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Summary

Due to the size and structure of control design problems for large-scale complex systems,
standard approaches using a centralized controller are impractical, and in some cases in-
tractable due to the number and complexity of interactions between subsystems. This fact
has stimulated renewed interest and research on distributed control for large-scale complex
systems.

This thesis aims to provide tools for designing distributed model predictive controllers for
linear systems. The essence of model predictive control (MPC) is to formulate the control
problem as a repeated solution to a finite-time optimization problem. This enables straight-
forward controller design for multi-input multi-output systems with hard constraints, thus
making this method widely adopted in the industry. However, for large-scale complex sys-
tems, this practice gives rise to several serious issues: a global communication mechanism
is needed for sending measurement data to a central node; the complexity of the resulting
centralized optimization problem leads to a high computational burden; the whole system’s
performance and safety depend on the result generated by the single central controller,
thus lowering the resilience of the system. In order to design distributed model predictive
controllers, our research focuses on solving the resulting large-scale MPC optimization
problem in a distributed way.

In particular, this thesis addresses two issues:

1. Designing distributed optimization algorithms for solving convex optimization prob-
lems arising in MPC for discrete-time linear systems.

2. Determining conditions for achieving feasibility and stability of the closed-loop sys-
tem.

The control setting consists of a group of local controllers associated with subsystems that
have limited communications among them, and where each controller has a processor for
handling local computation tasks. The original centralized MPC optimization problem is
formulated as a quadratic program, with a separable cost function and linear constraints,
and each constraint involves a small number of subsystems, i.e., there is a sparse cou-
pling pattern introduced by the constraints. In order to solve such problem in a distributed
fashion, dual decomposition techniques are used. With a proper definition of the local
variables (including states and control inputs) and the subsystem neighborhoods (i.e., the
subsystems that can directly interact and communicate with the given subsystem), algo-
rithms using first-order derivatives can be used to solve the dual problem in a distributed
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x Summary

way. We propose three main distributed and hierarchical algorithms: distributed Han’s, dis-
tributed accelerated proximal gradient, and hierarchical primal feasible using dual gradient
algorithms.

First, Fenchel duality is used to formulate the dual function, and the indicator function is
used to relax the constraints. The underlying algorithm is Han’s parallel method, which be-
longs to the class of projected gradient algorithms. We show that the main subproblems of
Han’s method have analytical solutions, and thus the algorithm involves only iterative lin-
ear algebra computations, which are cheap and can be implemented in a distributed setting.
The resulting distributed Han’s method is proved to generate results that are equivalent to
those of the centralized counterpart, and thus to converge to the centralized MPC solution
at every sampling step. Based on the convergence of the algorithm, feasibility and stability
of the closed-loop system are inherited from the original centralized MPC setting.

Next, an accelerated proximal gradient algorithm is used to solve the dual problem that can
be obtained by either Fenchel or Lagrange duality. This algorithm belongs to the class of
accelerated gradient-based algorithms, which are known to achieve the best convergence
rate among all gradient-based algorithms. We show that this accelerated proximal gradient
algorithm can be considered as an extended and improved version of Han’s algorithm, as
it converges one order of magnitude faster than the classical proximal gradient algorithm,
which is equivalent to Han’s method for quadratic programs. Moreover, by using the in-
dicator function, we can treat a problem with a mixed 2-norm and 1-norm cost function
by constructing a differentiable dual function for the nondifferentiable original problem.
As the additional computation task for acceleration is only a linear combination of solu-
tions obtained in the two preceding iterations, this accelerated algorithm only needs more
memory to store previous iterates, while performing computations that are just as cheap as
those of the classical version. Hence, this algorithm can be implemented in a distributed
fashion similarly to the distributed Han’s algorithm.

In the third method, a two-layer iterative hierarchical approach is used to solve the La-
grange’s dual problem of the centralized MPC convex optimization problem. In the outer
loop, the dual function is maximized using a projected gradient method in combination
with an averaging scheme that provides bounds for the feasibility violation and the subop-
timality of the primal function. In the inner loop, a hierarchical optimization algorithm is
used to provide either an exact or an approximate solution with a desired precision to the
minimization of the Lagrangian function. We present two algorithms for the inner loop:
a hierarchical conjugate gradient method and a distributed Jacobi optimization algorithm.
This method can be applied to MPC problems that are feasible in the first sampling step
and when the Slater condition holds (i.e., there exists a solution that strictly satisfies the
inequality constraints). Using this method, the controller can generate feasible solutions of
the MPC problem even when the dual solution does not reach optimality, and closed-loop
stability is also achieved.

In addition to developing novel algorithms, this thesis also emphasizes implementation
issues by considering an application of hydro power production control. We consider the
control problem of a hydro power valley with nonlinear system dynamics. Different top-
ics have been considered, including model reduction and reformulation of the MPC opti-
mization problem so that the resulting optimization problem is suitable for applying the
distributed algorithms developed in this thesis. We show that by implementing our pro-
posed distributed accelerated proximal gradient algorithm, the distributed controller yields
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a performance that is as good as that of a centralized controller, while the distributed algo-
rithm uses remarkably less CPU time for computation than a centralized solver. The results
from this application example confirm and support the applicability of distributed MPC
on large-scale complex systems.





Samenvatting

Vanwege de omvang en de structuur van regelaarsontwerpproblemen voor grootschalige
complexe systemen zijn standaard benaderingen die gebruik maken van gecentraliseerde
regelaars onuitvoerbaar, en in sommige gevallen onhandelbaar vanwege het aantal en de
complexiteit van de interacties tussen de deelsystemen. Dit feit heeft hernieuwde belang-
stelling voor en onderzoek naar gedistribueerde regeling van grootschalige complexe sys-
temen gestimuleerd.

Deze dissertatie beoogt hulpmiddelen te ontwikkelen voor het ontwerpen van
gedistribueerde model-gebaseerde voorspellende regelaars voor lineaire systemen. De es-
sentie van model-gebaseerde voorspellende regeling (MPC) is het formuleren van het
regelprobleem als het herhaald oplossen van een eindige-tijd optimalisatieprobleem. Dit
maakt op een eenvoudige manier een regelingsontwerp mogelijk voor systemen met ver-
scheidene ingangen en uitgangen en met harde beperkingen, waardoor deze methode breed
wordt toegepast in de praktijk. Voor grootschalige complexe systemen zorgt deze aan-
pak echter voor een aantal belangrijke kwesties: een globaal communicatiemechanisme is
nodig om gegevens naar een centraal knooppunt te versturen; de complexiteit van het re-
sulterende gecentraliseerde optimalisatieprobleem leidt tot een grote rekenlast; de prestatie
en de veiligheid van het gehele systeem hangt af van het resultaat dat wordt gegenereerd
door de enkelvoudige centrale regelaar, hetgeen de veerkracht van het systeem verlaagt.
Met het oog op het ontwerpen van gedistribueerde model-gebaseerde voorspellende rege-
laars is ons onderzoek gericht op het oplossen van de resulterende grootschalige MPC-
optimalisatieproblemen op een gedistribueerde manier.

In het bijzonder richt deze dissertatie zich op twee kwesties:

1. Het ontwerpen van gedistribueerde optimalisatiealgoritmen voor het oplossen van
convexe optimalisatieproblemen die optreden bij MPC voor discrete-tijd lineaire sys-
temen.

2. Het bepalen van condities voor het behalen van haalbaarheid (In het Engels: feasi-
bility) en stabiliteit van het gesloten-lussysteem.

De regelsituatie bestaat uit een groep van lokale regelaars die zijn geassocieerd met deel-
systemen die beperkte communicatiemogelijkheden met elkaar hebben en waarin elke
regelaar een processor heeft om lokale berekeningstaken uit te voeren. Het oorspronkeli-
jke gecentraliseerde MPC-optimalisatieprobleem wordt geformuleerd als een kwadratisch
optimalisatieprobleem met een scheidbare kostfunctie en met lineaire beperkingen, waarin
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elke beperking een klein aantal deelsystemen beslaat; met andere woorden, er wordt een
ijl koppelingspatroon geı̈ntroduceerd door de beperkingen. Teneinde een dergelijk prob-
leem op een gedistribueerde manier op te lossen, worden duale decompositietechnieken
gebruikt. Met een adequate definitie van de lokale variabelen (inclusief toestanden en
regelingangen) en van de omgevingen van de deelsystemen (namelijk, die deelsystemen
die direct kunnen interageren en kunnen communiceren met het gegeven deelsysteem),
kunnen algoritmen die eerste-orde afgeleiden gebruiken, worden toegepast om het duale
probleem op een gedistribueerde manier op te lossen. We stellen drie gedistribueerde en
hiërarchische algoritmen voor: een gedistribueerde methode van Han, een gedistribueerde
versnelde proximale-gradiëntmethode, en een hiërarchische primaal-haalbare methode ge-
bruikmakend van duale gradiëntalgoritmen.

Bij de eerste methode wordt Fenchel dualiteit gebruikt om de duale functie te formuleren,
en de indicatorfunctie wordt gebruikt om de beperkingen te verzachten. Het onderliggende
algoritme is de parallelle methode van Han, dat behoort tot de klasse van geprojecteerde-
gradiëntalgoritmen. We tonen aan dat het hoofdzakelijke deelprobleem van de methode
van Han analytische oplossingen heeft, en dus gebruikt het algoritme slechts iteratieve
berekeningen uit de lineaire algebra, die goedkoop zijn en die geı̈mplementeerd kunnen
worden in een gedistribueerde omgeving. We laten zien dat de resulterende gedistribueerde
methode van Han resultaten genereert die equivalent zijn met die van de gecentraliseerde
tegenhanger. Bijgevolg convergeert de gecentraliseerde MPC oplossing op elke tijdsstap.
Gebaseerd op de convergentie van het algoritme worden haalbaarheid en stabiliteit van het
gesloten-lussysteem overgeërfd van de originele gecentraliseerde MPC situatie.

Vervolgens wordt een versneld proximale-gradiëntalgoritme gebruikt om het duale prob-
leem op te lossen dat verkregen kan worden uit Fenchel- dan wel uit Lagrange-dualiteit.
Dit algoritme behoort tot de klasse van versnelde gradiënt-gebaseerde algoritmen, welke
bekend staan voor het behalen van de beste convergentiesnelheid onder alle op de gradiënt
gebaseerde algoritmen. We laten zien dat dit versnelde proximale-gradiëntalgoritme
beschouwd kan worden als een uitgebreidere en verbeterde versie van het algoritme van
Han, gezien het één orde van grootte sneller convergeert dan het klassieke proximale-
gradiëntalgoritme, dat equivalent is aan de methode van Han voor kwadratische opti-
malisatieproblemen. Bovendien kunnen we een probleem met een gemengde 2-norm en
1-norm kostfunctie behandelen door de indicatorfunctie te gebruiken, en door een differ-
entieerbare duale functie op te stellen voor het originele niet-differentieerbare probleem.
Gezien de bijkomende berekeningstaak voor de versnelling slechts een lineaire combinatie
inhoudt van oplossingen die verkregen zijn in de twee voorafgaande iteraties, heeft dit ver-
snelde algoritme alleen meer geheugen nodig om voorafgaande iteraties op te slaan, terwijl
het berekeningen uitvoert die even goedkoop zijn als die van de klassieke versie. Derhalve
kan dit algoritme worden geı̈mplementeerd op een gedistribueerde manier overeenkomstig
met het gedistribueerde algoritme van Han.

In de derde methode wordt een twee-laagse iteratieve hiërarchische aanpak genomen om
het dualiteitsprobleem van Lagrange op te lossen van het gecentraliseerde convexe MPC-
optimalisatieprobleem. In de buitenste lus wordt de duale functie gemaximaliseerd, ge-
bruikmakend van een geprojecteerde-gradiëntmethode in combinatie met een middelingss-
chema dat grenzen levert voor de haalbaarheidsschending (In het Engels: feasibility viola-
tion) en de suboptimaliteit van de primale functie. In de binnenste lus wordt een hiërarchisch
optimalisatiealgoritme gebruikt om ofwel een exacte dan wel een benaderende oploss-
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ing te leveren met de gewenste precisie voor de minimalisatie van de Lagrange functie.
We stellen twee algoritmen voor de binnenste lus voor: een hiërarchische toegevoegde-
gradiëntmethode en een gedistribueerd Jacobi optimalisatiealgoritme. Deze methode kan
worden toegepast in MPC problemen die haalbaar zijn op de eerste tijdsstap en wanneer
de Slater conditie geldt, dat wil zeggen, dat er een oplossing bestaat die strikt voldoet aan
de ongelijkheidsbeperkingen. Door deze methode te gebruiken, kan de regelaar haalbare
oplossingen van het MPC probleem genereren zelfs wanneer de duale oplossing geen op-
timaliteit bereikt en tevens wordt gesloten-lusstabiliteit behaald.

Naast het ontwikkelen van vernieuwende algoritmen benadrukt deze dissertatie ook im-
plementatiekwesties door een toepassing te beschouwen van de regeling van waterkracht-
productie. We beschouwen het regelprobleem van een waterkrachtvallei met niet-lineaire
systeemdynamica. Verschillende onderwerpen worden in overweging genomen, inclusief
modelreductie en herformulering van het MPC optimalisatieprobleem zodat het resul-
terende optimalisatieprobleem geschikt is voor de toepassing van de gedistribueerde al-
goritmen die in deze dissertatie ontwikkeld zijn. We laten zien dat door het implementeren
van het door ons voorgestelde gedistribueerde versnelde proximale-gradiëntalgoritme, de
gedistribueerde regelaar een prestatie bereikt die even goed is als die van een gecen-
traliseerde regelaar, terwijl het gedistribueerde algoritme aanzienlijk minder rekentijd ge-
bruikt voor de berekeningen dan een gecentraliseerde aanpak. De resultaten van dit toepass-
ingsvoorbeeld bevestigen en ondersteunen de toepasbaarheid van gedistribueerde model-
gebaseerde voorspellende regeling (MPC) voor grootschalige complexe systemen.





Tóm tắt

Do yêu cầu về kích thước và cấu trúc trong các bài toán điều khiển đối với những hệ thống
lớn và phức tạp, các phương pháp điều khiển truyền thống sử dụng một bộ điều khiển tập
trung trở nên không thực tế, thậm chí bất khả thi trong những trường hợp có nhiều sự tương
tác lẫn nhau giữa các hệ con. Điều này khơi lại sự chú ý và thúc đẩy nghiên cứu về điều
khiển phân tán dành cho các hệ thống lớn và phức tạp.

Luận văn này nhằm mục tiêu cung cấp các công cụ thiết kế những bộ điều khiển phân
tán dự đoán dựa trên mô hình, dành cho các hệ thống tuyến tính. Đặc trưng của phương
pháp điều khiển dự đoán dựa trên mô hình (Model Predictive Control - MPC) là trình bày
bài toán điều khiển dưới dạng một bài toán tối ưu hóa sẽ được giải đi giải lại trong từng
khoảng thời gian ngắn. Điều này cho phép đơn giản hóa việc thiết kế bộ điều khiển dành
cho các hệ thống nhiều ngõ ra nhiều ngõ vào (multi-input multi-output systems) với những
ràng buộc cứng, giúp cho phương pháp này được chấp nhận rộng rãi trong công nghiệp.
Tuy nhiên, đối với các hệ thống lớn và phức tạp, cách thức này làm nảy sinh những vấn đề
khó: cần có một cơ chế truyền thông tin để gửi tất cả các số liệu đo đạc về một mối; độ
phức tạp của bài toán tối ưu đòi hỏi nhiều thời gian tính toán; cả hệ thống phụ thuộc vào
kết quả tạo ra bởi một bộ xử lý trung tâm, nên giảm độ linh hoạt và bền vững của hệ thống.
Do vậy, để thiết kế các bộ điều khiển phân tán dự đoán dựa trên mô hình, luận văn này tập
trung vào việc giải bài toán tối ưu hóa kích thước lớn của phương pháp điều khiển MPC
bằng phương pháp phân tán.

Cụ thể, luận văn này giải quyết các vấn đề sau:

1. Thiết kế các thuật toán phân tán để giải bài toán tối ưu lồi trong điều khiển MPC
dành cho các hệ thống tuyến tính rời rạc.

2. Xác lập các điều kiện để đạt được các tính chất chấp nhận được (feasibility) và ổn
định (stability) của hệ thống điều khiển vòng kín.

Thiết lập của bài toán điều khiển bao gồm một nhóm các bộ điều khiển địa phương gắn
với các hệ con có khả năng liên lạc hạn chế với nhau, và mỗi bộ điều khiển có một bộ xử
lý để đảm nhận công việc tính toán cục bộ. Bài toán tối ưu hóa MPC ban đầu được trình
bày dưới dạng một bài toán tối ưu bình phương lồi, gồm có một hàm mục tiêu lồi bậc hai
phân rã được và một số ràng buộc tuyến tính, trong đó mỗi ràng buộc chỉ liên hệ tới một số
lượng nhỏ các hệ con, nghĩa là có sự móc nối thưa thớt được quy định bởi các ràng buộc.
Để giải bài toán dạng này theo phương pháp phân tán, các kỹ thuật phân rã đối ngẫu (dual
decomposition) được sử dụng, nhờ đó thu được những bài toán tương đương trong không
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gian đối ngẫu có tính chất dễ chia tách. Bằng việc định nghĩa các biến số địa phương (gồm
có biến trạng thái và lệnh điều khiển) và khu vực láng giềng của một hệ con (gồm các hệ
con có thể tương tác và liên lạc trực tiếp với hệ con đã định), các thuật toán sử dụng đạo
hàm bậc nhất có thể được triển khai một cách phân tán để giải bài toán đối ngẫu. Chúng
tôi đề xuất ba thuật toán phân tán (distributed) và phân cấp (hierarchical) chính: thuật toán
phân tán Han, thuật toán phân tán tăng tốc dùng gần-đạo hàm, và thuật toán phân cấp cho
nghiệm khả thi nguyên thủy sử dụng đạo hàm trong không gian đối ngẫu.

Đầu tiên, phương pháp đối ngẫu Fenchel được dùng để xây dựng hàm số đối ngẫu, trong
đó hàm số chỉ thị tập hợp (indicator function) được dùng để nới lỏng các ràng buộc. Giải
thuật cơ sở là thuật toán song song của Han, thuộc về lớp các thuật toán chiếu sử dụng đạo
hàm. Chúng tôi chỉ ra rằng các bài toán con của phương pháp Han có các nghiệm dạng
biểu thức, và vì thế thuật toán chỉ bao gồm vòng lặp các phép tính đại số tuyến tính, chúng
vừa dễ và vừa có thể được triển khai với một thiết lập phân tán. Phương pháp phân tán Han
thu được cũng được chứng minh là sản sinh kết quả tương đồng với kết quả của phương
pháp tập trung tương ứng, do vậy cũng hội tụ về nghiệm của bộ điều khiển MPC tập trung
đối với mỗi bước lấy mẫu. Dựa trên sự hội tụ của thuật toán, tính chấp nhận được và ổn
định của hệ thống vòng kín được kế thừa từ thiết lập MPC tập trung.

Tiếp theo, một thuật toán phân tán tăng tốc dùng gần-đạo hàm được dùng để giải bài toán
đối ngẫu, cái có thể thu được từ phương pháp phân rã đối ngẫu Lagrange hoặc Fenchel.
Giải thuật này thuộc về lớp thuật toán dùng đạo hàm bậc nhất có tăng tốc, vốn được biết
có tốc độ hội tụ nhanh nhất trong tất cả các thuật toán dùng đạo hàm bậc nhất. Chúng tôi
chỉ ra rằng giải thuật tăng tốc này có thể được xem như một phiên bản mở rộng và nâng
cao của thuật toán Han, vì nó hội tụ nhanh hơn một bậc so với thuật toán dùng gần-đạo
hàm kinh điển, thực chất tương đương với phương pháp Han khi xét trên các bài toán tối
ưu bình phương. Hơn nữa, bằng việc sử dụng hàm số chỉ thị tập hợp, chúng tôi có thể giải
quyết một bài toán với hàm mục tiêu trộn lẫn các chuẩn bậc nhất và bậc hai, bằng cách xây
dựng được hàm số đối ngẫu khả vi dù cho bài toán ban đầu không khả vi. Bởi công việc
tính toán cần thêm nhằm mục tiêu tăng tốc chỉ là một phép tính kết hợp tuyến tính của các
nghiệm thu được ở hai bước lặp gần nhất, thuật toán tăng tốc này chỉ sử dụng thêm một
ít bộ nhớ để lưu các giá trị biến số cũ, trong khi khối lượng tính toán cũng ít gần như là
phương pháp kinh điển tương ứng. Do vậy, thuật toán này có thể được triển khai phân tán
với một cách tương tự như thuật toán phân tán Han.

Trong phương pháp thứ ba, một cách tiếp cận phân cấp với hai vòng lặp được dùng để giải
bài toán đối ngẫu Lagrange của bài toán tối ưu hóa lồi MPC tập trung. Trong lớp vòng
lặp bên ngoài, hàm số đối ngẫu được cực đại hóa bằng phương pháp chiếu dùng đạo hàm
kết hợp với việc lấy bình quân nhằm cung cấp các giới hạn đối với sự vi phạm tính chấp
nhận được và mức độ dưới tối ưu của hàm số nguyên thủy. Trong lớp vòng lặp bên trong,
một thuật toán tối ưu hóa phân cấp được dùng để tạo ra một nghiệm chính xác hoặc gần
đúng với độ chính xác tùy ý của bài toán cực tiểu hóa hàm Lagrangian. Chúng tôi trình
bày hai giải thuật dành cho vòng lặp bên trong: một cái là phương pháp đạo hàm liên hợp
phân cấp, và cái kia là giải thuật tối ưu hóa phân tán kiểu Jacobi. Phương pháp này có thể
được áp dụng đối với các bài toán MPC đạt điều kiện có tồn tại nghiệm trong bước lấy
mẫu đầu tiên và thỏa điều kiện Slater (tức là tồn tại một nghiệm thỏa mãn nghiêm ngặt các
ràng buộc dạng bất đẳng thức). Sử dụng phương pháp này, bộ điều khiển có thể tạo ra các
nghiệm chấp nhận được của bài toán MPC ngay cả trong khi nghiệm của bài toán đối ngẫu
chưa đạt điểm tối ưu, và đạt tính ổn định của hệ thống vòng kín.
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Bên cạnh việc xây dựng các thuật toán mới, luận văn này cũng chú trọng các vấn đề về mặt
triển khai qua việc xem xét một ứng dụng trong điều khiển nhà máy thủy điện. Chúng tôi
nghiên cứu bài toán điều khiển đối với một thung lũng thủy điện (hydro power valley) với
mô hình phi tuyến. Một số chủ đề đã được xem xét, bao gồm phương pháp giảm bậc mô
hình và cách thiết lập lại bài toán tối ưu hóa MPC sao cho bài toán tối ưu hóa thu được là
phù hợp để áp dụng các thuật toán phân tán đã được phát triển trong luận văn này. Chúng
tôi chỉ ra rằng khi triển khai thuật toán phân tán tăng tốc dùng gần-đạo hàm của chúng
tôi, bộ điều khiển phân tán đạt được hiệu năng tốt tương đương với một bộ điều khiển tập
trung, trong khi đó thuật toán phân tán chỉ sử dụng thời gian tính toán của CPU ít hơn hẳn
so với một chương trình giải tập trung. Các kết quả từ ví dụ ứng dụng này xác nhận và cổ
vũ việc áp dụng phương pháp điều khiển phân tán dự đoán dựa trên mô hình đối với các
hệ thống lớn và phức tạp.
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Chapter 1

Introduction

This chapter provides the motivation for the research and a survey of the state-of-
the-art on distributed model predictive control. We also present the background of
the problems that serve as a starting point for the subsequent chapters. Research
objectives and summary of contributions are provided, followed by an overall
outline of the thesis.

1.1 Motivation and literature survey

Nowadays, Model Predictive Control (MPC) is widely used for controlling industrial pro-
cesses (Qin and Badgwell, 2003), and its properties and design considerations have also
been studied thoroughly by the scientific community (Maciejowski, 2002, Mayne et al.,
2000, Rawlings and Mayne, 2009). The essence of MPC is to solve online an optimiza-
tion problem that captures the outcomes of the predicted control sequence in a receding
horizon fashion. MPC can naturally handle operational constraints and, moreover, it is de-
signed for multi-input multi-output systems, both of which contributed to the popularity of
MPC. Moreover, since MPC relies on optimization techniques to solve the control prob-
lem, improvements in optimization techniques can help to broaden the application of MPC
for more complex problems.

When considering a control problem for a large-scale networked system (such as com-
plex manufacturing or infrastructure processes), using MPC in a centralized fashion may
become impractical and unsuitable due to the computational burden and the requirement
of global communications across the network. Centralized MPC is also inflexible against
the limitation of information exchange between different authorities controlling the lo-
cal subsystems and against changes in the network structure, i.e, the whole centralized
model needs to be updated for every small change. In order to deal with these limitations,
Distributed MPC (DMPC) has been proposed for control of such large-scale systems, by
decomposing the overall system into several small subsystems (Jia and Krogh, 2001, Cam-
ponogara et al., 2002). The subsystems then employ separate MPC controllers that only
solve local control problems, use local information from neighboring subsystems, and col-
laborate to achieve globally attractive solutions.

1
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DMPC is an emerging topic for scientific research. The open issues of DMPC have recently
been discussed by Rawlings and Stewart (2008), Scattolini (2009). Several DMPC meth-
ods were proposed for different problem setups. For systems with decoupled dynamics, a
DMPC scheme for multiple vehicles with coupled cost functions was proposed by Dunbar
and Murray (2006), utilizing predicted trajectories of the neighbors in each subsystem’s
optimization. A DMPC scheme with a sufficient stability test for dynamically decoupled
systems was presented by Keviczky et al. (2006), in which each subsystem optimizes also
over the behaviors of its neighbors. Richards and How (2007) proposed a robust DMPC
method to deal with disturbances in the setting with decoupled systems and coupled con-
straints, based on constraint tightening and a serial solution approach. For systems with
coupled dynamics and decoupled constraints, a DMPC scheme has been developed by
Venkat et al. (2008) based on a Jacobi algorithm that deals with the primal problem, using
a convex combination of new and old solutions. In (Jia and Krogh, 2002), the neighbor-
ing subsystem states are treated as bounded contracting disturbances, and each subsystem
solves a min-max problem. A partitioning-based algorithm was proposed by Alessio and
Bemporad (2007, 2008), with sufficient conditions for the a posteriori stability analysis.
Li et al. (2005) proposed an algorithm with stability conditions in which subproblems are
solved in parallel in order to get a Nash equilibrium. Several DMPC algorithms based on
decomposion of the global optimization problems were proposed by Camponogara and
Talukdar (2007), Necoara et al. (2008), Necoara and Suykens (2008). Other recent work
on applications of DMPC is reported in (Mercangoz and Doyle III, 2007, Negenborn et al.,
2009, Arnold et al., 2010).

Throughout this thesis, we will tackle the MPC optimization problem using dual decom-
position approaches. Dual decomposition is a well-established concept since around 1960
when Uzawa’s algorithm (Arrow et al., 1958) was presented. Similar ideas were exploited
in large-scale optimization (Danzig and Wolfe, 1961). Over the next decades, methods for
decomposition and coordination of dynamic systems were developed and refined (Find-
eisen, 1980, Mesarovic et al., 1970, Singh and Titli, 1978) and used in large-scale applica-
tions (Carpentier and Cohen, 1993). In (Tsitsiklis et al., 1986) a distributed asynchronous
method for solving the dual problem was studied. More recently dual decomposition has
been applied in the DMPC literature in (Doan et al., 2011c, 2009, Giselsson and Rantzer,
2010, Negenborn et al., 2008) for problems with a strongly convex quadratic cost and ar-
bitrary linear constraints.

1.2 Distributed MPC settings and problems

1.2.1 Subsystems and their neighborhood

Consider a plant consisting of M dynamically coupled subsystems. The dynamics of each
subsystem are assumed linear and to be influenced directly by only a small number of
other subsystems. Moreover, each subsystem i is assumed to have local linear coupled
constraints involving only variables from a small number of other subsystems.

Based on the couplings, we define the ‘neighborhood’ of subsystem i, denoted as N i,
as the set including i and the indices of subsystems that have either a direct dynamical
coupling or a constraint coupling with subsystem i. In Figure 1.1, we demonstrate this
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with a diagram where each node stands for one subsystem, the dotted links show constraint
couplings, and the solid links represent dynamical couplings.

1.2.2 Coupled subsystem model

We assume that each subsystem can be represented by a discrete-time, linear time-invariant
model of the form1:

xi
k+1 =

∑

j∈N i

Aijxj
k +Bijuj

k, (1.1)

where xi
k ∈ R

ni

and ui
k ∈ R

mi

are the states and control inputs of the i-th subsystem at
time step k, respectively.

Denoting the aggregate state and input variables by x and u, the centralized system dy-
namics is:

xk+1 = Axk +Buk (1.2)

with xk = [(x1
k)

T (x2
k)

T . . . (xM
k )T ]T , uk = [(u1

k)
T (u2

k)
T . . . (uM

k )T ]T ,A = [Aij ]i,j∈{1,...,M}

and B = [Bij ]i,j∈{1,...,M}, where Aij = 0 and Bij = 0 for j 6∈ N i.

1.2.3 Linear coupled constraints

Each subsystem i is assumed to have local linear coupled constraints involving only vari-
ables within its neighborhood N i. Within one prediction period, all constraints that sub-
system i is involved in can be written in the following form:

∑

j∈N i

N−1∑

k=0

Dij
k xj

k + Eij
k uj

k = ceq (1.3)

∑

j∈N i

N−1∑

k=0

D̄ij
k xj

k + Ēij
k uj

k ≤ c̄ineq (1.4)

in which N is the prediction horizon, ceq and c̄ineq are column vectors, and Dij
k , Eij

k , D̄ij
k ,

and Ēij
k are matrices with appropriate dimensions.

1.2.4 Formulation of the centralized MPC problem

We will formulate the centralized MPC problem for systems of the form (1.1) using a
convex quadratic cost function and linear constraints, with an additional terminal point
constraint to zero out all terminal states. Under the conditions that a feasible solution of
the centralized MPC problem exists, and that the point with zero states and inputs is in

1This system description with only the state update equation is chosen for simplicity of exposition, our frame-
work can also be extended to output-feedback distributed MPC for observable systems.
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Figure 1.1: A figure showing the constraint couplings (dotted links) and dynamical

couplings (solid links) between subsystems. In this example, N 4 = {4, 1, 2, 5}.

the relative interior of the constraint set, this MPC scheme ensures feasibility and stability,
as shown by Mayne et al. (2000) and Keerthi and Gilbert (1988). However, the algorithm
proposed in this paper will also work with any other centralized MPC approach that does
not require a terminal point constraint, provided that the subsystems have local stabilizing
terminal controllers. We will further assume without loss of generality that the initial time
is zero.

The optimization variable of the centralized MPC problem is constructed as a stacked
vector of predicted subsystem control inputs and states that affect the predicted states from
step 1 to step N that is the prediction horizon:

x =
[(
u1
0

)T
, . . . ,

(
uM
0

)T
, . . . ,

(
u1
N−1

)T
, . . . ,

(
uM
N−1

)T
,

(
x1
1

)T
, . . . ,

(
xM
1

)T
, . . . ,

(
x1
N

)T
, . . . ,

(
xM
N

)T
]T

(1.5)

Recall that ni and mi denote the numbers of states and inputs of subsystem i. The number
of optimization variables for the centralized problem is thus:

nx = N

M∑

i=1

mi +N

M∑

i=1

ni (1.6)

The cost function of the centralized MPC problem is assumed to be decoupled and convex
quadratic:

J =

M∑

i=1

N−1∑

k=0

((
ui
k

)T
Riu

i
k +

(
xi
k+1

)T
Qix

i
k+1

)

(1.7)

with positive definite weights Ri, Qi. This cost function can be rewritten using the decision
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variable x as

J = xTHx (1.8)

in which the Hessian H is a positive definite matrix of the following form:

H =

[
R 0
0 Q

]

(1.9)

where R and Q are block-diagonal, positive definite weights and are built from Ri and Qi

as follows:

R = diag( R̃, . . . , R̃
︸ ︷︷ ︸

N times

) with R̃ = diag(R1, . . . , RM )

Q = diag( Q̃, . . . , Q̃
︸ ︷︷ ︸

N times

) with Q̃ = diag(Q1, . . . , QM )

Remark 1.1 The positive definiteness assumption on Qi and Ri and the choice of the

centralized variable as described in (1.5) without eliminating state variables will help to

compute the inverse of the Hessian easily, by allowing simple inversion of each block on

the diagonal of the Hessian.

The centralized MPC problem, denoted by (P), is defined as follows:

min
u1
0 . . . u

M
N−1,

x1
1 . . . x

M
N

M∑

i=1

N−1∑

k=0

((
ui
k

)T
Riu

i
k +

(
xi
k+1

)T
Qix

i
k+1

)

(1.10)

s.t. xi
k+1 =

∑

j∈N i

Aijxj
k +Bijuj

k, i = 1, . . . ,M, k = 0, . . . , N − 1

(1.11)

xi
N = 0, i = 1, . . . ,M (1.12)

∑

j∈N i

N−1∑

k=0

Dij
k xj

k + Eij
k uj

k = ceq, i = 1, . . . ,M (1.13)

∑

j∈N i

N−1∑

k=0

D̄ij
k xj

k + Ēij
k uj

k ≤ c̄ineq, i = 1, . . . ,M (1.14)

1.2.5 Distributed MPC problem

Our approach for distributed MPC is to solve the centralized optimization problem (1.10)–
(1.14) in a distributed manner which then also leads to a distributed or hierarchical control
architecture. In the subsequent chapters, we propose and investigate different distributed
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MPC methods that are developed based on distributed optimization algorithms. This ap-
proach has several advantages: firstly, we can make use of state-of-the-art distributed opti-
mization algorithms that are actively developed not only in the field of control but also in
other fields such as signals and image processing, machine learning, and large-scale and
cluster computing. Another advantage is the possibility to achieve centralized optimal-
ity with distributed methods; thus the distributed MPC will inherit the properties of the
corresponding centralized MPC method, e.g., stability or feasibility of the MPC. In case
a distributed algorithm does not achieve centralized optimality, we can still quantify the
sub-optimality of the distributed solution with respect to the global optimum. Last but not
least, designing distributed MPC based on distributed optimization often leads to a system-
atic way of defining subsystems and sub-problems, thus simplifying the implementation
of distributed model predictive controllers.

1.3 Research objectives

With the focus on distributed MPC design that is guided by distributed optimization meth-
ods, the research presented in this thesis is aimed at the following topics:

• Investigate coordination and distribution methods that lead to distributed algorithms
for solving optimization problems arising in MPC of large-scale systems, which
often have sparse structures.

• Design distributed and hierarchical MPC methods that provide feasible control ac-
tions that lead to closed-loop stability of the whole system.

• Compare analytically and numerically the performance of centralized and distributed
MPC solutions when they are implemented in the same control problem.

• Find the formulation of MPC problems and the construction of subsystems so that
distributed MPC can be implemented efficiently.

These topics will be tackled independently or simultaneously in each of the Chapters 2, 3,
4, and 5.

1.4 Summary of contributions

The contributions of this thesis in the field of distributed and hierarchical MPC can be
summarized as follows:

1. We develop a distributed optimization method for strictly convex quadratic pro-
grams. This distributed algorithm is able to generate the same iterates as the parallel
(centralized) counterpart that was presented in Han and Lou (1988), and is guaran-
teed to converge to the centralized solution. Materials related to this work have been
reported in Doan et al. (2009, 2010, 2011c).
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2. We develop a distributed version of the accelerated proximal gradient method (Beck
and Teboulle, 2009) that can handle optimization problems with mixed 1-norm and
2-norm penalty terms in the cost function and under linear constraints with a sparse
coupling structure. The distributed accelerated proximal gradient algorithm can also
be considered as an extension of the distributed Han’s algorithm and achieves the
best convergence rate within the class of gradient methods. This work has been re-
ported in Giselsson et al..

3. We propose a constraint tightening approach that leads to two hierarchical algo-
rithms for solving the MPC optimization problem based on dual decomposition.
These algorithms can be terminated after a finite number of iterations, but still
provide feasible solutions to the MPC problem. The algorithms also guarantee a
monotonic decrease of the cost function, thus leading to MPC stability. The two
hierarchical algorithms have been reported in Doan et al. (2011b,a).

4. We present a complete treatment of a hydro power valley system, using nonlinear
modeling with linear approximation and model order reduction, and then design an
efficient distributed MPC controller that can obtain a performance that is compa-
rable with that of centralized MPC. In the problem formulation, we will propose a
systematic method to handle the coupling that appears in the cost function, which
results in a sparse problem that is favorable for distributed MPC. This work has been
reported in Doan et al. (2012).

1.5 Thesis outline

The material presented in this thesis is organized as separate chapters, in the following
order:

• Chapter 2: We investigate Han’s parallel method for convex quadratic problems,
and then design a distributed version of this method, which can generate equivalent
iterates resulting from the centralized algorithm. Stability of the closed-loop MPC is
guaranteed as an inheritance from the centralized MPC that is based on feasibility,
which is indeed obtained upon convergence of the algorithm.

• Chapter 3: We analyze the classical proximal gradient method and show its sim-
ilarity to Han’s parallel method. This method is outperformed by the accelerated
proximal gradient algorithm, which achieves the best convergence rate for a gra-
dient algorithm that solves a strongly convex optimization problem. We derive a
distributed MPC scheme based on the accelerated proximal gradient algorithm.

• Chapter 4: We tackle the asymptotic convergence of dual decomposition approaches,
which often do not provide a feasible solution of the primal optimization problem
in a finite number of iterations. The main idea is to use a constraint tightening ap-
proach, and then apply a primal-dual iterative algorithm that provides bounds on the
constraint violation and the sub-optimality. We develop two primal-dual iterative al-
gorithms, leading to two hierarchical MPC methods that provide feasible solutions
and achieve closed-loop stability.
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• Chapter 5: In order to evaluate the efficiency of distributed MPC, we apply the
distributed MPC approach based on the accelerated proximal gradient method to
the control problem of a hydro power valley system. The simulation results show
that distributed MPC can achieve nearly the same performance that is produced by
centralized MPC, while the computation time for distributed MPC is remarkably
lower than for centralized MPC.

• Chapter 6: Summary of the results, and recommendations for future research.

Below is the table showing connections among the chapters, the arrows suggest the or-
der for reading the chapters that could help in understanding the links between chapters,
however each chapter also provides complete details of the topic and can be read alone.

Chapter 2
Distributed MPC based on solving ↓

the underlying optimization problem Chapter 3
exactly ↓

Chapter 5

Hierarchical MPC based on
suboptimal solution of Chapter 4

the underlying optimization problem



Chapter 2

Distributed Han’s method for convex
quadratic problems

We investigate Han’s parallel method for convex quadratic problems, and then de-
sign a distributed version of this method, which can generate equivalent iterates
as those resulted from the centralized algorithm. The underlying decomposition
technique relies on Fenchel’s duality and allows subproblems to be solved using
local communications only. Further, we propose two techniques aimed at improv-
ing the convergence rate of the iterative approach and illustrate the results using
a numerical example. We conclude by discussing open issues of the proposed
method and by providing an outlook on research in the field.

2.1 Introduction

In this chapter, we present a decomposition scheme based on Han’s parallel method (Han
and Lou, 1988), aiming to solve the centralized optimization problem of MPC (1.10)–
(1.14) in a distributed way. This approach results in two distributed algorithms that are
applicable to DMPC of large-scale industrial processes. The main ideas of our algorithms
are to find a distributed update method that is equivalent to Han’s method (which relies
on global communications), and to improve the convergence speed of the algorithm. We
demonstrate the application of our methods in a simulated water network control problem.
The open issues of the proposed scheme will be discussed to formulate future research
directions.

This chapter is organized as follows. In Section 2.2, we summarize Han’s parallel method
for convex programs (Han and Lou, 1988) as the starting point for our approach. In Sec-
tion 2.3, we present two distributed MPC schemes that solve the dual optimization problem
by using only local communications. The first DMPC scheme uses a distributed iterative
algorithm that we prove to generate the same iterates as Han’s algorithm. As a consequence
of this equivalence, the proposed DMPC scheme achieves the global optimum upon con-
vergence and thus inherits feasibility and stability properties from its centralized MPC

9
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counterpart. The second DMPC scheme is an improved algorithm that aims to speed up
the convergence of the distributed approach. In Section 2.4, we illustrate the application of
the new DMPC schemes in an example system involving irrigation canals. In Section 2.5,
we discuss the open issues of Han’s method that motivate directions for future research.
Section 2.6 concludes the chapter.

Before we go into the details, we first rewrite the problem (1.10)–(1.14) in a compact form
as

min
x

xTHx (2.1)

s.t. aTl x = bl, l = 1, . . . , neq

aTl x ≤ bl, l = neq + 1, . . . , s

with s = neq + nineq, and where the matrix H is positive definite and block-diagonal due
to the formulation of the centralized MPC problem (1.10)–(1.14). The algorithms to be
described in the next sections will focus on how to solve this optimization problem in a
distributed way.

2.2 Han’s parallel method for convex programs

Han’s algorithm (Han and Lou, 1988) is a method to decompose Fenchel’s dual problem
(Rockafellar, 1970) of a convex optimization problem. Fenchel’s duality theorem aims at
minimizing a difference f(x) − g(x), where f is a convex function and g is a concave
function. A special case of this problem is minimizing f over a convex constraint set C,
where g is a penalty function for violating the constraint. In Han’s problem, the set C is
the intersection of many constraint sets, and the dual variables are iteratively projected
onto the local constraint sets. As a consequence, the sum of the dual variables converges
to the minimizer of the Fenchel’s dual problem (Han and Lou, 1988). In this section, we
summarize the main elements of Han’s parallel method, followed by a simplified version
for the case of positive definite quadratic programming.

2.2.1 Han’s algorithm for general convex problems

The class of optimization problems tackled by Han’s algorithm is the following:

min
x

q(x) (2.2)

s.t. x ∈ C , C1 ∩ · · · ∩ Cs

where C1, · · · , Cs are closed convex sets and C 6= ∅, and where q(x) is uniformly convex1

and differentiable on R
nx .

1A function q : Rn → R is uniformly convex (or strongly convex) on a set S ⊂ R
n if there is a constant

ρ > 0 such that for any x1, x2 ∈ S and for any λ ∈ (0, 1):

q(λx1 + (1− λ)x2) ≤ λq(x1) + (1 − λ)q(x2)− ρλ(1− λ)‖x1 − x2‖
2.
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Problems of type (2.2) can be solved by Han’s algorithm. In the following algorithm we
will describe Han’s method, which is an iterative procedure. We use p as iteration counter
of the algorithm, and the superscript (p) for variables that are computed at iteration p.

Algorithm 2.1 Han’s algorithm for convex programs

Let α be a sufficiently large number2, define the vectors y(p),y
(p)
l ∈ R

nx , l = 1, . . . , s

with p the iteration index, and set y(0) = y
(0)
1 = · · · = y

(0)
s = 0. Also set x(0) =

∇q∗
(
y(0)

)
with q∗ being the conjugate function3 of q. For p = 1, 2, . . . , we perform the

following computations:

1) For l = 1, . . . , s, find z
(p)
l that solves

min
z

φ(z) ,
1

2

∥
∥
∥z+ αy

(p−1)
l − x(p−1)

∥
∥
∥

2

2
(2.3)

s.t. z ∈ Cl

2) Assign

y
(p)
l = y

(p−1)
l + (1/α)

(

z
(p)
l − x(p−1)

)

(2.4)

3) Set y(p) = y
(p)
1 + · · ·+ y

(p)
s

4) Compute

x(p) = ∇q∗
(

y(p)
)

(2.5)

Han and Lou (1988) also showed that Algorithm 2.1 converges to the global optimum
under the given conditions on q and C, i.e., q(·) is uniformly convex and C 6= ∅ is the
intersection of closed convex sets.

Remark 2.1 Han’s method essentially solves the dual problem of (2.2), so that y(p) con-

verges to the solution of the Fenchel’s dual problem:

min
y∈Rnx

(
q∗(y) + δ∗(y| − C)

)
(2.6)

2α is a design parameter that has to be sufficiently large. With α ≥ s/ρ Han’s method will converge (Han
and Lou, 1988). For positive definite QPs we can choose ρ as one half of the smallest eigenvalue of the Hessian
matrix.

3The conjugate function of a function q : R
n → R is defined by: q∗(y) = sup

x∈Rn

(

y
T
x− q(x)

)

.
The conjugate function q∗ is always convex (Boyd and Vandenberghe, 2004). This formulation is called convex

conjugate function in Rockafellar (1970), in order to distinguish it with the concave conjugate function, defined
by q∗(y) = infx∈Rn

(

y
T
x− q(x)

)

.
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in which δ(x|C) is the indicator function, which is 0 if x ∈ C and ∞ otherwise. The

conjugate function of δ(x|C) is δ∗(y|C) = supx∈C yTx. According to Fenchel’s duality

theorem (Rockafellar, 1970), the minimum of the convex function f(x) − g(x), where f
is a convex function on R

nx and g is a concave function on R
nx , equals the maximum

of the concave function g∗(y) − f∗(y), or equivalently the minimum of f∗(y) − g∗(y).
In this situation f ≡ q and g ≡ −δ, and note that −δ∗(y|C) = − infx∈C yTx =
sup−x∈C(y

T (−x)) = δ∗(y|−C). The value y(p̄) achieved when Algorithm 2.1 converges

is an optimizer of (2.6), and hence x(p̄) = ∇q∗
(
y(p̄)

)
is the solution of (2.2).

Remark 2.2 The optimization (2.3) aims to find the projection of x(p−1) − αy
(p−1)
l on

the set Cl, and its dual problem is

min
y

{

(α/2)‖y− y
(p−1)
l ‖2 + x(p−1)Ty + δ∗(y| − Cl)

}

(2.7)

The update formula (2.4) gives y
(p)
l = ∇φ

(

z
(p)
l

)

, where φ is the cost function of (2.3).

Fenchel’s duality also guarantees that y
(p)
l = ∇φ(z

(p)
l ) is the solution of (2.7), since z

(p)
l

is the solution of (2.3).

The uniform convexity of q is used to derive the inequality:

(x(k) − x(k−1))T (y(k) − y(k−1)) ≤
s

2ρ

s∑

l=1

‖y
(k)
l − y

(k−1)
l ‖

2

2
(2.8)

and then (2.8) is used to prove the inequality

q∗(y(k−1)) + δ∗(y(k−1)| − C) ≥ q∗(y(k)) + δ∗(y(k)| − C) +
αρ− s

2ρ

s∑

l=1

‖y
(k)
l − y

(k−1)
l ‖

2

2

(2.9)

By applying (2.9) successively with k = 1, . . . , p we get

{

q∗(y(0)) + δ∗(y(0)| − C)
}

−
{

q∗(y(p)) + δ∗(y(p)| − C)
}

≥

αρ− s

2ρ

p
∑

k=1

{
s∑

l=1

‖y
(k)
l − y

(k−1)
l ‖

2

2

}

(2.10)

The left hand side of (2.10) is bounded below, and the right hand side of (2.10) is nonneg-

ative since αρ − s ≥ 0, thus
∑s

l=1 ‖y
(k)
l − y

(k−1)
l ‖

2

2
→ 0 as p → ∞. This leads to the

convergence of ‖y(p) − y(p−1)‖2 → 0 and ‖x(p) − x(p−1)‖2 → 0 as p → ∞.

2.2.2 Han’s algorithm for positive definite quadratic programs

In case the optimization problem has a positive definite cost function and linear constraints
as in (2.2), the optimization problem (2.3) and the derivative of conjugate function (2.5)
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have analytical solutions, and then Han’s method becomes simpler. In the following we
show how the analytical solutions of (2.3) and (2.5) can be obtained when applying Algo-
rithm 2.1 to the problem (2.1).

Remark 2.3 The result of simplifying Han’s method in this section is slightly different from

the original one described in Han and Lou (1988), so as to correct the minor mistakes we

found in that paper.

As in (2.2), each constraint x ∈ Cl is implicitly expressed by a scalar linear equality or
inequality constraint. So (2.3) takes one of the following two forms:

min
z

1

2
‖z+ αy

(p−1)
l − x(p−1)‖

2

2 (2.11)

s.t. aTl z = bl

or

min
z

1

2
‖z+ αy

(p−1)
l − x(p−1)‖

2

2 (2.12)

s.t. aTl z ≤ bl

Let us first consider (2.12):

• If aTl

(

x(p−1) − αy
(p−1)
l

)

≤ bl, then z
(p)
l = x(p−1) − αy

(p−1)
l is the solution of

(2.12). Substituting this z(p)l into (2.4), leads to the following update of y(p)
l :

y
(p)
l = y

(p−1)
l + (1/α)

(

x(p−1) − αy
(p−1)
l − x(p−1)

)

⇒ y
(p)
l = 0 (2.13)

• If aTl

(

x(p−1) − αy
(p−1)
l

)

> bl, then the constraint is active. The optimization

problem (2.12) aims to find the point in the half-space aTl z ≤ bl that minimizes

its distance to the point x(p−1)−αy
(p−1)
l (which is outside that half-space). The so-

lution is the projection of the point x(p−1) − αy
(p−1)
l on the hyperplane aTl z = bl,

which is given by the following formula:

z
(p)
l = x(p−1) − αy

(p−1)
l −

aTl
(
x(p−1) − αyl

)
− bl

aTl al
al (2.14)

Substituting this z(p)l into (2.4), leads to:

y
(p)
l = y

(p−1)
l +

1

α



−αy
(p−1)
l −

aTl

(

x(p−1) − αy
(p−1)
l

)

− bl

aTl al
al





= −
aTl

(

x(p−1) − αy
(p−1)
l

)

− bl

αaTl al
al (2.15)
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Then defining γ
(p)
l = aTl

(

x(p−1) − αy
(p−1)
l

)

− bl yields

y
(p)
l = −

γ
(p)
l

αaTl al
al (2.16)

If we define

γ
(p)
l = max{aTl

(

x(p−1) − αy
(p−1)
l

)

− bl, 0} (2.17)

then we can use the update formula (2.16) for both cases.

Similarly, for the minimization under equality constraint (2.11), we define

γ
(p)
l = aTl

(

x(p−1) − αy
(p−1)
l

)

− bl (2.18)

and the update formula (2.16) gives the result of (2.4).

Now we consider step 4) of Algorithm 2.1. As shown in Boyd and Vandenberghe (2004),
the function q(x) = xTHx with H being a positive definite matrix, is uniformly convex
on R

nx and has the conjugate function:

q∗(y) =
1

2
yTH−1y (2.19)

⇒ ∇q∗(y) = H−1y (2.20)

Consequently, in Han’s algorithm for the definite quadratic program (2.1), it is not nec-
essary to compute z(p), and y(p) can be eliminated using (2.16). We are now ready to
describe the simplified Han’s algorithm for problem (2.1), with the choice α = s/ρ (cf.
footnote 2).

Algorithm 2.2 Han’s algorithm for definite quadratic programs

For each l = 1, . . . , s, compute

cl =
−1

αaTl al
H−1al (2.21)

Define γ
(p)
1 ∈ R, l = 1, . . . , s, initialize γ

(0)
1 = · · · = γ

(0)
s = 0 and x(0) = 0. For

p = 1, 2, . . . , perform the following computations:

1) For each l corresponding to an equality constraint (l = 1, . . . , neq), compute γ
(p)
l =

aTl x
(p−1) + γ

(p−1)
l − bl.

For each l corresponding to an inequality constraint (l = neq + 1, . . . , s), compute

γ
(p)
l = max{aTl x

(p−1) + γ
(p−1)
l − bl, 0};



2.3 Distributed version of Han’s method for the MPC problem 15

2) Set

x(p) =

s∑

l=1

γ
(p)
l cl (2.22)

Note that Han’s method splits up the computation into s parallel subproblems, where s is
the number of constraints. However, although Algorithm 2.2 is simpler than the original
form in Algorithm 2.1, it still requires a global update scheme and the parallel problems
still operate with the full-sized decision vector. Implementing the scheme in a DMPC
system, where the goal is to reduce the size of local computations and to rely on local
communication between subsystems only, is not straightforward. In the following section,
we will exploit the structure of the problem (2.1), resulting in a distributed algorithm that
does not require global communications.

2.3 Distributed version of Han’s method for the MPC problem

2.3.1 Distributed version of Han’s method with common step size

The main idea behind the distributed version of Han’s method is illustrated in Figure 2.1,
with a simple example consisting of 4 subsystems and the coupling matrix that shows how
subsystems are coupled via their variables (boxes on the same row indicate the variables
that are coupled in one constraint). The figure represents the coupling pattern of this opti-
mization problem:

min
x

x2
1 + x2

2 + x2
3 + x2

4 (2.23)

s.t. x1 + x4 = 1

x1 + x2 ≤ 2

x3 + x4 ≤ 3

where each xi is the variable of subsystem i, i = 1, . . . , 4, and x = [x1, x2, x3, x4]
T . The

neighborhood sets are N 1 = {1, 2, 4}, N 2 = {2, 1}, N 3 = {3, 4}, N 4 = {4, 1, 3}.

In Han’s parallel method, a subsystem has to communicate with all other subsystems in
order to compute the updates of the global variable x(p). For the distributed version of
Han’s method, each subsystem i only communicates with its neighboring subsystems for
computing the updates of its local variables that involve variables of itself and its neigh-
bors (these local variables will be defined in this section as self-images and neighborhood

images). The definition of a subsystem’s neighboorhood in this optimization problem is
the same as N i that is described in Section 1.2.1.

For the algorithm presented in this section, we use M local controllers attached to M

subsystems. Each controller i then computes γ(p)
l with regards to a small set of constraints

indexed by l ∈ Li, whereLi is a set of indices4 of several constraints that involve subsystem
i. Subsequently, it performs a local update for its own variables, such that the parallel local

4The choice of Li will be described on page 16.
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1 2 3 4

(a)

1 2 3 4

(b)

Figure 2.1: Illustration of communication links of Han’s algorithm for an example

4-subsystem problem with a sparsely coupled constraint matrix (each constraint is

shown in a row), in which the first constraint involves variables of subsystems 1 and

4, the second constraint couples subsystems 1 and 2, and the third one couples sub-

systems 3 and 4. In the centralized coordination version (a), an update for a global

variable requires subsystem 2 to communicate with all the others. In the distributed

coordination version (b), the update of each row is done separately, therefore sub-

system 2 only needs to communicate with the subsystem 1 to update its nonzero

entry.

update scheme will be equivalent to the global update scheme in Algorithm 2.2. We will
also make use of the block-diagonal property of the Hessian matrix H .

Initialization of the algorithm

Store invariant parameters

The parameter α is chosen as in Algorithm 2.2 and stored in the memory of all local
controllers.

We also compute s constant scalars cl as in (2.21), in which each cl corresponds to one
constraint of (2.1). Note that since H is block-diagonal, H−1 can be computed easily by
inverting each block of H and it has the same block structure as H . Hence cl is as sparse
as the corresponding al. We can see that cl can be computed locally by a local controller
with a priori knowledge of the parameter al and the weighting blocks on the diagonal of
H that correspond to the non-zero elements of al.

Assign responsibility of each local controller

Each local controller is in charge of updating the variables of its subsystem. Moreover,
we also assign to each local controller the responsibility of updating some intermediate
variables that relate to several equality or inequality constraints in which its subsystem’s
states or inputs appear. The control designer has to assign each of the s scalar constraints
to one of the M local controllers5 such that the following requirements are satisfied:

5Note that s, the total number of constraints, is often much larger than M .
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• Each constraint is taken care of by one and only one local controller (even for a
coupled constraint, there will be only one controller that is responsible).

• A local controller can only be in charge of constraints that involve its own variables.

Let Li denote the set of indices l that local controller i is in charge of. The first requirement
above can be written compactly as

Li ∩ Lj = ∅, ∀i, j (2.24)

L1 ∪ · · · ∪ LM = {1, . . . , s} (2.25)

and the second requirement can be mathematically expressed as

If l ∈ Li then ail 6= 0 (2.26)

where ail is a subvector of al that corresponds to the variables of subsystem i in the vector
x.

Note that this partition is not unique and has to be created according to a procedure that
is performed in the initialization phase. Recall that N i denotes the neighborhood set of
subsystem i, we also define LN i as the set of indices l corresponding to the constraints
that are taken care of by subsystem i or by any neighbor of i:

LN i =
⋃

j∈N i

Lj (2.27)

If a local controller i is in charge of the constraints indexed by l ∈ Li, then it computes
locally cl using (2.21) and exchanges these values with its neighbors. Then each local
controller i stores {cl}l∈L

Ni
in its memory throughout the optimization process.

Remark 2.4 The partitioning of the constraint indices into the sets Li will affect the com-

putation and communication loads assigned to local controllers, hence the partitioning

should consider resources available at local controllers for a balancing purpose. However,

the optimality property of the distributed algorithm does not depend on the partitioning of

the constraints, as it will be shown later that its results are always equivalent to the results

generated by the original centralized counterpart.

Iterative procedure

The distributed algorithm consists of an iterative procedure running within each sampling
interval. Since we want to obtain a feasible solution to the optimization problem (2.1)
which could only be possible when Han’s algorithm converges, we assume that the sam-
pling time used is large enough such that the algorithm can converge within one sampling
interval. This assumption will be used in Proposition 2.6, and its restrictiveness will be
discussed in Section 2.5.

In the algorithm description, p is used to denote the iteration step. Values of variables
obtained at iteration p are denoted with superscript (p).
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Definition 2.1 (Index matrix of subsystems) In order to present the algorithm compactly,

we introduce the index matrix of subsystems: each subsystem i is assigned a square diago-

nal matrix Ii ∈ R
nx×nx , with an entry on the diagonal being 1 if it corresponds to the po-

sition of a variable of subsystem i in the vectorx, and 0 otherwise. In short, Ii is a selection

matrix such that the multiplicationIix only retains the variablesui
0, . . . , u

i
N−1, x

i
1, . . . , x

i
N

of subsystem i in its nonzero entries.

From Definition 2.1 it follows that:

M∑

i=1

Ii = I (2.28)

Definition 2.2 (Self-image) We denote with x(p)|i ∈ R
nx the vector that has the same

size as x, containing u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N (i.e., the values of i’s variables

computed at iteration p) at the right positions, and zeros for the other entries. This vector

is called the self-image of x(p) made by subsystem i.

Using the index matrix notation, the relation between x(p)|i and x(p) is:

x(p)|i = Iix(p) (2.29)

Definition 2.3 (Neighborhood image) Extending the concept of self-image, we denote

with x(p)|N i

the neighborhood image of subsystem i made from x. At step p of the iter-

ation, subsystem i constructs x(p)|N i

by putting the values of its neighbors’ variables and

its own variables into the right positions, and filling in zeros for the remaining slots of x.

The neighborhood image x(p)|N i

satisfies the following relations:

x(p)|N i

=
∑

j∈N i

x(p)|j (2.30)

x(p)|N i

=




∑

j∈N i

Ij



x(p) (2.31)

By definition, we also have the following relation between the self-image and the neigh-
borhood image made by the same subsystem:

x(p)|i = Iix(p)|N i

(2.32)

Using the notation described above, we now describe the subtasks that each controller will
use in the distributed algorithm.

• Communications with the neighbors

Each controller i communicates only with its neighbors j ∈ N i to get updated
values of their variables and sends its updated variables to them. The data that each
subsystem i transmits to its neighbor j ∈ N i consists of the self-image x(p)|i and
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the intermediate variables γ(p)
l , l ∈ Li, which are maintained locally by subsystem

i.

• Update dual variables γl
The local controller i updates γl corresponding to each constraint l ∈ Li under its
responsibility in the following manner:

– If constraint l is an equality constraint (l ∈ {1, . . . , neq}), then

γ
(p)
l = aTl x

(p−1)|N i

+ γ
(p−1)
l − bl (2.33)

– If constraint l is an inequality constraint (l ∈ {neq + 1, . . . , s}), then

γ
(p)
l = max{aTl x

(p−1)|N i

+ γ
(p−1)
l − bl, 0} (2.34)

• Update primal variables

Local controller i uses all γ(p)
l values that it has (by communications and those

computed by itself) to compute an ‘assumed neighborhood image’ x(p)|N i

assumed. Note

that x(p)|N i

assumed has the same structure as the neighborhood image x(p)|N i

. However,

in x
(p)|N i

assumed, only the values of variables of subsystem i are guaranteed to be correct,

while the other values can be outdated, hence x
(p)|N i

assumed is not the exact update of

the neighborhood image. Indeed, x(p)|N i

assumed is used only for constructing the new self-

image by selecting the variables ui,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N of subsystem i

in x
(p)|N i

assumed:

x(p)|i = Iix
(p)|N i

assumed (2.35)

• Check the local termination criteria

For each local controller, there are local termination criteria. Each controller checks
the local termination criteria using local communications only6. The local termi-
nation criteria also aim to keep a subsystem informed when other subsystems are
ready to terminate. When a subsystem’s local termination criteria are satisfied and
it is informed that the other subsystems’ termination criteria are also satisfied, the
algorithm stops and the local control actions are implemented.

In the following, we will present the distributed algorithm.

Algorithm 2.3 Distributed algorithm for positive definite quadratic programs

Initialize with p = 0, u
i,(0)
k = 0, x

i,(0)
k+1 = 0, ∀i, k = 0, . . . , N − 1 (this means x(0)|i =

0, ∀i, implying x(0) = 0), and γ
(0)
l = 0, l = 1, . . . , s

6Checking the termination criteria in a distributed fashion requires a dedicated logic scheme; several schemes
were described in (Bertsekas and Tsitsiklis, 1989, Chapter 8).
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Next, for p = 1, 2, . . . , the following steps are executed in parallel and with synchroniza-

tion:

1) Communications to get the updated primal variables

Each controller i gets updated values of x(p−1)|j from its neighbors j ∈ N i, where

only non-zero elements need to be transmitted7.

Then controller i constructs the neighborhood image x(p−1)|N i

using formula (2.30).

2) Update dual variables γl in parallel

Each local controller i updates γl for each l ∈ Li, using (2.33) or (2.34).

3) Communications to get the updated intermediate variables

Each local controller i gets γ
(p)
l , l ∈ LN i from its neighbors j ∈ N i.

4) Update primal variables in parallel

Each local controller i computes an assumed neighborhood image of x:

x
(p)|N i

assumed =
∑

l∈L
Ni

γ
(p)
l cl (2.36)

Then controller i constructs the new self-image, using (2.35).

5) Check the local termination criteria in parallel

Each local controller checks the local termination criteria. If local termination crite-

ria are satisfied, the algorithm stops, otherwise go to step 1) to start a new iteration.

In Algorithm 2.3, the activities of one local controller can be demonstrated by the dia-
gram in Figure 2.2. The diagram clearly shows that in the distributed algorithm, each local
controller i only communicates with its neighbors j ∈ N i, enabling implementation of
the method in a distributed setting. The properties of the distributed algorithm will be
discussed in the following subsections.

Proof of equivalence to Han’s algorithm using a global update scheme

In Algorithm 2.2, at step 2), the centralized variable x(p) is updated via a global update
scheme. In Algorithm 2.3, by the local update scheme we obtain x(p)|i for i = 1, . . . ,M .
The equivalence of these two algorithms is stated in the following proposition:

Proposition 2.4 Applying Algorithms 2.2 and 2.3 to the same problem (2.1) with the same

parameter α, at any iteration p, the following statements hold:

7Since x
(p−1)|i only has a few non-zero elements, which are u

i,(p−1)
0 , . . . , u

i,(p−1)
N−1 ,

x
i,(p−1)
1 , . . . , x

i,(p−1)
N

, only these values need to be transmitted by controller i to reduce communica-
tions.
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controller i controller j ∈ N i

x
(p−1)|i

x
(p−1)|j

controller i updates γℓ:

γ
(p)
l = aTl x

(p−1)|N i

+ γ
(p−1)
l − bl, ℓ ∈ Li, ℓ ≤ neq

γ
(p)
l = max{aTl x

(p−1)|N i

+ γ
(p−1)
l − bl, 0}, ℓ ∈ Li, ℓ > neq

controller i controller j ∈ N i

γℓ, ℓ ∈ Li

γℓ, ℓ ∈ Lj

controller i computes:

x
(p)|N i

assumed =
∑

ℓ∈L
Ni

γ
(p)
ℓ cℓ

x
(p)|i = I

i
x
(p)|N i

assumed

p← p+ 1

controller i checks local

termination criteria
controller j ∈ N i

algorithm converges?
no terminate, controller i implements

u
i,(p)
0 extracted from x

(p)|i

Figure 2.2: Computation and communication flow-chart of controller i in each it-

eration of Algorithm 2.3. Controller i only needs to communicate with its neighbors

j ∈ N i.

a) γ
(p)
l are the same in Algorithms 2.2 and 2.3, for all l ∈ {1, . . . , s}.

b) x(p) =
∑M

i=1 x
(p)|i, in which x(p) is calculated in Algorithm 2.2 while x(p)|i, i =

1, . . . ,M are calculated in Algorithm 2.3.

Hence, Algorithm 2.2 and Algorithm 2.3 generate the same solution.

Proof: The proposition will be proved by induction.

It is clear that statements a) and b) hold for p = 0.

Now consider iteration p, and assume that the statement a) and b) hold for all iterations
before iteration p.

First, we prove statement a). For any l and i such that l ∈ Li, we have:

aTl x
(p−1) = aTl





M∑

j=1

Ij



x(p−1) (2.37)
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= aTl

M∑

j=1

x(p−1)|j (2.38)

= aTl

M∑

j=1

Ijx(p−1)|j (2.39)

= aTl




∑

j∈N i

Ijx(p−1)|j +
∑

j 6∈N i

Ijx(p−1)|j





Due to the definition of neighborhood, a subsystem outside N i does not have any coupled
constraints with subsystem i. Therefore, aTl

∑

j 6∈N i I
jx(p−1)|j = 0, which - in combina-

tion with (2.30) - leads to:

aTl x
(p−1) = aTl

∑

j∈N i

Ijx(p−1)|j = aTl x
(p−1)|N i

(2.40)

Equation (2.40) then guarantees that γ(p)
l computed at step 1) of Algorithm 2.2 and at step

2) of Algorithm 2.3 are the same.

Now consider statement b), where the main argument is the following: The same set of

γ
(p)
l and cl are used for updating i’s variables in x

(p)|N i

assumed (at step 4 of Algorithm 2.3) and
in x(p) (at step 2 of Algorithm 2.2). Thus each vector of local update x(p)|i, which contains

values of i’s variables selected from x
(p)|N i

assumed, is a part of the centralized update x(p).

More specifically, we can express the formula of x(p)|i computed in Algorithm 2.3 as

x(p)|i = Iix
(p)|N i

assumed = Ii
∑

l∈L
Ni

γ
(p)
l cl

⇒
M∑

i=1

x(p)|i =

M∑

i=1

Ii
∑

l∈L
Ni

γ
(p)
l cl (2.41)

Note that in the following equations, x(p) refers to the update of the decision variable
computed by (2.22) in Algorithm 2.2, which we can express as

x(p) =

M∑

i=1

Iix(p) =

M∑

i=1

Ii
s∑

l=1

γ
(p)
l cl (2.42)

in which the first equality is due to the relation (2.28), the second equality is from (2.22).

Recall that cl has the same structure as al, and if l 6∈ LN i then al and cl do not have any
non-zero values at the positions associated with variables of subsystem i. Therefore

Ii
s∑

l=1

γ
(p)
l cl = Ii




∑

l 6∈L
Ni

γ
(p)
l cl +

∑

l∈L
Ni

γ
(p)
l cl



 = Ii
∑

l∈L
Ni

γ
(p)
l cl (2.43)
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This equality shows that (2.42) and (2.41) are equivalent, thus proving the equality in
statement b): x(p) =

∑M
i=1 x

(p)|i. �

The equivalent result of Algorithms 2.2 and 2.3 implies that problem (2.1) can be solved
using Algorithm 2.3. This allows us to implement a DMPC scheme using Algorithm 2.3
that does not need global communications and global computations, each local controller
only exchanges the updates of its predicted variables with its direct neighbors.

2.3.2 Properties of the distributed model predictive controller based on Han’s method

Convergence, feasibility, and stability properties of the DMPC scheme using Algorithm 2.3
are established by the following propositions:

Proposition 2.5 Assume that problem (P) in (1.10)–(1.14) has a feasible solution. Then

Algorithm 2.3 asymptotically converges to the centralized solution of (P) at each sampling

step.

Proof: In Han and Lou (1988) it is shown that Han’s method is guaranteed to converge to
the centralized solution of the convex quadratic program (2.1) under the conditions that
q(x) is uniformly convex with the coefficient ρ and differentiable on R

nx , (2.1) has a
feasible solution, and the step size α satisfies α ≤ s/ρ. Due to the positive definiteness
of Qi and Ri, and the assumption that (P) has a feasible solution, such conditions hold
for the quadratic problem (2.1). Moreover, Algorithm 2.3 is equivalent to Han’s method
for the problem (2.1). Hence, the distributed scheme in Algorithm 2.3 converges to the
centralized solution of (2.1), which is the same as (P). �

Proposition 2.6 Assume that at every sampling step, Algorithm 2.3 asymptotically con-

verges. Then the DMPC scheme is recursively feasible and stable.

Proof: By letting Algorithm 2.3 converge at every sampling step, the centralized solution
of (P) is obtained. Recursive feasibility and stability is guaranteed as a consequence of
centralized MPC with a terminal point constraint, as shown in Mayne et al. (2000) and
Keerthi and Gilbert (1988). �

2.3.3 Distributed version of Han’s method with scaled step size

A disadvantage of Han’s method (and its distributed version) is the slow convergence rate,
due to the fact that it is essentially a projection method to solve the dual problem of (2.1).
Moreover, in order to find the initial guesses of the primal and the conjugate variables that
have to satisfy the relation (2.5) with p = 0, Han’s (distributed) method uses zeros as the
initial guesses, which prevents warm starting of the algorithm by choosing an initial guess
that is close to the optimizer. Therefore, we need to modify the method to achieve a better
convergence rate.

In this section, we present two modifications of the distributed version of Han’s method:
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• Scaling of the step sizes related to dual variables by using heterogeneous αl for
the update of the l-th dual variable instead of the same α for all dual variables.
Moreover there is a new parameter for increasing the step size, in order to accelerate
the convergence.

• Use of nonzero initial guesses, which allows taking the current MPC solution as the
start for the next sample step.

Note that Han’s method can be extended to the case using heterogeneous αl for the l-th
dual variable, this extended version of Han’s method can also be proved for convergence
with we use αl ≥ s/ρ, ∀l. Indeed, following the same line of proof of Han’s method
(see the summary in Remark 2.2), we can see αl will replace α in (2.10) for each residual
of the l-th dual variable, and hence the convergence is guaranteed if αlρ − s ≥ 0, ∀l, or
αl ≥ s/ρ, ∀l. However, this condition still leads to a slow convergence. The major factor to
accelerate the convergence is to increase the step sizes, i.e., to use αl below the guaranteed
value. Thus, the convergence of the modified distributed algorithm is not guaranteed; this
will be discussed in Section 2.5.

In order to implement the above modifications, the improved distributed version of Han’s
method is initialized similarly to the distributed algorithm in Section 2.3.1, except for the
following procedures:

1. Pre-computed invariant parameters

Each subsystem i computes and stores the following parameters throughout the con-
trol scheme:

• For each l ∈ Li: αl =
(
kα
)

l
α0, where kα is the scaling vector. The scalar αl

acts as local step size regarding the l-th dual variable, and therefore kα should
be chosen such that the convergence rates of all s dual variables are improved.
The method to choose kα will be discussed in Remark 2.5.

• For each l ∈ Li: c̄l = −1
aT
l
al
H−1al. We can see that c̄l can be computed lo-

cally by a local controller with a priori knowledge of the parameter al and
the weighting blocks on the diagonal of H that correspond to the non-zero
elements of al.

2. MPC step

At the beginning of the MPC step, the current states of all subsystems are measured.
The sequences of predicted states and inputs generated in the previous MPC step are
shifted forward one step, then we append zero states and zero inputs to the shifted
sequences. The new sequences are then used as the initial guess for solving the
optimization problem in the current MPC step8. The initial guess for each subsystem
can be defined locally. For subsystem i, denote the initial guess as x(0)|i. At the first
MPC step, we have x(0)|i = 0, ∀i.

8The idea of using previously predicted states and inputs for initialization is a popular technique in MPC
(Rawlings and Mayne, 2009). Especially with Han’s method, whose convergence rate is slow, an initial guess that
is close to the optimal solution will be very helpful to reduce the number of iterations.
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The current state is plugged into the MPC problem, and then we get an optimization
problem of the form (2.1). This problem will be solved by the following modified
distributed algorithm of Han’s method.

Algorithm 2.7 Improved distributed algorithm for the MPC optimization problem

Initialize with p = 0. Each subsystem i uses the initial guess as x(0)|i.

Next, for p = 1, 2, . . . , the following steps are executed in parallel and with synchroniza-

tion:

1) See step 1 of Algorithm 2.3.

2) See step 2 of Algorithm 2.3, except that for p = 1, each subsystem i computes the

initial intermediate variables by9:

γ
(1)
l = aTl

(

x(0)|N i

−
αl

s
Hx(0)|N i

)

− bl, l ∈ Li, l ≤ neq (2.44)

γ
(1)
l = max

{

aTl

(

x(0)|N i

−
αl

s
Hx(0)|N i

)

− bl, 0
}

, l ∈ Li, l > neq (2.45)

3) See step 3 of Algorithm 2.3.

4) See step 4 of Algorithm 2.3 but with a different formula to update the assumed neigh-

borhood image for each i:

x
(p)|N i

assumed =
∑

l∈L
Ni

1

αl

γ
(p)
l c̄l (2.46)

5) See step 5 of Algorithm 2.3.

When the iterative procedure finishes, each subsystem applies the first input ui,(p)
0 , then

waits for the next state measurement to start a new MPC step.

Remark 2.5 The main improvement of Algorithm 2.7 over Algorithm 2.3 is the improved

convergence speed, which heavily depends on a good choice of the scaling vector kα. We

have observed that the convergence speed of some dual variables under the responsibility

of a subsystem i will affect the convergence speed of dual variables under the responsibility

of its neighbors in N i. Therefore the choice of scaling vector should focus on improving

the convergence speed of dual variables that appear to converge more slowly. In our case,

we rely on the Hessian to find the scaling vector. Specifically, for each subsystem i, let h̄i

9The intermediate variables are constructed following the formulas (2.17)–(2.18) with replacing the common

α by αl for each l ∈ {1, . . . , s}, where we implicitly use y
(0)
l

= 1
s
y
(0),∀l ∈ {1, . . . , s} and y

(0) =

Hx
(0) . Also note that since al only involves neighboring subsystems and H is block-diagonal, the computation

aT
l

(

x
(0) − αl

s
Hx

(0)
)

only uses values from neighboring subsystems, similarly to the argument for (2.40).
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denote the average weight of its variables (i.e., average of entries related to i’s states and

inputs in the diagonal of the Hessian). We then choose the scaling factor
(
kα
)

l
= 1/h̄i, for

all l ∈ Li. We also multiply the scaling vector kα with a factor θ ∈ (0, 1) for enlarging the

step sizes of all dual variables. In the first MPC step, we do the tuning offline with θ ≃ 1
and gradually reduce θ until it causes the algorithm to diverge, then we stop and choose

the smallest θ such that the algorithm still converges.

The choice of the scaling vector depends on the structure of the centralized optimization

problem, thus we only need to choose it once in the first MPC step. Then for the next MPC

steps, we can re-use the same scaling vector.

The efficiency of Algorithm 2.7 will be demonstrated in the example of irrigation canal
control, which is presented in the next section.

2.4 Application of Han’s method for distributed MPC in canal sys-
tems

2.4.1 The example canal system

The novel DMPC approach is applicable to a wide range of large-scale systems that could
be modeled in the LTI form as described in Section 1.2. In this section, we demonstrate
its application in an example control problem, where the objective is to regulate the water
flows in a system of irrigation canals. Irrigation canals are large-scale systems, consisting
of many interacting components, and spanning vast geographical areas. For the most effi-
cient and safe operation of these canals, maintaining the levels of the water flows close to
pre-specified reference values is crucial, both under normal operating conditions as well
as in extreme situations. Manipulation of the water flows in irrigation canals is typically
done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal system as illustrated in
Figure 2.3. In this system, water flows from an upstream reservoir through the reaches,
under the control of 4 gates and a pump at the end of the canal system that discharges
water.

The control design is based on the master-slave control paradigm, in which the master
controllers compute the flows through the gates, while each slave controller uses the local
control actuators to guarantee the flow set by the master controller (Schuurmans et al.,
1999). We will use the new DMPC method to design the master controllers.

2.4.2 Modeling the canal

The canal system is divided into 4 subsystems, each of which corresponds to a reach and
also includes the local controller at the upstream gate of the reach. The 4th subsystem has
one more controller, corresponding to the pump at its downstream end.

We use a simplified model for each subsystem as illustrated in Figure 2.4, and then obtain
the overall model by connecting the subsystem models. A subsystem is approximately
modeled by a reservoir with upstream in-flow and downstream out-flow.
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reach 1

reach 2

reach 3

reach 4

gate 1

gate 2

gate 3

gate 4

pump

upstream
reservoir

Figure 2.3: The example canal system

The discrete-time model of reach i is represented by:

hi
k+1 − hi

k =
Ts

Ai
s

[(
Qi

in

)

k
−
(
Qi

out

)

k

]
(2.47)

where superscript i represents the subsystem index, subscript k is for the time index, Ts is
the sampling time, h is the downstream water level of the reach, As is the water surface
(i.e., the volume of reservoir equals h · As), Qin and Qout are the in-flow and the out-
flow of the canal which are measured at the upstream and downstream ends, respectively.
Denote the flow passing the ith gate by qi, and the flow passing the pump by p4. Due
to the mass conservation law, we have

(
Qi

out

)

k
=
(
Qi+1

in

)

k
= qi+1

k , for i = 1, 2, 3, and
(
Q4

out

)

k
= p4k.

h

Q in Q out

A s

Figure 2.4: Model of a reach

In order to derive local dynamics, we choose state and input vectors of subsystem i as

xi
k = hi

k

ui
k =







qik , i = 1, 2, 3
[

qik
pik

]

, i = 4
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The dynamics of each subsystem can be represented by a discrete-time, linear time-invariant
model of the form (1.1) with the state-space matrices:

Aii = 1 , i = 1, . . . , 4; Aij = 0 , i 6= j

Bii = Ts/A
i
s , i = 1, 2, 3; B44 =

[
Ts/A

4
s −Ts/A

4
s

]

Bi(i+1) = −Ts/A
i
s , i = 1, 2; B34 =

[
−Ts/A

4
s 0

]

Bij = 0 , i = 1, 2, 3, j 6∈ {i, i+ 1}.

The control problem also includes physical constraints on all the water levels and flows.
Let us denote the aggregate state and control input vectors at time step k as xk and uk,
respectively. The physical constraints are the upper and the lower bounds of states and
inputs as:

xmin ≤ xk ≤ xmax, ∀k

umin ≤ uk ≤ umax, ∀k

In the simulation, after normalizing the parameters such that Bii ≃ 1, i = 1, 2, 3, we set
values of the bounds as xmin = −0.5I4, xmax = 0.5I4, and also umin = −0.5I5, umax =
0.5I5.

The control objective is to regulate the water levels in all the reaches when the initial
water levels are deviated from the normal conditions. Note that the dynamical system is
marginally stable and the B matrix has a block-upper triangular structure, this helps to
easily design a controller to accomplish this objective and result in a stable closed-loop
system. Therefore, the simulation is focused on the convergence property of the optimiza-
tion algorithms, not on the stability of the MPC closed-loop system.

2.4.3 Simulation results

The DMPC methods developed in Section 2.3 are applied to the regulation problem of
the simulated canal system described in previous subsections using the sampling time
Ts = 240s, the prediction horizon N = 10, with a nonzero initial state. We use the
distributed Han’s method with and without the modifications described in Section 2.3,
and compare the results. Figure 2.5 shows the convergence of the distributed solutions
to the centralized solution for the problem. Starting from the same initial guess in the
first MPC step, i.e., all variables are initialized with zeros, the distributed algorithm with
modifications achieves a better convergence rate, allowing the distributed optimization to
converge within an acceptable number of iterations. Similar results were also achieved for
the next MPC steps, when we simulate the closed-loop MPC with Algorithm 2.7 and let
the distributed solutions converge to the centralized solution at every step, with maximally
100 iterations per step. A simulation of closed-loop MPC is performed for 20 sampling
steps. Figure 2.6 confirms that that the distributed solutions converge to the centralized
solutions within 100 iterations per sampling step. Hence the solutions of the distributed
MPC algorithm are also the globally optimal solutions.
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Figure 2.5: Comparison of convergence speeds of two distributed versions of Han’s

method for the first sampling time step (k=1)

2.5 Discussion on distributed Han’s methods

Two distributed versions of Han’s method have been described in Section 2.3, followed
by a short demonstration of their usage in Section 2.4. Although these algorithms help to
implement Han’s method in a distributed setting for MPC, there are still some theoretical
issues that need to be addressed.

Firstly, the proposed distributed algorithms deal with positive definite quadratic programs
only. Although many MPC problems for linear time-invariant systems are formulated as
quadratic programs, there are other variants that use different objective functions, and
nonlinear MPC would also yield more complicated optimization problems than quadratic
programs. With such problems, we might not be able to implement Han’s parallel method
in a distributed fashion. This issue motivates the research on other decomposition methods
that can handle more general problems, e.g., convex problems with linear or decoupled
nonlinear constraints. Although Han’s parallel algorithm can still be applied to general
nonlinear convex programs, it is difficult to derive a distributed version of Han’s method
for most of the nonlinear problems.

It is worth to address the conservativeness of the MPC formulation using the terminal
point constraint xN = 0, which reduces the domain of attraction of MPC. However, this
issue is not related to Han’s method. In case we want to use less conservative MPC, e.g.,
MPC with a terminal constraint set and a terminal controller, we need to find a separa-
ble terminal penalty function and local terminal constraint sets. However, to the authors’
best knowledge, there is still no distributed scheme available to construct local terminal
constraint sets and local terminal controllers (and also the terminal penalty matrix that is
solution of the Riccati equation), other than assuming them to be completely decoupled.
Therefore, although distributed Han’s method can also be applied to any uniformly convex
QP problem with a sparse coupling structure, it requires further research on MPC formu-
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tributed solutions using Algorithm 2.7 versus iteration step p and sampling time step

k

lations that have such optimization problems and can guarantee stability with centralized
MPC.

In general, Han’s method has a slow convergence rate due to its iterative projection nature,
which is inherited by Algorithm 2.3. Since the feasibility and stability properties are de-
rived upon convergence of the algorithm within each sampling step, we need to speed up
the convergence of this method. The distributed version of Han’s method with scaling can
improve the convergence rate significantly, as was illustrated in Section 2.4. However, its
proof of convergence is still lacking. We observe that in setups that are more complicated,
the proposed method to choose the scaling vector does not always work well (sometimes
after several sample steps, the algorithm does not converge anymore). Due to the require-
ment not to have global communications, it is difficult to adjust the scaling vector during
the iteration to reach convergence. Therefore, speeding up Han’s method while providing a
proof for convergence is still an open issue, and we may use a coordinator at a higher level
of hierarchy that has global communication capabilities to tackle this issue.

Another issue is due to the formulation of the optimization problem for MPC, where we
keep both inputs and states as variables of the centralized optimization problem and do not
eliminate the states using the dynamic model equations. This formulation is advantageous
in distributed MPC because the Hessian will then keep a block diagonal structure, and the
neighborhood of each subsystem will only contain its direct neighbors (the neighborhood
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would be greatly extended if we eliminate the states in the optimization problem). How-
ever, using states as variables requires considering the dynamical equations as equality
constraints of the optimization problem, and the existence of equality constraints typically
requires an exact solution in order to guarantee feasibility. Since Han’s method converges
asymptotically, we may not be able to get the exact optimal multipliers in real-time, and
then the corresponding primal iterates would not be guaranteed to be feasible. In general,
most dual decomposition methods do not provide primal feasible solutions before reaching
the dual optimal solutions, so this feasibility issue also applies to other dual decomposition
methods.

2.6 Conclusions

A decomposition approach based on Fenchel’s duality and Han’s parallel method has been
developed in this chapter, resulting in two distributed algorithms that are applicable to
DMPC. The first distributed algorithm generates updates that are the same as those com-
puted globally by Han’s method for definite quadratic problems, and therefore it has the
same convergence property as Han’s method. Moreover, feasibility and stability of DMPC
are achieved upon convergence of the iterations. The second distributed algorithm aims
to improve the convergence speed by using scaled step sizes and nonzero initial guesses.
The new methods have been applied to an example irrigation canal network, demonstrating
their applicability for water networks and can also be applied to other networked systems.
We have also summarized open issues of using Han’s method and other dual decomposi-
tion methods for MPC, including the topics of separable problem formulation, convergence
rate, primal feasibility, and stability of MPC. Several issues will be addressed in the next
chapters.





Chapter 3

Distributed proximal gradient methods
for convex optimization problems

We consider optimization problems with mixed L1/L2-norm terms in the cost
function and sparsely coupled constraints, and propose distributed optimization
algorithms based on classical proximal gradient and accelerated proximal gradi-
ent methods using dual decomposition. We show that the distributed algorithm
based on classical proximal gradient method is similar to distributed Han’s algo-
rithm described in Chapter 2 and has the low convergence rate for first-order gra-
dient methods, O( 1

k
), where k is the iteration number. The distributed algorithm

based on accelerated proximal gradient method achieves a significantly higher
convergence rate, O( 1

k2 ). We also provide the optimal step-size of the presented
algorithms.

3.1 Introduction

Han’s method and its distributed versions presented in Chapter 2 can be classified as op-
timization algorithms that use first-order derivatives of the cost function; from now on we
refer to this class of algorithms as gradient-based methods. The fact that Han’s method
exhibits slow convergence is not surprising, as it is well-known that classical gradient-
based methods often have poor convergence rates. It has been shown in Bertsekas (1999),
Nesterov (2004) that for functions with a Lipschitz-continuous gradient, i.e., smooth func-
tions, classical gradient-based methods converge with the function error reduced at a rate
of O( 1

k
), where k is the iteration number. Nemirovskii and Yudin (1983) have shown that

a lower bound on the convergence rate for gradient-based methods is O( 1
k2 ). Nesterov has

shown in his work (Nesterov, 1983) that an accelerated gradient algorithm can be con-
structed such that this lower bound on the convergence rate is achieved when minimizing
unconstrained smooth functions. This result has been extended and generalized in several
publications to handle constrained smooth problems and smooth problems with an addi-
tional non-smooth term (Nesterov, 1988, 2005, Beck and Teboulle, 2009, Tseng, 2008).

33
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Gradient-based optimization methods are known for their simplicity and low complexity
within each iteration. Hence they are favorable for distributed implementation, especially
when they are used in combination with dual decomposition techniques. Recently, dis-
tributed MPC approaches based on distributed gradient-based methods for the dual prob-
lem have been studied (Giselsson and Rantzer, 2010, Negenborn et al., 2008), as well as
the distributed version of Han’s algorithm presented in Chapter 2. The above mentioned
methods rely on gradient-based optimization, which suffers from low convergence rates.
In addition, the step size parameter in the gradient scheme must be chosen appropriately
to get a good performance. Such information has not been provided or has been chosen
conservatively in these distributed MPC approaches.

In this chapter we propose a new distributed optimization algorithm that can be used for
distributed MPC. The underlying algorithm is an accelerated gradient method to solve
the dual problem instead of the classical gradient method. We also extend the class of
problems considered by allowing an additional sparse but non-separable 1-norm term in
the cost function. Such 1-norm terms are used as regularization term or as penalty for
soft constraints (Savorgnan et al., 2011). Furthermore, we also provide the optimal step-
size parameter for the algorithm, which is crucial for performance. The convergence rate
for the dual function value using the accelerated gradient method is known from Beck
and Teboulle (2009), Tseng (2008). This convergence rate in the dual function value does,
however, not indicate the rate at which the primal iterate approaches the primal optimal
solution. In this chapter we also provide convergence rate results for the primal variables.

Related to this method is the approach presented in Necoara and Suykens (2008) for sys-
tems with a (non-strongly) convex cost, which is based on the smoothing technique pre-
sented in Nesterov (2005) and makes use of a proximal gradient method. Other relevant
work is presented in Kögel and Findeisen (2011), Richter et al. (2009) in which optimiza-
tion problems arising in MPC are solved in a centralized fashion using accelerated gradient
methods. These three methods are, however, restricted to handle only box-constraints on
the control signals. The accelerated proximal gradient method presented in this chapter is
able to handle arbitrary linear constraints.

The chapter is organized as follows. In Section 3.2, the problem setup is introduced. The
dual problem to be solved is formulated in Section 3.3 and some properties of the dual
function are presented. The distributed solution algorithm for the dual problem is presented
in Section 3.4, followed by the convergence properties of the algorithm in Section 3.5.
Section 3.6 concludes this chapter.

3.2 Problem setup

In this chapter we present a distributed algorithm for optimization problems of the form

min
x

J(x) ,
1

2
xTHx+ gTx+ γ‖Px− p‖1 (3.1)

s.t. A1x = B1

A2x ≤ B2
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The full decision vector, x ∈ R
n, is composed of local decision vectors, xi ∈ R

ni ,
according to x = [xT

1 , . . . , x
T
M ]T . The quadratic cost matrix H ∈ R

n×n is assumed
separable, i.e. H = blkdiag(H1, . . . , HM ) where Hi ∈ R

ni×ni , the operator blkdiag
stands for constructing a block-diagonal matrix from the elemental matrices. This quadratic
term in the cost function encompasses the standard MPC cost as in (1.7). The linear part
g ∈ R

n consists of local parts, g = [gT1 , . . . , g
T
M ]T where gi ∈ R

ni . Further P ∈ R
m×n

is composed of P = [P1, . . . , Pm]T where each Pr ∈ R
n which in turn consists of

Pr = [PT
r1, . . . , P

T
rM ]T with each Pri ∈ R

ni . The matrix P is not necessarily block-
diagonal, which means that the cost function J is not separable. However, we do assume
that the vectors Pr have sparse structure. Sparsity refers to the property that for each
r ∈ {1, . . . ,m}, we have Pri = 0 for most of the indices i ∈ {1, . . . ,M}. We also
have γ > 0 and p = [p1, . . . , pm]T with p1, . . . , pm scalars. This gives the following
equivalent formulation of the cost function of (3.1)

J(x) =

M∑

i=1

[
1

2
xT
i Hixi + gTi xi

]

+

m∑

r=1

∣
∣
∣
∣
∣

M∑

i=1

PT
rixi − pr

∣
∣
∣
∣
∣
. (3.2)

The constraint matrices A1 ∈ R
q×n and A2 ∈ R

(s−q)×n contain al ∈ R
n as A1 =

[a1, . . . , aq]
T and A2 = [aq+1, . . . , as]

T . Further each al = [aTl1, . . . , a
T
lM ]T where ali ∈

R
ni . Further we have B1 ∈ R

q and B2 ∈ R
s−q where B1 = [b1, . . . , bq]

T and B2 =
[bq+1, . . . , bs]

T , with b1, . . . , bs ∈ R. We assume that the matrices A1 and A2 are sparse.

By introducing the auxiliary variables xa and the constraint Px − p = xa we get the
following optimization problem:

min
x,xa

1

2
xTHx+ gTx+ γ‖xa‖1 (3.3)

s.t. A1x = B1

A2x ≤ B2

Px− p = xa

Remark 3.1 Problem (3.3) is more general than problem (2.1), due to the presence of a

linear term and a 1-norm term in the cost function, and the last equality constraint.

The objective of the optimization routine is to solve (3.3) in a distributed fashion using
several computational units, where each computational unit computes the optimal local
variables, x∗

i , only. Each computational unit is assigned a number of constraints in (3.3)
that it is responsible for. This is similar to the way we assign the responsibility of each
local controller in Section 2.3.1 of Chapter 2. We denote the set of equality constraints
that unit i is responsible for by L1

i , the set of inequality constraints by L2
i , and the set of

constraints originating from the 1-norm by Ri. This division is obviously not unique, but
all constraints should be assigned to one computational unit. Further for l ∈ L1

i and l ∈ L2
i

we require that ali 6= 0 and for r ∈ Ri that Pri 6= 0. The neighborhood set for each
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computational unit i can be defined using the following relation:

N i =
{
j ∈ {1, . . . ,M} | ∃l ∈ L1

i s.t. alj 6= 0 or ∃l ∈ L1
j s.t. ali 6= 0

or ∃l ∈ L2
i s.t. alj 6= 0 or ∃l ∈ L2

j s.t. ali 6= 0
or ∃r ∈ Ri s.t. Prj 6= 0 or ∃r ∈ Rj s.t. Pri 6= 0

}

Remark 3.2 Since we focus on the optimization aspect in this chapter, the neighborhood

sets are formulated based on the couplings appearing in the centralized optimization prob-

lem. Note that the same neighborhood sets can also be obtained by analyzing the couplings

in the dynamics and in the constraints of the MPC problem, as described in Section 1.2 in

Chapter 1. Hereby we provide the formulation of neighborhood sets from the optimization

problem structure.

Through the introduction of these sets the constraints that are assigned to unit i can equiv-
alently be written as

aTl x = bl ⇔
∑

j∈N i

aTljxj = bl, l ∈ L1
i (3.4)

aTl x ≤ bl ⇔
∑

j∈N i

aTljxj ≤ bl, l ∈ L2
i (3.5)

and the component inside the 1-norm term can equivalently be written as

PT
r x− pr =

∑

j∈N i

PT
rjxj − pr, r ∈ Ri (3.6)

In the following section, the dual function to be maximized is introduced. First, we state
some assumptions that are necessary for results in this chapter.

Assumption 3.1 We assume that each Hi in (3.2) is a real symmetric positive definite

matrix that satisfies the following eigenvalue bounds

σiI � Hi � σ̄iI

where 0 < σi ≤ σ̄i < ∞.

Remark 3.3 If Assumption 3.1 holds, the corresponding bound for H becomes σI � H �
σ̄I where σ := mini σi and σ̄ := maxi σ̄i. Also note that since H is positive definite we

have 1
σ
I � H−1 � 1

σ̄
I (Horn and Johnson, 1990, Corollary 7.7.4).

Assumption 3.2 We assume that there exists a vector x̄ such that A1x̄ = b1 and A2x̄ <
b2, this means x̄ is a Slater vector (Bertsekas, 1999, Proposition 3.3.9) of problem (3.1).
Further, we assume that al, l = 1, . . . , q and Pr , r = 1, . . . ,m are linearly independent.

Remark 3.4 Assumption 3.2 is the Slater condition also for (3.3), since we can choose

x̄a = P x̄ − p, and the point (x̄, x̄a) satisfies the equality constraints and strictly satisfies

the inequality constraints of (3.3).
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3.3 Dual problem

In this section we introduce a dual problem to (3.3) from which the primal solution can be
obtained. We show that this dual problem has the properties required to apply accelerated
gradient methods. We also present some additional properties that are needed to prove
convergence rates for the primal variables.

3.3.1 Formulation of the dual problem

We introduce Lagrange multipliers1, λ ∈ R
q, µ ∈ R

s−q
≥0 , v ∈ R

m for the constraints in
(3.3). Under Assumption 3.2 it is well known (Boyd and Vandenberghe, 2004, §5.2.3) that
there is no duality gap and we can obtain the following dual problem

sup
λ,µ≥0,ν

inf
x,xa

{
1

2
xTHx+ gTx+ γ‖xa‖1 + λT (A1x−B1)+

+ µT (A2x−B2) + νT (Px− p− xa)

}

. (3.7)

Rearranging the terms and changing infx(·) to − supx(−(·)) leads to

sup
λ,µ≥0,ν

{

− sup
x

[

− (AT
1 λ+AT

2 µ+ PT ν + g)Tx−
1

2
xTHx

]

(3.8)

− λTB1 − µTB2 − νT p− sup
xa

[
νTxa − γ‖xa‖1

]
}

.

The supremum over xa can be solved explicitly:

sup
xa

{
νTxa − γ‖xa‖1

}
= sup

xa

{
∑

i

[
νixi

a − γ|xi
a|
]

}

=
∑

i

{

sup
xi
a

[
νixi

a − γ|xi
a|
]

}

=

{
0 if ‖ν‖∞ ≤ γ
∞ else

where the superscript i indicates the i-th element in the vector. The supremum over xa

becomes a box-constraint for the dual variables ν. This is crucial for distribution of the
algorithms to be presented in this chapter, since we have a dual problem with only box-
constraints that allows gradient-based proximal gradient methods to be applied, where the
gradient iterations can be distributed.

Before we explicitly solve the maximization over x in (3.8) the following notation is intro-

1The same dual problem can also be formed using Fenchel’s duality. In this formulation we use Lagrange’s
duality that is easier to follow.
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duced

A = [AT
1 AT

2 PT ]T B = [BT
1 BT

2 pT ]T z = [λT µT νT ]T

where A ∈ R
(s+m)×n, B ∈ R

s+m, and z ∈ R
s+m. We also introduce the set of feasible

dual variables

Z =







zl ∈ R l ∈ {1, . . . , q}
z ∈ R

s+m zl ≥ 0 l ∈ {q + 1, . . . , s}
|zl| ≤ γ l ∈ {s+ 1, . . . , s+m}






(3.9)

Completion of squares in the maximization over x in (3.8) gives

sup
x

[

− (AT
z + g)Tx−

1

2
x
T
Hx

]

=
1

2
(AT

z + g)TH−1(AT
z + g)

and we get the following dual problem

sup
z∈Z

{

−
1

2
(AT z + g)TH−1(AT z + g)− BT z

}

. (3.10)

We introduce the following definition of the negative dual function

f(z) :=
1

2
(AT z + g)TH−1(AT z + g) + BT z (3.11)

It is easily seen that f is convex and differentiable with the following gradient:

∇f(z) = AH−1(AT z + g) + B. (3.12)

Next we show some properties of the dual problem.

3.3.2 Properties of the dual problem

The dual function has the following properties:

Proposition 3.1 The gradient, ∇f , is Lipschitz continuous on Z , i.e., there exists a value

L > 0 such that for any z1 ∈ Z and z2 ∈ Z we have

‖∇f(z1)−∇f(z2)‖2 ≤ L‖z1 − z2‖2. (3.13)

Further, the Lipschitz constant L = ‖AH−1AT ‖2 is the smallest constant such that (3.13)
holds for all z1 ∈ Z and z2 ∈ Z .

Proof. For convenience we introduce HA = AH−1AT . We have

‖∇f(z1)−∇f(z2)‖2 = ‖HA(z1 − z2)‖2 ≤ ‖HA‖2‖z1 − z2‖2

due to the Cauchy-Schwarz inequality. This shows that (3.13) holds. Next we show that
L = ‖HA‖2 is the smallest Lipschitz constant on Z . From the definition (3.9) of Z we
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conclude that there exist z1 ∈ Z and z2 ∈ Z such that the difference dz = z1 − z2 is
parallel to the eigen-vector vmax(HA) corresponding to the largest eigenvalue λmax(HA).
Let ‖dz‖2 = ǫ, by choosing vmax(HA) such that ‖vmax(HA)‖ = 1 we get for some
z1, z2 ∈ Z:

‖∇f(z1)−∇f(z2)‖2 = ‖HA(z1 − z2)‖2 = ‖HAdz‖2

= ‖HAvmax(HA)ǫ‖2

= λmax(HA)ǫ‖vmax(HA)‖2

= ‖HA‖2ǫ = ‖HA‖2‖dz‖2

= ‖HA‖2‖z1 − z2‖2

Since the equality can be attained, there is no Lipschitz constant that is smaller than
‖HA‖2. This completes the proof. �

Remark 3.5 Note that it is known from (Nesterov, 2005, Theorem 1) that ∇f is Lipschitz

continuous. However, the Lipschitz constant provided in Nesterov (2005), L̄ = 1
σ
‖A‖2, is

larger than the one presented here. We will see in the next section that a smaller Lipschitz

constant will lead to a faster convergence rate of the algorithm.

We also present the following results on the set of optimal dual variables:

Proposition 3.2 Let Z∗ denote the set of optimal dual variables, defined as

Z∗ = {z∗ ∈ Z | f(z∗) ≤ f(z) ∀z ∈ Z}

The following statements hold:

1. Z∗ is non-empty and bounded

2. For any z∗ ∈ Z∗ and any z ∈ Z , we have

f(z)− f(z∗) ≥
1

2σ̄
‖AT (z − z∗)‖22. (3.14)

Proof. Under Assumption 3.2 it is well known (Rockafellar, 1970, Corollary 28.2.2) that
the set Z∗ is non-empty. Furthermore, from Gauvin (1977) we know that Assumption 3.2
is equivalent to the Mangasarian-Fromovitz Constraint Qualification (MFCQ). In Gauvin
(1977) it is shown that MFCQ is equivalent to Z∗ being bounded. This proves statement 1.

To prove statement 2 we introduce f1(y) = 1
2y

TH−1y, which gives f(z) = f1(AT z +
g)+BT z. From Remark 3.3 we know that H−1 � 1

σ̄
I and hence that f1 is strongly convex

and satisfies (cf. (Nesterov, 2004, Definition 2.1.2))

f1(y1) ≥ f1(y2) + 〈∇f1(y2), y1 − y2〉+
1

2σ̄
‖y1 − y2‖

2
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We set y1 = AT z + g for any z ∈ Z and y2 = AT z∗ + g for any z∗ ∈ Z∗. This gives

f(z) = f1(A
T z + g) + BT z

≥ f1(A
T z∗ + g) + 〈∇f1(A

T z∗ + g),AT z + g −AT z∗ − g〉

+
1

2σ̄
‖AT z + g −AT z∗ − g‖22 + BT z + BT (z∗ − z∗)

= f(z∗) + 〈A∇f1(A
T z∗ + g) + B, z − z∗〉+

1

2σ̄
‖AT (z − z∗)‖22

= f(z∗) + 〈∇f(z∗), z − z∗〉+
1

2σ̄
‖AT (z − z∗)‖22

≥ f(z∗) +
1

2σ̄
‖AT (z − z∗)‖22

where the last inequality comes from the first-order optimality condition for convex func-
tions (cf. (Nesterov, 2004, Theorem 2.2.5))

〈∇f(z∗), z − z∗〉 ≥ 0.

for any z ∈ Z and z∗ ∈ Z∗. This completes the proof. �

Let us summarize the use of these propositions in the following section. Proposition 3.1
provides the smallest Lipschitz constant of ∇f that will allow choosing the optimal step
size of the algorithm, and it helps to guarantee the convergence of the dual variable to
the dual solution. Proposition 3.2 will be used when proving the convergence rates for the
primal variables in the proximal gradient algorithms.

Remark 3.6 The Lipschitz continuity property of ∇f means that for any z1, z2 ∈ R
s+m

the following holds (cf. Nesterov (2004))

f(z1) ≤ f(z2) + 〈∇f(z2), z1 − z2〉+
L

2
‖z1 − z2‖

2
2 (3.15)

An interpretation of (3.15) is that L is the (smallest) curvature of a quadratic function that

is tangent to f at z2 and is an upper bound to the function f for all z1.

3.4 Distributed proximal gradient algorithms for the dual problem

In this section we present two proximal gradient methods and their distributed versions
that minimize the convex dual function f in (3.11) with different convergence rate prop-
erties. The first method is a classical proximal gradient method that has convergence rate
O( 1

k
), i.e., the distance between the cost function generated in each step and the optimal

cost function decreases in the order of 1
k

. The second method is an accelerated proximal
gradient method that improves the theoretical convergence rate compared to the standard
proximal gradient method with one order of magnitude, i.e., to O( 1

k2 ).
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3.4.1 Distributed classical dual proximal gradient method

The proximal gradient algorithm is described by the following iteration:

zk+1 = arg min
u∈Rs+m

(

δZ(u) + f
(
zk
)
+〈∇f

(
zk
)
, u− zk〉

+
1

2t
‖u− zk‖22

)

where t is the step size, k is the iteration index and δZ(·) is the indicator function for the
set Z , i.e., δZ(u) = 0 if u ∈ Z and δZ(u) = ∞ otherwise. This iteration can equivalently
be written as

zk+1 = argmin
u∈Z

(

f
(
zk
)
+ 〈∇f

(
zk
)
, u− zk〉+

1

2t
‖u− zk‖22

)

.

It was shown e.g., in Nesterov (2004) that convergence is guaranteed with the step size
parameter t ∈ (0, 1/L) where L is the smallest Lipschitz constant of ∇f . It was also
shown that the step size that gives the fastest theoretical convergence rate is t = 1/L.
Recall that Proposition 3.1 provides the smallest L, thus t = 1/L is the optimal choice of
the step size, and therefore we will use this step size for the remainder of the chapter. We
then get

zk+1 = argmin
u∈Z

(

f
(
zk
)
+ 〈∇f

(
zk
)
, u− zk〉+

L

2
‖u− zk‖22

)

(3.16)

where the function to be minimized is exactly the right-hand side of (3.15). Thus, from the
discussion in Remark 3.6 we conclude that the best zk+1 is the one that minimizes, over
Z , the best quadratic upper bound to f that is tangent to f at zk.

By removing f(zk) from (3.16) since it does not affect the minimizing argument, the
iteration (3.16) can equivalently be rewritten as

zk+1 = argmin
u∈Z

(
L

2

∥
∥
∥
∥
u− zk +

1

L
∇f
(
zk
)
∥
∥
∥
∥

2

2

−
1

2L
‖∇f(zk)‖22

)

= argmin
u∈Z

(
L

2

∥
∥
∥
∥
u− zk +

1

L
∇f
(
zk
)
∥
∥
∥
∥

2

2

)

= PZ

(

zk −
1

L
∇f
(
zk
)
)

(3.17)

where PZ is the Euclidean projection onto the set Z . Thus, the new iterate, zk, is the
previous iterate plus a step in the negative gradient direction projected on the feasible set.

Denoting the primal iteration xk = H−1(−AT zk−g) and by inserting the formula of ∇f
from Proposition 3.1, we get the following equivalent iteration

xk = H−1(−AT zk − g) (3.18)

zk+1 = PZ

(

zk +
1

L
(Axk − B)

)

(3.19)
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We recall that the constraint set Z , specified in (3.9), contains only upper and lower
bounds on some variables and that the dual variables are partitioned according to z =
[λT µT νT ]T . Then we see that the iteration (3.18)-(3.19) can be parallelized:

xk = H−1(−AT zk − g) (3.20)

λk+1
l = λk

l +
1

L
(aTl x

k − bl) (3.21)

µk+1
l = max

{
0, µk

l +
1

L
(aTl x

k − bl)
}

(3.22)

νk+1
r = min

{
γ,max

[
− γ, νkr +

1

L
(PT

r xk − pr)
]}
. (3.23)

Remark 3.7 Note that if the 1-norm term γ‖Px− p‖1 does not exist in the original prob-

lem (3.1), the classical proximal gradient algorithm is still applicable with each iteration

consisting of (3.20)–(3.22), and we see that these are the same computations as in Han’s

parallel algorithm for positive definite quadratic programs (see Algorithm 2.2). This obser-

vation shows the similarity between Han’s algorithm and the classical proximal gradient

algorithm, and they are equivalent for positive definite quadratic programs. However, by

studying the classical proximal gradient algorithm, we can obtain its convergence rate,

which is not available with Han’s method.

This algorithm still requires global communication since xk is used in the updates of all
dual variables. However, due to the sparse structure of al and Pr we will see that only
part of the primal update xk is needed in the updates of dual variables. Before we clarify
this statement, we first show how the primal update xk can be computed in a distributed
fashion such that node i computes xk

i only. Let us now partition the constraint matrix as

A = [A1, . . . ,AM ]

where eachAi = [a1i, . . . , asi, P1i, . . . , Pmi]
T ∈ R

(s+m)×ni with ali ∈ R
ni , l = 1, . . . , s

and Pri ∈ R
ni , r = 1, . . . ,m. Recall that H is block-diagonal with block diagonal entries

Hi ∈ R
ni×ni , the local primal variables are updated according to

xk
i = H−1

i

(
−AT

i z
k − gi

)

= −H−1
i

(
∑

j∈N i

[
∑

l∈L1
j

aliλ
k
l +

∑

l∈L2
j

aliµ
k
l +

∑

r∈Rj

Priν
k
r

]

+ gi

)

(3.24)

Thus, each local primal update, xk
i , can be computed after communication with neighbors

j ∈ N i.

Before we state the distributed algorithm we recall that

aTl x
k =

∑

j∈N i

aTljx
k
j , l ∈ L1

i , l ∈ L2
i (3.25)

PT
r xk =

∑

j∈N i

PT
rjx

k
j , r ∈ Ri. (3.26)

The resulting algorithm is described below.
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Algorithm 3.3 Distributed classical proximal gradient algorithm (DCPG)

Initialize λ0, µ0 and ν0.

In every node, i, the following computations are performed in parallel and with synchro-

nization:

For k ≥ 0

1. Compute

xk
i = −H−1

i

(
∑

j∈N i

[
∑

l∈L1
j

aliλ
k
l +

∑

l∈L2
j

aliµ
k
l +

∑

r∈Rj

Priν
k
r

]

+ gi

)

(3.27)

2. Send xk
i to each j ∈ N i, receive xk

j from each j ∈ N i

3. Compute

λk+1
l = λk

l +
1

L

( ∑

j∈N i

aTljx
k
j − bl

)
, l ∈ L1

i (3.28)

µk+1
l = max

{

0, µk
l +

1

L

( ∑

j∈N i

aTljx
k
j − bl

)
}

, l ∈ L2
i (3.29)

νk+1
r = min

{

γ,max

[

− γ, νkr +
1

L

( ∑

j∈N i

PT
rjx

k
j − pr

)
]}

, r ∈ Ri (3.30)

4. Send {λk+1
l }l∈L1

i
, {µk+1

l }l∈L2
i

and {νk+1
r }r∈Ri

to each j ∈ N i,

receive {λk+1
l }l∈L1

j
, {µk+1

l }l∈L2
j

and {νk+1
r }r∈Rj

from each j ∈ N i.

5. Each local controller checks the local termination criteria2. If local termination

criteria are satisfied, the algorithm stops, otherwise increase k and go to step 1) to

start a new iteration.

The convergence result of Algorithm 3.3 will be formulated in Section 3.5.

3.4.2 Distributed accelerated proximal gradient algorithm

In this section we show how the accelerated gradient method can be used to distributively
solve (3.3) by minimizing the negative dual function f . The accelerated proximal gradient
method for problem (3.10) is defined by the following iteration as presented in (Tseng,

2In Chapter 2, we discuss about checking local termination criteria that can also be applied here.
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2008, Algorithm 2) and (Beck and Teboulle, 2009, Eq. (4.1)–(4.3))

vk = zk +
k − 1

k + 2
(zk − zk−1) (3.31)

zk+1 = PZ

(

vk −
1

L
∇f(vk)

)

(3.32)

where PZ is the Euclidean projection onto the set Z . Thus, the new iterate, zk+1, is the
previous iterate plus a step in the negative gradient direction projected onto the feasible
set.

We define the primal iteration xk := H−1(−AT zk − g). Using this definition, straight-
forward insertion of vk into (3.12) gives

∇f(vk) = −A

(

xk +
k − 1

k + 2
(xk − xk−1)

)

+ B

By defining x̄k = xk + k−1
k+2 (x

k − xk−1) and recalling the partition z = [λT µT νT ]T and
the definition (3.9) of the set Z , we find that (3.31)-(3.32) can be parallelized:

xk = H−1(−AT zk − g) (3.33)

x̄k = xk +
k − 1

k + 2
(xk − xk−1) (3.34)

λk+1
l = λk

l +
k − 1

k + 2
(λk

l − λk−1
l ) +

1

L
(aTl x̄

k − bl) (3.35)

µk+1
l = max

{
0, µk

l +
k − 1

k + 2
(µk

l − µk−1
l ) +

1

L
(aTl x̄

k − bl)
}

(3.36)

νk+1
r = min

{
γ,max

[
− γ, νkr +

k − 1

k + 2
(νkr − νk−1

r ) +
1

L
(PT

r x̄k − pr)
]}
. (3.37)

Similarly to the classical proximal gradient version, the step (3.33) can be computed in
parallel by (3.24), the computations (3.35)–(3.37) are distributed with the definitions of
the sets L1

i ,L
2
i ,Ri, i = 1, . . . ,M that have been mentioned in Section 3.1. Also note

that (3.34) can be computed component-wise. Thus, each local primal update, xk
i , can

be computed after communication with neighbors j ∈ N i. Through (3.4)-(3.6) we note
that the dual variable iterations can also be updated after communication with neighbors
i ∈ N i. We get the following distributed algorithm.

Algorithm 3.4 Distributed accelerated proximal gradient (DAPG) algorithm

Initialize λ0 = λ−1, µ0 = µ−1, ν0 = ν−1 and x0 = x−1

In every node, i, the following computations are performed in parallel and with synchro-

nization:

For k ≥ 0

1. Compute xk
i according to (3.24) and set

x̄k
i = xk

i +
k − 1

k + 2
(xk

i − xk−1
i )
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2. Send x̄k
i to each j ∈ N i, receive x̄k

j from each j ∈ N i

3. Compute λk+1
l according to (3.35) for each l ∈ L1

i , with aTl x̄
k computed by (3.4)

Compute µk+1
l according to (3.36) for each l ∈ L2

i , with aTl x̄
k computed by (3.5)

Compute νk+1
l according to (3.37) for each l ∈ Ri, with PT

r x̄k − pr computed by

(3.6)

4. Send {λk+1
l }l∈L1

i
, {µk+1

l }l∈L2
i
, {νk+1

r }r∈Ri
to each j ∈ N i,

receive {λk+1
l }l∈L1

j
, {µk+1

l }l∈L2
j

and {νk+1
r }r∈Rj

from each j ∈ N i

5. Each local controller checks the local termination criteria. If local termination cri-

teria are satisfied, the algorithm stops, otherwise increase k and go to step 1) to

start a new iteration.

In the next section, we will discuss the convergence results of the DAPG algorithm.

3.5 Properties of the distributed proximal gradient algorithms

In the following theorem we characterize the convergence rates for the dual function and
the primal variables using Algorithms 3.3 and 3.4.

Theorem 3.5 Let Assumptions 3.1 and 3.2 hold. Let L be a Lipschitz constant of ∇f , and

σ̄ and σ are maximum and minimum eigenvalues of H , respectively. Algorithm 3.3 has the

following convergence rate properties:

1. Denote z∗ as an optimizer of the dual problem (3.10). The generated cost function

converges to the optimum according to the bound:

f(zk)− f(z∗) ≤
L‖z0 − z∗‖22

2k
, ∀k ≥ 1 (3.38)

2. Denote x∗ as the unique optimizer of the primal problem. The generated primal

variable converges to the optimizer according to the bound:

‖xk − x∗‖22 ≤
σ̄L‖z0 − z∗‖22

σk
, ∀k ≥ 1 (3.39)

Proof.

For the centralized proximal gradient method with iteration (3.16), in which L is the small-
est Lipschitz constant of ∇f(z) as pointed out in Proposition 3.1, the proof for argument 1
has been given in (Toh and Yun, 2010, Theorem 2.1) as well as (Beck and Teboulle, 2009,
Theorem 3.1). We will therefore prove that (3.27)–(3.30) generate the same dual updates
as (3.16).
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As indicated by (3.24), by stacking all xi
k, i = 1, . . . ,M , generated by (3.27) we get xk

as computed by (3.20). Moreover, due to (3.25)–(3.26) we see that (3.28)–(3.30) give the
same λk+1

l , µk+1
l , νk+1

l as (3.21)–(3.23). Thus the computations (3.27)–(3.30) are equiv-
alent with (3.20)–(3.23), which were shown earlier to be the parallel version of (3.16).
Consequently, Algorithm 3.3 is a distributed implementation of (3.16), giving the same
zk, ∀k. This proves (3.38).

For statement 2 we first show that x∗ = H−1(−AT z∗ − g). KKT conditions for the
quadratic programs (Boyd and Vandenberghe, 2004, p. 244) imply that the primal optimal
solution, x∗, and dual optimal solutions z∗ must satisfy

0 = Hx∗ + g +AT z∗ ⇔ x∗ = H−1(−AT z∗ − g)

since H is invertible. This leads to

‖xk − x∗‖22 = ‖H−1(AT zk −AT z∗)‖22

≤ ‖H−1‖22‖A
T zk −AT z∗‖22

≤
1

σ2
‖AT zk −AT z∗‖22

≤
2σ̄

σ2
(f(zk)− f(z∗)) ≤

σ̄L‖z0 − z∗‖22
σk

where the second inequality is based on Remark 3.3, the third inequality on Proposi-
tion 3.2, and the final inequality is from (3.38).

This completes the proof. �

The rate of convergence, O( 1
k
), achieved with Algorithm 3.3 is sub-optimal compared

to what can be achieved by gradient methods. With Algorithm 3.4, we obtain a better
convergence rate, namely O( 1

k2 ), as stated in the following theorem.

Theorem 3.6 Let Assumptions 3.1 and 3.2 hold. Let L be a Lipschitz constant of ∇f , and

σ̄ and σ are maximum and minimum eigenvalues of H , respectively. Algorithm 3.4 has the

following convergence rate properties:

1. Denote an optimizer of the dual problem (3.10) as z∗. The generated cost function

converges to the optimum according to the bound:

f(zk)− f(z∗) ≤
2L‖z0 − z∗‖22

(k + 1)2
, ∀k ≥ 1 (3.40)

2. Denote the unique optimizer of the primal problem as x∗. The generated primal

variable converges to the optimizer according to the bound:

‖xk − x∗‖22 ≤
4σ̄L‖z0 − z∗‖22
σ2(k + 1)2

, ∀k ≥ 1 (3.41)

Proof. The derivation of Algorithm 3.4 shows that it is a distributed implementation of
(Tseng, 2008, Algorithm 2) and (Beck and Teboulle, 2009, Eq. 4.1-4.3) applied to mini-
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mize f . The bound in statement 1 follows from (Tseng, 2008, Proposition 2) and (Beck
and Teboulle, 2009, Theorem 4.4).

The proof for statement 2 is similar to the proof of (3.39), with the use of (3.41) instead of
(3.38) in the last inequality. The inequality chain is as follows:

‖xk − x∗‖22 = ‖H−1(AT zk −AT z∗)‖22

≤ ‖H−1‖2‖AT zk −AT z∗‖22

≤
1

σ2
‖AT zk −AT z∗‖22

≤
2σ̄

σ2
(f(zk)− f(z∗)) ≤

4σ̄L‖z0 − z∗‖22
σ2(k + 1)2

.

where the second inequality is based on Remark 3.3, the third inequality on Proposition 3.2
and the final inequality is from (3.40). This completes the proof. �

3.6 Conclusions

We have presented a distributed optimization algorithm for strongly convex optimization
problems with sparse problem data. The algorithm is based on an accelerated gradient
method that is applied to the dual problem. We have shown that the distributed algorithm
provides a fast convergence rate on the cost function and a corresponding convergence rate
is drawn for the primal variable. The proposed DAPG method can be applied to distributed
MPC with similar subsystem decomposition as when we apply distributed Han’s method,
moreover the DAPG can also deal with the MPC problem where there are mixed 1-norm
and 2-norm terms in the cost function, making it suitable for a larger problem class, e.g.,
reference-tracking MPC problems where the objective of reference-tracking is character-
ized by a 1-norm term in the cost function. The hydro power valley application problem
that we will treat in detail in Chapter 5 belongs to this class of problems.





Chapter 4

Distributed model predictive control
with guaranteed feasibility

This chapter deals with an issue related to the asymptotic convergence of dual de-
composition approaches, which often do not provide a feasible solution of the pri-
mal optimization problem in a finite number of iterations. Our idea is to use a con-
straint tightening approach, and then apply a primal-dual iterative algorithm that
provides bounds on the constraint violation and the suboptimality. We develop
two primal-dual iterative algorithms, leading to two hierarchical MPC methods
that provide feasible solutions in every sampling step, one approach is based on a
hierarchical conjugate gradient method, the other is based on a distributed Jacobi
algorithm. Closed-loop stability is established using bounded suboptimality.

4.1 Introduction

In Chapters 2 and 3, we have presented two distributed schemes based on dual decomposi-
tion for solving large-scale MPC problems with coupling in both dynamics and constraints.
A typical requirement of the dual decomposition-based methods is that the dual problem
needs to be solved exactly. However, the distributed algorithms we proposed in Chapters 2
and 3 are developed upon iterative approaches that only converge asymptotically to the
optimum, which may lead to difficulties when attempting to implement these approaches
in a real-time environment. In the current chapter we present a novel method that is moti-
vated by the use of constraint tightening in robust MPC (Kuwata et al., 2007). This method
allows terminating the iterations for the dual problem before reaching convergence while
still guaranteeing a feasible primal solution to be found. The proposed approach in this
chapter uses a projected gradient method for maximizing the dual function, along with a
primal averaging scheme that yields bounds on constraint violation and the cost function.
With this approach, we develop two algorithms: one is based on a hierarchical conjugate
gradient method, and the other is based on a distributed Jacobi method for solving the
primal problem within each iteration of the projected gradient method. The two resulting
algorithms have a two-layer iteration structure where most of the computation tasks are

49
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done by local controllers, while a few crucial parameters are handled by a coordinator.
The proposed framework guarantees primal feasible solutions and MPC stability using a
finite number of iterations with bounded suboptimality.

This chapter is organized as follows. In Section 4.2, we recall the MPC optimization prob-
lem in this thesis and present its tightened version, which will be used to guarantee fea-
sibility of the original problem even with a suboptimal primal solution. Sections 4.3 and
4.4 provide the main elements of the two algorithms used to solve the dual version of the
tightened optimization problem, together with the properties of the algorithms: we show
that the primal average solution generated by the approximate subgradient algorithm is a
feasible solution of the original optimization problem, and that the cost function decreases
through the MPC updates. This allows it to be used as a Lyapunov function for showing
closed-loop MPC stability. Additional discussion about the realization of the assumptions
is provided in Section 4.5. A simulation example is provided in Section 4.6 to illustrate the
performance of the proposed framework. Section 4.7 concludes the chapter and outlines
future research.

4.2 Problem description

4.2.1 MPC problem formulation

Recall that we have M interconnected subsystems with coupled discrete-time linear time-
invariant dynamics:

xi
k+1 =

M∑

j=1

Aijxj
k +Bijuj

k, i = 1, . . . ,M (4.1)

and the corresponding centralized state-space model:

xk+1 = Axk +Buk (4.2)

with xk = [(x1
k)

T (x2
k)

T . . . (xM
k )T ]T , uk = [(u1

k)
T (u2

k)
T . . . (uM

k )T ]T ,A = [Aij ]i,j∈{1,...,M}

and B = [Bij ]i,j∈{1,...,M}.

We formulate an MPC problem using a terminal penalty and a terminal constraint set. In a
particular time step t the MPC optimization problem is defined as follows:

min
u,x

t+N−1∑

k=t

(

xT
k Qxk + uT

kRuk

)

+ xT
t+NPxt+N (4.3)

s.t. xi
k+1 =

∑

j∈N i

Aijxj
k +Bijuj

k,

i = 1, . . . ,M, k = t, . . . , t+N − 1 (4.4)

xk ∈ X , k = t+ 1, . . . , t+N − 1 (4.5)

xt+N ∈ Xf ⊂ X (4.6)
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uk ∈ U , k = t, . . . , t+N − 1 (4.7)

ui
k ∈ Ωi, i = 1, . . . ,M, k = t, . . . , t+N − 1 (4.8)

xt = x(t) ∈ X (4.9)

where u = [uT
t , . . . , u

T
t+N−1]

T , x = [xT
t+1, . . . , x

T
t+N ]T , the matrices Q, P , and R are

block-diagonal and positive definite, the constraint sets U , X , and Xf are polytopes and
have nonempty interiors, and each local constraint set Ωi is a hyperbox. Each subsystem i
is assigned a neighborhood, denotedN i, containing subsystems that have direct dynamical
interactions with subsystem i, including itself. The initial state xt is the current state at time
step t. Notice that the MPC formulation (4.3)–(4.9) does not incorporate the terminal zero-
point constraint (xt+N = 0) like the MPC problem introduced in (1.10)–(1.14). Moreover,
the approach proposed in this chapter does not handle any equality constraints on the states
except the dynamical constraints (4.4), since those corresponding constraint sets will have
empty interior that prevent constraint tightening, the key idea of this approach.

As U , X , and Xf are polytopes, the constraints (4.5) and (4.6) are represented by linear
inequalities. Moreover, the state vector x is affinely dependent on u. Hence, we can elimi-
nate the state variables xt+1, . . . , xt+N and transform the constraints (4.4), (4.5), and (4.6)
into linear inequalities of the input variable u. Eliminating the state variables in (4.3)–(4.9)
leads to an optimization problem in the following form:

f∗
t = min

u
f(u, xt) (4.10)

s.t. g(u, xt) ≤ 0 (4.11)

u ∈ Ω (4.12)

where f and g = [g1, . . . , gm]T are convex functions, and Ω = Ω × · · · × Ω (N times)
with Ω =

∏M
i=1 Ωi, is a hyperbox. Note that f(u, xt) > 0, ∀u 6= 0, xt 6= 0, due to the

positive definiteness of Q, P , and R.

Following the standard approach of the dual mode MPC formulation (Mayne et al., 2000),
we assume that the following assumptions hold:

Assumption 4.1 There exists a block-diagonal feedback gain K such that the matrix A+
BK is Schur1 (i.e., K yields a decentralized stabilizing control law for the unconstrained

aggregate system).

Assumption 4.2 The terminal constraint set Xf is strictly positively invariant for the

closed-loop system with xk+1 = (A + BK)xk , i.e., if x ∈ int(Xf) then (A + BK)x ∈
int(Xf). In addition, for any state in Xf , the control input generated by the terminal con-

troller should satisfy the input constraints, i.e., −Kx ∈ U ∩Ω, ∀x ∈ Xf .

Remark 4.1 Assumptions 4.1 and 4.2 are necessary to ensure the system will be stable

when its state is driven into the positively invariant set Xf and the MPC controller is

switched to the linear controller u = −Kx. Similar assumptions are typically used in the

dual mode MPC approach, however here we need two stronger conditions. The first one

1A matrix is Schur if all of its eigenvalues are inside the unit circle.
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is the block-diagonal structure of the matrix K that means the existence of decentralized

linear stabilizing controllers within Xf . The second one is that once the linear controller

u = −Kx will keep the state in the interior of Xf for any starting state inside the interior

of Xf , thus also requires that Xf has nonempty interior, this requirement will be used for

updating the Slater vector, which is introduced in the following assumption.

Assumption 4.3 The Slater condition holds for problem (4.11)–(4.12), i.e., there exists a

vector that satisfies (4.11)–(4.12) with strict inequality constraints (Bertsekas, 1999). It is

also assumed that prior to each time step t, a Slater vector ūt is available, such that

{
gj(ūt, xt) < 0, j = 1, . . . ,m
ūt ∈ int(Ω)

(4.13)

Remark 4.2 The Slater condition means that the union of the constraint sets after elimi-

nating state variables in (4.3)–(4.9) has nonempty interior. If this condition holds, we will

only need to find the Slater vector ū0 for the first time step, which can be computed off-

line. In Section 4.5.1 we will show that a new Slater vector can then be obtained for each

t ≥ 1, using Assumption 4.2.

Assumption 4.4 At each time step t, the following holds

f(ut−1, xt−1) > f(ūt, xt) (4.14)

For later reference, we define ∆t > 0 which can be computed before time step t as follows:

∆t = f(ut−1, xt−1)− f(ūt, xt) (4.15)

Remark 4.3 Assumption 4.4 is often satisfied with an appropriate terminal penalty matrix

P . A method to construct a block-diagonalP with a given decentralized stabilizing control

law is provided in Šiljak (1978). Often the terminal state that is inside the set Xf and

the subsequent input generated by the terminal controller u = −Kx both have small

magnitudes, hence if ūt is constructed by shifting ut−1 one step ahead, we can obtain ∆t

approximately as:

∆t ≃ xT
t−1Qxt−1 + uT

t−1Rut−1 (4.16)

Assumption 4.5 For each xt ∈ X , the Euclidean norm of g(u, xt) is bounded:

∃Lt : Lt ≥ ‖g(u, xt)‖2, ∀u ∈ Ω (4.17)

Remark 4.4 In the first time step, with given x0, we can find L0 by evaluating ‖g(u, x0)‖2
at the vertices of Ω; the maximum will then satisfy (4.17) for t = 0, due to the convexity of

g and Ω. For the subsequent time steps, we will present a simple method to update Lt in

Section 4.5.2.

The main focus in this chapter is to solve problem (4.10)–(4.12) in a distributed or hier-
archical manner by using dual decomposition approaches, while guaranteeing feasibility
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and stability of the closed-loop system. Let us denote (ut,xt) as a feasible solution gener-
ated by the controller for problem (4.3)–(4.9) at time step t. This solution is required to be
feasible but not necessarily optimal. In the remaining of this chapter, we will present two
approaches to obtain feasible (ut,xt) at every sampling time, while also guaranteeing sta-
bility of the MPC closed-loop system. Both approaches aim to tighten the constraints that
are (4.11)–(4.12) for the first method and only (4.11) for the second method, then solve the
dual problem using a gradient method. The differences between the two approaches come
from the use of different techniques to solve the minimization of the Lagrangian, which is
required when solving the dual problem.

We now present the tightened problem, which serves as the starting point for both ap-
proaches.

4.2.2 The tightened problem

In our proposed approach to the presented challenges, we will not solve problem (4.10)–
(4.12) directly. Instead, we will first tighten the problem (4.10)–(4.12) before applying
iterative algorithms. Next we describe two ways for constraint tightening that will be used
in two different algorithms.

Tightening of both coupled and decoupled constraints:

Let us combine the two constraints (4.11)–(4.12) into one common form:

h(u, xt) ≤ 0 (4.18)

with h = [h1, . . . , hm+2nu
]T where hj = gj , j = 1, . . . ,m, and hm+1, . . . , hm+2nu

represent the domain constraint (4.12), note that hj is a linear function for every j, due to
the linearity of g and Ω is a convex polytopic set.

With a given Slater vector ūt as mentioned in Assumption 4.3, we can pick a value ct such
that:

0 < ct < min
j=1,...,m+2nu

{−hj(ūt, xt)} (4.19)

and form the tightened problem:

f ′
t
∗
= min

u
f(u, xt) (4.20)

s.t. h′(u, xt) ≤ 0 (4.21)

with the new constraint function h′ defined as:

h′(u, xt) , h(u, xt) + 1m+2nu
ct (4.22)

where 1m+2nu
is a column vector with m+ 2nu entries that are all equal to 1.

Due to (4.13) and (4.19), we have

max
j=1,...,m+2nu

{h′
j(ūt, xt)} = max

j=1,...,m+2nu

{hj(ūt, xt)} + ct < 0 (4.23)
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Hence h′
j(ūt, xt) < 0, j = 1, . . . ,m + 2nu, this means ūt is also a Slater vector for the

constraint (4.21).

Tightening of coupled constraints only:

In the second case, we consider the following tightened problem:

f̃ ′
∗

t = min
u

f(u, xt) (4.24)

s.t. g′(u, xt) ≤ 0 (4.25)

u ∈ Ω (4.26)

with the tightened constraint:

g′(u, xt) , g(u, xt) + 1mc̃t (4.27)

where g′(u, xt) = [g′1, . . . , g
′
m]T and

0 < c̃t < min
j=1,...,m

{−gj(ūt, xt)} (4.28)

Due to (4.13) and (4.28), we have

max
j=1,...,m

{g′j(ūt, xt)} = max
j=1,...,m

{gj(ūt, xt)}+ c̃t < 0 (4.29)

and this also confirms that ūt is a Slater vector for (4.25). Moreover, using (4.17) and the
triangle inequality of the 2-norm, we will get L̃′

t = Lt + c̃t as the norm bound for g′,
i.e., L̃′

t ≥ ‖g′(u, xt)‖2, ∀u ∈ Ω. Note that L̃′
t implicitly depends on xt, as ūt and c̃t are

updated based on the current state xt.

Remark 4.5 Due to the fact that h includes g and additional decoupled constraints, com-

paring (4.19) and (4.28) we see that max ct ≤ max c̃t. This means the range for tuning

ct is narrower than the range for tuning c̃t, i.e., the tightening approach for the function

h is more conservative than tightening g only. It will be shown in the next section that by

tightening also the local constraints, the resulting dual problem can be treated with more

algorithms.

Now we have two tightened optimization problems that are (4.20)–(4.21) and (4.24)–
(4.26). Note that due to the dynamical and constraint couplings in the MPC formulation,
both these problems are large-scale quadratic optimization problems, and we can write the
functions as

f(u, xt) = uTHu+ bT (xt)u (4.30)

h′(u, xt) = Cu− d(xt) + 1m+2nu
ct (4.31)

g′(u, xt) = C̃u− d̃(xt) + 1mc̃t (4.32)

where H is a positive definite matrix, b, d, and d̃ are constant vectors depending on the ini-
tial state value, and both H and C have sparse structure resulting from the interconnection
of subsystems.
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4.2.3 Dual problem formulations

We consider solving the dual problem of (4.20)–(4.21) or (4.24)–(4.26), since the dual
decomposition approach allows dealing with the coupled constraints in a hierarchical way.

The exact dual problem

The Lagrangian of problem (4.20)–(4.21) is defined as

L(u, µ) = f(u) + µTh′(u) (4.33)

in which µ ∈ R
m+2nu

+ is called the dual variable.

The dual function of (4.20)–(4.21),

q′(µ) = min
u

L(u, µ) (4.34)

is a concave function. Note that if f and h′ are continuous functions, and if L(·, µ) attains
the minimum at a unique point u(µ), then according to (Bertsekas, 1999, Proposition
6.1.1), q′ is differentiable everywhere and

∇q′(µ) = h′(u(µ)), ∀µ ∈ R
m+2nu

+ (4.35)

Given the assumption that the Slater condition holds for (4.20)–(4.21), duality theory
(Bertsekas, 1999, Chapter 5) shows that

q′t
∗
= f ′

t
∗

(4.36)

where q′t
∗
= max

µ∈R
m+2nu

+

q′(µ) and f ′
t
∗ is the minimum of (4.20)–(4.21).

The inexact dual problem

Now we consider the dual problem of (4.24)–(4.26), which has the following Lagrangian:

L̃(u, µ) = f(u) + µT g′(u) (4.37)

and the dual function is defined as:

q̃′(µ) = min
u∈Ω

L̃(u, µ) (4.38)

In case an optimum of the Lagrangian is not attained due to termination of the optimization
algorithm after a finite number of steps, a value ũ(µ̄) that satisfies

L̃(ũ(µ̄), µ̄) ≤ min
u∈Ω

L̃(u, µ̄) + δ (4.39)
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will lead to the following inequality:

q̃′(µ) ≤ q̃′(µ̄) + δ + (µ− µ̄)T g′(ũ(µ̄)), ∀µ ∈ R
m
+ (4.40)

where g′(ũ(µ̄)) is called a δ-subgradient of the dual function q̃′ at the point µ̄. The set of
all δ-subgradients of q̃′ at µ̄ is called δ-subdifferential of q̃′ at µ̄.

This also means we do not have to look for a subgradient (or δ-subgradient) of the dual
function, as it is available by just evaluating the constraint function at the primal value
u(µ̄) (or ũ(µ̄)).

In the next sections, we will present a projected gradient method for solving the exact dual
problem of (4.20)–(4.21), and then another method for solving the inexact dual problem of
(4.24)–(4.26).

4.3 Hierarchical MPC using a conjugate gradient method (HPF-DEG)

In this section, we focus on the solution of the optimization problem (4.20)–(4.21), which
needs to be calculated in each MPC update step. For simplicity of exposition, the depen-
dence of functions on xt will be omitted. The main idea is to solve the exact dual problem
of (4.20)–(4.21).

4.3.1 Projected gradient method

The projected gradient iteration for solving (4.20)–(4.21) is given by

u(k) = argmin
u

L(u, µ(k)) (4.41)

µ(k+1) = P
R

m+2nu

+

{

µ(k) + αth
′(k)
}

(4.42)

where k stands for the iteration index, the operator P
R

m+2nu

+

is the projection onto the

nonnegative orthant, αt is the constant step size (used for time step t), µ(k) is the dual
iterate at iteration k (for the first iteration, µ(0) = 0 · 1m), and h′(k) = h′

(
u(k), xt

)
is the

gradient of the dual function q′(µ) at iteration k.

The step size αt for the dual update (4.42) should satisfy the inequality:

αt ≤
2∆t

L′2
t

(4.43)

where ∆t is provided by (4.15), and L′
t is the norm bound for h′(k). This step size is chosen

to facilitate showing the monotonic decrease of f(ut, xt) in Section 4.3.4.

The projected gradient iteration (4.41)–(4.42) is performed for k = 1, . . . , k̄t, with k̄t ∈
Z+ defined a priori as

k̄t ≥
1

αtǫt

(
3

λt

f(ūt) +
αtL

′2
t

2λt

+ αtL
′
t

)

(4.44)
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We will show in Section 4.3.4 that once the number of iterations (4.41)–(4.42) exceeds
k̄t steps, then we will obtain a feasible solution for the original problem (4.10)–(4.11) by
averaging the primal iterates:

û(k̄t) =
1

k̄t

k̄t∑

l=0

u(l) (4.45)

Remark 4.6 In order to implement the algorithm in a hierarchical fashion, we need a

hierarchical method to solve problem (4.41) and perform (4.42). Even though (4.41) is

indeed an unconstrained quadratic optimization problem that has an analytical solution,

we will not use this solution due to the computational burden when inverting the Hessian

matrix. Instead, we will employ a conjugate gradient method (Bertsekas and Tsitsiklis,

1989, Chapter 2) and use a hierarchical implementation to find the solution of (4.41). The

dual update (4.42) will also be done locally by letting each constraint be updated by a

local controller.

In the next subsection, we describe a decomposition of the large-scale system, and present
the hierarchical conjugate gradient method using the decomposition structure.

4.3.2 Subsystem decomposition

Note that the functions f and h′ have particular structure since the matrices Q,P , and R
in the cost function (4.10) are block-diagonal. It is straightforward to verify (Venkat et al.,
2007) that if matrices A and B are sparse (meaning that the large-scale system consists
of subsystems with neighboring interactions only), then H and C will also be sparse, and
b and d will have a structured dependence on xt. Now, consider the following subsystem
decomposition:

• Each subsystem i = 1, . . . ,M has an associated decision variable ui with the same
dimension as u, but containing only the variables corresponding to subsystem i in
its nonzero entries2. We define ui as

ui = Iiu (4.46)

where Ii ∈ R
nu×nu is a diagonal matrix with zeros and ones on its diagonal. Ma-

trices Ii (and thus the subsystem decomposition) are chosen such that there is no
overlap between the subsystems’ variables.

• For each subsystem i, there is a neighborhoodN i that contains i itself and any other
subsystem j that is coupled with i either via the objective function f (i.e., there is at
least one term involving both variables of i and j ∈ N i in f ), or via the constraint
function h′ (i.e., there is at least one constraint that involves some variables of i and
j ∈ N i).

2Typically u
i contains the control inputs of subsystem i over the prediction horizon of the MPC problem.
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In order to distribute the dual update (4.42), we will let each subsystem be in charge of
updating a subset of dual variables, denoted by Di. There are different methods for parti-
tioning the dual variables, among them one simple partitioning algorithm is the following:
if the maximum absolute value of entries in a row r of C corresponds to a variable of
subsystem i, then r ∈ Di. Note that each dual variable is updated by one and only one
subsystem.

Since h′(u) = Cu − d, we see that in order to perform the update (4.42) for the dual
variables within Di, subsystem i will only need to communicate with subsystems j ∈ N i

during iteration k to get the necessary entries of u(k).

4.3.3 Hierarchical conjugate gradient method

The algorithm we propose to use for solving (4.41) is an adaptation of the conjugate gra-
dient method as described in (Bertsekas and Tsitsiklis, 1989, Chapter 2). Hereby we sum-
marize the main steps and underlying ideas of this iterative method:

• The algorithm starts at some u(0) and selects s(0) = −∇uL(u(0), µ(k)) =
−(Hu(0) + b(xt) + CTµ(k)).

• The iteration has the form:

u(p+ 1) = u(p) + γ(p)s(p), p = 0, 1, . . . (4.47)

with p the (inner) iteration index, s(p) the direction of update at iteration p, and γ(p)
an optimal scalar step size.

• The algorithm stops if ∇uL(u(p), µ(k)) = 0. Otherwise, update s(p) by

s(p) = −∇uL(u(p), µ
(k)) + β(p)s(p− 1) (4.48)

where β(p) is generated by

β(p) =
∇T

uL(u(p), µ
(k))∇uL(u(p), µ(k))

∇T
uL(u(p− 1), µ(k))∇uL(u(p− 1), µ(k))

(4.49)

• We update γ(p) by

γ(p) = −
s(p)T∇uL(u(p), µ(k))

s(p)THs(p)
(4.50)

• One feature of this iteration method is the conjugate property of s(p), i.e.,

s(p)THs(r) = 0, ∀r 6= p (4.51)

It has been proved that the conjugate gradient algorithm terminates after at most nu steps3,
where nu is the size of u (Bertsekas and Tsitsiklis, 1989, Chapter 2).

3The number of iterations can be significantly reduced with proper preconditioning.
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For application in hierarchical MPC, it is required that the communications and computa-
tions of (4.47), (4.48), (4.49), (4.50), (4.42) and (4.45) can be done in a hierarchical setting.
We propose to use a hierarchical optimization method, in which a coordinator communi-
cates with all local controllers, and each local controller can also communicate with others
in its neighborhood. In summary, we propose a nested iterative algorithm in which the
outer loop is the projected gradient method for the dual problem (4.41)–(4.42), and the
inner loop is the hierarchical conjugate gradient method for solving (4.41).

Algorithm 4.1 Hierarchical Primal Feasible method with Dual Exact Gradient (HPF-

DEG)

1. Input: ūt, δt, Lt. The coordinator computes ct, λt, αt, and k̄t, then sends ct, αt and

k̄t to all local controllers.

2. Set k = 0. Choose µ(0) = 0 · 1m+2nu
, u(0) = 0 · 1nu

, then each local controller

has u(0)i = 0 · 1nu
.

3. Solve (4.41) at step k by the following iterative process:

(a) Set p = 0. Initialize each local controller i ∈ {1, . . . ,M} with u(0)i = u(k)i.

(b) Each local controller i ∈ {1, . . . ,M} communicates with j ∈ N i to get u(p)j ,

then computes

∇L(u(p))i = Ii
(

H
∑

j∈N i

uj(p) + b+ CTµ(k)

)

(c) Each local controller i ∈ {1, . . . ,M} computes ∇LT (u(p))i∇L(u(p))i, and

then sends the result to the coordinator.

(d) The coordinator makes the sum:

∇LT (u(p))∇L(u(p)) =
M∑

i=1

∇LT (u(p))i∇L(u(p))i

Note that steps 3(b), 3(c), and 3(d) are aimed at updating∇LT (u(p))∇L(u(p)),
which appears in (4.49), by computing its subsystem components.

(e) The coordinator checks whether ∇L(u(p)) = 0. If so, then it announces

“stop” and each controller takes u(k)i = u(p)i. Go to step (4). If ∇L(u(p)) 6=
0, the coordinator computes β(p) by (4.49), and sends β(p) to all local con-

trollers.

(f) Each local controller i ∈ {1, . . . ,M} computes s(p)i = −∇L(u(p))i +
β(p)s(p − 1)i if p > 0, or s(p)i = −∇L(u(p))i if p = 0, and then com-

municates with j ∈ N i to get s(p)j . The purpose of this step is to use local

implementation for computing (4.48).

(g) Each local controller i ∈ {1, . . . ,M} computes [s(p)i]T∇L(u(p))i and also

[s(p)i]TH
∑

j∈N i s(p)j , and then sends these results to the coordinator.
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(h) The coordinator makes the sums:

s(p)T∇L(u(p)) =
M∑

i=1

[s(p)i]T∇L(u(p))i

s(p)T s(p) =

M∑

i=1

{

[s(p)i]TH
∑

j∈N i

s(p)j
}

,

computes γ(p) according to (4.50), and then sends γ(p) to all local controllers.

(i) Each local controller i ∈ {1, . . . ,M} updates u(p+1)i = u(p)i+γ(p)s(p)i.

(j) Set p = p+ 1, go to step 3(b).

4. Each local controller i ∈ {1, . . . ,M} communicates with j ∈ N i to get u(k)j .

5. Each local controller i ∈ {1, . . . ,M} updates the dual variables in the set Di by:

µ(k+1)(l) = PR+

{

µ(k)(l) + αt

( nu∑

v=1

C(l, v)u(k)(v) − d(l)

)}

, ∀l ∈ Di

where all C(l, v) that are nonzero correspond to variables v of the subsystems j ∈

N i, and therefore the knowledge of u(k)j , j ∈ N i is enough for this computation.

6. Set k = k + 1. If k ≤ k̄t, go to step (3).

7. Each local controller i ∈ {1, . . . ,M} computes ûi = 1
k̄t

∑k̄t

k=0 u
(k)i. The corre-

sponding global output is û(k̄t) =
∑M

i=1 û
i.

Remark 4.7 Algorithm 4.1 needs a coordinator to compute and deliver common variables

ct, αt and k̄t to the local controllers. However, most of the computations are carried out by

local controllers. Each local controller needs to exchange information with its neighbors

and the coordinator. Regarding communications, major communications between subsys-

tems are in the order of 2k̄t × nu ×
∑M

i=1 |N
i| messages (occuring at steps 3(b) and 4

of Algorithm 4.1), while the communications between the coordinator and all local con-

trollers are in the order of 2k̄t × nu × M messages (occuring at steps 3(c) and 3(g) of

Algorithm 4.1).

In the next section, we will show that û(k̄t) generated by Algorithm 4.1 is a feasible solu-
tion of (4.10)–(4.11), and it ensures cost reduction for the MPC problem.

4.3.4 Properties of the HPF-DEG algorithm

Denoting the primal average sequence by û(k) = 1
k

∑k
l=0 u

(l) where u(1), . . . ,u(k) are
generated by (4.41), we will make use of the following results (Nedic and Ozdaglar, 2009)
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for k ≥ 1:

∥
∥
∥
∥

[

h′
(

û(k)
)]+

∥
∥
∥
∥
2

≤
1

kαt

(
3

λt

[f(ūt)− q′t
∗
] +

αtL
′2
t

2λt

+ αtL
′
t

)

(4.52)

f
(

û(k)
)

≤ f ′
t
∗
+

∥
∥µ(0)

∥
∥
2

2

2kαt

+
αtL

′2
t

2
(4.53)

where the notation h′+ indicates the constraint violation, i.e., h′+ = max{h′, 0·1m+2nu
}.

Using the constraint violation bound (4.52) and the cost upper bound (4.53) for the tight-
ened problem (4.24)–(4.25), we will show that û(k̄t) is a feasible solution of (4.10)–(4.11),
and f(ut, xt) ≤ f(ut−1, xt−1).

Feasible primal solution

Proposition 4.2 Let Assumptions 4.1–4.5 hold and Algorithm 4.1 be executed until k = k̄t
defined by (4.44). The primal average û(k̄t) is a feasible solution of (4.10)–(4.11).

Proof : Applying the result in (4.52) leads to

∥
∥
∥
∥

[

h′
(

û(k̄t)
)]+

∥
∥
∥
∥
2

≤
1

k̄tαt

(
3

λt

[
f(ūt)− q′t

∗]
+

αtL
′2
t

2λt

+ αtL
′
t

)

Moreover, q′t
∗
= f ′

t
∗ ≥ 0 because f(u) ≥ 0, ∀u due to the use of a positive definite

quadratic stage cost in the MPC setting. We have

∥
∥
∥
∥

[

h′
(

û(k̄t)
)]+

∥
∥
∥
∥
2

≤
1

k̄tαt

(
3

λt

f(ūt) +
αtL

′2
t

2λt

+ αtL
′
t

)

(4.54)

Combining (4.54) and (4.44), and noticing that k̄t and ct are both positive leads to
∥
∥
∥
∥

[

h′
(

û(k̄t)
)]+

∥
∥
∥
∥
2

≤ ct (4.55)

⇒ h′
j

(

û(k̄t)
)

≤ ct, j = 1, . . . ,m+ 2nu (4.56)

⇒ hj

(

û(k̄t)
)

< 0, j = 1, . . . ,m+ 2nu (4.57)

in which the last inequality is due to (4.27). This means that û(k̄t) is a feasible solution of
the problem (4.10)–(4.11). �

Decreasing cost function

Let us recall that the optimization problem formulation is motivated by an MPC problem
for which Assumption 4.4 holds. The following proposition shows that the cost function of
the MPC problem is a decreasing function.
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Proposition 4.3 Let ut−1 and xt−1 be given and satisfy (4.14), and Assumptions 4.1–4.5

hold. Considering ut = û(k̄t) generated by Algorithm 4.1, the following inequality holds:

f(ut, xt) ≤ f(ut−1, xt−1) (4.58)

Proof. Using (4.53), (4.43), and noting that µ(0) = 0 leads to

f(ut, xt) , f
(

û(k̄t)
)

≤ f ′
t
∗
+

αtL
′2
t

2
(4.59)

Due to (4.43), we then have

f(ut, xt) ≤ f ′
t
∗
+∆t (4.60)

Notice that ūt is also a feasible solution of (4.20)–(4.21) (due to the way we construct the
tightened problem: ūt still belongs to the interior of the tightened constraint set), while
f ′
t
∗ is the optimal cost value of this problem. As a consequence,

f ′
t
∗
≤ f(ūt, xt) (4.61)

Combining (4.60), (4.61), and (4.15) results in the cost decrease property: f(ut, xt) ≤
f(ut−1, xt−1) �

In summary, the algorithm HPF-DEG is able to generate a feasible solution for the MPC
optimization problem at each time step t, which is used to show that the cost function is
decreasing thanks to Assumption 4.4. In order to employ this algorithm for hierarchical
MPC, one needs to make sure that a feasible prediction ūt of the input sequence, and a
cost reduction ∆t are available before each time step t. We will discuss the method to
update ūt in Section 4.5.1, while ∆t can be computed by (4.15).

4.4 Hierarchical MPC using a distributed Jacobi method (HPF-DAG)

The objective of this section is to use dual decomposition for the tightened problem (4.24)–
(4.26). This section differs from the previous one by using an inexact dual problem. We
will show that a similar approach as in the previous section can be used, with a distributed
Jacobi algorithm instead of the conjugate gradient method in the inner loop, and extending
the results for the projected gradient method in the outer loop.

Recall that the tightened problem to be considered in this section is:

f̃ ′
∗

t = min
u

f(u, xt) (4.62)

s.t. g′(u, xt) ≤ 0 (4.63)

u ∈ Ω (4.64)
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The Slater condition also holds for the tightened problem (4.62)–(4.64), with ūt being the
Slater vector.

4.4.1 Projected gradient method with approximate gradient

With the same subsystem decomposition as described in Section 4.3.2, we organize our
algorithm for solving (4.10)–(4.12) at time step t in a nested iteration of an outer and inner
loop. The main procedure is described as follows:

Algorithm 4.4 Hierarchical Primal Feasible method with Dual Approximate Gradient

(HPF-DAG)

1. Given a Slater vector ūt of (4.10)–(4.12), determine c̃t and construct the tightened

problem (4.62)–(4.64).

2. Determine the step size α̃t, the suboptimality εt, and k̃t (the sufficient number of

outer iterations), see later in Section 4.4.3.

3. Outer loop: Set µ(0) = 0 · 1m. For k = 0, . . . , k̃, find u(k), µ(k+1) such that:

L̃(u(k), µ(k)) ≤ min
u∈Ω

L̃(u, µ(k)) + εt (4.65)

µ(k+1) = PR
m
+

{

µ(k) + α̃td
(k)

}

(4.66)

where PR
m
+

denotes the projection onto the nonnegative orthant, d(k) = g′
(
u(k), xt

)

is a εt-subgradient of the dual function q̃′ at µ(k) (see (4.40)).

Inner loop:

• Determine p̃k (the sufficient number of inner iterations), see later in Sec-

tion 4.4.5.

• Solve problem (4.65) in a distributed way with a Jacobi algorithm. For p =
0, . . . , p̃k, every subsystem i computes:

ui(p+ 1) =arg min
ui∈Ωi

L̃(u1(p), . . . ,ui−1(p),ui,

ui+1(p), . . . ,uM (p), µ(k)) (4.67)

where Ωi is the local constraint set for control variables of subsystem i.

• Defineu(k) , [u1(p̃k)
T , . . . ,uM (p̃k)

T ]T , which is guaranteed to satisfy (4.65).

4. Compute û(k̃t) = 1
k̃t

∑k̃t

l=0 u
(l), and take ut = û(k̃t) as the solution of (4.10)–

(4.12).
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Remark 4.8 Algorithm 4.4 is suitable for implementation in a hierarchical fashion where

the main computations occur in the Jacobi iterations and are executed in parallel by local

controllers, while the updates of dual variables and common parameters are carried out

by a higher-level coordinating controller. In the inner loop, each subsystem only needs to

communicate with its neighbors, which will be discussed in Section 4.4.6. This algorithm

is also amenable to implementation in distributed settings, where there are communication

links available to help determine and propagate the common parameters α̃t, εt, k̃t, and p̃k.

Remark 4.9 Algorithm 4.4 uses a similar projected gradient update as in (4.41)–(4.42)
for maximizing the dual function; however, it uses the distributed Jacobi iteration for min-

imizing the Lagrangian, as opposed to the conjugate gradient method in Section 4.3.

In the following sections, we will describe further results in terms of an upper bound on the
cost function and the convergence rate of the Jacobi iteration, leading to the determination
of the parameters of the algorithm.

4.4.2 Extended upper bound for the primal cost function

The outer loop at iteration k uses an approximate subgradient method. Let us formulate
the bounds on constraint violation and on the cost function by the next proposition.

Proposition 4.5 The primal average sequence û(k) = 1
k

∑k
l=0 u

(l) generated at iteration

k ≥ 1 of the Algorithm 4.4 has the following properties:

∥
∥
∥
∥

[

g′
(

û(k), xt

)]+
∥
∥
∥
∥
2

≤
1

kα̃t

(
3

γt
[f(ūt, xt)− q̃′

∗

t ] +
α̃tL

′
t
2

2γt
+ α̃L′

t

)

(4.68)

f
(

û(k), xt

)

≤ f̃ ′
∗

t +

∥
∥µ(0)

∥
∥
2

2

2kα̃t

+
α̃tL

′
t
2

2
+ εt (4.69)

where g′+ denotes the constraint violation, i.e., g′+ = max{g′, 0 · 1m}.

Proof. The bound on the constraint (4.68) is from Nedic and Ozdaglar (2009) and was
mentioned before at (4.52), while the bound on the cost (4.69) is an extension of (4.53) for
the case where εt-subgradient is used instead of exact subgradient. Hereby we focus on the
proof for (4.69).

This proof is an extension of the proof of Proposition 3(b) in Nedic and Ozdaglar (2009),
the main difference being the incorporation of the suboptimality εt in the update of the
primal variable (4.65).

Using the convexity of the cost function, we have:

f(û(k)) = f

(

1

k

k−1∑

l=0

u(l)

)

≤
1

k

k−1∑

l=0

f(u(l))

=
1

k

k−1∑

l=0

(
f(u(l)) + (µ(l))T g′(u(l))

)
−

1

k

k−1∑

l=0

(µ(l))T g′(u(l)) (4.70)
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Note that L̃
(
u(l), µ(l)

)
= f(u(l)) + g′(u(l))Tµ(l) and

L̃
(
u(l), µ(l)

)
≤ min

u∈Ω
L̃
(
u(l), µ(l)

)
+ εt = q̃′

(
µ(l)
)
+ εt, ∀l < k (4.71)

Combining the two inequalities above, we then have:

f(û(k)) ≤
1

k

k−1∑

l=0

q̃′
(
µ(l)
)
+ εt −

1

k

k−1∑

l=0

(µ(l))T g′(u(l))

≤ q̃′
∗

t + εt −
1

k

k−1∑

l=0

(µ(l))Td(l) (4.72)

where d(l) = g′(u(l)), and the last inequality is due to q̃′
∗

t ≥ q̃′
(
µ(l)
)
, ∀l.

Using the expression of the squared sum:

‖µ(l+1)‖22 ≤ ‖µ(l) + α̃td
(l)‖22

= ‖µ(l)‖22 + 2α̃t(µ
(l))T d(l) + ‖α̃td

(l)‖22 (4.73)

we have:

−(µ(l))Td(l) ≤
1

2α̃t

(

‖µ(l)‖22 − ‖µ(l+1)‖22 + α̃2
t ‖d

(l)‖22

)

(4.74)

for l = 0, . . . , k − 1.

Summing side by side for l = 0, . . . , k − 1, we get:

−
k−1∑

l=0

(µ(l))Td(l) ≤
1

2α̃t

(

‖µ(0)‖22 − ‖µ(k)‖22

)

+
α̃t

2

k−1∑

l=0

‖d(l)‖22 (4.75)

Linking (4.72) and (4.75), we then have:

f(û(k)) ≤ q̃′
∗

t + εt +
1

2kα̃t

(

‖µ(0)‖2 − ‖µ(k)‖2
)

+
α̃t

2k

k−1∑

l=0

‖d(l)‖2

≤ q̃′
∗

t +
‖µ(0)‖2

2kα̃t

+
α̃tL

′
t
2

2
+ εt (4.76)

in which we get the last inequality by using L′
t as the norm bound for all g′(u(l)), l =

0, . . . , k − 1.

Finally, due to the Slater condition, there is no primal-dual gap, i.e., q̃′
∗

t = f∗
t (cf. (4.36)),

and hence:

f(û(k)) ≤ f ′
t
∗
+

‖µ(0)‖2

2kα̃t

+
α̃tL

′
t
2

2
+ εt

�
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4.4.3 Determining the step size α̃t, the suboptimality εt, and the outer loop termi-
nation step k̃t

Similarly to Section 4.3, we need to determine α̃t, εt, and k̃t such that at the end of the
algorithm, we will get a feasible solution for problem (4.10)–(4.12), which is the average
of primal iterates generated by (4.65):

ut , û(k̃t) =
1

k̃t

k̃t∑

l=0

u(l) (4.77)

and the monotonic decrease of the cost function, i.e., f(ut, xt) < f(ut−1, xt−1).

The step size α̃t and the suboptimality εt should satisfy:

α̃tL
′
t
2

2
+ εt ≤ ∆t (4.78)

where ∆t is defined in (4.15), and L′
t is the norm bound for g′. This condition allows us to

show the monotonic decrease of the cost function in problem (4.3)–(4.9), which can then
be used as a Lyapunov function.

Note that a larger α̃t will lead to a smaller number of outer iterations, while a larger εt will
lead to a smaller number of inner iterations. For the remainder of the chapter we choose
their values according to

α̃t =
∆t

L′
t
2 (4.79)

εt =
∆t

2
(4.80)

The subgradient iteration (4.65)–(4.66) is performed for k = 1, . . . , k̃t, with k̃t ∈ Z+

defined a priori as

k̃t ≥
1

α̃tct

(
3

γt
f(ūt, xt) +

α̃tL
′
t
2

2γt
+ α̃tL

′
t

)

(4.81)

where γt = minj=1,...,m{−g′j(ūt, xt)} = minj=1,...,m{−gj(ūt, xt)} − c̃t, and ūt is the

Slater vector of (4.62)–(4.64). This choice of k̃t comes from the results in Proposition 4.5,
so that after k̃t outer iterations, Algorithm 4.4 generates a feasible solution, as will be
pointed out in Section 4.4.6.

4.4.4 Convergence rate of the distributed Jacobi algorithm

The inner iteration (4.67) performs parallel local optimizations based on a standard Jacobi
distributed optimization method for a convex function L̃(u, µ(k)) over a Cartesian product
set Ω, as described in (Bertsekas and Tsitsiklis, 1989, Section 3.3). In order to find a suffi-
cient stopping condition for this Jacobi iteration, we need to characterize the convergence
rate of this algorithm.
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Firstly, let us define the block-maximum 2-norm of a vector.

Definition 4.1 For a vector x = [xT
1 , . . . , x

T
M ] with xi ∈ R

ni , let p denote the tuple

(n1, . . . , nM ) and let ‖ · ‖2 stand for the Euclidean norm. The block-maximum 2-norm of

x with respect to the partitioning p is defined as:

‖x‖b−m,2,p = max
i

‖xi‖2 (4.82)

Next we provide the condition for convergence of the Jacobi iteration. Note that since
f(u, xt) is a strictly convex quadratic function, and g′(u, xt) contains only linear func-
tions, the function L̃(u, µ(k)) is also a strictly convex quadratic function with respect to u.
Hence, it can be written as:

L̃(u, µ(k)) = uTHu+ bTu+ c (4.83)

where H is a symmetric, positive definite matrix, b is a constant vector and c is a constant
scalar.

Proposition 4.6 Suppose the following condition holds:

λmin(Hii) >
∑

j 6=i

σ̄(Hij), ∀i (4.84)

where Hij with i, j ∈ {1, . . . ,M} denotes the submatrix of the Hessian H of L̃ w.r.t. u,

containing entries of H in rows belonging to subsystem i and columns belonging to subsys-

tem j, λmin denotes the smallest eigenvalue, and σ̄ denotes the maximum singular value.

Then there exists φ ∈ (0, 1) such that the aggregate solution of the Jacobi iteration (4.67)
satisfies:

‖u(p)− u∗‖2 ≤ Mφp max
i

‖ui(0)− ui∗‖2, ∀p ≥ 1 (4.85)

where u∗ = argminu∈Ω L̃(u, µ(k)), and ui∗ is the component of subsystem i in u∗.

Proof. According to Proposition 3.10 in (Bertsekas and Tsitsiklis, 1989, Chapter 3), the
Jacobi algorithm has a linear convergence w.r.t. the block-maximum 2-norm.

Proposition 3.10 in (Bertsekas and Tsitsiklis, 1989, Chapter 3) states that u(p) generated
by (4.67) will converge to the optimizer of L̃(u, µ(k)) with a linear convergence rate w.r.t.
the block-maximum 2-norm (i.e. ‖u(p) − u∗‖b−m,2,p ≤ φp‖u(0) − u∗‖b−m,2,p, with
u∗ = argminu∈Ω L̃(u, µ(k)) and φ ∈ [0, 1)) if there exists a positive scalar γ such that
the mapping R : Ω → R

nu , defined by R(u) = u−γ∇uL̃(u, µ(k)), is a contraction w.r.t.
the block-maximum 2-norm.

Our focus now is to derive a condition such that R(u) is a contraction mapping.

In order to derive a condition for R(u) to be a contraction mapping, we will make use of
Proposition 1.10 in (Bertsekas and Tsitsiklis, 1989, Chapter 3) for the 2-norm case, stating
that:
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If f : Rnu → R
nu is continuously differentiable and there exists a scalar φ ∈ [0, 1) such

that

‖I − γG−1
i

(
∇iFi(u)

)T
‖2 +

∑

j 6=i

‖γG−1
i

(
∇jFi(u)

)T
‖2 ≤ φ, ∀u ∈ Ω, ∀i (4.86)

then the mapping T : Ω → R
nu defined by Ti(u) = ui−γG−1

i F (u) for each component
i ∈ {1, . . . ,M} is a contraction with respect to the block-maximum 2-norm.

The mapping T (u) will become the mapping R(u) if we choose Gi = Inu
i , ∀i (the iden-

tity matrix with the size nui), and take F (u) = ∇uL̃(u, µ(k)) = 2Hu + b. With such
choice, and evaluating the induced 2-norm in (4.86), the condition for contraction map-
ping of R(u) is to find φ ∈ [0, 1) such that:

‖Inu
i − 2γHii‖2 +

∑

j 6=i

‖2γHij‖2 ≤ φ, ∀i (4.87)

where Hij with i, j ∈ {1, . . . ,M} denotes the submatrix of H containing entries at rows
belonging to subsystem i and columns belonging to subsystem j. Note that the matrix
Inu

i − 2γHii inside the first induced matrix norm is a square, symmetric matrix, while
the matrices Hij are generally not symmetric, depending on the number of variables of
each subsystem. The scalar φ ∈ [0, 1) is also the modulus of the contraction.

Using the properties of eigenvalue and singular value of matrices, we transform (4.87) into
the following inequality:

max
λ

|2γλ(Hii)− 1|+ 2γ
∑

j 6=i

σ̄(Hij) ≤ φ, ∀i (4.88)

where λ means eigenvalue, and σ̄ denotes the maximum singular value.

In order to find γ > 0 and φ ∈ [0, 1) satisfying (4.88), we need:

max
λ

|2γλ(Hii)− 1|+ 2γ
∑

j 6=i

σ̄(Hij) < 1, ∀i (4.89)

⇔

{
2γλmax(Hii)− 1 + 2γ

∑

j 6=i σ̄(Hij) < 1

1− 2γλmin(Hii) + 2γ
∑

j 6=i σ̄(Hij) < 1
, ∀i (4.90)

⇔

{

γ < 1/
(

λmax(Hii) +
∑

j 6=i σ̄(Hij)
)

λmin(Hii) >
∑

j 6=i σ̄(Hij)
, ∀i (4.91)

where λmax(·) and λmin(·) respectively denotes the maximum and the minimum eigen-
value of a square and symmetric matrix.

The first inequality of (4.91) shows how to choose γ, while the second inequality of (4.91)
needs to be satisfied by the problem structure, which implies there are weak dynamical

couplings between subsystems.
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In summary, the mapping R(u) satisfies (4.86) and thus is a contraction mapping if the
following conditions hold:

1. For all i:

λmin(Hii) >
∑

j 6=i

σ̄(Hij) (4.92)

2. The coefficient γ is chosen such that:

γ <
1

λmax(Hii) +
∑

j 6=i σ̄(Hij)
, ∀i (4.93)

So, when condition (4.92) is satisfied and with γ chosen by (4.93), we can defineφ ∈ (0, 1)
as:

φ = max
i

{

max

{

2γ
(
λmax(Hii) +

∑

j 6=i

σ̄(Hij)
)
− 1,

1− 2γ
(
λmin(Hii)−

∑

j 6=i

σ̄(Hij)
)
}}

(4.94)

This φ is the modulus of the contraction R(u), and also acts as the coefficient of the linear
convergence rate of the Jacobi iteration (4.67), which means:

‖u(p)− u∗‖b−m,2,p ≤ φp‖u(0)− u∗‖b−m,2,p, ∀p ≥ 1 (4.95)

where u∗ = argminu∈Ω L̃(u, xt).

Note that the closer φ is to 0, the faster the aggregate update u(p) converges to the opti-
mizer of the Lagrangian function.

In order to get the convergence rate w.r.t. the Euclidean norm, we will need a link from the
Euclidean norm to the block-maximum norm:

‖x‖2 ≤
M∑

i=1

‖xi‖2 ≤ M max
i

‖xi‖2 = M‖x‖b−m,2,p (4.96)

Hence, the convergence rate of Jacobi iteration (4.67) w.r.t. the Euclidean norm is:

‖u(p)− u∗‖2 ≤ Mφp max
i

‖ui(0)− ui∗‖2, ∀p ≥ 1 (4.97)

�
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Remark 4.10 Proposition 4.6 establishes a linear convergence rate of the Jacobi itera-

tion, under the condition of weak dynamical couplings between subsystems. For the sake

of illustrating condition (4.84), let all subsystems have the same number of inputs. Conse-

quently, Hij is a square and symmetric matrix for each pair (i, j). Hence, the maximum

singular value σ̄(Hij) equals to the maximum eigenvalue. Inequality (4.84) thus reads:

λmin(Hii) >
∑

j 6=i

λmax(Hij), ∀i

which implies that the couplings represented by H are small in comparison with each local

cost.

Remark 4.11 Note that the strong convexity of L̃ and the condition (4.84) are required

only for the convergence rate result of the Jacobi iteration in which L̃ is a quadratic

function. Extensions to other types of optimization problems, where the Lagrangian can

be solved with bounded suboptimality, are immediate. In such cases we simply need to

replace the Jacobi iteration with the appropriate algorithm that meets the suboptimality

requirement in the inner loop, while the outer loop will remain intact.

4.4.5 Determining the number of stopping iteration p̃k for the Jacobi algorithm

As L̃(u, ·) is continuously differentiable in a closed bounded set Ω, it is Lipschitz contin-
uous.

Suppose we know the Lipschitz constant Λ of L̃(u, ·) over Ω, i.e., for any u1,u2 ∈ Ω the
following inequality holds:

‖L̃(u1, µ(k))− L̃(u2, µ(k))‖2 ≤ Λ‖u1 − u2‖2 (4.98)

Taking u1 = u(p̃k) and u2 = u∗ in (4.98), and combining it with (4.85), we obtain:

‖L̃(u(p̃k), µ
(k))−min

u∈Ω
L(u, µ(k))‖2 ≤ Λ‖u(p̄k)− u∗‖2

≤ ΛMφp̄k max
i

‖ui(0)− ui∗‖2 (4.99)

For each i ∈ {1, . . . ,M}, let Di denote the diameter of the set Ωi w.r.t. the Euclidean
norm, so we have ‖ui(0)−ui∗‖2 ≤ Di. Hence the relation (4.99) can be further simplified
as

L̃(u(p̃k), µ
(k)) ≤ min

u∈Ω
L̃(u, µ(k)) + ΛMφp̃k max

i
Di (4.100)

Based on (4.100), in order to use u(p̃k) as the solution u(k) that satisfies (4.65), we need
an integer p̃k such that ΛMφp̃k maxiDi ≤ εt, thus we choose:

p̃k ≥ logφ
εt

ΛM maxiDi

(4.101)
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4.4.6 Properties of the HPF-DAG algorithm

The algorithm HPF-DAG has similar properties as the algorithm HPF-DEG, which are the
existence of a feasible primal solution and the monotonic decrease of the cost function.
Moreover, the algorithm HPF-DAG is built upon a distributed iterative algorithm, and
hence almost all the computations are done by the local controllers, thus the only role of
the coordinator is to define common parameters that will be transfered to local controllers
at the beginning of each MPC sampling step.

Distributed Jacobi algorithm with guaranteed convergence

The computations in the inner loop can be executed in parallel by the subsystems. Let
us define an r-step extended neighborhood of a subsystem i, denoted by N i

r , as the set
containing all subsystems that can influence subsystem i within r successive time steps.
So N i

r is the union of subsystem indices in the neighborhoods of all subsystems in N i
r−1:

N i
r =

⋃

j∈N i
r−1

N j (4.102)

where N i
1 = N i. We can see that in order to get update information in the Jacobi itera-

tions, each subsystem i needs to communicate only with subsystems in N i
N−1, where N

is the prediction horizon. This set includes all other subsystems that couple with i in the
problem (4.10)–(4.12) after eliminating the state variables. This communication require-
ment indicates that we will benefit from communication reduction when the number of
subsystems M is much larger than the horizon N , and the coupling structure is sparse.

Assume that the weak coupling condition (4.84) holds. Then after p̃k iterations as com-
puted by (4.101), the Jacobi algorithm generates a solution u(k) , u(p̃k) that satisfies
(4.65) in the outer loop.

Feasible primal solution

Proposition 4.7 Suppose Assumptions 4.1–4.5 hold. Construct g′ as in (4.27), α̃t as in

(4.43). Let the outer loop (4.65)–(4.66) with µ(0) = 0 · 1m be iterated for k = 0, . . . , k̃t.

Then û(k̃t) is a feasible solution of (4.10)–(4.12), where û(k̃t) is the primal average, com-

puted by (4.45).

Proof. We now make use of Proposition 4.5. With a finite number of k̃t iterations (4.68)
reads as

∥
∥
∥
∥

[

g′
(

û(k̃t), xt

)]+
∥
∥
∥
∥
2

≤
1

k̃tα̃t

(
3

γt

[
f(ūt, xt)− q̃′

∗

t

]
+

α̃tL
′
t
2

2γt
+ α̃tL

′
t

)

(4.103)

Moreover, the dual function q̃′t is a concave function, and therefore q̃′
∗

t ≥ q̃′(0, xt). Recall
that f(u, xt) > 0, ∀u 6= 0, xt 6= 0. Thus, q̃′(0, xt) = minu∈Ω f(u, xt)+0·1T

mg′(u, xt) =



72 Chapter 4 Distributed model predictive control with guaranteed feasibility

minu∈Ω f(u, xt) > 0, and therefore

∥
∥
∥
∥

[

g′
(

û(k̃t), xt

)]+
∥
∥
∥
∥
2

<
1

k̃tα̃t

(
3

γt
f(ūt, xt) +

α̃tL
′
t
2

2γt
+ α̃tL

′
t

)

(4.104)

Combining (4.104) with (4.81), and noticing that k̃t and c̃t are all positive leads to
∥
∥
∥
∥

[

g′
(

û(k̃t), xt

)]+
∥
∥
∥
∥
2

< c̃t (4.105)

⇒ g′j

(

û(k̃t), xt

)

< c̃t, j = 1, . . . ,m (4.106)

⇒ gj

(

û(k̃t), xt

)

< 0, j = 1, . . . ,m (4.107)

where the last inequality implies that û(k̃t) is a feasible solution of problem (4.10)–(4.12),
due to c̃t < minj=1,...,m{−gj(ūt, xt)}. �

Closed-loop stability

Proposition 4.8 Suppose Assumptions 4.1–4.5 hold. Then the solution û(k̄t) generated by

Algorithm 4.4 satisfies the following inequality:

f(ut, xt) < f(ut−1, xt−1), ∀t ∈ Z+ (4.108)

Proof. Using (4.53) and (4.78), and noting that µ(0) = 0, we obtain:

f
(

û(k̃t), xt

)

≤ f̃ ′
∗

t +
‖µ(0)‖

2k̃tα̃t

+
α̃tL

′
t
2

2
+ εt ≤ f̃ ′

∗

t +∆t (4.109)

Notice that ūt is also a feasible solution of (4.62)–(4.64) (due to the way we construct the
tightened problem: ūt still belongs to the interior of the tightened constraint set), while
f ′
t
∗ is the optimal cost value of this problem. As a consequence,

f̃ ′
∗

t ≤ f(ūt, xt) (4.110)

Combining (4.109), (4.110), and (4.14), and noting that ut = û(k̃t) leads to:

f(ut, xt) < f(ut−1, xt−1), ∀t ∈ Z+ (4.111)

�

Note that besides the monotonic decrease of f(ut, xt), all the other conditions for Lya-
punov stability of MPC (Mayne et al., 2000) are satisfied. Therefore, Proposition 4.8 leads
to closed-loop MPC stability, where the cost function f(ut, xt) is a Lyapunov candidate
function.
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4.5 Realization of the assumptions

In this section, we discuss a method to update the Slater vector and the constraint norm
bound for each time step, implying that Assumptions 4.3 and 4.5 are only necessary in the
first time step (t = 0).

4.5.1 Updating the Slater vector

Lemma 4.9 Suppose Assumption 4.2 holds. Let ut be the solution of the MPC problem

(4.3)–(4.9) at time step t, computed by Algorithm 4.4. Then ũt+1 constructed by shifting

ut one step ahead and adding ũt+N = Kxt+N , is a Slater vector for constraint (4.11) at

time step t+ 1.

Proof. Note that û(k̄t) is a feasible solution of problem (4.10)–(4.12). Moreover, the strict
inequality (4.107) means that û(k̄t) is in the interior of the constraint set of (4.3)–(4.9).
This also yields:

xt+N ∈ int(Xf) (4.112)

Moreover, due to Assumption 4.2, we have (A+BK)xt+N ∈ int(Xf). This means that if
we use ũt+N = Kxt+N , then the next state is also in the interior of the terminal constraint
set Xf . Note that U and X do not change when problem (4.3)–(4.9) is shifted from t to
t + 1. Hence, all the inputs of ũt+1 and their subsequent states are in the interior of the
corresponding constraint sets. Therefore, ũt+1 as constructed at step 5 of Algorithm 4.4 is
a Slater vector for the constraint (4.11) at time step t+ 1. �

This means we can use ūt+1 = ũt+1 as the qualifying Slater vector for Assumption 4.3 at
time step t+ 1.

4.5.2 Updating the constraint norm bound

In our general problem setup, g(u, x) is composed of affine functions over u and x, and
thus can be written compactly as

g(u, x) = Ξx+Θu+ τ (4.113)

with constant matrices Ξ,Θ and a constant vector τ . Then for each xt−1, xt, and u ∈ Ω,
the following holds:

g(u, xt) = g(u, xt−1) + Ξ(xt − xt−1)

⇒ ‖g(u, xt)‖2 ≤ ‖g(u, xt−1)‖2 + ‖Ξ(xt − xt−1)‖2 (4.114)

In order to find a bound Lt for g(u, xt) in each step t with t ≥ 1, we assume to have the
constraint norm bound available from the previous step:

Lt−1 ≥ ‖g(u, xt−1)‖2, ∀u ∈ Ω (4.115)
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Combining the above inequalities a norm bound update for g(u, xt) can be obtained as:

Lt = Lt−1 + ‖Ξ(xt − xt−1)‖2 (4.116)

Note that if we do not want to update Lt at every step t, there is an alternative method
to compute a bound Lmax that fits all steps. By formulating a nonlinear maximization
problem with the cost function is the norm of g(u, xt), where both u ∈ Ω and xt ∈ X are
the variables, we can solve this problem offline and assign the result to Lmax. This value
Lmax is also the upper limit for Lt that is updated by (4.116), hence Lt will not grow too
high that could lead to inefficient estimation of k̃t.

Remark 4.12 When Algorithm 4.1 is used to solve the exact dual problem, we need to use

Lt as the norm bound for the function h(u, xt). The similar way for updating Lt can be

used, by replacing g(u, xt) by h(u, xt).

4.6 Simulation example

In this section, we present the results of an application example on MPC with the con-
straint tightening approach proposed in this chapter. We focus on applying the Algorithm
HPF-DAG, as it is less conservative than the Algorithm HPF-DEG, i.e., the interior of the
constraint set g(u, x0) ≥ 0 is larger than the interior of the set h(u, x0) ≥ 0, moreover
Algorithm HPF-DAG allows the control inputs to reach the hard limits, while with Algo-
rithm HPF-DEG the bounds for control inputs are also tightened, leading to a reduction of
MPC performance.

The example system is the same canal system that is described in Section 2.4, with the
same control problem. There are some differences in the setting used in this chapter in
comparison to the example used in Chapter 2: here the terminal point constraint xN = 0 is
removed, the state variables are eliminated from the MPC optimization problem by using
dynamical constraints, the prediction horizon is N = 5 (a shorter horizon so that the
number of inequality constraints to be tightened is less).

The Algorithm HPF-DAG is used in this example, it is expected to generate at every MPC
step t a feasible solution with respect to the physical constraints:

xmin ≤ xt+k ≤ xmax, k = 1, . . . , N (4.117)

umin ≤ ut+k ≤ umax, k = 0, . . . , N − 1 (4.118)

The constraints described in (4.117) are then packed into the inequality constraint g(u, xt) ≥
0 after the state variables are eliminated, and the constraints (4.118) are cast into the form
u ∈ Ω in this chapter.

With xmin = −0.5I4, xmax = 0.5I4, umin = −0.5I5, umax = 0.5I5, and an initial
nonzero state x0, we are able to find a Slater vector such that c̃0 = 0.2 (recall c̃t in (4.28)),
and the initial constraint norm bound L0 = 13.4.

The control example is simulated in 20 MPC steps. In each MPC step t, Algorithm 4.4 is
used to generate a solution to the MPC optimization problem (4.3)–(4.9), with the number
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of outer loop iterations k̃t determined by (4.81), and the number of inner loop iterations
p̃k is determined by (4.101). Then the first control input in the solution generated by Algo-
rithm 4.4 is used to simulate the system, and the routine restarts with the next MPC step.
In every MPC step, we also solve the centralized optimization problem to get the optimal
solution and the optimal cost, for a comparison purpose.

The simulation results give feasible solution at each MPC step. For illustration, the pre-
dicted input generated by Algorithm 4.4 in the first MPC step is compared with the optimal
solution and the Slater vector, given in Figure 4.1. These inputs are all feasible, recall that
the constraint set for every input is [−0.5; 0.5].

In Figure 4.2(a), the number of outer loop iterations k̃t and the average number of inner
loop iterations p̃k for all k ∈ {1, . . . , k̃t}, denoted by p̃maxt

, are plotted for each sampling
step. The corresponding CPU time spent by Algorithm 4.4 at each sampling step is showed
in Figure 4.2(b). The CPU time is measured by implementing all the computations in
one PC, running MATLAB on Windows with an Intel(R) Core(TM) i7 CPU at 2.30 GHz
and with 8 GB RAM. We can see that the simulation takes long time for computation,
since at every sampling step, there must be k̃t × p̃maxt

×M small optimization problems
to be solved, where M is the number of subsystems (in this example M = 4). If the
algorithm is simulated in a distributed setting, the computation task would be divided into
M subsystems, thus the computation time is much less than the total number we obtain in
this simulation.

Note that the computation time is amplified by the number of iterations required to mini-
mize the Lagrangian function using the distributed Jacobi algorithm, which can be consid-
ered as a price for using a very straightforward method to solve a centralized optimization
problem. As shown in Proposition 4.6, the convergence rate of the distributed Jacobi al-
gorithm is influenced by the coupling nature of the problem, i.e., depending on the level
of coupling presented by the Hessian of the problem, we can obtain a bigger (worse) or
smaller (better) value of φ - the contraction modulus that has a key role for the convergence
of the distributed Jacobi algorithm.

The evolutions of cost functions associated with the MPC solutions are plotted in Fig-
ure 4.2. In this figure, we compare the optimal cost, the cost associated with the Slater
vector, the cost generated by Algorithm 4.4, and the upper bound of the cost for guaran-
teeing stability. Although it is easy to obtain closed-loop stability with this example, the
comparison of the cost nevertheless confirms that the upper bound of the cost is always
respected by the averaging result of Algorithm 4.4. Moreover, as t increases, the upper
bound is put closer to the optimal cost, thus the performance of the Algorithm HPF-DAG
is also closer to the optimal centralized MPC performance.

4.7 Conclusions

In this chapter, we have presented a constraint tightening approach for solving MPC op-
timization problems involving large-scale systems with coupling in dynamics and con-
straints. This new approach provides guaranteed feasibility and stability after a finite num-
ber of iterations. We have presented two variations following this approach: the HPF-DEG
algorithm is based on conjugate gradient method, and the HPF-DAG one is based on a
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Figure 4.1: Comparison of predicted input series in the first sampling step, between

the optimal solution (black), the initial Slater vector (dash-dotted blue), and the

feasible solution of Algorithm 4.4 (dashed red).
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Jacobi iterative method, and both variations combine this with a simple projected gradient
update for the dual problem. These algorithms facilitate implementation in a hierarchical
way. The performance of this approach is discussed with an illustrative example of a sim-
ple canal system. Future extensions of this approach includes a posteriori choice of the
solution between either the Slater vector ūt or the primal average û(k̄t)/û(k̃t) generated
by the algorithm HPF-DEG/HPF-DAG. Another topic for research is to find the optimal
parameters αt/α̃t, ct/c̃t, and εt so that the algorithms take the least amount of time to
generate a feasible solution that leads to monotonic decrease of the MPC cost function.



Chapter 5

Application of distributed model
predictive control to a hydro power
valley

In this chapter, we design a distributed model predictive controller for the power-
reference tracking problem of a Hydro Power Valley (HPV) system, using the
distributed accelerated proximal gradient method that was described in Chap-
ter 3. There are a number of challenges posed by the HPV benchmark, includ-
ing the nonlinearity, nonsmoothness, and couplings in the constraints and in the
cost function. We propose approximation methods for modeling of the HPV, and
approximate optimization problems that fits in the DMPC framework. Through
simulations, DMPC is shown to be able to achieve comparable performance as
centralized MPC, while using neighbor-to-neighbor communication only. Pro-
vided numerical studies also suggest that for the sparsely interconnected system
at hand, the proposed distributed solver is more computationally efficient than a
standard centralized QP solver.

5.1 Introduction

Hydro power plants generate electricity from potential energy and kinetic energy of the
natural water, and often a number of power plants are placed along a long river or water
body systems to generate the power at different stages. Currently, hydro power is the most
important means of renewable power generation in the world. In order to meet the world’s
electricity demand, hydro power production should continue to grow due to the increasing
cost of fossil fuels. However, hydroelectricity, like any renewable energy, depends on the
availability of a primary resource, in this case: water. Most natural locations, where power-
generating infrastructure can be built economically, have already been utilized (PEW Cen-
ter on Global Climate Change, 2011). The expected trend for future use of hydro-power
is to build small-scale plants that can generate electricity for a single community. Thus,

79
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an increasingly important objective of hydro power plants is to manage the available wa-
ter resources efficiently, while following an optimal production profile with respect to the
change in the electricity market, to maximize the long-term benefit of the plant. This water
resource management must be compatible with ship navigation and irrigation, and it must
respect environmental and safety constraints on levels and flow rates in the lakes and the
rivers. This is why the real-time control of the water flows in a Hydro Power Valley (HPV)
becomes important and can increase significantly the power efficiency of these systems.

An HPV may contain several rivers and lakes, spanning a wide geographical area and ex-
hibiting complex dynamics. In order to tackle the plant-wide control of such a complex
system, an HPV is often treated as a large-scale system consisting of interacting subsys-
tems. Large-scale system control has been an active research area that has resulted in a
variety of control techniques, which can be characterized by several main categories: de-
centralized control, distributed control, as well as centralized control. Such control ap-
proaches can be found in a rich literature on control of water canals for irrigation and
hydrosystems (Mareels et al., 2005, Litrico and Fromion, 2009). For the control problem
of open water systems, centralized MPC has been studied with simulations of nonlinear
MPC in combination with model smoothing and/or model reduction techniques (Igreja
and Lemos, 2009, Nederkoorn et al., 2011), and with linear MPC of low-dimension sys-
tems in real implementations (van Overloop, 2006, van Overloop et al., 2010). However,
centralized MPC has a drawback when controlling large-scale systems due to limitations
in communications and the computational burden. These issues fostered the studies of
decentralized MPC and distributed MPC for large-scale water systems. Early decentral-
ized MPC methods for irrigation canals used the decomposition-coordination approach
to obtain decentralized versions of LQ control (Fawal et al., 1998). Several decentralized
MPC simulations applied to irrigation canals and rivers were presented in (Georges, 1994,
Sawadogo et al., 1998, Gomez et al., 2002, Sahin and Morari, 2010). Distributed MPC ap-
proaches based on coordination and cooperation for water delivery canals were presented
in Georges (1994), Negenborn et al. (2009), Igreja et al. (2011), Anand et al. (2011). The
typical control objective in these studies is to regulate water levels and to deliver the re-
quired amount of water to the right place at some time in the future, i.e., the cost function
does not have any special term except the penalties on the states and the inputs. On the
other hand, in hydro power control, there are output penalty terms in the cost function
that represent the objective of manipulating power production. Recent literature taking
into account this cost function includes centralized nonlinear MPC with a parallel version
of the multiple-shooting method for the optimal problem using continuous nonlinear dy-
namics (Savorgnan et al., 2011), and a software framework that formulates a discrete-time
linear MPC controller with the possibility to integrate a nonlinear prediction model and
to use commercial solvers to solve the optimization problem (Petrone, 2010). The hydro
power control problem considered in this chapter is similar to the set-up in Savorgnan
et al. (2011), Petrone (2010). However, it distinguishes itself by using a distributed control
structure that aims to avoid global communications and to divide the computational tasks
into local sub-tasks that are handled by subsystems, making the approach more suitable for
scaling up to other even more complicated hydro power plants.

The proposed distributed MPC design approach is enabled by a state-of-the-art distributed
optimization algorithm that has recently been developed in Chapter 3. This optimization al-
gorithm is designed for a class of strongly convex problems with mixed 1-norm and 2-norm
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terms in the cost function, which perfectly suits the power-reference tracking objective in
HPV control. The underlying optimization algorithm, although being implemented in a
distributed way, is proved to achieve the global optimum with an O( 1

k2 ) convergence rate,
which is a significant improvement compared to the distributed MPC methods presented
in Chapter 2 and in Giselsson and Rantzer (2010), Negenborn et al. (2008), which achieve
an O( 1

k
) convergence rate. By means of numerical examples, we will demonstrate the fast

convergence property of the distributed algorithm, which can outperform a centralized QP
approach for solving the same optimization problem.

The remaining parts of the chapter are organized as follows. In Section 5.2, we describe the
hydro power valley (HPV) system and the power-reference tracking problem. Section 5.3
summarizes the treatment of the HPV model, followed by the control framework in Sec-
tion 5.4, where we describe the distributed MPC algorithm that is used in the simulations.
The simulation results are presented in Section 5.5 which also features a comparison with
centralized MPC and decentralized MPC. Through the various aspects of the comparison
including performance, computational efficiency, and communication requirements, the
advantages of the distributed MPC algorithm will be highlighted. Section 5.6 concludes
the chapter and outlines future work.

5.2 Problem description

In this section, we provide a summary to the HD-MPC hydro power valley benchmark
(Savorgnan and Diehl, 2011) and then discuss the main control challenges.

5.2.1 Hydro power valley system

We consider a hydro power plant composed of several interconnected subsystems, as illus-
trated in Figure 5.1. The plant can be divided into 8 subsystems, of which subsystem S1

is composed of the lakes L1, L2, the duct U1 connecting them, and the ducts C1, T1 that
connect L1 with the reaches1 R1, R2, respectively. Subsystem S2 is composed of the lake
L3 and the ducts C2, T2 that connect L3 to the reaches R4, R5, respectively. There are 6
other subsystems, each of which consists of a reach and the dam at the end of the reach.
These six reaches R1, R2, R3, R4, R5, and R6 are connected in series, separated by the
dams D1, D2, D3, D4, and D5. The large lake that follows the dam D6 is assumed to have
a fixed water level, which will absorb all the discharge. The outside water flows enter the
system at the upstream of the reach R1 and at the middle of the reach R3.

There are structures placed in the ducts and at the dams to control the flows. These are
the turbines placed in the ducts T1, T2 and at each dam for power production. In the ducts
C1, C2 there are composite structures that can either function as pumps (for transporting
water to the lakes) or as turbines (when water is drained from the lakes).

The whole system has 10 manipulated variables, which are composed by six dam flows
(qD1, qD2, qD3, qD4, qD5, qD6), two turbine flows (qT1, qT2), and two pump/turbine flows
(qC1, qC2).

1A reach is a river segment between two dams.
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Figure 5.1: Overview of the HD-MPC hydro power valley system (Savorgnan and

Diehl, 2011)

The detailed setup of the HPV is given in Savorgnan and Diehl (2011), with the continuous-
time nonlinear model constructed by using the Saint Venant partial differential equations
and employing spatial discretization for obtaining a system of ordinary differential equa-
tions.

5.2.2 Power-reference tracking problem

The control problem is to track a power production profile on a daily basis with the fol-
lowing cost function:

J ,

∫ T

0

γ

∣
∣
∣
∣
∣
pr(t)−

8∑

i=1

pi(x(t), u(t))

∣
∣
∣
∣
∣
dt

+

8∑

i=1

∫ T

0

(xi(t)− xss,i)
TQi(xi(t)− xss,i)dt

+

8∑

i=1

∫ T

0

(qi(t)− qss,i)
TRi(qi(t)− qss,i)dt (5.1)

subject to the nonlinear dynamics and the operational constraints on water levels and water
flows, which are denoted by the variables x and q, respectively. The index i is the subsys-
tem index. The weights Qi, Ri, i = 1, . . . , 8, γ, and the testing period T are parameters of
the benchmark.

Note that the cost function (5.1) contains two components. The power tracking error is put
in the 1-norm term to reflect the economical cost, with pr the power reference and pi the
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power produced/consumed by subsystem i ∈ {1, . . . , 8}. The quadratic term in the cost
function represents the penalties on the state deviation from the steady state xss and the
energy used for manipulating the inputs away from steady state flows qss.

The function pi for i = 1, 2 is the produced/consumed power (c.f., Savorgnan and Diehl
(2011)):

pi(x(t), q(t)) = kCi
(qCi

(t))qCi
(t)∆xCi

(t) + kTi
qTi

(t)∆xTi
(t) (5.2)

where qCi
and qTi

are flows through ducts Ci and Ti, ∆xCi
and ∆xTi

are the relative
differences in water levels before and after ducts Ci and Ti respectively, kTi

is the turbine
power coefficient and

kCi
(qCi

(t)) =

{
kTCi

qCi
(t) ≥ 0

kPCi
qCi

(t) < 0

is a discontinuous power coefficient that depends on whether duct Ci acts as a pump or a
turbine. For i = 3, . . . , 8 we have

pi(x(t), q(t)) = kDi−2
qDi−2

(t)∆xDi−2
(t) (5.3)

which is the power produced by the turbine located at dam Di−2.

Remark 5.1 There are several challenges posed by this control problem, of which the most

critical ones are the relatively large size, the nonlinearity and moreover nonsmoothness

(for subsystems 1 and 2) of produced/consumed power functions. In the current setting, the

rate for updating control input is not critical, with Ts = 30min that is long enough for

solving a centralized MPC problem online. For demonstration, we will apply a distributed

accelerated proximal gradient algorithm (cf. Chapter 3) for the hydro power valley control

problem to show that distributed MPC can achieve close performance to centralized MPC,

while avoiding the communication need and being even more computationally efficient

than a classical centralized MPC method.

Before describing the distributed MPC approach, we will first discuss the modeling of the
hydro power valley in the next section.

5.3 Hydro power valley modeling

5.3.1 Nonlinear modeling, spatial discretization and linearization

The model of the reaches is based on the one-dimensional Saint Venant partial differential
equation, representing the mass and momentum balance:






∂q(t, z)

∂z
+

∂s(t, z)

∂t
= 0

1

g

∂

∂t

(
q(t, z)

s(t, z)

)

+
1

2g

∂

∂z

(
q2(t, z)

s2(t, z)

)

+
∂h(t, z)

∂z
+ If(t, z)− I0(z) = 0

(5.4)
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with z the spatial variable, t the time variable, q the river flow (or discharge), s the cross-
section surface of the river, h the water level w.r.t. the river bed, If the friction slope, I0(z)
the river bed slope, and g the gravitational acceleration constant.

The partial differential equation (5.4) can be converted into a system of ordinary differ-
ential equations by using spatial discretization. To this aim, each reach is divided into 20
cells, yielding 20 additional states, which are the water levels at the beginning of the cells.
As a consequence, a set of nonlinear dynamical equations is obtained, with in total 249
states (Savorgnan and Diehl, 2011).

A linear model of the hydro power valley is obtained by linearizing the nonlinear model
at a steady operating condition, followed by discretization in time. Due to the coupling
structure of the system, the discrete-time linear model of each of the eight subsystems
i = 1, . . . , 8 can be expressed in the following form:

xi(k + 1) = Aiixi(k) +

8∑

j=1

Bijuj(k) (5.5)

yi(k) = Cixi(k)

in which the variables x, u, and y stand for the deviation from the steady-state values, and
the subscripts i, j stand for the subsystem index. Note that the subsystems are coupled
through the inputs only.

The use of a discrete-time linearized model enables controller design with some specific
approaches, which include the distributed accelerated proximal gradient (DAPG) algo-
rithm that has been developed in Chapter 3 of this thesis. However, the linear discrete-time
model cannot be directly used in an MPC context due to the existence of a number of
uncontrollable and unobservable modes. These uncontrollable/unobservable modes are a
result of the discretization in time since we cannot expect to control/observe the water
levels independently in each segment in every reach due to the dependencies of the wa-
ter levels in adjacent segments. Moreover, the linear model has a large number of states,
causing computational burden. Therefore, we will use balanced truncation for model order
reduction (Moore, 1981, Gugercin and Antoulas, 2004) to remove less significant modes,
including all unobservable and uncontrollable ones.

5.3.2 Decentralized model order reduction

The block-diagonal structure of the discrete-time dynamical system (5.5) makes it possible
to do model reduction on each subsystem individually. Under the condition that the model
(5.5) is stable, reachable and observable (which can be easily verified), we can use bal-
anced truncation (Gugercin and Antoulas, 2004) to reduce the order of each local model
(5.5). Below we briefly review the balanced truncation technique. To this end we introduce
Bi = [Bi1 . . . Bi8] and u = [(u1)

T . . . (u8)
T ]T to get the following discrete-time linear

model of each subsystem:

xi(k + 1) = Aiixi(k) +Biu(k) (5.6)

yi(k) = Cixi(k)
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We can compute the local controllability Gramian Wci by solving the following matrix
equation:

AiiWciA
T
ii +BiB

T
i = Wci (5.7)

and the local observability Gramian Woi by:

AT
iiWoiAii + CT

i Ci = Woi (5.8)

Let us consider a state transformation x̄i = Txi with an invertible matrix T . The Gramians
are transformed to:

W̄ci = TWciT
T , W̄oi = T−TWoiT

−1 (5.9)

For each subsystem i, we can find a particular matrix Ti such that

W̄ci = W̄oi = diag(σ1i, . . . , σni) (5.10)

with σji
≥ 0, ∀j and σ1i ≥ σ2i ≥ . . . ≥ σni. This is called a balancing transformation

(Moore, 1981). The controllability and observability Gramians of the new system realiza-
tion are equal and diagonal, consisting of entries σ1i, . . . , σni which are called Hankel
singular values.

The truncated model is obtained by removing the modes that correspond to small σji
. All

the modes of the reduced model are both controllable and observable (corresponding to
σj i

> 0). Denoting the number of kept modes by nr
i for each subsystem i the resulting

transformation matrices become

T r
i =






Ti[1•]
...

Ti[nr
i•]




 T r,inv

i = [T−1
i[•1] . . . T

−1
i[•nr

i
]] (5.11)

where Ti[j•] denotes the j-th row of Ti and T−1
i[•j] denotes the j-th column of T−1

i . By

denoting the new state variables, xr
i = T r

i x
d
i , and the control variable qr = q, we represent

the reduced order model as:

xr
i(k + 1) = Ar

iix
r
i(k) +Br

iq
r(k) (5.12)

yri(k) = Cr
ix

r
i(k) (5.13)

where Ar
ii = T r

iAiiT
r,inv
i , Br

i = T r
iBi and Cr

i = CiT
r,inv
i . It should be noted that the

sparsity structure of Br
i is the same as in the non-reduced input matrix Bi.

This balanced truncation is performed for each local subsystem. The aggregate truncated
model can then easily be constructed. By truncating less important modes which are sorted
based on the relative proportion of the Hankel singular values, we can obtain a 32-state re-
duced model that approximately represents the dynamics of the full linear model with 249
states. As now we have a small-size system, real-time control could be fulfilled relatively
easily by centralized MPC, however here we focus on illustrating benefits of distributed
MPC on other aspects, notably performance comparison with centralized MPC with the
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difference in communication requirement.

5.3.3 Treatment of nonlinear and nonsmooth power functions

One of the difficulties in applying a linear MPC approach to the hydro power valley is the
nonsmoothness of the power functions associated with the ducts C1 and C2. The nons-
moothness is caused by the fact that the flow through C1 and C2 can have two directions
and the powers generated or consumed do not have equivalent coefficients. In order to
handle this nonsmoothness, we use a double-flow technique, which means introducing
two nonnegative positive variables to express the flow in Ci, i = 1, 2 at a sampling step k:

• qCiP
(k): virtual flow such that Ci functions as a pump

• qCiT
(k): virtual flow such that Ci functions as a turbine

When the solution is obtained, we combine the virtual flows to get the real flow through
Ci:

qCi
(k) = qCiT

(k)− qCiP
(k) (5.14)

The introduction of virtual flows requires the input-matrices, Br
i , to be augmented with

two extra columns identical to the ones multiplying qCi
, i = 1, 2 with the opposite sign to

capture that pump action is also introduced with positive flow. The resulting reduced order
model has 12 inputs instead of the original 10. Using the introduced flows qCiP

and qCiT
,

the power function (5.2) for subsystems 1 and 2 can be rewritten as

pi(x(k), q(k)) =
(
kTCi

qCiT
(k)− kPCi

qCiP
(k)
)
∆xCi

(k) + kTi
qTi

(k)∆xTi
(k) (5.15)

which is a continuous function.

The resulting nonlinear expression (5.15) can in turn be linearized around the steady-state
solution (xss, qss). Since qssCi

= 0 for i = 1, 2 we get the following linear local power
production/consumption approximation for subsystems i = 1, 2:

p̂i(x(k), q(k)) = ∆xss
Ci

[
kTCi

− kPCi

]
[
qCiT

(k)
qCiP

(k)

]

+ kTi
qssTi

(
∆xTi

(k)−∆xss
Ti

)
+

+ kTi
∆xss

Ti

(
qTi

(k)− qssTi

)
+ kTi

qssTi
∆hss

Ti

For subsystems i = 3, . . . , 8 we have the smooth power production expression (5.3) that
can be directly linearized without introducing virtual flows:

p̂i(x(k), q(k)) = kDi
qssDi

∆xss
Di

+ kDi
qssDi

(
∆xDi

(k)−∆xss
Di

)
+

+ kDi
∆xss

Di

(
qDi

(k)− qssDi

)
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5.4 HPV control using distributed MPC

The structured sparse model of the hydro power valley prompts us to consider design-
ing a distributed MPC algorithm in which the subsystems’ controllers cooperate locally to
achieve a centrally optimal solution. In our distributed MPC framework, each subsystem
only needs to communicate with a few neighboring subsystems, hence relaxing the com-
munication requirements. Another advantage is that the computational tasks are divided
into subtasks that are handled by local controllers in parallel, thus reducing the need for a
powerful computing unit which is often needed in a centralized MPC implementation.

5.4.1 Distributed MPC algorithm using dual accelerated projected gradient method
(DAPG)

In this section, we summarize the distributed dual accelerated projected gradient (DAPG)
method that has been described in Chapter 3. The main idea is to exploit the problem struc-
ture of the dual problem such that the APG computations can be distributed to subsystems.
Hence, the distributed algorithm effectively solves the centralized optimization problem.

The MPC optimization problem of the HPV will be cast into the following form

min
x,xa

1

2
xTHx+ gTx+ γ‖xa‖1 (5.16)

s.t. A1x = B1

A2x ≤ B2

xa = Px− p

where x ∈ R
n includes all the states and inputs of the reduced model (5.12)–(5.13) and

xa ∈ R
m is the auxiliary decision vector that captures the errors of power-reference track-

ing. Denote M as the number of subsystems in the HPV, x is partitioned according to:

x = [xT
1 , . . . ,x

T
M ]T , (5.17)

and xi ∈ R
ni . Further, the matrix H ∈ R

n×n is positive definite and block-diagonal with
block-matrices Hi ∈ R

ni ; the matrices A1 ∈ R
q×n, A2 ∈ R

r×n, and P ∈ R
m×n have

sparse structures.

As formulated in Chapter 3, the dual problem of (5.16) is to minimize the convex function:

f(z) = J⋆(−AT z) + BT z

=
1

2
(AT z + g)TH−1(AT z + g) + BT z (5.18)

with the following notation:

A = [AT
1 AT

2 PT ]T B = [BT
1 BT

2 pT ]T z = [λT µT νT ]T

where A ∈ R
(q+r+m)×n, B ∈ R

q+r+m, and z ∈ R
q+r+m. The set of feasible dual

variables is defined as
Z = R

q × R
r
≥0 × [−γ, γ]m (5.19)
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We also name each line of A by using the following notations:

A = [a1 · · · aq+r+m]T (5.20)

with al ∈ R
n, l = 1, . . . , q + r + m. Furthermore, each al, l = 1, . . . , q + r + m is

composed of the components that correspond to the variables of subsystems:

al = [aTl1, . . . , a
T
lM ]T , l = 1, . . . , q + r +m (5.21)

in which ali ∈ R
nxi , i = 1, . . . ,M , where nxi

is the size of the subsystem variable xi.

The implementation of the algorithm also requires defining the sets of neighbors Ni that
have direct communications to a subsystem (including itself) and of the sets of constraints
Li that are assigned to each subsystem i ∈ {1, . . . , 8}. In general, the sparse structure
of A determines how small Ni and Li are, and the smaller these sets are, the shorter
range and less communication need to be used. For brevity and simplicity of the algorithm
description, the notion Li in this chapter is the merger of L1

i and L2
i in Chapter 3, i.e., we

will not distinguish between equality and inequality constraints here. A slightly simplified
distributed dual APG algorithm for solving the dual problem is presented as follows.

Algorithm 5.1 Distributed Accelerated Proximal Gradient (DAPG)

Initialize z0 = z−1 and x−1 with the last values from previous sampling time. For the first

sampling time, these variables are initialized by zeros.

In every node, i, the following computations are performed in parallel and with synchro-

nization:

For k = 0, 1, 2, . . . ,

1. Compute

xk
i = −H−1

i




∑

j∈Ni

(
∑

l∈Lj

zkl ali

)

+ gi



 (5.22)

x̄k
i =

2k + 1

k + 2
xk
i −

k − 1

k + 2
xk−1
i (5.23)

2. Send x̄k
i to each j ∈ Ni, receive x̄k

j from each j ∈ Ni

3. Compute with each l ∈ Li

dkl =
∑

j∈Ni

aTlj x̄
k
j − bl (5.24)

zk+1
l = zkl +

k − 1

k + 2
(zkl − zk−1

l ) +
1

L
dkl , l ≤ q (5.25)
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zk+1
l = max

{

0, zkl +
k − 1

k + 2
(zkl − zk−1

l ) +
1

L
dkl

}

,

q < l ≤ q + r (5.26)

zk+1
l = min

{

γ,max

[

− γ, zkl +
k − 1

k + 2
(zkl − zk−1

l )

+
1

L
dkl

]}

, q + r < l ≤ q + r +m (5.27)

4. Send {zk+1
l }l∈Li

to each j ∈ Ni,

receive {zk+1
l }l∈Lj

from each j ∈ Ni.

5. Each local controller checks the local termination criteria. If local termination cri-

teria are satisfied, the algorithm stops, otherwise increase k and go to step 1) to

start a new iteration.

We note that the updates (5.25)–(5.27) involve L which is the smallest Lipschitz constant
of ∇f and which is computed using the following formula (cf. Chapter 3, Proposition 3.1):

L = ‖AH−1AT ‖2 (5.28)

In other words, L is the largest singular value of the matrix AH−1AT , and L > 0 since H
is positive definite and A is full-rank. We only need to compute L once and use it through
the entire MPC control process.

5.4.2 HPV optimization problem formulation

In this section we will formulate an optimization problem of the form (5.16) that can be
used for power-reference tracking in the HPV benchmark using MPC. We have obtained
a linear discrete-time dynamical system (5.12)-(5.13) for the HPV with state variables xr

and control variables qr. The constraints are upper and lower bounds on the outputs and
inputs and can be found in Savorgnan and Diehl (2011). Using the transformation matrices
(5.11) these constraints can readily be recast as linear constraints for the reduced order
model variables xr, qr. The power-reference tracking problem formulation (5.1) specifies
a quadratic cost on states and control variables and a 1-norm penalty on deviations from
the provided power reference, pref . For a given control horizonN let the current MPC step
t = 0 to simplify the expression, this optimization problem can be written as

min
x,xa

N−1∑

t=0

{
8∑

i=1

[
xr
i(k)

TQix
r
i(k) + qri(k)

TRiq
r
i(k)

]
+ γ‖xa(k)‖1

}

(5.29)

s.t. (5.12), (5.13) k = 0, . . . , N − 1 i = 1, . . . , 8
Cr

ix
r
i(k) ∈ Yi k = 0, . . . , N − 1 i = 1, . . . , 8

qi(k) ∈ Qi k = 0, . . . , N − 1 i = 1, . . . , 8

xa(k) = pref(k)−
∑8

i=1 p̂i(x
r(k), qr(k)) k = 0, . . . , N − 1
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where Yi and Qi are sets representing the local output and input constraints, and the addi-
tional variable xa captures the power-reference tracking mismatch.

There is an issue that prevents this optimization problem from being implemented in a
distributed fashion using Algorithm 5.1, due to the fact that the original cost function is
non-separable. Consequently, the power-reference constraints with the linearized power
functions p̄i include all variables. This implies that global communication is needed.

In order to obtain a suitable dual problem, we first need to reformulate the cost function
(5.1) in a separable form. Next we present two ways of power reference division for the
HPV problem. For the sake of brevity, we focus on one sampling step and drop the time
index k. Thus for now our simplified objective is to decompose the following problem:

min
{xi}i=1,...,8

∣
∣
∣
∣
pref −

8∑

i=1

Pix

∣
∣
∣
∣

(5.30)

with x = [xT
1 , . . . ,x

T
8 ]

T , and Pi the matrix coefficient such that the power function pro-
duced or consumed by each subsystem p̂i(x

r(k), qr(k)) is linearized as Pix(k).

Static power division

In order to avoid global communications, we can divide the total power reference into
several sequences of local power references, i.e., the following cost function can be used
instead of (5.30):

min
{xi}i=1,...,8

M̄∑

j=1

∣
∣
∣
∣
pref,j −

∑

i∈Gj

Pix

∣
∣
∣
∣

(5.31)

with M̄ the number of separate power references such that
∑M̄

j=1 p
ref,j = pref , and Gj the

group of subsystems that are assigned to track the power reference pref,j . The disadvantage
of the power reference division is that the total power production may not be able to track
the total power reference in some cases. This issue will be discussed with the illustrative
results for the case study in Section 5.5.

We list here the strategies of dividing total power reference into different sequences that
will be considered in the case study:

1. DIST–REF1: Use two sequences pref,1, pref,2 such that pref = pref,1 + pref,2. The
total power production of subsystems 1, 3, 4, and 5 will track pref,1, while the sum
of power produced by subsystems 2, 6, 7, and 8 will track pref,2.

2. DIST–REF2: Use 4 sequences: pref = pref,1 + pref,2 + pref,3 + pref,4, with pref,1 to
be tracked by subsystems 1, 3, and 4, pref,2 to be tracked by subsystem 5, pref,3 to
be tracked by subsystems 2, 6, and 7, and pref,4 to be tracked by subsystem 8.

3. LOCAL–REF: Use 8 sequences: pref =
∑8

i=1 p
ref,i, with each local power refer-

ence pref,i to be tracked by subsystem i ∈ {1, . . . , 8}.
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In all these schemes, the local power reference sequences are computed by keeping the
same proportion to the total power reference as in the steady-state operating conditions.
The scheme LOCAL–REF means that each subsystem tracks a local power reference; how-
ever, this does not mean the setting is decentralized MPC, since the subsystems have to take
into account the coupled dynamics. Note that the ways we define the tracking tasks with
DIST–REF1 and DIST–REF2 are aimed at exploiting the existing structure of couplings in
dynamics between subsystems.

Dynamic power division

The static power division essentially means that each subsystem always tracks a fraction
of power reference that is equal to the proportion it produces in the steady-state condition.
When the total power reference deviates significantly from the steady-state power, this idea
may not work well since the proportional change of the local power reference can lead to
sub-optimal performance. Inspired by an idea in Madjidian et al. (2011), we now introduce
the dynamic power division, in which the subsystems have more flexibility in choosing the
appropriate local power reference to be tracked. The main idea is that each subsystem will
exchange an amount of power references with its direct neighbors.

Let us define for each pair (i, j) with j ∈ Ni a node that is in charge of determining the
power exchange variable between subsystems i and j, denoted by δij if node i is in charge
and by δji if node j is in charge 2. Then for each subsystem we form the set 3:

∆i = {j | j ∈ Ni, i is in charge of δij}. (5.32)

Now we replace (5.30) by the following cost function:

min
{xi,δi}i=1,...,8

8∑

i=1

∣
∣
∣
∣
prefi +

∑

j∈∆i

δij −
∑

j∈Ni\∆i

δji − Pix

∣
∣
∣
∣

(5.33)

with δi the vector containing all δij , j ∈ ∆i, and prefi the nominal power reference for
subsystem i. In words, the local power reference for each subsystem i deviates from the
nominal value by adding the exchange amounts of the links that i manages and subtracting
the exchange amounts of the links that affect i but are decided upon by its neighbors. Note
that problem (5.33) has a sparse structure that complies with the existing sparse structure of
the HPV system, i.e., this method does not expand the neighborhood set of each subsystem.

The advantage of this dynamic power division is that it makes use of the existing network
topology to form a sparse cost function, and the total power reference is preserved even if
the local power references can deviate from the nominal values, i.e., we always have:

8∑

i=1

{

prefi +
∑

j∈∆i

δij −
∑

j∈Ni\∆i

δji

}

= pref (5.34)

2Note that here we discuss the power division for each sampling step, i.e., there are δij(k) or δji(k) with
k = 0, . . . , N − 1.

3A simple way is to let the subsystem with smaller index lead the exchange, i.e., ∆i = {j|j ∈ Ni, j > i}.
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Now that we have a separable cost function by using either a static or a dynamic power
division technique, we can form a separable dual problem and apply a distributed opti-
mization algorithm for the dual problem. In the case study of Section 5.5, we will choose
the distributed dual accelerated proximal gradient (DAPG) algorithm introduced in Chap-
ter 3, as it was designed to treat the problems with mixed absolute and quadratic terms like
the HPV problem in a more efficient way than translating the problem into a QP, and this
method also has fast convergence rate.

5.5 Comparison of MPC schemes

We performed numerical simulations of the HPV using centralized MPC, decentralized
MPC, and distributed MPC based on the DAPG algorithm with the 3 static power division
schemes: DIST–REF1, DIST–REF2, and LOCAL–REF, and the dynamic power division
scheme referred to as DYN–REF. For centralized and decentralized MPC, the optimization
problems are transformed into QPs and are solved by the solver quadprog in the Optimiza-
tion Toolbox of MATLAB (The Mathworks, 2012). For distributed MPC, at each MPC
step, our own DAPG solver, also implemented in MATLAB, iterates until a small toler-
ance is achieved; thus, we almost get the exact solution for the optimization problem. The
closed-loop simulation is obtained by simulating the computed inputs with the original
nonlinear continuous-time model, using the function ode15 of MATLAB. The simulations
were implemented on a PC running MATLAB on Linux with an Intel(R) Core(TM)2 Duo
CPU running at 2.33 GHz and with 2 GB RAM.

5.5.1 Performance comparison

The power reference tracking results are plotted in Figures 5.2(f)–5.2(a). We can see the
trade-off due to the division in power reference: centralized MPC achieves the best track-
ing performance at the cost of using global communications, while distributed MPC with
static power division schemes DIST1–REF, DIST2–REF, and LOCAL–REF shows dete-
rioration of the tracking performance. Another interesting point is that the scheme DIST–
REF2 achieves a better tracking performance than LOCAL–REF, while they use the same
communication structure. This observation suggests to consider finding the division of
power reference that resembles the structure of dynamical couplings between subsystems,
i.e., defining groups for tracking group power references such that any pair of subsystems
in a group are neighbors of each other. The tracking performance of decentralized MPC is
very poor, due to the lack of communications. The best result, in view of both achieving
performance and using local communications only, is distributed MPC with the dynamic
power division scheme DYN–REF, which achieves almost the same tracking performance
as centralized MPC, while relying on the same communication structure as the LOCAL–
REF scheme (see also the comparison of communication requirements).

Figures 5.3 and 5.4 show the evolution of the inputs and outputs and the corresponding
constraints with the scheme DYN–REF as an example. These results for the cases of DIST–
REF1, DIST–REF2, and LOCAL–REF are slightly different, however all the constraints
on the inputs and outputs are also satisfied. We note that this is guaranteed due to the fact
that constraints are not relaxed, and the couplings in dynamics are taken into account.
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5.5.2 Computational efficiency

In Figure 5.5, we plot the comparison of computation time of the solvers quadprog and our
own solver DAPG (recall that both are implemented in MATLAB), for solving the same
optimization problem for centralized MPC at each sampling step. Figure 5.5 shows that
the total computation time of the DAPG solver is much lower than the computation time of
quadprog, in average the DAPG solver reduces 80% computation time of quadprog. This
difference reflects the fast convergence rate of the DAPG algorithm and the efficiency of
dealing with the absolute term in the cost function.

5.5.3 Communication requirements

In Table 5.1, we provide the comparison of the communication neighborhood sets between
the distributed MPC schemes. The communication neighborhood set of a subsystem i,
denoted by Mi, indicates which subsystems that subsystem i needs to communicate with.
Note that these communication neighborhood sets do not only contain the neighbors in the
sets Ni coming from the coupling dynamics, but can be extended due to the additional
coupled constraints that are introduced by the power reference division schemes. In the
scheme DIST–REF1, the sets Mi are larger than Ni, since we form power tracking groups
that involve subsystems which are not dynamically coupled, e.g., between subsystems 1
and 5, 2 and 8. With the schemes DIST–REF2, LOCAL–REF, and DYN–REF, the sets
Mi are the same as Ni.

Combining the comparison of communication requirement and performance, distributed
MPC with the dynamic power division scheme DYN–REF would be the best choice for
the total power reference tracking problem of the HPV, as it achieves almost the same
optimal solution as centralized MPC, while allowing a distributed implementation using
the existing dynamical coupling structure. Among distributed MPC with static power di-
vision schemes, the scheme LOCAL–REF is the most naive idea and its performance
suffers the most; the scheme DIST–REF1 shows a fairly good tracking performance of
the total power reference; however, it employs a more complex communication structure;
the scheme DIST–REF2 provides a good balance between tracking performance and lim-
iting communication requirement, and it achieves a much better result than the scheme
LOCAL–REF while sharing the same communication structure with this basic scheme. It
should also be noted that decentralized MPC is not recommended unless communication
is prohibited, otherwise the performance will deteriorate significantly.

5.6 Conclusions and recommendations for future research

The distributed MPC scheme using distributed accelerated proximal gradient algorithm
introduced in Chapter 3 has been applied to the power reference tracking problem of the
HD-MPC hydro power valley benchmark. Several distributed schemes have been compared
to centralized and decentralized MPC methods. We have provided relaxations and approx-
imations for the original nonlinear and non-smooth problem as well as modifications of
the centralized power reference that lead to separable cost functions. The simulation re-
sults show that the introduced approximate problem formulation captures the behaviour of
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Table 5.1: Communication neighborhoods of subsystems (Mi)

i DMPC DMPC DMPC DMPC
DIST–REF1 DIST–REF2 LOCAL–REF DYN–REF

1 {1, 3, 4, 5} {1, 3, 4} {1, 3, 4} {1, 3, 4}
2 {2, 6, 7, 8} {2, 6, 7} {2, 6, 7} {2, 6, 7}
3 {3, 1, 4, 5} {3, 1, 4} {3, 1, 4} {3, 1, 4}
4 {4, 1, 3, 5} {4, 1, 3, 5} {4, 1, 3, 5} {4, 1, 3, 5}
5 {5, 1, 3, 4, 6} {5, 4, 6} {5, 4, 6} {5, 4, 6}
6 {6, 2, 7, 8, 5} {6, 2, 7, 5} {6, 2, 7, 5} {6, 2, 7, 5}
7 {7, 2, 6, 8} {7, 2, 6, 8} {7, 2, 6, 8} {7, 2, 6, 8}
8 {8, 2, 6, 7} {8, 7} {8, 7} {8, 7}

Centralized MPC uses global communications: Mi = {1, . . . , 8}, ∀i
Decentralized MPC does not use communications: Mi = {i}, ∀i

the system well and that very good control performance is achieved with distributed MPC
with the dynamic power division technique. Further, a comparison of computational time
shows that the proposed DAPG algorithm is more efficient than the quadratic program
solver quadprog for centralized MPC.

As the next step before implementation in real plants, the proposed distributed MPC ap-
proach should be tested against different hydraulic scenarios. To cope with varying water-
flows entering the system, these should be estimated and compensated for. Further a
weather model could be included that estimates the future in-flows to the HPV system.
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(a) Decentralized MPC
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(b) DMPC and LOCAL–REF
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(c) DMPC and DIST–REF2
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(d) DMPC and DIST–REF1
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(e) DMPC and DYN–REF
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Figure 5.2: Comparison of power reference tracking performance using centralized

MPC, DMPC, and decentralized MPC.
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Figure 5.3: Input constraint satisfaction with DMPC based on DAPG algorithm

with the dynamic power division scheme DYN–REF. Dash-dotted lines: upper

bounds, dashed lines: lower bounds.
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Figure 5.4: Output constraint satisfaction with DMPC based on DAPG algo-
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Chapter 6

Conclusions and recommendation for
future research

We provide a summary of the methods presented in this thesis and highlight the
main contributions. We conclude the thesis by giving recommendations for ex-
tending our research and for exploring related topics in distributed MPC.

6.1 Summary and main contributions of the thesis

6.1.1 Summary of the proposed methods

In this section, we summarize the properties of the algorithms that have been presented in
this thesis, and discuss the advantages as well as disadvantages of these methods.

For each method, we state the problem classes that the method is applicable to, and then we
list the properties of the optimization algorithm and the closed-loop MPC process based
on that method.

In Chapter 2, a distributed decomposition scheme based on Han’s parallel method is pre-
sented. This scheme provides a distributed approach to solve the centralized optimization
problem corresponding to an MPC formulation for linear systems. The algorithm can be
used when the MPC optimization problem is a strongly convex quadratic problem, i.e., the
cost function is positive definite, and subject to linear constraints. Another condition is that
the constraint coupling is sparse, i.e., each subsystem only couples with a small number of
other subsystems through constraints. We have shown that the distributed Han’s algorithm
generates the same solution as the centralized Han’s algorithm, hence its convergence is
inherited from the centralized counterpart. The distributed MPC scheme using distributed
Han’s algorithm guarantees feasibility and stability upon optimality of the solution at every
sampling step.

In Chapter 3, a distributed accelerated proximal gradient (DAPG) method is developed
that also provides a distributed approach for solving the centralized MPC optimization
problem for linear systems. This scheme can handle a larger problem class than distributed
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Han’s method, since there can be an 1-norm term in the cost function in addition to the
strongly convex quadratic one in the cost function. The constraints are required to be linear,
and also to introduce sparse couplings between subsystems. We have shown that the dual
problem has a Lipschitz continuous gradient and the maximum Lipschitz constant of the
gradient is used to derive an optimal step size of the algorithm. One merit of the DAPG
algorithm is that it exhibits fast convergence, i.e., the solution error is reduced with the rate
of O( 1

k2 ) where k is the iteration index. This convergence rate is the best convergence rate
for a gradient method in the literature, and in comparison, the distributed Han’s method
is similar to the classical proximal gradient algorithm which has a convergence rate of
O( 1

k
) only. For the problem class considered, the DAPG algorithm can obtain a centralized

solution by using a distributed implementation. The feasibility and stability of the closed-
loop MPC are also established upon optimality.

In Chapter 4, a constraint tightening approach is employed that leads to two hierarchi-
cal MPC methods that provide feasible solutions after a finite number of iterations, even
in the framework of dual decomposition. The two hierarchical methods are applicable to
optimization problems with convex decoupled cost functions and weakly coupled, linear
inequality constraints. Note that all equality constraints should be eliminated in advance,
so that the constraint set of the MPC optimization problem has non-empty interior. At the
first MPC step, it is necessary to provide a Slater vector, i.e., a point in the interior of the
feasible set of the optimization problem; however for the subsequent steps the algorithm
can generate suitable Slater vectors itself. The hierarchical algorithms can generate fea-
sible primal solutions after a finite number of iterations using a dual conjugate gradient
method (HPF-DCG) and using a dual approximate gradient with Jacobi methods (HPF-
DAG). Hence they avoid solving the dual problem until an optimal solution is found. The
two algorithms use different sub-algorithms to get the primal update at each iteration: the
algorithm HPF-DCG uses a conjugate gradient method to obtain an exact solution of the
primal problem, while the algorithm HPF-DAG uses the Jacobi iteration and obtains an in-
exact solution instead. Both algorithms achieve closed-loop MPC stability by guaranteeing
a monotonical decrease of the cost function, which then can act as a Lyapunov function.

In Chapter 5, we use the distributed approach based on accelerated proximal gradient
method (DAPG) for designing a distributed MPC controller for a Hydro Power Valley
benchmark, and we compare the results against centralized MPC and decentralized MPC.
We use decentralized model order reduction to obtain a suitable model for applying these
three control methods. Furthermore, we propose a dynamic division scheme to decouple
the cost function, thus obtaining an optimization problem that is suitable for distributed op-
timization. The results show that the distributed MPC algorithm can handle the economic
MPC problem of the Hydro Power Valley benchmark efficiently. Distributed MPC pro-
vides a nearly optimal performance that resembles the centralized MPC performance, and
outperforms decentralized MPC. Moreover, distributed MPC using DAPG method is more
computationally efficient than centralized MPC using a standard quadratic programming
solver.

6.1.2 Main contributions

In this section, we highlight the main contributions of the work presented in this thesis:
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1. We have developed a distributed optimization method based on Han’s parallel al-
gorithm; the distributed version is able to generate the same iterate as the parallel
(centralized) counterpart, and is guaranteed to converge to the centralized solution.

2. We have developed a distributed version of the accelerated proximal gradient method
that can handle optimization problems with mixed 1-norm and 2-norm penalty terms
in the cost function and with linear constraints having a sparse coupling structure.
The distributed accelerated proximal gradient algorithm achieves the best conver-
gence rate of a gradient method.

3. We have proposed an approach using constraint tightening that leads to two hierar-
chical algorithms for solving the MPC optimization problem based on dual decom-
position. The algorithms can be terminated after a finite number of iterations, but
still provide feasible solutions to the MPC problem. The algorithms also guarantee
a monotonic decrease of the cost function, thus leading to MPC stability.

4. We have performed a numerical study of hydro power valley benchmark, where the
nonlinear model is treated with linearization and model order reduction that lead to
a simplified linear model to which a distributed MPC controller is applied. The nu-
merical simulations show that distributed MPC can obtain comparable performance
with centralized MPC, while the total computational time of distributed MPC can
be significantly lower than a standard algorithm for centralized MPC.

6.2 Recommendations for future research

6.2.1 Further improvements to distributed MPC design

We have proposed methods to deal with the MPC optimization problem in a distributed
way. However, the properties of the MPC controllers depend on several assumptions of
which the realization is beyond the scope of this work. In order to enable a procedure
for distributed MPC design and implementation, the following open issues should be ad-
dressed next:

• Computation of structured terminal penalty matrix: Stability must be ensured
for the distributed MPC algorithm when using a dual decomposition approach. The
standard MPC problem formulations that guarantee stability apply a terminal point
constraint which uses the cost function as a Lyapunov candidate function, and the
dual-mode MPC formulation which uses the terminal cost as a Lyapunov candidate
function. The former approach is quite conservative, though it results in a sparse
optimization problem that is favorable for distributed MPC. The latter approach is
less conservative, however it requires computing a penalty matrix as a solution of
the Riccati equation. Moreover, the penalty matrix should have a sparse structure
in order to facilitate distributed MPC. As of present, a distributed algorithm for
computing a structured solution of the Riccati equation is still missing. We intend
to generalize the parallel algorithm to solve the Riccati equation of (Gajic and Shen,
1993, Chapter 7), and then approximate the solution with a diagonal banded matrix
so that the cost function has some kind of sparsity structure.
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• Design of decentralized stabilizing controllers and positively invariant sets: The
formulation of dual-mode MPC also requires using a terminal stabilizing controller
when the terminal state is driven into an invariant set of that controller. In the context
of distributed MPC, we need to design decentralized stabilizing controllers and the
corresponding local invariant sets. Although there are results on these topics (Ker-
rigan, 2000, Blanchini and Miani, 2008), these methods require centralized com-
putation, there is still neither a distributed scheme available to construct the decen-
tralized terminal controllers and local invariant sets, nor a verification method to
check whether these results actually exist. We suggest to tackle this problem by a
partitioning approach that neglects the coupling between subsystems, thus allowing
terminal stabilizing controllers and positively invariant sets to be designed by each
local controller, and then verify a posteriori the applicability of the results when the
dynamical coupling is taken into account.

6.2.2 Towards real-life implementations of distributed MPC

The ultimate research goal is to apply distributed MPC in real-world applications, where
the control objective is suitable for MPC, and the problem is too complex to be handled in
a centralized manner. To the author’s best knowledge, there has not been a complex system
that is operated using distributed MPC in practice yet, since there are several topics that
need further research:

• Non-cooperative approach for large-scale infrastructure systems: A potential
application field for distributed MPC is large-scale infrastructure systems, which
can be wide-area networks, e.g., power transmission networks, open water networks,
or traffic networks, where different agents participate in a non-cooperative manner.
In such scenario, the cooperative approach taken in this thesis may not be applica-
ble, and hence a game theory-based approach is worth considering. Relevant topics
for further research are: how to set the regulation laws in a network such that the
agents will contribute to the global performance while they are optimizing their own
benefits, how to quantify the sub-optimality of the non-cooperative distributed so-
lutions, and which level of cooperation should be imposed to balance the global and
individual benefits.

• Reconfigurability, robustness of networks controlled by distributed MPC: An-
other application field with much prospect is the class of large-scale systems that
operate in a fixed area, belonging to the same owner, e.g., transportation system in
a large storage area or a factory, resource handling in a large business system. Since
in this area all subsystems can be designed by a single designer, the cooperative
frameworks proposed in this thesis are applicable. However further steps are needed
before practical implementation. The open questions include: how a subsystem is
plugged in or detached out of the whole network, how to make use of the knowledge
about repetitive patterns like daily task loads or periodic disturbances, how to ensure
robustness of the whole or part of the network against disturbances such as model
mismatch, communication link missing, or subsystem failure.
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6.2.3 Related topics in distributed MPC

The work presented in this thesis can also be extended to related topics that were not
carried out in the time frame of research. These ideas can be developed as open directions
for further research in distributed MPC.

• Distributed MPC using primal decomposition-based methods: The distributed
and hierarchical MPC approaches proposed in this thesis are based on dual decom-
position, i.e., aim to exploit the separable property of the dual problem. For some
classes of problems, even the primal problem can have structures that foster decom-
position; hence primal decomposition approaches can be used then. The research on
primal decomposition for large-scale MPC optimization problems can be built upon
the well-known Gauss-Seidel (serial) or Jacobi (parallel) distributed algorithms.

• Formulation of closed-loop distributed MPC using a robustness approach: In
most cases distributed MPC only achieves sub-optimal results. Hence, there is the
need to quantify the sub-optimality of a distributed MPC scheme with respect to the
number of iterations that subsystems exchange information, and find some bounds
for the sub-optimality. Those bounds, being available in advance, can be used in the
design phase with a robustness approach, so that MPC stability is guaranteed.

• Dealing with periodic behaviors: In many applications the systems operate under
periodically changing inputs or conditions, e.g., the demands for resources such as
electricity or irrigation water in infrastructure networks. Hence, the design of dis-
tributed MPC may not need to start off solving an optimization problem, but instead
efficient controllers can be constructed using self-adapting methods of each sub-
system based on the nominal globally-designed profile. By judging the difference
between the current situation and the nominal case, local controllers can adapt the
stored MPC solutions to get a feasible solution that can be implemented locally.

• Distributed moving-horizon state estimation (MHSE): The problem of distributed
MHSE shares a significant similarity with distributed MPC, where the main task is
to solve an optimization problem online with respect to the estimated/predicted vari-
ables in a finite horizon, and the major challenge is to generate converging/stabilizing
solutions in a distributed manner. Hence, distributed optimization techniques can
also be applied to distributed MHSE in a similar way like in distributed MPC, with
appropriate re-definition of local estimators and local variables.

• Partitioning of large-scale interconnected systems: In some large-scale systems
such as a power transmission network of a region or a water distribution network
of a city, the whole system could be too complicated to build a centralized dynam-
ical model, instead the component models are constructed and then connected to
each other. Hence, the definition of subsystems in these large-scale systems is not
straightforward. One needs to find an appropriate method to partition the system,
resulting in subsystems that have their own inputs and outputs, and there are weak
couplings between subsystems. Graph theory could be used to obtain such partition.





Symbols and Abbreviations

Constants and Indices

i, j Indices indicating different subsystems
k or t Discrete time index
p Iteration index in optimization algorithms
N Prediction horizon of MPC
Ts Sampling time of discrete-time systems
In Identity matrix of dimension n× n
1n Column vector of dimension n with all entries equal to 1

Network notations

M Number of nodes (usually subsystems)
N i Neighborhood set of subsystem i, containing indices of itself

and subsystems that have direct couplings with it
Ii Index matrix of subsystem i (a selection matrix to keep the

variables of subsystem i in the aggregate variable, and to
replace the other entries in the aggregate variable by zeros)

Dynamical Systems

x State vector
u Input vector
x Prediction vector of states, or all the variables in the opti-

mization problem
u Prediction vector of inputs
X Constraint set for the states
U Constraint set for the control inputs
Xf Constraint set for the terminal states, i.e., states at the last

predicted step
A,B Matrices of state-space dynamics

Notations in optimization problems

H Hessian matrix of a quadratic cost function
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106 Symbols and Abbreviations

f Cost function of an optimization problem
∇f Gradient of function f
f∗ Conjugate function of function f
g, h Constraint functions of an optimization problem
q Dual function of an optimization problem
Ω Domain for an optimization problem (Cartesian set)
L Lagrangian of an optimization problem
Li Set of constraint indices that are assigned to subsystem i for

local computations
LN i Union of all sets Lj with j ∈ N i

Abbreviations

MPC Model Predictive Control
DMPC Distributed Model Predictive Control
QP Quadratic Program
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