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Chapter 1

Introduction

This thesis discusses the formal verification of Max-Pliselar (MPL) systems. In this
chapter we introduce MPL systems, verification problems, @m application in commu-
nication networks. We further briefly sketch our approachdtve these problems, which
will be further elaborated throughout the thesis. The exati@n of the organization of the
thesis concludes this chapter.

1.1 Motivation

The seminal work in [22, p. ix] characterizes discrete-¢aymamic systems as follows:
discrete-event dynamic systems encompass man-made systasisting of a finite num-
ber of resources (processors or memories, communicat@amnets, machines) shared by
several users (jobs, packets, manufactured objects)hveloistribute to the achievement of
a common goal (a parallel computation, the end-to-endtnégssson of a set of packets, the
assembly of a product in an automated manufacturing line¢. dynamics of such systems
has to deal with synchronization and with concurrency. 8yoeization requires the avail-
ability of several resources or users at the same time, \aRar@ncurrency appears when
some user must choose among several resources at a patiioelénstant.

Max-Plus-Linear (MPL) systems are a class of discrete{ggmamic systems [22, 40]
with a continuous state space characterizing the timingetinderlying sequential discrete
events. MPL systems are predisposed to describe the exwlotitimed event graphs in
the event domain, under the assumption that timing eveptsirararly dependent (within
the max-plus algebra) on previous event occurrences anddftautonomous systems) on
exogenous schedules. MPL systems have a wide range of aijgtis: they have been
employed in the analysis and scheduling of infrastructeterarks, such as communication
and railway systems [68], production and manufacturingdifil06, 112], or biological
systems [28].

Timed event graphs are a class of timed Petri nets where dach pas a single up-
stream transition and a single downstream transition [22, 3.5]. These systems describe
synchronization without concurrency. The dynamics carelpeasented either as a dater or
as a counter. The dater description uses the max-plus algelris called an event-domain
description, i.e. the independent variable denotes ant@veex and the state variable de-

1



2 1 Introduction

notes the time of event occurrences. In the max-plus algéhed'addition” is defined as
the maximization and the “multiplication” is defined as theual addition. On the other
hand, the counter description uses the min-plus algebrasaralled time-domain descrip-
tion, i.e. the independent variable denotes time and the géaiable is a counter of events
occurred up to a certain time. As suggested by the name, isptagalgebra, the “addition”
and “multiplication” are defined as the minimization andfes isual addition, respectively.
The interested reader is referred to [22, Sec. 5.2] for metaild.

Over the past three decades, many fundamental problemsPRardyistems have been
studied [38, 45, 46, 50, 64, 74, 90, 104]. Classical dynahainalysis of MPL systems is
grounded on their algebraic features [22]. It allows iniggging global system properties
such as its transient or asymptotic behaviors, its periajenes, or its ultimate dynamical
behavior [45]. Those system properties can be studied Ingtise spectral theory of system
matrices in the max-plus algebra. Recently some results hppeared on the geometric
theory for MPL systems introduced in [38], such as the commport of different control on
invariant sets [50, 74] and the feedback controller des@flj. [ The application of model
predictive control in MPL systems has been studied in [46]the subsequent line of work.

In this thesis we develop an alternative approach to arsabfdvPL systems based on
finite-state abstractions. More precisely we consider thlewing verification problem.
Given an MPL system and a specification, we determine whétleedvlPL system satisfies
the specification. Solution of the verification problem tw.a. class of specifications can
be determined by reachability computations. This motwate to study reachability of
MPL systems. However specifications can express richereptieg and be characterized as
formulae in certain temporal logics or as automata.

Reachability analysis is a fundamental problem in the aféarmal methods, systems
theory, and performance and dependability analysis. bieerned with assessing whether
a certain state of a system is attainable from given initiales of the system. The prob-
lem is particularly interesting and compelling over modeith continuous components —
either in time or in (state) space [16, 18, 25, 32—-34, 44, 8376, 79, 80, 86, 94—96]. With
regards to MPL systems, reachability analysis frasingleinitial condition has been inves-
tigated in [38, 58, 61] by leveraging the computation of thaahability matrix, which leads
to a parallel with reachability for discrete-time lineam@ynical systems. Furthermore, the
existing literature does not deal with backward reachigtalnalysis. Under the requirement
that the set of initial conditions is expressed as a max-ptighedron [60, 120], forward
reachability analysis can be performed over the max-plgsha. Similar results hold for
backward reachability analysis of autonomous MPL systevhgre in addition the system
matrix has to be max-plus invertibleTo the best of the author’s knowledge, there are no
direct approaches for solving the backward reachabilipbfm of honautonomous MPL
systems in the max-plus algebra. In this thesis we extentbtiaard and backward reach-
ability computations of MPL systems by considering an aalbjt set of initial and final
conditions, respectively. Furthermore in both cases, yseem matrices do not have to be
max-plus invertible. We leverage the data structure ofddéhce-Bound Matrices (DBM)
[51] that is easy to manipulate computationally. A DBM is thiersection of finitely many
half-space representations that are characterized byiftaeedice of two variables.

In order to showcase the effectiveness of the developedythee apply our abstrac-

1A matrix is max-plus invertible iff there is a single finiteeghent (not equal te-0) in each row and in each
column.



1.2 Research Goals and Original Contributions 3

tion techniques for MPL systems to verify some propertiesoofimunication systems. The
communication systems of interest are modeled using nkteadculus. Network calculus
makes use of the min-plus algebra to provide strong perfoceaguarantees for determin-
istic communication systems [85]. The main quantities ¢ériest are backlog and virtual
delay. The backlog is the amount of data that is held insidesgistem. The virtual de-
lay at timet is the amount of time spent inside the system by the data tethtered at
timet, if the data is served after all the data that has entereddéfoet has been served.
The main network calculus results deal with bounds on th&lbgd85, Th. 1.4.1] and
on the virtual delay [85, Th. 1.4.2]. Both of these quarditige highly relevant in control
implementations: the first one is necessary to guarantealtbence of packet drop-outs,
whereas the latter can be typically assumed to provide adbfmurthe delay in the feedback
measurements. In this thesis we apply the abstractionitpodsito the switching Min-Plus-
Linear (MiPL) representation of network calculus. A swita MiPL system is a system
that can switch between different modes of operation, wtrerelynamics in each mode are
described by MiPL equations.

Stochastic Max-Plus-Linear (SMPL) systems [67, 100, 16&5MPL systems where the
delays between successive events (in the examples abevesdbessing or transportation
times) are now characterized by random quantities. In maapplications SMPL systems
are more realistic than simple MPL ones: for instance in aehémt a railway network,
train running times depend on driver behavior, on weathaditimns, and on passenger
numbers at stations. As such they are arguably more suitabdieled by random variables
than deterministic ones. Only a few approaches have beerlaged in the literature to
study the steady-state behavior of SMPL systems, for exasmpbloying Lyapunov expo-
nents and asymptotic growth rates [20-22, 57, 62, 92, 11hE Oyapunov exponent of
SMPL systems under some assumptions has been studied ip §htillater these results
have been extended to approximate computations undertettterical assumptions in [62,
p. 251]. The application of model predictive control andtsgs identification to SMPL
systems, under given structural assumptions, has beeedtind54, 55]. In this thesis we
investigate the use of finite abstractions to study the finiteézon probabilistic invariance
problem over SMPL systems. The probabilistic invarian@dfgm amounts to determining
the probability of satisfying the invariance property fach allowable initial condition. We
tailor the techniques in [3, 52] to determine the approxasatiution of the problem.

1.2 Research Goals and Original Contributions

The broad aim of this PhD research is to develop a novel andrgeframework for the
formal verification of MPL systems and SMPL systems. In thecpss, we obtain results
in reachability of MPL systems and apply the abstractiohmégues to the investigation of
existing network calculus elements.

Formal verification of MPL systems via finite abstractions.We propose an analysis
method based on finite-state abstractions of autonomousaralitonomous MPL systems.
We seek to synthesize techniques that are computatiorglylay employing a novel repre-
sentation of the quantities into play (regions over state@mtrol spaces, as well as model
dynamics). By expressing general dynamical propertiepasifications in a modal logic
such as Linear Temporal Logic (LTL), the abstraction alldarsthe formal verification of
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classes of properties by means of model checking.

Reachability computations of MPL systems.We extend the results in the literature
for forward reachability analysis by considering an agbijrset of initial conditions. Ad-
ditionally for backward reachability analysis, we are afoldnandle nonautonomous MPL
systems and state matrices that are not max-plus inveriifédllustrate the application of
reachability computations over safety and transient amalyf MPL systems.

Implementations. Most abstraction and reachability algorithms have beemdmpnted
as a MATLAB software tool, “Verification via biSimulationg MPL models” (VeriSiMPL,
as in “very simple”), which is freely available for downloatihttp://www.sourceforge.net/
projects/verisimpl.

Automatic verification of network properties. We focus on the automatic synthesis of
bounds on the virtual delay and on the backlog of a commuitattwork. Although such
properties can already be analyzed using network calcabls,tthe virtue of our approach
lies in its completely automated nature, and in opening toe tb the automatic verification
of certain communication topologies, e.g. flow aggregatésch network calculus cannot
easily cope with. Furthermore, the use of abstraction aares similar to those proposed
for the automatic synthesis of control software, enablessiimultaneous verification of
control and communication software over more complex pitiggethan those discussed in
this thesis.

Finite abstractions of SMPL systems.We investigate the use of finite abstractions to
study the finite-horizon probabilistic invariance problerer SMPL systems. The tech-
niques are inspired by [3, 52, 100, 105]. The invariant priypeharacterizes the desired
delay of event occurrences w.r.t. a given schedule.

1.3 Overview of the Thesis

This thesis discusses approaches to analysis that are badatte-state abstractions of
MPL systems, switching MiPL systems, and SMPL systems. #afdilly for MPL sys-
tems, we also discuss an approach based on reachabiliggsenarhis thesis is organized
as follows:

e Chapter [2lintroduces the definition of MPL systems and recalls a fewtobasic
properties. A number of related models that are going to lesl elsroughout the
thesis are then briefly discussed: Min-Plus-Linear (MiRtgtems, Switching MiPL
systems, Stochastic MPL (SMPL) systems, Piece-wise Afff\&/X) systems, and
Piecewise Switched Affine (PWSA) systems.

¢ In Chapter [3/ the abstraction procedure of autonomous and nonautonomMBus
systems is discussed. First of all, some preliminary cotscape introduced such
as Difference-Bound Matrices (DBM), transition system@ear Temporal Logic
(LTL), and abstractions. The abstraction procedure ctmsisa partitioning of the
state space and of determining possible transitions betwags of partition sets.
A partition-refinement procedure is additionally proposedrder to increase the
abstraction precision. The abstraction algorithms ardémpnted in thé/eriSiMPL
tool.


http://www.sourceforge.net/projects/verisimpl
http://www.sourceforge.net/projects/verisimpl

1.4 Publications by the Author 5

1. Introduction
2. Models
4{ 3. Abstractions of MPL Systen’ﬁsi

’ 5. Verification of Network Calculus Elemeﬂts

4. Reachability of MPL Systerﬁs ’ 6. Abstractions of SMPL Systerﬂws

*{ 7. Conclusions and Future Rese%mhi

Fig. 1.1: Relational structure of this thesis. Arrows inglie relations of inter-dependence.

e Computational techniques for reachability analysis of Miystems are discussed in
Chapter[4. This chapter covers autonomous and nonautonomous MP&nsgste-
guential and “one-shot” computations of reach tubes arslrespectively, as well as
forward and backward reachability analysis. The reachglalgorithms are imple-
mented as a part MeriSiMPL.

e In Chapter[5 we discuss the verification of specific properties of netwealculus
elements. The approach is again based on finite-state etistimand is an exten-
sion and an application of the techniques elaborated in 8h&p The properties of
interest for this study are backlog and virtual delay, anemsions are discussed.

e Chapter|6 studies the finite-horizon probabilistic invariance peshlover Stochastic
MPL (SMPL) systems. First SMPL systems are formulated as@efie-time Markov
processes. Then the formal abstraction techniques of [Barg?tailored to SMPL
systems.

e Chapter 7 summarizes the results of this thesis and outlines dinestfor future
research.

1.4 Publications by the Author

Most of the material presented in Chaptefs 3-6 of this PhBisheas appeared in interna-
tional conference proceedings, both in the area of systeroanfrol and in that of formal



6 1 Introduction

verification, or has been published in peer-reviewed jogrné addition to developing
the theory, we have implemented most algorithms in thisithes a MATLAB toolbox
VeriSiMPL. The connection between each chapter and the publicas@ssfollows

e Chapter 3 is based on [5-8]
e Chapterf 4 is based on [9-11]

e Chapter 5 is based on [43] and [42] where the author is oneeddtipervisors in the
latter reference

e Chapter 6 is based on [12]



Chapter 2

Models

In this chapter we present a brief overview of Max-Plus-ain@MPL) systems, followed
by a concise description of some related models, such adMlis-Linear (MiPL) systems,
switching MiPL systems, stochastic MPL systems, Piecewifiae (PWA) systems, Piece-
wise Switched Affine (PWSA) systems.

2.1 Max-Plus-Linear Systems

In this section we introduce the syntax and semantics in #ve ptus algebra, followed by
a discussion on Max-Plus-Linear (MPL) systems and its ptagee[22]. DefineR, R¢, and
€ respectively as the set of real numbéRs) {€}, and—o. Fora, € Re, introduce the two
operations

o & B=maxa,p} and a®B=0a+p,

where the elemerttis considered to be absorbing w.t.[22, Def. 3.4]. Giverp € R, the
max-algebraic power af € R is denoted byi®? and corresponds @p in the conventional
algebra. In this thesis the usual multiplication symisols usually omitted, whereas the
max-algebraic multiplication symbab is written. The rules for the order of evaluation
of the max-algebraic operators correspond to those of ctioreal algebra: max-algebraic
power has the highest priority, and max-algebraic muttgilon has a higher precedence
than max-algebraic addition [22, Sec. 3.1]. The basic mg&kaaic operations are extended
to matrices as follows. IA B € R™"; C e R"P; D ¢ RY*"; anda € R,

(@A, ]) =a @A, ]),
[ADB(i, j) = A, ) ®B(, ]),

p
[C®DI(i, ) = @Cl(i,k) @ Dk, j),
k=1
foralli=1,....mandj=1,...,n. The notatiorA(i, j) represents the entry of matri

ati-th row andj-th column. Notice the analogy between ® and+, x for matrix and
vector operations in the conventional algebra. Giwvea N, them-th max-algebraic power
of A€ RI*" is denoted byA®™ and corresponds tA® - --® A (mtimes). Notice thap®0

7



) 2 Models

is ann-dimensional max-plus identity matrix, i.e. the diagonadlanondiagonal elements
are 0 anck, respectively. In this thesis, the following notation isopted for reasons of
convenience: a vector with each component that equals &sf.(r ) is also denoted by 0
(resp.g). Furthermore the state space is taken t@®Bérather tharRY), which also implies
that the state matriR has to be row-finite (cf. Definitidn 2.2).

An autonomous Max-Plus-Linear (MPL) system|[22, Rem. 2ig8fined as:

x(k) = A@x(k— 1), 2.1)

whereA € R*" x(k— 1) = [x3(k—1)...xa(k— 1)]T € R" for k € N. We use the bold
typeset for vectors and tuples, whereas the entries ardetkthy the normal typeset with
the same name and index. The independent varlabdknotes an increasing event index,
whereas the state variablék) defines the (continuous) time of occurrence ofktk event.
Autonomous MPL systems are characterized by determirdgti@amics, namely they are
unaffected by exogenous inputs in the form of control sigral of environmental non-
determinism.

Many classical concepts of system theory are exportableRb Bystems such as state-
space recursive equations, input-output (transfer) fanst feedback loops, eigenvalue,
eigenvector etc. In this thesis, we focus on max-plus eigleilevand eigenvectors. As
it will be clear later, the existence of max-plus eigenvedunel eigenvectors depends on
irreducibility of the state matrix. The notion of irreduity can be defined according to
the precedence (or communication) graph of the state matrix

Definition 2.1 (Precedence Graph [22, Def. 2.8]The precedence graph éfc R{*",
denoted byg (A), is a weighted directed graph with vertices.1,n and an ardj,i) with
weightA(i, j) for eachA(i, j) # €. O

Definition 2.2 (Regular (Row-Finite) Matrix [68, Sec. 1.2])A matrix A € R§*" is called
regular (or row-finite) ifA contains at least one element different frein each row. O

Example Consider the following two-dimensional MPL system that misda simple rail-
way network between two cities [68, Sec. 0.%](K) is the time of thek-th departure at
stationi fori =1,2):

x(k) = [g 2] ®x(k—1), orequivalently
(2.2)
x1(K)|  [max{2+xi1(k—1),5+x(k—1)}
Xo(K) | |max{3+xi(k—1),3+x2(k—1)}]|"
The precedence graph Afis shown in Figl. 2.1 (left) and is a row-finite matrix. O

The notion of irreducible matrix, to be used shortly, can veigvia that of precedence
graph.

Definition 2.3 (Irreducible Matrix [22, Th. 2.14]) A matrix A € R?*" is called irreducible
if its precedence graph (A) is strongly connected. O
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Fig. 2.1: The left and right plots represent precedence aitital graph of matrix A for the
autonomous MPL system (B.2), respectively.

Recall that a directed graph is strongly connected if forgany of different vertices, j
of the graph, there exists a path froro j [22, p. 37]. From a max-algebraic perspective,
a matrixA € R]*" is irreducible if the nondiagonal elements@'"@k;iA@k are finite (not
equal tog), since this condition means that for two arbitrary vesicand j of g (A) with

i # | there exists at least one path (of length 1, 2, ..nerl) fromj toi.

Example For the preceding example in (2.2), sinB€l,2) # € # A(2,1), the matrixA
is irreducible. Equivalently, notice that the precedenapl in Fig/ 2.1 (left) is strongly
connected. O

In order to investigate the steady-state or ultimate betasf an autonomous MPL
system, we employ the concept of critical graph, which isstarcted from the precedence
graph.

Definition 2.4 (Critical Graph [22, Def. 3.94]) For a matrixA € R*", the following no-
tions are defined:

A circuit of the precedence graph(A) is calledcritical if it has maximum average
weight. Thecritical graph g ¢(A) consists of those nodes and arcg;¢A) that belong to a
critical circuit of g (A). The set of nodes in the critical graph is denotedAfy The weights
are defined as the usual zero [22, p. 143].

Thecyclicity of a strongly connected graph is the greatest common digftbe lengths
of all its circuits. The cyclicity of a general graph is the$t common multiple of the
cyclicities of all its strongly connected subgraphs. Thelicity of g¢(A) equals to the
valuec defined in Proposition 2.1. From now on, we will call it the bgity of A. O

Example The autonomous MPL system in (2.2) admits the critical d¢ir¢ls — 2 — 1},
which coincides with the critical graph (cf. right plot ofgFi2.1). Since the critical graph is
strongly connected, the max-plus eigenvector is unique$22. 3.7.2] up to the max-plus
multiplication by a finite scalar. Furthermore the cychiciif A is 2, as also results from
Proposition 2.1. O

If Ais irreducible, there exists a unique max-plus eigenvalgeR [22, Th. 3.23] and
a corresponding eigenspaB¢A) = {x e R": A@x = A®x} [22, Sec. 3.7.2]. From a
graph-theoretical point of view, the max-plus eigenvakidéfined as the maximum cycle
mean of the associated precedence graph [22, Th. 3.23]rikiges have been developed
to compute this quantity, e.g. [36, Sec. 4] and [41]. The msgaceE(A) is the max-
plus linear combination of thieth column ofA;r, fori € ¥¢[22, Sec. 3.7.1], wherg,” =
@r_1((—A) ® A)®K. Thus the eigenspace is a max-plus cone [60, Def. 2.1], wivash
introduced in [120]. Propositian 2.1 implie% = @gfﬂcfl(Af}\)@k, which justifies
thatAl" can be computed in finite time.
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Proposition 2.1 (Length of the Transient Part [22, Sec. 3.F]Let A € R§*" be an irre-
ducible matrix with max-plus eigenvaliec R. There exisko,c € N such thata®(k+¢) —
A®C® AZK for all k > kg. The smalleskg andc verifying the property are defined as the
length of the transient paraind the cyclicity, respectively. O

Proposition 2.1 allows to establish the existence of a paribehavior. Given an initial
conditionx(0) € R", there exists a finit&(x(0)), such thak(k+ c) = A*¢ @ x(k), for all
k > ko(x(0)). Notice that we can seek a specific length of the transientkpéx(0)), in
general less conservative than the glokak ko(A), as in Proposition 2/1. Upper bounds
for the length of the transient paky and for its computation have been discussed in [65,
Ths. 10 and 13] and more recently in [31].

The complete set of periodic behaviors are encompassedebgigenspace ohA®c,
wherec is the cyclicity ofA. It is formulated a€ (A“C) = {x € R": A @ x = A*° @ x}
and contains the eigenspacefof.e. E(A) C E(A®C).

Example In the numerical example (2.2), from Proposition| 2.1 we wldanax-plus eigen-
valueh = 4, cyclicity c = 2, and a (global) length of the transient playt= 2. The specific
length of the transient part fo(0) = [0,0]" can be computed observing the trajectory

o| 5| [8| [13] [16]| [21] [24] (29| [32| (37| [40| [45| |48

0|’ [3]|’|8|’|11] |16]’|19] |24|’ |27| |32’ |35| 40|’ |43|’|48] "~
Notice that the periodic behavior occurs immediately}q€[0,0]") = 0, and shows a period
equal to 2, namely(2) = 4%2® x(0) = 84 x(0). Furthermore notice that(k +2) = 8®
x(k), fork e NU{0}.

By using [22, Ths. 3.100 and 3.101], the eigenspac®isfE (A) = {x € R? : x; — Xp =
1} and the complete periodic behaviors E@*?) = {x € R2: 0 < x3 — X2 < 2}. O

For the backward reachability analysis we introduce thentityeky (), for any giverx €
RM\ E(A%®°), as the smallestsuch that the system of max-plus linear equatiéfss x’ = x
does not have a solution. (Practically, there is no pzint R" that can reackhx in kyp
steps or more.) The solution can be computed by using theaadéth[22, Sec. 3.2.3.2].
Otherwise ifx € E(A®®), kp(x) is set to 0. This (arguably counter-intuitive) definitionliwi
be useful for the ensuing work. It is easy to see that the dfyarin be bounded dg(x) <
ko(A) — ko(x) + 1, for eachx € R".

Definition 2.5 (Length of Transient Part of a Set)Let x C R" be a nonempty seltg(x ) =
maXex Ko(x) andkp(x ) = maxex ko(X). O
A nonautonomous MPL system [22, Cor. 2.82] is defined by emlingdan external
inputu in the dynamics of (2/1) as:
x(k) =A®x(k—1)®Bxu(k), (2.3)

whereA € RP*", Be RI*™M, x(k— 1) € R", u(k) € R™, fork € N. As suggested in [22, Sec.
2.5.4], the nonautonomous MPL system (2.3) can be trangfbinto an augmented MPL
system B

x(k) = A@x(k—1), (2.4)

whereA = [A,B], X(k— 1) = [x(k— 1)T,u(k)T]".

1Length of transient part is also called coupling time [37], 68
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Example A timetable can be incorporated in (2.2) as the input [68,3Y]1We obtain a
nonautonomous MPL system

2 5 0 ¢
x(k) = [3 3} @x(k—1)® [e O} @ u(k). (2.5)
The augmented MPL system is simply
2 5 0 ¢ _—
x(k) = [3 3 ¢ 0} ®@Xx(k—1), (2.6)
wherex(k) € R? andx(k — 1) € R4, fork € N. m

2.2 Related Models

This section introduces models that are related to MPL systand that are going to be used
throughout the thesis. Min-Plus-Linear (MiPL) systems &wdtching Min-Plus-Linear
(MiPL) systems are used to model network calculus elemuaititsreas Piecewise Switched
Affine (PWSA) systems are used to construct an abstractiswib¢hing MiPL systems (cf.
Chaptef 5). Finally finite abstractions of Stochastic MadxsH.inear (SMPL) systems is
discussed in Chapter 6.

2.2.1 Min-Plus-Linear Systems

Min-Plus-Linear (MiPL) systems are the dual of MPL systeM#L systems are the time-
domain description of timed event graph and are based orptugalgebra, whereas MPL
systems are the event-domain description of timed evepihgaad are based on max-plus
algebra.

Define Ry, Nt and T respectively aRU{T}, NU{T} and+w. Fora,p € Rr,
introduce the two operations

a@/'B=min{a,B}> and aP=a+p,

where the element is considered to be absorbing w.rd, hamelya ® T = T for all

a € R+. Givenp € R, the min-algebraic power af € R is denoted byt®P and corresponds
toaf in the conventional algebra. The definition of min-algebeaid max-algebraic power
is the same. The rules for the order of evaluation of the rigetaraic operators correspond
to those of conventional algebra: min-algebraic power hashighest priority, and min-
algebraic multiplication has a higher precedence thanatgebraic addition. The basic
min-algebraic operations are extended to matrices asafslidf A B € RT*"; C € RT*P;

D € RP*"; anda € R,

[a @ Al(i, ) = a @A, ),
[A®'BI(i,}) =A(,j) @ B(i,]),
p
’C(i,k)@D(k,j),
k=1

[C&' DI, ])

2For the minimization operator, the author follows the riotaused in [108, p. 380].



12 2 Models

foralli=1,...,mandj=1,...,n. Notice the analogy between, " and+, x for matrix

and vector operations in the conventional algebra. GivenN, the m-th min-algebraic
power of A € RT" is denoted byA®™ and corresponds tA®’ --- @’ A (mtimes). Notice
that A®"? is ann-dimensional min-plus identity matrix, i.e. the diagonatianondiagonal
elements are 0 and, respectively. In this thesis, the following notation isopted for
reasons of convenience: a vector with each component thialetp 0 (resp-+) is also

denoted by O (respl). Furthermore, the state space is taken t®RBérather tharR"7 ).

Remark In matrix operations, the notation of multiplication op@ran max-plus algebra

and min-plus algebra is different, since their definitions also different. In max-plus

algebra, the addition is defined as maximum, whereas in hoisigdgebra, the addition is

defined as minimum. On the other hand in scalar operatioasytmbol of max-algebraic

and min-algebraic multiplications are the same, since Bgthbols are interpreted as the
usual addition. |

A Min-Plus-Linear (MiPL) system is defined as:
x(k) = Ax'x(k—1) ®'B® u(k), (2.7)

whereA € (N U{0})™", B e (N7 U{0})™™ x(k—1) € (NU{O})", u(k) € (NU{O})™,

for k € N. If the input matrixB contains at least a finite (not equal 19 element, the
MiPL system is called nonautonomous, otherwise it is caletbnomous. MiPL systems
are used to describe the evolution of timed event graphseitinfie domain [22, Sec. 5.2].
Here the independent varialkelenotes time. The stat€k) is a counter that represents the
number of “events” observed up to and including timeEach event is assumed to occur
instantaneously [22, p. 215]. Thué) takes values in the set of nonnegative integers. As
related models, MPL systems are used to describe the emolotitimed event graphs in
the event domain.

Example Consider the following MiPL system representing a simplsvesy network be-
tween two connected stations [68, Sec. 0.5]. The stateblasg (k) for i = 1,2 denote the
number of trains that have left stationp to and including timé:

x1(K) = min{1+4x1(k—2),1+ x2(k—5)},
X2(K) = min{1+x1(k—3),1+x2(k—3)}.

With the introduction of auxiliary variables the MiPL systecan be written as a set of
first-order recurrence relations as/in (2.7). O

2.2.2 Switching Min-Plus-Linear Systems

A switching MiPL system is a discrete-event system that aaitch between different
modes of operation, where the dynamics in each mode areildeddy MiPL equations.
In Petri-net theory, a system with this property is callezbfchoice Petri nets [48]. Let the
switching MiPL system be in modgk) € {1,...,nyn} at stepk, the dynamics are described
by the following MiPL equation

x(k) = Ak o/ x(k— 1) @' BN @' u(k), (2.8)
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where A ¢ (Nt U {0})™", BUKW) ¢ (Nt U{0})™™, x(k—1) € (NU{O}", u(k) €
(NU{0})™ for k € N. If there exists a modé such that the input matriB(") contains at
least a finite (not equal td) element, the switching MiPL system is called nonautonosnou
otherwise it is called autonomous. The mode that is actieaett step can be either assumed
as a control variable [109] or assumed to be chosen in a pamigeterministic fashion,
i.e. the outcome is not known a priori. In the latter case, areot control the mode at each
step.

2.2.3 Stochastic Max-Plus-Linear Systems

Stochastic Max-Plus-Linear (SMPL) systems|[67, 100, 108]MPL systems where the
time duration (i.e. the processing or transportation tjnaes now characterized by random
quantities. An autonomous SMPL system is defined as:

x(k) = AK) @ x(k— 1), (2.9)

wherex(k— 1) € R"; each entry of the state matrix(k) is independent and identically
distributed w.r.tk € N; andAjj(-) are independent for all j € {1,...,n}3. The notation
Ajj () represents the entry of matrd(-) at thei-th row and thej-th columrf. We assume
each random variable has fixed support [67, Def. 1.4.1]the probability ofe is either O
or 1. The random sequen¢#yj(-)} is then characterized by a given density functipf)
and corresponding distribution functidp(-) (cf. Theorem 2.1).

The independent variabkedenotes an increasing event index, whereas the state leariab
x(k) defines the (continuous) time of occurrence ofkkth event. Since this thesis is based
exclusively on autonomous (that is, not non-determini&MPL systems, the adjective will
be dropped for simplicity.

Example Consider the following SMPL system representing a simple/ay network be-
tween two connected stations. The state variaklgg for i = 1,2 denote the time of the
k-th departure at statiain

_ [24eu1(k) 5+era(k)
~[Bten(k) 3+exk)

[xl(k)] B {max{2+ell(k)+x1(k— 1),5+e12(k) +x2(k— 1)}] 7

Xo(K) | [max{3+ ez1(k) +x1(k—1),3+ex(k) +x2(k— 1)}

where we have assumed thai(-) ~ Exp(1), e12(-) ~ Exp(5/2), ex1(-) ~ Exp(3/2), and
e22(+) ~ Exp(3/2), andExp(l) represents the exponential distribution with mgaotice
thatA;j (-) denotes the traveling time from statigro stationi and amounts to a determin-
istic constant plus a delay modeled by the random variaple. A few sample trajectories
of the SMPL system, initialized a(0) = [1,0]T, are displayed in Fig. 2.2. Note that when
all random delays are assumed to be equal to zero, the abtamndt@stic system admits
the unique solutiox(k) = x(0) + 4k = [1+ 4k, 4K]T, where 4 is the max-plus eigenvalue
of matrix A, and[1,0]" is the corresponding eigenvector of the deterministic Mipitesm

x(k) = A(k)@x(k—1), A(k) } or equivalently

(2.10)

3Notice that, for deterministic MPL systems, the matils instead given and time-invariant (cf. Section 2.1).
“Recall that, for time-invariant matriR, the notation for the entry aith row andj-th column isA(i, j) (cf.

page 7).
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Fig. 2.2: Sample trajectories of the SMPL systenf@iri0)for 50 discrete steps (horizontal
axis) and both coordinates (vertical axis).

[22]. Such a max-plus eigenvalue can be used as a lower bouritef period of a regular
schedule for the train departures. O

The next theorem shows that the SMPL system can be descrébaddescrete-time
homogeneous Markov process. The translation of SMPL systemma Markov process
has been discussed in the literature [22, 47, 98,1100, 165hd literature [22, Th. 8.44],
[100, p. 300],/[105, Prop. 3.1], [47, Th. 3.2], entries of @tate vector are normalized
w.r.t. the first entry, whereas in our work entries of theestagctor are normalized w.r.t. a
regular schedule. For didactical purposes, we presenbtteving theorem together with
its complete proof.

Theorem 2.1The SMPL system il (219) is fully characterized by the foliegvconditional
density function

t*(X]x) = i:ﬁltf‘(mx), where

_ n _ n _ )
X)) =y |tjixi—xj) 1 Tk(x—x)|, forallie{1,...,n},
j=1 k=1k#]

for x,x € R". The notatiort*(x|x) represents the conditional density function of the next
statex w.r.t. the current state. The notatiort*(x;|X) represents the conditional density func-
tion of thei-th component of the next statew.r.t. the current state for alli € {1,...,n}.

The notatiorlj; (-) represents the distribution function associated with #resity function
tij(-) foralli,j e {1,...,n}. O

Proof The independence propertyAf(-), foralli, j € {1,...,n}, leads to the multiplica-
tive expression of*(x|x). In order to show the expression of the componéfits|x), first
we compute thé-th conditional distribution functiof*(x;|x), then we compute thieth
conditional density functioff(x;|x) by taking the derivative of;*(xi|X) wW.r.t. x:

TX(Xi|X) = Pr{max{Ai1 + X1, ..., Ain + X} < X|X},
= Pr{AiL+ X1 <X, .., An + %1 < X[X],
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n n
=[1PrHA; <X —x|x}=T[1Ti (6§ —xj|x).
J]:L {Aj X} J]:L j (% = xj[x)

The notatioril*(x;|x) represents the conditional distribution function of thte component
of the next state; w.r.t. the current state for all i € {1,...,n}. Finally one can show by
virtue of simple algebraic manipulations that the deriaf TX(x|x) w.r.t. ;i coincides

with the expression df'(x[x). O

2.2.4 Piecewise-Affine Systems

Piece-wise Affine (PWA) systems are characterized by a colére state space and by
affine (linear, plus a constant) dynamics within each sdt@tover [87, 107]. PWA systems
are well-posed if the next state and the next output are ehicgolvable once the current
state and the current input are specified. PWA systems dieisnfly expressive to model a
large number of physical processes, such as systems wiithrsdalinearities (for instance,
actuator saturation), and they can approximate nonlingaaudics with arbitrary accuracy
via multiple linearizations at different operating poifie¥, p. 1864]. PWA systems have
been studied by several authors|/[27, 73, 75, 87,1107, 113].

This section discusses PWA systems generated by an autoasoamal by a nonau-
tonomous MPL system [66]. The obtained PWA systems are peeded because the au-
tonomous and nonautonomous MPL systems are also well-p®kedonstruction of PWA
systems has a combinatorial complexity. In order to imprihee performance, we pro-
pose to use a backtracking approach. The PWA system willafaypdamental role in the
abstraction procedure and reachability analysis of MPlesys.

Every MPL system characterized by a generic row-finite maire R¢ P can be ex-
pressed as a PWA system in the event domain [66, Sec. 3]. Tihe dfynamics, along
with the corresponding region on the state space, can bérootesl from the coefficients
g9=(01,-..,0n) € {1,..., p}". For each, the coefficient; characterizes the maximum term
in thei-th state equation; (k) = max{A(i,1) + x1,...,A(i, p) + Xp}, that isA(i, j) + xj <
A(i,g) +xg, forall j =1,...,p% It follows that the set of states correspondingytale-
noted byRy, is

n p
Ry=[[{XeR 1AM, })+X <AG,G)+Xg}- (2.11)
i=1j=1
Alternatively, a pointx € R" is in Ry if maxj—1,. pA(i, j) +Xj = A(i,gi) + Xg, for all i =
1,....n

The affine dynamics that are active Ry follow directly from the definition ofg (see

previous paragraph) as

Xi (K) = Xg (k— 1) +A(i, gi), i=1,...,n (2.12)

Given a row-finite state matriR, Algorithm[2.1 describes a general procedure to con-
struct a PWA system corresponding to an autonomous MPL reys&milarly, if we run

5The wayg is defined is closely related to the idea of a policy [36] in Hosis algorithm, i.e. both definitions
choose a single finite element in each row of matri-Howard’s algorithm, also known as the policy iterationcalg
rithm, is an iterative algorithm for computing a generalizzgenmode. This algorithm consists of two parts: value
determination and policy improvement. In value deterniématthe aim is to determine a generalized eigenmode
from a given matrixA and a given policy.
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the algorithm with the augmented matfAxwe obtain a PWA system related to the nonau-
tonomous MPL system. Correspondingly, the paramptabove equals or n+m. On
the side, notice that the affine dynamics associated withnamjcal system generated by
Algorithm[2.1 are a special case of the general PWA dynansickefined in [107, Sec. 1].

Algorithm 2.1  Generation of a PWA system from a row-finite MPL matrix
Input: A € R, a row-finite max-plus matrix
Output:R,A, B, a PWA system oveRP,

whereR is a set of regions an8l, B represent a set of affine dynamics

initialize R, A, B with the empty set
for all ge{1,....p}" do
generate regioRy according to[(2.11)
i f Ry is not emptyt hen
generate matrice&y, By s.t.x(k) = Agx(k— 1) + Bg corresponding to (2.12
save the results, i.® := RU{Ry}, A :=AU{Ag}, B:=BU{Bg}
end if
end for

~

The crucial observation that allows for an improvement &f tomplexity is that it is
not necessary to iterate over all possible coefficients @dgorithm[2.1. Instead, we can
apply a backtracking technique. In the backtracking apgrpthe partial coefficients are
(g1,...,0¢) fork=1,... ,nand the corresponding region is

k n
R(gl,...,gk) = m m{x € R": A(Iag|)+xg| > A(Ia J)+XJ}
i=1j=1

Notice that if the region associated with some partial coieffit (g1, ...,0x) is empty, then
the regions of the corresponding coefficiefs ..., gn) are also empty, for al+1, .. .,0n.
The set of all coefficients can be represented as a poteasietistree. For a 2-dimensional
MPL system, the potential search tree is given in[Fig. 2f8)(I&€he backtracking algorithm
traverses the tree recursively, starting from the root, depth-first order. At each node,
the algorithm checks whether the corresponding region sterif the region is empty, the
whole sub-tree rooted at the node is skipped (pruned).

Example With reference to the autonomous MPL examplelin (2.2), th@inbd PWA
system is

(1 O] 21 .
1 0 X(k* 1) + 3| if X(k* 1) € R(1,1)7
[ 1] (5] .

x(k) = 2 0 x(k—1)+ g , ifx(k=1) €Rp ),
[0 1] 5] .
0 1 x(k—1)+ 3l if x(k—1) € Ri22);

whereR 1 1) = {xe R2:x1— % > 3}, Ri21) = {x e RZ2:0<x1—% < 3}, andRz ) =
{x € R?:x; — xp < 0}, as depicted in Fig. 2.3 (right). Regi®y, ) does not appear since
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Fig. 2.3: (Left plot) Potential search tree for a 2-dimensidMPL system. (Right plot) Re-
gions associated with the PWA system generated by the antroMPL system

in (2.2).

it corresponds to an empty set. As explained above, the affinamics corresponding to
a region are characterized by getfor example the affine dynamics &, 1) are given by
X1(K) = x2(k—1) +5, x2(k) = x1(k— 1) +3. Similarly, for the nonautonomous MPL system
(2.5), the nonempty regions of the corresponding PWA systeaTR ;1 1) = {X € R*: % —
X2 >3, X1 — U1 > —2, X3 —Up > —3}; R(1’4) ={xe R*: %y — x> 3, X1—U1>—-2,X1— U <
-3, % - < -3} Rp = {XeR":0<x—x <3, x1—Uz> -3, Xo— U1 > —5}; Rpz) =
{XER*:x1 —% <0, xp—Ug > —5, X2—Uz> —3}; R4y = (XER*:x—% <3, x—Up <
—3,x2—U1 > =5, x2—Up < -3}; Rgpy = {X € R*:xg =% >0, X1 —Up < —2, Xy — Up >
-3, x—U1 < -5} Rgy = {X€R" X1 =% <0, x1— U < -2, x—U1 < =5, xp—Up >
3} Rag ={XeR* i1 x1— U< -2, - <3 X—U < -5 X— U< -3}, O

Remark Every MiPL system characterized by a generic row-finite mafre R”TXP can
also be transformed to a PWA system in the time domain. A matd RTP is row-finite

if A contains at least one element different framin each row (cf. Definitioh 2.2). The
affine dynamics and the corresponding region on the statespae constructed from the
coefficientsg = (g1,...,0n) € {1,...,p}". For each, the coefficien; characterizes the
minimum term in the-th state equatiow; (k) = min{A(i,1) 4+ x1,...,A(i, p) + Xp}, that is
A, j)+x; > Ai,0)+Xg, forall j=1,..., p. It follows that the set of states corresponding
to g, denoted byRy, is

nop
Ry= ([ {x€R": A, j)+x >A(i,qi) +xg }.

i=1j=1

The affine dynamics that are activeRy follow directly from the definition ofy (see previ-
ous paragraph) as
Xi(K) = g (k—1) +A(i,0i), i=1,...,n

Algorithm[2.1 can be tailored to generate a PWA system froowafinite MiPL matrix. O
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Implementation In VeriSiMPL version 1.4, the procedure to construct a PWA system from
an autonomous MPL and MiPL system has been implemented ifutiegion npl 2pwa.
In the case of autonomous MPL system, the functiph2pwa requires a row-finite state
matrix (Anpl ) and generates a PWA system characterized by a collecti@yifns D) and
a set of affine dynamicsA(B). The affine dynamics that are active in th¢h region are
characterized by th@th column of bothA andB. Each column of and the corresponding
column ofB contain the coefficient®y, ...,gn]" and the constanfé(1,g1),...,A(n,gn)]",
respectively. The data structure®Will be discussed in Section 3.2.1.

Considering the autonomous MPL example in (2.2), the falhoATLAB script gen-
erates the PWA system:

>> Anpl = [2 5;3 3], [ABD = npl2pwa(Aml)

It will become clear in Sectidn 3.2.1 that the nonempty regiof the PWA system produced
by the script areRy 1) = {Xx € R? 1 x; — X > 3}, Rpy) = {x € R? 1 e<x1 —x2 < 3},
andRpp) = {x € R?: x; — X2 < €}. The affine dynamics corresponding to a regiyn
are characterized bg, e.g. those for regiolR ) are given byx;(k) = xa(k—1) +5,
X2(K) = x1(k—1) + 3.

The functionnpl 2pwa can be also used to determine the PWA system generated by an
augmented MPL system. In this case, the inputpf2pwa is the augmented matrix and the
output is a PWA system in the augmented sga®e".

In order to determine a PWA system from an autonomous MiPltegysthe function
mpl 2pwa is called with two arguments. The first argument is the rotdigtate matrix
(Am pl ) and the second argument is the Boolean congdtande. The functionnpl 2pwa
can be also used to determine the PWA system generated bygareated MiPL system.

In this case, the functionpl 2pwa is also called with two arguments, i.e. the augmented
matrix and the Boolean constdrdl se. O

2.2.5 Piecewise Switched Affine Systems

This section discusses Piece-wise Switched Affine (PWSAdesys generated by switch-
ing MiPL systems. PWSA systems are an extension of PWA systeRecall that PWA
systems are described by a set of affine dynamics defined a@responding region in
the state space. In PWSA system, the dynamics that are atéaech region are switched
affine. Switched affine dynamics have different modes of ajg@n, where in each mode
the dynamics are affine. The PWSA system will play a key rot@énabstraction procedure
of switching MiPL systems.

Every switching MiPL system characterized by a collectibme p generic row-finite
matricesA() ..., A(™ can be expressed as a PWSA system in the time domain. Let the
PWA system generated b3} be characterized bg("). The switched affine dynamics,
along with the corresponding region on the state space,eanmstructed from coefficients
(gW,...,g") e {1,...,p}" x --- x {1,...,p}". The regions of the PWSA system is the
refinement of PWA regions generated by the MiPL dynamicscaated with each mode:

Nm
Rig,...gom) = [ Ryo-
=1
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The collection of affine dynamics that is active%m gm) follows directly from pre-
ceding equation and is given by

>q(k):xg@(kfl)wLA(i,gi“)), i=1,...,n, for each mode/ =1,... ,ny.

Algorithm[2.1 can be used to construct a PWSA system corretipg to a switching
MiPL system. The input matrix is defined as the collectionaffinite matrices stacked
vertically, i.e.[(AM)T ... (Am))T]T,

2.3 Summary

In this chapter we have discussed Max-Plus-Linear (MPL)esys and some of its basic
properties. We have then briefly discussed some related Isysdeh as Min-Plus-Linear
(MiPL) systems, switching MiPL systems, stochastic MPLteyss, Piece-wise Affine
(PWA) systems, and Piecewise Switched Affine (PWSA) systékieshave shown a proce-
dure to generate PWA systems from MPL systems and from MiRtegys. Similarly we
have also shown a procedure to construct PWSA systems fraichéng MiPL systems.






Chapter 3

Finite Abstractions of
Max-Plus-Linear Systems

In this chapter we develop a framework for formal verificatmf MPL systems. Specifi-
cally, we check whether an MPL system with a predefined setitéi statesxg satisfies
an LTL formula over a fixed set of atomic propositiohB. We propose the following ap-
proach. First a transition system is generated from thengbemcrete MPL system. Then
we generate an abstract transition system that simulagesahsition system. By using
model checking techniques, we next determine whether thiezadh transition system satis-
fies the given LTL formula. If the LTL formula is satisfied, thencrete transition system
also satisfies the LTL formula. Otherwise if the LTL formutariot satisfied, it does not
imply that the concrete transition system does not satighLiTL formula. In this case, a
partition refinement technique can be used to obtain a mega abstraction.

The computational aspects related to the abstraction guvednave been under partic-
ular scrutiny, and have brought to 1) the selection of DBM &simework for the represen-
tation and manipulation of regions over the state and cospraces; and 2) the use of PWA
representations of the MPL dynamics [66], which nicely despvith quantities expressed
as DBM. The computational costs of the abstraction proeedre discussed in detail and
its overall performance is benchmarked over a case studgdtid® 3.6.

3.1 Related Work

To the best of the author’'s knowledge, this contributiorrespnts the first work on finite-
state abstractions of MPL systems. The approach to attaimaations developed in this
work is inspired by those developed for other models in [171,1117], and can be in-
terpreted in the context of literature focused on the caotitbn of finite-state (quotient)
models of given systems. The construction of quotient systeas been treated in depth
in [115, Sec. 0.7] and in [116] for time-invariant linear /ms. However this technique
cannot be used in our problem because there is no guaraatgbéhproperties of interest
are preserved in the quotient system. Notice that we leeesd@WA representation of the
given MPL dynamics [66] — a particular case of the PWA systestin [117] — to build the

21
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finite-state abstraction. However, techniques for abstnas of PWA systems developed in
the literature [117] do not appear to be directly usable exabntext of the models derived
from MPL systems, since spatial boundaries can non-tlafect the semantics of the
trajectories [117, Rem. 1]. Likewise, related verificatepproaches developed for timed
Petri nets (such as that for safety analysis based on etisdteanes [4]) do not appear to
being exportable to MPL systems.

3.2 Preliminaries

This section introduces Difference-Bound Matrices (DBlMansition systems modeling
framework, Linear Temporal Logic (LTL) formula, and finatlye notion of abstraction.

3.2.1 Difference-Bound Matrices

This section introduces the definition of a Difference-Balatrix (DBM) [51, Sec. 4.1],
its canonical-form representation, and the connectioh miax-plus polyhedra. DBM will
be used extensively in the abstraction procedure and rbéichaf MPL systems.

Definition 3.1 (Difference-Bound Matrix) A DBM in R" is the intersection of finitely
many sets defined by —x; i j 0 j, wherex; j€ { <, <} denotes the strictness of the sign,
the specified numben; j € Ry represents the upper bound, fof € {0,...,n} and the
value of the special variabbe always equal to 0. The sets are characterized by the values
of variablesxs, ..., xn, which imply that the sets are a subsefRt O

The special variablgy is used to represent bounds over a single variable:a can be
written asx; — X < d. In the following, a “stripe” is defined as a DBM that does nohtain
xo. Definition'3.1 can be likewise given over the input and augtee spaces.

Implementation VeriSiMPL represents a DBM ifR" as a &2 cell: the first element is an
(n+ 1)-by-(n+ 1) matrix with entries in the real numbers representing theeappunda,
and the second element is @m+ 1)-by-(n+ 1) matrix with entries in the Boolean domain
representing the value sf. More precisely, théi + 1, j +1)-th element represents the upper
bound and the strictness of the sigrxpf-x;, fori =0,...,nandj = 0,...,n (cf. Definition
3.1)1 The non-strict sign< corresponds tdrue and the strict sign< corresponds to
fal se. Furthermore, a collection of DBM is also represented a2 tell, where the
corresponding matrices are stacked along the third diroansi O

Each DBM admits an equivalent and unique canonical-formesgmtation, which is
a DBM with the tightest possible bounds [51, Sec. 4.1]. Sicmmputing the canonical-
form representation of a DBM is equivalent to the all-palersest path problem over the
corresponding potential graph [51, Sec. 4.1], the Floydsihall algorithm/[56] can be used
over the graph with a complexity that is cubic w.r.t. its dmamen.

Example Consider the PWA system generated by the nonautonomous yE#ns((2.5).
A few regions are not in the canonical-form representatiord can then be expressed as

1The author was inspired by the definition of precedence graph the state matrix when choosing this
representation.
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follows: cf(R(l_A)) ={XER*:xp—%>3,x1—U1> -2, X3 — U< —3, % —Up < —6, Uy —
Uz < —1},cf(Ry) = {X € R*:0<x1—X% <3, X{—U1>—5 X1 —Up > —3, Xo— Uy >
=5, Xo—Up > —6},Cf(R(274)) = {)76 R%: X1—X2 <3, X1— U< =3, Xo—U1 > -5, X0— U <
-3, u1— U2 < 2},cf(Rgq)) ={XeR i x1 =% >0, x1— U1 < =2, X1 — Uz > —3, Xg— U <
=5 u—u;> —l},Cf(R(&Z)) ={xe R4 x1—X% < 0,xp—U1 <=5, x—Uu; <—5,x0—Up >
—3, up— Uz > 2}, where cf is a generic operator yielding the canonical fdt Bec. 4.1].
Other regions appear already in canonical form, for instdtig,) = cf(Ri 1)) O

One advantage of the canonical-form representation istttsastraightforward to com-
pute orthogonal projections w.r.t. a subset of its variabl&his is simply performed by
deleting rows and columns corresponding to the complemertaiables [51, Sec. 4.1].
The orthogonal projection of a DBM in canonical form is agaiganonical form [51, Obs.
1].

Definition 3.2 (Orthogonal Projection) The orthogonal projection w.r.t. the state spXce
(the input spactJ) of a region in the augmented space is definegrag, : R™*™ — R"
(proj, : R™M — R™), whereprojy : [x",u’]T — x (proj, : [x",u’]" — u). o

Remark The two terms “the orthogonal projection w.r.t. the statecgj and “the orthogo-
nal projection w.r.t. the state variables” are used as symsnA similar argument holds for
“the orthogonal projection w.r.t. the input space” and “dréhogonal projection w.r.t. the
input variables”. |

Another advantage of the canonical-form representatichas its emptiness can be
checked very efficiently. By using the potential graph reprgation, the unfeasible sets of
constraints are only those which form a circuit with a slyictegative weight in the graph.
As a consequence, in order to test whether a DBM is empty omm@osimply have to check
for the existence of such a circuit: this can be achieved b\Bi&llman-Ford algorithm [26,
Sec. 5], which is cubic w.r.t. its dimension. Whenever a DBNhi canonical form, testing
for strictly negative cycles can be reduced to checking tdrethere is amnsuch that-< j is
< orajj < 0. Thus, the complexity of emptiness checking is lineartwdimension of the
DBM.

Implementation In VeriSiMPL version 1.4, the Floyd-Warshall algorithm has been imple-
mented in the functiofil oyd_war shal | . Given a collection of finitely many DBM, this
function generates its canonical-form representatiore foHowing MATLAB script com-
putes the canonical-form representation{Rfc R> : x; —Xp > 3,%; — X3 > —2,X1 — X4 <
-3, x2—x4 < -3}

>> D = cell(1,2)

>> D{1} = [0 Inf Inf Inf Inf;Inf 0 -3 2 Inf;

Inf Inf O Inf Inf;Inf Inf Inf O Inf;Inf -3 -3 Inf Q]

>> D{2} = [true false false false false;false true true true false;

false false true false false;false false false true false;

false true true false true]

>> Def = fl oyd_warshal | (D)
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The canonical-form representatidic() is {x € RO: Xy — X0 >3, X1 — X3 > —2,X1 — Xg <
—3,%2 — x4 < —6,x3— Xa < —1}. Notice that the bounds 6§ — x4 andxs — x4 are tighter.

The procedure to determine the emptiness of a collectiomndély many DBM has
been implemented in the functiaibm.i senpt y that is included irnveriSiMPL version 1.4.
This function returns$ r ue if the DBM is empty and al se if the DBM is not empty. The
following MATLAB script checks whether the DBND defined above is empty:

>> dbmi senpt y(D)
The result if al se which means thad is not empty. O

Each region and the corresponding affine dynamics of the Pydfes generated by
Algorithm([2.1 (for both autonomous and nonautonomous MRitesys) can be character-
ized by a DBM. From[(2.11), each region of the PWA system gateerby a row-finite
max-plus matrix is a DBM inRP. Each affine dynamic$ (2.12) can generate a DBM in
RP x R", which comprises point&(k — 1),x(k)) € RP x R" such thatx(k) is the image
of x(k—1), i.e. x(k) = A®@ x(k—1). More precisely, the DBM is obtained by rewrit-
ing the expression of the affine dynamics(@&.,{(x(k—1),x(k)) : xi(k) — xg (k—1) <
A8} N {(x(k— 1), x(K)) : % (K) — g (k— 1) > A(i,gi)}.

Looking back at the backtracking approach to generate th& BY§tem (cf. Section
2.2.4), its worst-case complexity can be formulateddp”(np+ p3)) [8, p. 3043]. This
happens if the matrix does not have infinite elements anagibns are nonempty. How-
ever, in practice this worst-case is not incurred since nmagipns can happen to be empty.

Proposition 3.1 ([8, Th. 1]) The image and the inverse image of a DBM with respect to
affine dynamics (in particular the PWA expressions in (2(P1]2) generated by an MPL
system) is a DBM. O

The general procedure to compute the image of a DBNRPnw.r.t. affine dynamics
RP — R" involves: 1) computing the cross product of the DBM &Y then 2) intersect-
ing the cross product with the DBM generated by the exprassidhe affine dynamics;
3) calculating the canonical form of the obtained interigegtand finally 4) projecting the
canonical-form representation ovex;(k),...,x.(k)}. The complexity of computing the
image depends critically on the third step and{gn+ p)3). The illustration of the proce-
dure to compute the image fpr= 1 = nis depicted in Fig. 3.1 (left).

Example Let us compute the image ¢k € R2:0<x1<1,0<X <1X—X < 0} w.r.t.
X; = X2 +5, X, = X2 + 3 by using the above procedure. The cross product of the DBM an
R?is {(x,xX') € R*:0< % <1,0< X < 1,% — % < 0}. The intersection of the cross
product and the DBM generated by the expression of the affinardics is{(x,x') € R*:
0<x1<1,0<x <1Xx —X <0,X; —x2 =5,X, —x2 = 3}. The canonical form of the
obtained intersection i§(x,x') € R*:0<x; <1,0<x <1,5< X; <6,3<x,<4,0<
X=X <15< X —Xx1 <6,3<x,—x1 <4,X]—X=5X,—% =3,X,—X; =—2}. The
projection w.r.t{xj,x;} is computed by removing all inequalities containka@r x, which
yields{x' € R2:5< X, <6,3<x, <4,X, — x| = —2}.

In VeriSiMPL version 1.4, the procedure to compute the image of a DBM.\am.affine
dynamic has been implementeddhm.i mage as a function. This function requires the
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Fig. 3.1: The left and right plots illustrate the algorithrtsdetermine the image and inverse
image of a DBM w.r.t. an affine dynamic, respectively.

affine dynamics4,B) and the DBM D). The following MATLAB script re-calculates the
numerical example in the preceding paragraph:

>> A
>> D

[2,2], B =53]

cell(1,2)

>> D{1} =[01 1,0 0 Inf;0 0 Q]

>> D{2} = [true true true;true true false;true true true]

>> Dim = dbmi mage(A, B, D) |

Similarly, the general procedure to compute the inverseyanat a DBM inR" w.r.t.
affine dynamicRP — R" involves: 1) computing the cross product®f and the DBM;
then 2) intersecting the cross product with the DBM generdite the expression of the
affine dynamics; 3) calculating the canonical form of theadied intersection; finally 4)
projecting the canonical-form representation opark—1),...,Xp(k—1)}. The complex-
ity of computing the inverse image is agairf(n+ p)3). The illustration of the procedure
to compute the inverse image fpe= 1 = nis shown in Figl. 3.1 (right).

Example Let us determine the inverse image{of € R?: 0 < X; <1,0<x, <1} wirt.
X; = X1+ 2, X, = Xy + 3 by using the discussed procedure. The cross produke aind
the DBM is {(x,x') ¢ R*:0 < x; < 1,0 <x, < 1}. The intersection of the cross product
and the DBM generated by the expression of the affine dynas{¢g,x') € R*: 0< X, <
1,0<x, <1,x; —x1 = 2,X, — X1 = 3}. The canonical form of the obtained intersection is
{(x,X) eR 1 xg = —2,X] = 0,%, = 1,X; —X1 = 2,5 — X1 = 3,%, — X; = 1}. The projection
w.r.t. {x1,x2} is computed by removing all inequalities containixigor x,, which yields
{xeR?:x = —2}.

In VeriSiMPL version 1.4, the procedure to determine the inverse imageb@M w.r.t.
an affine dynamic has been implemented in the functilom.i nvi rage. This function
requires the affine dynamicé,B), the DBM (D), and dimension of domain of the affine
dynamics. The following MATLAB script re-calculates themarical example in the pre-
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ceding paragraph:

> A=1[1;1, B=1[2;3]

>> D =cell(1,2)

>> D{1} = [0 1 1,0 0 Inf;0 Inf O]

>> D{2} = [true true true;true true false;true false true]

>> Dinv = dbmi nvi mage(A B, D, 2) |

Computing the image and the inverse image of a DBMR¥and inR") w.r.t. switched
affine dynamicsRP — R" can be performed by computing the image and inverse image
w.r.t. each affine dynamics. The complexity of both case(is,(n+ p)2), wheren, is the
number of affine dynamics.

The following procedure computes the image of a DBMRiA w.r.t. MPL dynamics
characterized b € R¢P or w.r.t. MiPL dynamics characterized Byc RT7P, and uses the
corresponding PWA system: 1) intersecting the DBM with e&gjion of the PWA system;
then 2) computing the image of nonempty intersections aliagrto the corresponding
affine dynamics (cf. Proposition 3.1). The worst-case cexipl depends on the last step
and amounts t@ (ga(n+ p)%), whereqa is the number of regions in the PWA system
generated by matriA.

Example Let us compute the image afy = {x € R2:0<x<1,0<% < 1} w.r.t. the
MPL system|(2.2). The intersection @ and the regions isoNR11) =0, XoNRz1) =
{X:0<x1<1,0<x<10<x—x%x2 <3}, andxoNRpz2) = {X:0<x1<10<x<
1,x3 — X2 < 0}. Skipping the details, the image &N Ri2,1 andxoNRy22) is {x:5<x1 <
6,3<x <4 x1—X=2}and{x:5<x1 <6,3<x <4,1<x3—x <2}, respectively.
Thus the image afp is x1 = {x € R2:5<x1<6,3<x<4,1<x1—X% < 2} as depicted
in Fig./3.2. O

Similarly, the inverse image of a DBM iR" w.r.t. the MPL system characterized by
A€ R*P orw.r.t. the MiPL system characterized Ay RT*P can be computed via its PWA
representation: 1) computing the inverse image of the DBkt.veach affine dynamics
of the PWA system (cf. Proposition 3.1); then 2) intersegtine inverse image with the
corresponding region, which is a DBM,; finally 3) collectingetnonempty intersections.
The worst-case complexity is quantified agairodga(n+ p)3).

Example Let us compute the inverse imagexf= {x € RZ2:0<x1<1,0<x < 1} wer.t.
the MPL system[(2.2). Without going into the details, theeirse image ofcg w.r.t. the
affine dynamics irR1 1), Ri2.1), andR 2 5) is {X:ix1==-2},{x: =3<x1 < -2,-5<x<
—4,1 <x;—x2 < 3}, and0, respectively. The intersection of the obtained inversages
with the corresponding region is<: x1 = —2,xp < =5}, {X: =3 <x1 < —2,-5<x <
—4,1 < %1 — % < 3}, and0. The inverse image afpis x_1 = {XER?:x; = —2,% <
—5tu{xe RZ2: —3<x1 < —2,-5<x<—41<x—X%< 3} as shownin Fig. 3.2. O

The image and the inverse image of a DBM w.r.t. switching MiBlnamics can be
obtained by computing the image and inverse image w.r.h BEEL dynamics.
Proposition 3.1 can be extended as follows.
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Fig. 3.2: The image and inverse image xf w.r.t. the MPL system if2.2) The down-
pointing arrow inx_s indicates a half-line: that set can be expressed as a union
of two DBM.

Corollary 3.1 The image and the inverse image of a union of finitely many DBKitvan
MPL system or an MiPL system or switching MiPL system are alsaion of finitely many
DBM. O

Computing the image and the inverse image of a unicp@BM w.r.t. an MPL system
or an MiPL system, characterized by matfxcan be done by computing the image and
the inverse image of each DBM w.r.t. the matrix. Thus the dewity of both cases is
0(q(n+ p)3ga). A similar approach can be used to determine the image aedsevmage
of a union of finitely many DBM w.r.t. a switching MiPL system.

Remark 3.1 Some of the above results can be generalized to DBRfimnd to matrices
that are not row-finite by using similar proof techniques.e®@ifthem is the following: the
image of a DBM inRf w.r.t. a matrix inRg P is a union of finitely many DBM irR0. O

We have mentioned an alternative approach to reachabiidyysis of MPL systems
based on operations over max-plus polyhedra, and emplas$iedimitations of such an
approach. A max-plus polyhedron is defined as the max-pluskdvski sum of a max-
plus cone and a finitely-generated max-plus convex set [@6, £2]. Max-plus cones in
R, a special case of max-plus polyhedra, are a max-plus lice@bination of finitely
many vectors irRY. Equivalently, a max-plus cone can be represented as thgeimiR?

w.r.t. a matrix inRg“P. Based on Remark 3.1 and by using the homogeneous coolinate
representation [15, Sec. 2.2], one can show the followioggsition.

Proposition 3.2Every max-plus cone and max-plus polyhedron can be exptessgunion
of finitely many DBM. |

Proof Recall that max-plus cones are a max-plus linear combinatidinitely many vec-
tors. A max-plus cone can be represented as the image of majinear map governed by
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a max-plus matrix made up of those vectors. Remark 3.1 imgléeh max-plus cone can
be expressed as a union of finitely many DBM. This result cagdmeralized to max-plus
polyhedra since each max-plus polyhedron can be expressaanax-plus cone by using
homogeneous coordinates representation [15, Sec. 2.2]. O

As mentioned in [91, p. 1785], each max-plus linear comimadf finitely many two-
dimensional vectors is a stripe, which is a particular kihdBM. For didactical purposes,
we present the following proposition together with its cdet@ proof.

Proposition 3.3Every two-dimensional max-plus cone can be expressed asvh DB O

Proof The proof consists of two steps. In the first step, we showahah max-plus cone
can be formulated as a max-plus linear combination of twaorsc Then we show that any
max-plus linear combination of two vectors can be expreaseiDBM.

We assume the max-plus cone is givendayz x1 @ --- @ aq @ x9. We show that the
preceding max-plus cone can be expressed as the followingpioa linear combination
O max® XM 0 min @ XM, wherexMaX xMin ¢ {x1 .. x9} such thak"@—x3'@ > xk — xK and
X xin < xk— xK for all k = 1,...,q. This can be done by showing eacthat satisfies
XT"‘ — xg""” < X1 — X2 < X' xT'¥ can be written as a max-plus linear combinationB
andx™n j.e. X = Omax® X"*@ Omin @ X™N (cf. Fig.[3.3). By virtue of simple algebraic
manipulations, one can show thahax = X1 — X{"® and 0min = X2 — xg“” are the solution.
This implies the generators, ..., x9 can be expressed as a max-plus linear combination of
Xmaxandxmin_

In the second step, we show that the following max-plus €OR&® X™@ Ol min @ X™IN
can be expressed as the following DBM : XT"‘ — x2min <xp— X < X"¥—x7¥} where
we assume — xf1dx > yiMin _ymin | the first part, we show that the max-plus cone is
a subset of the DBM, then in the second part, we show that thiel BBa subset of the
max-plus cone.

Let us prove that the max-plus cone is a subset of the DBMl idfa vector in the max-
plus cone, then there exiBfax, dmin SUCh thak = almax® X™*@ tmin @ X™". We will show
thatx is in the DBM by proving that<1min — xg“i” < X1 — X < X" —x3'¥ We consider four
possible cases. In each case, we compute the lower and upyred$ofx; — xo by using
the corresponding assumptions.

e We assumemax+ X" > amin + X" and omax+ X3 > dmin + X3'". In this case
X1 — Xo = X" — X'

e We assume@max+ X" > omin + X" and omax+ X3 < amin + X3"". Applying the
inequalities results im" — xJ"" < x; — Xp < X' — X'

o We assum@max+ X" < omin + X" and omax+ XJ'¥ > amin + X3'". Combining
both inequalities and the previous assumption }j&X— x3'& > x"" — xJ'", yields

xg;':‘— x%miixz x""—x3"". Applying the inequalities results a'®— x5 < x3 — xp <
Xin_ wmin,
1 2

e We assumemax+ X" < amin + X" and omax+ X3 < dmin + X3'". In this case
X1 — X = X" —xg"".
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Fig. 3.3: Graphical illustration of computing the constait,ax andamin corresponding to
a vectorx.

Finally the arguments in the first step show that the DBM islzsstiof the max-plus cone.
O

As a result, the reachability analysis based on DBM is moreega than the one based
on max-plus polyhedra.

3.2.2 Transition Systems

This section introduces transition systems, a (by now)daehclass of models to represent
hardware and software systems [23, Sec. 2.1].

Definition 3.3 (Transition System [23, Def. 2.1]A transition systenT Sis characterized
by a sextupléS Act,—,1,AP L) where

e Sis a set of states,

e Actis a set of actions,

e —— C SxActx Sis a transition relation,
e | C Sis a set of initial states,

e AP?is a set of atomic propositions, and
e L:S— 2%Pis alabeling function.

T Sis called finite ifS, Act, andAP are finite. O

2The notationAP does not represent the multiplication of mattixand matrixP, unless stated explicitly.
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For convenience, we write—— ¢ instead of(s,y,s’) e——. The behavior of a tran-
sition system can be described as follows. The transitistesy starts in some initial state
S € | and evolves according to the transition relatier—. If a state has more than one
outgoing transition, the “next” transition is chosen in agy nondeterministic fashion.
Recall that 27 denotes the power set 8P. The labeling function relates each state to set
of atomic propositions that are satisfied by the state.

Definition 3.4 (Direct Predecessors and Direct Successor2d, Def. 2.3])Let TS=
(S Act,—,l,APL) be a transition system. Fere Sandy € Act, the set of direcy-
successors ofis defined as

Pos{s,y) = {s’ €S:s— s’}, Pos{(s) = U Posts,y).

yeAct

The set of direcy-predecessors afis defined by

Pre(sy) = {s’ €s:d Y, s}, Pre(s) = |J Pre(s,y). O
yeAct

The notations for the sets of direct successors and prestasesre expanded to subsets of
Sin the obvious way (i.e. pointwise extension): @ S let

Pos(C,y) = | Posts,y), Pos(C) = | J Post(s).
seC

seC

The notation$re(C,y) andPre(C) are defined in an analogous way:

Pre(C,y) = | Pre(sy), Pre(C) = | J Pre(s).
seC

seC

A transition systenT S= (S Act,—,|,ARL) is called deterministic ifl| < 1 and
|Pos{(s,y)| < 1 for all statess and actiony [23, Def. 2.5]. A path of transition systeinS
is a sequence of states starting from some initial statdyes@ccording to the transition
relation; and cannot be prolonged, i.e. either it is infioité is finite but ends in a terminal
state [23, Defs. 2.4 and 3.6]. The set of all paths in tramsiiystemTl Sis denoted by
PathgTS). A trace of a path is defined as the finite or infinite word overalphabet 2°
obtained by applying the labeling function to the path. Téteo$ traces of transition system
T Sis defined as the trace of all pathsTiig i.e. TracegT S) = trace(Paths T 9)) [23, p. 98].

3.2.3 Linear Temporal Logic

This section introduces (propositional) Linear Temporagjic (LTL), a logical formalism
that is suited for specifying properties [23, Ch. 5]. Thetayrand semantics of LTL will be
discussed.

LTL formulae are recursively defined over a set of atomic psifions, by Boolean
operators, and temporal operators. More formally, theasyof LTL formulae is defined as
follows:



3.2 Preliminaries 31

Definition 3.5 (Syntax of Linear Temporal Logic [23, Def. 5.1) LTL formulae over the
setAP of atomic proposition are formed according to the followgrgmmar:

¢ u=truefaldiAd2 |~ | O [ p1Ud2
wherea € AP. O

Boolean operators are (negation) A (conjunction), and/ (disjunction), whereas tem-
poral operators ar€) (next),U (until), O (always), and> (eventually). The until operator
allows to derive the temporal modaliti€sandO [23, p. 232]. The)-modality is a unary
prefix operator and requires a single LTL formula as argumeatmula()¢ holds at the
current moment, ifp holds in the next “step”. Thé&-modality is a binary infix operator
and requires two LTL formulae as argument. Formpi&l$, holds at the current moment,
if there is some future moment for whidh» holds andp; holds at all moments until that
future moment. The&>-modality andO-modality is a unary prefix operator and requires a
single LTL formula as argument. The formulap is satisfied ifp will be true eventually in
the future, whereas the formula is satisfied ifp holds from now on forever. The intuitive
meaning of temporal modalities for a simple case is destiib&ig.[3.4.

Safety properties are a class of LTL formulae and often atar&zed as “nothing bad
should happen’ [23, p. 107]. As an example consider a spatdit of a traffic light with
the usual three phases “red”, “green”, and “yellow”. Theuiegment that each red phase
should be immediately preceded by a yellow phase is a safepepty. Invariant property
is a particular kind of safety properties that is given by adition for the states. As an
example consider the following specification of a traffichlig The requirement that each
red and green phases should not occur simultaneously ivarant property.

LTL formulae stand for properties of paths (or in fact thedice). This means that a path
can either fulfill an LTL-formula or not. An infinite path safies an LTL formulab if the
trace of the path satisfigs[23, p. 236]. Recall that the trace of an infinite path is amitdi
word over the alphabet?. A transition system satisfies an LTL formula if all paths o t
transition system satisfy the LTL formula [23, p. 237].

3.2.4 Abstractions

Abstraction is a fundamental concept that permits the aisabf large [23, Ex. 7.53] or even
infinite [23, Ex. 7.54] transition systems. An abstractieridentified by a set of abstract
statesS; an abstraction functiof, that associates to each (concrete) ssatkthe transition
systemT Sthe abstract staté(s) which represents it; and a s&P of atomic propositions
that label the concrete and abstract states. Abstractiéfies ith the choice of the se of
abstract states, the abstraction functfoand the relevant propositioAd.

Typically an abstract transition system simulates the metedransition system. Simula-
tion relations are used as a basis for abstraction techsighiere the roughidea is to replace
the model to be verified by a smaller abstract model and tdytré latter instead of the
original one. Simulation relations are preorders on thee sfaace requiring that whenewér
simulatess, states' can mimic all stepwise behavior sfbut the reverse is not guaranteed.
The formal definition of the simulation order is given below.

Definition 3.6 (Simulation Order [23, Def. 7.47])Let T § = (S,Act, —i,li,AR L), i =
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a arbitrary arbitrary arbitrary arbitrary

omepona O——(O——O——O——O

arbitrary a arbitrary arbitrary arbitrary

retsewOa (——O—0O—0O—0

an-b an-b an-b b arbitrary

wian  O——O——O——O—O

—-a -a —-a a arbitrary

oty o2 (OO O—0O
a a a a a

awaysta —O—O—0O—0

Fig. 3.4: Intuitive semantics of temporal modalities.

1,2, be transition systems ovaP. A simulation for(T S, TS) is a binary relatiorg. C
S x S such that

1. for eachs; € |1 there exists; € |, such thai(s;, ) € &
2. forall(s1,52) € ® it holds:

(@) Li(s1) = Lao(s2)
(b) if | € Pos{(sy) then there exists, € Pos{(s) with (s],S,) € ®..

Transition systenT S is simulated byT $ (or, equivalently,T S simulatesT §) if there
exists a simulatio. for (TS, TS). O

Intuitively speaking,T § is simulated byl S means for every path il S there exists
a path inT $ such that their traces coincide. Recall that a path is a seguef states and
trace is a sequence of subset#\ét

We briefly outline the essential ideas of abstractions thatbatained by aggregating
disjoint sets of concrete states into single abstractstaddstraction functions map con-
crete states onto abstract ones, such that abstract statassaciated with equally labeled
concrete states only [23, Def. 7.50].

The abstract transition systefts originates fromrl Sby identifying all states that are
represented by the same abstract state under abstractictiofuf. An abstract state is
initial whenever it represents an initial concrete statiil@rly, there is a transition from
abstract staté (s) to statef (§) if there is a transition frons to s’ [23, Def. 7.51].
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Proposition 3.4 ([23, Lem. 7.52])Let T S= (S Act, —,1,AP.L) be a (concrete) transition
systemSa set of (abstract) states, ahdS— San abstraction function. ThanSs simulates
TS -

Proposition 3.5 ([23, Cor. 7.68 and Th. 7.70])Let TS simulatesT S, assumél' S; does
not have terminal states, I¢tbe a linear-time property. T S satisfiesd, thenT S also
satisfiesh. O

Informally speaking, linear-time property specifies thengsible (or desired) behavior
of the system under consideration [23, p. 100]. The resati applies to LTL formulae,
since each LTL formula is a linear-time property [23, Defd.Band 5.6]. In general the
reverse of the preceding proposition is not truel. § does not satisfg, we cannot deduce
thatT S does not satisfy since the trace of paths that violagemight be behaviors that
TS cannot perform at all.

There is a close connection between abstraction functindgatrtitions. For the ab-
straction functionf : S— § notice thatl Jo_g{s: f(s) = §} is a partition ofS. Recall that
there is a connection between equivalence relations aritigras [23, Rem. 7.30]. Let us
construct an abstraction functidnand a set of (abstract) stat8from a given equivalence
relation. The set of (abstract) stafeis defined as the collection of equivalence classes. The
abstraction functiof maps each (concrete) state to the unique equivalence catsting
the (concrete) state.

The bisimulation-quotienting algorithms [23, Sec. 7.3} ¢e used to obtain a bisimu-
lation quotient transition system if the concrete trapsitsystem is finite. In this case, the
initial partition is defined as the partition induced by thestmaction function (see previous
paragraph), which is finer than t#e® partition [23, Def. 7.31]. However if the concrete
transition system is infinite, the termination of the alg¢jfums is not guaranteed [23, p. 477].

Definition 3.7 (Bisimulation Equivalence [23, Def. 7.1])Fori = 1,2 letT § be transition
systems oveAP, i.e. TS = (S,Act,—i,l;,ARL;). A bisimulation for(TS,TS) is a
binary relationg C § x $ such that

1. for eachs; € |1 there exists, € I, such that(s;,s) € ® and for eachs; € I, there
existss; € 11 such thaf(sy,sp) € &

2. forall(s1,%) € ® it holds that

(@) Li(s1) = Lao(s2)
(b) if s; € Post(sy) then there exists, € Pos(sp) with (S],s,) € ®
(c) if s, € Pos{(sp) then there exists, € Pos{(s;) with (s;,S,) € % .

Transition system3 § andT S are bisimulation-equivalent (bisimilar, for short) if tiee
exists a bisimulatio. for (TS, TS). O

Bisimulation equivalence denotes the possibility of mutstepwise simulation. Bisim-
ulation equivalence preserves all formulae that can bedtatad in CTL*, which is strictly
more expressive than LTL [23, p. 469]. This result allowsf@ening model checking on
the bisimulation quotient transition system while pregag\both affirmative and negative
outcomes of the model checking.



34 3 Finite Abstractions of Max-Plus-Linear Systems

As a side note, here the notion of simulation and bisimutaisodefined over the state
labels and does not consider the action labels. These sateombe also defined on action
labels rather than state labels. This connection is discliss[23, Sec. 7.1.2].

3.3 Autonomous Max-Plus-Linear Systems

Recall that the idea of abstraction is to replace a model teebified by a smaller abstract
model and to verify the latter instead of the original oneerehboth models are expressed
as transition systems. Let us introduce a transition sysétated to an autonomous MPL
system.

Definition 3.8 (Transition Systems Associated with Autonoraus MPL Systems)Con-
sider an autonomous MPL system (2.1) withas the set of initial conditions and a set of
atomic proposition&\P together with the corresponding labeling functlarirhe associated
transition systenT Sis a tuple(S Act,—,1,AP L) where

e set of stateSisR",

e set of action#ctis {1},

e there exists a transition relation— X’ if X' = A® x, and

e set of initial state$ is xg.

In cases where action names are irrelevant, we use a spgutibbbrt. O

In this work, we assume the set of states satisfying eachiajmoposition is a DBM,
i.e. for eacha € AP, the set of state$x : a € L(x)} is a DBM. A transition system can be
restricted to a set of states, as defined next.

Definition 3.9 (Restriction of Transition Systems) Consider a transition systeiS=
(S,Act,——,1,APL). The restriction off Sto a nonempty set of stat&C Sis defined as
TS = (S,Act,—', I’ AP L’) with

e set of action#\ct’ = Act,

e transition relation—'=—— N(S x Act’ x S),

e set of initial states’ = 1N S,

¢ set of atomic propositionsP = AP, and

e labeling function.’ = L|g.

The notatiorl|g : S — AP describes a restriction of functidrto setS defined by |g(S) =
L(s) for everys € S. O
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3.3.1 States: Partitioning Procedure

We construct a partition ddand then the abstraction functibmmaps each state in the same
block to a unique abstract state. A partition of a set is asdivi of the set as a union of
non-overlapping and non-empty subsets, called “block8; R2ef. 7.29]. More precisely
we develop an approach to construct a partifionof the set of state§, wherellg is an
AP partition [23, Def. 7.31], each block is a DBM, and the dynesnin each block are
affine. The approach is as follows. We first determind&partition of S, denoted by p,
where each block is a DBM. Then we determine a partifipp of Swhere each block is a
DBM and the dynamics in each block are affthEinally the partition g is defined as the
refinement of1ap andlMap, i.€. Ry = Knxp N RN [23, Rem. 7.30].

The AP Patrtition

We discuss a procedure to generaté@®mpartition of Swhere each block is a DBM. Algo-
rithm 29 in [23] cannot be used because the algorithm regtiirat the cardinality o8 is
finite. We propose the following approach. First we comph&edoarsesAP partition, i.e.
for eacha € 2*P we define a block as the inverse imageaof.r.t. the labeling function.,
i.e.L71(@) = {x:L(X) =a} = Naca{x:ac L(x)}\ Uaeonma{X 1@ € L(x)}. Notice that in
general each block is a union of finitely many DBM, since thiediference between two
DBM is a union of finitely many DBM. Finally the coarse&P partition is refined such that
each block is a DBM.

Example Suppose thafP = {a} and the set of states satisfyiags the following stripe
{x € R2:0 < x; —x < 3}. The coarsesAP partition contains two blocks, i.gx : 0 <

X1 — X2 < 3} and{x: x; —x2 < 0} U{X: X1 —X2 > 3}. Since the latter block is a union of
two DBM, it is refined into two blocks, i.e{x : x; — X < 0} and{x : x; —x2 > 3}. The
resultingAP partition contains three blocks, iB; = {x € R2:x1— X < 0},Bx={xe R2:
0<% —X2 < 3}, andBg = {x € R? : x; — 2 > 3} as shown in Fig. 3/5. The procedure to
construct arAP partition has not been implementedvieriSiMPL version 1.4. O

The AD Partition

We discuss two different approaches to construct a partii®@where each block is a DBM
and the dynamics in each block are affine. The first approacérgees the partition directly
from the state matrix, whereas the second approach cotssthegpartition from the regions
of the PWA system generated by the state matrix. By usindar¢ai refinement procedure,
the second approach leads to a partition that is coarsetttiganne generated by the first
approach (cf. Proposition 3.7).

The First Approach We determine a partition of the state space based on the wélue
A(i, j) +x;, similar to Section 2.2/4. Given an autonomous MPL systearaiterized by
a row-finite max-plus matriXA € R?*" and a generia € R", for notational purposes we
defineWi(i, j) = A(i,j) +X; — [A®Xx]i. Notice that each element &% is nonpositive,

3AD stands for “affine dynamics”; thugyD does not represent the multiplication of matfand matrixD,
unless stated explicitly.
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B> Bs

Fig. 3.5: AP partition ofR? where all blocks are DBM.

depends (given a matri&) only onx, and that there exists a nonempty set of usual zero
(0) elements in each of its rows. Each region generated Byaghproach is characterized

[Aex]i=A(i, ])+x;} fori=1,...,n. More precisely the region characterizedbgienoted
by Ry, is defined as the set of pointsc R" verifying the condition for matriXA, i.e.
Re={xeR":W(i,j) =0iff j € fiforeachi=1,...,n}.

In order to design a procedure for the proposed approachee to characterize each
pointx € Rs based on the value &(i, j) +x;. Foreach=1,....n; j € fi;andj’ =1,....n;
the following property holds: ifi’ € fi, thenA(i, j) +xj = A(i, j') + xj;; if |’ ¢ f;, then
A(i, ) +xj > A(i, J') +xj. Thus a constructive definition & C R" is as follows:

szfn]ﬂ ﬁ{ {(xeR":AG, ) +x = A, ) +xp}, if |’ €fi, (3.1)

1jef 1 {XeRMAG, ) +x > A0, ])+xp}, if J' ¢ f.

Algorithm 3.1  Generation of a partition from a row-finite sta te matrix
Input: A € R§*", a row-finite max-plus matrix
Output:Map, a partition ofS

initialize Map with the empty set

generate regioRs according to[(3.1)
i f Ry is notemptyt hen
save the region, i.€1ap := Map U {Rr}
end if
end for

The worst-case complexity of Algorithm 3.1d5n3(2" — 1)") [8, p. 3044]. The crucial
observation that allows for an improvement of the compleistthat it is not necessary to
iterate over all possible characterizationsf @fs in Algorithm 3.1. Instead we can apply
the backtracking technigue, similar to the one used for Atgm|[2.1. In the backtracking
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Fig. 3.6: Potential search tree for a 2-dimensional MPL syst

approach, the partial characterizations(e. . ., fx) fork=1,...,nand the corresponding
region is

“ANN { {x € RV )+ = A ) +xp}, if | € f,
=1 jcfi f_1 {xeR": A, j)+x; > A0, ]")+xp}, ifj ¢f.

Notice that if the region associated with a certain partigrecterizatiorg f1,..., fx) is
empty, then the regions of the corresponding charact@imstfy, .. ., f) are also empty,
forall fx.1,..., fn. The set of all characterizations can be represented aeat@tsearch
tree. For a 2-dimensional MPL system, the potential seaeghis given in Fig. 3.6.

Example Consider the autonomous MPL system([in (2.2). The regionsrgéed by the
scheme in Algorithm 3/1 arB1y (1}) = {x € R? : x1 — X2 > 3}, Rq1.2},1) = {Xx € R?:
X1 —Xo = 3}, R({Z},{l}) = {X S R?: O<Xg—X < 3}, R({Z},{l,Z}) = {X S RZ: X1 — X2 = O},
andR(z) 23 = {X € R? : x; — X2 < 0}. The regions are shown in Fig. 3.7 (left).

In VeriSiMPL version 1.4, the procedure to generatefdh partition by using the first
approach (cf. Algorithm 3]1) has been implementedyph2pwa_part as a function. This
function requires the state matridnfpl ). This function generates a collection of finitely
many DBM (,sysD) and the corresponding affine dynamiégBj. VariablesysD relates
each DBM to the affine dynamics that are active in the DBM. Téieofving MATLAB
script re-calculates the numerical example in the pregedéragraph:

>> Ampl = [2 5;3 3]
>> [A B, D, sysD = npl 2pwa_part (Anpl) a

The Second Approach A partition of Scan be also obtained from the regions of the PWA
system generated by the state matrix. The procedure taxabfartition is not unique: with
focus on memory usage, we propose one that leads to a patlitibis coarser than the one
generated by Algorithm 3.1 (cf. Proposition 3.7). Let uststath the following concept.

Definition 3.10 (Adjacent Regions) et Ry andRy be regions generated by afdimensional
state space matrix. We say that they are adjad@nt(Ry) if there exists a singleé €
{1,...,n} such thag; > g/ andg; = gj for eachj #i. O
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Fig. 3.7: The left and right plots are AD partition of the antimous MPL system i{2.2)
obtained using the first and second approaches, respegtivel

Given a collection of regions generated by the state spatéxmiging Algorithm 2.1,
the procedure (cf. Algorithm 3.2) works as follows. For eaelir of adjacent regions, their
intersection is combined to the region with higher index.

Algorithm 3.2 Generation of a partition from regions of PWA system
Input: A € R§*", a row-finite max-plus matrix
Output:Map, a partition ofS

initialize Map with the regions of the PWA system (cf. Algorithm 2.1)
for all Rg,Ry € Map do
i f Ry> Ry then
the intersection is removed from the region with lower index
i.e. Rg/ = Rg/ \ Rg
end if
end for

It has been shown that this procedure generates a partft®8pp. 3045]. Proving that
the procedure does not increase the number of regions eqoatbowing that the set dif-
ference of two adjacent regions is a DBM (cf. Proposition) 3Téie worst-case complexity
of Algorithm[3.2 iso (n>™*1) [8, p. 3045].

Proposition 3.6 ([8, Prop. 3])If Ry > Ry, thenRy \ Ry = Ry N {x € R" 1 A(i,g}) +Xg >
A(i, i) + Xg }, which is a DBM. O

Example Consider the autonomous MPL system/in (2.2). The regionsmgéed by the
scheme in Algorithr 3.2 arﬁ(l‘l) = {X€R?:x — %2 >3}, R/(z,l) ={XeR?:0<x1—% <
3}, {indR/z’Z). = {x € R?:x; —x < 0}. Notice thalR/(z’Z) = R(22). The regions are shown
in Fig.[3.7 (right).
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In VeriSiIMPL version 1.4, the second approach to generat@Rrpartition has been
implemented in two functionspl 2pwa and npl 2pwa_r ef i ne. Recall that the function
npl 2pwa generates a PWA system from an autonomous MPL system (dioB&:2.4).
The functionnpl 2pwa_r ef i ne refines the PWA regions to obtain a partition. This function
requires a state matriXAfpl ) and the PWA system generated by the state mas;B[).
This function returns a PWA system,B,D) where the PWA regiondj are a partition of
R". The following MATLAB script determines th&D partition of the autonomous MPL
system in[(2.2):

>> Ampl = [2 5;3 3]

>> [A B, DO = npl 2pwa( Ampl)
>> [A B, D nmpl 2pwa_r ef i ne( Anpl , A, B, D)

Let us determine the partitidiip of the MPL system (2]2). If we use tiieap generated
by the first approacHly coincides with thdlap sincelap is finer thanMap. If we use
theMap generated by the second approach, one can showlthadincides with thdlap
generated by the first approach.

Finally we define the set of abstract stafethe abstraction functiof, and the labeling
function of the abstract transition systdm : S— 2AP_ Sincel, contains 5 blocksS =

follows

&, ifx1—%x <0,
&, ifxg—x=0 e
e ’ . a}, ifi=25,
fx)=¢ %, ifxi—x>3, Lf(S)Z{{% ifi=134

&, ifxi—x=3, ’ T
&, ifO<xg—%x2<3,

The following proposition justifies that the second appto@occomputationally advan-
tageous, since it generates a coarser partition.

Proposition 3.7The partition generated by the first approach is finer thaotieegenerated
by the second approach. O

Proof We will prove that each block generated by the second aphrisacunion of blocks
generated by the first approach [23, p. 476]. Notice that btk generated by the second
approach is the set difference between a PWA region and awofi®WA regions (cf.
Algorithm[3.2). Recall that each PWA region is a union of legenerated by the first
approach, i.eRy = Uscr () Rr WhereF (g) = {f : gi € fi for eachi = 1,...,n} [8, Prop. 2].

It follows that the set difference between a PWA region andiamuof PWA regions is also
a union of blocks generated by the first approachRge.U?_, Ry = Urer g\ Fg) R B

3.3.2 Transitions: One-Step Reachability

We investigate a technique to determine the transitiortiogla of the abstract transition
system, that is between two blocks of the partition indugethk abstraction function. The
(concrete) states associated with an abstract segadls to the inverse image o#.r.t. the
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abstraction functiorf, i.e. f~1(8) = {s: f(s) = §}. Recall thatf ~%($) is a block (or in fact
a DBM) and the dynamics in each block are affine.
If there exists a transition from an outgoing stati® an incoming statd in the con-

crete transition system, i.8.—— &, then there is a transition frorfi(s) to f(s) in the

abstract transition system, i.&(s) o f(g) [23, Def. 7.51]. Such a transition can be
determined by a forward- or backward-reachability appho@xcording to the former, we
calculatef~%(§) N Post f~(8)), whereas if we use the backward approach we compute
f=1(§ nPre(f~1(§)). The nonemptiness of the resulting set characterizes tsepce of

a transition fromsto §.

Remark The equivalent terms “image” and “direct successors” aegl wghen the dynam-
ical system is represented as a function and a transiti@atioa| respectively. A similar
argument holds for “inverse image” and “direct predecessor O

In this work we focus on the forward-reachability approaghce it is computationally
more attractive than the backward one. More precisely (afp&sition 3.1), since both
approaches leverage the affine dynamics associated withutigeing abstract stafethe
number of direct-successors computations in the forweaagtrability approach is linear
w.r.t. the number of abstract states, whereas the numbéeatgredecessors computations
in the backward-reachability approach is quadratic vitré.number of abstract states.

With focus on the forward-reachability approach, given batiact states e employ
the affine dynamics that are activefin'($) to compute the direct successors as

Pos(f~1(9) = {Aex:xc f1(§)}.

Sincef~1($) is a DBM, Pos{ f~(9)) is a union of finitely many DBM (cf. page 26). The
complete approach to determine the transitions of the atidtansition system is shown in
Algorithm[3.3, which incurs a worst-case complexitya?®|S|?) [8, p. 3046].

Example Let us consider a set of initial conditions of the autonomd@4. system in[(2.2)
that coincides with the eigenspace, ixg.= {x € R? : x; —xp = 1}. Thus the set of initial
abstract states is = {5} [23, Def. 7.51]. The abstract transition system is shownidn F
3.8.

In VeriSiMPL version 1.4, the procedure to determine the transitionseébstract tran-
sition system has been implemented in the fundtmhr ans. The inputs are a PWA system
(A,B,D,;sysD) where the regiond are a partition of the state space. The output is an adja-
cency matrix that is represented by a sparse Boolean matiATLAB. The entry ati-th
row and j-th column ist r ue if there is a transition fronj to i, else it is equal td al se.
The following MATLAB script determines the transitions diet abstract transition system
for the autonomous MPL system in (2.2):

>> Anpl = [2 5;3 3]

>> [A B, D, sysD = npl 2pwa_part (Anpl)
>> adj = ts_trans(A B, D, sysD)

>> adj([13452],[1345 2])

4The affine dynamics associated with an abstract state the ones that are activefint($)
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Fig. 3.8: Abstract transition system where states 1,..epresent respectiveli, ... 5.
The initial state is& indicated by an incoming arrow. The grayed stagesss
satisfy the atomic proposition a.

Recall that in this example, the initial partitidiy coincides with theAD partition gener-
ated by the first approach. Thus we use the funatigr?pwa_part to generate the initial
partition. However the ordering of regions generated byfuhetionnpl 2pwa_part and the
one used in the example is different. The last statementd tsre-arrange the ordering of
regions generated by the function such that the orderingcates with the one used in the
example.

Suppose that we want to verify an invariant conditioa over the abstract transition
system. Recall that invariant conditiama requires thata holds for all reachable states.
According to [23, p. 107], an invariant condition is satidfiey a transition system if and
only if the condition is satisfied by the reachable statesisTthe invariant condition is not
satisfied by the abstract transition system. Recall thatdbes not imply that the invariant
condition is not satisfied by the concrete transition system O

Algorithm 3.3 Computations of the transitions of the abstract transition
system via forward-reachability analysis
Input: § a set of abstract states

f : S— § an abstraction function
Output: — ¢ C Sx Actx §, a transition relation wher&ct = {1} (cf. Definition
3.8 and [23, Def. 7.51))

initialize —— ¢ with the empty set
for all $eSdo
compute the direct successorsspi.€. Post f ~1($))
for all §eSdo
if f-1(§)NPos(f~1(9))is notemptyt hen
define a transition frors o §, i.e.§ ——¢ §
end if
end for
end for

3.3.3 Bisimulation-Quotienting Procedure

Having obtained an abstract transition system that siresildite concrete transition system,
it makes sense to attempt deriving an abstract transitietesythat bisimulates the con-
crete transition system. Theorém 3.2 implies the abstragsition system bisimulates the
concrete transition system if and only if there is one outgdransition from each abstract
state.
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Theorem 3.2Let T Sbe the concrete transition system generated by an autorsoBlu
system andl' S be the abstract transition system induced by an abstrafiiiwetion f :
S— S Binary relationg = {(f(s),s) : s€ S} is a simulation fo{ TS, TS if and only if
|Pos{($)| = 1 foralléc S O

Proof Suppose that = {(f(s),s) : s€ S} is a simulation fo(T S, TS). Condition 2(b) in
Definition/3.6 means for all§,s) € % it holds that: ifs" € Pos($), there exists € Pos(s)
with (§,5) € .. If there exists an abstract statsuch thatPos{($)| > 1, then|Pos{s)| > 1
for all s that satisfyf(s) = §, which is a contradiction. The contradiction comes from the
fact that|Pos{(s)| = 1 for all s, because the value éf® x is uniquely defined for akk € R"
(cf. Definition3.8). It follows thatPos{$)| = 1 for all abstract states<’ S

We assuméPos{($)| = 1 for all abstract states<"S. Conditions 1 and 2(a) in Definition
[3.6 are satisfied becausg is a simulation for(TSTS;). Next we prove that condition
2(b) is also satisfied. Lete S, §= f(s), Pos{$) = {§}, andPos{s) = {s'}. Sincex is a
simulation for(T ST S), then condition 2(b) and the preceding assumption ini§ily) €
R. O

The procedure to generate an abstract transition systenbigienulates the concrete
transition system works as follows. For each abstract Statith more than one outgoing
transition, the corresponding set of stafes ($) is refined according to the direct succes-
sors. Then the incoming and outgoing transitions are updalde preceding steps are
repeated until all abstract states have one outgoing tramsi

Let us focus on the refinement step of the procedure. Suppasan abstract state ~
has more than one outgoing transition, [Ros{$)| > 1. The refinement step generates a
partition of f ~%(§) according to the direct successors. More precisely for §agtPost($),
we define a block consisting of the set of states such thatithetduccessor is ifi=%(§),
i.e.{sc f71(9): f(Pos(s)) =&} = f~1(§) nPre(f~1(§)). Computationally we determine
the inverse image of 1(§) w.r.t. the affine dynamics that are active fin*($), then we
intersect the obtained inverse image with'($). Notice that each block is a DBM since
f~1(8) is a DBM, the inverse image of a DBM w.r.t. affine dynamics is BM) and the
intersection of two DBM is a DBM (cf. Sectidn 3.2.1).

Example Let us apply the procedure to the abstract transition systeRig.[3.8. The
set of stated ~1(&) is partitioned into the following three blocksc : 0 < x3 — Xp < 2},
{X:x1—%2 =2}, and{x: 2 < x3 — xp < 3}. After the refinement step, the partitibh is a
set of 7 blocks.

Next we characterize the abstract transition system assalcwith the refined partition
M. SinceM; contains 7 blocksS = {&,...,&}. The abstraction functiofi’ and the
labeling functiorL ¢, are defined as follows:

gl’ ifX17X2<O,

§2, ifXj_—XzZO,

8, ifxi—x2>3, T
Fx) =4 &, ifx—x=3 Lff(§>{ {a%’ :;:;ﬁi?

&, if2<xi—%<3, ’ o

& fo<xi—x<2,

§, ifxi—x=2
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Fig. 3.9: Abstract transition system where states 1,..efresent respectivel§,....$,.
The initial state is§ indicated by an incoming arrow. The grayed states
$,.%,%, S, satisfy the atomic proposition a.

Recall that the set of initial states{& : x; — x2 = 1}. Thus the set of initial abstract states
is Iy = {&}. The abstract transition system is depicted in 3.9 ahdsimulates the
concrete transition system since all abstract states hrayewutgoing transition (cf. Theorem
3.2).

In VeriSiMPL version 1.4, the partition-refinement procedure has begteimented in
the functiont s_r ef i ne. This function requires the PWA syste®K,D,sysD) whereDis a
partition of R", the adjacency matrixaflj ), and finally the upper bound on the number of
blocks of the refined partition. This function generateslgection of regions,sysD) and
the corresponding adjacency matraxlj). Let us re-calculate the numerical example in the
preceding paragraph:

>> Anpl = [2 5;3 3]

>> [ A B, D, sysD] = npl 2pwa_part (Anpl)

>> adj = ts_trans(A B, D, sysD)

>> [D,sysD adj] = ts_refine(A B,D, sysD, adj, 1000)

One can see that the ordering of regions generatad byef i ne and the one used in the
example are the same.

Recall that the invariant conditiona is not satisfied by the abstract transition system
before the refinement (cf. Fig. 3.8). One can check that theriant condition is satisfied
by the abstract transition system after refinement (cf/F@). O

Unfortunately, such a procedure in general does not nediggsaminate, especially in
the presence of a cycle in the abstract transition systertairiing an abstract state with
more than one outgoing transition. An upper bound on the mumbabstract states can be
used as a stopping criterion. In the remainder of this sulmsgecsufficient conditions for
the existence of an abstract transition system that bisitesithe concrete transition system
will be discussed.

Proposition 3.8 ([8, Th. 5])Given an irreducible MPL system characterized by ma#rix
with cyclicity c. There exists an abstract transition system that bisirsltte concrete
transition system if there exists an abstract transitistesy that bisimulates the concrete
transition system restricted B&(A%°). O

Proposition 3.9 If the set of states satisfying each atomic proposition isipes there exists
an abstract transition system that bisimulates the comtratsition system generated by a
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two-dimensional irreducible MPL system. |

Proof Let A denote the system matrix and let the cyclicitydo&Ve define the concrete tran-
sition system as the transition system associated with AE §ystem restricted t&(A®°).
We first construct an abstract transition system that bikitas the concrete transition sys-
tem. Then the claim follows from Proposition 3.8.

Recall that the eigenspace of the irreducible MPL systemmisug-plus cone [22, Ths.
3.100 and 3.101]. Proposition 3.3 implies the eigenspaagwb-dimensional MPL system
is a DBM or in fact a stripe. First we determine the initialtitéon Mg of the eigenspace (cf.
Section 3.3.1). The initial partition is defined as the ianti (of the eigenspace) generated
by the atomic propositions, i.Elg = Map. In this case, each block is a stripe since the states
satisfying each atomic proposition are a stripe. There isegd to consider the partition
generated by the affine dynamics since this is a proof andtigaing to be implemented.
The periodic behavior of the states in the eigenspace anfd¢hhat each block is a stripe
imply each abstract state has a self loop. From Thebremt&ahstract transition system
bisimulates the concrete transition system. O

For a higher dimensional irreducible MPL system, the eristeof an abstract transi-
tion system that bisimulates the corresponding concratesition system depends on the
cyclicity of A, as stated in the following result.

Proposition 3.10 Given an irreducible MPL system with state matdixif the cyclicity of
Ajis equal to 1 and the states in the eigensg&a@® satisfy the same set of atomic propo-
sitions, then there exists an abstract transition systernlisimulates the corresponding
concrete transition system. i

Proof We define the concrete transition system as the transitistesyassociated with the

MPL system restricted to the eigenspace. Then we abstmcotficrete transition system.

From Theorer 3.2, the abstract transition system bisiresitite concrete transition system.
The conclusion follows from the application of PropositiB.

Notice that if the cyclicity ofA is 1 then the eigenspace equals the complete periodic
behaviors, i.eE(A) = E(A®®). Furthermore via [22, Ths. 3.100-3.101] we conclude that
E(A) is a max-plus cone. From Proposition 32(A) can be expressed as a union of
finitely many stripes that are not necessarily pairwiseottisj in order to obtain a partition
of E(A) we can employ a generic refinement procedure. In this cash, ldack of the
partition is a stripe becaudg(A) is a union of finitely many stripes. Since each state in
the eigenspace satisfies the same set of atomic proposfieashe assumption above),
the obtained partition is proposition preserving. Theraasneed to refine the partition
based on the affine dynamics since this is a proof and is nai@egure that is going to be
implemented. From the periodic behavior of the states irethenspace and the fact that
each block is a stripe, each abstract state has a self loop. O

3.4 Nonautonomous Max-Plus-Linear Systems

We introduce a transition system related to a nonautonofd@lissystem. Notice that the
transitions are action abstract in the sense that the timmsystem does not care which
particular actioru is responsible for the transition of the MPL system.
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Definition 3.11 (Transition Systems Associated with Nonawnomous MPL Systems)
Consider a nonautonomous MPL system(2.3) wigras the set of initial conditiong; as
the set of possible inputs, and a set of atomic proposi#idhtogether with the correspond-
ing labeling functiorL. The associated transition systar8is a tuple(S,Act, —, 1, AP L)
with

e setof state$=R",
o set of actiondct = {1},

e there exists a transition relation—— x’ if there exists an inputi € ¢ such that
X =A@x®B®u,and

e set of initial state$ = xp.
A special symbot is used in cases where action names are irrelevant. O

The set of states satisfying each atomic proposition israsduo be a DBM, i.e. for each
ac AP, the set of statefx: a€ L(x)} is a DBM. Furthermore the set of allowed inpatss
also assumed to be a DBM in the input sp&E& Practically, this enables expressing upper
or lower bounds on the separation between input eventsdatgs. If on the other hand
there are no constraints on input events, we define R™, which is also a DBM.

3.4.1 States: Partitioning Procedure

We construct a partition o and then each state in the same block is mapped by the ab-
straction functionf to a unique abstract state. More precisely we develop arpapprto
construct a partitioily of the set of stateS, wherellg is anAP partition [23, Def. 7.31]

and each block is a DBM. The partitidty is computed by using the procedure to generate
anAP partition in Section 3.3.1, i.&1g = Map.

Remark Recall that the dynamics that are active in each block of #nétjpn g in Section
[3.3.1 are affine. This fact is used to simplify the computatbtransitions in the abstract
transition system. As it will be clear in Section 3.4.2, imaatonomous MPL systems, the
computation of transitions in the abstract transition eystioes not use the dynamics in
each block. ]

Example Suppose thafP = {a} and the set of states satisfyiags the following stripe
{xe R2:0<x — X < 3}. The resultingAP partition contains three blocks, iB; = {x €
R?:x; —% <0}, B ={Xx€R?:0<x, — X2 < 3}, andBz = {x e R? : x; — X» > 3} as
shown in Fig| 3.5.

Let us define the set of abstract stafshe abstraction functiofi, and the labeling
function of the abstract transition systém: S— 2P Sincelly = Map contains 3 blocks,
S={4,%,%}. The abstraction functiori and the labeling functioh; are defined as
follows

§, ifxg—x<0 .

o ’ N a}, ifi=2

fx)=¢ &, IfO<x3—% <3, Lf(s){ { % 113
&, ifxa—x>3, ’ o
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3.4.2 Transitions: One-Step Reachability

We investigate a technique to determine the transitiortiogla of the abstract transition
system, that is between two blocks of the partition indugethb abstraction function. The
(concrete) states associated with an abstract stgedls to the inverse image s#vr.t. the
abstraction functiorf, i.e. f~(§) = {s: f(s) = §}. Recall thatf ~1($) is a block or in fact
a DBM.

If there exists a transition from an outgoing stati® an incoming statd in the con-
crete transition system, i.s.— ¢, then there is a transition frorh(s) to f(s) in the

abstract transition system, i.&(s) SR f(s) [23, Def. 7.51]. Such a transition can be
determined by a forward- or backward-reachability appho@xcording to the former, we
calculatef ~1(§) N Post f~1(8)), whereas if we use the backward approach we compute
f=1(§ NPre(f~1(g)). The nonemptiness of the resulting set characterizes #eepce of
a transition fronmsto §.

As in the autonomous case, we focus on the forward-readtyagproach, since it
is computationally more attractive than the backward onéeisan abstract statg Wwe
employ the PWA representation of the augmented matrix topetenthe direct successors
as

Pos(f1(8) = {AoX:Xe f 1§ x u},

wheref~1(8) x u denotes the cross product of the set$(S) andw . Sincef ~1(§) x u isa
DBM, Post{ f~1(9)) is a union of finitely many DBM. The complete approach to deiae
the transitions of the abstract transition system is shawAlgorithm[3.3, which incurs a
worst-case complexity af ((n+m)3|§2q;), whereg, denotes the number of regions in the
PWA system generated by augmented mahrix

Example Let us considexg = {x € R2:x1—Xp = 1} as the set of initial conditions of the
nonautonomous MPL system in (2.5). Thus the set of initiatralet states ik = {%} [23,
Def. 7.51]. Furthermore the set of possible inputs= {u € R?: 0 < u; — up < 2}. The
abstract transition system is shown in Fig. 3.10 (left).

Next we demonstrate the computation of transitions digmiabove via/eriSiMPL ver-
sion 1.4. First we construct afiP partition. The following MATLAB script constructs
an AP partition manually since we have not implemented the procetb generate aAP
partition inVeriSiMPL version 1.4:

>> D = cell(1,2), D{1} = zeros(3,3,3), D{2} = false(3,3,3)

>> D{1}(:,:,1) = [0 Inf Inf;Inf O Inf;Inf O O]

>> D{2}(:,:,1) = [true false false;false true false;false false true]
>> D{1}(:,:,2) = [0 Inf Inf;Inf O O;Inf 3 0]

>> D{2}(:,:,2) = [true false false;false true true;false false true]
>> D{1}(:,:,3) = [0 Inf Inf;Inf 0 -3;Inf Inf O]

>> D{2}(:,:,3) = [true false false;false true true;false false true]

Then we construct the PWA system generated by the augmergtknThis can be done
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Fig. 3.10: The abstract transition system on the left sirfedahe concrete transition sys-
tem, whereas the abstract transition system on the riglinbisites the concrete
transition system. The initial state is indicated by an iming arrow. The grayed
states satisfy the atomic proposition a.

by using the functiompl 2pwa (cf. Section 2.2.4):

>> Ampl = [2 5;3 3], Bnpl = [0 -Inf;-Inf Q]
>> [ Anon, Bnon, Dnon] = npl 2pwa([ Anpl Bnpl ])

Finally we determine the transitions. \feriSiMPL version 1.4, the computation of transi-
tions for nonautonomous MPL systems is performed by thetfom¢ snon_t rans. This
function requires a partition of the state spdge PWA system generated by the augmented
matrix (Anon,Bnon,Dnon), and the set of possible inputd)( This function returns an adja-
cency matrix §dj ). The following MATLAB script defines the set of possible irtp and
computes the transitions:

>> U =cell(1,2)

>> U{1} = [0 Inf Inf;Inf O O;Inf 2 0]

>> U{2} = [true false false;false true false;false false true]
>> adj = tsnon_trans(D, Anon, Bnon, Dnon, U)

Suppose that we want to verify an invariant conditioa over the abstract transition
system. According to [23, p. 107], an invariant conditiosasisfied by a transition system
if and only if the condition is satisfied by the reachableegatNotice that the abstract
transition system in Fig. 3.10 can reach stsitavhere the propositiom is not satisfied.
Thus the invariant condition is not satisfied by the absthagtsition system. Recall that
this does not imply that the invariant condition is not & by the concrete transition
system. O

3.4.3 Bisimulation-Quotienting Procedure

Having obtained an abstract transition system that siresifdte concrete transition system,
it makes sense to attempt deriving an abstract transitistesythat bisimulates the concrete
transition system.

Theorem 3.3Let T Sbe the concrete transition system generated by a nonautarsivPL
system and S be the abstract transition system induced by an abstractimtion f : S—
S The binary relationg. = {(f(s),s) : s€ S} is a simulation for TS, TS) if and only if
f=1(8) C Pre(f~1(§)) for each transitiors *—+ §. |
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Proof Notice that conditions 1 and 2(a) in Definition 3.6 are satfiyx since{(s, f(s)):
se€ S} is a simulation for(TSTSs). We will show that condition 2(b) is equivalent to
f=1(8) C Pre(f~1(§)) for each transitiors *—+ §.
According to condition 2(b), for all$,s) € % it holds that: ifs" € Pos($), there exists
s € Pos{(s) with (§,5) € . Equivalently, assuming that there is a transition—+ §, it
holds that: for alse f~1(8), there exists € Pos{s) with ' € f~%(§), i.e.sc Pre(f~1()).
O

The procedure to generate an abstract transition systenbiienulates the concrete
transition system works as follows. For each transiien=> § with f~1(5)\ Pre(f~1(§))
is not empty, the set of statés'($) is refined according tere(f ~1(§)). Then the incom-
ing and outgoing transitions are updated. The precedins stee repeated until all transi-
tions satisfy the condition in Theorém 3.3. Unfortunatslych a procedure in general does
not necessarily terminate. As a side note, the procedurertgpuatePre(f~1(g)) will be
discussed in Section 4.3.

With focus on the refinement step, suppose that there exisagsitions——; § such
that f~1(8) \ Pre(f~1(§)) is not empty. The refinement step generates a partitidim bfS)
such that each block is a DBM and each block is either a sulisetedf —1(§)) or not
intersected wittPre(f ~1(§)). Our approach is as follows. We first construct a partition of
f~1(8) consisting of two blocks, i.ef ~1(§) NPre(f~1(§)) andf~1(§)\ Pre(f~1(§)). Next
the partition is refined such that each block is a DBM.

Example The abstract transition system in Fig. 3.10 (left) simuddke concrete transition
system since the transition frosptd § does not satisfy the condition in Theorem 3.3. One
can show that ~(&) \ Pre(f~1(§)) = {x € R?: 0 < x; — % < 2}.
Let us apply the bisimulation-quotienting procedure todhstract transition system in
Fig.[3.10 (left). The set of statds*(%,) is partitioned into two blocks, i.€x: 0 < x; —Xp <
2} and{x: 2 < x; —x2 < 3}. After the refinement step, the partitibh is a set of 4 blocks.
Next we characterize the abstract transition system asgsaicwith the refined partition
M. SinceM; contains 4 blocksS = {&,...,§}. The abstraction functiofi’ and the
labeling functiorL ¢ are defined as follows:

g, ifxi—x <0,
ron ) &, If0<x1—%<2, [ {a}, ifi=2,4,
PO=1 ¢ ifx—x>3, Lo =1 "o iti=13
§, f2<xi—x%<3,

Recall that the set of initial states{s : x; —x2 = 1}. Thus the set of initial abstract states is
I+ = {&}. The abstract transition system is depicted in [Fig. 3.dh(yiand it bisimulates
the concrete transition system since all transitionsfyati® condition in Theorem 3.3.

Let us construct the abstract transition system after tfieement procedure by using
VeriSiMPL version 1.4. The refinement procedure has not been impleaiénthis version
of VeriSiMPL. The following MATLAB script defines the refined partition maally:

>> D = cell(1,2), D{1} = zeros(3,3,4), D{2} = false(3,3,4)
>> D{1}(:,:,1) = [0 Inf Inf;Inf O Inf;Inf O Q]
>> D{2}(:,:,1) = [true false false;false true false;false false true]
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>> D{1}(: ) = [0 Inf Inf;Inf 0 0;Inf 2 Q]
>> D{2}(:,:,2) = [true false false;false true true;false true true]
>> D{1}(:,:,3) = [0 Inf Inf;Inf 0 -3;Inf Inf O]
(:,:,3) =[true false false;false true true;false false true]
( ) = [0 Inf Inf;Inf 0 -2;Inf 3 0]
( )

= [true false false;false true false;false false true]

Then we construct the PWA system generated by the augmergtknThis can be done
by using the functiompl 2pwa (cf. Section 2.2.4):

>> Anpl =2 5;3 3], Bmpl =0 -Inf;-Inf 0]
>> [ Anon, Bnon, Dnon] = npl 2pwa([ Anpl Bnpl ])

Finally we define the set of possible inputs and use the fancgnon_t r ans (cf. Section
3.4.2) to determine the transitions as follows:

>> U=cell(1,2)

>> U{1} = [0 Inf Inf;Inf O O;Inf 2 0]

>> U{2} = [true false false;false true false;false false true]
>> adj = tsnon_trans(D, Anon, Bnon, Dnon, U)

Recall that the invariant conditiona is not satisfied by the abstract transition system
before the refinement, cf. Fig. 3.10 (left). One can check tha invariant condition is
satisfied by the abstract transition system after refineneérftig.| 3.10 (right). O

3.5 Implementation: VeriSiMPL

Most algorithms have been implemented as a MATLAB toolbdserification via biSim-
ulations of MPL models” eriSiMPL, as in “very simple”)|[5], which is freely available
for download at http://www.sourceforge.net/projectshienpl. MPL systems specified in
MATLAB are abstracted to finite-state transition systemse @bstraction procedure runs in
MATLAB and leverages sparse representations, fast maatipak based on vector calcu-
lus, parallel computing toolbox of MATLAB and optimized dadtructures such as DBM.
The obtained abstraction can be exported to a text file in R@dess MEta LAnguage
(PROMELA) format. This enables the verification of MPL systeagainst LTL specifica-
tions within the SPIN model checker [71].

3.6 Computational Benchmark

To the best of the author’s knowledge, there is no tool thataused to abstract MPL sys-
tems. Thus in order to test the practical efficiency of theppeed algorithms, we compute
the runtime required to perform the abstraction of an MPltesysnto a finite abstract tran-

sition system, for increasing dimensiamsf the given MPL system. We furthermore keep


http://www.sourceforge.net/projects/verisimpl

50 3 Finite Abstractions of Max-Plus-Linear Systems

track of the number of states and of transitions of the obthmbstract transition system,
which is directly related to the memory requirement of trehteéque.

For any givem, we generate row-finite matricéswith 2 finite elements placed uni-
formly at random in each row, as well as matri@as column vectors where all elements
are finite. The finite elements are uniformly generated iettetpking values between 1 and
100. The set of allowed inputg is conservatively selected to be equaRo

The experiments have been run on a 12-core Intel Xeon 3.47 RHwith 24 GB of
memory. Over 10 independent experiments, Tdbles 3.1 aned2t the (mean and max-
imum values for the) time needed to construct the abstransition system, broken down
over the two successive procedures for the generation alibact states and the transi-
tions, respectively. The total number of states and of ttians in the abstract transition
system are also reported.

Recall that the first step of the procedure (generation dfadtsstates) consists of the
partitioning of the state space (Algorithm 3.2) and, for astonomous systems, of the con-
struction of a PWA system over the augmented space (Algof&H)), whereas the second
step (generation of transitions) uses forward-reachglgifialysis to determine transitions
between abstract states.

With regards to autonomous systems, as confirmed by Tab|éh& bottleneck of the
abstraction procedure resides on the generation of tramsiand depends on the number
of partitioning regions that is in the worst case exponémtiat. the dimension of the state
space. On the other hand, for nonautonomous systems, atedpoTablé 3.2, the com-
putation time for generating the transitions is higher timathe autonomous case, since the
procedure leverages the PWA system generated by the augphmaatrix.

We have also performed similar computations for the casetmimmous systems with
full matricesA (in a max-plus sense), which is likely to generate abstraxtets with more
states. Elements are again uniformly distributed intetging values between 1 and 100.
Analogously to the above results, the bottleneck of therabsbn procedure also resides in
the generation of the transitions. For an 8-dimensional Mitem over 10 independent
experiments, the maximum time needed to compute the abstaasition system amounts
to 20.11 minutes, which is made up of 6.90 and 13.21 minutegdoerating the partitions
and transitions, respectively.

Remark The abstraction and refinement procedure discussed inhhjster can be also
used for autonomous and nonautonomous Min-Plus-LinedP(Msystems. In/eriSiMPL
version 1.4, we have implemented the abstraction procedur@utonomous and nonau-
tonomous MiPL systems. O

3.7 Summary

This chapter has introduced a new technique to generate &ibgtractions of autonomous
and nonautonomous Max-Plus-Linear (MPL) systems, chawiaetd as finite-state transi-
tion systems. The procedure is based on the partitioningefatg) of the state (input)
space and on the study of the one-step dynamics to relatéqyany regions. The resulting
finite-state abstraction has been shown to either simulabésonulate the original MPL
system.
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Table 3.1: Numerical benchmark for autonomous MPL systétash entry represents the
mean and maximal values over 10 independent experiments.

size time for time for total total
of MPL generation of generation of number of number of
system abstract states transitions abstract states transitions
3 {0.16;0.23 [sec] {0.47;0.9% [sec] {3.60;6.0Q {4.30;13.00
4 {0.21;0.3% [sec] {0.50;0.89 [sec] {6.20;12.00 {11.40;35.00
5 {0.26;0.33 [sec] {0.46;1.08 [sec] {8.60;24.00 {13.80;90.00
6 {0.43;0.5% [sec] {0.47;0.98 [sec] {19.40;36.00 {68.50;191.00
7 {0.90;1.05 [sec] {0.49;0.9% [sec] {37.20;84.00 | {289.30;1278.0p
8 {1.58;1.83 [sec] {0.58;0.9% [sec] {58.00;160.09 | {512.30;1927.0p
9 {4.09;4.83 [sec] {0.83;1.44 [sec] | {120.00;208.0p | {1.75;4.35x1C®
10 {9.49;12.85 [sec] | {3.14;15.4% [sec] | {283.60;768.0p | {1.31;8.33x10*
11 {24.85;32.13 [sec] | {15.17;46.56 [sec] | {613.20;1104.0p | {1.87;4.82x10*
12 {1.19;1.94 [min] {1.52;3.63 [min] | {1.20;2.03x10° | {4.76;14.08 x10*
13 {3.53;5.04 [min] | {5.49;15.52[min] | {1.92;3.84x10° | {1.91;8.50 x10°
14 {12.03;29.6% [min] | {28.21;86.35[min] | {4.16;8.13x10% | {7.83;34.50 x10°
15 {53.58;78.3% [min] {1.98;9.45 [hr] | {7.42;19.73x10° | {2.05;11.6Q x 1P

Table 3.2: Numerical benchmark for nonautonomous MPL systdEach entry represents
the mean and maximal values over 10 independent experiments

size time for time for total total
of MPL generation of generation of number of number of
system abstract states transitions abstract states transitions
3 {0.22;0.29 [sec] {0.52;1.0Q [sec] {3.60;6.0¢ {7.20;16.00
4 {0.39;0.44 [sec] {0.51;0.99 [sec] {6.20;12.00 {15.30;38.00
5 {0.88;1.04 [sec] {0.78;1.28 [sec] {8.60;24.00 {21.80;120.00
6 {2.11;2.63 [sec] {1.84;3.39 [sec] {19.40;36.00 {107.20;364.09
7 {5.92;8.44 [sec] {8.93;21.63 [sec] {37.20;84.00 {485.00;2520.0p
8 {12.66;18.33 [sec] | {30.55;107.43[sec] | {58.00;160.00 {730.30;2578.0p
9 {39.06;55.94 [sec] {5.39;14.73 [min] | {120.00;208.09p | {2819.40;8742.0p
10 {98.42;141.9F[sec] | {43.21;156.55[min] | {206.80;432.0p | {6211.60;16996.09
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The computational complexity of the approach has been fyllgntified and its per-
formance has been tested on a numerical benchmark, whicli$played a bottleneck
that mainly depends on the number of generated partitiogmns. Still, the abstraction
procedure comfortably manages models with reasonablgBgdimensional, in the au-

tonomous case) and can then be employed to study propefties original MPL system
in an original manner.



Chapter 4

Reachability Analysis of
Max-Plus-Linear Systems

In this chapter, we discuss a computational approach tdeddlity analysis of MPL sys-
tems. Given a set of initial states, we characterize and cb#ifs “reach tube,” namely the
collection of set of reachable states (regarded step-vgiSeeach sets”). By an alternative
characterization of the MPL dynamics, we show that the ezaptputation of the reach
sets can be performed quickly and compactly by manipulatid®BM, and further derive
worst-case bounds on the complexity of these operations.approach is also extended to
backward reachability analysis.

4.1 Related Work

Reachability analysis is a fundamental problem in the aféarmal methods, systems the-
ory, and performance and dependability analysis. It is eomed with assessing whether a
certain state of a system is attainable from given initialest of the system. The problemis
particularly interesting and compelling over models witmttnuous components — either in
time or in (state) space. Over the first class of models, @dzility has been widely investi-
gated over discrete-space systems, such as with timed ata¢h6, 25], Petri nets [76, 96],
or hybrid automata [69]. On the other hand, much researclhé&eas directed to computa-
tionally push the envelope for reachability analysis oftemrous-space models. Among the
many approaches for deterministic dynamical systems, patéere the use of face lifting
[44], the computation of flow-pipes via polyhedral approations [34], later implemented
in CheckMate [32], the formulation as solution of Hamiltdaeobi equations [95] (related
to the study of forward and backward reachability [94]), tise of ellipsoidal techniques
[80], later implemented in [79], the use of differential imsions [18], and finally the use
of Taylor models [33]. Techniques that have displayed &dlithafeatures (albeit at the ex-
pense of precision due to the use of over-approximatiorsjrar use of low-dimensional
polytopes|[63] and the computation of reachability usingpmrt functions [86].

With regards to MPL systems, reachability analysis frosimgleinitial condition has
been investigated in [38, 58, 61] by leveraging the comnaif the reachability matrix,
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which leads to a parallel with reachability for discretexi linear dynamical systems. It
has been shown in [59, Sec. 4.13] that the reachability prolfbr autonomous MPL sys-
tems with a single initial condition is decidable — this fe¢sloes not hold for a general,
uncountable set of initial conditions. Furthermore, thistaxg literature does not deal with
backward reachability analysis. Under the requiremerttttie@set of initial conditions is
expressed as a max-plus polyhedron [60,/ 120], forward edality analysis can be per-
formed over the max-plus algebra. Similar results hold fekward reachability analysis
of autonomous MPL systems, where in addition the systemixias to be max-plus invert-
ible. Despite the requirements, computationally the apgindased on max-plus polyhedra
can be advantageous since its time complexity is polynonialthe best of the author’s
knowledge, there are no direct approaches for solving tiekvi@rd reachability problem
of nonautonomous MPL systems in the max-plus algebra. Latagsmention that reach-
ability analysis has been used to determine a static masHplear feedback controller for
a nonautonomous MPL system such that the trajectories tlema given target tube [13,
Sec. 4.3]. In each event step, the target tube is then defsadreax-plus polyhedron [13,
Egs. (8) and (11)].

In this chapter we extend the forward and backward readhabdmputations of MPL
systems by considering an arbitrary set of initial and firalditions, respectively. Further-
more in both cases, the system matrices do not have to be msiapertible.

4.2 Forward Reachability Analysis

The goal of forward reachability analysis is to quantify Heg of possible states that can be
arrived at under the model dynamics, at a particular eveptat over a set of consecutive
events, from a set of initial conditions and possibly under thoice of control actions.
Recall that the state variables in MPL systems define the tifreccurrence of discrete
events (cf. Sectign 2.1). Two main notions can be introduced

Definition 4.1 (Reach Set)Given an MPL system and a nonempty set of initial positions
Xo CR", the reach sety at event stepl > 0 is the set of all statefs<(N, x(0)) : x(0) € xo}
obtained via the MPL dynamics, possibly by application of ahthe allowed controls.O

Definition 4.2 (Reach Tube)Given an MPL system and a nonempty set of initial conditions
Xo C R", the reach tube is defined by the set-valued fundtien xy for any givenk > 0
wherexy is defined. O

Unless otherwise stated, in this work we focusfimite-horizonreachability: in other
words, we compute the reach set for a finite intle¢cf. Definition 4.1) and the reach tube
fork=1,...,N, whereN < « (cf. Definition'4.2). Thus the reach tube always contains the
reach set. While the reach set can be obtained as a by-profinet (sequential) compu-
tations used to obtain the reach tube, it can be as well eaaiby a tailored procedure
(one-shot).

In the computation of the quantities defined above, the sietittdl conditionsxg C R"
and the set of allowed inputs at each event stee R™ are assumed to be a union of finitely
many DBM and a single DBM, respectively. As it will becomeanidater, this assumption
will shape the reach sef; at any event step > 0 as a union of finitely many DBM. In the
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more general case of arbitrary sets fgranduy, these can be over- or under-approximated
by DBM. Notice that MPL dynamics are known to be nonexpang& Lem. 3.10]: thus

if xg is (overapproximated by) a DBM, possible numerical erresoaiated with forward-
reachability computations do not accrue [94]. To pin dowrations for the complexity
calculations below, we assume thatis a union ofgy DBM and in particular that the set of
initial conditionsxg is a union ofgg DBM.

4.2.1 Sequential Computation of the Reach Tube

This approach uses the one-step dynamics for autonomouscaraditonomous MPL sys-
tems iteratively. In each step, we make use of the DBM reptasien and the PWA dy-
namics to compute the successive reach set.

With focus on autonomous MPL systems, given a set of initalditionsxp, the reach
setx is recursively defined as the imagexf 1.

Xk =Im(xg_1) = {A®X:X € Xk_1} = AR Xk_1.

In the dynamical systems and automata literature, the mgppi is also known a$ost
[23, Def. 2.3]. From Corollary 3.1, ifrc_1 is a union of finitely many DBM, thew is
also a union of finitely many DBM. Then by induction, under #ssumption that the set of
initial statesxg is a union of finitely many DBM, it can be concluded that thecteaetxy

is a union of finitely many DBM, for eack € N.

Given a state matriA and a set of initial conditionsg, the general procedure for ob-
taining the reach tube works as follows: first, we constrinetRWA system generated By
then, for eactk =1,... N, the reach sety is obtained by computinm(xx_1). The reach
tube is then obtained by aggregating the reach sets.

The worst-case complexity can be assessed as follows. Assdisd above, the com-
plexity to characterize the MPL system via PWA dynamice {&"3). Furthermore, the
complexity of computingm(xy_1) is 0(qgx_1n"*3), for k=1,...,N. This results in an
overall complexity ofo(n“+3zﬁgolqk). Notice that quantifying the cardinality of the
DBM union at each stekis not possible in general (cf. benchmark in Sedtion 4.5).

Let us now look at cases where the structure of the MPL dynaiemds to savings
for the computation of the reach tube. Recall that, giverwgrand a finiteN € N, in
order to computery, we need to calculatgs, ..., xy_1. Whenever the state matrix of an
autonomous MPL system is irreducible, implying the existeaf a periodic behavior (cf.
Proposition 2.1), this can be simplified.

Proposition 4.1Let A € R*" be an irreducible matrix with max-plus eigenvalue R and
cyclicity c € N. There exists &g (xp) such thatyy, . = A®C® xy, for all k > ko(xo). O

Recall thatko(xo) = maxcx, ko(x) (cf. Definition/2.5). Thus if the state matrix is ir-
reducible, we only need to compute, . ..., Xminfk,(xo),N} IN Order to calculatecy, for any
N € N. Furthermore ifxg is a union of finitely many stripes, thefinite-horizonreach tube
is also a union of finitely many stripes and can be computedicitp in finite time, as
elaborated in the following statement.

Proposition 4.2 ([10, Th. 1])Let A € R{*" be an irreducible matrix with cyclicitg € N. If

Xo is a union of finitely many stripegj:‘gg“))“flxi = UK o xi, for all k> ko(xo) +c—1.
O
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Example Let us consider the unit square as the set of initial cormitia) = {x € R2:0<
x1 <1,0< xp < 1} for the autonomous MPL system in (2.2). The reach sets are DB&h
by x;1 ={XE€R?:1<x—X%<25<x<63<x<4},x={XcR?:0<x;—% <
1,8 <x3 <9,8<x, <9}, and are shown in Fig. 4.1 (left).

In VeriSiMPL version 1.4, the procedure to determine the reach tube ofiaatous MPL
systems has been implementedri _r eacht ube_f or. The inputs are the PWA system
(A,B,D), the initial states[{0), and the event horizom). The initial states are a collection of
finitely many DBM and the event horizon is a natural numbee ®htput is the reach tube
that is represented byx (N+ 1) cell. For each K i <N+ 1, thei-th element of the reach
tube OON) contains the reach set_1, which is a collection of finitely many DBM. The
following MATLAB script re-calculates the numerical exalajin the preceding paragraph:

>> Anpl =2 533, N=2

>> [A B D = npl2pwa( Ampl)

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf O]

>> D0{2} = [true true true;true true false;true false true]
>> DON = npl _reacht ube_for (A B, D DO, N

\Y

The set of initial conditions can also be described as aestfir examplexg = {x €
RZ:—1<x—% < 1}. In this case, the reach sets are stripes givemby {x € R2:1<
X1 —X <2} andxy = {x€R?:0< x3 — % < 1}. O

For nonautonomoulIPL systems, given a set of initial conditions, the reach sety
depends on the reach set at event &ef and on the set of inputs at event skep

Xk = |ﬁ()(k,l X ‘uk) = {K@ XX €E Xk_1 X ‘I,lk}.

We can show by induction that the reach sgtis a union of finitely many DBM, for
k € N. In the base casé & 1), sincexy is a union of finitely many DBM andi is a DBM,
thenxp x 1 is a union of finitely many DBM, which implies that its imagg is a union
of finitely many DBM (cf. Corollary 3.1). A similar argumenbhds for the inductive step.

Given a state matriA, an input matrixB, a set of initial conditionsg, and a sequence
of sets of inputsuy, ..., un, the general procedure for obtaining the reach tube works as
follows: first, we construct the PWA system generated\bthen for eactk =1,...,N, the
reach setxy is obtained by computing the image of 1 x ¢k w.r.t. the PWA system.

Let us quantify the complexity of the procedure. Constngthe PWA system can be
done ino((n+m)™3). For eachk = 1,...,N, the complexity of computingy critically
depends on the image computation anad {g_1(n+ m)™3). The overall complexity is
o((N+m)™3 33 g).

Example Let us consider the unit square as the set of initial conuitioy = {x € R? :

0 < x1 <1,0< x < 1} for the nonautonomous MPL system fin (2.5). The set of possibl
inputs is given byu; = {u€eR?:4<u; <54<u, <5} andu;={ucR?:8<u; <
9,8 < up < 9}. The reach sets are DBM given by = {x € R2:5<x1<6,4<x < 5},

X2 ={x€R?:9< x <10,8< x» <9}, and are shown in Fig. 4.1 (right).
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Fig. 4.1: The left plot represents forward reach tube for theonomous MPL system in
(2.2) over 2 event steps. The right plot represents forward readte tfor the
nonautonomous MPL system (B.5) over 2 event steps. The initial states are

denoted byrg. The setsr; and.x; represent the states reachable in 1 and 2 steps,
respectively.

Let us re-calculates the numerical example in the precqafiragraph by usingeriSiMPL
version 1.4. First we construct the PWA system generatetiéatigmented matrix using
the functionnpl 2pwa (cf. Section 2.2.4):

>> Ampl =[2 5;3 3]
>> Bmpl = [0 -Inf;-Inf 0]
>> [ Anon, Bnon, Dnon] = npl 2pwa([ Ampl Bnpl])

Then we define the initial states and the set of possible sngithe first two steps:

>> D0 = cell(1,2)

>> D0{1} = [0 1 1,0 0 Inf;0 Inf O]

>> D0{2} = [true true true;true true false;true false true]
>> U =cell(1,2)

>> U{1} = zeros(3,3,2)

>> UW1}(:,:,1) =[055;-4 0 1Inf;-4 Inf 0]

>> UW1}(:,:,2) =[09 9;-8 0 Inf;-8 Inf 0]

>> U{2} = false(3,3,2)

>> U{2}(:,:,1)
>> UW2}(:,:,2)

[true true true;true true false;true false true]
U{2}(:,:,1)

In VeriSiMPL version 1.4, the procedure to compute the reach tube of nonamous MPL
systems has been implemented in the funatigdmon_r eacht ube_f or . The inputs are the
PWA system generated by the augmented ma#grerf,Bnon,Dnon), the initial states),
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and the set of possible inputs)( For each step, the set of possible inputg; is thei-
th DBM in U. This function returns the reach tub@y). The following MATLAB script
computes the reach tube for 2 event steps:

>> DON = npl non_r eacht ube_f or ( Anon, Bnon, Dnon, DO, U) O

4.2.2 One-Shot Computation of the Reach Set

In this section we design a procedure for computing the reatfor a specific event stép
using a tailored (one-shot) procedure. Let us focus on amaous MPL systems: given a
set of initial conditionstg, we compute the reach set at event teysing

xn = (Imo---oIm)(A) = ImMN(A) = {A*N @ x : x € xo}.

Using Corollary 3.1, it can be seen that the reachxgets a union of finitely many
DBM. Given a state matriR, a set of initial conditionsg with xg being a union of finitely
many DBM, and a finite inde, the general procedure for obtaining is: 1) computing
A®N- then 2) constructing the PWA system generated by it; fir@llgomputing the image
of xp w.r.t. the obtained PWA system.

The worst-case complexity of computing thieth max-algebraic power of anx n
matrix (cf. Section 2.1) i® ([log,(N)]n%). Sincexg is in general a union afjg DBM, the
overall complexity of the procedure i([log,(N)]n® 4 gon™3). In comparison with the
complexity for computing thé\-step reach tube, which amounted toca(n””ZE;ol ),
the one-shot procedure appears to be advantageous. Howetiee that the bottleneck
lies on the (exponential) complexity of Algorithm 2.1, whics applied to two different
matrices A®N andA, respectively). Thus while in general comparing the pentamce of
the sequential and one-shot approaches is difficult, Pitipod.3 suggests that under some
dynamical assumptions the number of PWA regions generatex¥l is higher than that
generated by

Proposition 4.3Let Ry andRy be regions generated fyc R}*". If Im(Rg) € Ry, then
Rg € Ry for some regiorRy: generated bp®2, i

Proof In this proof, the coefficientg,g’,g"” are treated as functions frofd,...,n} to
{1,...,n},e.0.9:i—g;, fori =1,...,n. Recall that the affine dynamics Ry are

Xi(K—1) = xgi) (K= 2) +A(i,9(i));
and the ones iRy are
Xi(K) = Xg i) (k— 1) + A, g'(i))-
Hence, the affine dynamics Ry, can be formulated as a composition of the affine dynamics
in Ry andRy as
x(K) = Xggnk—2)+Al,9(0)+AG(),9d())),
= Xg(i)(k—2)+A%(i,g"(i)).

Notice thaty” = go ¢, whereo denotes the function composition operator. O
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Of course obtaining a higher number of PWA regions relatesbtaining a reach set
expressed with a higher number of DBM. The result above cageberalized tA®N as
follows. LetRyo),...,Ryn-1 be regions generated . If Imi(ng)) € Ry, for each
i=1...,N—1,thenitcan be shown by induction that there exists a re@é@m generated
by A®N, such thaR o) C Ry, whereg™ = g@o...ogN"1).

On the side, let us remark that if the MPL dynamics are charaetd by an irreducible
matrix A, then the above figures should substitute the quantiyith min{N,ko(A)}.

Implementation In VeriSiMPL version 1.4, the one-shot procedure for autonomous MPL
systems has been implemented in the functiginr eachset _f or. The inputs are the state
matrix (Anpl ), the initial states0), and the event horizon. This function returns the reach
set ON) as a 1x 2 cell: the first element is the set of initial states and tleosd one is the
reach set at the desired event step. Recall that both thed stiites and the reach set are a
collection of finitely many DBM. The following MATLAB scriptomputes the reach set of
the autonomous MPL system in (2.2) where the initial statesca= {x € R?: 0 < x; <
1,0<x <1}:

>> Anpl =2 5;3 3]

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf Q]

>> D0{2} = [true true true;true true false;true false true]

>> DN = npl _reachset _f or (Anpl, DO, 2) |

A similar technique can be appliedtonautonomouBIPL systems. Given a set of ini-
tial conditionsxg, the reach set at event stis computed by using the following formula:

XN = [A®N,A®(Nil) ®B,...,B] ® (Xo X Up X - X UN).

From Corollary 3.1, the reach saf is again a union of finitely many DBM, since
Xo X U X --- X Uy is a union of finitely many DBM. Recall thaty is a union ofqg DBM
andus,..., Uy are DBM.

Given a state matrid, an input matrixB, a set of initial conditionsxp, a sequence
of sets of inputsuy,...,unN, the general procedure for obtaining, is: 1) generating
[A®N A®(N-1) & B .. BJ; then 2) constructing the PWA system generated by it; finally
3) computing the image ofg x 11 X --- X UN W.r.t. the PWA system.

Let us determine the complexity of the approach. In orderdoegate the matrix
[ASN A®(N-1) & B . B, first we computeA®!, for i = 2,...,N; thenA® @B, for i =
1,...,N — 1, which leads to a worst-case complexitfNn® + Nr°m). Since the size
of the obtained matrix i x (n4+ mN), the complexity of the second and third steps is
o ((n+mN)"3) and o (go(n+ mN)"*3), respectively. Unfortunately, this approach is not
tractable for problems over long event horizons, since tagimum number of regions of
the PWA system ign+ mN)" and grows exponentially w.r.t. the event horizsn In this
instance, using the sequential procedure (cf. Sectiod¥can be advantageous.
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4.3 Backward Reachability Analysis

The objective of backward reachability analysis is to datae the set of states that enter
a given set of final conditions, possibly under the choiceanftiol inputs. This setup is of
practical importance, for instance in seeking the set ¢aintonditions leading to a set of
undesired states for any choice of the inputs, as well agitréimsient analysis of irreducible
MPL systems. Similar to the forward instance, two main nugiare first introduced.

Definition 4.3 (Backward Reach Set)Given an MPL system and a nonempty set of final
positionsxp C R", the backward reach sgt y is the set of all states(—N) that lead toxg
in N steps of the MPL dynamics, possibly by application of anyhefallowed controlsO

Definition 4.4 (Backward Reach Tube)Given an MPL system and a nhonempty set of final
positionsxg C R", the backward reach tube is defined by the set-valued funktie x_
for any givenk > 0 wherex_y is defined. O

Similar to the forward reachability instance, the set oflfsenditionsxo C R" and the
set of control actions at each event stepy C R™ are assumed to be a union of finitely
many DBM and a single DBM, respectively. In particular, wead byq_ the cardinality
of the set of DBM representing_x and assume that the set of final conditioiss a union
of qo DBM.

4.3.1 Sequential Computation of the Backward Reach Tube

Let us focus on autonomous MPL systems: given a set of finaditons xo, for each
k=1,...,N we determine the states that entgiin k event steps by the following recursion:

X k=Im(x k1) ={xeR":A®@x e X _ki1}.

The mappingm~1 is also known in the literature @re [23, Def. 2.3]. Whenevexy is a
union of finitely many DBM, by Corollary 311 it follows that ¢hbackward reach sat

is a union of finitely many DBM, for eack > 0. As in the forward reachability case, the
procedure for obtaining the backward reach tube leverdgadytnamics of the PWA system
associated with matriA and the recursion above.

The complexity of computingm=(x_x, 1) atanyk € {1,...,N} is 0(q_g+1n™*3). This
results in an overall worst-case complexityaf™ 3y | g_x. 1), where in general it is not
feasible to precisely quantify the cardinalilyy.; of the DBM union set at stek

In general, given amxg, in order to calculater_y, whereN is finite, we have to deter-
minex_1,...,X_n+1, €xcept if the autonomous MPL system is irreducible. Thie¥ahg
result is directly shown by the definition &§.

Proposition 4.4Let A € R]*" be an irreducible matrix with cyclicitg € N. If xo NE(A®°)
is empty,x_x is empty for allk > kp(xo). O

Recall thatkp(xo) = maxcx, ko(x) (cf. Definition/2.5). Notice that ifto N E(A®°) is
empty, from Proposition 4.4;_ is empty fork > kg(xg). On the other hand ifo N E(A®°)
is not empty, the backward reach set at or afgén) steps depends only om N E(A®°),
i.e. it does not depend oy \ (xoNE(A®C)). More precisely in the case af NE(A*®) is
not empty and > kp(xp), we havelmk(x,k) C xoNE(A®®), thusko(x_k) < k. Recall that
Ko(x_k) = maxcx_, ko(x) (cf. Definition[2.5).
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Theorem 4.1Let A € RI*" be an irreducible matrix with max-plus eigenvalue R and
cyclicity c € N, thenA®(=% @ x_y C x_k_¢, for all k > kg(xo). O

Proof If xoNE(A%C) is empty, the proposition is trivially satisfied (cf. Projiwsn [4.4).
Next, we assume thaty N E(A%C) is not empty and that > kp(xo).

We will prove that each element af°(—9 ® x_, enters the set of final conditions in
k+csteps, i.eA?*K+9) @ A\2(-9) @ x_, C xo. Observe that sinc&@®(X—) @ x_, C E(A%°),
from Proposition 2.1 we conclude that-+0 @ x_ = A%k(X—) @ x_, @ A®C. The
preceding observation and the fact tkgitx_i) < k (see the discussion before this theorem)
are used in the following steps:

AP @ x4 @ AP0 = APk o) @ (AP0 g x 1) @ A9
_ (A®<k7ko(x7k)) ®A®"0<H>) ® X _k
=A@ x_y
C Xo. .

Remark Since the result in Theorem 4.1 is not as strong as Propogitly for backward
reachability we do not obtain a result similar to that in Rysiion/4.2. O

Example Let us consider the unit square as the set of final conditigns {x € R?: 0 <
x1 < 1,0 < x2 < 1} for the autonomous MPL system in (2.2). The backward reatshese
the union of finitely many DBM given by 1 = {Xx € R?:x; — % > 3,x = —2} U{x € R?:
—3<x<-2,-5<x< -4}, x ,={xeR?:x < -7,-8<x, < —7}, and are shown
in Fig.[4.2.

In VeriSiMPL version 1.4, the procedure for computing the backward réaoh of au-
tonomous MPL systems has been implemented in the funofibrr eacht ube_back. The
inputs are the PWA system,B,D), the final statesD), the event horizon, and the dimen-
sion of the domain of the PWA dynamics. The output is the backweach tube that is
represented by axt (N+ 1) cell, whereN denotes the event horizon. For each L< N+ 1,
thei-th element of the backward reach tuldQ) contains the backward reach set;
which is a collection of finitely many DBM. The following MATAB script re-computes
the numerical example in the preceding paragraph:

>> Anpl =2 5;3 3]
>> [A B D = npl2pwa(Ampl)
>> D0 = cell(1,2)
>> D0{1} = [0 1 1;0 0 Inf;0 Inf O]
>> D0{2} = [true true true;true true false;true false true]
>> DNO = npl _reacht ube_back(A, B, D, D0, 2, si ze( Anpl , 2))
Let us also consider the case of a stripe as the set of finaitaamd xo = {x € R?:

—1<x3—x2 < 1}. In this case, the backward reach sets are stripes desdnjbed; =
{XER?:xg—xp>1}andx = {X€R?:x; —x < 1}. O

FornonautonomoulslPL systems, given a set of final conditiang the backward reach
setx_x depends on the backward reach set and on the set of inputsrdtstep—k + 1:

X x={XeR":3ue U_p1stAR X, u"]"T € x_ 1}
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Fig. 4.2: Backward reach tube for the autonomous MPL systef@.B) over 2 event steps.
The final states are denoted lny. The setsc_; and.x_; represent the states that
reachxg in 1 and 2 steps, respectively. The down-pointing arrow in indicates
a half-line: that set can be expressed as a union of two DBM.rébtangle £_»)
at the bottom left is unbounded in the left direction.

A practical procedure for computing the set, is as follows: 1) compute the inverse
image ofx_,1 w.r.t. the PWA system generatedByi.e. {x € R™™M: A@x € x_k,1}; then
2) intersect the inverse image wiltl! x ¢ _y. 1; and finally 3) project the intersection over
the state variables. As in the forward reachability caseartbe shown by using Corollary
[3.1 that the backward reach sety is a union of finitely many DBM, fok € N.

Example Let us consider the unit square as the set of final conditigns {x € R?: 0 <
X1 < 1,0 < xp < 1} for the nonautonomous MPL system|in (2.5). The set of posailgluts
isgiven byup={ueR?:0<uy <1,0<uwp<1}andu ;1 ={ucR?: 4<u <
—3,—-4 < up < —3}. The backward reach sets are DBM givenioy; = {x € R?: x; <
2% < —4}, X 2 ={XER?:x < T, xp < —T}.

In VeriSiMPL version 1.4, the procedure to compute the backward reaehdfibonau-
tonomous MPL systems has been implemented in the funofibnon_r eacht ube_back.
The inputs are the PWA system generated by the augmentei f#atvn,Bnon,Dnon), the
final states0), and the set of possible inputd)(For each stef the set of possible inputs
U_i+1 is thei-th DBM in U. The output is the backward reach tuldd). The following
MATLAB script re-calculates the numerical example in thegading paragraph:

>> Ampl =[2 5;3 3], Bnpl = [0 -Inf;-Inf 0]

>> [ Anon, Bnon, Dnon] = npl 2pwa([ Ampl Bnpl])

D0 = cell(1,2)

>> D0{1} = [0 1 1,00 Inf;0 Inf O]

>> D0{2} = [true true true;true true false;true false true]
>> U=cell(1,2)

>

\Y
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>> U{1} = zeros(3 3,2)

>> U1}(: =[011;00 Inf;0 Inf 0]

>> U{1}(: -[0 -3-3;4 0 Inf;4 Inf Q]

>> U{2} = fal se(3, 3,2)

>> U{2}(:, = [true true true;true true false;true false true]

> U{2}< = U(2)(: -

>> = erI non_r eacht ube_ back(Anon Bnon, Dnon, DO, U) a

4.3.2 One-Shot Computation of the Backward Reach Set

With focus on autonomous MPL systems, given a state matrix set of final conditions
Xo and a finite indexN, the states that are able to enterin N event steps are obtained
similarly to those for the forward reachability case:

X n={xeR":A*N®x e xo}.

Further, by Corollary 3.1 it can be seen that the backwardhreatx_y is a union of
finitely many DBM. Notice that because the complexity of caiipg the image and inverse
image w.r.t. the MPL dynamics is the same (cf. Section 3, 2ifhfe the complexity of the
approach critically depends on this operation, the ovexathplexity associated with the
one-shot computation of the backward reach set amountstdahthe forward instance.

Implementation In VeriSiMPL version 1.4, the one-shot procedure for computing the
backward reach set of autonomous MPL systems has been impiechin the function
mpl _reachset _back. The inputs are the state matridnpl ), the final statesQ), and the
event horizon. The output variableN is a 1x 2 cell: the first element is the set of final
states and the second one is the backward reach set at theddesnt step. Recall that
both the final states and the backward reach set are a colieatifinitely many DBM.
The following MATLAB script computes the backward reach gkthe autonomous MPL
system in[(2.2) where the final states age= {x € R?:0<x; < 1,0 < xp < 1}:

>> Anpl =2 5;3 3]

>> D0 = cell(1,2)

>> D0{1} = [0 1 1;0 0 Inf;0 Inf Q]

>> D0{2} = [true true true;true true false;true false true]

>> DN = npl _reachset _back( Anpl, DO, 2) O

\Y

For nonautonomoulIPL systems, given a set of final conditiong, the states that are
able to enteng in N event steps are computed by using the following formula:

X_N={X(=N) eR": Ju(—N+1) € U_N;1,...,U(0) € Up S.t.X(0) € X0}.

Given a state matrid, an input matrixB, a set of final conditiongg that is a union of
finitely many DBM, a sequence of sets of inputs, ..., 4 _n+1, the general procedure for
obtainingx_y is: 1) generatingA®N, A®(N-1) @ B, ... BJ; then 2) constructing the PWA
system generated by it; 3) computing the inverse imaggpofv.r.t. the PWA system; 4)
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intersecting the inverse image wilkl' x ¢_n11 X -++ X Ug; and finally 5) projecting the
intersection w.r.t. the state variables. The backwardrsaty_y is a union of finitely many
DBM. The complexity of the approach is the same as the cooredipg for the forward case.

4.4 Applications

4.4.1 Safety Analysis

We consider the following safety problem (or in fact invaida): given an unsafe set, de-
termine whether the states of an MPL system starting fromvanginitial set enter the
unsafe set during the eventinterkat O,...,N. This problem can be solved either by using
forward- or backward-reachability analysis.

With focus on the forward-reachability analysis, we chediether the intersection of
theN-step forward reach tube and the unsafe set is empty. Themnsystsafe if and only if
the intersection is empty.

With regards to the backward-reachability analysis, we mate theN-step backward
reach tube, where the unsafe set is tagged as the set of fimditions, and then checking
whether the intersection of the backward reach tube andethad mitial conditions is empty.

If the intersection is empty, the system is deemed to be Hafestead the system is not safe
(namely, if the intersection is not empty), then the obtdiimtersection denotes the subset
of the set of initial conditions leading to “unsafe dynanfics

Example Considering the autonomous MPL systemlin (2.2), supposgelieee is a re-
quirement on the departure times at station 2 to be at leest time units before those
at station 1 and at most the same times as those at stationelsafé set corresponds to
X ={x€R?:0<x.— % < 3}. The unsafe set is defined as the complement of the safe set,
i.e.R?\x = {Xx€R?:x3—x2 < 0} U{x € R?: x; —xp > 3}. Let us consider initial states
of the MPL system that coincides with the safe setige= x .

By forward reachability computation, we obtain that= {x € RZ:—1<xg—X < 2}
andthaty, = {x € R?:0<x; —xp < 2} fork=2, ... (cf. Proposition 4.2). Thus the system
is not safe. By backward reachability computation, we oltigaty 1 = {x € R?: x; —xp >
2} and thatx ¢ = 0 for k= 2,... (cf. Proposition 4.4). Thus the subset of the initial states
leading to the unsafe set{s R2:2<x1— X < 3}. O

4.4.2 Transient Analysis

Classical results in the literature on transient analysis1BL systems can be enhanced
by computing a partition oR" based on the length of the transient gaytvia backward
reachability analysis, as described next. First the sehaf ionditionsx|) is defined as the
complete set of periodic behavidE$A“°) = {x € R" : ko(x) = 0}. The eigenspadé(A*°)

is a union of finitely many DBM, sincE(A%°) [22, Sec. 3.7.2] is a max-plus cone and each
max-plus cone can be expressed as a union of finitely many D&MP¢oposition 3.2).
Then for eaclk € N, the backward reach set is obtained by

o= Im=t(xH)\xg, ifk=1,
KT M (x L), ifk>1
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Fig. 4.3: Partition of R? for the MPL system iif2.2) based on the length of transient part
ko.

Notice that the complete periodic behavior is a subset afisrse image, i.€E(A®°) C
Im~1(E(A®C)). Further one can see that, = {x € R": ko(x) = k}, for eachk € NU{0}.
The procedure is finite in time, since] NE(A®°) is empty (cf. Proposition 4.4). More
precisely,x’, is empty fork > kp(x7) + 1.

Example Let us demonstrate the procedure on the autonomous MPLnsy&&). Re-
call that the states associated wki= 0 encompass the complete periodic behaxipe=
E(A%°) = {x e R?: 0 < x; — X2 < 2}. By using the procedure, the states corresponding
toko =1 are given byx] = {x € R? 1 x; —x <2} \{X € R2: 0<% —% <2} = {x €

R? : x1 — X2 < 0}. Finally the set of states such that= 2 can be computed by using the
backward reachability analysis, which yieldt$ = {x € R? : x; — X, > 2}. The graphical
representation of the state space partition is shown ird=gy. O

4.5 Numerical Benchmark

4.5.1 Implementation and Setup of the Benchmark

We have implemented the technique for forward and backvesrchability computations on
MPL systems in the/eriSiMPL (“very simple”) software toolbox, which is freely availabl
at [5].

In order to test the practical efficiency of the proposed @ligms we compute the run-
time needed to determine the reach tube of an autonomous y&#ens, for event horizon
N = 10 and an increasing dimensiarof the MPL system. The experiments reported here
have been run on a 12-core Intel Xeon 3.47 GHz PC with 24 GB chomg. We also
keep track of the number of regions of the PWA system gengfaden the MPL system.
For any givemn, we generate matriceswith 2 finite elements (in a max-plus sense) that
are randomly placed in each row. The finite elements are ralydgenerated integers be-
tween 1 and 100. The test over a number of randomly genergteahdcs goes against
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Fig. 4.4: Time needed to generate reach tube of autonomousdyigtems for different mod-
els size and event horizons.

biasing the experimental outcomes and allows claiming g@i@ability of our technique
over general MPL systems. The set of initial conditions lected as the unit hypercube,
e {xeR":0<x<1,...,0< %y <1}

Over 10 independent experiments, Tablg 4.1 reports thagedime needed to gener-
ate the PWA system and to compute the reach tube, as well amtresponding average
number of regions. As confirmed by Table 4.1, the time neededmpute the reach tube
is monotonically increasing w.r.t. the dimension of the Mf3istem (as we commented pre-
viously this is not the case for the cardinality of the DBM amiin the reach sets, which
hinges on the specific dynamics of the MPL systems). For a fixedel size and dynamics,
the growth of the computation time for forward reachabilityinear with the event horizon
as also shown in Fig. 4.4. We have also performed reachatidiihputations for the case of
the set of initial conditions described as a stripe, whichlked to results that are quite ana-
logue to those in Table 4.1. Further, the nonautonomous aokard-reachability cases
can be handled similarly.

4.5.2 Comparison with an Alternative Computation

To the best of the author’s knowledge, there does not exisigenerally valid approach
for forward reachability computation over MPL systems. sThroblem can be only al-
ternatively assessed by leveraging the PWA charactesizati the model dynamics (cf.
Section 2.2.14). Forward reachability analysis of PWA systean be best computed by the
Multi-Parametric Toolbox (MPT, version 2-p[82]. However, the toolbox has some im-
plementation requirements: the state space maAthias to be invertible — this is in general
not the case for MPL systems; the reach sgthave to be bounded — in our case the reach
sets can be unbounded, particularly when expressed assstiipther, MPT deals only with

1when we did the comparison, MPT version 3.0 [70] was not seldayet.
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Table 4.1: Numerical benchmark, autonomous MPL systempatation of the reach tube
(average over 10 experiments)

size generation | numberof | generation | number of
of MPL time for regions of time for DBM of
system | PWA system| PWA system| reach tube | Xio (q10)
3 0.09[sec] 5.80 0.09[sec] 4.20
4 0.09[sec] 12.00 0.13[sec] 6.10
5 0.14[sec] 22.90 0.20[sec] 6.10
6 0.25[sec] 42.00 0.25[sec] 3.40
7 0.52[sec] 89.60 0.72[sec] 13.40
8 0.91[sec] 145.00 0.73[sec] 3.20
9 2.24[sec] 340.80 2.25[sec] 4.10
10 4.73[sec] 700.80 8.23[sec] 12.30
11 10.42[sec]| 1.44x10° | 15.49[sec] 3.20
12 20.67[sec]| 2.87x10° | 117.98[sec] 25.60
13 46.70[sec]| 5.06x10° 5.27 [min] 16.90
14 82.94[sec]| 9.28x10° | 15.80[min] 59.90
15 3.48[min] | 2.01x10* | 25.76[min] 10.10
16 7.90[min] 4.91x10% | 84.79[min] 23.50
17 15.45[min] 9.07x10% 3.17[hr] 68.70
18 29.13[min] | 1.58x10° 5.82[hr] 21.00
19 67.07 [min] 3.48x10° 7.13[hr] 5.00

Table 4.2: Time needed to generate the reach tube of a 10ndiom@al autonomous MPL
system for different event horizons (average over 10 exygaris)

event horizon 20 40 60 80 100
VeriSiMPL 11.02[sec]| 17.94[sec]| 37.40[sec]| 51.21[sec]| 64.59[sec]
MPT 47.61[min] 1.19[hr] 2.32[hr] 3.03[hr] 3.73[hr]

full-dimensional polytopes — whereas the reach sets oféatenay not necessarily be so; fi-
nally, MPT handles convex regions and over-approximatesgach setgy when necessary
—our approach computes instead the reach sets exactly.

We have been concerned with benchmarking the proposedaieifithcomputations
with the described alternative. For the sake of comparig@nhave constructed artificial
examples (with invertible dynamics) and run both procedluneparallel, with focus on
computation time rather than the obtained reach tubes. MiPThandle, in a reasonable
time frame, models with dimension up to 10: in this instaraewell as lower-dimensional
ones) our approach performs better (cf. Table 4.2). Notie¢ this is despite MPT being
implemented as object code in thdanguage, wherea&riSiMPL runs as interpreted code
in MATLAB: this leaves quite some margin of improvement ta techniques and software.



68 4 Reachability Analysis of Max-Plus-Linear Systems

4.6 Summary

This chapter has discussed a new computational techniquesgohability analysis of max-
plus-linear systems, which in essence amounts to exaceahchfinipulations of difference-
bound matrices through piecewise affine dynamics. The désaliprocedure scales over
20-dimensional models thanks to a space partitioning aggbrthat is adapted to the under-
lying model dynamics, as well as to a compact representatidfast manipulation of the
guantities that come into play.



Chapter 5

Verification of Properties for
Network Calculus Elements via
Finite Abstractions

In this chapter we develop a framework for formal verificatf properties for network
calculus elements. Specifically, we leverage abstractiohrtiques developed in Chapter 3
to determine an upper bound on the backlog and virtual delaynietwork. Suppose that we
want to verify whether the backlog of a network is boundedfy,. Our approach works
as follows. Initially we discretize the arrival and servimgrves with a period sufficiently
small to capture the required details. More precisely thégds selected to be less than
or equal to the sampling interval of all devices in the netwdfrthe period is too large, we
may lose some accuracy in measuring the backlog and virglaydWe then characterize
the dynamics as a switching MiPL system under some mild aggans. Next we construct
an abstract transition system basedByp,. If the LTL formula representing the backlog
is bounded byBy,,., is verified, the backlog of the switching MiPL system is alsmbded
by B, However, if the LTL formula is not verified, the backlog oktlswitching MiPL
system may still be bounded 1B},,,. A similar approach can be used to verify the virtual
delay bound of a network.

5.1 Related Work

Our main contribution is to bridge the modeling frameworketwork calculus to the world
of formal verification and synthesis. In order to do this wavily rely on research already
available in the area of formal methods applied to PWA systefrhis is an area that has
been quite active in the past decade providing abstracsiatisfying approximate simula-
tions [102], control synthesis methods [19, 118], analgs$istabilizability problems [93],
or verification of general LTL formulae [117, 119]. In this wkowe decide to rely (with
small modifications) on the work from Chapiter 3, instead beotvailable options, for two
reasons: it produces exact simulations relations; andyzexiformula-free abstractions,
which allow for the modularity we look for in order to enabletjoint analysis of control

69
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systems and communication networks. Thus, this work shibellseen as a stepping stone
towards the analysis of more complex problems involvingvoeked control systems.

5.2 Network Calculus

In network calculus, a data flow is described by means of a tative functionR, defined
as the number of bits seen in time inter{@lt]. By convention, we assume that all flows
are causal (i.eR(0) = 0), unless otherwise specified.

An arrival curve specifies the maximum amount of arrivalewaéid in a given time
interval.

Definition 5.1 (Arrival Curve [85, Def. 1.2.1]) A flow Ris said to be upper-constrained by
an arrival curven iff a is a non-negative wide-sense increasing function such that

Rt)—R(s) <a(t—s) V0<s<t.
A function f is wide-sense increasing iff(s) < f(t) forall s<t. O

In communication networks, an element that forces a flow tdaon to a certain arrival
curve is called a shaper. An element that only checks wheligemput conforms to an
arrival curve without affecting the flow is called a policedne of the most widely used
classes of arrival curves is the class of affine arrival cairdefined byo, p(t) = rt + b for
t > 0 and 0 otherwise. The parameterandb are called rate and burstiness, respectively.
Affine arrival curves are physically realizable by leaky bets [29].

Service guarantees provided by servers to their input floesst@aracterized in network
calculus by service curves. Servers can abstract physitaionk elements such as links,
routers, and schedulers.

Definition 5.2 (Service Curve|[85, Def. 1.3.1])A system offers a service curigaff Bis a
non-negative wide-sense increasing function \gith) = 0 and

R(®)> inf {R(S)+B(t-9) Vt>0 (5.1)

whereR andR* are input and output flows, respectively. O

One of the most widely used classes of service curves is #ss df latency-rate service
curves, defined bf¢ 4(t) = c(t —d) fort > d and O otherwise. The parameterandd are
called rate and delay, respectively. The latency-rateesers equivalent to concatenating
a maximum-delay server and a guaranteed-rate server gsse&kimaximum-delay server
is characterized bfq(t) = + for t > d and O otherwise. A guaranteed-rate server is
characterized bf¢(t) = ct for t > 0 and 0 otherwise.

The two mostimportant properties that need to be analyzad@mmunication network
are the backlog and the virtual delay.

Definition 5.3 (Backlog [85, Def. 1.1.1])The backlog at time is the amount of data held
inside the system, computed &t) = R(t) — R(t). O

1Service guarantees provided by the latency-rate servectammcterized by a latency-rate service curve.
Similar explanations hold for maximum-delay and guaraiiege servers.
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1 2 3 4
Fig. 5.1: Graphical representation of the arrival cureeand service curv@. The dotted

line represents the maximum vertical distance betweand 3. The dashed line
represents the maximum horizontal distance betveeand 3.

Definition 5.4 (Virtual Delay [85, Def. 1.1.1]) The virtual delay at timeis the time spent
inside the system by an arrival at tirh& only earlier arrivals were processed before it, and
is computed asd(t) =inf{t > 0:R(t) <R (t+1)}. O

The backlog is bounded by
Bmax= sup{or(s) - B(S)}a

s>0
which is the maximum vertical distance betweeand[ [85, Th. 1.4.1]. Correspondingly,
the virtual delay is bounded by
Dmax=sup{inf{t > 0:a(s) <B(s+1)}},
s>0

which is the maximum horizontal distance betweeand3 [85, Th. 1.4.2]. In a commu-
nication network where servers use a first-in-first-out ieémg policy, one can identify the
virtual delay with the actual delay that packets experience

Example Consider a latency-rate server with dethy- 1 and ratec = 5. We assume that
the input flow is constrained by an affine arrival curve withdtimessd = 3 and rate = 2.
The graphical representation of the arrival and serviceeslis depicted in Fig. 5.1. One
can see that the maximum backiBgaxis 5 and the maximum virtual deldymaxis 8/5.0

5.3 Min-Plus State-Space Formulation

We consider a single server and a policer that checks whittbénput flow conforms with
an affine arrival curve (cf. Fig. 5.2). The servers considene characterized by latency-
rate service curves. We consider worst-case scenariosrbipdothe inequality in[(5.1) to
be an equality.
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> Leaky Bucket
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Fig. 5.2: Block diagram of the network calculus elements.

Remark A common approach in network calculus is using a shaper toagtee that the
flow entering a server conforms with a certain arrival cu@a.the other hand, in this thesis
we use a policer that checks whether the input conforms torasakcurve without affecting
the flow. Equivalently, the flow entering a server is not regdito conform with a certain
arrival curve. O

Recall that a latency-rate server is equivalent to coneditggna maximum-delay server
and a guaranteed-rate server in series (cf. Sectidn 5.2howfiloss of generality, we as-
sume that the output of a maximum-delay server is fed to azgnieed-rate server (cf. Fig.
5.2).

A discrete-time maximum-delay server is characterizecheyservice curve

to, ifk>d,

Bd(k):{ 0, ifk<d.

It delays the inpud time units. The dynamics of the maximum-delay servey(lg =
u(k—d), which can be written as a set of first-order recurrenceicgla{2.7) by introducing
auxiliary variables

x1(k) = u(k),
%K) =x-1(k—1), i=2,....d,
Yy (K) =xq(k—1).

For a discrete-time guaranteed-rate server, the servive @I

ck, if k>0,
BC("):{ 0, ifk<o.

At each time step, if the current backlog is greater thahen the server dispatcheslata
units, otherwise the server will dispatch all of them. Theaiyics can be represented by a
single stateq, 1 representing the amount of dispatched data:

xar1(K) = Coxgp2(k—1) &'U (K),
y(k) = Xg41(K):
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The discrete-time service curve of a latency-rate server is

ck—d), ifk>d,
0, ifk<d.

3

Bea(k) = {

First, the server delays the inpditime units, then the server dispatches them at mdsta
units at each time step. Since the output of a maximum-delasesis fed to a guaranteed-
rate server, we have (k) = y'(k) (cf. Fig.[5.2). The states of the latency-rate server are
defined as the states of both serversxe...,x4+1. The corresponding dynamics are

x1(K) = u(k),
%i(K) =xi—1(k— 1) i=2,....d,
Xa+1(K) = Xa(k—1) &' c@Xar1(k— 1), (5.2)
Y(K) = Xa+1( ).

To characterize the incoming traffic, we employ affine atrotaves. Conformance to
such curves can be checked by using a policer in the form ddieylbucket|[29, p. 4]. A
discrete-time leaky bucket is composed of a token buffecKbt) with a token generation
rater and a buffer sizé. If the buffer is not full,r tokens are leaked into the buffer every
time. When data arrives, enough tokens must be availableeibaffer in order to allow
the data to move forward. If the amount of data arrivals isatgethan the amount of
tokens in the buffer, a traffic violation is detected and thevfls considered non-conformant.
Based on this description, one can represent the contené difticket by some stake The
trajectoryh(k) thus obeys the following:

h(k) = min{h(k—1)+r —a(k),b}  h(0) =b, (5.3)

wherea(k) = u(k) —u(k— 1) is the number of data arrivals at tirk@nd initially the buffer is
assumed to be full. As a result, the conformance checkinglégley bucket is transformed
to observing whethehn(k) > 0 holds for allk € Z or not. The conditiorh(k) > 0 for all
k € Z means that the amount of data arrivals is smaller than or égjttee amount of tokens
in the buffer at each time step.

The dynamicg (5.3) can be expressed as an MiPL system, glett, »(k) = h(k) +
u(k):

Xg2(k) =T @ Xgr2(k—1) &' b u(k). (5.4)

Thus, the conformance condition becormgs;(k) —x1(k) > 0 for all k € Z.

The following non-autonomous MiPL system represents tmelined dynamics of the
server|(5.2) and conformance checker|5.4):

x1(k) = u(k),

%(K)=x_1(k—1), i=2....d, (5.5)
Xg+1(K) = xg(k—1) &' c@xg+1(k— 1), '
Xd+2(K) =1 @ Xg42(k—1) &’ beu(k).

Recall thai; (k) = u(k) and the other state variabbegk), ..., xq(k) are used as memory
for the maximum-delay server, i.a(k— 1),...,u(k—d+ 1). The variable. 1 is used to
represent the amount of dispatched data.
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The non-autonomous MiPL system (5.5) generates many najegtories than the net-
work elements in Fig. 5]2 can actually generate. One of thsams for this sort of conser-
vatism is that the current inpuik) in (5.5) is not necessarily greater than or equal to the
previous inputu(k — 1) for all k, whereas the input flow is a wide-sense increasing func-
tion (cf. Definition'5.1). In order to mitigate this issue, wssume that the amount of data
arrivals at each time takes values in a set of finitely manynegative real numbers, i.e.
u(k) —u(k—1) € {a,...,al™}, Thus the input can be defined explicitly as

X
i
—
=
N2
I
c
—~
=
N3
I

a“®) @ x; (k— 1),

where the modé(k) € {1,...,nn} characterizes the amount of data arrivals at timelstép
this case the mode that is active at each step is chosen irely pondeterministic fashion,
i.e. the outcome is not known a priori. It follows that the dymics can be formulated as an
autonomous switching MiPL system where the state matrixatad(k) is given by

0 400 400 ... 400 oo | 400
+o0 0 +o .- 00 400 | 400
AR _
4o 400 4o . 4o oo | 400
+o0 400 oo . 0 C | 4o
i a(f(k)) + b _|_oo +oo . _|_oo +00 r i

We assume initially the backlog is zero and the bucket of thiecer is full. In the
switching MiPL system, the initial conditions are charaizied by xo = {x € R4*2: x; =
Xd+1,%d12 — X1 = b}, which is equivalent tdx € R42:x; = --- = X4, 1,X412 — X, = b} as
shown in Proposition 511. Notice that the set of initial ssais a DBM (cf. Definition 3.1).

Proposition 5.1Let us consider a latency-rate server and an affine arrivakotharacter-
ized byBcq4 anday, respectively. The following states

{XxeR¥2:xg =+ =Xg11,Xd12— X1 = b}
characterize that the backlog is zero and the bucket of thiegpas full. O

Proof Recall the condition that the backlog is zero and the buck#tepolicer is full is
represented byx € RIH2: %, = Xd+1,Xd+2 — X1 = b}. Sincexy, ..., xq are delayed inputs, we
havex; > --- > X4, which impliesxy < x4.1. Notice thatxy denotes the amount of data that
has been in the system for at leddime units. Therxq, 1 represents the amount of data that
has been dispatched. The conditigr< Xg.+1 represents that the server was dispatching data
that has been in the system for less tkatime units. This condition violates the expected
operation of the server since the data can only be dispattftedstaying in the system for

at least time units. Thus we have; = X4 1, which impliesx; = -+ = Xg41. O

Example Let us illustrate the approach discussed in this section simple example.
Suppose that the latency-rate server is characterizedlay de= 1 and ratec = 5. The
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input flow is constrained by an affine arrival curve with bimsssb = 3 and rate = 2. The
amount of data arrivals at each period takes valud®jm, 2,3,4,5}.

Next we construct the autonomous switching MiPL system. Aumaber of modes is 6,
i.e. nm = 6, and the amount of data arrivals is describeda%}/: {—1forl=1,...,nm.
The state matrix at modéis

{—1 +o +oo

A9=1 0 5 +oof. (5.6)
(+2 4o 2
The initial states argo = {x € R3: X1 — %o = 0,X3 — X1 = 3}. O

5.4 Abstraction of Autonomous Switching Min-Plus-Linear
Systems

Recall that the idea of abstraction is to replace a model teebified by a smaller abstract
model and to verify the latter instead of the original oneeveétboth models are expressed as
transition systems. Therefore let us introduce a tramsgistem related to the autonomous
switching MiPL systems generated by network calculus etféme

Definition 5.5 (Transition Systems Associated with Autonoraus Switching MiPL Sys-
tems) Consider an autonomous switching MiPL system |(2.8) wighas the set of initial
conditions and a set of atomic propositiohB together with the corresponding labeling
functionL. The associated transition systd@rBis a tuple(S,Act,—,|,AP,L) where

e set of state§=R",
e set of action#\ct = {1},

e there exists a transition relation—— x’ if there exists a modé such thatx’ =
A &/ x, and

e set of initial state$ = xp.

In cases where action names are irrelevant, we use a spgutibbrt. O

Recall that the mode that is active in each step is an envieotatly nondeterministic,
i.e. the mode cannot be controlled. Thus we do not define thefsactions as the set
of possible modes in Definitidn 5.5. As it will be clear in Sent5.4.1, the set of states
satisfying each atomic proposition is a DBM, i.e. for each AP, the set of state§x: a €
L(x)} is a DBM in the state space.

5.4.1 States: Partitioning Procedure

We construct a partition ddand then the abstraction functibmmaps each state in the same
block to a unique abstract state. Each non-empty sub&sisafalled block. More precisely
we develop an approach to construct a partifionof the set of state§, wherellg is an
AP partition, each block is a DBM, and the dynamics in each bliscdwitched affine. A
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partition is anAP partition if the labeling functio. maps each state in the same block to
a unique subset of atomic propositions|[23, Def. 7.31]. Tpereach is as follows. We
first determine arAP partition of S, denoted by1ap, where each block is a DBM. Then
we determine a partitioflsap of Swhere each block is a DBM and the dynamics in each
block are switched affiné.FinaIIy the partitio g is defined as the refinementidfyp and
Msap, i.€. RNy, = Rnap N RNsap- The notationkn denotes the equivalence relation induced
by partitionl [23, Rem. 7.30].

The set of atomic propositiosP is defined ag Cl, BB,DB}, which stand for confor-
mant input, backlog bounded, and virtual delay boundeggaas/ely. The atomic proposi-
tion Cl is true if the input conforms with the arrival curve, naméig number of tokens in
the bucket is nonnegative:

{xeR72:CleL(x)} = {xeR¥2:x3,0—x >0}

Whenever the backlog is less than or equal to the maximumidgeé,,,, thenBB is true.
This corresponds to

{(xeR"2:BB e LX)} = {xeR"™2:x; — X411 < Blnay}-
Finally DB is true whenever the virtual delay is less than the maximulayd®/, ...
{(xeR¥2:DB e L(x)} = {x € R9"2: u(k— D}z — y(K) < O}

Notice that we need to store the input faff,,, steps. 1Dy, > d, additional state variables
can be added. The partitidmap is computed by using the procedure described in Section

3.3.1.

Example Considering the autonomous switching MiPL systeni in](3eé&)us determine
the partitionMap. The states satisfyingl andBB are given by{x € R3: x; — x3 < 0}
and{x € R3: x; — xp < 5}, respectively. Here we seleBf,,, = 5. One can show that the
partitionap contains the following 4 blocks: ~1(0) = {x € R®: x; — X2 > 5,%; — X3 > 0},
L2({C) ={xeR3:xg — X2 > 5,% — X3 < 0,% —x3 < =5}, L"1({BB}) = {x e R®: xg —
X2 < 5,X1 — X3 > 0,Xp— X3 > —5}, andL"1({BB, Cl}) = {Xx e R®: X — % < 5,1 — X3 < 0}
(cf. the left plot in Figl 5.3). In this example, we focus oe trerification of backlog bound
property. Verifying the virtual delay property can be domsikarly. O

With regards to the partitiofilsap, we propose the following approach. Lﬁﬁfg
denote theAD partition generated bA(‘) using the procedure in Section 3.3.1 for all
¢=1,...,nmn. The partitionMsap is defined as the refinement of the precediid par-
titions, i.e.Rngpp, = ﬂ?ilxnw . One can show that each blockldgapis a DBM and the

AD
corresponding dynamics are switched affine.

Example Let us compute the partitidisap generated by the autonomous switching MiPL
system in[(5.6). Skipping the details, the partitidgap contains 14 blocks{x € R3:
X1 — X < 5,X1—X3 < =6}, {(XER3:x; —x <5-6<X—X3< —5X% —x3 > —11},
(XER3:x1 — X <5-5<x—x3< 4% —x3>—10}), (XxcR3:x; —xp < 5,-4<

2SADstands for “switched affine dynamics” aBéDdoes not represent the multiplication of matExmatrix
A, and matrixD, unless stated explicitly.
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Fig. 5.3: The left, middle, and right plots are the graphicapresentation oflap, Msap
and[g respectively.

X1 —X3 < =3, X2 —X3> -9}, {XER3:x; — % < 5,-3< X —Xg < —2,% — X3 > —8},
(XERZ:X — % <5,-2<X —X3< —LXp—X3> —7}, {XER3 1% — Xp < 5,X1 — X3 >
—1,Xxp—X3> —6}, {XER3:X; — X2 > 5% — X3 < —6,X0— X3 < —11}, {x e R3: xg — xp >
5,—6<X—X3< —5X—X3<—10}, {XER3:x; —%>5-5<x —X3< —4,% —X3 <
—9}, {XER3:xg— X2 >5-4<x X< —3,%—x3< -8}, {XcR%:xy —x>5,-3<
X1 —X3< —2,%—X3< =T} {XER3:x; — X2 >5,-2< X1 — X3 < —1,Xp— X3 < —6}, and
{x € R3:x1 — % > 5, — X3 > —1} as depicted in Fig. 5.3 (middle).

Recall that the partitiofiilg is the refinement oflap andlMsap. Partitionlg contains
24 blocks: {Xx € R%:x; — % < 5,x1 —X3 < —6}, {XERZ: X1 —% <5, -6 <X — X3 <
5% —X3>—11}, {X€R3:xg —% < 5,-5< % — X3 < —4,% — X3 > —10}, {x e R3:
Xg—Xp <5, —-4<x —X3< —3X2—X3> -9}, (XER3:x3 —%x <5-3<x—X3<
—2,%—X3> -8}, {XER3:x; — X% <5-2<x1—X3< —LXxo—x3> 7}, {XcR3:x —
X2 <5,X1—X3 > 0,X2— X3 > —5}, {(X€R3:x; — % < 5, -1 < X1 — X3 < 0,Xp — X3 > —6},
{XER3: X3 =X >5X —X3< —6,% —x3< —11}, (X € R®:5< X3 — %2 <5, — X3 <
—6,x2— X3 < —11}, {(X€R3:x; — X2 >5-6<x — %3 < —5,% —x3 < —10}, {x € R3:
5<x—X <5-6<x-X3< 5% —x3<—10}, {(X€R3:x —% >5-5<x —
X3 < —4Xo—X3 < =9}, {(XER3:5< X1 — X <5-5<X —X3< —4X —Xg < —9},
{(XERZ:X —X2>5,-4<x1—X3< —3X%—X3< -8}, {XER3:5<x; — %<5 -4<
X1 —X3< =3, X2—X3< -8}, {XERZ:x; — % >5,-3<xX —X3< 2% —X3< —7},
(XERZ:5<x—%<5-3<x-X3< 2% —X3<—7ThH{XER3:x;—x>5-2<
X1—X3< —Lxg—x3< —6}, {XER3:5<x— %<5 2<% —X3< —1,% — X3 < —6},
{XER3:xg —X2>5,x1— X3 >0}, {XER3: X3 —% >5-1<x; —x3<0,% — X3 < —5},
{XER3:5< X — X <5% —X3>0,%—Xg> -5}, and{x € R3:5<x; — % <5 -1<
X1 — X3 < 0}, as shown in Fig. 5.3 (right). O

5.4.2 Transitions: One-Step Reachability

We investigate a technique to determine the transitiortiogla of the abstract transition
system. The transition relates two abstract states. Easthaabstate is associated with a
block via the abstraction function. More specifically thé aie(concrete) states associated
with an abstract statis equal to the inverse image ®#.r.t. the abstraction functiofy i.e.
f=1(8) = {s: f(s) = §}. Recall thatf ~1($) is a block or in fact a DBM.

If there exists a transition from an outgoing stati® an incoming statd in the con-
crete transition system, i.8.—— ¢, then there is a transition frorfi(s) to f(s) in the
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Fig. 5.4: Abstract transition system generated by the aomoous switching MiPL system
in (5.6). The initial state is 5. The states satisfyiagand BB are the gray ones.
The states that satisfyi and that do not satisfgB are the white ones. Finally the
states that do not satisfyl are the black ones.

abstract transition system, i.&(s) o f(s) (cf. Section 3.2.4). Such a transition can
be determined by a forward- or backward-reachability appio According to the former,
we calculatef ~1(8) nPost f~1($)), whereas if we use the backward approach we compute
f=1(§ nPre(f~1(§)). The nonemptiness of the resulting set characterizes tsepce of
a transition fronsto §.

We focus on the forward-reachability approach, since ibimputationally more attrac-
tive than the backward one. Given an abstract state employ the PWSA representation
of the system matrices to compute the direct successors as

Pos(f%(3)) = Enj{AW@x:x e f 191,
(=1

Sincef~1($) is a DBM, Pos{ f~%($)) is a union of finitely many DBM (cf. Corollary 3.1).
The complete approach to determine the transitions of tlstradi transition system is
shown in Algorithm 3.3.

Example The abstract transition system generated by the autonoswitshing MiPL
system in[(5.6) is depicted in Fig. 5.4. O

Remark Having obtained an abstract transition system that siresitéite concrete transi-

tion system, it makes sense to attempt deriving an absteadition system that bisimulates
the concrete transition system. The refinement procedsoeisied in Section 3.4.3 can be
used. Recall that such a procedure in general does not aeibgtrminate. O
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5.5 Formal Verification of Switching Min-Plus-Linear Sys-
tems

Let us now construct LTL formulae to check the backlog anduair delay of the ab-
stract transition system. We would like to check whetherttheklog and virtual delay are
bounded by the given maximum values, under the conditiontteinput conforms with
the arrival curve. In other words, if the input is conformahen the backlog (respectively,
virtual delay) has to be at moBf,,, (respectivelyD;,.,). The LTL formulae for backlog
and virtual delay can be written as

1 =0CI=0BB and ¢,=0Cl= ODB, (5.7)

respectively. Unary operators bind stronger than the ginaes|[23, p. 232]. Furthermore
the LTL formulae in[(5.7) are a liveness property [23, DeB33. Intuitively speaking,
this means that any finite prefix can be extended so that thétingsinfinite trace satisfies
the property under consideration. Furthermore the LTL fdem in [5.7) are not a safety
property since the only property that is both a safety andeméss property is nonrestrictive
[23, Lem. 3.35], i.e. it allows all possible behaviors.

To find the maximum backlog via model checking, we employ tiing procedure.
We first select a value d8},,,, and generate an abstraction. If the abstraction does risfysat
¢1, then we repeat the procedure with a higher valuB/gf,, else we stop. The value of
BrhaxWhen the LTL property is verified will be the guaranteed ugpmrnd of the backlog.

Example One can show that the LTL formula representing the backlagbas verified
by the abstract transition system in Fig.5.4. However inegal) given that the abstract
transition system only simulates the original switchingPMisystem, one cannot expect to
verify the exact maximum bound for the backlog, but only asswmative bound. O

5.6 Summary

In this chapter we have proposed an approach to automsticalify network properties
that can be critical for the correct functioning of contrggtems. In particular our approach
allows to obtain delay bounds for aperiodic traffic sourdess important to keep in mind
that more complex specifications in LTL are amenable to b#iedrusing the abstraction
procedure we have proposed.






Chapter 6

Finite Abstractions of Stochastic
Max-Plus-Linear Systems

This chapter investigates the use of finite abstractiongsitdyshe finite-horizon probabilis-
tic invariance problem over Stochastic Max-Plus-LineaviP%) systems. SMPL systems
are probabilistic extensions of discrete-event MPL systémt are employed in the engi-
neering practice for timing and synchronization studies.ddhstruct finite abstractions by
re-formulating the SMPL system as a discrete-time Mark@cess, then tailoring formal
abstraction techniques in the literature to generate afstdate Markov Chain (MC), to-
gether with precise guarantees on the introduced appreimizvel. This finally allows
probabilistic model checking of the obtained MC againstfthige-horizon probabilistic in-
variance specification. The approach is practically imgeted via a dedicated software,
and elucidated in this chapter over numerical examples.

6.1 Related Work

Only a few approaches have been developed in the literatstady the steady-state behav-
ior of SMPL systems, for example employing Lyapunov expasand asymptotic growth
rates [20-22, 57, 62, 92, 111]. The Lyapunov exponent of aRISBYstem is the analogue
of the max-plus eigenvalue for an autonomous MPL system. Ljjapunov exponent of
SMPL systems under some assumptions has been studied i) §htlllater extended to
approximate computations under other technical assungptio [62, p. 251]. The appli-
cation of model predictive control and system identificatio SMPL systems is studied
in [54, 55]. In contrast, our work focuses on one-step prigeof SMPL systems and is
based on developing finite-state abstractions: this isliphta the approach in Chapter 3
for (deterministic) MPL systems. To the best of the authknewledge, this contribution
represents the first work on finite-state abstractions of SB{Rtems.

Verification techniques and tools for deterministic, détertime, finite-state systems
have been widely investigated and developed in the pastdsd@8]. The application of
formal methods to stochastic models is typically limitedi®crete-state structures, either in
continuous or in discrete time [24, 83]. Continuous-spaodefs on the other hand require

81
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the use of finite abstractions, as it is classically donexangple with finite bisimulations of
timed automata, which can be computed via the known reginstoaction [16]. With focus
on stochastic models, numerical schemes based on Markam QW&) approximations of
stochastic systems have been introduced [30, 81], andeapiglithe approximate study of
probabilistic reachability or invariance in [77, 103], hewer these finite abstractions do
not come with explicit error bounds. In|[3], a technique hasrmintroduced to instead
provide formal abstractions of discrete-time, continuspace Markov models [2], with the
objective of investigating their probabilistic invariamby employing probabilistic model
checking over a finite MC. In view of scalability and of gerayathe approach has been
improved and optimized in [52]. Interestingly the procesloas been shown [1] to introduce
an approximate probabilistic bisimulation of the concratalel [49].

6.2 The Probabillistic Invariance Problem

Let us consider events that are scheduled to occur regulaalyis let us select a time in-
terval between consecutive events that is a positive giemstant, say. We call this a
regular scheduleand assume that it does not affect the time of occurrence efats, e.g.
any event may occur ahead of the regular schedule. In thigtehave consider aN-step
finite-horizon probabilistic invariance problem w.r.t.egular schedule: more specifically,
for each possible time of occurrence of initial ever())), we are interested in determining
the probability that the time of occurrenceleth event k(k)) remains close to the corre-
sponding time of the regular schedule, foe {0,...,N}. For instance, we may want to
determine the probability that the time of occurrence offite 3 events is at least 5 time
units ahead of the given regular schedule, as well as at mtistesunits behind it. The
invariant set is then defined as the desired time of occuereurct. the regular schedule.

The techniques in [3, 52], developed to provide the charaettion and the computa-
tion of the probabilistic invariance problem over generarkbv processes, can be directly
applied to the SMPL syster (2.9). However, in order to pretlemgrowth of the invariant
set as the event horizdthincreases (which in general leads to a decrease in comugti
performance), we reformulate the SMPL system based onveea gégular schedule, so that
a fixed invariant set is obtained. Since we are interestedardelay of event occurrences
with respect to the given schedule, we introduce new vafatdefined as the difference
between the states of the original SMPL system and the regciteedule. More precisely,
first we define a vectos that characterizes the regular schedule. The dynamissaoé
determined by the time duratiahe R between consecutive events and the arbitrary initial
conditions(0) € R", i.e.s(k) = d® s(k—1). As mentioned, new states are defined as the
difference between the states of the original SMPL syste®) géhd the regular schedude
i.e.z(k) = x(k) — s(k) for ke NU{0}. The dynamics of the newly introduced SMPL system
are then given by

z(k) = [A(k)+D]® z(k—1), (6.1)

whereD = [d;j];; € R™" (i.e. dj is the entry of matriXD at rowi and columnj), djj =

sj(0) —s(0) —d, andz(k) = [z(K) ... z:(K)]T € R". Notice thaty; (k) @ dij are independent
forall ke N andi, j € {1,...,n}. The density (resp., distribution) function &f; (k) ® d;
corresponds to the density (resp., distribution) functbrj (k) shifted forward byd;

units. The independent variat@gain denotes an increasing event index, whereas the state
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variablez(k) defines the delay w.r.t. the schedule of occurrendetbfevent. If the delay

is positive then the event occurs behind the schedule, whéf¢éhe delay is negative then
the event occurs ahead of the schedule. The next theorens shatymuch like the original

model in [(2.9), the new SMPL system can be described as aetiistme homogeneous
Markov process.

Theorem 6.1 (cf. Theorem 2.1)The SMPL system in (611) is fully characterized by the
following conditional density function

t(2l2) = [T 4(@J2), where

=}

N — n —_ .
i(zlz)= 3y |tij(z—dj—2z) [ Tk@—-dk—2z)|, forallie{1,....,n},
=1 k=Lk#]

for z,z € R". Recall that the density functidp(-) is the derivative of the associated distri-
bution functionT;; (-) w.r.t. its argument for all, j € {1,...,n}. O

Remark If the time interval between consecutive occurrences isthetsame for all
i € {1,...,n}, then we obtain a time-inhomogeneous Markov process. kdase, the
computational complexity of the procedure will greatlyriease. O

Employing the introduced SMPL system (6.1), the problem lsarformulated as the
following N-step invariance probability

Py,(2) =Pr{z(k) € 2 forallk=0,...,N|z(0) = zo},

where is called the invariant set and is assumed to be Borel mdalsura

LetIy : R"— {0,1} denote the indicator function of setC R", i.e.I,(x) =1if x € x
andl, (x) = 0 if x ¢ x. The next proposition provides a theoretical frameworktalg the
problem.

Proposition 6.1 ([2, Lem. 1])Consider value functiong, : R" — [0,1], fork € {0,...,N},
computed through the following backward recursion:

(D) =14(2) [ Vin@6EDEZ  forallze R,

initialized withV(z) =14 (z) for all z€ R". ThenP,,(4) = Vo(2o). o

For anyk € {0,...,N}, notice thatVi(z) represents the probability that an execution of
the SMPL systeni (6]1) remains within the invariant getver the residual event horizon
{k,...,N}, starting fronz at event stej.

This result characterizes the finite-horizon probabdistivariance problem as a dy-
namic programming problem. Since an explicit analyticélison to the problem is gener-
ally impossible to find, we leverage the techniques develapg3, 52] to provide a numer-
ical computation with exact associated error bounds. Ehidaborated in the next section.
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6.3 Abstraction by a Finite State Markov Chain

We tailor the abstraction procedure presented in [3, S&é¢tt@wvards the goal of generating
a finite-state MQS?) from a given SMPL system and an invariant getthen employ it
to approximately compute the probabilistic invariancemérest.

Let S={§,...,4n11} be a set of finitely many abstract states dhdSx S— [0,1]
a related transition probability matrix, such tﬁ%(rs,éj) characterizes the probability of
transitioning from states 1o statesj and thus induces a conditional discrete probability
distribution over the finite spac®

Given a bounded invariant sat, Algorithm[6.1 provides a procedure to abstract an
SMPL system by a finite state MC. The set= {41,...,4n} denotes the discrete invariant
set. In Algorithm 6.1,f : R" — érepresents the abstraction function, i.e. a map that asso-
ciates to any concrete state R" the corresponding abstract stédite) € S Furthermore the
concretization functiori ~1(8) = {z: f(z) = §} associates to any abstract sw&Sthe cor-
responding continuous partition set. Without loss of galitgr we definez = {&,...,5n}
as the abstract invariant set, i.e. the set of abstractssést@ociated with the concrete in-
variant seta . Additionally, notice that an absorbing discrete stte; is added to the state
space of the MC in order to render the transition probahitigtrix T stochastic.

Algorithm 6.1 Generation of a finite-state MC from an SMPL sygem and
an invariant set
Input: An SMPL system iri (6]1) and an invariant get
Output: A finite-state MGS,T)
1. select a finite partition of set of cardinalitym, asa = U, a;

2. definea = {&,...,6n} and takeS= 2 U {&n+1} as the finite state-space
of the MC (&1 is an absorbing state, as explained in the text)

3. define abstraction function d§z) = § if z€ 4; fori € {1,...,m} and
f(z) =smp1if zeR"\ 4

4. foreach € {1,...,m}, select a single representative pan& 4;

5. compute the transition probability matfixas

fffl(éj)tz(ilzi)dz if1<j<mandi1<i<m,
A 1-S&a [i-1atzzi)dz, if j=m+land1<i<m,
T(5.5)= =11 L

1, if j=i=m+1,

0, ifl<j<mandi=m+1,

Remark The bottleneck of Algorithm 6.1 lies in the computation frisition probability
matrix T, due to the integration of kerngl This integration can be circumvented if the
distribution functionsT;; () for all i, j € {1,...,n} have an explicit analytical form, e.g. an
exponential distribution.

The procedure in Algorithim 611 has been shown [1] to intr@daic approximate prob-
abilistic bisimulation of the concrete model [49], i.e. BBIPL systems (6.1).
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Algorithm/6.1 can be applied to abstract an SMPL system agte-Btate MC, regardless
of the particular invariant set. However the quantification of the abstraction error in
Section 6.4 requires that the invariant geis bounded. O

Considering the obtained finite-state, discrete-time (8 ) and the discretized invari-
antseta C § the probabilistic invariance problem amounts to evahggiive probability that
a finite execution associated with the initial conditkarE“éremains within the abstract in-
variant seta during the given event horizon. This can be stated as thaiialg probability:

Pe () = Pr{8(K) € 4 fork=0,...,N|5(0) = &},

wheres(k) denotes the discrete state of the MC at $tep
The solution of this finite-horizon probabilistic invar@sproblem over the MC abstrac-
tion can be determined via a discrete version of Propos@itn

Proposition 6.2 Consider value functionsy : S — [0,1], for k € {0,...,N}, computed
through the following backward recursion:

W(©®=1;(8 Y Vi1 (T (89, forallse§
8eS

initialized withVn (8) = I; ($) for all §€ S ThenPy, (1) = Vo(%). O

For anyk € {0,...,N}, notice that\7k(§) represents the probability that an execution of the
finite-state MC remains within the discrete invariant sebver the residual event horizon
{k,...,N}, starting froms’at event stef.

The guantities in Proposition 6.2 can be easily computedhieat algebra. Itis of inter-
est to provide a quantitative comparison between the dsorgtcome obtained by Proposi-
tion/6.2 and the continuous solution that results from Psijmn 6.1: in other words, we are
interested in deriving bounds on the abstraction error. fohewing section accomplishes
this goal.

6.4 Quantification of the Abstraction Error

This section starts by precisely defining the error relateti¢ abstraction procedure, which
is due to the approximation of a continuous concrete modél afinite discrete one. Then
a bound of the approximation error in [52] is recalled, andliggol to the probabilistic in-
variance problem under some structural assumptions, yam#ie case of Lipschitz con-
tinuous density functions, or alternatively piecewiseddpitz continuous density functions.

The approximation error is defined as the maximum differdrete/een the outcomes
obtained by Propositions 6.1 and 6.2 for any pair of init@iditionszo € R" andf (zo) € &
Since an exact computation of this error is not possible irega, we resort to determining
an upper bound of the approximation error, which is denogdd. aMore formally we are
interested in determining that satisfies

Py(a) — Py ()| <E,  forallzoe a. (6.2)

We raise the following assumption on the SMPL system. Réeallthe density function
of Ajj (k) @ dij in (6.1) corresponds to the density functionf(k) in (2.9) shiftedd;; units
forward.
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Assumption 6.1The density functions; (-) fori, j € {1,...,n} are bounded:
tij(2 <M;;, forallzeR. O

Assumption 6.1 implies the distribution functiofig(-) fori, j € {1,...,n} are Lipschitz
continuous. Recall that the (global) Lipschitz constand @ne-dimensional function can
be computed as the maximum of the absolute value of the firstatige of the function.
Thus

Tij (2 = Tij(Z)| <Mij|lz—Z|, forallzZ e R.

For computation of the bound on approximation error, we beddllowing result based
on [52], which has inspired most of this work.

Proposition 6.3 ([52, pp. 933-934]puppose Assumption 6.1 holds and the density function
t,(z]z) satisfies the condition

/|tz(2|z)ftz(f|z’)|dfg Hllz—Z|], forallzZ e a,
A

then an upper bound on the approximation error in/ (6.8 is NHd, whereN is the event
horizon,d is the partition diameteH is a constant scalar. O

The partition diameted in Proposition 6.3 is defined in [3, Sec. 3.1]. The notatior,
denotes the 2-norm operator. In the remainder of this stibseuve first determine the con-
stantH for Lipschitz continuous density functions, then generathe result to piecewise
Lipschitz continuous density functions.

6.4.1 Lipschitz Continuous Density Functions

Assumption 6.2The density functionsg;(-) fori, j € {1,...,n} are Lipschitz continuous,
namely there exist finite and positive constamissuch that

lij(2) —tij(Z)] <hij|lz—Z|, VzZeR. -

Under Assumptions 6.1 and 6.2, the conditional density tiond,(z|z) is Lipschitz
continuous. This opens up the application of the results3jn5p] for the approximate
solution of the probabilistic invariance problem. Notibatithe Lipschitz constant 6f(z]z)
may be large, which implies a rather conservative upper daurthe approximation error.
To improve this bound, we can instead directly use Proposii.3 presented before — an
option also discussed in [52]. In particular we presentdheschnical lemmas that are
essential for the computation of the constehtwith proofs appearing in the Appendix.
After the derivation of the improved bound, the obtainediltssare applied to a numerical
example.

Lemma 6.2 Any one-dimensional continuous distribution functi®i-) satisfies the in-
equality

/|T(Zfz)fT(z_fz’)|dz_§|zfz’|, forallz,Z e R. 0
R
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Lemma 6.3 Suppose the random vectprcan be organized as= [z],z}]", so that its
conditional density function is the multiplication of cdfidnal density functions of;,z»
as:

f(Z]z) = f1(za|2) f2(z2]2).

Then for a given set € 3(R™)! it holds that

2
[ 11(@2) ~ 1(@2)jdz < 3 /p o 10— i),

whereproj; (-) represents the projection operator onitile axis. O

Lemma 6.4 Suppose the vectar can be organized as= [z],z]]T, and that the density
function of the conditional random variak{gz) is of the form

f(Zz) = f1(z z2) f2(2, 22),
wheref1(z z1), f2(z,z2) are bounded non-negative functions with = sup, f1(z1,22)
andMz = sup;, ,, f2(z1,22). Then for a given set € 3(R):
[ 11(@21.22) - (@20, 75) 12
C
<M [ |6E2) - hEZZ)dz+ M [ |f(22) - b2Z)dz O
c c

Theorem 6.5Under Assumptions 6.1 and 6.2, the constdrit Proposition 6.3 is
n
H= 3% Hij+(n-1)Mj,
i,]=1

whereH;; = £ihjj, and where the constant = £ (proj;(1)) is the Lebesgue measure of the
projection of the invariant set onto tlx¢h axis. O

Proof Using Lemma 6.3 on the multiplicative structure of the coiodial density function
we have:

[ le@a —u@)ezs y [ @) @),

and employing the triangle inequality for the additive sture oftj(z|z) and utilizing
Lemmd 6.4 and Assumption 6.1 we obtain:

n
< / Itij (z — dij — 7)) —tij(z — dij — Z)|dZ
proji(4)

Mi,-/, IT(Z — dh — ) — Ti(Z — i — Z)|d.
i proji ()

1The notations (R") represents the collection of Borel sets that are a subget.of
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Finally, by Assumption 6.2 and Lemrha 6.2 we obtain

n

n
< Yy hijL(proji(a))lz — z|+Z % Mij|z — %]
fRei

i,Jj=1 i,J=1k=

1

(Z Hij +(n—1)M IJ>||Z Z|l2=H|[z—Z]l2. o
|

We now elucidate the above results on a case study, and addet distribution to char-
acterize delays. A motivation for employing a beta distiiinu is that its density function
has bounded support. Thus by scaling and shifting the defusittion, we can construct
a distribution taking positive real values within an intglrvRecall that this distribution is
used to model processing or transportation times, and dsiscan only take positive val-
ues. Furthermore, the beta distribution can be used to ajppate the normal distribution
with arbitrary accuracy.

Definition 6.1 (Beta Distribution) The general formula for the density function of the beta
distribution is

(x—a)* 1(b—x)P-L

t(x;a,B,a,b) = B(a, B)(b—a)a+B1’

ifa<x<b,

and 0 otherwise, whem, 3 > 0 are the shape parameteis;b] is the support of the den-
sity function; andB(-,-) is the beta function. A random variab¥e characterized by this
distribution is denoted b¥ ~ Betga, 3,a,b). O

The case whera= 0 andb = 1 is called the standard beta distribution. Let us remark
that the density function of the beta distribution is unbaeshif any of the shape parameters
belongs to the intervdll, 2). We remark that if the shape parameters are positive irdeger
the beta distribution has a piecewise polynomial densitgfion, which has been used for
system identification of SMPL systems in [55, Sec. 4.3].

Example We apply the results in Theorém 6.5 to the following two-dirsienal SMPL
system|(2.9), wherayj (-) ~ Beta(aij, Bij, &j, bij),

[0(11 0(12] _ {2 4] |:Bll 312} _ [5 2] |:all alZ:| _ {0 2} |:bll blZ] _ {7 6-5]

O21 022 2 2|7 [B2r B2z 2 4] |ag ax 2 0]’ [b21 b2 4 9]
Skipping the details of the direct calculations, the supmemand the Lipschitz constant of
the density functions are respectively

M1z M|  [1536/4375 1532 [hyy hip]  [30/49 80/81
Moz Mop| | 3/4  15/64|° |hoy hoo| | 3/2  20/81)°

Considering a regular schedule witf0) = [0,0]" andd = 4, selecting invariant set =
{zeR?: -5< 7 <5,-5<2 <5}, and event horizoN = 5, according to Theorem 6.5 we
obtain an erroE = 176.49. In order to obtain an approximation error bounded=y 0.1,
we would need to discretize setuniformly with 24942 bins for each dimension (step 1 of
Algorithm[6.1). The obtained finite-state MC has 249421 discrete states (step 2). The
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representative points have been selected at the centee afjtrares obtained by uniform
discretization (stepl4). The procedure to construct ttemsprobability matrix (step 5)
works as follows. For eadhj € {1,...,24942 4 1}, we computé(§,§j), which consists
of four possible cases. If & i,j < 24942, then'f(é,éj) is defined as the probability of
transitioning from the-th representative poirg; to the j-th partition seta;. If 1 <i <
24942 andj = 24942 + 1, thenT (§,§;) is defined as the probability of transitioning from
the i-th representative poirg; to the complement of the invariant SRf' \ 2. Since the
discrete stat&}g42. 1 is absorbing, theff (4942 1,8j) = 1 if j = 24942 11, and it is
equal to 0 otherwise. The solution of the invariance probtsbtained over the abstract
model (cf. Proposition 6]2) is computed via the softward ®ST2[53] and is depicted
in Fig.[6.2 (left). O

6.4.2 Piecewise Lipschitz Continuous Density Functions

It is clear that the structural assumptions raised in th@ipus section pose limitations
on the applicability of the ensuing results. For the sakeesfegality, we now extend the
previous results to the more general case encompassed fojitivéing requirement.

Assumption 6.3 The density functions;(-) for i, j € {1,...,n} are piecewise Lipschitz
continuous, namely there exist partitidRs= UELD}(J- and corresponding finite and positive

constant$1}‘j, such that

m;j
tj(2 =% til} (29I (2), forall ze R,
K=1 g

ith(2) -t (2)| < h|z— 2], forallke {1,...,m;} andzZ € Df. O

The notatiork used in Assumptidn 6.3 is not a power and is not an event if@iy, (out
it denotes the index of a set in the partition of cardinajity mj. Notice that if Assump-
tion6.3 holds and the density functions are Lipschitz cundiis, then Assumption 6.2 is
automatically satisfied withjj = max hlkJ In other words, with Assumption 6.3 we allow
relaxing Assumption 6.2 to hold only within arbitrary setstitioning the state space of the
SMPL system. In fact, we could limit the assumptions to thaiiant set.

Under Assumptions 6/1 and 6.3, we now present a result eixigiitieorem 6.5 for the
computation of the constaht.

Theorem 6.6Under Assumptions 6.1 and 6.3, the constarih Proposition 6.3 is

n
H= 3% Hij+(n-1)Mj,
i,)=1

whereHij = imaxhf + 3\ |3| andz; = £ (proj;(1)). The notationdff = lim,, u i (2) -
1]

lim,, « tj () denotes the jump distance of the density functipir) at thek-th discontinuity
i

it ok 2
pointcy . O

2The jump distance is defined as the limittpfz) asz approachex;ikj “from the right” subtracted by the limit
of tjj (2) asz approaches}‘j “from the left.”
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Of = ! ] 0p=——2 ! 1 -1k ! ! L
—2 0 2 -2 0 2 -2 0 2

Fig. 6.1: (Left plot) The density function of exponentiatdbution with mean 1. (Middle
plot) The unit step functiofi(-). (Right plot) The continuous part of the function
on the left plot.

Proof We can follow exactly the same steps as in the proof of The@é&mn The only
difference is in the computation of constadij for the inequality

/. Itij (z — dhij — zj) —tij(Z — dij — Z))|dZ < Hij|zj — 4], (6.3)
proji(4)

for all zj,z’j € proj;(4). We show that such a constant exists for piecewise Lipschitz
tinuous density functions and compute it based on Assumigti8. Define two functions

gl (2) = zgl’lyﬁe(zf ck) andgf (2) =tij(2) — g} (2), wherez) = zg:lJi‘}, 8(-) denotes
the unit step function, an{i:ikj :k=1,...,m; — 1} are the discontinuity points of the density
functiontjj (-). Then the density function is decomposed itit() = gfj (2) + gidj (z) where

gi"j is its continuous part angfj is a piecewise constant function containing its jumps (cf.
Fig.[6.1). Itis clear that

m—-1
d(z—dij —2) — gt (z— di; — 2)|dz< Kl|z—2
Jyy )91 i =2~ 2y - Dlaz< 3 a2 7],
/pmj.(ﬂ)|gi°j(z_—dij—z)—gicj(i—dij—z’)|dz_§Lim|flxhﬁ|z—z’|.

Adding both sides using the triangle inequality leads todbsired value foH;; . O

We now display the obtained results with a numerical example

Example Let us clarify the approach used in the proof of Theorem 6.& @imple ex-
ample. Consider the density function of the exponentiaritistion with mean 1, i.e.
t(z) = exp{—2z} if z> 0 and 0 otherwise, as shown in Fig. 6.1 (left). Notice thatibesity
function is piecewise Lipschitz continuous (cf. Assumpt®&3). Furthermore the density
presents one discontinuity poiot = 0 with associated jump distance equalto= 1. No-
tice thatm = 2 sinceR is partitioned into two sets. By using the formula in the grame
getss! = 1 and furthermore the density function can be decomposediipiecewise con-
stant functiong®(z) = 6(2) and a continuous functiogf(z) = Ol,<o + (exp{—2z} — 1)I,>o,
as depicted in Fig. 6.1 (middle and right). |

In some cases, it is possible to obtain a smaller valuélfoby substituting the density
function directly into the inequality in (613). Furthernedd;; may be independent of the
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size of the invariant set. For instance, if the delay is medély an exponential distribution
as in page 13, theA;;(-) foralli, j € {1,...,n} follows a shifted exponential distribution,
i.e. Ajj(-) ~ SEx@ij,Gj). In this caseHi; = pﬁl+ pﬁzLi, as per Theorem 6.6. However
if we compute directly the left-hand side of (6.3), we getdfuantityH;; = Zuﬁl, which is
independent of the shape of the invariant set. This factigproven in general, for a class
of distribution functions, in Theorem 6.7. Let us first indtace the following definition.

Definition 6.2 (Shifted Exponential Distribution) The density function of an exponential
distribution shifted by is given by

6K Q) = H texp{—1H(x—¢)}8(x—q),

where8(-) is the unit step function. A random variabtecharacterized by this distribution
is denoted byX ~ SExg, ¢). O

The proof of the following theorem can be found in the Appendi

Theorem 6.7 Any random sequenchk; (-) ~ SExgLj,Gj) satisfies inequality (6!3) with
Hij = 2“1-7]-1. O

Given the previous result, the bound related to the invadamelated abstraction error
over SMPL systems with; (-) ~ SExfilij,Gj) can be improved and explicitly shown as
follows. The maximum value of the density functityt-) equalswjl, i.e.Mjj = Hﬁl for all
i,j€{1,...,n}. By Theoren 6.6 and Proposition 6.3, the bound of the appration error
is then

E=(n+1N3Y W™
1)

Let us go back to the example in page 88 and adapt it accordiBegfinition6.2 and
Theorem 6.7.

Example Consider the following two-dimensional SMPL system (2. @pere Ajj(-) ~

SEXguij,Gj) and
|:pll HlZ] _ {2 3} [Cn Clz] _ [0 2}
M1 M2) |1 37 |G G2 [2 O
Considering a regular schedule witf0) = [0,0]" andd = 4, selecting invariant set =
{ze R?2: -5<7<5-5<2< 5}, and event horizoh = 5, we getE = 32.50. In order
to obtain a desired err@ = 0.1, we need to use 4597 bins for each dimension on a uniform
discretization of the set. The solution of the invariance problem over the abstraadeho
is presented in Fig. 6.2 (right).

Let us now validate this outcome. We have computed 1000 satrgjectories, with an
initial condition that has been uniformly generated frora el set corresponding to the
probability 3, namely within the sefz: f’f(z) (54) > 0.3}. Given the error boun& = 0.1,
we would expect that the trajectories are invariant witfkelihood greater than.B. Among
the cohort, we have found that 374 trajectories stay ingidarvariant set for the given 5
steps, which is aligned with the guarantee we have derived.



92 6 Finite Abstractions of Stochastic Max-Plus-Lineart€gyss
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Fig. 6.2: The left and right plots show solution of the firliterizon probabilistic invariance
problem for two-dimensional SMPL systems with beta (cfepg8) and expo-
nential (cf. pageé 91) distributions, respectively. Thetploave been obtained by
computing the problem over finite abstractions obtainediifoum discretization
of the set of interest and selection of central represewntgtioints.

Furthermore we have compared the approximate solutiomsigiie following empir-
ical approach: for each representative point, we genef8 $ample trajectories starting
from it and compute the ratio of the number of trajectoried #tay in the invariant set for 5
steps to the total number of trajectories (1000). The marirabsolute difference between
the approximate solution and the empirical approach farepliesentative points is 0.0565,
which aligns with the error bound of 0.1.

We have also performed these two comparisons for the SMREemyi® page 88. The
results are quite analogous to the ones obtained in thisgheam O

6.5 Summary

This chapter has employed finite abstractions to study tlie-fitorizon probabilistic in-
variance problem over Stochastic Max-Plus-Linear (SMBlstems. We have assumed
that each random variable has a fixed support, which imgiigsthe topology of the SMPL
system is fixed over time. Along this line, we are interestegbtax this assumption in order
to obtain results that are robust against small topologicahges.

Appendix

Proof (of Lemmd 6.2) We prove the inequality for the case- z For the other case, the
proof is similar. Consider any arbitragyb € R. Since the distribution function is non-
decreasing we can write

/:|T(z_ 2)-T(Z-2)dz= /b

a

- g(Z) - g(zl)v

T(Z-2)dz— / T 7)dz

a
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whereg(z) = f;’T (z—2)dz= f;’jZZT(u)d u. By using the fundamental theorem of calculus,
we obtain

g2 =T(@a-2)-T(b-2)| <1

Finally based on the mean value theorem, we can Wgi® — g(Z)| < |z—Z|. The inequal-
ity holds for any intervala, b], then it also holds oveR. O

Proof (of Lemma 6.3) In the following derivation, we use the trilmmequality and the
following properties of a density function: itis a positifitanction and its integral is bounded
by one. Hence,

[ 1@~ 1@2) iz | |1(@2) faZelz) - (@) (Z2l7) 0z
S/ﬂ|f1(51|2)f2(52|2)— f1(21]2) f2(22]2)|dz
+ [ 10(@7) fa(z2l2) - (@) (12 o2
=/ﬂ|f1(51|2)— f1(21]2)| f2(22|2)dz
+ [ 1falZ2lz) ~ faZl2)| u(@l2)dz

g/_ |f1(21|z)—f1(21|z’)|d21/ t2(22/2)dZs
projy (1)

proip(4)
[ fZ202) - (2l7)dZ /  h@l)dm
proj() projy (1)
<[ @D - @GR [ (@D - @ o
projy (1) projy()

Proof (of Lemma 6.4) By using the triangle inequality, we obtaie fbllowing inequality:
[ 1@z.22) ~ 1@ 2)l0z= | |0(Z2) b(Ez) - hEz2) bE2) 0
< /C 11(z,21) f2(2 22) — T1(z 21) f2(Z, 22) | dZ.
+ [ 10EZ) R(Ez) - 1E2) REZ)
< [ Ihza) - hER)| REz)dz: [ |bE2) - kER)hEE)eE
<M [ 0z2) — Wz 2)dz My [ [Tz 2:) - Rz 2)dz 0
Proof (of Theorem 6.7) We will show that the following inequalitglts:
/pmji(ﬂ) It (2 — dij — Zj; W, Gj) —tij (2 — dij — 23, Gj )0z < 207tz = 2,
for all zj,Z; € projj(a).

Without loss of generality, let us assume< z’J (since the integrand and the expression
on the right-hand side are symmetric w.ef.andz)). It follows that the integrand is a
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piecewise continuous function af,z_j,z’j:

W texp{ 1 Nz —dij —Z —Gij)} — LﬁfleXP{*Lﬂl(Z_i*dij -7 —Gj)},
itz > 7 +dij +gj,
W texp{ 1 Nz — dij — 7 — Gj), if Z+dij +Gj <7 < Z+dj +Gj,
0, if z <zj+dj+gj.
Thus the overall bounds can be computed based on the boutidsfokt two subfunctions.

We will prove that the first two subfunctions are boundeq@ﬁzj — 7. Let us focus on
the first subfunction:

-1 te —1/= 1= _
» —wtz—di—Z —gi)}— Yz —dij — z — i dz
Hij /i,-+dij+qj (exp{ i (2 —dij —z —Gj)} —exp{—1;"(z —dij — 2 CJ)}) z

Joo
=yt —l7y —1s.

K~ (exp{k; 77 — exp{i; 7z ) /2’,-+dij+qj
= (exp{k; '} —exp(l; 7)) exp(—1; '}
= 1—exp{—1;'(4 —2)}
< 'z -7l

exp{ 1 *(@ — dij — Gj)}dz

The last inequality holds becaur:ﬁ&l(z’j —zj) > 0and 1-exp{—z} < zforallz> 0. Then
we continue to the second subfunction:

1 Zﬁ+dij+qj s _

Hj / exp{—H;~(z — dij —z — Gij) }dz
Zj+dij +Gjj

= —exp{ i }(7 - )} 1

< W'z -7l



Chapter 7

Conclusions and Future Research

In this thesis we have discussed finite abstractions of MRitesys, switching MiPL sys-
tems, and SMPL systems. Furthermore we have discussedatslityhcomputations of
MPL systems. We have applied the abstraction techniquegrify\some properties of
communication networks. In this chapter we summarize oun m@ntributions and formu-
late future research directions.

7.1 Conclusions

Our main contributions are:

e Formal verification of MPL systems. In Chapter 3 we have designed a novel ab-
straction procedure applicable to autonomous and nonamtons MPL systems. The
finite abstraction has been proven to simulate the origiral idystem. We have de-
rived conditions under which the existence of a finite alotima that bisimulates the
original MPL system is guaranteed. Furthermore, we havésddwa procedure to
obtain such an abstraction. Compared to the broad existargtiure in this area, this
novel approach represents a brand new way of looking at geaealysis of MPL
models. Finally, the abstraction algorithms have beenémgented and released in
theVeriSiMPL tool.

e Reachability computations of MPL systems.Chapter 4 has discussed reachability
computations of MPL systems, where the initial or final Stedee assumed to be
expressed as unions of finitely many DBM. This work extendtsted results in the
literature, since every max-plus polyhedron can be expteas a union of finitely
many DBM. The reachability algorithms have been efficiemtiyplemented in the
VeriSiMPL tool and shown to outperform alternative implementations.

e Automatic verification of network properties. In Chapter 5 we have discussed
the automatic verification of backlog and virtual delay bdsifor network calculus
models via finite-state abstractions based on min-plesalifMiPL) models, thus
elucidating an application of the theory developed aboust fve have formulated a
switching MiPL system from network calculus element. Thenhave abstracted the
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switching MiPL system via its PWSA representation. The r@usion procedure is
an extension of the one developed in Chapter 3. If we canyanifirtual delay or a
backlog bound over the abstraction, this represents alswadofor the virtual delay
or backlog of the switching MiPL system.

Finite abstractions of SMPL systems. In Chapter 6 we have studied the finite-
horizon probabilistic invariance problem over SMPL systeffihe abstraction tech-

nigues are formal in the sense that they provide expliditrddounds. The error bound
is defined as an upper bound on the maximum absolute differtestoveen the exact

solution and the one obtained from the abstraction. Thesdtseare distinguished

from the existing literature on SMPL analysis and are comafal since they lever-

age an existing software toolbox.

7.2 Recommendations for Future Research

In this section we discuss some interesting topics that eaohsidered for future research.

e Specifications.In Chapters B and]5 we have discussed an abstraction precfestur

MPL systems and switching MiPL systems, respectively. Bdbtraction procedures
are formula based and preserve a wide range of LTL formulamsidering other
specifications such as Computation Tree Logic (CTL) [23, Beff], CTL* [23, Def.
6.80], and metric temporal logic [84] represents a first nregfnl goal to extend our
results. Similarly we are interested in extending the pbdistic invariance problem
considered in Chaptel 6 to more complex properties suchaas @void or to general
specifications expressed in Probabilistic CTL (PCTL) [28f.000.36], PCTL* [23,
Def. 10.59].

Max-plus polyhedra and polytopes.lIt is clear that obtaining an abstract transition
system with a smaller number of abstract states is desifediie a computational
point of view. One way to achieve this is by using an abstoagirocedure based on
max-plus polyhedra [60], which has been studied under tineesaof semimodules
[39] or idempotent spaces [88]. In this case there is ho neegeherate a PWA
system and to refine the partition based on the affine dynamostop of that the
computation of transitions will be faster because the dyioguare linear in the max-
plus algebra. However there is an issue in partitioning theespace, which iR",
because max-plus polyhedra are necessarily closed. Mecgsply it is not possible
to construct a non-trivial partition @&" such that each block is a closed set.

We are also interested in using polytopes in the abstragiionedure. Polytopes
are more expressive than DBM, i.e. every DBM is a polytope welger the time
complexity of many polytope operations is exponential.

Abstraction and verification techniques. In Chapters 3 and/5 we restrict the speci-
fications to LTL formulae. To check whether an abstractidisBas an LTL formula,
we use automata-based LTL model checking implemented iN $A]. If we con-
sider a specification expressed as a CTL formula, we carzeitiymbolic model
checking [35, Ch. 6], which is more efficient than the enurtiegane [23, Sec. 6.4].
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For SMPL systems, we have been exploring the existence witdisons associated
to an analytical solution to the finite-horizon probabitishvariance problem. This
can be advantageous since the invariant set may be unbowfde limits the ab-
straction approach we have resorted to. Additionally tpisraach should not suffer
from the curse of dimensionality since it does not explicémploy a partitioning
procedure.

e Tools. CurrentlyVeriSiMPL is implemented in MATLAB. We are currently imple-
menting tailored formula-based abstractions discussedeam the Java program-
ming language so th&eriSiMPL can smoothly run on any platform. Furthermore we
are planning to leverage symbolic model checking by usingtyidecision diagrams
[114].

The abstraction procedure for switching MiPL systems isenily implemented as a
collection of MATLAB functions and scripts. These MATLAB é$ use some func-
tionalities ofVeriSiMPL. We are planning to integrate them wihriSiMPL. Further-
more we will generalize the abstraction procedure to supperverification of any
LTL formula, i.e. not restricted to verification of virtuaéthy and backlog bounds.

Currently the procedure for computing the approximate temtuof finite-horizon
probabilistic invariance problem over SMPL systems is enpénted in some MAT-
LAB files. We are planning to integrate them wigAUST? [53]. FAUST? is a soft-
ware tool that generates formal abstractions of (possibiyaeterministic) discrete-
time Markov processes defined over uncountable (contirjstate spaces.

e Models. In this thesis we have extended the abstraction procedurBIRL sys-
tems to switching MiPL systems. There are some models tlatedated to MPL
systems, such as (stochastic) MiPL systems, (stochastitdhsng MPL systems
[109,1110], stochastic switching MiPL systems, (stocltdstiax-min-plus systems
[72, 99], (stochastic) max-min-plus-scaling systems [9if{proving the abstraction
procedure to those models and looking towards extensionswomodels is some-
thing we deem worth looking at.

e Applications. We have applied the abstraction techniques to verify soropgwr
ties of communication networks. We are looking for some nppliaations for our
techniques, such as optimal scheduling of multiple sheets printer [14], legged
locomotion [89] and systems biology [28]. In the long run, ave also interested in
large-scale applications such as railway network [68].
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List of Symbols and Notations

Below follows a list of the most frequently used symbols anthtions in this thesis.

a,a atomic proposition and set of atomic propositions resp.
a,al) amount of data arrivals in a communication network

a support parameter of the beta distribution

AA state matrix of MPL systems and of augmented MPL systems resp
A%) state matrix of SMPL systems

A collection of matrices used in PWA systems

1, a concrete and abstract invariant set resp.

Al state matrix of switching MiPL systems in modle

Act set of actions in transition systems

AP set of atomic propositions in transition systems

b burstiness parameter of an affine arrival curve

b support parameter of the beta distribution

B input matrix of MPL systems and backlog of a network
B() collection of Borel sets

Brmax Bmax backlog bounds

B1,B2,Bs3,... blocks

B collection of matrices used in PWA systems

B() input matrix of switching MiPL systems in mode

BB atomic proposition “the backlog is bounded By’

c cyclicity of state matrix in autonomous MPL systems

c rate parameter of a service curve and discontinuity point
C a Borel set

cf generic operator yielding the canonical form of DBM

C collection of states of transition systems

Cl atomic proposition “the input is conformant”

d delay parameter of a service curve and virtual delay

d time duration between consecutive events

Dmax Dimax virtual delay bounds

DB atomic proposition “the virtual delay is bounded B’
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proj
Paths
Post

Pr, Py, Ps,
Pre

da,da
Ok, 94—«

max-plus eigenspace and the bound of approximation error

abstraction function
tuple characterizing a block

tuple characterizing a region of PWA systems
continuous and discrete parts of a density function resp.
precedence (or communication) graph

content of the leaky bucket and Lipschitz constant
a constant

initial states of concrete and abstract transition syste&ss.
indicator function
image operator w.r.t. autonomous and nonautonomous miesgls

jump distance of a density function

discrete-event counter and index of partition sets
length of the transient part
there is no point iR" that can reach in ky steps or more

labeling function of concrete and abstract transitionesyst resp.

dimension of the input space
cardinality of the partition of invariant set
upper bound of a density function

dimension of the state space

number of modes in switching MiPL systems
event horizon

set of natural numbers, i.€1,2,3,...}

big O notation

orthogonal projection operator

set of all paths in transition systems

operator yielding the direct successors in transitionesyst
probability measure

operator yielding the direct predecessors in transitictesys

number of regions in PWA system generateddgndA resp.
number of DBM inxy andx_y for k € NU {0} resp.

rate parameter of an affine arrival curve

region of PWA systems and cumulative function of input flow
cumulative function of output flow

collection of regions used in PWA systems
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1RO ©—-N O >0om <™

binary relation
equivalence relation induced by
set of real number& U {—o}, andR U {40} resp.

concrete and abstract states of transition systems resp.
regular schedule
state space of concrete and abstract transition systems res

time and density function

distribution function

transition probability matrix of MC abstraction
set of traces of transition systems

concrete and abstract transition systems resp.

input vector of MPL systems
input space of MPL systems
set of possible inputs

value functions
matrix used to define the tuple

state vector of MPL systems

state vector of augmented MPL systems
state space of MPL systems

set of states in MPL systems and safe set
set of initial and final conditions

(forward) reach sets

backward reach sets

delay w.r.t. regular schedule

scalar, arrival curve, and shape parameter of beta dititsibu
scalar, service curve, and shape parameter of beta distribu
any arbitrary action variable

grid size parameter

zero (or neutral) element of the max-algebraic addition
the unit step function

max-plus eigenvalue

mean of an exponential distribution

partition of the state space

shift parameter of an exponential distribution

irrelevant action variable

LTL formula

max-algebraic and min-algebraic additions resp.
max-algebraic and min-algebraic multiplication resp.
zero (or neutral) element of min-algebraic addition
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D> {>,<,>,<}

— transition relation

2 power-set operator

[-] number of elements of a set and absolute-value operator
=, A,V Boolean operators: not, and, or

O,u,0,0 temporal operators: next, until, always, eventually

X cross product operator

o function composition operator

|X] smallest integer greater than or equakto

14 the mode of switching MiPL systems

List of Abbreviations

The following abbreviations are used in this thesis:

CTL Computation Tree Logic

DBM Difference Bound Matrices

LTL Linear Temporal Logic

MiPL Min Plus Linear

MPL Max Plus Linear

PCTL Probabilistic Computation Tree Logic
PWA Piecewise Affine

PWSA Piecewise Switched Affine

SMPL Stochastic Max Plus Linear



Samenvatting

Abstracties van Max-Plus-Lineaire Systemen

Max-plus-lineaire (MPL) systemen vormen een klasse vaorelis-gebeurtenissystemen
met een continue toestandsruimte die de tijdstippen vamderbggende opeenvolgende
discrete gebeurtenissen karakteriseert. Dit soort systarin geschikt voor het beschrijven
van de synchronisatie van de tijdstippen van parallellegssen. MPL systemen worden
gebruikt voor de analyse en planning van infrastructuuvagten zoals communicatie- en
spoorwegsystemen, productie- en fabricageprocesserolgische systemen. Stochasti-
sche max-plus-lineaire (SMPL) systemen vormen een uihrgivan MPL systemen waar-
in de tijdsverschillen tussen opeenvolgende gebeuremigekarakteriseerd worden door
probabilistische grootheden. In vergelijking met MPL gysen zijn SMPL systemen rea-
listischer voor praktische toepassingen zoals b.v. hetetlex@n van een spoorwegsysteem
waarin de rijtijld van een trein afhankelijk is van het gedvag de bestuurder, van weers-
omstandigheden of van het aantal passagiers op de stations.

Verificatie wordt gebruikt om vast te stellen of een gegewstieem bepaalde eigen-
schappen bezit die in formules zijn uitgedrukt. Een vooldéaervan is bereikbaarheids-
analyse (in het Engelsreachability analysjs wat een fundamenteel probleem is in het
domein van formele methoden, systeemtheorie en prestatibetrouwbaarheidsanalyse.
Bereikbaarheidsanalyse omhelst het bepalen of een bepsydteemtoestand haalbaar is
vanuit bepaalde initiéle systeemtoestanden.

Verificatietechnieken en -methoden voor systemen met eafigenantal toestanden
hebben in de afgelopen decennia brede aandacht gekregdin sterk ontwikkeld. In-
dien een systeem echter een groot aantal of zelfs oneindigaestanden heeft, kunnen
we dergelijke technieken in het algemeen niet direct tasgrasin dat geval is het nodig
om abstractietechnieken te gebruiken om een specifiek nfiodeéel om te zetten in een
eindige abstractie daarvan. Deze abstractie kan vervelaiomatisch geverifieerd worden
met behulp van resultaten uit de literatuur.

In dit proefschrift ontwikkelen we nieuwe abstractieteietiven voor MPL systemen en
passen we deze toe in communicatienetwerken. Daarnaastdeikrn we de bereikbaar-
heid van MPL systemen en abstractietechnieken voor SMREms. In het onderstaande
bespreken we kort de technieken die in dit proefschrift wardoorgesteld alsmede de toe-
passingen daarvan in communicatienetwerken.

e Eindige abstracties van MPL systemenWe beschouwen het volgende probleem:
gegeven een MPL systeem en een specificatie, bepaal of hesiitkem aan de spe-
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cificatie voldoet. De specificatie wordt uitgedrukt als eemfule in lineaire tijdslo-
gica (LTL). We stellen enkele algoritmen voor om abstracte genereren. Deze
algoritmen maken gebruik van differentie-begrensde medrdifference-bound ma-
trices- DBM) voor de representatie van gebieden en van stuksgeifigne piece-
wise affine- PWA) modellen voor de representatie van de MPL dynamica.[E&M

is een doorsnede van een eindig aantal halfruimtes die glelesiseerd worden door
het verschil tussen twee variabelen. Deze aanpak maakude shogelijk van al-
gemene eigenschappen van het originele MPL systeem doarmadelchecking—
equivalente logische specificaties van de abstractie tgéren. Meer specifiek tonen
we aan dat indien de abstractie voldoet aan de specificati®]BL systeem ook aan
deze specificatie voldoet.

e Bereikbaarheid van MPL systemen.We breiden de voor- en achterwaartse bereik-
baarheidsberekeningen voor MPL systemen beschreven ited®udur uit door een
willekeurige verzameling van respectievelijk begin- emdeiondities te beschouwen.
In beide gevallen zijn de systeemmatrices niet noodzékelgx-plus-inverteerbaar.
We gebruiken geoptimaliseerde datastructuren, zoals denigenoemde DBM, die
rekenkundig gemakkelijk gemanipuleerd kunnen worden. i¢fddn de toepassing
van bereikbaarheidsberekeningen toe bij de analyse vaeilifgheid en het transitie-
gedrag van MPL systemen. Ten slotte zetten we de voorwdasetsékbaarheidsbe-
rekeningen met succes af tegen een alternatieve aanpaklshseprd is op de vaak
gebruikteMulti Parametric ToolboXMPT) versie 2.

e Automatische verificatie van netwerkeigenschappenWe passen onze abstractie-
technieken toe om de grenzen te verifieren voobdeklogen voor de virtuele ver-
traging in een communicatienetwerk. Alhoewel zulke eigbappen reeds geana-
lyseerd kunnen worden met behulp van netwerkanalgséork calculuy ligt de
kracht van onze aanpak in zowel zijn totaal geautomatiseaadd als in het ope-
nen van de weg naar automatische verificatie van bepaaldeucnivatietopologién.
Voorbeelden hiervan zijn geaggregeerde stromen, waareteerkanalyse niet ge-
makkelijk kan omgaan. Daarnaast maakt het gebruik vanatigmethoden, zoals
die worden voorgesteld voor de automatische synthese gatsodtware, de gelijk-
tijldige verificatie van regel- en communicatiesoftware elgky.

¢ Eindige abstracties van SMPL systemenWe onderzoeken het gebruik van eindige

abstracties om probabilistische invariantieproblemen @ea eindige horizon voor
SMPL systemen op te lossen. Het probabilistische invaeprableem komt neer op
het bepalen van de kans dat aan de invariantie-eigenscloagh® toegestane be-
ginconditie voldaan is. Invariantie-eigenschappen lagstat een voorwaarde op de
toestanden en vereisen dat deze voorwaarde in probaulistzin van kracht is op
alle bereikbare toestanden. Omdat een analytische op¢pgan dit probleem in het
algemeen niet afgeleid kan worden, maken we gebruik vandiermbstractietech-
nieken uit de literatuur om een (kwantificeerbare) benatdir@plossing te bepalen
voor het probleem.

De in dit proefschrift ontwikkelde abstractie- en bereiitiseidsalgoritmen voor MPL
systemen zijn geimplementeerd als MATLABftware “ Verification via biSimulations of
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MPL model$ (VeriSiMPL, zoals in ‘very simplé), die vrij beschikbaar is om tdownloa-
denvan http://www.sourceforge.net/projects/verisimpl/.

Dieky Adzkiya
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Summary

Abstractions of Max-Plus-Linear Systems

Max-Plus-Linear (MPL) systems are a class of discretetesgstems with a continuous
state space characterizing the timing of the underlyingsetjal discrete events. These sys-
tems are predisposed to describe the timing synchronizb&tween interleaved processes.
MPL systems are employed in the analysis and schedulindrafsinucture networks, such
as communication and railway systems, production and naatwrding lines, or biological
systems. As a natural extension, Stochastic Max-Plusatif®@MPL) systems are MPL
systems where the delays between successive events aagetehiaed by random quanti-
ties. In practical applications SMPL systems are moresgalihan simple MPL ones: for
instance in a model for a railway network, train running tingepend on driver behavior,
on weather conditions, and on passenger numbers at stations

Verification is used to establish whether the system undesideration possesses cer-
tain properties expressed as formulae. As an example,abdithanalysis is a fundamental
problem in the area of formal methods, systems theory, arfdppeance and dependability
analysis. Itis concerned with assessing whether a cetatimaf a system is attainable from
given initial states of the system.

Verification technigues and tools for finite-state systemgehbeen widely investigated
and developed in the past decades. However, if the systera tsage number of states
or even infinitely many states, in general we cannot appl sechniques directly. In this
case we need to employ abstraction techniques to formadiiera concrete model to a finite
abstraction of it, which is then amenable to be automaticedtified by the relevant results
in the literature.

In this PhD thesis we develop novel abstraction techniqoeMPL systems, and use
them in an application to communication networks. Addititywe discuss reachability of
MPL systems and abstraction techniques for SMPL systems.vikeprovide a summary of
the techniques proposed in this PhD thesis and the applitstio communication networks:

¢ Finite abstractions of MPL systems.We consider the following problem: given an
MPL system and a specification, we determine whether the MBtem satisfies the
specification. The specification is expressed as a formulanigar Temporal Logic
(LTL). We propose some algorithms to generate abstractidhs algorithms utilize
Difference-Bound Matrices (DBM) for the representatiorr@dions and Piece-Wise
Affine (PWA) models for the representation of the MPL dynasnmi@ DBM is an
intersection of finitely many half-space representatitwas are characterized by the
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difference of two variables. This approach enables theystfideneral properties of
the original MPL system by verifying (via model checkinguaglent logical speci-
fications over the abstraction. More precisely we show thtaki abstraction satisfies
the specification, the MPL system also satisfies the spetifica

Reachability of MPL systems. We extend the forward and backward reachability
computations of MPL systems in the literature by considgan arbitrary set of ini-
tial and final conditions, respectively. Furthermore intbodses, the system matrices
do not necessarily have to be max-plus invertible. We empfiiimized data struc-
tures, such as the DBM used in the abstraction proceduresatiet are easy to ma-
nipulate computationally. We illustrate the applicatidrr@achability computations
over safety and transient analysis of MPL systems. Fina#lyswccessfully bench-
mark the forward reachability computations against an@dtiive approach based on
the well-developed Multi Parametric Toolbox (MPT) versin

Automatic verification of network properties. We apply our abstraction techniques
to verify bounds for backlog and virtual delay in a commutimanetwork. Although
such properties can already be analyzed using networklaaltools, the virtue of
our approach lies in its completely automated nature, anapining the door to
the automatic verification of certain communication togiés, e.g. flow aggregates,
which network calculus cannot easily cope with. Furthememtre use of abstraction
approaches similar to those proposed for the automatitisgist of control software,
enables the simultaneous verification of control and conication software.

Finite abstractions of SMPL systems.We investigate the use of finite abstractions
to study finite-horizon probabilistic invariance probleweo SMPL systems. The
probabilistic invariance problem amounts to determinhegrobability of satisfying
the invariance property for each allowable initial coratiti Invariance properties are
given by a condition on the states and require that the condiiolds (in probabil-
ity) over all the reachable states. In general an analysichltion of this problem
cannot be derived, thus we leverage formal abstractiomtguabs in the literature to
determine a (quantifiably) approximate solution of the peob

The abstraction and reachability algorithms for MPL systetaveloped in this thesis
have been implemented as a MATLAB software tool, “Verifioativia biSimulations of
MPL models” {/eriSiMPL, as in “very simple”), which is freely available for downkbat
http://www.sourceforge.net/projects/verisimpl/.

Dieky Adzkiya


http://www.sourceforge.net/projects/verisimpl/

Curriculum Vitae

Dieky Adzkiya was born on 17 May 1983 in Lamongan, Indonelie.received the B.Sc.
degree in September 2005 and the M.Sc. degree in October, BOG8 in mathematics
from the Sepuluh Nopember Institute of Technology, Surab&ydonesia. In June 2010,
he started his PhD study at the Delft Center for Systems amdr@oDelft University of
Technology, Delft, The Netherlands. His PhD project wasifed on providing abstraction
techniques for max-plus-linear systems. In 2013, he spemirzhs as a visiting scholar at
the Honeywell Prague Laboratory, Prague, Czech RepullceSune 2014, he is a post-
doc researcher at the Delft Center for Systems and Contedi, Dniversity of Technology,
Delft, The Netherlands. His research interests are in thlysis and verification of discrete-
event systems and in their applications.

119



	Preface
	Introduction
	Motivation
	Research Goals and Original Contributions
	Overview of the Thesis
	Publications by the Author

	Models
	Max-Plus-Linear Systems
	Related Models
	Min-Plus-Linear Systems
	Switching Min-Plus-Linear Systems
	Stochastic Max-Plus-Linear Systems
	Piecewise-Affine Systems
	Piecewise Switched Affine Systems

	Summary

	Finite Abstractions of Max-Plus-Linear Systems
	Related Work
	Preliminaries
	Difference-Bound Matrices
	Transition Systems
	Linear Temporal Logic
	Abstractions

	Autonomous Max-Plus-Linear Systems
	States: Partitioning Procedure
	Transitions: One-Step Reachability
	Bisimulation-Quotienting Procedure

	Nonautonomous Max-Plus-Linear Systems
	States: Partitioning Procedure
	Transitions: One-Step Reachability
	Bisimulation-Quotienting Procedure

	Implementation: VeriSiMPL
	Computational Benchmark
	Summary

	Reachability Analysis of Max-Plus-Linear Systems
	Related Work
	Forward Reachability Analysis
	Sequential Computation of the Reach Tube
	One-Shot Computation of the Reach Set

	Backward Reachability Analysis
	Sequential Computation of the Backward Reach Tube
	One-Shot Computation of the Backward Reach Set

	Applications
	Safety Analysis
	Transient Analysis

	Numerical Benchmark
	Implementation and Setup of the Benchmark
	Comparison with an Alternative Computation

	Summary

	Verification of Properties for Network Calculus Elements via Finite Abstractions
	Related Work
	Network Calculus
	Min-Plus State-Space Formulation
	Abstraction of Autonomous Switching Min-Plus-Linear Systems
	States: Partitioning Procedure
	Transitions: One-Step Reachability

	Formal Verification of Switching Min-Plus-Linear Systems
	Summary

	Finite Abstractions of Stochastic Max-Plus-Linear Systems
	Related Work
	The Probabilistic Invariance Problem
	Abstraction by a Finite State Markov Chain
	Quantification of the Abstraction Error
	Lipschitz Continuous Density Functions
	Piecewise Lipschitz Continuous Density Functions

	Summary

	Conclusions and Future Research
	Conclusions
	Recommendations for Future Research

	Bibliography
	Glossary
	Samenvatting
	Summary
	Curriculum Vitae

