recursively defined as the image ofXk−1.

Xk = Im(Xk−1) = {A⊗x : x ∈ Xk−1} = A⊗Xk−1.

In the dynamical systems and automata literature, the mapping Im is also known asPost
[23, Def. 2.3]. From Corollary 3.1, ifXk−1 is a union of finitely many DBM, thenXk is
also a union of finitely many DBM. Then by induction, under theassumption that the set of
initial statesX0 is a union of finitely many DBM, it can be concluded that the reach setXk

is a union of finitely many DBM, for eachk∈ N.
Given a state matrixA and a set of initial conditionsX0, the general procedure for ob-

taining the reach tube works as follows: first, we construct the PWA system generated byA;
then, for eachk = 1, . . . ,N, the reach setXk is obtained by computingIm(Xk−1). The reach
tube is then obtained by aggregating the reach sets.

The worst-case complexity can be assessed as follows. As discussed above, the com-
plexity to characterize the MPL system via PWA dynamics isO (nn+3). Furthermore, the
complexity of computingIm(Xk−1) is O (qk−1nn+3), for k = 1, . . . ,N. This results in an
overall complexity ofO (nn+3∑N−1

k=0 qk). Notice that quantifying the cardinalityqk of the
DBM union at each stepk is not possible in general (cf. benchmark in Section 4.5).

Let us now look at cases where the structure of the MPL dynamics leads to savings
for the computation of the reach tube. Recall that, given anX0 and a finiteN ∈ N, in
order to computeXN, we need to calculateX1, . . . ,XN−1. Whenever the state matrix of an
autonomous MPL system is irreducible, implying the existence of a periodic behavior (cf.
Proposition 2.1), this can be simplified.

Proposition 4.1Let A∈ R
n×n
ε be an irreducible matrix with max-plus eigenvalueλ ∈ R and

cyclicity c∈ N. There exists ak0(X0) such thatXk+c = λ⊗c⊗Xk, for all k≥ k0(X0). 2

Recall thatk0(X0) = maxx∈X0 k0(x) (cf. Definition 2.5). Thus if the state matrix is ir-
reducible, we only need to computeX1, . . . ,Xmin{k0(X0),N} in order to calculateXN, for any
N ∈ N. Furthermore ifX0 is a union of finitely many stripes, theinfinite-horizonreach tube
is also a union of finitely many stripes and can be computed explicitly in finite time, as
elaborated in the following statement.

Proposition 4.2 ([10, Th. 1])Let A∈ R
n×n
ε be an irreducible matrix with cyclicityc∈ N. If

X0 is a union of finitely many stripes,
Sk0(X0)+c−1

i=0 X i =
Sk

i=0X i , for all k ≥ k0(X0)+ c−1.
2
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Example Let us consider the unit square as the set of initial conditionsX0 = {x ∈ R
2 : 0≤

x1 ≤ 1,0≤ x2 ≤ 1} for the autonomous MPL system in (2.2). The reach sets are DBMgiven
by X1 = {x ∈ R

2 : 1≤ x1−x2 ≤ 2,5≤ x1 ≤ 6,3≤ x2 ≤ 4}, X2 = {x ∈ R
2 : 0≤ x1−x2 ≤

1,8≤ x1 ≤ 9,8≤ x2 ≤ 9}, and are shown in Fig. 4.1 (left).
In VeriSiMPL version 1.4, the procedure to determine the reach tube of autonomous MPL

systems has been implemented inmpl reachtube for. The inputs are the PWA system
(A,B,D), the initial states (D0), and the event horizon (N). The initial states are a collection of
finitely many DBM and the event horizon is a natural number. The output is the reach tube
that is represented by 1× (N+1) cell. For each 1≤ i ≤ N+1, thei-th element of the reach
tube (D0N) contains the reach setX i−1, which is a collection of finitely many DBM. The
following MATLAB script re-calculates the numerical example in the preceding paragraph:

>> Ampl = [2 5;3 3], N = 2

>> [A,B,D] = mpl2pwa(Ampl)

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D0{2} = [true true true;true true false;true false true]

>> D0N = mpl reachtube for(A,B,D,D0,N)

The set of initial conditions can also be described as a stripe, for exampleX0 = {x ∈
R

2 : −1≤ x1−x2 ≤ 1}. In this case, the reach sets are stripes given byX1 = {x ∈ R
2 : 1≤

x1−x2 ≤ 2} andX2 = {x ∈ R
2 : 0≤ x1−x2 ≤ 1}. 2

For nonautonomousMPL systems, given a set of initial conditionsX0, the reach setXk

depends on the reach set at event stepk−1 and on the set of inputs at event stepk:

Xk = ¯Im(Xk−1×U k) = {Ā⊗ x̄ : x̄ ∈ Xk−1×U k}.

We can show by induction that the reach setXk is a union of finitely many DBM, for
k∈ N. In the base case (k = 1), sinceX0 is a union of finitely many DBM andU 1 is a DBM,
thenX0×U 1 is a union of finitely many DBM, which implies that its imageX1 is a union
of finitely many DBM (cf. Corollary 3.1). A similar argument holds for the inductive step.

Given a state matrixA, an input matrixB, a set of initial conditionsX0, and a sequence
of sets of inputsU 1, . . . ,UN, the general procedure for obtaining the reach tube works as
follows: first, we construct the PWA system generated byĀ; then for eachk = 1, . . . ,N, the
reach setXk is obtained by computing the image ofXk−1×U k w.r.t. the PWA system.

Let us quantify the complexity of the procedure. Constructing the PWA system can be
done inO ((n+ m)n+3). For eachk = 1, . . . ,N, the complexity of computingXk critically
depends on the image computation and isO (qk−1(n+ m)n+3). The overall complexity is
O ((n+m)n+3∑N−1

k=0 qk).

Example Let us consider the unit square as the set of initial conditionsX0 = {x ∈ R
2 :

0≤ x1 ≤ 1,0≤ x2 ≤ 1} for the nonautonomous MPL system in (2.5). The set of possible
inputs is given byU 1 = {u ∈ R

2 : 4≤ u1 ≤ 5,4≤ u2 ≤ 5} andU 2 = {u ∈ R
2 : 8≤ u1 ≤

9,8≤ u2 ≤ 9}. The reach sets are DBM given byX1 = {x ∈ R
2 : 5≤ x1 ≤ 6,4≤ x2 ≤ 5},

X2 = {x ∈ R
2 : 9≤ x1 ≤ 10,8≤ x2 ≤ 9}, and are shown in Fig. 4.1 (right).
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Fig. 4.1: The left plot represents forward reach tube for theautonomous MPL system in
(2.2) over 2 event steps. The right plot represents forward reach tube for the
nonautonomous MPL system in(2.5) over 2 event steps. The initial states are
denoted byX0. The setsX1 andX2 represent the states reachable in 1 and 2 steps,
respectively.

Let us re-calculates the numerical example in the precedingparagraph by usingVeriSiMPL
version 1.4. First we construct the PWA system generated by the augmented matrix using
the functionmpl2pwa (cf. Section 2.2.4):

>> Ampl = [2 5;3 3]

>> Bmpl = [0 -Inf;-Inf 0]

>> [Anon,Bnon,Dnon] = mpl2pwa([Ampl Bmpl])

Then we define the initial states and the set of possible inputs at the first two steps:

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D0{2} = [true true true;true true false;true false true]

>> U = cell(1,2)

>> U{1} = zeros(3,3,2)

>> U{1}(:,:,1) = [0 5 5;-4 0 Inf;-4 Inf 0]

>> U{1}(:,:,2) = [0 9 9;-8 0 Inf;-8 Inf 0]

>> U{2} = false(3,3,2)

>> U{2}(:,:,1) = [true true true;true true false;true false true]

>> U{2}(:,:,2) = U{2}(:,:,1)

In VeriSiMPL version 1.4, the procedure to compute the reach tube of nonautonomous MPL
systems has been implemented in the functionmplnon reachtube for. The inputs are the
PWA system generated by the augmented matrix (Anon,Bnon,Dnon), the initial states (D0),
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and the set of possible inputs (U). For each stepi, the set of possible inputsU i is the i-
th DBM in U. This function returns the reach tube (D0N). The following MATLAB script
computes the reach tube for 2 event steps:

>> D0N = mplnon reachtube for(Anon,Bnon,Dnon,D0,U) 2

4.2.2 One-Shot Computation of the Reach Set

In this section we design a procedure for computing the reachset for a specific event stepN
using a tailored (one-shot) procedure. Let us focus on autonomous MPL systems: given a
set of initial conditionsX0, we compute the reach set at event stepN using

XN = (Im◦ · · · ◦ Im)(A) = ImN(A) = {A⊗N⊗x : x ∈ X0}.

Using Corollary 3.1, it can be seen that the reach setXN is a union of finitely many
DBM. Given a state matrixA, a set of initial conditionsX0 with X0 being a union of finitely
many DBM, and a finite indexN, the general procedure for obtainingXN is: 1) computing
A⊗N; then 2) constructing the PWA system generated by it; finally3) computing the image
of X0 w.r.t. the obtained PWA system.

The worst-case complexity of computing theN-th max-algebraic power of ann× n
matrix (cf. Section 2.1) isO (⌈log2(N)⌉n3). SinceX0 is in general a union ofq0 DBM, the
overall complexity of the procedure isO (⌈log2(N)⌉n3 + q0nn+3). In comparison with the
complexity for computing theN-step reach tube, which amounted to anO (nn+3∑N−1

k=0 qk),
the one-shot procedure appears to be advantageous. However, notice that the bottleneck
lies on the (exponential) complexity of Algorithm 2.1, which is applied to two different
matrices (A⊗N andA, respectively). Thus while in general comparing the performance of
the sequential and one-shot approaches is difficult, Proposition 4.3 suggests that under some
dynamical assumptions the number of PWA regions generated by A⊗N is higher than that
generated byA.

Proposition 4.3Let Rg andRg′ be regions generated byA ∈ R
n×n
ε . If Im(Rg) ⊆ Rg′ , then

Rg ⊆ Rg′′ for some regionRg′′ generated byA⊗2. 2

Proof In this proof, the coefficientsg,g′,g′′ are treated as functions from{1, . . . ,n} to
{1, . . . ,n}, e.g.g : i 7→ gi , for i = 1, . . . ,n. Recall that the affine dynamics inRg are

xi(k−1) = xg(i)(k−2)+A(i,g(i));

and the ones inRg′ are
xi(k) = xg′(i)(k−1)+A(i,g′(i)).

Hence, the affine dynamics inRg′′ can be formulated as a composition of the affine dynamics
in Rg′ andRg as

xi(k) = xg(g′(i))(k−2)+A(i,g′(i))+A(g′(i),g(g′(i))),

= xg′′(i)(k−2)+A⊗2(i,g′′(i)).

Notice thatg′′ = g◦g′, where◦ denotes the function composition operator. 2
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Of course obtaining a higher number of PWA regions relates toobtaining a reach set
expressed with a higher number of DBM. The result above can begeneralized toA⊗N as
follows. Let Rg(0) , . . . ,Rg(N−1) be regions generated byA. If Imi(Rg(0)) ⊆ Rg(i) , for each
i = 1, . . . ,N−1, then it can be shown by induction that there exists a regionRg(N) generated

by A⊗N, such thatRg(0) ⊆ Rg(N) , whereg(N) = g(0) ◦ · · · ◦g(N−1).

On the side, let us remark that if the MPL dynamics are characterized by an irreducible
matrixA, then the above figures should substitute the quantityN with min{N,k0(A)}.

Implementation In VeriSiMPL version 1.4, the one-shot procedure for autonomous MPL
systems has been implemented in the functionmpl reachset for. The inputs are the state
matrix (Ampl), the initial states (D0), and the event horizon. This function returns the reach
set (DN) as a 1×2 cell: the first element is the set of initial states and the second one is the
reach set at the desired event step. Recall that both the initial states and the reach set are a
collection of finitely many DBM. The following MATLAB scriptcomputes the reach set of
the autonomous MPL system in (2.2) where the initial states are X0 = {x ∈ R

2 : 0≤ x1 ≤
1,0≤ x2 ≤ 1}:

>> Ampl = [2 5;3 3]

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D0{2} = [true true true;true true false;true false true]

>> DN = mpl reachset for(Ampl,D0,2) 2

A similar technique can be applied tononautonomousMPL systems. Given a set of ini-
tial conditionsX0, the reach set at event stepN is computed by using the following formula:

XN = [A⊗N,A⊗(N−1) ⊗B, . . . ,B]⊗ (X0×U 1×·· ·×UN).

From Corollary 3.1, the reach setXN is again a union of finitely many DBM, since
X0×U 1×·· ·×UN is a union of finitely many DBM. Recall thatX0 is a union ofq0 DBM
andU 1, . . . ,UN are DBM.

Given a state matrixA, an input matrixB, a set of initial conditionsX0, a sequence
of sets of inputsU 1, . . . ,UN, the general procedure for obtainingXN is: 1) generating
[A⊗N,A⊗(N−1) ⊗B, . . . ,B]; then 2) constructing the PWA system generated by it; finally
3) computing the image ofX0×U 1×·· ·×UN w.r.t. the PWA system.

Let us determine the complexity of the approach. In order to generate the matrix
[A⊗N,A⊗(N−1) ⊗B, . . . ,B], first we computeA⊗i , for i = 2, . . . ,N; then A⊗i ⊗B, for i =
1, . . . ,N − 1, which leads to a worst-case complexityO (Nn3 + Nn2m). Since the size
of the obtained matrix isn× (n+ mN), the complexity of the second and third steps is
O ((n+ mN)n+3) andO (q0(n+ mN)n+3), respectively. Unfortunately, this approach is not
tractable for problems over long event horizons, since the maximum number of regions of
the PWA system is(n+ mN)n and grows exponentially w.r.t. the event horizonN. In this
instance, using the sequential procedure (cf. Section 4.2.1) can be advantageous.
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4.3 Backward Reachability Analysis

The objective of backward reachability analysis is to determine the set of states that enter
a given set of final conditions, possibly under the choice of control inputs. This setup is of
practical importance, for instance in seeking the set of initial conditions leading to a set of
undesired states for any choice of the inputs, as well as in the transient analysis of irreducible
MPL systems. Similar to the forward instance, two main notions are first introduced.

Definition 4.3 (Backward Reach Set)Given an MPL system and a nonempty set of final
positionsX0 ⊆ R

n, the backward reach setX−N is the set of all statesx(−N) that lead toX0

in N steps of the MPL dynamics, possibly by application of any of the allowed controls.2

Definition 4.4 (Backward Reach Tube)Given an MPL system and a nonempty set of final
positionsX0 ⊆ R

n, the backward reach tube is defined by the set-valued function k 7→ X−k

for any givenk > 0 whereX−k is defined. 2

Similar to the forward reachability instance, the set of final conditionsX0 ⊆ R
n and the

set of control actions at each event stepU−k ⊆ R
m are assumed to be a union of finitely

many DBM and a single DBM, respectively. In particular, we denote byq−k the cardinality
of the set of DBM representingX−k and assume that the set of final conditionsX0 is a union
of q0 DBM.

4.3.1 Sequential Computation of the Backward Reach Tube

Let us focus on autonomous MPL systems: given a set of final conditions X0, for each
k= 1, . . . ,N we determine the states that enterX0 in k event steps by the following recursion:

X−k = Im−1(X−k+1) = {x ∈ R
n : A⊗x ∈ X−k+1}.

The mappingIm−1 is also known in the literature asPre [23, Def. 2.3]. WheneverX0 is a
union of finitely many DBM, by Corollary 3.1 it follows that the backward reach setX−k

is a union of finitely many DBM, for eachk > 0. As in the forward reachability case, the
procedure for obtaining the backward reach tube leverages the dynamics of the PWA system
associated with matrixA and the recursion above.

The complexity of computingIm−1(X−k+1) at anyk∈ {1, . . . ,N} isO (q−k+1nn+3). This
results in an overall worst-case complexity ofO (nn+3∑N

k=1q−k+1), where in general it is not
feasible to precisely quantify the cardinalityq−k+1 of the DBM union set at stepk.

In general, given anX0, in order to calculateX−N, whereN is finite, we have to deter-
mineX−1, . . . ,X−N+1, except if the autonomous MPL system is irreducible. The following
result is directly shown by the definition ofk/0.

Proposition 4.4Let A∈ R
n×n
ε be an irreducible matrix with cyclicityc∈ N. If X0∩E(A⊗c)

is empty,X−k is empty for allk≥ k/0(X0). 2

Recall thatk/0(X0) = maxx∈X0 k/0(x) (cf. Definition 2.5). Notice that ifX0 ∩E(A⊗c) is
empty, from Proposition 4.4,X−k is empty fork≥ k/0(X0). On the other hand ifX0∩E(A⊗c)
is not empty, the backward reach set at or afterk/0(X0) steps depends only onX0∩E(A⊗c),
i.e. it does not depend onX0 \ (X0∩E(A⊗c)). More precisely in the case ofX0∩E(A⊗c) is
not empty andk≥ k/0(X0), we haveImk(X−k) ⊆ X0∩E(A⊗c), thusk0(X−k)≤ k. Recall that
k0(X−k) = maxx∈X−k k0(x) (cf. Definition 2.5).
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Theorem 4.1Let A ∈ R
n×n
ε be an irreducible matrix with max-plus eigenvalueλ ∈ R and

cyclicity c∈ N, thenλ⊗(−c)⊗X−k ⊆ X−k−c, for all k≥ k/0(X0). 2

Proof If X0 ∩E(A⊗c) is empty, the proposition is trivially satisfied (cf. Proposition 4.4).
Next, we assume thatX0∩E(A⊗c) is not empty and thatk≥ k/0(X0).

We will prove that each element ofλ⊗(−c) ⊗ X−k enters the set of final conditions in
k+c steps, i.e.A⊗(k+c)⊗λ⊗(−c)⊗X−k ⊆ X0. Observe that sinceA⊗k0(X−k)⊗X−k ⊆E(A⊗c),
from Proposition 2.1 we conclude thatA⊗(k0(X−k)+c) ⊗ X−k = A⊗k0(X−k) ⊗ X−k⊗λ⊗c. The
preceding observation and the fact thatk0(X−k)≤ k (see the discussion before this theorem)
are used in the following steps:

A⊗(k+c)⊗X−k⊗λ⊗(−c) = A⊗(k−k0(X−k))⊗ (A⊗(k0(X−k)+c)⊗X−k)⊗λ⊗(−c)

= (A⊗(k−k0(X−k))⊗A⊗k0(X−k))⊗X−k

= A⊗k⊗X−k

⊆ X0. 2

Remark Since the result in Theorem 4.1 is not as strong as Proposition 4.1, for backward
reachability we do not obtain a result similar to that in Proposition 4.2. 2

Example Let us consider the unit square as the set of final conditionsX0 = {x ∈ R
2 : 0≤

x1 ≤ 1,0≤ x2 ≤ 1} for the autonomous MPL system in (2.2). The backward reach sets are
the union of finitely many DBM given byX−1 = {x∈R

2 : x1−x2 ≥ 3,x1 =−2}∪{x∈ R
2 :

−3≤ x1 ≤ −2,−5≤ x2 ≤−4}, X−2 = {x ∈ R
2 : x1 ≤−7,−8≤ x2 ≤−7}, and are shown

in Fig. 4.2.
In VeriSiMPL version 1.4, the procedure for computing the backward reachtube of au-

tonomous MPL systems has been implemented in the functionmpl reachtube back. The
inputs are the PWA system (A,B,D), the final states (D0), the event horizon, and the dimen-
sion of the domain of the PWA dynamics. The output is the backward reach tube that is
represented by a 1× (N+1) cell, whereN denotes the event horizon. For each 1≤ i ≤ N+1,
the i-th element of the backward reach tube (DN0) contains the backward reach setX−i+1

which is a collection of finitely many DBM. The following MATLAB script re-computes
the numerical example in the preceding paragraph:

>> Ampl = [2 5;3 3]

>> [A,B,D] = mpl2pwa(Ampl)

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D0{2} = [true true true;true true false;true false true]

>> DN0 = mpl reachtube back(A,B,D,D0,2,size(Ampl,2))

Let us also consider the case of a stripe as the set of final conditions: X0 = {x ∈ R
2 :

−1≤ x1− x2 ≤ 1}. In this case, the backward reach sets are stripes describedby X−1 =
{x ∈ R

2 : x1−x2 ≥ 1} andX−2 = {x ∈ R
2 : x1−x2 ≤ 1}. 2

FornonautonomousMPL systems, given a set of final conditionsX0, the backward reach
setX−k depends on the backward reach set and on the set of inputs at event step−k+1:

X−k = {x ∈ R
n : ∃u ∈ U−k+1 s.t.Ā⊗ [xT,uT ]T ∈ X−k+1}.



62 4 Reachability Analysis of Max-Plus-Linear Systems

−8 −6 −4 −2

−8

−6

−4

−2

X0

X−1

X−2

Fig. 4.2: Backward reach tube for the autonomous MPL system in (2.2)over 2 event steps.
The final states are denoted byX0. The setsX−1 andX−2 represent the states that
reachX0 in 1 and 2 steps, respectively. The down-pointing arrow inX−1 indicates
a half-line: that set can be expressed as a union of two DBM. The rectangle (X−2)
at the bottom left is unbounded in the left direction.

A practical procedure for computing the setX−k is as follows: 1) compute the inverse
image ofX−k+1 w.r.t. the PWA system generated bȳA, i.e.{x̄∈R

n+m : Ā⊗ x̄∈ X−k+1}; then
2) intersect the inverse image withRn×U−k+1; and finally 3) project the intersection over
the state variables. As in the forward reachability case, itcan be shown by using Corollary
3.1 that the backward reach setX−k is a union of finitely many DBM, fork∈ N.

Example Let us consider the unit square as the set of final conditionsX0 = {x ∈ R
2 : 0≤

x1 ≤ 1,0≤ x2 ≤ 1} for the nonautonomous MPL system in (2.5). The set of possible inputs
is given byU 0 = {u ∈ R

2 : 0 ≤ u1 ≤ 1,0 ≤ u2 ≤ 1} andU−1 = {u ∈ R
2 : −4 ≤ u1 ≤

−3,−4≤ u2 ≤ −3}. The backward reach sets are DBM given byX−1 = {x ∈ R
2 : x1 ≤

−2,x2 ≤−4}, X−2 = {x ∈ R
2 : x1 ≤−7,x2 ≤−7}.

In VeriSiMPL version 1.4, the procedure to compute the backward reach tube of nonau-
tonomous MPL systems has been implemented in the functionmplnon reachtube back.
The inputs are the PWA system generated by the augmented matrix (Anon,Bnon,Dnon), the
final states (D0), and the set of possible inputs (U). For each stepi, the set of possible inputs
U−i+1 is the i-th DBM in U. The output is the backward reach tube (DN0). The following
MATLAB script re-calculates the numerical example in the preceding paragraph:

>> Ampl = [2 5;3 3], Bmpl = [0 -Inf;-Inf 0]

>> [Anon,Bnon,Dnon] = mpl2pwa([Ampl Bmpl])

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D0{2} = [true true true;true true false;true false true]

>> U = cell(1,2)
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>> U{1} = zeros(3,3,2)

>> U{1}(:,:,1) = [0 1 1;0 0 Inf;0 Inf 0]

>> U{1}(:,:,2) = [0 -3 -3;4 0 Inf;4 Inf 0]

>> U{2} = false(3,3,2)

>> U{2}(:,:,1) = [true true true;true true false;true false true]

>> U{2}(:,:,2) = U{2}(:,:,1)

>> DN0 = mplnon reachtube back(Anon,Bnon,Dnon,D0,U) 2

4.3.2 One-Shot Computation of the Backward Reach Set

With focus on autonomous MPL systems, given a state matrixA, a set of final conditions
X0 and a finite indexN, the states that are able to enterX0 in N event steps are obtained
similarly to those for the forward reachability case:

X−N = {x ∈ R
n : A⊗N ⊗x ∈ X0}.

Further, by Corollary 3.1 it can be seen that the backward reach setX−N is a union of
finitely many DBM. Notice that because the complexity of computing the image and inverse
image w.r.t. the MPL dynamics is the same (cf. Section 3.2.1), since the complexity of the
approach critically depends on this operation, the overallcomplexity associated with the
one-shot computation of the backward reach set amounts to that for the forward instance.

Implementation In VeriSiMPL version 1.4, the one-shot procedure for computing the
backward reach set of autonomous MPL systems has been implemented in the function
mpl reachset back. The inputs are the state matrix (Ampl), the final states (D0), and the
event horizon. The output variableD N is a 1× 2 cell: the first element is the set of final
states and the second one is the backward reach set at the desired event step. Recall that
both the final states and the backward reach set are a collection of finitely many DBM.
The following MATLAB script computes the backward reach setof the autonomous MPL
system in (2.2) where the final states areX0 = {x ∈ R

2 : 0≤ x1 ≤ 1,0≤ x2 ≤ 1}:

>> Ampl = [2 5;3 3]

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf 0]

>> D0{2} = [true true true;true true false;true false true]

>> D N = mpl reachset back(Ampl,D0,2) 2

For nonautonomousMPL systems, given a set of final conditionsX0, the states that are
able to enterX0 in N event steps are computed by using the following formula:

X−N = {x(−N) ∈ R
n : ∃u(−N+1) ∈ U−N+1, . . . ,u(0) ∈ U 0 s.t.x(0) ∈ X0}.

Given a state matrixA, an input matrixB, a set of final conditionsX0 that is a union of
finitely many DBM, a sequence of sets of inputsU 0, . . . ,U−N+1, the general procedure for
obtainingX−N is: 1) generating[A⊗N,A⊗(N−1) ⊗B, . . . ,B]; then 2) constructing the PWA
system generated by it; 3) computing the inverse image ofX0 w.r.t. the PWA system; 4)
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intersecting the inverse image withRn ×U−N+1 × ·· · ×U 0; and finally 5) projecting the
intersection w.r.t. the state variables. The backward reach setX−N is a union of finitely many
DBM. The complexity of the approach is the same as the corresponding for the forward case.

4.4 Applications

4.4.1 Safety Analysis

We consider the following safety problem (or in fact invariance): given an unsafe set, de-
termine whether the states of an MPL system starting from a given initial set enter the
unsafe set during the event intervalk = 0, . . . ,N. This problem can be solved either by using
forward- or backward-reachability analysis.

With focus on the forward-reachability analysis, we check whether the intersection of
theN-step forward reach tube and the unsafe set is empty. The system is safe if and only if
the intersection is empty.

With regards to the backward-reachability analysis, we compute theN-step backward
reach tube, where the unsafe set is tagged as the set of final conditions, and then checking
whether the intersection of the backward reach tube and the set of initial conditions is empty.
If the intersection is empty, the system is deemed to be safe.If instead the system is not safe
(namely, if the intersection is not empty), then the obtained intersection denotes the subset
of the set of initial conditions leading to “unsafe dynamics.”

Example Considering the autonomous MPL system in (2.2), suppose that there is a re-
quirement on the departure times at station 2 to be at least three time units before those
at station 1 and at most the same times as those at station 1. The safe set corresponds to
X = {x∈ R

2 : 0≤ x1−x2 < 3}. The unsafe set is defined as the complement of the safe set,
i.e.R2 \X = {x ∈ R

2 : x1−x2 < 0}∪{x ∈ R
2 : x1−x2 ≥ 3}. Let us consider initial states

of the MPL system that coincides with the safe set, i.e.X0 = X .
By forward reachability computation, we obtain thatX1 = {x ∈ R

2 : −1 < x1−x2 ≤ 2}
and thatXk = {x∈R

2 : 0≤ x1−x2 ≤ 2} for k= 2, . . . (cf. Proposition 4.2). Thus the system
is not safe. By backward reachability computation, we obtain thatX−1 = {x∈R

2 : x1−x2 >
2} and thatX−k = /0 for k = 2, . . . (cf. Proposition 4.4). Thus the subset of the initial states
leading to the unsafe set is{x ∈ R

2 : 2 < x1−x2 < 3}. 2

4.4.2 Transient Analysis

Classical results in the literature on transient analysis of MPL systems can be enhanced
by computing a partition ofRn based on the length of the transient partk0 via backward
reachability analysis, as described next. First the set of final conditionsX ′0 is defined as the
complete set of periodic behaviorsE(A⊗c) = {x ∈ R

n : k0(x) = 0}. The eigenspaceE(A⊗c)
is a union of finitely many DBM, sinceE(A⊗c) [22, Sec. 3.7.2] is a max-plus cone and each
max-plus cone can be expressed as a union of finitely many DBM (cf. Proposition 3.2).
Then for eachk∈ N, the backward reach set is obtained by

X ′−k =

{

Im−1(X ′0)\X
′
0, if k = 1,

Im−1(X ′−k+1), if k > 1.
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x1

x2k0 = 1

k0 = 2k0 = 0

2

Fig. 4.3: Partition ofR2 for the MPL system in(2.2)based on the length of transient part
k0.

Notice that the complete periodic behavior is a subset of itsinverse image, i.e.E(A⊗c)⊆
Im−1(E(A⊗c)). Further one can see thatX ′−k = {x ∈ R

n : k0(x) = k}, for eachk∈ N∪{0}.
The procedure is finite in time, sinceX ′1 ∩E(A⊗c) is empty (cf. Proposition 4.4). More
precisely,X ′−k is empty fork≥ k/0(X

′
1)+1.

Example Let us demonstrate the procedure on the autonomous MPL system (2.2). Re-
call that the states associated withk0 = 0 encompass the complete periodic behaviorX ′0 =
E(A⊗c) = {x ∈ R

2 : 0 ≤ x1 − x2 ≤ 2}. By using the procedure, the states corresponding
to k0 = 1 are given byX ′1 = {x ∈ R

2 : x1− x2 ≤ 2} \ {x ∈ R
2 : 0 ≤ x1 − x2 ≤ 2} = {x ∈

R
2 : x1− x2 < 0}. Finally the set of states such thatk0 = 2 can be computed by using the

backward reachability analysis, which yieldsX ′2 = {x ∈ R
2 : x1− x2 > 2}. The graphical

representation of the state space partition is shown in Fig.4.3. 2

4.5 Numerical Benchmark

4.5.1 Implementation and Setup of the Benchmark

We have implemented the technique for forward and backward reachability computations on
MPL systems in theVeriSiMPL (“very simple”) software toolbox, which is freely available
at [5].

In order to test the practical efficiency of the proposed algorithms we compute the run-
time needed to determine the reach tube of an autonomous MPL system, for event horizon
N = 10 and an increasing dimensionn of the MPL system. The experiments reported here
have been run on a 12-core Intel Xeon 3.47 GHz PC with 24 GB of memory. We also
keep track of the number of regions of the PWA system generated from the MPL system.
For any givenn, we generate matricesA with 2 finite elements (in a max-plus sense) that
are randomly placed in each row. The finite elements are randomly generated integers be-
tween 1 and 100. The test over a number of randomly generated dynamics goes against
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Fig. 4.4: Time needed to generate reach tube of autonomous MPL systems for different mod-
els size and event horizons.

biasing the experimental outcomes and allows claiming the applicability of our technique
over general MPL systems. The set of initial conditions is selected as the unit hypercube,
i.e.{x ∈ R

n : 0≤ x1 ≤ 1, . . . ,0≤ xn ≤ 1}.
Over 10 independent experiments, Table 4.1 reports the average time needed to gener-

ate the PWA system and to compute the reach tube, as well as thecorresponding average
number of regions. As confirmed by Table 4.1, the time needed to compute the reach tube
is monotonically increasing w.r.t. the dimension of the MPLsystem (as we commented pre-
viously this is not the case for the cardinality of the DBM union in the reach sets, which
hinges on the specific dynamics of the MPL systems). For a fixedmodel size and dynamics,
the growth of the computation time for forward reachabilityis linear with the event horizon
as also shown in Fig. 4.4. We have also performed reachability computations for the case of
the set of initial conditions described as a stripe, which has led to results that are quite ana-
logue to those in Table 4.1. Further, the nonautonomous and backward-reachability cases
can be handled similarly.

4.5.2 Comparison with an Alternative Computation

To the best of the author’s knowledge, there does not exist any generally valid approach
for forward reachability computation over MPL systems. This problem can be only al-
ternatively assessed by leveraging the PWA characterization of the model dynamics (cf.
Section 2.2.4). Forward reachability analysis of PWA systems can be best computed by the
Multi-Parametric Toolbox (MPT, version 2.01) [82]. However, the toolbox has some im-
plementation requirements: the state space matrixA has to be invertible – this is in general
not the case for MPL systems; the reach setsXk have to be bounded – in our case the reach
sets can be unbounded, particularly when expressed as stripes; further, MPT deals only with

1When we did the comparison, MPT version 3.0 [70] was not released yet.
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Table 4.1: Numerical benchmark, autonomous MPL system: computation of the reach tube
(average over 10 experiments)

size generation number of generation number of
of MPL time for regions of time for DBM of
system PWA system PWA system reach tube X10 (q10)

3 0.09 [sec] 5.80 0.09 [sec] 4.20
4 0.09 [sec] 12.00 0.13 [sec] 6.10
5 0.14 [sec] 22.90 0.20 [sec] 6.10
6 0.25 [sec] 42.00 0.25 [sec] 3.40
7 0.52 [sec] 89.60 0.72 [sec] 13.40
8 0.91 [sec] 145.00 0.73 [sec] 3.20
9 2.24 [sec] 340.80 2.25 [sec] 4.10
10 4.73 [sec] 700.80 8.23 [sec] 12.30
11 10.42 [sec] 1.44×103 15.49 [sec] 3.20
12 20.67 [sec] 2.87×103 117.98 [sec] 25.60
13 46.70 [sec] 5.06×103 5.27 [min] 16.90
14 82.94 [sec] 9.28×103 15.80 [min] 59.90
15 3.48 [min] 2.01×104 25.76 [min] 10.10
16 7.90 [min] 4.91×104 84.79 [min] 23.50
17 15.45 [min] 9.07×104 3.17 [hr] 68.70
18 29.13 [min] 1.58×105 5.82 [hr] 21.00
19 67.07 [min] 3.48×105 7.13 [hr] 5.00

Table 4.2: Time needed to generate the reach tube of a 10-dimensional autonomous MPL
system for different event horizons (average over 10 experiments)

event horizon 20 40 60 80 100
VeriSiMPL 11.02 [sec] 17.94 [sec] 37.40 [sec] 51.21 [sec] 64.59 [sec]
MPT 47.61 [min] 1.19 [hr] 2.32 [hr] 3.03 [hr] 3.73 [hr]

full-dimensional polytopes – whereas the reach sets of interest may not necessarily be so; fi-
nally, MPT handles convex regions and over-approximates the reach setsXk when necessary
– our approach computes instead the reach sets exactly.

We have been concerned with benchmarking the proposed reachability computations
with the described alternative. For the sake of comparison,we have constructed artificial
examples (with invertible dynamics) and run both procedures in parallel, with focus on
computation time rather than the obtained reach tubes. MPT can handle, in a reasonable
time frame, models with dimension up to 10: in this instance (as well as lower-dimensional
ones) our approach performs better (cf. Table 4.2). Notice that this is despite MPT being
implemented as object code in theC language, whereasVeriSiMPL runs as interpreted code
in MATLAB: this leaves quite some margin of improvement to our techniques and software.
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4.6 Summary

This chapter has discussed a new computational technique for reachability analysis of max-
plus-linear systems, which in essence amounts to exact and fast manipulations of difference-
bound matrices through piecewise affine dynamics. The discussed procedure scales over
20-dimensional models thanks to a space partitioning approach that is adapted to the under-
lying model dynamics, as well as to a compact representationand fast manipulation of the
quantities that come into play.



Chapter 5

Verification of Properties for
Network Calculus Elements via
Finite Abstractions

In this chapter we develop a framework for formal verification of properties for network
calculus elements. Specifically, we leverage abstraction techniques developed in Chapter 3
to determine an upper bound on the backlog and virtual delay in a network. Suppose that we
want to verify whether the backlog of a network is bounded byB′

max. Our approach works
as follows. Initially we discretize the arrival and servicecurves with a period sufficiently
small to capture the required details. More precisely the period is selected to be less than
or equal to the sampling interval of all devices in the network. If the period is too large, we
may lose some accuracy in measuring the backlog and virtual delay. We then characterize
the dynamics as a switching MiPL system under some mild assumptions. Next we construct
an abstract transition system based onB′

max. If the LTL formula representing the backlog
is bounded byB′

max is verified, the backlog of the switching MiPL system is also bounded
by B′

max. However, if the LTL formula is not verified, the backlog of the switching MiPL
system may still be bounded byB′

max. A similar approach can be used to verify the virtual
delay bound of a network.

5.1 Related Work

Our main contribution is to bridge the modeling framework ofnetwork calculus to the world
of formal verification and synthesis. In order to do this we heavily rely on research already
available in the area of formal methods applied to PWA systems. This is an area that has
been quite active in the past decade providing abstractionssatisfying approximate simula-
tions [102], control synthesis methods [19, 118], analysisof stabilizability problems [93],
or verification of general LTL formulae [117, 119]. In this work we decide to rely (with
small modifications) on the work from Chapter 3, instead of other available options, for two
reasons: it produces exact simulations relations; and produces formula-free abstractions,
which allow for the modularity we look for in order to enable the joint analysis of control

69
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systems and communication networks. Thus, this work shouldbe seen as a stepping stone
towards the analysis of more complex problems involving networked control systems.

5.2 Network Calculus

In network calculus, a data flow is described by means of a cumulative functionR, defined
as the number of bits seen in time interval[0,t]. By convention, we assume that all flows
are causal (i.e.R(0) = 0), unless otherwise specified.

An arrival curve specifies the maximum amount of arrivals allowed in a given time
interval.

Definition 5.1 (Arrival Curve [85, Def. 1.2.1])A flow R is said to be upper-constrained by
an arrival curveα iff α is a non-negative wide-sense increasing function such that:

R(t)−R(s) ≤ α(t −s) ∀0≤ s≤ t.

A function f is wide-sense increasing ifff (s) ≤ f (t) for all s≤ t. 2

In communication networks, an element that forces a flow to conform to a certain arrival
curve is called a shaper. An element that only checks whetherthe input conforms to an
arrival curve without affecting the flow is called a policer.One of the most widely used
classes of arrival curves is the class of affine arrival curves, defined byαr,b(t) = rt + b for
t > 0 and 0 otherwise. The parametersr andb are called rate and burstiness, respectively.
Affine arrival curves are physically realizable by leaky buckets [29].

Service guarantees provided by servers to their input flows are characterized in network
calculus by service curves. Servers can abstract physical network elements such as links,
routers, and schedulers.

Definition 5.2 (Service Curve [85, Def. 1.3.1])A system offers a service curveβ iff β is a
non-negative wide-sense increasing function withβ(0) = 0 and

R∗(t) ≥ inf
0≤s≤t

{R(s)+ β(t−s)} ∀t ≥ 0, (5.1)

whereR andR∗ are input and output flows, respectively. 2

One of the most widely used classes of service curves is the class of latency-rate service
curves, defined byβc,d(t) = c(t −d) for t > d and 0 otherwise. The parametersc andd are
called rate and delay, respectively. The latency-rate server1 is equivalent to concatenating
a maximum-delay server and a guaranteed-rate server in series. A maximum-delay server
is characterized byβd(t) = +∞ for t > d and 0 otherwise. A guaranteed-rate server is
characterized byβc(t) = ct for t > 0 and 0 otherwise.

The two most important properties that need to be analyzed ina communication network
are the backlog and the virtual delay.

Definition 5.3 (Backlog [85, Def. 1.1.1])The backlog at timet is the amount of data held
inside the system, computed as:B(t) = R(t)−R∗(t). 2

1Service guarantees provided by the latency-rate server arecharacterized by a latency-rate service curve.
Similar explanations hold for maximum-delay and guaranteed-rate servers.
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Fig. 5.1: Graphical representation of the arrival curveα and service curveβ. The dotted
line represents the maximum vertical distance betweenα andβ. The dashed line
represents the maximum horizontal distance betweenα andβ.

Definition 5.4 (Virtual Delay [85, Def. 1.1.1]) The virtual delay at timet is the time spent
inside the system by an arrival at timet if only earlier arrivals were processed before it, and
is computed as:d(t) = inf{τ ≥ 0 : R(t) ≤ R∗(t + τ)}. 2

The backlog is bounded by

Bmax= sup
s≥0

{α(s)−β(s)},

which is the maximum vertical distance betweenα andβ [85, Th. 1.4.1]. Correspondingly,
the virtual delay is bounded by

Dmax= sup
s≥0

{inf{τ ≥ 0 : α(s) ≤ β(s+ τ)}},

which is the maximum horizontal distance betweenα andβ [85, Th. 1.4.2]. In a commu-
nication network where servers use a first-in-first-out servicing policy, one can identify the
virtual delay with the actual delay that packets experience.

Example Consider a latency-rate server with delayd = 1 and ratec = 5. We assume that
the input flow is constrained by an affine arrival curve with burstinessb = 3 and rater = 2.
The graphical representation of the arrival and service curves is depicted in Fig. 5.1. One
can see that the maximum backlogBmax is 5 and the maximum virtual delayDmax is 8/5.2

5.3 Min-Plus State-Space Formulation

We consider a single server and a policer that checks whetherthe input flow conforms with
an affine arrival curve (cf. Fig. 5.2). The servers considered are characterized by latency-
rate service curves. We consider worst-case scenarios by forcing the inequality in (5.1) to
be an equality.
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Fig. 5.2: Block diagram of the network calculus elements.

Remark A common approach in network calculus is using a shaper to guarantee that the
flow entering a server conforms with a certain arrival curve.On the other hand, in this thesis
we use a policer that checks whether the input conforms to an arrival curve without affecting
the flow. Equivalently, the flow entering a server is not required to conform with a certain
arrival curve. 2

Recall that a latency-rate server is equivalent to concatenating a maximum-delay server
and a guaranteed-rate server in series (cf. Section 5.2). Without loss of generality, we as-
sume that the output of a maximum-delay server is fed to a guaranteed-rate server (cf. Fig.
5.2).

A discrete-time maximum-delay server is characterized by the service curve

βd(k) =

{

+∞, if k > d,
0, if k≤ d.

It delays the inputd time units. The dynamics of the maximum-delay server isy(k) =
u(k−d), which can be written as a set of first-order recurrence relations (2.7) by introducing
auxiliary variables

x1(k) = u(k),
xi(k) = xi−1(k−1), i = 2, . . . ,d,
y′(k) = xd(k−1).

For a discrete-time guaranteed-rate server, the service curve is

βc(k) =

{

ck, if k > 0,
0, if k≤ 0.

At each time step, if the current backlog is greater thanc, then the server dispatchesc data
units, otherwise the server will dispatch all of them. The dynamics can be represented by a
single statexd+1 representing the amount of dispatched data:

xd+1(k) = c⊗xd+1(k−1)⊕′u′(k),
y(k) = xd+1(k).
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The discrete-time service curve of a latency-rate server is

βc,d(k) =

{

c(k−d), if k > d,
0, if k≤ d.

First, the server delays the inputd time units, then the server dispatches them at mostc data
units at each time step. Since the output of a maximum-delay server is fed to a guaranteed-
rate server, we haveu′(k) = y′(k) (cf. Fig. 5.2). The states of the latency-rate server are
defined as the states of both servers, i.e.x1, . . . ,xd+1. The corresponding dynamics are

x1(k) = u(k),
xi(k) = xi−1(k−1), i = 2, . . . ,d,

xd+1(k) = xd(k−1)⊕′ c⊗xd+1(k−1),
y(k) = xd+1(k).

(5.2)

To characterize the incoming traffic, we employ affine arrival curves. Conformance to
such curves can be checked by using a policer in the form of a leaky bucket [29, p. 4]. A
discrete-time leaky bucket is composed of a token buffer (bucket) with a token generation
rater and a buffer sizeb. If the buffer is not full,r tokens are leaked into the buffer every
time. When data arrives, enough tokens must be available in the buffer in order to allow
the data to move forward. If the amount of data arrivals is greater than the amount of
tokens in the buffer, a traffic violation is detected and the flow is considered non-conformant.
Based on this description, one can represent the content of the bucket by some stateh. The
trajectoryh(k) thus obeys the following:

h(k) = min{h(k−1)+ r −a(k),b} h(0) = b, (5.3)

wherea(k) = u(k)−u(k−1) is the number of data arrivals at timek and initially the buffer is
assumed to be full. As a result, the conformance checking by aleaky bucket is transformed
to observing whetherh(k) ≥ 0 holds for allk ∈ Z or not. The conditionh(k) ≥ 0 for all
k∈Z means that the amount of data arrivals is smaller than or equal to the amount of tokens
in the buffer at each time step.

The dynamics (5.3) can be expressed as an MiPL system, by letting xd+2(k) = h(k)+
u(k):

xd+2(k) = r ⊗xd+2(k−1)⊕′ b⊗u(k). (5.4)

Thus, the conformance condition becomesxd+2(k)−x1(k) ≥ 0 for all k∈ Z.
The following non-autonomous MiPL system represents the combined dynamics of the

server (5.2) and conformance checker (5.4):

x1(k) = u(k),
xi(k) = xi−1(k−1), i = 2, . . . ,d,

xd+1(k) = xd(k−1)⊕′ c⊗xd+1(k−1),
xd+2(k) = r ⊗xd+2(k−1)⊕′b⊗u(k).

(5.5)

Recall thatx1(k) = u(k) and the other state variablesx2(k), . . . ,xd(k) are used as memory
for the maximum-delay server, i.e.u(k−1), . . . ,u(k−d+ 1). The variablexd+1 is used to
represent the amount of dispatched data.
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The non-autonomous MiPL system (5.5) generates many more trajectories than the net-
work elements in Fig. 5.2 can actually generate. One of the reasons for this sort of conser-
vatism is that the current inputu(k) in (5.5) is not necessarily greater than or equal to the
previous inputu(k−1) for all k, whereas the input flow is a wide-sense increasing func-
tion (cf. Definition 5.1). In order to mitigate this issue, weassume that the amount of data
arrivals at each time takes values in a set of finitely many nonnegative real numbers, i.e.
u(k)−u(k−1)∈ {a(1), . . . ,a(nm)}. Thus the input can be defined explicitly as

x1(k) = u(k) = a(ℓ(k))⊗x1(k−1),

where the modeℓ(k)∈{1, . . . ,nm} characterizes the amount of data arrivals at time stepk. In
this case the mode that is active at each step is chosen in a purely nondeterministic fashion,
i.e. the outcome is not known a priori. It follows that the dynamics can be formulated as an
autonomous switching MiPL system where the state matrix at modeℓ(k) is given by

A(ℓ(k)) =





























a(ℓ(k)) +∞ +∞ · · · +∞ +∞ +∞
0 +∞ +∞ · · · +∞ +∞ +∞

+∞ 0 +∞ · · · +∞ +∞ +∞
...

.. .
. . .

. . .
...

...
...

+∞ +∞ +∞
. . . +∞ +∞ +∞

+∞ +∞ +∞
. . . 0 c +∞

a(ℓ(k)) +b +∞ +∞ · · · +∞ +∞ r





























.

We assume initially the backlog is zero and the bucket of the policer is full. In the
switching MiPL system, the initial conditions are characterized byX0 = {x ∈ R

d+2 : x1 =
xd+1,xd+2−x1 = b}, which is equivalent to{x ∈ R

d+2 : x1 = · · · = xd+1,xd+2−x1 = b} as
shown in Proposition 5.1. Notice that the set of initial states is a DBM (cf. Definition 3.1).

Proposition 5.1Let us consider a latency-rate server and an affine arrival curve character-
ized byβc,d andαr,b, respectively. The following states

{x ∈ R
d+2 : x1 = · · · = xd+1,xd+2−x1 = b}

characterize that the backlog is zero and the bucket of the policer is full. 2

Proof Recall the condition that the backlog is zero and the bucket of the policer is full is
represented by{x∈R

d+2 : x1 = xd+1,xd+2−x1 = b}. Sincex2, . . . ,xd are delayed inputs, we
havex1 ≥ ·· · ≥ xd, which impliesxd ≤ xd+1. Notice thatxd denotes the amount of data that
has been in the system for at leastd time units. Thenxd+1 represents the amount of data that
has been dispatched. The conditionxd < xd+1 represents that the server was dispatching data
that has been in the system for less thand time units. This condition violates the expected
operation of the server since the data can only be dispatchedafter staying in the system for
at leastd time units. Thus we havexd = xd+1, which impliesx1 = · · · = xd+1. 2

Example Let us illustrate the approach discussed in this section on asimple example.
Suppose that the latency-rate server is characterized by delay d = 1 and ratec = 5. The
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input flow is constrained by an affine arrival curve with burstinessb = 3 and rater = 2. The
amount of data arrivals at each period takes values in{0,1,2,3,4,5}.

Next we construct the autonomous switching MiPL system. Thenumber of modes is 6,
i.e. nm = 6, and the amount of data arrivals is described bya(ℓ) = ℓ−1 for ℓ = 1, . . . ,nm.
The state matrix at modeℓ is

A(ℓ) =





ℓ−1 +∞ +∞
0 5 +∞

ℓ+2 +∞ 2



 . (5.6)

The initial states areX0 = {x ∈ R
3 : x1−x2 = 0,x3−x1 = 3}. 2

5.4 Abstraction of Autonomous Switching Min-Plus-Linear
Systems

Recall that the idea of abstraction is to replace a model to beverified by a smaller abstract
model and to verify the latter instead of the original one, where both models are expressed as
transition systems. Therefore let us introduce a transition system related to the autonomous
switching MiPL systems generated by network calculus elements.

Definition 5.5 (Transition Systems Associated with Autonomous Switching MiPL Sys-
tems) Consider an autonomous switching MiPL system (2.8) withX0 as the set of initial
conditions and a set of atomic propositionsAP together with the corresponding labeling
functionL. The associated transition systemTSis a tuple(S,Act,−−→, I ,AP,L) where

• set of statesS= R
n,

• set of actionsAct = {τ},

• there exists a transition relationx τ
−−→ x′ if there exists a modeℓ such thatx′ =

A(ℓ)⊗′ x, and

• set of initial statesI = X0.

In cases where action names are irrelevant, we use a special symbolτ. 2

Recall that the mode that is active in each step is an environmentally nondeterministic,
i.e. the mode cannot be controlled. Thus we do not define the set of actions as the set
of possible modes in Definition 5.5. As it will be clear in Section 5.4.1, the set of states
satisfying each atomic proposition is a DBM, i.e. for eacha∈ AP, the set of states{x : a∈
L(x)} is a DBM in the state space.

5.4.1 States: Partitioning Procedure

We construct a partition ofSand then the abstraction functionf maps each state in the same
block to a unique abstract state. Each non-empty subset ofS is called block. More precisely
we develop an approach to construct a partitionΠ0 of the set of statesS, whereΠ0 is an
AP partition, each block is a DBM, and the dynamics in each blockis switched affine. A
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partition is anAP partition if the labeling functionL maps each state in the same block to
a unique subset of atomic propositions [23, Def. 7.31]. The approach is as follows. We
first determine anAP partition of S, denoted byΠAP, where each block is a DBM. Then
we determine a partitionΠSAD of S where each block is a DBM and the dynamics in each
block are switched affine.2 Finally the partitionΠ0 is defined as the refinement ofΠAP and
ΠSAD, i.e.RΠ0 = RΠAP ∩RΠSAD. The notationRΠ denotes the equivalence relation induced
by partitionΠ [23, Rem. 7.30].

The set of atomic propositionsAP is defined as{CI,BB,DB}, which stand for confor-
mant input, backlog bounded, and virtual delay bounded, respectively. The atomic proposi-
tion CI is true if the input conforms with the arrival curve, namely the number of tokens in
the bucket is nonnegative:

{x ∈ R
d+2 : CI ∈ L(x)} = {x ∈ R

d+2 : xd+2−x1 ≥ 0}.

Whenever the backlog is less than or equal to the maximum backlog B′
max, thenBB is true.

This corresponds to

{x ∈ R
d+2 : BB ∈ L(x)} = {x ∈ R

d+2 : x1−xd+1 ≤ B′
max}.

Finally DB is true whenever the virtual delay is less than the maximum delay D′
max:

{x ∈ R
d+2 : DB ∈ L(x)} = {x ∈ R

d+2 : u(k−D′
max)−y(k) ≤ 0}.

Notice that we need to store the input forD′
maxsteps. IfD′

max> d, additional state variables
can be added. The partitionΠAP is computed by using the procedure described in Section
3.3.1.

Example Considering the autonomous switching MiPL system in (5.6),let us determine
the partitionΠAP. The states satisfyingCI andBB are given by{x ∈ R

3 : x1 − x3 ≤ 0}
and{x ∈ R

3 : x1− x2 ≤ 5}, respectively. Here we selectB′
max= 5. One can show that the

partitionΠAP contains the following 4 blocks:L−1( /0) = {x∈ R
3 : x1−x2 > 5,x1−x3 > 0},

L−1({CI}) = {x∈R
3 : x1−x2 > 5,x1−x3 ≤ 0,x2−x3 <−5}, L−1({BB}) = {x∈ R

3 : x1−
x2 ≤ 5,x1−x3 > 0,x2−x3 > −5}, andL−1({BB,CI}) = {x ∈ R

3 : x1−x2 ≤ 5,x1−x3 ≤ 0}
(cf. the left plot in Fig. 5.3). In this example, we focus on the verification of backlog bound
property. Verifying the virtual delay property can be done similarly. 2

With regards to the partitionΠSAD, we propose the following approach. LetΠ(ℓ)
AD

denote theAD partition generated byA(ℓ) using the procedure in Section 3.3.1 for all
ℓ = 1, . . . ,nm. The partitionΠSAD is defined as the refinement of the precedingAD par-
titions, i.e.RΠSAD = ∩nm

ℓ=1RΠ(ℓ)
AD

. One can show that each block ofΠSAD is a DBM and the

corresponding dynamics are switched affine.

Example Let us compute the partitionΠSADgenerated by the autonomous switching MiPL
system in (5.6). Skipping the details, the partitionΠSAD contains 14 blocks:{x ∈ R

3 :
x1 − x2 < 5,x1 − x3 < −6}, {x ∈ R

3 : x1 − x2 < 5,−6 ≤ x1 − x3 < −5,x2 − x3 > −11},
{x ∈ R

3 : x1 − x2 < 5,−5 ≤ x1 − x3 < −4,x2 − x3 > −10}, {x ∈ R
3 : x1 − x2 < 5,−4 ≤

2SADstands for “switched affine dynamics” andSADdoes not represent the multiplication of matrixS, matrix
A, and matrixD, unless stated explicitly.
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Fig. 5.3: The left, middle, and right plots are the graphicalrepresentation ofΠAP, ΠSAP,
andΠ0 respectively.

x1 − x3 < −3,x2− x3 > −9}, {x ∈ R
3 : x1 − x2 < 5,−3 ≤ x1 − x3 < −2,x2− x3 > −8},

{x ∈ R
3 : x1−x2 < 5,−2≤ x1−x3 < −1,x2−x3 > −7}, {x ∈ R

3 : x1−x2 < 5,x1−x3 ≥
−1,x2−x3 >−6}, {x∈ R

3 : x1−x2 ≥ 5,x1−x3 < −6,x2−x3 <−11}, {x ∈ R
3 : x1−x2 ≥

5,−6≤ x1−x3 < −5,x2−x3 < −10}, {x ∈ R
3 : x1−x2 ≥ 5,−5≤ x1−x3 < −4,x2−x3 <

−9}, {x ∈ R
3 : x1−x2 ≥ 5,−4≤ x1−x3 < −3,x2−x3 < −8}, {x ∈ R

3 : x1−x2 ≥ 5,−3≤
x1−x3 < −2,x2−x3 < −7}, {x ∈ R

3 : x1−x2 ≥ 5,−2≤ x1−x3 < −1,x2−x3 < −6}, and
{x ∈ R

3 : x1−x2 ≥ 5,x1−x3 ≥−1} as depicted in Fig. 5.3 (middle).
Recall that the partitionΠ0 is the refinement ofΠAP andΠSAD. PartitionΠ0 contains

24 blocks: {x ∈ R
3 : x1 − x2 < 5,x1 − x3 < −6}, {x ∈ R

3 : x1 − x2 < 5,−6 ≤ x1 − x3 <
−5,x2−x3 > −11}, {x ∈ R

3 : x1−x2 < 5,−5≤ x1−x3 < −4,x2−x3 > −10}, {x ∈ R
3 :

x1 − x2 < 5,−4 ≤ x1 − x3 < −3,x2 − x3 > −9}, {x ∈ R
3 : x1 − x2 < 5,−3 ≤ x1 − x3 <

−2,x2−x3 >−8}, {x ∈ R
3 : x1−x2 < 5,−2≤ x1−x3 < −1,x2−x3 >−7}, {x ∈ R

3 : x1−
x2 < 5,x1−x3 > 0,x2−x3 > −5}, {x ∈ R

3 : x1−x2 < 5,−1≤ x1−x3 ≤ 0,x2−x3 > −6},
{x ∈ R

3 : x1− x2 > 5,x1− x3 < −6,x2− x3 < −11}, {x ∈ R
3 : 5 ≤ x1− x2 ≤ 5,x1− x3 <

−6,x2−x3 < −11}, {x ∈ R
3 : x1−x2 > 5,−6≤ x1−x3 < −5,x2−x3 < −10}, {x ∈ R

3 :
5 ≤ x1 − x2 ≤ 5,−6 ≤ x1 − x3 < −5,x2 − x3 < −10}, {x ∈ R

3 : x1 − x2 > 5,−5 ≤ x1 −
x3 < −4,x2 − x3 < −9}, {x ∈ R

3 : 5 ≤ x1 − x2 ≤ 5,−5 ≤ x1 − x3 < −4,x2 − x3 < −9},
{x ∈ R

3 : x1−x2 > 5,−4≤ x1−x3 < −3,x2−x3 < −8}, {x ∈ R
3 : 5≤ x1−x2 ≤ 5,−4≤

x1 − x3 < −3,x2− x3 < −8}, {x ∈ R
3 : x1 − x2 > 5,−3 ≤ x1 − x3 < −2,x2− x3 < −7},

{x ∈ R
3 : 5≤ x1−x2 ≤ 5,−3≤ x1−x3 < −2,x2−x3 < −7}, {x ∈ R

3 : x1−x2 > 5,−2≤
x1−x3 < −1,x2−x3 < −6}, {x ∈ R

3 : 5≤ x1−x2 ≤ 5,−2≤ x1−x3 < −1,x2−x3 < −6},
{x ∈ R

3 : x1−x2 > 5,x1−x3 > 0}, {x ∈ R
3 : x1−x2 > 5,−1≤ x1−x3 ≤ 0,x2−x3 < −5},

{x ∈ R
3 : 5≤ x1−x2 ≤ 5,x1−x3 > 0,x2−x3 > −5}, and{x ∈ R

3 : 5≤ x1−x2 ≤ 5,−1≤
x1−x3 ≤ 0}, as shown in Fig. 5.3 (right). 2

5.4.2 Transitions: One-Step Reachability

We investigate a technique to determine the transition relations of the abstract transition
system. The transition relates two abstract states. Each abstract state is associated with a
block via the abstraction function. More specifically the set of (concrete) states associated
with an abstract state ˆs is equal to the inverse image of ˆsw.r.t. the abstraction functionf , i.e.
f−1(ŝ) = {s : f (s) = ŝ}. Recall thatf−1(ŝ) is a block or in fact a DBM.

If there exists a transition from an outgoing states to an incoming states′ in the con-

crete transition system, i.e.s
γ

−−→ s′, then there is a transition fromf (s) to f (s′) in the
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Fig. 5.4: Abstract transition system generated by the autonomous switching MiPL system
in (5.6). The initial state is 5. The states satisfyingCI andBB are the gray ones.
The states that satisfyCI and that do not satisfyBB are the white ones. Finally the
states that do not satisfyCI are the black ones.

abstract transition system, i.e.f (s)
γ

−−→ f f (s′) (cf. Section 3.2.4). Such a transition can
be determined by a forward- or backward-reachability approach. According to the former,
we calculatef−1(ŝ′)∩Post( f−1(ŝ)), whereas if we use the backward approach we compute
f−1(ŝ)∩Pre( f−1(ŝ′)). The nonemptiness of the resulting set characterizes the presence of
a transition from ˆs to ŝ′.

We focus on the forward-reachability approach, since it is computationally more attrac-
tive than the backward one. Given an abstract state ˆs, we employ the PWSA representation
of the system matrices to compute the direct successors as

Post( f−1(ŝ)) =
nm
[

ℓ=1

{A(ℓ)⊗x : x ∈ f−1(ŝ)},

Since f−1(ŝ) is a DBM, Post( f−1(ŝ)) is a union of finitely many DBM (cf. Corollary 3.1).
The complete approach to determine the transitions of the abstract transition system is
shown in Algorithm 3.3.

Example The abstract transition system generated by the autonomousswitching MiPL
system in (5.6) is depicted in Fig. 5.4. 2

Remark Having obtained an abstract transition system that simulates the concrete transi-
tion system, it makes sense to attempt deriving an abstract transition system that bisimulates
the concrete transition system. The refinement procedure discussed in Section 3.4.3 can be
used. Recall that such a procedure in general does not necessarily terminate. 2
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5.5 Formal Verification of Switching Min-Plus-Linear Sys-
tems

Let us now construct LTL formulae to check the backlog and virtual delay of the ab-
stract transition system. We would like to check whether thebacklog and virtual delay are
bounded by the given maximum values, under the condition that the input conforms with
the arrival curve. In other words, if the input is conformant, then the backlog (respectively,
virtual delay) has to be at mostB′

max (respectively,D′
max). The LTL formulae for backlog

and virtual delay can be written as

ϕ1 = 2CI ⇒ 2BB and ϕ2 = 2CI ⇒ 2DB, (5.7)

respectively. Unary operators bind stronger than the binary ones [23, p. 232]. Furthermore
the LTL formulae in (5.7) are a liveness property [23, Def. 3.33]. Intuitively speaking,
this means that any finite prefix can be extended so that the resulting infinite trace satisfies
the property under consideration. Furthermore the LTL formulae in (5.7) are not a safety
property since the only property that is both a safety and a liveness property is nonrestrictive
[23, Lem. 3.35], i.e. it allows all possible behaviors.

To find the maximum backlog via model checking, we employ the following procedure.
We first select a value ofB′

maxand generate an abstraction. If the abstraction does not satisfy
ϕ1, then we repeat the procedure with a higher value ofB′

max, else we stop. The value of
B′

max when the LTL property is verified will be the guaranteed upperbound of the backlog.

Example One can show that the LTL formula representing the backlog bound is verified
by the abstract transition system in Fig. 5.4. However in general, given that the abstract
transition system only simulates the original switching MiPL system, one cannot expect to
verify the exact maximum bound for the backlog, but only a conservative bound. 2

5.6 Summary

In this chapter we have proposed an approach to automatically verify network properties
that can be critical for the correct functioning of control systems. In particular our approach
allows to obtain delay bounds for aperiodic traffic sources.It is important to keep in mind
that more complex specifications in LTL are amenable to be verified using the abstraction
procedure we have proposed.





Chapter 6

Finite Abstractions of Stochastic
Max-Plus-Linear Systems

This chapter investigates the use of finite abstractions to study the finite-horizon probabilis-
tic invariance problem over Stochastic Max-Plus-Linear (SMPL) systems. SMPL systems
are probabilistic extensions of discrete-event MPL systems that are employed in the engi-
neering practice for timing and synchronization studies. We construct finite abstractions by
re-formulating the SMPL system as a discrete-time Markov process, then tailoring formal
abstraction techniques in the literature to generate a finite-state Markov Chain (MC), to-
gether with precise guarantees on the introduced approximation level. This finally allows
probabilistic model checking of the obtained MC against thefinite-horizon probabilistic in-
variance specification. The approach is practically implemented via a dedicated software,
and elucidated in this chapter over numerical examples.

6.1 Related Work

Only a few approaches have been developed in the literature to study the steady-state behav-
ior of SMPL systems, for example employing Lyapunov exponents and asymptotic growth
rates [20–22, 57, 62, 92, 111]. The Lyapunov exponent of an SMPL system is the analogue
of the max-plus eigenvalue for an autonomous MPL system. TheLyapunov exponent of
SMPL systems under some assumptions has been studied in [111], and later extended to
approximate computations under other technical assumptions in [62, p. 251]. The appli-
cation of model predictive control and system identification to SMPL systems is studied
in [54, 55]. In contrast, our work focuses on one-step properties of SMPL systems and is
based on developing finite-state abstractions: this is parallel to the approach in Chapter 3
for (deterministic) MPL systems. To the best of the author’sknowledge, this contribution
represents the first work on finite-state abstractions of SMPL systems.

Verification techniques and tools for deterministic, discrete-time, finite-state systems
have been widely investigated and developed in the past decades [78]. The application of
formal methods to stochastic models is typically limited todiscrete-state structures, either in
continuous or in discrete time [24, 83]. Continuous-space models on the other hand require

81
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the use of finite abstractions, as it is classically done for example with finite bisimulations of
timed automata, which can be computed via the known region construction [16]. With focus
on stochastic models, numerical schemes based on Markov Chain (MC) approximations of
stochastic systems have been introduced [30, 81], and applied to the approximate study of
probabilistic reachability or invariance in [77, 103], however these finite abstractions do
not come with explicit error bounds. In [3], a technique has been introduced to instead
provide formal abstractions of discrete-time, continuous-space Markov models [2], with the
objective of investigating their probabilistic invariance by employing probabilistic model
checking over a finite MC. In view of scalability and of generality, the approach has been
improved and optimized in [52]. Interestingly the procedure has been shown [1] to introduce
an approximate probabilistic bisimulation of the concretemodel [49].

6.2 The Probabilistic Invariance Problem

Let us consider events that are scheduled to occur regularly, that is let us select a time in-
terval between consecutive events that is a positive given constant, sayd. We call this a
regular scheduleand assume that it does not affect the time of occurrence of all events, e.g.
any event may occur ahead of the regular schedule. In this chapter, we consider anN-step
finite-horizon probabilistic invariance problem w.r.t. a regular schedule: more specifically,
for each possible time of occurrence of initial event (x(0)), we are interested in determining
the probability that the time of occurrence ofk-th event (x(k)) remains close to the corre-
sponding time of the regular schedule, fork ∈ {0, . . . ,N}. For instance, we may want to
determine the probability that the time of occurrence of thefirst 3 events is at least 5 time
units ahead of the given regular schedule, as well as at most 5time units behind it. The
invariant set is then defined as the desired time of occurrence w.r.t. the regular schedule.

The techniques in [3, 52], developed to provide the characterization and the computa-
tion of the probabilistic invariance problem over general Markov processes, can be directly
applied to the SMPL system (2.9). However, in order to prevent the growth of the invariant
set as the event horizonN increases (which in general leads to a decrease in computational
performance), we reformulate the SMPL system based on the given regular schedule, so that
a fixed invariant set is obtained. Since we are interested in the delay of event occurrences
with respect to the given schedule, we introduce new variables defined as the difference
between the states of the original SMPL system and the regular schedule. More precisely,
first we define a vectors that characterizes the regular schedule. The dynamics ofs are
determined by the time durationd ∈ R between consecutive events and the arbitrary initial
conditions(0) ∈ R

n, i.e. s(k) = d⊗ s(k−1). As mentioned, new states are defined as the
difference between the states of the original SMPL system (2.9) and the regular schedules,
i.e.z(k) = x(k)−s(k) for k∈N∪{0}. The dynamics of the newly introduced SMPL system
are then given by

z(k) = [A(k)+D]⊗z(k−1), (6.1)

whereD = [di j ]i, j ∈ R
n×n (i.e. di j is the entry of matrixD at row i and columnj), di j =

sj(0)−si(0)−d, andz(k) = [z1(k) . . .zn(k)]T ∈R
n. Notice thatAi j (k)⊗di j are independent

for all k ∈ N andi, j ∈ {1, . . . ,n}. The density (resp., distribution) function ofAi j (k)⊗di j

corresponds to the density (resp., distribution) functionof Ai j (k) shifted forward bydi j

units. The independent variablek again denotes an increasing event index, whereas the state
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variablez(k) defines the delay w.r.t. the schedule of occurrence ofk-th event. If the delay
is positive then the event occurs behind the schedule, whereas if the delay is negative then
the event occurs ahead of the schedule. The next theorem shows that, much like the original
model in (2.9), the new SMPL system can be described as a discrete-time homogeneous
Markov process.

Theorem 6.1 (cf. Theorem 2.1)The SMPL system in (6.1) is fully characterized by the
following conditional density function

tz(z̄|z) =
n
∏
i=1

ti(z̄i |z), where

ti(z̄i |z) =
n
∑
j=1

[

ti j (z̄i −di j −zj)
n
∏

k=1,k6= j
Tik(z̄i −dik −zk)

]

, for all i ∈ {1, . . . ,n},

for z̄,z∈ R
n. Recall that the density functionti j (·) is the derivative of the associated distri-

bution functionTi j (·) w.r.t. its argument for alli, j ∈ {1, . . . ,n}. 2

Remark If the time interval between consecutive occurrences is notthe same for all
i ∈ {1, . . . ,n}, then we obtain a time-inhomogeneous Markov process. In this case, the
computational complexity of the procedure will greatly increase. 2

Employing the introduced SMPL system (6.1), the problem canbe formulated as the
following N-step invariance probability

Pz0(A ) = Pr{z(k) ∈ A for all k = 0, . . . ,N|z(0) = z0},

whereA is called the invariant set and is assumed to be Borel measurable.
Let IX : R

n →{0,1} denote the indicator function of setX ⊆ R
n, i.e.IX (x) = 1 if x ∈ X

andIX (x) = 0 if x /∈ X . The next proposition provides a theoretical framework to study the
problem.

Proposition 6.1 ([2, Lem. 1])Consider value functionsVk : R
n → [0,1], for k∈ {0, . . . ,N},

computed through the following backward recursion:

Vk(z) = IA (z)
Z

A
Vk+1(z̄)tz(z̄|z)dz̄, for all z∈ R

n,

initialized withVN(z) = IA (z) for all z∈ R
n. ThenPz0(A ) = V0(z0). 2

For anyk ∈ {0, . . . ,N}, notice thatVk(z) represents the probability that an execution of
the SMPL system (6.1) remains within the invariant setA over the residual event horizon
{k, . . . ,N}, starting fromz at event stepk.

This result characterizes the finite-horizon probabilistic invariance problem as a dy-
namic programming problem. Since an explicit analytical solution to the problem is gener-
ally impossible to find, we leverage the techniques developed in [3, 52] to provide a numer-
ical computation with exact associated error bounds. This is elaborated in the next section.



84 6 Finite Abstractions of Stochastic Max-Plus-Linear Systems

6.3 Abstraction by a Finite State Markov Chain

We tailor the abstraction procedure presented in [3, Sec. 3.1] towards the goal of generating
a finite-state MC(Ŝ, T̂) from a given SMPL system and an invariant setA , then employ it
to approximately compute the probabilistic invariance of interest.

Let Ŝ= {ŝ1, . . . , ŝm+1} be a set of finitely many abstract states andT̂ : Ŝ× Ŝ→ [0,1]
a related transition probability matrix, such thatT̂(ŝi , ŝj ) characterizes the probability of
transitioning from state ˆsi to state ˆsj and thus induces a conditional discrete probability
distribution over the finite spacêS.

Given a bounded invariant setA , Algorithm 6.1 provides a procedure to abstract an
SMPL system by a finite state MC. The setÂ = {ŝ1, . . . , ŝm} denotes the discrete invariant
set. In Algorithm 6.1,f : R

n → Ŝ represents the abstraction function, i.e. a map that asso-
ciates to any concrete statez∈R

n the corresponding abstract statef (z)∈ Ŝ. Furthermore the
concretization functionf−1(ŝ) = {z : f (z) = ŝ} associates to any abstract state ˆs∈ Ŝthe cor-
responding continuous partition set. Without loss of generality, we defineÂ = {ŝ1, . . . , ŝm}
as the abstract invariant set, i.e. the set of abstract states associated with the concrete in-
variant setA . Additionally, notice that an absorbing discrete state ˆsm+1 is added to the state
space of the MC in order to render the transition probabilitymatrix T̂ stochastic.

Algorithm 6.1 Generation of a finite-state MC from an SMPL system and
an invariant set
Input: An SMPL system in (6.1) and an invariant setA
Output: A finite-state MC(Ŝ, T̂)

1. select a finite partition of setA of cardinalitym, asA = ∪m
i=1A i

2. defineÂ = {ŝ1, . . . , ŝm} and takeŜ= Â ∪{ŝm+1} as the finite state-space
of the MC (ŝm+1 is an absorbing state, as explained in the text)

3. define abstraction function asf (z) = ŝi if z ∈ A i for i ∈ {1, . . . ,m} and
f (z) = sm+1 if z∈ R

n \A

4. for eachi ∈ {1, . . . ,m}, select a single representative pointzi ∈ A i

5. compute the transition probability matrix̂T as

T̂(ŝi , ŝj)=



























R

f−1(ŝj )
tz(z̄|zi)dz̄, if 1 ≤ j ≤ mand 1≤ i ≤ m,

1−∑ ¯̂s∈A p

R

f−1( ¯̂s) tz(z̄|zi)dz̄, if j = m+1 and 1≤ i ≤ m,

1, if j = i = m+1,

0, if 1 ≤ j ≤ mandi = m+1,

Remark The bottleneck of Algorithm 6.1 lies in the computation of transition probability
matrix T̂, due to the integration of kerneltz. This integration can be circumvented if the
distribution functionsTi j (·) for all i, j ∈ {1, . . . ,n} have an explicit analytical form, e.g. an
exponential distribution.

The procedure in Algorithm 6.1 has been shown [1] to introduce an approximate prob-
abilistic bisimulation of the concrete model [49], i.e. theSMPL systems (6.1).
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Algorithm 6.1 can be applied to abstract an SMPL system as a finite-state MC, regardless
of the particular invariant setA . However the quantification of the abstraction error in
Section 6.4 requires that the invariant setA is bounded. 2

Considering the obtained finite-state, discrete-time MC(Ŝ, T̂) and the discretized invari-
ant setÂ ⊂ Ŝ, the probabilistic invariance problem amounts to evaluating the probability that
a finite execution associated with the initial condition ˆs0 ∈ Ŝremains within the abstract in-
variant setÂ during the given event horizon. This can be stated as the following probability:

P̂ŝ0(Â ) = Pr{ŝ(k) ∈ Â for k = 0, . . . ,N|ŝ(0) = ŝ0},

whereŝ(k) denotes the discrete state of the MC at stepk.
The solution of this finite-horizon probabilistic invariance problem over the MC abstrac-

tion can be determined via a discrete version of Proposition6.1.

Proposition 6.2 Consider value functionŝVk : Ŝ→ [0,1], for k ∈ {0, . . . ,N}, computed
through the following backward recursion:

V̂k(ŝ) = IÂ (ŝ) ∑̄
ŝ∈Ŝ

V̂k+1
(

¯̂s
)

T̂
(

ŝ, ¯̂s
)

, for all ŝ∈ Ŝ,

initialized withV̂N(ŝ) = IÂ (ŝ) for all ŝ∈ Ŝ. ThenP̂ŝ0(Â ) = V̂0(ŝ0). 2

For anyk ∈ {0, . . . ,N}, notice thatV̂k(ŝ) represents the probability that an execution of the
finite-state MC remains within the discrete invariant setÂ over the residual event horizon
{k, . . . ,N}, starting from ˆsat event stepk.

The quantities in Proposition 6.2 can be easily computed by linear algebra. It is of inter-
est to provide a quantitative comparison between the discrete outcome obtained by Proposi-
tion 6.2 and the continuous solution that results from Proposition 6.1: in other words, we are
interested in deriving bounds on the abstraction error. Thefollowing section accomplishes
this goal.

6.4 Quantification of the Abstraction Error

This section starts by precisely defining the error related to the abstraction procedure, which
is due to the approximation of a continuous concrete model with a finite discrete one. Then
a bound of the approximation error in [52] is recalled, and applied to the probabilistic in-
variance problem under some structural assumptions, namely in the case of Lipschitz con-
tinuous density functions, or alternatively piecewise Lipschitz continuous density functions.

The approximation error is defined as the maximum differencebetween the outcomes
obtained by Propositions 6.1 and 6.2 for any pair of initial conditionsz0 ∈R

n and f (z0)∈ Ŝ.
Since an exact computation of this error is not possible in general, we resort to determining
an upper bound of the approximation error, which is denoted as E. More formally we are
interested in determiningE that satisfies

|Pz0(A )− P̂f (z0)(Â )| ≤ E, for all z0 ∈ A . (6.2)

We raise the following assumption on the SMPL system. Recallthat the density function
of Ai j (k)⊗di j in (6.1) corresponds to the density function ofAi j (k) in (2.9) shifteddi j units
forward.
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Assumption 6.1The density functionsti j (·) for i, j ∈ {1, . . . ,n} are bounded:

ti j (z) ≤ Mi j , for all z∈ R. 2

Assumption 6.1 implies the distribution functionsTi j (·) for i, j ∈ {1, . . . ,n} are Lipschitz
continuous. Recall that the (global) Lipschitz constant ofa one-dimensional function can
be computed as the maximum of the absolute value of the first derivative of the function.
Thus

|Ti j (z)−Ti j (z
′)| ≤ Mi j |z−z′|, for all z,z′ ∈ R.

For computation of the bound on approximation error, we use the following result based
on [52], which has inspired most of this work.

Proposition 6.3 ([52, pp. 933-934])Suppose Assumption 6.1 holds and the density function
tz(z̄|z) satisfies the condition

Z

A
|tz(z̄|z)− tz(z̄|z′)|dz̄≤ H‖z−z′‖2, for all z,z′ ∈ A ,

then an upper bound on the approximation error in (6.2) isE = NHδ, whereN is the event
horizon,δ is the partition diameter,H is a constant scalar. 2

The partition diameterδ in Proposition 6.3 is defined in [3, Sec. 3.1]. The notation‖ · ‖2

denotes the 2-norm operator. In the remainder of this subsection, we first determine the con-
stantH for Lipschitz continuous density functions, then generalize the result to piecewise
Lipschitz continuous density functions.

6.4.1 Lipschitz Continuous Density Functions

Assumption 6.2The density functionsti j (·) for i, j ∈ {1, . . . ,n} are Lipschitz continuous,
namely there exist finite and positive constantshi j , such that

|ti j (z)− ti j (z
′)| ≤ hi j |z−z′|, ∀z,z′ ∈ R. 2

Under Assumptions 6.1 and 6.2, the conditional density function tz(z̄|z) is Lipschitz
continuous. This opens up the application of the results in [3, 52] for the approximate
solution of the probabilistic invariance problem. Notice that the Lipschitz constant oftz(z̄|z)
may be large, which implies a rather conservative upper bound on the approximation error.
To improve this bound, we can instead directly use Proposition 6.3 presented before – an
option also discussed in [52]. In particular we present three technical lemmas that are
essential for the computation of the constantH, with proofs appearing in the Appendix.
After the derivation of the improved bound, the obtained results are applied to a numerical
example.

Lemma 6.2 Any one-dimensional continuous distribution functionT(·) satisfies the in-
equality

Z

R

|T(z̄−z)−T(z̄−z′)|dz̄≤ |z−z′|, for all z,z′ ∈ R. 2
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Lemma 6.3 Suppose the random vectorz̄ can be organized as̄z = [z̄T
1 , z̄T

2 ]T , so that its
conditional density function is the multiplication of conditional density functions of̄z1, z̄2

as:
f (z̄|z) = f1(z̄1|z) f2(z̄2|z).

Then for a given setA ∈ B (Rn)1 it holds that

Z

A
| f (z̄|z)− f (z̄|z′)|dz̄≤

2

∑
i=1

Z

proji(A )
| fi(z̄i |z)− fi(z̄i |z′)|dz̄i ,

whereproji(·) represents the projection operator on thei-th axis. 2

Lemma 6.4Suppose the vectorz can be organized asz = [zT
1 ,zT

2 ]T , and that the density
function of the conditional random variable(z̄|z) is of the form

f (z̄|z) = f1(z̄,z1) f2(z̄,z2),

where f1(z̄,z1), f2(z̄,z2) are bounded non-negative functions withM1 = sup̄z1,z1
f1(z̄1,z1)

andM2 = sup̄z1,z2
f2(z̄1,z2). Then for a given setC ∈ B (R):

Z

C
| f (z̄|z1,z2)− f (z̄|z′1,z

′
2)|dz̄

≤ M2

Z

C
| f1(z̄,z1)− f1(z̄,z′1)|dz̄+M1

Z

C
| f2(z̄,z2)− f2(z̄,z′2)|dz̄. 2

Theorem 6.5Under Assumptions 6.1 and 6.2, the constantH in Proposition 6.3 is

H =
n

∑
i, j=1

Hi j +(n−1)Mi j ,

whereHi j = L ihi j , and where the constantL i = L (proji(A )) is the Lebesgue measure of the
projection of the invariant set onto thei-th axis. 2

Proof Using Lemma 6.3 on the multiplicative structure of the conditional density function
we have:

Z

A
|tz(z̄|z)− tz(z̄|z′)|dz̄≤

n

∑
i=1

Z

proji(A )
|ti(z̄i |z)− ti(z̄i |z′)|dz̄i ,

and employing the triangle inequality for the additive structure of ti(z̄i |z) and utilizing
Lemma 6.4 and Assumption 6.1 we obtain:

≤
n

∑
i, j=1

Z

proji(A )
|ti j (z̄i −di j −zj)− ti j (z̄i −di j −z′j)|dz̄i

+
n

∑
i, j=1

n

∑
k=1,k6= j

Mi j

Z

proji(A )
|Tik(z̄i −dik −zk)−Tik(z̄i −dik −z′k)|dz̄i .

1The notationB (Rn) represents the collection of Borel sets that are a subset ofR
n.
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Finally, by Assumption 6.2 and Lemma 6.2 we obtain

≤
n

∑
i, j=1

hi jL (proji(A ))|zj −z′j |+
n

∑
i, j=1

n

∑
k=1,k6= j

Mi j |zk−z′k|

≤

(

n

∑
i, j=1

Hi j +(n−1)Mi j

)

‖z−z′‖2 = H‖z−z′‖2. 2

We now elucidate the above results on a case study, and selecta beta distribution to char-
acterize delays. A motivation for employing a beta distribution is that its density function
has bounded support. Thus by scaling and shifting the density function, we can construct
a distribution taking positive real values within an interval. Recall that this distribution is
used to model processing or transportation times, and as such it can only take positive val-
ues. Furthermore, the beta distribution can be used to approximate the normal distribution
with arbitrary accuracy.

Definition 6.1 (Beta Distribution) The general formula for the density function of the beta
distribution is

t(x;α,β,a,b) =
(x−a)α−1(b−x)β−1

B(α,β)(b−a)α+β−1
, if a≤ x≤ b,

and 0 otherwise, whereα,β > 0 are the shape parameters;[a,b] is the support of the den-
sity function; andB(·, ·) is the beta function. A random variableX characterized by this
distribution is denoted byX ∼ Beta(α,β,a,b). 2

The case wherea = 0 andb = 1 is called the standard beta distribution. Let us remark
that the density function of the beta distribution is unbounded if any of the shape parameters
belongs to the interval(1,2). We remark that if the shape parameters are positive integers,
the beta distribution has a piecewise polynomial density function, which has been used for
system identification of SMPL systems in [55, Sec. 4.3].

Example We apply the results in Theorem 6.5 to the following two-dimensional SMPL
system (2.9), whereAi j (·) ∼ Beta(αi j ,βi j ,ai j ,bi j ),

[

α11 α12

α21 α22

]

=

[

2 4
2 2

]

,

[

β11 β12

β21 β22

]

=

[

5 2
2 4

]

,

[

a11 a12

a21 a22

]

=

[

0 2
2 0

]

,

[

b11 b12

b21 b22

]

=

[

7 6.5
4 9

]

.

Skipping the details of the direct calculations, the supremum and the Lipschitz constant of
the density functions are respectively

[

M11 M12

M21 M22

]

=

[

1536/4375 15/32
3/4 15/64

]

,

[

h11 h12

h21 h22

]

=

[

30/49 80/81
3/2 20/81

]

.

Considering a regular schedule withs(0) = [0,0]T andd = 4, selecting invariant setA =
{z∈R

2 :−5≤ z1 ≤ 5,−5≤ z2 ≤ 5}, and event horizonN = 5, according to Theorem 6.5 we
obtain an errorE = 176.4δ. In order to obtain an approximation error bounded byE = 0.1,
we would need to discretize setA uniformly with 24942 bins for each dimension (step 1 of
Algorithm 6.1). The obtained finite-state MC has 249422+ 1 discrete states (step 2). The
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representative points have been selected at the center of the squares obtained by uniform
discretization (step 4). The procedure to construct transition probability matrix (step 5)
works as follows. For eachi, j ∈ {1, . . . ,249422+1}, we computêT(ŝi , ŝj), which consists
of four possible cases. If 1≤ i, j ≤ 249422, thenT̂(ŝi , ŝj) is defined as the probability of
transitioning from thei-th representative pointzi to the j-th partition setA j . If 1 ≤ i ≤
249422 and j = 249422+1, thenT̂(ŝi , ŝj) is defined as the probability of transitioning from
the i-th representative pointzi to the complement of the invariant setR

n \ A . Since the
discrete state ˆs249422+1 is absorbing, then̂T(ŝ249422+1, ŝj ) = 1 if j = 249422 + 1, and it is
equal to 0 otherwise. The solution of the invariance problemobtained over the abstract
model (cf. Proposition 6.2) is computed via the software tool FAUST2[53] and is depicted
in Fig. 6.2 (left). 2

6.4.2 Piecewise Lipschitz Continuous Density Functions

It is clear that the structural assumptions raised in the previous section pose limitations
on the applicability of the ensuing results. For the sake of generality, we now extend the
previous results to the more general case encompassed by thefollowing requirement.

Assumption 6.3The density functionsti j (·) for i, j ∈ {1, . . . ,n} are piecewise Lipschitz
continuous, namely there exist partitionsR =∪

mi j
k=1Dk

i j and corresponding finite and positive

constantshk
i j , such that

ti j (z) =
mi j

∑
k=1

tk
i j (z)IDk

i j
(z), for all z∈ R,

|tk
i j (z)− tk

i j (z
′)| ≤ hk

i j |z−z′|, for all k∈ {1, . . . ,mi j } andz,z′ ∈ Dk
i j . 2

The notationk used in Assumption 6.3 is not a power and is not an event index (2.9), but
it denotes the index of a set in the partition of cardinality∑i, j mi j . Notice that if Assump-
tion 6.3 holds and the density functions are Lipschitz continuous, then Assumption 6.2 is
automatically satisfied withhi j = maxk hk

i j . In other words, with Assumption 6.3 we allow
relaxing Assumption 6.2 to hold only within arbitrary sets partitioning the state space of the
SMPL system. In fact, we could limit the assumptions to the invariant set.

Under Assumptions 6.1 and 6.3, we now present a result extending Theorem 6.5 for the
computation of the constantH.

Theorem 6.6Under Assumptions 6.1 and 6.3, the constantH in Proposition 6.3 is

H =
n

∑
i, j=1

Hi j +(n−1)Mi j ,

whereHi j = L i maxk hk
i j + ∑k |J

k
i j | andL i = L (proji(A )). The notationJk

i j = limz↓ck
i j

ti j (z)−

limz↑ck
i j

ti j (z) denotes the jump distance of the density functionti j (·) at thek-th discontinuity

pointck
i j .

2
2

2The jump distance is defined as the limit ofti j (z) asz approachesck
i j “from the right” subtracted by the limit

of ti j (z) aszapproachesck
i j “from the left.”
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Fig. 6.1: (Left plot) The density function of exponential distribution with mean 1. (Middle
plot) The unit step functionθ(·). (Right plot) The continuous part of the function
on the left plot.

Proof We can follow exactly the same steps as in the proof of Theorem6.5. The only
difference is in the computation of constantHi j for the inequality

Z

proji(A )
|ti j (z̄i −di j −zj)− ti j (z̄i −di j −z′j)|dz̄i ≤ Hi j |zj −z′j |, (6.3)

for all zj ,z′j ∈ proj j(A ). We show that such a constant exists for piecewise Lipschitzcon-
tinuous density functions and compute it based on Assumption 6.3. Define two functions

gd
i j (z) = ∑

mi j−1
k=1 J

k
i j θ(z− ck

i j ) andgc
i j (z) = ti j (z)−gd

i j (z), whereJ k
i j = ∑k

q=1Jq
i j , θ(·) denotes

the unit step function, and{ck
i j : k= 1, . . . ,mi j −1} are the discontinuity points of the density

functionti j (·). Then the density function is decomposed intoti j (z) = gc
i j (z)+gd

i j (z) where

gc
i j is its continuous part andgd

i j is a piecewise constant function containing its jumps (cf.
Fig. 6.1). It is clear that

Z

proji(A )
|gd

i j (z̄−di j −z)−gd
i j (z̄−di j −z′)|dz̄≤

m−1

∑
k=1

|J k
i j ||z−z′|,

Z

proji(A )
|gc

i j (z̄−di j −z)−gc
i j (z̄−di j −z′)|dz̄≤ L i max

k
hk

i j |z−z′|.

Adding both sides using the triangle inequality leads to thedesired value forHi j . 2

We now display the obtained results with a numerical example.

Example Let us clarify the approach used in the proof of Theorem 6.6 ona simple ex-
ample. Consider the density function of the exponential distribution with mean 1, i.e.
t(z) = exp{−z} if z≥ 0 and 0 otherwise, as shown in Fig. 6.1 (left). Notice that thedensity
function is piecewise Lipschitz continuous (cf. Assumption 6.3). Furthermore the density
presents one discontinuity pointc1 = 0 with associated jump distance equal toJ1 = 1. No-
tice thatm= 2 sinceR is partitioned into two sets. By using the formula in the proof, one
getsJ 1 = 1 and furthermore the density function can be decomposed into a piecewise con-
stant functiongd(z) = θ(z) and a continuous functiongc(z) = 0Iz<0 +(exp{−z}−1)Iz≥0,
as depicted in Fig. 6.1 (middle and right). 2

In some cases, it is possible to obtain a smaller value forHi j by substituting the density
function directly into the inequality in (6.3). Furthermore Hi j may be independent of the
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size of the invariant set. For instance, if the delay is modeled by an exponential distribution
as in page 13, thenAi j (·) for all i, j ∈ {1, . . . ,n} follows a shifted exponential distribution,
i.e. Ai j (·) ∼ SExp(µi j ,ςi j ). In this case,Hi j = µ−1

i j + µ−2
i j L i , as per Theorem 6.6. However

if we compute directly the left-hand side of (6.3), we get thequantityHi j = 2µ−1
i j , which is

independent of the shape of the invariant set. This fact is now proven in general, for a class
of distribution functions, in Theorem 6.7. Let us first introduce the following definition.

Definition 6.2 (Shifted Exponential Distribution) The density function of an exponential
distribution shifted byς is given by

t(x;µ,ς) = µ−1exp{−µ−1(x− ς)}θ(x− ς),

whereθ(·) is the unit step function. A random variableX characterized by this distribution
is denoted byX ∼ SExp(µ,ς). 2

The proof of the following theorem can be found in the Appendix.

Theorem 6.7 Any random sequenceAi j (·) ∼ SExp(µi j ,ςi j ) satisfies inequality (6.3) with
Hi j = 2µ−1

i j . 2

Given the previous result, the bound related to the invariance-related abstraction error
over SMPL systems withAi j (·) ∼ SExp(µi j ,ςi j ) can be improved and explicitly shown as
follows. The maximum value of the density functionti j (·) equalsµ−1

i j , i.e.Mi j = µ−1
i j for all

i, j ∈ {1, . . . ,n}. By Theorem 6.6 and Proposition 6.3, the bound of the approximation error
is then

E = (n+1)Nδ∑
i, j

µ−1
i j .

Let us go back to the example in page 88 and adapt it according to Definition 6.2 and
Theorem 6.7.

Example Consider the following two-dimensional SMPL system (2.9),whereAi j (·) ∼
SExp(µi j ,ςi j ) and

[

µ11 µ12

µ21 µ22

]

=

[

2 3
1 3

]

,

[

ς11 ς12

ς21 ς22

]

=

[

0 2
2 0

]

.

Considering a regular schedule withs(0) = [0,0]T andd = 4, selecting invariant setA =
{z∈ R

2 : −5≤ z1 ≤ 5,−5≤ z2 ≤ 5}, and event horizonN = 5, we getE = 32.5δ. In order
to obtain a desired errorE = 0.1, we need to use 4597 bins for each dimension on a uniform
discretization of the setA . The solution of the invariance problem over the abstract model
is presented in Fig. 6.2 (right).

Let us now validate this outcome. We have computed 1000 sample trajectories, with an
initial condition that has been uniformly generated from the level set corresponding to the
probability 0.3, namely within the set{z : P̂f (z)(Â ) ≥ 0.3}. Given the error boundE = 0.1,
we would expect that the trajectories are invariant with a likelihood greater than 0.2. Among
the cohort, we have found that 374 trajectories stay inside the invariant set for the given 5
steps, which is aligned with the guarantee we have derived.



92 6 Finite Abstractions of Stochastic Max-Plus-Linear Systems

−4 −2 0 2 4

−2

0

2

z1

z 2

P̂f (z)

0.2

0.4

0.6

0.8

Prob.

−4 −2 0 2 4

−2

0

2

z1

z 2

P̂f (z)

0.1

0.2

0.3

0.4

Prob.

Fig. 6.2: The left and right plots show solution of the finite-horizon probabilistic invariance
problem for two-dimensional SMPL systems with beta (cf. page 88) and expo-
nential (cf. page 91) distributions, respectively. The plots have been obtained by
computing the problem over finite abstractions obtained by uniform discretization
of the set of interest and selection of central representative points.

Furthermore we have compared the approximate solution against the following empir-
ical approach: for each representative point, we generate 1000 sample trajectories starting
from it and compute the ratio of the number of trajectories that stay in the invariant set for 5
steps to the total number of trajectories (1000). The maximum absolute difference between
the approximate solution and the empirical approach for allrepresentative points is 0.0565,
which aligns with the error bound of 0.1.

We have also performed these two comparisons for the SMPL system in page 88. The
results are quite analogous to the ones obtained in this example. 2

6.5 Summary

This chapter has employed finite abstractions to study the finite-horizon probabilistic in-
variance problem over Stochastic Max-Plus-Linear (SMPL) systems. We have assumed
that each random variable has a fixed support, which implies that the topology of the SMPL
system is fixed over time. Along this line, we are interested to relax this assumption in order
to obtain results that are robust against small topologicalchanges.

Appendix

Proof (of Lemma 6.2) We prove the inequality for the casez′ > z. For the other case, the
proof is similar. Consider any arbitrarya,b ∈ R. Since the distribution function is non-
decreasing we can write

Z b

a
|T(z̄−z)−T(z̄−z′)|dz̄=

Z b

a
T(z̄−z)dz̄−

Z b

a
T(z̄−z′)dz̄

= g(z)−g(z′),
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whereg(z) =
R b

a T(z̄−z)dz̄=
R b−z

a−z T(u)du. By using the fundamental theorem of calculus,
we obtain

|g′(z)| = |T(a−z)−T(b−z)| ≤ 1.

Finally based on the mean value theorem, we can write|g(z)−g(z′)| ≤ |z−z′|. The inequal-
ity holds for any interval[a,b], then it also holds overR. 2

Proof (of Lemma 6.3) In the following derivation, we use the triangle inequality and the
following properties of a density function: it is a positivefunction and its integral is bounded
by one. Hence,

Z

A
| f (z̄|z)− f (z̄|z′)|dz̄ =

Z

A
| f1(z̄1|z) f2(z̄2|z)− f1(z̄1|z′) f2(z̄2|z′)|dz̄

≤

Z

A
| f1(z̄1|z) f2(z̄2|z)− f1(z̄1|z′) f2(z̄2|z)|dz̄

+

Z

A
| f1(z̄1|z′) f2(z̄2|z)− f1(z̄1|z′) f2(z̄2|z′)|dz̄

=

Z

A
| f1(z̄1|z)− f1(z̄1|z′)| f2(z̄2|z)dz̄

+

Z

A
| f2(z̄2|z)− f2(z̄2|z′)| f1(z̄1|z′)dz̄

≤

Z

proj1(A )
| f1(z̄1|z)− f1(z̄1|z′)|dz̄1

Z

proj2(A )
f2(z̄2|z)dz̄2

+
Z

proj2(A )
| f2(z̄2|z)− f2(z̄2|z′)|dz̄2

Z

proj1(A )
f1(z̄1|z′)dz̄1

≤

Z

proj1(A )
| f1(z̄1|z)− f1(z̄1|z′)|dz̄1 +

Z

proj2(A )
| f2(z̄2|z)− f2(z̄2|z′)|dz̄2 2

Proof (of Lemma 6.4) By using the triangle inequality, we obtain the following inequality:
Z

C
| f (z̄|z1,z2)− f (z̄|z′1,z

′
2)|dz̄=

Z

C
| f1(z̄,z1) f2(z̄,z2)− f1(z̄,z′1) f2(z̄,z′2)|dz̄

≤

Z

C
| f1(z̄,z1) f2(z̄,z2)− f1(z̄,z′1) f2(z̄,z2)|dz̄

+

Z

C
| f1(z̄,z′1) f2(z̄,z2)− f1(z̄,z′1) f2(z̄,z′2)|dz̄

≤

Z

C
| f1(z̄,z1)− f1(z̄,z′1)| f2(z̄,z2)dz̄+

Z

C
| f2(z̄,z2)− f2(z̄,z′2)| f1(z̄,z

′
1)dz̄

≤ M2

Z

C
| f1(z̄,z1)− f1(z̄,z′1)|dz̄+M1

Z

C
| f2(z̄,z2)− f2(z̄,z′2)|dz̄. 2

Proof (of Theorem 6.7) We will show that the following inequality holds:
Z

proji(A )
|ti j (z̄i −di j −zj ;µi j ,ςi j )− ti j (z̄i −di j −z′j ;µi j ,ςi j )|dz̄i ≤ 2µ−1

i j |zj −z′j |,

for all zj ,z′j ∈ proj j(A ).
Without loss of generality, let us assumezj ≤ z′j (since the integrand and the expression

on the right-hand side are symmetric w.r.t.zj and z′j ). It follows that the integrand is a



94 6 Finite Abstractions of Stochastic Max-Plus-Linear Systems

piecewise continuous function of ¯zi ,zj ,z′j :















µ−1
i j exp{−µ−1

i j (z̄i −di j −z′j − ςi j )}−µ−1
i j exp{−µ−1

i j (z̄i −di j −zj − ςi j )},

if z̄i ≥ z′j +di j + ςi j ,

µ−1
i j exp{−µ−1

i j (z̄i −di j −zj − ςi j ), if zj +di j + ςi j ≤ z̄i ≤ z′j +di j + ςi j ,

0, if z̄i ≤ zj +di j + ςi j .

Thus the overall bounds can be computed based on the bounds ofthe first two subfunctions.
We will prove that the first two subfunctions are bounded byµ−1

i j |zj − z′j |. Let us focus on
the first subfunction:

µ−1
i j

Z +∞

z′j +di j +ςi j

(

exp{−µ−1
i j (z̄i −di j −z′j − ςi j )}−exp{−µ−1

i j (z̄i −di j −zj − ςi j )}
)

dz̄i

= µ−1
i j (exp{µ−1

i j z′j}−exp{µ−1
i j zj})

Z +∞

z′j +di j +ςi j

exp{−µ−1
i j (z̄i −di j − ςi j )}dz̄i

= (exp{µ−1
i j z′j}−exp{µ−1

i j zj}) exp{−µ−1
i j z′j}

= 1−exp{−µ−1
i j (z′j −zj)}

≤ µ−1
i j |zj −z′j |.

The last inequality holds becauseµ−1
i j (z′j −zj ) ≥ 0 and 1−exp{−z} ≤ z for all z≥ 0. Then

we continue to the second subfunction:

µ−1
i j

Z z′j+di j +ςi j

zj+di j +ςi j

exp{−µ−1
i j (z̄i −di j −zj − ςi j )}dz̄i

= −exp{−µ−1
i j (z′j −zj)}+1

≤ µ−1
i j |zj −z′j |. 2



Chapter 7

Conclusions and Future Research

In this thesis we have discussed finite abstractions of MPL systems, switching MiPL sys-
tems, and SMPL systems. Furthermore we have discussed reachability computations of
MPL systems. We have applied the abstraction techniques to verify some properties of
communication networks. In this chapter we summarize our main contributions and formu-
late future research directions.

7.1 Conclusions

Our main contributions are:

• Formal verification of MPL systems. In Chapter 3 we have designed a novel ab-
straction procedure applicable to autonomous and nonautonomousMPL systems. The
finite abstraction has been proven to simulate the original MPL system. We have de-
rived conditions under which the existence of a finite abstraction that bisimulates the
original MPL system is guaranteed. Furthermore, we have devised a procedure to
obtain such an abstraction. Compared to the broad existing literature in this area, this
novel approach represents a brand new way of looking at general analysis of MPL
models. Finally, the abstraction algorithms have been implemented and released in
theVeriSiMPL tool.

• Reachability computations of MPL systems.Chapter 4 has discussed reachability
computations of MPL systems, where the initial or final states are assumed to be
expressed as unions of finitely many DBM. This work extends related results in the
literature, since every max-plus polyhedron can be expressed as a union of finitely
many DBM. The reachability algorithms have been efficientlyimplemented in the
VeriSiMPL tool and shown to outperform alternative implementations.

• Automatic verification of network properties. In Chapter 5 we have discussed
the automatic verification of backlog and virtual delay bounds for network calculus
models via finite-state abstractions based on min-plus-linear (MiPL) models, thus
elucidating an application of the theory developed above. First we have formulated a
switching MiPL system from network calculus element. Then we have abstracted the
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switching MiPL system via its PWSA representation. The abstraction procedure is
an extension of the one developed in Chapter 3. If we can verify a virtual delay or a
backlog bound over the abstraction, this represents also a bound for the virtual delay
or backlog of the switching MiPL system.

• Finite abstractions of SMPL systems. In Chapter 6 we have studied the finite-
horizon probabilistic invariance problem over SMPL systems. The abstraction tech-
niques are formal in the sense that they provide explicit error bounds. The error bound
is defined as an upper bound on the maximum absolute difference between the exact
solution and the one obtained from the abstraction. These results are distinguished
from the existing literature on SMPL analysis and are computational since they lever-
age an existing software toolbox.

7.2 Recommendations for Future Research

In this section we discuss some interesting topics that can be considered for future research.

• Specifications.In Chapters 3 and 5 we have discussed an abstraction procedure for
MPL systems and switching MiPL systems, respectively. Bothabstraction procedures
are formula based and preserve a wide range of LTL formulae. Considering other
specifications such as Computation Tree Logic (CTL) [23, Def. 6.1], CTL* [23, Def.
6.80], and metric temporal logic [84] represents a first meaningful goal to extend our
results. Similarly we are interested in extending the probabilistic invariance problem
considered in Chapter 6 to more complex properties such as reach avoid or to general
specifications expressed in Probabilistic CTL (PCTL) [23, Def. 10.36], PCTL* [23,
Def. 10.59].

• Max-plus polyhedra and polytopes.It is clear that obtaining an abstract transition
system with a smaller number of abstract states is desirablefrom a computational
point of view. One way to achieve this is by using an abstraction procedure based on
max-plus polyhedra [60], which has been studied under the names of semimodules
[39] or idempotent spaces [88]. In this case there is no need to generate a PWA
system and to refine the partition based on the affine dynamics. On top of that the
computation of transitions will be faster because the dynamics are linear in the max-
plus algebra. However there is an issue in partitioning the state space, which isRn,
because max-plus polyhedra are necessarily closed. More precisely it is not possible
to construct a non-trivial partition ofRn such that each block is a closed set.

We are also interested in using polytopes in the abstractionprocedure. Polytopes
are more expressive than DBM, i.e. every DBM is a polytope. However the time
complexity of many polytope operations is exponential.

• Abstraction and verification techniques. In Chapters 3 and 5 we restrict the speci-
fications to LTL formulae. To check whether an abstraction satisfies an LTL formula,
we use automata-based LTL model checking implemented in SPIN [71]. If we con-
sider a specification expressed as a CTL formula, we can utilize symbolic model
checking [35, Ch. 6], which is more efficient than the enumerative one [23, Sec. 6.4].
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For SMPL systems, we have been exploring the existence of distributions associated
to an analytical solution to the finite-horizon probabilistic invariance problem. This
can be advantageous since the invariant set may be unboundedwhich limits the ab-
straction approach we have resorted to. Additionally this approach should not suffer
from the curse of dimensionality since it does not explicitly employ a partitioning
procedure.

• Tools. CurrentlyVeriSiMPL is implemented in MATLAB. We are currently imple-
menting tailored formula-based abstractions discussed above in the Java program-
ming language so thatVeriSiMPL can smoothly run on any platform. Furthermore we
are planning to leverage symbolic model checking by using binary decision diagrams
[114].

The abstraction procedure for switching MiPL systems is currently implemented as a
collection of MATLAB functions and scripts. These MATLAB files use some func-
tionalities ofVeriSiMPL. We are planning to integrate them withVeriSiMPL. Further-
more we will generalize the abstraction procedure to support the verification of any
LTL formula, i.e. not restricted to verification of virtual delay and backlog bounds.

Currently the procedure for computing the approximate solution of finite-horizon
probabilistic invariance problem over SMPL systems is implemented in some MAT-
LAB files. We are planning to integrate them withFAUST2 [53]. FAUST2 is a soft-
ware tool that generates formal abstractions of (possibly non-deterministic) discrete-
time Markov processes defined over uncountable (continuous) state spaces.

• Models. In this thesis we have extended the abstraction procedure for MPL sys-
tems to switching MiPL systems. There are some models that are related to MPL
systems, such as (stochastic) MiPL systems, (stochastic) switching MPL systems
[109, 110], stochastic switching MiPL systems, (stochastic) max-min-plus systems
[72, 99], (stochastic) max-min-plus-scaling systems [97]. Improving the abstraction
procedure to those models and looking towards extensions tonew models is some-
thing we deem worth looking at.

• Applications. We have applied the abstraction techniques to verify some proper-
ties of communication networks. We are looking for some new applications for our
techniques, such as optimal scheduling of multiple sheets in a printer [14], legged
locomotion [89] and systems biology [28]. In the long run, weare also interested in
large-scale applications such as railway network [68].
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Glossary

List of Symbols and Notations

Below follows a list of the most frequently used symbols and notations in this thesis.

a,a atomic proposition and set of atomic propositions resp.
a,a(·) amount of data arrivals in a communication network
a support parameter of the beta distribution
A, Ā state matrix of MPL systems and of augmented MPL systems resp.
A(·) state matrix of SMPL systems
A collection of matrices used in PWA systems
A , Â concrete and abstract invariant set resp.
A(ℓ) state matrix of switching MiPL systems in modeℓ
Act set of actions in transition systems
AP set of atomic propositions in transition systems

b burstiness parameter of an affine arrival curve
b support parameter of the beta distribution
B input matrix of MPL systems and backlog of a network
B (·) collection of Borel sets
Bmax,B′

max backlog bounds
B1,B2,B3, . . . blocks
B collection of matrices used in PWA systems
B(ℓ) input matrix of switching MiPL systems in modeℓ
BB atomic proposition “the backlog is bounded byB′

max”

c cyclicity of state matrix in autonomous MPL systems
c rate parameter of a service curve and discontinuity point
C a Borel set
cf generic operator yielding the canonical form of DBM
C collection of states of transition systems
CI atomic proposition “the input is conformant”

d delay parameter of a service curve and virtual delay
d time duration between consecutive events
Dmax,D′

max virtual delay bounds
DB atomic proposition “the virtual delay is bounded byD′

max”
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E max-plus eigenspace and the bound of approximation error

f abstraction function
f = ( f1, . . . , fn) tuple characterizing a block

g = (g1, . . . ,gn) tuple characterizing a region of PWA systems
gc,gd continuous and discrete parts of a density function resp.
G precedence (or communication) graph

h content of the leaky bucket and Lipschitz constant
H a constant

I , I f initial states of concrete and abstract transition systemsresp.
I indicator function
Im, ¯Im image operator w.r.t. autonomous and nonautonomous modelsresp.

J jump distance of a density function

k discrete-event counter and index of partition sets
k0 length of the transient part
k/0(x) there is no point inRn that can reachx in k/0 steps or more

L,L f labeling function of concrete and abstract transition systems resp.

m dimension of the input space
m cardinality of the partition of invariant set
M upper bound of a density function

n dimension of the state space
nm number of modes in switching MiPL systems
N event horizon
N set of natural numbers, i.e.{1,2,3, . . .}

O big O notation

proj orthogonal projection operator
Paths set of all paths in transition systems
Post operator yielding the direct successors in transition systems
Pr,Pz0, P̂ŝ0 probability measure
Pre operator yielding the direct predecessors in transition systems

qA,qĀ number of regions in PWA system generated byA andÂ resp.
qk,q−k number of DBM inXk andX−k for k∈ N∪{0} resp.

r rate parameter of an affine arrival curve
R region of PWA systems and cumulative function of input flow
R∗ cumulative function of output flow
R collection of regions used in PWA systems
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R binary relation
RΠ equivalence relation induced byΠ
R,Rε,R⊤ set of real numbers,R∪{−∞}, andR∪{+∞} resp.

s, ŝ concrete and abstract states of transition systems resp.
s= [s1, . . . ,sn]

T regular schedule
S, Ŝ state space of concrete and abstract transition systems resp.

t time and density function
T distribution function
T̂ transition probability matrix of MC abstraction
Traces set of traces of transition systems
TS,TSf concrete and abstract transition systems resp.

u = [u1, . . . ,um]T input vector of MPL systems
U input space of MPL systems
U ,U 0,U 1,U−1, . . . set of possible inputs

V,V̂ value functions

W matrix used to define the tuplef

x = [x1, . . . ,xn]
T state vector of MPL systems

x̄ = [x1, . . . ,um]T state vector of augmented MPL systems
X state space of MPL systems
X set of states in MPL systems and safe set
X0 set of initial and final conditions
X1,X2,X3, . . . (forward) reach sets
X−1,X−2,X−3, . . . backward reach sets

z = [z1, . . . ,zn]
T delay w.r.t. regular schedule

α scalar, arrival curve, and shape parameter of beta distribution
β scalar, service curve, and shape parameter of beta distribution
γ any arbitrary action variable
δ grid size parameter
ε zero (or neutral) element of the max-algebraic addition
θ the unit step function
λ max-plus eigenvalue
µ mean of an exponential distribution
Π partition of the state space
ς shift parameter of an exponential distribution
τ irrelevant action variable
ϕ LTL formula

⊕,⊕′ max-algebraic and min-algebraic additions resp.
⊗,⊗′ max-algebraic and min-algebraic multiplication resp.
⊤ zero (or neutral) element of min-algebraic addition
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⊲⊳ {>,<,≥,≤}
−−→ transition relation
2· power-set operator
| · | number of elements of a set and absolute-value operator
¬,∧,∨ Boolean operators: not, and, or
©,U,2,3 temporal operators: next, until, always, eventually
× cross product operator
◦ function composition operator
⌊x⌋ smallest integer greater than or equal tox
ℓ the mode of switching MiPL systems

List of Abbreviations

The following abbreviations are used in this thesis:

CTL Computation Tree Logic
DBM Difference Bound Matrices
LTL Linear Temporal Logic
MiPL Min Plus Linear
MPL Max Plus Linear
PCTL Probabilistic Computation Tree Logic
PWA Piecewise Affine
PWSA Piecewise Switched Affine
SMPL Stochastic Max Plus Linear



Samenvatting

Abstracties van Max-Plus-Lineaire Systemen

Max-plus-lineaire (MPL) systemen vormen een klasse van discrete-gebeurtenissystemen
met een continue toestandsruimte die de tijdstippen van de onderliggende opeenvolgende
discrete gebeurtenissen karakteriseert. Dit soort systemen zijn geschikt voor het beschrijven
van de synchronisatie van de tijdstippen van parallelle processen. MPL systemen worden
gebruikt voor de analyse en planning van infrastructuurnetwerken zoals communicatie- en
spoorwegsystemen, productie- en fabricageprocessen en biologische systemen. Stochasti-
sche max-plus-lineaire (SMPL) systemen vormen een uitbreiding van MPL systemen waar-
in de tijdsverschillen tussen opeenvolgende gebeurtenissen gekarakteriseerd worden door
probabilistische grootheden. In vergelijking met MPL systemen zijn SMPL systemen rea-
listischer voor praktische toepassingen zoals b.v. het modelleren van een spoorwegsysteem
waarin de rijtijd van een trein afhankelijk is van het gedragvan de bestuurder, van weers-
omstandigheden of van het aantal passagiers op de stations.

Verificatie wordt gebruikt om vast te stellen of een gegeven systeem bepaalde eigen-
schappen bezit die in formules zijn uitgedrukt. Een voorbeeld hiervan is bereikbaarheids-
analyse (in het Engels:reachability analysis), wat een fundamenteel probleem is in het
domein van formele methoden, systeemtheorie en prestatie-en betrouwbaarheidsanalyse.
Bereikbaarheidsanalyse omhelst het bepalen of een bepaalde systeemtoestand haalbaar is
vanuit bepaalde initiële systeemtoestanden.

Verificatietechnieken en -methoden voor systemen met een eindig aantal toestanden
hebben in de afgelopen decennia brede aandacht gekregen en zijn sterk ontwikkeld. In-
dien een systeem echter een groot aantal of zelfs oneindig veel toestanden heeft, kunnen
we dergelijke technieken in het algemeen niet direct toepassen. In dat geval is het nodig
om abstractietechnieken te gebruiken om een specifiek modelformeel om te zetten in een
eindige abstractie daarvan. Deze abstractie kan vervolgens automatisch geverifieerd worden
met behulp van resultaten uit de literatuur.

In dit proefschrift ontwikkelen we nieuwe abstractietechnieken voor MPL systemen en
passen we deze toe in communicatienetwerken. Daarnaast behandelen we de bereikbaar-
heid van MPL systemen en abstractietechnieken voor SMPL systemen. In het onderstaande
bespreken we kort de technieken die in dit proefschrift worden voorgesteld alsmede de toe-
passingen daarvan in communicatienetwerken.

• Eindige abstracties van MPL systemen.We beschouwen het volgende probleem:
gegeven een MPL systeem en een specificatie, bepaal of het MPLsysteem aan de spe-
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cificatie voldoet. De specificatie wordt uitgedrukt als een formule in lineaire tijdslo-
gica (LTL). We stellen enkele algoritmen voor om abstracties te genereren. Deze
algoritmen maken gebruik van differentie-begrensde matrices (difference-bound ma-
trices - DBM) voor de representatie van gebieden en van stuksgewijsaffiene (piece-
wise affine- PWA) modellen voor de representatie van de MPL dynamica. Een DBM
is een doorsnede van een eindig aantal halfruimtes die gekarakteriseerd worden door
het verschil tussen twee variabelen. Deze aanpak maakt de studie mogelijk van al-
gemene eigenschappen van het originele MPL systeem door – via modelchecking–
equivalente logische specificaties van de abstractie te verifiëren. Meer specifiek tonen
we aan dat indien de abstractie voldoet aan de specificatie, het MPL systeem ook aan
deze specificatie voldoet.

• Bereikbaarheid van MPL systemen.We breiden de voor- en achterwaartse bereik-
baarheidsberekeningen voor MPL systemen beschreven in de literatuur uit door een
willekeurige verzameling van respectievelijk begin- en eindcondities te beschouwen.
In beide gevallen zijn de systeemmatrices niet noodzakelijk max-plus-inverteerbaar.
We gebruiken geoptimaliseerde datastructuren, zoals de bovengenoemde DBM, die
rekenkundig gemakkelijk gemanipuleerd kunnen worden. We lichten de toepassing
van bereikbaarheidsberekeningen toe bij de analyse van de veiligheid en het transitie-
gedrag van MPL systemen. Ten slotte zetten we de voorwaartsebereikbaarheidsbe-
rekeningen met succes af tegen een alternatieve aanpak die gebaseerd is op de vaak
gebruikteMulti Parametric Toolbox(MPT) versie 2.

• Automatische verificatie van netwerkeigenschappen.We passen onze abstractie-
technieken toe om de grenzen te verifiëren voor debacklogen voor de virtuele ver-
traging in een communicatienetwerk. Alhoewel zulke eigenschappen reeds geana-
lyseerd kunnen worden met behulp van netwerkanalyse (network calculus), ligt de
kracht van onze aanpak in zowel zijn totaal geautomatiseerde aard als in het ope-
nen van de weg naar automatische verificatie van bepaalde communicatietopologiën.
Voorbeelden hiervan zijn geaggregeerde stromen, waarmee netwerkanalyse niet ge-
makkelijk kan omgaan. Daarnaast maakt het gebruik van abstractiemethoden, zoals
die worden voorgesteld voor de automatische synthese van regelsoftware, de gelijk-
tijdige verificatie van regel- en communicatiesoftware mogelijk.

• Eindige abstracties van SMPL systemen.We onderzoeken het gebruik van eindige
abstracties om probabilistische invariantieproblemen met een eindige horizon voor
SMPL systemen op te lossen. Het probabilistische invariantieprobleem komt neer op
het bepalen van de kans dat aan de invariantie-eigenschap voor elke toegestane be-
ginconditie voldaan is. Invariantie-eigenschappen bestaan uit een voorwaarde op de
toestanden en vereisen dat deze voorwaarde in probabilistische zin van kracht is op
alle bereikbare toestanden. Omdat een analytische oplossing van dit probleem in het
algemeen niet afgeleid kan worden, maken we gebruik van formele abstractietech-
nieken uit de literatuur om een (kwantificeerbare) benaderende oplossing te bepalen
voor het probleem.

De in dit proefschrift ontwikkelde abstractie- en bereikbaarheidsalgoritmen voor MPL
systemen zijn geı̈mplementeerd als MATLABsoftware, “Verification via biSimulations of
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MPL models” (VeriSiMPL, zoals in “very simple”), die vrij beschikbaar is om tedownloa-
denvan http://www.sourceforge.net/projects/verisimpl/.

Dieky Adzkiya

http://www.sourceforge.net/projects/verisimpl/




Summary

Abstractions of Max-Plus-Linear Systems

Max-Plus-Linear (MPL) systems are a class of discrete-event systems with a continuous
state space characterizing the timing of the underlying sequential discrete events. These sys-
tems are predisposed to describe the timing synchronization between interleaved processes.
MPL systems are employed in the analysis and scheduling of infrastructure networks, such
as communication and railway systems, production and manufacturing lines, or biological
systems. As a natural extension, Stochastic Max-Plus-Linear (SMPL) systems are MPL
systems where the delays between successive events are characterized by random quanti-
ties. In practical applications SMPL systems are more realistic than simple MPL ones: for
instance in a model for a railway network, train running times depend on driver behavior,
on weather conditions, and on passenger numbers at stations.

Verification is used to establish whether the system under consideration possesses cer-
tain properties expressed as formulae. As an example, reachability analysis is a fundamental
problem in the area of formal methods, systems theory, and performance and dependability
analysis. It is concerned with assessing whether a certain state of a system is attainable from
given initial states of the system.

Verification techniques and tools for finite-state systems have been widely investigated
and developed in the past decades. However, if the system hasa large number of states
or even infinitely many states, in general we cannot apply such techniques directly. In this
case we need to employ abstraction techniques to formally relate a concrete model to a finite
abstraction of it, which is then amenable to be automatically verified by the relevant results
in the literature.

In this PhD thesis we develop novel abstraction techniques for MPL systems, and use
them in an application to communication networks. Additionally we discuss reachability of
MPL systems and abstraction techniques for SMPL systems. Next we provide a summary of
the techniques proposed in this PhD thesis and the applications to communication networks:

• Finite abstractions of MPL systems.We consider the following problem: given an
MPL system and a specification, we determine whether the MPL system satisfies the
specification. The specification is expressed as a formula inLinear Temporal Logic
(LTL). We propose some algorithms to generate abstractions. The algorithms utilize
Difference-Bound Matrices (DBM) for the representation ofregions and Piece-Wise
Affine (PWA) models for the representation of the MPL dynamics. A DBM is an
intersection of finitely many half-space representations that are characterized by the
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difference of two variables. This approach enables the study of general properties of
the original MPL system by verifying (via model checking) equivalent logical speci-
fications over the abstraction. More precisely we show that if the abstraction satisfies
the specification, the MPL system also satisfies the specification.

• Reachability of MPL systems. We extend the forward and backward reachability
computations of MPL systems in the literature by considering an arbitrary set of ini-
tial and final conditions, respectively. Furthermore in both cases, the system matrices
do not necessarily have to be max-plus invertible. We employoptimized data struc-
tures, such as the DBM used in the abstraction procedure above, that are easy to ma-
nipulate computationally. We illustrate the application of reachability computations
over safety and transient analysis of MPL systems. Finally we successfully bench-
mark the forward reachability computations against an alternative approach based on
the well-developed Multi Parametric Toolbox (MPT) version2.

• Automatic verification of network properties. We apply our abstraction techniques
to verify bounds for backlog and virtual delay in a communication network. Although
such properties can already be analyzed using network calculus tools, the virtue of
our approach lies in its completely automated nature, and inopening the door to
the automatic verification of certain communication topologies, e.g. flow aggregates,
which network calculus cannot easily cope with. Furthermore, the use of abstraction
approaches similar to those proposed for the automatic synthesis of control software,
enables the simultaneous verification of control and communication software.

• Finite abstractions of SMPL systems.We investigate the use of finite abstractions
to study finite-horizon probabilistic invariance problem over SMPL systems. The
probabilistic invariance problem amounts to determining the probability of satisfying
the invariance property for each allowable initial condition. Invariance properties are
given by a condition on the states and require that the condition holds (in probabil-
ity) over all the reachable states. In general an analyticalsolution of this problem
cannot be derived, thus we leverage formal abstraction techniques in the literature to
determine a (quantifiably) approximate solution of the problem.

The abstraction and reachability algorithms for MPL systems developed in this thesis
have been implemented as a MATLAB software tool, “Verification via biSimulations of
MPL models” (VeriSiMPL, as in “very simple”), which is freely available for download at
http://www.sourceforge.net/projects/verisimpl/.

Dieky Adzkiya

http://www.sourceforge.net/projects/verisimpl/
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