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Chapter 1

Introduction

1.1 Motivation

Not only in the natural sciences (such as physics, bioloaithescience, meteorol-
ogy) and engineering disciplines (such as computer sciemtiicial intelligence),
but also in the social sciences (such as economics, psyphalociology and polit-
ical science), mathematical models are used extensivelsder to explain a system
and to make predictions about the behavior of that systei®d971]. Based on the
nature of the system, mathematical models can be clasgifieohie of the follow-
ing ways: linear vs. nonlinear, deterministic vs. stocieastatic vs. dynamic, and
discrete vs. continuous. In this thesis, we consider matelsbelong to the class
of discrete-event or hybrid systems.

In discrete-event systems, the state evolution dependslgran the occurrence
of discrete events over time. In this type of systems, thie stamponents refer to
the starting time of the activities and events refer to thet sir the end of those ac-
tivities. For example, in a manufacturing system, a statddchbe the time instant at
which a particular machine starts working and an event isehina breaking down
or a part entering a buffer. Typical examples of discreteregystems are telecom-
munication networks, manufacturing systems, parallel mating, traffic control
systems, railway networks, etc.

Hybrid systems are characterized by the interaction of-tior@inuous models
on the one hand, and logic rules and discrete-event moddtseasther hand. As a
result, the evolution of a hybrid system may depend both empthgress of time and
the occurrence of events. Typically when an event occuessylstem switches to a
new operation mode. At each mode, the continuous time ewalof the system is
governed by a different set of differential or differenceiatipns. Typical examples
of hybrid systems are manufacturing systems, computeranksydigital circuits,
and logistic systems.
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When selecting the most appropriate model for a discretetesr a hybrid sys-
tem, there is always a trade-off between the modeling ponatttee decision power;
in other words, modeling frameworks that can describe largkgeneral classes of
discrete-event and hybrid systems are, in general, leseabteeto (efficient) math-
ematical analysis. Some examples of modeling framewornkdifzrete-event and
hybrid systems are queuing theory, (extended) state meshformal languages,
automata, temporal logic models, generalized semi-Mapoeesses, Petri nets,
and computer simulation models [19, 58, 91, 114, 115]. Asaltea special class
of discrete-event models, namely the max-plus-linear (Mfbdels, has been in-
troduced that are amenable to mathematical analysis [4,723Such models apply
to discrete-event systems with synchronization but nogeh(g.g. an assembly line)
and are described using max-plus-scaling functions, fuegtions that are con-
structed using the operations maximization, addition,randiplication by a scalar.

An extension of this class is the class of switching MPL syst¢108], in which
the state of the system can switch between different modepevyhtion, e.g. a pro-
duction system that has different recipes for differentipicts and hence, the system
switches to a different mode to produce each product. At eamtte, the system is
described by an MPL model with particular system matricegiHat mode. Other
examples of switching MPL systems are a railway network oglecommunica-
tion network. We study also the class of min-max-plus-eca(MMPS) systems,
which includes both hybrid and discrete-event systems dridhaare equivalent to
a particular class of hybrid systems, namely continuousemigse affine (PWA) sys-
tems [49, 55, 88]. In MMPS systems, the system dynamics dieedeby MMPS
expressions, i.e., expressions constructed using thatipes maximization, min-
imization, addition, and multiplication by a scalar. Dajitircuits are an example
of MMPS systems. In all these systems, we can consider aastchstructure
imposed by the presence of model mismatch and/or distuelsgdg 57, 75].

To control stochastic systems belonging to the above-megdi classes, one ef-
ficient control approach is model predictive control (MPC§,[44, 74]. MPC is an
online model-based approach, in which at each event stegiorete-event sys-
tems) or time step (for hybrid systems) an optimal contrgusaice is computed.
This optimization is done over a finite series of events otdiperiod of time, and
at each event or time step, only the first sample of the optimatrol sequence will
be applied to the system. In the next step, the horizon wiktifted forward and
the new optimal control sequence will be computed. In thehatstic systems, the
objective function defined in the MPC optimization probleomsists of an expected
value of stochastic max-plus-scaling functions and MMP§gressions. Hence,
solving this optimization problem creates a considerabl@putational complex-
ity due to the presence of the expected value. In generalexpected value is
computed using either numerical integration or some avigilanalytic approaches,
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which are all very time-consuming and complex.

1.2 Research Goals

The aim of this PhD research is to develop (approximatiorthous, to compute the
expected value of max-plus-scaling and MMPS functions thigfocus on reducing
the computational complexity and the computation time.c&ithe currently used
methods, i.e., numerical or analytic integration, are cotajonally quite complex,
MPC for stochastic (switching) MPL or MMPS systems has orderb studied in
the literature for systems with uniformly distributed oumoled noise, which causes
limitations as in practice this distribution cannot alwapture all the stochastic
properties of the system.

Accordingly, we propose an approximation method to complgeexpected
value of max-plus-scaling and MMPS functions. This appration method, which
is the core of this thesis, is inspired by the relation betwdifferent types of vector
norms, namely the-norm and thexo-norm. Using this approximation approach,
we obtain an upper bound for the expected value of stochasticplus-scaling and
MMPS functions that can be used as a replacement of the expeaiue itself when
minimizing the objective function. This approach allowstasonsider stochastic
random variables with any probability distribution thasHiite moments of which
a closed form exists, such as the uniform distribution, tbenal distribution, the
beta distribution, etc.

After obtaining this approximation method, we apply it tadeess MPC and
identification of stochastic MPL systems, MPC for stocltastvitching MPL sys-
tems, and MPC for MMPS systems. The proposed approximatethad simpli-
fies the computations considerably. Moreover, we show inctee studies that
by choosing the appropriate order of the moments, the appation error can
be made sufficiently small. In these examples, we obtain ehrfaster and more
efficient way to address MPC and identification of differdasses of max-plus sys-
tems with a performance that is comparable to the one usm@xisting methods
to compute the expected value, such as numerical or anaigigration and Monte
Carlo simulation.

1.3 Overview of the Thesis

This PhD thesis starts with a short overview on previous wiwke on MPC and
identification of MPL and other classes of max-plus systebimpters 1-3) and then
follows by presenting the main contribution of this thesthépter 4), which is an
approximation approach for computing the expected valumaft-plus functions,
as well as addressing MPC and identification of the mentiattasses using this
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new approach (Chapters 5-7). The relation between the @fsapf this thesis is
illustrated in Figure 1.1.

Chapter 1
Introduction
4
Chapter 2
Background
Chapter 3 Chapter 6
MPC & Identification of ’ Approximate
MPL Systems Switching MPL & MMPS
Chapter 4
Approximation Method '
Chapter 5 ‘ Chapter 7
Approximate - » Min-Max & Stochastic
MPC & Identification Optimization of MMPS
Chapter 8

Conclusions

Figure 1.1: Overview of the thesis

The thesis is organized as follows:

Chapter 2

This chapter provides background information on the mas-@igebra. Since
we study different classes of MPL systems in this thesis,p@te2 gives a brief
overview on each of these classes, namely the classes bastaMPL systems,
stochastic switching MPL systems, and stochastic MMPSesyst For each of
these systems, there is a simple example in order to makegckenderstanding
of these systems.



1.3 Overview of the Thesis 7

Chapter 3

In Chapter 3, we give a concise account of MPC for stochasit. gystems with
an extension to switching MPL systems and MMPS systems. dereidentifica-

tion of stochastic MPL systems is also discussed brieflyhBot MPC and iden-
tification, we explain the methodology and the computatigmacedure. We also
present the currently applied methods to solve the MPC attifitation optimiza-

tion problem of these systems and discuss the computatongblexities imposed
by these methods.

Chapter 4

Chapter 4 introduces the new approximation approach basetbments of random
variables and describes how it reduces the complexity of MR identification

optimization problems. The main advantage of this appraadhat it results in an
analytic solution in the case that random variables haviefimboments with a closed
form and hence, it reduces the computation time of the opétiin procedure as
well. We also discuss the error of this approximation methnd show that this
error is bounded both from below and from above. Furthergrtbeeconvexity of the

approximation function obtained from this method is disegs Having a convex
approximation function, in many cases, results in a conygitriézation problem,

which can be solved efficiently.

Chapter 5

Chapter 5 is dedicated to the application of the approxmnatiethod to MPC and
identification of stochastic MPL systems. In both casesathroximate objective
function will be defined, which is indeed an upper bound ferttlue objective func-
tion. Since this approximate function can be computed gically, the computation
time of the approximate optimization problem is very shaord ghe computational
complexity is much less than the one using numerical or &icalytegration. We
present examples with different types of distributiongifviounded and unbounded
domain) for both MPC and identification of stochastic MPLteyss to compare the
results obtained using the approximation method with tisailte obtained using
other methods, such as numerical or analytic integratiehMonte Carlo simula-
tion.

Chapter 6

In Chapter 6, we extend the approximation method furthemim other classes
of discrete-event systems, namely the stochastic swiicMPRL systems and the
stochastic MMPS systems. Here again, we define an appraximhictive function
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using the approximation method to obtain an upper boundobjective function.
For switching MPL systems, we consider both stochasticchivig and stochastic
system parameters at the same time and hence, we study #wicaghich these
two stochastic phenomena are independent of or dependexdobnother. In case
of MMPS systems, in order to be able to apply the approximatiethod, we first
need to rewrite the MMPS objective function as a differerfdeo convex functions
and next, apply the approximation method. For both swighPL systems and
MMPS systems, we present worked examples to compare therperfice of the
approximation method with other existing methods.

Chapter 7

Min-max optimization of MMPS systems appears in differemtigbems defined for
discrete-event and hybrid systems. Chapter 7 presents ithenax and stochas-
tic optimization problem of MMPS systems. We study the miaxnoptimization

over bounded control variables, the minimization of MMP8diions with stochas-
tic variables, and the min-max optimization of MMPS funoBowith stochastic
variables and provide a solution approach for each of thera.aldb present two
applications, namely the filtering problem and the refeeetracking problem, in
which the min-max and stochastic optimization of MMPS fimts appear.

Chapter 8

Chapter 8 concludes the thesis and provides some recomtiersdfor future re-
search. We present the main contributions of this thesisdisas/suggesting further
research on some related topics in order to improve the ajppation method and
some other interesting topics related to max-plus systems.

1.4 Publications

Most of the material presented in Chapters 4-6 of this PhBisheas been published
in conference proceedings or submitted to peer reviewadads! The link between
each chapter and the publications is as follows:

e Chapter 4 is based on the paper [37-39]
e Chapter 5 is based on the papers [35, 37-39]
e Chapter 6 is based on the papers [36, 113]



Chapter 2

Background

In this chapter, we present a brief overview of max-plusladgefollowed by a con-
cise description of some special classes of discrete-systems such as stochastic
max-plus-linear (MPL) systems, stochastic switching MPktems, and stochas-
tic max-min-plus-scaling (MMPS) systems. Since the magu$oof this thesis is
on providing an approximation method in order to increasecttmputational effi-
ciency of the control process of such systems, it is useffitdbbecome acquainted
with the general description of these systems.

2.1 Max-Plus Algebra

DefineR. = R U {e} ande = —oo. The max-plus additiondf) and multiplication
(®) are defined as follows:

z @y = max(z,y)
rR®Yy=x+Yy

for x,y € R.. The zero element of the max-plus additiorzjs.e.,x & ¢ = z, and
the identity element of the max-plus multiplicationfisi.e.,z ® 0 = x. The sefR,
together with the operators and® is called max-plus algebra and is denoted by
Re = (R.,®,®,¢,0) [4]. Note thatR. is asemifieldsince:

o the operatior® is associative and commutative;

e the operationw is distributive with respect ted and its identity elemend
satisfies 0 =0® e =«.

R. is alsoidempotensince the first operation is idempotent, i2p r = z,Vz €
R., and it is commutative, i.e; @ y = y ® x.

9
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The corresponding max-plus matrix operations are defingaq4
(A b B)Z] = CLZ']' b bij = max(al-j, bl])

(A® C);j EB ik, ® Cpj = | max (aik + cij)

for A, B € R™™ andC € RZ*”. We denote theé-th row of matrixA by A; . and
the j-th column byA. ;. To avoid confusion in the sequel, we drop the multiplica-
tion sign in conventional algebra expressions while keggie® sign in max-plus
expressions.

Now let Sy,ps denote the set of max-plus-scaling functions, i.e., fumstif of
the form

f(z) = Z,:r{laxm(Ti,lzl + o+ TinZn + &) (2.1)
with variablez € R? and constant coefficients ; € R and¢; € R. In the sequel,
we stress thaf is a max-plus-scaling function afby writing f € Spps. ..

Remark 2.1.1 Letk € N/{0}. Then forz € R., the max-plus power is defined as
2®" = k- z and — by definition <’ = 0. Therefore, a max-plus-scaling function
f can also be defined using max-plus notations as follows:

m
i1 i,
:@Zig) ®...®Z§”"®&_
=1

with variablez € R and constant coefficients ; € R and{; € R. However, in
this thesis, we use the expression in (2.1) for ease of abdigsand to emphasize
linearity in terms of conventional algebra. O

As shown in [104], the se$,,,,s is closed under the operations @, and the scalar
multiplication. The in-depth discussion on max-plus akgetan be found in [4, 23,
57].

2.2 Stochastic Max-Plus-Linear (MPL) Systems

Discrete-event systems form a large class of dynamic sysitemhich the evolution
of the system is specified by the occurrence of certain dis@eents, unlike con-
tinuous dynamic systems where the state of the system chasgene progresses.
For such systems, there exist different modeling framewstich as queuing the-
ory, (extended) state machines, formal languages, autoneahporal logic models,
generalized semi-Markov processes, Petri nets, and cempumulation models
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[19, 58, 91]. Models of such systems are in general nonlimeaonventional al-
gebra. However, there exists an important class of disenatat systems, namely
the max-plus-linear (MPL) systems, for which the moddiriear in the max-plus
algebra.

The class of MPL systems consists of discrete-event systithssynchro-
nization but no choice. Synchronization requires the atbdity of several re-
sources at the same time, whereas choice appears, e.g.sarheruser must choose
among several resources [4]. Typical examples of suchregstee serial produc-
tion lines, production systems with a fixed routing schedaiel railway networks.
In stochastic systems, processing times and/or transjportémes are assumed to
be stochastic quantities, since in practice such stochfistituations can, e.g. be
caused by machine failure or depreciation [87]. Anotheetgp error is model-
ing errors, which again leads to errors in the system matri¢eelated topics on
(stochastic) MPL systems including analysis, controllesidn, etc., can be found
in[4,6,57, 75, 87, 92].

A stochastic MPL system can be modeled [4, 23] as follows:

2(k) = A(k) @ z(k — 1) ® B(k) ® u(k) (2.2)
y(k) = C(k) @ z(k) (2.3)

where A(k), B(k) and C(k) are system matrices, which are perturbed by noise
and/or modeling errors by assumptiatik) is the state of the system at event step
andu(k) andy(k) are the input and output of the system. In fact, the vectéks,
u(k), andy(k) contain the time instants at which the internal, input, antpot
events occur for thé-th time, respectively. Modeling mismatch and disturbance
perturb the system by introducing uncertainty in the systesirices. Sometimes it
is difficult to distinguish between these two, but usuallstfehanges in the system
matrices will be considered as noise and disturbances, eabeslow changes or
permanent errors are considered as model mismatch. Fofiovdan den Boom et
al. [109], the uncertainties in the system are presentedsingde framework, using
one stochastic vectei(k) with a certain probability distribution. Hence, the erdrie

of the system matrices belong &, (see [104]), i.e.A(k) € ‘9:1%:2&)’ B(k) €

Sg;;’;&), C(k) € SIZZ):,Z&)’ which is illustrated in Example 2.2.2 below.

Remark 2.2.1 In practice, the order of MPL systems can range from abouef (
for small production systems) to more than 200 (e.g., forgelacale railway net-
work). The examples presented in this thesis considermsgstgath a small system
order due to two reasons. The first reason is that this is atitidehoice, which

allows more insight into the problem. The second reasonasiththe following

chapters, we will compare our proposed approximation nusthwith some other
available methods from the literature and since some ofthesthods are often
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very slow and inefficient for systems of large order, our egka® are chosen ac-
cordingly. O

Example 2.2.2 A simple production system with stochastic mrcessing time
[27]

dy =12

dg(k) =11 +61(l€) ta =1
o =2 P,

Figure 2.1: A simple production system.

Consider the system of Figure 2.1. This production systensists of three
processing unitsP;, P, andP;. Raw material is fed td®, and P, to be processed,
and then it is sent t&; where assembly takes place. The processing timeB,fo
di; = 12 time units. We assume that the processing timé4foand P; are perturbed
by noise, i.e.ds(k) = do + e1(k) andds(k) = d3 + ea(k) whereds = 11, d3 =7,
ande(k) = [e1(k)ez2(k)]T is an stochastic vector with independent elements and
with a given probability distribution (e.g. the uniform tibution or the normal
distribution). We assume that it takes= 2 time units for the raw material to get
from the input source t®, and that it takes, = 1 time unit for the finished products
of processing unif?, to reachP;. The other transportation times (t3, andts) are
assumed to be negligible. We assume that at the input of erayand between the
processing units there are buffers with a capacity thatgglanough to ensure that
no buffer overflow will occur. We consider the situation wiadamitially all buffers
are empty and none of the processing units contains raw ialaberintermediate
products.

A processing unit can only start working on a new productlifs finished pro-
cessing the previous product. We assume that each progeassinstarts working
as soon as all parts are available. Define

e u(k): time instant at which raw material is fed to the system ferthh time,

e z;(k): time instant at which the-th processing unit starts working for the
k-th time,

e y(k): time instant at which thé-th finished product leaves the system.
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Let us now determine the time instant at which processing Bnitarts working
for the k-th time. If we feed raw material to the system for th¢h time, then this
raw material is available at the input of processing ufitat timet = u(k) + ;.
However, P, can only start working on the new batch of raw material as soih
has finished processing the previous, i.e.,(the 1)-th, batch. Since the processing
time onP; is d; = 12 time units, thg k — 1)-th intermediate product will leavg,
attimet = z1(k — 1) + d;. SinceP; starts working on a batch of raw material as
soon as the raw material is available and the current batsHelftathe processing
unit, this implies that we have

z1(k) = max(z1(k — 1) + dq, u(k) + t1) (2.4)

for k = 1,2,... The condition that initially processing uni?; is empty and idle
corresponds to the initial condition; (0) = ¢ since then it follows from (2.4) that
z1(1) = u(1), i.e., the first batch of raw material that is fed to the systeithbe
processed immediately.

Using a similar reasoning, we find the following expressitmrsthe time in-
stants at whicl?, and P5 start working for thek-th time and for the time instant at
which thek-th finished product leaves the system:

xo(k) = max(xa(k — 1) + do(k — 1), u(k) + t2) (2.5)
x3(k) = max(z1(k) + di + t3, x2(k) + do(k) + tg, xz3(k — 1) + ds(k — 1))
=max(z1(k — 1) + 2dy + t3, x2(k — 1) + do(k — 1) + dao(k) + t4,
x3(k — 1) +ds(k —1),u(k) +dy +t1 + ts, u(k:) + dg(k)) +to + t4)
(2.6)
y(k) = x3(k) + ds(k) + t5 (2.7)
for k = 1,2,.... The condition that initially all buffers are empty corresgs to

the initial conditionz; (0) = x2(0) = x3(0) = ¢.
Let us now rewrite the evolution equations of the productgstem in a max-
plus format. It is easy to verify that (2.4) can be rewritten a

Il(k‘) =di ® Il(kj — 1) Pt ® u(k:) .
Likewise, (2.5)-(2.7) can be written as follows:

2
.%'3(/?) =2d1 @tz ® .%'1(/€ — 1) @ dg(/{? — 1) ® dg(k) Rty ® I'Q(k? — 1)@
d3(k —1) @z3(k — 1) ®d1 @ t1 @13 @ u(k) S da(k) @ ta ® ts @ u(k),
y(k) = d3(k) @ t5 @ z3(k).

wa(k) = da(k — 1) @ za(k — 1) &ty @ u(k),
(
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If we now rewrite the above equations in max-plus-algebnaétrix notation, we
obtain

z(k) = A(k)®z(k—1)® B(k) ® u(k)

y(k) = Ck)®z(k) .

wherex(k) = [x1(k) z2(k) x3(k)]T and with the system matrice$(k), B(k)
andC(k) given as follows:

[ d € €
Ay = | = do(k — 1) !
_2d1 + i3 dg(k — 1) + dg(k) + 1y dg(k — 1)

[ d € €
= € dy+ei(k—1) € )
_2d1 +t3 2do + 61(/{? — 1) + 61(/{?) +t4 d3g+ eg(k — 1)

_ t
B(k) = to
| max(dy + t1 +t3,da(k) +ta + t4)

_ "
= t2 9
| max(d; +t1 + t3,da + el(k:) +to +ty)

Ck) = [8 5 dg(k)}

= & d3y+es(k)].

Note that this is a model of the form (2.2)—(2.3). Hede(k) = dy + e1(k) =
do®eq (k) andds (k) = ds+ea(k) = ds®ea(k), which implies that in MPL systems
the influence of noise and disturbances is max-plus-migépve, which results in
the perturbation of system matrices; this is in contrasbtventional linear systems
in which the noise and disturbances are often considered talditive and hence,
are modeled by including an extra term in the system equation O

2.3 Stochastic Switching MPL System's

Another class of discrete-event systems is the class otlswg MPL systems,
which consists of discrete-event systems that can swittlidas different modes

1The discussion on stochastic switching MPL systems is maiased on the results appearing in
[107,112]
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of operation such that each mode, itself, is an MPL systene mibde switching
allows us to model a change in the structure of the systenh, asibreaking a syn-
chronization or changing the order of events. In each mfode{1,...,n}, the
system is described by an MPL state equation and an MPL oetpudtion, with
different system matrices for each mode, as follows:

z(k) = AYM) @ 2k — 1) & BUF) @ u(k) (2.8)
y(k) = CR) @ z(k) (2.9)

whereA(t(K) ¢ Rraxna  BUEK) ¢ Rraxnu andC¢(k) ¢ Rmv*n= gre the system
matrices for the-th mode. We assume that there aepossible modes.

The class of Switching MPL systems with deterministic amtisaistic switch-
ing contains discrete-event systems with synchronizatainno choice, in which
the order of events may vary randomly and often cannot berdeted a priori.
This randomness may be due to e.g. (randomly) changing ptiodurecipes, vary-
ing customer demands or traffic demands, failures in prosluetnits, or faults in
transmission links [5, 108]. A stochastic switching MPLt&ys may be character-
ized by stochastic switching or stochastic system parasebe both at the same
time. For the case of stochastic switching with determimigarameters, the prob-
ability of switching to mode/ at event stegk may depend on the previous mode
¢(k — 1), the previous state(k — 1), the input variable:(k), a (additional) control
variablev(k), and the event step, which can be denoted by [107]

P[L(k) =¢(k)|t(k — 1), xz(k — 1), u(k),v(k), K], (2.10)

whereL(k) is a stochastic variable ardk) is its valué. Since((2.10) is a probabil-
ity, it has the following properties:

0 < PL(k) = LK)k — 1), 2(k — 1), u(k), v(k), k] < 1

3" PIL(k) = £(k)le(k — 1), 2(k — 1), u(k), v(k), k] = 1.
o(k)=1

In the case of having only perturbed system parameters weitdrinistic mode
switching, at each modé € {1,...,n;} the system equations are of the form
(2.2)-(2.3). In the last case in which both mode switching systems parameters
are stochastic variables, the system equations can be desrfellows [107]:

z(k) = AY®) (e(k) @ 2(k — 1) ® BYF) (e(k)) @ u(k) (2.11)

2As mentioned in [108], to obtain an optimal switching seaqueeim this case, we can use global
random search algorithms such as genetic algorithms [28) $earch [45], or a branch-and-bound
method [22].
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y(k) = CYO(e(k)) @ 2 (k) (2.12)

where AU(®) (e(k)), BUR) (e(k)), andC“(F) (e(k)) are the system matrices cor-
responding to modé(k) with a stochastic vectar(k).

In the following example, we illustrate the first case in whibe mode changing
is stochastic and the system parameters are deterministic.

Example 2.3.1 A production system with stochastic switchig between three
different recipes [107]

dy =1 d3 =5
M, B.C M;
N
AC A AB
u(k) B M, C y(k)
dy =1

Figure 2.2: A production system with stochastic switchiatyleen different recipes.

Consider the production system of Figure 2.2. This systemsists of three ma-
chinesM;, M,, and M3. Three productsA, B, C) can be made with this system,
each with its own recipe, meaning that the order in the priiolusequence is dif-
ferent for every product. For produét(using recipe(k) = 1) the production order
is M1-Ms-Ms, which means that the raw material is fed to machide where it
is processed. Next, the intermediate product is sent to imadt, for further pro-
cessing, and finally the produdtis finished in machiné/s. Similarly, for product
B (using recipel(k) = 2) the processing order i&/»-M;-Ms, and for producC
(using recipel(k) = 3) the processing order i&/;-Ms-Ms. We assume that the
type of thek-th product @, B or C) is available at the start of the production, so
that we do know/(k) when computing:(k).

Each machine starts working as soon as possible on each hatctas soon
as the raw material or the required intermediate produetseailable, and as soon
as the machine is idle (i.e., the previous batch has beeméidiand has left the
machine). We define(k) as the time instant at which the system is fed with the
raw material for the:-th product,z; (k) as the time instant at which machinstarts
processing the-th product, andy(k) as time instant at which thg-th product
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leaves the system. We assume that all the internal buffereege enough, and no
overflow will occur.

We assume the transportation times between the machinesrtedtigible, and
the processing times of the machin¥s, M, andM;3 to be givenbyl; = 1,d; = 1
andds = 5, respectively. The system equations for recipare given by

z1(k) = max(z1(k — 1) + dy,u(k)) ,
xo(k) = max(x1(k) + di,xe(k — 1) + do)
=max(x1(k — 1) 4+ 2d1, z2(k — 1) + da, u(k) + d1) ,
x3(k) = max(xo(k) 4+ do, z3(k — 1) + d3)
= max(x1(k — 1) 4+ 2d; + dg, z2(k — 1) + 2d,
x3(k —1) +ds,u(k) + di + da) ,

leading to the following system matrices for recifge

dy € €
AW = | 24y dy €
2d; +dy 2ds ds

0
: B(l){ dy ] , CW=T[c ¢ dy].
dy +ds

Similarly we derive for recipé3:

d1 2d2 £ d2
A =1 e 4 |, B®=] o0 , CP =T ¢ d ,

2dy dy+2dy ds dy + do
and for recipeC:
dy € € 0
A® = 2dy +dy dy 2d3| . B =|di+ds| . CV=[c dp €].
2d1 e dg dl

The switching probability from one recipe to the next onessuaned to be given
by:

PIL(k) = 1|1, 2(k — 1), u(k), k] = 0.64
PIL(k) = 1|2, 2(k — 1), u(k), k] = 0.18
PIL(k) = 1|3, 2(k — 1), u(k), k] = 0.18
PIL(k) = 2|1, 2(k — 1), u(k), k] = 0.18
PIL(k) = 2|2, 2(k — 1), u(k), k] = 0.64
PIL(k) = 2|3, 2(k — 1), u(k), k] = 0.18
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PIL(k) = 3|1, 2(k — 1), u(k), k] = 0.18
PIL(E) = 3|2, 2(k — 1), u(k), k] = 0.18
PIL(k) = 3|3, 2(k — 1), u(k), k] = 0.64

which means that if we have a specific recipe for produdhen the probability of
having the same recipe for product- 1 is 64%, and the probability of a switching
to each other recipe i88%. O

2.4 Stochastic Max-Min-Plus-Scaling (MMPS) Systems

A large class of discrete-event and hybrid systems can heided by a max-min-
plus-scaling (MMPS) model. Hybrid systems [111] contaihbcontinuous dy-
namics and switching. Typical examples are manufactumstesns, telecommuni-
cation and computer networks, traffic control systems taigircuits, and logistic
systems. In [81] it is shown that the class of MMPS systemsmpasses several
other classes of discrete-event systems such as contipiseewvise affine (PWA)
systems.

Remark 2.4.1 Note that (stochastic) MMPS systems can be both eventrdenel
time-driven since both discrete-event and hybrid systesimsbe modeled using the
class of (stochastic) MMPS systems. O

Definition 2.4.2 ([29]) ¢ : R™ — R is a scalar-valued MMPS function of the vari-
ableszy, ..., z, if there exists scalar-valued MMPS functiofjsand g; such that

9(w;) =zi|a| max(gr(x), gi/(z))| min(gr(z), g (v))|
gk(x) + gi1(z)|Bar(x),

where| stands for “or” and o, 5 € Rfori =1,...,n.

Accordingly, for a vector-valued MMPS functign: R” — R™, each component
of g is an MMPS function of the above form. Furthermore, MMPS fiors are

dense in the class of continuous functions since they areCfrapter 6) equivalent
to continuous PWA functions, which form a dense subspacerfriuous functions
[69, Section 2.7].

Remark 2.4.3 A natural extension of stochastic MPL systems is stochastig-
min-plus (MMP) systems [60, 86], such as a system descriisesetie flows on
networks or a traffic network. In this thesis, we take one &tefher and consider
stochastic MMPS systems in which scaling is present as well. O
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Accordingly, a state space representation of a deterrnai#iPS system can be
described as follows:

(k) = My (z(k —1),u(k)) (2.13)
y(k) = My (x(k), u(k)), (2.14)

where M, M, are MMPS functionsgz (k) is the system state,(k) is the system
input, andy (k) is the system output at time or event stefSimilar to conventional
linear systems, in stochastic MMPS systems in which noisexadeling errors are
present, disturbances and modeling mismatches appeae isytems equations.
Hence, the system (2.13)-(2.14) then turns into:

(k) = My(z(k — 1), u(k),e(k)) (2.15)
y(k) = My (x(k), u(k), e(k)). (2.16)

As mentioned in the previous sections, we consider botteramisl modeling errors
in a single framework and present it by the veet@k), which is a stochastic variable
with a given probability density function.

Furthermore, it has been shown in [49, 55, 88] that MMPS systare equiva-
lent to a particular class of hybrid systems, namely cootisuPWA systems.

Definition 2.4.4 ([42]) A continuous piecewise affine function is defined by a finite
number of hyperplanes that divide the whole space into afmitmber of convex
regions(; ..., C, surrounded by boundary hyperplanes, and by a set of constant
Jacobian matrices/™, m = 1,2,...,r, each of which describes the linear be-
havior in each region ag ™z + b(™) whereb(™ is a constant vector defined in

a given regionm, andr denotes the total number of regions, and the function is
continuous across the boundaries of the regions .

For more information on PWA functions and PWA systems werrefd7, 20, 21,
61, 64, 69, 102] and the references therein.

Proposition 2.4.5 ([49, 88])Any MMPS function can be written as a continuous
PWA function and vice versa.

The relation between PWA and MMPS systems is useful for thesiigation of

structural properties of PWA systems such as observalaility controllability but

also in designing controller schemes like model prediatiwetrol (MPC) [8, 61].
The following example is a sample of a system with MMPS dyrmafni

3Note that this system is in fact an MMP system which is a speafse of an MMPS system with
the scaling factors equal to 1. Later on in Chapter 6, exasnplidully-fledged MMPS systems and
functions will be considered explicitly.
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Example 2.4.6 A production system with MMPS system dynamicf29]

dy

ds3

[B] v(k) —— A M,

Figure 2.3: A simple manufacturing system with MMPS dynamic

Consider the production system of Figure|2.3, which cossifthree process-
ing units My, M,, and M3 with processing timed;, ds, andds. Raw material is
coming from two sources: from an external provider (dendtgd in Figure 2.3)
over which we have no control, and from a source (denotefl lyFigure 2.3) for
which we can completely control the release times (e.gQragé unit with a large
capacity so that its stock level never runs down to zero).tiFhe instants at which
the k-th batch of raw material from the controllable source aredekternal source
arrives at the system are denoteduf¥) andv(k), respectively. The raw material
from both sources can be processed by eithigror Ms, which perform similar
tasks. However)/, is slower thamM/;. Therefore, the part of the raw material that
arrives first for thek-th product is processed di,; and the part that arrives last will
be processed oh/;. So ifv(k) < u(k), then thek-th batch of raw material coming
from the external (uncontrollable) source is processed/erand the raw material
coming from the controllable source at; if u(k) < v(k), the reverse holds. This
implies that the:-th batch of raw material destined faf; arrives at the production
unit at time instant = max(u(k), v(k)), and that the:-th batch destined fob/,
arrives at time instant = min(u(k),v(k)). The intermediate products generated
by M, and M, are sent tal/3 where assembly takes places.

The processing time folkd; and M3 ared, = 15 andds = 1 time units, re-
spectively. We assume that the processing timeMoris perturbed by noise, i.e.,
dy(k) = 10 + e(k) wheree(k) is an stochastic variable with a given probability
distribution. We assume that the transportation times énntilanufacturing system
are negligible, and that in between the production uniteethee storage buffer with
a sufficiently large capacity, so that no buffer overflowsurcd he time instant at
which processing unid/; starts processing thieth batch is denoted hy; (%), and
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y(k) is the time instant at which the-th finished product leaves the system. As-
sume that each production unit starts working for Ak time as soon as the raw
material is available and as soon as the production unit heshéid processing the
previous part. Hence,

z1(k) = max (z1(k — 1) + di(k ) max(u(k‘),v( ))
=max (z1(k — 1) + di1(k ),v(k))
z2(k) = max (wo(k — 1) +d2,m1n( ( ) v(k)))
x3(k) = max (x3(k — 1) + d3, 1 (k) + d1(k), x2 (k) + d2)
= max (z3(k — 1) + ds, z1(k — 1) + 2d; (k), u(k) + d1(k),

v(k) + di(k), z2(k — 1) + 2da, min(u(k), v(k)) + d2)
y(k) = .%'3(/?) + d3.

Note thatz;(k) andy(k) are MMPS functions of (k — 1), u(k), v(k), ande(k). O

2.5 Summary

In this chapter we have briefly discussed max-plus algeldarmae different classes
of discrete-event systems, namely the class of stochasic $§stems, the class of
stochastic switching MPL systems, and the class of stochsl$lPS systems. For
each of these classes, the state space representatiorhafyséem has been given
and some related issues such as the mode switching prapaeiticription and the
equivalence between MMPS and PWA functions have been atteBurthermore,
for each class one example has been provided.






Chapter 3

Model Predictive Control and
|dentification of Stochastic
Max-Plus-Linear Systems

In this chapter, state-of-the-art in control and identifma of stochastic MPL sys-
tems is discussed. More specifically, we first discuss modsdiigtive control

(MPC) for stochastic MPL systems and next, we also consideCNbr two other

classes of discrete-event systems, namely the class bfstiic switching MPL sys-
tems and the class of stochastic MMPS systems. For both MB@antification of

stochastic MPL systems, some solution approaches havepbeeosed in the liter-
ature, which are presented in this chapter. These apprehave some limitations,
which will be discussed here as well.

3.1 Model Predictive Control (MPC) for Stochastic MPL
Systems

MPC is an advanced control approach used in the processtindhat relies on a
dynamic model of the process and it has the following progert

e MPC is a model-based controller design procedure that caity daandle
processes with large time delays, multi-input multi-otitprocesses, non-
minimum phase processes, and unstable processes.

e It is an easy-to-tune method: in principle only three paramsehave to be
tuned.

e MPC can handle constraints on the inputs and the outputegdrtbcess (due
to, e.qg., limited capacity of buffers, actuator saturatimmput quality specifi-

23
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cations, etc.) in a systematic way during the design andhipéeimentation of
the controller. Conventional control design techniquashsas LQG and
control methods [3, 101], can often not be applied once mhdit constraints
on inputs and outputs are included.

e MPC can handle structural changes, such as sensor or achaiitces, and
changes in system parameters or the system structure, ptiragéhe model
and by using a receding horizon approach, in which the madéttze control
strategy are regularly updated.

MPC is based on an iterative, finite horizon algorithm to wb&mn optimal control
sequence in order to minimize the objective function suligethe given constraints.
At each iteration, the optimal control sequence is compuotest a finite horizon,
i.e., afinite period of time or a finite series of events. MPEauhe receding horizon
principle, which means that after computation of the opticoatrol sequence, only
the first sample will be implemented in the next iterationb&aquently, the horizon
will be shifted one sample, and the optimization will be agstd with new informa-
tion of the measurements. The MPC methodology is explaineddre details in
the following section.

Conventional MPC uses linear or nonlinear discrete-timeleto[74]. How-
ever, MPC has also been extended to discrete-event systan® dits useful fea-
tures mentioned above [27,/82]. One of the relevant topiashhs attracted much
attention recently, is the application of MPC for perturlmedx-plus linear systems
in which modeling errors, noise, and/or disturbances aesgmt. In [104] such
systems have been studied, which results in an MPC contfoli@erturbed MPL
systems.

3.1.1 Problem Statement

In [27, 104] the MPC framework has been extended to MPL mo(eR)—(2.3)
as follows. Following the conventional MPC methodology,[#4], we define an
objective function/ that reflects the input and output objective functions fraent
stepktok + N, — 1, as

J(k) = Jout(k) + )‘Jln(k) (31)

whereN,, is the prediction horizon andl is a weighting factor. Typical choices of
Jout @andJy, for a stochastic system are:

Jout,1 (k) = E[|§(k) — F(k)Il1],  Jout,ee (k) = E[l[F(k) — 7(k) ],

Jout,1 (k) = E[max{g(k) — 7(k), 0}] 3.2)
Jin1 (k) = —[[a(k)l[1;  Jinoo(k) = —[|a(k)]co,
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Np-ny

Jng(k) ==Y (k)

i=1
wherekE[-] denotes the expected value operator and
a(k) =[ u’ (k) -+ u'(k+Np—1) |7,

gk)y =1 y"(k) - yT(k+N,—1) |7, (3.3)
FE) = [ rT(k) - rT(k+Ny—1) T,

—~
NA
~
I
—

with (k) denoting the vector of reference (due date) signals. Toggaurther, as
an example, let us considethe following input and output objective functions:

Np—1 ny
Jout (k) = Z ZE[maX(yi(k‘ +j) —ri(k+5),0)], (3.4)
=0 i=1
] Np—1 ny
=) wlk+ ). (3.5)
j=0 I=1

The physical interpretation for this choice of output anduinobjective functions
is that.J,, (k) penalizes the late but not early deliveries for ti output at event
stepk and J;, (k) promotes feeding as late as possible at each eventstdpnce,
the objective function (3.1) can be defined as:

Np—1 ny Np—1 n,
= > Y Emax(yi(k + j) — ri(k + 4),0)] — A w(k + j)
j=0 =1 7=0 I=1
(3.6)
The aim is to compute an optimal input sequence), . .. , u(k + N, — 1) that

minimizes.J (k) in (3.6) subject to linear constraints on the inputs and #peeted
value of the outputs, i.e., the constraints of the form

Acon(k)a(k) + Bcon(k)E[g(k)] < ccon(k)

whereA o, (k) € RconXNonu B (E) € RMeonXNomy andeg,, € R™on With ngon
denoting the number of constraints.

Moreover, since the:(k)’s correspond to consecutive event occurrence times,
we have the additional condition

Aulk+j)=ulk+j)—ulk+j—1)>0 for j=0,...,N, — 1.

INote that the whole procedure presented here can also biedpplany other combination of
the input and output objective functionsin (3.2).
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Furthermore, in order to reduce the number of decision bbegaand the corre-
sponding computational complexity, we can introduce arcbhbrizon N, (< N,)
and add the condition that the input rate should be congtamtthe point:+ N, —1
on, i.e.,

Au(k +j) = Au(k+ N, —1) for j=Ng,...,N, —1,
or equivalently
Au(k +5) = Au(k +j) — Au(k +5—1)=0 for j=N,...,N, — 1.

MPC uses a receding horizon principle, which means that efteputation of the
optimal control sequence(k),...,u(k + N, — 1), only the first control sample
u(k) will be implemented, subsequently the horizon is shifted ewent step, and
the optimization is restarted with new information of theasgrements.

Now, by using successive substitutionlin (2/2)-(2.3), wiinb[104]

G(k) = C(k) ® x(k — 1) & D(k) @ a(k) (3.7)

inwhiché(k) = [ eT(k) --- eT(k+N,—1) ]7 andC(k) andD(k) are given by

C1(k)
C(k) = :

[Cn, (k)

[ Dy (k) D, (k)
D(k) =

D, 1(k) Dy, n, (k)

where

Cnk)=Clk+m-1)Q@Ak+m—-1)®...® A(k)
Clk+m—1)@A(k+m—1)®...@A(k+n)@B(k+n—1) m >n

Dyn(k)={ C(k+m—1)@B(k+m—1) m=n
g m<n.

Note that since the entries af(k), B(k), andC (k) belong toSpps (cf. Section
2.2), the entries of (k) and D (k) belong toS,,,s as well.
Hence, we can rewrite (3.4)-(3.5), and accordingly(3.6), a

Np-ny

Jou(k) = Y B[ max (5i(k) = 7i(k), 0)]

i=1
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Np-ny
Jn(k) == Y (k)
j=1
J(k) = Jous (k) + Min (k)

whereg; (k) and7;(k) denote the-th element ofy(k) and7(k) respectively, and
(k) denotes thg-th element ofi(k).

The stochastic MPL-MPC problem for event stejs then defined as follows
[104]:

g 0
s.t. G(k) = Cé(k)) @ z(k — 1) ® D(e(k)) ® u(k)
Au(k+j7) >0 forj=0,...,N,—1 (3.8)

A?u(k+37)=0 forj=Nc,...,N,—1
Acon(k)u(k) + Beon(k)E[F(E)] < ceon(k).

In the next section, we present a possible solution apprmastive (3.8).

3.1.2 Solution Approach

To solve the optimization problem (3.8), we need to complueeixpected value of
the signalsmax(y;(k) — 7;(k),0) andg(k). As shown in [104, Lemma 2], both
max(gj(k:) — 7:]‘(/{?), 0) andg(k:) belong tOSmps,[FT(k), 2T (k=1), aT (k), €T (k)]T -

We can rewrite bottmax(y;(k) — 7;(k),0) andg(k) as a general max-plus-
scaling function ofi(k) andeé(k) [104], which is denoted by(k), as follows:

v(k) = max. (5] + 5T (k—1)+ T,Z);‘Ff(k:) + ﬁ]Tﬂ(k:) + WJTé(k‘))

Jj=1,..,

wheren,, is the number of terms that appear in the maximizatigne R., 0, €
R"=, ¢; € R™, B; € R™, v; € R", andé(k) € R" is a stochastic variable
with the probability density functiorf(é). For a shorter notation let;(k) = &; +

6 w(k — 1) + ¢ 7(k); hence,

o(k) = max (a;(k) + 6Fa(k) + 17 e(k)) (3.9)

7j=1,...,ny

Accordingly, we need now to compute the expected valug&f, i.e.,E[v(k)]. By
definition [89],E[v(k)] can be written as follows:

:/w.../mvk

/ / jmax (o (k) + B (k) + ;) (k) f (€)de
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Z/ /0@ k) + B] (k) + ] &) f (¢)de (3.10)

I=1 e (a(k))

wheredé = dé deé, . .. dé,, and the set®;(u(k)) constitute a partition dR"™ such
that

int(®,) Nint(®,) =0 for £ #v
whereint(®;) denotes the interior ob;, and such that fof =1, ..., n, we have
v(k) = (k) + B] (k) + v, é(k) forallé € @;(u(k))
andJ72, ®;(u(k)) = R, i.e., for all realizations of, thej-th term in((3.9) gives
the maximum, and the seds;(a(k)) cover the whole space @& and only overlap

at the boundaries of the regions.

Remark 3.1.1 Note that the set®;, j = 1,...,n, are polyhedra. This follows
from the fact that®; is described by a system of linear inequalities. Indeed, we
have:

Q;(u(k)) ={e |€:I}1ax (ap(k) + ﬁ{ﬂ(kz) + W{é) = a;(k) + ﬁjTﬂ(k:) + W]Té},
or equivalently, fo =1, ..., n,,

®;(a(k)) = {& |a;(k) + 5] alk) +~; € = ag(k) + B alk) + 7 &}.

Therefore®; is described by a system of linear inequalities and heneepayhe-
dron. O

HenceE[y(k)] andE[max(y;(k) — 7;(k),0)] can be computed using (3.10).
It is also shown in [104, Proposition 3], that the functiBfv(k)] is convex in
u(k) and its subgradien, (a(k)) is given by

zggjeé /f )de. (3.11)

Note that since the system matrices are perturbeéby, (k) andmax(y;(k) —
7;(k),0) both depend od(k). FurthermoreE[(k)] andE[max(g;(k) —7;(k), 0)]
are convex ini(k), due to [104, Lemma 3], which implies thdg, (k) and accord-
ingly, J(k) are convex ini(k).
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Remark 3.1.2 It is assumed that the reference signdk), is fixed and known at
event stepk. The statez(k), depends on its previous valugk — 1), which is
assumed to be completely known at event stefef. Section 3.1.4), and on the
optimal inputa(k); hencex (k) changes due to the changeudf). Therefore, we
only consider the variations af(k) and accordingly, the convexity of all functions
ina(k). O

Note that if the entries oB.., (k) in (3.8) are nonnegative, we will obtain mono-
tonically nondecreasing constraintslitiy(k)]. Hence, sincé[g(k)] is convex in
u(k), all the constraints in (3.8) are then convexiifk). Therefore, only when all
entries of B, (k) are nonnegative, the MPL-MPC optimization problem turns ou
to be a convex problem ifi(k) [104, Property 4]. Such a problem can be solved
using reliable and efficient convex optimization algorig)nsuch as interior point
methods [83, 118].

3.1.3 Computational Aspects and Issues

One way of computindt|v (k)] in (3.10) is to use numerical integration. The com-
mon methods for numerical integration are (non)adaptitegimtion, (non)iterative
integration, exponential quadrature, Monte Carlo integna the Nystém method,
the Quasi-Monte Carlo method, and the multi-step methofl [26wever, numeri-
cal integration is in general both cumbersome and time+goirgy, and it becomes
even more complicated as the probability density functfohecomes more and
more complex.

In [104], an alternative method for computifigjv(k)] is proposed based on
analytic integration. To that end, a piecewise polynomiabpbility density func-
tion defined on polyhedral sets is considered. Such a fumcim be obtained in
two ways: either the stochastic vector already has a pisespolynomial probabil-
ity density function (such as the uniform distribution) oe approximate the real
probability density function with a piecewise polynomiabpability density func-
tion? (such as the normal distribution where its probability dgrfsinction can be
approximated by PWA functions).

Let f(¢) be a piecewise polynomial function defined on polyhedrad %t
¢=1,...,np, such that

Tp
P =r"
(=1

int(P;) Nint(P;) =0 for i #j

2The approximate probability density function must be ngyaiee and its integral over the do-
main of the real probability density function must be equealt This can be assured by including
these conditions as constraints in the parameter fitting.
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whereint(F;) denotes the interior of;, and fore € P, the probability density
function is given byf,(e), where

M1 M2 ]\/jne
=35 3 G el
11=012=0 ineZO
for some integers/y, ..., M,, and coefficients;, i, ..i,, € R.

Remark 3.1.3 Later in Chapter 6, Section 6.1.2, we explain that we can @fso
proximate a piecewise polynomial probability density fime by a multi-variable
piecewise polynomial function, possibly multiplied by axpenential function. It
is also discussed in that chapter that spline functions as@ltype distributions can
also be approximated by a multi-variable piecewise polyiabfanction, possibly
multiplied by an exponential function. O

Consider the signal(k) € Smps(2(k)) and leta(k) be its non-stochastic part. Let
Vi(a(k)) = ®j(u(k)) N Pyforj =1,...,n,, £ =1,...,n,. Then by Remark
3.1.1,v,,(a(k)) is a polyhedron, antl[v(k)] can be written as

Eph)] =33 / » / (a;(k) + AT (k) + 172 fu(@)de.  (3.12)
RS CIO)

This is a sum of integrals of polynomial functionsdand then can be solved analyt-
ically for each polyhedron;;, [17, 68]. Note that if a piecewise polynomial prob-
ability density function is used as an approximation of ttre€” non-polynomial
probability density function, the quality of the approxitiea can be improved by
increasing the number of sets.

Even if the integral in[(3.12) can be computed analyticaly computational
load is still quite heavy. This is due to the fact that this Imoet contains two time-
consuming steps: In the first step all polyhedrg have to be specified, where the
number of polyhedra; is equal tan,, and the number of polyhedid is n,,. Hence,
in the worst case the number of polyhedrg that has to be considered@n.,n,,),
which becomes more and more time-consuming,aandn,, become larger. In the
second step, the integral over each of these regions hascalddated, for which
in the simplest case of having a uniform probability den§ifyction, we need to
compute all the vertices of each polyhedmry. As explained in [76], we have the
following upper bound for the number of the vertices of a pogbe defined by,
(non-redundant) inequality constraints iniastdimensional space:

V(. ng) = (nv - L"%“J) N <n - L”Z”J) (3.13)

Ny —Neg Ny —Ne
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This means that in our case, where typicallyis much larger thamg, i.e., n, >

ns > 1, the number of vertices for the worst case canG:(ez}F&J), which is
again time-consuming as, andn; increase. Accordingly for the case of a uni-
formly distributed Doise, the complexity of the whole prdaee in the worst case
is of orderO(npn}FeHl). In the case of other piecewise polynomial probability
density functions, the order of complexity of the secong §tecomes even bigger
since then, the integral computation is more complex tharotte in the case of a
uniform distribution. Therefore, the computational coexity of this method in-
creases exponentially ag increases and polynomially ag increases. It increases
even more in the case of non-piecewise polynomial prokghiiensity functions,
such as a normal probability density function, since thesetfons cannot be di-
rectly applied for this method and have to be approximategidgewise polynomial
probability density functions.

In [110] an effort is made to reduce the computational comiplef the above-
mentioned method by approximatifidu (k)] in (3.10) using the method of variabil-
ity expansion. Since variability expansion is an analytietmod and does not resort
to simulation, it is, in principle, possible to compute hégltorder moments of per-
formance characteristics of stochastic systems. As piedém[110, Section 4], it
is assumed that the entriesagf) are independent and identically distributed (i.i.d)
and an artificial parametér € [0, 1] is introduced. The-th entry ofé(k) is then
replaced by its mean with probability— 6 and the result is denoted By (k). The
paramete# allows controlling the level of randomness in the systend, letting ¢
go from 0 to 1 increases the level of stochasticity in theespstThe main idea of
variability expansion is as follows: considerifitjvy (k)] as a function of), it can
be developed into a Taylor seriesédrthat converges to the true function on some
subsett’ C R. In particular, if the value off™ /d0™E[vy (k)] for § = 0 is denoted
by d™/d0™E[vy(k)], thenE[v, (k)], the “true” expected value af(k) is given by

Mo oagm
Elv(k)] = E[vy (k :Zﬁd— (k)] + Ry (k) (3.14)

m:
where forM < ng

1 dM+1

sup

Ry (k
M( ) (M+ ) oe(o.1] doM+1

—oirr1 Elvo (k)]

and Ry; = 0 otherwise [56]. It is been also shown in [110] that a closeuirf
expression for then-th order derivativel™ /d6™ E[vg (k)] can be obtained.

The computational complexity of approximatifigjv(k)] using the method of
variability expansion has been discussed in [110, SecfioB&sed on this discus-
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sion, the overall complexity will at least be of order

M+1

ne nM n, 2
whereV (-, -) is given in (3.18). The derivation of the above error order loa found
in Appendix A. Clearly, the computational complexity inases polynomially if..
andn, increase and exponentially M increases.

3.1.4 Timing

When solving the MPC problem for event stepve assume that the staték — 1)

is available (recall that:(k — 1) contains the time instants at which the internal
activities or processes of the system start for(the- 1)-th cycle). However, MPL
systems are different from conventional time-driven aystén the sense that the
event countek is not directly related to a specific time instant. Therefove will
present a method to address the availability issue of tie ata certain time instant
t [103, 108]. Since the components ofk — 1) correspond to event times, they
are in general easy to measure. So we consider the case efdtdlinformation.
Also note that measurements of occurrence times of eveatgageneral not as
susceptible to noise and measurement errors as measuseafie@antinuous-time
signals involving variables such as temperature, speedspre, etc. Letbe the
time instant when an MPC problem has to be solved. We can définiaitial cycle

k as follows:

k= argmax{@ | z;(—1) <t Vie {1,...,nx}}

Hence, the state(k — 1) is completely known at time and thusu(k — 1) is also
available (due to the fact that in practice, the entries ef glistem matrices are
nonnegative or take the valseand[A(k) B(k)] will be row finite, i.e., has no row
consisting ofs entries only). Note that at timesome components of the futdre
states and of the forthcoming inputs might be knownagé + ¢) < ¢t andu;(k +

¢) < t for somei, j and some > 0). During the optimization at time instanthe
known values of the inputs and states have to be fixed by ¢gualnstraints (see
Remark 3.1.4 below), which fits perfectly in the frameworladihear programming
problem. With these new equality constraints we can pertbeyMPC optimization
at timet.

Remark 3.1.4 Consider a given time instantand definé

K = {(i,0)|z;(k + £) is known at timel },

3Future in the event counter sense.
“For the sake of simplicity of notation, we do not adas an argument here.
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{(4,0)|u;(k + £) is known at timet},
{(@,0)|z;(k + £) is unknown at time },
{(4,0)|u;(k + £) is unknown at time }.

Ky
Uy
Uy

First, we require that;(k + ¢) is equal to its known value for eadh, ¢) € IC,.
Next, for every(i, £) € K,, the state at timeé can be written as follows:

x;(k + ¢) = max ((i/ z%lealé( . (zir(k+ 1)+ app),

o e (w4 ) - agen),

(k+1)+bay ,
(jlvﬁ?ealé(u,j,l (uj ( ) J ! )

max win (k +1") 4 by )

(jual//)euu,j,[( J ( ) 5"l )
wherea; g ,ingr by, by > 0 and K, ;0 is a subset of paifi’, (') € K, that
directly determines;(k + ¢) (i.e.,ay¢ # € in the equation defines;(k + ¢)). The
setsity ;. ¢, Ky j0, @ndl,, ;. are defined in a similar way. Let us now show that in
facti, ;¢ = U, ;¢ = 0. Indeed, at time, we should have

xi(k + @) > i (k+ @”) + a;rpr V(i”, E”) € Uy v (3.15)

However, we have:;»(k + ¢") > t since it is not known at time, which yields a
contradiction in the above inequality sinte> x;(k + ¢) anda;»,» > 0. Hence,
Uyie¢ = 0. The same argument is valid fof, ; . However, if we write down an
inequality of the form((3.15) for pairs in the set,; , andC,, ; », then we obtain
valid inequalities with both known right-hand and left-desides. Therefore, for all
(1,¢) € K., no extra equation is needed due to causality. Hence, wenemdg to
impose equality constraints on the known input and knowte stamponents i#C,,
and/C,.

a

Another timing issue is related to the stochastic MPL systdmthese systems
we again have the same timing problem as explained abovelkasmeetiming issue
related to the distribution of stochastic variables. If aard has not yet occurred
at timet, the probability density function of stochastic variabiegolved in that
event have to be updated, which may change the nature of $hébdtion. This
may prevent the use of analytic expressions for moments;hwdie needed in the
approximation methods used in Chaptérs 7.

Therefore, in this thesis, the whole timing issue relateMBRC for stochastic
MPL systems is not considered due to the complexity it impdsethe problem
definition specially when updated distributions has to lkenanto account since,
we cannot then apply the proposed approximation method apteh4.
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3.1.5 Extension to Stochastic Switching MPL and StochastiMMPS
systems

In [106—-108], MPC has been applied and translated to swigcMPL systems.
In stochastic switching MPL systems with the system eqnati@.11)4(2.12), for
each modé < {1,...,nz} and the vectof (k) = [¢(k), ..., L(k+ N,1)]T, we can
rewrite (3.7) as follows:

G(k) = C(l(k),é(k)) @ z(k — 1) @ D((k),é(k)) @ u(k)

whereC(((k), é(k)) andD(¢(k), é(k)) are defined as:

| Dn,1) (LK), €(k)) (Np.Np) (L(K), €(k))
with:
Clmy (LK), é(k)) = Copgopm—1)(e(k +m — 1)) @ Agggpm—1)(e(k +m —1))®
@ Ay (e(k))
D,y ((K), (k) = Copgepj—1y(e(k +m — 1)) ® Aggerm_1)(e(k +j — 1))@
- @ Ag(sn) (e(k + 1)) @ Bypyn—1y(e(k +n —1))

Accordingly, the input and output objective functions candefined as the ones
in (3.4)-(3.5) and then a similar optimization problem aes ¢ime in|(3.8) has to be
solved.

In [105] a stabilizing model predictive controller has bekemived for randomly
switching MPL systems with deterministic parameters. Tésulting optimization
problem was solved using linear programming algorithmse fiain drawback of
the algorithm is that the number of linear constraints amdrthmber of optimiza-
tion variables in the linear programming problem incredasswith the prediction
horizon and the number of modes in the system. In [106] anrithgo is used
based on scenario generation in order to reduce the totdd@uaf mode switching
sequences. The main idea of this algorithm is that only thetmpmbable mode
switching sequences will be investigated since the leadighie ones have a neg-
ligible impact on the outcome of the objective function, dhdrefore can be ne-
glected.
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In the case of deterministic mode switching and stochastiampeters, for each
mode, the system equations are of the form (2.2)-(2.3) amdame objective func-
tions, i.e.,[(3.4)+(3.5) can be considered. Hence, to sihigeMPL-MPC optimiza-
tion problem (3.8) at each mode, the methods discussed ito8ex1.3 can be
applied.

MPC has been also applied to MMPS systems [29, 81]. In [29}erchénistic
MMPS system with the system equations (2.13)-(2.14) isistljdvhich leads to a
non-linear optimization problem that can be solved usiagdd#rd algorithms such
as multi-start sequential quadratic programming (SQP). [8Dstochastic MMPS
systems with the system equations (2.15)-(2.16), the iapdt output objective
functions can be chosen among the ones in (3.2).

Remark 3.1.5 Any combination of the input and output objective functiamg3.2)

can be applied to event-driven MMPS systems. Note that dtlgetaninus sign in
the input objective functions, these functions exprestijuiime feeding. In the
case of time-driven MMPS systems when usually the inputggnir minimized,

the input objective function in (3.2) will not have a minugrsi O
Note that since both (k) andy (k) are MMPS functions af (k—1), u(k), ... ,u(k+
j),e(k),...,e(k + j), we conclude that all objective functions in (3.2) are also

MMPS functions ofi(k), z(k — 1), é(k), andr (k). Therefore, the stochastic MPC-
MMPS problem can be defined as follows:
min J (k)
a(k) (3.16)
subject to: c(u(k),y(k),k) <O0.
for some function:(-) with .J(k) an MMPS function ofi(k), z(k — 1), é(k), and
7(k).

In [81] an uncertain MMPS system is considered in which thiererector is
assumed to be in a bounded polyhedral set, and hence, it vgaiblgoto design a
worst-case MMPS-MPC controller based on two different apphes, namely op-
timization over open-loop input sequences and optiminatieer disturbance feed-
back policies. It has also been shown|in [81] that the regyliptimization prob-
lem, i.e., [(3.16), can be solved efficiently using a two-stpfimization approach
that basically involves solving a sequence of linear pnogmnéng problems. In the
open-loop approach, the first step is solving a multi-patdmiénear programming
(mp-LP) problem off-line and next, obtaining the min-maxaaical form of the
worst-case performance criterion, which is an MMPS fumctim the second step,
only a sequence of linear programming problems has to bedolin the distur-
bance feedback approach, the first step is to write the mi-ganonical form of
the worst-case performance criterion, and in the secomdast®nlinear optimiza-
tion problem with linear constraints has to be solved in Wwhie inner optimization
problem involves solving a sequence of linear programmiiogplems.
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In both stochastic switching MPL systems and stochastic I8Mipstems, the
computation of the objective function is quite complex aingketconsuming using
the available methods such as numerical or analytic intiegra

3.2 lIdentification of Stochastic MPL Systems

Another interesting topic is the identification of the modatameters of a stochas-
tic MPL system defined by a state space model. Most ideniicahethods for
MPL discrete-event systems use a transfer function apprfid; 43] while state
space models have certain advantages: they explicitly ttekénitial state of the
system into account, they can reveal “hidden” behavior aschnobservable, un-
stable modes, the extension from SISO to MIMO is more intgtiind elegant for
state space models, and the analysis is often easier. S@anwles of state space
models for identification ofleterministicMPL systems, using either the system’s
Markov parameters or minimizing a prediction error basedpunt-output data and
residuation methods, are presented in [26, 28, 96—98].eSima stochastic MPL
system, the noise and disturbances result in a perturbatisystem parameters, in
the identification method, the stochastic properties ofsifstems have to be taken
into account.

3.2.1 Problem Statement

For the identification of stochastic MPL systems, consillerfollowing state space
representation [4, 23]:

2(k+1) = A(k) ® 2(k) & B(k) ® u(k)
=[ A(k) Bk)]® [ igk; ] (3.17)
= Q(k) ® ¢(k) (3.18)

where

) = A®) By )R, o= | 40 | cr

with m = n, + n, wheren,, is the number of states amng is the number of inputs,
x(k) is the state of the system at event stepndu (k) is the input of the system at
event stepk. In factz(k) andu(k) contain the time instants at which the internal
and the input event occurs for theth time, respectively. We also assume that the
entries of the system matrices belongtg,s [104], i.e., A(k) € Sg”;;:(wk), B(k) €

Sgﬂézz(uk) wheree(k) is an stochastic vector with a given probability distributi
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and containing all the system uncertainties. In the sequesidenote the uncertain
system matrices with the matri@(k) and the state and input vector wittik) (cf.

(3.18)).

Remark 3.2.1 Note that the state space model (2.2)—(2.3) that we comsldeithe
previous section relateg k) to z(k — 1), while in (3.18),z(k + 1) is defined using
x(k). This difference in modeling is due to the fact that the tatt®del is easier
in notation for modeling the identification problems sinoep( k), both z(k) and
u(k) are at the same event step, while the former model is easibtR€ purposes
due to the similar definition gf(k) anda (k) in (3.3), in which both contains values
from event stek up tok + N, — 1. O

In order to identify the unknown system parameters, we needidtinguish
between the parameters that are known a priori, i.e., thenpeters that are either
constant or determined in advance such as the nominal teatipn times in a
production system, and the parameters that have to befidenfrherefore, thé-th
row of the matrixQ (k) can be written as:

Qi (k) =2 +0TAD 4 T (k)ASO) (3.19)

where = represents the parameters that are known a piois, a vector of un-
known parameters;(k) = [e1(k), ..., en, (k)]T is a vector the elements of which
are independent random variables, the diagonal maAtrixdiag(Aq, ..., A\, ) con-
tains the amplitude of the noise, and? and S(9) are selection matrices for the
i-th row with zeros and ones as entries. The role of the selectiatrices is to
determine which elements of the vectersand e(k) will appear in thei-th row
of Q(k). For example, for the first row = 1, let A® = [1 0 1]7 and
SO =0 1 17 thendTAM = [0, 6, 65]-[1 0 17 = 6; + 63
and T (k)ASW = [e(k) ea(k) e3(k)] - diag(A, Ao, A3) - [0 1 17 =
ea(k) A2 + e3(k)As.

We assume that the probability density functioref), denoted byf(e), and
the matricess, A, andS are known a priori and that the only parameters that have
to be identified are the componentséand the diagonal elements af denoted
by A = [A1,..., M\ ]7. Therefore, in the identification procedure, we will derive
estimated and ) for # and \, respectively.

Here, the identification procedure is based on input-stati. dNote that in MPL
systems the state contains the time instants at which tteestants occur. We as-
sume that the state is observable and hence, these instenbe eneasured easily
and so we usually have full state information. Consider tleasared input-state
sequence (Umeas (k), xmeas(k:)}{f:l of a system of the form (3.18) and assume that
the system parametefsand \ have to be identified using this sequence. Further,
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we assume that the input-state sequence is sufficiently tichapture all the rele-
vant information about the system (see also [97, 98]). Nomsiter the following
identification problem:

min J(6, \)
6.3) (3.20)
s.t. A>0
with
N—1 ng
J0,\) = Elzi(k + 1]E)] — Zmeas.i(k + 1)) (3.21)
k=1 1= 1

whereE[-] denotes the expected value operator Bhd (k + 1|k)] is the one-step-
ahead prediction aof; for event stepz+1, using the knowledge from event step
Considering[(3.18) and (3.19), we can rewrite the one-ategad prediction as

Elzi(k + 1]k)] = E[(Z;,. + 0TAD + T (k)ASD) @ ¢ (k)]
and hence, the one-step-ahead prediction error will bandive
Elz;(k + 1|k)] — Zmeas,i(k + 1)

= E[max (& +0TAY) 1 €T (K)ASY) + ¢;(k) — Tameas,i(k + 1))

= E[ni(k+1,0, 7, e(k))] (3.22)
where
ni(k +1,0, 5 e(k)) =max(&; + OTAY 1 €T (k)ASY) + (k) — Tmeas.i(k + 1)
for a specific realization of the noise vectdik) and forj = 1,...,m. To have
a more compact notation, lef; (k) = &; + ¢;(k) — Tmeas,i(k + 1) = A()

andT;; = diag((S¥)y,...,(S®),. ;). Sincee” (k:)AS() is a scalar anm\ is a
diagonal matrix, we have:

T (k)ASY) = (ST Ae(k) = ATTyje(k)
Therefore, we can rewritg; (k + 1,6, A, e(k)) as
ni(k+1,0,\ e(k)) = max (ag;(k) + 10 + ATyje(k)) (3.23)
j= m

=1,...,

which is now an MPL expression.

SIntuitively, this can be characterized as follows. Notett{8@18) and[(3.19) imply that each
component ofc(k + 1) can be written as a max expression of terms in which the unkmparameters
0 and A appear. An input signal is then said to be sufficiently riclt is such that each of these
terms is the maximal one sufficiently often (this is also tedlato the idea of persistent excitation in
conventional system identification [73]).
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3.2.2 Solution Approach

In a similar way as Section 3.1.2[n;(k + 1,0, \, e(k))] can be written as follows:

Elni(k +1,0, X, (k) Z/ /% ) + 50 + ATTyje) f(e)de

I=1 e (0. k)

(3.24)

wherede = dey, ..., de,, andQ;(0, A\, k),i = 1,...,n,j = 1,...,m are poly-
hedral sets. Hence, the following proposition can be obthin

Proposition 3.2.2 ([104, Proposition 3]) The functiofi[n; (k + 1, 0, ek )], de-
fined in(3.22) is convex ind and )\, and its subgradients with respect foand
are

éi Em: / /f de 1L, (3.25)

=1
e€Qy;(6,7,k)

f: / /ef de i (3.26)

=1
e€Qy; (6,\k)

.

%>
>/>
<.

respectively.
Therefore,/ (6, \) in the identification problem (3.20) can be written as

s

N
70,3 =33 (Elmtk +1,6.7 e(k:))]>2 (3.27)

k=1 1i=1

with the gradients

Ny

N
J(0,2) = 2B (k+ 1,0, X, e(k))] g, 4(0, A, k)
k=1 1=1

Ny

N
JO,0) =D 2Emi(k+1,0, A, e(k))] g; 5 (0, A, k).
k=1 1=1

Note that the identification problem (3.20) is a non-convpkmization problem
due to the fact thaf (4, \) in not convex for the following reasoning. By definition
[93], a functionf(z) = (g(z))?, p > 1, is convex ifg is convex and nonnegative.
In our case = 2 andg(0, \) = E[n;(k + 1,6, \, e(k))]. Considering the definition
of E[ni(k + 1,0, X, e(k))] in (3.22), it is convex ird and\ but it is not nonnegative.
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Therefore,.J(6, \) is not convex and hence, to solVe (3.20), we need global non-
convex optimization methods such as genetic algorithmk Biulated annealing
[34], etc. However, since the gradients.bd, ) are available, the optimaland\

can also be found using multi-start gradient-based lod@inigpation methods, such

as a steepest descent method or a Quasi-Newton (DFP, BFGI®)d80].

3.2.3 Computational Aspects and Issues

Note that to compute the objective function (3.27), we fiestahto find the value of
E[n;i(k+1,0, ), e(k))], which leads to the solution of the integralfin (3.24). Cdnsi
ering the methods explained in Section 3.18y;(k + 1,0, \, e(k))] can be com-
puted using either numerical integration or analytic ingign based on piecewise
polynomial probability density functions.

Note that numerical integration is not an efficient way of poting the integral
(3.24), since it is quite complex and time-inefficient. Ferimore, based on the
complexity analysis of the analytic integration using pietse polynomial prob-
ability density functions in Sectian 3.1.3, this method Isoanot computationally
efficient and its complexity increases drastically whennthmber of random vari-
ables or the order of the system increase.

3.3 Summary

In this chapter, an overview of MPC and identification of simstic MPL systems
has been given. MPC is a model-based control approach thabeapplied to
both discrete-time and discrete-event systems. We havaesdied how MPC can be
used to control stochastic MPL systems. Moreover, MPC testaen applied to
stochastic switching MPL systems and stochastic MMPS systéNext, we have
discussed the identification of the model parameters of éhatdic MPL system
defined by a state space model based on input-state data.

Furthermore, we have discussed some existing solutioroappes and com-
putational aspects of MPC and identification of stochastitl Mystems. Since we
deal with stochastic systems, the solution of these prableiads to the computa-
tion of an expected value. Some of the solution approachegthair computational
aspects and complexities have been presented in this ch&ne approach is to
use numerical integration, which is quite complex and tosoasuming. Another
approach is an analytic integration method that can be egbpdi distributions that
have a piecewise affine polynomial probability density tiorg or when their prob-
ability density functions can be approximated by such fiamst The complexity
of this approach increases significantly as the number ohsafsiic variables or the
order of system increase. An approximation approach baseagability expan-
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sion has been also discussed, which reduces the compalatiomplexity of the
analytic integration to some extent.

Since the above-mentioned computational approaches amplex and time-
consuming, stochastic MPL systems have been mostly studitkdthe assump-
tion that the noise and disturbances of the system are bdumitleout any further
knowledge of their probability distribution. In the nextagiter, we propose an alter-
native computation method that allows to use the knowledgeiethe distribution
of the system noise. This method is less complex and moredffieent compared
with the two other methods discussed in this chapter (vie. ahalytic integration
based on piecewise polynomial probability density funtdiand the approximation
method based on variability expansion).






Chapter 4

An Approximation Method for
Computing the Expected Value of
Max-Plus Functions

In this chapter, an approximation method based on the higfter moments of a
random variable is proposed to compute the expected valile ofiaximum of sev-
eral affine expressions. First, we explain in detail how #pproximation method
can be obtained and then, we compute an upper bound for theirtinoduced by
this method. In the last section of this chapter, the cotlyanalysis of this approx-
imation method is presented.

4.1 Problem Statement

Our aim is to compute the expected value of the maximum ofrabadfine ex-

pressions (cf. Section 3.1.2, equation (3.10) and Secti®i2 3equation (3.24)) ef-
ficiently. One solution approach is numerical integratiaich imposes a huge
computational burden, especially when the number of sithaariables is high
or the function to be integrated is non-linear. An analyfipach for the inte-
gral computation is proposed in [104] (cf. Section 3.1.3)wdver, this method
is still very time-consuming and complex since at each estag many polyhedra
have to be computed in order to compute the integral. To dser¢éhe computa-
tional burden, an approximation method based on varighikpansion is proposed
in [110]. However, this method cannot reduce the complexitihe problem suffi-

ciently and consequently the problem remains complex. &fbeg, it is still desired

to find an efficient method to either compute or approximageetkpected value of
the maximum of several affine expressions. To this end, wednte an alterna-
tive approximation method that is based on the higher ordenemts of a random

43
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variable.

4.2 Description of the Approximation Method

This approximation approach is inspired by the relatiomken theso-norm and
thep-norm of a vector.

Definition 4.2.1 ([47]) For a vectorz € R™ and forp > 1, thep-norm and the
oo-norm ofz are defined as:

1
Jollp = (w1l + - + foa )7 @.1)
[2]loe = max(|z1],..., |znl),
respectively.
The relation between these norms is as follows [47]:
lzlloo < llzllp < 27|zl (4.2)

Moreover, due to the monotonic and linear properties of ¥peeted value, we have
E[lelloc] < E[(lz1P + - + |zal?) /7). (4.3)

Before we proceed further, consider the following theorem.

Theorem 4.2.2 (Jensen’s Inequality [14))If x is a random variable such that €
dom(y) with probability one, and is a concave function, théi[p(z)] < ¢ (E [z]),
provided the expectations exist. Likewise; i§ a convex function, thep (E [z]) <
E[p(2)).

Now, the following proposition shows how we can apphnorms to find an
upper bound fof [max(z1, ..., z,)].

Proposition 4.2.3 Consider random variables; for j = 1,...,n and letp > 1.
Then

(1)
E[max(z1,...,2,)] < E[max(|z1],..., |zn])]
(ii

)
S E[(|z1]P + -+ |z [P) P
(447)

Y (Ser)” e

<
<
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Proof: Inequality(7) is straightforward. Inequalityii) results from((4.3). Inequal-
ity (¢i7) results from Jensen’s inequality for concave functiores, Theorem 4.2.2.
Note that we can apply Theorem 4.2.2 sigde:) = z'/? is a concave function for
p > 1andz > 0, and in our case the argumenis " , |z;|” which is positive.0

Inequality () reduces to an equality if all variables are nonnegative. Hence,
in order to reduce the error in Inequality) for j = 1,...,n, we define an offset
L such thatz; — L is almost always positive. Note thatif; is drawn from a
distribution with a finite domain (such as the uniform distition), Z can be defined
such thatL < z; for j = 1,...,n and hence, Inequaliti) turns into an equality.
However, ifz; has an infinite domain (such as the normal distribution)gjliadity
(1) never reduces to an equality and we can only decrease thebsrrefining
L such that it is less than or equal almostall j = 1,...,n. For example if
xzj, j = 1,...,n are normally distributed with megm; and varianceff-, thenL
can be defined a5 = min;—;,__,(u; — 30;). This choice ofL is made based on
the 3o-rule, which states that9.7% of the observations of a normally distributed
random variable with megnand variance? fall within the interval[—3o, u+30].

Remark 4.2.4 In the case that alt;, j = 1,...,n are nonnegative, using the offset
L is still useful. Indeed, in that casé,is not needed for Inequalityi) as it is an
equality. However, for Inequality:i), L, which is defined such that < z; for
j =1,...,n, will reduce the error. This is illustrated by the followimgample:
Let 1 = 1000, zo = 1001, thenmax(z1,z2) = 1001. Now forp = 2, if
L = 0 then (2f + 25)'/7 = 1000/2; however, forL = min(z1,z2) = 1000,
((x1 — L)P + (22 — L)P)/P + L = 1001, which is equal tanax(z1, z3). O

Accordingly, we can rewrite (4.4) as follows:

E[max(z1,...,2,)] = Emax(z; — L,..., 2, — L)] + L
< E[max(|zq — L|,..., |z, — L|)] + L
SE[(jor = L+ fan — L)) + L
n 1/p
< (LEle-1r)) e 45)
j=1

Remark 4.2.5 For a positive even integer= 2¢, ¢ € N\ {0}, we haveE[zP] =
E[|z[P]. Hence, without loss of generality, we can i&e?]| in (4.5). So from now
on, p is an even integer larger than or equato O
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Considering the above remark, we can approxiniéteax(xy, ..., z,)] by its up-
per bound defined as:

ﬂ(E[maX(azl, e ,xn)]) = <iE[(ag] — L)p}>1/p +L (4.6)
j=1

for p a positive even integer and for independent random vasablej = 1, ..., n,
andL is chosen such thdt < z; for (almost) allj € {1,...,n}.

Theorem 4.2.6 (Multinomial Theorem [54]) For any positive integern and any
nonnegative integeti, we have:

n m
@ 4ot Fon)" = Z (k?l ko k > Zﬂft,
b AR | m t:1

kitko+-+km=n
kl,kg,...,kmEN

where

n _ n!
ki, ko, .. km/)  kilkal---kp!
is a multinomial coefficient.

Recall that in both MPC and identification optimization desh of stochastic
MPL systems (cf. Chapter 3), the expected value of max-pbading functions ap-
pears in the definition of objective functions. This expdctalue is in general of
the formE[max;—; _,(5; + 'ijé)] whereg; € R., v; € R"¢, andeé is a vector of
independent random variables with a given probabilityriistion. Our aim in this
chapter is to find an upper bound fBfmax;—; . .(5; + ijé)]. By adopting/(4.5),
we obtain:

E[ max (8 + ;)

1/p

< (jzn;E[(ﬁj —L+7]»Té)p]> +L

1/p
< ZE[(ﬂj —L+’Yj7lél+"' +7j,nééné)p]> +L

%j,0 Zj1 Zjng

(
= (ZH:E[ 2. <k0k2pkn> ﬁzittDl/p*L
(

J=1 " kotki+-+kn,=p t=0
ko,kl,...,knéEN

p' ne & 1/p
(X X Bl
= it el L)) L
J=1 kotki++kn;=p € t=0

ko,kl,...,knéEN
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(x%) [ 1/p
(XY mtnllE) e e

J=1 ko+k1++kn_
ko,k1,....kn; GN

where (x) is based on multinomial theorem (Theorem 4.2.6), &nd is due to
the fact that the elements of the stochastic veétare., ¢4, ..., é,, are indepen-
dent by assumption and for independent random variables. ., Z,,., we have
El[[:21 2] = [Ti£, E[Z:].

Consequently, we can rewrite (4.6) as follows:

H(E[ max (ﬁj —|—'yj )]>

7=1,..

= —p' 8; — L) [[+E[e* Tl
B Z Z kol ko! - H L

J=1ko+ki+-+kn;=p
ko,k1,....kns EN

(4.8)

Note thatg; — L it is not a random variable since it does not include any etéme
of the stochastic vectarand hence, we havg[(3; — L)*] = (8; — L)*o.

In the approximation function (4.8), we have to compute khéh moment of
each random variablg, ¢ = 0,...,ns. Thex-th moment of a real-valued random
variablee is defined as follows:

Ele"] = / e" f(e)de (4.9)
wheref(-) is the probability density function ef.

In general, moments of a random variable can be finite or tefinHence, to
be able to usefully applyl(E[man:17___7n(/8j + fijé)]) as an approximation of

E[max;j—1__»(8; + fijé)], we need to consider random variables with finite mo-
ments for which a closed-form expression exists, such dahtas with the uniform
distribution, normal distribution, Beta distribution,cet[10, 62, 89]. Note that if
moments do not have a closed-form expression, one has te twhintegral (4.9)
numerically. In that case, the approximation method willdss time-efficient than
in the case the closed-form of the moments exists and damgmi whether the
integral (4.9) can be computed offline or not, applying nuoa¢ror analytic inte-
gration, presented in Section 3.1.2, directiyfmax;—_1 ..(8;+~7 €)] could even
be better options. In the following, we present some exasmnledlstrlbutlons that
have finite moments with a closed-form expression: the wmifdistribution, the
Beta distribution, and the normal distribution. Some eximspf other distributions
that have finite moments with a closed-form expression cdalel in [10, 62, 89].
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For the case of a uniformly distributed random variablen an intervala, b],
i.e.,e ~ U(a,b), thex-th moment can be computed as [10]

1 K
Ele"] = Lyt 4.10
(e = —7 ;a (4.10)

For a random variable that has a Beta distribution with parametarandg, i.e.,
e ~ B(a, (), thex-th moment can be written in a recursive form as [10]

a+rk—1

B = et

E(e"1). (4.11)

In case of a normally distributed random variableith meany and variancer?,

i.e.,e ~ N(u,JQ), the x-th moment has a closed-form that can be expressed as
[117]:

Ele®] = 0" "H,(ip/o) (4.12)
where
Hi(e) = (~1)" exp(e?/2)  exp(~¢/2)

is the x-th Hermite polynomial. Note that the right-hand side/ofL@).is in fact
real becauséi,(e) contains only even powers efif x is even (note that here we
assume that = 2¢q, ¢ € N\ {0}). Considering equations (26.2.51) and (22.3.11)
in [1] leads to

K/2 (_1)l6n72l
=0

wherex /2 € N\ {0} sincex is an even integer in our case.

Remark 4.2.7 For the case of a normally distributed stochastic vegttite random
variablex; — L = §; — L+~ ¢is also normally distributed with a certain mean and
variance, using the property of the normal distributiort gam of the independent
normally distributed random variables has also a normdtibligion with a new
mean and variance [31]. Hence, we can immediately competg-th moment in
(4.6) and we do not need to use (4.8). In this way, our comiomatill be faster
since we have less terms (compare (4.6) with (4.8)). In geniis remark is valid
for all distributions that are preserved under the summadiad for which a closed
form of their higher-order moments exists, such as the Boissd the Gamma
distribution [89]. O
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Note that the computational complexity of this approximatmethod is much
less than the two other methods in Section 3.1.3. Consiglé4i), the total number
of terms in the first sum i& and in the second sum, i.e., the multinomial sum, is
(“’;f*l) [40], or equivalently,

p terms
(p—{—né—l) _ (p+mns—1)! _ (p+mne—1)(p+ns—2)...ng
P pl(ne —1)! p!

Hence, assuming that; > p > 1, the order of the error for the above sum is
V4

O(%) Also, the total number of the expected values that have tobeguted is

png. Hence, the complexity of this approximation method is ef tinder

P p+1
é

O(n-né-p-%) :O<%€1)!)

which increases polynomially asandn; increasé and exponentially gsincreases
(at least fom; > p). Note that the computation load depends also on the piewlict
horizon. By increasing the prediction horizon, the numbleteams in the maxi-
mizationn (or n, in Chapter 3) may also increase significantly. This leadsnto a
increase of the number of function evaluation in approxiomatnethod as well as
in the other methods in Section 3.1.3.

4.3 On Error of the Approximation Method

In this section, we show that the error caused by approxm&jmax(x1, ..., z,)]
by its upper boundl(E[max(ml, e ,xn)]> = (X1 El(z; - L)p])l/p + L (cf.
(4.6)) is bounded. Note th@|max(x1,...,z,)] is bounded from above and from

below. Indeed, its upper bound has been presented in (4dajsalower bound can
be obtained using Jensen’s inequality for convex functitres max function in this

case (cf. Theorem 4.2.2). LéI(E[max(xl,...,xn)D = max(E[z1],...,Elzs))
denote this lower bound. Hence,

£<E[max(:v1, e ,xn)]) < Emax(zy,...,2,)] < il(IE[maX(acl, e ,xn)])
(4.14)

Remark 4.3.1 In the trivial case that there is only one term in thex operator and
alsop = 1, the lower bound and the upper bound|in (4.14) are equal. Henvin

1In general for a given problem we haxe= n., (cf. Section 3.1.3 of Chapter 3)
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general, there are more than one term in the maximizationpand co. We will
also show later in Proposition 4.3.3 that in the casecalk L,j = 1,...,n, the
difference between the upper bound and the exact value @yallarger thar) as
p — 0. g

The error of approximatin@[max(x1, ..., z,)] by its upper bound is then, always
bounded as follows:

0< ﬂ(E[max(ml, . ,xn)]> — E[max(z1,...,2,)]
< ﬂ(E[maX(azl, e ,xn)]) — S(E[max(acl, e ,xn)]) (4.15)

and since in our case;, j = 1,...,n are assumed to have finite moments, this
upper bound is finite and the error of the approximation cabedarger than this
value.

As mentioned in the previous sectioh,is an off-set that is chosen such that
L < zjforallj =1,...,nin the case that; has a distribution with a bounded
domain and it is less than or equal to almostgll j = 1, ..., n if the distribution
of z; has an unbounded domain. In this way, the error caused byitigg(:) in
(4.4) will be zero or decreased to a large extent. Note then &all z; > 0, j =
1,...,n and hence, Inequalityi) turns into an equality, a positive can still be
applied in order to decrease the error caused by Inequalityn (4.4) (cf. Remark
4.2.4).

Alternatively, in the case that eaeh has a distribution with a finite domaiti;,
we can introduce another upper bound for the error causegjlying the upper
bound approximation function (4.6). To obtain the new udpaund, we consider
the three inequalities in (4.4) and their correspondingrerThe first error, due to
(i), willbe zero if L = minj—; _, min &;. The second error due {éi) approaches
zero ifp — oo, since by definition|z||oc = lim, . ||z||,. However, the third error,
which is in fact the error of Jensen’s inequality, needs mdiseussion. In|[99,
Theorem 2.1] and [100, Theorem 2.1] two upper bounds forefénequality are
presented for the relative and the absolute error, resedcti

For a strictly positive, twice continuously differentiablconcave functiory
defined on an intervak, b], Jensen’s inequality can be stated in the form

f(Efx])
E[f(z)]

for which an upper bound can be formulated as follows [99]:

B, [ S0t (0
BLf()) = aelon Laf(a) + (1= a) ()

1<

1< =: S¢(a,b)
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and it has been proved in [99] that there exists a unigues (0, 1) for which
S¢(a,b) is maximal. Hence, the relative error can be defined as fetlow

f(E[z]) — E[f(x)]
E[f(z)]

In a similar way, the absolute error can also be defined aewsll[100]: For a
differentiable, concave functiofi defined on an intervdk, b] we have

0<

< Sf(a, b) —1= emax,rel(aa b)

0 < f(E[z]) - E[f(z)] < max [f(wa+ (1 —w)b) —wf(a) — (1 —w)f(b)]

w€|[0,1]

=! €max,abs (a, b)

and again it has been shown that there exists a unigue= (0,1) for which
eabs(a, b) is maximal [100]. Note that sincgis a strictly positive concave function,
a,b> 0.

In our case the concave functionfi§z) = z/? and f'(x) = %xifl. Since we
assume thap is a positive even integer greater than or equdl,tthe argument:
has to be larger than or equal to zero, which is the case $iﬁ€§:?:1 x?. Let us
first consider the case wheteis strictly positive. The case where= 0 will be
considered later on (see Proposition 4.3.2). By substiutiin the above formulas,
we can determine the optimal valueqoédndw for each case as follows. Let

(ga + (1 —q)b)
ga? + (1 —q)b

ASTC TN

F(q) =

Then,F"(q) = g(q)/(qa¥ + (1 - q)b7)? with
%(qa +(1- Q)b)%_l(qa% +(1—q)bv)(a—b)—
(ar —b»)(qa+ (1 — q)b)».

9(q) =

B =

Sincea,b > 0 andq € [0, 1], ‘fl—g(q) = 0 is only possible ifg(¢q) = 0. Therefore,
we must have

1401, 1 1 1 1
(qa+(1—q)b)» " Slaer + (1 —qppr)(a—b)—(ar —br)(ga+(1 - g)b)|=0
Since(ga + (1 — q)b)%_l # 0, we can conclude that

1 1

%<qa% + (1= q)b¥)(a—b) — (¥ —b7)(ga + (1 — g)b) =0
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Hencé,

1 1 1 11 1 1 1

—qa;Jrl +—(1- q)ab; - —qa;b ——(1- q)bPJrl

p p p p

1 1 1 1
—qar™ — (1= @)arb+ qabr + (1 —g)br ' =0
1—p 1 11 1 -1 1 1 1
& q(—pcul>Jrl — —arb + ab;) +(1- q)(p—bll7Jrl + —abr —arb) =
p p

p
1 1 1
Lepet™ — Labe 4 arb
p p

= qo = 1 1 1 1
L2(ar ™ 4 bpt —arb — abv)
1 1 1
Ipaptl 1 gpb 4 abr
1— — p p
o=7""1.7 1.1 1L T
=L(a»" 4+br" —arb—abr)

p
Similarly, we can obtain the optimal. To this end, leG(w) = (wa+ (1 —w)b)% -
1 1
(wa? + (1 —w)b?), and hence,

dG 1 1_ 1 1
W)= 2—)(% +(1—w)b)r Ha—1b)— (ar —br).

Now to find the maximum, we have:

d b1 —b
T =0 (at1-uh)7 =20
de r(av — b¥)
—b 4
= w(a—b)—i—b:(%)pl
plar —b¥)
1 a—2>b ooy
= wo= o o)
“ plar —bv)
1 a—1b Py
1—wy= a—(—)"
G—b|: <p(a117—b117)) ]

Now, by replacing the optimal values andw in F'(¢) andG(w), respectively, the

following expressions are obtained @« e (@, b) andemax abs(a, b):

%(ab%+1 — aQb% — a%b2 + aiﬂb) ) =

—(EY (@ £ bt~ avb - aby)

(—(%)(a%“+b%“—a%b—abw 1
1 1 -

1 1.9 14,1 2 2
—arbr ™ —artor +avb+ abr

(4.16)

emax,rel (@, b) = K

2Ifqa+(1fq)ﬁ:0:>q:a_—fﬁandlfq:ﬁ.
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a—2> 4
emax,abs(a7 b) - <171)) o (417)

plar —bv
b\t
— p— 1 1
b )<7“1 i > —apb+apr
plar —br)

Hence, we derive the following proposition based on the alfosmulas.

|
TN
Q
| —
S
| — |
—
Q
S
|
B =

Proposition 4.3.2 Considering our assumptions thatb > 0 andp > 1 is an even
integer, we obtain the following result:

lim+ emax,rel (@, D) = 00

a—0

ali%lJr €max,abs (@, b) = br <<%> P (119) ”pl>

Proof: Letb < co andp < co. Hence, the limit oky,ax el (@, b)) Whena — 07 is

g2 . _p=lptl
. _ . P . P _
1\ op-1 b7
= tim_ (——)"- SR
a—0t \p — 1 P
=00
and the limit ofe,ax abs(a, b) whena — 07 is obtained as
. b N —bv b N\
lim emax,abs(a7 b) = ( 1) - ( (—1) )
a—07t —pb; —b —pbi
= () - ()
p p
— by ((E)P_il _ (1>ﬁ>
p p
which is a finite value since bothandp are finite in this case. O

Since we have assumed thgt= 3; — L + ijé has a probability distribution
with a finite domaing andb can be easily obtained. Assume that each independent
element of the stochastic vectéri.e.,é;, ¢t = 1,...,ng, belongs to the interval
[, &) whereg,, ¢ € R. Sincey;; can be positive or negative, we have

min(yjec,, V5eCe) < Vje€e < max(vjecy, Vi)
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Hence, we can show that eagh j € {1,...,n}, also belongs to the interval
laj, b;] where0 < a; < b; are defined as follows:

yj =B —L+7] =0 — L+7161 + - + Vjnsbn,

é ns
= Bj— L+ min(yuc,ve) <y; < B8 — L+ > max(vjic, Vi)
t=1 t=1

aj bJ
Recall that we choosk such thatalb < y;, j = 1,...,n. Hence, we can conclude
that0 < a; < b; and henceg!; < b. Therefore,
P p p p
AW (@18
H,_/ H,_/ \,_/
a T b

with ¢ < b. Recall that the error caused by Inequality) in (4.4) approache8

asp — oo. This suggests that in order to get a good approximagioshould be
selected very large. However, since in our case bathdb depend omp (as shown
in (4.18)), we need a more careful investigation to studyeffiect ofp — oo on

Emax,rel (@, ) @nd emax abs(a, b). To this end, letr = max;j—;,  ,(a;) andg =

max,—i,.,b;. Denote the number af;, j = 1,...,n that are equal tex by A

and the number of;, j = 1,...,n that are equal t@ by B. Sinceb > a, we
conclude tha > «. Now, for a largep, we can rewritez andb asa =~ AaP and
b ~ BfP. Using this notation, we obtain the following proposition.

Proposition 4.3.3 Considering our assumption thais a positive even integer and
thata =~ AaP, b~ BgP for a large p with A, B positive integers anf < o < S,
we have the following results:

lim,,, X ) -
i (o= 0and s > 0) : 4 poe Cmacrel (@ 0) = 00
hmp—>oo emax,abs(av ﬁ) = ﬁ
B
«a

li —00 Emax,re s =
if (@>0ands>0): ?mp €max,rel (@, )
hmpﬂoo emax’abs(a’ /8) o /8

Proof: First leta = 0 and thus,3 > 0. Now, by replacingz andb in (4.16) by
AaP and B3P respectively, we will be in the case of Preposition 4.3.2 smd

lim emax,rel(aaﬂ) = Q.
P—00

However, for the absolute error, we obtain the followinguteafter replacing: and
bin (4.17) by Aa? and B3P respectively:

1

lim s ane (@, 8) = Tim (BF*)” {(l)p_il N (1)#}

p— p—00
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= 61— 0]
=p

1

in which the limit of (%) 1

" is computed as follows. Sincém

<%) o is of the

p—00

form 0°, it is an indeterminate limit and therefore, we use I'Hofstaule. Let:

1

1\ =1
lim (—)’”:M ~ M= lim 1np—f
p—00 p pﬂoop— xXO
. 1
IHo:pltaI lim —2 — 0
p—oo 1
1 _1
“M=1 = lim (—)’” —1.
p—o0 p

Now leta > 0 andg > 0. Note that sincex < G if p — 0o, we havea? <«
(P. Moreover, in the nominator and denominator of beth e (v, ) in (4.16)

and €max,abs (Oé, ﬁ

) in (4.17), the sums of the powers afand are equal in each

expression. Therefore, to compute the limief.« re1 (v, 3) andemax abs (v, B), we
can conclude that term in which has the largest power in each expression in the
nominator or denominator is the most influential one and éewdl determine the

limit value. Based on this argument, the limitegf . e (c

obtained as follows.

, 3) whenp — oo can be

AaP)» (B3P
hm emax,rel (@, ) = lim < ( ) (Bory ) (1 ) -1
e el —(Bﬁp)5 (Aap)E(Bﬁp)
) <AP0¢B2ﬂp 1>p p—l }
= lim -1
P\ (p—1 )BPJrl pAPa
[(p—1)A» 7 Br 2"
— r p
o [ DA B p_q
e - 1ia
a
in which we used the fact thaim, ., 27 = 1 andlimpﬁoo(p%l)% = 1 for any

x > 0, as shown before.

The limit of epax abs (v, 5) Whenp — oo will be

pli_)rgo €max,abs (@, B) = plij{}o [(%) & (Bﬁp) : B (Biﬁp
=i [(5)7Bho - (5)

37 () )]

Béﬁ]
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= 3.

using the fact thalim,, o () 71 = ( since itis of the formo!. O

This proposition shows that f — oo, then based on the values gfand «,
the size of the relative and absolute errors can change.dvereexperiments show
that asp increases, botl,.x re1(, 3) and emax abs(v, ) increasemonotonically
until they converge to the values given in Proposition 4.38is indicates that we
cannot choose a very largesince the error will become too large. However, as
mentioned before, the error caused by Inequdlity in (4.4) approache8 asp —
oco. Consequently, there is a trade-off between having a smalt @ Inequality
(7i7) by choosing a relatively small and having a small error in Inequalityi) by
choosing a very largge. So, the value op had to be tuned accordingly.

4.4 Convexity of the Approximation

Recall that in the definition of the expected value of maxsgguoaling functions in
Chapter 3,((3.10) is affine in the control varialile:) and [(3.24) is affine in the
control variableg) and\. In this section, we prove that the approximation function

(cf. (4.6))

n 1/p
T~ _ ) T~
u(mjgllﬁfn(ﬁj —L++]9)]) = (21@[(@ — L+ e)p]> +L
J:

with 3; = a; + b] w, wherew denotes a general control variable, is convexin
To this end, let; (w) = a; + b]Tw + ijé — L, which is an affine and so a convex
function inw. Hence, the-th moment ofp; (w), i.e., E[(¢;(w))"] can be defined
as:

+o0o +o00
E[(¢;(w))?] = / / (65 (w))? f(8)de

wheref (¢) is the probability density function @f Note that to the random variable
& we only assign distributions that have finite moments; befif(¢;(w))"] is
finite as well.

To prove the convexity ofl ( E[max;—; ., gbj(w)]) in w, we need the follow-
ing theorems [78, Chapter 5]:
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Theorem 4.4.1 (Minkowski inequality for functions) Leth : R — R andg :
R — R be such that the functiong(z)|® and |g(x)|¢, for an integer/ > 1, are
integrablé onR. Then

1/¢4

(E[Ih@) + o)1}

1/¢

< {E[m(;ﬂ)ﬂ }w + {E[Ig(m)lé]}

Theorem 4.4.2 (Minkowski inequality for vectors) Let 2 = [zy,...,z,]T and
y = [y1,...,y]T be two vectors iiR™ and/ > 1 be an integer. Then,

n 1/¢ " 1/¢ " 1/¢
Solri+ult ] <Dl (Do lwl] -
=1 j=1 j=1

Recall that (cf. Remark 4.2.5) we assume- 2q, q € Z*; hence,|z|P = zP,
Consequently, we drop the absolute value sign for the esiomes with the powep
in the rest of this section. First, we prove the following osition:

Proposition 4.4.3 (IE[(gbj(w))p])l/p, with ¢; an affine function inv, is a convex
function ofw.

Proof: If we show that
(B[(65(h0n + (1 = Nw))*] }
< MEL500)} " + (0= N {BI(602))}

for any two pointsw; andws in the domain of£[(¢;(w))”] and forany < A < 1,
then the proof is complete. Singg is an affine function inv, we have

¢j(Awr + (1 = Aws) = Agj(wr) + (1 — N)g;(w2)

Therefore, from the Minkowski inequality for functions (cfheorem 4.4.1) and
keeping in mind thap is an even integer we obtain:

<E[(¢j()\w1 +(1— )\)w2))p])1/17
(Pl 0 Vo))

h(z) 9(z)

< A(EL(60))

1/p

1/p

1/p

1/p

+ (1= A)(E[(¢(w2)"]) (4.19)

So the inequality holds true and consequer(ﬂE/[(quj(w))p])l/p is a convex func-
tion in w. O

3If for a domainD the integralf,, f(z) dz exists, then the functioff is called integrable om.
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Now for a shorter notation, let

7=1,...,n

n 1/p
F(w) :il<IE[}max ¢j(w)]) - (ZE[(qu(w))P]) + L. (4.20)

Remark 4.4.4 Letx = [z1,...,2,])7 andy = [y1,...,y.]" be two vectors irR"
andp > 2 an even integer. Ifx;| < |y;| for j = 1,...,n, then itis easy to verify
that

" 1/p . 1/p
> gl <D Iyl :
j=1 j=1

Considering|(4.20), we prove the convexity®fw) in w in the following proposi-
tion.

a

Proposition 4.4.5 F(w) is a convex function af.

Proof: Note that in this proof the constant valdiein F(w) is omitted since this
term does not influence the convexity. Now, we prove that fgr@a;, w- in the
domain ofF (w) and for any\ € [0, 1] the following inequality holds:

F(Awl + (1 — )\)wg) < )\F(U)l) + (1 — )\)F(U)Q)
and therefore, it is a convex function of We have:

F(Awl + (1 — )\)’wg)

1/p
= [ D_E[(¢;(hun + (1 - A)w2))p])

J=1

1/p
= Z E[(Ag;(wr1) + (1 — )\)qu(wg))p]) since ¢; is affine in w
j=1

n

1/p
- Z <E[(A¢j(w1) +(1- A)¢j(w2))p]1/p>p)

=1

—
IN=
=

- 1/p
(Z (A (L@ (00) D" + (1= ) (Bl(05(w2)")” ">p>

=1
! zj+yj
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1/p 1/p
I (@@ )|+ [ (0= E ) )

i=1 =1
J Tj J Y

n 1/p 1/p
<A (Z E[(%‘(Wl))p]) ( E[(¢;(w2)) )
=1 j=1

< AF(wr) + (1 — A)F(w2)

3

where (i) is due to[(4.19) in combination with Remark 4.4.4, aid is due to
Theorem 4.4.2. O

SinceF (w) is a convex function ofv, we can also compute its subgradient with
respect tav as follows:

1/p
0 0 “ .
8_wF(w) = 3 (; E[(aj + bJTw + WJTe — L)p]>

1/p—1
1 n
— ]—) (ZE[(CLJ + b?w +7]»Té — L)p])

j=1

B (fjwaj +bfw+vféf:>p])

=1

1/p—1
= 1 ZE aj+bTw+7je—L)p]
p\ o
. - a

5o F [(aj +b]w+~]é—L)"
7j=1

j=1
> bE[(a; + bl w+ 4] E - L
j=1

. 1/p—1
= (ZE[(aj+bJTw+WJ-TéL)p]) (4.21)

where in the last step, the derivative of the expected valgemputed as follows,

0 -
a—wE[(aj + b?w + VJ»Te — L)p]
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8 oo o0
:a—w[/ / (a; +blw—+~]é— L) f(é)dé
Y A S O
=) _Oo%(a]—i— W+, € — P f(e)de
:/ / p(aj—i—b?w—k’yfé—L)p_lbjf(é)dé
—Pb/ / aj—i-bTw—i-’yJ L)~ Lf(e)de

—pr[aJ+b ZU—F’YJB—L]

Note that in(x) due to the continuity of the integrand and its derivativhs,lteibniz
rule is used for differentiating the integral. For more dstthe interested reader is
referred to [41].

4.5 Summary

In this chapter, we have introduced an approximation methamder to compute
the expected value of a max-plus-scaling function, whictefined as the maximum
of several affine expressions. This method is based on hagder moments of a
random variable and we have applied it under the assumptioaming independent
random variables. This method is applicable to any didtidbuwith finite moments
for which a closed-form exists. As such, it involves no atialgr numerical inte-
gration. Accordingly, using closed-form moments, we abtan analytic solution
the complexity of which is much less than numerical intdgratanalytic integra-
tion, or even the approximation method based on variatifyansion discussed in
Section 3.1.3.

We have also shown that the error caused by using this appatixin method is
bounded from above and hence, cannot exceed a certain Waareover, we have
discussed the behavior of the upper bound of the error indkescin which each of
its parameters takes different values, such ascc.

The last section of this chapter has been dedicated to theexion analysis
of the approximation function. We have proved that the agpration function is
convex and hence, its subgradient can be obtained acctydifibe convexity of
the approximation function is useful in the computationtef bbjective function in
the MPC and identification optimization problem for MPL ®yss.



Chapter 5

Approximation Approach for
Model Predictive Control and
|dentification of Stochastic
Max-Plus-Linear Systems

In the previous chapter, we have proposed an approximataihod to compute the
expected value of a stochastic max-plus-scaling functiam esults in an analytic
solution if we choose probability distributions that hav@té moments for which
a closed-form expression exists. Now, this method will bpliad to MPC and
identification of stochastic MPL systems. Using this appr@tion method for the
mentioned problems will decrease the computational coxitpland the computa-
tion time.

5.1 Approximate Stochastic MPL-MPC

In Section 3.1 of Chapter| 3, MPC has been proposed as a cappobach for
stochastic MPL systems. Based on the MPC procedure, aniegtion problem
has to be solved in order to obtain an optimal input sequemaenhinimizes the
objective function. Since we deal with stochastic MPL systethis optimization
problem is characterized by a significant computational merity, which we try
to decrease by applying the approximation method of theigue\chapter.

61
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5.1.1 Problem Statement

In the stochastic MPL-MPC optimization problem (3.8), thgeative function is
defined as (cf. (3/1))

J(k) = Jout(k) + AJin(k) (5-1)

where the output objective function consists of an expeedhuae of stochastic max-
plus-scaling functions (cf! (3.4)). Therefore, in orderstive (3.8), this expected
value needs to be computed. Recall from Section 3.1.2 tleastibchastic max-
plus-scaling function appearing in the MPL-MPC problem thasollowing general

form:

v(k) = max (o (k) + ﬁJTﬂ(k‘) + VJ»Té(k‘)) (5.2)

whereé is a vector of independent random variables with the givebalility den-
sity function f(-). Hence, we need to compute

/ / jmax (a(k) + gia(k) + 77 (k) f(@)de.  (5.3)

To this end, several solution approaches have been progose&ection 3.1.3);
however, each of these methods has a high level of compoghtmmplexity.
Therefore, we apply the approximation method of Chapter driter to simplify
the problem and to increase the computational efficiency.

5.1.2 Approximation Approach

Considering| (4.8) of Section 4.2, we can approxinigtek)], k =1,...,N, — 1
by

il(IE[v(k:)])
= (i: > M—H’YJOH 1iEe >1/p+L (5.4)

J=1 ko+ki++knz=p

where for eacly € {1,...,n,} we havey;o = «o;(k) + ﬂfﬂ(k) — L and~;, are
scalars fot = 1, ..., n;. Note that/(5.4) can be used for any probability distribmtio
assigned tcy, ..., é,., and it is only useful to be applied when the probability
distribution has finite moments and a closed form of these emtsnexists. For the
case that we have probability distributions that are pxeskeunder summation, we
can use the following expression in order to approxinigtg k)] (cf. (4.6)):

u( ) (ZE a;(k +ﬂT()+fijé(l<:)—L)P}>l/p+L (5.5)



5.1 Approximate Stochastic MPL-MPC 63

Using this expression directly is computationally muchdashan using (5.4). The
reason is that since we already know the distribution of eastiom variabley; (k)+
Bl u(k)+~] é(k)— L, we can directly compute ifgsth moment without first having
to expand the-th power expression, as is donelin (5.4).

As shown in Sectionh 4.4, both (5.4) and (5.5) are conve#,iand their sub-
gradient with respect ta can be obtained as follows (cf. (4.21)). For (5.4), the
subgradient is

vaEew) (L ¥ ppfthIbhei >W‘

J=1 ko+k1+-+kn;=p

S (p —1 ko—1 k
(Zﬂj > Rl k! jFo%50- H ELe
j=1  ko+ki++kn.,=p—
(5.6)

and for (5.5), itis

- 1/p—1
Vit (E[(k)]) = (ZE[(% + 8T a(k) +~TE(k) - L)p]) :

j=1
(Z BiE[(aj + B] (k) + ] é(k) — L)’”]) (5.7)
j=1

Now that we can approximate the expected value of a stochastk-plus-scaling
functionv(k), we can also compute the objective function (5.1) approseiyaas

follows. Recall that/,, (k) is defined as a sum ovBfmax(y(k)—7(k),0)]. Hence,
we obtain the following approximate objective function:

Japp(k) - Jout,app(k) + )‘Jin(k)

Np-ny Np-ny
-y (s(Bmax((k) - 7(k), 0)])); - A Z g (k (5:8)

and hence, instead of solving the optimization problem)(3@ can solve the fol-
lowing approximate optimization problem:

Ig%}g)l Japp (F)
st. Au(k+j5)>0 forj=0,...,N,—1
A?u(k+37)=0 forj=Nc,...,N,—1

Acon () (k) + Beon (U (E[F(R)]) < ceon (k)

(5.9)
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Recall thatu(E[g(k:)]) is an upper bound foE[y(k)]. Hence, if the entries of

Beon (k) are nonnegative, thed.., (k)a(k) + Bcon(k:)u(IE[g(k:)]) < ceon (k) also
implies Acon (k)t(k) + Beon(k)E[g(k)] < ccon(k). Moreover, the minimization of
Japp (k) (in general) also results in minimization 8fk) sinceJ,, (k) is an upper
bound forJ (k).

Note that convexity of the approximation functi E[v(k:)]) in w implies that
the last inequality constraint in (5.9) is also convexiinHence, if we assume that
all the entries ofB.,, are nonnegative, in that case, the whole approximate MPL-
MPC optimization problem (5.9) turns out to be convexiinand having a closed
form expression for subgradients (cf. (5.6) and|(5.7)), aresolve this optimization
problem efficiently using gradient-based convex optinizaalgorithms such as the
cutting-plane method or the ellipsoid algorithm [15].

5.1.3 Example

We consider an example similar to the one of [104] and we situidy the cases in
which the noise vector is uniformly distributed and normalistributed. For each
case, we apply different methods to compute the objectietion (3.8), namely,
the analytic integration of Section 3.1.3, numerical in&ignt, Monte Carlo sim-
ulation, and the approximation method of Section 4.2. Afteds, we compare the
performance of the MPC controller using these methods.

t1=0 ta=1 ts=0
u(k)——— My 2 My F——y(k)
z1(k) z2(k)

Figure 5.1: A production system.

Consider the simple manufacturing system of Figure 5.1s $istem consists
of two machinesM; and M5, and operates in batches. The raw material is fed to
machineM; where preprocessing is done. Afterwards the intermediatdygt is
fed to machineV/, and finally the complete product leaves the system. We assume
that each machine starts working as soon as possible on atath be., as soon as
the raw material or the required intermediate product idavie, and as soon as the
machine is idle (i.e., the previous batch of products has peecessed and has left
the machine). Define:

u(k) : time instant at which the raw material is fed to the systentter-th time

1The numerical integration is based on Monte Carlo integra25]
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(k) : time instant at which thé-th product leaves the system

(k) : time instant at which machinestarts for thek-th time
tj(k) : transportation time on link for the k-th batch

(k) : processing time on machiridor the k-th batch

The system equations are given by

x1(k) = max(xi(k— 1) +dy(k—=1),u(k) + t1(k))
xo(k) = max(z1(k) +di(k) + to(k),zo(k—1) + da(k—1))
= max(zy(k— 1) +dy(k—1) + di(k) + ta(k),
u(k) +dy (k) +ti(k) 4+ ta(k), x2(k—1) + da(k—1))
y(k) = x2(k) + da(k) + t3(k)

and in matrix notation this becomes

z(k) = A(k)®@xz(k—1)® B(k) @ u(k)
y(k) = C(k)@x(k) .

where the system matrices B andC are given as follows:

B dy(k—1) 5 B 0
AR = g k1) + dy(k) 1 1} » B(k) = [ dl(k:)+1} ’

Cky=[e 1].

The objective functions (3.4)-(3.5) will be optimized fdF, = 3, N. = 2, and\ =
0.05. It is assumed that the transportation times are constafit) = 0,t2(k) =
1,t3(k) = 0; the production time of\/, is constant:dz2(k) = 1; the due date
(reference) signal is(k) = 4+6-k; andz(0) = [0 7]7. The signal; is assumed to
be corrupted by noisel; (k+/) = 5+e(k+¢) wheree(k+/{), { = —1,...,N,—1
are random variables with a given probability distributibtence, the vectatr(k) =

[ di(k—1) ... di(k+ N, —1) ] consists of independent stochastic variables.
Now, we can rewritenax(y(k + ¢) — r(k + £),0), £ = 1,..., N, — 1 such that

it is divided into deterministic and stochastic parts. Tyigds expressions of the
following form?:

max(y(k‘) - T(k)7 0) = maX(nl + él + é?, 72 + é?, ns, 0)
max(y(k +1) —r(k +1),0) = max(ns + €1 + €2 + €3,75 + €2 + €3,
16 + €3,17 + €1 + €2,m8 + €2,19,0) (5.10)

2\We have omitted the argumehtor brevity.
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max(y(k +2) —r(k +2),0) = max(nip + €1 + € + €3 + €4,
M1+ €2 + €3 + €4,m2 + €3 + €4,M3 + €4,
M4+ €1 + €2 + €3,Mm5 + €2 + €3,M16 + €3,
N7 + €1 + €2,ms + €2,M19,0)

whereny, ..., n9 are sums of deterministic values a#d. . ., é4 are the entries of
é.

Now, we study separately the two cases where the entri@aref uniformly and
normally distributed, respectively.

Uniform distribution

In this case, we assume tl@at . . . , é4 are uniformly distributed, i.e¢; ~ U(—1,1),
1=1,...,4. As mentioned in Section 4.2, we define the scalarsL-, and L3 for
the three expressions in (5!10), as follows:

Ly = min(n — 2,72 — 1,713,0)
Ly =min(ns — 3,15 — 2,m6 — 1,m7 — 2,13 — 1,79,0) (5.11)
L3 =min(nio —4,m1 — 3,m2 — 2,m3 — 1,714 — 3,

ms — 2,me — 1,m7 — 2,ms — 1,m19,0)

where the numbers 1, —2, —3, and—4 are the lower bounds ofjré where; is a
vector of0s andls that indicates which elements@&ppear in the maximization.
Now, we compute the optimal input sequence by solving the NpRgblem
in closed-loop fork = 1,...,40. Figure[5.2 shows the difference between the
resulting output signay and the due date signal The optimization has been
done usingminconoptimizer in Matlab with one initial value since the objeeti
functions (both the exact and the approximate one) are gave hence, the global
minimum can be reached. In this figure, the “Exact solutiablbtained by using
analytic integration of Section 3.1.3 to compute the exgeerlue appearing in the
objective function. The “Nominal MPC” is indeed obtained igporing the effect
of noise while computing the optimal input sequence. As altethe due dates
will be most of the time violated in this case and we have latvdries. This is
due to the fact that we compute the optimal input in the alesehaoise and hence
we cannot minimize its effect. Finally, the “Approximatiois obtained by using
Japp (k) defined in((5.8). We have chosen different values taf find out which one
gives the closest result to the exact solution. As can be, $eep = 20, 30, and
40 the result of the closed-loop controlled system using thE@pmation method
is quite close to the one using the exact solution. Note tlehawe also computed
the expected value in the objective function using numenitdagration and Monte
Carlo simulation. However, since the plot of the differefmween the output
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signaly and the due date signalusing these two methods matches exactly the one
using analytic integration, we have not plotted them in Feghi2.

Exact solution
—w— Nominal MPC
Approximation, p=1(
R 1 | = = = Approximation, p=2
—+— Approximation, p=3
11111 Approximation, p=4

— (k)

y(K)

Figure 5.2: Due date errow(k) — r(k) for the closed-loop system using nominal
MPC, analytic integration to compute the expected valudadbjec-
tive function, and the approximate objective functifp, (k) in (5.8).

Table 5.1 reports the total optimization tiffer the closed-loop simulation over
40 event steps using analytic integration (i.e., the exaattgwl), nominal MPC,
numerical integration, Monte Carlo simulation, and theragpnation method for

different values ofp. Moreover, for each method, the objective function over the
40

entire simulation period, i.eJ;t = Z (max(y(k) — r(k),0) — Au(k)), has been

computed using 20 different noisek réalizations and thermian value is reported

in the table. In addition, the relative erfoof the mean value ofl.; using the

analytic integration versus using the other methods argepted in this table.
Despite the fact that nominal MPC is extremely fast, the me&dne of Ji.¢

is considerably larger than the one using the analytic rategn method to com-

pute the objective function. This is due to ignoring the effef the noise while

computing the optimal input sequence. Hence, just applgimmginal MPC is not

3These times are obtained running Matlab 7.11.0 (R2010b)28%&GHz Intel Core Duo E655
processor.

“The relative error is defined here EJS‘W whereJiot,2i is Obtained using the analytic
integration approach anfl. o1 iS oObtained using other methods.
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Methods for computingl Computation| Mean value (MV) | Relative error
the objective function time[s] of Jiot of MV of Jit
Analytic integration 209 —235.4937 -

Nominal MPC 1.07 —228.0679 3.15%

Numerical integration 563 —235.5079 0.006%

Monte Carlo 2648 —235.5035 0.004%
Approximation method:

p=10 91 —228.3628 3.03%

p=20 4009 —233.7849 0.73%

p =30 25310 —234.8377 0.28%

p =40 89451 —235.1228 0.16%

Table 5.1: The computation time, the mean valudgf, and the relative error of
the mean value afy. using different methods to compute the expected
value in the objective function.

a good choice. As reported in Table 5.1, fior event steps, the total computation
times of the optimization procedure using the analyticgraéon is about a factor
2.5 lower than the one using numerical integration. Note ttna small difference
between the objective function values of these two methsdhié to the error of
numerical integration, which can be improved by increasivegnumber of samples

in the numerical integration. For this experiment, we havesen10® samples. If
we increase the number of samples @3, the value of the relative error of the ob-
jective function will be0.0009%; however, the computation time will be about a
factor 250 larger than the one using the analytic integnatamd for10'° samples

it is not tractable anymore. Based on a trade-off betweerCig time and the
objective function value, it has been decided to do the éxmarts with105 sam-
ples. The total computation time of the optimization pragedusing Monte Carlo
simulation, reported in Table 5.3, is also f@® samples. Fot0” samples, the rel-
ative error of objective function will b€.0005%, but again the computation time
will be a factor100 larger than the one listed in Table 5.3. Hence, due to the same
trade-off as before, we also chos® samples for the Monte Carlo simulations. For
the approximation method, we observe that on the one haadnéan value of;;

for a largep, i.e., p = 40, becomes closer to the one of the analytic solution and
accordingly, the relative error becomes smaller. On therdtand, the computation
time increases drastically by increasimgNote that since we use the approximation
function (5.4), forp = 10 we deal with at least 66 and at most 1001 terms while
computing thep-th moments of the uniformly distributed random variableg
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the multivariate theorem (cf. Theorem 4.2.6). This numbevien worse iy = 40,
i.e., we have at least61 and at mosti35751 terms. Hence, considering both the
computation time and the relative error of the objectivecfiom, the results of the
approximation method fgy = 20 and30 can be used in place of the exact solution.

)1

[Pt P)MP] - € [max (x,.

(0)

Figure 5.3: (a) The error caused by Inequality (ii) (4.4) of Proposition 4.2.3; (b)
The upper bound,,ax abs (cf. (4.16)) for the error caused by Inequality
(ii) (Jensen’s inequality) ir{4.4) of Proposition 4.2.3.

In Figure/ 5.3 the errors occurring in (4.4) in Propositio8.3.are illustrated.

In fact, we have computed the difference betweé(k) andJ;,, (k), whereJ* (k)
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is obtained by solving the optimization problem (3.8) inseld-loop using the an-
alytic integration and’;;, (k) is computed using (5.8) with the same optimal state
and input sequence obtained from the optimization probl@®)(and then the er-
rors that occur in each inequality in (4.4) are presented.h¢ote that in the case of
the uniform distribution, since the domain of random vadgahs bounded, we can
specify the value of_ in (4.5) explicitly, and hence, all variables will be nonaeg
tive. Therefore, the error caused by Inequalityin (4.4) is zero. The error caused
by Inequality (i), i.e., the error between thenorm and thesc-norm, is shown
in Figurel 5.3(a), which, by choosing a largerbecomes smaller and eventually it
converges to zero. Figure 5.3(b) shows the upper boundejg(a,b) in (4.16),
for the error of Jensen’s inequality due(i:).
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Figure 5.4: The upper bounds for and the exact valuggf (k) — J* (k).

Figure 5.4 shows the exact difference betwdgn (k) andJ*(k), i.e.,J 5, (k) —
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J*(k), the upper bound for this difference obtained by adding ¢iselts of the first
and the second plot of Figure 5.3 for different valuegppfind the upper bound
(4.15) for J;,, (k) — J*(k). Asillustrated in this figure, by increasing both upper
bounds and the difference betwegf (k) and.J*(k) become smaller and after a
few step, they all remain below7 for p = 30 and40. It also shows that, after few
steps, the upper bound (4.15) f@f, (k) — J*(k) is very close to the exact differ-
ence, and the other upper bound also becomes quite close &xalat difference,
which are indications for the good performance of the apprakon method in this
specific example.

As a result, by comparing the CPU times, the mean valug »f and the rela-
tive errors, we can conclude that in the case of the unifostridution, the meth-
ods based on analytic and numerical integration are pefda the approximation
method. Note that in any case, if the approximation methagsed, one should
make a trade-off between the computation time and the daksseof the results to
the solution obtained using analytic integration (as shimFigure 5.2) and hence,
tune the value op accordingly, which was done here by means of experiments.

Normal distribution

In the second case, we assume that the signal corrupted by standard normally
distributed noise, i.e., the elementsééreé; ~ N(0,1), i = 1,...,4. In this
case, we can define the scalaas follows:

Ly = min(m — 3v2,9; — 3(1),13,0)
Ly = min(ny — 3V3, 05 — 3V'2,n6 — 3(1), 17 — 3V2, 18 — 3(1),m9,0)  (5.12)
Lz = min(n10 — 3(2), m11 — 3v3, 112 — 32,113 — 3(1), n14 — 3V3,

ms — 3v2,m6 — 3(1),m7 — 3v2,ms — 3(1),m9,0)

Recall that this choice is based on twerule.

Figure 5.5 shows the difference between the output sigraaid the due date
signalr for closed loop simulation. As in the previous case, thenogkiinput se-
guence is computed for the closed-loop systemifer 1,...,40. Note that since
we have normally distributed random variables, their pbillig density function is
not piecewise polynomial. Hence, to be able to use the aoahtegration of Sec-
tion[3.1.3, first it has to be approximated by a piecewise mqmtyial function and
since this approximation would cause significant compjelsésides increasing the
computation time, we did not consider this approach forékample. Therefore, in
this figure, the “Exact solution” is obtained by using nuroatiintegration to com-
pute the expected value in the objective function, the “N@hMPC” is obtained
by ignoring the noise in the computation of the optimal inpatjuence, and the
“‘Approximation” is obtained by using the approximate olijge function.J, (k)
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Exact solution
=——#— Nominal MPC

—— Approximation, p=10|
= = = Approximation, p=20|
7 | —+—— Approximation, p=30|
1 Approximation, p=40|
Approximation, p=50|

y(k) = r(k)

-10
0

Figure 5.5: Due date error (k) — r(k) for the closed-loop system using nominal
MPC, analytic integration to compute the expected valug@dbjec-
tive function, and the approximate objective functifp, (k) in (5.8).

in (5.8). Here also, we have used Monte Carlo simulation topde the expected
value in the objective function, but it is not plotted sintexactly covers the plot
of the exact solution. Similar to the previous case, the naliIPC results in the
violation of due dates. The approximation method givesltedoat are close to the
“Exact solution” forp = 20, 30, and40. Note that forp = 50, the results obtained
using the approximation method is not comparable to the éEs@lution” anymore.

This observation shows clearly that a largetoes not always give a better result.

In Table 5.2, the total optimization time for closed-loomslation over0 event
steps using numerical integration, nominal MPC, Monte €aitnulation, and the
approximation method for different valuesjoére reported. Similar to the previous
case, for each method, the mean value of the objective iamgti; over the entire
simulation period using 20 different noise realizationd #me relative error of the
mean value of/;,; using the analytic integration versus using the other nusth®
presented.

Here again, compared to humerical integration, nominal M&Qlts in a very
large objective function value. Hence, despite the verytstmmputation time, this
method is not reliable to be applied. The computation timehef optimization
procedure using the approximation method is on averaget alfaator200 smaller
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Methods for computingl Computation| Mean value (MV) | Relative error
the objective function time[s] of Jiot of MV of Jiot
Numerical integration 744 —229.7778 -
Nominal MPC 1.08 —217.1595 5.49%
Monte Carlo 2574 —229.8415 0.03%
Approximation method;
p=10 8.19 —224.3753 2.35%
p =20 9.37 —227.5341 0.98%
p=30 12.19 —226.9461 1.23%
p =40 14.89 —226.1622 1.57%
p =50 19.01 —225.5101 1.86%

Table 5.2: The computation time, the mean valud,gf, and the relative error of
the mean value afy. using different methods to compute the expected
value in the objective function.

than the one using Monte Carlo simulation and it is about tofaid smaller than
the one using numerical integration. Here also the numbsauoples of both Monte
Carlo simulation and numerical integratiorl® since, as explained in the previous
case, a larger number of samples increases the computatiesignificantly. Note
also that since we use the approximation function (5.5)e@sing the value of has
only a linear effect on the computation time and evengfet 50, the computation
time is very low compared to Monte Carlo simulation or nuro@rintegration. As a
result, by comparing the CPU time of these three methodsaweanclude that the
approximation method is considerably faster than numieintegration and Monte
Carlo simulation. Moreover, this table shows again that rsitering the relative
error for different values op — a largerp does not always make the approximation
better. Consequently, one needs to find the appropriate \wdlp, which has been
done here by means of experiments, that gives the best apm@tion result.

Figure 5.6 illustrated;, , (k) — J*(k), where, similar to the previous example,
J*(k) is obtained by solving the optimization problem (3.8) inseld-loop using
numerical integration and,, (k) is computed using (5.8) with the same optimal
state and input sequence obtained from the optimizatioblgmo (3.8). This figure
also shows the upper bound fdf, (k) — J*(k), which is indeed obtained using
(4.15). Note that unlike the previous example, since her&ave a normally dis-
tributed error vector, which has an unbounded domain, weatatompute the upper
bound for Jensen’s inequality, i.@max abs (Cf. Section 4.8). As shown in Figure

5.6, forp = 20 the upper bound fos; (k) — J*(k) is below1 after few steps and

app
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Figure 5.6: The upper boun@.15)for and the exact value of, (k) — J*(k).

app

for p = 30 it is almost belowl. However, forp = 40 both the upper bound for
Jyop(k) — J*(k) and the difference itself are betweemnd2 and forp = 50 they
both become larger thah This observation supports our previous conclusion that
a largerp is not always a better option and hence, for choogirtijere must be a
trade-off between having a good approximation and the ditleeoerror caused by

this approximation method.

Consequently, based on the computation time, the mean wlug,;, and
the relative and the approximation errors, we can conclbdethe approximation
method is a reliable and time-efficient method to solve tloehsistic MPL-MPC
optimization problem in this case. Indeed, fore= 20, 30, and40 the result of the
closed-loop optimization using the approximation meth®oduite close to the one
using the numerical integration and, in this specific examfiie approximation-
based approach is abaia times faster than the approach using numerical integra-
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tion.

5.2 Approximate Identification of Stochastic MPL Systems

Similar to conventional systems, model parameters of dnaiic MPL system can
also be identified. We consider a state space model and wenti@kaccount the
stochastic properties of the system in the identificatiarcess. Just as the MPC
problem discussed in the previous section, in identificatibstochastic MPL sys-
tems, we face with the computational difficulties as welle da the presence of
the expected value in the objective function. Our aim in #eistion is to apply the
approximation method of Chapter 4 to decrease the compo#tcomplexity of
identification of stochastic MPL systems.

5.2.1 Problem Statement

We aim to solve the following identification problem:

min J(0,})
(0.0) ) (5.13)

sit. A>0
with

=z

-1

Z [z;(k + 1]k)] — xmeas,i(k? + 1))2

=1

Z S (Rl + 1,8, 3, (k) (5.14)

k=1 i=1

where, considering (3.18) and (3.19),
E[I‘Z(k) + 1‘]4?)] — xmeas,i(k + 1)
— E[‘:max (€ +07AY +eT (R)ASY + 65 (k) — Zmeas.i(k + 1)

>/>
I
H »—tM

s 0

=E[ max_(ag;(k) + 110 + ATy e(k))]

-----

= Efpi(k + 1,0, A, e(k))] (5.15)

for appropriately defined matrices and vectoys, II,;, andI';; (cf. Section 3.2.1).
The goal is to identify the two parametetsaind \ by solving (5.13). To this end,
E[n;(k+1,0, X, e(k))] has to be computed in an efficient way. Numerical integration
or the analytic integration using piecewise polynomialgatdaility density functions
are again possible computational methods. However, cerisglthe complexity
and computation load of these methods, it is desired to fitetrative solution
approaches.
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5.2.2 Approximation Approach

As an alternative approach to increase the computatiofialesfcy, we will apply
the approximation method to solve the identification prob(&.13). Consequently,

we can approximate the functid®n;(k + 1,0, A, e(k))] in (5.15) byil(E[m(k *
1,6, ,e(k))] ) where
4(Elk + 1,0, 7, (k)]

(X ¢

J=1 kotkit+ - +kn.=

1/p
k:o'k2 '%JOH%N ) +L (5.16)

With v;50 = ayj + Hg;é — L and~;j; = (XTFij)tet forj =1,...,m andt =
1,...,n and with the stochastic vecter= [eq, ..., e, |7 andl';; being a diagonal
matrix. Furthermore, we can obtain subgradientsléE[m(k + l,é,ﬁ\,e(k:))]>

with respect t@ and . Note that onlyy,; o depends o, and the rest ofj;; ;, t =
1,...,n. depend only on\. Accordingly, by applying the chain rule, we obtain the
following subgradients for (5.16):

Vi il( [mi(k +1,6,, e(k))])

:<ZZ—

1/p—1
e ) |
J=1 kotki+-+kn.=

(p—1)! 1
IL;; Z W 0%]0 H%gt

ko+k1 -+ Hhn, =p—1

1

and

V3 (Elmi(k + 1,0, A, e(k))))

m 1/p—1
O | S ) -

J=1 kotk1++kno=p

<Z > W% OZ ke(Ti)ervify E HVZttE e (k )

J=1ko+ki++kn.=p t#

In the case that the elements of the stochastic vedtor have a distribution
that is preserved under summation, we can equivalentlyoappate E[n;(k +
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1,0, e(k))] by

1/p
U(Elpitk +1,0,A,e(k))]) = (Z E[ (i + 150 + N Tije(k) — L)p]) +L
j=1
(5.17)

with the following subgradients

véu@[m(k +1,0,2, e(kr))]>
. 1/p—1
- (Z E([(cuj + 50 + NTTyje(k) — L)p]> ‘
j=1
> TGE[(ay + 50 + AT Tyje(k) — L)
j=1

and

V;u@*}[m(k +1,0,2, e(kr))])
. 1/p—1
— (ZE[(QU + Hg;é + S\Trije(k) - L)p]) ’
j=1
i TyE[e(k) (i + 1150 + ANTTyje(k) — L))
j=1

As a result, the objective functioﬂi(é,j\) in (5.14) can be approximated by
replacingE[n; (k + 1,6, A, e(k))] with 11<IE ni(k+1,6, X, e(k:))]) as follows:

Japp (6, A) = ‘ (M(E[m(k:—i—1,@,5\,e(k))]))2 (5.18)



5 Approximation Approach for Model Predictive Control ankitification of
78 Stochastic Max-Plus-Linear Systems

= 30> 2ut(Blmth+ 1,0,A, (1)) Vst (Blmlk + 1,6, e(0))

and hence, solve the following approximate identificatiosbem

min  Japp (0, A)
6.3) i
st. A>0

by means of a multi-start gradient-based optimization watlsuch as a steepest
descent method or a Quasi-Newton (DFP, BFGS) method [90].

5.2.3 Example

In this section we present two case studies to discuss théises the identifica-
tion using different methods to compute (5.15), namely hgreximation method
(cf. (5.16) and/(5.17)), numerical integratfgrthe analytic integration using piece-
wise polynomial probability density functions (cf. Secti8.1.3), and Monte Carlo
simulation.

In the first case study, we consider a uniformly distributed@ vector, which
has a bounded domain, and we compare the performance of tle-atentioned
approaches with one another. In the second case study, alhodistributed noise
vector, which has an unbounded domain, is considered. Katdftwe apply the
analytic integration approach of Section 3/1.3 to the cagie mormally distributed
random variables, we would need an approximation usingepise-polynomial
functions. This would introduce approximation errors adl @& an increase in the
computational complexity. To avoid this additional conxig we did not consider
this approach in this example. Hence, we only compare thianpeance of the
approximation method with the approach using numericagiration and with the
one using Monte Carlo simulation for the computation of §.1

In order to obtain a system of the form (3.17), we considefahewing stochas-
tic state space model:

z(k) = A(k) @ z(k — 1) ® B(k) @ u(k) (5.19)
y(k) = C(k) ® z(k) (5.20)

with the system matrices

>The numerical integration is based on the Monte Carlo imtign [25]
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In this example, we generate input-state data by simulatiagsystem forl00
event steps, i.e., fok = 1,...,400. The parameter estimation is done using this
data, in which the input signal is a staircase signal [97hwih average slope of
about1.83 given by

u(k) = 5.5 - (1 + Uc/zﬂ)

where|z| denotes the largest integer less than or equal fbhe input signak(k)
in shown in Figure 5.7 fok = 1, ..., 40.

80

70
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50

u(k)

40

30

20

10

Figure 5.7: The first 40 samples of the input signét) for the first and the second
case study of Section 5.2.3.

We estimate the parametefsand A\ assuming that the elements of the noise
vector are uniformly and normally distributed, respedyive

Uniform distribution

We choose the true parameter ve@ars
6 = [0, 62 65 64" =[03 03 07 06]"

and we assume that its elements are perturbed by the unyfatisttibuted noise
components (k) such thate,(k) ~ U(—1,1) for ¢ = 1,...,4, and with scaling
factor

]T

A=A X ox A]T=[03 03 03 03]

Hence, the corresponding value of the cost function, ugiagd A to generate the
input-state data, i81.8512.
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As a first step, we estimate the parameidor a deterministic model, i.e., a
noiseless model with = [ 0 00O ]T, using the residuation-based estimation
techniques described in [4,123, 77]. Note that in this casedevnot expect to have
a good estimation since we are ignoring the effect of noise dptimization yields
the following results:

6=100167 00009 04056 0.3011 ] .

and the corresponding value of the objective functiof0i8505. As expected, due
to the absence of a noise model the estimation fails and tiraated parameters
are quite far from the true values.

The second step is to estimate the parameteaad A\ for the stochastic sys-
tem (5.19)4(5.20). We minimize the objective function @.based on the one-step
ahead prediction, i.e., we predict the behavior of the systethe event step + 1
based on the information that we have at the event/stéfye use a multi-start, se-
quential quadratic programming (SQP) method [80], comide30 different start-
ing points that are chosen randomly and are both larger amdlegnthan the real
values off and X to start the optimization with, and then, we report the eatéd
parameters for which the objective function has the lowehtes

We use four different methods to compute (5.15): Monte Caifoulation
[63], numerical integration, the analytic integration hwa, and the approxima-
tion method using the function (5.16). By means of experisiene found out that
p = 14 gives a good approximation in this specific example. Theltesdithe op-
timization are presented in Table 5.3. As shown, the estichparametef is quite
close to the exact value éffor the above-mentioned methods. However, Xave
do not have a good estimation. Note that, in general, in ptiedi error identifica-
tion, one can obtain the correct system model, fiebut it is much more difficult
to estimate the noise model, i.8.[48, 73].

The reason that the analytic integration method of Secti&r83and numeri-
cal integration give different results (cf. Table 5.3) ispaa from the numerical
integration accuracy — mainly due to the fact that here we lzamon-convex op-
timization problem in combination with optimization runstivdifferent random
starting points. As reported in Table 5.3, ffY0 event steps, the average computa-
tion time® of the optimization procedure, over 30 different startimings, using the
approximation method and analytic integration approaciuite close (it is about a
factor 1.5 lower for the approximation method). Howevee tomputation time of
the optimization problem using the analytic integratiopraach is about a factor 30
lower than using numerical integration with®> samples. If we increase the number
of samples td 0" the computation time using numerical integration beconbesit

®These times are obtained running Matlab 7.11.0 (R2010b)2821GHz Intel Core Duo E655
processor.



5.2 Approximate Identification of Stochastic MPL Systems 81
Optimization | Monte Carlo| Numerical Analytic Approximation
results simulation integration | integration method

[ 0.2824 T [ 0.2976 T [ 0.2841 T [ 0.3012 7
i 0.2944 0.3018 0.2926 0.2823
0.6910 0.6967 0.6954 0.6746
| 0.5885 | | | 0.5808 | | | 0.5808 | | 0.5991 |
[ 0.1575 ] [ 0.2838 ] [ 0.4591 T [ 0.0596 T
5 0.3882 0.4694 0.3239 0.0670
0.6224 0.4529 0.0858 0.2613
| 0.0027 | | | 0.0806 | | | 0.2700 | | 0.0479 |
Corresponding  22.6907 21.8831 21.6958 22.3832
J
CPU time [s] 73549 44992 1523 1024

Table 5.3: Estimation results f@tand A, using four different methods to calculate
(5.15) with uniformly distributed noise, corresponding value o€ b-
jective function/, and the average computation time (CPU time) of each
method using 30 different random starting points.

a factor 3000 larger than the one using the analytic integraand for10'° it is not
even tractable anymore. For the numerical integrationdlative error between the
objective functions obtained using the analytic integratapproach and the numer-
ical integration with10° samples i$.03% and usingl0” samples i$.004%. Based

on a trade-off between the CPU time and the relative errbgstbeen decided to do
the experiments with0®> samples. The computation time of the optimization pro-
cedure using Monte Carlo simulation, reported in Table i5.8|so for10° samples
and the relative error between the objective functionsinbthusing the analytic
integration and the Monte Carlo simulation using this nunddesamples i%.06%
and usingl0” samples, it i$).008%. Hence, due to the same trade-off as before, we
chosel0° samples. As a result, by comparing the CPU times of thesenfietinods
we can conclude that the analytic integration method andplpeoximation method
are considerably faster (at least 30 times and 45 timesgcésgply) than numerical
integration and the Monte Carlo simulation. Moreover, tbsults obtained using
the approximation method are similar to the ones using &inahtegration besides
the fact that the CPU time using the approximation methodhigller than the one
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using the analytic integration approach.

Normal distribution

For the second case, the true parameter vécimthe same as before, i.e.,
6 = [6, 6, 65 6,]"=[03 03 07 06]"

except that now, each of its elements is perturbed by oneeofitise components
ee(k), £ =1,...,4 that are independent and have a standard normal distnihutio
i.e.,eo(k) ~ N(0,1), with the scaling factor

A= M X od M =(01 01 01 01]".

and accordingly, the corresponding value of the cost fongtusingd and A to
generate the input-state datagig958.

Similar to the previous case, first we estimate the pararmidtera deterministic
model, using the mentioned residuation-based estimatimiques. The optimiza-
tion result is as follows:

6=100725 —00218 08416 0.7035 | .

with the corresponding value of the cost function equdlit6288. As we expected
and as we have also seen in case of the uniform distributioneblecting the effect
of noise, we do not obtain a good estimation.

In the next step, we estimate the parameteand \ for the stochastic system
(5.19)-(5.20). To this end, we minimize the objective fimet(5.13) using three
different methods: Monte Carlo simulation, numerical gntgion, and the approx-
imation method using the function (5/17). As we did in theecaf the uniform
distribution, we minimize the objective function based ba bne-step ahead pre-
diction, using a multi-start, SQP method with 30 differetarng points, and re-
porting the estimated parameter with the lowest objectivetion value. We have
chosenp = 30 for the approximation method. This choice has been also made
by means of experiments, as fpr= 30, we obtain a good approximation in this
specific example. The estimation results are presentecbiie5a4.

Comparing the results, we can conclude that the approxamatiethod gives
a good estimation fof that is quite close to the results obtained using numerical
integration and Monte Carlo simulation as well as to the tralee of. Similar to
the first case, we obtain an unsatisfactory estimatior for

Recall that one of the goals of using the proposed approioméinction (5.17)
is to decrease the computation time. B0® event steps, the computation times of
the optimization procedure using the three above-mentionethods are presented
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Optimization Monte Carlo| Numerical | Approximation

results simulation integration method

[ 0.3030 T [ 0.3092 7 [ 0.2750 T
i 0.2984 0.2969 0.2824
0.6881 0.6974 0.6799

| 0.5940 | | | 0.5937 | | 0.5781 |

[ 0.0449 T [ 0.0976 T [ 0.0409 T
5 0.0417 0.1016 0.0400
0.0479 0.1236 0.0403

| 0.0398 | | | 0.0945 | | 0.0419 |
Corresponding/ 8.6980 8.7403 9.1231
CPU time 110796 s 83890 s 899 s

Table 5.4: Estimation results férand A, using three different methods to calculate
(5.15)with a normally distributed noise, corresponding valueta bb-
jective function/, and the average computation time (CPU time) of each
method using 30 different random starting points.

in Table/5.4. The reported CPU time for Monte Carlo simulatamd numerical
integration in this example is also fan> samples due to the trade-off between
the CPU time and the accuracy level of the results. Therefbeeapproximation
method increases the time efficiency significantly (it isw&h®0 times faster than
the two other methods) while still resulting in a performanicat is comparable to
the one of the other two methods.

5.3 Summary

In this chapter we have considered the approximate MPC amatifitation of
stochastic MPL systems. The approximation method propeséthapter 4 has
been applied to compute the expected value of max-pluggctinctions that ap-
pear in the stochastic MPL-MPC optimization and in the idiattion problem.
This approximation method yields an upper bound for the avje function and
hence, instead of minimizing the objective function its@e minimize its upper
bound. Since the approximation method results in an aaadgtiution for distri-
butions with moments for which a closed-form expressiorstexithe approximate
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MPC and identification problem are in general less compmriatly complex and
can thus, be solved more efficiently comparing to the exjstiethods.

Moreover, we obtain a convex MPC optimization problem tteat be solved
efficiently by means of the existing convex optimizationcaithms since the upper
bound of the expected value obtained using this approximatiethod is convex in
the control variables and the exact expression for the gnaavith respect to these
variables can be computed. In the approximate identifiogiimblem, we can also
compute the gradients analytically and hence, althoughatrion-convex problem,
it can be solved using gradient-based algorithms.

For both MPC and identification problems, we have presemntachples using
two different types of distributions: uniform distributipwhich has a bounded do-
main, and normal distribution, which an unbounded domahe results shows that
for both distributions, the performance of the approximatinethod is comparable
to one of the “exact” solution.



Chapter 6

Approximation Approach for
Model Predictive Control for
Stochastic Switching
Max-Plus-Linear and Stochastic
Max-Min-Plus-Scaling Systems

In this chapter, we proceed further with applying the appnation method of
Chapter 4 to other classes of MPL systems, namely stochwasitiching MPL sys-
tems and stochastic MMPS systems. Similar to the previoapteh our aim here
is to reduce the computational complexity as well as the edatjpn time of the
MPC optimization problem for these classes of systems.

6.1 Approximate MPC for Stochastic Switching MPL Sys-
tems

We have seen in Chapter 3 that stochastic switching MPLsystan be controlled
using MPC. Accordingly, at each event step a stochastic MFAC optimization
problem has to be solved, which is time-consuming and caomgdeexplained in
Section 5.1. This issue, in addition to the number of possihbde switchings,
which in practice can be very large, imposes a consideratmepatational bur-
den. Therefore, we propose some approximation methodssisebtion in order to
decrease the computational difficulties of the stochastitching MPL-MPC opti-
mization problem. One of these methods addresses the praalesed by the large
number of mode switchings and the other method aims at d@ogethe complexity

85
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imposed by the presence of stochastic system parameters.

6.1.1 Problem Statement

In stochastic switching MPL systems, the MPC optimizatiorbtem can be defined
as follows (cf. Section 3.1.5):
min J(k
(k) (k)
st (k) = C(UEK), (k) @ 2(k = 1) © D((k), é(k)) © a(k)
Au(k+j)20 forj=0,...,N, -1
2u(k+35)=0 for j = N¢,...,N, —1
Acon(k)u(k) + Beon(k)E[G(k)] < ceon(k)

(6.1)

whereé and/ are stochastic variables and
Ny Np Ny Np
J(k) = Elmax(§i(k) — 7(k),0)] =X Y (k) (6.2)
=1 =1

Accordingly, to solve[(6.1), we need to find an efficient melthio compute the
objective function (6.2) and hence, the expected valuetheAs mentioned before,
the objective function (6.2) can be defined using any othertaination of the input
and output objective functions in (3.2) and the procedussemted below will be
still valid.

Note that in stochastic switching MPL systems, we deal withdifferent types
of random variables, namely discrete and continuous rangwotables. The mode
switching uncertainty is a discrete random variable sineehave a finite number
of modesn;, and thus, the number of possible mode switching sequeneesios
whole prediction horizon(¢.,)») is finite. On the contrary, the parametric uncer-
tainty related to processing and transportation times isrdirruous random vari-
able. As a result, to compute the expected value, we needptg apcombination
of integration over the continuous stochastic variatjle) and summation over the
discrete stochastic variabfek). To this end, we need the joint probability density
function of &(k) and/(k), which can be defined using the conditional probability
theorem|[65], as follows:

fre(l(k),é(k)) = fe(e(k)P[L = U(k) | E = &(k)] (6.3)

where/ is the (discrete) sample space of all the mode switchingemqis@(k), £
is the (continuous) sample space of the parametric unogri@ik), f<(e(k)) is the
probability density function o(k), andP[L = {(k) | E = é(k)] is the probability
that we have mode switching sequeri¢k), given the parametric uncertainggk)

(cf. (2.10)).
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Now let v; (£ (k),é(k)) = max(g;(k) — 7i(k),0). Considering((6.3), the ex-
pected value ob;(¢(k), é(k)) can be defined as follows:

EM@@ﬂ@ﬂ:ZIL%@@&@P@:HE:Qd% (6.4)

lel

where bothfe(¢) and the mode switching probabilit[L = ¢ | E = ¢] are
assumed to be known. Note that in general (6.4) can be coohpstag numerical
or analytic integration depending on the probability disttion of (k) and the
(inydependency of the random variables:) and /(k), and as mentioned in the
previous chapters, both of these methods are complex aedcimsuming.

6.1.2 Approximation Approach

In this section, we propose approximation methods to coeipat; (¢(k), é(k))] in
a more efficient way than analytic or numerical integratidmthis end, we consider
two cases: independent and dependent random variables.

Independent Random Variables

In the first caseé(k) and /(k) are independent random variables. In other words,
the mode switching uncertaintyk) does not depend on the parametric uncertainty
é(k), so

P[L=

o~
—
NA
S~—
=
Il
™
—
=y
N—
—

= P[L = i(k)]. (6.5)

Let£ = {/*,72,...,/M} denote the set of all possible consecutive mode switching
vectors for the problem (6.1) over the prediction horiz8p with M = (np,)">.
Accordingly, we can rewrite (6.4) as follows:

Bl (k). 2(0)] = 3 [PIE=1] [ w(f.o)fe(e)id]

el
=3 [Plr = (e fuli )]
LeL
M
-3 [PL = "B [ (™, &)] | (6.6)

whereE; [vi(Zm,é)] is the expected value of(¢(k), é(k)) after substitution of a
given mode switching sequené@~ €L, m=1,...,M. Now, the final step is to
find efficient methods to compute[L = ("] andEg [v;(¢™, &)].
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At first, we can reduce the computational complexity of thedengwitching
uncertainty using a scenario-based algorithm [106]. Ireggnwe may know that
some mode switching sequences are more likely to occur tii@nso Therefore, we
can choose to neglect some mode switching sequences thattdieely to occur,
resulting in a reduced set*d that should be used in (6.6) instead&f In fact,
in this way we often reduce the number of terms in the sum 8)) (§ignificantly,
and thus the computational complexity as well, while stilimtaining an adequate
cumulative probability of these mode switching sequencexctur.

We can also approximati; [vi(fm,é)] using the approximation method of
Chaptef 4. Recall that;(¢™, é) is, indeed, maximum of affine terms &fk) and
hence, depending on the probability distributioré@f), we can apply (4.6) or (4.8)
to approximateE; [ui(@m, é)]. Therefore, instead of using the objective function
J(k) in (6.1), we can apply the approximate objective functiomgghe above-
mentioned methods and then, solve the approximate swiidbiRL-MPC opti-
mization problem by means of convex optimization algorithimthe case that all
entries ofB.,, (k) are nonnegative.

Dependent Random Variables

In the second casé(k) and/(k) are dependent, i.e., the mode switching uncer-
tainty depends on the parametric uncertainty. In this cagecannot apply the
approximation methods of the previous case since the modehéug probability
P[L = i(k) | E = &(k)] cannot be simplified as is done in (6.5). However, if
we assume thal as well as the probability density functigi@ are modeled oap-
proximated by multi-variable piecewise polynomial functions, po$gimultiplied

by an exponential function (cf. (6.7) below), that are deafipa polyhedral regions,
then we can proceed as follows [113].

Sincewv;(£™, &) is a maximum of affine terms if(k), it is a piecewise affine
function (defined on polyhedral regions) &fk) and as a consequence, it is of the
same (but more simple) form & and f¢. So if we combine the regions d@?,
fe, andvi(fm, ¢) and multiply the piecewise polynomial and piecewise affumect
tions and the exponential functions, we find that there sxgpolyhedral partition
{Ri};%, of &, i.e., the regionsk, are non-empty and mutually disjoint and their
union equal<, such that

0;((™,€) fe(é) P[L =0 | E =&] = (m(é) forée Ry

INote that by considering enough polyhedral regions, we nageneral approximate the real
probability density function arbitrarily close such thiaétapproximate function is nonnegative and its
integral over the domain of the real probability densitydtion is equal to 1.
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where(;,, is a function of the form

Ntm

Ctm Z gtm] (H el tmjl €Xp ntm]lel)> (67)

for some real-valued constan{s,,; and 7,,;;, positive integersi,,, and non-
negative integersy,,;;, and wheren; is equal to the number of components of
é.

As a result,/(6.4) can be rewritten as follows:

M nr

Uz em ~ Z Z/ Ctm (68)

m=1 t=1

Since eactR; is a polyhedron, we can do a substitution of variables byesging
an arbitrary poin€ € R; as

€= Z ApTr + Z KT + Z Juy%ea®

T EHeen ) EHExXE x EHfin

where\, € R, k, > 0, up > 0and) , up = 1, H*" is the set of central
generators, i.e., basis vectors for the lineality spacecés®d to the polyhedroR,
[95], H** is the set of extreme rays, afd™ is the set of finite vertices (which can
be computed using, e.g., the double-description methodduated in [79]).
As aresult
Cem(€)de
R
reduces to the repeated integration of a polynomial funcf@ssibly multiplied by
an exponential, over the domain &fx, andu. These integrals can be computed
analytically.

Remark 6.1.1 Note that this method can also be applied to approximataespli
functions or phase-type distributions. Indeed, splinefioms are a special type of
piecewise polynomial functions [16] and the probabilityngigy function of a vari-
able with a phase-type distribution is an exponential fiamcf84, 85]. As a result
both can be approximated by multi-variable piecewise pmtyial functions, possi-
bly multiplied by an exponential function (cf. (6.7)), trexe defined on polyhedral
regions. O

6.1.3 Example

We consider a similar example to Example 2.3.1 of Chapterc2gixthat here, we
have both stochastic switching and stochastic parameiewsgssing times). Con-
sider the production system of Figure |6.1. This system stsif three machines



6 Approximation Approach for Model Predictive Control faio8hastic Switching

90 Max-Plus-Linear and Stochastic Max-Min-Plus-Scalingt&ys
d1 d3
M, B.C M;
B C
AC A AB
k k
u(k) B M, C y(k)
ds

Figure 6.1: A production system with stochastic switchiegN®en different recipes
and with stochastic system parameters.

M, My, and M3. Three products4, B, andC) can be produced by this system,
each with its own recipe or production order.

For productA, the production order i8/;—My—Ms, which means that the raw
material is fed to machin@/;, where it is processed. The intermediate product is
next sent to machind/, for further processing, and finally the product is finished
in machineMs. Similarly, for productB, the production order i8/,—M7—-M3, and
for productC the production order i8/;—M3—M-. We assume that the type of the
k-th product @, B, or C) is only specified at the start of its production, so that we
do not know/(k) when computing:(k), e.g., we have a long preprocessing time
and the next customer requires particular type of prodiwsgr(austomization).

Each machine starts working as soon as the raw material gethared inter-
mediate products are available, and as soon as the maclile (se. the previous
batch has been finished and has left the machine). We defifjeas the time in-
stant at which the system is fed for theh time,z; (k) as the time instant at which
machine; starts processing for theth time, andy(k) as the time instant at which
the k-th product leaves the system. Also we assume that all teenailt buffers are
large enough, and no overflow will occur. We assume that tbegssing time on
machineMs5 is perturbed by noise, i.edz(k) = 5 + e(k) wheree(k) ~ N(0,1) is
a standard normally distributed random variable. The @siog times for the other
machines §/; and M) are assumed to be deterministic and givenipy= 4 and
de = 6, respectively. Further, the transportation times betwibenmachines are
assumed to be negligible. All systems start at time zeroinitial state is given as
z(0) = [0 0 0], the reference signal agk) = 15 + 10k for k = 1,...,40,
A=0.1,N, =3, andN, = 2.

The mode switching probability from one recipe (mode) tortle&t one is as-
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sumed to be purely stochastic, and given by:

P[L(k)=1]4k—-1)=1,2(k—1),u(k)] =0.6
P[L(k)y=1]0k—-1)=2,2(k—1),u(k)] =0.2
P[L(k)=1]4k—-1)=3,z(k—1),u(k)] =0.2
P[L(k)y=2]0k—-1)=1,z(k—1),u(k)] =0.2
P[L(k) =210k —1)=2,2(k—1),u(k)] =0.6
P[L(k)=2]4k—-1)=3,z(k—1),u(k)] =0.2
P[L(k)y=310k—-1)=1,z(k—1),u(k)] =0.2
P[L(k)=3]4k—1)=2,z(k—1),u(k)] =0.2
P[L(k)=3]0k—1)=3,z(k—1),u(k)] =0.6

which means that, if we have a specific recipe forkktl product, then the proba-
bility of having the same recipe for thie+ 1-th product is560%, and the probability
to switch to the other recipes 20%.

Note that since the mode switching depends only on the previcodel/(k —
1), the mode switching uncertaint(k) and the parametric uncertainéfk) are
independent. Hence, we have the case of independent rarafiables of Section
6.1.2, and therefore, the scenario-based algorithm arapji@ximation method of
Chapter 4 can be applied in order to simplify the computation

Figure 6.2 shows the result of a closed-loop simulatiorkfer 1, ..., 40 where
at each event steg we compute the optimal input sequence by solving a stoichast
switching MPL-MPC optimization problem. The optimizatitias been done us-
ing fminconoptimizer in Matlab with one initial value since the objsetifunctions
(both the exact and the approximate one) are convex and htérecglobal mini-
mum will be reached. The “Exact Solution” is obtained usingnerical integration
and the “Approximation” is obtained using the method expadiin Chapter 4. As
shown in this figure, the optimization results using the agipnation method for
p = 20 and30 are closer to the “Exact solution” than the results obtagidg the
other values op.

The value of the objective function over the entire simolateriod, i.e.Ji; =
40

Z (max(y(k) — r(k),0) — Mu(k)), and the relative errérbetween the obtained

k=1
Jiot USiNg numerical integration and the one using the appraidmanethod are

reported in Table 6.1.
The values of/;; and the related relative error for each valueanh this table
confirm our previous observation that for= 20 and30 the results obtained using

; ; ; Jiot.app = Jtot.ex ; ; ;
2The relative error is defined here 4&et2ee—Vrorexl \yhere J,, ,app IS Obtained using the ap-

[ Jtot,ex |

proximation method and.s,. is obtained using humerical integration.
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m
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=1k

¥

30 35 40

Figure 6.2: Due date erroyg(k) — r(k) for the closed-loop system using numerical
integration and the approximation method of Chapter 4, bithout

using the scenario-based algorithm.

Method of computing/;.; Jiot Relative error of/;,
Numerical integration | —769.7146
Approximation method:
p=20 —767.0465 0.35%
p =30 —767.2644 0.32%
p =40 —766.9419 0.36%
p =50 —766.5062 0.42%

Table 6.1: The obtained value gf,;, and the relative error of/,.; using numerical
integration and the approximation method with differentuea ofp to
compute the expected value in the objective function.

the approximation method are the closest to the resultdnalataising numerical

integration.

The computation timeof the total closed-loop optimization using numerical in-
tegration is176318 s compared t@518 s using the approximation method without

3These times are obtained running Matlab 7.11.0 (R2010b)28&GHz Intel Core Duo E655

processor.
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applying the scenario-based algorithm. Note that in thesrgXe, we do not apply
the scenario-based algorithm since, due to the rather gmeliction horizon, the
computation time will not decrease considerably (both cataon times with and
without scenario-based algorithm are very cfysand the difference between the
performance with and without the scenario-based algorithnegligible. It is ob-
vious that the approximation method decreases the conquutirne significantly.
Note that although there is not a big difference betweenahgpitation times using
the scenario-based algorithm and not using it, this diffeeewill be much more sig-
nificant if we increase the prediction horizdf,. Recall that the number of possible
mode switching sequences over the whole prediction hoiigén;)¥» wheren;,

is the total number of possible modes and using the scebasged algorithm, we
will only analyze the most probable mode switching sequemndggh a cumulative
probability of, say, at least0%. Hence,nr,, which is27 in our example, reduces
to nyeq, Which is19 for IV, = 3, and if we chooséV,, = 4, thenn; = 81 versus
nreqa = 33 and the computation time will decrease remarkably.

Accordingly, we can conclude that for the case of independ@mdom vari-
ables, the combination of the two approximation methods, scenario-based al-
gorithm and the approximation method of Chapter 4, will ioyer the computation
time considerably while it obtains results comparable ®dhes using numerical
integration.

6.2 Approximate MPC for Stochastic MMPS Systems

As indicated in Chapter 2, (stochastic) MMPS systems dassra large class of
discrete-event and hybrid systems and to control suchragstdPC can be applied.
Similar to the stochastic MPL-MPC optimization problem|vétg the stochastic
MMPS-MPC optimization problem is quite complex due to theckastic nature of
the system. In this section, we show that the approximatiethod of Chapter 4
can be used to decrease this complexity.

6.2.1 Problem Statement

Recall from Sectioh 3.1.5 that the stochastic MPC-MMPS lamobcan be defined

as follows: ~
min J(k)
(k) (6.9)
subject to: c(u(k),E[g(k)], k) <O0.

4The computation time of the closed-loop optimization ugimgapproximation method in com-
bination with the scenario-based algorithn2i$8 s.
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where
) Ny Np Ny Np
J(k) = ) Elmax(gi(k) — 7i(k),0)] — A Z w (k
=1

with the prediction horizoV,, and where: is a possibly non-convex function of the
input signal and the expected value of the output sRgrdince bothz(k + j) and
y(k) are MMPS functions of (k — 1), u(k), ..., u(k+j),e(k),...,e(k+7), j =
0,...,N,, we conclude that/(k) and (in generaly(i(k), E[#(k), k)] consists of
the expected value of MMPS functions. Hence, we need to fireffasient method
to compute this expected value in order to solve the optitiwzgroblem|((6.9). To
this end, consider the following proposition:

Proposition 6.2.1 ([30]) Any scalar-valued MMPS function can be rewritten into
a min-max canonical forng(x) = min;—; Kmaxj 1. 7m(oz£x + ﬁzj) or into

-----

integersK, L,ni,...,ng, my,...,mp, reaI numbersﬁ’”, 5”, and vectorsy;;, vi;.

Hence, we can rewrite the objective functigi(w) in (6.9) in its canonical form as
follows:

J(k) = E[max = min (ay(k) + Bfa(k) +vje(k))] (6.10)

wherec;(k) is affine inz(k — 1) and7 (k). To shorten the notations, let

g(a(k), é(k)) = max min (asj(k) + BFa(k) + 25e(K)

so.J(k) = E[g(a(k),é(k))]. Considering the following proposition and corollary,
g(u(k), é(k)) can be written as a difference of two convex functions.

Proposition 6.2.2 ([67, 116])The functiory(z) = min;—;, x max;—i ., 6;;(x),
whered;;(x) = af;x + B;; is an affine function im, can be written as a difference
of two convex functions, i.g(x) = p(x) — q(z) wherep(x) and¢(z) are defined
as follows:

K
p(z) = Zj:nllaxn_ dij () (6.11)
Z:l """ 3

®Recall that we can use any other combination of input andubuipjective functions in (3.2)
and for a time-driven system, the input objective functioesinot have the minus sign.

8| ater on, at the end of Sectibn 6.2.2, we will consider thedaswhich — after elimination of
E[g(k)] —cis convex ina(k).
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=plo) = apin, | max, 03 ()
=pl@)+ max (- max 3;(z))
=  max (p(.%')— ‘_HllaX 52](1'))

Jeues yeeesTUit
z’;z
K
= max_ ~ max divj, (x).  (6.12)
1=1,0 K (J15e s dim 1oJit 1500 K ) EC (M1 500y — 1,104 15U ) T ‘
i £
where the sef (¢4, ..., ¢,,) for some integersn, (1, ..., ¢y, is defined as

Clly,....0n) ={(q1,- -, qm)lar € {1,2,... 4} for k=1,...,m}.

Based on this proposition, the following corollary is cardgd:

Corollary 6.2.3 The functiory(z) = max;—; 7 minj—i__m, lij(x), wherel;;(z) =
%7;::: + &5 is an affine function i, can be written ag/(z) = s(x) — r(z) where
s(z) andr(x) are both convex functions defined as follows:

i=1 IR
L
= Zj:rlnaxm’(—lij (x)) (6.13)
i=1 T
s(z) =r(z) + g(z)
T A,
= max (r(@)+ min ()
= max, (r(z) - max (~l;(2)))
L
= z_Hll,aX,L ( : jfrlr}.%,}gni/(_ll/] (x)))
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L
= max max —lysi, (x)).
I=1,0,L (§1,sJim15Jit 15 d L) EC(MA ey My—1,M 41 5y mL);( i ( ))
i i
(6.14)
Note that the last equality is obtained using the distribaitproperty of addition
w.r.t. maximization in whicl®(mq, ..., m;—1,mj4+1,...,mr) is defined similarly
as before.

Therefore, we can rewrite (6.10) as:

J(k) = E[g(a(k),é(k))]
= Els(a(k), e(k)) — r(a(k), é(k))]
= E[s(a(k),é(k))] - E[r(a(k),é(k))] (6.15)

wheres(a(k), é(k)) andr(a(k),é(k)) are defined as given in Corollary 6.2.3, and
where the last equality comes from the fact thaf is a linear operator.

Note that the objective functiaf(k) in (6.15) results in a non-convex optimiza-
tion problem in its current structure. Now to solve the oje@tion problem|(6.9)
it is only left to compute the expected values|in (6.15). Nbte s(a(k), €(k)) and
r(u(k),é(k)) both consist of a maximization of affine terms and hence, ae-m
plus-scaling functions. Therefore, our aim is to find an &ffitway to compute the
following general expression:

E[jg%axn(gj + eré)] (6.16)
where¢; € R and by assumption is an affine termifk), v; € R"¢, andé € R"¢

is a random variable with the given probability density fime f(¢). Note that
the dependence @f;, v;, ande on (k) and/ork is dropped for the sake of brevity.
In general E[max;—1,_. (& + ijé)] can be computed using numerical or analytic
integration (cf. Section 3.1.3); however, since these putlare complex and time-
consuming, we propose the approximation method of Chapter dn alternative
solution.

6.2.2 Approximation Approach

In the optimization problem (6.9), we minimiz&k), which indeed leads to the
minimization of E[s(u(k), é(k))] and maximization off[r(u(k),é(k))] in (6.15).
Considering the approximation method of Chapter 4, we canoxpmate. (k) by

its upper bound. Hence, we need to have an upper bourid[$6t (%), é(k))] and

a lower bound forE[r(u(k),é(k))]. Let us consider again the general function
Elmaxj—1, (& + ijé)] in (6.16). The upper bound of (6.16) can be obtained
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easily by using (4.4) in Proposition 4.2.3. To compute thegiobound of((6.16), we
can apply Theorem 4.2.2 sinaeax(-) is a convex function. According to Jensen’s
inequality for convex functions, we have:

max(E[z1],...,Elz,]) < E[max(21,...,2,)].

-----

fined as follows:
¢ (B[ max (& +1]@)]) = max (Elg; +1]2) (6.17)

]:1,...,11

n 1/p
u(xt«:[jgll%(gj + ijé)D = (; E[(4+)é- L)p]) +L  (6.18)

for a properly defined. and they are both convex il (cf. Section 4.4). Recall
that if the distribution ofé is not preserved under summation, the approximation
function (4.8) can be used in place of (6.18).

In the following example, we show how Corollary 6.2.3 and dpproximation
method can be applied.

Example 6.2.4

Let’ g(é) = max(min(y1€ + &1,72€ + &), min(y3€ + &3, 74€ + &4)), Whereé is
a stochastic vector with independent elemegifsc R, andy; € R" for j =
1,...,4. Following Corollary 6.2.3, we can rewritgé) asg(e) = s(é) — r(é)
wheres andr are convex functions defined as follows (cf. (6.13) and (§:14

r(€) = max(—{ € — &1, =3 € — &) + max(—v3 € — &, —f € — &)
s(é) =r(€) +g(e)
= max <T(é) + min(y1€ + &1,72€ + &2),7(€) + min(y3€ + €3, 74€ + 54))
= max <7“(é) — max(—y1€ — {1, —72€ — &),
r(€) — max(—yzé — &3, —71€ — 54))
= max ((max(—] @ — &1, —95 € — &), max(—1§é — &, —f 7 — &)
= max (— ] € — &1, —73 € — &2, —73 € — &3, —7{ € — &u).

Hence, an upper bound fél{g(¢é)] can be obtained by computing an upper bound
for E[s(é€)] and a lower bound foE[r(é)] as follows:

u(Els@)) = (il@[(—ﬁe—@)ﬂ)” ’
j=1

"The dependency of(-) on @ is not mentioned explicitly here, since it is not related hist
example.
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2(E[r(@))) = max (- 1TE[e] - &, —1JEle] - &)
+max (-3 E[E] — &, =] E[¢] — &).
O

Consequently, instead of minimizing the objective functj6.15), we will min-
imize its upper bound’,;, (k), which can be obtained using (6/17) and (6.18). Con-
sidering [(6.10), let

whereb(k) andd(k) are scalar vectors andk) andc(k) are affine terms i (k). In
this way, the optimization problem (6.9) turns into a seqeeof convex problems
as follows:

min Jy,(k
min Jup (k)

= min
a(k)

= min
a(k)

a(k)

= min
a(k)

= min
a(k)

(x( )
(1( )
= min <u(E[s(a(k),é(k))]) — iw:l max (Ecy (k) + dﬁ(@é(@]))
(x( )
(1( )

M
min Z(—E[Cili(k) + di(’fﬁ(’f)]))
i=1
= min min ) <ﬂ<E[5(ﬂ(k5)a é(m)])

a(k) (L1,...,4pr)EC(MA, ...,

— i (000, 60)])

(81, brr)€C(Ma,...;mar) G(k)
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M
3 (“Elen, (k) + dzi,.(k)é(k)])) . (619)

i=1
whereC(my,...,myr) is defined in the same way as the one in Proposition 6.2.2.

M
Note that in mg)%r)l(u(ms(a(k),é(k))]) + 3 (~Elea, (k) + df (k)e(k)])
=1
M

is a convex optimization problem since boE(—E[cili(k) + dgi(k)é(k)]) and
=1

ﬂ(E[s(ﬂ(k:), é(k:))]) are convex iri(k). As mentioned before, the constraint func-
tion ¢(+) in (6.9) is not convex in general. However, in the case thafter éhe
elimination of E[g(k)] — ¢(-) is convex inu(k), we obtain a convex optimization
problem, which can be solved efficiently for eadh, ..., ¢y ) € C(mq,...,mpr)
using convex optimization algorithms such as an interionjppmethod [83]. Then,
to obtain the final optimal solution, we choose the minimurthefobtained results.

6.2.3 Example

In this section, we study an example that is similar to theinfi&l1]. In our example
the noise vector is normally distributed while in [81] a bded noise without any
knowledge about its probability density function has beamsidered and hence, the
worst-case optimization problem was solved.

Consider a room with a base heat source and an additionatotledt heat
source. Let, be the contribution to the increase in room temperatureiper tinit
caused by the controlled heat sourcesp 0). For the base heat source, this value
is assumed to be constant and equal to 1. The temperature indm is assumed
to be uniform over the room and its evaluation is formulatedofiows:

T(t) = a(TH)T(t) +u(t) +1+e(t),

wheree; (t) denotes the disturbance at timeand a(T") is the temperature co-
efficient of the room which is assumed to have a piecewisetaohgorm, i.e.,
aT) = —-1/2if T < 0ando(T) = —1if T > 0. Lety(t) denote the noisy
measurement of the room temperature defineg(8s= T'(t) + e2(t) wherees(t)
represents the measurement noise at timdere, we assume that both(¢) and
eo(t) have a standard normal distribution, i€.(k), ea(k) ~ N(0,1).

Using the Euler discretization method, with a sample timé& efand denoting
the state by:(k) = T'(k), we get the following discrete-time PWA system:

ok 41) = {1/2x(k)+u(k:)+el(k:)+1 ?f z(k) <0 (6.20)
u(k) +e1(k)+1 if (k) >0
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y(k) = x(k) + e2(k). (6.21)
with the following constraints on the input:
—4 < Au(k)=u(k+1) —u(k) <4 and u(k) >0 forall k.
The equivalent MMPS representation of (6.20)—(6.21) isdfiewing:
z(k+1) =min(1/2z(k) + u(k) + e1(k) + 1,u(k) + e1(k) + 1),
y(k+1)=z(k+ 1)+ ek + 1).

Since at sample stepthe inputu(k) has no influence op(k), we chooseV,, =
3,Ne = 2, (k) = [y(k + 1) y(k +2)]7, 7(k) = [r(k + 1) r(k +2)]", a(k) =
[u(k) u(k + 1)]T. Let the uncertainty vector bek) = [e1(k) ea(k + 1)]T. There-
fore,é(k) = [T (k) eT'(k + 1)]7.

’ —=6— Upper bound approach|
— — — Reference signal
4 | —t— Exact solution

1 | —©— Upper bound approach|
—+— Exact solution

_| | —©— Upper bound approach|
—+— Exact solution

—©6— Upper bound approach|
7 | —+— Exact solution

- - = component of noise|

2"4 component of nois

e ande,

Figure 6.3: Closed-loop optimization results of the st@ti@aMPC-MMPS prob-
lem.

Considering~the given choices for the output and input diwedunctions in
(3.2), we defineJ (k) as follows:

J(k) =E[||g(k) — 7(k)lloc + Alla(k)[1].
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Sinceu(k) > 0, we havel|a(k)|l1 = u(k) + u(k + 1) and therefore, we obtain the
following max-min expression faf (k):

J(k) = E[max(|§i(k) — #(k)|) + A(u(k) + u(k + 1))]
=E[max (y(k+ 1) — r(k+ 1) + Mu(k) + Mu(k + 1),
y(k+2) —r(k+2) + Au(k) + Au(k + 1),
—y(k+1)+7r(k+1)+ du(k) + du(k + 1),
—y(k+2) +r(k+2) + Mu(k) + Mu(k +1))]. (6.22)

We compute the closed-loop MPC controller by minimizing tipper bound of the
objective function((6.22) (as shown in (6/19)) over the datian period|1, 20],
with A = 0.01, (0) = —6, andu(—1) = 0. The reference signal is given as
{r(k)}2°, = {-5,-5,-5,-5,-3,-3,1,3,3,8,8,8,8,10,10,7,7,7,4, 3}.

Figurel 6.3 shows the results of the closed-loop simulatiowhich the results
of the “Exact solution” obtained using numerical integsatare compared to those
obtained using the upper bound approach in (6.19). The opttion has been
done using thédminconoptimizer in Matlab with one initial value since the ob-
jective functions (both the exact and the approximate one)anvex and hence,
the global minimum will be reached. The top plot shows thenerice signal, the
output of the system using numerical integration (“Exadutson”), and the out-
put of the system using the upper bound approach. The nexpltt® present the
optimal input sequence and the tracking error, respegfiveding numerical inte-
gration (“Exact solution”) and the upper bound approache fidith plot illustrates
Au(k) = u(k + 1) — u(k) and shows that in both approaches, the constraints
on Au(k) are satisfied. The last plot shows the mean value of each amnpo
of the noise vector. Based on the above plots, the resultseofipper bound ap-
proach in|(6.19) are very close to the ones from numericabiattion. To compute
the objective function value for the total simulation periave use 20 different

noise realizations and then report the mean value of thectlgefunction, i.e.,
20

20
oot = % 2 Jeoti With Jeor,i = kzl (max(y® (k) = r(k),0) = xu (k) using
the input and output resultg) andu(?) for thei-th noise realization. Hence, using
numerical integration, we obtaih,; = 7.4278 with variancel.4654 and using the
upper bound approach, we havg; = 7.4488 with variancel.4660. Accordingly,
the relative errdt between the objective functions using numerical integraéind
the upper bound approach(s$%. Moreover, the computation tifleising the up-

8The relative error is defined here éé"t‘“pﬂ whereJiot,up IS Obtained using the upper
bound approach andl.. . is obtained using numerical integration.

®These times are obtained running Matlab 7.11.0 (R2010b)28&GHz Intel Core Duo E655
processor.



6 Approximation Approach for Model Predictive Control faio8hastic Switching
102 Max-Plus-Linear and Stochastic Max-Min-Plus-Scalingt&ys

per bound approach #23.02 s compared t@3447 s using the numerical integration
(i.e., the “Exact solution”). All these observations comfithat, in this example, the
upper bound approach is a reliable method to be applied. dlene can solve the
stochastic MPC-MMPS problem using (6.19) in order to deswehe computation
time while still guaranteeing a good performance.

6.3 Summary

In this chapter, we have extended the application of thecqmation method of
Chapter 4 to two other classes of MPL systems, namely stoctsagitching MPL
systems and stochastic MMPS systems. Applying MPC to chiiese systems, in
general, results in a complex and time-consuming optirazgiroblem due to the
stochastic properties of these systems.

To tackle these difficulties in the stochastic switching MMPC optimization
problem, we have considered the joint probability distiitou with both discrete
and continuous random variables, which are related to astichmode switching
and stochastic system parameters, respectively. In tleetbasthese random vari-
ables are independent, we can split the joint probabilibcfion into two parts and
we can apply a combination of two approximation methods,, ¥ire approxima-
tion method of Chapter 4 and the scenario-based algoritHi06f, to simplify the
problem. In the case of dependent random variables, we ganxdmate the prob-
ability density function and the switching probability byutti-variable piecewise
polynomial functions to obtain an analytic expression Fa vbjective function. In
both cases, the approximation approaches simplify thelgmobonsiderably.

In the stochastic MMPS-MPC optimization problem, the ofijecfunction is
defined as an expected value of an MMPS function, which neede tomputed
efficiently. As a solution, we proposed to write the MMPS alije function as a
difference of two convex functions and then, optimize thpardound of this new
objective function instead of the objective function ifseThis leads to comput-
ing the upper bound of one of the convex functions by applgngpproximation
method of Chapter|4, and the lower bound of the other convegtiion. These
bounds results in an analytic expressions in the case thomalbpilidy distribution of
the noise vector has finite moments with a closed-form espyasWe have seen in
a case study that the upper bound approach decreases thetatoral complexity
and the computation time considerably while we still hav@adgperformance that
is comparable to the one using numerical integration.



Chapter 7

Min-Max Optimization and
Approximate Stochastic
Optimization for
Max-Min-Plus-Scaling Systems

In this chapter, we discuss the min-max optimization andretetic optimization of
MMPS systems We consider different system structures and for each tsimeic
a solution approach is proposed. Moreover, we apply thdséi@o approaches to
solve the filtering problem and the reference tracking mobhas two applications
of this type of systems.

7.1 Problem Statement
Consider the following type of optimization problem:

min max F(x,y)
z€R™ yeR™ (7.1)
st. G(z,y) <0

whereF' is a scalar max-min-plus-scaling (MMPS) functionaofndy andG is a
vector-valued MMPS function of andy. For a givenr € R”, define:

max F(x,y)
T) = Rm .
) { " st. G(z,y) <0 (7-2)

1This chapter is inspired by the research visit at the departraof Mechanical and Aerospace
Engineering of the university of California, San Diego, teakby Prof.dr. William McEneaney.

103
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provided that the problem is feasible and the maximum isefinldence,[(7.1) is
equivalent to

meg;ﬁﬂ) Q(x) (7.3)
wheredom(2) indicates the domain of definition ¢f. Therefore, for((7.3), and
hence/(7.1), to have a finite solutiaiym(2) should be non-empty and the function
2 should be bounded from below on its domain.

We study the optimization problem (7.1) for three differsettings: a non-
stochastic setting with maximization and minimization,tachastic setting with
minimization only, and a stochastic setting with both maxation and minimiza-
tion. These settings are presented in the following threesa

7.1.1 Casel

We consider an uncertain min-max optimization problem incWtboth variables
x and y belong to convex polytopes and hence, are bounded. Acgiydithe
optimization problem can be defined as follows:

min max F(z,y)
z€B, yeB, (7.4)
s.t. G(z,y) <0.

where3, and B, are convex polytopes.

7.1.2 Casell

We consider a minimization problem with a stochastic randamnablew that has
a given probability density function. Based on our solutapproach of Section
'6.2.2, in order to obtain an analytic expression for the axpration of the expected
value, we only consider probability distributions for whithe random variables
have finite moments and a closed-form expression of theseemtsrexists, such as
the uniform distribution, normal distribution, Beta dibtrtion, etc. (cf. Chapter 4).
The minimization problem can be then formulated as follows:
min E,[F(z,w)]

z€R™ (7.5)
sit. Eu[G(z,w)] <0

whereE, [-] is the expected value with respectio

7.1.3 Case lll

In the last case, we have a min-max optimization problem aitochastic variable
w with a given probability density function from distributis with finite moments
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for which a closed-form expression exists. Hence, the dpéition problem can be

defined as

i E,[F
min max wlF (2, y,w)] 7.6)

sit. Eu[G(z,y,w)] <0

which is, indeed, the most general case (in fact Case | and ICase special sub-
cases of this case).

7.2 Solution Approaches

In this section we present solution approaches to each aflibree mentioned cases.

7.2.1 Solution Approach for Case |

We show that the optimization problem (7.4) can be transéoirimto a mixed-
integer linear programming (MILP) optimization problenu this end, we proceed
as follows.

First we transformF' into a mixed-integer linear form. Sindgé is an MMPS
function of its arguments, it is equivalent to a continuoiecewise affine (PWA)
function [49, 88], i.e.,

F(z,y) = Ay + Bix +¢; if (z,y) €,

where(; is a convex polytope of the for; = {(z,vy) : S;y + Rz < g¢;} for
i =1...,s. This PWA function is well-defined if and only & = B, x B, can be
partitioned in, say, polytopesC; such that

int(C;) Nint(C;) =0, Vi,j e {1,...,s} with i # j, (7.7)

U C,=C (7.8)

i=1

whereint(-) denotes the interior af;. Now, we define binary variable% € {0, 1}
fori =1,...,ssuch that

[0i = 1] & [(z,y) € int(Ci)]. (7.9)

where for pointgx, y) on the boundary of several regions, ahiés taken equal to
1 and the rest are set equal to 0. The conditions (7.7)-(Ye%®quivalent to [8]:

igi _1, (7.11)
=1
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where M} = max, )ec, (Siy + Riz — ¢;). Note thatM is finite sincez and
y belong to a polytope. In fact)/; can be obtained by solving a linear program.
Now, we can writeF as

A+ Biz+c if 6 =1,
Asy+ Bsx +c¢s if §5=1,

and since for each poirit, y) exactly one); is equal to 1 and the others are 0, we
can write|(7.12) as

s

F(z,y) =Y (A + Biz + ;)5 (7.13)
i=1

which is nhon-linear due to the presence of the product betwebinary variables
0; and the real-valued variablesandy. However, it can be translated into equiva-
lent mixed-integer linear inequalities. If we define

t;, = (Aly + Bi.%' + Ci)5i7 (714)

then (7.13) reduces to
S

Fz,y) =) t. (7.15)

i=1

The non-linear equation (7.14) can be transformed into &diirteger linear form
as follows [8]. Define

M; = max (A;y + Bz + ¢;) (7.16)
(z,y)€C;
m; = min (4;y + Biz + ¢;) (7.17)

Note thatM; andm; are finite and that they can be computed by solving a lin-
ear program sincé; is a convex polytope. Now, it is easy to verify that (7.14) is
equivalent to

t; < M;o;,

ti > m;d;,

ti < Ajy + Bix + ¢ — my(1 — &)

ti > Ay + Bix +¢; — M;(1 - 6;)

Therefore, [(7.10), (7.11), (7.15), and (7.18) repredefit,y) in a mixed-integer
linear form.

(7.18)

We can also transform the constrai{z,y) < 0 into a mixed-integer linear
form as follows.



7.2 Solution Approaches 107

First, we writeG(x, y) in its max-min canonical form as follows [30]:

Go(z,y) = max ( min (of;y + Bl +&;e) <0 forf=1,...,q
i=1,...,my j=1,...,n¢
(7.19)
wherem, andn, are integersp;j, € R™, §;;, € R", &0 € R, andq is the
number of entries of.
In the second step, we transform (7.19) into a mixed-intégear form. To this

end, we can proceed as follows [8]. In the sequel, we considémgle fixed/ for
simplicity. Note that[(7.19) is equivalent to

j:rlninm(ag;zy + ﬁ;‘?zm + &) <0 for i=1,...,my. (7.20)

Define the convex polytopeR;;, fori =1,...,myandj =1,...,n,as
Dije = {(z,y) : aiTjey + @Tjeﬂﬁ + &ije < ag;”éy + 55/435 + &ijre
for /=1,....5—1,7+1,...,n0}.

Now as before, we define binary variablgs, € {0,1} fori = 1,...,m, and
j=1,...,ngsuch that

[6ije = 1] & [(w,y) € int(Dyje)] (7.21)

and such that for a poirftz, y) on the boundary of several regions, only @ng is
taken equal to 1 and the others are set equal to 0. Forieach ..., m, and each

j=1,...,ny these relations are then equivalent to
T T T T x
(aije — i)y + (Bije — Bijro)x + &ije — Eijre < M50(1 — ije)
for j/=1,...,5—1,j+1,...,ng (7.22)
g
> Gie=1 (7.23)
j=1
where
* T T T T
o= max  max (e = ag)y + (Bie = By ® + e = Gigre
J'#i

Note thatM;;.é is finite sincex andy belong to a polytope. In facTM;;.é can be
obtained using a finite numbet(— 1) of linear programs. We can now write (7/20)
as

Ny
Z Sije(alioy + Bl + &ije) <0 for i=1,...,my (7.24)
=1



7 Min-Max Optimization and Approximate Stochastic Optiatinn for
108 Max-Min-Plus-Scaling Systems

which is non-linear due to the presence of the product betwheebinary variables
d;j¢ and the real-valued variableasandy. However, it can be translated into the
equivalent mixed-integer linear inequalities in a simikay as|(7.13). Let

zije = Oije(aey + B + &ije), (7.25)
then (7.24) reduces to

Ty

Zzijg <0 for i=1,...,my. (7.26)

j=1

Although (7.25) is nonlinear, it can be transformed int@énequations as follows.
Define fori = 1,...,my,

M;; = max < max (OziTjgy + Bg;-gx + Eijz)>

7j=1,...,ng xEBzyeBy
. . T .
M = min < min (oL ,y + 6L,z + Z)
‘ Jj=1,...,ng JIEBw,yEBy( ijeY ﬂlﬂ gZ] )

Note thatM;, andm,, are finite and each of them can be computed by soluing
linear programs. Then, far=1,...,m,, (7.25) is equivalent to [8]

Zije < Mig0ije,

Zije = Mig0ijoe,

Zije < a?;gy + ﬁ%ﬂ + &ije — mye(1 — d45¢)

Zije = ag;gy + 55490 + &ije — Mig(1 — dije).
Therefore,|(7.22)| (7.23), (7.26), and (7.27) represe0(7 and accordingly (7.19),
in a mixed-integer linear form.

Now, collect all variables,, ¢, z, § in a vectorV and define a vectaf,.; such
thatd 7, t; = ¢k V. Accordingly, we can rewrite the inner optimization prable

of (7.4), i.e.,
a) max F(z,y) (7.28)
- st. G(z,y) <0 .

(7.27)

as follows:

Velny oV
s.t. AotV < biot + Crot
Vi €{0,1} forieZ
VieR fori ¢ 7

whereny, denotes the number of entriesiofand for appropriately defined matrices
Atot, Crot, VECtOrbyot, and setZ. Therefore, the inner optimization problem (7.28)
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has been transformed into a multi-parametric mixed-intdigear programming
(mp-MILP) problem, which can be solved using the algorittmj33]. The optimal
value function, i.e.{2, is then PWA; however, it may not be continuous [12].

Remark 7.2.1 Note that for a continuous PWA function, we can consideregllons
AX; in which the function is affine to be defined by non-strict inalities (as on the
boundaries the function is continuous). On the other had fliscontinuous PWA
function, we have to distinguish explicitly between staod non-strict inequalities
(as on the boundaries only one affine function can be active.) O

Therefore, to solve the outer optimization problem| of (7i4), m%n Q(x) we can
A ES

apply two approaches. One way is to use the approach ex¢|'m'rﬁé] to transform
the strict inequalities, which exist due to the discontiegiin the PWA representa-
tion of ©, into non-strict ongs and then use a similar procedure as above to obtain
an MILP problem and solve it using the available MILP solvéirat are based on
e.g. branch-and-bound methods or cutting plane method]2,

Another way for solving the outer optimization problem istmsider the PWA
form of Q as follows:

Qx) = aZTaH-bi if €y

wherey; = {z : S;z < p;} fori =1,...,n, is a convex polytope. Then for each
1, we solve the following linear programming (LP) problem:
min a; z + b;
TEXi
s.t. Six < p;.

using e.g. the simplex method or an interior point algorifl®® 118]. In this way
we obtainn, solutions, and we choose the one with the lowest valu@ ab the
optimal solution of the outer problem.

7.2.2 Solution Approach for Case Il

To solve the stochastic optimization problem (7.5), we qarlyathe approximation
methods of Section 6.2.2. SinééandG are MMPS functions, we can write them
as a difference of two convex functions and then approxirtreexpected value of
the objective function¥” by its upper bound/r(z) and the expected value of the
constraint function by its upper bound/(z). Hence, we obtain the following
approximate optimization problem:

min Up(z)

zeR" (7.29)
st. Ug(z) <0

2|n this approach, a strict inequality of the form< a is replaced by < a — ¢ wheree is the
machine precision.



7 Min-Max Optimization and Approximate Stochastic Optiatinn for
110 Max-Min-Plus-Scaling Systems

Note that the constraint/;(xz) < 0 in (7.29) assures that the original constraint
in (7.5) will be satisfied. In general/r andU¢ are non-linear, non-convex func-
tions. Hence, (7.29) is a non-linear optimization problémt ttan be solved using
multi-start sequential quadratic programming (SQP) [g@hetic algorithms [46],
simulated annealing [34], etc.

7.2.3 Solution Approach for Case Il

For the last case, we rewrite the optimization problem/ (using the upper bounds
for the expected value of the objective function and the taimg (cf. Section 6.2.2),
as follows:

min max Up(z,y)
r€R” yeR™

st. Ug(z,y) <0

which is a multi-parametric, non-linear (mp-NLP) optimipa problem that can be
solved using mp-NLP algorithms [32,/51-+-53, 94].

Remark 7.2.2 Since mp-NLP problems are highly complex and hard to sohes, t
third case will not be discussed anymore in the remainddrisfchapter. O

7.3 Applications

In this section we present two types of problems in which wedn® deal with
the optimization problem of an MMPS function. One is a filigrproblem and the
other one is a reference tracking problem.

7.3.1 Filtering Problem

The first problem is a filtering problem for which we considee setting of a two-
player game. The aim of one player is to estimate the fina sifahe system using
a series of measurements observed over time, while the pliénger tends to distort
this estimation by disturbing the measurements of the fiestgn. Assume, e.g.,
that player 1 has a truck and player 2 has an observing $laftee first player is
directing the truck during the discrete time spn. .., 7 } and does not want his
final locationz(7") to be detected by the plane. There exist also a control aation
for moving the truck around, and a cloaking or jamming actidhat perturbs the

3This is in fact an example of a pursuer-evader game. Theummguises pursuit games may
assume in warfare are ship and submarine, missile and bportt@nk and jeep [59]. Other typical
examples of a pursuer-evader game are the Homicidal Chaujeme and the Lady in the Lake
problem [70], or the Princess and Monster game [59].
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measurements of the second player. Both moving the truclclaadting/jamming
costs energy for the first player and hence, he tends to n#eithiese actions. On
the other hand, the second player wants to determine anagstim of =(7) as
accurately as possible using the obtained measuremenie dfuck’s location at
eachtimestepfork=1,...,7.

Consider the following system variables: the state of ths&tesy is denoted
by z(k) € R™, the control variable byv(k) € R"™, the measurement process by
y(k) € R!, the measurement disturbance ) € R', and the disturbance-free
measurement model lgy(-). Filtering begins at time stefp= 0 and we assume that
for the second player the estimated initial staj&and the measurement time-history
{y(k)}I_, are known and the initial state(0), the final stater(7’), andw(-) are
unknown. The estimated final state is the decision variable for the second player.

Here we consider only additive noise (in order to stay withe MMPS frame-
work), and also we consider two types of systems: Type | amek Tl A system of
Type | is defined as

(k) = f(z(k = 1)) + w(k) (7.30)
y(k) = g(z(k)) +v(k) (7.31)

wherew andv are control variables anflandg are MMPS functions im:. A system
of Type Il is defined as

w(k) = f(z(k — 1)) + 0 f(x(k — 1)) + w(k) (7.32)
y(k) = g(z(k)) + dg(z(k)) + v(k) (7.33)

where againf andg are MMPS functionsw andv are noise signals, angf and
dg are bounded. This system can be considered for example Wheid f is an
approximation of a nonlinear functiafi with f an MMPS function andf = F' — f
nonlinear but small or bounded, i.84,f (x)||oo < &1 for somes; > 0 andvz € R™.
The same explanation holds foy with ||dg(z)|lcc < €2 for someey > 0 and
Yz € R™. We first proceed with the systems of Type |, and later we calude
Type I

Remark 7.3.1 By treatingd f anddg as bounded disturbances and including them
in w andv, one can recast a system of Type Il as a system of Type |. Hérmzth

w andv are bounded as well, i.e., we are in Case I, then the recdsliepnas also

in the form of Case I. However, iy andv are stochastic variables, i.e., we are in
Case I, then the recast problem is in the form of Case lll. Assalt, we will not
discuss systems of Type Il separately in the remainder sfctapter. O

Remark 7.3.2 We use thex-norm in this section. However, similar results hold if
the1l-norm (or a mix of thel-norm and thex-norm) is considered. O

Now we are going to study Case | and Case Il for this problem.
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Uncertain System with a Bounded Noise

In the first step, we consider Case | of Section 7.1, whe¥g andv (k) are assumed
to be included in convex polytopd$, = {w € R" : A,w < b, } andB, = {v €
R™: A,v < by}, respectively. We also assume that the initial sigf® belongs to
the ball B (Zo, C), i.e.,||z(0) — Zp||lc < C for a givenC' < oo wherez is the
estimate of the initial state and it is assumed to be knowms(@er the following
equation:

w(k) = flz(k = 1)) + w(k)
= [(f(x(k = 2)) +w(k = 1)) + w(k)
= J(f(fle(k =3)) + w(k = 2)) + wk = 1)) + w(k)
= JUC- (F20) +w@) + w®@)) +...) +w(k = 1) + w(k)
= hi(z(0),w(1),...,w(k))
wherehy, is an MMPS function ofc(0), w(1),...,w(k). Hence, we can write the

system|(7.30) for the final staté7") as
z(7T) = h(z(0),w(l),...,w(7T))
= h(x(0),w) (7.34)

whereh is denoted by, andw = [w” (1),...,w” (T)]T. Since eachw(k) belongs
to the convex polytop#,,, w is also in a convex polytopB; = (B,,)7 .

Consider the following definition for the norms of matrices:

Definition 7.3.3 ([47]) For a matrix A € R™*", the matrix1-norm andoc-norm
are defined as

m n
AL = max Y laigl,  [Allee = max Y |ai|
7j=1,...,n =1 i=1,....m =

respectively.

Moreover, the following inequalities hold [47]:
[Azfly < [[Allx fl=]]s, [Az]loo < [[Alloo |2 loo-

for anyxz € R™ where the||z|; = > |zi| and ||z||cc = max;=1,._n |z;| (cf.
Definition/4.2.1).

Recall from Section 2.4 that MMPS functions are equivalemiontinuous PWA
functions. It is been shown in [42] that a continuous piesevaffine functionf
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with the corresponding Jacobian matricEs, defined in Definition 2.4]4, satisfies
a Lipschitz condition, i.e., the following inequality haldor everyz andy in R™:

1/ (@) = f(W)llee < Lllz = ylloo (7.35)

where L is the maximum of the matrixo-norms of JU ... J) and it is the
smallest value for which (7.35) holds. Hence, it is the Lipscconstant off.

Consequently, the MMPS functiorfsandg, which are equivalent to continuous
PWA functions, satisfy a Lipschitz condition.

Lemma 7.3.4 If f is Lipschitz, then there exists a scalaf < oo such that for any
z € dom(f), we have|| f(z)l|ec < M ([|z]loc + 1).

Proof: Let L be the Lipschitz constant gf. Hence, by considering the triangle
inequality and the Lipschitz condition, we have for any € dom(f):

1f @)oo = I (2) = F () + f(9)lloo
< f @) = FW)lloo + [1F (%)l
< Lz = ylloo + [/ ®)lloo

Using the triangle inequality once more, we obtain:

1 (@)oo < Lllzlloo + Lllylloo + 1/ (¥)lloo

Consider a poingy € dom(f) and defineQ = Llyoloo + ||/ (40)]|oc. LELM =
max (L, @), which is clearly finite. Then, we have

1 (@)]loo < M([|2][cc +1)
and the proof is complete. O
Now, we are going to determine an upper bound|[for|| .. Let

Uy = gé%x [[w]loo

w

which is finite sinces,, is boundefl. Then, we have:

[2(F)lloo = [1f (2(k = 1)) + w(k) [0
< |If(z(k = D)oo + l[w(F)loo

“Note that max |lw||- does not correspond to a convex problem. However, it can lvedas
weBqy

follows: firstfori = 1, ..., n, with n,, the number of elements af, we solve the linear optimization
problem: max w; and max —w;. Hence, we need to soh\#,, linear programming problems

w; €EBw w; €EBw

and then choosing the largest objective function valuelgiél,, .
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(%)
< M(|lx(k —1)||oo + 1) + Uy
< M(|[f(z(k = 2)) + wk = Do +1) + U
< M (|| f(z(k = 2))lloo + [w(k = 1)]loo) + M + Uy
(

z) M2(||x(k —2)||oo + 1) + Uy(M +1) + M
< M*(||f(z(k —3)) + w(k — 2)||oo + 1) + Up(M + 1) + M
< MP(|lz(k = 3)|loo + 1) + Up(M?* + M +1) + M*> + M

k—1 k—1
< MA([|2(0)loo +1) + Uw Y M+ " MY
i=0 j=1

where both(x) and (xx) are obtained using Lemma 7.8.4. Hence, an upper bound
for ||z(7)||« IS given by

2(T)loo < M7 [|2(0)]|oc + L7 (7.36)
where
MT -1 MMT1 1)
MT +U, if M #£1
Ly — + U, 1 + 1 1 =+
T (Uyp +1) if M =1

Moreover, based on our assumptitie(0) — 2|/~ < C for someC' < co. Hence,
by using the triangle inequality, we have

[2(0)loc = [[(0) = 0 + Zolloo
< [J2(0) = Zolloo + [1Zo0loo
< C+ ol

Since we may assume without loss of generality thatshould not be outside the
maximal range set of(7") given by [(7.36), we obtain the following upper bound
for || 27| co:

27 |loo < MTC + M7 ||20||00 + L7

In other words,Z7 belongs to the convex polytopB;, = {i7 : [|Z7]le <
MTC + M7 ||#0)oo + L1}

As mentioned before, the first player tends to minimize thetrob and cloak-
ing/jamming energy and to maximize the difference betwéenfinal stater(7)
and the second player's estimation of the final state while the second player
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tends to minimize this difference and has to take the wase@ontrol and cloak-
ing/jamming action by the first player into account as wellteesworst case uncer-
tainty about the initial state(0). Hence, the overall objective function, which will
be minimized by player 2 and maximized by player 1, is defiretbhows:

T
J(@7,2(T),@,8) = =y ) _ [[lw®)lloo + 0(k)lloo] + [12(T) = &7l
k=1

for somey > 0, or equivalently by eliminating, as

T
J(@7,2(0),@) =~ > [Ilwk) oo +lly(k) — g(x(k)) o] + [ A(2(0), @) — 27|
k=1

(7.37)
Hence, we obtain the following optimization problem:
:vTHelgiT W (zr) (7.38)
where
W(zr) = x(o)e%%lj?ﬁo,c) gé%); J(&7,2(0),w) 7.39)

st. y(k) —g(z(k))eB, k=1,...,T.

Remark 7.3.5 Sincev € B, we have the additional constraitk) —g(z(k)) € B,
for a given realization of the control action vectdr a given measurement time-
history{y(k)}?_,, and a given terminal staté7 ). Note that this constraints cannot
cause infeasibility. Indeed, for a given realizationugfa given{y(k) ’,{:1, and a
givenz(7), we can always find an(0) that satisfies the constraint. O

Note that since all variables in (7/39) are boundédi:7) is bounded as well, and
sincez s is bounded, the solution of (7.38) exists and is finite for any 0.

The worst-case optimization problem (7.38)-(7.39) is abfmm of the form
(7.4) and therefore, it can be solved as indicated in Se@tidn.

Stochastic System

After discussing the filtering problem for the first case veherandv were assumed
to be bounded, we consider now a system of Type | in which, andx(0) are as-
sumed to be stochastic variables with a given probabilitysidg function. In the
framework of the truck-plane example, we can now assumetibgtlane (the sec-
ond player) knows typical probability density functionswafv, andx(0) based on
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previous experience or a priori knowledge. As mentionedtegfwe only consider
distributions with finite moments for which a closed-fornpeassion exists. Having
this assumption, we redefine the optimization problem (7a3dollows:

min E, [J(Z7,2(0),w)]. (7.40)

T ER™
where J (i1, x(0),w) is an MMPS function of its arguments as defined in (7.37).

This is a problem of the form (7.5), and hence, as explainé&kition 7.2.2, it can
be solved using the approximation method of Section 6.2.2.

7.3.2 Reference Tracking Problem

The second problem that we consider here is a referencartgapkoblem. In this
problem the reference signal is given and the aim is to mirenthe difference
between the output of the system and the reference signalsydtem is defined as
follows:

8
—~

NA
~

I

flz(k —1),u(k)) +w(k) (7.41)
y(k) = g(z(k)) + v(k) (7.42)

wherez (k) is the state of the systemp(k) is the output, and.(k) is the input of

the system at time or event stépe {1,...,7 }. We also consider external noise
vectorsw(k) andv(k) that perturb the system. We assume that the initial state of
the systemx:(0) is known. Similar to Section 7.3.%,andg are MMPS functions of
their arguments. The objective function is defined as fadlow

T
J(@,w,5) =Y lly(k) = (%)l (7.43)
k=1

wherer (k) is the reference signal ang, is a weighting factor at time or event step
k,anda = [u”'(1),...,u"(T)]" (@ andv are defined similarly). Assume that the
constraints on, w, and/oro are gathered in an expression of the form

G(i,w,7) <0

whereG(+) is an MMPS function of its arguments.
We can rewrite the objective function (7.43) by substityt{id.41) in (7.42) for
each event step. To this end, we compute(k) as follows:

w(k) = f(e(k=1),u(k)) + w(k)
f(F(@(k=2),u(k=1)) + w(k—1),u(k)) + w(k)
f

(f(f(x(k=3),u(k—2))+w(k—2),u(k—1))+w(k—1),u(k))+w(k)
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UGG (F(@2(0), u@) Fw(l), w(2)+. . ) Fwlk—1), u(k))+w(k)
hi(u(l),... u(k),w(1),... ,w(k))

whereh(-) is an MMPS function of its arguments. Accordingly, we can nitav
y(k) as follows:

y(k) = g(xz(k)) + v(k)
= g(hg(u(l),...,u(k),w(1),...,wk))) +v(k)
= Hi(u(1),...,u(k),w(l),...,w(k),v(k)) (7.44)

where Hy(-) is also an MMPS function of its arguments. Hence, (7.43) aan b
written in the following form:

T
J(@,w,7) = > Nl Hi(u(), ... ulk), w(l),... wk),v(k))) — (k)]s
k=1
= H(ii, b, ) (7.45)

with H(-) being an MMPS function of its arguments. This implies thatmtend to
track the reference signal by minimizing over the inpuwhile environment plays
against us by maximizing over the noise signaland?.

Now, we are going to study Case | and Case Il for this problem.

Uncertain System with a Bounded Noise

In this case (cf. Section 7.1.1) we assume thgt), v(k), andu(k) belong to con-
vex polytopesB,, = {w € R" : Ay,w < by}, B, = {v € R™: Ayv < b,}, and

B, ={ueR": A,u < b,}, respectively. Hence, the optimization problem can be
defined in the following form:

min _ max  H(a,w,0)
w€EBz; WEBG,VEBG (7 46)

st. G(i,w,7) <0

whereB; = (B,)7, By = (By)7, andB; = (B,)7 are convex polytopes{ (i, w, ¥)

is defined in|(7.45), and/(-) is an MMPS function of its arguments. Note that this
optimization problem has a finite solution due to the fact @ibthe optimization
variables belong to a polytope and hence, are bounded. Qomsiy, we obtain a
problem of form|((7.4) which can be solved using an mp-MILR/eplcf. Section
7.2.1).
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Stochastic System

In this case we assume that baifk) andv (k) are stochastic variables with a given
probability distribution with finite moments for which a sled-form expression ex-
ists. Hence, the optimization problem is defined as follows:
min Ey 5[H(a, 0, )]
aER™
(7.47)
s.t. E@,{)G(ﬁ,?j},@) <0

This is a problem of the form (7.5), and hence, as explaine8eiction 7.2.2, it
can be solved using the approximation method of Sectior26ald then applying
non-linear optimization algorithms such as SQP, genegjordhms, or simulated
annealing.

7.4 Summary

In this chapter, we have studied the min-max optimizatioMbfPS systems. Three
cases were considered: uncertain min-max optimizatiobl@nas, stochastic min-
imization problems and stochastic min-max optimizatioobfgms. For each case,
we have proposed solution approaches, namely the mixeddantinear program-
ming for the first case and the approximation method of Se@&ia.2 for the second
and the third case.

Afterwards, we have presented two sample problems thateamddeled using
MMPS systems and that result in a min-max or stochastic dqaition of such sys-
tems. The first problem is the filtering problem and we havesicimned a two-player
game setting in which one player tries to estimate the figasif the system using
a series of measurements observed over time, while the pléger is disturbing
the measurements of the first player. The objective funabibthis problem has
been defined as an MMPS function and hence, we have obtainédimax and a
stochastic optimization problem using this objective it To solve these prob-
lems, we considered the above-mentioned solution appesdohn each case.

The second problem is a reference tracking problem. Theaftldds problem is
to track a given reference signal by minimizing the differetetween the system’s
output and the reference signal. The objective functior iais been also defined
as an MMPS function and we have considered again the aboes tasolve the
min-max and stochastic optimization problem of this system



Chapter 8

Conclusions and
Recommendations

This chapter concludes the thesis by summarizing the maitribations and also
presenting some interesting topics for future research.

8.1 Conclusions

The focus of this PhD thesis was on improving the computatiaspects of MPC
and identification of stochastic MPL systems as a speciasotd discrete-event
systems. Since models of such systems are linear in maxajgabra, control and
identification of these systems has attracted many atteatio many studies have
been done on these topics. One of the control methods thdbdeas applied to
(stochastic) MPL systems, is MPC. In both MPC and identificaframework, the
objective function is defined as an expected value of a sstichaax-plus-scaling
function, which is quite complex and time-consuming to catepusing available
methods such as numerical integration, analytic integmatetc.

Hence, our aim was to find an efficient method to compute thieeted value.
To that end, we have proposed an approximation method basedoments of
random variables. This method was inspired by the relatietwéen thep-norm
and theoco-norm of vectors. This approximation approach results iraaalytic
expression if the distribution of random variables hasdimtoments for which a
closed-form expression exists, such as the uniform digtdab, normal distribution,
Beta distribution, etc. We have also assumed that the elsnofrthe stochastic
vector are independent random variables. This is a key g#gnmrin our approach
since otherwise we would have to deal with the joint expegtdde, for which this
method is not applicable anymore.

Furthermore, we have shown that the approximation funatiotained using

119



120 8 Conclusions and Recommendations

this approximation approach is convex in its arguments &atlthe error of this
approximation method is bounded both from below and fronvabd his assures
us that this approximation function, which is indeed an ujmoeind for the expected
value of stochastic max-plus-scaling functions, does novginboundedly.

We have then applied this approximation method to diffecéagses of discrete-
event systems, namely stochastic MPL systems, stochastahing MPL systems,
and stochastic MMPS systems, and the results are summaehmad.

MPC for stochastic MPL systems

As mentioned above, the stochastic MPL-MPC optimizaticsbfam is computa-
tionally complex due to the presence of the expected valtoohastic max-plus-
scaling functions in the objective function. In order to plify the problem, we
have approximated this objective function by its upper lsbusing the approxima-
tion method.

Since the approximation function is convex in its argumgmysconsidering the
constraints such that they are nondecreasing affine furectibthe system output,
we have obtained a convex optimization problem, which casobeed efficiently.

Moreover, by choosing the appropriate order of moments wedegrease the
approximation error to some extent. In this thesis, thisaghawvas made by means of
numerical experiments and the approximation results féeréint order of moments
has been illustrated in a worked example. In this examptep#rformance of the
approximation method has been compared to the one usingrizainer analytic
integration, Monte Carlo simulation, and nominal MPC. Itswancluded that the
results obtained using the approximation method are caabjeto the other ones.

Identification of stochastic MPL systems

We have shown that the identification of stochastic MPL sygstean also be simpli-
fied computationally using the approximation method. Adawly, we have solved
the approximate identification problem in which the objeetunction was an upper
bound of the original function, and since we have obtaine@xpiicit expression

for the gradients, the parameter estimation can be dong gsadient-based opti-
mization methods despite having a hon-convex objectivetfom.

In two examples, we have compared the identification resisitsg numerical
integration, analytic integration, Monte Carlo simulaticand the approximation
method for two types of random variables, namely the unifprdastributed ran-
dom variables and the normally distributed random vargblge aimed to identify
the unknown system parameters and the noise amplitude. tthexamples, the
identified parameters using the approximation method werg #lose to the ones
using numerical or analytic integration or Monte Carlo diaion. Furthermore, the
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computation time of the optimization procedure using thpraximation method
was much less than the one using the other methods. Noténthastimated noise
amplitude using any of the mentioned methods were quiteviaydrom the exact
values, since in general, in prediction error identificatione can obtain the correct
system model, but it is much more difficult to estimate thesaonodel [48, 73].

MPC for stochastic switching MPL systems

We have applied the approximation method to another classofete-event sys-
tems, namely stochastic switching MPL systems in which tleelerof the system
can switch from one to another. We have considered both astichswitching and
stochastic system parameters at the same time. Sincetérertatdom variable is a
continuous one and the mode switching uncertainty is aetiscandom variable, to
compute the expected value we need to apply a combinatiartagfration over the
continuous stochastic variable and summation over theedesstochastic variable.
To that end, we have studied two cases: the case in which tidemavariables of
mode switching and the systems parameters are indepenuitteacase in which
they are dependent.

For the case that the random variables are independent, weedpplied the
combination of both the approximation method in order tarapimate the expected
value of the parametric uncertainty and a scenario-baggatitim in order to re-
duce the computational complexity of the computation ofdkeected value of the
mode switching uncertainty. Both methods simplify the peaiband decrease the
computation time while still yielding a performance that@mparable to the one
using numerical or analytic integration.

In the second case with dependent random variables, theutatigm is more
complex. We have shown that if the mode switching probatidlitd the joint prob-
ability density function could be modeled or approximatgdulti-variable piece-
wise polynomial functions, possibly multiplied by an expatial function, that are
defined on polyhedral regions, then we can obtain an anaycession for the
expected value of the max-plus-scaling function appearirapjective function.

MPC for stochastic MMPS systems

Further, we have extended MPC to stochastic MMPS systemasahdfore, due to
the presence of the expected value in the objective fundii@noptimization prob-
lem is computationally complex. To reduce this complexitg, have first proposed
to write the MMPS function as a difference of two convex fumes and then to
compute its upper bound by finding an upper bound for the foat/ex function

using the approximation method and finding a lower boundterdecond convex
function, which is subtracted. Both of these upper and Idveemds are convex in
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their arguments.

This procedure resulted in a sequence of convex problemsnatig case of
having convex constraints, we have obtained a sequencengéxaptimization
problems, while the original problem was not convex due soMMPS objective
function.

Min-max and stochastic optimization for MMPS systems

The last problem that we have considered was a general nireptanization prob-
lem with an MMPS objective function. We studied three cassig-max optimiza-
tion of an MMPS function with bounded variables, minimipatiof an MMPS func-
tion with stochastic variables, and min-max optimizatiba@ MMPS function with
stochastic variables.

In the first case, we have shown that the optimization proldam be trans-
formed into a mixed-integer linear programming (MILP) opization problem and
then can be solved using the available algorithms [2, 72}thénsecond case, the
MMPS objective function was approximated by the approxiomamethod applied
to stochastic MMPS systems and then the optimization pnoliias been solved
using non-linear optimization algorithms. In the last cats®, the objective func-
tion has been transformed into an approximate one using #tbad applied to
stochastic MMPS systems and hence, the optimization prohlened into a multi-
parametric, non-linear optimization problem, which carsblved using the avail-
able algorithms [32, 51-53, 94].

At the end, we considered two specific instances of the abenergl problems,
namely the filtering problem and the reference tracking lerob In the first prob-
lem, we have a two-player game structure in which the aim &stonate the final
position of the system by one player while the measuremegtperturbed by the
second player. In the second problem, the aim is to tracketfezance signal by the
output and to minimize the difference between these two.

8.2 Recommendations for Future Research

In this section, we first discuss some directions to impraweapproximation method.
Afterwards, there will be some other interesting topicg tra related and can be
considered for the future research.

Approximation method

It is very useful to find an efficient, and preferably analytiay to determine an
appropriate order for the moments used in the approximatiethod in order to
obtain a better approximation and to decrease the apprtigimarror. Note that
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in this thesis, this choice has been made by means of nurherpariments. One
possible approach is to analyze how the upper bounds/4.6),dr (4.8), evolve as
p evolves.

Other interesting issue is to find narrower upper boundshi®metror of the ap-
proximation method that also depends on the type of theldigiton of the random
variables. Note that in this case, we have more informatiooeswe can use the
properties of the distribution in specifying the approxiima error. As such, a nar-
row bound may be obtained. This can be done by finding an alieenupper bound
for Jensen’s inequality that can be applied to random viasalith both bounded
and unbounded domain, or use the properties of each spdujfictive function to
specify the error of the approximation method.

MPC and identification of stochastic MPL systems

In the worked examples presented in Section 5.1, we havea@uphe approxima-
tion method with other methods such as numerical and anahtigration, Monte
Carlo simulation, and nominal MPC to solve the MPL-MPC ojitition problem.
It will be useful to perform a more extensive assessment antparison of the ap-
proximation method with other computation methods sucthasrethod based on
variability expansion [110]. Moreover, it is interestingdompare the result of the
MPC using these methods with the one obtained from the réai@o. In this case,
the "real” solution can be obtained in two ways. One apprdatb either compute
it analytically (such as in the case of the uniform distriba} or to approximate
it arbitrarily close by performing an extensive Monte Caimulation with a very
large number of samples. The other approach is to considerdise realization to
be known in advance and to determine the real (exact) MPL-I&IGtion using
this noise realizatioh

Monte Carlo simulation can be made very precise by incrgagie sample
size. However, the computation time then also increasesticialy (as explained
in the examples of Section 5.1). Therefore, the approxonathethod proposed
in this thesis — despite providing only an approximate andamoexact solution —
is still preferable to the Monte Carlo simulation. In the exdes of Section 5.1,
we have not made use of the max-plus structure when perfgridionte Carlo
simulations. As shown in [13], the simulation of max-plustgyns can be speeded
up taking the max-plus structure into account. The methofl&f is called the
perfect samplingnd it continues the simulation until its output has therittigtion
of the stationary profile of the max-plus system. This apgind@as also been applied
in [50], which proposes an algorithm that involves the cotation of the expected
value of specific max-plus expressions. Sinceghdect samplingnethod results

1This is in fact a deterministic optimization problem sinbe hoise realization is known.
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in a fast and efficient computation, it is interesting to ggpis method in order to
compare its computational efficiency with the one of the pegal approximation
method.

Recall that the identification problem of stochastic MPLteyss resulted in a
non-convex optimization problem that could be solved usngti-start gradient-
based local optimization methods due to the presence of ridiegts of the ob-
jective function. Obviously, the result of such non-conaptimization problems
depends on the problem setting, such as the setting of tihensythe control sig-
nals, or the noise structure. In this thesis, we have noieduthe effect of using
different settings and different optimization methods e parameter estimation.
Hence, it is still an open topic for further research to perfanultiple experiments
with different systems and/or different signals and noissidies applying different
optimization methods and then, compare their performance.

We have also seen in the worked examples related to idetitficaf stochastic
MPL systems (cf. Sectian 5.2) that the estimated noise andgliis quite far away
from the exact one. Although it is mentioned in the literattinat in general it
is hard to obtain a good estimation for the noise amplitudés still desired to
explore the possibilities of improving the estimation of thoise amplitude in the
identification problem. One possible research directioto imvestigate the input
design process for stochastic MPL systems, or first conasidenpler problem such
as the estimation of the noise variance using Kalman Filtesrder to obtain an
estimate of the possible outcome.

MPC for stochastic switching MPL systems

Yet another topic for future research is to explore othetmes to compute the ex-
pected value of a max-plus-scaling function in a stochastitching MPL system
in the case that both the mode switching uncertainty andahanpetric uncertainty
are dependent on each other. The method proposed in this thesill quite com-
plex and time-consuming. One way would be to use properfi¢ieoconditional
expected value/probability and also the expected valueultivariate functions to
find another approximation method that is more efficient ttienone proposed in
this thesis.

Other research topics

Stochastic MPL systems are not intrinsically stable. Hewooe interesting topic
would be to study the stability of stochastic MPL systemsaneayal and the stability
of closed-loop MPC of stochastic MPL systems when the appration method is
used in the MPC optimization problem.

Another important issue is the timing issue of the stochadfL systems. This
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issue plays an important role in real applications such lasdding a train network,
or controlling a printer performance. Note that in the appration method, we do
not take the timing into account (cf. Section 3/1.4) sincewsald then deal with the
updated distributions with unknown properties and as dtrege would then not be
able to apply the approximation method anymore. Thereftieyery interesting to
find alternative approximation methods that will deal witle timing issue as well.
One approach could consist in approximating the updatedhiison using another
distribution for which the current approximation method & applied, such as the
normal distribution or piecewise uniform distribution.

Development of identification algorithms for stochastic IM§ystems based on
input-output data (instead of input-state data) or withygrdrtial state information
is also another interesting topic for future research.






Appendix A

Order of Complexity of the
Approximation Method Based on
Variability Expansion

In Section 3.1.3, we have presented the order of complefitieoapproximation
method, which is based on the method of variability expanfld0]. The order of
complexity of this method is

0( (L) ne VM + 1y — 1, M)) (A.1)

whereV (-, -) is defined in((3.13). In this appendix, we show that (A.1) isiegjent
to

M %‘Fl

o(”]@!’(l%)! ). (A.2)

Here, we assume, > n; > M > 0. Note thatn, > n; was also assumed in the
complexity analysis of the method based on analytic integran Section 3.1.3;
moreover,M will always be less than or equal tg: [56]. Here, we assume that
ng > M > 0 since for largeM, the variability expansion method is computation-
ally very expensive. The first factor in (A.1) can be rewrittes follows:

M terms
r _ ng! :né(né—l)...(né—M+1)
M)~ Mi(ns — M) M!
nM
~ € 1 ~
NO(M!) if ng> M >0 (A.3)
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The last factor in (A.1) can be rewritten in the following wege[(3.13)):

2M+nv—1—L%J>+<2M+nU—1—L@J)

V(2M—|—nv—1,M):< Man —1 M 1
() ()

(A.4)

. e 2 1 .
If M = 2q whereq is a positive integer, thet\%J =qgandifM =2¢+1

2 2 2 2 2 3
then | q; | = ¢+ 1. In the same way q; |1 =1 q; | = ¢+ 1. Hence,
M+1 M+ 2 M+1 . o .
| ; |~ 2+ | = iy By replacing this in/(A.4), we obtain:
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3
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_ 2
(4!
M-—1
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(45!
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Ny 2 .
~ O((M_l)'> if ng>M2>0 (A.5)
=)

Hence, combining (A.3) and (A.5), we can approximate (Asljcllows:

o (’A}) V@M 41, —1,0M)) = 0(55 n, (__1)!)

LJ (A.6)



Notation

This section lists some symbols and abbreviation that @guéntly used in this
thesis.

List of symbols

Sets

0 empty set

int(X) interior of the setX
XCY Xisasubsetot

reX x is an element of the séf

R set of real numbers
N\ {0} setof positive integersf1,2,3,...}
| x| the largest integer less than or equakto

Matrices and Vectors

R™ set of real-valued vectors of size

R™*™  set ofn by m real-valued matrices

zT transpose of the vectar

Z; i-th element of the vectar

Ajj entry of the matrixA on thei-th row and thej-th column

|z, p-norm of the vector:
|zl  oo-norm of the vector
I|All,  p-norm of the matrixA
[Alloc  oo-norm of the matrix4
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Functions

f: X —=Y function f with domainX and codomairt”

dom(f) domain of the functiory

f(e) probability density function of the stochastic vector
J objective function

E[x] expected value of the random variable

E[z¥] k-th moment of the random variabie

Max-Plus Algebra

RU{—o0}
mps  Set of max-plus-scaling functions

max-plus addition

max-plus multiplication

zero element of the max-plus addition

identity element of the max-plus multiplication
®* k-th max-plus power of the matrid

5

a0 Q6

Acronyms
MILP Mixed-Integer Linear Programming
MMPS Max-Min-Plus-Scaling

mp-NLP multi-parametric Nonlinear Programming
mp-MILP  multi-parametric Mixed-Integer Linear Progranmyi
MPC Model Predictive Control

MPL Max-Plus-Linear

PWA Piecewise Affine
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Summary

Approximation Methods in Stochastic Max-Plus Systems

Many physical systems, such as traffic networks, manufiacfiaystems, chemical
systems, or biological systems, are characterized by digramenomena. To model
such systems, we are interested in the classes of nonliysamic models that
are capable of describing continuous and/or discrete digsane., the classes of
discrete-event models and hybrid models. The former classists of systems
the evolution of which depends on the occurrence of disaetamts over time and
the latter class is characterized by the interaction of-fimetinuous models on the
one hand, and logic rules and discrete-event models on tier band. Hence,
the evolution of a hybrid system may depend both on the pssgoétime and the
occurrence of events.

In this PhD thesis, we study some special classes of disevetat systems,
namely stochastic max-plus-linear (MPL) systems and &witcMPL systems, and
a special class of hybrid systems, namely stochastic maxpinis-scaling (MMPS)
systems. The main operators in these systems are maxiomzatdition, and min-
imization (only in MMPS systems). In the identification anshtrol problem of
these systems, the objective function appearing in thenigdtion problem can be
written as the expected value of the maximum of affine expess The focus of
this thesis is on finding an efficient method to compute thiseeted value since the
currently available methods are both too complex and toe-ttonsuming.

To address this issue, this PhD thesis proposes an apptixinmaethod based
on the higher-order moments of a random variable. By conisigl¢he relationship
between the infinity-norm and thenorm of vectors, we obtain an upper bound
for the expected value of the maximum of affine expressiorigs approximation
method can be applied to any distribution that has finite nmisnand in the case
that these moments have a closed form (such as for a uniftmibdition, normal
distribution, beta distribution, or gamma distributiot)e approximation method
results in an analytic expression. We also show that theoappate function ob-
tained using this method is convex in the control variablé also discuss the error
of this approximation method and show that this error is lo@gnboth from below
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and from above.

MPC for and identification of stochastic MPL system

Model predictive control (MPC) among other control appleeefor MPL systems
such as the residuation methods has an advantage of beigsigleah handling con-
straints both on inputs and outputs. Therefore, in this Pt@Esis, MPC is chosen as
a control approach for stochastic MPL systems. For ideatifia of such systems,
we consider state space models and also take the stochagtartes of the system
into account in the identification process.

In both identification and MPC, we replace the objective fiorcdefined as the
expected value of the maximum of affine expressions by thetifumobtained using
the proposed approximation method based on higher-orderants. This approxi-
mate function is indeed an upper bound for the objectivetfan@and is minimized
instead of the objective function itself. Moreover, sinbe approximate objec-
tive function is convex in the control variable and since dgihadients with respect
to this variable can be computed analytically, we obtain mvex MPC optimiza-
tion problem that can be solved efficiently using the avédlamnvex optimization
algorithms. The identification problem as well, can be sblusing non-convex
gradient-based algorithms due to the existence of anaypicessions for the gradi-
ents of the approximate non-convex objective function.

In order to examine the efficiency and accuracy of the appratibon method,
we present case studies for both MPC and identification probih which the ap-
proximation method is applied using two different noisdrdisitions, namely the
uniform distribution and the normal distribution. We comgpéhe results of the ap-
proximation method with the ones obtained from other als#glanethods, such as
analytic and numerical integration, and Monte Carlo sirtioifta This comparison
shows that in terms of time-efficiency the approximationhoditis faster in most of
the cases while having a performance that is comparablestpetformance of the
other methods.

MPC for stochastic switching MPL systems and stochastic
MMPS systems

We further extend the application of the proposed approttonamethod to two
other classes of discrete-event and hybrid systems, nast@tyhastic switching
MPL systems and stochastic MMPS systems, respectively. tDtiee stochastic
properties of these systems, applying MPC to control thgstems, in general,
results in a complex and time-consuming optimization pobl

In stochastic switching MPL systems, we consider both discand continuous
random variables, which are related to stochastic modecking and stochastic
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system parameters, respectively. Hence, the objectivaifum which is defined as
the expected value of the maximum of affine expressions)hiesahe joint proba-
bility distribution of these two types of random variablésthe case that the mode
switching variables and the system parameters are indepenandom variables,
we propose to apply the combination of two approximationhoés to simplify the
MPC optimization problem. The first approximation methodased on a scenario-
based algorithm that chooses only the most probable modemtiy occur and the
second one is the proposed approximation method based loerfogder moments
to approximate the expected value of the maximum of affineesgions. In the
case that the mentioned random variables are dependentlo#eer, we propose
to approximate the joint probability distribution by multariable piecewise poly-
nomial functions to obtain an analytic expression for thgative function. In both
cases, the approximation approaches simplify the probtamsiderably.

In the stochastic MMPS-MPC optimization problem, to be ablepply the pro-
posed approximation method, we first need to rewrite the MdiBj&ctive function
as a difference of two convex functions. In this way, it isgibke to approximate the
expected value of this function by its upper bound. To this, @e approximate the
first convex function by its upper bound using the proposqa@pmation method
and the second convex function by its lower bound using Jengeequality. In
the case that the random variables in the MMPS function haite fnoments with
closed forms, these upper and lower bounds both lead totanakpressions. In
this case, the whole MMPS-MPC optimization problem can besiciered as a set of
convex problems and each problem can be solved applyingegitalohsed convex
optimization algorithms since the analytic expressiomghe subgradients exist. In
an example, we show that this upper bound approach decrémsesmputational
complexity and the computation time considerably.

Min-max optimization and approximate stochastic optimizaion for
MMPS systems

In the last part of this PhD thesis, we study min-max optitiizaof MMPS systems
for the following cases: non-stochastic min-max optim@aiproblems, stochastic
minimization problems, and stochastic min-max optimatproblems. For each
case, we propose solution approaches, namely the mixegeintinear program-
ming for the first case and the approximation method proptmeblMPS systems
for the second and the third case. In this way, the secondazasbe rewritten as
a set of convex optimization problems that can be solvediefiily using convex
optimization algorithms and the third case results in a npatametric, non-linear
(mp-NLP) optimization problem that can be solved using mgRMlgorithms. Fur-
thermore, we present two applications of such problems evtier first problem is
an example of a two-player game and the second one is a regetetking prob-



144 Summary

lem.



Samenvatting

Benaderingsmethoden voor Stochastische Max-Plus Syste-
men

Veel fysische systemen, zoals verkeersnetwerken, priedystemen, chemische
systemen, of biologische systemen, worden gekaraktediskmr dynamische ver-
schijnselen. Met het oog op het modelleren van zulke systezijrewe geinteresseerd
in de klassen van niet-lineaire dynamische modellen digdaatzijn om continue
en/of discrete dynamica te beschrijven, namelijk de kiagae discrete-gebeurtenis-
modellen en hybride modellen. De eerste klasse bestaaystirsen waarvan
de evolutie afhankelijk is van het plaatsvinden van disciggbeurtenissen in de
tijld. De tweede klasse wordt gekarakteriseerd door dedaotier tussen continue-
tijdmodellen aan de ene kant en logische regels en disgedietrtenis-modellen
aan de andere kant. De evolutie van een hybride systeem Kaai\devan zowel de
tijdsprogressie als van het zich voordoen van gebeuremiathangen.

In dit proefschrift bestuderen we enkele speciale klasaardiscrete-gebeurtenis-
systemen, hamelijk stochastische max-plus-lineaire (Migktemen en schakelen-
de MPL systemen, en een speciale klasse van hybride systaetaetochastische
max-min-plus-schaling (MMPS) systemen. De hoofdopeestdn deze systemen
Zijn maximalisatie, optelling, en — voor MMPS systemen —imalisatie. Bij iden-
tificatie en regeling van deze systemen kan de doelfunotiéndnet optimalisatie-
probleem voorkomt, geschreven worden als de verwachtede@aan het maximum
van een aantal affiene uitdrukkingen. De focus van dit pobeif$ ligt op het vin-
den van een efficiente methode voor het berekenen van dezmclde waarde,
aangezien de huidige hiervoor beschikbare methoden zenarhplex als te re-
kenintensief zijn.

Ten einde dit probleem aan te pakken, stelt dit proefscheft benaderings-
methode voor die gebaseerd is op de hogere-orde momenterenastochastische
variabele. Door de relatie tussen de oneindig-norm ep-derm van vectoren te
beschouwen, kunnen we een bovengrens bepalen voor de Wweweagarde van het
maximum van een aantal affiene uitdrukkingen. Deze benagiriethode kan wor-
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den toegepast voor elke distributie met eindige momentemdret geval dat deze
momenten een gesloten vorm hebben (zoals voor een unifdetidatie, normale
distributie, beta-distributie of gamma-distributie)suéieert de benaderingsmetho-
de in een analytische uitdrukking. We laten tevens zien ddiethaderende functie
verkregen door het gebruik van deze methode convex is ingidviaiabelen en we
bespreken ook de fout van deze benaderingsmethode enilatetiat deze fout van
zowel beneden als van boven begrensd is.

MPC en identificatie van stochastische MPL systemen

Modelgebaseerde voorspellende regeling (in het Engédslel Predictive Control
— MPC) heeft in vergelijking met andere regelmethoden vo&lLMystemen zoals
de residuatiemethoden het voordeel dat het in staat is orbepetrkingen op zowel
ingangen als uitgangen om te gaan. Daardoor is MPC in difgrbeft gekozen als
regelaanpak voor stochastische MPL systemen. Voor deifidatie van dergelijke
systemen beschouwen we toestandsruimtemodellen en neeneokvde stochasti-
sche kenmerken van de systemen in beschouwing in het idatigfiroces.

Bij zowel identificatie als MPC vervangen we de doelfundtie,gedefinieerd is
als de verwachte waarde van het maximum van affiene uitdngkki, door de func-
tie die verkregen wordt door de voorgestelde benaderingmde die gebaseerd
is op hogere-orde momenten. Deze benaderende functieasdimad een boven-
grens voor de doelfunctie en deze bovengrens wordt vemslgeminimaliseerd in
plaats van de doelfunctie zelf. Aangezien de benadereneléudotie convex is in
de regelvariabelen en aangezien de gradienten met bietgetdt deze variabelen
analytisch berekend kunnen worden, verkrijgen bovendieeen convex MPC op-
timalisatieprobleem dat efficient opgelost kan wordenrdtmbeschikbare convexe
optimalisatiealgoritmen te gebruiken. Omwille van hetthas van analytische uit-
drukkingen voor de gradiénten van de benaderende nisegerdoelfunctie, kan
het identificatieprobleem ook opgelost worden door het gjkbran niet-convexe
gradiént-gebaseerde algoritmen.

Met het oog op het onderzoeken van de efficientie en nauvgteid van de
benaderingsmethode, stellen we casestudy’s voor MPC erifidatieproblemen
voor waarin de benaderingsmethode wordt toegepast doerverschillende ruis-
distributies te gebruiken, namelijk de uniforme distribign de normale distributie.
We vergelijken de resultaten van de benaderingsmethodelezet die verkregen
Zijn met andere bestaande methoden, zoals analytischenegrielie integratie en
Monte-Carlo-simulatie. Deze vergelijking laat zien dattdmaderingsmethode in
de meeste gevallen sneller is qua rekentijd, terwijl zij perstatie heeft die verge-
likbaar is met die van de andere methoden.
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MPC voor stochastische schakelende MPL systemen en stochiashe
MMPS systemen

We breiden de toepassing van de voorgestelde benaderitiggiaeverder uit tot

twee andere klassen van discrete-gebeurtenis- en hylystensen, namelijk sto-
chastische schakelende MPL systemen en stochastische Myé$RS$nen. Door de
stochastische kenmerken van deze systemen resulteegpiesging van MPC voor
het regelen van deze systemen in het algemeen in een conmplekentijdintensief

optimalisatieprobleem.

In stochastische schakelende MPL systemen beschouwernvwet digcrete als
continue stochastische variabelen, die gerelateerd zijnraspectievelijk de sto-
chastische schakeling tussen verschillende werkingaesgien stochastische sys-
teemparameters. Daardoor bevat de doelfunctie, die gesafinis als de ver-
wachte waarde van het maximum van affiene uitdrukkingen, et®mbineerde
kansdistributie van deze twee typen stochastische véeiabén het geval dat de
variabelen die het schakelen tussen verschilende werkigigses bepalen en de
systeemparameters onafhankelijke stochastische vbaalagn, stellen we voor
om de combinatie van twee benaderingsmethoden toe te passeret MPC-
optimalisatieprobleem.

De eerste benaderingsmethode is gebaseerd op een sahari&elijk algorit-
me dat alleen de meest waarschijnlijke werkingsregimest kiee kunnen voorko-
men en de tweede methode behelst de voorgestelde benadesihgde gebaseerd
op hogere-orde momenten om de verwachte waarde van het omaxian affiene
uitdrukkingen te benaderen. In het geval dat de genoemdbeadttische variabe-
len afhankelijk van elkaar zijn, stellen we voor om de gezdijke kansdistributie
te benaderen door een multi-variabele stuksgewijze pafyale functie om zo een
analytische uitdrukking te verkrijgen voor de doelfunctiebeide gevallen vereen-
voudigen de benaderingsmethoden het probleem aanzienlijk

Om in staat te zijn de voorgestelde benaderingsmethodetistbehastische
MMPS-MPC optimalisatieprobleem toe te passen, is het nodtigcerst de MMPS
doelfunctie om te schrijven als het verschil tussen tweerexa functies. Op de-
ze manier is het mogelijk om de verwachte waarde van dezeaidutecbenaderen
door haar bovengrens. Met dit doel benaderen we de eerstex@functie door
haar bovengrens door gebruik te maken van de voorgestefdel&gngsmethode
en de tweede convexe functie benaderen we door haar ondemdper gebruik te
maken van de ongelijkheid van Jensen. In het geval dat deagtsche variabe-
len in de MMPS functie eindige momenten hebben met een gesiarm, leiden
deze boven- en ondergrenzen tot analytische uitdrukkinigedit geval kan het ge-
hele MMPS-MPC optimalisatieprobleem beschouwd wordereafs verzameling
convexe problemen en elk probleem kan opgelost worden dediémt-gebaseerde
convexe optimalisatiealgoritmen toe te passen, aanganiggtische uitdrukkingen
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bestaan voor de subgradiénten. In een voorbeeld laternenelat deze bovengrens-
aanpak de rekenkundige complexiteit en de rekentijd aalijkieerlaagt.

Min-max optimalisatie en benaderende stochastische optiatisatie voor
MMPS systemen

In het laatste deel van dit proefschrift bestuderen we méx-iwptimalisatie van
MMPS systemen voor de volgende gevallen: niet-stochstisgin-max optima-
lisatieproblemen, stochastische minimalisatieprobleme stochastische min-max
optimalisatieproblemen. Voor elk geval stellen we oplagsimethoden voor, na-
melijk lineair programmeren met gehele en reéle getaltmor Wet eerste geval en
de benaderingsmethode voorgesteld voor MMPS systemerheddweede en het
derde geval. Op deze manier kan het tweede geval herschr@rdin als een ver-
zameling van convexe optimalisatieproblemen die effiadgelost kunnen worden
met behulp van convexe optimalisatiealgoritmen. Het dgelal resulteert in een
multi-parametrisch, niet-lineair (mp-NLP) optimalisgirobleem dat opgelost kan
worden met behulp van mp-NLP algoritmen. Daarnaast presamiwe twee toe-
passingen van dergelijke problemen, waarbij het eerstelggm een voorbeeld is
van een spel met twee spelers en waarbij het tweede eentéderelgprobleem is.
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