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Chapter 1

Introduction

1.1 Motivation

Not only in the natural sciences (such as physics, biology, earth science, meteorol-
ogy) and engineering disciplines (such as computer science, artificial intelligence),
but also in the social sciences (such as economics, psychology, sociology and polit-
ical science), mathematical models are used extensively inorder to explain a system
and to make predictions about the behavior of that system [9,66, 71]. Based on the
nature of the system, mathematical models can be classified in some of the follow-
ing ways: linear vs. nonlinear, deterministic vs. stochastic, static vs. dynamic, and
discrete vs. continuous. In this thesis, we consider modelsthat belong to the class
of discrete-event or hybrid systems.

In discrete-event systems, the state evolution depends entirely on the occurrence
of discrete events over time. In this type of systems, the state components refer to
the starting time of the activities and events refer to the start or the end of those ac-
tivities. For example, in a manufacturing system, a state could be the time instant at
which a particular machine starts working and an event is a machine breaking down
or a part entering a buffer. Typical examples of discrete-event systems are telecom-
munication networks, manufacturing systems, parallel computing, traffic control
systems, railway networks, etc.

Hybrid systems are characterized by the interaction of time-continuous models
on the one hand, and logic rules and discrete-event models onthe other hand. As a
result, the evolution of a hybrid system may depend both on the progress of time and
the occurrence of events. Typically when an event occurs, the system switches to a
new operation mode. At each mode, the continuous time evolution of the system is
governed by a different set of differential or difference equations. Typical examples
of hybrid systems are manufacturing systems, computer networks, digital circuits,
and logistic systems.

3



4 1 Introduction

When selecting the most appropriate model for a discrete-event or a hybrid sys-
tem, there is always a trade-off between the modeling power and the decision power;
in other words, modeling frameworks that can describe largeand general classes of
discrete-event and hybrid systems are, in general, less amenable to (efficient) math-
ematical analysis. Some examples of modeling frameworks for discrete-event and
hybrid systems are queuing theory, (extended) state machines, formal languages,
automata, temporal logic models, generalized semi-Markovprocesses, Petri nets,
and computer simulation models [19, 58, 91, 114, 115]. As a result, a special class
of discrete-event models, namely the max-plus-linear (MPL) models, has been in-
troduced that are amenable to mathematical analysis [4, 23,57]. Such models apply
to discrete-event systems with synchronization but no choice (e.g. an assembly line)
and are described using max-plus-scaling functions, i.e.,functions that are con-
structed using the operations maximization, addition, andmultiplication by a scalar.

An extension of this class is the class of switching MPL systems [108], in which
the state of the system can switch between different modes ofoperation, e.g. a pro-
duction system that has different recipes for different products and hence, the system
switches to a different mode to produce each product. At eachmode, the system is
described by an MPL model with particular system matrices for that mode. Other
examples of switching MPL systems are a railway network or a telecommunica-
tion network. We study also the class of min-max-plus-scaling (MMPS) systems,
which includes both hybrid and discrete-event systems and which are equivalent to
a particular class of hybrid systems, namely continuous piecewise affine (PWA) sys-
tems [49, 55, 88]. In MMPS systems, the system dynamics are defined by MMPS
expressions, i.e., expressions constructed using the operations maximization, min-
imization, addition, and multiplication by a scalar. Digital circuits are an example
of MMPS systems. In all these systems, we can consider a stochastic structure
imposed by the presence of model mismatch and/or disturbances [4, 57, 75].

To control stochastic systems belonging to the above-mentioned classes, one ef-
ficient control approach is model predictive control (MPC) [18, 44, 74]. MPC is an
online model-based approach, in which at each event step (for discrete-event sys-
tems) or time step (for hybrid systems) an optimal control sequence is computed.
This optimization is done over a finite series of events or finite period of time, and
at each event or time step, only the first sample of the optimalcontrol sequence will
be applied to the system. In the next step, the horizon will beshifted forward and
the new optimal control sequence will be computed. In the stochastic systems, the
objective function defined in the MPC optimization problem consists of an expected
value of stochastic max-plus-scaling functions and MMPS expressions. Hence,
solving this optimization problem creates a considerable computational complex-
ity due to the presence of the expected value. In general, theexpected value is
computed using either numerical integration or some available analytic approaches,
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which are all very time-consuming and complex.

1.2 Research Goals

The aim of this PhD research is to develop (approximation) methods, to compute the
expected value of max-plus-scaling and MMPS functions withthe focus on reducing
the computational complexity and the computation time. Since the currently used
methods, i.e., numerical or analytic integration, are computationally quite complex,
MPC for stochastic (switching) MPL or MMPS systems has only been studied in
the literature for systems with uniformly distributed or bounded noise, which causes
limitations as in practice this distribution cannot alwayscapture all the stochastic
properties of the system.

Accordingly, we propose an approximation method to computethe expected
value of max-plus-scaling and MMPS functions. This approximation method, which
is the core of this thesis, is inspired by the relation between different types of vector
norms, namely thep-norm and the∞-norm. Using this approximation approach,
we obtain an upper bound for the expected value of stochasticmax-plus-scaling and
MMPS functions that can be used as a replacement of the expected value itself when
minimizing the objective function. This approach allows usto consider stochastic
random variables with any probability distribution that has finite moments of which
a closed form exists, such as the uniform distribution, the normal distribution, the
beta distribution, etc.

After obtaining this approximation method, we apply it to address MPC and
identification of stochastic MPL systems, MPC for stochastic switching MPL sys-
tems, and MPC for MMPS systems. The proposed approximation method simpli-
fies the computations considerably. Moreover, we show in thecase studies that
by choosing the appropriate order of the moments, the approximation error can
be made sufficiently small. In these examples, we obtain a much faster and more
efficient way to address MPC and identification of different classes of max-plus sys-
tems with a performance that is comparable to the one using the existing methods
to compute the expected value, such as numerical or analyticintegration and Monte
Carlo simulation.

1.3 Overview of the Thesis

This PhD thesis starts with a short overview on previous workdone on MPC and
identification of MPL and other classes of max-plus systems (Chapters 1-3) and then
follows by presenting the main contribution of this thesis (Chapter 4), which is an
approximation approach for computing the expected value ofmax-plus functions,
as well as addressing MPC and identification of the mentionedclasses using this
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new approach (Chapters 5-7). The relation between the chapters of this thesis is
illustrated in Figure 1.1.
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Figure 1.1: Overview of the thesis

The thesis is organized as follows:

Chapter 2

This chapter provides background information on the max-plus algebra. Since
we study different classes of MPL systems in this thesis, Chapter 2 gives a brief
overview on each of these classes, namely the classes of stochastic MPL systems,
stochastic switching MPL systems, and stochastic MMPS systems. For each of
these systems, there is a simple example in order to make a clearer understanding
of these systems.
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Chapter 3

In Chapter 3, we give a concise account of MPC for stochastic MPL systems with
an extension to switching MPL systems and MMPS systems. Moreover, identifica-
tion of stochastic MPL systems is also discussed briefly. Both for MPC and iden-
tification, we explain the methodology and the computational procedure. We also
present the currently applied methods to solve the MPC and identification optimiza-
tion problem of these systems and discuss the computationalcomplexities imposed
by these methods.

Chapter 4

Chapter 4 introduces the new approximation approach based on moments of random
variables and describes how it reduces the complexity of MPCand identification
optimization problems. The main advantage of this approachis that it results in an
analytic solution in the case that random variables have finite moments with a closed
form and hence, it reduces the computation time of the optimization procedure as
well. We also discuss the error of this approximation methodand show that this
error is bounded both from below and from above. Furthermore, the convexity of the
approximation function obtained from this method is discussed. Having a convex
approximation function, in many cases, results in a convex optimization problem,
which can be solved efficiently.

Chapter 5

Chapter 5 is dedicated to the application of the approximation method to MPC and
identification of stochastic MPL systems. In both cases, theapproximate objective
function will be defined, which is indeed an upper bound for the true objective func-
tion. Since this approximate function can be computed analytically, the computation
time of the approximate optimization problem is very short and the computational
complexity is much less than the one using numerical or analytic integration. We
present examples with different types of distributions (with bounded and unbounded
domain) for both MPC and identification of stochastic MPL systems to compare the
results obtained using the approximation method with the results obtained using
other methods, such as numerical or analytic integration and Monte Carlo simula-
tion.

Chapter 6

In Chapter 6, we extend the approximation method further to two other classes
of discrete-event systems, namely the stochastic switching MPL systems and the
stochastic MMPS systems. Here again, we define an approximate objective function
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using the approximation method to obtain an upper bound for the objective function.
For switching MPL systems, we consider both stochastic switching and stochastic
system parameters at the same time and hence, we study the cases in which these
two stochastic phenomena are independent of or dependent oneach other. In case
of MMPS systems, in order to be able to apply the approximation method, we first
need to rewrite the MMPS objective function as a difference of two convex functions
and next, apply the approximation method. For both switching MPL systems and
MMPS systems, we present worked examples to compare the performance of the
approximation method with other existing methods.

Chapter 7

Min-max optimization of MMPS systems appears in different problems defined for
discrete-event and hybrid systems. Chapter 7 presents the min-max and stochas-
tic optimization problem of MMPS systems. We study the min-max optimization
over bounded control variables, the minimization of MMPS functions with stochas-
tic variables, and the min-max optimization of MMPS functions with stochastic
variables and provide a solution approach for each of them. We also present two
applications, namely the filtering problem and the reference tracking problem, in
which the min-max and stochastic optimization of MMPS functions appear.

Chapter 8

Chapter 8 concludes the thesis and provides some recommendations for future re-
search. We present the main contributions of this thesis as well as suggesting further
research on some related topics in order to improve the approximation method and
some other interesting topics related to max-plus systems.

1.4 Publications

Most of the material presented in Chapters 4-6 of this PhD thesis has been published
in conference proceedings or submitted to peer reviewed journals. The link between
each chapter and the publications is as follows:

• Chapter 4 is based on the paper [37–39]

• Chapter 5 is based on the papers [35, 37–39]

• Chapter 6 is based on the papers [36, 113]



Chapter 2

Background

In this chapter, we present a brief overview of max-plus algebra, followed by a con-
cise description of some special classes of discrete-eventsystems such as stochastic
max-plus-linear (MPL) systems, stochastic switching MPL systems, and stochas-
tic max-min-plus-scaling (MMPS) systems. Since the main focus of this thesis is
on providing an approximation method in order to increase the computational effi-
ciency of the control process of such systems, it is useful tofirst become acquainted
with the general description of these systems.

2.1 Max-Plus Algebra

DefineRε = R ∪ {ε} andε = −∞. The max-plus addition (⊕) and multiplication
(⊗) are defined as follows:

x⊕ y = max(x, y)

x⊗ y = x+ y

for x, y ∈ Rε. The zero element of the max-plus addition isε, i.e.,x⊕ ε = x, and
the identity element of the max-plus multiplication is0, i.e.,x⊗ 0 = x. The setRε

together with the operators⊕ and⊗ is called max-plus algebra and is denoted by
Rε = (Rε,⊕,⊗, ε, 0) [4]. Note thatRε is asemifieldsince:

• the operation⊕ is associative and commutative;

• the operation⊗ is distributive with respect to⊕ and its identity element0
satisfiesε⊗ 0 = 0 ⊗ ε = ε.

Rε is alsoidempotentsince the first operation is idempotent, i.e.,x⊕ x = x,∀x ∈
Rε, and it is commutative, i.e.,x⊗ y = y ⊗ x.

9



10 2 Background

The corresponding max-plus matrix operations are defined [4] as

(A⊕B)ij = aij ⊕ bij = max(aij , bij)

(A⊗ C)ij =

n⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for A,B ∈ R
m×n
ε andC ∈ R

n×p
ε . We denote thei-th row of matrixA byAi,· and

thej-th column byA·,j. To avoid confusion in the sequel, we drop the multiplica-
tion sign in conventional algebra expressions while keeping the⊗ sign in max-plus
expressions.

Now letSmps denote the set of max-plus-scaling functions, i.e., functionsf of
the form

f(z) = max
i=1,...,m

(τi,1z1 + · · · + τi,nzn + ξi) (2.1)

with variablez ∈ R
n
ε and constant coefficientsτi,j ∈ R andξi ∈ R. In the sequel,

we stress thatf is a max-plus-scaling function ofz by writing f ∈ Smps,z.

Remark 2.1.1 Let k ∈ N/{0}. Then forx ∈ Rε, the max-plus power is defined as
x⊗

k
= k · x and – by definition –x⊗

0

= 0. Therefore, a max-plus-scaling function
f can also be defined using max-plus notations as follows:

f(z) =

m⊕

i=1

z⊗
τi,1

1 ⊗ · · · ⊗ z⊗
τi,n

n ⊗ ξi.

with variablez ∈ R
n
ε and constant coefficientsτi,j ∈ R andξi ∈ R. However, in

this thesis, we use the expression in (2.1) for ease of accessibility and to emphasize
linearity in terms of conventional algebra. 2

As shown in [104], the setSmps is closed under the operations⊕,⊗, and the scalar
multiplication. The in-depth discussion on max-plus algebra can be found in [4, 23,
57].

2.2 Stochastic Max-Plus-Linear (MPL) Systems

Discrete-event systems form a large class of dynamic systems in which the evolution
of the system is specified by the occurrence of certain discrete events, unlike con-
tinuous dynamic systems where the state of the system changes as time progresses.
For such systems, there exist different modeling frameworks such as queuing the-
ory, (extended) state machines, formal languages, automata, temporal logic models,
generalized semi-Markov processes, Petri nets, and computer simulation models
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[19, 58, 91]. Models of such systems are in general nonlinearin conventional al-
gebra. However, there exists an important class of discreteevent systems, namely
the max-plus-linear (MPL) systems, for which the model islinear in the max-plus
algebra.

The class of MPL systems consists of discrete-event systemswith synchro-
nization but no choice. Synchronization requires the availability of several re-
sources at the same time, whereas choice appears, e.g., whensome user must choose
among several resources [4]. Typical examples of such systems are serial produc-
tion lines, production systems with a fixed routing schedule, and railway networks.
In stochastic systems, processing times and/or transportation times are assumed to
be stochastic quantities, since in practice such stochastic fluctuations can, e.g. be
caused by machine failure or depreciation [87]. Another type of error is model-
ing errors, which again leads to errors in the system matrices. Related topics on
(stochastic) MPL systems including analysis, controller design, etc., can be found
in [4, 6, 57, 75, 87, 92].

A stochastic MPL system can be modeled [4, 23] as follows:

x(k) = A(k) ⊗ x(k − 1) ⊕B(k) ⊗ u(k) (2.2)

y(k) = C(k) ⊗ x(k) (2.3)

whereA(k), B(k) andC(k) are system matrices, which are perturbed by noise
and/or modeling errors by assumption,x(k) is the state of the system at event stepk,
andu(k) andy(k) are the input and output of the system. In fact, the vectorsx(k),
u(k), andy(k) contain the time instants at which the internal, input, and output
events occur for thek-th time, respectively. Modeling mismatch and disturbances
perturb the system by introducing uncertainty in the systemmatrices. Sometimes it
is difficult to distinguish between these two, but usually fast changes in the system
matrices will be considered as noise and disturbances, whereas slow changes or
permanent errors are considered as model mismatch. Following Van den Boom et
al. [109], the uncertainties in the system are presented in asingle framework, using
one stochastic vectore(k) with a certain probability distribution. Hence, the entries
of the system matrices belong toSmps (see [104]), i.e.,A(k) ∈ Snx×nx

mps,e(k), B(k) ∈
Snx×nu

mps,e(k), C(k) ∈ Sny×nx

mps,e(k), which is illustrated in Example 2.2.2 below.

Remark 2.2.1 In practice, the order of MPL systems can range from about 10 (e.g.
for small production systems) to more than 200 (e.g., for a large scale railway net-
work). The examples presented in this thesis consider systems with a small system
order due to two reasons. The first reason is that this is a didactic choice, which
allows more insight into the problem. The second reason is that in the following
chapters, we will compare our proposed approximation methods with some other
available methods from the literature and since some of these methods are often
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very slow and inefficient for systems of large order, our examples are chosen ac-
cordingly. 2

Example 2.2.2 A simple production system with stochastic processing time
[27]

P1

P2

-

-

PPPPPPPPPq

���������1 P3
-

u(k)

y(k)

t1 = 0

t2 = 2

t3 = 0

t4 = 1

t5 = 0

d1 = 12

d2(k) = 11 + e1(k)

d3(k) = 7 + e2(k)

Figure 2.1: A simple production system.

Consider the system of Figure 2.1. This production system consists of three
processing units:P1, P2, andP3. Raw material is fed toP1 andP2 to be processed,
and then it is sent toP3 where assembly takes place. The processing times forP1 is
d1 = 12 time units. We assume that the processing time forP2 andP3 are perturbed
by noise, i.e.,d2(k) = d2 + e1(k) andd3(k) = d3 + e2(k) whered2 = 11, d3 = 7,
ande(k) = [e1(k)e2(k)]

T is an stochastic vector with independent elements and
with a given probability distribution (e.g. the uniform distribution or the normal
distribution). We assume that it takest2 = 2 time units for the raw material to get
from the input source toP2 and that it takest4 = 1 time unit for the finished products
of processing unitP2 to reachP3. The other transportation times (t1, t3, andt5) are
assumed to be negligible. We assume that at the input of the system and between the
processing units there are buffers with a capacity that is large enough to ensure that
no buffer overflow will occur. We consider the situation where initially all buffers
are empty and none of the processing units contains raw material or intermediate
products.

A processing unit can only start working on a new product if ithas finished pro-
cessing the previous product. We assume that each processing unit starts working
as soon as all parts are available. Define

• u(k): time instant at which raw material is fed to the system for thek-th time,

• xi(k): time instant at which thei-th processing unit starts working for the
k-th time,

• y(k): time instant at which thek-th finished product leaves the system.
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Let us now determine the time instant at which processing unit P1 starts working
for thek-th time. If we feed raw material to the system for thek-th time, then this
raw material is available at the input of processing unitP1 at timet = u(k) + t1.
However,P1 can only start working on the new batch of raw material as soonas it
has finished processing the previous, i.e., the(k−1)-th, batch. Since the processing
time onP1 is d1 = 12 time units, the(k − 1)-th intermediate product will leaveP1

at timet = x1(k − 1) + d1. SinceP1 starts working on a batch of raw material as
soon as the raw material is available and the current batch has left the processing
unit, this implies that we have

x1(k) = max(x1(k − 1) + d1, u(k) + t1 ) (2.4)

for k = 1, 2, . . . The condition that initially processing unitP1 is empty and idle
corresponds to the initial conditionx1(0) = ε since then it follows from (2.4) that
x1(1) = u(1), i.e., the first batch of raw material that is fed to the systemwill be
processed immediately.

Using a similar reasoning, we find the following expressionsfor the time in-
stants at whichP2 andP3 start working for thek-th time and for the time instant at
which thek-th finished product leaves the system:

x2(k) = max(x2(k − 1) + d2(k − 1), u(k) + t2 ) (2.5)

x3(k) = max(x1(k) + d1 + t3, x2(k) + d2(k) + t4, x3(k − 1) + d3(k − 1) )

= max(x1(k − 1) + 2d1 + t3, x2(k − 1) + d2(k − 1) + d2(k) + t4,

x3(k − 1) + d3(k − 1), u(k) + d1 + t1 + t3, u(k) + d2(k) + t2 + t4 )

(2.6)

y(k) = x3(k) + d3(k) + t5 (2.7)

for k = 1, 2, . . . . The condition that initially all buffers are empty corresponds to
the initial conditionx1(0) = x2(0) = x3(0) = ε.

Let us now rewrite the evolution equations of the productionsystem in a max-
plus format. It is easy to verify that (2.4) can be rewritten as

x1(k) = d1 ⊗ x1(k − 1) ⊕ t1 ⊗ u(k) .

Likewise, (2.5)–(2.7) can be written as follows:

x2(k) = d2(k − 1) ⊗ x2(k − 1) ⊕ t2 ⊗ u(k),

x3(k) = 2d1 ⊗ t3 ⊗ x1(k − 1) ⊕ d2(k − 1) ⊗ d2(k) ⊗ t4 ⊗ x2(k − 1)⊕
d3(k − 1) ⊗ x3(k − 1) ⊕ d1 ⊗ t1 ⊗ t3 ⊗ u(k) ⊕ d2(k) ⊗ t2 ⊗ t4 ⊗ u(k),

y(k) = d3(k) ⊗ t5 ⊗ x3(k).
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If we now rewrite the above equations in max-plus-algebraicmatrix notation, we
obtain

x(k) = A(k) ⊗ x(k−1) ⊕B(k) ⊗ u(k)

y(k) = C(k) ⊗ x(k) .

wherex(k) = [x1(k) x2(k) x3(k)]
T and with the system matricesA(k), B(k)

andC(k) given as follows:

A(k) =





d1 ε ε

ε d2(k − 1) ε

2d1 + t3 d2(k − 1) + d2(k) + t4 d3(k − 1)





=





d1 ε ε

ε d2 + e1(k − 1) ε

2d1 + t3 2d2 + e1(k − 1) + e1(k) + t4 d3 + e2(k − 1)



 ,

B(k) =





t1
t2

max(d1 + t1 + t3, d2(k) + t2 + t4)





=





t1
t2

max(d1 + t1 + t3, d2 + e1(k) + t2 + t4)



 ,

C(k) =
[
ε ε d3(k)

]

=
[
ε ε d3 + e2(k)

]
.

Note that this is a model of the form (2.2)–(2.3). Here,d2(k) = d2 + e1(k) =

d2⊗e1(k) andd3(k) = d3+e2(k) = d3⊗e2(k), which implies that in MPL systems
the influence of noise and disturbances is max-plus-multiplicative, which results in
the perturbation of system matrices; this is in contrast to conventional linear systems
in which the noise and disturbances are often considered to be additive and hence,
are modeled by including an extra term in the system equations. 2

2.3 Stochastic Switching MPL Systems1

Another class of discrete-event systems is the class of switching MPL systems,
which consists of discrete-event systems that can switch between different modes

1The discussion on stochastic switching MPL systems is mainly based on the results appearing in
[107, 112]
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of operation such that each mode, itself, is an MPL system. The mode switching
allows us to model a change in the structure of the system, such as breaking a syn-
chronization or changing the order of events. In each modeℓ ∈ {1, . . . , nL}, the
system is described by an MPL state equation and an MPL outputequation, with
different system matrices for each mode, as follows:

x(k) = A(ℓ(k)) ⊗ x(k − 1) ⊕B(ℓ(k)) ⊗ u(k) (2.8)

y(k) = C(ℓ(k)) ⊗ x(k) (2.9)

whereA(ℓ(k)) ∈ R
nx×nx , B(ℓ(k)) ∈ R

nx×nu , andC(ℓ(k)) ∈ R
ny×nx are the system

matrices for theℓ-th mode. We assume that there arenL possible modes.
The class of Switching MPL systems with deterministic and stochastic switch-

ing contains discrete-event systems with synchronizationbut no choice, in which
the order of events may vary randomly and often cannot be determined a priori.
This randomness may be due to e.g. (randomly) changing production recipes, vary-
ing customer demands or traffic demands, failures in production units, or faults in
transmission links [5, 108]. A stochastic switching MPL system may be character-
ized by stochastic switching or stochastic system parameters, or both at the same
time. For the case of stochastic switching with deterministic parameters, the prob-
ability of switching to modeℓ at event stepk may depend on the previous mode
ℓ(k− 1), the previous statex(k − 1), the input variableu(k), a (additional) control
variablev(k), and the event stepk, which can be denoted by [107]

P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k), k], (2.10)

whereL(k) is a stochastic variable andℓ(k) is its value2. Since (2.10) is a probabil-
ity, it has the following properties:

0 ≤ P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k), k] ≤ 1
nL∑

ℓ(k)=1

P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k), k] = 1.

In the case of having only perturbed system parameters with deterministic mode
switching, at each modeℓ ∈ {1, . . . , nL} the system equations are of the form
(2.2)-(2.3). In the last case in which both mode switching and systems parameters
are stochastic variables, the system equations can be defined as follows [107]:

x(k) = A(ℓ(k))(e(k)) ⊗ x(k − 1) ⊕B(ℓ(k))(e(k)) ⊗ u(k) (2.11)

2As mentioned in [108], to obtain an optimal switching sequence in this case, we can use global
random search algorithms such as genetic algorithms [24], tabu search [45], or a branch-and-bound
method [22].
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y(k) = C(ℓ(k))(e(k)) ⊗ x(k) (2.12)

whereA(ℓ(k))(e(k)), B(ℓ(k))(e(k)), andC(ℓ(k))(e(k)) are the system matrices cor-
responding to modeℓ(k) with a stochastic vectore(k).

In the following example, we illustrate the first case in which the mode changing
is stochastic and the system parameters are deterministic.

Example 2.3.1 A production system with stochastic switching between three
different recipes [107]

M1

M2

M3

d1 = 1

d2 = 1

d3 = 5

�
�

�
�

�
��7

- -

S
S

S
S

S
SS -

-

@
@

@
@R

@
@

@
@I �

�
�

�	
�

�
�

��

u(k) y(k)

A,C

B

A
B

B,C

C
A

C

A,B

Figure 2.2: A production system with stochastic switching between different recipes.

Consider the production system of Figure 2.2. This system consists of three ma-
chinesM1, M2, andM3. Three products (A,B,C) can be made with this system,
each with its own recipe, meaning that the order in the production sequence is dif-
ferent for every product. For productA (using recipeℓ(k) = 1) the production order
is M1-M2-M3, which means that the raw material is fed to machineM1 where it
is processed. Next, the intermediate product is sent to machineM2 for further pro-
cessing, and finally the productA is finished in machineM3. Similarly, for product
B (using recipeℓ(k) = 2) the processing order isM2-M1-M3, and for productC
(using recipeℓ(k) = 3) the processing order isM1-M3-M2. We assume that the
type of thek-th product (A, B or C) is available at the start of the production, so
that we do knowℓ(k) when computingu(k).

Each machine starts working as soon as possible on each batch, i.e., as soon
as the raw material or the required intermediate products are available, and as soon
as the machine is idle (i.e., the previous batch has been finished and has left the
machine). We defineu(k) as the time instant at which the system is fed with the
raw material for thek-th product,xi(k) as the time instant at which machinei starts
processing thek-th product, andy(k) as time instant at which thek-th product
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leaves the system. We assume that all the internal buffers are large enough, and no
overflow will occur.

We assume the transportation times between the machines to be negligible, and
the processing times of the machinesM1,M2 andM3 to be given byd1 = 1, d2 = 1

andd3 = 5, respectively. The system equations for recipeA are given by

x1(k) = max(x1(k − 1) + d1, u(k)) ,

x2(k) = max(x1(k) + d1, x2(k − 1) + d2)

= max(x1(k − 1) + 2d1, x2(k − 1) + d2, u(k) + d1) ,

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

= max(x1(k − 1) + 2d1 + d2, x2(k − 1) + 2d2,

x3(k − 1) + d3, u(k) + d1 + d2) ,

y(k) = x3(k) + d3 ,

leading to the following system matrices for recipeA:

A(1) =





d1 ε ε

2d1 d2 ε

2d1 + d2 2d2 d3



 , B(1) =





0

d1

d1 + d2



 , C(1) =
[
ε ε d3

]
.

Similarly we derive for recipeB:

A(2) =





d1 2d2 ε

ε d2 ε

2d1 d1 + 2d2 d3



 , B(2) =





d2

0

d1 + d2



 , C(2) =
[
ε ε d3

]
,

and for recipeC:

A(3) =





d1 ε ε

2d1 + d3 d2 2d3

2d1 ε d3



 , B(3) =





0

d1 + d3

d1



 , C(3) =
[
ε d2 ε

]
.

The switching probability from one recipe to the next one is assumed to be given
by:

P [L(k) = 1|1, x(k − 1), u(k), k] = 0.64

P [L(k) = 1|2, x(k − 1), u(k), k] = 0.18

P [L(k) = 1|3, x(k − 1), u(k), k] = 0.18

P [L(k) = 2|1, x(k − 1), u(k), k] = 0.18

P [L(k) = 2|2, x(k − 1), u(k), k] = 0.64

P [L(k) = 2|3, x(k − 1), u(k), k] = 0.18
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P [L(k) = 3|1, x(k − 1), u(k), k] = 0.18

P [L(k) = 3|2, x(k − 1), u(k), k] = 0.18

P [L(k) = 3|3, x(k − 1), u(k), k] = 0.64

which means that if we have a specific recipe for productk, then the probability of
having the same recipe for productk+ 1 is 64%, and the probability of a switching
to each other recipe is18%. 2

2.4 Stochastic Max-Min-Plus-Scaling (MMPS) Systems

A large class of discrete-event and hybrid systems can be described by a max-min-
plus-scaling (MMPS) model. Hybrid systems [111] contain both continuous dy-
namics and switching. Typical examples are manufacturing systems, telecommuni-
cation and computer networks, traffic control systems, digital circuits, and logistic
systems. In [81] it is shown that the class of MMPS systems encompasses several
other classes of discrete-event systems such as continuouspiecewise affine (PWA)
systems.

Remark 2.4.1 Note that (stochastic) MMPS systems can be both event-driven and
time-driven since both discrete-event and hybrid systems can be modeled using the
class of (stochastic) MMPS systems. 2

Definition 2.4.2 ([29]) g : R
n → R is a scalar-valued MMPS function of the vari-

ablesx1, . . . , xn if there exists scalar-valued MMPS functionsgk andgl such that

g(xi) =xi|α|max(gk(x), gl(x))|min(gk(x), gl(x))|
gk(x) + gl(x)|βgk(x),

where| stands for “or” andα, β ∈ R for i = 1, . . . , n.

Accordingly, for a vector-valued MMPS functiong : R
n → R

m, each component
of g is an MMPS function of the above form. Furthermore, MMPS functions are
dense in the class of continuous functions since they are (cf. Chapter 6) equivalent
to continuous PWA functions, which form a dense subspace of continuous functions
[69, Section 2.7].

Remark 2.4.3 A natural extension of stochastic MPL systems is stochasticmax-
min-plus (MMP) systems [60, 86], such as a system describes discrete flows on
networks or a traffic network. In this thesis, we take one stepfurther and consider
stochastic MMPS systems in which scaling is present as well. 2
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Accordingly, a state space representation of a deterministic MMPS system can be
described as follows:

x(k) = Mx(x(k − 1), u(k)) (2.13)

y(k) = My(x(k), u(k)), (2.14)

whereMx, My are MMPS functions,x(k) is the system state,u(k) is the system
input, andy(k) is the system output at time or event stepk. Similar to conventional
linear systems, in stochastic MMPS systems in which noise and modeling errors are
present, disturbances and modeling mismatches appear in the systems equations.
Hence, the system (2.13)-(2.14) then turns into:

x(k) = Mx(x(k − 1), u(k), e(k)) (2.15)

y(k) = My(x(k), u(k), e(k)). (2.16)

As mentioned in the previous sections, we consider both noise and modeling errors
in a single framework and present it by the vectore(k), which is a stochastic variable
with a given probability density function.

Furthermore, it has been shown in [49, 55, 88] that MMPS systems are equiva-
lent to a particular class of hybrid systems, namely continuous PWA systems.

Definition 2.4.4 ([42]) A continuous piecewise affine function is defined by a finite
number of hyperplanes that divide the whole space into a finite number of convex
regionsC1 . . . , Cr surrounded by boundary hyperplanes, and by a set of constant
Jacobian matricesJ (m), m = 1, 2, . . . , r, each of which describes the linear be-
havior in each region asJ (m)x + b(m) whereb(m) is a constant vector defined in
a given regionm, and r denotes the total number of regions, and the function is
continuous across the boundaries of the regions .

For more information on PWA functions and PWA systems we refer to [7, 20, 21,
61, 64, 69, 102] and the references therein.

Proposition 2.4.5 ([49, 88])Any MMPS function can be written as a continuous
PWA function and vice versa.

The relation between PWA and MMPS systems is useful for the investigation of
structural properties of PWA systems such as observabilityand controllability but
also in designing controller schemes like model predictivecontrol (MPC) [8, 61].

The following example is a sample of a system with MMPS dynamics3.

3Note that this system is in fact an MMP system which is a special case of an MMPS system with
the scaling factors equal to 1. Later on in Chapter 6, examples of fully-fledged MMPS systems and
functions will be considered explicitly.
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Example 2.4.6 A production system with MMPS system dynamics[29]

[S] u(k)

[E] v(k)

y(k)

d1

d2

d3

M1

M2

M3

Figure 2.3: A simple manufacturing system with MMPS dynamics.

Consider the production system of Figure 2.3, which consists of three process-
ing unitsM1, M2, andM3 with processing timesd1, d2, andd3. Raw material is
coming from two sources: from an external provider (denotedby E in Figure 2.3)
over which we have no control, and from a source (denoted byS in Figure 2.3) for
which we can completely control the release times (e.g., a storage unit with a large
capacity so that its stock level never runs down to zero). Thetime instants at which
thek-th batch of raw material from the controllable source and the external source
arrives at the system are denoted byu(k) andv(k), respectively. The raw material
from both sources can be processed by eitherM1 or M2, which perform similar
tasks. However,M2 is slower thanM1. Therefore, the part of the raw material that
arrives first for thek-th product is processed onM2 and the part that arrives last will
be processed onM1. So if v(k) ≤ u(k), then thek-th batch of raw material coming
from the external (uncontrollable) source is processed onM2 and the raw material
coming from the controllable source onM1; if u(k) < v(k), the reverse holds. This
implies that thek-th batch of raw material destined forM1 arrives at the production
unit at time instantt = max(u(k), v(k)), and that thek-th batch destined forM2

arrives at time instantt = min(u(k), v(k)). The intermediate products generated
byM1 andM2 are sent toM3 where assembly takes places.

The processing time forM2 andM3 ared2 = 15 andd3 = 1 time units, re-
spectively. We assume that the processing time forM1 is perturbed by noise, i.e.,
d1(k) = 10 + e(k) wheree(k) is an stochastic variable with a given probability
distribution. We assume that the transportation times in the manufacturing system
are negligible, and that in between the production units there are storage buffer with
a sufficiently large capacity, so that no buffer overflows occur. The time instant at
which processing unitMi starts processing thek-th batch is denoted byxi(k), and
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y(k) is the time instant at which thek-th finished product leaves the system. As-
sume that each production unit starts working for thek-th time as soon as the raw
material is available and as soon as the production unit has finished processing the
previous part. Hence,

x1(k) = max
(
x1(k − 1) + d1(k),max(u(k), v(k))

)

= max
(
x1(k − 1) + d1(k), u(k), v(k)

)

x2(k) = max
(
x2(k − 1) + d2,min(u(k), v(k))

)

x3(k) = max
(
x3(k − 1) + d3, x1(k) + d1(k), x2(k) + d2

)

= max
(
x3(k − 1) + d3, x1(k − 1) + 2d1(k), u(k) + d1(k),

v(k) + d1(k), x2(k − 1) + 2d2,min(u(k), v(k)) + d2

)

y(k) = x3(k) + d3.

Note thatxi(k) andy(k) are MMPS functions ofx(k− 1), u(k), v(k), ande(k). 2

2.5 Summary

In this chapter we have briefly discussed max-plus algebra and three different classes
of discrete-event systems, namely the class of stochastic MPL systems, the class of
stochastic switching MPL systems, and the class of stochastic MMPS systems. For
each of these classes, the state space representation of each system has been given
and some related issues such as the mode switching probability description and the
equivalence between MMPS and PWA functions have been addressed. Furthermore,
for each class one example has been provided.





Chapter 3

Model Predictive Control and
Identification of Stochastic
Max-Plus-Linear Systems

In this chapter, state-of-the-art in control and identification of stochastic MPL sys-
tems is discussed. More specifically, we first discuss model predictive control
(MPC) for stochastic MPL systems and next, we also consider MPC for two other
classes of discrete-event systems, namely the class of stochastic switching MPL sys-
tems and the class of stochastic MMPS systems. For both MPC and identification of
stochastic MPL systems, some solution approaches have beenproposed in the liter-
ature, which are presented in this chapter. These approaches have some limitations,
which will be discussed here as well.

3.1 Model Predictive Control (MPC) for Stochastic MPL
Systems

MPC is an advanced control approach used in the process industry that relies on a
dynamic model of the process and it has the following properties:

• MPC is a model-based controller design procedure that can easily handle
processes with large time delays, multi-input multi-output processes, non-
minimum phase processes, and unstable processes.

• It is an easy-to-tune method: in principle only three parameters have to be
tuned.

• MPC can handle constraints on the inputs and the outputs of the process (due
to, e.g., limited capacity of buffers, actuator saturation, output quality specifi-

23
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cations, etc.) in a systematic way during the design and the implementation of
the controller. Conventional control design techniques, such as LQG andH∞

control methods [3, 101], can often not be applied once additional constraints
on inputs and outputs are included.

• MPC can handle structural changes, such as sensor or actuator failures, and
changes in system parameters or the system structure, by adapting the model
and by using a receding horizon approach, in which the model and the control
strategy are regularly updated.

MPC is based on an iterative, finite horizon algorithm to obtain an optimal control
sequence in order to minimize the objective function subject to the given constraints.
At each iteration, the optimal control sequence is computedover a finite horizon,
i.e., a finite period of time or a finite series of events. MPC uses the receding horizon
principle, which means that after computation of the optimal control sequence, only
the first sample will be implemented in the next iteration. Subsequently, the horizon
will be shifted one sample, and the optimization will be restarted with new informa-
tion of the measurements. The MPC methodology is explained in more details in
the following section.

Conventional MPC uses linear or nonlinear discrete-time models [74]. How-
ever, MPC has also been extended to discrete-event systems due to its useful fea-
tures mentioned above [27, 82]. One of the relevant topics that has attracted much
attention recently, is the application of MPC for perturbedmax-plus linear systems
in which modeling errors, noise, and/or disturbances are present. In [104] such
systems have been studied, which results in an MPC controller for perturbed MPL
systems.

3.1.1 Problem Statement

In [27, 104] the MPC framework has been extended to MPL models(2.2)–(2.3)
as follows. Following the conventional MPC methodology [44, 74], we define an
objective functionJ that reflects the input and output objective functions from event
stepk to k +Np − 1, as

J(k) = Jout(k) + λJin(k) (3.1)

whereNp is the prediction horizon andλ is a weighting factor. Typical choices of
Jout andJin for a stochastic system are:

Jout,1(k) = E[‖ỹ(k) − r̃(k)‖1], Jout,∞(k) = E[‖ỹ(k) − r̃(k)‖∞],

Jout,t(k) = E[max{ỹ(k) − r̃(k), 0}] (3.2)

Jin,1(k) = −‖ũ(k)‖1, Jin,∞(k) = −‖ũ(k)‖∞,
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Jin,t(k) = −
Np·nu∑

i=1

ũi(k)

whereE[·] denotes the expected value operator and

ũ(k) = [ uT (k) · · · uT (k+Np−1) ]T ,

ỹ(k) = [ yT (k) · · · yT (k+Np−1) ]T ,

r̃(k) = [ rT (k) · · · rT (k+Np−1) ]T ,

(3.3)

with r(k) denoting the vector of reference (due date) signals. To proceed further, as
an example, let us consider1 the following input and output objective functions:

Jout(k) =

Np−1
∑

j=0

ny∑

i=1

E[max(yi(k + j) − ri(k + j), 0)] , (3.4)

Jin(k) = −
Np−1
∑

j=0

nu∑

l=1

ul(k + j). (3.5)

The physical interpretation for this choice of output and input objective functions
is thatJout(k) penalizes the late but not early deliveries for thei-th output at event
stepk andJin(k) promotes feeding as late as possible at each event stepk. Hence,
the objective function (3.1) can be defined as:

J(k) =

Np−1
∑

j=0

ny∑

i=1

E[max(yi(k + j) − ri(k + j), 0)] − λ

Np−1
∑

j=0

nu∑

l=1

ul(k + j)

(3.6)

The aim is to compute an optimal input sequenceu(k), . . . , u(k+Np − 1) that
minimizesJ(k) in (3.6) subject to linear constraints on the inputs and the expected
value of the outputs, i.e., the constraints of the form

Acon(k)ũ(k) +Bcon(k)E[ỹ(k)] ≤ ccon(k)

whereAcon(k) ∈ R
ncon×Npnu ,Bcon(k) ∈ R

ncon×Npny , andccon ∈ R
ncon with ncon

denoting the number of constraints.
Moreover, since theu(k)’s correspond to consecutive event occurrence times,

we have the additional condition

∆u(k + j) = u(k + j) − u(k + j − 1) ≥ 0 for j = 0, . . . , Np − 1.

1Note that the whole procedure presented here can also be applied to any other combination of
the input and output objective functions in (3.2).
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Furthermore, in order to reduce the number of decision variables and the corre-
sponding computational complexity, we can introduce a control horizonNc (≤ Np)
and add the condition that the input rate should be constant from the pointk+Nc−1

on, i.e.,

∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, . . . , Np − 1,

or equivalently

∆2u(k + j) = ∆u(k + j) − ∆u(k + j − 1) = 0 for j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle, which means that after computation of the
optimal control sequenceu(k), . . . , u(k + Nc − 1), only the first control sample
u(k) will be implemented, subsequently the horizon is shifted one event step, and
the optimization is restarted with new information of the measurements.

Now, by using successive substitution in (2.2)-(2.3), we obtain [104]

ỹ(k) = C̃(k) ⊗ x(k − 1) ⊕ D̃(k) ⊗ ũ(k) (3.7)

in which ẽ(k) = [ eT (k) · · · eT (k+Np−1) ]T andC̃(k) andD̃(k) are given by

C̃(k) =






C̃1(k)
...

C̃Np(k)






D̃(k) =






D̃11(k) · · · D̃1Np(k)
...

. ..
...

D̃Np1(k) · · · D̃NpNp(k)






where

C̃m(k) = C(k +m− 1) ⊗A(k +m− 1) ⊗ . . . ⊗A(k)

D̃mn(k)=







C(k+m−1)⊗A(k+m−1)⊗. . .⊗A(k+n)⊗B(k+n−1) m > n

C(k+m−1)⊗B(k+m−1) m = n

ε m < n.

Note that since the entries ofA(k), B(k), andC(k) belong toSmps (cf. Section
2.2), the entries of̃C(k) andD̃(k) belong toSmps as well.

Hence, we can rewrite (3.4)-(3.5), and accordingly (3.6), as

Jout(k) =

Np·ny∑

i=1

E

[

max
(

ỹi(k) − r̃i(k), 0
)]
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Jin(k) = −
Np·nu∑

j=1

ũj(k)

J(k) = Jout(k) + λJin(k)

whereỹi(k) and r̃i(k) denote thei-th element of̃y(k) and r̃(k) respectively, and
ũj(k) denotes thej-th element of̃u(k).

The stochastic MPL-MPC problem for event stepk is then defined as follows
[104]:

min
ũ(k)

J(k)

s.t. ỹ(k) = C̃(ẽ(k)) ⊗ x(k − 1) ⊕ D̃(ẽ(k)) ⊗ ũ(k)

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1

Acon(k)ũ(k) +Bcon(k)E[ỹ(k)] ≤ ccon(k).

(3.8)

In the next section, we present a possible solution approachto solve (3.8).

3.1.2 Solution Approach

To solve the optimization problem (3.8), we need to compute the expected value of
the signalsmax(ỹj(k) − r̃j(k), 0) and ỹ(k). As shown in [104, Lemma 2], both
max(ỹj(k) − r̃j(k), 0) andỹ(k) belong toSmps,[r̃T (k), xT (k−1), ũT (k), ẽT (k)]T .

We can rewrite bothmax(ỹj(k) − r̃j(k), 0) and ỹ(k) as a general max-plus-
scaling function of̃u(k) andẽ(k) [104], which is denoted byv(k), as follows:

v(k) = max
j=1,...,nv

(ξj + δT
j x(k − 1) + ψT

j r̃(k) + βT
j ũ(k) + γT

j ẽ(k))

wherenv is the number of terms that appear in the maximization,ξj ∈ Rε, δj ∈
R

nx, ψj ∈ R
nr , βj ∈ R

nu, γj ∈ R
nẽ , and ẽ(k) ∈ R

nẽ is a stochastic variable
with the probability density functionf(ẽ). For a shorter notation letαj(k) = ξj +

δT
j x(k − 1) + ψT

j r̃(k); hence,

v(k) = max
j=1,...,nv

(αj(k) + βT
j ũ(k) + γT

j ẽ(k)) (3.9)

Accordingly, we need now to compute the expected value ofv(k), i.e.,E[v(k)]. By
definition [89],E[v(k)] can be written as follows:

E[v(k)] =

∫ ∞

−∞
. . .

∫ ∞

−∞
v(k)f(ẽ)dẽ

=

∫ ∞

−∞
. . .

∫ ∞

−∞
max

j=1,...,nv

(αj(k) + βT
j ũ(k) + γT

j ẽ(k))f(ẽ)dẽ
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=
nv∑

j=1

∫

. . .

∫

ẽ∈Φj(ũ(k))

(αj(k) + βT
j ũ(k) + γT

j ẽ)f(ẽ)dẽ (3.10)

wheredẽ = dẽ1dẽ2 . . . dẽnẽ
and the setsΦj(ũ(k)) constitute a partition ofRnẽ such

that

int(Φℓ) ∩ int(Φν) = ∅ for ℓ 6= ν

whereint(Φj) denotes the interior ofΦj, and such that forj = 1, . . . , nv we have

v(k) = αj(k) + βT
j ũ(k) + γT

j ẽ(k) for all ẽ ∈ Φj(ũ(k))

and
⋃nv

j=1 Φj(ũ(k)) = R
nẽ , i.e., for all realizations of̃e, thej-th term in (3.9) gives

the maximum, and the setsΦj(ũ(k)) cover the whole space ofR
nẽ and only overlap

at the boundaries of the regions.

Remark 3.1.1 Note that the setsΦj, j = 1, . . . , nv are polyhedra. This follows
from the fact thatΦj is described by a system of linear inequalities. Indeed, we
have:

Φj(ũ(k)) = {ẽ | max
ℓ=1,...,nv

(αℓ(k) + βT
ℓ ũ(k) + γT

ℓ ẽ) = αj(k) + βT
j ũ(k) + γT

j ẽ},

or equivalently, forℓ = 1, . . . , nv,

Φj(ũ(k)) = {ẽ |αj(k) + βT
j ũ(k) + γT

j ẽ ≥ αℓ(k) + βT
ℓ ũ(k) + γT

ℓ ẽ}.

Therefore,Φj is described by a system of linear inequalities and hence, isa polyhe-
dron. 2

Hence,E[ỹ(k)] andE[max(ỹj(k) − r̃j(k), 0)] can be computed using (3.10).
It is also shown in [104, Proposition 3], that the functionE[v(k)] is convex in

ũ(k) and its subgradientgv(ũ(k)) is given by

gv(ũ(k)) =
nv∑

j=1

βj

∫

. . .

∫

ẽ∈Φj(ũ(k))

f(ẽ)dẽ. (3.11)

Note that since the system matrices are perturbed byẽ(k), ỹ(k) andmax(ỹj(k) −
r̃j(k), 0) both depend oñe(k). Furthermore,E[ỹ(k)] andE[max(ỹj(k)− r̃j(k), 0)]

are convex iñu(k), due to [104, Lemma 3], which implies thatJout(k) and accord-
ingly, J(k) are convex iñu(k).
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Remark 3.1.2 It is assumed that the reference signal,r̃(k), is fixed and known at
event stepk. The state,x(k), depends on its previous valuex(k − 1), which is
assumed to be completely known at event stepk (cf. Section 3.1.4), and on the
optimal inputũ(k); hencex(k) changes due to the change ofũ(k). Therefore, we
only consider the variations of̃u(k) and accordingly, the convexity of all functions
in ũ(k). 2

Note that if the entries ofBcon(k) in (3.8) are nonnegative, we will obtain mono-
tonically nondecreasing constraints inE[ỹ(k)]. Hence, sinceE[ỹ(k)] is convex in
ũ(k), all the constraints in (3.8) are then convex inũ(k). Therefore, only when all
entries ofBcon(k) are nonnegative, the MPL-MPC optimization problem turns out
to be a convex problem iñu(k) [104, Property 4]. Such a problem can be solved
using reliable and efficient convex optimization algorithms, such as interior point
methods [83, 118].

3.1.3 Computational Aspects and Issues

One way of computingE[v(k)] in (3.10) is to use numerical integration. The com-
mon methods for numerical integration are (non)adaptive integration, (non)iterative
integration, exponential quadrature, Monte Carlo integration, the Nystr̈om method,
the Quasi-Monte Carlo method, and the multi-step method [25]. However, numeri-
cal integration is in general both cumbersome and time-consuming, and it becomes
even more complicated as the probability density functionf becomes more and
more complex.

In [104], an alternative method for computingE[v(k)] is proposed based on
analytic integration. To that end, a piecewise polynomial probability density func-
tion defined on polyhedral sets is considered. Such a function can be obtained in
two ways: either the stochastic vector already has a piecewise polynomial probabil-
ity density function (such as the uniform distribution) or we approximate the real
probability density function with a piecewise polynomial probability density func-
tion2 (such as the normal distribution where its probability density function can be
approximated by PWA functions).

Let f(ẽ) be a piecewise polynomial function defined on polyhedral sets Pℓ,
ℓ = 1, . . . , np, such that

np⋃

ℓ=1

Pℓ = R
ne

int(Pi) ∩ int(Pj) = ∅ for i 6= j

2The approximate probability density function must be nonnegative and its integral over the do-
main of the real probability density function must be equal to 1. This can be assured by including
these conditions as constraints in the parameter fitting.
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where int(Pi) denotes the interior ofPi, and fore ∈ Pℓ the probability density
function is given byfℓ(e), where

fℓ(e) =

M1∑

i1=0

M2∑

i2=0

. . .

Mne∑

ine=0

ζi1,i2,...,ine
ei11 e

i2
2 · · · eine

ne

for some integersM1, . . . ,Mne and coefficientsζi1,i2,...,ine
∈ R.

Remark 3.1.3 Later in Chapter 6, Section 6.1.2, we explain that we can alsoap-
proximate a piecewise polynomial probability density function by a multi-variable
piecewise polynomial function, possibly multiplied by an exponential function. It
is also discussed in that chapter that spline functions or phase-type distributions can
also be approximated by a multi-variable piecewise polynomial function, possibly
multiplied by an exponential function. 2

Consider the signalv(k) ∈ Smps(z(k)) and letũ(k) be its non-stochastic part. Let
Ψjℓ(ũ(k)) = Φj(ũ(k)) ∩ Pℓ for j = 1, . . . , nv, ℓ = 1, . . . , np. Then by Remark
3.1.1,Ψjℓ(ũ(k)) is a polyhedron, andE[v(k)] can be written as

E[v(k)] =

np∑

ℓ=1

nv∑

j=1

∫

. . .

∫

ẽ∈Ψjℓ(ũ(k))

(αj(k) + βT
j ũ(k) + γT

j ẽ)fℓ(ẽ)dẽ. (3.12)

This is a sum of integrals of polynomial functions inẽ and then can be solved analyt-
ically for each polyhedronΨijℓ [17, 68]. Note that if a piecewise polynomial prob-
ability density function is used as an approximation of the “true” non-polynomial
probability density function, the quality of the approximation can be improved by
increasing the number of setsnp.

Even if the integral in (3.12) can be computed analytically,the computational
load is still quite heavy. This is due to the fact that this method contains two time-
consuming steps: In the first step all polyhedraΨjℓ have to be specified, where the
number of polyhedraΦj is equal tonv and the number of polyhedraPℓ isnp. Hence,
in the worst case the number of polyhedraΨjℓ that has to be considered isO(nvnp),
which becomes more and more time-consuming asnp andnv become larger. In the
second step, the integral over each of these regions has to becalculated, for which
in the simplest case of having a uniform probability densityfunction, we need to
compute all the vertices of each polyhedronΨjℓ. As explained in [76], we have the
following upper bound for the number of the vertices of a polytope defined bynv

(non-redundant) inequality constraints in annẽ-dimensional space:

V(nv, nẽ) =

(
nv − ⌊nẽ+1

2 ⌋
nv − nẽ

)

+

(
nv − ⌊nẽ+2

2 ⌋
nv − nẽ

)

(3.13)
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This means that in our case, where typicallynv is much larger thannẽ, i.e.,nv ≫
nẽ ≫ 1, the number of vertices for the worst case can beO(n

⌊
nẽ
2
⌋

v ), which is
again time-consuming asnv andnẽ increase. Accordingly for the case of a uni-
formly distributed noise, the complexity of the whole procedure in the worst case

is of orderO(npn
⌊

nẽ
2
⌋+1

v ). In the case of other piecewise polynomial probability
density functions, the order of complexity of the second step becomes even bigger
since then, the integral computation is more complex than the one in the case of a
uniform distribution. Therefore, the computational complexity of this method in-
creases exponentially asnẽ increases and polynomially asnv increases. It increases
even more in the case of non-piecewise polynomial probability density functions,
such as a normal probability density function, since these functions cannot be di-
rectly applied for this method and have to be approximated bypiecewise polynomial
probability density functions.

In [110] an effort is made to reduce the computational complexity of the above-
mentioned method by approximatingE[v(k)] in (3.10) using the method of variabil-
ity expansion. Since variability expansion is an analytic method and does not resort
to simulation, it is, in principle, possible to compute higher-order moments of per-
formance characteristics of stochastic systems. As presented in [110, Section 4], it
is assumed that the entries ofẽ(k) are independent and identically distributed (i.i.d)
and an artificial parameterθ ∈ [0, 1] is introduced. Thei-th entry of ẽ(k) is then
replaced by its mean with probability1 − θ and the result is denoted bỹeθ(k). The
parameterθ allows controlling the level of randomness in the system, and lettingθ
go from 0 to 1 increases the level of stochasticity in the system. The main idea of
variability expansion is as follows: consideringE[vθ(k)] as a function ofθ, it can
be developed into a Taylor series inθ that converges to the true function on some
subsetX ⊆ R. In particular, if the value ofdm/dθm

E[vθ(k)] for θ = 0 is denoted
by dm/dθm

E[v0(k)], thenE[v1(k)], the “true” expected value ofv(k) is given by

E[v(k)] = E[v1(k)] =
M∑

m=0

1

m!

dm

dθm
E[v0(k)] +RM (k) (3.14)

where forM < nẽ

RM (k) ≤ 1

(M + 1)!
sup

θ∈[0,1]

∣
∣
∣
dM+1

dθM+1
E[v0(k)]

∣
∣
∣

andRM = 0 otherwise [56]. It is been also shown in [110] that a closed-form
expression for them-th order derivativedm/dθm

E[v0(k)] can be obtained.
The computational complexity of approximatingE[v(k)] using the method of

variability expansion has been discussed in [110, Section 5]. Based on this discus-
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sion, the overall complexity will at least be of order

O
((nẽ

M

)

nvV(2M + nv − 1,M)
)

= O
( nM

ẽ n
M+1

2
v

M ! (M−1
2 )!

)

whereV(·, ·) is given in (3.13). The derivation of the above error order can be found
in Appendix A. Clearly, the computational complexity increases polynomially ifne

andnv increase and exponentially ifM increases.

3.1.4 Timing

When solving the MPC problem for event stepk, we assume that the statex(k− 1)

is available (recall thatx(k − 1) contains the time instants at which the internal
activities or processes of the system start for the(k − 1)-th cycle). However, MPL
systems are different from conventional time-driven systems in the sense that the
event counterk is not directly related to a specific time instant. Therefore, we will
present a method to address the availability issue of the state at a certain time instant
t [103, 108]. Since the components ofx(k − 1) correspond to event times, they
are in general easy to measure. So we consider the case of fullstate information.
Also note that measurements of occurrence times of events are in general not as
susceptible to noise and measurement errors as measurements of continuous-time
signals involving variables such as temperature, speed, pressure, etc. Lett be the
time instant when an MPC problem has to be solved. We can definethe initial cycle
k as follows:

k = arg max
{

ℓ | xi(ℓ− 1) ≤ t, ∀i ∈ {1, . . . , nx}
}

Hence, the statex(k − 1) is completely known at timet and thusu(k − 1) is also
available (due to the fact that in practice, the entries of the system matrices are
nonnegative or take the valueε and[A(k) B(k)] will be row finite, i.e., has no row
consisting ofε entries only). Note that at timet some components of the future3

states and of the forthcoming inputs might be known (soxi(k + ℓ) ≤ t anduj(k +

ℓ) ≤ t for somei, j and someℓ > 0). During the optimization at time instantt the
known values of the inputs and states have to be fixed by equality constraints (see
Remark 3.1.4 below), which fits perfectly in the framework ofa linear programming
problem. With these new equality constraints we can performthe MPC optimization
at timet.

Remark 3.1.4 Consider a given time instantt and define4

Kx = {(i, ℓ)|xi(k + ℓ) is known at timet},
3Future in the event counter sense.
4For the sake of simplicity of notation, we do not addt as an argument here.
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Ku = {(j, ℓ)|uj(k + ℓ) is known at timet},
Ux = {(i, ℓ)|xi(k + ℓ) is unknown at timet},
Uu = {(j, ℓ)|uj(k + ℓ) is unknown at timet}.

First, we require thatuj(k + ℓ) is equal to its known value for each(j, ℓ) ∈ Ku.
Next, for every(i, ℓ) ∈ Kx, the state at timet can be written as follows:

xi(k + ℓ) = max
(

max
(i′,ℓ′)∈Kx,i,ℓ

(
xi′(k + ℓ′) + ai′ℓ′

)
,

max
(i′′,ℓ′′)∈Ux,i,ℓ

(
xi′′(k + ℓ′′) + ai′′ℓ′′

)
,

max
(j′,l′)∈Ku,j,ℓ

(
uj′(k + l′) + bj′l′

)
,

max
(j′′,l′′)∈Uu,j,ℓ

(
uj′′(k + l′′) + bj′′l′′

))

whereai′ℓ′ ,i′′ℓ′′ , bj′l′ , bj′′l′′ ≥ 0 andKx,i,ℓ is a subset of pair(i′, ℓ′) ∈ Kx that
directly determinesxi(k + ℓ) (i.e.,ai′ℓ′ 6= ε in the equation definesxi(k + ℓ)). The
setsUx,i,ℓ,Ku,j,ℓ, andUu,j,ℓ are defined in a similar way. Let us now show that in
factUx,i,ℓ = Uu,j,ℓ = ∅. Indeed, at timet, we should have

xi(k + ℓ) ≥ xi′′(k + ℓ′′) + ai′′ℓ′′ ∀(i′′, ℓ′′) ∈ Ux,i,ℓ. (3.15)

However, we havexi′′(k + ℓ′′) > t since it is not known at timet, which yields a
contradiction in the above inequality sincet ≥ xi(k + ℓ) andai′′ℓ′′ ≥ 0. Hence,
Ux,i,ℓ = ∅. The same argument is valid forUu,j,ℓ. However, if we write down an
inequality of the form (3.15) for pairs in the setsKx,i,ℓ andKu,j,ℓ, then we obtain
valid inequalities with both known right-hand and left-hand sides. Therefore, for all
(i, ℓ) ∈ Kx, no extra equation is needed due to causality. Hence, we onlyneed to
impose equality constraints on the known input and known state components inKu

andKx.
2

Another timing issue is related to the stochastic MPL systems. In these systems
we again have the same timing problem as explained above as well as a timing issue
related to the distribution of stochastic variables. If an event has not yet occurred
at time t, the probability density function of stochastic variablesinvolved in that
event have to be updated, which may change the nature of the distribution. This
may prevent the use of analytic expressions for moments, which are needed in the
approximation methods used in Chapters4 − 7.

Therefore, in this thesis, the whole timing issue related toMPC for stochastic
MPL systems is not considered due to the complexity it imposes to the problem
definition specially when updated distributions has to be taken into account since,
we cannot then apply the proposed approximation method of Chapter 4.
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3.1.5 Extension to Stochastic Switching MPL and StochasticMMPS
systems

In [106–108], MPC has been applied and translated to switching MPL systems.
In stochastic switching MPL systems with the system equations (2.11)-(2.12), for
each modeℓ ∈ {1, . . . , nL} and the vector̃ℓ(k) = [ℓ(k), . . . , ℓ(k+Np1)]

T , we can
rewrite (3.7) as follows:

ỹ(k) = C̃(ℓ̃(k), ẽ(k)) ⊗ x(k − 1) ⊕ D̃(ℓ̃(k), ẽ(k)) ⊗ ũ(k)

whereC̃(ℓ̃(k), ẽ(k)) andD̃(ℓ̃(k), ẽ(k)) are defined as:

C̃(ℓ̃(k), ẽ(k)) =






C̃(1)(ℓ̃(k), ẽ(k))
...

C̃(Np)(ℓ̃(k), ẽ(k))






D̃(ℓ̃(k), ẽ(k)) =






D̃(1,1)(ℓ̃(k), ẽ(k)) · · · ε
...

. . .
...

D̃(Np,1)(ℓ̃(k), ẽ(k)) · · · D̃(Np,Np)(ℓ̃(k), ẽ(k))






with:

C̃(m)(ℓ̃(k), ẽ(k)) = Cℓ(k+m−1)(e(k +m− 1)) ⊗Aℓ(k+m−1)(e(k +m− 1))⊗
. . .⊗Aℓ(k)(e(k))

D̃(m,n)(ℓ̃(k), ẽ(k)) = Cℓ(k+j−1)(e(k +m− 1)) ⊗Aℓ(k+m−1)(e(k + j − 1))⊗
. . .⊗Aℓ(k+n)(e(k + n)) ⊗Bℓ(k+n−1)(e(k + n− 1))

Accordingly, the input and output objective functions can be defined as the ones
in (3.4)-(3.5) and then a similar optimization problem as the one in (3.8) has to be
solved.

In [105] a stabilizing model predictive controller has beenderived for randomly
switching MPL systems with deterministic parameters. The resulting optimization
problem was solved using linear programming algorithms. The main drawback of
the algorithm is that the number of linear constraints and the number of optimiza-
tion variables in the linear programming problem increasesfast with the prediction
horizon and the number of modes in the system. In [106] an algorithm is used
based on scenario generation in order to reduce the total number of mode switching
sequences. The main idea of this algorithm is that only the most probable mode
switching sequences will be investigated since the least probable ones have a neg-
ligible impact on the outcome of the objective function, andtherefore can be ne-
glected.
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In the case of deterministic mode switching and stochastic parameters, for each
mode, the system equations are of the form (2.2)-(2.3) and the same objective func-
tions, i.e., (3.4)-(3.5) can be considered. Hence, to solvethe MPL-MPC optimiza-
tion problem (3.8) at each mode, the methods discussed in Section 3.1.3 can be
applied.

MPC has been also applied to MMPS systems [29, 81]. In [29] a deterministic
MMPS system with the system equations (2.13)-(2.14) is studied, which leads to a
non-linear optimization problem that can be solved using standard algorithms such
as multi-start sequential quadratic programming (SQP) [80]. In stochastic MMPS
systems with the system equations (2.15)-(2.16), the inputand output objective
functions can be chosen among the ones in (3.2).

Remark 3.1.5 Any combination of the input and output objective functionsin (3.2)
can be applied to event-driven MMPS systems. Note that due tothe minus sign in
the input objective functions, these functions express just-in-time feeding. In the
case of time-driven MMPS systems when usually the input energy is minimized,
the input objective function in (3.2) will not have a minus sign. 2

Note that since bothx(k) andy(k) are MMPS functions ofx(k−1), u(k), . . . , u(k+

j), e(k), . . . , e(k + j), we conclude that all objective functions in (3.2) are also
MMPS functions of̃u(k), x(k− 1), ẽ(k), andr̃(k). Therefore, the stochastic MPC-
MMPS problem can be defined as follows:

min
ũ(k)

J̃(k)

subject to: c(ũ(k), ỹ(k), k) ≤ 0.
(3.16)

for some functionc(·) with J̃(k) an MMPS function of̃u(k), x(k − 1), ẽ(k), and
r̃(k).

In [81] an uncertain MMPS system is considered in which the error vector is
assumed to be in a bounded polyhedral set, and hence, it was possible to design a
worst-case MMPS-MPC controller based on two different approaches, namely op-
timization over open-loop input sequences and optimization over disturbance feed-
back policies. It has also been shown in [81] that the resulting optimization prob-
lem, i.e., (3.16), can be solved efficiently using a two-stepoptimization approach
that basically involves solving a sequence of linear programming problems. In the
open-loop approach, the first step is solving a multi-parametric linear programming
(mp-LP) problem off-line and next, obtaining the min-max canonical form of the
worst-case performance criterion, which is an MMPS function. In the second step,
only a sequence of linear programming problems has to be solved. In the distur-
bance feedback approach, the first step is to write the min-max canonical form of
the worst-case performance criterion, and in the second step a nonlinear optimiza-
tion problem with linear constraints has to be solved in which the inner optimization
problem involves solving a sequence of linear programming problems.
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In both stochastic switching MPL systems and stochastic MMPS systems, the
computation of the objective function is quite complex and time-consuming using
the available methods such as numerical or analytic integration.

3.2 Identification of Stochastic MPL Systems

Another interesting topic is the identification of the modelparameters of a stochas-
tic MPL system defined by a state space model. Most identification methods for
MPL discrete-event systems use a transfer function approach [11, 43] while state
space models have certain advantages: they explicitly takethe initial state of the
system into account, they can reveal “hidden” behavior suchas unobservable, un-
stable modes, the extension from SISO to MIMO is more intuitive and elegant for
state space models, and the analysis is often easier. Some examples of state space
models for identification ofdeterministicMPL systems, using either the system’s
Markov parameters or minimizing a prediction error based oninput-output data and
residuation methods, are presented in [26, 28, 96–98]. Since in a stochastic MPL
system, the noise and disturbances result in a perturbationof system parameters, in
the identification method, the stochastic properties of thesystems have to be taken
into account.

3.2.1 Problem Statement

For the identification of stochastic MPL systems, consider the following state space
representation [4, 23]:

x(k + 1) = A(k) ⊗ x(k) ⊕B(k) ⊗ u(k)

=
[
A(k) B(k)

]
⊗
[
x(k)

u(k)

]

(3.17)

= Q(k) ⊗ φ(k) (3.18)

where

Q(k) =
[
A(k) B(k)

]
∈ R

nx×m
ε , φ(k) =

[
x(k)

u(k)

]

∈ R
m
ε

withm = nx +nu wherenx is the number of states andnu is the number of inputs,
x(k) is the state of the system at event stepk, andu(k) is the input of the system at
event stepk. In fact x(k) andu(k) contain the time instants at which the internal
and the input event occurs for thek-th time, respectively. We also assume that the
entries of the system matrices belong toSmps [104], i.e.,A(k) ∈ Snx×nx

mps,e(k), B(k) ∈
Snx×nu

mps,e(k) wheree(k) is an stochastic vector with a given probability distribution
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and containing all the system uncertainties. In the sequel,we denote the uncertain
system matrices with the matrixQ(k) and the state and input vector withφ(k) (cf.
(3.18)).

Remark 3.2.1 Note that the state space model (2.2)–(2.3) that we considered in the
previous section relatesx(k) to x(k− 1), while in (3.18),x(k+ 1) is defined using
x(k). This difference in modeling is due to the fact that the latter model is easier
in notation for modeling the identification problems since in φ(k), bothx(k) and
u(k) are at the same event step, while the former model is easier for MPC purposes
due to the similar definition of̃y(k) andũ(k) in (3.3), in which both contains values
from event stepk up tok +Np − 1. 2

In order to identify the unknown system parameters, we need to distinguish
between the parameters that are known a priori, i.e., the parameters that are either
constant or determined in advance such as the nominal transportation times in a
production system, and the parameters that have to be identified. Therefore, thei-th
row of the matrixQ(k) can be written as:

Qi,·(k) = Ξi,· + θT∆(i) + eT (k)ΛS(i) (3.19)

whereΞ represents the parameters that are known a priori,θ is a vector of un-
known parameters,e(k) = [e1(k), . . . , ene(k)]

T is a vector the elements of which
are independent random variables, the diagonal matrixΛ = diag(λ1, . . . , λne) con-
tains the amplitude of the noise, and∆(i) andS(i) are selection matrices for the
i-th row with zeros and ones as entries. The role of the selection matrices is to
determine which elements of the vectorsθ and e(k) will appear in thei-th row
of Q(k). For example, for the first rowi = 1, let ∆(1) = [1 0 1]T and
S(1) = [0 1 1]T ; then θT∆(1) = [θ1 θ2 θ3] · [1 0 1]T = θ1 + θ3
and eT (k)ΛS(1) = [e1(k) e2(k) e3(k)] · diag(λ1, λ2, λ3) · [0 1 1]T =

e2(k)λ2 + e3(k)λ3.
We assume that the probability density function ofe(k), denoted byf(e), and

the matricesΞ,∆, andS are known a priori and that the only parameters that have
to be identified are the components ofθ and the diagonal elements ofΛ, denoted
by λ = [λ1, . . . , λne ]

T . Therefore, in the identification procedure, we will derive
estimateŝθ andλ̂ for θ andλ, respectively.

Here, the identification procedure is based on input-state data. Note that in MPL
systems the state contains the time instants at which the state events occur. We as-
sume that the state is observable and hence, these instants can be measured easily
and so we usually have full state information. Consider the measured input-state
sequence{(umeas(k), xmeas(k)}N

k=1 of a system of the form (3.18) and assume that
the system parameterŝθ and λ̂ have to be identified using this sequence. Further,
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we assume that the input-state sequence is sufficiently rich5 to capture all the rele-
vant information about the system (see also [97, 98]). Now consider the following
identification problem:

min
(θ̂,λ̂)

J(θ̂, λ̂)

s.t. λ̂ > 0

(3.20)

with

J(θ̂, λ̂) =
N−1∑

k=1

nx∑

i=1

(E[xi(k + 1|k)] − xmeas,i(k + 1))2 (3.21)

whereE[·] denotes the expected value operator andE[xi(k + 1|k)] is the one-step-
ahead prediction ofxi for event stepk+1, using the knowledge from event stepk.
Considering (3.18) and (3.19), we can rewrite the one-step-ahead prediction as

E[xi(k + 1|k)] = E
[(

Ξi,· + θT∆(i) + eT (k)ΛS(i)
)
⊗ φ(k)

]

and hence, the one-step-ahead prediction error will be given by

E[xi(k + 1|k)] − xmeas,i(k + 1)

= E
[
max

j

(
ξij + θ̂T∆

(i)
·,j + eT (k)Λ̂S

(i)
·,j + φj(k) − xmeas,i(k + 1)

)]

= E[ηi(k + 1, θ̂, λ̂, e(k))] (3.22)

where

ηi(k + 1, θ̂, λ̂, e(k))=max
j

(
ξij + θ̂T∆

(i)
·,j + eT (k)Λ̂S

(i)
·,j + φj(k) − xmeas,i(k + 1)

)

for a specific realization of the noise vectore(k) and forj = 1, . . . ,m. To have

a more compact notation, letαij(k) = ξij + φj(k) − xmeas,i(k + 1), Πij = ∆
(i)
·,j ,

andΓij = diag((S(i))1,j , . . . , (S
(i))ne,j). SinceeT (k)Λ̂S

(i)
·,j is a scalar and̂Λ is a

diagonal matrix, we have:

eT (k)Λ̂S
(i)
·,j = (S

(i)
·,j )T Λ̂e(k) = λ̂T Γije(k)

Therefore, we can rewriteηi(k + 1, θ̂, λ̂, e(k)) as

ηi(k + 1, θ̂, λ̂, e(k)) = max
j=1,...,m

(αij(k) + ΠT
ij θ̂ + λ̂T Γije(k)) (3.23)

which is now an MPL expression.
5Intuitively, this can be characterized as follows. Note that (3.18) and (3.19) imply that each

component ofx(k+1) can be written as a max expression of terms in which the unknown parameters
θ andλ appear. An input signal is then said to be sufficiently rich ifit is such that each of these
terms is the maximal one sufficiently often (this is also related to the idea of persistent excitation in
conventional system identification [73]).
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3.2.2 Solution Approach

In a similar way as Section 3.1.2,E[ηi(k + 1, θ̂, λ̂, e(k))] can be written as follows:

E[ηi(k + 1, θ̂, λ̂, e(k))] =

m∑

j=1

∫

. . .

∫

e∈Ωij(θ̂,λ̂,k)

(αij(k) + ΠT
ij θ̂ + λ̂T Γije)f(e)de

(3.24)

wherede = de1, . . . ,dene andΩij(θ̂, λ̂, k), i = 1, . . . , n, j = 1, . . . ,m are poly-
hedral sets. Hence, the following proposition can be obtained.

Proposition 3.2.2 ([104, Proposition 3]) The functionE[ηi(k + 1, θ̂, λ̂, e(k))], de-
fined in(3.22), is convex in̂θ and λ̂, and its subgradients with respect tôθ and λ̂
are

gi,θ̂(θ̂, λ̂, k) =
m∑

j=1

( ∫

. . .

∫

e∈Ωij(θ̂,λ̂,k)

f(e)de
)

Πij (3.25)

gi,λ̂(θ̂, λ̂, k) =

m∑

j=1

( ∫

. . .

∫

e∈Ωij(θ̂,λ̂,k)

eT f(e)de
)

Γij (3.26)

respectively.

Therefore,J(θ̂, λ̂) in the identification problem (3.20) can be written as

J(θ̂, λ̂) =
N∑

k=1

nx∑

i=1

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)2

(3.27)

with the gradients

∇θ̂J(θ̂, λ̂) =
N∑

k=1

nx∑

i=1

2E[ηi(k + 1, θ̂, λ̂, e(k))] gi,θ̂(θ̂, λ̂, k)

∇λ̂J(θ̂, λ̂) =

N∑

k=1

nx∑

i=1

2E[ηi(k + 1, θ̂, λ̂, e(k))] gi,λ̂(θ̂, λ̂, k).

Note that the identification problem (3.20) is a non-convex optimization problem
due to the fact thatJ(θ̂, λ̂) in not convex for the following reasoning. By definition
[93], a functionf(x) = (g(x))p, p ≥ 1, is convex ifg is convex and nonnegative.
In our casep = 2 andg(θ̂, λ̂) = E[ηi(k + 1, θ̂, λ̂, e(k))]. Considering the definition
of E[ηi(k+ 1, θ̂, λ̂, e(k))] in (3.22), it is convex in̂θ andλ̂ but it is not nonnegative.
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Therefore,J(θ̂, λ̂) is not convex and hence, to solve (3.20), we need global non-
convex optimization methods such as genetic algorithms [46], simulated annealing
[34], etc. However, since the gradients ofJ(θ̂, λ̂) are available, the optimal̂θ andλ̂
can also be found using multi-start gradient-based local optimization methods, such
as a steepest descent method or a Quasi-Newton (DFP, BFGS) method [90].

3.2.3 Computational Aspects and Issues

Note that to compute the objective function (3.27), we first need to find the value of
E[ηi(k+1, θ̂, λ̂, e(k))], which leads to the solution of the integral in (3.24). Consid-
ering the methods explained in Section 3.1.3,E[ηi(k + 1, θ̂, λ̂, e(k))] can be com-
puted using either numerical integration or analytic integration based on piecewise
polynomial probability density functions.

Note that numerical integration is not an efficient way of computing the integral
(3.24), since it is quite complex and time-inefficient. Furthermore, based on the
complexity analysis of the analytic integration using piecewise polynomial prob-
ability density functions in Section 3.1.3, this method is also not computationally
efficient and its complexity increases drastically when thenumber of random vari-
ables or the order of the system increase.

3.3 Summary

In this chapter, an overview of MPC and identification of stochastic MPL systems
has been given. MPC is a model-based control approach that can be applied to
both discrete-time and discrete-event systems. We have discussed how MPC can be
used to control stochastic MPL systems. Moreover, MPC has also been applied to
stochastic switching MPL systems and stochastic MMPS systems. Next, we have
discussed the identification of the model parameters of a stochastic MPL system
defined by a state space model based on input-state data.

Furthermore, we have discussed some existing solution approaches and com-
putational aspects of MPC and identification of stochastic MPL systems. Since we
deal with stochastic systems, the solution of these problems leads to the computa-
tion of an expected value. Some of the solution approaches and their computational
aspects and complexities have been presented in this chapter. One approach is to
use numerical integration, which is quite complex and time-consuming. Another
approach is an analytic integration method that can be applied to distributions that
have a piecewise affine polynomial probability density function, or when their prob-
ability density functions can be approximated by such functions. The complexity
of this approach increases significantly as the number of stochastic variables or the
order of system increase. An approximation approach base onvariability expan-
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sion has been also discussed, which reduces the computational complexity of the
analytic integration to some extent.

Since the above-mentioned computational approaches are complex and time-
consuming, stochastic MPL systems have been mostly studiedwith the assump-
tion that the noise and disturbances of the system are bounded without any further
knowledge of their probability distribution. In the next chapter, we propose an alter-
native computation method that allows to use the knowledge about the distribution
of the system noise. This method is less complex and more time-efficient compared
with the two other methods discussed in this chapter (viz. the analytic integration
based on piecewise polynomial probability density functions and the approximation
method based on variability expansion).





Chapter 4

An Approximation Method for
Computing the Expected Value of
Max-Plus Functions

In this chapter, an approximation method based on the higherorder moments of a
random variable is proposed to compute the expected value ofthe maximum of sev-
eral affine expressions. First, we explain in detail how thisapproximation method
can be obtained and then, we compute an upper bound for the error introduced by
this method. In the last section of this chapter, the convexity analysis of this approx-
imation method is presented.

4.1 Problem Statement

Our aim is to compute the expected value of the maximum of several affine ex-
pressions (cf. Section 3.1.2, equation (3.10) and Section 3.2.2, equation (3.24)) ef-
ficiently. One solution approach is numerical integration,which imposes a huge
computational burden, especially when the number of stochastic variables is high
or the function to be integrated is non-linear. An analytic approach for the inte-
gral computation is proposed in [104] (cf. Section 3.1.3). However, this method
is still very time-consuming and complex since at each eventstep many polyhedra
have to be computed in order to compute the integral. To decrease the computa-
tional burden, an approximation method based on variability expansion is proposed
in [110]. However, this method cannot reduce the complexityof the problem suffi-
ciently and consequently the problem remains complex. Therefore, it is still desired
to find an efficient method to either compute or approximate the expected value of
the maximum of several affine expressions. To this end, we introduce an alterna-
tive approximation method that is based on the higher order moments of a random

43
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variable.

4.2 Description of the Approximation Method

This approximation approach is inspired by the relation between the∞-norm and
thep-norm of a vector.

Definition 4.2.1 ([47]) For a vectorx ∈ R
n and for p ≥ 1, the p-norm and the

∞-norm ofx are defined as:

‖x‖p =
(
|x1|p + · · · + |xn|p

)1/p

‖x‖∞ = max(|x1|, . . . , |xn|),
(4.1)

respectively.

The relation between these norms is as follows [47]:

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞ (4.2)

Moreover, due to the monotonic and linear properties of the expected value, we have

E
[
‖x‖∞

]
≤ E

[
(|x1|p + · · · + |xn|p)1/p

]
. (4.3)

Before we proceed further, consider the following theorem.

Theorem 4.2.2 (Jensen’s Inequality [14])If x is a random variable such thatx ∈
dom(ϕ) with probability one, andϕ is a concave function, thenE [ϕ(x)] ≤ ϕ (E [x]),
provided the expectations exist. Likewise, ifϕ is a convex function, thenϕ (E [x]) ≤
E [ϕ(x)].

Now, the following proposition shows how we can applyp-norms to find an
upper bound forE

[
max(x1, . . . , xn)

]
.

Proposition 4.2.3 Consider random variablesxj for j = 1, . . . , n and letp > 1.
Then

E
[
max(x1, . . . , xn)

] (i)

≤ E
[
max(|x1|, . . . , |xn|)

]

(ii)

≤ E
[
(|x1|p + · · · + |xn|p)1/p

]

(iii)

≤
( n∑

j=1

E
[
|xj |p

]
)1/p

(4.4)
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Proof : Inequality(i) is straightforward. Inequality(ii) results from (4.3). Inequal-
ity (iii) results from Jensen’s inequality for concave functions, i.e., Theorem 4.2.2.
Note that we can apply Theorem 4.2.2 sinceϕ(x) = x1/p is a concave function for
p > 1 andx > 0, and in our case the argumentx is

∑n
i=1 |xi|p which is positive.2

Inequality(i) reduces to an equality if all variablesxj are nonnegative. Hence,
in order to reduce the error in Inequality(i) for j = 1, . . . , n, we define an offset
L such thatxj − L is almost always positive. Note that ifxj is drawn from a
distribution with a finite domain (such as the uniform distribution),L can be defined
such thatL ≤ xj for j = 1, . . . , n and hence, Inequality(i) turns into an equality.
However, ifxj has an infinite domain (such as the normal distribution), Inequality
(i) never reduces to an equality and we can only decrease the error by defining
L such that it is less than or equal almost allxj , j = 1, . . . , n. For example if
xj, j = 1, . . . , n are normally distributed with meanµj and varianceσ2

j , thenL
can be defined asL = minj=1,...,n(µj − 3σj). This choice ofL is made based on
the3σ-rule, which states that99.7% of the observations of a normally distributed
random variable with meanµ and varianceσ2 fall within the interval[µ−3σ, µ+3σ].

Remark 4.2.4 In the case that allxj , j = 1, . . . , n are nonnegative, using the offset
L is still useful. Indeed, in that case,L is not needed for Inequality(i) as it is an
equality. However, for Inequality(ii), L, which is defined such thatL ≤ xj for
j = 1, . . . , n, will reduce the error. This is illustrated by the followingexample:
Let x1 = 1000, x2 = 1001, thenmax(x1, x2) = 1001. Now for p = 2, if
L = 0 then (xp

1 + xp
2)

1/p = 1000
√

2; however, forL = min(x1, x2) = 1000,
((x1 − L)p + (x2 − L)p)1/p + L = 1001, which is equal tomax(x1, x2). 2

Accordingly, we can rewrite (4.4) as follows:

E
[
max(x1, . . . , xn)

]
= E

[
max(x1 − L, . . . , xn − L)

]
+ L

≤ E
[
max(|x1 − L|, . . . , |xn − L|)

]
+ L

≤ E
[
(|x1 − L|p + · · · + |xn − L|p)1/p

]
+ L

≤
( n∑

j=1

E
[
|xj − L|p

]
)1/p

+ L. (4.5)

Remark 4.2.5 For a positive even integerp = 2q, q ∈ N \ {0}, we haveE[xp] =

E[|x|p]. Hence, without loss of generality, we can useE[xp] in (4.5). So from now
on,p is an even integer larger than or equal to2. 2
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Considering the above remark, we can approximateE[max(x1, . . . , xn)] by its up-
per bound defined as:

U

(

E[max(x1, . . . , xn)]
)

=

( n∑

j=1

E
[
(xj − L)p

]
)1/p

+ L (4.6)

for p a positive even integer and for independent random variablesxj , j = 1, . . . , n,
andL is chosen such thatL ≤ xj for (almost) allj ∈ {1, . . . , n}.

Theorem 4.2.6 (Multinomial Theorem [54]) For any positive integerm and any
nonnegative integern, we have:

(x1 + x2 + · · · + xm)n =
∑

k1+k2+···+km=n
k1,k2,...,km∈N

(
n

k1, k2, . . . , km

) m∏

t=1

xkt
t ,

where
(

n

k1, k2, . . . , km

)

=
n!

k1! k2! · · · km!

is a multinomial coefficient.

Recall that in both MPC and identification optimization problem of stochastic
MPL systems (cf. Chapter 3), the expected value of max-plus-scaling functions ap-
pears in the definition of objective functions. This expected value is in general of
the formE[maxj=1,...,n(βj + γT

j ẽ)] whereβj ∈ Rε, γj ∈ R
nẽ , andẽ is a vector of

independent random variables with a given probability distribution. Our aim in this
chapter is to find an upper bound forE[maxj=1,...,n(βj + γT

j ẽ)]. By adopting (4.5),
we obtain:

E[ max
j=1,...,n

(βj + γT
j ẽ)]

≤
( n∑

j=1

E
[
(βj − L+ γT

j ẽ)
p
]
)1/p

+ L

≤
( n∑

j=1

E
[
(βj − L
︸ ︷︷ ︸

zj,0

+ γj,1ẽ1
︸ ︷︷ ︸

zj,1

+ · · · + γj,nẽ
ẽnẽ

︸ ︷︷ ︸

zj,nẽ

)p
]
)1/p

+ L

(∗)

≤
( n∑

j=1

E

[ ∑

k0+k1+···+knẽ
=p

k0,k1,...,knẽ
∈N

(
p

k0, k2, . . . , knẽ

) nẽ∏

t=0

zkt

j,t

])1/p

+ L

≤
( n∑

j=1

∑

k0+k1+···+knẽ
=p

k0,k1,...,knẽ
∈N

p!

k0! k2! · · · knẽ
!
E
[

nẽ∏

t=0

zkt

j,t

]
)1/p

+ L
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(∗∗)

≤
( n∑

j=1

∑

k0+k1+···+knẽ
=p

k0,k1,...,knẽ
∈N

p!

k0! k2! · · · knẽ
!

nẽ∏

t=0

E
[
zkt

j,t

]
)1/p

+ L (4.7)

where(∗) is based on multinomial theorem (Theorem 4.2.6), and(∗∗) is due to
the fact that the elements of the stochastic vectorẽ, i.e., ẽ1, . . . , ẽnẽ

are indepen-
dent by assumption and for independent random variablesZ1, . . . , Znẽ

, we have
E[
∏nẽ

t=1 Zt] =
∏nẽ

t=1 E[Zt].
Consequently, we can rewrite (4.6) as follows:

U

(

E[ max
j=1,...,n

(βj + γT
j ẽ)]

)

=

( n∑

j=1

∑

k0+k1+···+knẽ
=p

k0,k1,...,knẽ
∈N

p!

k0! k2! · · · knẽ
!
(βj − L)k0

nẽ∏

t=1

γkt

j,tE
[
ẽkt
t

]
)1/p

+ L.

(4.8)

Note thatβj − L it is not a random variable since it does not include any elements
of the stochastic vector̃e and hence, we haveE[(βj − L)k0 ] = (βj − L)k0 .

In the approximation function (4.8), we have to compute thekt-th moment of
each random variablẽet, t = 0, . . . , nẽ. Theκ-th moment of a real-valued random
variablee is defined as follows:

E[eκ] =

∫ ∞

−∞
eκf(e)de (4.9)

wheref(·) is the probability density function ofe.
In general, moments of a random variable can be finite or infinite. Hence, to

be able to usefully applyU
(

E[maxj=1,...,n(βj + γT
j ẽ)]

)

as an approximation of

E[maxj=1,...,n(βj + γT
j ẽ)], we need to consider random variables with finite mo-

ments for which a closed-form expression exists, such as variables with the uniform
distribution, normal distribution, Beta distribution, etc. [10, 62, 89]. Note that if
moments do not have a closed-form expression, one has to solve the integral (4.9)
numerically. In that case, the approximation method will beless time-efficient than
in the case the closed-form of the moments exists and depending on whether the
integral (4.9) can be computed offline or not, applying numerical or analytic inte-
gration, presented in Section 3.1.2, directly toE[maxj=1,...,n(βj +γT

j ẽ)] could even
be better options. In the following, we present some examples of distributions that
have finite moments with a closed-form expression: the uniform distribution, the
Beta distribution, and the normal distribution. Some examples of other distributions
that have finite moments with a closed-form expression can befound in [10, 62, 89].
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For the case of a uniformly distributed random variablee on an interval[a, b],
i.e.,e ∼ U(a, b), theκ-th moment can be computed as [10]

E[eκ] =
1

κ+ 1

κ∑

l=0

albκ−l. (4.10)

For a random variablee that has a Beta distribution with parametersα andβ, i.e.,
e ∼ B(α, β), theκ-th moment can be written in a recursive form as [10]

E[eκ] =
α+ κ− 1

α+ β + κ− 1
E(eκ−1). (4.11)

In case of a normally distributed random variablee with meanµ and varianceσ2,
i.e., e ∼ N (µ, σ2), theκ-th moment has a closed-form that can be expressed as
[117]:

E
[
eκ
]

= σκi−κHκ(iµ/σ) (4.12)

where

Hκ(e) ≡ (−1)κ exp(e2/2)
dκ

deκ
exp(−e2/2)

is theκ-th Hermite polynomial. Note that the right-hand side of (4.12) is in fact
real becauseHκ(e) contains only even powers ofe if κ is even (note that here we
assume thatκ = 2q, q ∈ N \ {0}). Considering equations (26.2.51) and (22.3.11)
in [1] leads to

Hκ(e) = κ!

κ/2
∑

l=0

(−1)leκ−2l

2ll!(κ− 2l)!
(4.13)

whereκ/2 ∈ N \ {0} sinceκ is an even integer in our case.

Remark 4.2.7 For the case of a normally distributed stochastic vectorẽ, the random
variablexj−L = βj −L+γT

j ẽ is also normally distributed with a certain mean and
variance, using the property of the normal distribution that sum of the independent
normally distributed random variables has also a normal distribution with a new
mean and variance [31]. Hence, we can immediately compute the p-th moment in
(4.6) and we do not need to use (4.8). In this way, our computation will be faster
since we have less terms (compare (4.6) with (4.8)). In general, this remark is valid
for all distributions that are preserved under the summation and for which a closed
form of their higher-order moments exists, such as the Poisson and the Gamma
distribution [89]. 2
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Note that the computational complexity of this approximation method is much
less than the two other methods in Section 3.1.3. Considering (4.8), the total number
of terms in the first sum isn and in the second sum, i.e., the multinomial sum, is
(
p+nẽ−1

p

)
[40], or equivalently,

(
p+ nẽ − 1

p

)

=
(p+ nẽ − 1)!

p!(nẽ − 1)!
=

p terms
︷ ︸︸ ︷

(p+ nẽ − 1)(p + nẽ − 2) . . . nẽ

p!
.

Hence, assuming thatnẽ ≫ p > 1, the order of the error for the above sum is

O
(

np
ẽ

p!

)

. Also, the total number of the expected values that have to becomputed is

pnẽ. Hence, the complexity of this approximation method is of the order

O
(

n · nẽ · p ·
np

ẽ

p!

)

= O
(n · np+1

ẽ

(p − 1)!

)

which increases polynomially asn andnẽ increase1 and exponentially asp increases
(at least fornẽ ≫ p). Note that the computation load depends also on the prediction
horizon. By increasing the prediction horizon, the number of terms in the maxi-
mizationn (or nv in Chapter 3) may also increase significantly. This leads to an
increase of the number of function evaluation in approximation method as well as
in the other methods in Section 3.1.3.

4.3 On Error of the Approximation Method

In this section, we show that the error caused by approximatingE[max(x1, . . . , xn)]

by its upper boundU
(

E[max(x1, . . . , xn)]
)

=
(∑n

j=1 E[(xj − L)p]
)1/p

+ L (cf.

(4.6)) is bounded. Note thatE[max(x1, . . . , xn)] is bounded from above and from
below. Indeed, its upper bound has been presented in (4.6) and its lower bound can
be obtained using Jensen’s inequality for convex functions, the max function in this

case (cf. Theorem 4.2.2). LetL

(

E[max(x1, . . . , xn)]
)

= max(E[x1], . . . ,E[xn])

denote this lower bound. Hence,

L

(

E[max(x1, . . . , xn)]
)

≤ E[max(x1, . . . , xn)] ≤ U

(

E[max(x1, . . . , xn)]
)

.

(4.14)

Remark 4.3.1 In the trivial case that there is only one term in themax operator and
alsop = 1, the lower bound and the upper bound in (4.14) are equal. However, in

1In general for a given problem we haven = nv (cf. Section 3.1.3 of Chapter 3)
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general, there are more than one term in the maximization andp → ∞. We will
also show later in Proposition 4.3.3 that in the case allxj ≤ L, j = 1, . . . , n, the
difference between the upper bound and the exact value is always larger than0 as
p→ ∞. 2

The error of approximatingE[max(x1, . . . , xn)] by its upper bound is then, always
bounded as follows:

0 ≤ U

(

E[max(x1, . . . , xn)]
)

− E[max(x1, . . . , xn)]

≤ U

(

E[max(x1, . . . , xn)]
)

− L

(

E[max(x1, . . . , xn)]
)

(4.15)

and since in our casexj , j = 1, . . . , n are assumed to have finite moments, this
upper bound is finite and the error of the approximation cannot be larger than this
value.

As mentioned in the previous section,L is an off-set that is chosen such that
L ≤ xj for all j = 1, . . . , n in the case thatxj has a distribution with a bounded
domain and it is less than or equal to almost allxj, j = 1, . . . , n if the distribution
of xj has an unbounded domain. In this way, the error caused by Inequality (i) in
(4.4) will be zero or decreased to a large extent. Note that even if all xj ≥ 0, j =

1, . . . , n and hence, Inequality(i) turns into an equality, a positiveL can still be
applied in order to decrease the error caused by Inequality(ii) in (4.4) (cf. Remark
4.2.4).

Alternatively, in the case that eachxj has a distribution with a finite domainXj,
we can introduce another upper bound for the error caused by applying the upper
bound approximation function (4.6). To obtain the new upperbound, we consider
the three inequalities in (4.4) and their corresponding error. The first error, due to
(i), will be zero ifL = minj=1,...,n minXj . The second error due to(ii) approaches
zero ifp→ ∞, since by definition‖x‖∞ = limp→∞ ‖x‖p. However, the third error,
which is in fact the error of Jensen’s inequality, needs morediscussion. In [99,
Theorem 2.1] and [100, Theorem 2.1] two upper bounds for Jensen’s inequality are
presented for the relative and the absolute error, respectively.

For a strictly positive, twice continuously differentiable, concave functionf
defined on an interval[a, b], Jensen’s inequality can be stated in the form

1 ≤ f(E[x])

E[f(x)]

for which an upper bound can be formulated as follows [99]:

1 ≤ f(E[x])

E[f(x)]
≤ max

q∈[0,1]

[ f(qa+ (1 − q)b)

qf(a) + (1 − q)f(b)

]

=: Sf (a, b)
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and it has been proved in [99] that there exists a uniqueq0 ∈ (0, 1) for which
Sf (a, b) is maximal. Hence, the relative error can be defined as follows:

0 ≤ f(E[x]) − E[f(x)]

E[f(x)]
≤ Sf (a, b) − 1 =: emax,rel(a, b).

In a similar way, the absolute error can also be defined as follows [100]: For a
differentiable, concave functionf defined on an interval[a, b] we have

0 ≤ f(E[x]) − E[f(x)] ≤ max
ω∈[0,1]

[f(ωa+ (1 − ω)b) − ωf(a) − (1 − ω)f(b)]

=: emax,abs(a, b)

and again it has been shown that there exists a uniqueω0 ∈ (0, 1) for which
eabs(a, b) is maximal [100]. Note that sincef is a strictly positive concave function,
a, b > 0.

In our case the concave function isf(x) = x1/p andf ′(x) = 1
px

1
p
−1. Since we

assume thatp is a positive even integer greater than or equal to2, the argumentx
has to be larger than or equal to zero, which is the case sincex =

∑n
j=1 x

p
j . Let us

first consider the case wherex is strictly positive. The case wherex = 0 will be
considered later on (see Proposition 4.3.2). By substituting f in the above formulas,
we can determine the optimal value ofq andω for each case as follows. Let

F (q) =
(qa+ (1 − q)b)

1
p

qa
1
p + (1 − q)b

1
p

.

Then,F ′(q) = g(q)/(qa
1
p + (1 − q)b

1
p )2 with

g(q) =
1

p

(
qa+ (1 − q)b

) 1
p
−1(

qa
1
p + (1 − q)b

1
p
)
(a− b)−

(a
1
p − b

1
p )
(
qa+ (1 − q)b

) 1
p .

Sincea, b > 0 andq ∈ [0, 1], dF
dq (q) = 0 is only possible ifg(q) = 0. Therefore,

we must have

(qa+(1 − q)b)
1
p
−1
[
1

p
(qa

1
p + (1 − q)b

1
p )(a− b)−(a

1
p − b

1
p )(qa+(1 − q)b)

]

= 0

Since(qa+ (1 − q)b)
1
p
−1 6= 0, we can conclude that

1

p
(qa

1
p + (1 − q)b

1
p )(a− b) − (a

1
p − b

1
p )(qa+ (1 − q)b) = 0
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Hence2,

1

p
qa

1
p
+1 +

1

p
(1 − q)ab

1
p − 1

p
qa

1
p b− 1

p
(1 − q)b

1
p
+1

− qa
1
p
+1 − (1 − q)a

1
p b+ qab

1
p + (1 − q)b

1
p
+1 = 0

⇔ q
(1 − p

p
a

1
p
+1 − 1

p
a

1
p b+ ab

1
p
)

+ (1 − q)
(p− 1

p
b

1
p
+1

+
1

p
ab

1
p − a

1
p b
)

= 0

⇔ q0 =

1−p
p b

1
p
+1 − 1

pab
1
p + a

1
p b

1−p
p (a

1
p
+1 + b

1
p
+1 − a

1
p b− ab

1
p )

1 − q0 =

1−p
p a

1
p
+1 − 1

p a
1
p b+ ab

1
p

1−p
p (a

1
p
+1

+ b
1
p
+1 − a

1
p b− ab

1
p )

Similarly, we can obtain the optimalω. To this end, letG(ω) = (ωa+(1−ω)b)
1
p −

(ωa
1
p + (1 − ω)b

1
p ), and hence,

dG

dω
(ω) =

1

p
(ωa+ (1 − ω)b)

1
p
−1

(a− b) − (a
1
p − b

1
p ).

Now to find the maximum, we have:

dG

dω
(ω) = 0 ⇔ (ωa+ (1 − ω)b)

p−1

p =
a− b

r(a
1
p − b

1
p )

⇔ ω(a− b) + b =
( a− b

p(a
1
p − b

1
p )

) p

p−1

⇔ ω0 =
1

a− b

[( a− b

p(a
1
p − b

1
p )

) p

p−1 − b
]

1 − ω0 =
1

a− b

[

a−
( a− b

p(a
1
p − b

1
p )

) p

p−1
]

Now, by replacing the optimal valuesq0 andω0 in F (q) andG(ω), respectively, the
following expressions are obtained foremax,rel(a, b) andemax,abs(a, b):

emax,rel(a, b) =

[( 1
p(ab

1
p
+1 − a2b

1
p − a

1
p b2 + a

1
p
+1b)

−(p−1
p )(a

1
p
+1

+ b
1
p
+1 − a

1
p b− ab

1
p )

) 1
p

· (4.16)

(−(p−1
p )(a

1
p
+1

+ b
1
p
+1 − a

1
p b− ab

1
p )

−a
1
p b

1
p
+1 − a

1
p
+1b

1
p + a

2
p b+ ab

2
p

)]

− 1

2If qα + (1 − q)β = 0 ⇒ q = −β

α−β
and1 − q = α

α−β
.
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emax,abs(a, b) =
( a− b

p(a
1
p − b

1
p )

) 1
p−1

(4.17)

−
(

1

a− b

[

(a
1
p − b

1
p )

(
a− b

p(a
1
p − b

1
p )

) p

p−1

− a
1
p b+ ab

1
p

])

Hence, we derive the following proposition based on the above formulas.

Proposition 4.3.2 Considering our assumptions thata, b > 0 andp > 1 is an even
integer, we obtain the following result:

lim
a→0+

emax,rel(a, b) = ∞

lim
a→0+

emax,abs(a, b) = b
1
p

((1

p

) 1
p−1 −

(1

p

) p

p−1

)

Proof : Let b <∞ andp <∞. Hence, the limit ofemax,rel(a, b) whena→ 0+ is

lim
a→0+

emax,rel(a, b) = lim
a→0+

( −1
pa

1
p b2

−p−1
p b

1
p
+1

) 1
p

·
−p−1

p b
1
p
+1

−a
1
p b

1
p
+1

− 1

= lim
a→0+

( 1

p− 1

) 1
p · p− 1

p
· b

p−1

p2

a
p−1

p2

− 1

= ∞

and the limit ofemax,abs(a, b) whena→ 0+ is obtained as

lim
a→0+

emax,abs(a, b) =
( −b
−pb

1
p

) 1
p−1 −

(−b
1
p

−b
( −b
−pb

1
p

) p

p−1
)

=
(1

p

) 1
p−1

b
1
p −

(1

p

) p
p−1

b
1
p

= b
1
p

((1

p

) 1
p−1 −

(1

p

) p

p−1

)

which is a finite value since bothb andp are finite in this case. 2

Since we have assumed thatyj = βj − L + γT
j ẽ has a probability distribution

with a finite domain,a andb can be easily obtained. Assume that each independent
element of the stochastic vectorẽ, i.e., ẽt, t = 1, . . . , nẽ, belongs to the interval
[ct, c̄t] wherect, c̄t ∈ R. Sinceγjt can be positive or negative, we have

min(γjtct, γjtc̄t) ≤ γjtẽt ≤ max(γjtct, γjtc̄t).



54
4 An Approximation Method for Computing the Expected Value of Max-Plus

Functions

Hence, we can show that eachyj, j ∈ {1, . . . , n}, also belongs to the interval
[aj, bj ] where0 ≤ aj < bj are defined as follows:

yj = βj − L+ γT
j ẽ = βj − L+ γj1ẽ1 + · · · + γjnẽ

ẽnẽ

⇒ βj − L+

nẽ∑

t=1

min(γjtct, γjtc̄t)

︸ ︷︷ ︸

aj

≤ yj ≤ βj − L+

nẽ∑

t=1

max(γjtct, γjtc̄t)

︸ ︷︷ ︸

bj

Recall that we chooseL such that all0 ≤ yj, j = 1, . . . , n. Hence, we can conclude
that0 ≤ aj < bj and hence,ap

j < bpj . Therefore,

ap
j ≤ yp

j ≤ bpj ⇒
n∑

j=1

ap
j

︸ ︷︷ ︸

a

≤
n∑

j=1

yp
j

︸ ︷︷ ︸

x

≤
n∑

j=1

bpj

︸ ︷︷ ︸

b

(4.18)

with a < b. Recall that the error caused by Inequality(ii) in (4.4) approaches0
asp → ∞. This suggests that in order to get a good approximation,p should be
selected very large. However, since in our case botha andb depend onp (as shown
in (4.18)), we need a more careful investigation to study theeffect of p → ∞ on
emax,rel(a, b) and emax,abs(a, b). To this end, letα = maxj=1,...,n(aj) andβ =

maxj=1,...,n bj . Denote the number ofaj, j = 1, . . . , n that are equal toα by A
and the number ofbj, j = 1, . . . , n that are equal toβ by B. Sinceb > a, we
conclude thatβ > α. Now, for a largep, we can rewritea andb asa ≈ Aαp and
b ≈ Bβp. Using this notation, we obtain the following proposition.

Proposition 4.3.3 Considering our assumption thatp is a positive even integer and
that a ≈ Aαp, b ≈ Bβp for a largep withA,B positive integers and0 ≤ α < β,
we have the following results:

if (α = 0 andβ > 0) :

{

limp→∞ emax,rel(α, β) = ∞
limp→∞ emax,abs(α, β) = β

if (α > 0 andβ > 0) :

{

limp→∞ emax,rel(α, β) = β
α − 1

limp→∞ emax,abs(α, β) = β

Proof : First letα = 0 and thus,β > 0. Now, by replacinga andb in (4.16) by
Aαp andBβp respectively, we will be in the case of Preposition 4.3.2 andso,

lim
p→∞

emax,rel(α, β) = ∞.

However, for the absolute error, we obtain the following result after replacinga and
b in (4.17) byAαp andBβp respectively:

lim
p→∞

emax,abs(α, β) = lim
p→∞

(

Bβp
) 1

p

[(1

p

) 1
p−1 −

(1

p

) p
p−1

]
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= β[1 − 0]

= β

in which the limit of
(

1
p

) 1
p−1

is computed as follows. Sincelim
p→∞

(1

p

) 1
p−1

is of the

form 00, it is an indeterminate limit and therefore, we use l’Hopital’s rule. Let:

lim
p→∞

(1

p

) 1
p−1

= M ⇒ lnM = lim
p→∞

−1

p− 1
ln p =

∞
∞

l’Hopital
= lim

p→∞

−1
p

1
= 0

⇒M = 1 ⇒ lim
p→∞

(1

p

) 1
p−1

= 1.

Now let α > 0 andβ > 0. Note that sinceα < β if p → ∞, we haveαp ≪
βp. Moreover, in the nominator and denominator of bothemax,rel(α, β) in (4.16)
andemax,abs(α, β) in (4.17), the sums of the powers ofα andβ are equal in each
expression. Therefore, to compute the limit ofemax,rel(α, β) andemax,abs(α, β), we
can conclude that term in whichβ has the largest power in each expression in the
nominator or denominator is the most influential one and hence, will determine the
limit value. Based on this argument, the limit ofemax,rel(α, β) whenp→ ∞ can be
obtained as follows.

lim
p→∞

emax,rel(α, β) = lim
p→∞

[(−1
p(Aαp)

1
p (Bβp)2

−(p−1)
p (Bβp)

1
p
+1

) 1
p

·
−(p−1)

p (Bβp)
1
p
+1

−(Aαp)
1
p (Bβp)

1
p
+1

− 1

]

= lim
p→∞

[(
A

1
pαB2βp−1

(p− 1)B
1
p
+1

) 1
p p− 1

pA
1
pα

− 1

]

= lim
p→∞

[
(p− 1)A

1

p2 −
1
pB

1
p
− 1

p2 β1− 1
p

p(p− 1)
1
pα

− 1

]

=
β

α
− 1

in which we used the fact thatlimp→∞ x
1
p = 1 and limp→∞( 1

p−1)
1
p = 1 for any

x > 0, as shown before.
The limit of emax,abs(α, β) whenp→ ∞ will be

lim
p→∞

emax,abs(α, β) = lim
p→∞

[(1

p

) 1
p−1
(

Bβp
) 1

p −
(

1

Bβp

(1

p

) p

p−1
(

Bβp
) 1+p

p

)]

= lim
p→∞

[(1

p

) 1
p−1

B
1
pβ −

(1

p

) p
p−1

B
1
pβ

]
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= 1 × β − 0

= β.

using the fact thatlimp→∞

(
1
p

) p

p−1 = 0 since it is of the form01. 2

This proposition shows that ifp → ∞, then based on the values ofβ andα,
the size of the relative and absolute errors can change. Moreover, experiments show
that asp increases, bothemax,rel(α, β) andemax,abs(α, β) increasemonotonically
until they converge to the values given in Proposition 4.3.3. This indicates that we
cannot choose a very largep since the error will become too large. However, as
mentioned before, the error caused by Inequality(ii) in (4.4) approaches0 asp →
∞. Consequently, there is a trade-off between having a small error in Inequality
(iii) by choosing a relatively smallp and having a small error in Inequality(ii) by
choosing a very largep. So, the value ofp had to be tuned accordingly.

4.4 Convexity of the Approximation

Recall that in the definition of the expected value of max-plus-scaling functions in
Chapter 3, (3.10) is affine in the control variableũ(k) and (3.24) is affine in the
control variableŝθ andλ̂. In this section, we prove that the approximation function
(cf. (4.6))

U

(

E[ max
j=1,...,n

(βj − L+ γT
j ẽ)]

)

=

( n∑

j=1

E
[
(βj − L+ γT

j ẽ)
p
]
)1/p

+ L

with βj = aj + bTj w, wherew denotes a general control variable, is convex inw.
To this end, letφj(w) = aj + bTj w + γT

j ẽ− L, which is an affine and so a convex
function inw. Hence, thep-th moment ofφj(w), i.e.,E[

(
φj(w)

)p
] can be defined

as:

E[
(
φj(w)

)p
] =

∫ +∞

−∞
. . .

∫ +∞

−∞

(
φj(w)

)p
f(ẽ)dẽ

wheref(ẽ) is the probability density function of̃e. Note that to the random variable
ẽ, we only assign distributions that have finite moments; hence, E[

(
φj(w)

)p
] is

finite as well.
To prove the convexity ofU

(

E[maxj=1,...,n φj(w)]
)

in w, we need the follow-

ing theorems [78, Chapter 5]:
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Theorem 4.4.1 (Minkowski inequality for functions) Let h : R → R and g :

R → R be such that the functions|h(x)|ℓ and |g(x)|ℓ, for an integerℓ > 1, are
integrable3 on R. Then

{

E
[
|h(x) + g(x)|ℓ

]}1/ℓ
≤
{

E
[
|h(x)|ℓ

]}1/ℓ
+
{

E
[
|g(x)|ℓ

]}1/ℓ

Theorem 4.4.2 (Minkowski inequality for vectors) Let x = [x1, . . . , xn]T and
y = [y1, . . . , yn]T be two vectors inRn andℓ > 1 be an integer. Then,





n∑

j=1

|xj + yj|ℓ




1/ℓ

≤





n∑

j=1

|xj |ℓ




1/ℓ

+





n∑

j=1

|yj|ℓ




1/ℓ

.

Recall that (cf. Remark 4.2.5) we assumep = 2q, q ∈ Z
+; hence,|x|p = xp.

Consequently, we drop the absolute value sign for the expressions with the powerp
in the rest of this section. First, we prove the following proposition:

Proposition 4.4.3
(
E
[(
φj(w)

)p])1/p
, with φj an affine function inw, is a convex

function ofw.

Proof : If we show that
{

E
[(
φj(λw1 + (1 − λ)w2)

)p]
}1/p

≤ λ
{

E[
(
φj(w1)

)p
]
}1/p

+ (1 − λ)
{

E[
(
φj(w2)

)p
]
}1/p

for any two pointsw1 andw2 in the domain ofE
[(
φj(w)

)p]
and for any0 ≤ λ ≤ 1,

then the proof is complete. Sinceφj is an affine function inw, we have

φj(λw1 + (1 − λ)w2) = λφj(w1) + (1 − λ)φj(w2)

Therefore, from the Minkowski inequality for functions (cf. Theorem 4.4.1) and
keeping in mind thatp is an even integer we obtain:

(

E
[(
φj(λw1 + (1 − λ)w2)

)p]
)1/p

=
(

E
[(
λφj(w1)
︸ ︷︷ ︸

h(x)

+ (1 − λ)φj(w2)
︸ ︷︷ ︸

g(x)

)p]
)1/p

≤ λ
(

E[
(
φj(w1)

)p
]
)1/p

+ (1 − λ)
(

E[
(
φj(w2)

)p
]
)1/p

(4.19)

So the inequality holds true and consequently,
(
E
[(
φj(w)

)p])1/p
is a convex func-

tion inw. 2

3If for a domainD the integral
R

D
f(x) dx exists, then the functionf is called integrable onD.
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Now for a shorter notation, let

F(w) = U

(

E[ max
j=1,...,n

φj(w)]
)

=

( n∑

j=1

E[
(
φj(w)

)p
]

)1/p

+ L. (4.20)

Remark 4.4.4 Let x = [x1, . . . , xn]T andy = [y1, . . . , yn]T be two vectors inRn

andp ≥ 2 an even integer. If|xj| < |yj | for j = 1, . . . , n, then it is easy to verify
that





n∑

j=1

|xj|p




1/p

<





n∑

j=1

|yj |p




1/p

.

2

Considering (4.20), we prove the convexity ofF(w) in w in the following proposi-
tion.

Proposition 4.4.5 F(w) is a convex function ofw.

Proof : Note that in this proof the constant valueL in F(w) is omitted since this
term does not influence the convexity. Now, we prove that for any w1, w2 in the
domain ofF(w) and for anyλ ∈ [0, 1] the following inequality holds:

F(λw1 + (1 − λ)w2) ≤ λF(w1) + (1 − λ)F(w2)

and therefore, it is a convex function ofw. We have:

F(λw1 + (1 − λ)w2)

=





n∑

j=1

E
[(
φj(λw1 + (1 − λ)w2)

)p]





1/p

=





n∑

j=1

E
[(
λφj(w1) + (1 − λ)φj(w2)

)p]





1/p

since φj is affine in w

=





n∑

j=1

(

E
[(
λφj(w1) + (1 − λ)φj(w2)

)p]1/p
)p





1/p

(i)

≤
(

n∑

j=1

(

λ
(
E[
(
φj(w1)

)p
]
)1/p

+ (1 − λ)
(
E[
(
φj(w2)

)p
]
)1/p

︸ ︷︷ ︸

xj+yj

)p
)1/p
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(ii)

≤






n∑

j=1

(

λ
(
E[
(
φj(w1)

)p
]
)1/p

︸ ︷︷ ︸

xj

)p






1/p

+






n∑

j=1

(

(1 − λ)
(
E[
(
φj(w2)

)p
]
)1/p

︸ ︷︷ ︸

yj

)p






1/p

≤ λ





n∑

j=1

E[
(
φj(w1)

)p
]





1/p

+ (1 − λ)





n∑

j=1

E[
(
φj(w2)

)p
]





1/p

≤ λF(w1) + (1 − λ)F(w2)

where(i) is due to (4.19) in combination with Remark 4.4.4, and(ii) is due to
Theorem 4.4.2. 2

SinceF(w) is a convex function ofw, we can also compute its subgradient with
respect tow as follows:

∂

∂w
F(w) =

∂

∂w





n∑

j=1

E
[(
aj + bTj w + γT

j ẽ− L
)p]





1/p

=
1

p





n∑

j=1

E
[(
aj + bTj w + γT

j ẽ− L
)p]





1/p−1

· ∂
∂w





n∑

j=1

E
[(
aj + bTj w + γT

j ẽ− L
)p]





=
1

p





n∑

j=1

E
[(
aj + bTj w + γT

j ẽ− L
)p]





1/p−1

·
n∑

j=1

∂

∂w
E
[(
aj + bTj w + γT

j ẽ− L
)p]

=





n∑

j=1

E
[(
aj + bTj w + γT

j ẽ− L
)p]





1/p−1

(4.21)

·
n∑

j=1

bjE
[(
aj + bTj w + γT

j ẽ− L
)p−1]

where in the last step, the derivative of the expected value is computed as follows,

∂

∂w
E
[(
aj + bTj w + γT

j ẽ− L
)p]
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=
∂

∂w

[ ∫ ∞

−∞
. . .

∫ ∞

−∞
(aj + bTj w + γT

j ẽ− L)pf(ẽ)dẽ

]

(∗)
=

∫ ∞

−∞
. . .

∫ ∞

−∞

∂

∂w
(aj + bTj w + γT

j ẽ− L)pf(ẽ)dẽ

=

∫ ∞

−∞
. . .

∫ ∞

−∞
p(aj + bTj w + γT

j ẽ− L)p−1bjf(ẽ)dẽ

= pbj

∫ ∞

−∞
. . .

∫ ∞

−∞
(aj + bTj w + γT

j ẽ− L)p−1f(ẽ)dẽ

= pbjE
[
aj + bTj w + γT

j ẽ− L
]p−1

Note that in(∗) due to the continuity of the integrand and its derivatives, the Leibniz
rule is used for differentiating the integral. For more details the interested reader is
referred to [41].

4.5 Summary

In this chapter, we have introduced an approximation methodin order to compute
the expected value of a max-plus-scaling function, which isdefined as the maximum
of several affine expressions. This method is based on higher-order moments of a
random variable and we have applied it under the assumption of having independent
random variables. This method is applicable to any distribution with finite moments
for which a closed-form exists. As such, it involves no analytic or numerical inte-
gration. Accordingly, using closed-form moments, we obtain an analytic solution
the complexity of which is much less than numerical integration, analytic integra-
tion, or even the approximation method based on variabilityexpansion discussed in
Section 3.1.3.

We have also shown that the error caused by using this approximation method is
bounded from above and hence, cannot exceed a certain value.Moreover, we have
discussed the behavior of the upper bound of the error in the cases in which each of
its parameters takes different values, such as0 or ∞.

The last section of this chapter has been dedicated to the convexity analysis
of the approximation function. We have proved that the approximation function is
convex and hence, its subgradient can be obtained accordingly. The convexity of
the approximation function is useful in the computation of the objective function in
the MPC and identification optimization problem for MPL systems.



Chapter 5

Approximation Approach for
Model Predictive Control and
Identification of Stochastic
Max-Plus-Linear Systems

In the previous chapter, we have proposed an approximation method to compute the
expected value of a stochastic max-plus-scaling function that results in an analytic
solution if we choose probability distributions that have finite moments for which
a closed-form expression exists. Now, this method will be applied to MPC and
identification of stochastic MPL systems. Using this approximation method for the
mentioned problems will decrease the computational complexity and the computa-
tion time.

5.1 Approximate Stochastic MPL-MPC

In Section 3.1 of Chapter 3, MPC has been proposed as a controlapproach for
stochastic MPL systems. Based on the MPC procedure, an optimization problem
has to be solved in order to obtain an optimal input sequence that minimizes the
objective function. Since we deal with stochastic MPL systems, this optimization
problem is characterized by a significant computational complexity, which we try
to decrease by applying the approximation method of the previous chapter.

61
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5.1.1 Problem Statement

In the stochastic MPL-MPC optimization problem (3.8), the objective function is
defined as (cf. (3.1))

J(k) = Jout(k) + λJin(k) (5.1)

where the output objective function consists of an expectedvalue of stochastic max-
plus-scaling functions (cf. (3.4)). Therefore, in order tosolve (3.8), this expected
value needs to be computed. Recall from Section 3.1.2 that the stochastic max-
plus-scaling function appearing in the MPL-MPC problem hasthe following general
form:

v(k) = max
j=1,...,nv

(αj(k) + βT
j ũ(k) + γT

j ẽ(k)) (5.2)

whereẽ is a vector of independent random variables with the given probability den-
sity functionf(·). Hence, we need to compute

E[v(k)] =

∫ ∞

−∞
. . .

∫ ∞

−∞
max

j=1,...,nv

(αj(k) + βT
j ũ(k) + γT

j ẽ(k))f(ẽ)dẽ. (5.3)

To this end, several solution approaches have been proposed(cf. Section 3.1.3);
however, each of these methods has a high level of computational complexity.
Therefore, we apply the approximation method of Chapter 4 inorder to simplify
the problem and to increase the computational efficiency.

5.1.2 Approximation Approach

Considering (4.8) of Section 4.2, we can approximateE[v(k)], k = 1, . . . , Np − 1

by

U

(

E[v(k)]
)

=

( nv∑

j=1

∑

k0+k1+···+knẽ
=p

p!

k0! k2! · · · knẽ
!
γk0

j,0

nẽ∏

t=1

γkt

j,tE
[
ẽkt
t (k)

]
)1/p

+ L (5.4)

where for eachj ∈ {1, . . . , nv} we haveγj,0 = αj(k) + βT
j ũ(k) − L andγj,t are

scalars fort = 1, . . . , nẽ. Note that (5.4) can be used for any probability distribution
assigned tõe1, . . . , ẽnẽ

, and it is only useful to be applied when the probability
distribution has finite moments and a closed form of these moments exists. For the
case that we have probability distributions that are preserved under summation, we
can use the following expression in order to approximateE[v(k)] (cf. (4.6)):

U

(

E[v(k)]
)

=

( nv∑

j=1

E
[
(αj(k) + βT

j ũ(k) + γT
j ẽ(k) − L)p

]
)1/p

+ L (5.5)
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Using this expression directly is computationally much faster than using (5.4). The
reason is that since we already know the distribution of eachrandom variableαj(k)+

βT
j ũ(k)+γ

T
j ẽ(k)−L, we can directly compute itsp-th moment without first having

to expand thep-th power expression, as is done in (5.4).
As shown in Section 4.4, both (5.4) and (5.5) are convex inũ, and their sub-

gradient with respect tõu can be obtained as follows (cf. (4.21)). For (5.4), the
subgradient is

∇ũU

(

E[v(k)]
)

=

( n∑

j=1

∑

k0+k1+···+knẽ
=p

p!

k0! k2! · · · knẽ
!
γk0

j,0

nẽ∏

t=1

γkt

j,tE
[
ẽkt
t (k)

]
)1/p−1

·

( nv∑

j=1

βj

∑

k0+k1+···+kne=p−1

(p− 1)!

k0! k2! · · · kne !
k0γ

k0−1
j,0

ne∏

t=1

γkt

j,tE
[
ẽkt
t (k)

]
)

(5.6)

and for (5.5), it is

∇ũU

(

E[v(k)]
)

=





nv∑

j=1

E
[
(αj + βT

j ũ(k) + γT
j ẽ(k) − L)p

]





1/p−1

·





nv∑

j=1

βjE
[
(αj + βT

j ũ(k) + γT
j ẽ(k) − L)p−1

]



 (5.7)

Now that we can approximate the expected value of a stochastic max-plus-scaling
function v(k), we can also compute the objective function (5.1) approximately as
follows. Recall thatJout(k) is defined as a sum overE[max(ỹ(k)−r̃(k), 0)]. Hence,
we obtain the following approximate objective function:

Japp(k) = Jout,app(k) + λJin(k)

=

Np·ny∑

j=1

(
U

(

E[max(ỹ(k) − r̃(k), 0)]
))

j
− λ

Np·nu∑

l=1

ũl(k) (5.8)

and hence, instead of solving the optimization problem (3.8), we can solve the fol-
lowing approximate optimization problem:

min
ũ(k)

Japp(k)

s.t. ∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1

Acon(k)ũ(k) +Bcon(k)U
(

E[ỹ(k)]
)

≤ ccon(k)

(5.9)
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Recall thatU
(

E[ỹ(k)]
)

is an upper bound forE[ỹ(k)]. Hence, if the entries of

Bcon(k) are nonnegative, thenAcon(k)ũ(k) + Bcon(k)U
(

E[ỹ(k)]
)

≤ ccon(k) also

impliesAcon(k)ũ(k) + Bcon(k)E[ỹ(k)] ≤ ccon(k). Moreover, the minimization of
Japp(k) (in general) also results in minimization ofJ(k) sinceJapp(k) is an upper
bound forJ(k).

Note that convexity of the approximation functionU

(

E[v(k)]
)

in ũ implies that

the last inequality constraint in (5.9) is also convex inũ. Hence, if we assume that
all the entries ofBcon are nonnegative, in that case, the whole approximate MPL-
MPC optimization problem (5.9) turns out to be convex inũ, and having a closed
form expression for subgradients (cf. (5.6) and (5.7)), we can solve this optimization
problem efficiently using gradient-based convex optimization algorithms such as the
cutting-plane method or the ellipsoid algorithm [15].

5.1.3 Example

We consider an example similar to the one of [104] and we studyit for the cases in
which the noise vector is uniformly distributed and normally distributed. For each
case, we apply different methods to compute the objective function (3.8), namely,
the analytic integration of Section 3.1.3, numerical integration1, Monte Carlo sim-
ulation, and the approximation method of Section 4.2. Afterwards, we compare the
performance of the MPC controller using these methods.

M1 M2

d1(k)=5+e(k) d2 =1

- - -u(k) y(k)
x1(k) x2(k)

t1 =0 t2 =1 t3 =0

Figure 5.1: A production system.

Consider the simple manufacturing system of Figure 5.1. This system consists
of two machines,M1 andM2, and operates in batches. The raw material is fed to
machineM1 where preprocessing is done. Afterwards the intermediate product is
fed to machineM2 and finally the complete product leaves the system. We assume
that each machine starts working as soon as possible on each batch, i.e., as soon as
the raw material or the required intermediate product is available, and as soon as the
machine is idle (i.e., the previous batch of products has been processed and has left
the machine). Define:

u(k) : time instant at which the raw material is fed to the system forthek-th time

1The numerical integration is based on Monte Carlo integration [25]
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y(k) : time instant at which thek-th product leaves the system

xi(k) : time instant at which machinei starts for thek-th time

tj(k) : transportation time on linkj for thek-th batch

di(k) : processing time on machinei for thek-th batch

The system equations are given by

x1(k) = max(x1(k−1) + d1(k−1), u(k) + t1(k))

x2(k) = max(x1(k) + d1(k) + t2(k), x2(k−1) + d2(k−1))

= max(x1(k−1) + d1(k−1) + d1(k) + t2(k),

u(k) + d1(k) + t1(k) + t2(k), x2(k−1) + d2(k−1))

y(k) = x2(k) + d2(k) + t3(k)

and in matrix notation this becomes

x(k) = A(k) ⊗ x(k−1) ⊕B(k) ⊗ u(k)

y(k) = C(k) ⊗ x(k) .

where the system matricesA, B andC are given as follows:

A(k) =

[
d1(k−1) ε

d1(k−1) + d1(k) + 1 1

]

, B(k) =

[
0

d1(k) + 1

]

,

C(k) =
[
ε 1

]
.

The objective functions (3.4)-(3.5) will be optimized forNp = 3, Nc = 2, andλ =

0.05. It is assumed that the transportation times are constant:t1(k) = 0, t2(k) =

1, t3(k) = 0; the production time ofM2 is constant:d2(k) = 1; the due date
(reference) signal isr(k) = 4+6·k; andx(0) = [0 7]T . The signald1 is assumed to
be corrupted by noise:d1(k+ℓ) = 5+e(k+ℓ) wheree(k+ℓ), ℓ = −1, . . . , Np−1

are random variables with a given probability distribution. Hence, the vector̃e(k) =

[ d1(k − 1) . . . d1(k +Np − 1) ]T consists of independent stochastic variables.
Now, we can rewritemax(y(k + ℓ) − r(k + ℓ), 0), ℓ = 1, . . . , Np − 1 such that
it is divided into deterministic and stochastic parts. Thisyields expressions of the
following form2:

max(y(k) − r(k), 0) = max(η1 + ẽ1 + ẽ2, η2 + ẽ2, η3, 0)

max(y(k + 1) − r(k + 1), 0) = max(η4 + ẽ1 + ẽ2 + ẽ3, η5 + ẽ2 + ẽ3,

η6 + ẽ3, η7 + ẽ1 + ẽ2, η8 + ẽ2, η9, 0) (5.10)

2We have omitted the argumentk for brevity.
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max(y(k + 2) − r(k + 2), 0) = max(η10 + ẽ1 + ẽ2 + ẽ3 + ẽ4,

η11 + ẽ2 + ẽ3 + ẽ4, η12 + ẽ3 + ẽ4, η13 + ẽ4,

η14 + ẽ1 + ẽ2 + ẽ3, η15 + ẽ2 + ẽ3, η16 + ẽ3,

η17 + ẽ1 + ẽ2, η18 + ẽ2, η19, 0)

whereη1, . . . , η19 are sums of deterministic values andẽ1, . . . , ẽ4 are the entries of
ẽ.

Now, we study separately the two cases where the entries ofẽ are uniformly and
normally distributed, respectively.

Uniform distribution

In this case, we assume thatẽ1, . . . , ẽ4 are uniformly distributed, i.e.,̃ei ∼ U(−1, 1),
i = 1, . . . , 4. As mentioned in Section 4.2, we define the scalarsL1, L2, andL3 for
the three expressions in (5.10), as follows:

L1 = min(η1 − 2, η2 − 1, η3, 0)

L2 = min(η4 − 3, η5 − 2, η6 − 1, η7 − 2, η8 − 1, η9, 0) (5.11)

L3 = min(η10 − 4, η11 − 3, η12 − 2, η13 − 1, η14 − 3,

η15 − 2, η16 − 1, η17 − 2, η18 − 1, η19, 0)

where the numbers−1,−2,−3, and−4 are the lower bounds ofγT
j ẽ whereγj is a

vector of0s and1s that indicates which elements ofẽ appear in the maximization.
Now, we compute the optimal input sequence by solving the MPCproblem

in closed-loop fork = 1, . . . , 40. Figure 5.2 shows the difference between the
resulting output signaly and the due date signalr. The optimization has been
done usingfminconoptimizer in Matlab with one initial value since the objective
functions (both the exact and the approximate one) are convex and hence, the global
minimum can be reached. In this figure, the “Exact solution” is obtained by using
analytic integration of Section 3.1.3 to compute the expected value appearing in the
objective function. The “Nominal MPC” is indeed obtained byignoring the effect
of noise while computing the optimal input sequence. As a result, the due dates
will be most of the time violated in this case and we have late deliveries. This is
due to the fact that we compute the optimal input in the absence of noise and hence
we cannot minimize its effect. Finally, the “Approximation” is obtained by using
Japp(k) defined in (5.8). We have chosen different values ofp to find out which one
gives the closest result to the exact solution. As can be seen, for p = 20, 30, and
40 the result of the closed-loop controlled system using the approximation method
is quite close to the one using the exact solution. Note that we have also computed
the expected value in the objective function using numerical integration and Monte
Carlo simulation. However, since the plot of the differencebetween the output
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signaly and the due date signalr using these two methods matches exactly the one
using analytic integration, we have not plotted them in Figure 5.2.
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Figure 5.2: Due date errory(k) − r(k) for the closed-loop system using nominal
MPC, analytic integration to compute the expected value in the objec-
tive function, and the approximate objective functionJapp(k) in (5.8).

Table 5.1 reports the total optimization time3 for the closed-loop simulation over
40 event steps using analytic integration (i.e., the exact solution), nominal MPC,
numerical integration, Monte Carlo simulation, and the approximation method for
different values ofp. Moreover, for each method, the objective function over the

entire simulation period, i.e.,Jtot =
40∑

k=1

(max(y(k) − r(k), 0) − λu(k)), has been

computed using 20 different noise realizations and then, its mean value is reported
in the table. In addition, the relative error4 of the mean value ofJtot using the
analytic integration versus using the other methods are presented in this table.

Despite the fact that nominal MPC is extremely fast, the meanvalue ofJtot

is considerably larger than the one using the analytic integration method to com-
pute the objective function. This is due to ignoring the effect of the noise while
computing the optimal input sequence. Hence, just applyingnominal MPC is not

3These times are obtained running Matlab 7.11.0 (R2010b) on a2.33 GHz Intel Core Duo E655
processor.

4The relative error is defined here as
|Jtot,oth−Jtot,ai|

|Jtot,ai |
whereJtot,ai is obtained using the analytic

integration approach andJtot,oth is obtained using other methods.
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Methods for computing Computation Mean value (MV) Relative error
the objective function time[s] of Jtot of MV of Jtot

Analytic integration 209 −235.4937 –

Nominal MPC 1.07 −228.0679 3.15%

Numerical integration 563 −235.5079 0.006%

Monte Carlo 2648 −235.5035 0.004%

Approximation method:
p = 10 91 −228.3628 3.03%

p = 20 4009 −233.7849 0.73%

p = 30 25310 −234.8377 0.28%

p = 40 89451 −235.1228 0.16%

Table 5.1: The computation time, the mean value ofJtot, and the relative error of
the mean value ofJtot using different methods to compute the expected
value in the objective function.

a good choice. As reported in Table 5.1, for40 event steps, the total computation
times of the optimization procedure using the analytic integration is about a factor
2.5 lower than the one using numerical integration. Note that the small difference
between the objective function values of these two methods is due to the error of
numerical integration, which can be improved by increasingthe number of samples
in the numerical integration. For this experiment, we have chosen105 samples. If
we increase the number of samples to107, the value of the relative error of the ob-
jective function will be0.0009%; however, the computation time will be about a
factor 250 larger than the one using the analytic integration, and for1010 samples
it is not tractable anymore. Based on a trade-off between theCPU time and the
objective function value, it has been decided to do the experiments with105 sam-
ples. The total computation time of the optimization procedure using Monte Carlo
simulation, reported in Table 5.3, is also for105 samples. For107 samples, the rel-
ative error of objective function will be0.0005%, but again the computation time
will be a factor100 larger than the one listed in Table 5.3. Hence, due to the same
trade-off as before, we also chose105 samples for the Monte Carlo simulations. For
the approximation method, we observe that on the one hand, the mean value ofJtot

for a largep, i.e., p = 40, becomes closer to the one of the analytic solution and
accordingly, the relative error becomes smaller. On the other hand, the computation
time increases drastically by increasingp. Note that since we use the approximation
function (5.4), forp = 10 we deal with at least 66 and at most 1001 terms while
computing thep-th moments of the uniformly distributed random variables using
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the multivariate theorem (cf. Theorem 4.2.6). This number is even worse ifp = 40,
i.e., we have at least861 and at most135751 terms. Hence, considering both the
computation time and the relative error of the objective function, the results of the
approximation method forp = 20 and30 can be used in place of the exact solution.
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Figure 5.3: (a) The error caused by Inequality (ii) in(4.4)of Proposition 4.2.3; (b)
The upper boundemax,abs (cf. (4.16)) for the error caused by Inequality
(iii) (Jensen’s inequality) in(4.4)of Proposition 4.2.3.

In Figure 5.3 the errors occurring in (4.4) in Proposition 4.2.3 are illustrated.
In fact, we have computed the difference betweenJ∗(k) andJ∗

app(k), whereJ∗(k)
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is obtained by solving the optimization problem (3.8) in closed-loop using the an-
alytic integration andJ∗

app(k) is computed using (5.8) with the same optimal state
and input sequence obtained from the optimization problem (3.8), and then the er-
rors that occur in each inequality in (4.4) are presented here. Note that in the case of
the uniform distribution, since the domain of random variables is bounded, we can
specify the value ofL in (4.5) explicitly, and hence, all variables will be nonnega-
tive. Therefore, the error caused by Inequality(i) in (4.4) is zero. The error caused
by Inequality(ii), i.e., the error between thep-norm and the∞-norm, is shown
in Figure 5.3(a), which, by choosing a largerp, becomes smaller and eventually it
converges to zero. Figure 5.3(b) shows the upper bound, i.e., eabs(a, b) in (4.16),
for the error of Jensen’s inequality due to(iii).
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Figure 5.4: The upper bounds for and the exact value ofJ∗
app(k) − J∗(k).

Figure 5.4 shows the exact difference betweenJ∗
app(k) andJ∗(k), i.e.,J∗

app(k)−
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J∗(k), the upper bound for this difference obtained by adding the results of the first
and the second plot of Figure 5.3 for different values ofp, and the upper bound
(4.15) forJ∗

app(k)− J∗(k). As illustrated in this figure, by increasingp, both upper
bounds and the difference betweenJ∗

app(k) andJ∗(k) become smaller and after a
few step, they all remain below0.7 for p = 30 and40. It also shows that, after few
steps, the upper bound (4.15) forJ∗

app(k) − J∗(k) is very close to the exact differ-
ence, and the other upper bound also becomes quite close to the exact difference,
which are indications for the good performance of the approximation method in this
specific example.

As a result, by comparing the CPU times, the mean value ofJtot, and the rela-
tive errors, we can conclude that in the case of the uniform distribution, the meth-
ods based on analytic and numerical integration are preferred to the approximation
method. Note that in any case, if the approximation method isused, one should
make a trade-off between the computation time and the closeness of the results to
the solution obtained using analytic integration (as shownin Figure 5.2) and hence,
tune the value ofp accordingly, which was done here by means of experiments.

Normal distribution

In the second case, we assume that the signald1 is corrupted by standard normally
distributed noise, i.e., the elements ofẽ are ẽi ∼ N (0, 1), i = 1, . . . , 4. In this
case, we can define the scalarL as follows:

L1 = min(η1 − 3
√

2, η2 − 3(1), η3, 0)

L2 = min(η4 − 3
√

3, η5 − 3
√

2, η6 − 3(1), η7 − 3
√

2, η8 − 3(1), η9, 0) (5.12)

L3 = min(η10 − 3(2), η11 − 3
√

3, η12 − 3
√

2, η13 − 3(1), η14 − 3
√

3,

η15 − 3
√

2, η16 − 3(1), η17 − 3
√

2, η18 − 3(1), η19, 0)

Recall that this choice is based on the3σ-rule.
Figure 5.5 shows the difference between the output signaly and the due date

signalr for closed loop simulation. As in the previous case, the optimal input se-
quence is computed for the closed-loop system fork = 1, . . . , 40. Note that since
we have normally distributed random variables, their probability density function is
not piecewise polynomial. Hence, to be able to use the analytic integration of Sec-
tion 3.1.3, first it has to be approximated by a piecewise polynomial function and
since this approximation would cause significant complexity besides increasing the
computation time, we did not consider this approach for thisexample. Therefore, in
this figure, the “Exact solution” is obtained by using numerical integration to com-
pute the expected value in the objective function, the “Nominal MPC” is obtained
by ignoring the noise in the computation of the optimal inputsequence, and the
“Approximation” is obtained by using the approximate objective functionJapp(k)
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Figure 5.5: Due date errory(k) − r(k) for the closed-loop system using nominal
MPC, analytic integration to compute the expected value in the objec-
tive function, and the approximate objective functionJapp(k) in (5.8).

in (5.8). Here also, we have used Monte Carlo simulation to compute the expected
value in the objective function, but it is not plotted since it exactly covers the plot
of the exact solution. Similar to the previous case, the nominal MPC results in the
violation of due dates. The approximation method gives results that are close to the
“Exact solution” forp = 20, 30, and40. Note that forp = 50, the results obtained
using the approximation method is not comparable to the “Exact solution” anymore.
This observation shows clearly that a largerp does not always give a better result.

In Table 5.2, the total optimization time for closed-loop simulation over40 event
steps using numerical integration, nominal MPC, Monte Carlo simulation, and the
approximation method for different values ofp are reported. Similar to the previous
case, for each method, the mean value of the objective function Jtot over the entire
simulation period using 20 different noise realizations and the relative error of the
mean value ofJtot using the analytic integration versus using the other methods is
presented.

Here again, compared to numerical integration, nominal MPCresults in a very
large objective function value. Hence, despite the very short computation time, this
method is not reliable to be applied. The computation time ofthe optimization
procedure using the approximation method is on average about a factor200 smaller
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Methods for computing Computation Mean value (MV) Relative error
the objective function time[s] of Jtot of MV of Jtot

Numerical integration 744 −229.7778 –

Nominal MPC 1.08 −217.1595 5.49%

Monte Carlo 2574 −229.8415 0.03%

Approximation method:
p = 10 8.19 −224.3753 2.35%

p = 20 9.37 −227.5341 0.98%

p = 30 12.19 −226.9461 1.23%

p = 40 14.89 −226.1622 1.57%

p = 50 19.01 −225.5101 1.86%

Table 5.2: The computation time, the mean value ofJtot, and the relative error of
the mean value ofJtot using different methods to compute the expected
value in the objective function.

than the one using Monte Carlo simulation and it is about a factor 60 smaller than
the one using numerical integration. Here also the number ofsamples of both Monte
Carlo simulation and numerical integration is105 since, as explained in the previous
case, a larger number of samples increases the computation time significantly. Note
also that since we use the approximation function (5.5), increasing the value ofp has
only a linear effect on the computation time and even forp = 50, the computation
time is very low compared to Monte Carlo simulation or numerical integration. As a
result, by comparing the CPU time of these three methods, we can conclude that the
approximation method is considerably faster than numerical integration and Monte
Carlo simulation. Moreover, this table shows again that – considering the relative
error for different values ofp – a largerp does not always make the approximation
better. Consequently, one needs to find the appropriate value of p, which has been
done here by means of experiments, that gives the best approximation result.

Figure 5.6 illustratesJ∗
app(k) − J∗(k), where, similar to the previous example,

J∗(k) is obtained by solving the optimization problem (3.8) in closed-loop using
numerical integration andJ∗

app(k) is computed using (5.8) with the same optimal
state and input sequence obtained from the optimization problem (3.8). This figure
also shows the upper bound forJ∗

app(k) − J∗(k), which is indeed obtained using
(4.15). Note that unlike the previous example, since here wehave a normally dis-
tributed error vector, which has an unbounded domain, we cannot compute the upper
bound for Jensen’s inequality, i.e.,emax,abs (cf. Section 4.3). As shown in Figure
5.6, forp = 20 the upper bound forJ∗

app(k) − J∗(k) is below1 after few steps and
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Figure 5.6: The upper bound(4.15)for and the exact value ofJ∗
app(k) − J∗(k).

for p = 30 it is almost below1. However, forp = 40 both the upper bound for
J∗

app(k) − J∗(k) and the difference itself are between1 and2 and forp = 50 they
both become larger than2. This observation supports our previous conclusion that
a largerp is not always a better option and hence, for choosingp there must be a
trade-off between having a good approximation and the size of the error caused by
this approximation method.

Consequently, based on the computation time, the mean valueof Jtot, and
the relative and the approximation errors, we can conclude that the approximation
method is a reliable and time-efficient method to solve the stochastic MPL-MPC
optimization problem in this case. Indeed, forp = 20, 30, and40 the result of the
closed-loop optimization using the approximation method is quite close to the one
using the numerical integration and, in this specific example, the approximation-
based approach is about60 times faster than the approach using numerical integra-
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tion.

5.2 Approximate Identification of Stochastic MPL Systems

Similar to conventional systems, model parameters of a stochastic MPL system can
also be identified. We consider a state space model and we takeinto account the
stochastic properties of the system in the identification process. Just as the MPC
problem discussed in the previous section, in identification of stochastic MPL sys-
tems, we face with the computational difficulties as well, due to the presence of
the expected value in the objective function. Our aim in thissection is to apply the
approximation method of Chapter 4 to decrease the computational complexity of
identification of stochastic MPL systems.

5.2.1 Problem Statement

We aim to solve the following identification problem:

min
(θ̂,λ̂)

J(θ̂, λ̂)

s.t. λ̂ > 0
(5.13)

with

J(θ̂, λ̂) =

N−1∑

k=1

n∑

i=1

(E[xi(k + 1|k)] − xmeas,i(k + 1))2

=

N−1∑

k=1

n∑

i=1

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)2
, (5.14)

where, considering (3.18) and (3.19),

E[xi(k + 1|k)] − xmeas,i(k + 1)

= E
[

max
j=1,...,m

(
ξij+θ̂

T∆
(i)
·,j +eT (k)Λ̂S

(i)
·,j +φj(k)−xmeas,i(k + 1)

)]

= E
[

max
j=1,...,m

(αij(k) + ΠT
ij θ̂ + λ̂T Γije(k))

]

= E[ηi(k + 1, θ̂, λ̂, e(k))] (5.15)

for appropriately defined matrices and vectorsαij ,Πij , andΓij (cf. Section 3.2.1).
The goal is to identify the two parametersθ̂ and λ̂ by solving (5.13). To this end,
E[ηi(k+1, θ̂, λ̂, e(k))] has to be computed in an efficient way. Numerical integration
or the analytic integration using piecewise polynomial probability density functions
are again possible computational methods. However, considering the complexity
and computation load of these methods, it is desired to find alternative solution
approaches.
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5.2.2 Approximation Approach

As an alternative approach to increase the computational efficiency, we will apply
the approximation method to solve the identification problem (5.13). Consequently,

we can approximate the functionE[ηi(k + 1, θ̂, λ̂, e(k))] in (5.15) byU

(

E[ηi(k +

1, θ̂, λ̂, e(k))]
)

where

U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

=

( m∑

j=1

∑

k0+k1+···+kne=p

p!

k0! k2! · · · kne !
γk0

ij,0

nẽ∏

t=1

γkt

ij,tE
[
ẽkt
t (k)

]
)1/p

+ L (5.16)

with γij,0 = αij + ΠT
ij θ̂ − L andγij,t = (λ̂T Γij)tet for j = 1, . . . ,m and t =

1, . . . , ne and with the stochastic vectore = [e1, . . . , ene ]
T andΓij being a diagonal

matrix. Furthermore, we can obtain subgradients ofU

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

with respect tôθ andλ̂. Note that onlyγij,0 depends on̂θ, and the rest ofγij,t, t =

1, . . . , ne depend only on̂λ. Accordingly, by applying the chain rule, we obtain the
following subgradients for (5.16):

∇θ̂U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

=

( m∑

j=1

∑

k0+k1+···+kne=p

p!

k0! k2! · · · kne !
γk0

ij,0

nẽ∏

t=1

γkt

ij,tE
[
ẽkt
t (k)

]
)1/p−1

·

( m∑

j=1

Πij

∑

k0+k1+···+kne=p−1

(p− 1)!

k0! k2! · · · kne !
k0γ

k0−1
ij,0

nẽ∏

t=1

γkt

ij,tE
[
ẽkt
t (k)

]
)

and

∇λ̂U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

=

( m∑

j=1

∑

k0+k1+···+kne=p

p!

k0! k2! · · · kne !
γk0

ij,0

nẽ∏

t=1

γkt

ij,tE
[
ẽkt
t (k)

]
)1/p−1

·

( m∑

j=1

∑

k0+k1+···+kne=p

(p− 1)!

k0! k2! · · · kne !
γk0

ij,0

ne∑

ℓ=1

kℓ(Γij)ℓℓγ
kℓ−1
ij,ℓ E[ekℓ

ℓ ]

ne∏

t=1
t6=ℓ

γkt

ij,tE
[
ẽkt
t (k)

]
)

In the case that the elements of the stochastic vectore(k) have a distribution
that is preserved under summation, we can equivalently approximate E[ηi(k +
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1, θ̂, λ̂, e(k))] by

U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

=





m∑

j=1

E
[(
αij + ΠT

ij θ̂ + λ̂T Γije(k) − L
)p]





1/p

+L

(5.17)

with the following subgradients

∇θ̂U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

=





m∑

j=1

E
[(
αij + ΠT

ij θ̂ + λ̂T Γije(k) − L
)p]





1/p−1

·

m∑

j=1

ΠijE
[(
αij + ΠT

ij θ̂ + λ̂T Γije(k) − L
)p−1]

and

∇λ̂U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

=





m∑

j=1

E
[(
αij + ΠT

ij θ̂ + λ̂T Γije(k) − L
)p]





1/p−1

·

m∑

j=1

ΓijE
[
e(k)

(
αij + ΠT

ij θ̂ + λ̂T Γije(k) − L
)p−1]

As a result, the objective functionJ(θ̂, λ̂) in (5.14) can be approximated by

replacingE[ηi(k + 1, θ̂, λ̂, e(k))] with U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

as follows:

Japp(θ̂, λ̂) =
N−1∑

k=1

n∑

i=1

(

U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
))2

(5.18)

with the gradients

∇θ̂Japp(θ̂, λ̂)

=

N−1∑

k=1

n∑

i=1

2U
(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

∇θ̂U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

and

∇λ̂Japp(θ̂, λ̂)
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=

N−1∑

k=1

n∑

i=1

2U
(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

∇λ̂U

(

E[ηi(k + 1, θ̂, λ̂, e(k))]
)

and hence, solve the following approximate identification problem

min
(θ̂,λ̂)

Japp(θ̂, λ̂)

s.t. λ̂ > 0

by means of a multi-start gradient-based optimization method, such as a steepest
descent method or a Quasi-Newton (DFP, BFGS) method [90].

5.2.3 Example

In this section we present two case studies to discuss the results of the identifica-
tion using different methods to compute (5.15), namely the approximation method
(cf. (5.16) and (5.17)), numerical integration5, the analytic integration using piece-
wise polynomial probability density functions (cf. Section 3.1.3), and Monte Carlo
simulation.

In the first case study, we consider a uniformly distributed noise vector, which
has a bounded domain, and we compare the performance of the above-mentioned
approaches with one another. In the second case study, a normally distributed noise
vector, which has an unbounded domain, is considered. Note that if we apply the
analytic integration approach of Section 3.1.3 to the case with normally distributed
random variables, we would need an approximation using piecewise-polynomial
functions. This would introduce approximation errors as well as an increase in the
computational complexity. To avoid this additional complexity, we did not consider
this approach in this example. Hence, we only compare the performance of the
approximation method with the approach using numerical integration and with the
one using Monte Carlo simulation for the computation of (5.15).

In order to obtain a system of the form (3.17), we consider thefollowing stochas-
tic state space model:

x(k) = A(k) ⊗ x(k − 1) ⊕B(k) ⊗ u(k) (5.19)

y(k) = C(k) ⊗ x(k) (5.20)

with the system matrices

A(k) =

[
θ1(k) 0

ǫ θ2(k)

]

B(k) =

[
θ3(k)

θ4(k)

]

C(k) =
[

0 0
]
.

5The numerical integration is based on the Monte Carlo integration [25]
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In this example, we generate input-state data by simulatingthe system for400
event steps, i.e., fork = 1, . . . , 400. The parameter estimation is done using this
data, in which the input signal is a staircase signal [97] with an average slope of
about1.83 given by

u(k) = 5.5 ·
(

1 + ⌊k/3⌋
)

where⌊x⌋ denotes the largest integer less than or equal tox. The input signalu(k)
in shown in Figure 5.7 fork = 1, . . . , 40.
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Figure 5.7: The first 40 samples of the input signalu(k) for the first and the second
case study of Section 5.2.3.

We estimate the parametersθ andλ assuming that the elements of the noise
vector are uniformly and normally distributed, respectively.

Uniform distribution

We choose the true parameter vectorθ as

θ =
[
θ1 θ2 θ3 θ4

]T
=
[

0.3 0.3 0.7 0.6
]T

and we assume that its elements are perturbed by the uniformly distributed noise
componentseℓ(k) such thateℓ(k) ∼ U(−1, 1) for ℓ = 1, . . . , 4, and with scaling
factor

λ =
[
λ1 λ2 λ3 λ4

]T
=
[

0.3 0.3 0.3 0.3
]T
.

Hence, the corresponding value of the cost function, usingθ andλ to generate the
input-state data, is21.8512.
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As a first step, we estimate the parameterθ for a deterministic model, i.e., a

noiseless model witĥλ =
[

0 0 0 0
]T

, using the residuation-based estimation
techniques described in [4, 23, 77]. Note that in this case, we do not expect to have
a good estimation since we are ignoring the effect of noise. The optimization yields
the following results:

θ̂ =
[

0.0167 0.0009 0.4056 0.3011
]T
.

and the corresponding value of the objective function is90.3505. As expected, due
to the absence of a noise model the estimation fails and the estimated parameters
are quite far from the true values.

The second step is to estimate the parametersθ andλ for the stochastic sys-
tem (5.19)-(5.20). We minimize the objective function (5.13) based on the one-step
ahead prediction, i.e., we predict the behavior of the system at the event stepk + 1

based on the information that we have at the event stepk. We use a multi-start, se-
quential quadratic programming (SQP) method [80], considering 30 different start-
ing points that are chosen randomly and are both larger and smaller than the real
values ofθ andλ to start the optimization with, and then, we report the estimated
parameters for which the objective function has the lowest value.

We use four different methods to compute (5.15): Monte Carlosimulation
[63], numerical integration, the analytic integration method, and the approxima-
tion method using the function (5.16). By means of experiments, we found out that
p = 14 gives a good approximation in this specific example. The results of the op-
timization are presented in Table 5.3. As shown, the estimated parameter̂θ is quite
close to the exact value ofθ for the above-mentioned methods. However, forλ we
do not have a good estimation. Note that, in general, in prediction error identifica-
tion, one can obtain the correct system model, i.e.,θ, but it is much more difficult
to estimate the noise model, i.e.,λ [48, 73].

The reason that the analytic integration method of Section 3.1.3 and numeri-
cal integration give different results (cf. Table 5.3) is – apart from the numerical
integration accuracy – mainly due to the fact that here we have a non-convex op-
timization problem in combination with optimization runs with different random
starting points. As reported in Table 5.3, for400 event steps, the average computa-
tion time6 of the optimization procedure, over 30 different starting points, using the
approximation method and analytic integration approach isquite close (it is about a
factor 1.5 lower for the approximation method). However, the computation time of
the optimization problem using the analytic integration approach is about a factor 30
lower than using numerical integration with105 samples. If we increase the number
of samples to107 the computation time using numerical integration becomes about

6These times are obtained running Matlab 7.11.0 (R2010b) on a2.33 GHz Intel Core Duo E655
processor.
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Optimization Monte Carlo Numerical Analytic Approximation
results simulation integration integration method

θ̂







0.2824

0.2944

0.6910

0.5885













0.2976

0.3018

0.6967

0.5898













0.2841

0.2926

0.6954

0.5808













0.3012

0.2823

0.6746

0.5991







λ̂







0.1575

0.3882

0.6224

0.0027













0.2838

0.4694

0.4529

0.0896













0.4591

0.3239

0.0858

0.2700













0.0596

0.0670

0.2613

0.0479







Corresponding 22.6907 21.8831 21.6958 22.3832

J

CPU time [s] 73549 44992 1523 1024

Table 5.3: Estimation results forθ andλ, using four different methods to calculate
(5.15) with uniformly distributed noise, corresponding value of the ob-
jective functionJ , and the average computation time (CPU time) of each
method using 30 different random starting points.

a factor 3000 larger than the one using the analytic integration, and for1010 it is not
even tractable anymore. For the numerical integration the relative error between the
objective functions obtained using the analytic integration approach and the numer-
ical integration with105 samples is0.03% and using107 samples is0.004%. Based
on a trade-off between the CPU time and the relative error, ithas been decided to do
the experiments with105 samples. The computation time of the optimization pro-
cedure using Monte Carlo simulation, reported in Table 5.3,is also for105 samples
and the relative error between the objective functions obtained using the analytic
integration and the Monte Carlo simulation using this number of samples is0.06%
and using107 samples, it is0.008%. Hence, due to the same trade-off as before, we
chose105 samples. As a result, by comparing the CPU times of these fourmethods
we can conclude that the analytic integration method and theapproximation method
are considerably faster (at least 30 times and 45 times, respectively) than numerical
integration and the Monte Carlo simulation. Moreover, the results obtained using
the approximation method are similar to the ones using analytic integration besides
the fact that the CPU time using the approximation method is smaller than the one
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using the analytic integration approach.

Normal distribution

For the second case, the true parameter vectorθ is the same as before, i.e.,

θ =
[
θ1 θ2 θ3 θ4

]T
=
[

0.3 0.3 0.7 0.6
]T

except that now, each of its elements is perturbed by one of the noise components
eℓ(k), ℓ = 1, . . . , 4 that are independent and have a standard normal distribution,
i.e.,eℓ(k) ∼ N (0, 1), with the scaling factor

λ =
[
λ1 λ2 λ3 λ4

]T
=
[

0.1 0.1 0.1 0.1
]T
.

and accordingly, the corresponding value of the cost function, usingθ andλ to
generate the input-state data, is8.6958.

Similar to the previous case, first we estimate the parameterθ for a deterministic
model, using the mentioned residuation-based estimation techniques. The optimiza-
tion result is as follows:

θ̂ =
[

0.0725 −0.0218 0.8416 0.7035
]T
.

with the corresponding value of the cost function equal to55.6288. As we expected
and as we have also seen in case of the uniform distribution, by neglecting the effect
of noise, we do not obtain a good estimation.

In the next step, we estimate the parametersθ andλ for the stochastic system
(5.19)-(5.20). To this end, we minimize the objective function (5.13) using three
different methods: Monte Carlo simulation, numerical integration, and the approx-
imation method using the function (5.17). As we did in the case of the uniform
distribution, we minimize the objective function based on the one-step ahead pre-
diction, using a multi-start, SQP method with 30 different starting points, and re-
porting the estimated parameter with the lowest objective function value. We have
chosenp = 30 for the approximation method. This choice has been also made
by means of experiments, as forp = 30, we obtain a good approximation in this
specific example. The estimation results are presented in Table 5.4.

Comparing the results, we can conclude that the approximation method gives
a good estimation forθ that is quite close to the results obtained using numerical
integration and Monte Carlo simulation as well as to the truevalue ofθ. Similar to
the first case, we obtain an unsatisfactory estimation forλ.

Recall that one of the goals of using the proposed approximation function (5.17)
is to decrease the computation time. For400 event steps, the computation times of
the optimization procedure using the three above-mentioned methods are presented
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Optimization Monte Carlo Numerical Approximation
results simulation integration method

θ̂







0.3030

0.2984

0.6881

0.5940













0.3092

0.2969

0.6974

0.5937













0.2750

0.2824

0.6799

0.5781







λ̂







0.0449

0.0417

0.0479

0.0398













0.0976

0.1016

0.1236

0.0945













0.0409

0.0400

0.0403

0.0419







CorrespondingJ 8.6980 8.7403 9.1231

CPU time 110796 s 83890 s 899 s

Table 5.4: Estimation results forθ andλ, using three different methods to calculate
(5.15)with a normally distributed noise, corresponding value of the ob-
jective functionJ , and the average computation time (CPU time) of each
method using 30 different random starting points.

in Table 5.4. The reported CPU time for Monte Carlo simulation and numerical
integration in this example is also for105 samples due to the trade-off between
the CPU time and the accuracy level of the results. Therefore, the approximation
method increases the time efficiency significantly (it is about 80 times faster than
the two other methods) while still resulting in a performance that is comparable to
the one of the other two methods.

5.3 Summary

In this chapter we have considered the approximate MPC and identification of
stochastic MPL systems. The approximation method proposedin Chapter 4 has
been applied to compute the expected value of max-plus-scaling functions that ap-
pear in the stochastic MPL-MPC optimization and in the identification problem.
This approximation method yields an upper bound for the objective function and
hence, instead of minimizing the objective function itself, we minimize its upper
bound. Since the approximation method results in an analytic solution for distri-
butions with moments for which a closed-form expression exists, the approximate
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MPC and identification problem are in general less computationally complex and
can thus, be solved more efficiently comparing to the existing methods.

Moreover, we obtain a convex MPC optimization problem that can be solved
efficiently by means of the existing convex optimization algorithms since the upper
bound of the expected value obtained using this approximation method is convex in
the control variables and the exact expression for the gradient with respect to these
variables can be computed. In the approximate identification problem, we can also
compute the gradients analytically and hence, although it is a non-convex problem,
it can be solved using gradient-based algorithms.

For both MPC and identification problems, we have presented examples using
two different types of distributions: uniform distribution, which has a bounded do-
main, and normal distribution, which an unbounded domain. The results shows that
for both distributions, the performance of the approximation method is comparable
to one of the “exact” solution.



Chapter 6

Approximation Approach for
Model Predictive Control for
Stochastic Switching
Max-Plus-Linear and Stochastic
Max-Min-Plus-Scaling Systems

In this chapter, we proceed further with applying the approximation method of
Chapter 4 to other classes of MPL systems, namely stochasticswitching MPL sys-
tems and stochastic MMPS systems. Similar to the previous chapter, our aim here
is to reduce the computational complexity as well as the computation time of the
MPC optimization problem for these classes of systems.

6.1 Approximate MPC for Stochastic Switching MPL Sys-
tems

We have seen in Chapter 3 that stochastic switching MPL systems can be controlled
using MPC. Accordingly, at each event step a stochastic MPL-MPC optimization
problem has to be solved, which is time-consuming and complex as explained in
Section 5.1. This issue, in addition to the number of possible mode switchings,
which in practice can be very large, imposes a considerable computational bur-
den. Therefore, we propose some approximation methods in this section in order to
decrease the computational difficulties of the stochastic switching MPL-MPC opti-
mization problem. One of these methods addresses the problem caused by the large
number of mode switchings and the other method aims at decreasing the complexity

85
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imposed by the presence of stochastic system parameters.

6.1.1 Problem Statement

In stochastic switching MPL systems, the MPC optimization problem can be defined
as follows (cf. Section 3.1.5):

min
ũ(k)

J(k)

s.t. ỹ(k) = C̃(ℓ̃(k), ẽ(k)) ⊗ x(k − 1) ⊕ D̃(ℓ̃(k), ẽ(k)) ⊗ ũ(k)

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1

Acon(k)ũ(k) +Bcon(k)E[ỹ(k)] ≤ ccon(k)

(6.1)

whereẽ andℓ̃ are stochastic variables and

J(k) =

ny ·Np∑

i=1

E[max(ỹi(k) − r̃i(k), 0)] − λ

nu·Np∑

l=1

ũl(k) (6.2)

Accordingly, to solve (6.1), we need to find an efficient method to compute the
objective function (6.2) and hence, the expected value therein. As mentioned before,
the objective function (6.2) can be defined using any other combination of the input
and output objective functions in (3.2) and the procedure presented below will be
still valid.

Note that in stochastic switching MPL systems, we deal with two different types
of random variables, namely discrete and continuous randomvariables. The mode
switching uncertainty is a discrete random variable since we have a finite number
of modesnL and thus, the number of possible mode switching sequences over the
whole prediction horizon ((nL)Np ) is finite. On the contrary, the parametric uncer-
tainty related to processing and transportation times is a continuous random vari-
able. As a result, to compute the expected value, we need to apply a combination
of integration over the continuous stochastic variableẽ(k) and summation over the
discrete stochastic variablẽℓ(k). To this end, we need the joint probability density
function of ẽ(k) and ℓ̃(k), which can be defined using the conditional probability
theorem [65], as follows:

fL,E(ℓ̃(k), ẽ(k)) = fE(ẽ(k))P̃
[
L = ℓ̃(k) | E = ẽ(k)

]
(6.3)

whereL is the (discrete) sample space of all the mode switching sequences̃ℓ(k), E
is the (continuous) sample space of the parametric uncertainty ẽ(k), fE(ẽ(k)) is the
probability density function of̃e(k), andP̃

[
L = ℓ̃(k) | E = ẽ(k)

]
is the probability

that we have mode switching sequenceℓ̃(k), given the parametric uncertaintỹe(k)
(cf. (2.10)).
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Now let vi(ℓ̃(k), ẽ(k)) = max(ỹi(k) − r̃i(k), 0). Considering (6.3), the ex-
pected value ofvi(ℓ̃(k), ẽ(k)) can be defined as follows:

E
[
vi(ℓ̃(k), ẽ(k))

]
=
∑

ℓ̃∈L

[ ∫

E
vi(ℓ̃, ẽ)fE(ẽ)P̃

[
L = ℓ̃ | E = ẽ

]
dẽ
]

(6.4)

where bothfE(ẽ) and the mode switching probabilitỹP
[
L = ℓ̃ | E = ẽ

]
are

assumed to be known. Note that in general (6.4) can be computed using numerical
or analytic integration depending on the probability distribution of ẽ(k) and the
(in)dependency of the random variablesẽ(k) and ℓ̃(k), and as mentioned in the
previous chapters, both of these methods are complex and time-consuming.

6.1.2 Approximation Approach

In this section, we propose approximation methods to compute E[vi(ℓ̃(k), ẽ(k))] in
a more efficient way than analytic or numerical integration.To this end, we consider
two cases: independent and dependent random variables.

Independent Random Variables

In the first case,̃e(k) and ℓ̃(k) are independent random variables. In other words,
the mode switching uncertaintỹℓ(k) does not depend on the parametric uncertainty
ẽ(k), so

P̃
[
L = ℓ̃(k) | E = ẽ(k)

]
= P̃

[
L = ℓ̃(k)

]
. (6.5)

LetL = {ℓ̃1, ℓ̃2, . . . , ℓ̃M} denote the set of all possible consecutive mode switching
vectors for the problem (6.1) over the prediction horizonNp with M = (nL)Np .
Accordingly, we can rewrite (6.4) as follows:

E
[
vi(ℓ̃(k), ẽ(k))

]
=
∑

ℓ̃∈L

[

P̃
[
L = ℓ̃

]
∫

E
vi(ℓ̃, ẽ)fE(ẽ)dẽ

]

=
∑

ℓ̃∈L

[

P̃
[
L = ℓ̃

]
Eẽ

[
vi(ℓ̃, ẽ)

]]

=
M∑

m=1

[

P̃
[
L = ℓ̃m

]
Eẽ

[
vi(ℓ̃

m, ẽ)
]]

(6.6)

whereEẽ

[
vi(ℓ̃

m, ẽ)
]

is the expected value ofvi(ℓ̃(k), ẽ(k)) after substitution of a
given mode switching sequencẽℓm ∈ L, m = 1, . . . ,M . Now, the final step is to
find efficient methods to computẽP

[
L = ℓ̃m

]
andEẽ

[
vi(ℓ̃

m, ẽ)
]
.
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At first, we can reduce the computational complexity of the mode switching
uncertainty using a scenario-based algorithm [106]. In general, we may know that
some mode switching sequences are more likely to occur than others. Therefore, we
can choose to neglect some mode switching sequences that arenot likely to occur,
resulting in a reduced setLred that should be used in (6.6) instead ofL. In fact,
in this way we often reduce the number of terms in the sum in (6.6) significantly,
and thus the computational complexity as well, while still maintaining an adequate
cumulative probability of these mode switching sequences to occur.

We can also approximateEẽ

[
vi(ℓ̃

m, ẽ)
]

using the approximation method of
Chapter 4. Recall thatvi(ℓ̃

m, ẽ) is, indeed, maximum of affine terms iñe(k) and
hence, depending on the probability distribution ofẽ(k), we can apply (4.6) or (4.8)
to approximateEẽ

[
vi(ℓ̃

m, ẽ)
]
. Therefore, instead of using the objective function

J(k) in (6.1), we can apply the approximate objective function using the above-
mentioned methods and then, solve the approximate switching MPL-MPC opti-
mization problem by means of convex optimization algorithms in the case that all
entries ofBcon(k) are nonnegative.

Dependent Random Variables

In the second case,̃e(k) and ℓ̃(k) are dependent, i.e., the mode switching uncer-
tainty depends on the parametric uncertainty. In this case,we cannot apply the
approximation methods of the previous case since the mode switching probability
P̃
[
L = ℓ̃(k) | E = ẽ(k)

]
cannot be simplified as is done in (6.5). However, if

we assume that̃P as well as the probability density functionfE are modeled orap-
proximated1 by multi-variable piecewise polynomial functions, possibly multiplied
by an exponential function (cf. (6.7) below), that are defined on polyhedral regions,
then we can proceed as follows [113].

Sincevi(ℓ̃
m, ẽ) is a maximum of affine terms iñe(k), it is a piecewise affine

function (defined on polyhedral regions) ofẽ(k) and as a consequence, it is of the
same (but more simple) form as̃P andfE . So if we combine the regions of̃P ,
fE , andvi(ℓ̃

m, ẽ) and multiply the piecewise polynomial and piecewise affine func-
tions and the exponential functions, we find that there exists a polyhedral partition
{Rt}nR

t=1 of E , i.e., the regionsRt are non-empty and mutually disjoint and their
union equalsE , such that

vi(ℓ̃
m, ẽ) fE(ẽ) P̃

[
L = ℓ̃m | E = ẽ

]
= ζtm(ẽ) for ẽ ∈ Rt

1Note that by considering enough polyhedral regions, we can in general approximate the real
probability density function arbitrarily close such that the approximate function is nonnegative and its
integral over the domain of the real probability density function is equal to 1.
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whereζtm is a function of the form

ζtm(ẽ) =

ntm∑

j=1

ξtmj

(
nẽ∏

l=1

ẽ
ktmjl

l exp(ηtmjlẽl)

)

(6.7)

for some real-valued constantsξimj and ηtmjl, positive integersntm, and non-
negative integersktmjl, and wherenẽ is equal to the number of components of
ẽ.

As a result, (6.4) can be rewritten as follows:

E
[
vi(ℓ̃

m, ẽ)
]

=

M∑

m=1

nR∑

t=1

∫

Rt

ζtm(ẽ)dẽ (6.8)

Since eachRt is a polyhedron, we can do a substitution of variables by expressing
an arbitrary point̃e ∈ Rt as

ẽ =
∑

xk∈Hcen

λkxk +
∑

xk∈Hext

κkxk +
∑

xk∈Hfin

µkxk

whereλk ∈ R, κk ≥ 0, µk ≥ 0 and
∑

k µk = 1, Hcen is the set of central
generators, i.e., basis vectors for the lineality space associated to the polyhedronRt

[95], Hext is the set of extreme rays, andHfin is the set of finite vertices (which can
be computed using, e.g., the double-description method introduced in [79]).

As a result ∫

Rt

ζtm(ẽ)dẽ

reduces to the repeated integration of a polynomial function, possibly multiplied by
an exponential, over the domain ofλ, κ, andµ. These integrals can be computed
analytically.

Remark 6.1.1 Note that this method can also be applied to approximate spline
functions or phase-type distributions. Indeed, spline functions are a special type of
piecewise polynomial functions [16] and the probability density function of a vari-
able with a phase-type distribution is an exponential function [84, 85]. As a result
both can be approximated by multi-variable piecewise polynomial functions, possi-
bly multiplied by an exponential function (cf. (6.7)), thatare defined on polyhedral
regions. 2

6.1.3 Example

We consider a similar example to Example 2.3.1 of Chapter 2 except that here, we
have both stochastic switching and stochastic parameters (processing times). Con-
sider the production system of Figure 6.1. This system consists of three machines
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Figure 6.1: A production system with stochastic switching between different recipes
and with stochastic system parameters.

M1, M2, andM3. Three products (A, B, andC) can be produced by this system,
each with its own recipe or production order.

For productA, the production order isM1–M2–M3, which means that the raw
material is fed to machineM1, where it is processed. The intermediate product is
next sent to machineM2 for further processing, and finally the product is finished
in machineM3. Similarly, for productB, the production order isM2–M1–M3, and
for productC the production order isM1–M3–M2. We assume that the type of the
k-th product (A, B, orC) is only specified at the start of its production, so that we
do not knowℓ(k) when computingu(k), e.g., we have a long preprocessing time
and the next customer requires particular type of product (user customization).

Each machine starts working as soon as the raw material or therequired inter-
mediate products are available, and as soon as the machine isidle (i.e. the previous
batch has been finished and has left the machine). We defineu(k) as the time in-
stant at which the system is fed for thek-th time,xi(k) as the time instant at which
machinei starts processing for thek-th time, andy(k) as the time instant at which
thek-th product leaves the system. Also we assume that all the internal buffers are
large enough, and no overflow will occur. We assume that the processing time on
machineM3 is perturbed by noise, i.e.,d3(k) = 5 + e(k) wheree(k) ∼ N (0, 1) is
a standard normally distributed random variable. The processing times for the other
machines (M1 andM2) are assumed to be deterministic and given byd1 = 4 and
d2 = 6, respectively. Further, the transportation times betweenthe machines are
assumed to be negligible. All systems start at time zero, theinitial state is given as
x(0) = [0 0 0]T , the reference signal asr(k) = 15 + 10k for k = 1, . . . , 40,
λ = 0.1,Np = 3, andNc = 2.

The mode switching probability from one recipe (mode) to thenext one is as-
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sumed to be purely stochastic, and given by:

P
[
L(k) = 1 | ℓ(k − 1) = 1, x(k − 1), u(k)

]
= 0.6

P
[
L(k) = 1 | ℓ(k − 1) = 2, x(k − 1), u(k)

]
= 0.2

P
[
L(k) = 1 | ℓ(k − 1) = 3, x(k − 1), u(k)

]
= 0.2

P
[
L(k) = 2 | ℓ(k − 1) = 1, x(k − 1), u(k)

]
= 0.2

P
[
L(k) = 2 | ℓ(k − 1) = 2, x(k − 1), u(k)

]
= 0.6

P
[
L(k) = 2 | ℓ(k − 1) = 3, x(k − 1), u(k)

]
= 0.2

P
[
L(k) = 3 | ℓ(k − 1) = 1, x(k − 1), u(k)

]
= 0.2

P
[
L(k) = 3 | ℓ(k − 1) = 2, x(k − 1), u(k)

]
= 0.2

P
[
L(k) = 3 | ℓ(k − 1) = 3, x(k − 1), u(k)

]
= 0.6

which means that, if we have a specific recipe for thek-th product, then the proba-
bility of having the same recipe for thek+ 1-th product is60%, and the probability
to switch to the other recipes is20%.

Note that since the mode switching depends only on the previous modeℓ(k −
1), the mode switching uncertaintỹℓ(k) and the parametric uncertaintỹe(k) are
independent. Hence, we have the case of independent random variables of Section
6.1.2, and therefore, the scenario-based algorithm and theapproximation method of
Chapter 4 can be applied in order to simplify the computation.

Figure 6.2 shows the result of a closed-loop simulation fork = 1, . . . , 40 where
at each event stepk, we compute the optimal input sequence by solving a stochastic
switching MPL-MPC optimization problem. The optimizationhas been done us-
ing fminconoptimizer in Matlab with one initial value since the objective functions
(both the exact and the approximate one) are convex and hence, the global mini-
mum will be reached. The “Exact Solution” is obtained using numerical integration
and the “Approximation” is obtained using the method explained in Chapter 4. As
shown in this figure, the optimization results using the approximation method for
p = 20 and30 are closer to the “Exact solution” than the results obtainedusing the
other values ofp.

The value of the objective function over the entire simulation period, i.e.,Jtot =
40∑

k=1

(max(y(k) − r(k), 0) − λu(k)), and the relative error2 between the obtained

Jtot using numerical integration and the one using the approximation method are
reported in Table 6.1.

The values ofJtot and the related relative error for each value ofp in this table
confirm our previous observation that forp = 20 and30 the results obtained using

2The relative error is defined here as|Jtot,app−Jtot,ex |

|Jtot,ex|
whereJtot,app is obtained using the ap-

proximation method andJtot,ex is obtained using numerical integration.
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Figure 6.2: Due date errory(k) − r(k) for the closed-loop system using numerical
integration and the approximation method of Chapter 4, but without
using the scenario-based algorithm.

Method of computingJtot Jtot Relative error ofJtot

Numerical integration −769.7146

Approximation method:
p = 20 −767.0465 0.35%

p = 30 −767.2644 0.32%

p = 40 −766.9419 0.36%

p = 50 −766.5062 0.42%

Table 6.1: The obtained value ofJtot, and the relative error ofJtot using numerical
integration and the approximation method with different values ofp to
compute the expected value in the objective function.

the approximation method are the closest to the results obtained using numerical
integration.

The computation time3 of the total closed-loop optimization using numerical in-
tegration is176318 s compared to2518 s using the approximation method without

3These times are obtained running Matlab 7.11.0 (R2010b) on a2.33 GHz Intel Core Duo E655
processor.
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applying the scenario-based algorithm. Note that in this example, we do not apply
the scenario-based algorithm since, due to the rather smallprediction horizon, the
computation time will not decrease considerably (both computation times with and
without scenario-based algorithm are very close4) and the difference between the
performance with and without the scenario-based algorithmis negligible. It is ob-
vious that the approximation method decreases the computation time significantly.
Note that although there is not a big difference between the computation times using
the scenario-based algorithm and not using it, this difference will be much more sig-
nificant if we increase the prediction horizonNp. Recall that the number of possible
mode switching sequences over the whole prediction horizonis (nL)Np wherenL

is the total number of possible modes and using the scenario-based algorithm, we
will only analyze the most probable mode switching sequences with a cumulative
probability of, say, at least80%. Hence,nL, which is27 in our example, reduces
to nred, which is19 for Np = 3, and if we chooseNp = 4, thennL = 81 versus
nred = 33 and the computation time will decrease remarkably.

Accordingly, we can conclude that for the case of independent random vari-
ables, the combination of the two approximation methods, i.e., scenario-based al-
gorithm and the approximation method of Chapter 4, will improve the computation
time considerably while it obtains results comparable to the ones using numerical
integration.

6.2 Approximate MPC for Stochastic MMPS Systems

As indicated in Chapter 2, (stochastic) MMPS systems describes a large class of
discrete-event and hybrid systems and to control such systems, MPC can be applied.
Similar to the stochastic MPL-MPC optimization problem, solving the stochastic
MMPS-MPC optimization problem is quite complex due to the stochastic nature of
the system. In this section, we show that the approximation method of Chapter 4
can be used to decrease this complexity.

6.2.1 Problem Statement

Recall from Section 3.1.5 that the stochastic MPC-MMPS problem can be defined
as follows:

min
ũ(k)

J̃(k)

subject to: c(ũ(k),E[ỹ(k)], k) ≤ 0.
(6.9)

4The computation time of the closed-loop optimization usingthe approximation method in com-
bination with the scenario-based algorithm is2508 s.
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where5

J̃(k) =

ny ·Np∑

i=1

E[max(ỹi(k) − r̃i(k), 0)] − λ

nu·Np∑

l=1

ul(k)

with the prediction horizonNp and wherec is a possibly non-convex function of the
input signal and the expected value of the output signal6. Since bothx(k + j) and
ỹ(k) are MMPS functions ofx(k− 1), u(k), . . . , u(k+ j), e(k), . . . , e(k+ j), j =

0, . . . , Np, we conclude that̃J(k) and (in general)c(ũ(k),E[ỹ(k), k)] consists of
the expected value of MMPS functions. Hence, we need to find anefficient method
to compute this expected value in order to solve the optimization problem (6.9). To
this end, consider the following proposition:

Proposition 6.2.1 ([30]) Any scalar-valued MMPS function can be rewritten into
a min-max canonical formg(x) = mini=1,...,K maxj=1,...,ni

(αT
ijx + βij) or into

a max-min canonical formg(x) = maxi=1,...,L minj=1,...,mi
(γT

ijx + δij) for some
integersK,L, n1, . . . , nK ,m1, . . . ,mL, real numbersβij , δij , and vectorsαij, γij .

Hence, we can rewrite the objective functioñJ(k) in (6.9) in its canonical form as
follows:

J̃(k) = E[ max
i=1,...,ℓ

min
j=1,...,mi

(αij(k) + βT
ij ũ(k) + γT

ij ẽ(k))] (6.10)

whereαij(k) is affine inx(k − 1) andr̃(k). To shorten the notations, let

g(ũ(k), ẽ(k)) = max
i=1,...,ℓ

min
j=1,...,mi

(
αij(k) + βT

ij ũ(k) + γT
ij ẽ(k)

)
,

so J̃(k) = E[g(ũ(k), ẽ(k))]. Considering the following proposition and corollary,
g(ũ(k), ẽ(k)) can be written as a difference of two convex functions.

Proposition 6.2.2 ([67, 116])The functiong(x) = mini=1,...,K maxj=1,...,ni
δij(x),

whereδij(x) = αT
ijx+ βij is an affine function inx, can be written as a difference

of two convex functions, i.e.,g(x) = p(x) − q(x) wherep(x) andq(x) are defined
as follows:

p(x) =

K∑

i=1

max
j=1,...,ni

δij(x) (6.11)

5Recall that we can use any other combination of input and output objective functions in (3.2)
and for a time-driven system, the input objective function does not have the minus sign.

6Later on, at the end of Section 6.2.2, we will consider the case in which – after elimination of
E[ỹ(k)] – c is convex inũ(k).
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q(x) = p(x) − g(x)

= p(x) − min
i=1,...,K

max
j=1,...,ni

δij(x)

= p(x) + max
i=1,...,K

(
− max

j=1,...,ni

δij(x)
)

= max
i=1,...,K

(
p(x) − max

j=1,...,ni

δij(x)
)
.

= max
i=1,...,K

( K∑

i′=1
i′ 6=i

max
j=1,...,ni′

δi′j(x)
)

= max
l=1,...,K

max
(j1,...,ji−1,ji+1,...,jK)∈C(n1,...,ni−1,ni+1,...,nK)

K∑

i′=1
i′ 6=i

δi′ji′
(x). (6.12)

where the setC(ℓ1, . . . , ℓm) for some integersm, ℓ1, . . . , ℓm is defined as

C(ℓ1, . . . , ℓm) = {(q1, . . . , qm)|qk ∈ {1, 2, . . . , ℓk} for k = 1, . . . ,m}.

Based on this proposition, the following corollary is concluded:

Corollary 6.2.3 The functiong(x) = maxi=1,...,L minj=1,...,mi
lij(x), wherelij(x) =

γT
ijx + ξij is an affine function inx, can be written asg(x) = s(x) − r(x) where
s(x) andr(x) are both convex functions defined as follows:

r(x) = −
L∑

i=1

min
j=1,...,mi

lij(x)

=
L∑

i=1

max
j=1,...,mi

(−lij(x)) (6.13)

s(x) = r(x) + g(x)

= r(x) + max
i=1,...,L

min
j=1,...,mi

lij(x)

= max
i=1,...,L

(
r(x) + min

j=1,...,mi

lij(x)
)

= max
i=1,...,L

(
r(x) − max

j=1,...,mi

(−lij(x))
)

= max
i=1,...,L

(
L∑

i′=1
i′ 6=i

max
j=1,...,mi′

(−li′j(x))
)
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= max
l=1,...,L

max
(j1,...,ji−1,ji+1,...,jL)∈C(m1,...,mi−1,mi+1,...,mL)

L∑

i′=1
i′ 6=i

(−li′ji′
(x)).

(6.14)

Note that the last equality is obtained using the distributive property of addition
w.r.t. maximization in whichC(m1, . . . ,mi−1,mi+1, . . . ,mL) is defined similarly
as before.

Therefore, we can rewrite (6.10) as:

J̃(k) = E[g(ũ(k), ẽ(k))]

= E[s(ũ(k), ẽ(k)) − r(ũ(k), ẽ(k))]

= E[s(ũ(k), ẽ(k))] − E[r(ũ(k), ẽ(k))] (6.15)

wheres(ũ(k), ẽ(k)) andr(ũ(k), ẽ(k)) are defined as given in Corollary 6.2.3, and
where the last equality comes from the fact thatE[·] is a linear operator.

Note that the objective functioñJ(k) in (6.15) results in a non-convex optimiza-
tion problem in its current structure. Now to solve the optimization problem (6.9)
it is only left to compute the expected values in (6.15). Notethats(ũ(k), ẽ(k)) and
r(ũ(k), ẽ(k)) both consist of a maximization of affine terms and hence, are max-
plus-scaling functions. Therefore, our aim is to find an efficient way to compute the
following general expression:

E[ max
j=1,...,n

(ξj + γT
j ẽ)] (6.16)

whereξj ∈ R and by assumption is an affine term inũ(k), γj ∈ R
nẽ , andẽ ∈ R

nẽ

is a random variable with the given probability density function f(ẽ). Note that
the dependence ofξj, γj , andẽ on ũ(k) and/ork is dropped for the sake of brevity.
In general,E[maxj=1,...,n(ξj + γT

j ẽ)] can be computed using numerical or analytic
integration (cf. Section 3.1.3); however, since these methods are complex and time-
consuming, we propose the approximation method of Chapter 4as an alternative
solution.

6.2.2 Approximation Approach

In the optimization problem (6.9), we minimizẽJ(k), which indeed leads to the
minimization ofE[s(ũ(k), ẽ(k))] and maximization ofE[r(ũ(k), ẽ(k))] in (6.15).
Considering the approximation method of Chapter 4, we can approximateJ̃(k) by
its upper bound. Hence, we need to have an upper bound forE[s(ũ(k), ẽ(k))] and
a lower bound forE[r(ũ(k), ẽ(k))]. Let us consider again the general function
E[maxj=1,...,n(ξj + γT

j ẽ)] in (6.16). The upper bound of (6.16) can be obtained
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easily by using (4.4) in Proposition 4.2.3. To compute the lower bound of (6.16), we
can apply Theorem 4.2.2 sincemax(·) is a convex function. According to Jensen’s
inequality for convex functions, we have:

max(E[x1], . . . ,E[xn]) ≤ E
[
max(x1, . . . , xn)

]
.

Therefore, the lower and the upper bound ofE[maxj=1,...,n(ξj + γT
j ẽ)] can be de-

fined as follows:

L

(

E[ max
j=1,...,n

(ξj + γT
j ẽ)]

)

= max
j=1,...,n

(E[ξj + γT
j ẽ]) (6.17)

U

(

E[ max
j=1,...,n

(ξj + γT
j ẽ)]

)

=





n∑

j=1

E
[(
ξj + γT

j ẽ− L
)p]





1/p

+ L (6.18)

for a properly definedL and they are both convex iñu (cf. Section 4.4). Recall
that if the distribution of̃e is not preserved under summation, the approximation
function (4.8) can be used in place of (6.18).

In the following example, we show how Corollary 6.2.3 and theapproximation
method can be applied.

Example 6.2.4
Let7 g(ẽ) = max(min(γ1ẽ + ξ1, γ2ẽ + ξ2),min(γ3ẽ + ξ3, γ4ẽ + ξ4)), whereẽ is
a stochastic vector with independent elements,ξj ∈ R, andγj ∈ R

nẽ for j =

1, . . . , 4. Following Corollary 6.2.3, we can rewriteg(ẽ) asg(ẽ) = s(ẽ) − r(ẽ)

wheres andr are convex functions defined as follows (cf. (6.13) and (6.14)):

r(ẽ) = max(−γT
1 ẽ− ξ1,−γT

2 ẽ− ξ2) + max(−γT
3 ẽ− ξ3,−γT

4 ẽ− ξ4)

s(ẽ) = r(ẽ) + g(ẽ)

= max
(

r(ẽ) + min(γ1ẽ+ ξ1, γ2ẽ+ ξ2), r(ẽ) + min(γ3ẽ+ ξ3, γ4ẽ+ ξ4)
)

= max
(

r(ẽ) − max(−γ1ẽ− ξ1,−γ2ẽ− ξ2),

r(ẽ) − max(−γ3ẽ− ξ3,−γ4ẽ− ξ4)
)

= max
(

max(−γT
1 ẽ− ξ1,−γT

2 ẽ− ξ2),max(−γT
3 ẽ− ξ3,−γT

4 ẽ− ξ4)
)

= max
(
− γT

1 ẽ− ξ1,−γT
2 ẽ− ξ2,−γT

3 ẽ− ξ3,−γT
4 ẽ− ξ4

)
.

Hence, an upper bound forE[g(ẽ)] can be obtained by computing an upper bound
for E[s(ẽ)] and a lower bound forE[r(ẽ)] as follows:

U

(

E[s(ẽ)]
)

=
( 4∑

j=1

E[(−γT
j ẽ− ξj)

p]
)1/p

7The dependency ofg(·) on ũ is not mentioned explicitly here, since it is not related to this
example.
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L

(

E[r(ẽ)]
)

= max
(
− γT

1 E[ẽ] − ξ1, −γT
2 E[ẽ] − ξ2

)

+ max
(
− γT

3 E[ẽ] − ξ3, −γT
4 E[ẽ] − ξ4

)
.

2

Consequently, instead of minimizing the objective function (6.15), we will min-
imize its upper bound̃Jup(k), which can be obtained using (6.17) and (6.18). Con-
sidering (6.10), let

s(ũ(k), ẽ(k)) = max
j=1,...,n

(aj(k) + bTj (k)ẽ(k))

r(ũ(k), ẽ(k)) =

M∑

i=1

max
l=1,...,mi

(cil(k) + dT
il (k)ẽ(k))

whereb(k) andd(k) are scalar vectors anda(k) andc(k) are affine terms iñu(k). In
this way, the optimization problem (6.9) turns into a sequence of convex problems
as follows:

min
ũ(k)

J̃up(k)

= min
ũ(k)

(

U

(

E[s(ũ(k), ẽ(k))]
)

− L

(

E[r(ũ(k), ẽ(k))]
))

= min
ũ(k)

(

U

(

E[s(ũ(k), ẽ(k))]
)

− L

(

E

[ M∑

i=1

max
l=1,...,mi

(cil(k) + dT
il(k)ẽ(k))

]))

= min
ũ(k)

(

U

(

E[s(ũ(k), ẽ(k))]
)

−
M∑

i=1

max
l=1,...,mi

(E[cil(k) + dT
il (k)ẽ(k)])

)

= min
ũ(k)

(

U

(

E[s(ũ(k), ẽ(k))]
)

+

M∑

i=1

min
l=1,...,mi

(−E[cil(k) + dT
il(k)ẽ(k)])

)

= min
ũ(k)

(

U

(

E[s(ũ(k), ẽ(k))]
)

+ min
(ℓ1,...,ℓM )∈C(m1,...,mM )

M∑

i=1

(−E[cili(k) + dT
ili(k)ẽ(k)])

)

= min
ũ(k)

min
(ℓ1,...,ℓM )∈C(m1,...,mM )

(

U

(

E[s(ũ(k), ẽ(k))]
)

+

M∑

i=1

(−E[cili(k) + dT
ili(k)ẽ(k)])

)

= min
(ℓ1,...,ℓM )∈C(m1,...,mM )

min
ũ(k)

(

U

(

E[s(ũ(k), ẽ(k))]
)
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+

M∑

i=1

(−E[cili(k) + dT
ili(k)ẽ(k)])

)

. (6.19)

whereC(m1, . . . ,mM ) is defined in the same way as the one in Proposition 6.2.2.

Note that in (6.19),min
ũ(k)

(U
(

E[s(ũ(k), ẽ(k))]
)

+

M∑

i=1

(−E[cili(k) + dT
ili(k)ẽ(k)])

is a convex optimization problem since both
M∑

i=1

(−E[cili(k) + dT
ili

(k)ẽ(k)]) and

U

(

E[s(ũ(k), ẽ(k))]
)

are convex iñu(k). As mentioned before, the constraint func-

tion c(·) in (6.9) is not convex in general. However, in the case that – after the
elimination ofE[ỹ(k)] – c(·) is convex inũ(k), we obtain a convex optimization
problem, which can be solved efficiently for each(ℓ1, . . . , ℓM ) ∈ C(m1, . . . ,mM )

using convex optimization algorithms such as an interior point method [83]. Then,
to obtain the final optimal solution, we choose the minimum ofthe obtained results.

6.2.3 Example

In this section, we study an example that is similar to the onein [81]. In our example
the noise vector is normally distributed while in [81] a bounded noise without any
knowledge about its probability density function has been considered and hence, the
worst-case optimization problem was solved.

Consider a room with a base heat source and an additional controlled heat
source. Letu be the contribution to the increase in room temperature per time unit
caused by the controlled heat source (sou ≥ 0). For the base heat source, this value
is assumed to be constant and equal to 1. The temperature in the room is assumed
to be uniform over the room and its evaluation is formulated as follows:

Ṫ (t) = α(T (t))T (t) + u(t) + 1 + e1(t) ,

wheree1(t) denotes the disturbance at timet, andα(T ) is the temperature co-
efficient of the room which is assumed to have a piecewise constant form, i.e.,
α(T ) = −1/2 if T < 0 andα(T ) = −1 if T ≥ 0. Let y(t) denote the noisy
measurement of the room temperature defined asy(t) = T (t) + e2(t) wheree2(t)
represents the measurement noise at timet. Here, we assume that bothe1(t) and
e2(t) have a standard normal distribution, i.e.,e1(k), e2(k) ∼ N (0, 1).

Using the Euler discretization method, with a sample time of1 s and denoting
the state byx(k) = T (k), we get the following discrete-time PWA system:

x(k + 1) =

{

1/2x(k) + u(k) + e1(k) + 1 if x(k) < 0

u(k) + e1(k) + 1 if x(k) ≥ 0
(6.20)
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y(k) = x(k) + e2(k). (6.21)

with the following constraints on the input:

−4 ≤ ∆u(k) = u(k + 1) − u(k) ≤ 4 and u(k) ≥ 0 for all k.

The equivalent MMPS representation of (6.20)–(6.21) is thefollowing:

x(k + 1) = min(1/2x(k) + u(k) + e1(k) + 1, u(k) + e1(k) + 1),

y(k + 1) = x(k + 1) + e2(k + 1).

Since at sample stepk the inputu(k) has no influence ony(k), we chooseNp =

3, Nc = 2, ỹ(k) = [y(k + 1) y(k + 2)]T , r̃(k) = [r(k + 1) r(k + 2)]T , ũ(k) =

[u(k) u(k + 1)]T . Let the uncertainty vector bee(k) = [e1(k) e2(k + 1)]T . There-
fore, ẽ(k) = [eT (k) eT (k + 1)]T .
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Upper bound approach
Reference signal
Exact solution

Upper bound approach
Exact solution

Upper bound approach
Exact solution

Upper bound approach
Exact solution

1st component of noise

2nd component of nois

Figure 6.3: Closed-loop optimization results of the stochastic MPC-MMPS prob-
lem.

Considering the given choices for the output and input objective functions in
(3.2), we defineJ̃(k) as follows:

J̃(k) =E
[
‖ỹ(k) − r̃(k)‖∞ + λ‖ũ(k)‖1

]
.
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Sinceu(k) ≥ 0, we have‖ũ(k)‖1 = u(k) + u(k + 1) and therefore, we obtain the
following max-min expression for̃J(k):

J̃(k) = E
[
max(|ỹ(k) − r̃(k)|) + λ(u(k) + u(k + 1))

]

= E
[
max

(
y(k + 1) − r(k + 1) + λu(k) + λu(k + 1),

y(k + 2) − r(k + 2) + λu(k) + λu(k + 1),

− y(k + 1) + r(k + 1) + λu(k) + λu(k + 1),

− y(k + 2) + r(k + 2) + λu(k) + λu(k + 1)
)]
. (6.22)

We compute the closed-loop MPC controller by minimizing theupper bound of the
objective function (6.22) (as shown in (6.19)) over the simulation period[1, 20],
with λ = 0.01, x(0) = −6, andu(−1) = 0. The reference signal is given as
{r(k)}20

k=1 = {−5,−5,−5,−5,−3,−3, 1, 3, 3, 8, 8, 8, 8, 10, 10, 7, 7, 7, 4, 3}.
Figure 6.3 shows the results of the closed-loop simulation in which the results

of the “Exact solution” obtained using numerical integration are compared to those
obtained using the upper bound approach in (6.19). The optimization has been
done using thefminconoptimizer in Matlab with one initial value since the ob-
jective functions (both the exact and the approximate one) are convex and hence,
the global minimum will be reached. The top plot shows the reference signal, the
output of the system using numerical integration (“Exact solution”), and the out-
put of the system using the upper bound approach. The next twoplots present the
optimal input sequence and the tracking error, respectively, using numerical inte-
gration (“Exact solution”) and the upper bound approach. The forth plot illustrates
∆u(k) = u(k + 1) − u(k) and shows that in both approaches, the constraints
on ∆u(k) are satisfied. The last plot shows the mean value of each component
of the noise vector. Based on the above plots, the results of the upper bound ap-
proach in (6.19) are very close to the ones from numerical integration. To compute
the objective function value for the total simulation period, we use 20 different
noise realizations and then report the mean value of the objective function, i.e.,

J̄tot =
1

20

20∑

i=1

Jtot,i with Jtot,i =
20∑

k=1

(

max(y(i)(k) − r(k), 0) − λu(i)(k)
)

using

the input and output results (y(i) andu(i)) for thei-th noise realization. Hence, using
numerical integration, we obtain̄Jtot = 7.4278 with variance1.4654 and using the
upper bound approach, we havēJtot = 7.4488 with variance1.4660. Accordingly,
the relative error8 between the objective functions using numerical integration and
the upper bound approach is0.3%. Moreover, the computation time9 using the up-

8The relative error is defined here as|Jtot,up−Jtot,ex |

|Jtot,ex|
whereJtot,up is obtained using the upper

bound approach andJtot,ex is obtained using numerical integration.
9These times are obtained running Matlab 7.11.0 (R2010b) on a2.33 GHz Intel Core Duo E655

processor.
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per bound approach is323.02 s compared to23447 s using the numerical integration
(i.e., the “Exact solution”). All these observations confirm that, in this example, the
upper bound approach is a reliable method to be applied. Hence, we can solve the
stochastic MPC-MMPS problem using (6.19) in order to decrease the computation
time while still guaranteeing a good performance.

6.3 Summary

In this chapter, we have extended the application of the approximation method of
Chapter 4 to two other classes of MPL systems, namely stochastic switching MPL
systems and stochastic MMPS systems. Applying MPC to control these systems, in
general, results in a complex and time-consuming optimization problem due to the
stochastic properties of these systems.

To tackle these difficulties in the stochastic switching MPL-MPC optimization
problem, we have considered the joint probability distribution with both discrete
and continuous random variables, which are related to stochastic mode switching
and stochastic system parameters, respectively. In the case that these random vari-
ables are independent, we can split the joint probability function into two parts and
we can apply a combination of two approximation methods, viz., the approxima-
tion method of Chapter 4 and the scenario-based algorithm of[106], to simplify the
problem. In the case of dependent random variables, we can approximate the prob-
ability density function and the switching probability by multi-variable piecewise
polynomial functions to obtain an analytic expression for the objective function. In
both cases, the approximation approaches simplify the problem considerably.

In the stochastic MMPS-MPC optimization problem, the objective function is
defined as an expected value of an MMPS function, which needs to be computed
efficiently. As a solution, we proposed to write the MMPS objective function as a
difference of two convex functions and then, optimize the upper bound of this new
objective function instead of the objective function itself. This leads to comput-
ing the upper bound of one of the convex functions by applyingan approximation
method of Chapter 4, and the lower bound of the other convex function. These
bounds results in an analytic expressions in the case the probability distribution of
the noise vector has finite moments with a closed-form expression. We have seen in
a case study that the upper bound approach decreases the computational complexity
and the computation time considerably while we still have a good performance that
is comparable to the one using numerical integration.



Chapter 7

Min-Max Optimization and
Approximate Stochastic
Optimization for
Max-Min-Plus-Scaling Systems

In this chapter, we discuss the min-max optimization and stochastic optimization of
MMPS systems1. We consider different system structures and for each structure,
a solution approach is proposed. Moreover, we apply these solution approaches to
solve the filtering problem and the reference tracking problem as two applications
of this type of systems.

7.1 Problem Statement

Consider the following type of optimization problem:

min
x∈Rn

max
y∈Rm

F (x, y)

s.t. G(x, y) ≤ 0
(7.1)

whereF is a scalar max-min-plus-scaling (MMPS) function ofx andy andG is a
vector-valued MMPS function ofx andy. For a givenx ∈ R

n, define:

Ω(x) =

{
max
y∈Rm

F (x, y)

s.t. G(x, y) ≤ 0
(7.2)

1This chapter is inspired by the research visit at the department of Mechanical and Aerospace
Engineering of the university of California, San Diego, hosted by Prof.dr. William McEneaney.
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provided that the problem is feasible and the maximum is finite. Hence, (7.1) is
equivalent to

min
x∈dom(Ω)

Ω(x) (7.3)

wheredom(Ω) indicates the domain of definition ofΩ. Therefore, for (7.3), and
hence (7.1), to have a finite solution,dom(Ω) should be non-empty and the function
Ω should be bounded from below on its domain.

We study the optimization problem (7.1) for three differentsettings: a non-
stochastic setting with maximization and minimization, a stochastic setting with
minimization only, and a stochastic setting with both maximization and minimiza-
tion. These settings are presented in the following three cases.

7.1.1 Case I

We consider an uncertain min-max optimization problem in which both variables
x and y belong to convex polytopes and hence, are bounded. Accordingly, the
optimization problem can be defined as follows:

min
x∈Bx

max
y∈By

F (x, y)

s.t. G(x, y) ≤ 0.
(7.4)

whereBx andBy are convex polytopes.

7.1.2 Case II

We consider a minimization problem with a stochastic randomvariableω that has
a given probability density function. Based on our solutionapproach of Section
6.2.2, in order to obtain an analytic expression for the approximation of the expected
value, we only consider probability distributions for which the random variables
have finite moments and a closed-form expression of these moments exists, such as
the uniform distribution, normal distribution, Beta distribution, etc. (cf. Chapter 4).
The minimization problem can be then formulated as follows:

min
x∈Rn

Eω[F (x, ω)]

s.t. Eω[G(x, ω)] ≤ 0
(7.5)

whereEω[·] is the expected value with respect toω.

7.1.3 Case III

In the last case, we have a min-max optimization problem witha stochastic variable
ω with a given probability density function from distributions with finite moments
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for which a closed-form expression exists. Hence, the optimization problem can be
defined as

min
x∈Rn

max
y∈Rm

Eω[F (x, y, ω)]

s.t. Eω[G(x, y, ω)] ≤ 0
(7.6)

which is, indeed, the most general case (in fact Case I and Case II are special sub-
cases of this case).

7.2 Solution Approaches

In this section we present solution approaches to each of theabove mentioned cases.

7.2.1 Solution Approach for Case I

We show that the optimization problem (7.4) can be transformed into a mixed-
integer linear programming (MILP) optimization problem. To this end, we proceed
as follows.

First we transformF into a mixed-integer linear form. SinceF is an MMPS
function of its arguments, it is equivalent to a continuous piecewise affine (PWA)
function [49, 88], i.e.,

F (x, y) = Aiy +Bix+ ci if (x, y) ∈ Ci,

whereCi is a convex polytope of the formCi = {(x, y) : Siy + Rix ≤ qi} for
i = 1 . . . , s. This PWA function is well-defined if and only ifC = Bx × By can be
partitioned in, says, polytopesCi such that

int(Ci) ∩ int(Cj) = ∅, ∀i, j ∈ {1, . . . , s} with i 6= j, (7.7)
s⋃

i=1

Ci = C (7.8)

whereint(·) denotes the interior ofCi. Now, we define binary variablesδi ∈ {0, 1}
for i = 1, . . . , s such that

[δi = 1] ⇔ [(x, y) ∈ int(Ci)]. (7.9)

where for points(x, y) on the boundary of several regions, oneδi is taken equal to
1 and the rest are set equal to 0. The conditions (7.7)-(7.9) are equivalent to [8]:

Siy +Rix− qi ≤M∗
i (1 − δi) (7.10)

s∑

i=1

δi = 1, (7.11)
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whereM∗
i = max(x,y)∈Ci

(Siy + Rix − qi). Note thatM∗
i is finite sincex and

y belong to a polytope. In fact,M∗
i can be obtained by solving a linear program.

Now, we can writeF as

F (x, y) =







A1y +B1x+ c1 if δ1 = 1,
...
Asy +Bsx+ cs if δs = 1,

(7.12)

and since for each point(x, y) exactly oneδi is equal to 1 and the others are 0, we
can write (7.12) as

F (x, y) =

s∑

i=1

(Aiy +Bix+ ci)δi (7.13)

which is non-linear due to the presence of the product between the binary variables
δi and the real-valued variablesx andy. However, it can be translated into equiva-
lent mixed-integer linear inequalities. If we define

ti = (Aiy +Bix+ ci)δi, (7.14)

then (7.13) reduces to

F (x, y) =

s∑

i=1

ti. (7.15)

The non-linear equation (7.14) can be transformed into a mixed-integer linear form
as follows [8]. Define

Mi = max
(x,y)∈Ci

(Aiy +Bix+ ci) (7.16)

mi = min
(x,y)∈Ci

(Aiy +Bix+ ci) (7.17)

Note thatMi andmi are finite and that they can be computed by solving a lin-
ear program sinceCi is a convex polytope. Now, it is easy to verify that (7.14) is
equivalent to

ti ≤Miδi,

ti ≥ miδi,

ti ≤ Aiy +Bix+ ci −mi(1 − δi)

ti ≥ Aiy +Bix+ ci −Mi(1 − δi)

(7.18)

Therefore, (7.10), (7.11), (7.15), and (7.18) representF (x, y) in a mixed-integer
linear form.

We can also transform the constraintG(x, y) ≤ 0 into a mixed-integer linear
form as follows.
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First, we writeG(x, y) in its max-min canonical form as follows [30]:

Gℓ(x, y) = max
i=1,...,mℓ

( min
j=1,...,nℓ

(αT
ijℓy + βT

ijℓx+ ξijℓ)) ≤ 0 for ℓ = 1, . . . , q

(7.19)

wheremℓ andnℓ are integers,αijℓ ∈ R
ny , βijℓ ∈ R

nx, ξijℓ ∈ R, andq is the
number of entries ofG.

In the second step, we transform (7.19) into a mixed-integerlinear form. To this
end, we can proceed as follows [8]. In the sequel, we considera single fixedℓ for
simplicity. Note that (7.19) is equivalent to

min
j=1,...,nℓ

(αT
ijℓy + βT

ijℓx+ ξijℓ) ≤ 0 for i = 1, . . . ,mℓ. (7.20)

Define the convex polytopesDijℓ for i = 1, . . . ,mℓ andj = 1, . . . , nℓ as

Dijℓ = {(x, y) : αT
ijℓy + βT

ijℓx+ ξijℓ ≤ αT
ij′ℓy + βT

ij′ℓx+ ξij′ℓ

for j′ = 1, . . . , j − 1, j + 1, . . . , nℓ}.

Now as before, we define binary variablesδijℓ ∈ {0, 1} for i = 1, . . . ,mℓ and
j = 1, . . . , nℓ such that

[δijℓ = 1] ⇔ [(x, y) ∈ int(Dijℓ)] (7.21)

and such that for a point(x, y) on the boundary of several regions, only oneδijℓ is
taken equal to 1 and the others are set equal to 0. For eachi = 1, . . . ,mℓ and each
j = 1, . . . , nℓ, these relations are then equivalent to

(αT
ijℓ − αT

ij′ℓ)y + (βT
ijℓ − βT

ij′ℓ)x+ ξijℓ − ξij′ℓ ≤M∗
ijℓ(1 − δijℓ)

for j′ = 1, . . . , j − 1, j + 1, . . . , nℓ (7.22)
nℓ∑

j=1

δijℓ = 1 (7.23)

where

M∗
ijℓ ≡ max

j′=1,...,nℓ

j′ 6=j

max
x∈Bx,y∈By

(αT
ijℓ − αT

ij′ℓ)y + (βT
ijℓ − βT

ij′ℓ)x+ ξijℓ − ξij′ℓ.

Note thatM∗
ijℓ is finite sincex andy belong to a polytope. In fact,M∗

ijℓ can be
obtained using a finite number (nℓ−1) of linear programs. We can now write (7.20)
as

nℓ∑

j=1

δijℓ(α
T
ijℓy + βT

ijℓx+ ξijℓ) ≤ 0 for i = 1, . . . ,mℓ (7.24)
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which is non-linear due to the presence of the product between the binary variables
δijℓ and the real-valued variablesx andy. However, it can be translated into the
equivalent mixed-integer linear inequalities in a similarway as (7.13). Let

zijℓ = δijℓ(α
T
ijℓy + βT

ijℓx+ ξijℓ), (7.25)

then (7.24) reduces to

nℓ∑

j=1

zijℓ ≤ 0 for i = 1, . . . ,mℓ. (7.26)

Although (7.25) is nonlinear, it can be transformed into linear equations as follows.
Define fori = 1, . . . ,mℓ,

Miℓ = max
j=1,...,nℓ

(

max
x∈Bx,y∈By

(αT
ijℓy + βT

ijℓx+ ξijℓ)
)

miℓ = min
j=1,...,nℓ

(

min
x∈Bx,y∈By

(αT
ijℓy + βT

ijℓx+ ξijℓ)
)

.

Note thatMiℓ andmiℓ are finite and each of them can be computed by solvingnℓ

linear programs. Then, fori = 1, . . . ,mℓ, (7.25) is equivalent to [8]

zijℓ ≤Miℓδijℓ,

zijℓ ≥ miℓδijℓ,

zijℓ ≤ αT
ijℓy + βT

ijℓx+ ξijℓ −miℓ(1 − δijℓ)

zijℓ ≥ αT
ijℓy + βT

ijℓx+ ξijℓ −Miℓ(1 − δijℓ).

(7.27)

Therefore, (7.22), (7.23), (7.26), and (7.27) represent (7.20), and accordingly (7.19),
in a mixed-integer linear form.

Now, collect all variablesy, t, z, δ in a vectorV and define a vectorctot such
that

∑s
i=1 ti = cTtotV . Accordingly, we can rewrite the inner optimization problem

of (7.4), i.e.,

Ω(x) =

{
max
y∈By

F (x, y)

s.t. G(x, y) ≤ 0
(7.28)

as follows:

max
V ∈R

nV
cTtotV

s.t. AtotV ≤ btot + Ctotx

Vi ∈ {0, 1} for i ∈ I
Vi ∈ R for i 6∈ I

wherenV denotes the number of entries ofV and for appropriately defined matrices
Atot, Ctot, vectorbtot, and setI. Therefore, the inner optimization problem (7.28)
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has been transformed into a multi-parametric mixed-integer linear programming
(mp-MILP) problem, which can be solved using the algorithm in [33]. The optimal
value function, i.e.,Ω, is then PWA; however, it may not be continuous [12].

Remark 7.2.1 Note that for a continuous PWA function, we can consider all regions
Xi in which the function is affine to be defined by non-strict inequalities (as on the
boundaries the function is continuous). On the other hand, for a discontinuous PWA
function, we have to distinguish explicitly between strictand non-strict inequalities
(as on the boundaries only one affine function can be active.) 2

Therefore, to solve the outer optimization problem of (7.4), i.e., min
x∈Bx

Ω(x) we can

apply two approaches. One way is to use the approach explained in [8] to transform
the strict inequalities, which exist due to the discontinuities in the PWA representa-
tion of Ω, into non-strict ones2, and then use a similar procedure as above to obtain
an MILP problem and solve it using the available MILP solversthat are based on
e.g. branch-and-bound methods or cutting plane methods [2,72].

Another way for solving the outer optimization problem is toconsider the PWA
form of Ω as follows:

Ω(x) = aT
i x+ bi if x ∈ χi

whereχi = {x : Six ≤ pi} for i = 1, . . . , nχ is a convex polytope. Then for each
i, we solve the following linear programming (LP) problem:

min
x∈χi

aT
i x+ bi

s.t. Six ≤ pi.

using e.g. the simplex method or an interior point algorithm[90, 118]. In this way
we obtainnχ solutions, and we choose the one with the lowest value ofΩ as the
optimal solution of the outer problem.

7.2.2 Solution Approach for Case II

To solve the stochastic optimization problem (7.5), we can apply the approximation
methods of Section 6.2.2. SinceF andG are MMPS functions, we can write them
as a difference of two convex functions and then approximatethe expected value of
the objective functionF by its upper boundUF (x) and the expected value of the
constraint functionG by its upper boundUG(x). Hence, we obtain the following
approximate optimization problem:

min
x∈Rn

UF (x)

s.t. UG(x) ≤ 0
(7.29)

2In this approach, a strict inequality of the formx < a is replaced byx ≤ a − ε whereε is the
machine precision.
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Note that the constraintUG(x) ≤ 0 in (7.29) assures that the original constraint
in (7.5) will be satisfied. In general,UF andUG are non-linear, non-convex func-
tions. Hence, (7.29) is a non-linear optimization problem that can be solved using
multi-start sequential quadratic programming (SQP) [80],genetic algorithms [46],
simulated annealing [34], etc.

7.2.3 Solution Approach for Case III

For the last case, we rewrite the optimization problem (7.6), using the upper bounds
for the expected value of the objective function and the constraint (cf. Section 6.2.2),
as follows:

min
x∈Rn

max
y∈Rm

UF (x, y)

s.t. UG(x, y) ≤ 0

which is a multi-parametric, non-linear (mp-NLP) optimization problem that can be
solved using mp-NLP algorithms [32, 51–53, 94].

Remark 7.2.2 Since mp-NLP problems are highly complex and hard to solve, the
third case will not be discussed anymore in the remainder of this chapter. 2

7.3 Applications

In this section we present two types of problems in which we need to deal with
the optimization problem of an MMPS function. One is a filtering problem and the
other one is a reference tracking problem.

7.3.1 Filtering Problem

The first problem is a filtering problem for which we consider the setting of a two-
player game. The aim of one player is to estimate the final state of the system using
a series of measurements observed over time, while the otherplayer tends to distort
this estimation by disturbing the measurements of the first player. Assume, e.g.,
that player 1 has a truck and player 2 has an observing plane3. The first player is
directing the truck during the discrete time span{1, . . . ,T } and does not want his
final locationx(T ) to be detected by the plane. There exist also a control actionw

for moving the truck around, and a cloaking or jamming actionv that perturbs the

3This is in fact an example of a pursuer-evader game. The various guises pursuit games may
assume in warfare are ship and submarine, missile and bomber, or tank and jeep [59]. Other typical
examples of a pursuer-evader game are the Homicidal Chauffeur game and the Lady in the Lake
problem [70], or the Princess and Monster game [59].
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measurements of the second player. Both moving the truck andcloaking/jamming
costs energy for the first player and hence, he tends to minimize these actions. On
the other hand, the second player wants to determine an estimate x̂T of x(T ) as
accurately as possible using the obtained measurements of the truck’s location at
each time stepk for k = 1, . . . ,T .

Consider the following system variables: the state of the system is denoted
by x(k) ∈ R

n, the control variable byw(k) ∈ R
n, the measurement process by

y(k) ∈ R
l, the measurement disturbance byv(k) ∈ R

l, and the disturbance-free
measurement model byg(·). Filtering begins at time stepk = 0 and we assume that
for the second player the estimated initial statex̂0 and the measurement time-history
{y(k)}Tk=1 are known and the initial statex(0), the final statex(T ), andw(·) are
unknown. The estimated final statex̂T is the decision variable for the second player.

Here we consider only additive noise (in order to stay withinthe MMPS frame-
work), and also we consider two types of systems: Type I and Type II. A system of
Type I is defined as

x(k) = f(x(k − 1)) + w(k) (7.30)

y(k) = g(x(k)) + v(k) (7.31)

wherew andv are control variables andf andg are MMPS functions inx. A system
of Type II is defined as

x(k) = f(x(k − 1)) + δf(x(k − 1)) + w(k) (7.32)

y(k) = g(x(k)) + δg(x(k)) + v(k) (7.33)

where againf andg are MMPS functions,w andv are noise signals, andδf and
δg are bounded. This system can be considered for example whenf + δf is an
approximation of a nonlinear functionF with f an MMPS function andδf = F−f
nonlinear but small or bounded, i.e.,‖δf(x)‖∞ ≤ ε1 for someε1 > 0 and∀x ∈ R

n.
The same explanation holds forδg with ‖δg(x)‖∞ ≤ ε2 for someε2 > 0 and
∀x ∈ R

n. We first proceed with the systems of Type I, and later we can include
Type II.

Remark 7.3.1 By treatingδf andδg as bounded disturbances and including them
in w andv, one can recast a system of Type II as a system of Type I. Hence,if both
w andv are bounded as well, i.e., we are in Case I, then the recast problem is also
in the form of Case I. However, ifw andv are stochastic variables, i.e., we are in
Case II, then the recast problem is in the form of Case III. As aresult, we will not
discuss systems of Type II separately in the remainder of this chapter. 2

Remark 7.3.2 We use the∞-norm in this section. However, similar results hold if
the1-norm (or a mix of the1-norm and the∞-norm) is considered. 2

Now we are going to study Case I and Case II for this problem.
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Uncertain System with a Bounded Noise

In the first step, we consider Case I of Section 7.1, wherew(k) andv(k) are assumed
to be included in convex polytopesBw = {w ∈ R

n : Aww ≤ bw} andBv = {v ∈
R

m : Avv ≤ bv}, respectively. We also assume that the initial statex(0) belongs to
the ballB∞(x̂0, C), i.e.,‖x(0) − x̂0‖∞ ≤ C for a givenC < ∞ wherex̂0 is the
estimate of the initial state and it is assumed to be known. Consider the following
equation:

x(k) = f(x(k − 1)) + w(k)

= f(f(x(k − 2)) + w(k − 1)) + w(k)

= f(f(f(x(k − 3)) + w(k − 2)) + w(k − 1)) + w(k)

...

= f(f(f(. . . (f(x(0)) + w(1)) +w(2)) + . . . ) + w(k − 1)) + w(k)

= hk(x(0), w(1), . . . , w(k))

wherehk is an MMPS function ofx(0), w(1), . . . , w(k). Hence, we can write the
system (7.30) for the final statex(T ) as

x(T ) = h(x(0), w(1), . . . , w(T ))

= h(x(0), w̃) (7.34)

wherehT is denoted byh andw̃ = [wT (1), . . . , wT (T )]T . Since eachw(k) belongs
to the convex polytopeBw, w̃ is also in a convex polytopeBw̃ = (Bw)T .

Consider the following definition for the norms of matrices:

Definition 7.3.3 ([47]) For a matrixA ∈ R
m×n, the matrix1-norm and∞-norm

are defined as

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij | , ‖A‖∞ = max
i=1,...,m

n∑

j=1

|aij |

respectively.

Moreover, the following inequalities hold [47]:

‖Ax‖1 ≤ ‖A‖1 ‖x‖1, ‖Ax‖∞ ≤ ‖A‖∞ ‖x‖∞.

for any x ∈ R
n where the‖x‖1 =

∑n
i=1 |xi| and‖x‖∞ = maxi=1,...,n |xi| (cf.

Definition 4.2.1).
Recall from Section 2.4 that MMPS functions are equivalent to continuous PWA

functions. It is been shown in [42] that a continuous piecewise affine functionf
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with the corresponding Jacobian matricesJ (·), defined in Definition 2.4.4, satisfies
a Lipschitz condition, i.e., the following inequality holds for everyx andy in R

n:

‖f(x) − f(y)‖∞ ≤ L‖x− y‖∞ (7.35)

whereL is the maximum of the matrix∞-norms ofJ (1), . . . , J (r) and it is the
smallest value for which (7.35) holds. Hence, it is the Lipschitz constant off .

Consequently, the MMPS functionsf andg, which are equivalent to continuous
PWA functions, satisfy a Lipschitz condition.

Lemma 7.3.4 If f is Lipschitz, then there exists a scalarM <∞ such that for any
x ∈ dom(f), we have‖f(x)‖∞ ≤M(‖x‖∞ + 1).

Proof : Let L be the Lipschitz constant off . Hence, by considering the triangle
inequality and the Lipschitz condition, we have for anyx, y ∈ dom(f):

‖f(x)‖∞ = ‖f(x) − f(y) + f(y)‖∞
≤ ‖f(x) − f(y)‖∞ + ‖f(y)‖∞
≤ L‖x− y‖∞ + ‖f(y)‖∞

Using the triangle inequality once more, we obtain:

‖f(x)‖∞ ≤ L‖x‖∞ + L‖y‖∞ + ‖f(y)‖∞

Consider a pointy0 ∈ dom(f) and defineQ = L‖y0‖∞ + ‖f(y0)‖∞. LetM =

max(L,Q), which is clearly finite. Then, we have

‖f(x)‖∞ ≤M(‖x‖∞ + 1)

and the proof is complete. 2

Now, we are going to determine an upper bound for‖x̂T ‖∞. Let

Uw = max
w∈Bw

‖w‖∞,

which is finite sinceBw is bounded4. Then, we have:

‖x(k)‖∞ = ‖f(x(k − 1)) +w(k)‖∞
≤ ‖f(x(k − 1))‖∞ + ‖w(k)‖∞

4Note that max
w∈Bw

‖w‖∞ does not correspond to a convex problem. However, it can be solved as

follows: first fori = 1, . . . , nw with nw the number of elements ofw, we solve the linear optimization
problem: max

wi∈Bw

wi and max
wi∈Bw

−wi. Hence, we need to solve2nw linear programming problems

and then choosing the largest objective function value yieldsUw.
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(∗)

≤ M(‖x(k − 1)‖∞ + 1) + Uw

≤M(‖f(x(k − 2)) + w(k − 1)‖∞ + 1) + Uw

≤M(‖f(x(k − 2))‖∞ + ‖w(k − 1)‖∞) +M + Uw

(∗∗)

≤ M2(‖x(k − 2)‖∞ + 1) + Uw(M + 1) +M

≤M2(‖f(x(k − 3)) + w(k − 2)‖∞ + 1) + Uw(M + 1) +M

≤M3(‖x(k − 3)‖∞ + 1) + Uw(M2 +M + 1) +M2 +M

...

≤Mk(‖x(0)‖∞ + 1) + Uw

k−1∑

i=0

M i +

k−1∑

j=1

M j

where both(∗) and(∗∗) are obtained using Lemma 7.3.4. Hence, an upper bound
for ‖x(T )‖∞ is given by

‖x(T )‖∞ ≤MT ‖x(0)‖∞ + LT (7.36)

where

LT =







MT + Uw
MT − 1

M − 1
+
M(MT −1 − 1)

M − 1
if M 6= 1

T (Uw + 1) if M = 1

Moreover, based on our assumption,‖x(0) − x̂0‖∞ ≤ C for someC <∞. Hence,
by using the triangle inequality, we have

‖x(0)‖∞ = ‖x(0) − x̂0 + x̂0‖∞
≤ ‖x(0) − x̂0‖∞ + ‖x̂0‖∞
≤ C + ‖x̂0‖∞

Since we may assume without loss of generality thatx̂T should not be outside the
maximal range set ofx(T ) given by (7.36), we obtain the following upper bound
for ‖x̂T ‖∞:

‖x̂T ‖∞ ≤MT C +MT ‖x̂0‖∞ + LT .

In other words,x̂T belongs to the convex polytopeBx̂T
= {x̂T : ‖x̂T ‖∞ ≤

MT C +MT ‖x̂0‖∞ + LT }.
As mentioned before, the first player tends to minimize the control and cloak-

ing/jamming energy and to maximize the difference between the final statex(T )

and the second player’s estimation of the final statex̂T , while the second player
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tends to minimize this difference and has to take the worst-case control and cloak-
ing/jamming action by the first player into account as well asthe worst case uncer-
tainty about the initial statex(0). Hence, the overall objective function, which will
be minimized by player 2 and maximized by player 1, is defined as follows:

J(x̂T , x(T ), w̃, ṽ) = −γ
T∑

k=1

[
‖w(k)‖∞ + ‖v(k)‖∞

]
+ ‖x(T ) − x̂T ‖∞

for someγ > 0, or equivalently by eliminating̃v, as

J(x̂T , x(0), w̃)=−γ
T∑

k=1

[
‖w(k)‖∞+‖y(k) − g(x(k))‖∞

]
+‖h(x(0), w̃)−x̂T ‖∞

(7.37)

Hence, we obtain the following optimization problem:

min
x̂T ∈Bx̂T

W (x̂T ) (7.38)

where

W (x̂T ) = max
x(0)∈B∞(x̂0,C)

max
w̃∈Bw̃

J(x̂T , x(0), w̃)

s.t. y(k) − g(x(k)) ∈ Bv k = 1, . . . ,T .
(7.39)

Remark 7.3.5 Sincev ∈ Bv, we have the additional constrainty(k)−g(x(k)) ∈ Bv

for a given realization of the control action vectorw̃, a given measurement time-
history{y(k)}Tk=1, and a given terminal statex(T ). Note that this constraints cannot
cause infeasibility. Indeed, for a given realization ofw̃, a given{y(k)}Tk=1, and a
givenx(T ), we can always find anx(0) that satisfies the constraint. 2

Note that since all variables in (7.39) are bounded,W (x̂T ) is bounded as well, and
sincex̂T is bounded, the solution of (7.38) exists and is finite for anyγ > 0.

The worst-case optimization problem (7.38)-(7.39) is a problem of the form
(7.4) and therefore, it can be solved as indicated in Section7.2.1.

Stochastic System

After discussing the filtering problem for the first case wherew andv were assumed
to be bounded, we consider now a system of Type I in whichw, v, andx(0) are as-
sumed to be stochastic variables with a given probability density function. In the
framework of the truck-plane example, we can now assume thatthe plane (the sec-
ond player) knows typical probability density functions ofw, v, andx(0) based on
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previous experience or a priori knowledge. As mentioned before, we only consider
distributions with finite moments for which a closed-form expression exists. Having
this assumption, we redefine the optimization problem (7.38) as follows:

min
x̂T ∈Rn

Ex(0),w̃[J(x̂T , x(0), w̃)]. (7.40)

whereJ(x̂T , x(0), w̃) is an MMPS function of its arguments as defined in (7.37).
This is a problem of the form (7.5), and hence, as explained inSection 7.2.2, it can
be solved using the approximation method of Section 6.2.2.

7.3.2 Reference Tracking Problem

The second problem that we consider here is a reference tracking problem. In this
problem the reference signal is given and the aim is to minimize the difference
between the output of the system and the reference signal. The system is defined as
follows:

x(k) = f(x(k − 1), u(k)) + w(k) (7.41)

y(k) = g(x(k)) + v(k) (7.42)

wherex(k) is the state of the system,y(k) is the output, andu(k) is the input of
the system at time or event stepk ∈ {1, . . . ,T }. We also consider external noise
vectorsw(k) andv(k) that perturb the system. We assume that the initial state of
the systemx(0) is known. Similar to Section 7.3.1,f andg are MMPS functions of
their arguments. The objective function is defined as follows:

J(ũ, w̃, ṽ) =
T∑

k=1

λk‖y(k) − r(k)‖∞ (7.43)

wherer(k) is the reference signal andλk is a weighting factor at time or event step
k, andũ = [uT (1), . . . , uT (T )]T (w̃ andṽ are defined similarly). Assume that the
constraints oñu, w̃, and/orṽ are gathered in an expression of the form

G(ũ, w̃, ṽ) ≤ 0

whereG(·) is an MMPS function of its arguments.
We can rewrite the objective function (7.43) by substituting (7.41) in (7.42) for

each event stepk. To this end, we computex(k) as follows:

x(k) = f(x(k−1), u(k)) +w(k)

= f(f(x(k−2), u(k−1)) + w(k−1), u(k)) + w(k)

= f(f(f(x(k−3), u(k−2))+w(k−2), u(k−1))+w(k−1), u(k))+w(k)
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...

= f(f(f(. . . (f(x(0), u(1))+w(1), u(2))+. . . ))+w(k−1), u(k))+w(k)

= hk(u(1), . . . , u(k), w(1), . . . , w(k))

wherehk(·) is an MMPS function of its arguments. Accordingly, we can rewrite
y(k) as follows:

y(k) = g(x(k)) + v(k)

= g(hk(u(1), . . . , u(k), w(1), . . . , w(k))) + v(k)

= Hk(u(1), . . . , u(k), w(1), . . . , w(k), v(k)) (7.44)

whereHk(·) is also an MMPS function of its arguments. Hence, (7.43) can be
written in the following form:

J(ũ, w̃, ṽ) =

T∑

k=1

λk‖Hk(u(1), . . . , u(k), w(1), . . . , w(k), v(k))) − r(k)‖∞

= H(ũ, w̃, ṽ) (7.45)

with H(·) being an MMPS function of its arguments. This implies that weintend to
track the reference signal by minimizing over the inputũ while environment plays
against us by maximizing over the noise signalsw̃ andṽ.

Now, we are going to study Case I and Case II for this problem.

Uncertain System with a Bounded Noise

In this case (cf. Section 7.1.1) we assume thatw(k), v(k), andu(k) belong to con-
vex polytopesBw = {w ∈ R

n : Aww ≤ bw},Bv = {v ∈ R
m : Avv ≤ bv}, and

Bu = {u ∈ R
n : Auu ≤ bu}, respectively. Hence, the optimization problem can be

defined in the following form:

min
ũ∈Bũ

max
w̃∈Bw̃,ṽ∈Bṽ

H(ũ, w̃, ṽ)

s.t. G(ũ, w̃, ṽ) ≤ 0

(7.46)

whereBũ =(Bu)T,Bw̃ =(Bw)T, andBṽ =(Bv)
T are convex polytopes,H(ũ, w̃, ṽ)

is defined in (7.45), andG(·) is an MMPS function of its arguments. Note that this
optimization problem has a finite solution due to the fact that all the optimization
variables belong to a polytope and hence, are bounded. Consequently, we obtain a
problem of form (7.4) which can be solved using an mp-MILP solver (cf. Section
7.2.1).
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Stochastic System

In this case we assume that bothw(k) andv(k) are stochastic variables with a given
probability distribution with finite moments for which a closed-form expression ex-
ists. Hence, the optimization problem is defined as follows:

min
ũ∈Rn

Ew̃,ṽ[H(ũ, w̃, ṽ)]

s.t. Ew̃,ṽG(ũ, w̃, ṽ) ≤ 0

(7.47)

This is a problem of the form (7.5), and hence, as explained inSection 7.2.2, it
can be solved using the approximation method of Section 6.2.2, and then applying
non-linear optimization algorithms such as SQP, genetic algorithms, or simulated
annealing.

7.4 Summary

In this chapter, we have studied the min-max optimization ofMMPS systems. Three
cases were considered: uncertain min-max optimization problems, stochastic min-
imization problems and stochastic min-max optimization problems. For each case,
we have proposed solution approaches, namely the mixed-integer linear program-
ming for the first case and the approximation method of Section 6.2.2 for the second
and the third case.

Afterwards, we have presented two sample problems that can be modeled using
MMPS systems and that result in a min-max or stochastic optimization of such sys-
tems. The first problem is the filtering problem and we have considered a two-player
game setting in which one player tries to estimate the final state of the system using
a series of measurements observed over time, while the otherplayer is disturbing
the measurements of the first player. The objective functionof this problem has
been defined as an MMPS function and hence, we have obtained a min-max and a
stochastic optimization problem using this objective function. To solve these prob-
lems, we considered the above-mentioned solution approaches for each case.

The second problem is a reference tracking problem. The ideaof this problem is
to track a given reference signal by minimizing the difference between the system’s
output and the reference signal. The objective function here has been also defined
as an MMPS function and we have considered again the above cases to solve the
min-max and stochastic optimization problem of this system.



Chapter 8

Conclusions and
Recommendations

This chapter concludes the thesis by summarizing the main contributions and also
presenting some interesting topics for future research.

8.1 Conclusions

The focus of this PhD thesis was on improving the computational aspects of MPC
and identification of stochastic MPL systems as a special class of discrete-event
systems. Since models of such systems are linear in max-plusalgebra, control and
identification of these systems has attracted many attention and many studies have
been done on these topics. One of the control methods that hasbeen applied to
(stochastic) MPL systems, is MPC. In both MPC and identification framework, the
objective function is defined as an expected value of a stochastic max-plus-scaling
function, which is quite complex and time-consuming to compute using available
methods such as numerical integration, analytic integration, etc.

Hence, our aim was to find an efficient method to compute this expected value.
To that end, we have proposed an approximation method based on moments of
random variables. This method was inspired by the relation between thep-norm
and the∞-norm of vectors. This approximation approach results in ananalytic
expression if the distribution of random variables has finite moments for which a
closed-form expression exists, such as the uniform distribution, normal distribution,
Beta distribution, etc. We have also assumed that the elements of the stochastic
vector are independent random variables. This is a key assumption in our approach
since otherwise we would have to deal with the joint expectedvalue, for which this
method is not applicable anymore.

Furthermore, we have shown that the approximation functionobtained using

119
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this approximation approach is convex in its arguments and that the error of this
approximation method is bounded both from below and from above. This assures
us that this approximation function, which is indeed an upper bound for the expected
value of stochastic max-plus-scaling functions, does not grow unboundedly.

We have then applied this approximation method to differentclasses of discrete-
event systems, namely stochastic MPL systems, stochastic switching MPL systems,
and stochastic MMPS systems, and the results are summarizedbelow.

MPC for stochastic MPL systems

As mentioned above, the stochastic MPL-MPC optimization problem is computa-
tionally complex due to the presence of the expected value ofstochastic max-plus-
scaling functions in the objective function. In order to simplify the problem, we
have approximated this objective function by its upper bound using the approxima-
tion method.

Since the approximation function is convex in its arguments, by considering the
constraints such that they are nondecreasing affine functions of the system output,
we have obtained a convex optimization problem, which can besolved efficiently.

Moreover, by choosing the appropriate order of moments we can decrease the
approximation error to some extent. In this thesis, this choice was made by means of
numerical experiments and the approximation results for different order of moments
has been illustrated in a worked example. In this example, the performance of the
approximation method has been compared to the one using numerical or analytic
integration, Monte Carlo simulation, and nominal MPC. It was concluded that the
results obtained using the approximation method are comparable to the other ones.

Identification of stochastic MPL systems

We have shown that the identification of stochastic MPL systems can also be simpli-
fied computationally using the approximation method. Accordingly, we have solved
the approximate identification problem in which the objective function was an upper
bound of the original function, and since we have obtained anexplicit expression
for the gradients, the parameter estimation can be done using gradient-based opti-
mization methods despite having a non-convex objective function.

In two examples, we have compared the identification resultsusing numerical
integration, analytic integration, Monte Carlo simulation, and the approximation
method for two types of random variables, namely the uniformly distributed ran-
dom variables and the normally distributed random variables. We aimed to identify
the unknown system parameters and the noise amplitude. In both examples, the
identified parameters using the approximation method were very close to the ones
using numerical or analytic integration or Monte Carlo simulation. Furthermore, the
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computation time of the optimization procedure using the approximation method
was much less than the one using the other methods. Note that the estimated noise
amplitude using any of the mentioned methods were quite far away from the exact
values, since in general, in prediction error identification, one can obtain the correct
system model, but it is much more difficult to estimate the noise model [48, 73].

MPC for stochastic switching MPL systems

We have applied the approximation method to another class ofdiscrete-event sys-
tems, namely stochastic switching MPL systems in which the mode of the system
can switch from one to another. We have considered both stochastic switching and
stochastic system parameters at the same time. Since the latter random variable is a
continuous one and the mode switching uncertainty is a discrete random variable, to
compute the expected value we need to apply a combination of integration over the
continuous stochastic variable and summation over the discrete stochastic variable.
To that end, we have studied two cases: the case in which the random variables of
mode switching and the systems parameters are independent and the case in which
they are dependent.

For the case that the random variables are independent, we have applied the
combination of both the approximation method in order to approximate the expected
value of the parametric uncertainty and a scenario-based algorithm in order to re-
duce the computational complexity of the computation of theexpected value of the
mode switching uncertainty. Both methods simplify the problem and decrease the
computation time while still yielding a performance that iscomparable to the one
using numerical or analytic integration.

In the second case with dependent random variables, the computation is more
complex. We have shown that if the mode switching probability and the joint prob-
ability density function could be modeled or approximated by multi-variable piece-
wise polynomial functions, possibly multiplied by an exponential function, that are
defined on polyhedral regions, then we can obtain an analyticexpression for the
expected value of the max-plus-scaling function appearingin objective function.

MPC for stochastic MMPS systems

Further, we have extended MPC to stochastic MMPS systems andas before, due to
the presence of the expected value in the objective function, the optimization prob-
lem is computationally complex. To reduce this complexity,we have first proposed
to write the MMPS function as a difference of two convex functions and then to
compute its upper bound by finding an upper bound for the first convex function
using the approximation method and finding a lower bound for the second convex
function, which is subtracted. Both of these upper and lowerbounds are convex in
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their arguments.
This procedure resulted in a sequence of convex problems andin the case of

having convex constraints, we have obtained a sequence of convex optimization
problems, while the original problem was not convex due to the MMPS objective
function.

Min-max and stochastic optimization for MMPS systems

The last problem that we have considered was a general min-max optimization prob-
lem with an MMPS objective function. We studied three cases:min-max optimiza-
tion of an MMPS function with bounded variables, minimization of an MMPS func-
tion with stochastic variables, and min-max optimization of an MMPS function with
stochastic variables.

In the first case, we have shown that the optimization problemcan be trans-
formed into a mixed-integer linear programming (MILP) optimization problem and
then can be solved using the available algorithms [2, 72]. Inthe second case, the
MMPS objective function was approximated by the approximation method applied
to stochastic MMPS systems and then the optimization problem has been solved
using non-linear optimization algorithms. In the last casealso, the objective func-
tion has been transformed into an approximate one using the method applied to
stochastic MMPS systems and hence, the optimization problem turned into a multi-
parametric, non-linear optimization problem, which can besolved using the avail-
able algorithms [32, 51–53, 94].

At the end, we considered two specific instances of the above general problems,
namely the filtering problem and the reference tracking problem. In the first prob-
lem, we have a two-player game structure in which the aim is toestimate the final
position of the system by one player while the measurements are perturbed by the
second player. In the second problem, the aim is to track the reference signal by the
output and to minimize the difference between these two.

8.2 Recommendations for Future Research

In this section, we first discuss some directions to improve our approximation method.
Afterwards, there will be some other interesting topics that are related and can be
considered for the future research.

Approximation method

It is very useful to find an efficient, and preferably analytic, way to determine an
appropriate order for the moments used in the approximationmethod in order to
obtain a better approximation and to decrease the approximation error. Note that
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in this thesis, this choice has been made by means of numerical experiments. One
possible approach is to analyze how the upper bounds, i.e., (4.6) or (4.8), evolve as
p evolves.

Other interesting issue is to find narrower upper bounds for the error of the ap-
proximation method that also depends on the type of the distribution of the random
variables. Note that in this case, we have more information since we can use the
properties of the distribution in specifying the approximation error. As such, a nar-
row bound may be obtained. This can be done by finding an alternative upper bound
for Jensen’s inequality that can be applied to random variables with both bounded
and unbounded domain, or use the properties of each specific objective function to
specify the error of the approximation method.

MPC and identification of stochastic MPL systems

In the worked examples presented in Section 5.1, we have compared the approxima-
tion method with other methods such as numerical and analytic integration, Monte
Carlo simulation, and nominal MPC to solve the MPL-MPC optimization problem.
It will be useful to perform a more extensive assessment and comparison of the ap-
proximation method with other computation methods such as the method based on
variability expansion [110]. Moreover, it is interesting to compare the result of the
MPC using these methods with the one obtained from the real solution. In this case,
the ”real” solution can be obtained in two ways. One approachis to either compute
it analytically (such as in the case of the uniform distribution) or to approximate
it arbitrarily close by performing an extensive Monte Carlosimulation with a very
large number of samples. The other approach is to consider the noise realization to
be known in advance and to determine the real (exact) MPL-MPCsolution using
this noise realization1.

Monte Carlo simulation can be made very precise by increasing the sample
size. However, the computation time then also increases drastically (as explained
in the examples of Section 5.1). Therefore, the approximation method proposed
in this thesis – despite providing only an approximate and not an exact solution –
is still preferable to the Monte Carlo simulation. In the examples of Section 5.1,
we have not made use of the max-plus structure when performing Monte Carlo
simulations. As shown in [13], the simulation of max-plus systems can be speeded
up taking the max-plus structure into account. The method of[13] is called the
perfect samplingand it continues the simulation until its output has the distribution
of the stationary profile of the max-plus system. This approach has also been applied
in [50], which proposes an algorithm that involves the computation of the expected
value of specific max-plus expressions. Since theperfect samplingmethod results

1This is in fact a deterministic optimization problem since the noise realization is known.
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in a fast and efficient computation, it is interesting to apply this method in order to
compare its computational efficiency with the one of the proposed approximation
method.

Recall that the identification problem of stochastic MPL systems resulted in a
non-convex optimization problem that could be solved usingmulti-start gradient-
based local optimization methods due to the presence of the gradients of the ob-
jective function. Obviously, the result of such non-convexoptimization problems
depends on the problem setting, such as the setting of the system, the control sig-
nals, or the noise structure. In this thesis, we have not studied the effect of using
different settings and different optimization methods on the parameter estimation.
Hence, it is still an open topic for further research to perform multiple experiments
with different systems and/or different signals and noise besides applying different
optimization methods and then, compare their performance.

We have also seen in the worked examples related to identification of stochastic
MPL systems (cf. Section 5.2) that the estimated noise amplitude is quite far away
from the exact one. Although it is mentioned in the literature that in general it
is hard to obtain a good estimation for the noise amplitude, it is still desired to
explore the possibilities of improving the estimation of the noise amplitude in the
identification problem. One possible research direction isto investigate the input
design process for stochastic MPL systems, or first considera simpler problem such
as the estimation of the noise variance using Kalman Filter in order to obtain an
estimate of the possible outcome.

MPC for stochastic switching MPL systems

Yet another topic for future research is to explore other methods to compute the ex-
pected value of a max-plus-scaling function in a stochasticswitching MPL system
in the case that both the mode switching uncertainty and the parametric uncertainty
are dependent on each other. The method proposed in this thesis is still quite com-
plex and time-consuming. One way would be to use properties of the conditional
expected value/probability and also the expected value of multivariate functions to
find another approximation method that is more efficient thanthe one proposed in
this thesis.

Other research topics

Stochastic MPL systems are not intrinsically stable. Hence, one interesting topic
would be to study the stability of stochastic MPL systems in general and the stability
of closed-loop MPC of stochastic MPL systems when the approximation method is
used in the MPC optimization problem.

Another important issue is the timing issue of the stochastic MPL systems. This
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issue plays an important role in real applications such as scheduling a train network,
or controlling a printer performance. Note that in the approximation method, we do
not take the timing into account (cf. Section 3.1.4) since wewould then deal with the
updated distributions with unknown properties and as a result, we would then not be
able to apply the approximation method anymore. Therefore,it is very interesting to
find alternative approximation methods that will deal with the timing issue as well.
One approach could consist in approximating the updated distribution using another
distribution for which the current approximation method can be applied, such as the
normal distribution or piecewise uniform distribution.

Development of identification algorithms for stochastic MPL systems based on
input-output data (instead of input-state data) or with only partial state information
is also another interesting topic for future research.





Appendix A

Order of Complexity of the
Approximation Method Based on
Variability Expansion

In Section 3.1.3, we have presented the order of complexity of the approximation
method, which is based on the method of variability expansion [110]. The order of
complexity of this method is

O
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M
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nvV(2M + nv − 1,M)
)

(A.1)

whereV(·, ·) is defined in (3.13). In this appendix, we show that (A.1) is equivalent
to
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Here, we assumenv ≫ nẽ ≫M ≥ 0. Note thatnv ≫ nẽ was also assumed in the
complexity analysis of the method based on analytic integration in Section 3.1.3;
moreover,M will always be less than or equal tonẽ [56]. Here, we assume that
nẽ ≫ M ≥ 0 since for largeM , the variability expansion method is computation-
ally very expensive. The first factor in (A.1) can be rewritten as follows:
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Expansion

The last factor in (A.1) can be rewritten in the following way(see (3.13)):
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If M = 2q whereq is a positive integer, then⌊2q + 1
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Hence, combining (A.3) and (A.5), we can approximate (A.1) as follows:
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Notation

This section lists some symbols and abbreviation that are frequently used in this
thesis.

List of symbols

Sets

∅ empty set
int(X) interior of the setX
X ⊆ Y X is a subset ofY
x ∈ X x is an element of the setX
R set of real numbers
N \ {0} set of positive integers:{1, 2, 3, . . . }
⌊x⌋ the largest integer less than or equal tox

Matrices and Vectors

R
n set of real-valued vectors of sizen

R
n×m set ofn bym real-valued matrices

xT transpose of the vectorx
xi i-th element of the vectorx
Aij entry of the matrixA on thei-th row and thej-th column
‖x‖p p-norm of the vectorx
‖x‖∞ ∞-norm of the vectorx
‖A‖p p-norm of the matrixA
‖A‖∞ ∞-norm of the matrixA
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Functions

f : X → Y functionf with domainX and codomainY
dom(f) domain of the functionf
f(e) probability density function of the stochastic vectore

J objective function
E[x] expected value of the random variablex
E[xk] k-th moment of the random variablex

Max-Plus Algebra

Rε R ∪ {−∞}
Smps set of max-plus-scaling functions
⊕ max-plus addition
⊗ max-plus multiplication
ε zero element of the max-plus addition
0 identity element of the max-plus multiplication
A⊗k

k-th max-plus power of the matrixA

Acronyms

MILP Mixed-Integer Linear Programming
MMPS Max-Min-Plus-Scaling
mp-NLP multi-parametric Nonlinear Programming
mp-MILP multi-parametric Mixed-Integer Linear Programming
MPC Model Predictive Control
MPL Max-Plus-Linear
PWA Piecewise Affine
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Summary

Approximation Methods in Stochastic Max-Plus Systems

Many physical systems, such as traffic networks, manufacturing systems, chemical
systems, or biological systems, are characterized by dynamic phenomena. To model
such systems, we are interested in the classes of nonlinear dynamic models that
are capable of describing continuous and/or discrete dynamics, i.e., the classes of
discrete-event models and hybrid models. The former class consists of systems
the evolution of which depends on the occurrence of discreteevents over time and
the latter class is characterized by the interaction of time-continuous models on the
one hand, and logic rules and discrete-event models on the other hand. Hence,
the evolution of a hybrid system may depend both on the progress of time and the
occurrence of events.

In this PhD thesis, we study some special classes of discrete-event systems,
namely stochastic max-plus-linear (MPL) systems and switching MPL systems, and
a special class of hybrid systems, namely stochastic max-min-plus-scaling (MMPS)
systems. The main operators in these systems are maximization, addition, and min-
imization (only in MMPS systems). In the identification and control problem of
these systems, the objective function appearing in the optimization problem can be
written as the expected value of the maximum of affine expressions. The focus of
this thesis is on finding an efficient method to compute this expected value since the
currently available methods are both too complex and too time-consuming.

To address this issue, this PhD thesis proposes an approximation method based
on the higher-order moments of a random variable. By considering the relationship
between the infinity-norm and thep-norm of vectors, we obtain an upper bound
for the expected value of the maximum of affine expressions. This approximation
method can be applied to any distribution that has finite moments and in the case
that these moments have a closed form (such as for a uniform distribution, normal
distribution, beta distribution, or gamma distribution),the approximation method
results in an analytic expression. We also show that the approximate function ob-
tained using this method is convex in the control variable and also discuss the error
of this approximation method and show that this error is bounded both from below
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and from above.

MPC for and identification of stochastic MPL system

Model predictive control (MPC) among other control approaches for MPL systems
such as the residuation methods has an advantage of being capable of handling con-
straints both on inputs and outputs. Therefore, in this PhD thesis, MPC is chosen as
a control approach for stochastic MPL systems. For identification of such systems,
we consider state space models and also take the stochastic properties of the system
into account in the identification process.

In both identification and MPC, we replace the objective function defined as the
expected value of the maximum of affine expressions by the function obtained using
the proposed approximation method based on higher-order moments. This approxi-
mate function is indeed an upper bound for the objective function and is minimized
instead of the objective function itself. Moreover, since the approximate objec-
tive function is convex in the control variable and since thegradients with respect
to this variable can be computed analytically, we obtain a convex MPC optimiza-
tion problem that can be solved efficiently using the available convex optimization
algorithms. The identification problem as well, can be solved using non-convex
gradient-based algorithms due to the existence of analyticexpressions for the gradi-
ents of the approximate non-convex objective function.

In order to examine the efficiency and accuracy of the approximation method,
we present case studies for both MPC and identification problem in which the ap-
proximation method is applied using two different noise distributions, namely the
uniform distribution and the normal distribution. We compare the results of the ap-
proximation method with the ones obtained from other available methods, such as
analytic and numerical integration, and Monte Carlo simulation. This comparison
shows that in terms of time-efficiency the approximation method is faster in most of
the cases while having a performance that is comparable to the performance of the
other methods.

MPC for stochastic switching MPL systems and stochastic
MMPS systems

We further extend the application of the proposed approximation method to two
other classes of discrete-event and hybrid systems, namelystochastic switching
MPL systems and stochastic MMPS systems, respectively. Dueto the stochastic
properties of these systems, applying MPC to control these systems, in general,
results in a complex and time-consuming optimization problem.

In stochastic switching MPL systems, we consider both discrete and continuous
random variables, which are related to stochastic mode switching and stochastic
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system parameters, respectively. Hence, the objective function, which is defined as
the expected value of the maximum of affine expressions, involves the joint proba-
bility distribution of these two types of random variables.In the case that the mode
switching variables and the system parameters are independent random variables,
we propose to apply the combination of two approximation methods to simplify the
MPC optimization problem. The first approximation method isbased on a scenario-
based algorithm that chooses only the most probable modes that may occur and the
second one is the proposed approximation method based on higher-order moments
to approximate the expected value of the maximum of affine expressions. In the
case that the mentioned random variables are dependent on each other, we propose
to approximate the joint probability distribution by multi-variable piecewise poly-
nomial functions to obtain an analytic expression for the objective function. In both
cases, the approximation approaches simplify the problem considerably.

In the stochastic MMPS-MPC optimization problem, to be ableto apply the pro-
posed approximation method, we first need to rewrite the MMPSobjective function
as a difference of two convex functions. In this way, it is possible to approximate the
expected value of this function by its upper bound. To this end, we approximate the
first convex function by its upper bound using the proposed approximation method
and the second convex function by its lower bound using Jensen’s inequality. In
the case that the random variables in the MMPS function have finite moments with
closed forms, these upper and lower bounds both lead to analytic expressions. In
this case, the whole MMPS-MPC optimization problem can be considered as a set of
convex problems and each problem can be solved applying gradient-based convex
optimization algorithms since the analytic expressions for the subgradients exist. In
an example, we show that this upper bound approach decreasesthe computational
complexity and the computation time considerably.

Min-max optimization and approximate stochastic optimization for
MMPS systems

In the last part of this PhD thesis, we study min-max optimization of MMPS systems
for the following cases: non-stochastic min-max optimization problems, stochastic
minimization problems, and stochastic min-max optimization problems. For each
case, we propose solution approaches, namely the mixed-integer linear program-
ming for the first case and the approximation method proposedfor MMPS systems
for the second and the third case. In this way, the second casecan be rewritten as
a set of convex optimization problems that can be solved efficiently using convex
optimization algorithms and the third case results in a multi-parametric, non-linear
(mp-NLP) optimization problem that can be solved using mp-NLP algorithms. Fur-
thermore, we present two applications of such problems where the first problem is
an example of a two-player game and the second one is a reference tracking prob-
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lem.



Samenvatting

Benaderingsmethoden voor Stochastische Max-Plus Syste-
men

Veel fysische systemen, zoals verkeersnetwerken, productiesystemen, chemische
systemen, of biologische systemen, worden gekarakteriseerd door dynamische ver-
schijnselen. Met het oog op het modelleren van zulke systemen zijn we geı̈nteresseerd
in de klassen van niet-lineaire dynamische modellen die in staat zijn om continue
en/of discrete dynamica te beschrijven, namelijk de klassen van discrete-gebeurtenis-
modellen en hybride modellen. De eerste klasse bestaat uit systemen waarvan
de evolutie afhankelijk is van het plaatsvinden van discrete gebeurtenissen in de
tijd. De tweede klasse wordt gekarakteriseerd door de interactie tussen continue-
tijdmodellen aan de ene kant en logische regels en discrete-gebeurtenis-modellen
aan de andere kant. De evolutie van een hybride systeem kan derhalve van zowel de
tijdsprogressie als van het zich voordoen van gebeurtenissen afhangen.

In dit proefschrift bestuderen we enkele speciale klassen van discrete-gebeurtenis-
systemen, namelijk stochastische max-plus-lineaire (MPL) systemen en schakelen-
de MPL systemen, en een speciale klasse van hybride systemen: de stochastische
max-min-plus-schaling (MMPS) systemen. De hoofdoperatoren in deze systemen
zijn maximalisatie, optelling, en – voor MMPS systemen – minimalisatie. Bij iden-
tificatie en regeling van deze systemen kan de doelfunctie die in het optimalisatie-
probleem voorkomt, geschreven worden als de verwachte waarde van het maximum
van een aantal affiene uitdrukkingen. De focus van dit proefschrift ligt op het vin-
den van een efficiënte methode voor het berekenen van deze verwachte waarde,
aangezien de huidige hiervoor beschikbare methoden zowel te complex als te re-
kenintensief zijn.

Ten einde dit probleem aan te pakken, stelt dit proefschrifteen benaderings-
methode voor die gebaseerd is op de hogere-orde momenten vaneen stochastische
variabele. Door de relatie tussen de oneindig-norm en dep-norm van vectoren te
beschouwen, kunnen we een bovengrens bepalen voor de verwachte waarde van het
maximum van een aantal affiene uitdrukkingen. Deze benaderingsmethode kan wor-
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den toegepast voor elke distributie met eindige momenten en, in het geval dat deze
momenten een gesloten vorm hebben (zoals voor een uniforme distributie, normale
distributie, beta-distributie of gamma-distributie), resulteert de benaderingsmetho-
de in een analytische uitdrukking. We laten tevens zien dat de benaderende functie
verkregen door het gebruik van deze methode convex is in de regelvariabelen en we
bespreken ook de fout van deze benaderingsmethode en laten zien dat deze fout van
zowel beneden als van boven begrensd is.

MPC en identificatie van stochastische MPL systemen

Modelgebaseerde voorspellende regeling (in het Engels:Model Predictive Control
– MPC) heeft in vergelijking met andere regelmethoden voor MPL systemen zoals
de residuatiemethoden het voordeel dat het in staat is om metbeperkingen op zowel
ingangen als uitgangen om te gaan. Daardoor is MPC in dit proefschrift gekozen als
regelaanpak voor stochastische MPL systemen. Voor de identificatie van dergelijke
systemen beschouwen we toestandsruimtemodellen en nemen we ook de stochasti-
sche kenmerken van de systemen in beschouwing in het identificatieproces.

Bij zowel identificatie als MPC vervangen we de doelfunctie,die gedefinieerd is
als de verwachte waarde van het maximum van affiene uitdrukkingen, door de func-
tie die verkregen wordt door de voorgestelde benaderingsmethode die gebaseerd
is op hogere-orde momenten. Deze benaderende functie is inderdaad een boven-
grens voor de doelfunctie en deze bovengrens wordt vervolgens geminimaliseerd in
plaats van de doelfunctie zelf. Aangezien de benaderende doelfunctie convex is in
de regelvariabelen en aangezien de gradiënten met betrekking tot deze variabelen
analytisch berekend kunnen worden, verkrijgen bovendien we een convex MPC op-
timalisatieprobleem dat efficiënt opgelost kan worden door de beschikbare convexe
optimalisatiealgoritmen te gebruiken. Omwille van het bestaan van analytische uit-
drukkingen voor de gradiënten van de benaderende niet-convexe doelfunctie, kan
het identificatieprobleem ook opgelost worden door het gebruik van niet-convexe
gradiënt-gebaseerde algoritmen.

Met het oog op het onderzoeken van de efficiëntie en nauwkeurigheid van de
benaderingsmethode, stellen we casestudy’s voor MPC en identificatieproblemen
voor waarin de benaderingsmethode wordt toegepast door twee verschillende ruis-
distributies te gebruiken, namelijk de uniforme distributie en de normale distributie.
We vergelijken de resultaten van de benaderingsmethode metdeze die verkregen
zijn met andere bestaande methoden, zoals analytische en numerieke integratie en
Monte-Carlo-simulatie. Deze vergelijking laat zien dat debenaderingsmethode in
de meeste gevallen sneller is qua rekentijd, terwijl zij eenprestatie heeft die verge-
lijkbaar is met die van de andere methoden.
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MPC voor stochastische schakelende MPL systemen en stochastische
MMPS systemen

We breiden de toepassing van de voorgestelde benaderingsmethode verder uit tot
twee andere klassen van discrete-gebeurtenis- en hybride systemen, namelijk sto-
chastische schakelende MPL systemen en stochastische MMPSsystemen. Door de
stochastische kenmerken van deze systemen resulteert de toepassing van MPC voor
het regelen van deze systemen in het algemeen in een complex en rekentijdintensief
optimalisatieprobleem.

In stochastische schakelende MPL systemen beschouwen we zowel discrete als
continue stochastische variabelen, die gerelateerd zijn met respectievelijk de sto-
chastische schakeling tussen verschillende werkingsregimes en stochastische sys-
teemparameters. Daardoor bevat de doelfunctie, die gedefinieerd is als de ver-
wachte waarde van het maximum van affiene uitdrukkingen, de gecombineerde
kansdistributie van deze twee typen stochastische variabelen. In het geval dat de
variabelen die het schakelen tussen verschilende werkingsregimes bepalen en de
systeemparameters onafhankelijke stochastische variabelen zijn, stellen we voor
om de combinatie van twee benaderingsmethoden toe te passenvoor het MPC-
optimalisatieprobleem.

De eerste benaderingsmethode is gebaseerd op een scenario-afhankelijk algorit-
me dat alleen de meest waarschijnlijke werkingsregimes kiest die kunnen voorko-
men en de tweede methode behelst de voorgestelde benaderingsmethode gebaseerd
op hogere-orde momenten om de verwachte waarde van het maximum van affiene
uitdrukkingen te benaderen. In het geval dat de genoemde stochastische variabe-
len afhankelijk van elkaar zijn, stellen we voor om de gezamenlijke kansdistributie
te benaderen door een multi-variabele stuksgewijze polynomiale functie om zo een
analytische uitdrukking te verkrijgen voor de doelfunctie. In beide gevallen vereen-
voudigen de benaderingsmethoden het probleem aanzienlijk.

Om in staat te zijn de voorgestelde benaderingsmethode in het stochastische
MMPS-MPC optimalisatieprobleem toe te passen, is het nodigom eerst de MMPS
doelfunctie om te schrijven als het verschil tussen twee convexe functies. Op de-
ze manier is het mogelijk om de verwachte waarde van deze functie te benaderen
door haar bovengrens. Met dit doel benaderen we de eerste convexe functie door
haar bovengrens door gebruik te maken van de voorgestelde benaderingsmethode
en de tweede convexe functie benaderen we door haar ondergrens door gebruik te
maken van de ongelijkheid van Jensen. In het geval dat de stochastische variabe-
len in de MMPS functie eindige momenten hebben met een gesloten vorm, leiden
deze boven- en ondergrenzen tot analytische uitdrukkingen. In dit geval kan het ge-
hele MMPS-MPC optimalisatieprobleem beschouwd worden alseen verzameling
convexe problemen en elk probleem kan opgelost worden door gradiënt-gebaseerde
convexe optimalisatiealgoritmen toe te passen, aangezienanalytische uitdrukkingen
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bestaan voor de subgradiënten. In een voorbeeld laten we zien dat deze bovengrens-
aanpak de rekenkundige complexiteit en de rekentijd aanzienlijk verlaagt.

Min-max optimalisatie en benaderende stochastische optimalisatie voor
MMPS systemen

In het laatste deel van dit proefschrift bestuderen we min-max optimalisatie van
MMPS systemen voor de volgende gevallen: niet-stochastische min-max optima-
lisatieproblemen, stochastische minimalisatieproblemen en stochastische min-max
optimalisatieproblemen. Voor elk geval stellen we oplossingsmethoden voor, na-
melijk lineair programmeren met gehele en reële getallen voor het eerste geval en
de benaderingsmethode voorgesteld voor MMPS systemen voorhet tweede en het
derde geval. Op deze manier kan het tweede geval herschrevenworden als een ver-
zameling van convexe optimalisatieproblemen die efficiënt opgelost kunnen worden
met behulp van convexe optimalisatiealgoritmen. Het derdegeval resulteert in een
multi-parametrisch, niet-lineair (mp-NLP) optimalisatieprobleem dat opgelost kan
worden met behulp van mp-NLP algoritmen. Daarnaast presenteren we twee toe-
passingen van dergelijke problemen, waarbij het eerste probleem een voorbeeld is
van een spel met twee spelers en waarbij het tweede een referentie-volgprobleem is.
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