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Chapter 1

Introduction

Most of the problems faced by today’s traffic networks are caused by the ever-increasing
usage of the traffic system. Traffic congestion is considered to be one of the prominent
issues that needs attention. Traffic control and management experts and policy makers have
come up with many possible solutions to solve the traffic congestion problem. Some of
these solutions focused either on increasing the number of roads or lanes to cope with the
demand, or on limiting the traffic demand by levying tolls and raising taxes for using the
system. Also, due to political concerns and feasibility constraints, both of these options
did not offer a promising solution. Another solution is to use the current system in a more
efficient way. This option offers high benefits and potential both on the short term and the
long term. This approach is worked out in this thesis, with a particular focus on the long
term.

In terms of conventional traffic control approaches, efficient utilisation is made possible
by controlling and managing the roadside infrastructure intelligently, which in turn can im-
prove the traffic performance. Currently, this intelligence is introduced in the traffic systems
by means of roadside based measures and control handles such as dynamic route guidance
panels, ramp metering systems, dynamic speed limits, and also by means of infrastructure
equipment such as sensors and actuators. Meanwhile, the other important element in the
traffic system — i.e., the vehicles — have become much more intelligent. By this intelli-
gence, we mean that the vehicles are equipped with a number of on-board sensors that help
in gathering information such as their position and speed, and with many fast devices that
process and present the obtained information in a meaningful and usable form [21]. These
techniques can then assist or control the driver actions to sustain a safe and better driving
operation.

The traffic management industry thus recognised the importance of the technologies
from the fields of telecommunication, control, and information sciences, and decided to put
them to use along with the current roadside infrastructure and equipment. This resulted in an
Intelligent Vehicle Highway System (IVHS) – a basic medium to distribute the intelligence
between vehicles and the roadside infrastructure, and to improve the traffic performance
in a reliable and efficient manner. This performance can be expressed in terms of safety,
throughput, travel time, fuel emissions, etc.

An IVHS is not a newly developed system, but a next level of traffic control and man-
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2 1 Introduction

agement approach that efficiently combines and coordinates systems in both the roadside
infrastructure and in the vehicles. In general, IVHS includes roadside-based activities such
as controlling and managing the traffic network, and vehicle-based activities such as con-
trolling and steering individual vehicles.

Intelligent Vehicles (IVs) in the IVHS can sense the driving environment using sensors
and can provide assistance to the driver (via warnings or advisories) or can take complete
control of the vehicle itself to achieve an efficient vehicle operation. These vehicle con-
trol systems can thus shift driving tasks such as steering, braking, and throttle control from
drivers to the on-board controllers in the vehicles. This complete control of driving tasks
leads to an automated driving, which in turn allows the vehicles’ activities to be fully con-
trolled by the traffic control and management systems. Such IVs with complete automation
also reduce the negative effects of driver delays and errors.

This fully automated handling of IVs allows the vehicles to be arranged in a closely
spaced group called platoons. In a platoon, the first vehicle is called a leader and the re-
maining are followers. In this approach, the vehicles travel as platoons on the highways with
high speeds. For safety reasons, larger distances are maintained between the platoons. The
vehicles inside the platoon maintain a small safety distance to avoid crashes between them.
By travelling at a high speed and with short distances between vehicles, more vehicles can
be accommodated on the network, which in turn also yields an improvement in the traffic
flow. Although the platooning approach offers a significant improvement in the traffic flow,
the implementation of this approach in practice was considered to be impossible in the
1990s. Due to the increasing penetration of advanced in-vehicle technologies in the market
and the availability of faster computers, we believe that the difficulties regarding safety, ac-
ceptance of automation, and legal issues can be handled in a much better way in course of
time, so that ultimately IVHS can actually be implemented and widely deployed in practice.

Till now, much attention has been given to the development of advanced vehicle control
systems and to conventional traffic control approaches. Although IVHS contain both road-
side infrastructure and IVs, the link that connects these elements has obtained less attention.
In this thesis we will address this issue and bridge this gap between the roadside infra-
structure and the automated IVs by developing a framework and approach for IVHS-based
traffic management and control that integrates roadside-based and IV-based traffic control
measures.

1.1 Motivation and goals

In this thesis, we will investigate the possibilities to implement a next generation traffic
control and management approach. This approach shifts away from a global roadside traffic
management to a more vehicle-based and user-specific network-based traffic management.
The primary areas of interest that served as a basis to our research involve the following
elements:

• IV-based traffic control measures,

• Control structure,

• Control methodology.

Based on this discussion, we will then formulate the objectives of this thesis.
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IV-based traffic control measures

Currently applied traffic control methods influence the traffic system solely using roadside-
based control tools. Although these conventional approaches are striving to improve the
performance of traffic systems, there is still plenty of room for new contributions.

On the other hand, a slow but steady deployment of IVs into the market has shown their
acceptance by the users and their effectiveness in assisting the driving operations in a more
safe and robust manner [22, 111, 151]. Some functionalities that currently exist and that are
available on the market are Adaptive Cruise Control (ACC) and dynamic route guidance.
As more and more vehicle support technologies that are intelligent enough are introduced
into the current system, we believe that IV techniques — when chosen and utilised properly
along with the conventional traffic control measures such as dynamic speed limits, route
guidance, ramp metering, lane closures, etc — have the potential to bring significant im-
provements to the existing traffic system.

Since we opt to use the IVHS approach, we will work with automated IVs in com-
bination with the platooning approach. Full automation of driving tasks in platoons can
enhance the performance of the traffic system. This envisioned improvement in the system
performance motivated us to use IV-based control handles and measures for traffic man-
agement and control purposes. These IV-based control measures will then act as a control
interface between the roadside infrastructure and the platoons of IVs. The roadside traffic
controllers will use IV control measures such as route guidance systems, Intelligent Speed
Adaptation (ISA) along with the conventional traffic control measures to control platoons
of IVs. In particular, every platoon leader is controlled by the on-board controller and
the rest of the vehicles in platoons follow their respective leaders. By this approach, the
intelligence is distributed between roadside traffic control measures and in-vehicle techno-
logies, and is integrated to provide a roadside-vehicle-specific management rather than just
a roadside-infrastructure management. Also, the IV measures should be selected such that
their functionality does not counteract with each other and also with the existing conven-
tional roadside control measures. Hence, the new set of all possible control measures should
be coordinated so as to serve the same objective.

Control structure

Having discussed the use of IV-based measures for traffic control and management pur-
poses, the next question that arises is how to develop a control methodology that can handle
and coordinate these control measures, and that can be implemented in a large-scale traffic
network. To obtain a tractable methodology, we should first select an appropriate control
structure to tackle a large-scale traffic problem [4]. In general, appropriateness of any con-
trol structure for a large-scale system can be analysed in terms of scalability, computational
complexity, communication overhead, and etc. Scalability refers to the ability of the struc-
ture to handle the growing size of the problem both in space and in time. The computational
complexity is analysed through the amount of memory and time required to solve the prob-
lem. Communication overhead is determined by the bandwidth requirements and by the
time involved in communications rather than in finding a solution for the problem. We will
classify the most commonly used control structures as follows:

• Centralised,
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agent 1

agent 2

supervisor 1 supervisor 2

high−level supervisor

agent 4

agent 3

agent 5

Figure 1.1: General representation of a hierarchical, distributed control structure

• Distributed,

• Hierarchical

Up to now, most control methods are based on a centralised control paradigm. However,
in practice, centralised control of large-scale traffic systems is often infeasible due to lack
of scalability, computational complexity, and communication overhead. For these reasons,
we prefer a distributed approach, which can overcome the shortcomings of the centralised
approach [52, 134]. In a distributed approach, the control problem is divided into many
subproblems, with each subproblem being managed by a local controller. The local con-
troller is responsible for the problems that occur in its area and it has the complete freedom
to choose the ways to solve the problems. Finally, all these subproblem solutions can be
summed up to yield the global solution. An additional advantage of a distributed control
approach us that it results in a controlled system that is more robust to system failures.

To control a large-scale traffic system, a distributed approach with hierarchical or multi-
layered structure can make the task of controlling manageable and can deal with the increas-
ing complexity of the system by adding layers, without changing the complete structure.
The key factors such as coordination and system tractability, offered by the hierarchical and
distributed control structure motivated us to use this approach for controlling a large-scale
traffic system. Such an approach is based on the principle of “divide and conquer” and al-
lows us to split the task of controlling the network into several subproblems (either at the
same level (for a distributed approach) or at several levels (for a hierarchical approach).
Thus, by deploying this structure, the activities of the local traffic centres can be coordin-
ated by a supervisory traffic centre and this will result in managing the traffic system in a
feasible manner. Such a multi-level control structure with local control agents at the lowest
level, and one or more higher supervisory control level, is shown in Figure 1.1.

For illustration purposes, let us apply these approaches to a communication network.
Consider a client-server system for watching online movies on the Internet based on a cent-
ralised design. As the number of users accessing the web site increases, the server gets
overloaded, faces buffering problems, and becomes too busy for further access. Thus the
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centralised system cannot serve the users when the demand is large. To solve this, one
can make use of peer-to-peer networks, and this network can be viewed as a distributed
system. This approach provides a reliable operation even when the number of users that
simultaneously access the system increases, as the resource can be found in various peers
without relying on a centralised server. In a distributed approach, the failures that occur in
one subsystem can be dealt with without causing much problems to the other subsystems in
the network that are coupled to the faulty subsystem. Hence, a single point of failure in the
system is avoided in the distributed system.

While applying these approaches to control and to manage a large-scale traffic system,
a centralised approach will face similar problems as in the client-server system and might
produce infeasible solutions. Hence, we prefer to use a distributed control approach. This
approach will then have local traffic control centres operating at main cities and these centres
are responsible for controlling the traffic activities in their respective areas. However, when
a local controller has an unresolved problem, or two traffic control centres have to share
the same resources, then the involved control centres should not affect other neighbours
with their adverse effects. In these cases, coordination plays a key role to obtain a peaceful
and fruitful agreement among the neighbours, and this process can be carried out by a
supervisory controller through communications and negotiations.

Control methodology

Now moving on to the actual control methodology, the control design should be flexible and
adaptable to dynamic changes in the demands and working conditions, and in the structure
of the system. The changes in the system behaviour can be caused by unexpected events
such as incidents or accidents on the highways. Usually, the demand and traffic conditions
are time-variant and characterised by a high degree of uncertainty. Hence, static or fixed
control strategies usually do not suit our purpose, and an adaptable, robust, and feedback-
based control method is required. In traffic control, the process of feedback is considered as
an essential property to handle unknown disturbances that act on the system in time and to
reduce their negative effects.

Due to platoon-specific management, the possible combinations of control measures
that a roadside traffic controller has to consider can be an integer or a real-valued problem
or a combination of both. These combinations can make the traffic problem much more
complex. In general, the control method should be able to handle this complexity, to deal
with multiple objective functions, and to satisfy those constraints that are imposed on the
system while determining optimal solutions for the problem. The resulting multi-objective
constrained control or optimisation problem should result in optimal values for and coordin-
ation of the selected control measures.

All these requirements lead us to choose a control technique that is advanced, robust,
adaptive, predictive, and model-based, and that can operate in real-time. Our work is in-
spired by the work of Papageorgiou and his co-workers [90, 93, 104] and of Bellemans and
Hegyi [17, 18, 64, 66, 67], where a model-based approach such as Model-based Predict-
ive Control (MPC) is used for traffic control and management. The traffic controller uses
MPC for predicting the future behaviour of the system due to external inputs and demands,
and for predicting the effects of various control measures on the system. The underly-
ing concept of the MPC controller is based on on-line optimisation and uses an explicit
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prediction model to obtain the optimal actions for the control measures subject to system
dynamics and constraints. However, this technique also comes with its own advantages and
disadvantages: The advantage is that the MPC is a feedback control algorithm which can
handle constrained, complex dynamical systems. However, since it is a model-based ap-
proach, certain criteria on the model need to be satisfied. The model that will be used for
prediction purposes should be fast, does not need to represent fine details of the system, but
should reproduce the traffic evolution with a sufficient degree of accuracy. We will discuss
these issues in more detail in the next chapters.

Goals

The goals of this thesis are to design a framework to control large-scale traffic networks
using a multi-level control structure and to determine a tractable control design methodology
for use within this framework. In particular, our framework will be designed to suit a variant
of the IVHS setup. The IVHS set-up we consider in addition uses the monitoring and control
capabilities offered by automated IVs that support the platooning approach and combines
them with conventional traffic control measures. Once the framework is designed, we will
develop a structured and tractable design methodology for robust control of the IVHS.

Our focus will be on traffic control and management strategies for the IVHS, with spe-
cial attention at the roadside infrastructure. We are mainly interested in developing ways
to design an appropriate distributed, hierarchical control structure for our IVHS, to determ-
ine control design methods that can integrate the IV-based techniques along with existing
traffic control measures, to adapt the currently used control measures to fit the new IVHS
framework, and also to make a selection of control methods that are suitable to be applied
at different levels of control. A detailed analysis of the performance and complexity of the
methods and of the resulting controllers has to be made using relevant case studies.

Furthermore, we have made some assumptions in our work. We will not deal with legal
and user acceptance issues of the new system, and neither with the development of protocols
for communication and coordination purposes. We also assume that the automated IVs
and the roadside infrastructure are equipped with the necessary communication and control
components to provide and respond to the roadside-IV control measures. Also, we assume
that the vehicle and platoon controllers to be present and designed according to literature
[77, 139, 147].

1.2 General overview of the thesis

In this section, we give an overview of the topics that will be dealt with in each chapter of
this thesis. In particular, Section 1.2.1 provides a brief summary of the contents of each
chapter, and briefly discusses the contributions made by this thesis to the state-of-the-art.
Next, the road map in Section 1.2.3 guides the readers to understand the structure of the
thesis.

1.2.1 Outline of the thesis

In this thesis, we propose a multi-level framework for IVHS-based traffic management and
control. In particular, we will implement IV-based control design methods at different levels
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of the roadside infrastructure in our new IVHS-framework and analyse their potential con-
tribution to improve the performance of the system. This thesis is organised as follows:

• Chapter 2 deals with two main streams of topics. First, we give an overview of
control design methodologies that are most often used to control the traffic on high-
ways. Most of the control methods that have been presented in the literature deal
with vehicles that are driven by humans. On the basis of this survey, we make a com-
parative analysis of these methodologies and also sketch how these methods could
fit in an IVHS-based traffic control framework. Next, we discuss intelligent vehicles
and describe how the IV-based control measures and handles can be used to improve
the traffic flow. Subsequently, we discuss various existing traffic management ar-
chitectures for IVHS such as PATH, Dolphin, Auto21 CDS, CVIS, SafeSpot, and
PReVENT. As a result of the survey on IVs and IVHS-frameworks, we provide a
qualitative comparison of these frameworks based on their strong and weak points.
The last section of the chapter discusses some open issues regarding IVHS as well as
the practical challenges in their deployment.

• Subsequently in Chapter 3, we introduce a new framework for IVHS that meets our
goals stated in Section 1.1 and that considers and combines the strong points of other
existing IVHS-based control architectures discussed in Chapter 2. Our new frame-
work is capable of distributing the intelligence between vehicles and roadside infra-
structure, and integrates IV-based measures and the conventional roadside traffic con-
trol measures. We describe the main features of our new multi-level framework and
also sketch the contributions that our approach can provide for the improvement of
traffic performance. Our framework also allows vehicle-vehicle and vehicle-roadside
communications. Due to the legal and practical acceptance of this system and imple-
mentation issues that may be involved, we can say that the newly proposed frame-
work, in general, is a research result aimed at the future.

• In Chapter 4, we specifically focus on the roadside controller, which integrates the
identified IV-based control measures and conventional traffic control measures, and
which assigns traffic control actions based on the platooning approach. The imple-
mentation of this controller is the first and crucial step towards the deployment of our
framework. The actual control strategy that will be used by the controller is the MPC
approach. Each roadside controller will control a stretch of a highway in the network
and it will provide optimal control commands such as dynamic speed limits, lane al-
locations for each platoon on the highway stretch, and release times for the platoons
at on-ramps. These commands are then realised by the platoons of automated IVs on
the highways by means of Intelligent Speed Adaptation (ISA), Adaptive Cruise Con-
trol (ACC), and other necessary sensors and communication protocols. To analyse
the potential benefits of the new framework, we compare the proposed approach both
for traffic scenarios with human driven IVs and with IV-based platoons.

• Next, we move up one level in the hierarchical IVHS-based traffic control framework .
In Chapter 5, we deal with the area controller, which controls a set of interconnected
highways and which coordinates the activities of various roadside controllers in its
area. The area controller is responsible for assigning optimal routes to the platoons
in the IVHS. Since in general the optimal routing problem results in a mixed-integer
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problem, which is hard to solve, we propose two approximate models (one solely
based on flows and queue lengths, and one that is an adaptation of METANET, a
macroscopic traffic flow model for human drivers, to the case of platoons of intelligent
vehicles). This results in simplified but fast simulation models that — when used for
optimal routing — yield mixed-integer linear or nonlinear real-valued optimisation
problems, for both of which efficient solvers exist.

• Chapter 6 considers an intermediate situation between the current conventional
traffic management and system and the fully automated IVHS-based traffic manage-
ment system of the future. In this chapter, we primarily investigate the possibility
of using semi-autonomous vehicles with advanced in-car systems for traffic control.
For illustrating such a system, we consider a traffic system with vehicles that are
equipped with fully autonomous ACC and advisory ISA. However, in contrast to the
system considered in Chapters 3, 4, and 5, these vehicles do not travel in platoons.
In this set-up the roadside controller calculates the dynamic speed limits and issues
these limits using the speed limit display panels. We use a traffic simulation software
package PARAMICS to represent the current traffic system, and we develop plug-
ins to program the behaviour of the partially automated vehicles and their react to
the control measures. Matlab is chosen as the software environment to implement
the roadside controller. Since there is no existing interface between the two software
programs, we create a plug-in to connect Matlab and PARAMICS. We then consider
various scenarios in which we investigate and compare the effect of control on a traffic
system driven by humans only and on a system with semi-automated IVs only.

• Finally, Chapter 7 summarises the main contributions of this thesis, followed by
some suggestions for future research.

Some of the material included in this thesis has already been published. In particular,
Chapter 3 is based on [9, 10, 16], Chapter 4 is based on [11–15], and Chapter 6 is based on
the MSc thesis of Mernout Burger [29].

1.2.2 Main contributions

The contributions of this thesis to the state-of-the-art are:

• The study and analysis of the existing IVHS frameworks. Using a general structure
of the IVHS traffic system, and based on the comparative analysis of the control
approaches, we also suggest which control methodologies can be used at different
levels of the framework.

• The development of a new multi-level IVHS framework that distributes the intelli-
gence between roadside and platoons of automated IVs and that uses IV-based control
measures for controlling and managing the traffic system.

• The development of a control approach based on model-based predictive control that
can be used by the roadside and area controllers and that allows to integrate and
coordinate various IV-based and roadside control measures such as ramp metering,
dynamic speed limits, route guidance, etc.
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Figure 1.2: A road map for the chapters

1.2.3 Road map

Figure 1.2 illustrates the organisation and the relations between the chapters of the thesis
and also represents the way in which the chapters can be read. Some of the chapters of
the thesis, viz. Chapters 4, 5, and 6 are written in such a way that the reader can read and
understand that chapter independent of other chapters. These chapters are self-contained
in the sense that they briefly recapitulate all the material of the preceding chapters that is
necessary to understand the contents of that particular chapter.

Before starting to read the thesis, we recommend the reader to have a first glance at the
basic structure of the thesis. The chapters can be read by following the flowchart shown
in Figure 1.2. Chapter 1 gives a general introduction to the topics dealt in this thesis and
puts emphasis on the research problem and goals. In Chapter 2 we discuss the state-of-the-
art of the conventional control methodologies and the control architectures, particularly for
IVHS-based traffic management. We suggest the reader to go through Chapter 3, as this
chapter introduces our newly proposed IV-based framework and gives a description of con-
trol responsibilities assigned at each level of the proposed framework. The self-contained
Chapters 4 and 5 also briefly summarise our newly proposed IVHS-framework and mainly
focus on issues related to implementation of the control approaches at the roadside control-
ler and area controller respectively. Chapter 6 is a different genre compared to Chapters 4
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and 5, as this chapter shows the possibility of implementing IV systems in the current traffic
system. Chapter 7 summarises the contributions of this thesis and gives directions for future
research.



Chapter 2

Traffic Management and

Intelligent Vehicle Highway

Systems: State-of-the-Art

Traffic congestion in highway networks is one of the main issues to be addressed by today’s
traffic management schemes. Automation combined with the increasing market penetra-
tion of on-line communication, navigation, and advanced driver assistance systems will
ultimately result in intelligent vehicle highway systems (IVHS) that distribute intelligence
between roadside infrastructure and vehicles and that — in particular on the longer term —
are one of the most promising solutions to the traffic congestion problem. In this chapter,
we present a survey on traffic management and control frameworks for IVHS. First, we give
a short overview of the main currently used traffic control methods for freeways. Next, we
discuss IVHS-based traffic control measures. Then, various traffic management architec-
tures for IVHS such as PATH, Dolphin, Auto21 CDS, etc. are discussed and a comparison
of the various frameworks is presented. Finally, we sketch how existing traffic control meth-
odologies could fit in an IVHS-based traffic control set-up.

2.1 Introduction

Due to the ever-increasing traffic demand, modern societies with well-planned road man-
agement systems, and sufficient infrastructures for transportation still face the problem of
traffic congestion. This results in loss of travel time, and huge societal and economic costs.
Constructing new roads could be one of the solutions for handling the traffic congestion
problem, but it is often less feasible due to political and environmental concerns. An altern-
ative would be to make more efficient use of the existing infrastructure. In this chapter, we
will consider the latter approach with a special focus on freeway traffic management and
control.

Traffic management and control approaches are used to control the traffic flows and to
prevent or reduce traffic jams, or more generally to improve the performance of the traffic
system. Possible performance measures in this context are throughput, travel times, safety,

11
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fuel consumption, emissions, reliability, etc. Currently implemented traffic management
approaches primarily make use of roadside-based traffic control measures (such as ramp
metering, traffic signals, dynamic route information panels, and dynamic speed limits) and
infrastructure-based equipment (including sensors and traffic control centres). These meas-
ures and the corresponding equipment will be indicated by the term “roadside infrastruc-
ture” in the remainder of the chapter.

As an extension to the current traffic control approaches, advanced technologies in the
field of communication, control, and information systems have been combined with the
existing transportation infrastructure and equipment [80]. This marks the emergence of a
next level/next generation of traffic control and management approaches and serves as the
motivation for “Intelligent Transportation Systems” (ITS) or “Intelligent Vehicle Highway
Systems” (IVHS) [50, 136]. ITS/IVHS incorporate intelligence in both the roadway infra-
structure and in the vehicles with the intention of reducing congestion and environmental
impact, and of improving traffic performance, by exploiting the distributed nature of the
system and by making use of cooperation and coordination between the various vehicles
and the various elements of the roadside infrastructure. In the remainder of this chapter, we
will use IVHS as a generic word to indicate these systems.

IVHS comprise traffic management systems, driver information systems, and vehicle
control systems. In particular, these vehicle control systems are aimed at developing an
automated vehicle-highway system that shifts the driver tasks from the driver to the vehicle
[149]. These driver tasks include activities such as steering, braking, and making control
decisions about speeds and safe headways. Automated Highway Systems (AHS) go one step
further than IVHS and involve complete automation of the driving task. For better (network-
wide) coordination of traffic activities, AHS also distribute the intelligence between the
vehicles and the roadside infrastructure. In this chapter, we will focus on AHS and on the
relations and interactions between the vehicles in the AHS and the roadside infrastructure.
In particular, we will consider the control aspects of these systems.

An important component of IVHS and AHS are the intelligent vehicles (IVs), which
sense the environment around them using sensors (such as radar, lidar, or machine vision
techniques) and strive to achieve more efficient vehicle operation either by assisting the
driver (via advisories or warnings) or by taking complete control of the vehicle (i.e., par-
tial or full automation) [21]. These IVs also support vehicle-vehicle and vehicle-roadside
communication.

Based on the extent to which the roadside and vehicle could work together (without
human driver intervention), we can discern different types of AHS [37, 75] as follows:

• Autonomous vehicle systems: Vehicles are equipped with sensors and computers
to operate without roadside infrastructure assistance and without coordination with
neighbouring vehicles.

• Cooperative vehicle systems: Vehicles use sensors and wireless communication tech-
niques to coordinate their manoeuvres with neighbouring vehicles without any road-
side intervention.

• Infrastructure-supported systems: Vehicles communicate with each other and
guidelines for decision making purposes are provided by the roadside infrastructure.
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• Infrastructure-managed systems: Vehicles indicate their desired actions such as lane
changes, exits, and entries to the roadside infrastructure. The roadside system then
provides the instructions for inter-vehicle coordination of these manoeuvres.

• Infrastructure-controlled systems: The roadside infrastructure takes entire control of
the vehicle operations, monitors the traffic, and optimises the vehicle operations in
such a way that the network is utilised as well as possible.

Each of these categories is characterised by its own time scale and the “region” covered,
i.e., the number of other vehicles and traffic control measures involved in the process. In
this context autonomous and cooperative systems typically operate in the milliseconds to
seconds range and cover small groups of neighbouring vehicles. On the other hand, the
infrastructure-based systems (i.e., managed and controlled) typically work in the seconds to
hours range and involve a much larger number of vehicles and several freeway links or even
entire freeway networks.

The objectives of this chapter are twofold. The first objective is to provide a survey
of traffic control frameworks for IVHS that integrate the intelligence of both the roadside
infrastructure and the IVs to improve the traffic performance. The second objective is to
discuss the potential application of control design methods that are currently used for traffic
control purposes to IVHS-based traffic management and control systems. More specifically,
this chapter is organised as follows. Section 2.2 presents an overview of the current control
methods that are applied for traffic control and management. In Section 2.3 we give an
overview of intelligent vehicles and IV-based control measures. In Section 2.4 we present
existing IVHS frameworks that combine roadside infrastructure and vehicles for efficient
traffic management, and in Section 2.5 we provide a comparative analysis of these frame-
works. Finally, Section 2.6 briefly sketches how the currently used control design methods
presented in Section 2.2 could potentially be applied in these IV-based traffic control frame-
works. This section also presents topics for future work.

2.2 Control design methods

In the literature different control methodologies have been presented for controlling and
managing a traffic network in which vehicles are driven by humans [43, 81, 114]. In this
section, we will discuss the control design methodologies for freeway traffic control that are
currently most often used in practice such as

• Static feedback control,

• Optimal control and model predictive control,

• Artificial intelligence (AI) techniques.

Throughout this section, we will consider ramp metering as a typical application for freeway
traffic control and use it to illustrate the different control methods on a common example.
Note, however, that the methods can also be used for other traffic control measures such as
variable speed limits, lane closures, shoulder lane openings, etc.



14 2 State-of-the-Art

q q

d

section in cap

ramp meter
on−ramp

w

o

o

o

o

r

Figure 2.1: Ramp metering

Ramp metering

Ramp metering [88, 112, 140] is a traffic control measure that can be applied at the on-
ramps of freeways and that is basically implemented via traffic signals located at the freeway
entrances. The purpose of a ramp metering installation is to regulate the flow of traffic that
is allowed to enter the freeway from the on-ramp such that the freeway capacity is utilised
efficiently.

For example, let us consider a freeway section with a mainstream origin and an on-ramp
origin. The on-ramp origin o is receiving a traffic demand do (veh/h). Let ro (veh/h) be the
ramp flow admitted by the traffic signal, let qcap be the freeway capacity (veh/h), and let
qin be the upstream freeway flow (veh/h). When traffic congestion occurs, the maximum
outflow from the traffic jam qcon (veh/h) is usually less than when compared to free-flow
traffic qcap. This phenomenon is called capacity drop [58, 102] and should be prevented
whenever possible. If no ramp metering is applied, then there is a possibility for congestion
on the freeway due to the on-ramp vehicles in case the demand do and the upstream flow
qin are high. Using ramp metering, breakdown of the flow can be avoided and the outflow
can be kept at a high level due to prevention of capacity drop, which in its turn can reduce
the amount of time spent by the vehicles in the network. Obviously, applying ramp meter-
ing could result in a queue with queue length wo on the on-ramp as shown in Figure 2.1.
Hence, a trade-off has to be maintained between reducing the congestion on the freeway
and keeping the on-ramp queues short.

The control methods we discuss below are operating in discrete time. This means that
at each sample time instant t = kT where T is the sampling interval and the integer k is the
discrete-time sample step, measurements of the traffic are performed and fed to the traffic
controller. The controller then uses this information to determine the control signal to be
applied during the next sampling interval.

2.2.1 Static feedback control

General concepts

Dynamical systems can be controlled in two ways: using open-loop control and using
closed-loop control. In an open-loop system, the control input does not depend on the
output of the system, whereas in a closed-loop system, the control action is a function of the
output of the system. Feedback or closed-loop control systems are suited for applications
that involve uncertainties or modelling errors.
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In “static1” feedback control methods, the controller gets measurements from the system
and determines control actions based on the current state of the system in such a way that the
performance of the system is improved. The main examples of static feedback controllers
are state feedback controllers (where the feedback gain can be computed using, e.g., pole
placement) and PID controllers (for which several tuning rules exist, such as the Ziegler-
Nichols rules) [3]. However, the static feedback strategy in general does not handle any
external constraints. This is a major drawback of this control scheme.

Control application for conventional traffic

A ramp metering system based on static feedback derives control actions (the metering
rates) using real-time traffic measurements collected from the vicinity of the ramp meter.
The two main local ramp metering strategies that use static feedback are [117, 135]:

• The demand-capacity strategy,

• ALINEA.

The demand-capacity strategy can be formulated as follows (see also Figure 2.2(a)):

ro(k) =

{

qcap − qin(k − 1) if oout(k) ≤ ocr

qmin otherwise

where ro(k) is the flow rate on the on-ramp at sample step k, oout(k) is the freeway occu-
pancy2 downstream of the on-ramp, ocr is the critical occupancy at which the traffic flow
tends to be at its maximum, and qmin is the prespecified minimum ramp flow value. This
strategy determines the flow rate value as the difference between the downstream capacity
and the upstream flow, until the critical occupancy is reached. Once this critical occupancy
is reached, the on-ramp flow rate is reduced to a minimum value to prevent the occurrence
of congestion. Also this demand strategy attempts to solve or to prevent the congestion
problem only after the freeway is operating at its maximum usage.

One of the best known ramp metering strategies is ALINEA [117] (or one of its exten-
sions such as the METALINE algorithm [116]). The basic ALINEA strategy is a closed-
loop algorithm that determines the ramp metering rate in such a way that the downstream
occupancy from the on-ramp is kept at a desired or prespecified value oset (see also Figure
2.2(b)):

ro(k) = ro(k − 1)+ Kr(oset − oout(k))

where ro(k) is the flow rate on the ramp at sample step k, oout(k) is the freeway occupancy
downstream of the ramp, and Kr is a regulator parameter. One of the difficulties of this
method is the determination of appropriate set-points.

Although the static feedback control strategies discussed above are based on real-time
measurements, they are implemented at a local level only, based on the information that is
obtained locally (i.e., in the vicinity of an on-ramp).

1By “static” we mean here that the control parameters of the feedback controller are taken to be fixed.
2The occupancy o of a highway or a lane can be defined as the fraction of time that the detector is occupied by

every individual vehicle.
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Figure 2.2: Demand-capacity strategy and ALINEA. The dashed line in Figure 2.2(a) indic-

ates that this measurement is used for comparison only.

2.2.2 Optimal control and model predictive control

Now we discuss two dynamic control methods that apply optimisation algorithms to determ-
ine optimal control actions based on real-time measurements: optimal control and model
predictive control.

General concepts

General concepts of optimal control

Optimal control determines a sequence of admissible control actions that optimise a per-
formance function by considering future demands and by satisfying the constraints [33, 85,
137]. A general discrete-time optimal control problem contains the following elements:

1. Dynamical system model equations,

2. An initial state x0,

3. An initial time t0,

4. Constraints,

5. Measurements,

6. A performance index J.

More specifically, consider a multi-input multi-output dynamical system expressed by the
following equation:

x(k + 1) = f(x(k),u(k),d(k))

where x ∈ R
n is an n-vector of states, u ∈ R

m is an m-vector of manipulatable control inputs,
f is a continuously differentiable function, and d is the disturbance vector.

For a given time horizon K, the optimal control problem consists in determining a se-
quence of control vectors u(0),u(1), . . . ,u(K − 1) in such a way that the performance index
J takes on the minimum possible value subject to the initial conditions, system dynamics,
and constraints, i.e.,
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Minimise

J = ϑ[x(K)]+
K−1

∑
k=0

ϕ[x(k),u(k),d(k)]

subject to

x(0) = x0

x(k + 1) = f(x(k),u(k),d(k)) for k = 0, . . . ,K − 1,

umin(k) ≤ u(k) ≤ umax(k) for k = 0, . . . ,K − 1,

c(x(k),u(k),k) ≤ 0 for k = 0, . . . ,K − 1,

where ϑ and ϕ are twice differentiable, nonlinear functions and are called the terminal cost
and Lagrangian respectively, umin and umax are bounds for the control variables, c expresses
path constraints imposed on the state x, and the control trajectories u and the disturbance
vector d are assumed to be known over the period [k,k + KT ] for k=0,. . . ,K − 1. Thus the
performance criterion depends on the initial state, and the whole time history of the system’s
state and the control variables. There are two basic approaches to solve the above optimal
control problem: calculus of variations [56, 69] and dynamic programming [19].

The main drawback of optimal control is that the method is essentially an open-loop
control approach and thus suffers from disturbances and model mismatch errors. Next, we
will discuss model predictive control, which uses feedback and a receding horizon approach
to overcome some of the drawbacks optimal control.

General concepts of model predictive control

Model Predictive Control (MPC) [30, 101, 123] has originated in the process industry and
it has already been successfully implemented in many industrial applications. MPC is a
feedback control algorithm that can handle constrained, complex dynamical systems [35,
38]. The main difference between optimal control and MPC is the rolling horizon approach
used in MPC (this essentially means that the optimal control is performed repeatedly but
over a limited horizon). On the one hand, this results in a suboptimal performance compared
to optimal control (at least in the absence of disturbances). However, on the other hand, the
rolling horizon approach introduces a feedback mechanism, which allows to reduce the
effects of possible disturbances and of model mismatch errors.

The underlying concept of the MPC controller is based on on-line optimisation and
uses an explicit prediction model to obtain the optimal values for the control measures
subject to system dynamics and constraints. At each time step k, the MPC controller first
measures or determines the current state x(k) of the system. Next, the controller uses (on-
line) optimisation and an explicit prediction model to determine the optimal values for the
control measures over a given prediction period determined by the prediction horizon Np

(see Figure 2.3(b)). In order to reduce the computational complexity of the problem, one
often introduces a constraint of the form u(k + j) = u(k + j − 1) for j = Nc, . . . ,Np − 1, where
Nc is called the control horizon.

The optimal control inputs are then applied to the system in a receding horizon approach
as follows. At each control step k only the first control sample u∗(k) of the optimal control
sequence u∗(k), . . . ,u∗(k + Nc − 1) is applied to the system. Next, the prediction horizon
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Figure 2.3: Model predictive control

is shifted one step forward, and the prediction and optimisation procedure over the shifted
horizon is repeated using new system measurements.

MPC for linear systems subject to a quadratic objective function and linear constraints
can be solved using quadratic programming. Other types of MPC problems in general
require global or multi-start local optimisation methods such as sequential quadratic pro-
gramming, pattern search, or simulated annealing [118].

Just as optimal control MPC can take into account constraints on the inputs and outputs,
and it can also deal with multi-input multi-output systems. MPC has an advantage over
optimal control due to receding horizon approach. This feedback mechanism of MPC makes
the controlled system more robust to uncertainties and disturbances. Nevertheless, MPC
still has some of the drawbacks of optimal control such as computational complexity, the
need of an explicit model for prediction purposes, and the fact that the external inputs and
disturbances need to be known fairly accurately in advance for the entire prediction horizon.

Control application for conventional traffic

Optimal control can be applied to ramp metering as follows [89, 91, 92]. A second-
order macroscopic METANET model can be used to model a freeway traffic system. The
METANET model represents a network as a directed graph with links (corresponding to
freeway stretches with uniform characteristics) and vertices (corresponding to on-ramps,
intersections, etc.). In METANET each link is divided into segments. The state vector x

for the control problem consists of densities ρm,i, and mean speeds vm,i of every segment i

of every link m, and queue lengths wo at every origin o of the network. The control vector
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u consists of the ramp metering rates ro of every on-ramp o under control. The process
disturbance vector d contains demands do at the origin links. All these values are assumed
to be known over the entire simulation period. When controlling traffic, the controller needs
to have a goal or objective to achieve, such as minimising the total time spent in a traffic
network, minimising the total distance travelled, minimising the total fuel consumption,
minimising the queue lengths, maximising the safety of vehicles in the network, etc., or a
combination of these objectives.

Using the optimal control algorithm, the controller computes the optimal control values,
based on the assumed demands do. In reality, these demands cannot be known in advance.
However, often the future demand can be estimated reasonably well from upstream and
downstream measurements in combination with historical data.

MPC for ramp metering and for conventional road-side based non-IV traffic manage-
ment has been developed and implemented in [18, 66, 67]. In their research, similar models
as described for optimal control approach are considered for MPC approach. The optimisa-
tion problem can be solved in the same way as for optimal control. The main differences
between the optimal approach and that in MPC is that a shorter control horizon is used —
such that the control signals (in this case, the metering rates ro of every on-ramp o under
control) are allowed to vary till the control horizon, after which the rates are taken to remain
constant (till the prediction horizon), — and that the optimal control inputs are applied in a
moving horizon scheme. The latter feature results in a more robust operation of the traffic
control system.

2.2.3 Artificial intelligence techniques

General concepts

Artificial Intelligence (AI) techniques aim at enabling intelligence in machines to solve a
problem using human intelligence and thinking. By human intelligence, we mean that the
ability of computer programs to perceive a situation, to reason about the problem, and to act
accordingly [154]. AI techniques are mainly used in decision support systems, and one way
to classify them is as follows [36, 110, 126, 138, 154]:

• Case-based reasoning,

• Fuzzy logic,

• Rule-based systems,

• Artificial neural networks,

• Multi-agent systems,

• Genetic algorithms,

• Swarm intelligence,

• Reinforcement learning.
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In this thesis, we will briefly discuss on case-based reasoning, fuzzy logic methods, rule-
based systems, artificial neural networks, and multi-agent systems. For rest of the AI tech-
niques, the interested readers are suggested to refer the above mentioned references.

Case-based reasoning, as the name suggests, solves a problem using the knowledge that
was gained from previously experienced similar situations (cases) [1, 126]. In this way,
this technique learns the way a new problem is solved, tests the proposed solution using
simulation methods, and stores the new solution in a database. A disadvantage of this
approach is that it might not be clear what should be done for a case that is not yet present
in the case base. However, new cases could be added on-line to deal with this problem.

Fuzzy logic systems, like humans, can handle situations where the available informa-
tion about the system is vague or imprecise [86, 110]. To deal with such situations, fuzzy
sets are used to qualify the variables of the system in a non-quantitative way. Fuzzy sets
are characterised using membership functions (e.g. Gaussian, triangle, or normal) that take
a value between 0 and 1, and that indicate to what degree a given element belongs to the
set (e.g., a speed could be 60 % “high” and 40 % “medium”). The membership degrees can
then be used to combine various rules and to derive conclusions. This process consists of
three parts: fuzzification, inference, and defuzzification. Fuzzification involves the trans-
formation of a value of a variable into a fuzzy value, by linking it a given fuzzy set and
determining a value for degree of membership. Inference uses a set of rules based on ex-
pert opinions and system knowledge and combines them using fuzzy set operators such as
complement, intersection, and union of sets. Defuzzification converts the fuzzy output of
the inference step in to a crisp value using techniques such as maximum, mean-of-maxima,
and centroid defuzzification. One of main difficulties of a fuzzy system can be the selection
of appropriate membership functions for the input and output variables. Moreover, fuzzy
systems are often combined with other AI techniques for their complete deployment.

Rule-based systems solve a problem using “if-then” rules [62, 129]. These rules are
constructed using expert knowledge and stored in an inference engine. The inference en-
gine has an internal memory that stores rules and information about the problem, a pattern
matcher, and a rule applier. The pattern matcher searches through the memory to decide
which rules are suitable for the problem, and next the rule applier chooses the rule to apply.
These systems are suited to solve problems where experts can make confident decisions.
However, this system works only with already created rules and in its basic implementation
it does not involve learning.

Artificial neural networks try to mimic the way in which the human brain processes
information [61, 157]. These systems are useful in solving nonlinear problems where the
rules or the algorithm to find solutions are difficult to derive. The basic processing unit of
a neural network is called neuron or node. Each node fires a new signal when it receives a
sufficiently high input signal from the other connected nodes. These nodes are organised in
layers (an input layer, an output layer, and a number of hidden layers) and are interconnected
by links or synapses, each associated with weights. A disadvantage is that artificial neural
networks are non-informative models, and do not provide an explanation for the outcomes
or for any failure that may occur in the process.

An agent is an entity that can perceive its environment through sensors and act upon
its environment through actuators in a such way that the performance criteria are met [78].
Multi-agent systems consist of a network of agents that are interacting among themselves to
achieve specified goals. A high-level agent communication language is used by the agents
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for communication and negotiation purposes. Multi-agent systems can be applied to model
complex systems, but their dynamic nature and the interactions between agents may give
rise to conflicting goals or resource allocation problems.

Control application for conventional traffic

Of the AI methods discussed above case-based reasoning and fuzzy logic are most often
described in literature for traffic control purposes. In practice, rule-based systems are also
used very often for traffic management and control.

Many decision support systems have been proposed for traffic management purposes
such as FRED (Freeway Real-Time Expert System Demonstration) [127, 159], the Santa
Monica Smart Corridor Demonstration Project [82, 128], and TRYS [41, 94, 108].

In [41, 65, 73, 159] case-based systems are developed for a broad range of scenarios that
may occur in a traffic network. This initial case-based system is in principle generated using
historical data or off-line simulations. In [65, 73] each scenario in the case base is evaluated
over a prediction horizon using simulation and can be characterised by “inputs” such as the
current traffic state, the traffic control measure applied (e.g., ramp metering, lane closures,
etc.), or expected incidents (duration of incidents), and by “outputs” such as predicted av-
erage values of the traffic states or predicted values for performance measures. Hence, the
case-based system maintains an input-output relation for each considered scenario. Once
the initial case base is constructed, the traffic control centre can use this case-based system
as the basis for assessing a particular traffic problem and for determining the most appro-
priate control scenarios. In case the current situation has not been addressed before, a new,
real-life scenario of the traffic system can be evaluated and added to the case-based system
along with effect of the control measures. Hence, learning and updating the case-based
system with newly encountered cases serves as the main advantage and motivation for the
application of this system in the traffic control field.

Although this technique has been useful for controlling small networks, adding each
possible case for a large-scale traffic network can be a difficult task. To solve this problem
and to handle large-scale traffic networks, a possible solution has been proposed in [48].
The solution of [48] considers a large-scale network as small subnetworks and uses fuzzy
logic to combine different cases in the case base. By using fuzzy logic, a precise match
between the considered actual case and the relevant cases in the case-based system will not
be required.

As indicated before fuzzy systems can be used when accurate information of the traffic
model is difficult to obtain or is not available [25, 94]. A fuzzy logic controller for ramp
metering with a description of the various steps (fuzzification, inference, and defuzzifica-
tion) is presented in [152]. Several fuzzy sets that can relate a variable (input, output) to
a particular situation can be defined such as fuzzy sets for local speed, local traffic flow,
queue occupancy, metering rate and local occupancy. Using fuzzification input variables
such as speeds, flows, occupancy levels in the vicinity of the fuzzy ramp meter controller,
and output variables such as metering rates can be translated to fit the defined fuzzy sets and
to obtain values for the degree of membership. Next, these values are fed to the inference
engine, which is constructed using a set of rules based on the experience of traffic control
centre operators and on off-line simulations. These rules are to be kept as simple and easy
to understand and to modify. The result of the inference is then transformed into a crisp
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Table 2.1: Comparison of control design methods

Control method Computational Constraints Future Model-based Scalability
complexity (hard) inputs

Static feedback low no no not explicitly localised
Optimal control high yes yes model-based system-wide
and MPC
AI-based medium no no not explicitly localised

value in the defuzzification step, after which the final result is applied to the traffic system
or presented to the operator of the traffic control centre for further assessment.

Related work is described in [65, 106].

2.2.4 Comparison

We will now compare the control design methods discussed above based on the following
directions:

• Computational complexity,

• Inclusion of hard constraints,

• Inclusion of future inputs,

• Model-based or not,

• Scalability.

The results of this analysis are shown in Table 2.1.

Computational complexity

Although the control design methods discussed above provide suboptimal performance (ex-
cept for optimal control in the error-free case), the computational complexity of these meth-
ods does vary depending on their application area. Static feedback control methods have low
on-line computational requirements, but they are in practice mainly applicable to small-
scale systems. The on-line computational time required for AI techniques is somewhat
higher but still much less than that of optimal control and MPC since the latter use on-
line optimisation. All three control techniques also require off-line computations for model
identification and model parameter calibration as well as for parameter tuning, training, or
rule generation. These off-line computational requirements are mainly determined by the
model and its complexity (model order, degree of nonlinearity, etc.).

Inclusion of hard constraints

Consideration of hard constraints is an inevitable aspect to be included when controlling
and managing traffic flows. Hard constraints are those that are to be necessarily satisfied.
In general, static feedback control does not consider the external constraints. This lack of
inclusion of constraints also proves to be one of the major drawbacks of the static feedback
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methods. Most AI methods also do not explicitly take (hard) constraints into account. Op-
timal control and MPC on the other hand use optimisation and as a consequence they can
explicitly include hard constraints when determining the optimal control actions.

Inclusion of future inputs

Static feedback controllers do not consider the external future inputs. Since optimal control
and MPC are prediction-based, they can also take into account knowledge about future
inputs (e.g., in traffic control one might detect traffic flows using detectors located upstream
and use this information). In general, AI techniques may also use predictions.

Model-based or not

All the control approaches explicitly or implicitly need a model to collect data and/or for
tuning. However, by model-based we mean in particular whether the control method con-
siders an explicit model in order to determine the optimal control actions. Although the
parameters of a static feedback controller may be tuned using model-based simulations, the
controller does not explicitly include a model of the traffic system inside it. In a similar way
the rules or cases of an AI-based controller may also be determined using simulation mod-
els, but the models are not explicitly present in the controller. On the other hand, optimal
controllers and MPC controllers in general use an explicit model of the (traffic) system as a
prediction model when determining the optimal control actions.

Scalability

Based on the control structure used, we can categorise control and management systems
[4, 52, 134] as follows:

• Centralised,

• Distributed,

• Decentralised,

• Hierarchical.

In a centralised set-up all control measures are managed from one single point, the traffic
control centre. However, in practice such an approach is not feasible due to the lack of
scalability and robustness, the communication requirements, and the computational com-
plexity. One way to deal with these issues is to use a distributed approach in which several
local controllers each control their own region or set of measures and in which the local
controllers communicate and coordinate their actions. If only communication is present but
there is no coordination, we have a decentralised control structure, which is usually easier
to implement but also less optimal. Hierarchical control frameworks combine features of
centralised and distributed control: they use a hierarchical framework with several control
layers in which lower-level controllers take care of the fast dynamics in a small region of in-
fluence, and higher-level controllers take care of the slower dynamics and the coordination
over a larger region of influence.
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In this context, static feedback controllers are mostly localised and are used to control
small-scale systems (in a central way) or as lower-level controllers in a hierarchical con-
trol framework. Most AI-based control methods (except for multi-agent approaches) are
also mostly localised and can also be used in a hierarchical control framework. MPC (and
optimal control) determines the control actions based on the current and predicted future
states of the system and thus allows for a system-wide coordination of the control actions.
In principle, MPC can be used at all levels of a hierarchical control framework but due to
its computational complexity it is less suited for the lower levels. In addition, recently some
distributed MPC methods have been developed [31].

In this section we have presented a brief overview of applied traffic control methods that
use currently existing traffic control measures. In the next sections we will consider future
traffic control systems based on intelligent vehicles and automated highway systems.

2.3 Intelligent vehicles and traffic control

2.3.1 Intelligent vehicles

We can divide IV application areas into three categories depending on the level of support
provided to the driver [22]:

• Advisory systems use a human machine interface (HMI) (e.g., optic or acoustic) to
provide an advisory or warning to the drivers. Some examples include blind spot
warning, parking assistance, lane departure warning systems, and drowsy driver mon-
itoring.

• Semi-autonomous systems can take partial control of vehicle manoeuvres and often
use haptic (meaning “based on the sense of touch”) measures to assist the driver and
can take partial control of vehicle manoeuvres. Examples are an intelligent speed ad-
aptation system using an active accelerator pedal that exerts a counterforce at speeds
over the speed limit, or a forward collision mitigation or avoidance system that first
warns the driver via seat vibrations and next starts to brake in case the driver does not
react to the warning.

• Fully autonomous systems take complete control of vehicle operations and eliminate
the driver from the control loop. Examples include fully automated adaptive cruise
control and anti-lock braking systems.

IV-based control measures can be further classified based on their manoeuvres [23]:

• Lateral sensing and control systems assist drivers in controlling the lateral movements
of the vehicle. Applications of such systems are lane departure warning systems, lane
change assist systems, and parallel parking assist systems.

• Longitudinal sensing and control systems mainly help in controlling forward and
backward movements of the vehicle, and maintaining safe speeds and safe inter-
vehicle distances. Typical applications are adaptive cruise control, forward collision
warning systems, and intelligent speed adaptation.
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• Integrated lateral and longitudinal sensing and control systems provide both lateral
and longitudinal support to the driver. Such applications can combine the functional-
ities of adaptive cruise control and lane keeping assistance systems to assist the driver
in performing manoeuvres.

2.3.2 IV-based traffic management

The currently implemented traffic control and management systems are mainly using intel-
ligence in the roadside infrastructure for controlling and managing the traffic system, How-
ever, such a system does not make use of the significant benefits offered by the intelligence
— including the additional control, sensing, and communication capabilities — provided by
IVs. So one way to improve performance and safety of the current transportation systems
is by applying automation and advanced intelligent control methods to roadside infrastruc-
ture and vehicles. Based on the way a traffic control and management approach utilises the
automated vehicles, we can categorise the ongoing research on automated driving for traffic
management as follows:

• Automated platooning,

• Autonomous IVs.

We will now briefly explain these two approaches.

An interesting functionality that is allowed by full automation is to arrange the vehicles
in closely spaced groups called “platoons” [28]. In a platoon, the first vehicle is called
“leader” and the remaining vehicles are called “followers”. To avoid collisions, intra-
platoon spacing (i.e., vehicle spacing within a platoon) is kept very small and the inter-
platoon spacing is kept larger [97, 149]. In the literature, many control frameworks, mainly
intended to study inter-vehicle communication technologies and to control the platoon man-
oeuvres in cooperation with the roadside infrastructure, have been developed and investig-
ated [7, 63, 76, 124, 145]. Also, frameworks that allow communication between the (par-
tially or fully) automated individual vehicles and with the nearby roadside infrastructure
have been proposed [42].

The other main category of IV-based traffic management approaches involves individual
autonomous IVs and is mainly based on self-organisation and distributed intelligence among
the automated vehicles with no control from the roadside infrastructure. In this autonomous
driving system, the vehicles try to aggregate themselves in groups, make their decisions
based on local information only, and perform manoeuvres in a cooperative fashion. Mod-
elling and analysis of such group behaviour mechanisms in traffic management is an active
area of research [54, 96, 100, 119].

In this chapter, we focus on the first approach, as this approach most probably allows
for a smoother transition from the current, exclusively roadside-based traffic control system
towards a mixed IV-roadside traffic management system in which the intelligence between
the roadside infrastructure and the intelligent vehicles are integrated so as to improve the
traffic performance.
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2.3.3 IV-based control measures

In this section, we discuss various IV technologies that support both roadside traffic control
measures and automated platoons of IVs. The main functional areas of IV systems that
support traffic management and control on freeways are:

• Adaptive Cruise Control (ACC),

• Intelligent Speed Adaptation (ISA),

• Dynamic route guidance.

Adaptive cruise control

Many vehicles have already been deployed with partial automation of the driving task by
the use of the standard conventional cruise control [125].

An Adaptive Cruise Control (ACC) system is a radar-based system that extends the
conventional cruise control system and that is designed to sense the vehicle immediately in
front on the same lane, and to automatically adjust the speed of the equipped vehicle to that
of the preceding vehicle so as to maintain a safe inter-vehicle distance [45, 47]. If there is
no predecessor, then ACC retains the preset speed that was selected by driver.

Variations of ACC are available in the market, among which high-speed ACC and stop-
and-go ACC are popular [120]. High-speed ACC uses a radar to measure speed and distance
of the vehicle ahead so as to maintain a safe distance between the vehicles. This ACC system
is designed to operate at medium (above 40 km/h) to higher speeds, because at this range
of speeds, a sensor can discriminate between non-moving targets and moving vehicles. A
radar can sense a low relative velocity with respect to a moving predecessor and a high
relative velocity with respect to stationary objects. However, high-speed ACC systems have
difficulties to operate at low speeds. Stop-and-go ACC is designed to work with low speeds
(0 km/h to 40 km/h) that prevail on urban roads and in congested traffic. Basically, the
stop-and-go ACC acts as a distance controller rather than a speed controller.

Although ACC vehicles are able to handle many traffic situations reliably [113], there
exist some adverse traffic conditions such as short-headway cut-ins, or sudden and strong
deceleration of the up-front vehicle that prevent the ACC from sensing and reacting to the
situation immediately. Cooperative ACC is a further enhancement of ACC systems that
utilises existing communication technologies (e.g., ad hoc wireless networks) to obtain real-
time information about the speed, acceleration, braking, position, headway, and yaw rate of
the preceding vehicle in order to maintain a safe but small headway, and to ensure smooth
driving [147].

Using cooperative ACC, vehicles can travel at reduced headways. Hence, with reduced
headways between vehicles, traffic flow can be improved.

Intelligent speed adaptation

A standard speed limiter is a system that restricts the speed of the vehicle when the driver
tries to exceed the maximum allowed driving speed. When the speed limiter is incorporated
with the intelligence to adjust the maximum driving speed to the speed limit specified by the
roadside infrastructure or to the prevailing location-based legal speed limit, and to provide
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feedback to the driver when that speed limit is exceeded, then we get the technology called
Intelligent Speed Adaptation (ISA) [24, 39].

ISA systems can be characterised based on the extent to which the driver is made aware
of the situation when the speed limit is exceeded. This results in advisory, voluntary, and
mandatory systems [32, 141].

Another characterisation for ISA systems can be made based on the speed limit itself as
a fixed or a dynamic speed limit. In the fixed case, the driver is informed about the speed
limit, which could be obtained from a static database. A dynamic speed limit system takes
current road conditions such as bad weather, slippery roads, or major incidents into account
before prescribing the speed limit.

ISA can influence the traffic flow by limiting the maximum speed of the vehicles de-
pending upon the actual traffic flow conditions. As such congestion can be delayed or
alleviated by delaying vehicles so that by the time they arrive at a congested region the
congestion has diminished or has already been dissolved.

Dynamic route guidance

Nowadays, many individual vehicles are equipped with a route guidance or navigation sys-
tem. Based on current or expected travel times, and delays due to congestion, a route guid-
ance system advises a driver about the “best” route he can take to reach his requested destin-
ation [103, 131, 153]. This route recommendation mainly depends on the vehicle’s current
location. Using a GPS, the position of the vehicle can be determined accurately. This in-
formation can be looked up on a digital road map and be used to determine the possible
routes to reach the destination. These route recommendations may be calculated within the
equipped vehicle or communicated to the vehicle from the local traffic centre.

A possible categorisation of route guidance systems is static versus dynamic route guid-
ance. When the possible routes are computed based on the average traffic conditions (e.g,
based on historical data or on the type of roads (such as urban corridor, highway, local road,
etc.)), then this scheme is referred to as static route guidance system. If the current traffic
conditions such as traffic jams, dynamic speed limits, and on-line predictions of travel times
using real-time traffic data are taken into account while computing the route recommenda-
tions, then we have a dynamic route guidance system [84, 155].

Dynamic route guidance systems can improve the traffic flow, by providing route re-
commendations to the vehicles such that congestion is prevented from occurring or such
that the effects of traffic jams are mitigated.

2.4 Control frameworks and architectures for IVHS

Now we discuss the most important control architectures that have been developed for link-
ing the roadside infrastructure and automated platoons. In particular, we consider the PATH,
Dolphin, Auto21 CDS, CVIS, SafeSpot, and PReVENT frameworks.

2.4.1 PATH framework

The PATH architecture [28, 74, 133, 149, 150] mainly focuses on the coordination of both
roadside-vehicle and inter-vehicle activities.
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Figure 2.4: PATH architecture

The PATH framework considers a traffic network with many interconnected highways
on which the vehicles are organised in platoons. The highways in the traffic network are
considered to be divided into links (about 5 km long). A link is subdivided into segments
(about 1 km long) with at least one exit or one entrance. A vehicle in the PATH framework
is either considered as a leader, a follower, or a free agent (i.e., a one-vehicle platoon).

The PATH framework is a hierarchical structure in which the control of the automated
highway system is distributed into five functional layers as shown in Figure 2.4:

• Physical layer,

• Regulation layer,

• Coordination layer,

• Link layer,

• Network layer.

The lower levels in this hierarchy deal with faster time scales (typically in the milliseconds
range for the physical layer up to the seconds range for the coordination layer), whereas
for the higher-level layers the frequency of updating can range from few times per minute
(for the link layer) to once every few minutes (for the network layer). The controllers in
the physical, regulation, and coordination layer reside inside the vehicles. The physical and
regulation controllers govern single vehicles, whereas the coordination layer involves sev-
eral vehicles. The link layer and the network layer controllers are located at the roadside,
with the link layer controllers managing single freeway segments, and the network layer
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controllers handling entire networks.
The same temporal and spatial division across different layers is also present in other frame-
works that will be discussed in the next sections, such as the Dolphin framework and the
Auto21 CDS framework.

Now we discuss each layer of the PATH framework in more detail, starting from the bottom
of the hierarchy.

The physical layer of each vehicle involves the actual dynamics of the vehicle. This layer
has controllers that perform the actuation of the steering wheel, throttle, and brakes. It also
contains the sensors in the vehicle that collect information about the speed, the acceleration,
and the engine state of the vehicle, and send it to the regulation layer.

The regulation layer controller executes the tasks specified by the coordination layer
(such lane changes, and splits or merges of platoons) by converting them into throttle, steer-
ing, and braking inputs for the actuators of the vehicle. The regulation layer controller
within each vehicle uses feedback control laws to execute the lateral and longitudinal man-
oeuvres and also notifies the coordination controller in case of any failures or unsafe out-
comes of the manoeuvres.

Next in the hierarchy is the coordination layer with a controller residing inside each
vehicle. This layer receives the commands from the link layer (such as set-points or profiles
for the speeds, or platoon sizes). A coordination layer controller allows coordination with
other neighbouring platoons using messages or communication protocols, and checks which
manoeuvres (like lane changes, splits, or merges) have to be performed by a vehicle in order
to achieve the platoon size or path trajectory specified by the link controller.

The next layer in the control hierarchy is the link layer. This layer has a controller
located at each link and is mainly responsible for path and congestion control. Each link
controller receives commands from the network layer (such as routes for the platoons) and
based on these commands, the link controller calculates the maximum platoon size, and the
optimum platoon velocity for each segment in the link it is managing. The link controller
also sets the local path (which lane to follow) for each platoon.

The top layer in the hierarchy is called the network layer. At this layer, the controller
computes control actions that optimise the entire network. Its task is to assign a route for
each vehicle or platoon that enters the highway ensuring that the capacity of each potential
route is utilised properly. There will be one network layer controller for the considered
traffic network.

The PATH framework has also been used in other projects such as, e.g., the AHSRA
(Advanced Cruise-Assist Highway System Research Association) project launched by the
Japanese Ministry of Land, Infrastructure and Transport [2].

2.4.2 Dolphin framework

The Japanese Dolphin framework developed in [144, 145] is similar to the PATH architec-
ture. The name of this framework is inspired by the way in which groups of dolphins move
and which is mimicked by the automated vehicles in the platoons. The Dolphin framework
considers vehicles to be arranged as platoons and develops inter-vehicle communication
technologies to carry out cooperative driving for the purpose of smooth merging and lane
changing.



30 2 State-of-the-Art

Inter−vehicle

communication

Traffic Control Layer

Vehicle Management

Layer

Vehicle Control Layer

V
eh

ic
le

 S
y

st
em

Criteria Road−vehicle
communication

R
o

a
d

si
d

e
S

y
st

em

Commands Sensor data

Figure 2.5: Dolphin architecture for cooperative driving

The Dolphin framework is composed of three layers as shown in Figure 2.5:

• Vehicle control layer,

• Vehicle management layer,

• Traffic control layer.

The vehicle controller within each vehicle senses the states and the conditions ahead of
the vehicle such as vehicle speed and acceleration and sends this information to the vehicle
management layer. The vehicle controller also receives commands for the vehicle’s steering
actions and determines the actions for the vehicle actuators.

The vehicle management controller, which resides in each vehicle, receives suggestions
for the movements of the vehicle from the traffic controller via road-vehicle communication
and also considers the messages from the neighbouring vehicles via inter-vehicle commu-
nication and the data received from the basic vehicle control layer. This controller de-
termines the movements of the individual vehicle under platoon-based driving. Lateral and
longitudinal control actions for the platoon leader or free agent are determined by this layer
using, e.g., a localisation function by GPS and a digital map of the traffic network. The
vehicle management controllers in the follower vehicles determine both the lateral and the
longitudinal control commands for the vehicle they control.

The traffic control layer is the top layer and it includes roadside IVHS equipment like
sign boards, conventional lane markers, and variable message signs, as well as logic such
as laws, rules, and common sense. There is only one traffic control layer common to all
the vehicles and it is part of the roadside infrastructure. The traffic layer consists of several
distributed controllers, each of which determines advisory instructions for the vehicles in
its own neighbourhood and sends these instructions to the vehicle management layer. For
example, the instructions could be to maintain a small inter-vehicle distance between the
followers in a platoon, and to support an autonomous driving for the leaders in a platoon.

2.4.3 Auto21 CDS framework

The Auto21 Collaborative Driving System (CDS) framework [7] is mainly inspired by the
concepts of the PATH and Dolphin architectures. The CDS architecture considers platoons



2.4 Control frameworks and architectures for IVHS 31

communication

Intra−platoon

communication

Management Layer

Networking

communication

Linking
Inter−platoon

communication

Intra−platoon

communication

S
y
st

em
V

eh
ic

le
 S

y
st

em

Plans

Traffic Control Layer

Coordination

R
o
a
d

si
d

e 

CriteriaRoad−vehicle

Inter−platoon 

Actions

Planning 

Sensor data Commands

Guidance Layer

Figure 2.6: Auto21 CDS architecture for cooperative driving

of cars as autonomous agents and uses cooperative ACC technologies to support platoon-
based driving. The CDS framework employs an inter-vehicle coordination system that can
ensure coordination of vehicle activities during their merge and split operations from a pla-
toon and that can maintain stability among the vehicles in a platoon. The hierarchical ar-
chitecture of the Auto21 CDS framework consists of the following three layers as shown in
Figure 2.6:

• Guidance layer,

• Management layer,

• Traffic control layer.

In every vehicle there is a guidance layer controller that senses the state of the vehicle
and sends information on the position, speed, acceleration, etc. of the vehicle to the man-
agement layer. This controller also receives commands from the management layer, which
are then translated into control actions for the throttle, braking, and steering.

The management layer is the main contribution of the CDS framework. The manage-
ment layer contains several controllers, one for each vehicle. A management layer con-
troller is responsible for determining the movements of the vehicle it manages using the
information received from the traffic control layer, and makes sure that vehicle coordination
constraints are satisfied through inter-vehicle communication. This layer is subdivided into
coordination and planning sublayers that work cooperatively. The coordination sublayer has
a linking module that communicates with the traffic control layer to receive suggestions for
the lane change actions and that manages the inter-platoon activities. Once the linking mod-
ule has made a choice on which the action to perform, the manoeuvres are executed (such as
merge or split from a platoon) by a networking module, which coordinates the intra-platoon
activities. The planning sublayer is responsible for making the plans to execute the man-
oeuvres inside the platoons. These plans are constructed in cooperation and coordination
with the networking module.



32 2 State-of-the-Art

Roadside infrastructure

Vehicle

Handheld

Central

CVIS Subsystems

Existing

vehicle systemtraffic management

roadside system &

Existing

system

Figure 2.7: CVIS set-up

The traffic control layer is located in the roadside infrastructure and provides sugges-
tions on desired speeds for segments, maximum platoon sizes, etc. The traffic control layer
also supports the linking module (of the management layer) for making decisions on inter-
platoon coordination actions [60].

2.4.4 CVIS

CVIS (Cooperative Vehicle-Infrastructure Systems) [42, 146] is a European research and
development project that aims to design, develop, and test technologies that allow commu-
nication between the cars and with the roadside infrastructure, which in turn will improve
road safety and efficiency, and reduce environmental impact. Traffic systems with CVIS
technologies select a suitable communication medium depending on user requirements and
available media, and allow cars to communicate in a secure way using wireless technologies.

CVIS operates with existing traffic control and management centres, roadside infrastruc-
tures, and vehicle systems. The complete system can be considered as a single-level archi-
tecture with the existing systems and CVIS operating at the same level. Various networks
and communication protocols have been developed within CVIS to enable communication
between different subsystems. The time scale for this architecture ranges from minutes to
hours.

A CVIS system is composed of four subsystems as shown in Figure 2.7: central, hand-
held, vehicle, and roadside subsystems. The central subsystem is a basically a service pro-
vider for the vehicle or the roadside infrastructure. Typical examples of central subsystems
include traffic control and service centres, and authority databases. The handheld subsys-
tem provides services such as pedestrian safety and remote management of other CVIS
subsystems by allowing access to the CVIS system using PDAs and mobile phones. The
vehicle subsystem is comprised of on-board systems and includes vehicle sensors and ac-
tuators, and equipment for vehicle-vehicle and vehicle-infrastructure communication. The
roadside subsystem corresponds to the intelligent infrastructure that operates at the roadside
and includes traffic signals, cameras, variable message signs, etc.

2.4.5 SafeSpot

SafeSpot [130, 143] is a research project funded by the European 6th Framework Program
on Information Society Technologies. The main objective of this project is to improve road
safety using advanced driving assistance systems and intelligent roads. The safety margin
assistant developed by the SafeSpot project uses advanced communication technologies to
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obtain information about the surrounding vehicles and about the roadside infrastructure.
This safety margin assistant can detect dangerous situations in advance and can make the
driver aware of the surrounding environment using a human machine interface as shown in
Figure 2.8. The time scale for this architecture ranges from seconds to minutes.

2.4.6 PReVENT

PReVENT [121] is a European automotive industry activity co-funded by the European
Commission. The main focus of the PReVENT project is to develop preventive applications
and technologies that can improve the road safety. These safety applications use in-vehicle
systems to maintain safe speeds and distances depending on the nature and severity of the
obstacles, and to provide instructions and to assist the drivers in their driving tasks so as to
avoid collisions and accidents.

The PReVENT architecture introduces a three-layer approach as shown in Figure 2.9
with the following layers:

• Perception layer,
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• Decision layer,

• Action layer.

All these layers are located within the vehicle. From the perception layer upward to the
action layer, the time complexity and update frequency of states typically ranges from mil-
liseconds to seconds.

The perception layer uses on-board sensors (such as radar, cameras, and GPS receivers)
in conjunction with digital maps and allows vehicle-to-vehicle and vehicle-to-infrastructure
communication.

The decision layer assesses dangerous situations ahead of the vehicle and determines
relevant actions that are needed to avoid such situations. The controller then passes this
decision to the action layer.

The action layer then issues warnings to the driver about the severity of the situation
through an appropriate human machine interface or through vehicle actuators such as the
steering wheel or the brakes.

2.5 Comparison of the IVHS frameworks

In Section 2.4 we have discussed various existing frameworks and architectures for IVHS-
based traffic management. Now, we will compare the frameworks based on the following
features:

• Control objectives,

• Type of formation control (platoons or single cars),

• Intelligence at roadside and/or in vehicles,

• Presence and type of communication and/or coordination,

• Time scales involved.

The results of this analysis are shown in Table 2.2.

Control objectives

For the PATH framework, the focus is primarily on designing and developing lateral and
longitudinal controllers that allow automation of vehicles in a platoon and platoon man-
oeuvres. The PATH program has also developed coordination and communication tech-
niques that are required during such manoeuvres. In addition, the roadside controllers in
the PATH framework (i.e., the network and link layer controllers) determine the activities
that need to be carried out in different freeway segments to avoid congestion. The Dol-
phin framework is vehicle-oriented, which means that the framework is mainly intended to
study the inter-vehicle communication technologies that can be used to control a group of
platoons that reside on neighbouring lanes and to support their manoeuvres. The AUTO21
CDS framework mainly aims at developing communication and coordination methodolo-
gies for merging and splitting actions within the platoon (intra-platoon manoeuvres). This
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Table 2.2: Comparison of the various IVHS frameworks (in this table “veh” stands for

“vehicles”, “V2V” means “vehicle-vehicle”, and “V2I” is short for “vehicle-

infrastructure”)

Framework Control Formation Intelligence Communication Time

objectives control & coordination scale

PATH platoon manoeuvres platoons road/veh V2V/V2I ms–h

traffic flow efficiency

Dolphin platoon manoeuvres platoons (road)/veh V2V ms–h

Auto21 CDS intra-platoon platoons (road)/veh V2V ms–h
manoeuvres

CVIS traffic efficiency cars road/veh V2V/V2I min-h

SafeSpot prevent/avoid road cars (road)/veh V2V/V2I s–min
accidents

PReVENT car safety cars veh V2V ms–s

framework uses an inter-platoon coordination model that was developed by the PATH pro-
ject [8]. The objective of the CVIS project is to develop controllers and communication
technologies for implementing a cooperative vehicle-highway system.

The PATH, Dolphin, AUTO21 CDS, and CVIS frameworks have developed control
methodologies to be implemented in the roadside infrastructure to improve the traffic flow
or in vehicles to allow automation of driving tasks. On the other hand, SafeSpot and PRe-
VENT focus on improving the road safety by avoiding or preventing accidents, and they aim
at integrated safety, with an emphasis on the potential of communication between vehicles
and between vehicles and roadside systems.

Type of formation control

The frameworks usually consider the vehicles to be controlled either as part of higher-level
entities such as platoons, or as individual vehicles. The PATH, Dolphin, and Auto21 CDS
frameworks allow platooning. On the other hand, SafeSpot, PReVENT, and CVIS do not
use platoons.

Intelligence at roadside and/or in vehicles

The PATH framework allows involvement of both roadside infrastructure and vehicles for
improving traffic performance. Although the Dolphin and the Auto21 CDS frameworks
consider distributed intelligence between roadside infrastructure and vehicles, the roadside
infrastructure only provides suggestions and instructions to the vehicles. The platoons are
not obliged to follow these suggestions. CVIS and SafeSpot incorporate intelligence in
both vehicle and roadside infrastructure. PReVENT also includes distributed intelligence
but with the main focus on vehicle intelligence.
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Presence and type of communication and/or coordination

Almost all the frameworks and projects have designed and developed technologies for inter-
vehicle and roadside-vehicle communication for coordination of activities. Specifically,
PATH has developed dedicated communication protocols [57, 76] and the Dolphin frame-
work has developed a wireless local access network model for vehicle following, and inter-
vehicle communication technologies for platoon manoeuvre coordinations [144]. For the
coordination of tasks within the platoons, the AUTO21 CDS framework allows both a cent-
ralised set-up (i.e., the platoon leader instructs intra-platoon manoeuvres) or a decentralised
set-up (i.e., all the members of the platoon are involved in the coordination)

SafeSpot, PReVENT, and CVIS focus on the issue of developing communication tech-
niques that can be implemented in existing traffic networks and that can also be extended to
AHS.

Time scales involved

The time scales involved for the PATH, Dolphin, and Auto21 CDS frameworks vary from
milliseconds to hours as one traverses from dynamics of the vehicle up to the roadside infra-
structure levels. The time complexity and update frequency typically ranges from minutes
to hours for CVIS, from seconds to minutes for SafeSpot, and from milliseconds to seconds
for PReVENT.

2.6 Outlook

In this section we first sketch how the control design methods presented in Section 2.2 could
eventually be applied within the various IVHS control architectures of Section 2.4. We also
indicate the challenges and issues that still have to be addressed to get a full-fledged and
complete IVHS-based traffic management and control system.

2.6.1 Application to IVHS

In relation to IVHS, longitudinal controllers for IVs inside platoons such as cooperative
ACC controllers can be implemented using static feedback control. In particular, we now
discuss how the accelerations for the follower vehicles within a platoon could be calculated
using a static feedback controller. The follower vehicles in a platoon should use their on-
board ACC system to maintain short intra-platoon distances. Hence, an ACC algorithm
could consist of a combined speed and distance controller as described in [77]:

ai(k) = K2(href,i(k)− (xi+1(k)− xi(k)))+ K3(vi+1(k)− vi(k))

where ai(k) is the acceleration for vehicle i at time t = kT , vi(k) is the speed of vehicle i at
time t = kT , xi(k) is the longitudinal position of the rear of vehicle i at time t = kT , href,i is
the reference distance headway for vehicle i, and K2 and K3 are controller parameters. The
reference distance headway is defined as follows:

href,i(k) = S0 + vi(k)Thead,i + Li , (2.1)
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where S0 is the minimum safe distance headway that is to be maintained at zero speed, Thead,i

is the desired time headway for vehicle i, and Li is the length of vehicle i. These definitions
are illustrated using two vehicles i and i + 1 travelling on a single lane in a time-space
coordination system as shown in Figure 2.10. The time and distance directions are shown
in vertical and horizontal axes respectively. The time headway is more often considered
rather than distance headway because of its simplicity and ease of measuring. In practice,
the distance headway can be obtained from photos.

Optimal control and in particular MPC can be applied either in vehicle controllers or
in roadside controllers. For a low-level control tasks involving manoeuvres of individual
vehicles such as ACC or ISA, which need frequent updates of the control signal (e.g., the
acceleration), these methodologies may prove to be very slow due to the computational
complexity involved. However, MPC is excellently suited for higher-level IV-based traffic
control and management purposes and to determine optimal speeds, lane allocations, and
on-ramp release times for the platoons. MPC offers a strategy that can determine the control
actions based on the current and predicted future states of the traffic network, and that can
optimise the performance objective assigned to roadside infrastructure over a given time ho-
rizon subject to the operational constraints and the constrained imposed on them. Moreover,
the feedback and the receding horizon approach of MPC allow to reduce the effects of pos-
sible mismatch errors between the actual real-world traffic flows and the predicted traffic
flows. Some results in this direction are described in [13, 14]. In addition, since MPC is
an optimisation-based approach, it is able to deal with the many different, often conflict-
ing objectives (e.g., safety versus efficiency) that play a role in IVHS through the use of
multi-criteria optimisation [107].

Fuzzy controllers can be used to implement an ACC controller using the deviations in
speeds and distances as input variables. A typical example of such an application is dealt
with in [71]. Moreover, fuzzy control can also be used to assist in making decisions for
traffic management purposes. On the other hand, case-based reasoning will be more suitable
for traffic planning and management purposes than for individual vehicle controllers.

2.6.2 Challenges and open issues

Now we discuss the main technological, economical, and societal challenges that will have
to be addressed when actually implementing an IVHS systems.
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Although we have indicated above how control design methods such as static feedback
control, MPC, and AI-based control could be used for IVHS and traffic management and
control systems based on intelligent vehicles and platoons, real integration of these methods
is still lacking. This is one of the challenges that still have to be addressed. However, the
deployment of these control design methodologies does not ensure stability and robustness
of the traffic system since IVHS and IVs are non-linear and often even hybrid (i.e., they
exhibit both continuous dynamics and discrete-event behaviour (switching)).

The new control methods developed within PATH and the other frameworks have mainly
focused on the lower layers, i.e., the coordination between the vehicles and the platoons, and
have not really focused on higher-level traffic management aspects beyond the single free-
way level such as route guidance and network-wide coordination. Moreover, the segment
concepts used in PATH may lead to difficulties when dealing with very long platoons. In-
deed, when the platoon size is very large, then a platoon might cover several segments,
and then it might be difficult for the roadside controllers involved to assign the appropriate
activities for the platoon, and also for the involved vehicle controllers to coordinate their
activities. This raises two important open problems: platoon formation and scalability.

In literature there are no strict rules available on how to form platoons and on how many
vehicles to include in a platoon. This can either be specific to a given road or to a destination.
There are few articles that deal with vehicle sorting with respect to platoon sizes and platoon
formation time, and also on the design of platoon manoeuvre protocols [59, 75].

Some of IVHS frameworks such as the PATH, Auto21 CDS, and Dolphin frameworks
are by nature hierarchical and offer thus a certain degree of scalability with regard to net-
work size. Other frameworks such PReVENT, SafeSpot, and CVIS are not explicitly hier-
archical and are thus not inherently scalable with regard to network size. However, none
of the frameworks explicitly addresses scalability and the scalability of the frameworks has
not yet been investigated in detail in literature. So this is also a topic for future research. In
addition, scalability with regard to platoon sizes is also an open issue.

Hence, one of the major requirements is the development of a (new) integrated hier-
archical traffic management framework for IVHS and the design and implementation of ap-
propriate control methods for such a framework. Moreover, the full automation present in
IVHS may also lead to new traffic control measures that can currently not be implemented,
such as “real-valued” speed limits for more accurate control, smoother merging at on-ramps
through speed and spacing control, etc. These new measures should also be accommodated
in the control framework.

The technical issues outlined above are still open and need to be addressed. Moreover,
the IVHS approach requires major investments to be made by both the government (or the
body that manages the highway system) and the constructors and owners of the vehicles.
Since few decisions are left to the driver and since the AHS assumes almost complete control
over the vehicles, which drive at high speeds and at short distances from each other, a strong
psychological resistance to this traffic congestion policy is to be expected. In addition,
the fact that vehicles can be tracked through the entire network may raise some concerns
regarding privacy and liability issues.

Another important question is how the transition of the current highway system to an
AHS-based system should occur and — once it has been installed — what has to be done
with vehicles that are not yet equipped for IVHS. As an intermediate step towards IVHS
the current highway management system could start to communicate with the IVs and use
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information obtained from, e.g., the route guidance system of the IVs in order to more
accurately forecast traffic loads. Other transition issues that have to be taken into account
are [50]: How will the system be funded? What types of accidents can be expected to occur
in AHS, in what numbers, and with what consequences? Will bi-directional communication
and transfer of information be allowed between IVs and roadside infrastructure? What are
the legal implications of an accident, especially if it were caused by system error or a system
oversight? How will an AHS implementation be coordinated on an international level? etc.

2.7 Summary

We have presented on overview of traffic management and control frameworks for IVHS.
First, we have given a short survey of the main control design methods currently used for
freeway traffic control. Next, we have discussed various traffic management architectures
for IVHS such as PATH, Dolphin, Auto21 CDS, CVIS, SafeSpot, and PReVENT. The
frameworks have been compared in a qualitative way and we have sketched how the current
traffic control methodologies could fit in an IVHS-based traffic control set-up. Finally, we
have identified some open issues and future challenges in the further implementation and
actual deployment of IVHS traffic management systems.
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Chapter 3

A New Traffic Management

Framework for IVHS

3.1 Introduction

Based on an extensive survey of existing IV-based traffic management approaches and
frameworks, the main components and results of which are discussed in Chapter 2, we
now propose a new IV-based framework that combines several of the strong points of ex-
isting architectures and that further enhances and extends them in several directions. The
objective of the framework is to integrate the intelligence of roadside infrastructure and IV
systems with automation. We propose a framework that distributes the intelligence between
roadside infrastructure and vehicles, that assigns the traffic control actions based on platoons
rather than on a segment concept, and that uses the IV-based control measures to improve
the traffic performance in terms of safety, throughput, and environment. We want also to
include the advantages of other frameworks such as CarTalk, SafeSpot, Prevent, CVIS that
design and develop technologies for inter-vehicle and roadside/vehicle communication. In
this chapter, we present the new hierarchical IV-based traffic control framework in more
detail.

3.2 IV-based control framework

The goal of the proposed framework is to use the additional measures and control handles
offered by in-vehicle telematics that support platooning and to implement them in a hier-
archical roadside/vehicle traffic management structure to substantially improve traffic per-
formance in terms of safety, throughput, reliability, environment, and robustness. The
framework mainly aims at a multi-level control structure with local controllers at the lowest
level and one or more higher supervisory control levels. Moreover, it will use a combina-
tion and integration of techniques from computer science and control engineering in order
to obtain coordination at and across all control levels.

Our framework is inspired by the AHS platoon concept and uses IV-based control meas-
ures to implement a next-level of traffic control and management, which shifts away from

41
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the rather global road-side traffic management to a more vehicle-oriented traffic manage-
ment. We will consider both roadside-vehicle traffic management and interaction, and inter-
vehicle traffic management and coordination. Although the PATH framework [74, 149, 150]
includes both roadside infrastructure and vehicles, much of the research work was carried
on the vehicle control side. The roadside controllers determine the activities that need to
be carried out in different segments. However, when the platoon size is allowed to be long
enough, then it might be difficult for the roadside controller to assign the activities as the
platoon resides in between two segments, and also for the vehicle controller to complete
the activity within the specified space. For this reason, we use platoon-based roadside con-
trollers (so without segments). In our framework, vehicles will travel as platoons. Every
platoon will then have a leader vehicle and the rest of the vehicles, if any, as followers.
The platoon leader uses ISA and the followers will be equipped with ACCs. In addition,
in order to be able to deal with large-scale traffic network we will consider a hierarchical
control structure with several layers each of which consist of several controllers (see Figure
3.1). The reasons for selecting such a distributed, hierarchical control structure for traffic
management are:

• Scalability: Adding, altering, or removing layers can be easily executed without al-
tering other layers in the architecture, i.e., a hierarchical structure is more flexible for
modifications in problem size.

• Robustness: In case of any unexpected failures in one of the components, the frame-
work in general, will still be able to complete its execution of planned tasks (graceful
degradation).

3.2.1 Proposed control framework

A general structure of the proposed control architecture is shown in Figure 3.1. The archi-
tecture consists of several layers, which can be characterised as follows:

Higher-level controllers

Higher-level controllers (area, regional, and supraregional) provide network-wide coordin-
ation of the lower-level and middle-level controllers. For example, there could be an area
controller to control/supervise the activities of a collection of roadside controllers. In turn,
a group of area controllers could be supervised by regional controllers, etc.

Roadside controller

The roadside controller in the hierarchy uses IV-based control measures to improve the
traffic flow. The controller assigns desired speeds for each platoon (ISA), safe distances
between platoons (Cooperative ACC), metering values on the on-ramps and off-ramps (ramp
metering), desired platoon sizes, provides dynamic route guidance for the platoons, and also
instructs for merges, splits, and lane changes of platoons. This layer may control a part of a
highway, an entire highway, or a collection of highways.
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Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Figure 3.1: IV-based traffic control framework

Platoon controller

The platoon controller is responsible for control and coordination of each intelligent vehicle
in the platoon. The platoon controller receives commands from the roadside controller and
is mainly concerned with actually executing the inter-platoon manoeuvres such as merges
with other platoons, splits, and lane changes and intra-platoon activities such as maintaining
safe inter-vehicle distances and acceleration for accomplishing the tasks assigned by the
roadside controller.

Vehicle controller

The vehicle controllers present in each vehicle are the low-level controllers of the archi-
tecture. They receive commands from the platoon controllers (e.g. set points or reference
trajectories for speeds, paths, headways) and translate these commands into control signals
for the vehicle actuators such as throttle, braking, and steering actions.

Time scales involved

The time scales involved for our hierarchical framework vary from milliseconds to hours
as one traverses from dynamics of the vehicle up to the roadside infrastructure levels. The
time complexity and update frequency typically ranges from milliseconds to seconds for
the vehicle controllers, from seconds to minutes for the platoon controllers, from minutes
to quarters of an hour for roadside controllers, and hours for the area controllers.

3.3 Main improvements and extensions

The main improvements and extensions of the new framework are:
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• We allow vehicles to communicate both with each other and with the roadside infra-
structure in an integrated way.

• We consider both in-vehicle IV-based traffic control measures (such as ISA and ACC)
and roadside traffic control measures (such as ramp metering, variable speed limits,
dynamic route guidance, shoulder lanes openings, etc.) and apply them in an integ-
rated way.

• The platoon size is one of the variables that are optimised and it can range from 1 to a
very large number, depending on the current traffic conditions and the traffic network
and on what is best for the given traffic performance criterion.

• The framework is integrated with a model-based predictive control strategy that de-
termines optimal traffic control measures in a receding horizon approach.

• The framework is also suited for inter-urban and even urban traffic networks.

3.3.1 Integrated in-vehicle and roadside control measures

In particular, the proposed framework incorporates the following IV-based control meas-
ures:

• ISA: ISA can influence the traffic flow by externally controlling the speed of the
vehicles by limiting the maximum speed depending upon the actual traffic flow con-
ditions. In our approach, we will control the speed limit, which are determined by the
roadside controller based on the current and future predicted traffic conditions.

• Cooperative ACC: Once the vehicle is equipped with an automatic speed control
device, we can integrate other possible options in it and to take advantage of cooper-
ative ACCs. With cooperative ACC, vehicles in a platoon can exchange information
(e.g., destination, speed, acceleration, braking and so on) and can react to and handle
unexpected manoeuvres safely by maintaining safe and short inter-vehicle distances,
and high speeds.

• Dynamic route guidance: In our approach, we also consider the interaction of the
roadside infrastructure with the dynamic route planning system: e.g., if there are
several alternative routes to a destination for a platoon, then the roadside controller
could suggest or impose routes in such a way that the overall traffic performance is
improved.

In addition, we also combine these IV-based traffic control measures with roadside traffic
control measures such as ramp metering, traffic signals, lanes closures, shoulder lane open-
ings, etc.

The actual control strategy could then make use of a model-based predictive control
approach (MPC) [30, 101]. MPC has originated in the process industry and has also been
extended to conventional roadside-based non-IV traffic management [18, 66, 67]. This
approach can also be extended to the proposed new IV-based traffic management framework
as will be presented in the next chapters.
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Note that we also do not necessarily limit the proposed framework to freeway networks
only, but also can include inter-urban and even urban arterials and networks. Of course,
due to more fragmented nature of the urban and inter-urban traffic network, optimal platoon
sizes in these latter environments will be much smaller. As the platoon size is also one of
the control parameters in our framework this can be taken into account.

3.4 Contributions of our approach

The main contributions of the proposed framework are:

• Our approach integrates the roadside infrastructure and the platoon of vehicles as is
also done in the AHS framework, but the roadside controller will calculate optimal
control actions or set points for each platoon rather than to each vehicle in a seg-
ment, and will use IV-based measures to obtain an improved system optimum traffic
management.

• Our framework can determine and assign optimal platoon sizes. So the platoons can
vary from one-sized to a very large number depending mainly on the instructions
given by the roadside controller.

• The hierarchical structure with one or more supervisors added to the existing AHS
architecture could prove to be an advantage of our framework. Large-scale traffic
networks can be considered and also coordination of the mid-level and low-level con-
trollers for such a wide network can be obtained by our framework.

• AHS and other architectures focused their implementation either on highways or on
urban roads. Both of them were not treated as a single system. This could create prob-
lems when the vehicles exit from the automated highway and enter into a congested
and manual controlled urban network, or vice versa. In this case, the automation
concept may provide a drastic change to the driver behaviour and this might prove to
be a disadvantage. Therefore, we propose to implement our framework on both the
highways and urban roads, and apply the IV-based control measures and autonomous
platooning (with small-sized platoons in the urban network).

3.5 Open problems

Our framework has plenty of opportunities and open problems left to explore. Some of them
are listed below:

• We will develop efficient control methods and algorithms that will help in achieving
cooperation and coordination at and across the hierarchical levels. The performance
and complexity of the control methods and algorithms at each levels will be studied
and analysed. This is the topic of the next chapters.

• Modelling of platoons from the roadside controller point of view is an open issue.
Lane-changing manoeuvres for a large-sized platoon must be analysed. We will use
a big-car model for modelling platoon behaviours and is discussed in Section 4.4.5.
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• We will analyse, verify, and investigate the flexibility of the proposed framework for
different case studies and scenarios of the traffic network. First of all, we will imple-
ment this multi-level framework for a small-scale system and observe its effects on
the traffic performance. As a next step, we will implement this framework for a large-
scale traffic network. The study can include investigating what type of traffic models
is to be used and what the next steps should be towards an actual implementation of
the framework in practice.

3.6 Summary

In this chapter, we have proposed a framework that combines IV-based measures and road-
side infrastructure for implementing a next-level, next generation traffic management. Top-
ics for next chapters include: developing control design methods, determining appropriate
traffic models for this IV-based framework, defining the case studies, implementing this
framework on a small-scale setup, developing software tools, and analysing the trade-offs
between computational complexity and efficiency for this framework.



Chapter 4

Roadside Controller

The overall control framework we use is the hierarchical framework that we have presen-
ted in Chapter 3. In this chapter we present a variant of IVHS in which the monitoring
and control capabilities offered by automated intelligent vehicles (IVs) are combined with
those of the roadside infrastructure. All vehicles are assumed to be fully automated and
the automation of driving tasks allows to arrange the IVs in platoons. Thus the proposed
control IVHS approach consists of interacting roadside controllers and platoons of IVs, and
provides a platoon-specific management. In this chapter, we focus on the control layer that
manages the different platoons on the individual freeway stretch as well as on the access
points to the IVHS from the non-automated part of the traffic network. In particular, we
combine dynamic speed limits and lane allocation for the platoons on the IVHS highways
with access control for the on-ramps using ramp metering, and we propose a model-based
predictive control approach to determine optimal speed limits and lane allocations as well as
optimal release times for the platoons at the on-ramps. In order to illustrate the potential of
the proposed traffic control method, we apply it to a simple simulation example in which the
aim is to minimise the total time all vehicles spend in the network by optimally assigning
dynamic speed limits, lane allocations, and on-ramp release times to the platoons compared
to the situation with controlled human drivers.

4.1 Introduction

There are many ways to reduce the frequency and impact of traffic jams (such as building
new roads, introducing road pricing, stimulating modal shift, promoting public transporta-
tion, etc.). On the on the longer term one of the most promising approaches is the use of
advanced traffic management and control methods in which control measures such as traffic
signals, dynamic route information panels, ramp metering installations, dynamic speed lim-
its, etc. are used to control the traffic flows and to prevent or to reduce traffic jams, or
more generally to improve the performance of the traffic system. As a next step in this
direction, advanced control methods and advanced communication and information tech-
nologies are currently being combined with the existing transportation infrastructure and
equipment. This will result in integrated traffic management and control systems that incor-
porate intelligence in both the roadside infrastructure and in the vehicles, such as Intelligent
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Vehicle Highway Systems (IVHS) [150], Intelligent Transportation Systems [136], Auto-
mated Highway Systems [74], or Cooperative Vehicle Infrastructure Systems [42]. In this
chapter just as in the rest of the thesis we will use IVHS as a generic word to indicate (a
mixture of) these systems.

In IVHS every vehicle contains an automated system that can take over the driver’s
tasks in steering, braking, and throttle control. This complete automation of driving tasks
allows to arrange the vehicles in closely spaced groups called platoons. In the platooning
approach cars travel on the highway in platoons with minimum small distances (e.g., 2 m)
between vehicles within the platoon, and much larger distances (e.g., 30–60 m) between
different platoons. High speeds and short intraplatoon spacings allow more vehicles to
be accommodated on the network, which substantially increases the maximal traffic flows
[149]. Moreover, compared to the situation with human drivers, the full automation present
in IVHS also has a positive effect on delays and reaction times. In practice, traffic conges-
tion results in a phenomenon called capacity drop [58], which causes the expected maximum
outflow from the jammed traffic to be less than in the case of free-flow traffic. This is mainly
due to the delay in reaction time and due to the disturbance caused by lane changes (if any
lanes are available) and the increased intervehicle distance when vehicles start to exit from
a traffic jam [95]. For human drivers the capacity drop is typically of the order of 2–7 %.
With fully automated vehicles the capacity drop can be reduced to almost 0 %, which results
in an even more efficient use of the available infrastructure.

In the proposed approach platooning is integrated with conventional traffic control meas-
ures such as dynamic speed limits, route guidance, ramp metering, lane closures, etc. More
specifically, we will consider MPC approach (Model Predictive Control) to determine ap-
propriate speed limits and lane allocations for the platoons within the IVHS and appropriate
release times of vehicles or platoons that enter the IVHS through on-ramps so as to optim-
ise the performance of the traffic system. Possible performance measures in this context are
throughput, travel times, safety, fuel consumption, robustness, etc.

The chapter is organised as follows. In Section 4.2 we briefly recapitulate1 the hier-
archical IV-based traffic control framework of Chapter 3. Section 4.3 describes the general
principles of MPC. Next, we explain in Section 4.4 how MPC can be adapted for traffic
management and control in IVHS. In Section 4.5 we apply the proposed approach to a case
study based on simulations and we illustrate the potential effects of the proposed approach
on the traffic flow performance of an IVHS. Section 4.6 concludes the chapter.

4.2 A hierarchical framework for IV-based traffic man-

agement

First we briefly present the hierarchical control framework for IVHS we have proposed in
Chapter 3 and which is closely related to the PATH framework [132]. The framework of
Chapter 3 distributes the intelligence between roadside infrastructure and vehicles, and uses
IV-based control measures to prevent congestion and/or to improve the performance of the
traffic network.

1The reason for including this recapitulation is that this allows the chapters of the PhD thesis to be read inde-
pendently from each other.
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Figure 4.1: IV-based framework of Chapter 3. The focus of the current chapter is indicated

by the dashed box.

The control architecture of Chapter 3 is based on the platoon concept and consists of
a multi-level control structure with local controllers at the lowest level and one or more
higher supervisory control levels as shown in Figure 4.1. The layers of the framework can
be characterised as follows:

• Higher-level controllers (such as area, regional, and supraregional controllers)
provide network-wide coordination of the lower-level and middle-level controllers
as well as long-distance route assignment and route planning. E.g., the activities of
a group of roadside controllers could be supervised by an area controller. In turn, a
group of area controllers could be supervised or controlled by regional controllers,
and so on.

• Roadside controllers use IV-based control measures to improve the traffic flow. A
roadside controller may control a part of a highway, an entire highway, or a collec-
tion of highways. The main tasks of the roadside controllers are to assign desired
speeds and lanes for each platoon, safe distances to avoid collisions between pla-
toons, desired platoon sizes depending on the traffic conditions, to provide dynamic
route guidance for the platoons (within the region controlled by the roadside control-
ler), and to instruct for merges, splits, and lane changes of platoons.

• Platoon controllers receive commands from the roadside controllers and are respons-
ible for control and coordination of the vehicles inside the platoon. The platoon con-
trollers are mainly concerned with actually executing the interplatoon manoeuvres
(e.g., merges, splits, and lane changes) and with intraplatoon activities (e.g., main-
taining safe intervehicle distances).

• Vehicle controllers present in each vehicle receive commands from the platoon con-
trollers (e.g., set-points or reference trajectories for speeds, headways, and paths)
and they translate these commands into control signals for the vehicle actuators (e.g.,
throttle, braking, and steering actions).
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Figure 4.2: Schematic representation of MPC

For a more extensive description of the framework and its main advantages and extensions
with respect to the state of the art, the interested reader is referred to Chapter 3.

In the remainder of the chapter we will focus on the roadside controllers and on their
interaction with the platoons and the platoon controllers. Note that the roadside controller
considers each platoon in the highway network as one single entity. This significantly re-
duces the complexity of the control problem compared to the case where each individual
vehicle would be controlled by the roadside controller. As a consequence, the whole traffic
network can be managed more efficiently.

In this chapter we also consider the interface between the IVHS network (i.e., the fully
automated road network), and the non-automated road network, where drivers still have full
manual control over their vehicle. The interface consists of on-ramps, at which the IVHS
control architecture will take over control of the vehicles and arrange them in platoons. The
roadside controllers of the IVHS control structure then determine the release times of these
platoons into the IVHS network.

4.3 Model Predictive Control (MPC)

In this section we briefly present the general principles of Model Predictive Control (MPC)
[101] (see Figure 4.2).

MPC is an on-line, sampling-based, discrete-time receding horizon control approach
that uses (numerical) optimisation and an explicit prediction model to determine the optimal
values for the control measures over a given prediction period. One of the main advantages
of MPC is that it can handle various hard constraints on the inputs and states of the system.
In addition, MPC has a built-in feedback mechanism due to the use of a receding horizon
approach, and it is easy to tune.

MPC works as follows. Let Tctrl be the control time step, i.e., the time interval between
two updates of the control signal settings. At each control step k (corresponding to the time
instant t = kTctrl), the roadside controller first measures or determines the current state x(k)
of the system. Next, the controller uses an optimisation algorithm in combination with a
model of the system to determine the control sequence u(k), . . . ,u(k + Np − 1) that optimises
a given performance criterion Jperf(k) over a time interval [kTctrl,(k + Np)Tctrl] subject to the
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operational constraints. Here Np denotes the prediction horizon. In order to reduce the
computational complexity, one often introduces a constraint of the form u(k + j) = u(k + j −

1) for j = Nc, . . . ,Np − 1, where Nc (< Np) is called the control horizon.
The optimal control inputs are then applied to the system in a receding horizon approach

as follows. At each control step k only the first control sample u∗(k) of the optimal control
sequence u∗(k), . . . ,u∗(k + Nc − 1) is applied to the system. Next, the prediction horizon is
shifted one step forward, and the prediction and optimisation procedure over the shifted
horizon are repeated using new measurements. This receding horizon approach introduces
a feedback mechanism, which allows to reduce the effects of possible disturbances and
mismatch errors.

4.4 MPC for IVHS

In this section we explain in detail how MPC can be used for traffic management and control
of IVHS. We focus on the roadside controller, and in particular on how MPC can be applied
for speed control, lane allocation, and on-ramp control in IVHS.

4.4.1 States and control inputs

Recall that at every control step the MPC controller measures or estimates the current state
of the traffic network. Since the roadside controllers work with platoons as basic entities,
in our case the state of the system includes the positions, lanes, and speeds of the platoon
leaders and the lengths of the platoons, as well as the number of platoons waiting at the
mainstream origins and at the on-ramps of the IVHS network.

The control signal consists of the speed limits for the platoon leaders, lane allocations
for the platoons, on-ramp release times, etc. All these control inputs will be updated at
every control step. Note that in principle the platoon size (and the resulting split or merge
decisions for platoons) could also be a decision variable. However, to reduce the computa-
tional complexity, we may update the platoon sizes at a slower rate than the other control
variables. Alternatively, we could assume that the platoon sizes can only change at the
boundaries of the region controlled by a roadside controller and are thus fixed for platoons
already in the network.

4.4.2 Performance criterion and constraints

Possible performance criteria Jperf(k) for MPC for IVHS are the total time spent in a traffic
network, the total throughput, the total fuel consumption, safety, or a combination of these,
all evaluated over the time period [kTctrl,(k + Np)Tctrl].

Moreover, in order to prevent oscillations and frequent shifting in the control signals,
one often adds a penalty on variations in the control signal u, which results in the total
performance function

Jtot(k) = Jperf(k)+α
Nc−1

∑
j=0

‖u(k + j)− u(k + j − 1)‖2 , (4.1)

at control step k, where α > 0 is a weighting factor.
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The MPC controller can also explicitly take into account operational constraints such
as minimum separation between the platoons, minimum and maximum speeds, minimum
headways, or in case a vehicle has to take an exit, a constraint that it should have moved in
the rightmost lane x km before the exit, etc.

4.4.3 Optimisation methods

Solving the MPC optimisation problem (i.e., computing the optimal control actions) is the
most demanding operation in the MPC approach. In our case the MPC approach gives rise
to nonlinear nonconvex optimisation problems that have to be solved on-line. Moreover,
in general there will be continuous variables (dynamic speed limits, metering rates, release
times, etc.) as well as integer variables (lane allocation, platoon size, etc.). Hence, a proper
choice of optimisation techniques that suit the nature of the problem has to be made. In our
case global or multi-start local optimisation methods are required such as multi-start sequen-
tial quadratic programming [118, Chapter 5] or multi-start pattern search [6] in case there
are only continuous variables, or branch-and-bound algorithms [40], genetic algorithms
[46], or simulated annealing [49] in the mixed integer case.

4.4.4 Prediction models for IVHS

An important factor that determines the choice of the model to be used in MPC is the trade-
off between accuracy and computational complexity since at each control step k the model
will be simulated repeatedly within the on-line optimisation algorithm. As a consequence,
very detailed microscopic traffic simulation models are usually not suited as MPC prediction
model. Instead, simplified or more aggregate models are used.

In this section we describe some (simplified) traffic models that could be used as (part
of the) prediction model within the MPC-based roadside controller. Note, however, that the
proposed MPC approach is generic and modular, so that in case a given prediction model
does not perform well, it can easily be replaced by another, more complex prediction model.

Since in the case study of Section 4.5 we will compare the platoon-based approach with
human drivers, we will discuss models both for human drivers and for intelligent vehicles
and platoons.

Vehicle models

We use general kinematic equations to describe the behaviour of the vehicles, which, after
discretisation leads to:

xi(ℓ+ 1) = xi(ℓ)+ vi(ℓ)Tsim + 0.5ai(ℓ)T
2

sim (4.2)

vi(ℓ+ 1) = vi(ℓ)+ ai(ℓ)Tsim (4.3)

where ℓ is the simulation step counter, Tsim the simulation time step, xi(ℓ) the longitudinal
position of the rear of vehicle i at time t = ℓTsim, vi(ℓ) the speed of vehicle i at time t = ℓTsim,
and ai(ℓ) the acceleration for vehicle i at time t = ℓTsim. The acceleration used in (4.2)–(4.3)
is calculated according to the current driving situation as will be explained below. In addi-
tion, the acceleration is limited between a maximum acceleration aacc,max and a maximum
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(in absolute value) comfortable deceleration adec,max.

ai(ℓ) = sat(atarget,i(ℓ),adec,max,aacc,max) (4.4)

where sat is the saturation function2 and atarget,i(ℓ) is the reference acceleration computed
via the formulas given in the next subsections. Also, it is assumed that the vehicle length
(Li) is the distance from the rear to the front of the vehicle. The distance between the front of
the following vehicle and the rear of the vehicle in front is called the following distance ∆i.
The time headway hi of a vehicle is defined as the time difference between the passing of the
rear ends of the vehicle’s predecessor and the vehicle itself at a certain location. When the
speeds of the vehicles are considered to be constant, then the time headway is the amount
of time necessary for vehicle i to reach the current position of vehicle i + 1. The distance
headway of a vehicle si is defined as the distance between the rear of the vehicle and the
rear of its predecessor vehicle at a specific instant of time. The distance headway si is equal
to the sum of the vehicle length Li and its following distance ∆i.

These definitions are illustrated using two vehicles i and i+1 travelling on a single lane in
a time-space coordination system as shown in Figure 4.3. The time and distance directions
are shown in vertical and horizontal axes respectively. The time headway is more often
considered rather than distance headway because of its simplicity and ease of measuring. In
practice, the distance headway can be obtained from photos.

Longitudinal models for human drivers

Now we describe the longitudinal behaviour of the vehicles. First we consider models for
human drivers, and in the next subsection we discuss models for the IVs and for the platoons.

For human-driver models we distinguish between free-flow and car-following beha-
viour:

• Free-flow model: The acceleration for free-flow driving conditions is determined by
the delayed difference between the current speed and the reference speed:

atarget,i(ℓ) = K(vref,i(ℓ−σ)− vi(ℓ−σ)) , (4.5)

2The saturation function sat is defined as follows sat(x,U,L) equal to x if L ≤ x ≤U , equal to U if x > U and
equal to L if x < L.
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where K is a model parameter, vref,i is the reference speed, and σ is the reaction
delay. The reference speed vref,i can either be issued by the roadside controller or
it can be the driver’s desired speed or the legal maximum speed for the road the
vehicle is currently on. In connection with the reaction delay σ we assume that the
corresponding reaction time Treact, which typically has a value of 1–1.2 s, is an integer

multiple of the simulation time step Tsim. As a result, σ =
Treact

Tsim

is an integer.

• Car-following model: As described in [27] there exist various types of car-following
models such as stimulus response models [102], collision avoidance models [87],
psychophysical models [105], and cellular automata models [109].

We will use a stimulus response model to describe the behaviour of human drivers.
Stimulus response models are based on the hypothesis that each vehicle accelerates or
decelerates as a function of the relative speed and distance between the vehicle and its
predecessor. In particular, the Gazis-Herman-Rothery (GHR) model [55] states that
after a reaction delay, the follower vehicle i accelerates or decelerates in proportion
to the speed of the vehicle itself, to the relative speed with respect to its predecessor
(vehicle i+1), and to the inverse of distance headway between them. The acceleration
is thus given by

atarget,i(ℓ) = Cv
β
i (ℓ)

(vi+1(ℓ− d)− vi(ℓ− d))

(xi+1(ℓ− d)− xi(ℓ− d))γ
, (4.6)

where C, β, and γ are the model parameters (possibly with different values depending
on whether the vehicle is accelerating or decelerating), and d is the driver delay. Here
we assume again that Tdelay the delay time, which typically has a value of 1–1.2 s, is

an integer multiple of Tsim. So, d =
Tdelay

Tsim

is an integer. We have selected this model

for our research mainly due to the simple formulation used by the model to describe
the car-following behaviour.

Longitudinal models for platoons in IVHS

In our approach, the intelligent vehicles within the platoons use adaptive cruise control
(ACC) and intelligent speed adaptation (ISA) measures and are arranged in platoons. We
now discuss how the accelerations for the platoon leaders and for the follower vehicles
within a platoon are calculated:

• Platoon leader model: Platoon leaders have an enforced-ISA system and the calcu-
lation of the acceleration for the platoon leader is based on a simple proportional
controller:

ai(ℓ) = K1(vISA(ℓ)− vi(ℓ)) , (4.7)

where K1 is the proportional constant, and vISA is the reference ISA speed provided
by the roadside controller.

• Follower vehicle model: The follower vehicles in a platoon will use their on-board
ACC system to maintain short intraplatoon distances. The cooperative ACC algorithm
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consists of a combined speed and distance controller:

ai(ℓ) = K2(href,i(ℓ)− (xi+1(ℓ)− xi(ℓ)))+ K3(vplatoonleader(ℓ)− vi(ℓ))) , (4.8)

where K2 and K3 are constants, and href,i is the reference distance headway for vehicle
i. Note that the speed controller is based on the same principle as the one used in the
platoon leader model, but with the speed of the platoon leader as the reference speed.
The distance controller calculates the safe distance headway as follows:

href,i(ℓ) = S0 + vi(ℓ)Thead,i + Li , (4.9)

where S0 is the minimum safe distance headway that is to be maintained at zero speed,
Thead,i is the desired time headway for vehicle i, and Li is the length of vehicle i.

4.4.5 Platoon-based prediction model

At a more aggregate level, we can also consider a platoon of vehicles as a single entity
without taking the detailed interactions among the individual vehicles within a platoon into
account. So, essentially we consider a platoon as one vehicle with a length that is a function
of the speed of the platoon (due to the dependence of the intervehicle spacing managed by
the cooperative ACC on the speed (cf. (4.9)), and of the number and lengths of the vehicles
in the platoon. The dynamics equations for the speed and position of the platoon are the
same as those of a platoon leader presented above. Consider platoon p and assume for the
sake of simplicity that the vehicles in the platoon are numbered 1 (last vehicle), 2 (one but
last vehicle), . . . , np (platoon leader). The speed dependent length Lplatoon,p(ℓ) of platoon p

is then given by

Lplatoon,p = (np − 1)S0 +
np−1

∑
i=1

Thead,ivnp(ℓ)+
np

∑
i=1

Li , (4.10)

where S0 the minimum safe distance that is to be maintained at zero speed, Thead,i is the
desired time headway for vehicle i, vnp the speed of the platoon (leader), and Li the length
of vehicle i.

Merging at on-ramps and lane changing for human drivers

In order to model the merging and lane changing behaviour of vehicles, we could — in the
interest of simulation speed and efficiency — use the following simplified models.

For individual human-driven vehicles (cf. the case study of Section 4.5 below) we as-
sume that a vehicle on an on-ramp can join the mainstream lane provided that there is a
sufficient large gap and that no collision is imminent. If both conditions are satisfied then
the vehicle joins the mainstream line with a speed that is equal to that of the immediate
predecessor (if present) or equal to the (ISA or legal) speed limit otherwise.

Lane changes can be modelled similarly: if there is a slower vehicle ahead and if the
speed of the vehicles in an adjacent lane is higher than that of the vehicle’s predecessor
in the current lane, the vehicle can join the other lane provided that there is a sufficient
large gap and that no collision is imminent. In this case the vehicle’s speed should not be
modified.
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Merging at on-ramps and lane changing for platoons

In order to model the merging behaviour of platoons at on-ramps and the lane changing
behaviour of platoons, we could use a similar simplified model that operates at the platoon
level.

We consider each platoon at an on-ramp as one entity that will join the mainstream lane
as soon as there is a sufficient large gap (including safety distances) available between the
platoons on the mainstream lane and provided that the merging will not result in a collision
in the next time steps. If both conditions are satisfied, then the platoon joins the mainstream
line (with a speed that is imposed by the roadside controller).

Likewise, if a lane change is imposed on a platoon by the roadside controller, we assume
that the platoon moves to the assigned lane as one entity. Note that in this case the roadside
controller is responsible for taking care that there is a sufficiently large gap (including safety
distances) available between the platoons on the other lane and that the lane change will not
result in a collision in the next time steps.

4.5 Case study

Now we present a simple case study in which the MPC control strategy for the roadside
controller layer that has been described in Section 4.3 is applied. First, we will describe
the set-up and the scenario used to evaluate the performance of the proposed approach, the
prediction and simulation models used, as well as other implementation details. Next, we
will discuss and analyse the results obtained from the simulations.

4.5.1 Set-up

To illustrate the proposed MPC approach for the roadside controller we use a basic set-up
consisting of a 7 km two-lane highway stretch with one mainstream origin, two on-ramps
(located at position x = 2000 km and x = 4000 km), and one destination (see Figure 4.4).
We compare three different situations:

• uncontrolled traffic with human drivers,

• controlled traffic with human drivers and with ISA and (conventional) ramp metering
as control measures,

• IV-based traffic control with platoons and with dynamic speeds, on-ramp release
times, and lane allocations for the platoons as control measures.

For the sake of simplicity all vehicles are assumed to be of the same length (Li = 4 m for
i=1,2,. . . ,n).

For the controlled situation with human drivers we assume that ISA limits the speed in
a hard way and that human drivers cannot surpass the imposed speed limit. Similarly, we
assume that the imposed ramp metering rate is adhered to.

In the IV-based case with platoons we assume that all the vehicles are fully automated
IVs equipped with advanced communication and detection technologies such as in-vehicle
computers and sensors, and with on-board ACC and ISA controllers.
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Figure 4.4: Set-up of the case study

4.5.2 Scenario

We simulate a period of 9 min starting at time tstart = 7:00 A.M and ending at time tend

= 7:09 A.M. The demand of vehicles is taken to be constant during the simulation period,
and equals 1365 veh/h/lane (lane 1) and 1512 veh/h/lane (lane 2) for the mainstream origin
and 404 veh/h (on-ramp 1) and 422 veh/h (on-ramp 2) for the on-ramps.

For the proposed scenario the initial state of the network is as follows. We assume
that before time tstart an incident has occurred at position x = 5 km in lane 1, resulting in a
blockage in lane 1 from position x = 5 km up to position x = 7 km at time tstart. This incident
blockage will serve as the main bottle-neck in our set-up.

In the upstream sections 3 and 4 of lane 2 (i.e., from position x = 2 km up to x = 4 km)
the initial density is 50 veh/km/lane, and in the other sections there are no vehicles. Simil-
arly, in the upstream section 4 of lane 1, the initial density is 25 veh/km/lane. Moreover, at
time tstart the on-ramp and mainstream origin queues are empty. The incident situation con-
tinues for the entire simulation period [tstart, tend]. During this interval, there is no outflow
from the incident region.

The demand profile considered for this particular layout is shown in Figure 4.5.2. Both
the mainstream demands raise to a relatively higher level of demand (i.e., more than the
capacity of the network) for first 20 min, maintain almost the same higher level of demand
for the next 30 min and drop to a low value in the next 10 min. During the first 20 min,
the demand on the on-ramps which started at a higher level drops to a reduced level, and
maintain a low level of demand for the rest of the simulation period. The network considered
has a capacity of 1600 veh/h/lane [83].

4.5.3 Models

As indicated above, we are interested in comparing the simulation results obtained for the
given scenario using human driving (both without and with control) and using our platoon-
based hierarchical approach. For this purpose, we have developed simulation models in
Matlab for human driving and platoon driving. For the sake of simplicity and to avoid
calibration, we have used the same models for both simulation and prediction purposes in
this simulation study.

For the vehicle models we have used the models of Section 4.4.4. In particular, we
have used (4.2)–(4.3) with the accelerations given by respectively (4.5)–(4.6) (with vref,i(ℓ)
equal to the legal speed limit of 120 km/h) for uncontrolled human drivers, (4.5)–(4.6) (with
vref,i(ℓ) equal to the ISA speed limit) for human drivers with ISA, and (4.7)–(4.9) for pla-
toons of intelligent vehicles. If we express distances in m, times in s, speeds in m/s, accel-
erations in m/s2, etc., then the various parameters in these models have the following values
(these values inspired by the MITSIM model [156]): For the car-following model (4.6) we
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Figure 4.5: The demand scenario considered

have C = 1.55, β = 1.08, and γ = 1.65 for deceleration, and C = 2.55, β = −1.67, and
γ = −0.89 for acceleration. Furthermore, we have selected d = 1, σ = 1, K = 0.01, and
K1 = 0.4. For the follower vehicle model (4.8)–(4.9) we have K2 = 0.6, K3 = 1.2, K4 = 1,
S0 = 3, and Thead = 0.5 for all vehicles.

For the platoon model (4.10) we have selected S1 = 0.5. Moreover, aacc,max = 3 and
adec,max = −3 for all models.

If there is a congestion in a segment of the highway, then the maximum outflow from this
congested segment will become less when compared to free-flow traffic due to the capacity
drop. The value of the capacity drop due to congestion in our case is around 7 % for human
drivers (both in the controlled and the uncontrolled case) and almost 0 % for platoons (due to
the full automation). For human drivers the capacity drop is included by setting the reaction
delay d in the car-following model (4.6) equal to d = 4 for the first vehicle that leaves the
situation, and by reducing this reaction delay every simulation step with 1, until it gets back
to the regular value of d = 1. The threshold speeds for determining whether or not a given
vehicle is in a congested or uncongested situation are 30 km/h and 50 km/h respectively (in
between the previous congestion state is preserved; so the capacity drop model contains
hysteresis).

The time step Tsim for the simulations is set to 1 s.

4.5.4 Control problem

Objective function

The goal of our traffic controller is to improve the traffic performance. The objective that
we consider is minimisation of the total time spent (TTS) by all the vehicles in the network
using dynamic speed limits, lane allocations (for the platoons), and on-ramp metering as the
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control handles. The TTS for the entire simulation period can be expressed as

JTTS,sim =
Nsim

∑
ℓ=0

(

nveh(ℓ)+ qmain(ℓ)+ qon(ℓ)
)

Tsim , (4.11)

where Nsim = 540 is the total number of simulation steps (of length Tsim = 1 s) within the en-
tire simulation period of 9 min, nveh(ℓ) is the number of vehicles that are present within the
network at time t = ℓTsim, qmain(ℓ) is the number of vehicles in the queue at the mainstream
origin at time t = ℓTsim, and qon(ℓ) is the number of vehicles present in the on-ramp queues
at time t = ℓTsim.

The corresponding performance function Jperf(k) used in the MPC approach at control
step k is then given by

Jperf(k) =
(k+Np)K−1

∑
ℓ=kM

(

nveh(ℓ)+ qmain(ℓ)+ qon(ℓ)
)

Tsim ,

with M =
Tctrl

Tsim

(note that as we will select the control time step Tctrl to be an integer multiple

of the simulation time step Tsim, M will be an integer). In the total MPC objective function
we also include a penalty term with α = 0.01 (cf. (4.1)).

Control inputs

For the controlled human situation the applied control measures are (conventional) on-ramp
metering and ISA (with one speed limit for each section of 1 km length between position
x = 0 km and position x = 5 km).3.

So in this case the control signal u for the MPC problem of control step k includes
the ISA speed limits for the first 5 sections and the ramp metering rates for two on-ramps
(expressed as a number between 0 and 1) at control steps k up to k +Nc −1, i.e., we have 7Nc

variables in total.
For the platoon-based approach the control signal u for the MPC problem of control

step k includes speed limits and lane allocations for all platoons that are or will be present
in the network during the control horizon period as well as the on-ramp release times for
the platoons at the on-ramp during the control horizon period.

So if Pk is the number of platoons that are present in the network at time t = kTctrl or that
could enter the network via the mainstream origin between time t = kTctrl and up to time
t = (k + Nc)Tctrl, and if Qk is the number of platoons that could enter the network via the
on-ramp between t = kTctrl and t = (k + Nc)Tctrl, we have 2PkNc + 2Qk(Nc − 1)+ Qk variables
in total. To keep the number of optimisation variables fixed during the optimisation process
and to take the future demand of platoons into account, we use autonomous control for
vehicles entering between t = (k + Nc)Tctrl and t = (k + Np)Tctrl. By autonomous control, we
mean that the platoons on the highways would be assigned with the speed of its immediate
predecessor (platoon). If no predecessor platoon exists then the free-flow speed will be
assigned to the uncontrolled autonomous platoon. Each platoon will be assigned the same
lane in which it originated, until it is forced to perform a lane change due to any incident

3Note that considering speed limits in the remaining sections is not necessary in the proposed scenario as for
these sections setting the speed limits equal to the legal speed limit of 120 km/h yields an optimal solution.
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blockages. The platoons from on-ramps are allowed to enter the highway once the highway–
on-ramp merging location can accommodate the entire platoon.

As in this case study we focus on dynamic speed limits and lane allocations for each
platoon and on on-ramp metering, the platoon size is not yet considered to be a control
variable, but it is kept fixed at 25 for all platoons.

Constraints

In the platoon-based approach the roadside controller has to take care of maintaining safe
interplatoon distances. This condition is included as a constraint in the MPC optimisation
problem. In particular, the minimal safe distance between the front end of a platoon p1 and
the rear end of its immediate predecessor platoon p2 in the same lane is given by:

S0,platoon + Thead,platoon vplatoon,p1
,

where vplatoon,p1
is the speed of platoon p1. For the case study we have selected S0,platoon =

20 m and Thead,platoon = 1.2 s. Moreover, we consider a maximum speed of 120 km/h for
both the human drivers and the platoon leaders.

Horizons

The control time step Tctrl is set at 1 min. The prediction horizon Np is assumed to be the
average time required for a vehicle to travel the entire network using the average speed. So
for our case study we have taken a value that corresponds to 7 min (Np = 7 km/60 km/h =
0.1 h = 7 min). For the control horizon Nc we have selected a value that corresponds to
3 min so as to limit the number of optimisation variables.

Optimisation algorithms

As we consider dynamic speed limits, on-ramp metering, and lane allocation as control
measures there will be both continuous and integer variables in the MPC optimisation prob-
lem. For the optimisation we have used the patternsearch command incorporated in the
Genetic Algorithm and Direct Search Toolbox of Matlab for the continuous optimisation
problems (i.e., the determination of the speeds and on-ramp metering rates for the con-
trolled human case) and the glcFast command of the Matlab/Tomlab toolbox [142] for the
mixed integer optimisation problems (i.e., the determination of the speeds, on-ramp release
times, and lane allocation for the platoon case). The patternsearch command imple-
ments a pattern search algorithm [6] and the glcFast command implements an extended
version of the DIRECT algorithm of [79]. Both methods have been executed multiple times
with different initial starting points so as to get a good approximation of the optimal solu-
tion. For the controlled human driver scenario we have used 20 multi-start points. For the
platoon-based approach we have used bilevel optimisation with binary optimal on lane al-
location (since limited number of variables, brute force enumeration can be used) and with
real-valued optimal on speeds and on-ramp release times. In particular, for the real-valued
variables, we have used 30 multi-start points. We have opted to use these particular optim-
isation algorithms because our simulation experiments have shown that they provide a good
trade-off between optimality and speed.
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Table 4.1: Results for the three approaches

Case TTS (veh.h) Relative improvement no of control variables

for Np=7 and Nc=3

uncontrolled case 27.44 0 % 0

controlled (human drivers) 24.72 9.91 % 7Nc

controlled (platoons) 20.67 24.67 % 2PkNc + 2Qk(Nc − 1)+ Qk

4.5.5 Results and analysis

For the scenario presented above, closed-loop MPC simulations have been carried out. The
results of the simulations are reported in Table 4.1. In particular, we indicate the total time
spent by all vehicles in the network during the entire simulation period of 9 min.

We will analyse the scenario for the reference case (uncontrolled case) as follows. The
total capacity of the considered network is 3200 veh/h. The total demand equals 3703 veh/h
(1365 veh/h+1512 veh/h+404 veh/h+422 veh/h), which is higher than the total capacity. In
the uncontrolled case, the congestion will mainly occur on the mainstream, as the vehicles
from on-ramps will always try to enter the mainstream. The capacity available for the main-
stream demands will be 3200-422 = 2778 veh/h (allowed capacity - demand on on-ramp 2),
which is less for the original demand (3281 veh/h (i.e., demand from mainstream origin and
from on-ramp 1)). This exceeding demand situation, when not controlled properly will lead
to traffic jams.

The considered set-up and scenario can be analysed in three categories as follows: seg-
ments upstream the bottleneck, the bottleneck segment, and segments downstream the bot-
tleneck. The segments far upstream the bottleneck i.e., segments from 1 to 4 allow vehicles
to travel at their free-flow speed. However, segment 3 may get congested if the demand
from on-ramp 1 exceeds the allowed capacity. Due to the constant, high demand from on-
ramp 2 and from the mainstream origins, and due to the bottleneck caused by the incident,
congestion is expected to occur on segment 5. In the bottleneck segment 6, the available
capacity can be utilised fully by the vehicles, but at the price of low mean speeds. The
outflow capacity from segment 6 cannot reach the maximum flow, as more vehicles are not
allowed to travel through the bottleneck.

Figure 4.6 show the simulation results for the uncontrolled case in two different views
for a better understanding. In Figure 4.6(a), the traffic flow direction is from the bottom
to the top, and since all segments have the same length, this axis should be interpreted
as the distance travelled by the vehicles. During the entire simulation, the speed limits
for all the segments are set to 120 km/h. The first plot in Figure 4.6(a) shows the mean
speeds at the segments. Light colours represent high mean speeds. The dark area starting
at the 5th segment after 1 min denotes low speeds and the reason for the decreased speed
(i.e., increased density) can be interpreted as follows. When a driver is confronted with an
incident on segment 6 on the same lane (lane 1), he starts to decelerate in order to avoid a
collision. In case there is no space in lane 2 or in case the speed on lane 2 is almost the
same as on lane 1, the driver waits and stays on lane 1 until the incident eventually gets
cleared. However, once there is a possibility to perform a safe lane change manoeuvre, the
driver moves to lane 2. In the uncontrolled case there is no ramp metering action that can
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prevent or delay an extra flow of vehicles from entering the mainstream highway. However,
the increasing density in lane 2 due to the effects of the incident in lane 1 causes congestion,
which in its turn leads to a capacity drop for vehicles leaving the traffic jam. Next, the
flow plot also shows the traffic jam and is visible as dark area in segment 5 indicating
lower flow. In the density plot, there are vehicles in the upstream segments. Since they
are less in number than the congested number of vehicles, they are not clearly visible. In
Figure 4.6(b) we can visualise the increase in density in the upstream segments. Also, the
irregularities seen in the mean-speeds of segments 6 and 7 in Figure 4.6(b) can be explained
as a consequence of stop-and-go behaviour of the vehicles leaving the congested area. Once
the traffic congestion sets in, both the mainstream vehicles and the on-ramp vehicles drive
on and have to wait in a queue until the traffic jam dissolves. All this results in a large time
spent in the network for the vehicles, and thus also in a higher value of the TTS for the
entire simulation period.

The MPC-human controlled case for the same situation considered above, the speed
limit becomes active and reduce the inflow from the mainstream, and ramp metering gradu-
ally switches on and keeps the total outflow high as shown in Figure 4.7. For this case,
the MPC approach can predict the presence of an incident and prevent it or diminish its
negative impact by slowing down vehicles (using speed limits) or delaying vehicles (via on-
ramp metering) before they reach the incident. In Figure 4.7(a), we can see that the speed
limit control in segments 4 and 5 has delayed the vehicles from getting nearer to the bot-
tleneck area (since the congestion will then be dissolved or at least less severe by the time
the vehicles then reach the congested area) and has provided entry space for the on-ramp
vehicles. Since the traffic maintains a homogenous traffic flow, the density plot and the flow
plot in Figure 4.7 are not showing the details in precise. In Figure 4.7(b), we can clearly
see that the ramp metering signals for on-ramp 2 has been regulated such that the traffic
flow entering via the on-ramp 2 does not cause congestion in segment 5. This controlled
approach with human drivers, ISA control, and ramp metering yields an improvement in
TTS over the uncontrolled case of about 10 %. Thus in the MPC-human controlled case,
the segments where the speed limits can influence the traffic flow are segments 1 to 5. The
speed limits and the ramp metering rates provided by the MPC-based roadside controller
for the human drivers are shown in Figure 4.8.

As the platoon controlled case is not a segment based approach, the plots in Figure
4.9(b) do not provide indepth details of the traffic situation. Thus we will consider the
plots in Figure 4.9(a) for explanation of the platoon controlled traffic situation. From the
speed plot in Figure 4.9(a), we can see that the platoons are allowed to travel at higher
speeds through the segments. The main idea behind speed limit control and on-ramp release
time control for platoons is the same as for human controlled approach. Moreover, the full
automation for IVHS allows to maintain small intervehicle distances (so that more cars
are allowed to traverse the network more quickly) even in the case of possible congestion
in segment 5 (due to the incident and the on-ramp 2 demand) and it results in an almost
0 % capacity drop. The additional performance improvement obtained by our approach is
caused by the optimal lane allocation and the full automation in addition to speed limits and
ramp metering. The lane allocation control measure also helps to better react to the incident
and to allow for lane changes for platoons that would otherwise be blocked in front of the
congested region. IV-based traffic with platoons results in the best performance with an
improvement of about 24.6 % with respect to the uncontrolled case and of about 16.39 %
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Figure 4.6: Simulations for human drivers uncontrolled case
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(a) Simulations for human controlled case
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Figure 4.7: Simulations for human drivers controlled case
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Figure 4.9: Simulations for platoon controlled case
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with respect to the controlled human case.

4.6 Summary

We have presented how model predictive control (MPC) can be used to determine optimal
platoons speeds, lane allocations, platoon sizes, platoon release times at on-ramps, etc. in
Intelligent Vehicle Highway Systems (IVHS). The proposed approach has been illustrated
using a case study based on simulations and with dynamic speed limits, lane allocation,
and on-ramp metering as control measures. The results of the case study highlight the
potential benefits and improvements that can be obtained by using MPC for intelligent speed
adaptation in IVHS.

Future research topics include: additional and more extensive case studies, inclusion
of additional control measures, development of efficient algorithms, assessment of the ef-
fects of model mismatches, explicit consideration of the other levels in the IVHS control
hierarchy of [10], and extension to larger networks.
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Chapter 5

Area Controller

We are considering Intelligent Vehicles Highway Systems (IVHS) consisting of automated
highway systems in which intelligent vehicles (IVs) organised in platoons drive to their des-
tination, controlled by a hierarchical control framework. In this chapter, we present a route
guidance approach that can be used by the area controllers in the IVHS control framework
of Chapter 3. In general, the optimal route choice control problem is a nonlinear integer
optimisation problem with high computational requirements, which makes the problem in-
tractable in practice. Therefore, we propose two simplified but fast simulation models to
describe the flows of platoons in the network.

For the first model, which only considers flows and queues lengths, we show that the
optimal route choice control problem can be approximated by a linear or a mixed-integer
linear problem. With a simple case study we illustrate that this results in a balanced trade-off
between optimality and computational efficiency.

The second model is a macroscopic model based on an existing traffic flow model for
human drivers (METANET), that we adapt to fit the platoon framework. For this model,
the optimal route choice control problem results in an optimisation problem with only real-
valued optimisation variables. This approach will also be illustrated with a simple case
study.

5.1 Introduction

The recurring traffic congestion problems and their related costs have resulted in various
solution approaches. One of these involves the combination of the existing transportation
infrastructure and equipment with advanced technologies from the field of control theory,
communication, and information technology. This results in integrated traffic management
and control systems, called Intelligent Vehicle Highway Systems (IVHS), that incorporate
intelligence in both the roadside infrastructure and in the vehicles. Although this step is con-
sidered to be a long-term solution, this approach is capable of offering significant increases
in the performance of the traffic system [50, 80, 136].

In IVHS all vehicles are assumed to be fully automated with throttle, braking, and steer-
ing commands being determined by automated on-board controllers. Such complete auto-
mation of the driving tasks allows to organise the traffic in platoons, i.e., a closely spaced

69
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group of vehicles travelling together with short intervehicle distances [132, 149]. Platoons
can travel at high speeds and to avoid collisions between platoons at these high speeds, a
safe interplatoon distance of about 20–60 m should be maintained. Also, the vehicles in
each platoon travel with small intraplatoon distances of about 2–5 m, which are maintained
by the automated on-board speed and distance controllers. By travelling at high speeds and
by maintaining short intraplatoon distances, the platoon approach allows more vehicles to
travel on the network, which improves the traffic throughput [28, 97].

In Chapter 3 we have proposed a hierarchical traffic management and control frame-
work for IVHS that builds upon earlier research in this field such as the PATH framework
[132]. The control architecture of Chapter 3 consists of a multi-level control structure with
local controllers at the lowest level and one or more higher supervisory control levels (see
also Figure 5.1). In this framework there are roadside controllers that provide speed and
lane allocation instructions to the platoons. These roadside controllers typically manage
single stretches of highways. A collection of highways is then supervised by so-called area
controllers that mainly take care of the route guidance instructions for the platoons and that
also coordinate the various roadside controllers in their area. In this chapter, we will con-
centrate on how the area controllers can determine optimal routes for the platoons using
optimal control. Traffic flow models can be used for prediction, simulation, estimation, and

for control related tasks. In general, traffic flow models can be categorised as:

• Microscopic flow models,

• Mesoscopic flow models,

• Macroscopic flow models.

Microscopic models represent every vehicle as an autonomous entity and model the
interaction among individual vehicles [27, 34, 102]. Microscopic models use sub-models
to represent acceleration, lane changing decisions, and gap acceptance behaviour of each
vehicle.

On a mesoscopic scale, the behavioural rules for individual vehicles are replaced by
principles from statistical mechanics or gas kinetics. This model represents the traffic stream
as a packet of vehicles [68, 72, 122].

Macroscopic models consider the traffic flow as a continuum, i.e., a fluid or a gas with
specific characteristics [43, 44, 98]. The aggregated variables that are used to describe the
dynamics of traffic flow are mean speed, flow, and density.

The choice of the appropriate model depends on the level of detail required and also on
the computational requirements. Microscopic traffic flow models become mathematically
intractable for large-scale traffic systems due to the high computational requirements. They
are in fact more suitable for simulation purposes and for off-line evaluation of developed
control strategies than for on-line model-based control. On the other hand, macroscopic
models are less detailed and thus less accurate than microscopic traffic flow models, but due
to their fast execution they are well-suited for on-line model-based control.

If we would optimise the routes for each platoon using a microscopic traffic flow model,
the optimal route choice problem would lead to a mixed-integer optimisation over the routes
(integer variables) and e.g., speeds (real variables). Therefore, we will develop a macro-
scopic traffic model for IVHS in this chapter.
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The chapter is organised as follows. In Section 5.2 we briefly recapitulate1 the hier-
archical traffic management and control framework of Chapter 3. Next, we focus on the
route guidance tasks of the area controllers and we present a simplified flow model and the
corresponding optimal route guidance problem in Section 5.3. We consider both the static
(constant demands) and the dynamic case (time-varying demands). In general, the dynamic
case leads to a nonlinear nonconvex optimisation problem, but we show that this problem
can be approximated using mixed-integer linear programming (MILP). We present a simple
example that illustrates that the MILP approximation provides a good trade-off between
optimality and computational efficiency. In Section 5.4 we propose an alternative approach
based on a macroscopic traffic flow model for human drivers (METANET). We present the
basic METANET model for human drivers and we explain how it can be adapted to pla-
toons. Next, we use this model to determine optimal splitting rates at the network nodes.
This yields an optimisation problem with real-valued variables only, which thus results in
a computation complexity that is much lower than the original mixed-integer optimisation
problem. This approach is also illustrated using a case study. Section 5.6 concludes the
chapter.

5.2 Intelligent vehicle highway systems (IVHS)

We now briefly recapitulate the hierarchical control framework for IVHS we have proposed
in Chapter 3. This framework is based on the platoon concept and it distributes the intelli-
gence between the roadside infrastructure and the vehicles using control measures such as
intelligent speed adaption, adaptive cruise control, lane allocation, on-ramp access control,
route guidance, etc. to prevent congestion and to improve the performance of the traffic net-
work. The control architecture of Chapter 3 consists of a multi-level control structure with
local controllers at the lowest level and one or more higher supervisory control levels as
shown in Figure 5.1. The layers of the framework can be characterised as follows:

• The vehicle controllers present in each vehicle receive commands from the platoon
controllers (e.g., set-points or reference trajectories for speeds (for intelligent speed
adaption), headways (for adaptive cruise control), and paths) and they translate these
commands into control signals for the vehicle actuators such as throttle, braking, and
steering actions.

• The platoon controllers receive commands from the roadside controllers and are re-
sponsible for control and coordination of each vehicle inside the platoon. The platoon
controllers are mainly concerned with actually executing the interplatoon manoeuvres
(such as merges with other platoons, splits, and lane changes) and intraplatoon activ-
ities (such as maintaining safe intervehicle distances).

• The roadside controllers may control a part of a highway or an entire highway. The
main tasks of the roadside controllers are to assign speeds for each platoon, safe
distances to avoid collisions between platoons, appropriate platoon sizes, and ramp
metering values at the on-ramps. The roadside controllers give instructions for mer-
ging, splitting, and lane changes to the platoons.

1The reason for including this recapitulation is that this allows the chapters of the PhD thesis to be read inde-
pendently from each other.
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Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Figure 5.1: The hierarchical control framework of Chapter 3 for IVHS

• The higher-level controllers (such as area, regional, and supraregional controllers)
provide network-wide coordination of the lower-level and middle-level controllers.
In particular, the area controllers provide area-wide dynamic route guidance for the
platoons, and they supervise and coordinate the activities of the roadside controllers
in their area by providing set-points and control targets. In turn, a group of area
controllers could be supervised or controlled by a regional controller, and so on.

The lower levels in this hierarchy deal with faster time scales (typically in the milliseconds
range for the vehicle controllers up to the seconds range for the roadside controllers),
whereas for the higher-level layers the frequency of updating can range from few times per
minute (for the area controllers) to a few times per hour (for the supraregional controllers).

In Chapter 4 and [13–15] we have proposed model predictive control methods for the
roadside controllers to determine optimal speeds, lane allocations, and on-ramp release
times for the platoons. In the remainder of the chapter we will focus on the area controllers
and in particular on how optimal routes can be determined for the platoons.

5.3 Optimal route choice control in IVHS using mixed-

integer linear programming

5.3.1 Approach

In principle, the optimal route choice control problem in IVHS consists in assigning an op-
timal route to each individual platoon in the network. However, this results in a huge non-
linear integer optimisation problem with high computational complexity and requirements,
making the problem intractable in practice. So, since considering each individual platoon is
too computationally intensive, we will consider streams of platoons instead (characterised
by (real-valued) demands and flows expressed in vehicles per hour). The routing problem
will be recast as the problem of determining the flows on each link.
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Figure 5.2: Piecewise constant time-varying demand profile Do,d for the dynamic case

5.3.2 Set-up

We consider the following set-up. The highways in the traffic network are considered to
be divided into links. We have a transportation network with a set of origin nodes O , a
set of destination nodes D , and a set of internal nodes I . Define the set of all nodes as
V = O ∪ I ∪D . Nodes can be connected by one or more (unidirectional) links. The links
correspond to freeway stretches. The set of all links is denoted by L .

For each origin-destination pair (o,d) ∈ O ×D we define the set Lo,d ⊆ L of links that
belong to some route going from o to d. For every link l ∈ L we define the set Sod,l of
origin-destination pairs (o,d) ∈ O ×D such that l belongs to some route going from o to d.

For each pair (o,d) ∈ O ×D , there is a constant demand Do,d (in the static case) or a
dynamic, piecewise constant demand pattern Do,d(·) as shown in Figure 5.2 with Do,d(k)
the demand of vehicles at origin o with destination d in the time interval [kTs,(k + 1)Ts) for
k = 0, . . . ,K − 1 with K the simulation horizon and Ts the simulation time step (we assume
that beyond T = KTs the demand is 0).

For each link l ∈ L in the network2 there is a maximal capacity Cl . We assume that there
is a fixed average speed vl on each link l. Let τl denote the travel time on link l: τl = ℓl

vl

where ℓl is the length of link l. We denote the set of incoming links for node v ∈ V by Lin
v ,

and the set of outgoing links by Lout
v . Note that for origins o ∈ O we have Lin

o = /0 and for
destinations d ∈ D we have Lout

d = /0.
The aim is now to assign actual (real-valued) flows xl,o,d (in the static case) or xl,o,d(k)

(in the dynamic case) for every pair (o,d) ∈ O ×D and every l ∈ Lo,d , in such a way that
the given performance criterion (e.g., total time spent on the network) is minimised with
constraints maintained (e.g., the capacity of the links is not exceeded). In the dynamic case
xl,o,d(k) denotes the flow of vehicles from origin o to destination d that enter link l in the
time interval [kTs,(k + 1)Ts).

For the optimal route choice problem we now consider four cases with a gradually in-
creasing complexity:

• Static case with sufficient network capacity,

• Static case with queues at the boundaries of the network only,

2This approach can easily be extended to the case where also the internal nodes v ∈ I have a finite capacity.
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• Dynamic case with queues at the boundaries of the network only,

• Dynamic case with queues inside the network.

For the dynamic cases we will focus on optimal control for the sake of simplicity of the
expositions, but the proposed approach can also be included in a model predictive control
framework.

5.3.3 Static case with sufficient network capacity

Here we assume that there is a constant demand for each origin-destination pair and that the
total network capacity is such that the entire demand can be processed, so that there will
be no queues at the boundaries or inside the network. Let us now describe the equations to
model this situation.

For every origin node o ∈ O we have:

∑
l∈Lout

o ∩Lo,d

xl,o,d = Do,d for each d ∈ D . (5.1)

For every internal node v ∈ I and for every pair (o,d) ∈ O ×D we have

∑
l∈Lin

v ∩Lo,d

xl,o,d = ∑
l∈Lout

v ∩Lo,d

xl,o,d . (5.2)

We also have the following condition for every link l:

∑
(o,d)∈Sod,l

xl,o,d 6 Cl . (5.3)

Finally, the objective function is given as follows3:

Jlinks = ∑
(o,d)∈O×D

∑
l∈Lo,d

xl,o,dτlT , (5.4)

which is a measure for the total time the vehicles or platoons spend in the network. In order
to minimise Jlinks we have to solve the following optimisation problem:

min Jlinks s.t. (5.1)–(5.3) (5.5)

Clearly, this is a linear programming problem. The linear programming problems are effi-
ciently solvable using (a variant of) the simplex method or an interior-point method [118,
Chapter 1].

5.3.4 Static case with queues at the boundaries of the network only

In case the capacity of the network is less than the demand, then problem (5.5) will not
be feasible. The bottlenecks represent the places on network where capacity is restricted,
which in turn may develop queues at origins. In order to be able to determine the optimal

3Recall that T = KTs is the length of the simulation period.
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routing in this particular case, we have to take into account that queues might appear at the
origin of the network.

Let us first write down the equations for the flows inside the network.
For every origin node o ∈ O we have:

∑
l∈Lout

o ∩Lo,d

xl,o,d 6 Do,d for each d ∈ D . (5.6)

Equations (5.2) and (5.3) also hold in this case.
Let us now describe the behaviour of the queues. Since the actual flow out of origin

node o for destination d is given by

Fout
o,d = ∑

l∈Lout
o ∩Lo,d

xl,o,d ,

the queue length at the origin o for vehicles or platoons going to destination d will increase
linearly with a rate Do,d − Fout

o,d (note that by (5.6) this rate is always nonnegative). At the
end of the simulation period (which has length T ) the queue length will be (Do,d − Fout

o,d )T ,

and hence the average queue length is 1
2
(Do,d − Fout

o,d )T . So the total time spent in the origin
queues is

Jqueue = ∑
(o,d)∈O×D

1
2
(Do,d − Fout

o,d )T 2

= ∑
(o,d)∈O×D

1
2

(

Do,d − ∑
l∈Lout

o

xl,o,d

)

T 2 .

In order to minimise the total time spent we have to solve the following optimisation prob-
lem:

min
(

Jlinks + Jqueue

)

s.t. (5.2), (5.3), and (5.6). (5.7)

This is also a linear programming problem.

5.3.5 Dynamic case with queues at the boundaries of the network only

Now we consider a piecewise constant demand pattern for every origin-destination pair.
Moreover, we assume that the travel time τl on link l is an integer multiple of Ts, say

τl = κlTs with κl an integer. (5.8)

Let qo,d(k) denote the partial queue length of vehicles at origin o going to destination d

at time instant t = kTs. In principle, the queue lengths should be integers as their unit is
“number of vehicles”, but we will approximate them using reals.

For every origin node o ∈ O we now have:

∑
l∈Lout

o ∩Lo,d

xl,o,d(k) 6 Do,d(k)+
qo,d(k)

Ts
for each d ∈ D , (5.9)
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(b)(a)

qcont
o,d qcont

o,d

t t
kTs kTs(k + 1)Ts (k + 1)Ts

slope:
−(Do,d(k)− Fout

o,d (k))

kTs + To,d(k)

Figure 5.3: Two possible cases for the evolution of the continuous-time queue length qcont
o,d

in the time interval [kTs,(k + 1)Ts)

with by definition Do,d(k) = 0 for k > K, qo,d(k) = 0 for k 6 0. Note that the term
qo,d(k)

Ts
in

(5.9) is due to the assumption that whenever possible and feasible the queue is emptied in
the next sample period, with length Ts.
Taking into account that every flow on link l has a delay of κl time steps before it reaches
the end of the link, we have

∑
l∈Lin

v ∩Lo,d

xl,o,d(k − τl) = ∑
l∈Lout

v ∩Lo,d

xl,o,d(k) (5.10)

for every internal node v ∈ I and for every pair (o,d) ∈ O ×D , with xl,o,d(k) = 0 for k ≤ 0.
We also have the following condition for every link l:

∑
(o,d)∈Sod,l

xl,o,d(k) 6 Cl . (5.11)

Let us now describe the behaviour of the queues. Since the actual flow out of origin
node o for destination d in the time interval [kTs,(k + 1)Ts) is given by

Fout
o,d (k) = ∑

l∈Lout
o ∩Lo,d

xl,o,d(k) , (5.12)

the queue length at the origin o for vehicles going to destination d will increase linearly
with a rate4 Do,d(k)− Fout

o,d (k) in the time interval [kTs,(k + 1)Ts). Hence,

qo,d(k + 1) = max
(

0, qo,d(k)+ (Do,d(k)− Fout
o,d (k))Ts

)

(5.13)

In order to determine the time Jqueue,o,d(k) spent in the queue at origin o in the time
interval [kTs,(k +1)Ts) for traffic going to destination d, we have to distinguish between two
cases depending on whether or not the continuous-time queue length qcont

o,d becomes equal

4In contrast to Section 5.3.4 this rate can now also be negative.
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to zero inside5 the interval [kTs,(k + 1)Ts] (see Cases (a) and (b) of Figure 5.3). For Case (b)
we define

To,d(k) =
qo,d(k)

Fout
o,d (k)− Do,d(k)

(5.14)

as the time offset after kTs at which the queue length becomes zero. Then we have

Jqueue,o,d(k) =











1
2
(qo,d(k)+ qo,d(k + 1))Ts for Case (a),

1
2

qo,d(k)To,d(k) for Case (b).

Due to the denominator term in (5.14) Jqueue,o,d(k) is in general a nonlinear function. Now
assume that we simulate the network until time step Kend ≥ K (e.g., until all queues and all
flows have become6 equal to zero). Then we have

Jqueue =
Kend−1

∑
k=0

∑
(o,d)∈O×D

Jqueue,o,d(k) .

The time spent in the links is now given by

Jlinks =
Kend−1

∑
k=0

∑
(o,d)∈O×D

∑
l∈Lo,d

xl,o,d(k)κlT
2

s (5.15)

In order to minimise the total time spent we have to solve the following optimisation prob-
lem with Jlinks still defined by 5.15:

min
(

Jlinks + Jqueue

)

s.t. (5.9)–(5.13). (5.16)

Due to the presence of constraint (5.13) and the nonlinear expression for Jqueue,o,d(k) in Case
(b) this is a nonlinear, nonconvex, and nonsmooth optimisation problem. In general, these
problems are difficult to solve and require multi-start local optimisation methods (such as
Sequential Quadratic Programming (SQP)) or global optimisation methods (such as genetic
algorithms, simulated annealing, or pattern search) [118]. However, in Section 5.3.7 we
will propose an alternative approximate solution approach based on mixed-integer linear
programming.

In case of unpredictable congestion caused by incidents or accidents on the road, the
roadside controller will inform the area controller about the congestion in terms of reduced
capacity of the link.

5.3.6 Dynamic case with queues inside the network

Now we consider the case with queues inside the network. If there are queues formed, we
assume that they are formed at the end of the links and that the queues are vertical. In fact,

5So we are only Case (b) if qcont
o,d becomes equal to zero for some time t with kTs < t < (k + 1)Ts, i.e., if

qo,d(k) > 0 and qo,d(k)+ (Do,d(k)− Fout
o,d (k))Ts < 0. All other situations belong to Case (a).

6If this is not the case we have to add an end-point penalty on the queue lengths and flows at time step Kend.
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for the sake of simplicity and in order to obtain linear equations, we assign the queues to
the nodes instead of the links.

This case is similar to the previous case, the difference being that (5.10) is now replaced
by (cf. also (5.9)):

∑
l∈Lout

v ∩Lo,d

xl,o,d(k) 6



 ∑
l∈Lin

v ∩Lo,d

xl,o,d(k − τl)



+
qv,o,d(k)

Ts
, (5.17)

where qv,o,d(k) is the partial queue length at node v for vehicles or platoons going from
origin o to destination d at the time instant t = kTs. Moreover,

qv,o,d(k + 1) = max
(

0,qv,o,d(k)+ (F in
v,o,d(k)− Fout

v,o,d(k)
)

Ts

with the flow into and out of the queue being given by

F in
v,o,d(k) = ∑

l∈Lin
v ∩Lo,d

xl,o,d(k − τl) (5.18)

Fout
v,o,d(k) = ∑

l∈Lout
v ∩Lo,d

xl,o,d(k) . (5.19)

Similar to Jqueue,o,d(k) we also define the time Jqueue,v,o,d(k) spent in the queue at node v

in the time interval [kTs,(k + 1)Ts) for traffic going from origin o to destination d, and we
extend the definition of Jqueue into

Jqueue =
Kend−1

∑
k=0

∑
(o,d)∈O×D

(

Jqueue,o,d(k)+ ∑
v∈I

Jqueue,v,o,d(k)
)

Ts .

with Jqueue,v,o,d(k) defined as follows:

Jqueue,v,o,d(k) =











1
2
(qv,o,d(k)+ qv,o,d(k + 1))Ts for Case (a),

1
2

qv,o,d(k)Tv,o,d(k) for Case (b).

For Case (b) we define

Tv,o,d(k) =
qv,o,d(k)

Fout
v,o,d(k)− F in

v,o,d(k)
(5.20)

as the time offset after kTs at which the queue length becomes zero. This also results in
a nonlinear, nonconvex, and nonsmooth optimisation problem. However, in the next sec-
tion we will show that this problem can also be approximated using mixed-integer linear
programming.

Remarks

For the dynamic case with queues at the boundaries of the network only, the area controllers
will be designed to provide optimal flows in such a way that once the vehicles enter the net-
work, they will travel at their free-flow speed without encountering traffic jams. When the
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traffic mand exceeds the capacity of the network, queues will be created at one or more ori-
gins. Moreover, the congestion-free network comes at the price of increased queue lengths
at the origins. However, when the considered network is larger, then it would be a better
option for the model to allow the vehicles to enter the network rather than to create queues
at the origin.

Now, we will consider the dynamic case with queues inside the network. We will use
vertical queues to account for spillbacks and blockages on adjacent links. There exist two
possibilities to create queues inside the network. It can be either at the nodes or at the end
of the links. In case of the latter option, the queue at the end of each link will be created
by considering its own dynamics and also the behaviour of flows on the adjacent links.
However, queues on every link lead to nonlinear equations and a nonlinear optimisation
problem (see, e.g., [148] where a similar routing problem is considered for human drivers).
Therefore, we will consider the queue formations at nodes rather than at links. The queues at
the nodes, to a certain extent, can include the spillback effect by using capacity constraints
on links. In addition, the model can also include restrictions on the number of vehicles
waiting in the queues, by imposing a maximum allowed queue length.

5.3.7 Approximation based on mixed-integer linear programming

Recall that the dynamic optimal route guidance problems of Sections 5.3.5 and 5.3.6 are
nonlinear, nonconvex, and nonsmooth. Now we will show that by introducing an approx-
imation these problems can be transformed into mixed-integer linear programming (MILP)
problems, for which efficient solvers have been developed [51].

First we consider the case with queues at the origins only, i.e., we consider the optim-
isation problem (5.16). Apart from (5.13) this problem is a linear optimisation problem.

Now we explain how we can transform (5.13) into a system of linear equations by intro-
ducing some auxiliary boolean variables δ. To this aim we use the following properties [20],
where δ represents a binary-valued scalar variable, y a real-valued scalar variable, and f a
function defined on a bounded set X with upper and lower bounds M and m for the function
values:

P1: [ f 6 0] ⇐⇒ [δ = 1] is true if and only if

{

f 6 M(1 − δ)

f > ǫ+ (m − ǫ)δ ,

where ǫ is a small positive number7 (typically the machine precision),

P2: y = δ f is equivalent to


















y 6 Mδ

y > mδ

y 6 f − m(1 − δ)

y > f − M(1 − δ) .

7We need this construction to transform a constraint of the form y > 0 into y > ǫ, as in (mixed-integer) linear
programming problems only non-strict inequalities are allowed.
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Depending on the order in which these properties are applied and in which additional
auxiliary variables are introduced, we may end up with more or less binary and real variables
in the final MILP problem. The number of binary variables — and to a lesser extent the
number of real variables — should be kept as small as possible since this number has a
direct impact of the computational complexity of the final MILP problem.

To reduce the number of real variables in the final MILP problem, we first eliminate
Fout

o,d (k) and we write (5.13) as

qo,d(k + 1) = max
(

0,qo,d(k)+
(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts

)

. (5.21)

Note that this is a nonlinear equation and thus it does not fit the MILP framework. Let
Dmax,o,d = maxk Do,d(k) be the maximal demand for origin-destination pair (o,d), let the
Fmax,o,d = ∑l∈Lout

o ∩Lo,d
Cl be the maximal possible flow out of origin node o towards des-

tination d, and let qmax,o,d = Dmax,o,dTsKend be the maximal origin queue length at origin
o for traffic going to destination d. If we define mlow

o,d = −Fmax,o,dTs and m
upp
o,d = qmax,o,d +

Dmax,o,dTs, then we always have

mlow
o,d 6 qo,d(k)+

(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts 6 m
upp
o,d .

Next, we introduce binary variables δo,d(k) such that

δo,d(k) = 1 if and only if qo,d(k)+
(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts > 0 .

Using Property P1 with the bounds mlow
o,d and m

upp
o,d this condition can be transformed into a

system of linear inequalities. Now we have (cf. (5.21))

qo,d(k + 1) = δo,d(k)
(

qo,d(k)+
(

Do,d(k)− ∑
l∈Lout

o ∩Lo,d

xl,o,d(k)
)

Ts

)

. (5.22)

This expression is still nonlinear since it contains a multiplication of a binary variable δo,d(k)
with a real-valued (linear) function. However, by using Property P2 this equation can be
transformed into a system of linear inequalities.
So by introducing some auxiliary variables δo,d(k) we can transform the original nonlinear
equation (5.13) into a system of additional linear equations and inequalities.

Recall that Jqueue,o,d(k) is in general a nonlinear function due to the occurrence of Case
(b) of Figure 5.3. However, if we also use the expression of Case (a) for Case (b), then we
can approximate Jqueue,o,d(k) as8

Jqueue,o,d(k) =
1
2
(qo,d(k)+ qo,d(k + 1))Ts ,

which is a linear expression. This implies that the overall objective function Jlinks + Jqueue is
now linear. So the problem (5.16) can be approximated by an MILP problem.

8This is exact for Case (a) and an approximation for Case (b). However, especially if Ts is small enough, the
error we then make is negligible.
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Several efficient branch-and-bound MILP solvers [51] are available for MILP problems.
Moreover, there exist several commercial and free solvers for MILP problems such as, e.g,
CPLEX, Xpress-MP, GLPK, or lp_solve (see [5, 99] for an overview). In principle, — i.e.,
when the algorithm is not terminated prematurely due to time or memory limitations, —
these algorithms guarantee to find the global optimum. This global optimisation feature is
not present in the other optimisation methods that can be used to solve the original nonlinear,
nonconvex, nonsmooth optimisation problem (5.16). Moreover, if the computation time is
limited (as is often the case in on-line real-time traffic control), then it might occur that
the MILP solution can be found within the allotted time whereas the global and multi-
start local optimisation algorithm still did not converge to a good solution. As a result, the
MILP solution — even although it solves an approximated problem — might even perform
better than the solution returned by the prematurely terminated global and multi-start local
optimisation method. In general, we can say that the MILP solution often provides a good
trade-off between optimality and computational efficiency, as will be illustrated in the case
study of Section 5.3.8.

Using a similar reasoning as above we can also transform the routing problem with
queues inside the network of Section 5.3.6 into an MILP problem. Note however that in this
case the number of binary variables may become quite large.

Some ways to reduce the complexity of the above approach are to embed it in a model
predictive control framework (because then the optimisation horizon is much shorter than
the full simulation horizon currently used due to the optimal control setting) or to reduce
the number of partial queues by only considering a limited set of possible/allowed routes
between each origin-destination pair. Moreover, if there are no origin-destination dependent
performance functions or constraints, we can combine the flows and queues for the various
origins at each link and node. This will considerably reduce the number of variables.

5.3.8 Case study

In this section we present a simple case study involving a basic set-up to illustrate the area-
level control approach for IVHS proposed in this chapter. In particular, we will consider
the dynamic case with queues at the origins of the network only (cf. Section 5.3.5). First,
we will describe the set-up and the details of the scenario used for our simulation and thus
solve problem (5.16). Next, we will discuss and analyse the obtained results.

Scenario

We consider a simple network of highways with one origin o1 and two destinations d1, d2,
and three internal nodes v1, v2, and v3 (see Figure 5.4). The network consists of three high-
capacity links connecting o1 to v1, v2 to d1, and v3 to d2, as well as six links connecting the
internal nodes, allowing four possible routes to each destination (e.g., d1 can be reached via
l1, l2, l3+l5, and l4+l5).

We simulate a period of 60 min. The simulation time step Ts is set to 1 min. The demand
pattern is piecewise constant during the simulation period and is given in Table 5.1. The de-
mand to be processed in the period [10,30) higher than the capacity of the network, giving
rise to an origin queue for each destination. The capacities on the links directly connected
to the origin and destination nodes are assumed to be high enough so that no queues are



82 5 Area Controller
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Figure 5.4: Set-up of case study network

Period (min) 0–10 10–30 30–40 40–60
Do1,d1

(veh/h) 5000 8000 2500 0
Do1,d2

(veh/h) 1000 2000 1000 0

Table 5.1: Demand profiles used in the case study

formed on them, and the travel time on these links is assumed to be negligible. The max-
imum capacities associated with the links between the internal nodes are C1=1900 veh/h,
C2=2000 veh/h, C3=1800 veh/h, C4=1600 veh/h, C5=1000 veh/h, and C6=1000 veh/h. De-
pending on the speed and length of each link, different travel times can be obtained, which
are characterised by (cf. (5.8)) κ1=10, κ2=9, κ3=6, κ4=7, κ5=2, and κ6=2. For the proposed
scenario the initial state of the network is taken to be empty.

We consider three different cases:

• Case A: no control,

• Case B: controlled using the MILP solution,

• Case C: controlled using the exact solution.

Results and analysis

We have used Matlab to compute the optimal route choice solutions in Cases B and C. More
specifically, the MILP problem of Case B has been solved using CPLEX, implemented
through the cplex interface function of the Matlab Tomlab toolbox. For Case C we have
used the SQP function SNOPT, implemented via the function snopt of the Matlab Tomlab
toolbox. For Case C we have considered three different choices for the starting points: 5
random initial points, 50 random initial points, and the MILP solution as the initial point.
The results of the numerical experiments are listed in Table 5.2.

In case of no control (Case A), the capacities of the direct links l1, l2, l3, and l4 are
consumed up to their maximum while the links l5 and l6 are not used due to the fact that

9On a 1 GHz Athlon 64 X2 Dual Core 3800+ processor with 3 GB of RAM.
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Case Jqueue improvement CPU time9

(veh.h) (s)
no control 1434 0 % –
MILP 1081 24.6 % 0.27
SQP (5 initial points) 1067 25.6 % 90.0
SQP (50 initial points) 1064 25.8 % 983
SQP (with MILP solution

as initial point)
1064 25.8 % 1.29

Table 5.2: Results for the case study of Section 5.3.8. The improvement is expressed with

respect to the no-control case

all vehicles and platoons want to take the shortest routes. At the point when the demand
exceeds the maximum capacity of the links (i.e., during 10 to 30 minutes, the total demand
10000 veh/h exceeds the maximum capacity 4000 veh/h) origin queues are formed. As the
simulation advances further, the queue length also increases linearly with time, thus leading
to a large total time spent of 1434 veh.h.

When control is applied, the area controller assigns the routes to the platoons in a system
optimum manner. By system optimum, we mean that some of the platoons and vehicles can
even be assigned a longer route rather than the direct or shortest routes, if this leads to an
improvement of the total traffic performance. This results in a performance improvement
of 24.6 % for the MILP solution (Case B), and — depending also on the number of initial
points considered — in a performance improvement of up to 25.8 % for the exact solution
(Case C). Note that, for this case study using the MILP solution as the starting point for
SQP yields the optimal solution at very low computational costs (1.29 s).

Although the exact solution performs better than the MILP solution, this comes at the
cost of an increased computation time due to the multi-start SQP, which results in a total
computation time that can be much larger than Ts (1 min). In practice, where the approach
will typically be applied on-line in a moving horizon approach, this excessive computation
time makes the multi-start SQP approach infeasible, whereas the MILP solution can be
computed within the sampling time interval Ts while having almost the same performance
as the multi-start SQP solution.

5.4 Optimal routing for IVHS using a macroscopic traffic

flow model

In Section 5.3.2, we have used a rough approximation of the real network traffic dynamics.
An alternative but somewhat more refined way to obtain a simplified model to describe the
traffic flows in IVHS is to use some of the existing traffic flow models for human drivers
and to adapt them to fit the IVHS framework.
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5.4.1 Macroscopic traffic flow characteristics

Consider a traffic network consisting a several links, each of which is divided in one or
more segments. Let Ts be the sampling or simulation time step for the macroscopic network
model. The flow in a each segment m of the traffic network can characterised by three
macroscopic variables:

• Mean speed vm(k),

• Traffic density ρm(k),

• Traffic flow, intensity or volume qm(k).

where vm(k) is the mean speed of the vehicles in segment m at time kTs, ρm(k) is the number
of vehicles in segment m at time kTs, qm(k) is the number of vehicles leaving segment
m during time period [kTs,(k + 1)Ts], where the counter k corresponds to the time instant
t = kTs.

The traffic density ρ is the number of vehicles per kilometre i.e., it characterises at a
specific point of time, how crowded a particular segment of a road is. In relation to the
microscopic variables, the traffic density can be derived using the average space headway
(s), and number of vehicles Nveh in that segment as

ρ =
Nveh

Lseg
≈

Nveh

∑
Nveh
i=1 (si)

=
1
s

(5.23)

where Lseg is the length of the given road segment and si is the space headway for vehicle
i (i.e., the distance difference in position between the rear of vehicle i and the rear of its
predecessor).

The traffic flow or volume q is the number of vehicles passing through a freeway location
(marked by, e.g., a detector) per unit time Nveh1. In relation to the microscopic variables,
the traffic flow can be defined as a reciprocal of the average time headway (h). Assuming a
certain time period ∆T , the flow can expressed as:

q =
Nveh1

∆T
≈

Nveh1

∑
Nveh1
i=1 (hi)

=
1

h
(5.24)

where the time headway hi of vehicle i is the amount of time necessary for the rear of vehicle
i to reach the current position of the rear of its predecessor.

The three basic macroscopic variables are related to each other by the fundamental re-
lation

q = ρv (5.25)

This means that out of these three variables only two are independent. In the sequel we will
consider v and ρ to be the independent variables.

Let us now consider the (equilibrium) relation between the speed v and the density
ρ. When the density on the road is very low and the average distance headway is large,
the drivers travel at their desired speed. This is called free-flow driving. As the density
starts to increase due to the increasing demand, the vehicles will start to reduce their speed
slightly and follow their predecessor while maintaining a safe time headway. Once the
critical density (i.e., the density at which the capacity of the network is being utilised at its
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Figure 5.5: Fundamental diagram for human drivers

maximum) is reached, the speed starts to decrease significantly resulting in a traffic jam.
When the density is at its maximum (ρmax), the vehicle speed drops to almost zero. The
(equilibrium) relation between the speed v and the density ρ can be modelled as [102]:

V (ρ) = vfree exp
[

−
1
a

(

ρ

ρcrit

)a]

(5.26)

where ρcrit is the critical density, vfree is the free-flow speed, and a is a model parameter.
Typical values for these parameters are vfree=120 km/h, ρcrit =33.5 veh/km/lane, a = 1.867,
and ρmax=180 veh/km/lane [90]. The fundamental relation given in (5.26) can be depicted
using the so-called fundamental diagram as shown in Figure 5.5 for a single lane. This
figure shows the maximum flow qmax, and the critical density ρcrit.

5.4.2 Macroscopic traffic flow for IVs

When semi-automatic or intelligent vehicles are used on the road, the macroscopic traffic
flow will change. An example of such a change is given by Bose et al. [26], where Adaptive
Cruise Control (ACC) is considered with a constant time headway policy. The constant time
headway policy is the control form most often used for ACC [26, 139, 158]. The spacing is
given in [158] as

si = hdesvi + Lveh (5.27)

where hdes is the desired time headway, vi is the velocity of the vehicle of interest (the
following vehicle), and Lveh is the length of the vehicle, which, for the sake of simplicity,
is assumed to be the same for all vehicles (if this is not the case, the average vehicle length
L̄veh should be used in the equations below).

Using (5.23), for a given speed v and (average) space headway s the maximal density
with IVs can be expressed as the reciprocal of the inter-vehicle spacing:

ρACC =
1
s

=
1

hdesv + Lveh

(5.28)
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Rewriting (5.28) gives an expression for the (maximally possible) speed as

v =
1

hdes

(

1
ρACC

− Lveh

)

Now taking into account that the speed cannot exceed the free-flow speed vfree, the expres-
sion for the desired speed using 100% ACC-equipped vehicles becomes

vACC =

{

vfree, if ρ ≤ ρACC,crit

1
hdes

(

1
ρ

− Lveh

)

, if ρ > ρACC,crit

(5.29)

For a situation with 100% ACC-equipped vehicles the critical density ρACC,crit at which the
maximal flow is obtained, is thus given by:

ρACC,crit =
1

hdesvfree + Lveh

Using (5.29) and (5.25) the relation between the flow and density becomes

qACC =

{

ρvfree, if ρ ≤ ρACC,crit

1
hdes

(1 −ρLveh) , if ρ > ρACC,crit

(5.30)

For typical values of hdes = 0.5 s, Lveh = 4 m, and vfree = 120 km/h, we obtain ρACC,crit

=48.39 veh/km and the speed-density and flow-density curves shown in Figure 5.6. The
flow-density curve illustrates that traffic with IVs will always yield a better performance
than that of human drivers, and it also shows that the maximum flow is more than doubled.
Remark: The value of ρACC,crit was determined without considering the inter-platoon separ-
ations. If we consider this factor and denote as γ, then the critical density ρACC,crit becomes:

ρACC,crit =
γ

hdesvfree + Lveh

Using (5.29) and (5.25) the relation between the flow and density becomes

qACC =

{

ρvfree, if ρ ≤ ρACC,crit

γ
hdes

(1 −ρLveh) , if ρ > ρACC,crit

(5.31)

A typical value for γ would be taken as 0.95.

5.4.3 A METANET-like macroscopic model for IVs

The METANET model is a second-order macroscopic traffic flow model that has been pro-
posed by Papageorgiou and his co-workers [90, 91, 104, 115]. The METANET model is
discretised in time and space. As it deals with macroscopic variables rather than the vari-
ables or states of individual vehicles, it is suited for on-line computational purposes. The
basic METANET model consists of link equations and node equations (nodes can represent
a junction or a bifurcation point). The link model describes the behaviour of the traffic in the
highway stretches, and the node model describes the behaviour of the traffic at the nodes in
the network. The METANET model can be classified as destination-oriented or destination-
independent. Since we will use the METANET model for solving routing problems, we will
describe the destination-oriented model.
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Figure 5.6: Fundamental diagram for IVs

traffic flow

freeway link m

. . .. . .segment 1 segment i segment Nm

Figure 5.7: Freeway link in METANET

Destination-oriented model

In this section, we describe destination-oriented METANET model, which explicitly models
the traffic flow with routing choices for multiple origin and destinations. At each node
with two or more outgoing links, this model associates splitting rates to each reachable
destination from that node. These splitting rates describe the how the traffic flow at the
node destined to a particular destination must be distributed among the set of leaving links.

In the case of human drivers the splitting rates are determined by an autonomous process
called traffic assignment. However, in the case of IVHS the splitting rates can considered to
be a controllable input, since there the traffic management system has full control over the
IVs.

Link model

The METANET model represents a network as a directed graph with the links corresponding
to freeway stretches as shown in Figure 5.7. Each freeway link has uniform characteristics,
i.e., no on-ramps or off-ramps, and no major changes in geometry. Where major changes
occur in the characteristics of the link or in the road geometry (e.g., on-ramp or an off-ramp),
a node is placed.

In the METANET each link m is divided into Nm segments with length Lm. The number
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of lanes on link m is denoted by λm. The traffic flow in segment i of link m destined to a
destination j is characterised by three macroscopic variables:

• Mean speed vm,i(k) [km/h]

• Partial density ρm,i, j(k) [veh/km/lane]

• Traffic flow qm,i(k) [veh/h]

where k is the discrete time instant t = kTs where Ts is the simulation time step (typically
round 10 seconds). At time step k, the partial density ρm,i, j(k) describes the density in the
segment i of link m that is travelling to destination j. If destination j is not reachable from
link m we set ρm,i, j(k) = 0 for all i, k.

Note that we use partial densities ρm,i, j(k) to distinguish the traffic with different destin-
ations. However, the same mean speed vm,i(k) is assigned to all the vehicles travelling in a
segment irrespective of their destination.

The segment length Lm is usually in the range of 500 to 1000 m. For stability reasons,
a vehicle travelling in a segment at its free speed is not allowed to pass the segment in one
simulation time step. So, the following condition should be satisfied:

Lm > vfreeTs (5.32)

Note that for the values of Lm, vfree, and Ts given above this condition is satisfied.
For each segment in a link, for all possible destinations reachable via the link, the con-

servation of vehicles in a segment can be expressed as

ρm,i, j(k + 1) = ρm,i, j(k)+
T

Lmλm

(γm,i−1, j(k)qm,i−1(k)−γm,i, j(k)qm,i(k)) (5.33)

where qm,i−1(k) is the traffic flow that flows out of segment i − 1 of link m into segment i

for simulation time step k, qm,i(k) is the flow out of segment i of link m, and γm,i, j(k) is the
composition rate for the traffic flow in segment i of link m with destination as j at simulation
time step k, defined as:

γm,i, j(k) =
ρm,i, j(k)

ρm,i(k)
(5.34)

where the total density ρm,i(k) in segment i of link m is defined as

ρm,i(k) = ∑
j∈Jm

ρm,i, j(k)

where Jm is the set of destinations reachable via link m.
The update of the mean speed is calculated based on a convection term, a relaxation

term, and an anticipation term. More specifically, the mean speed in segment i of link m at
the next discrete time step k + 1 is given by

vm,i(k + 1) = vm,i(k)+ vrel,m,i(k)+ vcon,m,i(k)+ vanticip,m,i(k) (5.35)

The relaxation term vrel expresses that the mean speed is dependent on the density of
the segment and states that the drivers in the segment accelerate or decelerate to achieve
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a desired equilibrium speed V (ρm,i(k)). The relaxation term is directly proportional to the
difference between the actual mean speed and V (ρm,i(k)) and can be expressed as:

vrel,m,i(k) =
Ts

τ
(V (ρm,i(k))− vm,i(k)) (5.36)

where τ is related to the driver’s response time and where V (ρm,i(k) can be derived either
for human drivers or for IVs. For human drivers a typical value for τ is 18 s [90]. For IVs
this value will be much lower, e.g., 8 s. For human drivers, V (ρm,i(k) is given by (cf. 5.26)

V (ρm,i(k)) = vfree,m exp
[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

(5.37)

where am is a model parameter for the specific link m, vfree,m is the free-flow speed for link
m, and ρcrit,m is the critical density at which the traffic flow becomes maximal.
The expression of V (ρm,i(k) for IVs is given by (cf. (5.29)):

V (ρm,i(k)) =

{

vfree, if ρm,i(k) ≤ ρACC,crit,m

1
hdes

(

1
ρm,i(k)

− Lveh

)

, if ρm,i(k) > ρACC,crit,m

(5.38)

The convection term vcon is given by:

vcon,m,i(k) =
Ts

Lm

vm,i(k)(vm,i−1(k)− vm,i(k)) (5.39)

and accounts for the effect caused by the vehicles entering the segment i from upstream
segment i − 1 with different mean speed. The larger the deviation, the larger is the effect of
convection term on the mean speed.

The anticipation term vanticip expresses the change in speed induced by the drivers’ ex-
perience of (total) density that prevails in the downstream segment and is given by:

vanticip,m,i(k) = −
ηTs

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
(5.40)

where κ and η are model parameters. Typical values are κ=40 veh/km/lane and η=60 km2/h
[90] .

The partial traffic flow for each segment can be described as follows:

qm,i, j(k) = ρm,i, j(k)vm,i(k)λm (5.41)

Origin model

Origins receive traffic demand and forward it to the freeway. Origins are modelled using a
simple queue model. A queue is formed at origin o when the traffic demand do(k) exceeds
the service rate qo(k) of the origin. The queue length wo, j(k + 1) destined to destination j

at origin o can be determined from the previous queue length and the total demand do(k) at
time step k as follows:

wo, j(k + 1) = wo, j(k)+ Tsγo, j(k)(do(k)− qo(k)) (5.42)
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with γo, j(k) is the fraction of the demand travelling to destination j from origin o. The
outflow or service rate at origin qo(k) is taken to be the minimum of the number of vehicles
that want to enter (i.e., total demand at time instant k plus the total number of vehicles in
the partial queues) and the number of vehicles that are actually allowed to enter due to the
availability of space. The outflow can be expressed as:

qo(k) = min
[

do(k)+
wo(k)

Ts
, Qcap,o min

(

1,
ρmax −ρµ,1(k)

ρmax −ρcrit,µ

)]

(5.43)

where Qcap,o is the capacity (veh/h) of the origin o under free-flow conditions, ρmax is the
maximum density of a segment, and µ is the index of the link to which the origin is connec-
ted.

Node model

The node model describes how the traffic should be routed among the set of entering and
leaving links of a node. For a given node n, let In denote the set of input links, and let On

denote the set of output links. The traffic flow Qn, j(k) with destination j that enters the node
n at simulation step k is distributed to the output links according to

Qn, j(k) = ∑
µ∈In

qµ,Nµ
(k)γµ,Nµ, j(k) (5.44)

qn,m,out(k) = ∑
j∈Jm

βn,m, j(k)Qn, j(k) (5.45)

where qµ,Nµ
(k) is the flow leaving the last segment of link µ, βn,m, j(k) is the splitting rate

in node n that is defined as the fraction of the traffic flow heading towards destination j that
leaves node n via output link m, Jm is the set of destinations that are reachable through link
m, and qn,m,out(k) is the total traffic flow that leaves node n via output link m at simulation
step k.

The composition rate γn,m,out, j(k) of the traffic flow out of node n into link m is given
by:

γn,m,out, j(k) =
βn,m, j(k)Qn, j(k)

qm,out(k)
(5.46)

Downstream density

Consider a node n with input link m ∈ In. Note that the anticipation term (5.40) of the speed
update equation for segment i of link m contains the downstream density ρm,i+1(k). Hence,
we also need an expression for the downstream density for the last segment (segment Nm)
of link m. To this aim we introduce a virtual segment Nm +1 at the end of link m as shown in
Figure 5.8, and we capture the effect of the downstream density of the output links leaving
node n by the following expression:

ρm,Nm+1
(k) =

∑µ∈On
ρ2

µ,1(k)

∑µ∈On
ρµ,1(k)

(5.47)

where ρµ,1(k) is the density of the first segment of output link µ.
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Upstream speed

Similarly as above, when a node n has many input links (junction node) as shown in Figure
5.9, then the downstream speed for the first segment i = 1 of an outgoing link required in
the convection term (5.39) is captured by adding a virtual segment at the beginning of the
link and by setting

vm,0(k) =
∑µ∈Invµ,Nµ

(k)qµ,Nµ
(k)

∑µ∈In qµ,Nµ
(k)

(5.48)

where Nµ is the index of the last of last segment of link µ.

Extensions

Hegyi et al. [64, 67] have extended the METANET model to include traffic control meas-
ures such as dynamic speed limits, and mainstream metering, to account for anticipation
behaviour of drivers to varying downstream densities, and to model main-stream origins.
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Figure 5.10: Schematic view of the MPC structure.

These extensions can also be integrated in the proposed METANET-like traffic flow model
for IVHS.

5.4.4 Model predictive route choice control

Now we use the model of the previous subsection to derive a model-based predictive control
approach that can be used by the area controllers to determine the optimal splitting rates.

More specifically, we adopt the model predictive control (MPC) scheme [30, 101] (see
Figure 5.10). In the MPC control scheme a discrete-time model is used to predict the future
behaviour of the process, and the MPC controller uses (numerical) optimisation to determ-
ine the control signals that result in an optimal process behaviour over a given prediction
horizon. The resulting optimal control inputs are applied using a rolling horizon scheme.
At each control step k the state of the traffic system is measured or estimated, and an op-
timisation is performed over the prediction horizon [kT,(k + Np)T ] to determine the optimal
control inputs, where Np is the prediction horizon. Only the first value of the resulting con-
trol signal (the control signal for time step k) is then applied to the process. At the next
control step k + 1 this procedure is repeated.

To reduce the computational complexity and to improve stability often a control horizon
Nc (≤ Np) is introduced in MPC, and after the control horizon has been passed the control
signal is taken to be constant. So there are two loops: the rolling horizon loop and the
optimisation loop inside the controller. The loop inside the controller of Figure 5.10 is
executed as many times as needed to find the optimal control signals at control step k, for the
given Np, Nc, traffic state, and expected demands. The loop connecting the controller and the
traffic system is performed once for each control step k and provides the state feedback to the
controller. This feedback is necessary to correct for (the ever present) prediction errors, and
to provide disturbance rejection (compensation for unexpected traffic demand variations).
The advantage of this rolling horizon approach is that it results in an on-line adaptive control
scheme that allows us to take changes in the system or in the system parameters into account
by regularly updating the model of the system.

For our case the control variables in this set-up are the splitting rates at the nodes with
more than one outgoing link (and if speed limits are included, also these speed limits).
The optimisation signals include the control variables as well as the state variables of the
macroscopic METANET-like traffic flow model for IVHS derived above.

One can also include various constraints such as maximal flows on certain links, max-
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imal speeds (in case dynamic speed limits are used), maximal travel times for selected
origin-destination pairs, etc. Moreover, there is a physical constraint that for a given node
the sum of the splitting rates should be equal to 1:

∑
m∈On

∑
j∈Jm

βn,m, j(k) = 1 (5.49)

for all n, k.
A typical objective function to be used is the total time spent (TTS) by all the vehicles

in the network. This includes both the time spent travelling through the network and the
time spent waiting in the queues, if any. So at time step k we get the following expression
for the total time spent in the period [kT,(k + Np)T ]:

JTTS(k) =
Np−1

∑
j=0

(

∑
(m,i)∈L ls

ρm,i(k + j)Lmλm + ∑
(o, j)∈Ood

wo, j(k + j)

)

Ts (5.50)

where L ls is the set of all link-segment index pairs (m, i) of the network, and O od the set of
all origin-destination pairs (o, j). Note that in (5.50) the expression between the brackets
gives the total number of vehicles present in the links and queues of the network at time step
k + j. This value is multiplied by the simulation time step Ts and summed over the discrete
time steps to obtain the total time spent.

Minimising JTTS then results in a nonlinear nonconvex optimisation problem with real-
valued variables. In general this is an NP-hard problem [53] just like the original route
choice problem. In fact with 5.50, we now have an optimisation problem with real-valued
variables, which offers a major advantage compared to the mixed-integer optimisation of
the original route choice problem, since due to the smoothness of the objective function,
the real-valued optimisation will require a lower computational effort to find (sub)optimal
solutions.

To solve the nonlinear optimisation problem we can use a global or a multi-start local
optimisation method [118] such as multi-start sequential quadratic programming, pattern
search, genetic algorithms, or simulated annealing.

5.4.5 Case study

In this subsection we present a simple case study involving a basic set-up to illustrate the
area-level control approach for IVHS proposed in this section. First, we will describe the
set-up and the details of the scenario used for our simulations. Next, we will discuss and
analyse the obtained results.

Scenario

We consider a simple network of highways with one origin o1 and two destinations d1, d2,
and three internal nodes v1, v2, and v3 (see Figure 5.11). Note that this example is similar
to the one of Section 5.3.8. However, due to the different type of model used, the way
the case study is specified will differ. The network of Figure 5.11 consists of three links10

10In contrast to the example of Section 5.3.8 we now explicitly consider these origin and destination links in
order to account for the effect of the boundary conditions.
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Figure 5.11: Set-up of case study network

Period (min) 0–10 10–30 30–40 40–60
Do1,d1

(veh/h) 5000 8000 2500 0
Do1,d2

(veh/h) 1000 2000 1000 0

Table 5.3: Demand profiles used in the case study

connecting o1 to v1, v2 to d1, and v3 to d2, as well as six links connecting the internal nodes
allowing four possible routes to each destination (e.g., d1 can be reached via l2, l3, l4+l9, and
l5+l9). In Figure 5.11, the values within brackets indicates the number of segments (Nm) in
the particular link. The length of a segment (Lm) in any link is taken to be 1 km.

We consider four different cases (due to the use of two fundamental diagrams):

• Case A: no control case with human drivers,

• Case B: controlled case with humans drivers,

• Case C: controlled case with platoons.

For all the links we use the following values for the parameters of the METANET(-
like) model (see also [90] and the previous subsections): vfree=120 km/h, a = 1.867, κ

=40 veh/km/lane and η=60 km2/h.
For the case if human drivers we use ρcrit=33.5 veh/km/lane, τ=18 s, and the funda-

mental V –ρ relation (5.37), while for the IV case we use ρcrit =48.39 veh/km/lane, τ=8 s,
and the fundamental V –ρ relation (5.38).

We simulate a period of 60 min. The simulation time step Ts is set to 20 s. The demand
pattern is piecewise constant during the simulation period and is given in Table 5.3. The
demand to be processed in the period [10,30) higher than the capacity of the network, giving
rise to an origin queue for each destination. For the proposed scenario the initial state of the
network is taken to be empty. We choose Np = 20 and Nc = 6. For the sake of simplicity we
take the simulation model to be equal to the prediction model.

Control problem

The control variables considered for this case study are the splitting rates βn,m, j(k) asso-
ciated with all reachable destinations via outgoing links for each internal node for k =
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0,1, . . . ,Nsim − 1 where Nsim = 180 is the total number of simulation steps (of length Ts

= 20 s) within the entire simulation period of 60 min.
Since it makes no sense to send vehicles reaching node v2 and going to destination

1, towards link l8 we set βv2,l6,1(k) = 1 and βv2,l8,1(k) = 0 for all k. Likewise, we set
βv2,l6,2(k) = 0 and βv2,l8,2(k) = 1 for all k. For node v3 we have similar expressions:
βv3,l7,1(k) = 0 and βv3,l9,1(k) = 1, βv3,l7,2(k) = 1, βv3,l9,2(k) = 0 for all k. So in fact the
optimisation variables are βv1,m, j(k) for m = l2, l3, l4, l5 and j = 1,2.

We have the following constraints (cf. (5.49)):

βv1,l2, j(k)+βv1,l3, j(k)+βv1,l4, j(k)+βv1,l5, j(k) = 1

for j = 1,2 and for all k.
The goal of our area controller is to improve the traffic performance. The objective

that we consider for our case study is minimisation of the total time spent (TTS) by all
the vehicles in the network using routing as the control measure. The TTS for the entire
simulation period can be expressed as (cf. (5.50)):

JTTS,sim =
Nsim−1

∑
k=0

(

∑
(m,i)∈L ls

ρm,i(k)Lmλm + ∑
(o, j)∈Ood

wo, j(k)

)

Ts (5.51)

where L ls is the set of all link-segment index pairs (m, i) of the network, and O od the set of
all origin-destination pairs (o, j).

Results and analysis

The results of the numerical experiments are listed in Table 5.4.
In case of no control (Cases A and B), the capacities of the direct links l1, l2, l3, and l4

are consumed up to their maximum while the links l8 and l9 are not used due to the fact that
all vehicles and platoons want to take the shortest routes. At the point when the demand
exceeds the maximum capacity of the links, origin queues are formed. As the simulation
advances, the queue length increases with time, thus leading to a huge total time spent.

For the controlled cases (Cases B and C) the area controller assigns the splitting rates
at the internal node v1 and routes the traffic flow (human drivers or platoons) in a system-
optimum manner such that the traffic performance is improved. When platoons of ACC-
equipped vehicles are deployed in the traffic system, the traffic performance is improved
more than the human drivers case. For these cases we have used the SQP function SNOPT,
implemented via the function snopt of the Matlab Tomlab toolbox, to compute the optimal
splitting rates. Compared to Case A this results in a performance improvement of about 3 %
for Case B and of about 46 % for Case C.

5.5 Interface between area and roadside controllers

The area controllers will provide flow targets to the roadside controllers (e.g., using the
approaches proposed in Sections 5.3, and 5.4), which then have to control the platoons that
are under their supervision in such a way that these targets are met as well as possible. In our

10On a 1 GHz Athlon 64 X2 Dual Core 3800+ processor with 3 GB of RAM.
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Case JTTS,sim improvement
(veh.h) (%)

no control (A) 686.28 0 %
controlled human 670.91 3 %
controlled IVs 366.07 46 %

Table 5.4: Results for the case study. The improvement is expressed with respect to the

no-control case with human drivers.

IVHS framework, the area and roadside controllers use a different level of representation
of the traffic. However, consistency between the macroscopic traffic characteristics (such
as flows, splitting rates) and the platoons has to be established to ensure efficiency of the
approach. Hence, our approach requires an interface between these controllers, which is
implemented as follows:

Once the optimal target flows are determined by the area controller, the roadside con-
troller has to realise the target flows on each link as well as possible by using the available
control measures such as speed limits, ramp matering, route guidance, and lane control. In
order to achieve the specified optimal flows on the links, the roadside controller will use
a performance criterion based on the minimisation of the difference between the reference
flows and the actual flows. The roadside controller is aware of the complete information of
the IVs (i.e., position, speed, lane, origin, destination) and hence can determine the actual
flow xl,o,d(k) on each link l for all (o,d) ∈ O ×D . At each control step k, the roadside con-
troller will be updated with this flow information. The corresponding performance function
Jperf used by the roadside controller is then given by

Jperf =
Kend−1

∑
k=0

∑
(o,d)∈O×D

∑
l∈Lo,d

(x
opt
l,o,d(k)− xl,o,d(k))

2 (5.52)

where x
opt
l,o,d(k) is the optimal flow specified by the area controller for link l in (o,d)∈ O ×D

for all k.
At the nodes, the roadside controller will additionally provide routing instructions for

every platoon on the stretch under its supervision. The roadside controller will give these
routing instructions by taking account of platoons’ destinations and also the target flows on
the adjacent highways. If necessary, the node controller can provide commands for platoon
splits and merges, and determine new platoon compositions and platoon lengths.

5.6 Summary

We have considered the optimal route guidance problem for IVHS. Since the resulting op-
timisation problem is a nonlinear mixed-integer optimisation problem that in general is too
involved for on-line, real-time implementation, we have explored approximations resulting
in simplified but fast simulation models that yield mixed-integer linear or nonlinear real-

valued optimisation problems, for both of which efficient solvers exist.
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The first approach was based on a simplified model that describes the movement of the
platoons in the network via flows. We have shown that using this model the optimal route
choice control problem can be approximated by a linear or a mixed-integer linear problem.
With a case study we have illustrated that the resulting approach can offer a balanced trade-
off between computational efficiency and optimality.

In the second approach we have developed a new model to describe the flow of platoons
in the IVHS based on the macroscopic METANET traffic flow model, which has been adap-
ted to fit the case of platoons of intelligent vehicles equipped with Adaptive Cruise Control
(ACC). This model has subsequently been used in a model predictive control approach for
determining optimal splitting rates of the platoon flows at the nodes in the network. Lower-
level roadside controller can then translate these splitting rates into actual route instructions
for the platoons. The proposed approach has also been illustrated via a simple case study.

In our future research, we will compare these two approaches (with a microscopic model
as simulation model), consider additional case studies, and assess the performance improve-
ment of the proposed approaches with respect to an approach based on mixed-integer op-
timisation for the original route choice problem. We will also investigate the coordination
and mutual interaction between various area controllers and between the area controllers
and the roadside controllers.



98 5 Area Controller



Chapter 6

Traffic Management with

Semi-Autonomous Intelligent

Vehicles1

In this chapter, we deal with traffic congestion problems by using an intermediate approach
which deploys a system that can be conceptually placed between the conventional traffic
systems and fully automated IVHS that was discussed in the previous chapters. More spe-
cifically, human-driven vehicles in the conventional traffic systems are equipped with ad-
vanced driver assistance systems that can improve the traffic flow and that can also support
the existing traffic control measures. We will in particular focus on how an infrastructure-
based traffic controller can determine appropriate dynamic speed limits for such an inter-
mediate traffic systems.

6.1 Introduction

The ever-increasing demand for mobility and transportation results in a growing traffic con-
gestion problem. One of the promising approaches to reduce the frequency and impact of
traffic jams is the optimal and efficient usage of the existing system. This approach will
result in integrated traffic management and control systems that incorporate intelligence
in both the roadside infrastructure and in the vehicles, and that are commonly called In-
telligent Vehicle Highway Systems (IVHS). Vehicles in an IVHS are arranged in closely
spaced groups called platoons. In the platooning approach cars travel on the highway in
platoons with small distances (e.g., 2 m) between vehicles within the platoon, and much
larger distances (e.g., 30–60 m) between different platoons. High speeds and short intrapla-
toon spacings allow more vehicles to be accommodated on the network, which substantially
increases the maximal traffic flows [149].

In this chapter we discuss a traffic control approach that is situated in between the cur-
rent situation with human drivers and no direct interaction between the roadside control

1This chapter is based on the MSc thesis of Mernout Burger [29].
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Figure 6.1: Schematic representation of MPC

system and the vehicles, and the future IVHS-based situation with fully controlled intel-
ligent vehicles. In particular, we consider a situation in which intelligent vehicles driven
by human drivers and equipped with ISA interact with the roadside controller (advisory
ISA). Therefore, we call this type of vehicles semi-autonomous, as the human driver is still
in control. We will investigate the possibility of using the semi-autonomous vehicles for
traffic control, and design a traffic control method for this traffic system.

In Section 6.2.1, we present the strategy behind the model-based predictive control
(MPC) approach. Later in Section 6.3, we propose an MPC approach to determine ap-
propriate dynamic speed limits for the semi-autonomous traffic system. In Section 6.4, we
discuss a model that could be used for simulation purposes. We also present the details of
plugins that will be used as an interface between the simulation package Paramics and the
Matlab engine where the traffic controller will be implemented. In Section 6.6, we apply
the proposed approach to a case study based on simulations and we highlight the potential
effects of the semi-autonomous systems on the traffic performance.

6.2 Preliminaries

6.2.1 Model Predictive Control (MPC)

Model Predictive Control (MPC) [30, 101] has originated in the process industry and it has
already been successfully implemented in many industrial applications. MPC makes use
of discrete-time models. Let Tctrl be the control sampling interval, i.e., the time interval
between two updates of the control signal settings. At each time step k (corresponding
to time t = kTctrl), the MPC controller first measures or determines the current state x(k)
of the system. Next, the controller uses (on-line) optimisation and an explicit prediction
model to determine the optimal values for the control measures over a given prediction
period determined by the control horizon Np (see Figure 6.1(b)). In order to reduce the
computational complexity of the problem, one often introduces a constraint of the form
u(k + j) = u(k + j − 1) for j = Nc, . . . ,Np − 1, where Nc is called the control horizon.

The optimal control inputs are then applied to the system in a receding horizon approach
as follows. At each control step k only the first control sample u∗(k) of the optimal control
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sequence u∗(k), . . . ,u∗(k + Nc − 1) is applied to the system. Next, the prediction horizon is
shifted one step forward, and the prediction and optimisation procedures over the shifted
horizon are repeated using new system measurements. This receding horizon approach in-
troduces a feedback mechanism, which allows to reduce the effects of possible disturbances
and mismatch errors.

6.2.2 In-vehicle measures

We briefly discuss various in-vehicle technologies that serve as an intermediate in between
the current traffic management system and IVHS-based approach. We will consider a traffic
situation where the human-driven vehicles are equipped with ISA.

A standard speed limiter is a system that restricts the speed of the vehicle when the driver
tries to exceed the maximum allowed driving speed. When the speed limiter is incorpor-
ated with the intelligence to adjust the maximum driving speed to the speed limit specified
by the roadside infrastructure or to the prevailing location-based legal speed limit, and to
provide feedback to the driver when that speed limit is exceeded, then we get the techno-
logy called Intelligent Speed Adaptation (ISA) [24, 39]. Based on the way the system reacts
on exceeding the legal speed limit, advisory systems only give a warning (visually or via
sound). Systems that decrease the possibility of speeding by increasing the resistance of the
accelerator pedal, called an active acceleration pedal, and systems that do not allow a driver
to exceed the speed limit (possibly also by limiting the throttle) can either be voluntary or
mandatory (also called optional and obligatory). The voluntary system can be turned on and
off by the user, the mandatory system is always on.

6.3 MPC for semi-autonomous traffic

Now, we focus on how MPC can be applied for speed control of the semi-autonomous traffic
systems. In this section, we will use a macroscopic model (METANET) for predictions and
will use microscopic model Paramics to represent the real-life traffic situation.

6.3.1 Prediction model

There exists a wide range of traffic models [43]. Microscopic models are more suitable
for simulation purposes and, for off-line evaluation of developed control strategies than for
on-line model-based control. In principle, microscopic traffic simulation models are usually
not suited as MPC prediction model. An important factor that determines the choice of the
prediction model to be used in MPC is the trade-off between accuracy and computational
complexity. The prediction model needs to be able to simulate the entire network much
faster than real-time in order to be able to predict the future states of the network in time.
For the prediction of the future states of the traffic network with semi-autonomous vehicles,
we use the macroscopic traffic flow model METANET [90, 91, 104, 115].

In the METANET model, the traffic network is represented as a directed graph with
the links corresponding to the highway stretches. In this section, we will consider a net-
work with one origin and one destination. Hence, we can use a destination-independent
METANET model. The basic METANET model consists of link equations and node equa-
tions. A detailed description of destination-oriented METANET model was discussed in
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Figure 6.2: State variables of the segmented road. Since we will work with a link, the link

variable m is left out.

Chapter 5 in Section 5.4.3. Each highway link m is divided into Ns,m segments of equal
length Lm, with λm the number of lanes on link m. For illustration, we consider a 10 kilo-
metres stretch of a highway as shown in Figure 6.2. The highway is divided into 20 segments
of 500 metres length, with two lanes at each segment. On all segments, the density and mean
speed are measured. The first and last segments are used to describe boundary values, and
the other 18 segments are used to control the traffic. In Figure 6.2 the uncontrolled parts are
shown in grey.

Each segment i of highway link m is now characterised by

• Mean speed vm,i(k) [km/h]

• Traffic density ρm,i(k) [veh/km/lane]

• Traffic flow qm,i(k) [veh/h]

where k is the discrete time instant t = kT , where T is the simulation time step, typically 10
seconds for a segment length Lm of 500 metres.

Since we are working with only one link, also the link variable m can be left out of the
equations. The extension for variable speed limits is used to model the controlled segments.
The update equations for the state variables for a road segment then become

ρi(k + 1) = ρi(k)+
T

λL
(qi−1(k)− qi(k))

= ρi(k)+
T

L
(ρi−1(k)vi−1(k)−ρi(k)vi(k))

vi(k + 1) = max
[

vi(k)+
T

τ
(vdes,i(k)− vi(k))

+
T

L
vi(k)(vi−1(k)− vi(k))−

ηi(k)T

τL

ρi+1(k)−ρi(k)

ρi(k)+κ
, vmin

]

(6.1)

where κ and η are model parameters, vmin is minimum allowed mean speed (typical value
is 4 km/h) and vdes,i(k) is the desired mean speed of the vehicles. Let us now consider
the (equilibrium) relation between the speed v and the density ρ. When the density on the
road is very low and the average distance headway is large, the drivers travel at their desired
speed. This is called free-flow driving. As the density starts to increase due to the increasing
demand, the vehicles will start to reduce their speed slightly and follow their predecessor
while maintaining a safe time headway. Once the critical density (i.e., the density at which
the capacity of the network is being utilised at its maximum) is reached, the speed starts to
decrease significantly resulting in a traffic jam. When the density is at its maximum (ρmax),
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the vehicle speed drops to almost zero. The (equilibrium) relation between the speed v and
the density ρ can be modelled as [102]:

vdes,i(k) = vfree exp
[

−
1
a

(

ρi(k)

ρcrit

)a]

(6.2)

where ρcrit is the critical density, vfree is the free-flow speed, and a is a model parameter.
Hegyi et al. [66] extended this model in order to include the effects of variable speed

limits and to account for different reactions of drivers to varying downstream densities. The
effect of variable speed limits is included by adjusting the desired speed equation vdes,i(k)
to take the minimum of the density based free-flow speed, or the given variable speed limit
vctrl,i(k) adjusted by a compliance factor 1 + α to indicate the noncompliance to the speed
limit. Equation (6.2) then becomes

vdes,i(k) = min
(

vfree exp
[

−
1
a

(

ρi(k)

ρcrit

)a]

, (1 +α)vctrl,i(k)

)

(6.3)

In order to include the different reactions of drivers to the downstream density the global
variable η in (6.1) should be replaced by the segment, and time dependent variable

ηi(k) =

{

ηhigh if ρi+1(k) ≥ ρi(k)

ηlow if ρi+1(k) < ρi(k)

Origins are modelled using queues. The length of the queue wo(k) is given by

wo(k + 1) = wo(k)+ T (do(k)− qo(k)) (6.4)

where do(k) is the demand and qo(k) is the outflow at time k. The outflow is the minimum
of the demand and the maximal flow that can enter the motorway:

qo(k) = min
[

do(k)+
wo(k)

T
, Qo

ρmax −ρµ,1(k)

ρmax −ρcrit,µ

]

(6.5)

where Qo is the on-ramp capacity under free-flow conditions, ρmax is the maximum density
on the motorway, and µ the index of the link under consideration.

The boundary states are also updated, using the state of the boundary segment of interest
for the unknown states of the adjacent segments. This results in reduced update equations
for the boundary segments, given by

vup(k + 1) = max
[

vi(k)+
T

τ
(vdes,up(k)− vup(k))−

ηdes,up(k)T

τL

ρ1(k)−ρup(k)

ρup(k)+κ
,vmin

]

ρup(k + 1) =
qup(k + 1)

λvup(k + 1)
=

qup(k)

λvup(k + 1)
= ρup(k)

vup(k)

vup(k + 1)

vdown(k + 1) = max
[

vdown(k)+
T

τ
(vdes,up(k)− vup)+

T

L
vdown(k)(v18(k)− vdown(k)) ,vmin

]

ρdown(k + 1) = ρdown(k)+
T

L
(ρdown−1(k)vdown−1(k)−ρdown(k)vdown(k)) (6.6)

where vdes,up and vdes,down are calculated as in (6.3), where the first term is used, since there
are no speed limits on the boundary segments. The parameter value ηup can be determined
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as in (6.3.1). In the update for the upstream density ρup(k+1), we have assumed a constant
flow, so qup(k+1)=qup(k). Also, v18(k) is the mean speed on segment 18. The parameters
of the METANET model (τ , α, κ, kcrit, vfree, a, ηhigh and ηlow) need to be determined by
calibration as described in Section 6.6.

6.3.2 Performance criteria and constraints

Possible performance criteria Jperf(k) for MPC are the total time spent in a traffic network,
the total throughput, the total fuel consumption, safety, or a combination of these, all evalu-
ated over the time period [kTctrl,(k +Np)Tctrl). Moreover, in order to prevent oscillations and
frequent shifting in the control signals, one often adds a penalty on variations in the control
signal u in both time and space, which results in the total performance function

T T S = Jperf(k) + λ1

Nc−1

∑
j=0

Ns

∑
i=1

‖ui(k + j)− ui(k + j − 1)‖2

+ λ2

Nc−1

∑
j=0

Ns−1

∑
i=1

‖ui+1(k + j)− ui(k + j)‖2 , (6.7)

at control step k, where λ1,λ2 > 0 are weighting factors, and ui(k) is the control signal in
segment i at time step k.

The MPC controller also explicitly takes into account operational constraints such as
minimum and maximum speeds, etc.

6.4 Simulation model - Paramics

Paramics is a suite of software tools used to model the movement and behaviour of indi-
vidual vehicles on urban roads and highway networks. It uses microscopic characteristics
such as speed, position, etc, to simulate the interaction between vehicles and the road net-
work. We are interested in this software program, mainly due to the possibility to add extra
functionalities by creating plugins.

During a simulation, the acceleration for every vehicle in the network is calculated,
based on the speed limit, headway, speeds of vehicles nearby, and the desired free-flow
speed of the vehicle. For this research, we will change the speed limits dynamically, and
implement ISA-equipped vehicle behaviour in Paramics, by changing the desired free-flow
speed of vehicles, which will be discussed in Section 6.5.

The longitudinal aspects of the driver tasks can be classified as free-flow, car-following,
and stop-and-go behaviour. In free-flow behaviour, the vehicles can travel at their desired
speed (corresponding to the speed limit, e.g, 120 km/h). As the traffic demand increases,
the vehicles start to follow their predecessors on the same lane at closer distances and at
reduced speeds (50–80 km/h). Once the capacity of the highway is being utilised at its
maximum, the vehicles move with stop-and-go movements (0–40 km/h). There are two
important microscopic submodels used in Paramics, namely for the car-following behaviour
and the way the desired headway is determined per vehicle.
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Figure 6.3: Representation of target points for car-following in Paramics

Car-following behaviour

The car-following behaviour is split into three modes; braking, cruising, and accelerating.
For all modes, the concept of a target point is used. For vehicle l, this target point sl is
calculated as

sl = hdesvl−1 (6.8)

where sl is the spacing, hdes is the desired headway and vl−1 is the speed of the preceding
vehicle. The situation is shown in Figure 6.3. In order to account for the reaction time of
human drivers the speed vl−1 used is actually the speed of the preceding vehicle some time
in the past. In order to make the vehicles reach the desired headway faster, an adjusted target
point tl is used, calculated by

tl =
s2

l

gl

where gl is the current distance between the vehicles. Note that this indeed will speed up
reaching the target point dependent on the desired headway and vehicle speed, since

tl < sl if gl > sl

tl = sl if gl = sl

tl > sl if gl < sl

and using tl as the desired spacing the difference |(tl − gl)| between the current spacing and
desired spacing will always be bigger or equal than when we use sl as desired spacing.

The cruising mode is split up into three separate regions, called A, B ,and C. The braking
mode will be called region D, and the acceleration mode is region E. The characteristics of
the regions are

• Region A: the following vehicle has overshot the target point (the spacing is less than
the target value), and an attempt is made to achieve the target speed as quickly as
possible.

• Region B: the leading vehicle is pulling away from the following vehicle.

• Region C: the vehicles are at a constant separation or coming closer together.

• Region D: the leading vehicle is decelerating with a value above a certain threshold
so that, the following vehicle will notice the leading vehicle is braking. The following
vehicle will start to brake as well.
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• Region E: the leading vehicle is accelerating with a value above a certain threshold,
the following vehicle will notice the leading vehicle is accelerating. The following
vehicle will start to accelerate as well.

The accelerations for the following vehicle for the different regions are given by

aA = k1∆v + k2
gl − tl

gl

aB = k1∆v + k3
gl − tl

tl

aC = c −
(∆v)2

gl − tl

aD = amin

aE = amax

where k1 = 1.0 [s−2], k2 = 1.0 [s−2], k3 = 0.005 [s−2], ∆v = vl−1 − vl , c the bunching ac-
celeration to bring the vehicles together rapidly, and amin and amax, are the minimum and
maximum acceleration of the vehicle respectively.

Headway of vehicles

The desired headway is dependent on the type of vehicle, the situation in the network, and
the driver behaviour. It is based on an average headway, which can be set for the simula-
tion. Each vehicle has several multiplication factors, which together determine the desired
headway of the individual vehicle. Each vehicle type has a type-dependent multiplication
factor. Using this factor, we can, e.g., include the larger headway a heavy goods truck needs
compared to a car, since it can decelerate less strongly. Two important driver characteristics
used in Paramics for manipulating the driver behaviour are the aggressiveness and aware-
ness. Aggressiveness is used to influence the headway everywhere in the network. The
multiplication factor for aggressiveness is calculated using

Fag =











36 − 5θag

16
, θag ≤ 4

12 −θag

8
, θag > 4

(6.9)

where θag is the assigned level of aggressiveness of the driver, indicated by a value between
1 and 8. A lower value for θag means that the driver is less aggressive, and will have a
larger desired headway. The awareness factor is used to calculate the desired headway
when a vehicle is near a lane drop. It is used to simulate to what extent a driver will keep
distance to the vehicle in front in order to let other vehicles merge into the other lane. This
multiplication factor is given by

Faw =







θaw + 4
8

, θaw ≤ 4

θaw − 3, θaw > 4
(6.10)

where θaw is the awareness factor of the driver, indicated by a value between 1 and 8. A
higher value means that the driver is more aware of other vehicles wanting to get onto the
lane, and the driver will have a larger desired headway near lane drops.
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6.5 Coupling Paramics and Matlab

Since there is no existing interface between the Paramics and Matlab, we will create a
plug-in to simulate the behaviour of IV-based vehicles. We will develop plug-ins for the
partially automated vehicles to capture their reaction to the control measures. The first
plugin is created to be able to measure mean speeds, densities, flows, and the number of
passing vehicles on a road segment, and to send this data to a Matlab engine. A traffic
controller created in Matlab can then be used to calculate control actions for the traffic
network in Paramics. The second plugin is created to change the behaviour of the vehicles
in Paramics. Using this plugin, ISA-equipped vehicles can be used in the simulation. Also
the vehicle behaviour when using unenforced and enforced speed limits can be influenced
by this plugin.

6.5.1 Interface plugin

The Interface plugin can be used as a stand-alone plugin and is created in Paramics. It
is created to measure data in Paramics, and also to use it to control the simulated traffic
in Paramics, via a controller implemented in Matlab. The traffic measurements needed to
calculate the control actions are obtained from Paramics. These control actions will then be
sent back to Paramics to simulate the response of traffic on these control actions.

Measurement data

The plugin makes use of data collected by detectors. When a vehicle passes a detector, it
will be counted, and its speed will be used to calculate the mean speed on the segment the
detector is on. Therefore, in order to be able to use the Interface plugin, some detectors
should be placed in the Paramics project and the details on how to do this can be found in
the Paramics Modeller manual. Every simulated minute the plugin will determine the values
of the measurements in Paramics, and send this data to the Matlab engine. When the simu-
lation is finished, the data will be stored in three different mat-files namely detector.mat,
control.mat and odmatrix.mat. These mat-files can be found in the same directory from
where we started the Paramics program.

The file detector.mat contains a three-dimensional matrix representing simulated
minute, detector number, and index number of the detector data. The data obtained from
the detectors is stored in an array with index numbers indicating simulation time, estimated
space-mean density, time-mean density, approximated space-mean density, average flow,
estimated space-mean speed, time-mean speed, approximated space-mean speed, vehicle
count (minute) and vehicle count (total). The approximated values are calculated by de-
termining the values (e.g., space mean density) of a segment at every second, sum these
values for one minute, and determine the average value for that minute. The estimated
values are determined using the basic macroscopic traffic characteristics equations. For ex-
ample, detector(20,7,5) will give the flow (index 5) at detector 7 for the 20th simulated
minute.

The file control.mat contains a matrix representing simulated
minute, controlled segment number, and control action number. The control action data mat-
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Figure 6.4: The Interface plugin dialog box

rix contains the dynamic speed limits (ctrnr=1), and the dynamic time headways (ctrnr=2)2,
for all timesteps at all controlled segments. The plugins are made with more types of intel-
ligent vehicles in mind. Another interesting type of intelligent vehicles are ACC equipped
vehicles. Besides dynamic speed limits, also the time headway of these vehicles might be
changed in order to improve the network performance. In this way both means speeds and
densities can be influenced, giving the traffic controller an extra degree of freedom. This is
why the traffic controller is supposed to return both speed limits and time headways.

The file odmatrix.mat contains four-dimensional matrix representing simulated
minute, detector number, origin number, and destination number. The origin-destination
data array contains the number of vehicles that came from a certain origin, and want to go
to a certain destination in the network, counted in the passed simulated minute. The index
numbers of the origins and destinations correspond to the zone numbers in Paramics.

Interface plugin parameters

Different parameters of the Interface plugin shown in Figure 6.4 are described:

• Log and show measurements: The checkboxes indicate to the plugin whether it should
log the measurements in a textfile as data.txt or show the measurements in the
reporter window.

• Use the traffic controller: This checkbox tells whether the traffic controller should
be called at every simulated minute. When the traffic controller is set to ’true’,
the Interface plugin will call an m-file called traffic_controller at every sim-
ulated minute. This function can be used as [speedlimitdata headwaydata]=
traffic_controller(minute,state), where

– speedlimitdata is a vector containing the dynamic speed limits for the con-
trolled segments, in kilometres per hour. These speed limits are the control

2Desired headway control can be used for controlling ACC-equipped vehicles.



6.5 Coupling Paramics and Matlab 109

actions of the controller, which will be applied to the network during the next
simulation minute.

– headwaydata is a vector containing the dynamic time headways for the con-
trolled segments, in seconds. These time headways are the control actions of
the controller, which will be applied to the network during the next simulation
minute.

– minute is the current simulation minute, for which the measurements are taken.

– state is a matrix containing the mean speeds and densities from the measured
segments. These measurements can be used by the controller to determine its
next control actions.

• Controller delay [min]/[sec]: This is the amount of minutes plus seconds the plugin
will wait after the start of the calculation of new control values, before the control
actions are applied. The Paramics simulation will wait until the controller is finished.
In this way, the time a controller may use to calculate the next control values can be
taken into account in the simulation. The value for the minutes is an integer between
0 and 10, the value for the seconds is an integer between 0 and 59.

6.5.2 ISA plugin

The ISA plugin is dependent on the Interface plugin, so the Interface plugin should also
be loaded if one intends to use the ISA plugin. It is created to simulate vehicles equipped
with an ISA system. This is done by giving all vehicles of a certain type (“ISA vehicles”)
a compliance factor. First, we motivate the reason for creating this plugin, followed by an
explanation of the parameters of the plugin.

Intended use

We want to investigate the differences in controlling three scenarios, namely traffic driving
with unenforced speed limits, traffic driving with enforced speed limits, and traffic consist-
ing of vehicles equipped with ISA systems. Vehicles equipped with ISA can be modelled
using their free-flow speed distribution. The effects on mean speeds and the speed distribu-
tion for vehicles can be modelled by a normal distribution. They are based on research using
ISA with an active acceleration pedal [70]. This research was carried out in the city of Lund,
Sweden. It covered measurements on main streets and arterial roads. On the main streets,
there was no significant difference in speed distribution between vehicles with and without
active acceleration pedal. On the arterial roads (with speed limits of 50 and 70 km/h), the
standard deviation of the active acceleration pedal equipped vehicles was about 5.7% of the
speed limit, and without active acceleration pedal it was about 9.9% of the speed limit. The
decrease in the standard deviation on arterial road is due to the decrease in speed of the fast-
est vehicles, but also due to the increase of speed of the slowest vehicles. The mean speed on
the arterial roads is about 110% of the speed limit for vehicles without active acceleration
pedal, and about 100% for vehicles with active acceleration pedal. A similar conclusion
was drawn from measurements on a highway in the Netherlands [67]. Here it was found
that vehicles drive about 10% faster when the speed limits are unenforced, and about 10%
too slow when they are enforced.
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Figure 6.5: Gaussian distributions of the desired free-flow speeds

We assign a compliance factor to every vehicle, based on the distribution belonging to
its type. This factor is used to give a vehicle a desired speed, based on the current speed
limit on the road. The calculation for the desired speed thus becomes

vdes,n = αcf,n · vspeedlimit

where, αcf,n respresents the compliance factor of vehicle n and is a Gaussian random num-
ber. The used mean value and standard deviation used depend on the scenario that is con-
sidered.

In the case of simulating ISA equipped vehicles, a distribution is used with the mean
value near 1.00, and a small standard deviation. In literature, values are found for the
standard deviation of ISA vehicles [70]. Measurements on arterial roads with speed limits
of 50 and 70 km/h give standard deviations of about 5.7%. Since this article also shows that
the standard deviation decreases with increasing speeds, and we simulate a highway with a
speed limit of 120 km/h, a standard deviation of 5.0% is used.

Also for the non-ISA vehicles, a compliance factor can be used. For the situation of
unenforced speed limits a Gaussian random number is determined with a mean value near
110% of the speed limit, and a larger standard deviation. This value can be found in both
[67] and [70]. In the latter article, the standard deviation on the arterial roads is 10.2% at
50 km/h and 9.6% at 70 km/h. Here we assume that the standard deviation is 8.0% at 120
km/h.

When the speed limits are enforced (e.g. by trajectory control), human drivers tend to
drive slower than the speed limit [67], at about 90% of the speed limit. This behaviour can
also be described by using a random compliance factor. The standard deviation is taken
equal to the one in the unenforced situation. The probability distribution functions for the
three different scenarios are shown in Figure 6.5. The used speed limit is 120 km/h. Due
to the smaller standard deviation for the ISA equipped vehicles compared to the other two
types, the chance of having a desired free-flow speed near the mean value becomes bigger,
as can be seen by the higher and narrower peak for this type.
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Figure 6.6: The ISA plugin dialog box

ISA plugin parameters

The different parameters of the ISA plugin shown in Figure 6.6 are defined as follows,

• Vehicle numbers: This parameter indicates which vehicle type in Paramics should
behave as ISA-equipped vehicles and which vehicles should behave as second-type
and third-type vehicles. The value is an integer between 1 and 10.

• Compliance factor for vehicles: mean and st.dev.: These parameters give the mean
value and the standard deviation for the compliance factor for ISA-equipped, type 2
and type 3 vehicles. The value can be chosen between 0.50 and 1.50.

6.6 Case study

Now we present a simple case study in which the MPC control strategy for the roadside
controller layer that has been described in Section 6.3 is applied. First we will describe the
set-up of the network, which will be followed by a description of how this network can be
modelled by the METANET model as well as other implementation details. Next, we will
discuss and analyse the results obtained from the simulations. For our simulations, we will
consider dynamic speed limits as the control measure.

6.6.1 Set-up

The network used for the simulation is similar to the stretch discussed in Figure 6.2 and is a
two-lane highway stretch, with one on-ramp at the end. The stretch consist of 20 segments
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Figure 6.7: Schematic layout of the network

with a length of 500 m each. The first and last segments are used to emulate boundary
values, and the other 18 segments are used to control the traffic. A schematic drawing is
shown in Figure 6.7. For this case study, we compare three different scenarios:

• Unenforced speed limits,

• Enforced speed limits,

• ISA-equipped vehicles.

6.6.2 Scenario

A shock wave is a sudden change in flow or density moving upstream or downstream on
the road. In an unstable region, where the density is higher than the critical density, shock
waves may occur only when there are disturbances in traffic, like braking or merging. In
a stable region with the density less than the critical density, any disturbance will vanish
without intervention. Since the difference between the stable and unstable region will not
be sharp in practice, the notion of metastability is introduced [66]. Hegyi et al. [66] argue
that shock waves can only be dissolved in the metastable region.

In our case study, the on-ramp is used to create shock waves in the network at desired
moments, by temporarily adding extra vehicles to the stretch. When the capacity of the road
is reached, a traffic jam will start to build up. This traffic jam will move upstream with a
speed of about 15 km/h. The aim of the traffic controller is to reduce or dissolve this traffic
jam.

Also, on the upstream part of the measurement area, some segments are added to keep
the created shock wave from reaching the origin, where vehicles enter the network, within
the hour. Between the 20 hatched measurement area and the on-ramp, there are two seg-
ments without detectors. This is done to avoid measuring mean speeds based on two lanes
with a large difference in speed.

For every situation, the following cases are simulated:

• No shock wave case: no traffic is entering the main road at the on-ramp,

• Uncontrolled case: a shock wave enters the measured area, but no control actions are
taken,

• Controlled case: a shock wave enters the measured area, and dynamic speed limit
control is used to dissolve the shock wave.
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Figure 6.8: Demand patterns for the calibration of the model

6.6.3 Models

We will use the microscopic traffic simulator Paramics for traffic simulation purposes. The
MPC traffic controller that is implemented in the Matlab needs a traffic model to predict the
states when the speed limits are applied. We implement a METANET model for prediction
purpose. Since we use different models for simulation and prediction purposes, we need to
calibrate the prediction model.

Calibration of METANET model

For this calibration, a scenario is created with a duration of 3 hours. In Figure 6.8, the
demand patterns for the calibration are shown. The light pattern shows the demand on the
main road (O1 to D1 in Figure 6.7), and the dark pattern shows the demand for the on-ramp
(O2 to D1 in Figure 6.7). In the first hour, a traffic jam is created, which is (almost) dissolved
by a manually created speed limit pattern. This part is used to fit the model for capturing
the traffic response to dynamic speed limits at high density. In the second hour, the traffic
jam is created using the same method as in the first hour, but here the speed limits are kept
constant at 120 kilometres per hour. This part is used to fit the model to capture the shock
wave phenomenon. In the third hour, the demand is low and changing, and a manually
created dynamic speed limit pattern is applied. Here the model is fit to capture the traffic
behaviour at low densities. At these low densities the desired speed vdes is more likely to be
limited by the dynamic speed limits than at high densities. The combination of these three
scenarios should give a good basis for calibrating the prediction model for the traffic.

Using this calibration scenario, two simulations are performed for each of the three
traffic scenarios. One obtained data set is used for calibrating the METANET model, the
other is used for validating the METANET model. The set for validation is needed, because
both the generation of vehicles and the assignment of the speed limit compliance factor
are stochastic processes, and therefore there is a difference in traffic behaviour for different
simulation runs. A set of parameters that represents the traffic behaviour for one simulation
run very well, might therefore not be very suited for another run.

Calibration objective The METANET model is calibrated by optimisation of the model
parameters. This optimisation is done in a similar way as discussed in Section 6.2.1, using a
rolling horizon. Instead of using the speed limits as the variables to optimise, the parameters
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Table 6.1: Values accounted for the three scenarios

calibration data validation data

Scenario VAFρ VAFv average VAFρ VAFv average

unenforced 97.36 99.41 98.39 96.72 99.26 97.99

enforced 96.49 98.94 97.71 94.05 98.54 96.29

ISA 96.42 98.96 97.69 95.69 98.60 97.14

of the METANET model are used. The vector containing the parameters is

P =
[

τ α κ ρcrit vfree a ηhigh ηlow

]T

This vector is changed by the Matlab function fmincon, until it finds a minimum value for
the objective function

Jcal(P) =
1

Np

Ns

∑
i=1

M−Np

∑
m=1

m+Np

∑
k=m

{

(

ρdat,i(k)−ρsim,i(k)

ρdat,i,k

)2

+β1

(

vdat,i(k)− vsim,i(k)

vdat,i,k

)2
}

(6.11)

where Np is the prediction horizon, Ns is the number of segments, M is the length of the
simulation in minutes, ρdat,i and vdat,i are the measured densities and mean speeds at segment
i, ρsim,i and vsim,i are the simulated densities and mean speeds at segment i as predicted by
the METANET model using the current values for the parameter vector P, and ρdat,i,k and
vdat,i,k are the mean density and speed over the measured values from k to k +Np for segment
i. The multiplication factor β1 can be used to set the relative importance for getting accurate
predictions for either the densities or the mean speeds. If, e.g., β1 > 1, the predictions for
the densities will become more accurate, thereby reducing the accuracy of the predicted
mean speeds. In this research β1 is 1.

Validating METANET model For each of the three scenarios, more than 50 calibration
runs have been done on a data set containing measurement data for the particular scenario.
The value obtained by (6.11) gives a measure on how well the densities and mean speeds
can be predicted using the METANET model with the accompanying parameter values. The
20 parameter sets with the lowest values for Jcal are tested on the validation data. The first
test is calculating the Variance Accounted For (VAF). The VAF is calculated as

VAFx = 100% ·

{

1 −
∑M

k=1 ∑
Ns
i=1 (xdat,i(k)− xsim,i(k))

2

∑M
k=1 ∑

Ns
i=1 x2

dat,i(k)

}

(6.12)

where M is the length of the simulation, Ns is the number of segments, x is the variable of
interest (either ρ or v), xdat,i is the measured data from Paramics at segment i, and xsim,i is
the simulated data for segment i, using the METANET model. The VAF gives a percentage
of how well the simulated data represents the measured data.

The mean values for the VAFs of the 20 lowest values of Jcal for the three scenarios are
given in Table 6.1. The variances for these mean percentages are all smaller than 2.0 ·10−3,
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Table 6.2: Parameter values for the METANET model

Scenario τ α κ ρcrit vfree a ηhigh ηlow

unenforced 0.0042 -0.0521 126.91 26.69 176.78 1.62 204.60 153.59
enforced 0.0025 -0.2737 176.69 29.28 169.10 1.37 167.35 91.96
ISA 0.0061 -0.1257 137.05 29.39 169.21 2.65 233.81 128.31
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Figure 6.9: Illustration of validation

so the 20 best parameter sets give quite similar results. From the table it can be seen that
the values for the validation data are lower compared to the values for the calibration data.
This is as expected, since the parameters are optimised to represent the calibration data.
Another observation from the table is that the densities are predicted less accurate than the
mean speeds. The prediction of the densities can be improved by taking a smaller value
for the weighting factor β1 in (6.11). This is not done due to limited time, but it will
probably improve the overall performance of the controller, since it will give more accurate
predictions. Despite the lower accuracy of the densities, the average VAFs for both the
calibration data and the validation data are good. Per scenario, the parameter set resulting in
the highest average VAF is used for the controller prediction model. The parameter values
used are shown in Table 6.2.

Besides validating the obtained parameters by calculation, we also provide an illustra-
tion of this validation. In order to do so, some 15 minute predictions are done, and plotted
in a figure, together with the measured data, and the difference of both. An example of
such a plot is given in Figure 6.9. The figure shows the prediction from the 80th to the 95th
minute, for the unenforced speed limit scenario. ρdat and vdat are the measured densities and
mean speeds from Paramics, ρsim and vsim are the simulated densities and mean speeds as
predicted using the METANET model. At this time, a shock wave is starting to enter the
network, and no control is used. The shock wave is clearly visible, starting at the upper left
corner. This visualisation shows that the speed at which the shock wave moves upstream
is quite accurate, and also the width is predicted well. The prediction is much smoother
than the measured situation, but it needs not give more detail for use in the controller. For
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both the calibration and validation, the measured data is used to get the future states at the
boundary segments.

6.6.4 Control problem

When no control is applied to the network, and the traffic demand stays high, the traffic jam
will continue to move upstream, thereby slowing down all vehicles passing it. The aim of
the traffic controller is to reduce or dissolve this traffic jam, and thereby reducing the time
vehicles spend in the monitored part of the traffic network. The corresponding performance
function Jperf(k) used in the calculation of the total time spent as in (6.3.2), is then given by

Jperf(k) = TctrlN(0)K + T 2
ctrl

K

∑
k=0

(K − k)(qdem − qout(k)) [veh ·h] (6.13)

where Tctrl is the controller time step ( 1
60

hour), N(0) is the number of vehicles on the
segments 1 to 20 at k = 0 3, K is the number of time steps taken into account, qdem is the
constant demand used for the simulation (desired inflow), and qout is the outflow measured
at the 20th segment. In the total MPC objective function given in (6.3.2), we have also
included a penalty term with λ1 = 10 and λ2 = 10.

In order to be able to compare the different situations for all scenarios at different traffic
demands, the mean travel time per vehicle is calculated. This is done using

TPV(K) = 60 ·
TTS(K)

TctrlKqdem

[min] (6.14)

where TTS(K) is the TTS calculated using (6.3.2). The factor 60 is used to convert hours
into minutes. The time per vehicle gives the average time it took a vehicle to pass the 10
kilometres long highway. In order to compare the different situations and demands, the
times per vehicle are normalised based on an ideal situation, where the mean speed is 120
km/h in every segment at every time instant. In this case the TPV for the 10 kilometre long
highway part is

TPVnorm = 60 ·
10

120
= 5 [min] (6.15)

As a constraint, the dynamic speed limits are given a maximum and minimum allowed
value. The upper bound for the speed limits is 120 km/h, and the lower bound value is 40
km/h. For the calculation of the optimal control values, all speed limits are constrained to
this range. When the optimal values are found, they are rounded to a multiplicity of 10
km/h, since this is more clear for human drivers, and also technically feasible without large
investments.

6.6.5 Results and analysis

When the density is high, it is more difficult to control the traffic, since the mean speed
might already be below the control speed (see the definition of vdes in (6.1)). Therefore,
simulations are done using densities at which the shock wave can dissolve without using

3For the calculation of the TTS, the first 10 minutes of the measured data are rejected. Since the simulation
starts with no vehicles in the network, we take this time to initialise.
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Table 6.3: Measured results for the unenforced speed limit scenario

qdem Case #1 #2 #3 #4 #5 TTS: mean (std) TPV

4700 no shock wave 494.73 452.15 435.98 414.88 428.30 445.21 (6.9%) 5:41

4700 uncontrolled 520.42 517.48 536.13 475.98 539.58 517.92 (4.9%) 6:36

4700 controlled 513.45 488.43 521.35 479.75 500.75 (4.0%) 6:24

4900 no shock wave 493.90 472.60 492.78 521.10 489.43 493.96 (3.5%) 6:03

4900 uncontrolled 635.10 584.92 643.72 571.85 588.63 604.84 (5.3%) 7:24

4900 controlled 575.30 654.12 589.77 572.15 597.84 (6.4%) 7:19

control, and at densities where the shock wave remains. For each scenario, five simulations
for three different cases are done, each with a duration of one hour. The results of the
simulations are reported in Tables 6.3, 6.4, and 6.5. Each table contains the traffic demand
qdem, the case as discussed in Section 6.6, the total time spent calculated using (6.13) for
the five simulations, the mean value and standard deviation (as a percentage of the mean
value) of the total time spent, and the resulting travel time per vehicle calculated using
(6.14). The standard deviation gives a measure of the accuracy of the mean value. For
lower percentages, the obtained mean value for the TTS is more accurate.

Unenforced speed limits

When the speed limits are unenforced, the desired free-flow speed is assumed to be about
10% higher than the speed limit. The desired free-flow speed is modelled as a Gaussian
distribution, with a mean value of 110% of the speed limit, and a standard deviation of 8%
of the speed limit. Therefore the influence of dynamic speed limits is expected to be high,
because the density will be low compared to the other scenarios. For this scenario, shock
waves occur and dissolve at a traffic demand of 4700 veh/h when the on-ramp is used. At a
traffic demand of 4900 veh/h, the shock wave remains in the network.

From Table 6.3, it can be concluded that controlling the speed limits in the traffic net-
work has a positive effect on the TTS and TPV for the unenforced speed limit scenario.
Using the situation without shock waves as a reference, at a demand of 4700 veh/h the TPV
is 16.3% higher in the uncontrolled situation, and 12.5% in the controlled situation. Con-
sidering the demand of 4900 veh/h, the uncontrolled situation gives an increase of 22.4%
in travel time, while the controlled situation gives an increase of 21.0%. Although the im-
provements are not very large in this single hour, the long-term improvement is significant.
Since the traffic jam is dissolved in the controlled situation, the increase in travel time will
be the average between the controlled hour and the shock-wave-free travel time, resulting
in an increased travel time of 10.5% for the high demand situation.

Typical traffic conditions at the traffic demand of 4700 veh/h without control are shown
in Figure 6.10. For all four plots in this figure, the vertical axis shows the segment numbers.
The traffic flow direction is from the bottom to the top, and since all segments have the
same length, this axis can also be seen as the distance traveled. The upper plot shows that
all speed limits are set to 120 km/h at all times. The second plot from the top shows the
mean speeds at the segments. The shock wave is shown as the dark area starting at the
20th segment after 10 min, moving upstream in time. This shock wave is also shown in the
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Figure 6.10: Uncontrolled traffic at qdem=4700 veh/h

third plot from the top, which gives the densities. Here the light colour represents the high
density of the traffic jam. Notice that there are also light, small areas which go downstream
in time. They are the areas of high density, caused by the difference in desired speed for the
vehicles. Fast vehicles will meet slower vehicles as they drive on the highway, causing high
density areas, while creating areas of low density in the upstream direction. These stripes
of low and high density are also visible in the fourth plot, which shows the flow. The traffic
jam is visible as the dark area of low flow.

When we apply model predictive control to the traffic network, using the same situation
as before, the resulting traffic conditions in the network are shown in Figure 6.11. At the 10th

minute, the shock wave enters the part of the highway containing detectors. The controller
responds by lowering the speed limits at the segments close to the congestion. After 10 min,
the traffic jam is almost completely dissolved, as can be seen by the plots.

Enforced speed limits

When the speed limits are enforced, we assume that the desired free-flow speed becomes
about 10% lower than the displayed speed limit. The desired free-flow speed is modelled
as a Gaussian distribution, with a mean value of 90% of the speed limit, and a standard
deviation of 8% of the speed limit. Therefore the influence of the dynamic speed limits is
expected to be low, because the density will be high compared to the other scenarios.

For this scenario, shock waves occur and dissolve at a traffic demand of 4500 veh/h. At
a traffic demand of 4700 veh/h, the shock wave remains in the network. Compared to the
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Figure 6.11: Controlled traffic at qdem=4700 veh/h

Table 6.4: Measured results for the enforced speed limit scenario

qdem Case #1 #2 #3 #4 #5 TTS: mean (std) TPV

4500 no shock wave 589.22 532.23 538.82 624.30 560.45 569.00 (6.7%) 7:35

4500 uncontrolled 580.85 571.20 603.40 627.30 623.12 601.17 (4.1%) 7:55

4500 controlled 615.60 600.32 636.12 575.60 606.91 (4.2%) 8:06

4700 no shock wave 635.52 614.97 583.73 693.12 588.07 623.08 (7.1%) 7:57

4700 uncontrolled 700.33 680.42 659.47 736.15 746.82 704.64 (5.2%) 9:00

4700 controlled 713.20 673.12 686.83 750.40 705.89 (4.8%) 9:01

unenforced speed limit scenario, these demands are lower. This is due to the lower desired
free-flow speeds, which result in higher densities at the same demand. Therefore the critical
density is reached at a lower demand. From Table 6.4, it can be seen that the TTS is larger
in the uncontrolled case, due to the traffic jam. The controller is not able to lower the TTS
for both demands, the travel times even slightly increase. At a demand of 4500 veh/h, the
traffic jam increases the travel time by 5.7%. Using traffic control, the travel time increases
by 6.7%, so there is a negative improvement in travel times by using dynamic speed limit
control. Due to the small amount of simulations, no solid conclusion can be drawn from
the mean values for the TTS for both cases, but they are expected to stay almost equal.
We conclude that the controller will not improve the TTS, but it will improve traffic safety
by creating a more homogenous traffic flow. The same conclusion can be drawn when the
demand is 4700 veh/h, where the increase in travel time for the uncontrolled situation is
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Figure 6.12: Uncontrolled traffic at qdem=4700 veh/h

13.1%, and 13.3% for the controlled situation.
The homogeneous traffic flow is shown in Figure 6.13. In Figure 6.12 the traffic states

are shown, when the speed limits are uncontrolled, and with a high demand of 4700 veh/h
that results in a remaining traffic jam. When the same demand is used, but dynamic speed
limit control is applied to the network, the traffic jam is dissolved by spreading the vehicles
more evenly over the highway, as shown in Figure 6.13.

The effect is a more constant speed over the measured area, as shown in the second
plot from above. This increases the safety on the highway. So although the travel times
will not decrease by applying control, the controller positively affects the traffic situation by
improving the safety.

Intelligent speed adaptation

For the ISA scenario, the desired free-flow speed is about 100% of the speed limit. The
desired free-flow speed is modelled as a Gaussian distribution, with a mean value of 100% of
the speed limit, and a standard deviation of 5% of the speed limit. Based on this percentage,
the influence of the dynamic speed limits is expected to be good.

When the vehicles are equipped with ISA, shock waves occur and dissolve at a traffic
demand of 4700 veh/h. At a traffic demand of 4900 veh/h, the shock wave remains in the
network. The measured TTSs and TPVs for both demands are given in Table 6.5.

From Table 6.5, it is concluded that controlling the speed limits on the traffic network has
a positive effect on the TTS and TPV for the intelligent speed adaptation scenario. Using the
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Figure 6.13: Controlled traffic at qdem=4700 veh/h

Table 6.5: Measured results for the intelligent speed adaptation scenario

qdem Case #1 #2 #3 #4 #5 TTS: mean (std) TPV

4700 no shock wave 432.38 407.60 461.85 481.47 446.35 445.93 (6.3%) 5:42

4700 uncontrolled 510.70 562.90 506.72 496.40 528.25 520.99 (5.0%) 6:39

4700 controlled 485.90 511.38 491.72 479.35 492.09 (2.8%) 6:17

4900 no shock wave 415.42 473.52 423.43 511.95 513.55 467.57 (9.9%) 5:44

4900 uncontrolled 596.58 619.15 540.70 629.22 658.70 608.87 (7.3%) 7:27

4900 controlled 468.77 475.83 535.53 492.45 493.15 (6.1%) 6:02
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Figure 6.14: Uncontrolled traffic at qdem=4900 veh/h

case without shock waves as a reference, at a demand of 4700 veh/h the travel time is 16.8%
longer in the uncontrolled situation, and 10.4% in the controlled situation. Considering the
demand of 4900 veh/h, the uncontrolled situation gives an increase of 30.2% in travel time,
while the controlled situation gives an increase of 5.5%.

Typical traffic conditions at the traffic demand of 4900 [veh/h] without traffic control
are shown in Figure 6.14. The figure shows the remaining shock wave, which enters the
network at the 10th minute, and remains in the network with a constant length. Without
control, the traffic jam will continue to move upstream in the traffic network.

When control is applied to the traffic network using the same traffic demand, the traffic
jam is dissolved, as shown in Figure 6.15. The traffic situation is improved in the part of
the network where the measurements are done, and also the upstream part of the network
will not suffer from higher travel times due to a traffic jam. Controlling a small part of the
network thus has a positive effect for a larger part of the network.

6.7 Summary

In this chapter, we have investigated the possibility of using semi-autonomous IVs (espe-
cially IVs equipped with ISA systems) to improve the performance of the traffic system.
We have discussed how model predictive control (MPC) approach can be used to determ-
ine optimal, dynamic speeds limits for the semi-autonomous traffic systems. We have also
presented the details of the plugins that allow the simulation software Paramics to simulate
the behaviour of semi-autonomous vehicles. This intermediate approach has been illustrated
using a case study based on simulations. The improvement on the network performance ob-
tained by deploying ISA systems has been compared with other scenarios, like unenforced
and enforced speed limits.
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Figure 6.15: Controlled traffic at qdem=4900 veh/h
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Chapter 7

Conclusions and

Recommendations

This chapter mainly summarises our work in this thesis. Section 7.1 highlights the main
contributions of this thesis to the state-of-the-art. In Section 7.2, the main conclusions
drawn at the end of each chapter are summarised. Finally, in Section 7.3, open problems
and recommendations for future research are discussed.

7.1 Main contributions

The approach we have considered in this thesis for advanced traffic system is based on the
IVHS traffic system. An IVHS consist of interacting roadside infrastructures and vehicles
equipped with advanced in-vehicle technologies (IVs). The fully automated IVs are organ-
ised in platoons with short intraplatoon distances, and larger distances between platoons.
The proposed approach aims at enabling and sustaining an efficient operation of the IVHS
system through the used of advanced control methods and for this purpose, it utilises tech-
nological advancements from both the automotive and the traffic management fields. Our
main contributions to the state-of-the-art in IVHS-based traffic control and management
approaches are:

• The proposal of a new hierarchical, distributed framework to control large-scale
IVHS-based traffic networks,

• The development of control algorithms that can be deployed at different (roadside and
area) levels of IVHS-based traffic management systems.

The first contribution of this thesis was the proposal of a new framework to control and
manage large-scale IVHS-based traffic systems in a well-structured and distributed manner.
In the proposed framework, the traffic control and coordination tasks are distributed among
several levels in the hierarchy and also among various controllers at the same level.

Secondly, the focus was on the development of control methodologies that can be im-
plemented within the context of our framework. Most of the existing IVHS frameworks
primarily focus on vehicle level controlling problems. In particular, they mainly deal with
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the control issues that result due to the actual implementation of platooning approaches and
IV technologies in vehicles. However, the control problems at tactical and navigational
levels did not yet receive much attention and thus motivated us to work on these lines of
research. More specifically, in this thesis, we have designed control methodologies for the
roadside and area controllers to improve the performance of large-scale IVHS-based traffic
systems.

In particular, we have developed an MPC-based control algorithm that the roadside con-
troller can use to combine ramp metering (or other conventional roadside-based traffic con-
trol measures) with intelligent speed adaptation (ISA), lane allocation measures, and other
(future) IV-based control measures, and to determine system-optimum control signals for
these control measures. In our framework, the navigational control tasks (route guidance)
are handled by the area controller. Thus we have also developed and implemented an op-
timal control algorithm for the area controller to optimally route the platoons on the set of
interconnected highways. To solve the routing problem, our control algorithm either used
mixed-integer linear or real-valued nonlinear programming techniques.

For the other higher levels in the control hierarchy, similar control approaches, also
based on MPC but with even more aggregate models can be used.

7.2 Conclusions

7.2.1 Main conclusions

The main conclusions of this thesis are:

• A multi-level framework is necessary for the traffic management and control pur-
poses. This multi-level structure should range from a vehicle controller at the bottom
level to the traffic management controllers at roadside, area, and regional at higher
levels.

• MPC approach is a good method for traffic management and control purposes in both
roadside and area controllers.

• The potential improvement in the traffic flow obtained from the multi-level framework
has been illustrated using case studies. By the combination of IV-based platoons
and multi-level framework, performance improvement of 10–30 % is possible. The
accuracy of the performance improvement depends on the considered traffic demand,
scenario, and set-up, and on more experiments.

7.2.2 Conclusions per chapter

In this section, we summarise the conclusions drawn from each chapter in this thesis.
In Chapter 2, we have presented a detailed review of some of the most frequently used

control methodologies. These methods are used for controlling a human driven highway
traffic system. We have also illustrated the working procedure of these control techniques
using a common application such as ramp metering. Having discussed the state-of-the-art of
currently applied control methods, we then focused on control architectures for IVHS. This
included the discussion of various existing architectures such as PATH, Dolphin, Auto21
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CDS, CVIS, SafeSpot, and PReVENT. Based on our literature survey, we have made a
comparative analysis of the control methods and the control architectures to assess their
similarities and their differences. The conclusions from this analysis clearly indicated the
advantages offered by using a hierarchical structuring and also showed the importance of
and need for a flexible and traffic-adaptive control design methodology. The other topic
discussed in this chapter is IVs and their functionalities, which on the long-term include
platooning. The platooning approach, which allows vehicles to maintain small intra-platoon
distances and to travel with high speeds, along with the necessary driver assistance systems
such as cooperative ACC (for maintaining safe distance), ISA, and dynamic route guidance
systems will offer considerable benefits to traffic flow improvement. However, the roadside
infrastructure is currently unaware of these potential benefits. This leads us to question why
roadside traffic control measures are not (yet) adapted to include this intelligence.

Based on the knowledge gained from our survey and analysis, we have introduced a
new framework for IVHS that integrates the intelligence in roadside infrastructure and in
platoons of automated IVs. A detailed description of our new framework is given in Chapter
3. Our framework also allows vehicle-vehicle and vehicle-roadside communications similar
to the other existing IVHS architectures. However, our framework differs mainly in terms of
combining the existing conventional traffic control measures and the IV technologies, and
viewing them as IV-based control measures.

Chapter 4 mainly dealt with the problem formulation and the control-related issues of
roadside controllers. From our preliminary study on control methods, we have decided to
implement an MPC approach to perform the IV-based roadside traffic control operations.
More specifically, the MPC algorithm discussed in this chapter determines optimal ISA
speed limits and lane allocations as well as optimal release times for the platoons at the on-
ramps. Since MPC is an on-line, model-based approach with a receding horizon mechanism,
we have presented some traffic models that could be used for simulation and prediction at
the roadside level, and have discussed the control issues related to optimisation methods,
and to the choice of controller settings such as the prediction and control horizons and
the number of control signals. The simulations based on the MPC approach reported in
Chapter 4, compare the performance of the IVHS traffic system to the performance of a
human-driven traffic system. For the defined case study, the platoon-based approach results
in a better performance compared to the situation with controlled human drivers. However,
our approach poses some challenges on computational complexity. Determining optimal
control signals that consist of both real and integer valued variables such as ISA speeds and
lane allocation for each platoon, consumes more time and requires more system memory to
perform the computations.

In Chapter 5, we have focused on area controllers, which control a set of interconnected
highways and coordinate the activities of various roadside controllers in their area. In par-
ticular, this controller assigned optimal routes to the platoons in the IVHS. As mentioned
earlier, determining control measures for each platoon proves to be computationally de-
manding, and hence motivated us to propose two simplified but fast simulation models to
describe the flows of platoons in the network. For the first model, which only considers
flows and queues lengths, we have shown that the optimal route choice control problem
can be approximated by a linear or a mixed-integer linear problem. With a simple case
study we have illustrated that this results in a balanced trade-off between optimality and
computational efficiency. The second model is a macroscopic model based on an existing
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traffic flow model for human drivers (METANET), which we have adapted to fit the pla-
toon framework. For this model, the optimal route choice control problem results in an
optimisation problem with only real-valued optimisation variables. This approach was also
illustrated with a simple case study involving a comparison between human drivers and an
IVHS with platoons of IVs. As expected, the deployment of IVs in the system resulted in a
better performance than the human driven traffic system.

Chapter 6 mainly showed the possibility of equipping vehicles with advanced in-car
systems in an existing simulation software and also investigated the improvement that could
be attained by implementing ISA at the vehicle level. We have used the traffic simulation
software PARAMICS to represent the current traffic system and we have developed plug-
ins for the partially automated vehicles to capture their reaction to the control measures.
We have implemented the roadside controller in Matlab and since there was no existing
interface between the two software programs, we have also created a plug-in to simulate
the behaviour of IV-based vehicles. We have investigated the effect of control on the traffic
system driven by human drivers and on the system driven with partially automated vehicles
using a simple case study. The system with partially automated vehicles offered better
performance improvement than the current conventional traffic system.

7.3 Open problems and recommendations for future re-

search

Every research work has a room for improvement. In this section, we discuss some propos-
als for future research in the field of traffic management and control with intelligent vehicles
in various directions:

• Model considerations,

• Controller considerations,

• Complexity and implementation issues,

• Alternative approaches,

• Transition aspects.

Model considerations

• Since MPC is a model-based approach, we are in need of fast and simple models
for prediction purposes. In this thesis except in Chapter 7, to filter out the effects of
model mismatch errors, we have deployed the same simulation model for prediction
purposes. The effect of such errors should be investigated by considering set-ups in
which the simulation and the prediction model are different.

• Especially for the roadside controller described in Chapter 4, the currently used pre-
diction model is still too time-consuming. Hence, we should also develop faster and
simpler models for the traffic flows on individual freeway stretches, while still guar-
anteeing a sufficiently high degree of accuracy. However, e.g., for complex junctions,
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we might still require a detailed representation of the traffic system. Therefore, we
should develop so called multi-resolution prediction models with different degrees of
accuracy in certain regions of interest.

• Each layer in our IVHS framework uses a different level of details of the traffic sys-
tem, and also deals with different sets of inputs and control outputs. In particular,
the roadside controller can use Paramics, or the big-car model, and the area control-
ler can work with flow-based models. Therefore, we should develop interfaces to
bring consistency among the inputs and outputs obtained from different layers of the
framework.

• We should design and develop new, fast models with required accuracy for all levels.

Controller considerations

• In this thesis, the roadside controller has performed the coordination and integration
of different control measures. In Chapter 4, we have in particular combined ISA and
optimal lane allocations (IV-based control measure) along with the ramp metering
(roadside control measure). However, we can extend this combination to include other
traffic IV-based control measures that might be developed by both the transportation
and vehicle industry in the near future. Also, the computational complexity of the
control problem can be analysed using analytical methods or empirical methods.

• Currently, the roadside controller had no control over the platoon sizes and the platoon
size was assumed to be a constant value in all our case studies. If this control measure
is also taken into account, then the roadside controller can have more control over the
traffic scenario. Platoons can then vary from a single car to a very large number.

• Depending on the nature of the traffic problem, the controller can use continuous
optimisation (for ISA and ramp metering), integer optimisation (for optimal lane al-
locations) or a combination of both techniques to find an optimal solution. Finding
an optimal solution for an integer-valued problem poses more computational prob-
lems than real-valued problems. Since the determination of optimal platoon sizes
also falls under the integer optimisation problems, the roadside controller should be
able to consider these issues and to deal with the computational complexities (see
next subsection).

• If we extend the scope of our approach to urban or mixed urban-freeway networks,
then the controller should combine control measures from both traffic systems and
should be able to handle the computational issues discussed above.

• In our framework, we allowed interactions only among different levels and not at the
same level. For instance, the roadside controllers do not interact among themselves
to coordinate some of their activities. For our future research, we should compare
and investigate the potential benefits that could be achieved using decentralised and
distributed coordination at the same level.

• Higher-level controllers such as regional and supraregional controllers will provide
route guidance instructions to a collection of area controllers. This would then require
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us to design control methods based on aggregated, simple flow models that would
represent the traffic flows on different areas under consideration.

• Different objective functions or a combination of objective functions should be con-
sidered to analyse the performance of the traffic system. Some examples of possible
cost functions are energy saving, fuel emissions, throughput, safety, etc. To solve the
resulting multi-objective problems, we could use multi-objective optimisation meth-
ods such as evolutionary algorithms, weighted-sum single aggregate objective func-
tions, goal attainment etc.

Complexity and implementation issues

• The computational complexity of the proposed approach is still an issue and needs to
be analysed, in particular for the roadside controller. Hence, we should investigate
ways to increase the efficiency of the current approach or develop alternative control
methods. Some suggestions for the current MPC approach can then be to use block-
ing techniques (same solution applied for a certain number of consecutive time steps),
to start the optimisation with a good initial solution obtained through approximations,
to use a multi-level approach to deal with the mixed integer optimisation problems, to
reduce the control horizons, to increase the number of vehicles in a platoon, etc. The
complexity of the control approach (i.e., execution time and memory requirements)
mainly depends on the number of control variables and on the type of control vari-
ables (integer, real-valued). We should analyse this complexity either analytical or
empirical ways.

• Extensive evaluation and assessment of the framework through a wide range of case
studies and scenarios at different levels and with the entire framework should be per-
formed. These set-ups could also use a detailed IV-based vehicle models for traffic
simulations.

• Another topic will the real-time application issues. Due to the optimisation over both
real and integer variables, the controller implemented in Chapter 4 is unable to func-
tion in real time. Since multi-start optimisation has been used, an improvement in this
direction could be attained by implementing the controller in such a way that it can
take the advantage of the upcoming trends in multi-processor systems and distributed
optimisation.

Alternative approaches

• In this research, our framework was analysed mainly using the MPC approach. Later,
we should also analyse the performance of the framework using other control ap-
proaches. For instance, we could use alternative control approaches such as fuzzy
logic, artificial neural networks, gain scheduling, or LPV methods.

• On the other hand, one could consider a swarm-like autonomous driving system –
a completely different approach to our hierarchical framework. More specifically,
this approach does not allow/consider roadside-based controllers. In this approach,
the vehicles try to aggregate themselves in groups, make their decisions based only
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on local information. For this approach, one will have to develop control strategies
for the movement of individual vehicles inside a swarm by means of cooperation,
coordination or negotiation with their neighbours.

Transition aspects

• In this research, vehicles in the traffic system were assumed to be completely auto-
mated and homogeneous (only IVs). An interesting research topic is to allow a traffic
system with heterogeneous intelligent vehicles (cars, trucks, etc.) and also with dif-
ferent penetration rates of IVs, i.e., situations of mixed traffic with both human drivers
and platoons of automated IVs, if tractable at all.

• In an urban-freeway traffic system, the roadside controller should be able to handle the
transition situation from human-driven vehicles in urban networks to autonomously
driven platoons on freeways, and vice versa. As a suggestion to support this transition,
we could allow the roadside controller to use traffic signals as a control measure so
that the vehicles do not have to wait too long at the on-ramp, by which one can prevent
the on-ramp queue from spilling back to the urban network.

• Legal, social, economic and other issues involved in the transition of the conventional
traffic system to the proposed IVHS system also need to be addressed. These issues
can be stated in terms of social acceptance of the system, investments required for
implementations, etc.
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Glossary

Conventions

The following conventions are used in this thesis for notation and symbols:

• A lower case character typeset in boldface, e.g., x, represents a column vector.

• The number of elements in a vector x is indicated by nx.

List of symbols and notations

Below follows a list of the most frequently used symbols and notations in this thesis. Sym-
bols particular to area controller and roadside controller are explained only in the relevant
chapters.

Simulation model

u input variable
x state variable
f function
Tsim simulation time step
Ns total number of simulation steps

Vehicle model

i vehicle i

i + 1 predecessor vehicle i + 1
xi position of vehicle i

vi velocity of vehicle i

ai acceleration of vehicle i

aacc,max maximum acceleration
adec,max maximum deceleration
S0 minimum safe distance headway
href,i reference distance headway for vehicle i

Thead,i desired time headway for vehicle i
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Li length of vehicle i

MPC controller

Np length of prediction horizon
Nc length of control horizon
Tctrl controller time step
t continuous time instant
k discrete time instant (corresponding to the time instant t = kTctrl)
x(k) vector with current state of the system
u(k) vector with control sequence for the system

M an integer, equals
Tctrl

Tsim

Jperf performance index
nveh(k) number of vehicles that are present within network at time t = kTsim

qmain(k) number of vehicles in queue at the mainstream origin at time t = kTsim

qon(k) number of vehicles present in on-ramp queues at time t = kTsim

Flow model

O set of origin nodes
I set of internal nodes
D set of destination nodes
V set of all nodes
L set of all links
O ×D origin-destination pair
Do,d demand of vehicles at origin o with destination d

v internal nodes
Lin

v incoming links at v

Lout
v set of outgoing links from v

xl,o,d flow of vehicles from origin o to destination d that enter link l

METANET model

v mean speed
ρ traffic density
q traffic flow
ρcrit critical density
vfree free-flow speed
qmax maximum flow
m link
i segment
o origin
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j destination
wo, j) queue length
do(k) total demand
Qcap,o capacity (veh/h) of origin o under free-flow conditions
βn,m, j(k) splitting rate in node n

List of abbreviations

The following abbreviations are used in this thesis:

IVHS Intelligent Vehicle Highway Systems
ITS Intelligent Transportation Systems
AHS Automated Highway Systems
IVs Intelligent Vehicles
ISA Intelligent Speed Adaptation
ACC Adaptive Cruise Control
MPC Model Predictive Control
MILP Mixed-Integer Linear Programming
TTS Total Time Spent
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Samenvatting

Files leveren problemen op die de meesten van ons dagelijks ervaren. Naast diverse sys-
temen voor verkeersmanagement biedt een efficiënt gebruik van de bestaande wegkant-
infrastructuur gecombineerd met technologie in de auto een nieuw perspectief om de fi-
leproblematiek en daarmee verbonden problemen op te lossen. Deze aanpak heeft geleid
tot het ontstaan van “Intelligent Vehicle Highway Systems” (IVHSs). Een IVHS bestaat in
wezen uit een wegkant-infrastructuur die communiceert met automatische intelligente voer-
tuigen (IVs), die georganiseerd zijn in groepen van dicht op elkaar rijdende voertuigen die
“platoons” genoemd worden. Door “platooning” kunnen meer voertuigen gebruik maken
van de snelweg, waardoor de verkeersdoorstroming verbetert.

In de huidige situatie maken de meeste verkeersmanagement- en regelcentra gebruik
van bestaande wegkantgebaseerde maatregelen om de verkeersrsituatie te verbeteren. Het
doel van dit proefschrift is het ontwikkelen van een raamwerk voor en een systematische
aanpak van geïntegreerde verkeersregelingsmethoden voor IVHS.

De focus van dit proefschrift ligt op het combineren van de regeltechnische mogelijk-
heden die automatische “platoons” en wegkantsystemen bieden. We streven ernaar om op
verschillende niveaus verkeersmanagement- en regeltechnische methoden te ontwikkelen,
waarbij we de intelligentie van de voertuigen combineren. Langs deze weg gebruiken de
wegkantregelaars zowel IV-gebaseerde als bestaande verkeersmaatregelen om “platoons” te
formeren en aan te sturen. Hierdoor wordt de verkeersintensiteit verhoogd.

Ten eerste geven we een overzicht van IV-gebaseerde verkeersmaatregelen die “pla-
tooning” ondersteunen en die door de wegkantsystemen kunnen worden gebruikt als ver-
keersmaatregelen. Daarna geven we een overzicht van de stand van zaken van diverse
verkeersmanagement- en regeltechnische raamwerken voor de verdeling van intelligentie
tussen de wegkantinfrastructuur en automatische voertuigen. Op basis van dit overzicht
stellen we een nieuwe, hiërarchische verkeersmanagement- en regeltechnische architectuur
voor IVHS voor, die de sterke punten van elk van de bestaande IV-gebaseerde verkeers-
managementsraamwerken bevat en die bestaat uit verschillende niveaus, van voertuig- en
platoonregelaars, via wegkant- en gebiedsregelaars tot regionale en bovenregionale rege-
laars. In dit proefschrift richten we ons vooral op de wegkant- en gebiedsregelaars.

De regelstrategie die wij voorstellen is gebaseerd op “model-based predictive control”
(MPC) en maakt gebruik van voorspellingsmodellen gecombineerd met optimalisatieme-
thodes om voor een gegeven prestatiecriterium de beste verkeerssignalering over een ge-
geven tijdshorizon te bepalen. De daaruit volgende reeks van regelingen wordt toegepast,
gebruikmakend van schuivende tijdshorizon.

De wegkantregelaars zijn in staat om aparte wegvakken op de snelweg te controleren.
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Wij laten zien hoe wegkantregelaars MPC kunnen gebruiken om op een geïntegreerde wij-
ze optimale snelheden voor de leiders van “platoons” te bepalen, een optimale toewijzing
van rijbanen voor “platoons” te vinden en optimale toegangstijdstippen voor “platoons” bij
opritten te bepalen. We voeren ook het zogenaamde “big car” model in als een methode om
de numerieke complexiteit van het MPC-optimalisatieprobleem aan te pakken. De moge-
lijkheden van de voorgestelde wegkantverkeersregelmethode wordt met enkele eenvoudige
case studies geïllustreerd.

Voor het regelen en organiseren van een netwerk van snelwegen maakt het voorgestelde
raamwerk gebruik van gebiedsregelaars. De gebiedsregelaar is hoofdzakelijk verantwoor-
delijk voor het bieden van route-instructies voor “platoons”; daarnaast coördineert een ge-
biedsregelaar de activiteiten van de diverse wegkantregelaars in zijn gebied. Het bieden
van route-instructies in een netwerk blijkt echter een ingewikkelde zaak te zijn, die boven-
dien rekentechnisch complex is. Om het probleem handelbaar te maken stellen we twee
aanpakken voor, beide gebaseerd op MPC. In de eerste aanpak regelen en dirigeren we de
verkeersstromen in het netwerk in plaats van elk “platoon” apart te behandelen. We tonen
aan dat deze aanpak uitmondt in een lineair programmeringsprobleem met reële en inte-
ger variabelen, waarvoor efficiënte oplossingsmethoden bestaan. De tweede aanpak die wij
voorstellen is gebaseerd op een macroscopisch METANET-model dat we aanpassen om het
geschikt te maken voor “platoons”. Hierbij maken we gebruik van MPC om de optimale
splitsingsverhoudingen in de knooppunten te bepalen. Beide aanpakken illustreren we met
een eenvoudig voorbeeld.

Ten slotte bespreken we hoe bestaande softwarepakketten voor verkeerssimulatie zoals
PARAMICS kunnen worden uitgebreid met IV-gebaseerde regelmethoden. Dit zou een tus-
senstap kunnen vormen tussen bestaande verkeersmethoden en volledig geautomatiseerde
IVHS. We bespreken hoe deze IV-technologieën met enkele uitbreidingen betere verkeers-
prestaties zouden kunnen leveren dan bestaande regelmethoden.

Het proefschrift sluit af met een samenvatting van de belangrijkste resultaten en een
overzicht van toekomstige onderzoeksrichtingen.

L.D. Baskar



Summary

Traffic congestion is a problem experienced daily by most of us. Among various traffic man-
agement schemes, efficient utilisation of the existing roadside infrastructure combined with
in-vehicle technologies offers a promising solution to address traffic congestion and related
problems. This approach has resulted in the development of Intelligent Vehicle Highway
Systems (IVHSs). An IVHS basically consists of roadside infrastructures interacting with
automated intelligent vehicles (IVs) that are organised in a closely spaced groups called
platoons. With platooning, more vehicles can be accommodated on the highway, thus in-
creasing the traffic flow.

In the present situation, most of the existing traffic management and control centers
use conventional roadside-based control measures to improve the traffic performance. The
objective of the thesis is to provide a framework and a systematic approach for integrating
traffic control and management methods into the IVHS.

The focus of the thesis is on combining the control capabilities offered by automated
platoons with those of the roadside infrastructure. We aim at developing traffic manage-
ment and control methods to be implemented at various control levels, by incorporating
intelligence from and within vehicles. Thus the roadside controllers use both IV-based and
conventional traffic control measures for controlling and managing platoons, such that the
performance of the traffic is improved.

First, we present a survey on IV-based traffic control measures that could support pla-
tooning and that also could also be used as a control measure by the roadside controllers.
Then, we give a review of current state of the art of various traffic management and con-
trol frameworks that distribute intelligence between roadside infrastructure and automated
vehicles. On the basis of this survey, we propose a new hierarchical traffic management
and control architecture for IVHS that incorporates the strong points of each of the existing
IV-based traffic management frameworks, and that consists of several levels ranging from
vehicle and platoons controllers, over roadside and area controllers, to regional and supra-
regional controller. In this thesis we focus in particular on the roadside and area controllers.

The control approach we propose is based on model-based predictive control (MPC) and
makes use of prediction models in combination with optimisation to determine the control
signals that optimise a given performance criterion over a given time horizon. The resulting
control sequence is then applied using a moving horizon approach.

The roadside controllers are capable of managing single stretches of highway. We show
how MPC can be used by the roadside controllers to determine in an integrated way optimal
speeds for the platoon leaders, optimal lane allocations for the platoons, and optimal on-
ramp release times for the platoons. We also introduce the so-called “big” car model as
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a way to address the computational complexity of the MPC optimisation problem. The
potential of the proposed roadside traffic control method is illustrated with some simple
case studies.

To control and manage a network of highways, the proposed framework uses area con-
trollers. The area controller is mainly responsible to providefor providing route guidance
instructions for platoons and also to coordinate the activities of various roadside control-
lers in their area. However, providing route guidance for each platoon in the network is a
cumbersome task and also computationally intensive. To make the problem tractable, we
propose two approaches, both based on MPC. In the first approach we control and route the
traffic flows in the network rather than controlling each platoon individually. We show that
this results in a mixed integer linear programming problem, for which efficient solvers exist.
The second approach we propose is based on the macroscopic METANET model that we
adapt to suited the platoon framework. Here we use MPC to determine the optimal spitting
rates at the nodes. Both approaches are illustrated using a simple set-up.

Finally we also discuss how existing traffic simulation software such as PARAMICS
can be extended with IV-based traffic control measures. This serves as an intermediate step
between the current traffic control practice and fully automated IVHS. We discuss how these
IV technologies with some extensions could improve traffic performance when compared
to the standard control methods.

The thesis concludes with a summary of the main results and an outlook for future
research directions.

L.D. Baskar
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