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1
INTRODUCTION

The main aim of this dissertation is to develop efficient optimal and robust control
strategies for stabilization and disturbance attenuation of hybrid and switched systems
in general and for control and management of freeway and urban traffic networks, as
particular cases of hybrid systems. This introductory chapter presents the motivation of
this research starting from the congestion control problem in traffic networks. We fur-
ther briefly sketch our approaches and the main contributions, which will be extensively
elaborated throughout the thesis. Finally, we conclude this chapter with the explanation
of the organization of other chapters.

1.1. MOTIVATION OF THE RESEARCH

T HIS thesis is divided into two parts, macroscopic modeling and control of traffic net-
works and robust control of switched systems. The two parts are closely connected

via the traffic models we develop in the first part and the traffic control objectives.

1.1.1. MACROSCOPIC MODELING AND CONTROL OF TRAFFIC NETWORKS

With an increasing number of vehicles and limited infrastructure, government author-
ities, transportation companies, and traffic researchers have concentrated their efforts
on using the currently available resources in order to improve the travel conditions. The
aim of almost all the traffic control research projects has been developing efficient con-
trol strategies to reduce congestion and to improve travel time in the one of the most
complex physical systems, i.e. traffic networks.

Over the past hundred years, traffic control has been developed from fixed-time con-
trol approaches to traffic-responsive methods [159, 203], from model-free [18, 48, 186] to
model-based control [104, 138, 187], from heuristic solutions [18, 219] to more advanced
mathematical approaches such as optimization-based control schemes [3, 71, 138]. The
traffic control goals have been extended from controlling isolated urban intersections
[84] or individual freeway on-ramps [184] to larger urban areas with multiple intersec-
tions [2] or long freeway stretches with several on-ramps and off-ramps [187].

1
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As a first solution for the traffic management problem, fixed-time signal control was
used at individual intersections [232]. The fixed duration for the green phase was ob-
tained using historical traffic data. However, since the fixed-time control approach does
not use any feedback traffic data, it cannot adapt itself to the altering traffic conditions.
Therefore, the focus was turned towards traffic-responsive control methods. Taking ad-
vantage of traffic measurement devices such as loop detectors, GPS data and video cam-
eras, feedback control strategies started to develop and become popular. The feedback
structure allows the traffic-responsive approaches to adapt their control actions based
on the current traffic conditions.

Nevertheless, the traffic-responsive control methods relied only on historical data
and the current traffic situation. There was no future traffic perspective and prediction
that would help with more effective decisions. Therefore, traffic experts started devel-
oping traffic control methods that take advantage of models describing the traffic be-
havior. Various models to represent the traffic phenomena, from the travel behavior of
individual vehicles to the flow dynamics of groups of vehicles traveling in freeway or
urban networks have been proposed [156, 156, 220]. The traffic models can be used to
simulate a network and to predict the future traffic states.

Model-based methods that utilize optimization algorithms to make optimal control
decisions have been developed in recent years [2, 12, 19, 96, 104, 139, 140, 153, 187].
Optimal control theory along with accurate enough traffic flow models can be used to
search for the best performing sequence of control decisions for a desired time horizon.
However, since the traffic network is a complex system with several sources of uncer-
tainties and affecting disturbances, the performance of the optimal control strategies
may deteriorate. The main reasons for this could be measurement errors, future distur-
bance prediction errors, inaccuracy in models, and unpredictable incidents in the traffic
network.

One promising solution is the receding-horizon optimization-based control ap-
proach known as Model Predictive Control (MPC) [160, 198]. Basically, MPC incorpo-
rates an optimization algorithm along with a prediction model in order to find the opti-
mal control inputs at each control time step. The optimization problem is solved at next
control time steps with new information gathered from the system under control, i.e.
the traffic network in our case. Due to its rolling horizon feature and its a priori knowl-
edge about the nominal time profile of disturbances, MPC has shown to be effective in
response to disturbances.

Moreover, MPC has an adaptive structure, which means it can incorporate many
traffic objective functions (or even a combination of multiple objectives, such as reduc-
ing travel delays, reducing emissions and fuel consumptions, etc.), it can handle con-
straints on the system states and on the control inputs, and it can adjust or replace the
prediction model to fulfill the traffic control requirements. Moreover, all kinds of traffic
control measures such as ramp metering, variable speed limits (VSLs), and traffic signals
can be integrated in the MPC framework.

Nonetheless, there are challenges in using MPC for large-scale networks. The size of
the optimization problem of the MPC scheme increases when the size of the traffic net-
work under control grows. There has been a trend towards network control rather than
local independent control of isolated intersections (or on-ramps in the freeway traffic
framework). The main reason is that reducing local traffic delay might result in more
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travel delays and congestion somewhere else in the network. Therefore, network control
and coordination approaches have been developed [159, 183, 187, 203]. However, model
predictive control for large-scale traffic networks might not be real-time feasible due to
the increasing size of the optimization problem. On the other hand, since most traffic
flow models are nonlinear [41, 156, 168, 238], the optimization problems integrated in
the MPC scheme would be nonlinear and thus in general hard to solve.

Therefore, in the first part of this thesis, we focus on finding solutions for real-time
predictive control of freeway and urban networks. In this process, there are three ap-
proaches to investigate:

• Reducing the computational complexity of the traffic flow models,

• Reformulating the optimization problems so that they can be solved more effi-
ciently,

• Using hierarchical and distributed coordination and control techniques along
with proper network partitioning.

In this thesis, we will consider a combination of all three approaches to reduce the on-
line computation time of the MPC optimization problems for both the freeway and the
urban networks case. Thereby:

X For the first point, we aim to use less computationally complex traffic flow models
that still yield an acceptable level of accuracy. For both freeway and urban net-
works, we develop and extend models in order to make them ready to use in the
MPC framework.

X Regarding the second point, since the models we have developed are still nonlin-
ear, we also investigate approximation and transformation techniques to reformu-
late the nonlinear optimization problems into more efficient mixed integer linear
optimization problems.

X For the last point, we introduce a multi-level control and management structure.
In the urban traffic context, we assume that the network is properly partitioned
into multiple subnetworks. The traffic congestion problem along with route guid-
ance in the network are divided among local controllers, one for each subnetwork,
while a centralized model predictive controller efficiently provides optimal traf-
fic control inputs (controlling flows between neighboring subnetworks, switch-
ing between timing plans for intersections inside subnetworks, and destination-
dependent traffic flow splitting rates) using an aggregate modeling approach.

MPC requires a traffic flow model that can accurately predict the traffic states. More-
over, a good estimation of the disturbances affecting the system is also crucial. However,
since unpredictable incidents, mismatch between models and reality, and disturbance
estimation errors always exist in traffic networks, the performance of MPC may deterio-
rate. Therefore, one can choose either to improve the robustness of MPC approach or to
shift to an alternative approach. In the second part of this thesis, we focus on the latter
option and we aim to tackle the issues with uncertain disturbances affecting the system
(traffic network) and also with the online computational effort required to determine
control decisions.
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1.1.2. ROBUST CONTROL OF SWITCHED SYSTEMS

As pointed out in [92, 96], many traffic flow models have a hybrid nature in the sense that
they incorporate both continuous-time and discrete-time variables. For instance, in the
freeway traffic control context, the variable speed limit signs normally take only discrete
values (e.g. 50, 70, 90, 100, and 120 km/h), while the traffic state variables (flow, density,
and average speed) are continuous-time. Therefore, a dynamical model representing a
freeway traffic network equipped by VSL signs would have a hybrid structure. On the
other hand, for urban traffic networks, switching between a number of pre-defined tim-
ing plans for multiple intersections in order to control congestion and to improve the
travel time is common in practice [137, 159, 202]. Therefore, a hybrid model can be de-
veloped to describe the urban traffic network under switching control [96].

The traffic flow models discussed before can be treated as a special class of hybrid
systems known as switched systems. A switched system comprises of multiple dynam-
ical subsystems and a switching signal that determines the active subsystem governing
the dynamics of the system over time. To be more precise, our traffic flow models (espe-
cially the ones presented in the first part of this thesis) can be included in the category
of switched systems with nonlinear subsystems (some reformulations may be required).

Stability analysis and control synthesis for various classes of switched system have
been addressed in the literature in recent years [6, 40, 73, 113, 149]. Switched systems
may show surprising behavior. For instance, a switched linear system that consists of
stable linear subsystems may have unstable behavior under certain switching patterns.
On the other hand, a particular switching rule can stabilize a switched system with
unstable subsystem. Therefore, stability analysis and design of stabilizing controllers
for these systems is challenging and is different from the non-switched case. Never-
theless, for the switched linear systems case, effective tools and methods in the liter-
ature have been proposed for stability analysis under arbitrary or restricted switching
[74, 112, 152], for controllability and observability [14, 218, 229], and for the design of
various types of controllers that ensure different performance criteria such as H2 and
H∞ [74, 208, 240, 245]. However, switched nonlinear systems have not gained much
attention and so far, no concrete procedure for the analysis and control of the general
forms of these systems have been proposed. Most of the research has been devoted to
the particular classes of these systems [4, 55, 127, 236].

In the second part of this thesis, we concentrate on analyzing and designing robust
stabilizing controllers for more general types of switched nonlinear systems, inspired by
our proposed traffic models. The specific problems that we deal with are:

• Stability analysis for switched nonlinear systems under arbitrary switching,

• Design of robust controllers that minimize the effects of disturbances on the out-
put of switched nonlinear systems,

• Development of control design conditions and procedures that can be efficiently
implemented and checked using available convex optimization tools.

In order to perform stability analysis and design robust controllers for switched nonlin-
ear systems, we use the properties of the nonlinearities in the system to develop struc-
tured stability conditions that can be evaluated efficiently. More specifically:
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X For the first point, we use multiple Lyapunov functions along with a dwell time
constraint on the consecutive switching instants, in order to formulate less con-
servative (compared to a single Lyapunov function approach) asymptotic stability
conditions under arbitrary switching.

X Regarding the second point, we investigate a robust control design approach that
minimizes an upper bound on the L2-gain of the switched system from the dis-
turbance input to the output of the system. The procedure provides an integrated
design of a robust stabilizing switching law and state feedback control inputs.

X For the last point, we aim to use the characteristics of the nonlinear functions
governing the dynamics of the switched system to formulate the stability condi-
tions in the form of linear or least complex bilinear matrix inequalities. The main
properties that we use are the possibility of fitting the functions in sector sets with
arbitrary bounds and the smoothness of the functions.

In the next section, we will present our main contributions regarding the problems
that we have discussed for both parts of this thesis.

1.2. RESEARCH GOALS AND MAIN CONTRIBUTIONS

The main aim of this PhD dissertation is to present efficient optimal and robust control
strategies for hybrid and switched systems and for our particular applications, urban
and freeway networks. In this process, the following major contributions have been ob-
tained:

• Efficient integrated predictive control framework for freeway networks

In order to construct an efficient model predictive framework for large-scale free-
way networks, we propose two extensions for the recently developed Link Trans-
mission Model in order to represent the effects of ramp metering and variable
speed limits. Using the extended model and taking advantage of mathematical
transformation techniques, an integrated predictive ramp metering and variable
speed limits control scheme is proposed in which mixed integer linear optimiza-
tion problems are solved in a receding horizon fashion.

• Optimal hybrid perimeter and switching timing plans control for urban net-

works

We propose a multi-region hybrid urban traffic model developed based on the no-
tion of Macroscopic Fundamental Diagram (MFD) [69]. Using the hybrid model,
we develop a model predictive control scheme that is able to efficiently control
network flows inside urban regions and between neighboring regions. Further-
more, using a high-level modeling approach based on the MFD, we also propose a
multi-level predictive route guidance scheme. In this scheme, the complex rout-
ing problem for large-scale urban areas is relaxed by decomposing the problem
into multiple layers and by defining regional origins and destinations.

• Stability analysis and robust control of sector-bounded switched nonlinear sys-

tems

Based on multiple Lyapunov functions that contain the nonlinearities in the
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switched system, we propose a robust control design approach in the form of an
optimization problem that can be efficiently solved using a combination of con-
vex optimization techniques and line search methods. Solving the optimization
problem results in the minimum upper bound on the L2-gain of the closed-loop
switched nonlinear system along with the matrices for the stabilizing switching
laws and state feedback control inputs.

• Robust control of switched nonlinear systems via approximate switched affine

systems

We propose a robust H∞ control scheme for switched nonlinear systems that can
be approximated by switched affine systems with mixed autonomous and con-
trolled switching types. We develop two control design procedures formulated in
the form of bi-level optimization problems that can be efficiently solved using line
search along with convex optimization algorithms. Furthermore, sufficient con-
ditions for stability of the original switched nonlinear system using the proposed
methodologies are presented.

1.3. STRUCTURE OF THE THESIS

A road map of the thesis is illustrated in Fig. 1.1. The thesis has two main parts which
are connected through the modeling approach and the urban traffic control problem
presented in Chapter 4. The chapters in Part I mainly present traffic flow models and
control approaches for both urban and freeway networks. The chapters in Part II deal
with the stability analysis and the design of robust stabilizing controllers for different
types of switched nonlinear systems. Chapters 2 and 6 are devoted to the background
knowledge required for better understanding the main contributing chapters.
The contents and contributions per chapter can be summarized as follows:

CHAPTER 3

This chapter presents the extensions of the link transmission model for ramp metering
and variable speed limits control. Using the extended model, an integrated model pre-
dictive freeway traffic control scheme is developed. Further, to improve the efficiency, a
reformulation of the model is proposed. Using the reformulated model, we establish a
mixed integer linear optimization problem that is solved in the receding horizon man-
ner.

Parts of this chapter have been partially presented in [88, 90, 98].

CHAPTER 4

Macroscopic multi-region modeling of urban networks using the concept of Macro-
scopic Fundamental Diagram (MFD) is presented in this chapter. Furthermore, using
the proposed MFD-based hybrid model, a model predictive control scheme is devel-
oped in order to reduce the travel delay in large-scale urban networks partitioned into
multiple subnetworks. Moreover, in order to improve the computational complexity of
the approach, multiple approximation methods are proposed to transform the nonlin-
ear MPC approach into more efficient MPC schemes with mixed integer linear optimiza-
tion problems.

The contents of this chapter have been presented in [95, 96].
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CHAPTER 5

Proceeding with the MFD-based modeling of urban networks, another multi-region
macroscopic model is proposed in this chapter for the purpose of decomposing the
route guidance problem for large networks into a multi-level less computationally com-
plex scheme. The proposed dynamic optimal route guidance approach consists of two
levels and incorporates an MPC approach. At the higher level, the optimal splitting rates
for destination-dependent flows towards neighboring regions are determined. At the
lower level, local controllers realize the optimal splitting rates sent from the higher level
MPC controller.

Parts of this chapter have been published in [97].

CHAPTER 7

Stability analysis and design of robust H∞ switching controllers for general switched
nonlinear systems with a constraint on the feedback control input are discussed in this
chapter. A model reformulation is used to relax the constraint on the control input.
The design procedure for a stabilizing switching law with H∞ performance is presented
using a multiple Lyapunov functions approach.

The contents of this chapter have been presented in [91].

CHAPTER 8

This chapter mainly presents stability results for switched systems with nonlinear func-
tions characterizing the dynamics of the system and bounded in sector sets with asym-
metric slopes. Stability analysis under arbitrary switching with and without the average
dwell time constraint is presented. Moreover, using a multiple Lyapunov functions ap-
proach along with linear matrix inequalities (LMI) techniques, the design procedure for
robust H∞ switching laws and state feedback controllers is formulated as an optimiza-
tion problem. The optimization problem can be solved using a combination of a convex
optimization algorithm along with a line search method.

Parts of this chapter have been published in [92, 93].

CHAPTER 9

In this chapter, we consider approximating a switched nonlinear system by a switched
affine system with mixed switching types. Based on the approximate switched system,
two procedures for the design of stabilizing switching laws are proposed. The proposed
methods are further extended for joint design of switching laws and state feedback con-
trollers that fulfill the H∞ performance criterion. The design procedures are formulated
as optimization problems that minimize upper bound on the L2-gain of the switched
system. In order to solve the optimization problems, combined line search and convex
optimization techniques can be used. Moreover, the sufficient conditions for stabiliz-
ing the original switched nonlinear system using the proposed methodologies are also
presented in this chapter.

The contents of this chapter have been partially presented in [94].

Finally, Chapter 10 concludes the thesis with the main contributions and directions
for future research.
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2
BACKGROUND ON TRAFFIC FLOW

MODELING AND CONTROL

This chapter provides some background knowledge on traffic flow modeling and con-
trol. First, we present common traffic control objectives, issues, and challenges in traf-
fic network control. Next, we focus on freeway traffic flow models starting from differ-
ent model categories based on the level of detail. We discuss more elaborately macro-
scopic flow modeling since it is the basis for our approach in Chapter 3. Next, we give an
overview of the existing freeway control schemes ranging from heuristic and rule-based
methods to model-based optimal and optimization-based approaches.

In the second part, we focus on the urban traffic modeling and control. First, we in-
troduce multiple urban traffic flows and next, we elaborate more on the concept of ag-
gregate and high-level modeling, since it will be extensively used in Chapters 4 and 5.
Next, we present several existing urban traffic control approaches. We end this part with
more discussion on control using the aggregate modeling approach and the benefits one
achieves from this methodology.

11
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2.1. CONTROL OBJECTIVES AND CHALLENGES

F OR a properly designed traffic management and control scheme, the following ob-
jectives could be taken into account.

SAFETY

The traffic control schemes should never cause unsafe situations. However, the effi-
ciency in controlling or preventing congestion automatically increases safety. Moreover,
ensuring safety prevents incidents to happen and consequently, provides higher traf-
fic flows. On the other hand, simultaneous high speeds and densities negatively have
impact on the safety [103].

NETWORK RELIABILITY

It may not be possible to prevent all congestions, but it is useful to predict the travel time
of drivers heading to their destinations. In other words, accurate estimation of the ar-
rival times helps drivers to choose proper departure times. A traffic control scheme can
provide good estimation of realizable travel times for drivers. Moreover, it can also opti-
mize the network to realize the estimated travel times. This can be achieved by optimal
distribution of the traffic flows over the network.

TRAFFIC NETWORK FLOW PERFORMANCE

The traffic flow performance can be described using different criteria. As a result, the
objectives of traffic control schemes can be different. The performance criteria can be
the throughput, travel times, homogeneity of the traffic flows, or the safety level both
over space and time. The total time spent in the network (on the mainstream road and
at the on-ramps queues) is often considered as performance criterion [71, 90, 104, 155].

FUEL CONSUMPTION, EMISSIONS AND NOISE POLLUTION

The main aim of any traffic controller is to improve the performance of the traffic net-
work. However, the performance could vary depending on the desire of different users
of the network, the operation time of the network, and the location of the network. For
example, environmentalists would like reduced dispersion of emissions and propaga-
tion of sound pollution to a protected target zone, while transport authorities could be
interested to improve traffic throughput and safety. Moreover, in urban areas, the den-
sity of the population is relatively high. People living in big cities usually suffer from
air pollution. One of the biggest sources of the environmental pollution in cities comes
from the emissions of congested traffic flows. A well-designed traffic management sys-
tem that can control both travel delays and traffic emissions effectively is highly desired.
After all, one can define three performance criteria; emissions, fuel consumption, and
dispersion of emissions to target zones [241].

COMPUTATIONAL EFFICIENCY

The calculation time required to compute the traffic control inputs (e.g. the ramp me-
tering rates or the variable speed limits) should be small enough to make real-time con-
trol of freeway networks possible. For the heuristic-based and rule-based approaches
this is not a concern, but e.g. for more advanced control schemes such as model-based
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predictive control [103, 187, 198] computation of the optimal control inputs should be
performed in a small period of time such that real-time traffic management is possible.
As the computational complexity of model-based predictive control and its associated
optimization problem grows, for larger freeway networks, research has been oriented
either towards using simpler but faster models to represent the network [41, 238, 239]
or on the decentralized and distributed implementation of the traffic control schemes
[59, 162, 187].

VARIATION IN TRAFFIC CONTROL MEASURES

In general, frequent fluctuations and sudden jumps in the values of the control mea-
sures such as ramp metering rates and variable speed limits are not desired from the
safety and the drivers’ comfort point of view. Since it is also possible to have different
optimal traffic control settings that can result in the same traffic performance, priority
is usually given to attain the same performance level with a minimal fluctuation in the
traffic control measures.

A perfect traffic control scheme would be the one that can take into account and
fulfill nearly all the traffic objectives and criteria mentioned above. In the next section,
we introduce some of the proposed freeway traffic control schemes in the literature that
address some of the traffic concerns mentioned here.

2.2. FREEWAY TRAFFIC NETWORKS

This section provides background on freeway traffic flow modeling, traffic objectives
and challenges, and an overview of traffic control methods proposed in the literature
and in practice. As for the traffic flow modeling, we first introduce the main concepts
and the classification of existing models. Next, we focus on a particular class of traffic
flow models, the so-called macroscopic flow models. In the next subsection, freeway
traffic objectives and environmental concerns are discussed. Finally, existing solutions
and control approaches from heuristic and rule-based methods to advanced model-
based control schemes are briefly reviewed.

2.2.1. BASIC CONCEPTS AND ELEMENTS OF MODELING

For traffic networks, a wide range of traffic flow models has been developed [116, 165,
214, 216]. They can be used for the design of traffic control strategies, for the develop-
ment of new infrastructure, and for the education of traffic operators and traffic man-
agers [103, 116, 215].

Traffic flow models can be classified in several ways. The nature of traffic flow models
can differ based on their specific application, their level of detail, the describing time do-
main (discrete-time or continuous-time), and their stochastic or deterministic behavior
in describing the traffic states [116]. Based on their level of detail, they can be catego-
rized as microscopic, macroscopic, and mesoscopic traffic flow models [116]. Traffic
flow models that represent the behavior of individual vehicles in a traffic network are
included in the category of microscopic traffic flow models. Microscopic traffic flow
models can be also categorized into different classes based on the concepts they use
[116], e.g. the car-following models [194, 196], cellular automaton-based models [175],
and so on. Moreover, microscopic simulators such as AIMSUN [9] and VISSIM [58] use
microscopic traffic flow models.



2

14 2. BACKGROUND ON TRAFFIC FLOW MODELING AND CONTROL

On the other hand, macroscopic traffic models describe the aggregate dynamics in
terms of the spatial vehicle density, the average flow, and the average speed. Since in the
microscopic traffic models each car is characterized by its own motion dynamics, the
computation time required for traffic simulations grows large as the number of simu-
lated cars increases [106, 116]. Therefore, these types of models are mostly suitable for
off-line traffic simulations, detailed investigations, or numerical evaluation of collec-
tive traffic variables such as the density-dependent velocity distribution, the distribu-
tion of headway distances [174]. Moreover, on some occasions, macroscopic modeling
approaches may provide better results than modeling approaches with a higher details
[116]. Hence, although the microscopic models and simulators are able to reproduce
the detailed effects of traffic flows, most traffic researchers prefer macroscopic traffic
flow models [105, 133, 151, 185].

Macroscopic traffic flow models deal with traffic flow in terms of aggregate variables
(such as average speed, flow, and density). Macroscopic traffic models do not distin-
guish the behavior of individual vehicles in a traffic stream. Therefore, macroscopic
traffic flow models are suited for faster than real-time traffic simulations [106, 116].
Most often macroscopic models are derived from the analogy between vehicular flow
and flow of continuous media (e.g. fluids or gases) [141], resulting in traffic flow mod-
els with a limited number of equations that are relatively easy to handle [116]. The
first macroscopic traffic models were reported in [151, 200]. These models established
the basis for the development of the more accurate traffic flow models presented in
[41, 168, 185, 189, 238].

The independent variables of a continuous macroscopic traffic flow model are lo-
cation x and time t . Most macroscopic traffic flow models describe the dynamics of
the density denoted by ρ, the average speed denoted by v , the flow q and the relation
between these variables. Basically, all macroscopic traffic models are based on the con-
tinuity equation [108]

∂ρ(x, t)

∂t
+
∂
(
ρ(x, t)v(x, t)

)

∂x
= d(x, t), (2.1)

where d(x, t) denotes the rate of vehicles entering the freeway at an on-ramp or the rate
of vehicles leaving the freeway at an off-ramp. Moreover, most macroscopic models
define the relation between the density ρ, the flow q , and the average speed v as

q(x, t) = ρ(x, t)v(x, t), (2.2)

where the density ρ is per single lane. However, (2.1) and (2.2) do not completely de-
scribe the traffic dynamics as the number of unknown variables is more than the num-
ber of equations. Consequently, to obtain a more complete description of the traffic flow
dynamics, extra equations are required. As a third equation, most first-order macro-
scopic traffic flow models (like the cell transmission model [41] and the link transmis-
sion model [238], Payne model [189], and Fastlane [226]) assume a static speed-density
relation. But for the description of emergent traffic jams and stop-and-go traffic, one
needs a dynamic speed equation [108, 241]. Therefore, for most higher-order macro-
scopic models, the third equation that describes the dynamics of the average speed can
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Figure 2.1: Triangular fundamental diagram: (a) speed-density plot, (b) flow-density plot.

be written in the following general form [108]:

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
=−

1

ρ(x, t)

∂P
(
ρ(x, t)v(x, t)

)

∂x
+

1

τ

(
V (ρ(x, t))− v(x, t)

)
, (2.3)

where V (ρ(x, t)) is the generalized equilibrium speed given by the fundamental dia-
gram relationship between v(x, t) and ρ(x, t) (will be explained shortly), τ is the relax-
ation time and P (ρ(x, t), v(x, t)) is the traffic pressure. The traffic pressure is a quan-
tity that describes the degree to which drivers interact with each other [193]. The third
dynamic equation (2.3) results in a second-order traffic flow model. The difference be-
tween the various existing macroscopic traffic flow models mainly concern the expres-
sions used for the traffic pressure P (ρ(x, t), v(x, t)), the relaxation time τ, and the gener-
alized equilibrium speed V (ρ(x, t)), which results in different equations for the average
speed v(x, t).

To explain the models constructed on (2.3), we first start with the relation between
the speed v and the density ρ. When the density on the road is very low and the aver-
age distance headway is large, the drivers travel at the free-flow speed. This is called the
free-flow driving. As the density starts to increase to a critical point ρcr (i.e. the den-
sity at which the maximum capacity of the network is used), the speed starts decreasing
until a traffic jam occurs. When the density is at its maximum ρmax, the speeds of ve-
hicles approach zero. These relations can be graphically illustrated using the so-called
fundamental diagram. A fundamental diagram that is obtained using real data from a
freeway network has a lot scattering, particularly in the congested part. However, one
can fit a function to the data and use the fitted function to build up a traffic flow model.
One way to approximate the fundamental diagram is to use straight lines to obtain the
so-called triangular fundamental diagram is illustrated in Fig. 2.1. Based on the triangu-
lar fundamental diagram, first-order models such as the cell transmission model [41, 42]
and the link transmission model [89, 90, 115, 239] have been developed. These models
are relatively accurate for reproducing congestion phenomena and the propagation of
jams. The relatively simple traffic dynamics allows us to study traffic route assignment
and also to design efficient and relatively fast control algorithms.

Another approximation for the fundamental diagram is to use higher-degree poly-
nomials or exponential functions. The relation between the equilibrium speed V and
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Figure 2.2: Fundamental diagram: (a) speed-density plot, (b) flow-density plot.

the density ρ can be formulated as

V (ρ) = νfree exp
[
−

1

α

( ρ

ρcr

)α]
, (2.4)

where ρcr is the critical density, νfree is the free-flow speed, and α is a parameter. The
relation formulated in (2.4) can be also illustrated in Fig. 2.2(a) for speed versus density
and in Fig. 2.2(b) for flow versus density. Based on this fundamental relation, second-
order models such as METANET [168] are developed. The METANET can represent the
evolution of density, flow and average speed of freeway links. The interested reader is
referred to [104, 168] for more details about the METANET and its extensions.

While second-order traffic models can be more accurate than first-order models to
represent traffic dynamics, they suffer from additional complexity that makes the model
calibration difficult. Moreover, model-based control schemes constructed on second-
order models such METANET are not efficient for large-scale networks. On the other
hand, the cell transmission model and the link transmission model are relatively simpler
and keep acceptable level of accuracy. But some traffic phenomena such as capacity
drop cannot be accurately represented by these models in their original formulations. It
has been observed that in some cases there is a drop in the maximum flow (capacity) of
a freeway link depending on whether the link is in free-flow or congestion. Such drop in
the capacity of a link is usually a result of congestion in the downstream links of the link
[144].

2.2.2. OVERVIEW OF EXISTING CONTROL APPROACHES

There are various methods in the literature for control of freeway networks using dif-
ferent traffic measures. Among them we discuss a number of heuristic and rule-based
approaches and some more advanced methods that are based on optimal control [138]
and the model predictive control theory [160, 198].

HEURISTIC AND RULE-BASED CONTROL STRATEGIES

Rule-based systems solve problems using if-then rules [100, 205]. These rules are usu-
ally built up using expert knowledge and stored in an inference engine. The inference
engine has a memory that stores rules and information about the problem, a pattern
matcher, and a rule applier. The pattern matcher searches through the memory to find
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out which rules are appropriate for the problem and next, the rule applier selects the
rule to apply. However, these systems work only with pre-defined rules and in their ba-
sic implementation learning is not involved.

When the congestion is imported from downstream, local ramp metering almost
has no effect. Therefore, coordinated control strategies are crucial. HERO (HEuristic
Ramp metering coOrdination) [186] is a simple rule-based coordinated ramp-metering
scheme that applies ALINEA (Asservissement LINéaire d’Entrée Autoroutiére) for the lo-
cal regulators. ALINEA is a local proportional feedback ramp metering control strategy
[184]. The coordination principle of HERO is as follows. First, it receives the real-time
detected ramp queue lengths and mainstream densities from the local controllers. Next,
it checks whether the ramp queue length exceeds a certain activation threshold, and
whether the merge density is close to the critical density. If both conditions are satisfied,
this ramp is defined as master ramp. Next, it defines a minimum ramp queue length
for the slave ramps, which is updated according to the real-time changing of the mas-
ter ramp queue length. By real-time tuning the minimum queue length based on the
traffic state of the master ramp, the queue lengths of the slave ramps are increased to
approach the queue length of the master ramp. When the queue of the master ramp de-
creases beneath a certain threshold or the mainstream density becomes under critical,
the coordination procedure stops.

ACCEZZ (Adaptive and Coordinated Control of Entrance Ramps with Fuzzy Logic)
[18] is a rule-based algorithm for coordinated ramp metering. The core of ACCEZZ is
a fuzzy controller. The control rules are expressed by a number of fuzzy sets that are
identified and obtained from heuristics, expert knowledge or simulation. The inputs of
the fuzzy controller are measured on the mainstream and on-ramps, i.e. the average
speed, average traffic flow, and average occupancy at the upstream and the downstream
links of the on-ramp. The output of the fuzzy controller, the metering rate, is calculated
based on the real-time measured and historical traffic data.

Case-based reasoning solves a problem using the knowledge that is gained from pre-
viously experienced or simulated similar cases [201]. In this way, this technique learns
how to solve a new problem and saves the new solution in a database. A disadvantage of
this approach is that it may not be clear what must be done for a case that is not yet inte-
grated in the database. To improve the existing traffic management systems, BSES (Boss
Scenario Evaluation System) [48, 117] is proposed based on fuzzy multi-agent case-
based reasoning. The main features of the system are 1) its case-based structure, i.e.
it uses examples of control scenarios under different real traffic conditions, 2) the fuzzy
logic inference system that identifies the similarity of the current situation to other cases
stored in the database, and 3) the agent-based structure, i.e. combining the predictions
of the effects of different traffic control strategies for small networks. The main advan-
tages of the BSES scheme are the computation speed (with respect to the cases in which
we use traffic flow models), the ability to use actual knowledge (rather than general in-
formation or simulated data), and the ability to learn from previous experiences.

MODEL-BASED CONTROL STRATEGIES

Freeway network modeling and control with the goal of reducing the travel time, reduc-
ing the fuel consumption and emissions, increasing the throughput of the network have
been extensively investigated in the literature [5, 28, 104, 138, 187, 241]. In model-based
traffic control, an efficient and accurate model for the evolution of the traffic is required.
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This model has to be accurate and also computationally efficient for real-time simula-
tion and control of a large-scale network.

The main idea of optimal control is to find the optimal control measures for the
whole freeway network by optimizing a cost function based on a network model for a
certain future time horizon. The optimal control approach can coordinate the freeway
network in a centralized structure. It not only can coordinate different space locations
and different time instants in the future, but also it can coordinate different kinds of
traffic measures (e.g. ramp metering, speed limits, and route guidance) [140, 186].

AMOC (Advanced Motorway Optimal Control) [139, 140] and OASIS (Optimal Ad-
vanced System for Integrated Strategies) [138] are two control schemes based on optimal
control theory. They both adopt the macroscopic freeway traffic model METANET [168]
as optimization model. However, because the freeway network model is nonlinear, one
of the challenges is to find an efficient algorithm to solve the large-scale optimization
problem. A numerical solution algorithm that is based on a feasible-direction nonlinear
optimization method, is proposed to solve this problem [138, 140]. The AMOC approach
has been applied to the Amsterdam ring-road [139], and has shown good performance
and effectiveness. However, due to the open-loop structure of AMOC, the obtained op-
timal control actions may get deteriorated by all kinds of errors, such as estimation error
of the initial state, future disturbance prediction error, model parameter mismatch er-
ror, and unpredictable incident errors.

Model predictive control (MPC) is a model-based control approach that is based on
the optimization of control inputs that improve a given performance criterion (objec-
tive function) over some prediction horizon. The performance criterion of MPC is for-
mulated as a cost function of the predicted system states, outputs, or inputs. The MPC
approach can be used for non-linear and time-variant systems. In addition, it can in-
corporate constraints on the inputs, states, and outputs of the system. Since the core
control strategy in Chapters 3, 4 and 5 is MPC, we will explain the basic concepts of the
MPC framework here. For more detailed information on MPC, we refer the interested
reader to [160, 198].

The MPC, in general, computes online optimal control solutions of an optimization
problem that is formulated to reflect the desired performance of a system. All MPC-
based control approaches have five main concepts:

• System and disturbance modeling: MPC relies on the prediction of the system
states and outputs in the future, and on the evolution of either already known dis-
turbances or of the probabilistic properties (or known bounds) of the unknown
disturbances.

• Performance criterion In the MPC framework, a performance criterion is defined
as a cost function over a (finite or infinite) prediction horizon.

• Constraints: The constraints can be linear or non-linear. MPC can treat both
equality and inequality constraints on the system states, outputs, and inputs. The
constraints can be related to the operational limits of the system, economic con-
cerns, environmental demands, safety requirements.

• Optimization: MPC uses optimization techniques to optimize the control inputs
in such a way that the value of the given cost function is minimal. Depending on
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Figure 2.3: The main concept of the MPC scheme.

the system’s model, the constraints, and the cost function, the solutions obtained
can be optimal or sub-optimal. In principle MPC uses online optimization to de-
sign optimal control inputs. But to gain computational speeds it is also possible
in some cases, to design MPC based on off-line optimization (such MPC is known
as explicit MPC [13]).

• Receding horizon principle: This means that after computation of the optimal
future control sequence, only the first control sample is implemented. Subse-
quently, the horizon is shifted for one sample period and the optimization is re-
executed with new information from the system. This is illustrated in Fig. 2.3.
At every control time step kc, the MPC controller determines the optimal con-
trol input that minimizes a given performance criterion over the prediction pe-
riod [kc ·Tc, (kc + Np −1) ·Tc], where Tc is the control sample time and Np is the
prediction horizon.

On the other hand, the main disadvantage of MPC for non-linear systems originates
from the nonlinear and non-convex optimization problem involved. Such optimiza-
tion problems do not only bring difficulty in computing optimal solutions, but also the
computation time required to get even suboptimal solutions may become very high.
Usually, the computation time exponentially increases as the number of control inputs
(optimization variables) or the prediction horizon increase.

DISTRIBUTED MPC

Due to its high computational demand, conventional MPC for traffic systems is not
tractable in practice [12, 47, 104, 154, 162]. There are many advancements in the lit-
erature to address the computational complexity problems of MPC [13, 154, 162, 231].
A distributed control structure can be developed to avoid the exponential growth of the
computational complexity for the centralized MPC, when the network scale keeps on in-
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creasing. The large-scale freeway traffic network is then decomposed into subproblems,
each of which is controlled by a local MPC controller [63, 162, 187].

As an example of decentralized MPC, [187] proposed an MPC approach based on the
AMOC algorithm using a hierarchical control scheme. The hierarchical control structure
consists of three basic layers: the estimation/prediction layer, the optimization layer,
and the direct control layer. The estimation/prediction layer receives historical infor-
mation and real-time detected traffic states to generate the current state estimation and
future predictions of the disturbances for the next layer. The optimization layer (AMOC)
optimizes the state trajectory over a time interval based on the initial states and future
disturbance prediction obtained from the upper layer. Next, in the local direct layer, lo-
cal ALINEA controllers are adapted using the optimized traffic set points or trajectories
obtained from the upper optimization layer.

In Chapter 3, we will further discuss the model-based control approaches and
present an efficient integrated model predictive scheme developed based on the first-
order, fast yet accurate, link transmission model [115, 238, 239].

2.3. URBAN TRAFFIC NETWORKS

This section concentrates on traffic flow modeling and control strategies for urban traf-
fic networks. In the modeling section, we first briefly discuss different types of urban
traffic flow models and next, we focus on the concept of Macroscopic Fundamental Di-
agram (MFD), which is the basis for our modeling and control approaches developed
in Chapters 4 and 5. Next, we review some of the existing urban traffic control schemes
ranging from rule-based and open loop optimal control approaches to model predictive
control schemes and recent MFD-based methods.

2.3.1. BASIC CONCEPTS AND ELEMENTS OF MODELING

For different traffic applications, we have to select proper traffic models with good level
of modeling accuracy and less computational effort. Both microscopic models and
macroscopic models provide various levels of modeling power. Essentially, more de-
tailed modeling of traffic dynamics leads to higher computational complexity of the
model. Therefore, a criterion for a selecting a proper model for a particular traffic net-
work would be that the model should be able to represent all important behaviors, and
meanwhile, the simulation speed of the model is fast enough [182].

The store-and-forward model [1] was proposed to describe the stop-and-go urban
traffic flow dynamics controlled by traffic lights. The store-and-forward model later used
for control purposes in [2], is a simple model with a low computational complexity but
it is particularly useful for the saturated traffic condition. In the saturated condition, the
vehicle queues added up from the red phase cannot be completely discharged at the end
of the next green phase. The model proposed in [10] and extended in [52] can describe
queues and calculates time delays for vehicles reaching the queues in a link and it is
capable of describing different traffic scenarios.

The cell transmission model [41] and the link transmission model [115, 238] are both
models derived based on the kinematic wave theory [151], [200]. The extensions of these
models for urban traffic flow modeling can be found in [80, 238]. The model proposed in
[131] has a lower modeling power, but it cannot describe traffic scenarios other than the
saturated case. The models proposed in [154, 223] are able to describe the traffic flow
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dynamics (including vehicle queues) in all traffic scenarios (unsaturated, saturated, and
over-saturated traffic conditions) by updating the model in small time steps.

Essentially, all macroscopic urban traffic models mentioned above are spatiotempo-
rally discrete models. This means that they are sampled into road segments spatially and
are sampled temporally with a sampling period. In [153, 154], a discrete-time urban traf-
fic model, known as the S-model, with a variable sampling time interval is proposed for
model-based predictive control, which provides a balance between modeling accuracy
and computational complexity. Nevertheless, for larger networks, the model becomes
extremely complex. Specially if it is used in the MPC framework for prediction of traffic
states, the associated optimization problem would need a very large computation time
which means that the modeling and methodology proposed in [153] is not feasible in
real-time.

Large-scale urban networks need efficient traffic management and control schemes.
In fact, modeling a large urban network would be a complex task if one wants to study
and model the traffic dynamics of each element (i.e. each link and each intersection, in-
cluding route choice of travelers). This has been performed in the modeling approaches
in [1, 151, 153, 154, 200, 223]. On the other hand, centralized control of an urban net-
work with such detailed modeling approach would be computationally complex and
makes its implementation in real-time infeasible. Hence, instead of adopting a detailed
modeling approach, researchers are investigating alternative possibilities for deriving
an aggregate model for the whole traffic network.

MODELING USING THE MACROSCOPIC FUNDAMENTAL DIAGRAM

The idea of macroscopic fundamental diagram (MFD) was first proposed in [77] and
similar approaches were introduced later in [43, 109, 161]. Investigation on the MFD
with dynamic features is recently performed in [70]. The MFD captures macroscopically
(at a network level) the traffic flow characteristics and dynamics of an urban region. It re-
lates the number of vehicles (accumulation) in the region and its production, defined as
the trip completion rate (flows of vehicles reaching their destination), see Chapter 4. The
underlying assumption in these works is that the network is homogeneously or evenly
congested, which is not always the case. Homogeneous networks with a small variance
on link densities have a well-defined MFD, i.e. there is a low scatter of flows for the same
densities (or accumulations) [72, 166]. A well-defined MFD is schematically shown in
Fig. 2.4. The shape of the MFD can be approximated by a non-symmetric unimodal
curve skewed to the right, i.e. the critical accumulation, ncr (veh), that maximizes net-
work flow is smaller than half the jammed accumulation nmax. Note that the network
topology, the signal timing plans of the signalized intersections, and the infrastructure
characteristics affect the shape of the MFD, see e.g. [45, 68, 107]. Other investigations of
the MFD using empirical or simulated data can be found in [27, 44, 206], while routing
strategies based on the MFD can be found in [87, 136].

As can be observed in Fig. 2.4, as the accumulation or density is increasing (the net-
work operates with free flow condition), the traffic flow increases up to the area where
the capacity of the network is reached. Going beyond the critical density, the network
gets congested and enters the over-saturated region. The main goal is then to main-
tain the overall traffic state in the capacity state (saturated region), by applying traffic
management and control schemes (e.g. traffic signal optimization, gating [135], route
guidance) and further, to avoid spillover and gridlock situation.
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Figure 2.4: Macroscopic fundamental diagram.

Heterogeneous networks might not have a well-defined MFD, mainly in the conges-
tion (decreasing) part of the MFD, and the scatter usually becomes higher as accumula-
tion increases, see [27, 72, 166]. The principal requirement for a well-defined MFD is the
homogeneity of the area-wide traffic conditions. In order to further clarify the necessity
for a well-defined MFD, [166] have figured out that the spatial distribution of link densi-
ties has the key influence on the shape of the MFD. The obtained results suggest that the
MFD can be applied for unevenly congested network if the network can be partitioned
into homogeneous regions [123].

Therefore, based on the concept of MFD and a proper partitioning of a large urban
network, we can determine a multi-region aggregate model that can represent the traffic
flow inside and between urban regions. Using this model, efficient control strategies
can be developed to control flows in the network on the high level [71, 87, 95–97]. This
idea can be further extended for the design of a multi-level urban traffic modeling and
control approach in which at the top level aggregate models based on the MFD are used
while at the lower levels, more detailed models are used as basis for the design of local
controllers [11].

In the next section, some of the well-known urban traffic control approaches are
discussed.

2.3.2. OVERVIEW OF EXISTING CONTROL APPROACHES

At the beginning of the development of traffic signal control on 1914, fixed-time control
was used at intersections [232]. In this framework, the length of the green time duration
is always fixed or at least fixed during multiple time intervals during the whole day. The
fixed-time control actions are predefined according to the historical traffic information.
However, fixed-time control is open-loop and hence, it cannot adapt the control actions
to the current traffic condition. Therefore, traffic-responsive control has been emerged,
along with the application of a variety of detectors (loop detectors, video cameras, etc.)
to get feedback from the traffic network.

Traffic-responsive control falls into the feedback control category that can adjust the
control actions base on the currently measured traffic states. Both for fixed-time con-
trol or for traffic-responsive control, the control strategies are not constructed on traffic
models, but on the historical traffic information or the measured traffic information.
These control strategies can only consider the past and the current traffic condition. In
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order to avoid this, traffic models are used in traffic control schemes to predict the fu-
ture traffic states, which results in model-based traffic control strategies. Model-based
coordinated control strategies [2, 3, 20, 52, 71, 96, 183] do not introduce the feedback
control only to adjust the control actions to the current detected traffic states, but also
to use the feedback data along with a prediction model to make effective decisions in a
long term run.

In the following subsections, we present some of the well-known urban traffic con-
trol approaches.

RULE-BASED CONTROL STRATEGIES

Similar to ACCEZZ for freeway networks, fuzzy-logic controllers with genetic algorithms
or neural network algorithms are also applied in urban traffic systems. In [114], an urban
traffic control scheme is proposed. It applies a fuzzy-logic controller as local intersec-
tion controller, and heuristic technique to coordinate the control results obtained from
fuzzy-logic controllers and to derive the green time for each phase in a traffic signal cy-
cle. In each fuzzy-logic controller, an evolutionary algorithm is applied to learn and
update in real-time the fuzzy sets.

A more complex urban network control with a hierarchical architecture is given in
[34] based on a fuzzy neural decision support concept. The architecture has three lay-
ers. The lowest layer includes intersection agents that control individual intersections
in the traffic network. The middle layer consists of zone agents that control several pre-
assigned intersection agents. The highest level includes one regional control agent man-
aging all zone agents. In each layer, every agent can obtain traffic data and makes deci-
sions independently. Both lower and upper layer agents can cooperate with each other.
For zone agents, the fuzzy rules are adjusted using an evolutionary algorithm. Several
techniques including reinforcement learning, weight adjustment, and tuning the fuzzy
relations have been used to adapt the dynamics of the agents.

OPTIMAL CONTROL APPROACHES

In recent years, a number of model-based optimization control strategies based on sim-
ple traffic models have been proposed, e.g. PRODYN [57], CRONOS [19, 20], OPAC [66],
RHODES [210], and MOTION [17]. They can predict the traffic behavior of the net-
work. However, the models used in these control schemes are relatively simple traffic
flow models. This in fact limits the performance.

UTOPIA/SPOT [164] is a hierarchical system with simple local intersection con-
trollers and a central controller for an area of an urban network. The central controller
optimizes the control actions for the whole area based on a simple model of the net-
work. The local controller makes decisions based on only the local information, but
with a penalty term to guarantee that the local decisions are not too far from the de-
cisions made by the central controller. Therefore, UTOPIA/SPOT partially avoids the
online computational effort but on the other hand, may result in suboptimal solutions.

A linear quadratic optimal control approach, Traffic-responsive Urban Control
(TUC) [1, 137], is developed based on a store-and-forward model [2]. Instead of op-
timizing the control inputs (i.e. green times), TUC optimizes a linear multi-variable
feedback regulator off-line, where the feedback gain matrices are solutions of the cor-
responding algebraic Riccati equation. Therefore, the TUC strategy reduces the online
computational complexity significantly by moving the time-consuming optimization to
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the off-line part. However, when the real traffic conditions change, the feedback control
law needs to be re-designed according to the new current traffic conditions, which is
also computationally complex if it occurs frequently.

Dynamic Intersection Signal Control Optimization (DISCO) [157] is a dynamic ur-
ban traffic optimization-based control approach developed using the cell transmission
model. It considers the fundamental diagram and can capture traffic phenomena such
as shock waves and queue dynamics. The timing plans of urban traffic networks are
determined by solving an optimization problem using a genetic algorithm. Despite all
advantages, this optimal control approach is open-loop. It solves the optimization prob-
lem based on the approximation of the future disturbances, which can be inaccurate
(specially if unpredictable incidents occur). Moreover, mismatches between the model
and the real world and inaccuracies in estimating initial traffic states can always happen.
Under these circumstances, the control results obtained from optimal control methods
are not the best control actions anymore.

SCOOT (Split Cycle Offset Optimization Technique) [203], which is an adaptive sys-
tem that responds automatically to fluctuations in traffic flow, is the most common traf-
fic control system used in the United Kingdom. However, widely used strategies like
SCOOT and SCATS [159], although applicable to large-scale networks, are less efficient
under saturated traffic conditions [135]. On the other hand, more advanced traffic-
responsive strategies like OPAC [66], PRODYN [57], and RHODES [210] use optimiza-
tion algorithms with exponential increase of complexity, which do not permit a cen-
tral network-wide application. Thus, most available strategies face limitations when it
comes to saturated traffic conditions that are frequently occurred in traffic networks.
[30] proposed a dynamic method to control an oversaturated traffic network by using
a bang-bang control method for the oversaturated intersections. In [2], the problem of
network-wide signal control is formulated as a quadratic-programming problem that
aims at balancing the link queues in order to minimize the risk of queue spillback. Fur-
thermore, multiple control approaches have been proposed that use computationally
inefficient optimization algorithms, such as genetic algorithms [157], and ant colony op-
timization [36]. However, because of their high computational demands, the real-time
and network-wide implementation of these methods might not be feasible.

MODEL PREDICTIVE CONTROL

Model predictive control known also as receding horizon control has been in the traffic
control context recently [52, 65, 71, 96, 223]. The MPC method proposed in [52] is com-
putationally intensive and it can describe different traffic scenarios. It needs historical
data to estimate the traffic flow rate of each intersection.

An MPC scheme is proposed in [223] based on an extended model of [131], which is
capable of simulating the traffic dynamics in all traffic scenarios (unsaturated, saturated,
and over-saturated traffic conditions). The MPC controller gives effective performance
but it is not applicable to large-scale urban networks.

On the other hand, a distributed control structure can be developed to avoid the ex-
ponential growth of the computation time of centralized MPC, when the network scale
increases. The problem of finding optimal signal timing plans for a large number of
traffic lights is a challenging problem because of the exponential growth of joint tim-
ing plans that need to be taken care of as the network size grows. However, if we de-
compose the problem into smaller subproblems, we may be able to find a sufficiently
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good solution in a reasonable amount of time. The decomposition of the problem can
be performed by assuming that each traffic signal is an independent decision maker. To
coordinate the decision makers (traffic signals), game theory [167, 171] is applied in [32].

VFC-OPAC (Virtual-Fixed-Cycle Optimized Policies for Adaptive Control) [65] is a hi-
erarchical control scheme, which consists of a three-layer control architecture. The local
control layer implements an optimization in the rolling horizon procedure, i.e. it con-
tinuously calculates and shifts optimal switching sequences for the prediction horizon,
subject to the some fixed-cycle constraints communicated from the upper synchroniza-
tion layer. The coordination layer optimizes the offsets (the offset is the time between
the start of the green light at one intersection and the start of green light at another inter-
section) at each intersection (once per cycle). The synchronization layer calculates the
network-wide virtual-fixed-cycle (once every few minutes). The VFC allows the cycle
time to start or terminate within a flexible range at each intersection. The cycle length
can be calculated separately for groups of intersections. Over time, the flexible cycle
length and offsets are updated as the system adapts to traffic conditions.

MFD-BASED CONTROL

As mentioned in the previous sections, the MFD can be used to establish efficient strate-
gies to control network flows. Among them is the perimeter control, i.e. limiting the in-
flow of a network to ensure a high production [43, 71, 134, 237]. In [71], optimal perime-
ter control for a two-region urban city is formulated by using the notion of MFD. For
stability analysis of perimeter control, the reader can refer to [86], while optimal control
for mixed urban freeway networks utilizing MFDs is found in [87]. Perimeter control for
single or multiple-region homogeneous networks has been analyzed with linear multi-
variable feedback regulators in [134] and [3].

It should be noted that changes in the network topology, the signal timing plans of
the signalized intersections, and the infrastructure characteristics affect the shape of
the MFD. In [95, 96] this issue has been addressed and the authors have introduced an-
other level of control inside urban networks with taking into account the variability of
the MFD. More details on this method will be presented in Chapter 4.

As other examples of using the MFD, [148] introduced fixed-time signal timing
perimeter control. In [3], a feedback control approach is applied to multiple subnet-
works with separate individual MFDs in a heterogeneous urban network. In [67] a three-
dimensional MFD relating the accumulations (cars and public transports) with the total
flow in the network is proposed. The obtained results may be applied for perimeter
control to maximize the network capacity or the passenger capacity in urban networks.
Finally, [85] has proposed a robust perimeter control design to handle uncertainties in
the MFD.

In the next chapter, we will show how we can extend the idea of perimeter control
using the MFD towards timing plans control inside urban regions. We will propose a
generic multi-region MFD-based model that provides the basis for the design of perime-
ter and switching controllers (to switch between timing plans of urban regions).

2.4. SUMMARY

In this chapter, we have given an overview of traffic flow modeling and control for both
freeway and urban networks. First, we have reviewed traffic control objectives and chal-
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lenges. Next, in the first part, we have started with the modeling concepts and classifica-
tions for freeway networks. The focus has been on macroscopic flow models. Next, exist-
ing control solutions from model-free and heuristic approaches to model-based optimal
and predictive control schemes have been briefly introduced.

In the next part, we have turned the attention towards modeling of urban net-
works. Multiple models for individual intersections in the literature, such the store-
and-forward model and the S-model have been reviewed. Next, the concept of aggre-
gate modeling using the macroscopic fundamental diagram has been explained. Next,
we have categorized some of existing solutions in the literature for urban traffic con-
trol. Rule-based and heuristics approaches were first introduced. Next, several optimal
control-based methods for large-scale networks have been presented. In the end, some
of the methods recently developed based on the notion of MFD have been described
and some remaining challenges have been mentioned. In the next chapters, we will use
the modeling elements and the control structures (specially the MPC framework) that
have been presented in this chapter.
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FREEWAY CONTROL USING THE

LINK TRANSMISSION MODEL

In this chapter, we use the recently developed link transmission model (LTM) in an on-
line hybrid model-based predictive control (MPC) framework. We first extend the model
for ramp metering and variable speed limit control. Next, we present an integrated free-
way traffic control approach based on the new model in order to minimize the total time
spent in the network. The integrated scheme has the capability of controlling large-scale
freeway networks in real-time as the model is computationally efficient and it is yet ac-
curate enough for our control purposes. In addition, we reformulate the extended model
as a system of linear inequalities with mixed binary and real variables. The reformulated
model along with the linearized objective function establish a mixed integer linear opti-
mization problem that is more tractable and even faster than the original optimization
problem integrated in the MPC scheme. Finally, to investigate the performance of the
proposed approaches (nonlinear MPC and the mixed integer linear optimization coun-
terpart), we choose a freeway network layout based on the Leuven Corridor in Belgium.
First, we calibrate the extended LTM for this network using micro-simulation data and
next, we use the calibrated LTM as prediction model inside an MPC controller. Closed-
loop results using a microscopic simulation model show that the two proposed MPC
methods are able to efficiently improve the total travel time.

27
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MODEL

3.1. INTRODUCTION

T HE link transmission model (LTM) proposed in [238] is a first-order traffic flow
model for freeway networks. It was originally developed for dynamic traffic assign-

ment [230]. Results presented and discussed in [115, 238, 239] show the capability of
the LTM for fast modeling of large-scale networks. However, this model needs to be ex-
tended in order to include effects of traffic measures (ramp metering and variable speed
limits (VSLs)) and for using it in model-based traffic control schemes. In the following
sections, we will present our proposed modifications of the original LTM for ramp me-
tering and VSL control.

Furthermore, using the extended model, we develop a hybrid model predictive con-
trol scheme for freeway network control. In the proposed framework, the extended LTM
is used as prediction model. Network modeling and predictive control using the ex-
tended LTM is expected to be fast compared to e.g. the METANET-based and CTM-based
approaches [104, 195, 241]. However, further steps towards reaching real-time and effi-
cient control for large-scale freeway networks is crucial and will be also addressed in this
chapter.

In order to achieve real-time control of large-scale freeway networks, we first re-
formulate the nonlinear LTM. We utilize some mathematical techniques for piecewise
affine systems [217] along with the simplifying assumption that the number of VSL val-
ues is finite (which is consistent with reality), to transform the extended LTM into a lin-
ear model composed of linear equations and inequalities with mixed real and integer
variables.

Having transformed the model, the nonlinear optimization in the MPC framework
can be replaced by a mixed integer linear optimization problem if the objective function
is linearized. The mixed linear optimization problem can be solved faster and in a more
tractable way compared to the nonlinear case.

The chapter is organized as follows. In Section 3.2, we define the LTM compo-
nents and review the original mathematical formulations. In Section 3.3, we elaborately
present our extensions for ramp metering and variable speed limits. Section 3.4 first
discusses the main concepts, objectives and structure of the proposed predictive ramp
metering and VSL control scheme, and next, presents the approximation and reformu-
lation of the extended LTM towards achieving a more efficient and fast control scheme.
In the case study section, we evaluate the performance of the integrated ramp meter-
ing and VSL control scheme using a real network layout, the Leuven Corridor. First, we
present the set-up and results of the identification and the calibration of the LTM. Next,
we discuss and compare the closed-loop control results using two MPC methods (non-
linear and mixed integer linear programming approaches). Finally, the chapter ends
with concluding remarks and future research directions.

3.2. LINK TRANSMISSION MODEL

In this section, the original LTM is introduced using [238] and [239]. The LTM is capable
of determining time-dependent link volumes, link travel times, and route travel times in
traffic networks. To this aim, the LTM uses the so-called cumulative number of vehicles
to represent the traffic evolution. The cumulative numbers of vehicles are updated using
flow functions of links and nodes defined in the following subsections.
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3.2.1. LINK MODEL

In the LTM framework, the traffic network is characterized by links that are connected
via different types of nodes, as depicted in Fig. 3.1. A link i starts at an upstream bound-
ary denoted by x0

i
and ends at a downstream boundary denoted by xL

i
. The length of the

link is denoted by Li .
The cumulative number of vehicles N (x,k) is defined only for the upstream and

downstream boundaries of each link at the time step k, with sample time Ts. In order
to obtain the update equations for the cumulative number of vehicles we need to de-
fine two quantities for each link: the sending and the receiving number of vehicles. The
sending number of vehicles for link i is the maximum number of vehicles that can po-
tentially leave the downstream end of this link during the time interval

[
k ·Ts, (k+1) ·Ts

)

and is defined as

Si (k) = min
[

N
(
x0

i ,k +1−
Li

νfree,i ·Ts

)
−N (xL

i ,k), qM,i ·Ts

]
, (3.1)

where νfree,i and qM,i are the free-flow speed and the capacity of link i , respectively. Note
that we have assumed a triangular fundamental diagram [41] (which considers that all
vehicles have the same free-flow speed regardless of the flow). Moreover, in this chapter,
we assume that the fraction Li

νfree·Ts
has integer values and if not, we round it off towards

the closest integer value (in the original LTM formulation, interpolation between grid
points is used instead). The sending number is constrained by the boundary conditions
at the upstream end of the link. If the downstream link boundary at time step k +1 is
in the free-flow traffic condition, then this state must have been originated from the up-
stream boundary Li

νfree,i ·Ts
time steps earlier. Note that the sample time must be selected

as Ts ≤ Li

νfree
in order to prevent vehicles from traversing a link within one sampling pe-

riod.
Similarly, the receiving number of vehicles Ri (k) is the maximum number of vehicles
that can enter the upstream end of link i during the time interval

[
k ·Ts, (k +1) ·Ts

)
and

it is formulated as

Ri (k) = min
[

N
(
xL

i ,k +1−
Li

wi ·Ts

)
+ρmax,i Li −N (x0

i ,k), qM,i ·Ts

]
, (3.2)

where wi and ρmax,i are the maximum speed of the congestion wave propagating back-
ward, and the jam density of link i , respectively. Similar to the previous case, the fraction

Li

wi ·Ts
is also rounded towards the nearest integer value.

3.2.2. NODE MODELS

In the LTM framework, links are connected to each other through different types of
nodes. For each node, the transition number of vehicles is defined and determined
using the sending and receiving numbers of vehicles of its connected links. Basically,
the transition number of vehicles represents the maximum number of vehicles that
can travel from incoming links to outgoing links of a node during the time interval[
k ·Ts, (k +1) ·Ts

)
. Moreover, we denote the set of the incoming and the outgoing links

of each type of node with ℓin and ℓout, respectively. In the following, we define the tran-
sition number of vehicles for various types of nodes, starting with the simplest case.

In order to represent a difference in the characteristics of a road such as capacity,
speed limits, lane change, etc., an inhomogeneous node nnh can be defined. For the
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Figure 3.1: (a) Link model, (b) Different node types.

simplest case with one input and one output link, the transition number Gi j (k) is for-
mulated as

Gi j (k) = min
[
Si (k),R j (k)

]
, i ∈ ℓin(nnh), j ∈ ℓout(nnh), (3.3)

where i is the unique incoming link and j is the unique outgoing link of the given node.
For each origin in the network, the corresponding origin node no is defined and the

transition number of vehicles is determined as follows:

Go j (k) = min
[
No(k +1)−N (x0

j ,k), R j (k)
]
, j ∈ ℓout(no), (3.4)

where j is the index of the link connected to the origin (we assume that there is only one
link connected to an origin or a destination) and No denotes the traffic demand in origin
o in terms of the cumulative number of vehicles. A simple queue model for origin o is
defined as

ωo (k) = No(k)−N (x0
j ,k), (3.5)

where ωo(k) and N (x0
j
,k) denote the number of vehicles standing in the queue at origin

o and the cumulative number of vehicles that already entered the network at time step
k, respectively.

For a destination in the network, the corresponding destination node nd is defined
and the transition number of vehicles is determined based on the sending number of
vehicles of the incoming link i and possible restrictions of the destination. If the desti-
nation accepts all the flows, the transition number of vehicles will be defined as

Gid (k) = Si (k), i ∈ ℓin(nd), (3.6)

with i the index of the unique incoming link of destination d . Otherwise, if the desti-
nation is treated as a bottleneck with a user-defined constrained outflow Rd , the Gid (k)
would be the minimum of the sending number of vehicles of the incoming link i and the
maximum receiving number of vehicles of the destination d :

Gid (k) = min
[
Si (k),Rd (k)

]
, i ∈ ℓin(nd). (3.7)

For merging of links and/or on-ramps in traffic networks, a merge node is defined.
Multiple models have been proposed for the merge of links, [42, 125, 143, 178, 220]. We
choose one of the priority-based merge models for two incoming links proposed in [42].
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To this aim, the transition number of vehicles from an incoming link i of a merge node
to the unique outgoing link j is formulated as follows:





Gi j (k) = Si (k) if R j (k) ≥ Si (k)+Si ′ (k),

Gi j (k) = median
[

Si (k),R j (k)−Si ′ (k),αi j R j (k)
]

otherwise,
(3.8)

αi j =
qM,i

qM,i +qM,i ′
, (3.9)

where j ∈ ℓout(nmrg), i , i ′ ∈ ℓin(nmrg), i 6= i ′. The distribution fractions αi j reflect prior-
ities that are proportional to the capacities of the incoming links qM,i . Note that the sum∑

i∈ℓin (nmrg)αi j is equal to 1. The reader is referred to [220] for a general merge model
with more than two incoming links.

A diverge node connects one incoming link i to its outgoing links j ∈ ℓout(ndiv). For
the two outgoing links case, the following model for transition numbers of vehicles has
been proposed in [177]:

Gi j (k) = min
[
βi j Si (k),R j (k),

βi j

βi j ′
R j (k)

]
, (3.10)

for j ∈ ℓout(ndiv). The outflow of the incoming link is divided over the outgoing links
according to the turning fractions βi j (

∑
βi j = 1). For the general case with more than

two outgoing and/or incoming links and other types of nodes (e.g. intersection nodes)
the interested reader is referred to [220].

3.2.3. UPDATE EQUATIONS

Having determined the transition number of vehicles of all nodes, the cumulative num-
ber of vehicles for the upstream and downstream boundaries of links can be updated
using the following equations:

N (xL
i ,k +1) = N (xL

i ,k)+
∑

j∈ℓout(n)
Gi j (k), for all i ∈ ℓin(n), (3.11)

N (x0
j ,k +1) = N (x0

j ,k)+
∑

i∈ℓin (n)
Gi j (k), for all j ∈ ℓout(n), (3.12)

for each node n.

3.3. EXTENSIONS OF THE LTM
In this section, the LTM model is extended to include traffic control signals. First we
investigate the possibility of extending the LTM for metering of on-ramps. Next, variable
speed control using the LTM is discussed and required modifications of the model are
explained.

3.3.1. RAMP METERING

An on-ramp can be treated as a combination of an origin node and a merge node con-
nected by a virtual link with a link length that is equal to 0. We place an origin node for
the metered ramp with a constraint on its outflow to a virtual link. Thus, the transition
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number of vehicles of the on-ramp o to the virtual link i ′ can be determined as follows
(based on (3.4)):

Goi ′ (k) = min
[

No(k +1)−N (x0
i ′ ,k),ro (k) ·qM,i ′ ·Ts

]
, (3.13)

where qM,i ′ is the capacity of the virtual link i ′ (veh/h), Ts is the sample time, and ro(k) ∈
[0,1] is the metering rate. Moreover, No(k+1) denotes the traffic demand in the on-ramp
o and N (x0

i ′ ,k) is the cumulative number of vehicles that already entered the virtual link
i ′.

Next, the transition numbers of vehicles from the virtual link to the outgoing link of
the merge node can be determined by (3.8) using Goi ′ (k), as the sending number of ve-
hicles of the on-ramp, and the sending number of vehicles of the mainstream incoming
link.

Note that using the metering rate ro (k), one can limit the outflow of an on-ramp in
order to prevent traffic congestion on the mainstream road.

3.3.2. VARIABLE SPEED LIMIT CONTROL

According to [213], [146], [224], [5], there are two aspects of using VSL in practice. The
first view is about reducing the speed differences to homogenize the traffic densities on
the road in order to have more stable flow of vehicles. The second idea is to reduce
densities and prevent congested situations by introducing lower speed limits. The latter
view of VSL control is considered in this chapter. In the following, we elaborate on the
LTM modifications required in order to emulate the effects of variable speed limit signs.

Basically, a VSL can be used to modify the time that vehicles spend to reach the
downstream boundary of a link. By looking at the LTM model, it can be inferred that ma-
nipulating the travel time can be realized using a time-varying speed νfree in the model.
From now on, we denote the time-varying speed νfree with v̄(k), the speed that holds
for all vehicles entering the link during

[
k ·Ts, (k +1) ·Ts

)
. In addition to this modifica-

tion, different traffic conditions that can occur in reality should be investigated and the
resulting cases should be integrated in the extended model. In Fig. 3.2(a) and 3.2(b),
the results of changing the value of the VSL in the free-flow condition are shown for two
cases. Before proceeding, note that without loss of generality, the VSL is assumed to be
implemented at the upstream boundary of a link.

We start with the case that the speed limit increases at time step k∗ to a higher value,
as depicted in Fig. 3.2(a). In this case, the vehicles are supposed to reach the downstream
boundary faster. However, after the value of the speed limit is changed, there may exist
some vehicles still traveling in the link that were not confronted with the new speed
limit. These vehicles reach the downstream boundary of the link without following the
new speed limit. Therefore, in order to obtain a better update for the cumulative number
of vehicles, these vehicles should also be taken into account.

On the other hand, when the speed limit is lowered at time step k∗, the evolution
of the cumulative number of vehicles may look similar to Fig. 3.2(b) (if a free-flow con-
dition is applied, otherwise in congested situations the influence of VSL may not be as
apparent as what is depicted here). Vehicles that enter the link after the time instant
at which the VSL value is altered, are affected by the new speed limit and will follow
the new speed restriction. However, for the vehicles that are already in the link, the
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new speed limit is not applicable. They reach the upstream boundary with their pre-
viously assigned speed limit or the free-flow speed of the freeway. Moreover, since the
new speed limit is lower, there will be a time interval in which the cumulative number
of vehicles remains constant (this means that no vehicle departs from the downstream
end). With this information, we now mathematically formulate these conditions.

INCREASE IN THE VALUE OF VSL

As shown in Fig. 3.2(a), it takes some time for the vehicles that did not experience the
new speed limit to leave the link. Before this time, the sending number of vehicles
should be determined using the old value of v̄. Moreover, the capacity of the road qM,i

is calculated using a triangular fundamental diagram constructed on the old v̄ (we as-
sume that the speed of the backward propagating congestion wave remains unchanged).
From Fig. 3.2(c), the capacity qM,i can be determined as follows:

qM,i = ρmax,i ·
v̄i ·wi

v̄i +wi
. (3.14)

If the value of the VSL increases at time step k∗, the speed v̄ and the capacity of link i

will be changed according to the following conditions (for k ≥ k∗):





if N (xL
i ,k) < N (x0

i ,k∗) :






N (xL
i

,k +1) = N
(
x0

i
,k +1− Li

v̄i (k∗−1)·Ts

)
,

v̄i (k) = v̄i (k∗−1),

qM,i (k) = ρmax,i · v̄i (k∗−1)·wi

v̄i (k∗−1)+wi
,

, (3.15a)

if N (xL
i ,k) ≥ N (x0

i ,k∗) :






N (xL
i

,k +1) = N
(
x0

i
,k +1− Li

VSLi (k∗)·Ts

)
,

v̄i (k) = VSLi (k∗),

qM,i (k) = ρmax,i · VSLi (k∗)·wi

VSLi (k∗)+wi
,

(3.15b)

where VSLi (k∗) is the value at the time step k∗ of the VSL installed at the upstream
boundary of link i . In the case (3.15a), the vehicles that are being confronted by the
new VSL value has not reached the end of the link. Therefore, the value of N (xL

i
,k +1)

must be related to the value of N (x0
i

) with a travel delay that is calculated based on the

old value of the VSL, i.e. Li

v̄i (k∗−1)·Ts
. Once the first vehicle reaches the downstream end

of the link, the condition (3.15b) holds and the value of N (xL
i

,k +1) must be calculated

based on the new travel delay Li

VSLi (k∗)·Ts
.

Now the sending number of vehicles for link i can be determined using N (xL
i

,k +1)
and qM,i (k) obtained from (3.15a)–(3.15b):

Si (k) = min
[

N (xL
i ,k +1)−N (xL

i ,k), qM,i (k) ·Ts

]
. (3.16)

On the other hand, in order to determine the receiving number of vehicles Ri (k), the
capacity qM,i should be altered immediately after the VSL value is changed. This means
that the capacity should be always calculated using VSLi (k), as follows:

Ri (k) = min
[

N
(
xL

i ,k +1−
Li

wi ·Ts

)
+ρmax,i Li −N (x0

i ,k), ρmax,i ·
VSLi (k) ·wi

VSLi (k)+wi
·Ts

]
,

(3.17)
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This is due to the fact that for predecessor links of link i , the capacity of link i is changed
when a new speed limit is introduced. But for the sending number of vehicles at the
downstream boundary of link i , the capacity remains unchanged until all the vehicles
that did not experience the new speed limit pass the end of link i , which is exactly the
criterion distinguishing (3.15a) from (3.15b).

DECREASE IN THE VALUE OF VSL

In order to formulate the problem in this case, we note that every vehicle that reaches
the downstream end of a link must have entered the link either Li

v̄i (k∗−1) or Li

VSLi (k∗) time

steps earlier (note that VSLi (k∗) < v̄i (k∗−1)). Hence for k ≥ k∗, N (xL
i

,k+1) can be equal

to N
(
x0

i
,k +1− Li

v̄i (k∗−1)

)
, N

(
x0

i
,k +1− Li

VSLi (k∗)

)
or N (x0

i
,k∗). In (3.18a)–(3.18c), different

conditions that may occur and the corresponding changes in the model are presented.





if N (x0
i ,k∗) > N

(
x0

i ,k +1−
Li

v̄i (k∗−1) ·Ts

)
:






N (xL
i

,k +1) = N
(
x0

i
,k +1− Li

v̄i (k∗−1)·Ts

)
,

v̄i (k) = v̄i (k∗−1),

qM,i (k) = ρmax,i · v̄i (k∗−1)wi

v̄i (k∗−1)+wi
,

(3.18a)

if N
(
x0

i ,k +1−
Li

v̄i (k∗−1) ·Ts

)
≥ N (x0

i ,k∗) ≥ N
(
x0

i ,k +1−
Li

VSLi (k∗) ·Ts

)
:






N (xL
i

,k +1) = N (x0
i

,k∗),

v̄i (k) = v̄i (k∗−1),

qM,i (k) = ρmax,i · v̄i (k∗−1)·wi

v̄i (k∗−1)+wi
,

(3.18b)

if N
(
x0

i ,k +1−
Li

VSLi (k∗) ·Ts

)
> N (x0

i ,k∗) :






N (xL
i

,k +1) = N
(
x0

i
,k +1− Li

VSLi (k∗)·Ts

)
,

v̄i (k) = VSLi (k∗),

qM,i (k) = ρmax,i · VSLi (k∗)wi

VSLi (k∗)+wi
,

(3.18c)

The first case (3.18a) pertains to vehicles reaching the downstream boundary that were
not confronted with the new (lower) speed limit. Hence, the update for the cumulative
number of vehicles N (xL

i
,k +1) should be calculated based on the old speed v̄i (k∗−1).

In the second case (3.18b), due to the lower VSL value for the link, there is no vehi-
cle passing the downstream end for a short period. Thus, N (xL

i
,k +1) should be equal

to the cumulative number of vehicles at the upstream boundary by the time step that
the VSL sign is changed (k∗). The last case (3.18c) describes the situation that vehicles
reach the downstream end while they did encounter the new value of the VSL. There-
fore, the cumulative number N (xL

i
,k +1) should be calculated based on the new speed

limit v̄i (k) = VSLi (k∗).
The sending number of vehicles is calculated using N (xL

i
,k+1) and qM,i (k) obtained

from the conditions (3.18a)–(3.18c) and (3.16). However, as mentioned in the previous
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section, in order to determine the receiving number of vehicles Ri (k), the capacity qM,i

should be altered right after the new speed limit is announced (this means that for k ≥
k∗, qM,i (k) = ρmax,i · VSLi (k∗)·wi

VSLi (k∗)+wi
for use in the receiving number of vehicles equation

(3.17)).

Furthermore, all the aforementioned equations in the current section and in the pre-
vious section are valid until a new speed limit is introduced. Whenever a new limit is
announced, based on its new value (which could be lower or higher than the old one),
the evolution equations should be updated as prescribed in this section. However, it
should be noted that in our framework, the VSL values should not be updated rapidly.
In fact the VSL updating interval must be bigger than the largest free-flow travel time in
the link.

In the next section, the extended LTM will be utilized in the model predictive control
framework for ramp metering and VSL control of freeway traffic networks.

3.4. PREDICTIVE HYBRID FREEWAY TRAFFIC CONTROL

Model Predictive Control (MPC) [160] is an advanced control method originally devel-
oped for control of industrial processes and recently for traffic networks [12, 59, 104,
187]. The main concept is to use a prediction model of the system and an objective func-
tion that assesses the desired performance over a given prediction horizon, and next, to
find the optimal control inputs using an optimization algorithm. The optimization algo-
rithm finds a sequence of optimal control inputs for the whole prediction horizon, but
only the first control input sample is applied to the system and the procedure is repeated
for the next control step but with a shift in the prediction period.

3.4.1. NONLINEAR MODEL PREDICTIVE CONTROL FORMULATION

For a traffic network, one can define different objective functions based on travel time,
fuel consumption of vehicles, emissions, etc. The objective function we choose here is
the total time spent (TTS) in the traffic network, consisting of the time vehicles spend
in queues at mainstream origins and on-ramps and the travel time on the freeway. The
TTS objective function in the MPC framework is formulated as follows:

JTTS(kc) = Ts ·
M(kc+Np)−1∑

k=Mkc

[ ∑

o∈Oall

ωo (k)+
∑

i∈ℓall

(
N (x0

i ,k)−N (xL
i ,k)

)]
, (3.19)

where Ts is the simulation sample time, kc is the controller time step counter, and k

is the model time step counter. In fact, we assume that the controller sample time Tc

is an integer multiple of the simulation sample time: Tc = MTs. In the time intervals
between consecutive control time steps, the control inputs are not altered. Moreover,
Np is the prediction horizon, ωo is the queue length at origin o, and ℓall and Oall are the
set of all links and the set of all origins, respectively. Moreover, the optimal control inputs
obtained from the MPC controller may in general have undesired fluctuations over time.
Note that the control inputs are in fact the metering rate and the values shown on the
VSL signs. Therefore, to avoid large fluctuations a penalty term on the control input
deviations is introduced and added to the objective function. The penalty term on the
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ramp metering input is formulated as

ζr

kc+Np−1∑

l=kc

∑

o∈Oramp

∣∣ro(l)− ro (l −1)
∣∣, (3.20)

where ro is the metering signal, Oramp is the set of indices of metered ramps1, and ζr is a
weighting factor. Similarly, penalizing the VSL input can be formulated as

ζv

kc+Np−1∑

l=kc

∑

i∈ℓvsl

∣∣VSLi (l)−VSLi (l −1)
∣∣, (3.21)

where VSLi is the VSL input, ℓvsl is the set of indices of links equipped with VSL signs,
and ζv is a weighting factor.

Moreover, to reduce the complexity, control variables are sometimes taken constant
after passing a predefined control horizon Nc. Taking this into account, Np in (3.20) and
(3.21) can be replaced by Nc. Moreover, to take into account the physical limitation of
queues at on-ramps, we use a hard constraint on the queue lengths. The total objec-
tive function along with the queue length constraint and the LTM as prediction model
constitute a nonlinear nonconvex optimization problem that has to be solved at every
control step in the MPC framework to find the optimal control signals. There is no guar-
antee to find a unique global solution for the optimization problem and furthermore,
solving the nonlinear optimization may take considerable time. In the next section, a
solution to this problem is proposed. More specifically, we will transform the nonlin-
ear nonconvex optimization problem into a mixed integer linear programming (MILP)
problem.

Using the methods proposed in [188, 234], one can transform the model and the
objective function into a system of linear equations and inequalities involving real and
integer variables and formulate an MILP problem. The MILP problem can be efficiently
solved using existing MILP solvers like CPLEX or GLPK (see [7]). Note that MILP solvers
can find the global optimum of the MILP problem.

3.4.2. REFORMULATION OF THE LINK TRANSMISSION MODEL

In order to obtain an MILP problem, we first transform the extended LTM into a sys-
tem of linear inequalities with mixed real and binary variables, inspired by the method
proposed in [188]. Compared to the mixed logical dynamical form proposed in [15],
this system of linear inequalities is less complex, as it needs less and less inequalities to
model the system.

In the following, we present the transformation approach for different parts of the
LTM. First, we consider the parts of the model that are not affected by the VSL extension,
and next, we present the reformulation of the proposed VSL extensions into the linear
form.

For links that are not equipped with VSL signs, the delays Li

νfree,i ·Ts
and Li

wi ·Ts
would be

constant over time. Moreover, the transition number of vehicles (3.3) for a homogeneous

1It should be noted that outflows of mainstream origins can also be controlled in some cases (mainstream
metering), so in that case they can also be included in the set Oramp.
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node is the minimum of the following three affine functions (based on the formulations
in (3.1) and (3.2)):

fGi j ,1(k) = N
(
x0

i ,k +1−
Li

νfree,i ·Ts

)
−N (xL

i ,k), (3.22)

fGi j ,2(k) = qM,i (k) ·Ts, (3.23)

fGi j ,3(k) = N
(
xL

i ,k +1−
Li

wi ·Ts

)
+ρmax,i Li −N (x0

i ,k). (3.24)

The minimum operation over three functions can be represented by the following logical
sentence:

{(
fGi j ,1(k) ≤ fGi j ,2(k)

)
∧

(
fGi j ,1(k) ≤ fGi j ,3(k)

)
⇔

(
Gi j (k) = fGi j ,1(k)

)}

∨
{(

fGi j ,2(k) ≤ fGi j ,1(k)
)
∧

(
fGi j ,2(k) ≤ fGi j ,3(k)

)
⇔

(
Gi j (k) = fGi j ,2(k)

)}

∨
{(

fGi j ,3(k) ≤ fGi j ,1(k)
)
∧

(
fGi j ,3(k) ≤ fGi j ,2(k)

)
⇔

(
Gi j (k) = fGi j ,3(k)

)}
(3.25)

We introduce two binary variables δGi j ,1 and δGi j ,2, and we also define the constraint
δGi j ,1(k)+δGi j ,2(k) ≤ 1 so that we can have only three combinations for (δGi j ,1,δGi j ,2).
The transformation of (3.25) to a set of linear inequalities is [188]:

δGi j ,1(k)+δGi j ,2(k) ≤ 1, (3.26)
(
δGi j ,1(k)+δGi j ,2(k)

)
·M− ≤Gi j (k)− fGi j ,1(k) ≤ 0, (3.27)

(
1−δGi j ,1(k)+δGi j ,2(k)

)
·M− ≤Gi j (k)− fGi j ,2(k) ≤ 0, (3.28)

(
1+δGi j ,1(k)−δGi j ,2(k)

)
·M− ≤Gi j (k)− fGi j ,3(k) ≤ 0, (3.29)

where M− is a negative number with a large absolute value that ensures

|M−| >
 min

n∈{1,2,3},k

[
Gi j (k)− fGi j ,n (k)

]∣∣∣. (3.30)

The equivalence of (3.3) and (3.26)–(3.29) is validated as follows:

fGi j ,1(k) ≤ fGi j ,2(k) and fGi j ,1(k) ≤ fGi j ,3(k) ⇐⇒
{

Gi j (k) = fGi j ,1(k),
(
δGi j ,1(k),δGi j ,2(k)

)
= (0,0)

(3.31)

fGi j ,2(k) ≤ fGi j ,1(k) and fGi j ,2(k) ≤ fGi j ,3(k) ⇐⇒
{

Gi j (k) = fGi j ,2(k),
(
δGi j ,1(k),δGi j ,2(k)

)
= (1,0)

(3.32)

fGi j ,3(k) ≤ fGi j ,1(k) and fGi j ,3(k) ≤ fGi j ,2(k) ⇐⇒
{

Gi j (k) = fGi j ,3(k),
(
δGi j ,1(k),δGi j ,2(k)

)
= (0,1)

(3.33)

The same procedure can be applied to origin and destination nodes.

The transition number of vehicles for merging nodes can also be transformed into
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linear inequalities. Consider the merging of two incoming links i and i ′:





G
mrg
i j

(k) = Si (k), G
mrg
i ′ j

(k) = Si ′ (k) if R j (k) ≥ Si (k)+Si ′ (k),




G

mrg
i j

(k) = median
[

Si (k),R j (k)−Si ′ (k),αi j R j (k)
]

,

G
mrg
i ′ j

(k) = median
[

Si ′ (k),R j (k)−Si (k),αi ′ j R j (k)
] otherwise,

(3.34)

with αi j =
qM,i

qM,i +qM,i ′
, αi ′ j =

qM,i ′

qM,i +qM,i ′
.

We consider the transformation of the transition number of vehicles from link i to the
outgoing link j , G

mrg
i j

(k) (a similar approach can be applied to G
mrg
i ′ j

(k)). First of all, for

condition R j (k) ≥ Si (k)+Si ′ (k), we can define a binary variable δmrg(k). We assume that
the binary variable is set to 1 whenever the condition holds. Now the condition can be
transformed to a linear form using the following basic rule [15]:

[ f (x) ≤ 0] ⇔ [δ= 1], iff

{
f (x) ≤ M · (1−δ),

f (x) ≥ ǫ+ (m −ǫ) ·δ,
(3.35)

with f an affine function defined over a bounded set X of the input variable x, m and
M the lower and upper bounds of f over X , ǫ> 0 a small tolerance namely the machine
precision2. The transformed condition is formulated as follows:

Si (k)+Si ′ (k)−R j (k) ≤ Mmrg ·
(
1−δmrg(k)

)
, (3.36)

Si (k)+Si ′ (k)−R j (k) ≥ ǫ+
(
mmrg −ǫ

)
·δmrg(k), (3.37)

where Mmrg and mmrg denote the upper and the lower bounds of Si (k)+Si ′ (k)−R j (k).
Note that an estimation of the bounds mmrg, Mmrg can be obtained based on the trajec-
tories of Si ,Ri ,Si ′ obtained from simulation and historical data from the traffic network.
Note that a tight upper/lower bound estimation is not crucial, although it is better from
a computational point of view.

Moreover, we include the following constraint:
(
1−δmrg(k)

)
·mi j ≤G

mrg
i j

(k)−Si (k) ≤
(
1−δmrg(k)

)
·Mi j , (3.38)

with mi j and Mi j the lower and the upper bounds of G
mrg
i j

(k)−Si (k), respectively. Now

if δmrg = 1, then G
mrg
i j

(k) = Si (k).

Now for simplicity, we assign new names for the affine functions in the argument of
the median operator, as follows:

g1(k) = Si ′ (k), (3.39)

g2(k) = R j (k)−Si ′ (k), (3.40)

g3(k) =αi j R j (k). (3.41)

Moreover, three binary variables δmed,1(k), δmed,2(k), δmed,3(k) are defined. Six combi-
nations may occur and therefore we add the following two constraints:

δmed,1(k)+δmed,2(k)+δmed,3(k) ≥ 1, (3.42)

δmed,1(k)+δmed,2(k)+δmed,3(k) ≤ 2, (3.43)

2It is mainly used to change a strict inequality into a non-strict inequality.



3

40
3. INTEGRATED PREDICTIVE FREEWAY CONTROL USING THE LINK TRANSMISSION

MODEL

to cover all the possible conditions. It can be verified that the constraints 3

g1 −g3 ≤ (1−δmed,1 +δmed,3) ·M+, (3.44)

g3 −g1 ≤ (1−δmed,3 +δmed,1) ·M+, (3.45)

g2 −g1 ≤ (1−δmed,1 +δmed,2) ·M+, (3.46)

g1 −g2 ≤ (2δmed,1 +δmed,2 +δmed,3 −1) ·M+, (3.47)

g3 −g2 ≤ (3−2δmed,1 −δmed,2 −δmed,3) ·M+, (3.48)

g2 −g3 ≤ (1+δmed,1 −δmed,2) ·M+, (3.49)

(δmed,1 +2δmed,2 +δmed,3 −1) ·M−+δmrg ·M− ≤G
mrg
i j

−g1 ≤ (δmed,1 +2δmed,2 +δmed,3 −1) ·M++δmrg ·M+, (3.50)

(1+δmed,1 −δmed,2 +δmed,3) ·M−+δmrg ·M− ≤G
mrg
i j

−g2 ≤ (1+δmed,1 −δmed,2 +δmed,3) ·M++δmrg ·M+, (3.51)

(2−δmed,1 +δmed,2 −δmed,3) ·M−+δmrg ·M− ≤G
mrg
i j

−g2 ≤ (2−δmed,1 +δmed,2 −δmed,3) ·M++δmrg ·M+, (3.52)

(3−δmed,1 −2δmed,2 −δmed,3) ·M−+δmrg ·M− ≤G
mrg
i j

−g3 ≤ (3−δmed,1 −2δmed,2 −δmed,3) ·M++δmrg ·M+, (3.53)

along with (3.36)–(3.38) and (3.42)–(3.43) are an equivalent representation of (3.34).
Note that M− ≪ 0 and M+ ≫ 0 in (3.44)–(3.53) should be chosen in a similar way as
in (3.30).

Now we consider the links that have speed limit signs installed and activated at their
upstream boundary. According to Section 3.3.2, the delay term in the sending number
of vehicles is time-varying (note that the congestion wave speed w is assumed not to
be altered. Hence, the delay term Li

wi ·Ts
is constant). Therefore, the function (3.22) is no

longer affine. Moreover, in the presence of speed limits, the conditions introduced in
Section 3.3.2 need to be taken into account in order to determine the correct delay in
(3.1) and also the capacity qM,i (k).

In order to simplify the transformation, we assume that the VSL can take values only
from a finite set. This is a realistic assumption since the VSL signs on roads typically
show only 3-5 discrete numbers for the speed limit (e.g. 50, 70, 100, 120 km/h). There-
fore, the sending number of vehicles can be reformulated as sum of cumulative number
of vehicles with different discrete delays:

Si (k) = min
[

qM,i ,
Nspeed∑

n=1
δn(k) ·N

(
x0

i ,k +1−
Li

VSLi ,n ·Ts

)
−N (xL

i ,k)
]

, (3.54)

with Nspeed the total number of discrete VSL values. On the other hand, we can define
two binary variables δi ,inc and δi ,dec, as follows:

VSLi (k)−VSLi (k −1)−ǫ≥ 0 ⇐⇒ δi ,inc(k) = 1, (3.55)

VSLi (k)−VSLi (k −1)+ǫ≤ 0⇐⇒ δi ,dec(k) = 1. (3.56)

Hence, we can capture and store the value N (x0
i

,k∗) in ZN ,i , formulated as

ZN ,i (k) =
[
δi ,inc(k)+δi ,dec(k)

]
·N (x0

i ,k). (3.57)

Similarly, we can store the VSL value in an auxiliary variable ZVSL,i :

ZVSL,i (k) =
[
δi ,inc(k)+δi ,dec(k)

]
·VSLi (k). (3.58)

3The time index k is dropped for the ease of readability.
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If k = k∗, then ZVSL,i (k∗) = VSLi (k∗), otherwise ZVSL,i (k) = 0. Now we review two basic
rules adopted from [15]. The product of two binary variables δ1 and δ2 can be replaced
by an auxiliary binary variable δ3 , δ1 ·δ2. It can be verified that

δ3 = δ1 ·δ2 iff






−δ1 +δ3 ≤ 0,

−δ2 +δ3 ≤ 0,

δ1 +δ2 −δ3 ≤ 1.

(3.59)

Moreover, multiplication of a binary variable δ with an affine function f (·) defined over
a bounded set X of the variable x can be replaced by an auxiliary variable z , δ · f (x),
meaning that z = 0 when δ= 0 and z = f (x) in case δ= 1. It can be proved that

z = δ · f (x) iff






z ≤ M ·δ,

z ≥ m ·δ,

z ≤ f (x)−m · (1−δ),

z ≥ f (x)−M · (1−δ),

(3.60)

with m and M the lower and upper bounds of f (·) over the set X , respectively. Using the
equivalent forms (3.35), (3.59), (3.60), we can transform (3.54)–(3.58) and subsequently,
the VSL conditions (3.15a)–(3.15b) and (3.18a)–(3.18c) into a system of linear equations
and inequalities.

3.4.3. MIXED INTEGER LINEAR OPTIMIZATION PROBLEM

After transforming the LTM into a linear form, the total objective function should also be
reformulated. The TTS objective function is already linear. But the penalty terms (3.20)
and (3.21) are piecewise affine. It can be transformed into a mixed-integer linear form by
defining additional binary and auxiliary variables. However, there exists a more efficient
way to recast the penalty terms as linear problems without introducing binary variables.
It can be easily proved that the following optimization problems have the same optimal
solution:

min
θ

∑∣∣θi

∣∣⇐⇒






minθ,β
∑
βi

βi ≥ θi

βi ≥−θi

Using this technique along with the reformulated model, the final MILP problem can be
constructed.

3.5. CASE STUDY

This section describes the evaluation of the proposed integrated ramp metering and
variable speed limit control scheme. First, the benchmark network and the selected
traffic scenario will be described. Next, identification and calibration of the LTM for
the benchmark network is presented. Finally, closed-loop control results of the freeway
network using the proposed model predictive control schemes will be presented.

3.5.1. SET-UP

The South-North direction of the A2 freeway near Leuven, Belgium, is taken as the
benchmark network. Fig. 3.3 shows a Google maps illustration of this freeway. The
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Figure 3.3: Google maps illustration of the A2 freeway in Leuven, Belgium. The South-North direction is used
for the evaluation.

VSL VSL VSL VSL

Figure 3.4: Schematic representation of the network.

freeway consists of 4 on-ramps and 4 off-ramps and congestion is triggered at the most
downstream on-ramp. Ramp metering installations are placed at every on-ramp and
variable speed limits are placed directly downstream of every off-ramp. Fig. 3.4 shows
a schematic representation of the freeway network. The freeway is divided up into 11
links with two lanes which have the following lengths in kilometers, ordered from up-
stream to downstream: 1, 1.18, 0.42, 1.03, 0.53, 0.52, 0.72, 0.82, 0.4, 1.8, and 1.0 km.
Inductive loop detectors measuring the number of vehicles that have passed, and their
average speed are located at the upstream and downstream end of every link.

The four off-ramps are located at positions 2.18, 3.63, 4.68, and 6.22 km. The end of
the merging section is considered as the off-ramp location. The on-ramps are located
at positions 2.6, 4.16, 5.4, and 6.86 km. The beginning of the merging section is taken as
the on-ramp location. At every on-ramp, the stop-line of the ramp metering installation
is located 150 meters upstream of the merging area. The on-ramp queue has a storage
space of 900 meters. Loop detectors are placed at the stop-line, and at the maximum
queue length, 900 meters upstream of the stop-line.

The freeway is simulated using the microscopic simulation software package VIS-
SIM 5.30. The following parameters of VISSIM have been altered from the default set-
tings: CC0 3.50 m, CC1 1.1 s, CC2 8.00 m, CC3 -8.00 (-), CC4 -0.50 (-), CC5 0.60 (-), CC6
6.00 (-), CC7 -0.25 (m/s2), CC8 1.00 (m/s2), and CC9 1.50 m/s2. Using these parameters,
a capacity flow of 1800 veh/h/lane, and a queue discharge rate of 1800 veh/h/lane are
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obtained, thus, there is no capacity drop present. The sampling time in VISSIM is 0.2
seconds. Furthermore, the demand profiles for the mainstream road and the on-ramps
are presented in Table 3.1. The (fixed) split fractions are 28.09% of the mainstream flow
for off-ramp 1, 6.79% for off-ramp 2, 12.90% for off-ramp 3, and 10.26% for off-ramp 4.
Note that the demand of on-ramp 4 has an increase to 1000 (veh/h) for a short period
and then it decreases to a lower level. This high on-ramp demand causes congestion
on the mainstream road that propagates all the way back to the upstream end of the
freeway (as also illustrated in Fig. 3.6(a)).

Table 3.1: Mainstream and on-ramps demands (veh/h)

Timing Main Ramp 1 Ramp 2 Ramp 3 Ramp 4

0-900 s 2225 240.5 223 265 250
900-1800 s 4450 750 446 530 500

1800-2100 s 4450 750 446 530 1000
2100-2400 s 4450 750 446 530 250
2400-6300 s 4450 750 446 530 500
6300-7200 s 2225 240.5 223 265 250

MATLAB is used to compute the optimal ramp metering and VSL signals. The sim-
ulation sample time in MATLAB is 5 seconds. The MPC controller determines the opti-
mal control inputs every 60 seconds using the TOMLAB optimization toolbox (the pat-

ternsearch solver is used to solve the nonlinear optimization problem, and the CPLEX

solver inside the TOMLAB toolbox is used to solve the MILP problem) in MATLAB on a
computer with a 3.6 GHz processor and 8Gb RAM.

3.5.2. IDENTIFICATION AND CALIBRATION OF THE LTM
Using simulation data from VISSIM, the LTM is calibrated. The identification proce-
dure for estimation of the LTM parameters is formulated as a nonlinear optimization
problem solved using the global optimization solver patternsearch. The objective is to
minimize the difference between the real densities and the estimated densities from the
LTM, formulated as follows:

J =
1

ndnℓ

nℓ∑

i=1

nd∑

k=1

(
ρi (k)− ρ̂i (k)

)2, (3.61)

where nd, nℓ, ρi , and ρ̂i denote the number of data samples, the number of links, the
real flow and the flow predicted by the LTM, respectively. The density of links can be cal-
culated using the cumulative number of vehicles for upstream and downstream bound-
aries of links, as follows:

ρi (k) =
N (x0

i
,k)−N (xL

i
,k)

Li
. (3.62)

The nonlinear optimization problem is solved using the function patternsearch from the
Global Optimization toolbox of MATLAB. The optimization algorithm is run 10 times for
different random initial points in order to prevent reaching a local optimum only. The
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Table 3.2: Estimated parameters for each link

Link νfree (km/h) w (km/h) ρmax (veh/km) qM (veh/h)
1 119.00 23.00 290.34 5596
2 119.84 24.00 271.24 5423
3 115.00 22.37 219.78 4115
4 114.06 24.00 263.23 5219
5 110.50 23.97 213.65 4208
6 116.96 20.25 289.23 4992
7 114.01 18.87 232.76 3777
8 112.34 22.28 268.53 4992
9 118.25 23.00 218.15 4200

10 120.00 20.00 288.41 4944
11 118.91 22.90 283.33 5440

obtained parameters of the LTM are presented in Table 3.2. The links are numbered
from upstream to downstream. Note that in the network layout, there are extra lanes
from 200 m before the off-ramps and also for 200 m after the on-ramps. However, we do
not define extra links in the LTM to model these small parts, but we take into account
the cumulative number of vehicles leaving (entering) these links to fit 2-lane LTM links
to the data. This is consistent with having different maximum densities for different
links in Table 3.2.

Moreover, results presented in Fig. 3.5 verify that the calibrated LTM is able to esti-
mate traffic densities close to the ones obtained from the simulation data.

3.5.3. MICRO-SIMULATION AND PREDICTIVE CONTROL OF THE LEUVEN

CORRIDOR

Fig. 3.6(a) shows an illustration of the uncontrolled situation. It can be observed that
congestion forms near the most downstream on-ramp and propagates upstream. Once
it reaches the most upstream on-ramp, the congestion increases close to this on-ramp.
The total time spent, which is the sum of the mainstream traveling time and the time
spent in queues at on-ramps is 1115.63 (veh ·h). The total time spent on the mainstream
road only is 1061.41 (veh ·h).

Now the uncontrolled case is compared with the cases in which predictive ramp me-
tering and VSL control is applied. Two proposed methods are implemented, nonlinear
MPC based on the original formulation of the extended LTM, and MILP-MPC. The op-
timization problems integrated in both methods have a queue length constraint of 100
vehicles for all on-ramps. The improvement in the TTS values for the nonlinear MPC and
the MILP case along with the average computation time (required for solving each opti-
mization step) are compared in Table 3.3. As can be inferred, the control approaches are
able to provide approximately 10−14% reduction in the TTS value. Moreover, the MPC
approaches provide a significant reduction in the total time spent on the mainstream
road (around 44% less than the uncontrolled case). Although this comes at the price of
having longer queues at the on-ramps, the overall TTS is considerably lower than the
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Figure 3.5: Calibration of the LTM: real and estimated densities of all links for two traffic scenarios with dif-
ferent demand profiles: (a) congestion starts in the middle of the simulation period, (b) network is already
congested at the beginning of the simulation period.

uncontrolled case.

Results of closed-loop simulation using the nonlinear MPC method with Np =
5, Nc = 2 are illustrated in Fig. 3.6(b) and Fig. 3.8. Moreover, the results of the MILP-MPC
approach are presented in Fig. 3.7 and Fig. 3.9. Comparing Fig. 3.6(a) and Fig. 3.6(b),
it can be observed that the MPC controller is able to resolve the congestion caused by
the high demand in the most downstream on-ramp. In fact, the MPC controller (in both
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the nonlinear and the MILP case) achieves this by limiting the outflow of the on-ramps
(especially the first 3 on-ramps, as also shown in Fig. 3.8(a)) and by imposing the speed
limit mostly for the first links of the freeway, as depicted in Fig. 3.8(b).

Moreover, the queue lengths at the on-ramps for both uncontrolled and controlled
(ramp metering) cases are shown in Fig. 3.10 . As can be seen, the queue lengths in
the controlled case are considerably higher than in the uncontrolled condition. How-
ever, they do not exceed the 100 (veh) constraint on the queue length. In addition, using
the MPC schemes, the total time spent in the network is improved and moreover, the
congestion (with reduced mean speed and high densities of vehicles in several links) is
significantly attenuated, as illustrated in Fig. 3.6(b) and Fig. 3.7. Note that because the
micro-simulation has a stochastic nature, it is possible that sometimes the nonlinear
MPC approach performs better than the MILP-MPC method and vice versa. It should be
noted that in both methods we use rounding approximations to make the delays integer
variables. Moreover, in the MILP-MPC approach, we just reformulate the LTM. There-
fore, we expect that the performance of both methods should be close to each other.
As can be observed in Fig. 3.6(b) and Fig. 3.7, in this run of the closed-loop simulation,
the congestion level is less in the MILP-MPC control case. Instead, the queue lengths in
the nonlinear MPC case are a bit smaller than in the MILP-MPC case. Furthermore, as
discussed in Section 3.4, we use a penalty term in the total objective function to reduce
fluctuations in the control inputs, as can be seen in Fig. 3.8 and Fig. 3.9. The penalty
term and the TTS objective function are normalized by their nominal values (the uncon-
trolled case) in the total objective function. In addition, the penalty term is weighted by
0.2.

Regarding the computation time, as can be inferred from Table 3.3, the nonlinear
optimization problem is solved for several random initial points in each MPC control
step, since there may exist multiple local optimal solutions. On the contrary, the MILP
approach is more efficient and and it provides the global solution of the reformulated
problem. Moreover, due to the stochastic nature of the micro-simulation, the perfor-
mance of nonlinear MPC is sometimes worse than the MILP approach (note that both
N-MPC and MILP-MPC use rounding approximations for the delays in the model). Fur-
thermore, experiments for Np > 7 and Nc > 3 show that the computation time (particu-
larly for the nonlinear approach) grows exponentially, while the reduction in the TTS is
not significant. Moreover, for small Np the queues are not dissolved until the end of the
simulation period. One way to prevent this is to increase Np. However, for large values
of Np, it might be the case that MPC focuses more optimizing the future behavior rather
than the current conditions. One can also increase Nc to prevent this, but this comes at
the price of computational complexity and also more fluctuations in the control inputs.
Another solution is therefore to add an end-point penalty function to the total objec-
tive function (as it is also performed in [155]). The end-point term expresses the time
required for vehicles present in the network by the end of the prediction horizon to exit
the network. For our case study setup, a prediction horizon between 7 and 9 is enough
as by reducing the demands, the queues start to discharge before the end of simulation
period (as can be observed from Fig. (3.10)).
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Figure 3.6: Flow, speed and density plots for all links over time: (a) uncontrolled case, (b) controlled using
nonlinear MPC.



3.5. CASE STUDY

3

49

 

  

Fl
ow

(v
eh

/h
)

co
n

to
u

r
p

lo
t

Links

10
00

20
00

30
00

40
00

50
00

60
00

70
00

020
00

40
00

05

  

  

Sp
ee

d
(k

m
/h

)
co

n
to

u
r

p
lo

t

Links

10
00

20
00

30
00

40
00

50
00

60
00

70
00

40608010
0

12
0

14
0

05

  

 
D

en
si

ty
(v

eh
/k

m
)

co
n

to
u

r
p

lo
t

Links

T
im

e
(s

)

10
00

20
00

30
00

40
00

50
00

60
00

70
00

2040608010
0

12
0

05

Fi
gu

re
3.

7:
Fl

ow
,s

p
ee

d
an

d
d

en
si

ty
p

lo
ts

fo
r

al
ll

in
ks

ov
er

ti
m

e:
M

IL
P

-M
P

C
ap

p
ro

ac
h

.



3

50
3. INTEGRATED PREDICTIVE FREEWAY CONTROL USING THE LINK TRANSMISSION

MODEL

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

 

 

Ramp 1

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

 

 

Ramp 2

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

 

 

Ramp 3

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

Time (s)

 

 

Ramp 4

(a)

0 1000 2000 3000 4000 5000 6000 7000
50

100

(k
m

/h
)

 

 

VSL 1

0 1000 2000 3000 4000 5000 6000 7000
50

100

(k
m

/h
)

 

 

VSL 2

0 1000 2000 3000 4000 5000 6000 7000
50

100

(k
m

/h
)

 

 

VSL 3

0 1000 2000 3000 4000 5000 6000 7000
50

100

Time (s)

(k
m

/h
)

 

 

VSL 4

(b)

Figure 3.8: Nonlinear MPC control inputs: (a) Ramp metering signals, (b) VSL signals.
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Figure 3.9: MILP-MPC control inputs: (a) Ramp metering signals, (b) VSL signals.
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Figure 3.10: Queues at on-ramps: (a) uncontrolled, (b) controlled by nonlinear MPC, (c) controlled using
MILP-MPC.
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3.6. CONCLUDING REMARKS

The link transmission model has been extended, reformulated and utilized in a model
predictive control framework. We first modified the model in order to incorporate the
effects of traffic control measures, ramp metering and variable speed limits. Next, we
established two integrated predictive ramp metering and VSL control schemes, non-
linear MPC based on the extended LTM, and a mixed integer linear programming ap-
proach based on the transformed LTM. Finally, the performance of the proposed control
schemes was evaluated using micro-simulation for the Leuven Corridor. The obtained
results show that the MPC schemes are able to achieve considerable improvement in the
total time spent in the network, and moreover, the computation time required for con-
trol of such network with several links, on/off-ramps and control inputs is reasonably
low (specially for the mixed integer linear programming method).

Possible research directions in addition to the current work would be, 1) further ex-
tending the LTM to include the effects of possible capacity drop at merge nodes, and
2) incorporating robust model predictive techniques in order to better cope with un-
certainties in demand profiles and incidents, 3) field implementation of the proposed
LTM-based predictive control schemes.





4
OPTIMAL HYBRID CONTROL FOR

URBAN TRAFFIC NETWORKS

In this chapter, we present an optimal hybrid control scheme for multi-region urban
networks. In this scheme, we have two types of control inputs: (i) perimeter control in-
puts, and (ii) binary control inputs for switching between timing plans. The perimeter
controllers are located at the border between the regions, as they manipulate the trans-
fer flows between regions, while the switching controllers influence the dynamics of the
urban regions, and as a result affect the internal flows within each region. The optimal
control inputs are determined using a mixed integer nonlinear optimization problem
that is solved in a receding horizon fashion. Moreover, to decrease the computational
complexity due to the nonlinear and non-convex nature of the optimization problem,
we reformulate the problem as a mixed integer linear programming (MILP) problem uti-
lizing piecewise affine approximation techniques. We present two different approaches
for transformation of the original model and building up the MILP problems, and we
evaluate and compare the performance of the approximate methods along with the orig-
inal problem formulation for different traffic scenarios of a two-region urban case study.
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4.1. INTRODUCTION

T HE idea of perimeter control using the concept of MFD was discussed in Chapter 2.
In this chapter, we introduce an extra level of control that can manipulate the flow

dynamics of each urban region by switching between signal timing plans. Changing tim-
ing plans for signalized intersections within regions might alter the shape of the MFD,
which will affect the network flow dynamics. Therefore, instead of assuming one MFD
for each region, we introduce a set of MFDs, where each MFD corresponds to a certain
collection of timing plans for the intersections inside the region.

Combining switching timing plans and perimeter control might significantly in-
crease the network performance, as it gives the ability to control both inside and on
the border of urban regions, and to adjust to a vast variety of demands and traffic condi-
tions. However, combining these two controllers is not straightforward, as a mixture of
discrete and continuous control inputs is introduced that might have different effects on
the flow dynamics. The model of an urban region will be a nonlinear state space model
based on the MFD and it has both continuous perimeter control inputs and binary vari-
ables for switching the timing plans. Moreover, model predictive control (MPC) [160] is
used to solve the optimal control problem. Since we deal with a hybrid system, the re-
sulting open-loop optimization problem is a mixed integer nonlinear problem. Solving
nonlinear and nonconvex optimization problems can be time-consuming and finding
a global solution is not guaranteed. If the problem is solved multiple times for differ-
ent initial points, chances are high that a reasonably optimal solution is found. While
multi-start optimization algorithms or global optimization techniques can be used to
overcome this issue, one can try to approximate and transform the model into a mixed
integer affine form and formulate the optimization problem as a mixed integer linear
programming (MILP) problem. The computation time will decrease significantly and
one global optimum solution for the MILP problem will be obtained.

To summarize, the chapter contributes in three ways. First, a novel hybrid MFD-
based model is proposed that is capable of modeling the effect of switching between
timing plans on the MFD of an urban network. Second, a model predictive control
scheme is constructed based on the proposed hybrid model and further simplifying
mathematical techniques are presented in order to decrease the computational com-
plexity of the associated optimization problem. Among the techniques are avoiding
2-dimensional piecewise affine approximation and using two simpler approaches in-
stead, and quantization of the perimeter control input to solve the problem with in-
put/states multiplications. Finally, we consider practical issues regarding measuring
the traffic variables, trip demands and also the scattered MFDs observed in real net-
works and therefore we add three types of uncertainties into our hybrid model in order
to make simulation of a multi-region urban network more realistic.

The rest of this chapter is organized as follows. In Section 4.2, a hybrid MFD-based
model of an R-region urban network is presented, while in Section 4.3 the optimal hy-
brid control problem is formulated. Two mixed linear models based on the piecewise
affine approximation of the original model are proposed in Section 4.4 and the corre-
sponding mixed integer linear optimization problem is formulated in Section 4.5. The
performance of the predictive hybrid controllers (linear and nonlinear) are tested for
several case study examples with different scenarios in Section 4.6. The chapter con-
cludes with a discussion about the results and ideas for further research.
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δj,fj (k)
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Figure 4.1: Hybrid multi-region system with perimeter and switching timing plans control inputs ui j (k) and
δi , fi

(k) for region i , and u j i (k) and δ j , f j
(k) for region j .

4.2. MFD-BASED MODELING OF URBAN REGIONS

Let us assume that a heterogeneous urban traffic network can be partitioned into R ho-
mogeneous regions, each having a well-defined MFD (later we will assume that each
homogeneous region can have a set of different MFDs corresponding to the activated
signal timing plans), see Fig. 4.1. In this chapter, the model time step counter and
the sampling period are denoted by k (−) and T (s), respectively, where t = k ·T and
k ∈ {0,1,2, . . . ,K − 1}. Let qi j (k) (veh/s) be the traffic flow demand generated in re-
gion i ∈ {1, . . . ,R} at time step k with final destination in region j ∈ Ni , where Ni is the
set of regions that are directly reachable from region i . Corresponding to the traffic de-
mands, accumulation states are defined to model the dynamic equations: ni j (k) (veh)
denotes the total number of vehicles in region i with destination to region j at time
step k. Let us denote ni (k) (veh) as the accumulation or the total number of vehi-
cles in region i at time step k, i.e. ni (k) = ni i (k) +

∑
j∈Ni

ni j (k). The MFD is de-
fined by Gi (·) (veh/s) which is the trip completion flow for region i . The trip com-
pletion flow for region i is the sum of transfer flows, i.e. trips from i with destina-
tion j , j ∈ Ni , plus the internal flow, i.e. trips from i with destination i . The trans-

fer flow from i with destination to j , denoted by Mi j (k) (veh/s), is calculated corre-
sponding to the ratio between accumulations, i.e. Mi j (k) =

(
ni j (k)/ni (k)

)
·Gi (ni (k)),

j ∈ Ni , while Mi i (k) is the internal flow from i with destination to i and is calculated
by Mi i (k) =

(
ni i (k)/ni (k)

)
·Gi (ni (k)). Furthermore, we use a third-degree polynomial of

ni (k) to describe the MFD, e.g. Gi (ni (k)) = ai ·n3
i

(k)+ bi ·n2
i

(k)+ ci ·ni (k), where ai ,
bi , and ci are estimated parameters (of course, one can approximate the MFD using
higher-degree polynomials or exponential functions).

The vehicle conservation equations (without including control measures) of the
multi-region MFD-based model are

ni i (k +1) = ni i (k)+T ·
(
qi i (k)+

∑

j∈Ni

M j i (k)−Mi i (k)
)
, (4.1)

ni j (k +1) = ni j (k)+T ·
(
qi j (k)−Mi j (k)

)
(4.2)

for i ∈ {1,2, . . . ,R} and for j ∈ Ni . These equations are a generalized (R regions instead
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of two) and discretized form of the equations presented in [71]. Note that route choice
modeling is not included in the dynamic equations.

4.3. OPTIMAL HYBRID CONTROL FOR A MULTI-REGION UR-

BAN NETWORK

In the previous section, the MFD-based model (4.1)–(4.2) was introduced without any
control measure. In the following, two types of controllers are introduced in Sec-
tion 4.3.1 and included in the dynamic equations (4.1) and (4.2) in Section 4.3.2, while
in Section 4.3.3 the optimal hybrid control problem for the multi-region urban network
is formulated.

4.3.1. HYBRID CONTROL: PERIMETER AND SWITCHING CONTROLLERS

Two types of controllers are introduced in the hybrid control problem: (i) perimeter
controllers, and (ii) binary controllers for switching between signal timing plans. The
perimeter controllers are located at the border between regions, as they manipulate the
transfer flows between regions, while the switching controllers influence the dynamics
of the urban regions, as they define the shape of the MFDs. Note that the switching
controllers and the perimeter controllers might affect each other, but we assume that
these effects are negligible.

The signal timing plans alter the shape of the MFD, see [68]. In this chapter, it is as-
sumed that each urban region has a predefined library of signal fixed-timing plans for
the signalized intersections inside the region, e.g. fixed-timing plans for the morning
and evening peak hours and a typical uncongested hour, where each plan in the library
has different green, red, cycle, and offset settings for the intersections. It is also assumed
that for each activated timing plan (each plan consists of different fixed cycle ratio for
different intersections inside a region), the region will have a different MFD, i.e. a non-
symmetric unimodal curve skewed to the right, but with different values of the maxi-
mum output, and critical accumulations, see e.g. the different MFDs for regions i and j

in Fig. 4.1. Therefore, the timing plan library employs a library of MFDs for each region.
The switching controller of the region activates one MFD from the library by switching
from one signal plan to another.

The optimal perimeter and switching plans decisions are obtained by minimizing
the total time spent in the R urban regions. The total time spent (veh · s) is defined as
follows:

J = T ·
K−1∑

k=0

R∑

i=1
ni (k). (4.3)

4.3.2. HYBRID MULTI-REGION MODEL

Let us denote the perimeter control inputs by ui j (k) (−), i ∈ {1, . . . ,R}, j ∈ Ni , and the
switching timing plans control inputs by δi , fi

(k) ∈ {0,1}, where fi ∈Fi and Fi is the set
of MFDs in the library for region i . The control inputs ui j (k), δi , fi

(k), and u j i (k), δ j , f j
(k)

are associated with regions i and j , respectively.
The perimeter control inputs ui j (k) and u j i (k) are introduced at the border between

the regions i and j as shown in Fig. 4.1, where the purpose is to control the transfer
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flows between the two regions. The transfer flow Mi j (k), i = {1, . . . ,R}, j ∈ Ni , is con-
trolled such that only a fraction of the flow actually transfers from region i to region j ,
i.e. ui j (k) ·Mi j (k), where 0 ≤ ui j (k) ≤ 1. Hence, the MFD-based model (4.1) and (4.2) is
altered by replacing Mi j (k) and M j i (k) by ui j (k)·Mi j (k) and u j i (k)·M j i (k), respectively.
It is also assumed that these controllers will not change the shape of the MFDs.

Since the perimeter controllers exist only at the border between the regions, the in-
ternal flows cannot be controlled nor restricted. However, the internal flows are deter-
mined by the MFDs of the regions. The switching controllers can indirectly manipulate
the internal flows by switching the MFDs (or more precisely by switching between the
signal timing plans of the signalized intersections). Recall that the vehicle conservation
equations (4.1) and (4.2) assume that each region has only one MFD. Let us now as-
sume that each region i has a predefined MFD library (or set of MFDs denoted by Fi )
that corresponds to a signal timing plans library for the signalized intersections. The
switching control signal δi , fi

(k) activates the MFD fi ∈Fi , i.e. Gi , fi
(·), if δi , fi

(k) = 1 and
δi ,ri

(k) = 0, ∀ri ∈Fi \{ fi } (so only oneδi , fi
(k) = 1 at any time step, i.e.

∑
fi ∈Fi

δi , fi
(k) = 1).

Therefore, the multi-region MFD-based model (4.1) and (4.2) is modified to include the
switching controllers, as the term Gi (ni (k)) is changed to1 ∑

fi ∈Fi

δi , fi
(k)·Gi , fi

(ni (k)). The

new hybrid multi-region MFD-based model is formulated as

ni i (k +1) = ni i (k)+T ·
(
qi i (k)+

∑

j∈Ni

u j i (k) ·M j i (k)−Mi i (k)
)

(4.4)

ni j (k +1) = ni j (k)+T ·
(
qi j (k)−ui j (k) ·Mi j (k)

)
(4.5)

Mi i (k) =
ni i (k)

ni (k)
·
[ ∑

fi ∈Fi

δi , fi
(k) ·Gi , fi

(ni (k))
]

(4.6)

Mi j (k) =
ni j (k)

ni (k)
·
[ ∑

fi ∈Fi

δi , fi
(k) ·Gi , fi

(ni (k))
]

(4.7)

ni (k) = ni i (k)+
∑

j∈Ni

ni j (k). (4.8)

4.3.3. OPTIMAL CONTROL PROBLEM FORMULATION

After defining and including the controllers in the hybrid multi-region MFD-based
model, we formulate the optimal hybrid control problem. The scheme of the optimal
control problem is presented in Fig. 4.2. The aim is to minimize the total time spent (4.3)
by manipulating the perimeter controller and by switching between the timing plans of
the libraries.

In reality, homogeneous regions have an MFD with some scatter, particularly in the
congested regime. Therefore, errors are expected between the hybrid R-region MFD
model (assuming well-defined MFDs) and the real network. Therefore, a closed-loop
optimal control scheme is needed in order to take into account the errors between the
plant and the model and also the disturbances, e.g. variations in the expected demands,
that might affect the system (the differences between the model and the plant will be
discussed in details later in Section 4.6). Among these schemes is the model predic-
tive control (MPC) framework, which has been widely used for different traffic control

1Since one and only one δi , fi
(k) is equal to 1 at the same time, we can replace one of the binary variables

denoted by δi , f ′
i

(k), with 1−
∑

fi ∈Fi \{ f ′
i

}δi , fi
(k) and thus reduce the number of variables.
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Figure 4.2: Optimal hybrid perimeter and switching plans control scheme.

purposes [2, 12, 104, 129, 154, 187]. The MPC controller determines the optimal con-
trol inputs in a receding horizon manner, meaning that at each time step an objective
function is optimized over a prediction horizon of Np steps and a sequence of optimal
control inputs is derived. Then the first sample of the control inputs is applied to the
system and the procedure is repeated with a shifted horizon.

We directly formulate the problem in the MPC framework. Let kc (−) and Tc (s) be
the control time step and the control sample time, respectively. It is assumed that the
controller time step length is an integer multiple of the model time step length, i.e. Tc =
M ·T . Then, the overall optimization problem is formulated as follows:

min
ũi j (kc),δ̃i , fi

(kc),n̄i i (kc),n̄i j (kc), i∈{1,...,R}, j∈Ni

T ·
M ·(kc+Np)−1∑

k=M ·kc

R∑

i=1
ni (k) (4.9)

subject to:

Model equations (4.4)− (4.8) (4.10)

0≤ ni (k) ≤ ni ,jam (4.11)

ui j ,min ≤ uc
i j (kc) ≤ ui j ,max (4.12)

ui j (k) = uc
i j (kc) if k ∈ {M ·kc, . . . , M · (kc +1)−1} (4.13)

δi , fi
(k) = δc

i , fi
(kc) if k ∈ {M ·kc, . . . , M · (kc +1)−1} (4.14)

δc
i , fi

(kc) ∈ {0,1}, ∀ fi ∈Fi (4.15)

for i ∈ {1, . . . ,R} and for all j ∈ Ni , where ni ,jam (veh) is the jam accumulation for re-
gion i , and ui j ,min and ui j ,max (−) are respectively the lower and upper bounds for
the perimeter control signals for regions i and j . The optimization variables defined
over the prediction horizon Np are n̄i j (kc) = [ni j (M · kc), . . . ,ni j (M · (kc + Np) − 1)]T,
n̄i i (kc) = [ni i (M ·kc), . . . ,ni i (M · (kc +Np)−1)]T, ũi j (kc) = [uc

i j
(kc), . . . ,uc

i j
(kc +Np −1)]T

and δ̃i , fi
(kc ) = [δc

i , fi
(kc), . . . ,δc

i , fi
(kc + Np − 1)]T, where uc

i j
(kc + l) and δc

i , fi
(kc + l) for

l = 0, . . . , Np − 1 are the perimeter and switching control inputs at every control time
step kc, respectively.

The current model does not directly consider downstream restrictions, e.g. the
boundary capacity. One more term can be added to the model, the boundary capac-
ity, which is a function of the accumulation in the receiving region and it restricts the
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transfer flow if the receiving region is highly congested. We have not considered this
constraint in our optimization problem, main because (i) the boundary capacity only
starts to decrease when the accumulation increases beyond the critical accumulation
(see [69]), and (ii) the control inputs will not allow the system to get close to gridlock .

Moreover, one can add a penalty term to the objective function (4.9), in order to pre-
vent undesired fluctuations in the perimeter control inputs and the decision switching
variables. The penalty on the perimeter control inputs can be defined as follows:

Np−1∑

l=1

∣∣uc
i j (kc + l)−uc

i j (kc + l −1)
∣∣. (4.16)

Moreover, to reduce the computation time, control variables are sometimes taken
constant after passing a predefined control horizon Nc ≤ Np. More precisely, we have
uc

i j
(kc + l) = uc

i j
(kc +Nc −1) and δc

i , fi
(kc + l) = δc

i , fi
(kc +Nc −1) for l = Nc, . . . , Np −1.

Overall, the problem (4.9)–(4.15) is a mixed integer nonlinear optimization problem
(MINLP) and it can be solved using mixed integer nonlinear optimization algorithms
[21]. However, since here we deal with both real and binary decision variables and also
since the model equations have nonlinear terms, the optimization problem could have
multiple (local) optimal points. Moreover, as will be demonstrated in Section 4.6, the
optimization algorithm takes considerable time. This is mainly because the MINLP al-
gorithm is executed for several random initial points, in order to find a sufficiently low
value of the objective function. Thus, in the next section we simplify and reformulate the
problem in order to eventually establish a mixed integer linear optimization problem.

4.4. APPROXIMATION OF THE HYBRID MULTI-REGION

MODEL

Solving the nonlinear and non-convex (the non-convexity is because of having a hybrid
nonlinear model with a mixture of continuous perimeter control inputs and binary deci-
sion variables to switch between MFDs) optimization problem (4.9)–(4.15) can be time-
consuming and not tractable for real-time implementation. In the following two sub-
sections, we will recast the problem into a mixed integer linear optimization problem.
The nonlinear model in the MPC framework (4.9)–(4.15) is replaced by an approximate
model following piecewise affine (PWA) approximation techniques and some mathe-
matical simplifications. The idea of PWA approximation of MFDs was also presented in
a hierarchical control framework for intelligent vehicle highway systems in [11].

Basically, the nonlinearity in the dynamic equations is present in: (i) the internal
and transfer trip completion flows, see Mi i (k) in (4.6) and Mi j (k) in (4.7), respectively,
and (ii) the product between the perimeter controllers and the transfer trip completion
flows, see (4.4) and (4.5). In the following, we address these nonlinearities and obtain
two different approximate models. The first model is less computationally complex but
less accurate than the second one. In the case study section, we present the performance
evaluation of two control methods built up on the two approximate models along with
a control approach designed based on the original nonlinear model.
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4.4.1. FIRST APPROACH: PWA APPROXIMATION PLUS FORWARD SIMU-

LATION

In this method, we use combined approximation of the nonlinearities in the MFD-based
model along with a forward simulation technique that will be described shortly. The
multiplication of ni i (k) (or ni j (k)) with the other variables in the square brackets in
(4.6) (or (4.7)) results in multiple products of real variables. In principle, each product
needs to be approximated by a PWA function [8, 217]. A function f : Ω → R

m is PWA
if there exists a polyhedral partition {Ωi }i∈I (∪i∈IΩi =Ω, Ωi 6=∅, int(Ωi )∩ int(Ω j ) =
∅, ∀i 6= j ) of Ω⊆Rn such that f is affine on each polyhedron Ωi . One can approximate
a nonlinear function by a PWA function with arbitrary accuracy and by considering a
sufficiently large number of regions. However, for our particular case (bivariate function
of accumulations) the PWA approximation is a tedious task as more parameters have to
be introduced (see e.g. [60]). In other words, we have to deal with a two-dimensional
PWA approximation [24, 60] and in order to get enough accuracy in the modeling, the
resulting PWA function would need a large number of affine pieces. This may add more
complexity to the associated optimization problem. Therefore, as a main consideration
in the PWA approximation, the number of affine functions should be kept small while
providing a close match to the original nonlinear function.

Hence, in order to simplify the approximation, we estimate the variables ni i (k) and
ni j (k) in the transfer flows by forward simulation as follows: we first simulate the multi-
region MFD-based model based on the formulation presented in (4.4) and (4.5) over
a prediction horizon with control inputs and initial accumulations obtained from the
previous time step, and subsequently the variables ni i (k) and ni j (k) in Mi i (k) and
Mi j (k) are replaced with the values obtained from the simulation. Hence, we no longer
deal with multiplication of variables but only with multiplication with time-varying but
known parameters.

PWA APPROXIMATION OF THE TRIP COMPLETION FLOWS

The nonlinearity in the internal trip completion flows Mi i (k) is approximated as fol-
lows (a similar procedure is applied to the transfer flows Mi j (k)). Substituting the third-
degree polynomial Gi , fi

(ni (k))= ai , fi
·n3

i
(k)+bi , fi

·n2
i

(k)+ci , fi
·ni (k) into (4.6), one can

re-write the internal flows Mi i (k) for i = 1,2, . . . ,R as follows:

Mi i (k) = ni i (k) ·
[ ∑

fi ∈Fi

δi , fi
(k) ·

(
ai , fi

·n2
i (k)+bi , fi

·ni (k)+ci , fi

)]
. (4.17)

The function Pi , fi
(ni (k)) = ai , fi

·n2
i

(k)+bi , fi
·ni (k)+ci , fi

(inside the parentheses in (4.17))
defined on the interval [ni ,min ,ni ,max] can be approximated by a continuous PWA func-
tion P̂i , fi

(ni (k)) with three intervals as follows:

P̂i , fi
(ni (k))=






γi , fi
+ ni (k)−ni ,min

αi , fi
−ni ,min

· (ξi , fi
−γi , fi

) for ni ,min ≤ ni (k) <αi , fi
,

ξi , fi
+

ni (k)−αi , fi

βi , fi
−αi , fi

· (ǫi , fi
−ξi , fi

) for αi , fi
≤ ni (k) <βi , fi

,

ǫi , fi
+

ni (k)−βi , fi

ni ,max−βi , fi
· (ζi , fi

−ǫi , fi
) for βi , fi

≤ ni (k) < ni ,max ,

(4.18)
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Figure 4.3: PWA approximation of a 2nd-degree polynomial Pi , fi
.

where the tuple θi , fi
=

{
γi , fi

,αi , fi
,βi , fi

,ξi , fi
,ǫi , fi

,ζi , fi

}
can be estimated by solving the

following nonlinear least-squares optimization problem:

min
θi , fi

ni ,max∫

ni ,min

(
Pi , fi

(ni (k))− P̂i , fi
(ni (k))

)2 dni . (4.19)

This optimization problem can be solved by multi-start nonlinear optimization algo-
rithms [62]. An example of PWA approximation of a 2nd-degree polynomial Pi , fi

(ni ) is
shown in Fig. 4.3.

APPROXIMATION OF THE PRODUCT BETWEEN THE PERIMETER CONTROL INPUTS AND THE

TRANSFER FLOWS

The transfer flows are multiplied with the perimeter controller inputs in (4.4) and (4.5).
These products cannot be replaced with values obtained from simulation as the optimal
perimeter inputs should be determined from the optimization algorithm. As discussed
before, the perimeter control inputs determine the percentage of flows that are allowed
to transfer between regions and thus they take values in the interval [0,1]. In reality,
the perimeter control is realized by changing the signal settings of intersections. As an
approximation, we assume that the perimeter input take values from a finite set in the
interval [0,1]. This means that we can make the control inputs ui j (k) quantized as fol-
lows [15]:

ui j (k) = ui j ,0 ·
( r∑

l=0
2l ·ωi j ,l (k)

)
, (4.20)

where ui j ,0 are a priori given constants and ωi j ,l (k) ∈ {0,1} are the optimization vari-
ables. The set of possible input values is then finite and its cardinality is 2r+1, while
the difference between two consecutive values is determined by2 ui j ,0 . Having a sum
of weighted binary variables for each perimeter control input, the problem with multi-
plication of control inputs with transfer flow functions will be simplified, since multi-
plication with binary variables can be easily handled with the techniques presented in
Section 4.5.
2Note that in this way we have equal steps of change in the value of the control input. However, one can define

proper constant coefficients in order to get non-equal jumps in the value of ui j over its domain.
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Remark 4.1. Another way to tackle the problem with the multiplication of perimeter con-

trol input and the transfer flow function is to introduce a new variable M̃ j i and rewrite

(4.4) as

ni i (k +1) = ni i (k)+T ·
(
qi i (k)+

∑

j∈Ni

M̃ j i (k)−Mi i (k)
)
, (4.21)

with the additional constraint

0 ≤ M̃ j i (k) ≤ M j i (k). (4.22)

This method is more accurate than quantizing the perimeter control input. However, if the

control input u j i explicitly appears in the objective function (e.g. we can use the penalty

term (4.16) to attenuate the fluctuations of the control inputs over time. This penalty term

is added to the objective function.), this method would not be applicable.

4.4.2. SECOND APPROACH: RECASTING 2-DIMENSIONAL PWA APPROXI-

MATION

In the previous section, we have presented one way to tackle the problem with multipli-
cation of real variables: using forward simulation. This method can deliver satisfactory
results for some cases. However, in order to achieve more accuracy one can iterate the
forward simulation and the optimization inside each MPC control step, which would in-
troduce additional computation time. Instead of using forward simulation to estimate
the multiplication terms (ni i (k) and ni j (k) with the square brackets in (4.6) and (4.7)),
one can directly approximate the bilinear functions following two-dimensional PWA ap-
proximation methods in the literature, e.g. the one in [60]. However, there are methods
to reduce the two-dimensional PWA approximation to a one-dimensional problem. In
the sequel, we treat the nonlinear terms in the model by using the reducing methods
proposed in [15] and [234]. We give detailed descriptions only for the nonlinear terms
in Mi i (k) (see (4.17)), but a similar explanation holds for Mi j (k). According to (4.17), we
have to deal with two nonlinear terms: ni i (k) ·ni (k) and ni i (k) ·n2

i
(k).

PWA APPROXIMATION OF ni i (k) ·ni (k)
The term ni i (k) ·ni (k) can be rewritten as [234]

ni i (k) ·ni (k) =
1

4

[(
ni (k)+ni i (k)

)2 −
(
ni (k)−ni i (k)

)2
]

. (4.23)

Defining two new auxiliary variables

y1,i (k) = ni (k)+ni i (k), y2,i (k) = ni (k)−ni i (k), (4.24)

one gets ni i (k) ·ni (k) = 1
4

(
y2

1,i (k)− y2
2,i (k)

)
. Instead of performing a two-dimensional

PWA approximation, we now have to deal with the PWA approximation of two separate
single-variable functions y2

1,i (k) and y2
2,i (k). The function f (yi ) = y2

i
can be approxi-

mated by a PWA function using a nonlinear least-squares optimization formulation as
in (4.18). Thereby, the domain of the function should be defined properly and accord-
ing to the domain of the original variable. For instance, the domain of f (y1,i ) = y2

1,i is
[y1,i ,min, y1,i ,max] with y1,i ,min = min{ni +ni i |ni ,min ≤ ni ≤ ni ,max , ni i ,min ≤ ni i ≤ ni i ,max }
and y1,i ,max = max{ni +ni i |ni ,min ≤ ni ≤ ni ,max , ni i ,min ≤ ni i ≤ ni i ,max }.
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PWA APPROXIMATION OF ni i (k) ·n2
i

(k)
We follow the same procedure as above. Defining two variables y3,i (k) and y4,i (k),
ni i (k) ·n2

i
(k) can be rewritten as 1

4

(
y2

3,i (k)− y2
4,i (k)

)
with

y3,i (k) = n2
i (k)+ni i (k), y4,i (k) = n2

i (k)−ni i (k). (4.25)

However, there is still a nonlinear term in y3,i (k) and y4,i (k). The simple solution for
that is to approximate the term n2

i
(k) with a set of affine functions determined from an

identification procedure like in (4.18) with an appropriate domain for ni (k) and next
replace n2

i
(k) with its PWA approximation in y3,i (k) and y4,i (k).

MULTIPLICATION WITH CONTROL INPUTS ui j (k)
As discussed before, the transfer flows are multiplied by the perimeter control inputs.
One can use the procedure explained in Section 4.4.2 for approximation of the multipli-
cation of ui j (k) with ni j (k)·n2

i
(k) and ni j (k)·ni (k). However, this would introduce more

variables and make the model more complicated for optimization use. In this case, we
assume that the perimeter control inputs are quantized and defined as in (4.20). Hence,
instead of having multiplication of real variables, we deal with multiplication of binary
decision variables and PWA-approximated transfer flow functions. In the next section, a
way for dealing with this type of multiplications is presented.

Remark 4.2. As a comparison of the two approximation methods, the second approach

is expected to give results closer to those of the original nonlinear approach, provided

that the approximations are performed with enough accuracy. This is because in the first

method, we replace some variables with simulated data and the values will remain un-

changed during the optimization. However, the computation time required in the second

approach is expected to be higher than the first one since in the second approach more

auxiliary variables are defined. These expectations will be confirmed in the case studies

section.

4.5. REFORMULATION AS A MIXED INTEGER LINEAR OPTI-

MIZATION PROBLEM

The approximate models cannot be directly used in a linear or piecewise affine MPC
framework (4.9)–(4.15). This is due to the fact that in the approximate models two sets
of binary variables are introduced; one set is associated with switching between the in-
tervals of the PWA functions, and the other set contains the switching signals for both
the timing plans and also the perimeter control inputs (as we quantized them). On the
other hand, due to the large number of regions that the combination of different affine
pieces in the model introduces, the repeated evaluation of the approximate models as
a part of the optimization algorithm inside the MPC scheme, is not efficient. Therefore,
we make a conversion of the approximate models to a system of the following form:

x(k +1) =A ·x(k)+B1 ·u(k)+B2 ·δ(k)+B3 · z(k)+b,

y(k) =C ·x(k)+D1 ·u(k)+D2 ·δ(k)+D3 · z(k),

E1 ·x(k)+E2 ·u(k)+E3 ·δ(k)+E4 · z(k) ≤ d ,

(4.26)
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where x(k) ∈ Rnx and y(k) ∈ Rny respectively represent the state and output vectors,
while δ(k) ∈ {0,1}nδ and z(k) ∈ Rnz are auxiliary binary and real-valued variables, re-
sulting from a procedure explained subsequently. Further, b and d are constant vec-
tors that along with the system matrices A,Bi ,C ,Di ,Ei specify a mixed logical dynamic
model [15]. In this model representation, the binary (defined for the PWA functions, the
switching between MFDs, and the quantization of the perimeter control signals) and
auxiliary variables required to define the regions are directly included in model through
additional constraints. Compared with the models derived in the previous section, one
large but tractable model results that is composed by stacking the individual linear and
affine equations along with auxiliary linear inequalities, thus resulting in a model size
that grows linearly with increasing the number of regions.

In this section, we transform the approximate models presented in the previous sec-
tions to the form (4.26). Consider an affine function f (·) defined over a bounded set
X of the variable x, with upper and lower bounds M and m over X . Having a binary
decision variable δ ∈ {0,1}, it can be proved that the following statement holds (from a
numerical point of view) [15, 234]:

[ f (x) ≤ 0] ⇔ [δ= 1] is equivalent to

{
f (x) ≤ M · (1−δ),

f (x) ≥ ǫ+ (m −ǫ) ·δ,
(4.27)

with ǫ being a very small tolerance (known as the machine precision) used to change a
strict inequality into a non-strict inequality. Moreover, the product of two binary vari-
ables δ1 and δ2 can be replaced by an auxiliary binary variable δ3 , δ1 ·δ2. Next, it can
be verified that [15, 234]

δ3 = δ1 ·δ2 is equivalent to






−δ1 +δ3 ≤ 0,

−δ2 +δ3 ≤ 0,

δ1 +δ2 −δ3 ≤ 1.

(4.28)

Finally, multiplication of a binary variable δ with an affine function f :Rn →R can be
replaced by an auxiliary variable z , δ· f (x), meaning that z = 0 when δ= 0 and z = f (x)
in case δ= 1. It is easy to verify that [15, 234]

z = δ · f (x) is equivalent to






z ≤ M ·δ,

z ≥ m ·δ,

z ≤ f (x)−m · (1−δ),

z ≥ f (x)−M · (1−δ).

(4.29)

Using the above rules, one can rewrite the approximate models presented in the pre-
vious section into the form of (4.26). For instance, the PWA function (4.18) can be rewrit-
ten as

P̂i , fi
(ni (k)) =

3∑

j=1
(A j

i , fi
·ni (k)+B

j

i , fi
) ·δ j

i , fi
, (4.30)

where the δ
j

i , fi
variables correspond to the intervals defined in (4.18) (δ j

i , fi
= 1 when

ni (k) is in the j th interval) and A
j

i , fi
,B j

i , fi
can be calculated from the formulation pre-

sented in (4.18). Then, it is straightforward to rewrite (4.30) into the form of (4.26) with
the help of (4.27) and (4.29).
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After reformulation of the approximate models presented in Section 4.4, we obtain
a system of linear equations and linear inequality constraints including real and integer
variables. Returning to the optimization problem, the selected performance index (total
time spent) is already in the linear form. However, the penalty on the control inputs
(4.16) is nonlinear. This objective function can be transformed into a linear form by
defining auxiliary variables as follows:

Np−1∑

l=1
ql subject to

{
ql ≥ uc

i j
(kc + l)−uc

i j
(kc + l −1),

ql ≥−
(
uc

i j
(kc + l)−uc

i j
(kc + l −1)

)
.

(4.31)

It can be easily proved that minimizing (4.31) over uc
i j

and ql would result in the same

optimal solution as in case of minimizing (4.16) over uc
i j

.

All in all, the problem of minimizing the total time spent in the network subject to
the obtained mixed linear model of the system and other linear constraints on the inputs
and states is formulated as a mixed integer linear optimization problem (MILP), which
has to be solved in the MPC framework. This problem is more tractable and can be
solved using advanced solvers [7].

4.6. CASE STUDIES

In this section, we implement and evaluate the performance of the proposed hybrid
schemes using simulation. We stick to the macroscopic level to investigate and highlight
the performance of our proposed control methods. We use a simulation model to repre-
sent the urban traffic network and a prediction model to estimate the traffic states inside
the MPC framework. We start with a low mismatch between the simulation model and
the prediction model in Section 4.6.2, to evaluate how the proposed control algorithms
deal with the general traffic congestion control problem. Next, we perform several ex-
tensive tests with the introduction of different types of uncertainties in the simulation
model, in order to better represent reality and to evaluate our control approaches under
more realistic scenarios. In Section 4.6.2, we investigate the performance of the hybrid
perimeter and switching timing plans control (the original MINLP approach) and show
that additional improvements are obtained, compared with perimeter control or switch-
ing timing plans only, if both control entities are coordinated and considered in the
mixed integer nonlinear optimization. The performance of the proposed hybrid scheme
is further compared with a greedy feedback perimeter controller. In Section 4.6.3, the
two approximation methods are implemented and their performance is compared with
that of the mixed integer nonlinear programming approach in terms of computation
time and total cost. Two different demand profiles are selected in the examples to show
that the proposed hybrid scheme is able to handle different traffic scenarios. Finally, we
present the results of evaluating our proposed methods for different types of uncertain-
ties (in state measurements, MFDs, trip demands) introduced in the simulation model.
In the following, we describe in full detail the urban network under study and differ-
ent types of uncertainties that might exist in reality and that need to be modeled in the
network simulation model.
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4.6.1. SET-UP

We consider an urban network partitioned into two homogeneous regions (i.e. R = 2):
the periphery (region 1) and the city center (region 2). The library of the signal tim-
ing plans and MFDs is given a priori for each region. In Section 4.6.2, a set of 5 MFDs
is defined for the periphery (region 1) and the city center (region 2) as depicted in
Fig. 4.5(a) and (b), respectively. In Fig. 4.5(b) the set consists of MFD1,3 adopted from
[70] with maximum trip completion flow 6.3 (veh/s) corresponding to critical accumu-
lation 3400 (veh), jam accumulation 10000 (veh) (thus the parameters of the 3rd-degree
polynomial would be a = 4.13×10−11

(
1/(veh2 ·h)

)
, b = −8.28×10−7

(
1/(veh ·h)

)
, c =

4.192×10−3 (1/h)) and 4 other MFDs that are obtained based on varying from the crit-
ical accumulation and the maximum trip completion flow of MFD1,3. The percentages
of the deviations are ±10% and ±5% for the critical accumulation and the maximum
trip completion flow, respectively. Moreover, it is assumed that the sizes of the two re-
gions are different; hence, the MFDs of the city center (region 2) are equal to the pe-
riphery MFDs multiplied by 1.4, as shown in Fig. 4.5(a). In practice, these MFDs can be
obtained by changing the signal settings of intersections and can be estimated by the
methods proposed in [45, 68].

In Sections 4.6.3 and 4.6.4, each region is assumed to have 3 MFDs (the same MFD1,2,
MFD1,3, and MFD1,4 as in Fig. 4.5(b)).

UNCERTAINTIES IN MFDS

The dynamic equations of the simulation model (used to represent the network) differ
from the prediction model used in the MPC framework as they contain different types
of error explained in the following. Note that the presented MFDs in Fig. 4.5(a)-(b) are
utilized for the MPC prediction model, while the network is assumed to include errors in
the MFDs following the error formulation in [71]. In reality, an MFD is extracted based
on several data collection experiments in the network. Based on the level of homogene-
ity of the network, the MFD will exhibit scattering. By scattering, we mean that in gen-
eral corresponding to each accumulation there exist multiple trip production points.
The level of scattering increases when the accumulation grows. Therefore, there is no
explicit mathematical equation for the MFD. In the following, we approximate the MFD
using a 3rd-degree polynomial but to take into account the scattering we assume a uni-
formly distributed additive noise with zero mean and a variance that is proportional to
the accumulation level. For all simulation scenarios, we add the error ei (veh/s) to the
MFDs of the simulation model as follows:

ei (k) ∼U
(
−Ci ·ni (k), Ci ·ni (k)

)
, (4.32)

G̃i , fi
(ni (k)) =Gi , fi

(ni (k))+ei (k), (4.33)

with Ci = 0.2/3600. Hence, we get a model where the scattering increases with the in-
crease in the level of accumulations. The MFDs G̃i , fi

used to simulate the urban network
are depicted in Fig. 4.4.

Note that there also exist other uncertainties in the urban network modeling. The
errors in the measurement of the accumulations and uncertainties in the estimation of
the trip demands are among them that will be extensively discussed in Section 4.6.4.
In Sections 4.6.2 and 4.6.3, we only consider the errors in the MFDs, while in the last
section (robustness evaluation) we investigate the effects of all possible uncertainties
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Figure 4.4: Uncertain MFDs representing the urban network under control, (a) MFDs of the periphery, and (b)
MFDs of the center.

(uncertainties in MFDs, error in the state measurements, uncertainties in the estimation
of trip demands) on the performance of the hybrid control approaches.

SIMULATION PARAMETERS

For simulation of the system, we choose the sample time as T = 30 s. Moreover, the con-
trol sample time is selected as Tc = 60 s in Sections 4.6.2 and 4.6.3, while it varies for Sec-
tion 4.6.4 (robustness to measurement noise). The hybrid model predictive controllers
(the MINLP approach and the PWA-MILP methods) use the prediction horizon Np = 20
(which corresponds to 20 min, since Tc = 60 s) and the control horizon3 Nc = 2 (corre-
sponds to 2 min). Moreover, the penalty term (4.16) is added to the objective function
with a weight of 10 (this choice is obtained based on the nominal values of the total time
spent objective function and the penalty term; more discussions about finding proper
weights are provided in [71]). Furthermore, the lower and upper bounds of the perime-
ter input are selected as ui j ,min = 0.1 and ui j ,max = 0.9. Therefore, the flows between
regions are neither completely allowed, nor fully blocked.

4.6.2. PERFORMANCE EVALUATION OF NONLINEAR APPROACH

The demand profiles for trips inside each region and between them are illustrated in
Fig. 4.5(d). There is a high demand for trips inside the periphery, see q11(·) in the figure.
Further, both regions are initially congested, i.e. the initial accumulations are larger than
the critical accumulations

(
n11(0) = 3700 (veh), n12(0) = 2300 (veh), n21(0) = 2000 (veh),

n22(0) = 2000 (veh)
)
.

The hybrid controller finds the optimal perimeter control inputs along with the op-
timal timing plans, as shown in Fig. 4.5(e) and (f), for each region using the mixed in-
teger nonlinear optimization. The switching between the MFDs that occurs during the

3The current choice for these parameters are based on the tuning procedure in [71].
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Table 4.1: Performance evaluation for different control schemes in Section 4.6.2.

Control scheme Total time spent
(veh ·s)

Uncontrolled Gridlock
Greedy feedback controller Gridlock

Perimeter control with MFD1,5 and MFD2,1 3.47×107

Perimeter control with MFD1,5 and MFD2,2 3.42×107

Perimeter control with MFD1,5 and MFD2,3 3.38×107

Perimeter control with MFD1,5 and MFD2,4 3.37×107

Perimeter control with MFD1,5 and MFD2,5 3.36×107

Perimeter control with other MFD combinations Gridlock
Switching timing plans only Gridlock

Hybrid controller (MINLP approach) 2.78×107

simulation period is graphically displayed in Fig. 4.5(a) and (b).For Region 1, MFD1,5 is
selected for the whole simulation period, while for Region 2 switching between MFDs
occurs multiple times.

In the absence of control or having only perimeter control, one or both regions
would get into a gridlock situation. But with optimal switching between timing plans
and assisted by perimeter control, both regions will escape from high-level congestion
and they will be eventually uncongested by the end of the simulation interval, as de-
picted in Fig. 4.5(c).

In order to evaluate the MPC hybrid controller results, the total time spent for the
whole period of simulation (1 hour) is compared for several control schemes as shown
in Table 4.1: (i) only perimeter control (the timing plans for both regions are fixed during
the entire simulation period. Since there exist 5 MFDs (timing plans) in each of the li-
braries, 25 combinations are possible), (ii) switching timing plans control only, and (iii) a
greedy feedback perimeter controller. The greedy perimeter controller is a simple state-
feedback perimeter controller with the policy of protecting regions with high accumula-
tions and high trip destinations. The control law of the greedy controller is as follows: if
both regions are uncongested, the perimeter control inputs are maximized and if both
regions are congested, the perimeter control inputs ui , j and u j ,i are respectively set to
the maximum and minimum values if region j is more congested than region i and vice
versa. Note that the greedy control has been tested for all 25 combinations of MFDs.

The results shown in Table 4.1 imply that the MPC hybrid controller is superior for
all control schemes in the sense that at least 17% improvement in total time spent is
achieved when both controllers are applied jointly instead of only perimeter control.
Also note that applying only switching timing plan control or using the greedy feedback
controller still leads to gridlock situations in one or both regions.

4.6.3. PERFORMANCE EVALUATION OF APPROXIMATION APPROACHES

In this subsection, we provide a scenario to evaluate the performance of the proposed
approximate methods and the original mixed integer nonlinear optimization approach.
Moreover, in order to have a better performance evaluation of the approximation ap-
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Figure 4.5: Performance overview of the nonlinear hybrid scheme, a,b) MFDs used in the prediction model
along with the illustration of the switching between MFDs (black curves), c) accumulations, d) average de-
mand profiles used in MPC, e) optimal perimeter control input, e) optimal switching signals for region 2 (the
controller always chooses MFD1,5 for region 1 in this case).



4

72 4. OPTIMAL HYBRID CONTROL FOR URBAN TRAFFIC NETWORKS

proaches, the results are compared with the greedy perimeter controller as well.
The demand profile simulates a peak morning hour with high demand q12(·) for trips

from region 1 (the periphery) to region 2 (the city center), as shown in Fig. 4.7(d). The
closed-loop system is simulated for a period of 1 hour. The initial accumulations are
n11(0) = 2700 (veh), n12(0) = 2700 (veh), n21(0) = 2000 (veh), n22(0) = 2000 (veh). The
accumulations of the regions are measured and fed to the MPC controller. There are 3
cases of MPC controllers; one with embedded MINLP optimization based on the non-
linear prediction model, one with MILP optimization based on the first approximate
model as prediction model (we call it PWA-MILP1), and one with MILP optimization
based on the second approximate model as prediction model (we call it PWA-MILP2).
The quantized perimeter input is formulated as

ui j (k) = 0.26 ·
(
0.5+20 ·ωi j ,1(k)+21 ·ωi j ,2(k)

)
. (4.34)

Therefore, in the PWA-MILP cases, the perimeter control input takes values from the set
{0.13,0.4,0.65,0.9}.

The evolution of the accumulations over time corresponding to the MINLP ap-
proach, the first approximation method PWA-MILP1, the second approximation
method PWA-MILP2, and the greedy controller are depicted in Fig. 4.6(a), 4.6(b), 4.6(c),
and 4.6(d), respectively. These figures demonstrate the effectiveness of the control mea-
sures as they show that the control inputs prevent the two regions from moving forward
towards gridlock (as all accumulations are less than the jam accumulations). In the ab-
sence of control, gridlock would occur. The MINLP approach results in a better perfor-
mance compared to both PWA-MILP approaches, in particular for the accumulations of
region 2. For the PWA-MILP1 approach, this can be explained by the fact that we have
approximated the second-degree polynomials with two affine functions, see (4.18), and
also because of the forward simulation method that has been introduced to overcome
the multiplication of variables. Hence, the performance of the PWA-MILP1 method can
be improved by approximating the polynomials with a larger number of affine functions
and by using more iterations in each control time step.

Nevertheless, a more accurate way to tackle the problem with multiplication of vari-
ables was proposed in the second approximation method PWA-MILP2. Therefore, the
performance of the PWA-MILP2 method is closer to the MINLP approach in terms of the
sum of accumulations over the whole simulation period. Moreover, in order to further
verify the advantage of the MILP formulation of the problem, the greedy perimeter con-
troller results are compared with the results of the hybrid approaches. Comparing with
Fig. 4.6(d), the greedy perimeter controller’s performance is much worse than each of
the 3 hybrid approaches. With the greedy controller, the accumulations of both regions
will exceed 7000 vehicles at the end of the simulation time, and the total time spent is
much higher.

The optimal perimeter control inputs for the MINLP, PWA-MILP1, PWA-MILP2 ap-
proaches, and the greedy controller are shown in Fig. 4.6(e), 4.6(f), 4.6(g), and 4.6(h),
respectively. The perimeter inputs u12 of the MINLP approach are close to the maxi-
mum to allow more vehicles to leave region 1 while u21 varies more over time. More-
over, the optimal switching timing plans for the MINLP, PWA-MILP1, and PWA-MILP2
approaches are respectively illustrated in Fig. 4.7(a), 4.7(b), and 4.7(c), for both regions 1
and 2. It can be observed in this scenario that the optimization algorithms mostly
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choose the MFD with the highest flow rate. This is more clear in the MINLP and PWA-
MILP2 approaches while in the PWA-MILP1 case, the switching between MFDs occurs
more often.

The computation time and total time spent are compared for different proposed al-
gorithms and for different values of prediction horizon in Table 4.2. The average com-
putation time for the scenario Np = 20 is 51.52(s) for one run of the MINLP algorithm4,
while it is 1.143(s) and 5.3934(s) for the PWA-MILP1 and PWA-MILP2 approaches. Note
that the MINLP algorithm has been executed 10 times in each control time step for dif-
ferent random initial points in order to prevent reaching a locally optimal solution. The
CPU times reported for the MINLP algorithm are the average over all control time steps
in which the nonlinear optimization is executed 10 times.

It can be inferred from Table 4.2 that the PWA-MILP2 method has a better perfor-
mance in terms of the total time spent (veh · s) compared to the PWA-MILP1 approach
but slightly worse than the MINLP case. The computation time of the PWA-MILP2 ap-
proach is larger than PWA-MILP1 approach but much smaller than nonlinear case. Fur-
thermore, using each of the two PWA-MILP approaches results in less total time spent
than the greedy perimeter controller (3.75 × 107 (veh·s)). Only in the case Np = 10,
the first approximation method gives a slightly larger time spent compared to the one
achieved from the greedy controller.

Moreover, as mentioned before in Remark 4.1, the quantization of the perimeter
control input can be prevented by introducing an auxiliary variable M̃ and by adding
some extra inequality constraints, provided that the perimeter control input is not pe-
nalized. Results of using this technique are presented in Table 4.2, under the name PWA-
MILP3. In fact, we follow the same approach as in PWA-MILP2, but without quantizing
the perimeter input and without considering the penalty term on the perimeter input.
The obtained results show a slight decrease in the computation time and an improve-
ment in the total objective function (compared to the other approximation methods).
So if one prefers to penalize the control input (e.g. to prevent instability or other un-
desired behaviors due to oscillations in the control input), PWA-MILP1 or PWA-MILP2
are suggested. However, if penalizing the control input is not deemed necessary, clearly
PWA-MILP3 is the best choice.

4.6.4. ROBUSTNESS TO MEASUREMENT ERRORS AND UNCERTAIN DE-

MANDS

In this section, we first study the effects of measurement errors on the performance of
the proposed schemes and propose a solution for the drawbacks caused by these er-
rors. Next, we study the impacts of unbiased and biased noise in trip demands. The
selected scenario is similar to Section 4.6.3 but with addition of the two new types of
uncertainties introduced in the simulation model. The prediction horizon is Np = 20
(corresponding to 20 min), the control horizon is Nc = 2 (corresponding to 2 min), sim-
ulation sample time 30 s, and the total simulation time is 1 hour.

4These CPU times were obtained adopting the functions minlpBB and CPLEX inside the Tomlab toolbox of
Matlab 7.12.0 (R2011a), on a 64-bit Windows PC with a 2.8GHz Intel Core i7 processor and 8Gb RAM.
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Figure 4.6: The results obtained from the MINLP approach, PWA-MILP1, PWA-MILP2 methods, and the greedy
perimeter controller: accumulations are presented in 4.6(a), 4.6(b), 4.6(c), and 4.6(d), respectively. perimeter
control inputs are presented in 4.6(e), 4.6(f), 4.6(g), and 4.6(h), respectively.
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Figure 4.7: The results obtained from the MINLP approach, PWA-MILP1, PWA-MILP2 methods, and the greedy
perimeter controller: switching between timing plans are presented in 4.7(a), 4.7(b), and 4.7(c), respectively.
The nominal trip demand profiles used in the prediction model are illustrated in 4.7(d).

STATE MEASUREMENTS ERRORS

In reality, there is uncertainty about the measured states of the network, specially in the
estimation of the number of vehicles with destinations inside regions or across the re-
gions (ni i and ni j ). Hence, the effects of errors in the measured states should be taken
into account. However, to be consistent with reality, one should expect larger errors in
the ni j than in the total number of vehicles inside the region, i.e. ni . This is due to the
fact that estimating the total number of vehicles inside a region is easier to obtain than
estimating the number of vehicles with certain destinations that can be inside a region
or in neighboring regions (e.g. ni can be estimated with fixed sensors in certain loca-
tions of the network, while ni j would require tracking the on-board navigation devices
of vehicles to identify their destinations). Therefore, we model the error in the states as
follows:

ñi i (k) = ni i (k)+ωi i ·ni i (k) ·εi i (k), (4.35)

ñi j (k) = ni j (k)+ωi j ·ni j (k) ·εi j (k), (4.36)

where the values for ωi i and ωi j are first set to 0.05 and then to 0.1, to simulate a
5% and a 10% error in the measurements, respectively. Moreover, the error vector

ε(k) =
(
εi i (k),εi j (k)

)T has a normal distribution with the mean value of zero and the
covariance matrix as

Cov(ε) =
[

1 −0.75

−0.75 1

]

. (4.37)

To motivate the elements of the covariance matrix, note that the total number of vehicles
inside the region i

(
ñi (k) = ñi i (k)+ ñi j (k)

)
will contain the sum of the elements of the
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error vector ε(k). On the other hand, the variance of the sum of two correlated variables
Var(X +Y ) is Var(X )+Var(Y )+2Cov(X ,Y )). Therefore, the variance of the error in the
estimation of ni is 0.5 if the variance of the errors in estimating ni j and ni i is 1. This is
consistent with our previous discussion on the difficulty of measuring the destination-
dependent accumulations.

By adding measurement errors to the simulation model, as in (4.35)–(4.36), the
performance of the hybrid controller gets affected by introducing fluctuations in the
perimeter control inputs and by slightly increasing the number of switchings between
MFDs. Simulation results in case of having 10% error in the measured ni j are depicted
in Fig. 4.8(a). The perimeter control inputs show considerable jumps, and therefore not
useful for practical situations. Traffic operators expect more stable control profiles with
smaller changes in the pattern. In order to overcome this problem, we propose, in ad-
dition to penalizing the control input variations, to select a control sample time larger
than the simulation sample time while keeping the obtained control inputs constant
between two consecutive control time steps. By performing this, the perimeter control
inputs will have a smoother behavior over time, as can be observed in Fig. 4.8(b), while
the total time spent in the network is not altered significantly.

Results for simulations with different Tc are presented in Table 4.3. Note that due to
the addition of errors in the system, we expect different total time spent values for dif-
ferent runs with the same set of control inputs. Thus, the values presented in the table
are the average over 10 runs for each case of the control sample time. It can be observed
that for less frequent calls to the controller, we achieve around the same result but with
less oscillations in the control inputs. However, for the ratio Tc/T = 6 and higher the per-
formance will get worse. Furthermore, the obtained results show that the PWA-MILP1
approach yields worse results compared to the other two approaches due to the forward
simulation technique.

UNCERTAINTIES IN TRIP DEMANDS

Furthermore, we also take into account the uncertainty in trip demands. The prediction
model in the MPC framework takes the average profile as e.g. shown in Fig. 4.5(d), while
the network simulation model assumes noisy demand profiles to represent uncertain
variations in demands from day to day and also to include incidents that temporarily
affect the demand profiles. For the first case, the unbiased demand is assumed to have
an additive white Gaussian noise, as follows:

̺i j ∼N
(
0,σ2

i j

)
, (4.38)

q̃i j (k) = qi j (k)+̺i j , (4.39)

with i , j = 1,2 and σ2
i j

(
veh2/s2

)
the variance of the noise. For the simulations, we con-

sider a large noise with5 σ = 0.5. On the other hand, in the biased case, the demand
profile has a sudden jump, as well as an additive nonzero mean Gaussian noise. This
jump is not known to the MPC controller and only included in the network simulation
model. In Fig. 4.9(a), the demand profile corrupted with unbiased noise is shown, while
the biased demand with a sudden jump of 5 veh/s for a period of 10 min is depicted in

5In order to ensure that the total demand variable q̃i j is always larger than or equal to zero, we clip the negative
values to zero.
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Figure 4.8: (a) Effect of measurement errors on states and perimeter control inputs, and (b) smoothing the
perimeter control inputs (MINLP approach).

Fig. 4.9(b). Note that since we deal with aggregated region-based trip demands, these
demands suffer less from the effects of fluctuations that exist in regular OD demand es-
timations. Furthermore, the level of the noise added to the trip demands is consistent
with the results of practical experiments presented in the literature ([145, 211]).

Now we study the effects of adding noise in the trip demands in the simulation
model (note that the prediction model still uses the average demand profile). In the
first case the demand profile depicted in Fig. 4.9(a) is selected. Simulation results are
presented in Fig. 4.10 for two control strategies MINLP and PWA-MILP2. The numerical
results for other cases are presented in Table 4.3. As can be observed, the hybrid control
strategies are able to handle the unbiased noise in the demands. Only small size fluc-
tuations in the control inputs occur, which can be prevented by penalizing the control
inputs and also by increasing the control sample time. It should be noted that increas-
ing the control sample time more than 3 times the simulation sample time affects the
performance.

Next, we use the biased noise in the demand profile of the simulation model. We
have added Gaussian noise with a mean of 10% of the average profile and a variance
σ2

i j
= 0.22, and a jump in q22 as depicted in Fig. 4.9(b). Simulation results for the PWA-

MILP2 approach are illustrated in Fig. 4.11, while numerical results for all approaches
are presented in Table 4.3. Overall, it can be inferred that the proposed hybrid control
strategies are robust to different types of uncertainties in the urban network (reality).
When comparing all modeling errors, we notice that the approaches are most sensitive
to measurement errors in the states since such an error changes the initial condition
and subsequently, also the predicted state evolution in a significant way. However, note
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Figure 4.9: Noisy demand profiles used in the simulation model (network); (a) high unbiased noise in demand,
and (b) biased noise (sudden jump in q22).

that the 10% error in the measurements, in the order of 0.1 × 5000 = 500 vehicles, is
consistent with recent findings in the literature on the estimation of accumulations and
MFDs [145, 181]. As can be inferred from Table 4.3, the PWA-MILP1 approach yields
poor performance when combined MFD, measurement, and demand noise exist in the
simulation model. The MINLP approach has impressive and robust performance under
different conditions, only it suffers from high computation time for large scale problems.
Hence, for small-scale cases in which the computation time is not crucial, the multi-start
MINLP approach is suggested, while for larger problems, either one of the three approx-
imation methods can be chosen based on the structure of the network, the type and
level of uncertainties, and the acceptable level of oscillation in the control inputs. For
instance, PWA-MILP1 is the fastest method and but it is applicable in cases where there
are not much uncertainty and measurement errors. The PWA-MILP2 method has bet-
ter performance but it is slower than the first approximation method. The PWA-MILP3
approach maintains good performance and it is faster than PWA-MILP2 (in general) but
the control inputs may have fluctuations since it is not possible to penalize them in the
optimization problem of this method.

4.7. CONCLUDING REMARKS

Within the hierarchical multi-level approach for control of large-scale urban traffic net-
works, we have introduced a new control scheme that combines switching between tim-
ing plans and perimeter control to manage and control a large-scale urban network.

The optimal control solutions are obtained in a model predictive control scheme
for two different open-loop optimization problems: mixed integer nonlinear and mixed
integer linear programming. The mixed integer linear programming problem is based
on the piecewise affine approximation of the nonlinear model. The results of the case
studies have shown the significant reduction of the computation time using the approx-
imate MILP approaches. The computation times for solving the MILP problems have
been much lower than for solving the MINLP problem. This is very crucial for real-time
implementation in networks with a large number of regions, as the MINLP approach
might not be tractable. Furthermore, it should be noted that the MILP results only devi-
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Figure 4.10: Robustness to unbiased noise in demand: Accumulations, (a) MINLP approach, (b) PWA-MILP2
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ate a little (specially for the second approach) compared to the MINLP results.
The effectiveness of hybrid (perimeter and timing plan switching) control has been

compared quantitatively with perimeter control only. It is apparent that the switching
timing plan controllers can enhance the network performance when they collaborate
with the perimeter controllers, as they can more efficiently utilize the network capac-
ity to decrease the total time spent in the network. However, several research questions
are still open in this direction, e.g. investigation of other approximation methods that
might enhance the MILP approach. Simulation of the closed-loop system using micro-
simulation software packages and field implementation of the proposed methods would
shed more light on how these controllers can change the spatial distribution of conges-
tion. In the hierarchical framework of this chapter, lower-level local controllers must
be properly designed in order to realize the optimal control inputs determined by the
high-level schemes. The effect of control decisions in the route choice of users is also a
research direction. Monitoring techniques [145, 181, 211] for different types of sensors
and penetration rates to decrease the measurement errors in the state variables and in
the demands should be studied as well.



5
OPTIMAL DYNAMIC

REGION-BASED ROUTE GUIDANCE

In this chapter, we use an aggregate modeling approach based on the macroscopic fun-
damental diagram (MFD) in order to find dynamic optimal routing strategies. An ur-
ban area can be divided into homogeneous regions each modeled by a (set of) macro-
scopic fundamental diagram. Thus, we can solve the route guidance problem in a re-
gional fashion by using model predictive control and the high-level MFD-based predic-
tion model. The optimal routing advices obtained from the high-level controller can be
used as references (to track) for lower-level local controllers installed at the borders of
the regions. Hence, using the proposed hierarchical scheme, the complexity of solving
the route guidance problem in a large network will be decreased significantly with re-
spect to other methods that are based on detailed models and routes. We evaluate the
performance of the proposed approach using a multi-origin multi-destination grid net-
work. The obtained results show significant performance of the optimal dynamic route
guidance over other static routing methods.
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5.1. INTRODUCTION

A S discussed in Chapters 2 and 4, the MFD can be utilized for high-level and aggre-
gated traffic network modeling. The key advantages of the MFD-based modeling

approach are the small number of parameters that need to be calibrated, and also the
computational efficiency in simulation and control. Therefore, in this chapter we aim
at using the MFD-based modeling technique for solving another challenging problem,
viz., dynamic route guidance in urban traffic networks.

Dynamic route guidance has been an interesting topic in the traffic management
context [122, 136, 185, 190, 207, 227, 228, 228]. The main concept of dynamic routing
is to guide the traffic towards alternative routes in the network in order to reduce the
imbalance in the distribution of traffic flows, to improve the overall travel time, and/or
to minimize other traffic objectives such as emissions or total fuel consumption. In this
chapter, we address the route guidance problem using a multi-level scheme. We use the
aggregate modeling approach based on the MFD for describing the flow of vehicles trav-
eling in a multi-region urban network. The high-level traffic flow model is then used in
an optimal dynamic route guidance framework. The framework is developed based on
the theory of model predictive control (MPC) [160, 198] and its main goal is to determine
optimal references for guiding the traffic of vehicles between urban regions in order to
achieve minimum delays in reaching the destinations.

Basically, the proposed route guidance scheme consists of two levels. At the higher
level, a central MPC controller uses the MFD-based traffic flow model in order to find
optimal splitting rates for traffic flows heading towards specific destinations. The ob-
tained optimal splitting rates will be communicated to the lower level controllers that
are installed at the borders of urban regions. These local controllers have the task to re-
alize the reference splitting rates by manipulating the signaled intersections and/or by
adapting the dynamic route guidance information. A major advantage of this approach
is that the necessity of establishing pre-defined routes in the network and searching for
the optimal ones is relaxed by finding the destination-dependent splitting fractions to-
wards the neighboring regions of a region. Hence, we shift from the link-level splitting
rates to region-level splitting of traffic flows. Another main advantage of this scheme is
that the computational complexity is much less than that of the usual route assignment
problems that deal with a huge collection of roads and intersections.

The chapter is organized as follows. In Section 5.2, we present the high-level model-
ing of multi-region urban networks based on the concept of the MFD and macroscopic
traffic flow modeling. Next, in Section 5.3, we introduce a multi-level scheme for optimal
dynamic route guidance and formulate the corresponding optimization problem. Sec-
tion 5.4 presents a case study that illustrates the proposed route guidance approach and
evaluates and compares the performance of the proposed scheme with a static routing
method.

5.2. MULTI-REGION MACROSCOPIC MODELING

The modeling method starts by splitting the network into several regions, which are as
homogeneous as possible in the sense of distribution of congestion. For heterogeneous
networks, it might be possible to partition them into more homogeneous regions such
that each region has a well-defined MFD, see [123]. The traffic dynamics are modeled in
these regions, using the extracted MFD for each region (as depicted in Fig. 5.1).
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Figure 5.1: Schematic multi-region urban network.

In each region i ∈R, with R the set of all regions, the accumulation is defined as the
weighted density of all links in region i and is formulated as follows:

ni (k) =
∑

λ∈Λi

(
κλ ·Lλ ·ρλ(k)

)
, (5.1)

where Λi contains all links in region i and κλ, Lλ, and ρλ are the number of lanes, the
length, and the density of link λ, respectively.

The set of neighboring regions of region i is defined as Ji . The flow from region i to
region j ∈Ji is determined by the minimum of three elements [97, 136]:

1. The capacity of the boundary between region i and region j , Ci , j .

2. The demand from region i to region j , Di , j .

3. The supply in region j , S j .

The demand from region i to region j is determined based on the MFD, a function we
indicate as Pi (ni ). In fact, we can construct a demand and supply scheme similar to
the cell transmission model [42]. The supply can be determined in the same way as
in the cell transmission model; the supply is equal to the critical production P j ,cr for
accumulations lower than the critical accumulation ncr and is equal to the value given
by the MFD for higher accumulations:

S j (k) =
{

P j ,cr if n j (k) ≤ n j ,cr

P j (n j (k)) if n j (k) > n j ,cr
(5.2)

Contrary to the cell transmission model, the demand in a region starts decreasing
when the accumulation exceeds the critical accumulation. This is because there might
be internal traffic jams in the region, limiting the potential outflow. This is graphically
shown in Fig. 5.2.

The fraction of accumulations in each region i heading towards destination d ∈ D

is known (using historical data and also information from on-board navigation devices)
and is denoted by ni ,d . Moreover, the routing from region i to a destination d is coded by
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Figure 5.2: The factors determining the flow, (a) Macroscopic Fundamental Diagram, (b) demand, and (c)
supply.

the next neighboring region j in the so called destination-specific splitting rates αi , j ,d .
Therefore, the total demand from region i towards region j is formulated as

Di , j (k) =
∑

d∈D

(
αi , j ,d (k) ·

ni ,d (k)

ni (k)
·Pi

(
ni (k)

))
, (5.3)

where D is the set of all destinations. This demand is limited by the capacity of the
boundary of regions i and j , giving the effective demand D̃i , j as

D̃i , j (k) = min
{

Di , j (k),Ci , j

}
. (5.4)

The fraction of traffic allowed over the boundary between i and j is indicated by
D̃i , j (k)
Di , j (k) . As an intermediate step, we now have the demand from region i to destination d

via region j , formulated as follows:

D̃i , j ,d (k) =αi , j ,d (k) ·
ni ,d (k)

ni (k)
·Pi

(
ni (k)

)
·

D̃i , j (k)

Di , j (k)
. (5.5)

The total demand towards region j determined by adding up all effective demands to-
wards region j is

D j (k) =
∑

i∈J j

D̃i , j (k). (5.6)

This value is compared with the supply in region j . If the supply is larger, the flow is
unrestricted. However, if the supply is lower, the fraction of the flow that can travel into
region j is determined as

ψ j (k) = min

{
S j (k)

D j (k)
,1

}
. (5.7)

If the supply restricts the flow, the actual flow to cell j is proportional to the demands
towards the cell. Now, the flow is set as the minimum of demand and supply.

Now, for region i we consider those neighboring regions j ∈ Ji which there are
nonzero demands D̃i , j (k) > 0 from region i to them. The outflow from region i to region
j ∈ Ji can be calculated using D̃i , j (k) and the fraction of flows that can enter region j ,
derived in (5.7). The result is formulated as

qi , j (k) =ψ j (k) · D̃i , j (k). (5.8)
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The flow can be separated per destination. So, similar to reducing the overall flow (5.8),
we can modulate the flow per destination (5.5) as follows:

qi , j ,d (k) =ψ j (k) · D̃i , j ,d (k). (5.9)

Therefore, the accumulation in any region i towards destination d can now be updated
as follows:

ni ,d (k +1) = ni ,d (k)+Ts
( ∑

j∈B

q j ,i ,d (k)−
∑

j∈B

qi , j ,d (k)
)
, (5.10)

with Ts the sample time. Hence, the total accumulation in region i will be

ni (k +1) =
∑

d∈D

ni ,d (k +1). (5.11)

In the next section, we use the presented model for prediction of accumulations in
the network in order to determine the optimal splitting rates.

5.3. MULTI-LEVEL OPTIMAL ROUTE GUIDANCE

In this section, we develop a route guidance scheme based on the high-level MFD-based
model derived in the previous section. In the proposed framework, we solve the dy-
namic routing problem on a macroscopic level. This means that instead of taking into
account individual roads and intersections, we deal with regional destinations and the
way that traffic flow should be split towards the neighboring regions in order to avoid
congestion in regions, to decrease the overall travel time and consequently, to improve
the arrival rates at the destinations. We assume a two-level structure as depicted in
Fig. 5.3. At the top level, the optimal route guidance problem is solved based on the
aggregate model presented in the previous section. At the lower level, the optimal vari-
ables (the splitting rates) that are obtained from the high-level optimization problem are
taken as references, i.e. local controllers in the lower level aim at realizing the optimal
splitting rates for (destination-dependent) flows of vehicles that want to travel across
the regions. In the following, we elaborate on the type of optimization problem that has
to be solved in order to achieve the aforementioned goals.

5.3.1. OBJECTIVE FUNCTION AND CONSTRAINTS

In order to formulate the routing problem, an objective needs to be defined. The major
aim in an urban network could be maximizing the arrival rate, i.e. the number of vehicles
that complete their trips and reach their destinations, or similarly minimizing the total
travel delays. Over the (discrete) simulation interval [0,K Ts], the total delay criterion
JTD (veh·s) is formulated as

JTD = Ts ·
∑

i∈R

K−1∑

k=0

(
ni (k)

)
. (5.12)

Note that in some cases reducing the accumulations of certain regions is more im-
portant and therefore, additional weights can be assigned to the accumulations of those
regions in (5.12).
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Figure 5.3: Two-level optimal dynamic route guidance (LC: local controller).

5.3.2. MODEL PREDICTIVE CONTROL FOR HIGH-LEVEL ROUTE GUID-

ANCE

Model Predictive Control (MPC) [160, 198] is an advanced control method originally de-
veloped for industrial processes and now for broader applications such as traffic net-
works. In the traffic control framework, the main idea is to use a prediction model of the
network (e.g. the aggregate model obtained in Section 5.2) and an objective function as-
sessing the desired performance of the urban traffic network, in order to find the optimal
inputs through an optimization algorithm. In our case, the optimization variables are
the optimal splitting rates for flows of vehicles heading towards multiple destinations.
The overall optimization variables include splitting rates of all destination-dependent
flows in all regions of the network. In order to formulate the problem of finding optimal
splitting rates in the MPC framework, we define kc and Tc as control time step and con-
trol sample time, respectively. Here we assume that the control sample time is an integer
multiple of the simulation sample time, i.e. Tc = M ·Ts. The optimization algorithm as-
sumes a prediction horizon Np for the evolution of the network variables and minimizes
the objective function over the horizon. The obtained optimal variables constitute a se-
quence of optimal splitting rates for the whole prediction horizon. In the MPC context,
only the first sample of the obtained values is used and afterwards the prediction hori-
zon is shifted one step forward. At the new control time step kc, the prediction and
optimization procedure over the shifted horizon are repeated using new observations
from the network. Moreover, to reduce the number of optimization variables, usually a
control horizon Nc < Np is introduced and from the control step kc + Nc −1 to the last
step of the prediction horizon kc+Np−1, the control inputs (splitting rates) are taken to
be constant.

Furthermore, the optimal splitting rates are communicated to the lower level local
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controllers as references to track. Basically, the local controllers try to achieve the op-
timal splitting rates by manipulating the timing plans of the signalized intersections
placed at the borders of regions. Communication and coordination between the local
controllers placed at different borders of a region is crucial. Note that control is carried
out only at the borders and thus the MFDs of regions are expected to be unchanged.
Nevertheless, we can take advantage of the approach proposed in Chapter 4 in order to
extend our control to inside regions and hence to distribute the congestion in a more
uniform way. This can be done by defining several timing plans for intersections in-
side each region and hence having a set of MFDs obtained for that region. By proper
switching between the pre-defined timing plans, we will be able to balance the conges-
tion inside regions in addition to the determination of splitting rates for flows traveling
to neighboring regions.

In order to formulate the MPC optimization problem, we define J MPC
TD as

J MPC
TD = Ts ·

∑

i∈R

M ·(kc+Np)−1∑

k=M ·kc

(
ni (k)

)
. (5.13)

The overall optimization problem will be formulated as follows:

min
α̃i , j ,d (kc),ñi ,d (kc)

J MPC
TD , (5.14)

subject to:

model equations (5.10),(5.11),

0 ≤αi , j ,d (kc) ≤ 1, ∀i ∈R, ∀ j ∈Ji , ∀d ∈D, (5.15)
∑

j∈Ji

αi , j ,d (kc) = 1, ∀i ∈R, ∀d ∈D, (5.16)

αi , j ,d (k) =αc
i , j ,d (kc), if k ∈ {M ·kc, . . . , M · (kc +1)−1},

∀i ∈R, ∀ j ∈Ji , ∀d ∈D, (5.17)

The optimization variables defined over the prediction horizon Np are α̃i , j ,d (kc) =
[αc

i , j ,d (kc), . . . ,αc
i , j ,d (kc+Np−1)]T and ñi ,d (kc) = [ni ,d (M ·kc), . . . ,ni ,d (M ·(kc+Np)−1)]T,

where αc
i , j ,d (kc + l) for l = 0, . . . , Np − 1, is the splitting rate corresponding to the frac-

tion of the flow towards destination d that travels from region i to region j at control
time step kc + l . The sum of the splitting rates for the flows heading towards a certain
destination should be equal to 1, as in (5.16).

The nonlinear optimization problem (5.14)–(5.17) can be solved using either global
optimization algorithms or multi-start local optimization methods.

In the next section, the proposed optimal route guidance approach is implemented
on an urban network case study.

5.4. CASE STUDY

This section describes modeling and optimal routing for an urban network case study.
The aim is to show the performance of the proposed high-level modeling and optimal
dynamic route guidance approach. In the first part, the set-up of the case study is de-
scribed and in the second part, the obtained results together with the discussions are
presented.
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5.4.1. SET-UP

In order to implement the model presented in Section 5.2, we consider a grid network.
The network is a 4×4 regional network, with regions of 5×5 km, as shown in Fig. 5.4.
The regions are homogeneous, with a critical accumulation ncr=3200 (veh) and 40 km
of road length in the region. The free flow speed is assumed to be Vfree=80 km/h. The
capacity of the borders is set to 2000 veh/h/lane. For each region, an MFD is assumed
and it is approximated with an exponential function as follows:

Pi = ni ·Vfree,i ·exp
(
−

1

2

( ni

ncr

)2)
. (5.18)

For each region i , the neighboring regions are defined as the ones that are in the same
column or row as region i . For instance, for region 7 the set of neighboring regions is
{3,6,8,11}. As illustrated in Fig. 5.4, the origins are indicated by blue squares and the
destination are marked as red circles. The demand (veh/h) for each origin-destination
pair is selected as in Table 5.1.

Table 5.1: Origin-destination demands (veh/h)

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Origins
Destinations

Region 2 Region 8 Region 9 Region 14

Region 1 1000 1800 1750 3000
Region 4 1900 1400 1000 1400

Region 11 1700 1200 1300 1300
Region 16 2000 1000 1000 1800

The constant demand values of Table 5.1 are multiplied by time-varying factors in
order to consider the uncertainty in the demand profiles and also to make the simulation
of the network under control more realistic. At each time step, the demand values in
Table 5.1 are multiplied by a uniformly distributed random number with mean value 1
and variance 0.1.

The optimal route guidance is carried out first by a static shortest-path algorithm
and next by the model predictive scheme described in Section 5.3. The shortest-path
algorithm determines the shortest routes (in time) based on the average speeds of all
regions. First the costs of traveling between neighboring regions are obtained based on
the current state of the network. Next the shortest path (in time) between each pair of
regions in the network is calculated using the Floyd-Warshall algorithm [199].

For the MPC scheme, we choose the prediction model similar to the simulation
model but without the noise in the demands. Moreover, we select the prediction and
control horizons Np = 6 and Nc = 2, respectively. Using simulations for different hori-
zons, these values have proved to be sufficient for our case (in general, the prediction
interval should be long enough to include important dynamics of the system under con-
trol) while the computation time of the optimization algorithm is still acceptable. It has
been observed that with increasing prediction and/or control horizons, there are small
improvements in the results while the computational complexity will grow exponen-
tially.
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Figure 5.4: Layout of the 4x4 urban network.

The simulation sample time is chosen as Ts = 10 s. The control sample time (for both
static and dynamic schemes) is selected to be Tc = 60 s.

Furthermore, in order to take into account the uncertainty in modeling, the updated
accumulations in the network model (simulation model) are corrupted with additive
white Gaussian noises that have zero mean value and 2% of the measured accumula-
tions as variance. Note that the prediction model in the MPC framework is taken to be
free of noise, but it is supplied with actual accumulations as initial values for the predic-
tion model.

The nonlinear optimization problem inside the MPC scheme is solved using the
snopt algorithm integrated in the Tomlab toolbox of MATLAB. This optimization algo-
rithm tries to find the (global) optimal value for the objective function (5.14) subject to
the model equations and the linear constraints on the splitting rates. In order to escape
from the local optima, we use a multi-start technique with 10 random points.

5.4.2. RESULTS AND DISCUSSION

Results for simulation of the urban network for a period of 3000 s are depicted in Fig. 5.5.
In the first column, the time evolution of the fixed-routing case is presented. By fixed-
routing we mean that the shortest routes in time are determined a priori using the
shortest-path algorithm and are fixed during the simulation period. As time progresses,
congestion builds up in the regions that are located in the center. This is due to the fact
that the center regions are the intermediate regions for many routes between the origin
and destination regions, and if no routing policy is considered, the accumulation would
grow especially in these regions till it reaches the critical point. From then, the inflow
to these regions is constrained and instead the congestion forms upstream of these re-
gions. The total delay in the network for the whole simulation interval is 3315·104±4.32%
(veh·s) (for 5 times running with the same initial conditions).

In column (b) of Fig. 5.5, the results of using the shortest-path algorithm are pre-
sented (every 6 simulation time steps, the shortest-path algorithm recalculates the
shortest routes). As can be observed, the congestion level is lower than for the fixed-
routing case. However, the route advices in this approach are determined based on the
current situation of network. Therefore, this approach is unable to take into account the
future impacts of the trip demands on the accumulation and hence it cannot prevent the
congestion from occurring in the intermediate regions. Nevertheless, by rerouting the
traffic, the level of congestion reduces a bit (as can be observed from columns (a) and (b)
of Fig. 5.5) as a result of preventing the traffic from entering the congested regions. The
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overall delay in the network for the whole simulation period is 2431 ·104 ±8.45% (veh·s)
(again for 5 times running with the same initial conditions).

The best performance is achieved by the MPC scheme as shown in the third col-
umn of Fig. 5.5. The congestion level is significantly reduced in the destination and
intermediate regions. The total delay in the network for the whole simulation interval is
1820 ·104 ±9.87% (veh·s). The achieved number is again the average over 5 simulations
of the whole system. The total delay obtained using MPC is much lower than the two
other approaches meaning that the arrival rates are high in the proposed framework.

Note that another major advantage of using the proposed high-level routing scheme
is that the computation time is reasonable compared to other routing methods in the
literature which are based on detailed modeling [36, 83].

5.5. CONCLUDING REMARKS

We have presented a multi-level scheme for optimal dynamic route guidance in urban
traffic networks using the macroscopic fundamental diagram (MFD). On the high level,
the dynamics of the urban regions and the flows of vehicles traveling towards multiple
destinations in the network are described using an aggregate traffic flow model based on
the MFD. The presented model have enabled us to efficiently model and control urban
networks that can be partitioned into a number of homogeneous regions. Next, we have
formulated an optimization problem solved in the receding horizon fashion in order
to find the optimal splitting rates towards neighboring regions. Taking into account that
the modeling approach does not depend on the shape of the regions, we have developed
a high-level model for a grid network and have implemented the MPC route guidance
scheme to reduce the total time spent in the network. The obtained results have shown
significant performance of the proposed predictive scheme over an existing shortest-
path method.

Note that the optimal splitting rates are realized using local controllers installed at
the borders of regions and therefore the MFDs will not be altered much. However, as
an extension to the current work, we can use the idea of having multiple timing plans
inside regions (and consequently defining multiple MFDs for each region), as presented
in Chapter 4, to control the traffic inside the urban regions. Furthermore, since the rout-
ing problem is solved on the high level, the computational complexity of the proposed
scheme is expected to be low compared to other existing dynamic approaches that are
based on detailed modeling. This should be investigated using extensive numerical
experiments based on layouts of real networks and by comparing with other dynamic
methods. Also, in order to reduce the computation time even more, we can approxi-
mate and reformulate the model in order to achieve mixed integer linear optimization
problems (as was done for the MFD-based model in Chapter 4).
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Figure 5.5: Results for a 4×4 network, (a) Uncontrolled (fixed routes), (b) Shortest-path algorithm, (c) Optimal
dynamic routing using MPC
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6
BACKGROUND ON ANALYSIS AND

CONTROL OF SWITCHED SYSTEMS

This chapter gives an overview of switched systems that will help with better under-
standing our contributions in the next chapters. In the first section, we present the gen-
eral definition of switched systems, while in the next sections, we briefly discuss stability
analysis and robust control of switched linear and switched nonlinear systems.
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6.1. DEFINITION AND CLASSIFICATION OF SWITCHED SYS-

TEMS

S WITCHED systems are a class of hybrid systems characterized by a set of linear and/or
nonlinear subsystems and a switching signal selecting the active subsystems [149].

Switched systems and switched multi-controller systems arise in cases in which several
dynamical models are required to represent a system due to e.g. uncertainty in parame-
ters, changing environmental factors, or specific applications that utilize switching be-
tween a set of controllers in order to achieve a higher performance [40, 74, 112, 149, 150].
These systems have numerous applications in the control of mechanical systems, pro-
cess control, automotive industry, power systems, aircraft and traffic control, and many
other fields. Additionally, control using switching between multiple controllers has
emerged in recent years, especially for systems that cannot be stabilized by any con-
tinuous static state feedback control law [26].

Mathematically speaking, these systems are often characterized by a set of differen-
tial or difference equations. One way to categorize switched systems is based on the
dynamics of their subsystems, e.g. continuous-time or discrete-time, linear or nonlin-
ear. A continuous-time switched nonlinear system can be formulated as

ẋ(t) = fσ(x(t)), (6.1)

with x = (x1, . . . , xn )T the state vector, { fi : i ∈N } a set of vector functions from R
n to Rn ,

N a finite index set and σ :R+ →N a piecewise constant function called the switching
signal that orchestrates switching between the subsystems and determines the active
subsystem for each time instant. By piecewise constant we mean that the switching
signal has a finite number of changes on any finite time interval.

Moreover, the value of σ may be determined based on time or on states or a com-
bination of both, or may be generated by a more complex procedure (e.g. by involving
memory). In case all the subsystems are linear, we obtain a continuous-time switched
linear system formulated as

ẋ(t)= Aσx(t). (6.2)

Similarly, we can formulate a discrete-time switched system as a set of difference equa-
tions as follows:

x(k +1) = fσ(x(k)), (6.3)

where k denotes the discrete time step counters. For the discrete-time switched linear
counterpart we have

x(k +1) = Aσx(k). (6.4)

Furthermore, the switching between subsystems may occur autonomously or in a con-
trolled manner (or a combination of both, as discussed later in Chapter 9). In the con-
trolled case, state- and/or time-dependent switching rules can be designed in order to
e.g. stabilize an unstable switched system. As an example of autonomous switching
behavior, we draw the attention to the piecewise affine systems (as introduced in Chap-
ter 4, Section 4.4). A piecewise affine system is in fact a switched system with affine sub-
systems and autonomous state-based switching behavior (when the state of the system
crosses the boundaries of polyhedral regions).
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Research on switched systems has been revolving around stability analysis [73, 74,
112, 112, 152], controllability and observability [14, 218, 229], and stabilizing controller
design with guaranteed performance criteria [6, 50, 55, 74, 208, 240, 245]. From now on,
through the following sections and the next 3 chapters, we mainly focus on the stability
analysis problem and the design of robust stabilizing controllers for continuous-time
switched systems.

6.2. STABILITY ANALYSIS FOR CONTINUOUS-TIME

SWITCHED LINEAR SYSTEMS

In this section, we focus on stability of continuous-time switched linear systems, the
subsystems of which are continuous-time linear time-invariant systems. Our main con-
cern here is to provide the conditions that can guarantee the asymptotic stability of the
switched linear system. Such switched systems may exhibit some surprising behav-
ior. For instance, even when all subsystems are exponentially stable, the states of the
switched system may grow unboundedly for certain switching signals [149]. Another
interesting fact is that by proper switching between unstable subsystems, one may be
able to make the switched system exponentially stable [149, 152]. Therefore, the stabil-
ity of switched systems depends both on the dynamics of each subsystem and on the
switching behavior. The stability of switched systems can be investigated for two main
cases. One is the stability analysis of switched systems under given switching signals
(e.g. for arbitrary switching or for time-based switching patterns with restricted dwell
time) and the other one is the synthesis of stabilizing switching signals for a switched
system composed of several dynamical subsystems.

We will briefly review some results on the stability and stabilizability of switched
systems from these two perspectives. In particular, we focus on stability analysis for
switched linear systems under arbitrary switching in Section 6.2.1. Next, we introduce
the concepts of dwell time and average dwell time [110, 150] and we review stability
under time-based switching with average dwell time. For the synthesis of stabilizing
switching signals for switched linear systems, we present the well-known multiple Lya-
punov functions approach using piecewise quadratic functions.

6.2.1. STABILITY UNDER ARBITRARY SWITCHING

For stability analysis, we first consider whether the switched system is asymptotically
stable when there is no restriction on the switching signal. This problem is often referred
to as stability analysis under arbitrary switching. For this case, it is necessary that all
subsystems are asymptotically stable. However, even when all subsystems of a switched
system are exponentially stable, it is possible to have unbounded trajectories from any
initial state for such a switched system. Therefore, in general, the asymptotic stability of
all subsystems is not sufficient to ensure stability for the switched system under arbitrary
switching. Nevertheless, for particular cases (e.g. if the Ai matrices of the switched
linear system are pairwise commutative [176]) we can conclude asymptotic stability of
the switched system from the stability of its subsystems.

On the other hand, if there exists a common Lyapunov function (CLF) for all subsys-
tems, then the stability of the switched system is guaranteed under arbitrary switching.
The existence of a common quadratic Lyapunov function for all subsystems ensures the
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quadratic stability of the switched linear system. Quadratic stability is a particular case
of exponential stability [152]. The conditions for the existence of a common quadratic
Lyapunov function for switched system (6.2) can be formulated as linear matrix inequal-
ities of the following form:

PAi + AT
i P < 0, ∀i ∈N , (6.5)

with P ∈ R
n×n a positive definite symmetric matrix. Note that existence of a com-

mon quadratic Lyapunov function is only sufficient for the stability of switched systems
with arbitrary switching (in contrast to the non-switched case, where the existence of
quadratic Lyapunov functions is necessary and sufficient for the asymptotic stability of
the linear systems).

So far we have considered the existence of a CLF in order to conclude asymptotic
stability of the switched system. Now the question is whether the converse holds, i.e.
whether asymptotically stable switched systems with arbitrary switching admit a CLF or
not. The following theorem presents a converse Lyapunov theorem.

Theorem 6.1. [46] If the switched system (6.2) is globally uniformly asymptotically stable

and moreover, if its subsystems are uniformly exponentially stable, there exists a common

Lyapunov function for this system.

The converse Lyapunov theorem was extended in [163] to switched nonlinear sys-
tems that are globally uniformly asymptotically stable. References [46, 163] suggest that
the common Lyapunov function does not require to be quadratic. Therefore, using non-
quadratic Lyapunov functions for stability analysis has been addressed in the literature
[118, 243]. An example of a non-quadratic common Lyapunov function is presented in
the following theorem.

Theorem 6.2. [170] The switched linear system (6.2) is exponentially stable under arbi-

trary switching if and only if there exists a strictly convex common Lyapunov function of

a quasi-quadratic form formulated as follows:

V (x) = xTP (x)x, (6.6)

with P T(x) = P (x) = P (ax), ∀x 6= 0, a ∈R, a 6= 0.

Finally, finding conditions to assure stability under all possible switching signals is
also important. For example, multi-controller schemes are often used to realize differ-
ent performance requirements. When one designs multiple controllers for a system, a
desired feature is that the switching between controllers does not result in instability.
It is possible to guarantee this property for multiple-controller design in some specific
cases [113].

6.2.2. STABILITY ANALYSIS UNDER DWELL TIME CONSTRAINT

Switched systems might not be able to preserve stability under arbitrary switching, but
may be stable under restricted switching patterns. Basically, restricted switching may
emerge from the physical constraints on the system. Furthermore, there might be the
case that one has some information about possible switching patterns in a switched sys-
tem, e.g. for a piecewise affine system (as a particular case of switched systems) parti-
tioning of the state space and the resulting switching rules (autonomous in this case) are
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pre-determined. As another example of restricted switching, it might be desired to have
a certain limit on the time interval between two consecutive switching time instants.
The reason might be related to the fact that the state trajectories have to stay for some
time interval in a certain set before traveling to another sets. With this a priori informa-
tion about the switching signal and the restrictions, we may be able to obtain stronger
stability results for a given switched system rather than in the arbitrary switching case
where we in fact, consider the worst case scenarios [150].

This section will present stability analysis of the switched systems under the re-
stricted switching signals. Having this problem solved, we will be able to find out ap-
propriate restrictions that must be imposed on the switching signals in order to ensure
the stability of switched systems. The restrictions on switching signals may be in the
time domain (e.g. dwell time and average dwell time between switching signals) or in
the state space (e.g. abstractions from partitions of the state space).

In case of stable subsystems, fast enough switching may lead to instability. This
might be explained by failing to absorb the energy increase caused by the switching
[51]. On the other hand, when there is an unstable subsystem, if the system stays too
long or switches too frequently to this subsystem, the stability may be destroyed. There-
fore, if the system dynamics are governed by the stable subsystems long enough and it
switches less frequently, then the system may be able to attenuate the energy increase
resulted from switching or from staying in unstable modes and preserve the stability.
This idea is mathematically formulated in the concepts of dwell time and average dwell
time switching proposed in [110, 173].

Definition 6.1. A positive constant TD is called the dwell time of a switching signal if the

time interval between any two consecutive switchings is not smaller than TD.

It can be proved that it is always possible to preserve stability when all subsystems
are stable and the switching is slow enough, meaning that TD is sufficiently large [173].
On the other hand, if occasionally the time interval between two successive switching
becomes smaller than the dwell time TD, provided this does not occur too frequently,
overall stability may be preserved. This idea is captured by the concept of average dwell

time in [110].

Definition 6.2. A positive constant TAD is called the average dwell time for a switching

signal σ if

Nσ(t0, t) ≤ N0 +
t − t0

TAD
(6.7)

holds for all t ≥ t0 and a constant parameter N0 ≥ 0. The value Nσ(t0, t) denotes the

number of switchings that occur over the interval (t0, t).

It can be inferred from (6.7) that on average the dwell time between any two consec-
utive switching instants is not smaller than TAD . It is proved in [110] that if all subsystems
are exponentially stable, then the switched system is exponentially stable provided that
the average dwell time is sufficiently large. Moreover, it can be shown that using the av-
erage dwell time notion, we will be able to characterize a larger class of stable switching
signals than by using the fixed dwell time concept as in Definition 6.1. Interested readers
may refer to [33, 35, 53, 112, 130, 242] for further details and recent applications of the
concept of average dwell time for stability and stabilization of switched systems.
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6.2.3. ROBUST STABILIZATION OF SWITCHED LINEAR SYSTEMS

In the previous two sections, we have discussed stability properties of switched systems
under given switching signals, which may be restricted or arbitrary. The problem stud-
ied was under what conditions on the dynamics of the subsystems and/or on the switch-
ing signals the switched system is stable. Another interesting problem for switched sys-
tems is the synthesis of stabilizing switching signals for a given set of dynamical subsys-
tems, called the switching stabilization problem.

The stability analysis and design of stabilizing switching laws have been usually per-
formed in the framework of multiple Lyapunov functions (MLF). The main idea is that
multiple Lyapunov-like functions each corresponding to a single subsystem or a certain
region in the state space, are concatenated to make a global Lyapunov function. The
MLF might not monotonically decrease along the state trajectories and may have dis-
continuities and therefore, be piecewise differentiable. However, often the only require-
ment is that the MLF must have nonpositive Lie-derivatives for particular subsystems
in particular regions of the state space, instead of having globally negative derivative.
There are several results regarding the MLF concept in the literature [56, 73, 208]. The
MLF approach in [51] corresponds to the case in which the Lyapunov-like function is
decreasing whenever the corresponding subsystem becomes active and its value does
not increase at each switching instant. However, one may be able to obtain less con-
servative results. For instance, the switching signals may be constrained such that at
every time when the system switches away from a subsystem, the value of the corre-
sponding Lyapunov function must be smaller than its value at the previous switching
time instant. Hence, the switched system would be asymptotically stable [23]. In other
words, for each subsystem the values of the corresponding Lyapunov-like function at
switching time instants in which the subsystems is inactivated, construct a monotoni-
cally decreasing sequence. Moreover, as a different approach, the Lyapunov-like func-
tion may increase its value during a time interval, only if the increment is bounded by a
certain type of continuous-time functions [119].

In the switching stabilization literature, most of the papers focus on the quadratic
stabilization. A system is quadratically stable if there exists a quadratic Lyapunov func-
tion V (x) = xTP x with a quadratic bound on the derivative of the Lyapunov function
with respect to time of the form V̇ (x) ≤−ǫ‖x‖2 for some ǫ> 0. A necessary and sufficient
condition for a switched system composed of two linear subsystems to be quadratically
stabilizable is the existence of a stable convex combination of the two Ai matrices [233].
A generalization to more than two linear subsystems is proposed in [192] by using a
min-projection strategy, as presented in the following theorem.

Theorem 6.3. [192] If there exist a positive definite matrix P > 0 and constants αi ∈
[0,1],

∑
i∈N αi = 1 such that

∑
i∈N αi Ai is stable, i.e.:

∑

i∈N

αi

(
AT

i P +PAi

)
< 0 (6.8)

then the min projection scheme

σ(t) = arg min
i∈N

x(t)TPAi x(t) (6.9)

makes the switched system (6.2) asymptotically stable.
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A necessary and sufficient condition for the quadratic stabilizability of switched lin-
ear systems is presented in the following theorem.

Theorem 6.4. [212] The switched system (6.2) is quadratically stabilizable if and only if

there exists a positive definite matrix P such that the set of matrices {Ai P +PAT
i

} is strictly

complete, i.e. for any x ∈ Rn , x 6= 0, there exists i ∈ N such that xT(Ai P +PAT
i

)x < 0.

Consequently, a stabilizing switching signal can be selected as

σ(t)= arg min
i∈N

xT(t)(Ai P +PAT
i )x(t). (6.10)

Other examples of stabilizing approaches in the literature are the probabilistic al-
gorithm proposed in [120] using a piecewise quadratic Lyapunov function, the expo-
nentially stabilizing switching laws designed based on solving extended LQR optimal
problems proposed in [37], the max-switching strategy of [191], and the min-switching
scheme using composite quadratic functions presented in [243].

Furthermore, using multiple quadratic Lyapunov functions and the so-called
Lyapunov-Metzler inequalities, a min-switching stabilizing law is proposed in [73]. A
class of Metzler matrices that is used for the design of the switching rule is denoted by
M and it consists of all M ∈ RN×N matrices with elements µi j that have the following
properties:

µi j ≥ 0 ∀i 6= j ,
N∑

i=1
µi j = 0 ∀ j . (6.11)

The following theorem states sufficient conditions for the design of a stabilizing switch-
ing law for (6.2) with N subsystems.

Theorem 6.5. [73] Assume there exist positive definite matrices Pi , i = 1, . . . , N , and a

Metzler matrix M that satisfy the Lyapunov-Metzler inequalities

AT
i Pi +Pi Ai +

N∑

j=1
µ j i P j < 0, i = 1, . . . , N , (6.12)

then the switching law

σ(t) = arg min
i=1,...,N

xT(t)Pi x(t) (6.13)

makes the system (6.2) globally asymptotically stable.

The Lyapunov-Metzler conditions provide stability even in the presence of possi-
ble sliding modes [73]. The main idea behind the Lyapunov-Metzler conditions is to
guarantee the negativity of the Lyapunov function associated to the active subsystem.
Moreover, each subsystem is activated whenever the value of its associated Lyapunov
function is the minimum among all Lyapunov functions. Therefore, the overall decrease
of the global Lyapunov function is ensured using conditions (6.12).

Since the inequalities (6.12) are nonlinear and involve multiplication of matrix vari-
ables, more relaxed conditions based on (6.12) have been proposed in the literature
to obtain more computationally efficient feasibility checking problems [33, 50, 74, 76].
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Moreover, in order to avoid chattering, modified Lyapunov-Metzler conditions have
been proposed in [54] and combined with the average dwell time switching as in [6, 53].

Besides the switching stabilization literature as described above, feedback stabi-
lization of switched systems and piecewise affine systems with state or output feed-
back (continuous-variable) control laws has also been a point of interest for researchers
[31, 38, 56, 99, 101, 204]. For piecewise affine system where autonomous switching
occurs at boundaries between partitions of the state space, feedback controllers have
been designed in order to stabilize the PWA system [99, 204]. For simultaneous de-
sign of stabilizing switching laws and state or output feedback controllers, we refer to
[6, 49, 50, 53, 54].

In addition to the asymptotic stabilization, other performance criteria have also
been taken into account in the synthesis of control schemes for switched systems.
Among them is the minimization of the L2-gain [111, 225, 245], which will be extensively
used in the next chapters. We consider the more general switched system formulated as
follows:

ẋ(t) = Aσx(t)+Bσu(t)+Hσω(t) (6.14)

y(t) =Cσx(t)+Dσu(t)+Gσω(t), (6.15)

with y the output, u the state feedback control input, ω the disturbance input that is
assumed to have a bounded L2 norm, defined as follows:

‖ω‖2
L2[0,T ] =

∫T

0
‖ω(t)‖2dt <∞, ∀T ≥ 0. (6.16)

Now system (6.14)–(6.15) has an L2-gain bounded above by γ> 0 under some switching
law σ if

‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] (6.17)

for all nonzero ω ∈ L2[0,T ] (0 ≤ T <∞) and for initial condition x(0) = 0. It follows that:

‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] ⇒
∫T

0

(
‖y(t)‖2 −γ2‖ω(t)‖2

)
dt ≤ 0 (6.18)

for any T ≥ 0 when x(0) = 0. Taking this definition into account, stabilizing control
schemes can be designed such that the upper bound on the L2-gain of the switched
system satisfies a desired level or is even minimized. The following theorem presents a
design procedure for a switching law that asymptotic stabilizes the switched system in
the absence of disturbances and moreover, it guarantees a desired upper bound for the
L2-gain of the system exposed to disturbances that have bounded L2 norms.

Theorem 6.6. [49] Assume there exist positive definite matrices Pi , a Metzler matrix M

and a positive scalar γ such that the inequalities





Pi Ai + AT
i

Pi +
N∑

j=1
µ j i P j ⋆ ⋆

H T
i

Pi −γI ⋆

Ci Gi −I



< 0, ∀i ∈ {1, . . . , N } (6.19)
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hold. Then the switching law (6.13) makes the the switched system (6.14)–(6.15) with

u ≡ 0 globally asymptotically stable and moreover, guarantees the upper bound γ for the

L2-gain of the system from the input ω to the output y.

Furthermore, an optimization problem can be formulated with minimizing γ as the
objective function and the inequalities (6.19) as constraints [50, 74].

Other performance criteria can also be integrated into the control design procedure.
For instance, we refer to [74, 76] for switching H2 control for switched linear systems.

As mentioned before, state or output feedback controllers can be designed together
with the switching laws. More specifically, a switching rule can be designed jointly with
a set of dynamic state or output feedback controllers to assure global asymptotic stabil-
ity of the closed-loop switched system and also a desired upper bound on the L2 gain
from the disturbance input to the controlled output [54, 74, 124, 245]. For switched
system (6.14)–(6.15), a joint design of state feedback controllers u = Ki x and a switch-
ing rule can be realized by simply replacing Ai ,Ei matrices in (6.19) by (Ai +Bi Ki ) and
(Ei +Fi Ki ) (design of output feedback switching controllers is more complicated. We re-
fer to [50, 209] for more insights.). Further, an optimization problem can be formulated
to minimize the upper bound on the actual L2-gain of the closed-loop system. How-
ever, the resulting optimization problem involves bilinear matrix inequalities. In [49, 50]
more computationally efficient conditions are proposed using linear matrix inequalities
(LMI) techniques and by taking the diagonal elements of the Metzler matrix equal to
each other. The last assumption is conservative in general and may lead to infeasibility
of the reformulated optimization problem.

As a final remark, sliding mode can occur as a result of using switching control
schemes. In some approaches, it has been proved that the possible sliding modes would
be stable and would not affect their analysis and control schemes [73]. However, for
the general case, possibility of having sliding modes must be studied by checking the
direction of the vector fields along the switching surfaces, and the equivalent dynamics
of sliding modes should be integrated in the model of the switched system, as an addi-
tional mode as a combination of current modes of the system [61]. Afterwards, we can
start with stability analysis and control synthesis for the switched system.

6.3. STABILITY ANALYSIS AND STABILIZATION OF SWITCHED

NONLINEAR SYSTEMS

In contrast to the switched linear systems case, stability analysis of switched nonlinear
systems has not been widely addressed in the literature. Nevertheless, we can refer to
the survey papers [78, 150, 235] for an overview on the analysis of switched nonlinear
systems. As can be inferred from the literature, there is no concrete procedure for anal-
ysis and control of general switched nonlinear systems. Most of the works are related
to particular classes of these systems. For instance, [244] presents quadratic stability for
switched nonlinear systems with generalized homogeneous mappings. Stabilization of
a class of cascade switched nonlinear systems with non-minimum phase modes is dis-
cussed in [236]. For switched nonlinear cascade systems, [179] proposes a stabilization
approach based on multiple Lyapunov functions. The approach presented in [55] pro-
vides a systematic way to design stabilizing controllers for switched nonlinear systems
that are input/output linearizable. The method is based on the existence of control Lya-
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punov functions, which however are not easy to find for most cases of switched non-
linear systems. For switched systems with smooth nonlinear vector functions that are
bounded in symmetric sector sets, [4, 93, 127] have presented stability analysis and ro-
bust H∞ control design procedures. Moreover, a different approach based on equivalent
polynomial representation and the sum of squares decomposition is proposed in [169].

The obtained results in almost all these papers have roots in two main stability no-
tions, the multiple Lyapunov functions technique [23, 35, 119] and the dwell-time ap-
proach [110, 173]. Reference [23] proposes that stability can be achieved if the value
of each Lyapunov function does not increase when the corresponding subsystem is ac-
tive. In [119] this condition is relaxed by allowing the Lyapunov function to occasionally
increase its value during the activating period of the corresponding subsystem. The re-
cent work [245] extends the idea of [119] to a more general case that allows a bounded
increase of the Lyapunov function over the multiple subsequent time instants in which
the corresponding subsystem becomes active.

On the other hand, as mentioned before for the switched linear systems case,
[110, 173] introduce the concepts of dwell time and average dwell time to conclude that
slow switching can lead to stability under arbitrary switching patterns, provided that the
subsystems are individually stable. The references [25, 221] have extended this concept
to the mode-dependent dwell time.

Among the existing works on switched nonlinear systems, [35, 245] have presented
more general results. In [35], a multiple Lyapunov functions approach is pursued for
time-based stability analysis and state-based stabilization of switched nonlinear sys-
tems. For stability analysis under arbitrary switching, [35] proposes a generalization of
the minimum dwell time concept. The results are determined based on the computa-
tion of an upper bound on the dwell time, using multiple Lyapunov functions. As in the
switched linear case, stability of individual subsystems is a necessary condition.

For state-based stabilization of switched nonlinear systems with unstable subsys-
tems, [35] has generalized the Lyapunov-Metzler inequalities (6.12). In the proposed
approach in [35], a global Lyapunov function is constructed as the minimum over a
number of functions each associated to one subsystem. The following theorem presents
the main result.

Theorem 6.7. [35] Assume there exist functions V1, · · · ,VN , that are all differentiable, pos-

itive definite, radially unbounded, and zero at zero. Furthermore, assume there exists a

Metzler matrix with elements µi j that satisfies the Lyapunov-Metzler inequalities:

∂Vi (x)

∂x
fi (x)+

N∑

j=1
µ j i V j (x) < 0, ∀i ∈ {1, · · · , N } (6.20)

for all x 6= 0. Then the switching rule

σ(t)= arg min
i=1,...,N

Vi (x(t)) (6.21)

makes the equilibrium point x = 0 of (6.1) globally asymptotically stable.

The stability conditions (6.20) involve determination of Lyapunov functions. Note
that in the switched linear case (6.12), the main problem is the multiplication of un-
known matrices. But in (6.20), the structure of the Lyapunov functions is unknown.
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Therefore, checking the feasibility of (6.20) is a hard task in general and it may involve
solving multi-parameteric optimization problems and/or gridding techniques. There-
fore, in this thesis, we aim at tackling the stability problem for switched nonlinear using
a different method that is not as computationally complex as the conditions in (6.20).
This method is extensively discussed in Chapter 9.

Moreover, the disturbance attenuation problem for switched systems has also at-
tracted attention of researchers in recent years. L2-gain analysis and H∞ control have
been developed for switched linear systems based on the extension of algebraic Ric-
cati inequalities [158]. For the particular cases of switched nonlinear systems, the H∞
control problem is proposed based on the Hamilton-Jacobi inequalities for nonlinear
systems [111, 225, 245].

In [245], L2-gain analysis and H∞ control for switched nonlinear systems is ad-
dressed. The approach is basically a generalization of the well-known min-switching
strategy [150]. For the general model

ẋ(t) = fσ(x(t))+ gσ(x(t))u(t)+pσ(x(t))ω(t), (6.22)

y(t) = hσ(x(t)), (6.23)

with fi , gi , pi , i ∈ {1, . . . , N }, nonlinear vector functions of states, [245] proposes the fol-
lowing results.

Theorem 6.8. [245] Suppose there exist positive definite and smooth functions Vi(x), with

Vi (0) = 0, continuous functions µi (x) ≤ 0, smooth functions βi j (x) with βi j (0) = 0 and

βi i (x) = 0, such that

∂Vi

∂x
fi +

1

2

∂Vi

∂x

( 1

γ2 pi pT
i − gi g T

i

)∂TVi

∂x
+

1

2
hT

i hi+

m∑

j=1
µi j (x)

(
Vi (x)−V j (x)+βi j (x)

)
≤ 0, ∀i ∈ {1, . . . , N }, (6.24)

∂βi j

∂x

(
fi (x)− gi (x)g T

i (x)
∂TVi

∂x
(x)

)
≤ 0, ∀i , j ∈ {1, . . . , N }, (6.25)

βi j (x)+β j k (x) ≤ min
{
0,βik (x)

}
, ∀i , j ,k ∈ {1, . . . , N }, (6.26)

∂βi j

∂x
pi = 0, ∀i , j ∈ {1, . . . , N }. (6.27)

Then, the feedback controllers

ui (x) =−g T
i (x)

∂TVi

∂x
(6.28)

along with the switching law

σ(t)=i if σ(t−) = i and x(t) ∈ int(Ωi ), (6.29)

σ(t)= j if σ(t−) = i and x(t) ∈ Ω̃i j , (6.30)

where Ωi and Ω̃i j are defined as

Ωi =
{

x
∣∣Vi (x)−V j (x)+βi j (x) ≤ 0, j = 1,2, . . . ,m

}
, (6.31)

Ω̃i j =
{

x
∣∣Vi (x)−V j (x)+βi j (x) = 0

}
, j 6= i , (6.32)
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make the closed-loop system globally asymptotically stable when ω ≡ 0. Also the overall

L2-gain from ω to y on any finite time interval [0,T ] will be less than or equal to γ.

Compared to the conventional min-switching scheme as in Theorem 6.7, conditions
of Theorem 6.8 and the consequently the switching law (6.29) allow the Lyapunov func-
tions Vi to grow during the periods in which their corresponding subsystems are active.

6.4. SUMMARY

In this chapter we have presented the general definition of switched systems as a class of
hybrid systems. Several categories of these systems based on the dynamics of the sub-
systems and the nature of the switching signals have been introduced. Moreover, from
Section 6.2 to the end of this chapter, we have focused on the stability analysis and con-
trol synthesis for continuous-time switched linear systems and their nonlinear counter-
parts. First, we have discussed the concept of common Lyapunov function to conclude
stability of switched linear systems under arbitrary switching patterns. Next, we have
introduced the multiple Lyapunov functions approach and the notions of the minimum
and the average dwell times in order to conclude that with arbitrary but slow switch-
ing between stable subsystems we can maintain global stability. Furthermore, we have
utilized the multiple Lyapunov functions approach for the design of state-based stabi-
lizing switching laws. Multiple methods from the literature have been briefly explained.
Among them, we have presented the Lyapunov-Metzler approach [35, 73] in more de-
tail as we will use the main concept of this method in the next chapters. Moreover, we
have defined the L2-gain for switched systems and further, have discussed some robust
H∞ switching control schemes from the literature. Finally, we have presented stability
analysis and control of switched nonlinear systems. As mentioned before, most of the
literature deals with particular cases of these systems. We have briefly discussed some
of them and further, we have presented the main results from [35, 245] for stabilization
and H∞ control of more general cases of switched nonlinear systems. Methods from
these two papers along with the ones from [4, 110] will be more elaborately addressed in
the next chapters.



7
STABILIZATION AND ROBUST H∞

CONTROL FOR SWITCHED

NONLINEAR SYSTEMS

This chapter presents robust switching control strategies for switched nonlinear sys-
tems with constraints on the control inputs. First, a model transformation is proposed
such that the constraint on the continuous control inputs is relaxed. Next, the effect of
disturbances is taken into account and the L2-gain analysis and the H∞ control design
problem for switched nonlinear systems are formulated. Furthermore, in the case study
section, the robust switching control approach is utilized for urban network control us-
ing the MFD-based modeling framework discussed in Chapter 4.
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7.1. INTRODUCTION

T HE disturbance attenuation problem for switched systems has attracted attention
of researchers in recent years [124, 147, 158]. L2-gain analysis and H∞ control have

been developed for switched linear systems based on the extension of algebraic Ric-
cati inequalities [158]. For the particular cases of switched nonlinear systems, the H∞
control problem has been proposed based on the Hamilton-Jacobi inequalities for non-
linear systems [111, 225, 245]. As an example, in [245] a nonlinear switched system is
considered that is affine both in the control input and the disturbance input. The model
contains a set of nonlinear subsystems each controlled with an unconstrained contin-
uous control input. Further, a switching signal determines the active subsystem. How-
ever, the design procedure for the switching rule and the continuous feedback control
is based on the fact that the control input is not constrained. In this chapter, we study
the stabilization problem for switched nonlinear systems that are affine in the control
and disturbance inputs. The aim is to extend the current results on stabilization and
H∞ control to the constrained control case.

The chapter is organized as follows. First, we present the problem formulation along
with a model transformation in Section 7.2. Next, we discuss stability analysis and sta-
bilization in the absence of disturbances Section 7.3. In Section 7.4 the effect of dis-
turbances is taken into account and the L2-gain is defined for the switched nonlinear
system. Further, we present H∞ control via switching between modes. Next, we eval-
uate the performance of the H∞ switching controller for an urban network case study.
Finally, Section 7.6 contains the concluding remarks.

7.2. PROBLEM STATEMENT

Consider the following switched nonlinear system

ẋ(t) = fσ(t )
(
x(t)

)
+ gσ(t )

(
x(t)

)
·u(t)+pσ(t )

(
x(t)

)
ω(t), x(0) = x0, (7.1)

where x ∈ Rnx is the state, u ∈ Rnu is the control input, and ω ∈ Rnω is the disturbance
input. The switching signal is denoted by σ(t) and is assumed to be piecewise constant.
The variable σ takes values from a pre-defined index set {1, . . . , N }, and for each value
that σ(t) assumes, the state space model (7.1) is governed by a different set of vector
functions fi , gi , and pi from the following sets:

fσ(t ) ∈ { f1, . . . , fN }, (7.2)

gσ(t ) ∈ {g1, . . . , gN }, (7.3)

pσ(t ) ∈ {p1, . . . , pN }. (7.4)

The vector functions fi , gi , and pi are continuous functions of states such that fi (0) = 0,
gi (0) = 0, and pi (0) = 0. Moreover, the control input u is constrained as follows:

u(t) ∈ [0,1]nu . (7.5)

This constraint on the control input is common in particular applications such as urban
traffic control. As presented in Chapter 4, the perimeter control input u is in fact the
ratio of green and red phases of a traffic signal.
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The aim is to design a state feedback controller together with a switching rule in
order to stabilize the system and to reduce the effects of disturbances. However, the
constraint (7.5) on the control input limits the design freedom.

The problem at hand cannot be easily tackled based on the current literature about
stabilization of switched nonlinear systems. For instance, the approach presented in
[55] provides a systematic way for designing stabilizing control inputs for switched non-
linear systems that are input/output-linearizable. The method is based on the existence
of the control Lyapunov functions, which however are not easy to find for the general
system (7.1). Moreover, the design procedures proposed in [147, 179] do not handle any
constraint on the control input. Further, having a relative degree1 r = 1 is crucial for
some approaches like the one of [55, 179]. Essentially, in the approaches of [55, 179], a
state coordinate transformation is used that is not easy to obtain for the general model
(7.1).

As mentioned before, we assume that the control input u(t) is constrained in [0,1].
For specific applications (e.g. the urban traffic control presented in Chapter 4), the sen-
sitivity to small variations of the control input is relatively low and therefore, a finite
number of values is enough for controlling the system. To be more precise, we assume
that u(t) is quantized and hence it can be rewritten as

u(t) = u0 ·
( r∑

l=0
2l ·δl (t)

)
, (7.6)

with u0 ∈ R a constant and δl (t) ∈ {0,1}nu . The set of possible input values is then finite
and its cardinality is 2r+1, while the difference between two consecutive values is deter-
mined by u0. By quantizing the control input u as in (7.6) new modes are introduced
and therefore we denote the total number of modes by N ′ with a new set of vector func-
tions { f ′

1, . . . , f ′
N ′ } that are determined using the functions fi and gi and the values that

the quantized input u can take.
As a result, the system in (7.1) can be reformulated as

ẋ(t) = f ′
σ′(t )

(
x(t)

)
+pσ′(t )

(
x(t)

)
ω(t), x(0) = x0, (7.7)

where f ′
σ′(t ) ∈ { f ′

1 , . . . , f ′
N ′ }.

The current formulation helps to have a concise design procedure as we reflect the
effects of the continuous control input u in the switching signal σ′ and hence, we have
to deal only with one type of control input (switching).

7.3. STABILIZATION IN THE ABSENCE OF DISTURBANCES

In this section, the stability problem is formulated for system (7.7) in the absence of
disturbances. The resulting model is

ẋ(t) = f ′
σ′(t )

(
x(t)

)
, x(0) = x0. (7.8)

1The system (7.1) with ω≡ 0 has relative degree r at point x0 if

Lg Lk
f

h(x) = 0, for all x in a neighborhood of x0, and for k = 1,. . . ,r −2,

Lg Lr−1
f

h(x0) 6= 0,

where L denotes the Lie derivative [121].
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It is assumed that the state vector x(t) is available for feedback for all t ≥ 0, and the
aim is to determine a piecewise constant function r (·) : Rnx → {1, . . . , N ′}, such that the
switching law

σ′(t) = r (x(t)) (7.9)

guarantees that the equilibrium x = 0 is globally asymptotically stable for (7.8). It should
be noted that we do not assume that any of the vector fields in the set { f ′

1, . . . , f ′
N ′ } is either

locally or globally asymptotically stable.
The candidate Lyapunov function ϑ(·) is constructed as follows:

ϑ(x) := min
i=1,...,N ′

Vi (x), (7.10)

where V1, . . . ,VN ′ are differentiable, positive definite, and radially unbounded functions
of x. However, this function might not be differentiable everywhere even if the functions
Vi are all differentiable. To overcome this issue, the notion of Metzler matrices [16, 73]
is used. A Metzler matrix is a matrix in which all the off-diagonal components are non-
negative. For our goal, we limit the attention to a subclass of Metzler matrices denoted
by M and containing all matrices M ∈RN ′×N ′

with elements µi j , such that

µi j ≥ 0 ∀i 6= j ,
N ′∑

i=1
µi j = 0, ∀ j . (7.11)

The following theorem provides the design procedure for the stabilizing switching rule
(recall from Theorem 6.7).

Theorem 7.1. [35] Assume there exist functions V1, . . . ,VN ′ , which are all differentiable,

positive definite, radially unbounded, and zero at zero. Furthermore, assume there exists

matrix M ∈M with elements µi j that satisfies the Lyapunov-Metzler inequalities

∂Vi (x)

∂x
f ′

i (x)+
N ′∑

j=1
µ j i V j (x) < 0, i ∈ {1, . . . , N ′} (7.12)

for all x 6= 0. Then the switching rule (7.9) with

r (x(t))= arg min
i=1,...,N ′

Vi (x(t)) (7.13)

makes the equilibrium point x = 0 of (7.8) globally asymptotically stable.

Proof. For instructive reasons, we present the proof from [35]. The Lyapunov function
(7.10) is piecewise differentiable, which means that it is not differentiable for all x ∈Rnx .
Therefore, we need to define the following derivative (see [35, 64, 102]):

D(ϑ(x(t))) = lim
∆t→0+

sup
ϑ(x(t +∆t))−ϑ(x(t))

∆t
. (7.14)

Assume that at an arbitrary t ≥ 0, the state switching control is given by σ(t) = r (x(t))= i

for some i ∈ I (x(t)) = {i : ϑ(x) = Vi (x)}. Hence, from (7.14) and (7.8), we have (using
Theorem 1 in [142])

D(ϑ(x(t)))= min
l∈I (x(t ))

∂Vl

∂x
f ′

i ≤
∂Vi

∂x
f ′

i . (7.15)
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Since (7.12) is valid for any M ∈ M and V j ≥ Vi for all j ∈ {1, . . . , N ′} \ {i }, using the fact
that i ∈ I (x(t)) and by rewriting the Lyapunov-Metzler inequality (7.12) as

∂Vi

∂x
f ′

i <−
N ′∑

j=1
µ j i V j , i ∈ {1, . . . , N ′}, for all x 6= 0, (7.16)

one can obtain

D(ϑ(x(t)))≤
∂Vi

∂x
f ′

i <−
N ′∑

j=1
µ j i V j ≤−

( N ′∑

j=1
µ j i

)
Vi = 0, for all x 6= 0. (7.17)

Thus, the switching law (7.13) makes the equilibrium point x = 0 of the switched non-
linear system (7.8) globally asymptotically stable.

Note that when all vector fields are globally asymptotically stable, the simplest
choice for the Metzler matrix, M = 0, would be possible.

In order to design and implement the switching law (7.13), one would need to
search for appropriate positive definite functions Vi and a Metzler matrix that satisfy
the Lyapunov-Metzler inequalities (7.12) for all x 6= 0. Unfortunately, this is a very hard
task in general. In case of quadratic Lyapunov functions sometime it is possible to recast
the problem as a Bilinear Matrix Inequality (BMI) problem [222] and thus, take advan-
tage of the existing solvers for BMIs. But the general case would involve multiplication
of matrices and state variables and therefore, in order to check the feasibility of (7.12),
multi-parametric optimization techniques can be employed. Nonetheless, one can use
a simpler but less accurate approach to tackle the problem of finding the parameters
of Vi along with the elements of the Metzler matrix M . By gridding the domain of the
state x, one can formulate the Lyapunov-Metzler inequalities for each vertex of the grid.
Depending on the characteristics of the system under study and the objectives, one can
make grids with different levels of accuracy in a uniform or non-uniform way. Next, the
remaining task is to find solutions for the parameters of Vi and the Metzler matrix in
order to satisfy all Lyapunov-Metzler inequalities for all grid points. This is a nonlinear
optimization problem in which the feasibility of all nonlinear inequality constraints has
to be checked. Of course, there might exist multiple solutions for this problem, but any
feasible solution would work for finding the stabilizing switching law.

The aforementioned feasibility problem includes determination of all elements of
a Metzler matrix. In order to simplify the implementation procedure and speed up the
computation of feasible solutions, we could limit the choice of the Metzler matrices. For
a Metzler matrix M ∈M , assume that the diagonal elements µi i are all equal to −µ̄, with
µ̄ a positive constant. Thus, the sum over the remaining elements of each column of the
matrix is

N ′∑

j=1, j 6=i

µ j i = µ̄ (7.18)

for all i = 1, . . . , N ′. Substitution of this matrix in the Lyapunov-Metzler equation (7.12)
results in the following corollary [35, 49].
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Corollary 7.1. Suppose that there exist positive definite, differentiable, radially un-

bounded and zero at zero functions V1, . . . ,VN ′ , and a positive constant µ̄, such that

∂Vi

∂x
f ′

i + µ̄(V j −Vi ) < 0, j ∈ {1, . . . , N ′} \ {i }, ∀x 6= 0 (7.19)

for i = 1, . . . , N ′. Then, the switching rule (7.13) makes the equilibrium point x = 0 of the

system (7.8) globally asymptotically stable.

In order to check the validity of (7.19), one can multiply (7.19) by µ j i and sum up for
all j = 1, . . . , N ′, j 6= i and next, multiply the result by 1/µ̄ and finally, reach the Lyapunov-
Metzler inequalities (7.12).

It should be noted that (7.19) is a more conservative condition then (7.12). However,
it is more convenient to determine a feasible solution of (7.19). Instead of searching
for a Metzler matrix will all unknown elements, we would simply have to find a positive
constant µ̄. Thus, the overall feasibility problem consists in finding the parameters of
the functions Vi and a positive value for µ̄. In order to solve this, we can first fix µ̄ and
then check the feasibility of the inequalities using a combined gridding technique and a
nonlinear optimization algorithm.

7.4. DISTURBANCE ATTENUATION VIA STATE-BASED

SWITCHING

In this section, we present an approach to tackle the disturbance attenuation problem
mentioned in Section 7.2. The model of the system under control is as follows:

ẋ(t) = f ′
σ′(t )

(
x(t)

)
+pσ′(t )

(
x(t)

)
ω(t), x(0) = x0, (7.20)

y(t) = hσ′(t )
(
x(t)

)
, (7.21)

with y ∈ Rny the output vector and hi ′ , i ′ ∈ {1, . . . , N ′}, continuous vector functions with
hi ′ (0) = 0. Moreover, we assume that the disturbance vector ω belongs to the space of
square integrable functions, L2 space. The disturbance ω belongs to the L2-space if

‖ω‖L2[0,T ] =
(∫T

0
ωT (t)ω(t)dt

)1/2

<∞, ∀T ≥ 0. (7.22)

where ‖ ·‖L2[0,T ] denotes the L2-norm on [0,T ].

7.4.1. L2-GAIN

System (7.20) has an L2-gain bounded above by γ > 0 under some switching law σ′ if
‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] for all nonzero ω ∈ L2[0,T ] (0 ≤ T <∞) and for initial condition
x(0) = 0. It follows that

‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] ⇐⇒
∫T

0

(
‖y(t)‖2 −γ2‖ω(t)‖2

)
dt ≤ 0

⇐⇒
∫T

0

(
‖hσ′(t )(x(t))‖2 −γ2‖ω(t)‖2

)
dt ≤ 0 (7.23)

for any T > 0 when x(0) = 0. The aim is to design a switching strategy σ′ such that the
L2-gain of system (7.20) is upper bounded by γ.
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7.4.2. ROBUST H∞ SWITCHING CONTROL DESIGN

The approach for H∞ control of switched nonlinear systems proposed in [245] is not
applicable for control of (7.1), as the input u is constrained in the box [0,1]nu . Neverthe-
less, we transformed the model using quantization of the input variable and obtained
the model in (7.7). For this model, the following problem is defined. Assume that a con-
stant γ > 0 is given, the goal is to design a switching law σ′, such that the origin of the
closed-loop system is globally asymptotically stable when ω(t) = 0,∀t ≥ 0, and the over-
all L2-gain from ω to y = hσ′(t )(x) on any finite time interval [0,T ] is less than or equal to
γ, i.e. ∫T

0

(
γ2‖ω(t)‖2 −‖hσ′(t )(x(t))‖2

)
dt ≥ 0. (7.24)

The following theorem provides the design procedure for the switching law (inspired by
[245] and the linear case in [158]).

Theorem 7.2. Consider the switched system (7.7). Assume that there exist positive defi-

nite, differentiable, and radially unbounded functions Vi , i ∈ {1, . . . , N ′}, a Metzler matrix

M with elements µi j and a scalar γ > 0, such that the following Lyapunov-Metzler in-

equalities are satisfied:

∂Vi

∂x
f ′

i +
1

2γ2

∂Vi

∂x
pi pT

i

∂T Vi

∂x
+

1

2
hT

i hi +
N ′∑

j=1
µ j i V j < 0 (7.25)

for i = 1, . . . , N ′. Then, the system (7.20) under the switching law

σ′(t)= r (x(t))= arg min
i=1,...,N ′

Vi (x(t)) (7.26)

has L2-gain bounded above by γ. Subsequently, in case ω≡ 0, the system is asymptotically

stable.

Before proceeding with the proof, we emphasize again that the switching signal is as-
sumed to be piecewise constant. In other words, one can define a switching sequence as{(

tk ,r
(
x(tk )

))}∞
k=1 with r

(
x(tk )

)
∈ {1, . . . , N ′}, while the switching rule remains unchanged

in the interval [tk , tk+1).

Proof. Assume that the switching sequence in the interval [0,T ] is defined as

{(
tk ,r

(
x(tk )

))∣∣∣ r
(
x(tk )

)
∈ {1, . . . , N ′}, k = 1,2, . . . , l

}
, (7.27)

with t1 = 0 and tl ≤ T . Under the switching law (7.13) in each time interval [tk , tk+1) we
have

∂Vi

∂x
f ′

i +
1

2γ2

∂Vi

∂x
pi pT

i

∂T Vi

∂x
+

1

2
hT

i hi <−
N ′∑

j=1
µ j i V j ≤

(
−

N ′∑

j=1
µ j i

)
Vi = 0. (7.28)

Now following a similar procedure as in [158, 225], we define

J =
∫T

0

(1

2
‖hσ′(t )(x(t))‖2 −

γ2

2
‖ω(t)‖2 +D

(
ϑ(x(t))

))
dt . (7.29)



7

116 7. STABILIZATION AND ROBUST H∞ CONTROL FOR SWITCHED NONLINEAR SYSTEMS

According to the definition of D
(
ϑ(x)

)
in (7.15) and taking into account the switching

sequence (7.27), we obtain

J ≤
l−1∑

k=1

∫tk+1

tk

(1

2
‖hr (x(tk ))(x)‖2 −

γ2

2
‖ω‖2 + V̇r (x(tk ))(x)

)
dt

+
∫T

tl

(1

2
‖hr (x(tl ))(x)‖2 −

γ2

2
‖ω‖2 + V̇r (x(tl ))(x)

)
dt . (7.30)

The derivative V̇r (x(tk )) is

V̇r (x(tk ))
(
x(t)

)
=

∂Vr (x(tk ))
(
x(t)

)

∂x
·
[

f ′
r (x(tk ))

(
x(t)

)
+pr (x(tk ))

(
x(t)

)
·ω(t)

]
. (7.31)

Substitution of (7.31) in (7.30) along with adding and subtracting the term

1

2γ2

∂Vr (x(tk ))

∂x
pr (x(tk ))pT

r (x(tk ))

∂T Vr (x(tk ))

∂x
(7.32)

and completing the squares yields (the arguments of the functions are dropped for re-
ducing the complexity)

l−1∑

k=1

∫tk+1

tk

(∂Vr (x(tk ))

∂x
f ′

r (x(tk )) +
1

2
‖hr (x(tk ))‖2

+
1

2γ2

∂Vr (x(tk ))

∂x
pr (x(tk ))pT

r (x(tk ))

∂T Vr (x(tk ))

∂x
−

∥∥∥
γ
p

2
ω−

1
p

2γ

∂Vr (x(tk ))

∂x
pr (x(tk ))

∥∥∥
2)

dt

+
∫T

tl

(∂Vr (x(tl ))

∂x
f ′

r (x(tl )) +
1

2
‖hr (x(tl ))‖2

+
1

2γ2

∂Vr (x(tl ))

∂x
pr (x(tl ))pT

r (x(tl ))

∂T Vr (x(tl ))

∂x
−

∥∥∥
γ
p

2
ω−

1
p

2γ

∂Vr (x(tl ))

∂x
pr (x(tl ))

∥∥∥
2)

dt .

(7.33)

Referring to (7.28), we can conclude that (7.33) is smaller or equal to zero. Hence,

J =
∫T

0

(1

2
‖hσ′(t )‖2 −

γ2

2
‖ω‖2 +D

(
ϑ
))

dt ≤ 0. (7.34)

Note that Vi are positive definite functions with zero value at zero. Thus,

∫T

0

(
‖hσ′(t )‖2 −γ2‖ω‖2

)
dt ≤−2Vi (x(T )) ≤ 0, ∀i . (7.35)

Hence, the L2-gain of the system is bounded above by γ. Moreover, it is easy to show (by
utilizing Lemma 3.2.6 of [225]) that the system is asymptotically stable when ω≡ 0.

Similar to the procedure explained in Section 7.3, a feasibility problem has to be
solved in order to find the parameters of the functions Vi along with µi j . Moreover, the
upper bound on the L2-gain, γ, can be set either as an unknown parameter to be deter-
mined or as a given constant. Basically, one can set a preliminary value for γ and solve
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the feasibility problem for the given γ. The procedure can be repeated with decreasing
values of γ until the problem becomes infeasible and no solution can be obtained for
the parameters. By doing this a minimum upper bound for the L2-gain can be achieved.

In the next section, the obtained control design rules are implemented and evalu-
ated for an urban network case study. As mentioned before, the network is represented
by a high-level switched nonlinear model with perimeter control and switching between
timing plans as control inputs.

7.5. CASE STUDY

In this section, we aim at designing a new control scheme for urban networks repre-
sented by the high-level models developed in Chapter 4 but without having exact knowl-
edge about the traffic demands and at the same time with less computational effort.

Basically, we consider the hybrid MFD-based model of Chapter 4 as a switched non-
linear system. The main objective is to reduce the total time spent in the network for-
mulated in the continuous-time as follows:

J =
T∫

0

( R∑

i=1
ni (t)

)
dt , (7.36)

with ni (veh) the accumulation in each region i . Furthermore, we define the output of
the system as the sum of the accumulations in all regions, as follows:

y(t)=
[
n1(t), . . . ,nR (t)

]T. (7.37)

In the robust control approach, we obtain the minimum upper bound γ for the L2-gain
of the system, i.e.

∫T

0

( R∑

i=1
n2

i (t)
)
dt ≤ γ2

∫T

0
‖ω(t)‖2dt , ∀T ≥ 0. (7.38)

Comparing (7.36) and (7.38), we can conclude that minimizing γ will reduce the effects
of disturbances (uncertain trip demands in the network) on the total time spent. There-
fore, in the following, we design a robust switching law based on the proposed approach
to deal with uncertain trip demands and to reduce congestion caused by them.

Moreover, since there are constraints on the perimeter control inputs, we use the
quantization technique discussed in Section 7.2. The trip demands in the network are
considered as disturbance signals. The main requirement of the proposed approach
is that the disturbance is norm bounded and belongs to the class of square integrable
functions. This assumption is valid for finite time intervals (e.g. the peak hours) in which
the trip demands inside the urban network are bounded and have a finite average.

7.5.1. SET-UP

For an urban network divided into two regions; region 1, the periphery and region 2, the
city center (as in Fig. 7.1), a two-state hybrid MFD-based model can be formulated as
follows (based on the two-state model presented in [86]):

ṅ1(t)=−G1, j (n1(t)) ·u(t)+ω1(t), (7.39)

ṅ2(t)=−G2, j (n2(t))+G1, j (n1(t)) ·u(t)+ω2(t), (7.40)
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Figure 7.1: Schematic two-region urban network.

where ni (t), i = 1,2, is the total number vehicles in region i at time t . Under the as-
sumption that the average trip length within each region is constant with time, the trip
completion flow Gi , j (ni (t)) (veh/s) is defined as the rate of vehicles that reach their des-
tinations [71]. Moreover, the signal timing plans for intersections inside each region can
be altered. Consequently, instead of one MFD, a set of MFDs (each corresponds to a dif-
ferent timing plan) can be defined. Therefore, Gi , j (ni (t)), with j = 1, . . . , Ni , constitute
the MFDs for region i .

Using the perimeter control u(t) may restrict the flow of vehicles from region 1, the
periphery, to region 2, the city center. In this case study, we assume that the city center
has two pre-defined timing plans and therefore two MFDs (N1 = 2). Each MFD is mod-
eled by a 3rd-order polynomial G2, j (n2) = 1/3600 · (a2, j n3

2 +b2, j n2
2 + c2, j n2) with coeffi-

cients a2,1 = 1.4877 ·10−7 (1/(veh2 ·h)), b2,1 =−2.98 ·10−3 (1/(veh·h)), c2,1 = 15.091 (1/h),
a2,2 = 2.57 ·10−7 (1/(veh2·h)), b2,2 = −4.47 ·10−3 (1/(veh·h)), c2,2 = 18.98 (1/h). For the
periphery, we assume that there exists only one timing plan and thus one MFD (N2 = 1).
The MFD of periphery is denoted by G1 = G1,1 and has a1,1 = a2,1, b1,1 = b2,1, c1,1 = c2,1

as its parameters.
As discussed before, the perimeter control input is restricted to [0,1] and therefore

we use the quantization technique presented in Section 7.2 in order to achieve a com-
plete switching system as follows:

ṅ1(t)=−G ′
1, j ′ (n1(t))+ω1(t), (7.41)

ṅ2(t)=−G ′
2, j ′ (n2(t))+G ′

1, j ′(n1(t))+ω2(t), (7.42)

where the perimeter control input can take values from the set {0.1,0.35,0.65,0.9}. The
number of modes introduced by performing the quantization is 2 ·4 = 8 and therefore
j ′ ∈ {1, . . . ,8}.

Here, we assume that the scenario simulates a morning peak in which a high trip
demand ω1 from the periphery (region 1) to the city center (region 2) exists while there
is also a demand ω2 for trips inside the center. Note that in our specific case, we as-
sume that the demands from the center to the periphery and those for trips inside the
periphery are relatively small and therefore negligible. Moreover, to take into account
the uncertainty around the demands, we add a zero mean white Gaussian noise with
variance 0.2 (veh2/s2) to the base profiles as shown in Figure. 7.2 (a)-(b).
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Figure 7.2: Trip demand profiles used in the simulation model, (a) trip demand from region 1 to region 2, (b)
trip demands inside region 2.

7.5.2. RESULTS AND DISCUSSION

In order to determine the switching law σ, we use quadratic functions Vi (ni ) =
1/2(αi n2

1 +βi n2
2). Thus the switching rule is defined as

σ(t) = r (ni (t)) = arg min
i∈{1,...,8}

1/2(αi n2
1 +βi n2

2). (7.43)

The parameters αi and βi along with a feasible attenuation level γ are determined
using (7.25) and the gridding technique described in Section 7.3. As for the grid size, we
have assumed {n1 ,n2} ∈ [0,7000] and we have used steps of 200. The nonlinear feasibility
problem is solved using the fmincon function inside the Tomlab toolbox of MATLAB. The
obtained parameters are as follows:

(αi ,βi ) ∈
{
(3.8014,2.9193),(6.5982,4.3430),

(9.9993,5.7571),(5.4335,6.2613),(7.2388,3.2234),

(4.5741,0.2113),(8.4626,0.2899),(4.8048,1.0877)
}

,

with γ = 0.8233 · 3600. The initial accumulations are n1(0) = 6200 (veh), n2(0) = 5200
(veh). The states are measured and plugged into the switching law (7.43) in order to
find the active subsystem (corresponding to a specific MFD and perimeter value). The
control inputs, perimeter control and switching between timing plans, are converted
back from the switching signal σ′. The simulation model is (7.39)–(7.40) with noisy trip
demands as illustrated in Fig. 7.2. The closed-looped system is simulated for one hour
and results are depicted in Fig. 7.3. The performance of the robust switching control
approach is compared with a greedy feedback control as well as a model predictive con-
trol scheme. The MPC controller is designed using the approach presented in Chapter 4.
Note that for the prediction model, we use a discretized form of (7.39)–(7.40) with Ts = 30
s and Tc = 60 s. Moreover, the MPC controller is supplied by the information about the
average time evolution of the trip demands, i.e. without the additive noise. Further-
more, the best performance of the MPC scheme is achieved with Np = 20 and Nc = 2
(increasing Np and Nc does not have considerable effects in this case). Moreover, the
greedy feedback controller designed as follows. The perimeter input is set to u = 0.1
when n2 > ncr,2 = 3000 (veh), and otherwise u = 0.9. Further, the MFD of the center is
fixed either to G2,1 or to G2,2.
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Figure 7.3: Closed-loop simulation results for different control schemes, (a) robust switching control, (b) MPC
scheme, (c) greedy feedback control with MFD G2,1, (d) greedy feedback control with MFD G2,2.

It can be observed that the switching H∞ control is able to prevent the gridlock con-
dition and also significantly reduces the effects of the trip demands (disturbances). In
one case of the greedy feedback controller, region 1 ends up in the gridlock situation (as
the accumulation grow unboundedly in Fig. 7.3(c)). In other case of greedy controller,
when timing plan 2 is chosen for the center, the accumulations eventually decrease by
the end of simulation time. As can be inferred from Fig. 7.3(b), the performance of the
MPC scheme is the best among them in terms of the total time spent (although there
is a small increase in the accumulation of the periphery around the time 500 s ). The
main reason is that MPC has the average demand profile for the whole simulation pe-
riod. However, the performance of the robust switching control scheme is considerable
since it does not allow the accumulation in region 1 to grow beyond 6000 veh, and also
since it does not use any information about the trip demands. Furthermore, the online
computation of the robust control input is limited to 16 multiplications, 8 additions and
a minimum operation. Therefore, there is a potential use of the proposed scheme for
larger networks with more regions as it does not require online optimization.

The converted perimeter control input and switching between the two timing plans
of the center are depicted in Fig. 7.4. Moreover, the L2-gain of the closed-loop sys-
tem can be determined by setting the initial conditions to zero and by using (7.22)
(the output of the system is defined as y = [n1,n2]T). The achieved gain ‖y‖L2 /‖ω‖L2

for the assumed demand profile is 0.1691 ·3600, which is lower than the upper bound
γ= 0.8233 ·3600 obtained from the optimization problem.

7.6. CONCLUDING REMARKS

Stabilization and H∞ control of switched nonlinear systems with constrained feedback
control input have been presented in this chapter. First, we have used a model trans-
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Figure 7.4: Closed-loop simulation with switching control, (a) perimeter control input converted back from
the switching law, (b) switching between MFDs of region 2 obtained from the switching law σ.

formation in order to deal with the constraint on the control inputs. We have defined
the L2-gain for switched nonlinear systems and next, we have presented an H∞ switch-
ing control design procedure in order to achieve a desirable level of disturbance atten-
uation. Furthermore, the obtained results have been utilized for high-level control of
urban networks modeled by a hybrid MFD representation. The total delay minimiza-
tion problem in the network has been treated as a disturbance attenuation problem for
the switched nonlinear model of the urban network. The obtained results have shown
the effectiveness of the proposed robust control scheme in case of uncertain demand
profiles. Moreover, as mentioned before, we have determined the Lyapunov functions
required for the feedback switching law off-line and thus, the proposed method has a
major advantage over e.g. MPC schemes both for the real-time implementation and for
handling the uncertain demand profiles.

Nevertheless, the current approach is based on the determination of positive definite
functions satisfying nonlinear inequality constraints. Finding appropriate functions for
the general case of switched nonlinear systems could be very hard. In Chapters 9 we will
present a different approach for formulating stability conditions for switched nonlinear
systems that utilizes linear matrix inequality techniques.





8
ROBUST CONTROL FOR

SECTOR-BOUNDED SWITCHED

NONLINEAR SYSTEMS

This chapter presents stability analysis and robust H∞ control for a particular class of
switched systems characterized by nonlinear functions that belong to sector sets with
arbitrary boundaries. The sector boundaries can have positive and/or negative slopes,
and therefore, we cover the most general case in our approach. Using the special struc-
ture of the system but without making any additional assumptions (e.g. on the deriva-
tive of the nonlinear functions), and by proposing new multiple Lyapunov function can-
didates, we formulate the stability conditions and the control design procedure in the
form of matrix inequalities. The proposed Lyapunov functions are more general than
the quadratic functions previously proposed in the literature, as they incorporate the
nonlinearities of the system and hence, lead to less conservative stability conditions. In
order to stabilize the nonlinear switched system and further, to achieve a minimum up-
per bound for the L2-gain of the closed-loop controlled system, an optimization prob-
lem subject to bilinear matrix inequalities is established in order to determine the op-
timal matrices for the Lyapunov functions along with the robust state feedback gains.
Moreover, using a special loop transformation to normalize the arbitrary sector bounds
and other linear matrix inequality (LMI) techniques, we finally formulate a bi-level op-
timization problem that can be efficiently solved using a combination of a convex opti-
mization algorithm and a line search method. This is a great advantage over the existing
approaches for stability analysis and robust control of switched nonlinear systems. Fur-
thermore, in order to show that the most general cases of the given class of switched
systems can be treated with our approach and also to illustrate the performance of the
proposed switching control scheme, two examples are presented.

123
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8.1. INTRODUCTION

I N this chapter, we study a special case of switched systems comprising a set of nonlin-
ear dynamical subsystems. In each subsystem, the evolution of the state is governed

by linear combinations of nonlinear state-dependent functions. Furthermore, a state-
and/or time-dependent switching signal determines the active subsystem at each time
instant. The nonlinear functions are assumed to belong to sector sets with arbitrary
(positive or negative, and possibly asymmetric) slopes for the sector boundaries. Thus,
in the non-switched case, we cover more general cases of nonlinear functions compared
e.g. to the Lur’e-type systems studied in [29, 81, 82, 172] and to the nonlinear systems
that admit diagonal-type Lyapunov functions investigated in [4, 132].

In addition to the generalization of the nonlinear functions to arbitrary sector con-
ditions, we have also added the switching between multiple subsystems each character-
ized with this type of nonlinear dynamics. This makes the analysis and control design
problem even more challenging. To the best of our knowledge, the stability and robust
control design problem for this class of switched systems with these general conditions
has not been addressed in the literature.

This chapter contains three main contributions with respect to the state-of-the-art:
1) inclusion of sector bounds with arbitrary slopes for nonlinear functions (moreover,
the nonlinear functions are no longer required to have an unbounded integral), 2) sta-
bility analysis for this class of switched systems under arbitrary switching using a less
conservative approach based on multiple Lyapunov functions and the concept of av-
erage dwell time, 3) stabilization and robust disturbance attenuation of these systems
using a bi-level convex optimization problem. In the following, we elaborate on these
points.

For stability analysis under arbitrary switching, we propose a family of Lyapunov
functions that incorporate both quadratic functions of the state and also the integrals
of nonlinearities in the subsystems. Since the proposed Lyapunov candidate functions
are general and include the nonlinear dynamics, this choice in general will lead to less
conservative stability conditions compared to e.g. the use of quadratic functions (see
[29, 39] for a specific non-switched case). Based on the concept of average dwell time
[112], which occasionally allows fast switching, we formulate a feasibility problem based
on matrix inequalities that are nonlinear in a single scalar variable only, in order to find
a lower bound for the average dwell time. We further prove that the switched system is
globally exponentially stable under arbitrary switching provided that the average time
between consecutive switching time instants is larger than the obtained bound.

Next, we investigate the stabilization problem for the given class of switched sys-
tems in case of unstable modes and disturbances. Combining the proposed Lyapunov
functions and their derivatives in order to obtain a single expression that can be used to
design stabilizing control laws is challenging. This is because the Lyapunov functions in-
clude the integrals of nonlinear functions whereas in the time derivative of the Lyapunov
functions, the nonlinear functions appear explicitly. However, using an assumption on
the matrices of the Lyapunov functions along with some matrix operations, we formu-
late sufficient conditions for the design of robust switching control laws in the form of
an optimization problem constrained by bilinear matrix inequalities. The optimization
problem minimizes the upper bound on the L2-gain of the switched system and it gives
the optimal state feedback gains and the matrices of the Lyapunov functions.
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In order to further improve the efficiency of the design procedure, we exploit a trans-
formation technique to normalize the sector boundaries and congruence transforma-
tions in order to re-arrange the matrix inequalities into linear ones. At the end, we obtain
a bi-level optimization problem with a high-level problem that is non-convex only in a
single scalar variable, while the low-level optimization problem is convex. Hence, we are
able to solve the overall problem efficiently using a line search method along with a con-
vex optimization method subject to LMI constraints. Hence, the overall problem can be
efficiently solved using a line search method along with feasibility checking of LMIs. This
is a great advantage over the existing approaches for stability analysis of switched non-
linear systems in the literature, which involve searching for Lyapunov functions without
a pre-defined structure and/or solving multi-parametric optimization problems [35].

The chapter is organized as follows. In Section 8.2, we present the particular class of
switched nonlinear systems under study. Section 8.3 presents stability conditions for the
system under arbitrary switching. Section 8.4 discusses stability analysis with an average
dwell time constraint. Next, we present the design of robust stabilizing controllers in
Section 8.5. We then illustrate the performance of the proposed robust switching control
scheme using two examples. Finally, the chapter concludes with a further discussion of
the obtained results and open issues.

8.2. PROBLEM STATEMENT

Consider the following switched nonlinear system:

ẋ(t)= Aσ(t )x(t)+Bσ(t )u(t)+Eσ(t ) f
(
x(t)

)
+Hσ(t )ω(t), (8.1)

u(t) = Kσ(t )x(t)+Fσ(t ) f
(
x(t)

)
, (8.2)

y(t) =Cσ(t )g
(
x(t)

)
, (8.3)

with x ∈ Rn the state vector, u ∈ Rnu the control input, ω ∈ Rnω the disturbance input,
y ∈ Rny the output, and f : Rn → R

n : xi 7→ fi (xi ), g : Rn → R
n : xi 7→ gi (xi ) nonlinear

vector functions. Moreover, the switching signal σ is defined as a piecewise constant
function, σ(·) : [0,+∞) → {1, . . . , N }.

Assumption 8.1. The scalar functions fi are continuous and belong to the class Sc1 de-

fined as follows:

Sc1 =
{
φ :R→R| ∃α,β ∈R,α<β, such that

(
φ(ζ)−αζ

)(
φ(ζ)−βζ

)
≤ 0, φ(0) = 0, ∀ζ ∈R

}
.

(8.4)

Note that functions fi are not required to lie only in the 1st and the 3rd quadrant as in
[82], nor to have unbounded integrals as in [4, 132].

Assumption 8.2. The scalar functions gi are continuous and belong to the class Sc2 de-

fined as follows:

Sc2 =
{
ψ :R→R| ∃δ such that |ψ(ζ)| ≤ δ|ζ|, ∀ζ ∈R

}
. (8.5)

In fact, Sc2 is a special case of the class Sc1 and functions that belong to the class
Sc2 are bounded within a symmetric convex double cone with the origin as apex. More-
over, the nonlinear functions in system (8.1) can also be considered as state-dependent
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disturbances. Therefore, specific applications in which this type of disturbances affect
the system (e.g. cogging torque or no-current torque, unbalanced gravitational load and
eccentricity are state-dependent disturbances affecting a motor control system), can be
treated with our proposed analysis and control tools. For the non-switched and simpli-
fied version of system (8.1) formulated as follows:

ẋ(t) = E f
(
x(t)

)
. (8.6)

The authors in [132] proved that (8.6) is absolutely stable if there exists a positive definite
diagonal matrix Λ= diag{λi }, λi > 0, ∀i ∈ {1, . . . ,n}, such that

V (x) =
n∑

i=1
λi

∫xi

0
fi (ξ)dξ (8.7)

is a diagonal-type Lyapunov function for (8.6), provided that xi fi (xi ) ≥ 0, ∀i .
However, stability of a composed switched system cannot be concluded from the

stability of the subsystems [149]. According to [149], it is sufficient to construct a com-
mon Lyapanov function for a switched system in order to prove stability. Generally, find-
ing a common Lyapunov function for the general case of switched nonlinear systems is
a tedious task. In [4], stability analysis under arbitrary switching for system (8.1), with
Aℓ = 0, ∀ℓ ∈ {1, . . . , N }, and with u,ω≡ 0, using a common Lyapunov function of the form
(8.7) is presented. However, extension of the results for arbitrary switching obtained in
[4] to our more general model (8.1)–(8.3) and more important, to the stabilization and
robust control problem is not possible. This is mainly because we need to combine and
compare the values of the Lyapunov functions and their derivatives in order to compose
a stabilizing control law and this is not feasible with the current formulation of the Lya-
punov function (8.7) (due to the integral of the nonlinearities). One solution would be
to use quadratic functions of the state. However, this choice would increase the conser-
vatism in the stability analysis. Therefore, in the following, we use a different Lyapunov
function that still contains the nonlinearities in the model and meanwhile, is extend-
able for the design of robust stabilizing switching laws. In the first stage, we propose a
less conservative approach (compared to the common Lyapunov function method) for
stability under arbitrary switching, using the concept of dwell time. Next, we extend the
results for state-based switching and design of robust control laws. The resulting design
conditions will be formulated in the form of matrix inequalities.

8.3. STABILITY ANALYSIS UNDER ARBITRARY SWITCHING

For the switched system (8.1) with u(t),ω(t) = 0 ∀t , the following common Lyapunov
function is proposed:

V (x) = xTP x +2
n∑

i=1
λi

∫xi

0
fi (ξ)dξ. (8.8)

For the Lyapunov functions (8.7) to be radially unbounded, the nonlinear functions fi

should have an unbounded integral, while in the new Lyapunov function (8.8) this is
no longer required and thus, more general cases can be treated through this Lyapunov
function. Note that asymptotic stability of all subsystems is a necessary condition for
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stability under arbitrary switching. The time derivative of (8.8) along the trajectories of
the switched system is obtained as follows (the time t is dropped for the sake of brevity):

V̇ (x) = f T(x)(ΛEσ+E T
σΛ) f (x)+ xT(PEσ+ AT

σΛ) f (x)

+ f T(x)(E T
σP +ΛAσ)x + xT(PAσ+ AT

σP )x, (8.9)

with Λ= diag{λi }. The derivative (8.9) for the active subsystem ℓ can be rewritten as

V̇ (x) =
[

x

f (x)

]T [
PAℓ+ AT

ℓ
P PEℓ+ AT

ℓ
Λ

E T
ℓ

P +ΛAℓ ΛEℓ+E T
ℓ
Λ

][
x

f (x)

]
. (8.10)

Now taking into account that the nonlinear functions fi belong to the class Sc1, the
following theorem provides sufficient conditions for the asymptotic stability of (8.1) with
u,ω≡ 0.

Theorem 8.1. Assume there exists a symmetric matrix P, a positive diagonal matrix Λ,

and a positive definite and diagonal matrix T = diag{τ1, . . . ,τn}, such that the following

LMIs1:

[
PAℓ+ AT

ℓ
P −T DαDβ ⋆

E T
ℓ

P +ΛAℓ+ 1
2 T (Dα+Dβ) ΛEℓ+E T

ℓ
Λ−T

]
< 0, ∀ℓ ∈ {1, . . . , N }, (8.11)

P +DαΛ> 0, (8.12)

with Dα = diag{α1, . . . ,αn } and Dβ = diag{β1, . . . ,βn } are feasible, then the switched sys-

tem (8.1) with Assumption (8.1) and with u,ω ≡ 0 will be asymptotically stable under

arbitrary switching.

Proof. It is easy to verify that the sector condition (8.4), for the function fi , can be writ-
ten in the following quadratic form:

[
xi

fi (xi )

]T
[

αiβi −αi+βi

2

−αi+βi

2 1

][
xi

fi (xi )

]
≤ 0. (8.13)

The main idea is that the derivative (8.10) should be negative whenever (8.13) holds for
all i ∈ {1, . . . ,n}. Using the so-called S-procedure [22], the inequalities (8.10) and (8.13)
can be combined, resulting in the LMI (8.11). Furthermore, we have for any xi ∈R

n∑

i=1
λi

∫xi

0
αiξdξ≤

n∑

i=1
λi

∫xi

0
fi (ξ)dξ≤

n∑

i=1
λi

∫xi

0
βiξdξ. (8.14)

Therefore, in order to guarantee that V (x) > 0, we need

xTP x + xTDαΛx > 0. (8.15)

Hence, it is sufficient to have P +DαΛ positive definite as in (8.12).

Remark 8.1. Note that since the nonlinear functions fi are assumed to be continuous (cf.

Assumption 8.1), the Lyapunov function (8.8) will be continuous for arbitrary switching

patterns. This is a necessary condition for validity of the results presented in Theorem 8.1.

1The symbol ⋆ is used to represent symmetric blocks.
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8.4. STABILITY ANALYSIS WITH AVERAGE DWELL TIME

For the switched system (8.1) with u(t),ω(t) = 0 ∀t , the following set of Lyapunov func-
tions is proposed:

Vℓ(x) = xTPℓx +2
n∑

i=1
λ(ℓ)

i

∫xi

0
fi (ξ)dξ, for ℓ= 1, . . . , N . (8.16)

The following theorem provides sufficient conditions for exponential stability of (8.1)
using the concepts of multiple Lyapunov functions [35] and the average dwell time [112].

Theorem 8.2. Consider the system (8.1) with Assumption 8.1. Suppose there exist positive

matrices Λℓ = diag{λ(ℓ)
i

}, symmetric matrices Pℓ, positive diagonal matrices Tℓ, for ℓ =
1, . . . , N , and a positive scalar ε, such that

[
PℓAℓ+ AT

ℓ
Pℓ+ε(Pℓ+ΛℓDβ)−TℓDαDβ ⋆

E T
ℓ

Pℓ+ΛℓAℓ+ 1
2 Tℓ(Dα+Dβ) ΛℓEℓ+E T

ℓ
Λℓ−Tℓ

]
< 0, (8.17)

Pℓ+ΛℓDα > 0, ∀ℓ ∈ {1, . . . , N }, (8.18)

with Dα = diag{αi }, Dβ = diag{βi }. System (8.1) with u,ω≡ 0 is globally exponentially sta-

ble under arbitrary switching, if the average dwell time of consecutive switching instants

for any arbitrary interval (t0, t) is bounded by

TD(t0, t) ≥
1

ε
log

(
max

j ,ℓ∈{1,...,N}

bmax, j

amin,ℓ

)
, ∀t > t0, (8.19)

where amin,ℓ denotes the smallest singular value of Pℓ +ΛℓDα and bmax, j is the largest

singular value of P j +Λ j Dβ.

Proof. Since λ(ℓ)
i

> 0, we have

n∑

i=1
λ(ℓ)

i

∫xi

0
αiξdξ≤

n∑

i=1
λ(ℓ)

i

∫xi

0
fi (ξ)dξ≤

n∑

i=1
λ(ℓ)

i

∫xi

0
βiξdξ. (8.20)

Therefore, for each Lyapunov function Vℓ, the following inequalities hold:

amin,ℓ‖x‖2 ≤ xT(Pℓ+ΛℓDα)x ≤Vℓ(x) ≤ xT(Pℓ+ΛℓDβ)x ≤ bmax,ℓ‖x‖2. (8.21)

Using the S-procedure [22], if (8.17) and (8.13) hold, we obtain

[
x

f (x)

]T [
PℓAℓ+ AT

ℓ
Pℓ PℓEℓ+ AT

ℓ
Λℓ

E T
ℓ

Pℓ+ΛℓAℓ ΛℓEℓ+E T
ℓ
Λℓ

][
x

f (x)

]

︸ ︷︷ ︸
V̇ℓ(x)

<−εxT(Pℓ+ΛℓDβ)x <−εVℓ(x). (8.22)

Moreover, using (8.21), it can be easily shown that

Vℓ(x) ≤ ηV j (x), ∀x ∈Rn , ∀ j ,ℓ ∈ {1, . . . , N }, (8.23)

with

η= max
j ,ℓ∈{1,...,N}

(bmax, j /amin,ℓ). (8.24)
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Now from (8.22) we obtain

Vσ(tk )(x(t))≤ e−ε(t−tk )Vσ(tk )(x(tk )), ∀t ∈ [tk , tk+1), (8.25)

with tk the k-th switching time instant. Using (8.23) and by iteration, we get

Vσ(tk )(x(t)) ≤ e−ε(t−tk )Vσ(tk )(x(tk )) ≤

e−ε(t−tk )ηVσ(tk−1)(x(tk ))≤ ·· · ≤ ηNσ(t ,t0)e−ε(t−t0)Vσ(t0)(x(t0)), (8.26)

where Nσ(t , t0) denotes the number of switchings in (t0, t). Substituting

Nσ(t , t0) ≤ (t − t0)/TD, (8.27)

with TD the average dwell time between successive switching time instants, results in

Vσ(tk )(x(t)) ≤ e
−(ε− logη

TD
)(t−t0)

Vσ(t0)(x(t0)). (8.28)

Hence, using (8.28) and (8.21), we obtain

‖x(t)‖≤
maxℓ∈{1,...,N} bmax,ℓ

min j∈{1,...,N} amin, j
e
− 1

2 (ε− logη
TD

)(t−t0)‖x(t0)‖. (8.29)

Therefore, system (8.1) is globally exponentially stable for any switching pattern with
TD(t0, t) satisfying (8.19).

Remark 8.2. If there exist common P and Λ matrices that satisfy the inequalities (8.17),

it is easy to show that the bound (8.19) on the average dwell time reduces to TD ≥ 0, since

(8.23) will hold for η= 1.

Since (8.17) will be an LMI if the scalar variable ε is fixed, one can utilize an LMI opti-
mization algorithm along with a line search method to find a feasible solution for (8.17)-
(8.18). In fact, ε denotes the overall exponential decay rate of the Lyapunov functions.
Therefore, it is expected that as the value of ε is increased, the inequalities (8.17)-(8.18)
become infeasible from a certain point.

8.5. DESIGN OF ROBUST STABILIZING SWITCHING LAWS

In the previous sections, we have discussed the stability problem for switched systems
(8.1)–(8.3) under given switching signals. In this section, we synthesize switching laws
together with the control input u in order to stabilize the switched nonlinear system and
moreover, to minimize the effects of disturbances on the output of the system. There-
fore, from now on we assume that none of the subsystems of (8.1) is locally or globally
asymptotically stable (otherwise, the solution for the stabilization problem would be
trivial).

Consider the switched nonlinear system (8.1)–(8.3) composed of N subsystems. It is
assumed that the state vector x(t) is available for feedback for all t ≥ 0. The switched
system has the L2-gain bounded above by γ> 0 under some switching law σ if

‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] (8.30)
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for all nonzero ω that belong to the space of square integrable functions, i.e. the L2-
space, and for the initial state x(0) = 0 (we assume this to illuminate the transient re-
sponse resulting from nonzero initial states). The goal is to design a switching law σ of
the form

σ(t) = r (x(t)), (8.31)

with r (·) : Rn → {1, . . . , N } a piecewise constant function, such that the origin of the
closed-loop system is globally asymptotically stable when ω(t) = 0,∀t ≥ 0, and more-
over, the desired upper bound γ for the L2-gain from ω to y =Cσg (x) on any finite time
interval [0,T ] is achieved, i.e.

∫T

0

(
γ2

∥∥ω(t)
∥∥2

2 −
∥∥Cσg (x)σ(t )

(
x(t)

)∥∥2
2

)
dt ≥ 0. (8.32)

8.5.1. STABILIZATION USING MULTIPLE LYAPUNOV FUNCTIONS

A Lyapunov-like function is proposed as follows:

V (x) = min
ℓ=1,...,N

Vℓ(x), (8.33)

with Vℓ selected as

Vℓ(x) = xTPℓx +2
n∑

i=1
λi

∫xi

0
fi (ξ)dξ. (8.34)

Before proceeding with the main results, we define the subclass M of Metzler matrices,
with elements µi j and the following properties [35]:

µi j ≥ 0 ∀i 6= j ,
N∑

i=1
µi j = 0 ∀ j . (8.35)

Theorem 8.3. Assume there exist a matrix M ∈M , positive definite matrices Pℓ, a positive

diagonal matrix Λ, and positive diagonal matrices Tℓ = diag{τ1,ℓ, . . . ,τn,ℓ} satisfying the

following inequalities:



PℓAℓ+ AT
ℓ

Pℓ−TℓDαDβ+
N∑

j=1
µ jℓP j ⋆

E T
ℓ

Pℓ+ΛAℓ+ 1
2 Tℓ(Dα+Dβ) ΛEℓ+E T

ℓ
Λ−Tℓ



< 0, ∀ℓ ∈ {1, . . . , N },

(8.36)

Pℓ+DαΛ> 0, ∀ℓ ∈ {1, . . . , N },
(8.37)

with Dα = diag{α1, . . . ,αn } and Dβ = diag{β1, . . . ,βn }, then the switching rule (8.31) with2

r (x(t))= arg min
ℓ=1,...,N

Vℓ(x(t)) (8.38)

makes the equilibrium point x = 0 of (8.1)–(8.3) (with u,ω ≡ 0) globally asymptotically

stable.

2Note that in (8.38), we take the minimum argument, in case of having multiple minima Vℓ.
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Proof. The Lyapunov function (8.33) is piecewise differentiable. Therefore, we use the
so-called Dini derivative (see [35, 64]) formulated as follows:

D+(
V (x(t))

)
= lim

δt→0+
sup

V (x(t +δt))−V (x(t))

δt
. (8.39)

Assume that at an arbitrary time t ≥ 0, the switching law is given by σ(t) = r (x(t))= ℓ for
some ℓ ∈I (x(t)) = {ℓ : V (x(t)) =Vℓ(x(t))}. Hence, from (8.39) and (8.1), we have (using
Theorem 1 of [142], see also [102])

D+(
V (x(t))

)
= min

i∈I (x(t ))

[∂Vi

∂x

(
Aℓx +Eℓ f (x)

)]
≤

∂Vℓ

∂x

(
Aℓx +Eℓ f (x)

)
, (8.40)

where ℓ denotes the index of the active subsystem determined from (8.38). Pre-
multiplying (8.36) by [xT, f T(x)] and post-multiplying by its transpose, we obtain

[
x

f (x)

]T [
PℓAℓ+ AT

ℓ
Pℓ PℓEℓ+ AT

ℓ
Λ

E T
ℓ

Pℓ+ΛAℓ ΛEℓ+E T
ℓ
Λ

][
x

f (x)

]

︸ ︷︷ ︸
∂Vℓ
∂x

(
Aℓx+Eℓ f (x)

)

<
[

x

f (x)

]T [
TℓDαDβ − 1

2Tℓ(Dα+Dβ)
− 1

2Tℓ(Dα+Dβ) Tℓ

][
x

f (x)

]
−

N∑

j=1
µ jℓxTP j x,

ℓ ∈ {1, . . . , N }. (8.41)

Now taking into account the sector condition (8.13), using the fact that for the active
subsystem ℓ, Vℓ ≤V j , ∀ j ∈ {1, . . . , N } \ {ℓ}, we have

D+(
V (x(t))

)
≤

∂Vℓ

∂x

(
Aℓx +Eℓ f (x)

)
<−

N∑

j=1
µ jℓxTP j x <−xTPℓx

N∑

j=1
µ jℓ = 0. (8.42)

Note that the last equality holds since µ jℓ are the elements of a Metzler matrix. Hence,
the switching law (8.38) makes the equilibrium point x = 0 of the switched nonlinear
system (8.1) with u,ω= 0 globally asymptotically stable.

8.5.2. ROBUST H∞ SWITCHING CONTROL DESIGN

Now assume that the disturbance input ω has a finite L2-norm as in (8.30). In the fol-
lowing, sufficient conditions for the design of a stabilizing state feedback control input
together with a switching law are presented, in order to ensure an upper bound γ for
the L2-gain (the actual L2-gain from the input ω to the output y of the system (8.1)–(8.3)
would be smaller than or equal to γ). The main results are summarized in the following
theorem.

Theorem 8.4. Suppose there exist a Metzler matrix M ∈ M with elements µi j , positive

definite matrices Pℓ, a positive diagonal matrix Λ, and positive diagonal matrices Tℓ =
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diag{τ1,ℓ, . . . ,τn,ℓ} that give an optimal solution for the following problem:

min{
Pℓ

}N

ℓ=1 ,
{

Kℓ

}N

ℓ=1,
{

Fℓ

}N

ℓ=1,
{

Tℓ

}N

ℓ=1 ,
{
µ jℓ

}N

j ,ℓ=1 ,Λ,ρ

ρ (8.43)

subject to:




Pℓ(Aℓ +BℓKℓ)+ (Aℓ +BℓKℓ)TPℓ−TℓDαDβ+
N∑

j=1
µ jℓP j ⋆ ⋆ ⋆

(Eℓ +BℓFℓ)TPℓ +Λ(Aℓ +BℓKℓ)+ 1
2 Tℓ(Dα +Dβ) Λ(Eℓ+BℓFℓ)+ (Eℓ +BℓFℓ)T

Λ−Tℓ ⋆ ⋆

HT
ℓ

Pℓ HT
ℓ
Λ −ρI ⋆

‖Cℓ‖F∆ 0 0 −I



< 0,

(8.44)

Pℓ+DαΛ> 0, Pℓ,Tℓ,Λ> 0, ρ > 0, ∀ℓ ∈ {1, . . . , N }, (8.45)

then the control input

u(t)= Kℓx(t)+Fℓ f (x(t)), (8.46)

along with the min-switching law (8.38) make the closed-loop switched system (8.1)–(8.3)

stable with the minimized upper bound γ=p
ρ for the L2-gain from ω to the output y.

Proof. Applying the Schur complement to (8.44) with respect to the fourth row and col-
umn, rearranging terms and pre-multiplying by [xT, f T(x),ωT] and post-multiplying by
its transpose yields

[
x

f (x)

]T [
Pℓ(Aℓ+BℓKℓ)+ (Aℓ+BℓKℓ)TPℓ ⋆

(Eℓ+BℓFℓ)TPℓ+Λ(Aℓ+BℓKℓ) Λ(Eℓ+BℓFℓ)+ (Eℓ+BℓFℓ)T
Λ

][
x

f (x)

]

︸ ︷︷ ︸
∂Vℓ
∂x

(
Aℓx+Bℓu+Eℓ f (x)+Hℓω

)

<
[

x

f (x)

]T [
TℓDαDβ ⋆

− 1
2 Tℓ(Dα+Dβ) Tℓ

][
x

f (x)

]
−

N∑

j=1
µ jℓxTP j x −‖Cℓ‖2

FxT
∆

2x +ρωTω,

(8.47)

with ∆ = diag{δi , . . . ,δn }. Since (8.44) is valid for some M ∈ M and V j ≥ Vℓ for all j ∈
{1, . . . , N } \ {ℓ}, and based on the sector condition (8.13), we obtain

D+(
V (x(t))

)
≤

∂Vℓ

∂x

(
Aℓx +Bℓu+Eℓ f (x)+Hℓω

)
<−

N∑

j=1
µ jℓxTP j x −‖Cℓ‖2

FxT
∆

2x +ρωTω

<−xTPℓx
N∑

j=1
µ jℓ

︸ ︷︷ ︸
=0

−‖Cℓ‖2
FxT

∆
2x +ρωTω<−yT y +ρωTω. (8.48)

The last inequality is justified using the following:

yT y = ‖y‖2
2 = ‖Cσ(t ) g (x)‖2

2 ≤ ‖Cσ(t )‖2
F · ‖g (x)‖2

2 ≤ ‖Cσ(t )‖2
FxT

∆
2x, (8.49)

where the first inequality is obtained based on [79, (2.3.7) on page 57] and ‖ ·‖F denotes
the Frobenius norm.
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Proposition 8.1. The value γ = p
ρ obtained from the optimization (8.43)–(8.45) is an

upper bound for the L2-gain of the system (8.1)–(8.3). Hence, the actual closed-loop sys-

tem would outperform the obtained upper bound for the L2-gain, since we have used the

sector condition of Assumption 8.2.

Remark 8.3. In case Cσ(t ) is a square matrix, using the spectral norm of Cσ(t ) defined as

‖Cσ(t )‖2 =
√

λmax(C H
σ(t )Cσ(t )) (8.50)

would result in a tighter bound compared to using the Frobenius norm as in (8.49). This

can be easily shown using the fact that the spectral norm is less than or equal to the Frobe-

nius norm [79].

Remark 8.4. Asymptotic stability of (8.1) under switching law (8.38) is ensured

even if sliding mode behavior occurs. In case of a sliding mode, the result of

argminℓ=1,...,N Vℓ(x(t)) might not be unique. However, using (8.42) (we assume u,ω ≡ 0
for simplicity), it can be shown that the time derivative of the minimum Lyapunov func-

tion is strictly negative along the Filippov solution of the system. Assume that the car-

dinality of the set I (x) is larger than one, which means minℓ=1,...,N Vℓ(x) is not unique.

From the Lyapunov function (8.33) and the time-derivative (8.40) (assume u,ω ≡ 0 for

simplicity), a switch from any ℓ ∈ I (x) to some j ∈ I (x) is allowed only if
∂V j

∂x
(Aℓx +

Eℓ f (x)) ≤ ∂Vℓ
∂x (Aℓx +Eℓ f (x)). However, we know from (8.42) that

∂Vℓ
∂x (Aℓx +Eℓ f (x)) < 0.

We now show that V j , j ∈I (x), decreases along the corresponding Filippov solution. For

the extended model of the switched system including the sliding motion, formulated as

ẋ(t)=
( ∑

ℓ∈I (x)
θℓAℓ

)
x +

( ∑

ℓ∈I (x)
θℓEℓ

)
f (x), 0 ≤ θℓ,

∑

ℓ∈I (x)
θℓ = 1, (8.51)

we have

∂V j

∂x

[( ∑

ℓ∈I (x)
θℓAℓ

)
x+

( ∑

ℓ∈I (x)
θℓEℓ

)
f (x)

]
=

∑

ℓ∈I (x)
θℓ

∂V j

∂x

(
Aℓx +Eℓ f (x)

)
≤

∑

ℓ∈I (x)
θℓ

∂Vℓ

∂x

(
Aℓx +Eℓ f (x)

)
< 0,

where the first inequality holds from
∂V j

∂x
(Aℓx+Eℓ f (x)) ≤ ∂Vℓ

∂x
(Aℓx+Eℓ f (x)) under a slid-

ing mode, and the last inequality is justified using

[
x

f (x)

]T [
PℓAℓ+ AT

ℓ
Pℓ ⋆

E T
ℓ

Pℓ+ΛAℓ ΛEℓ+E T
ℓ
Λ

][
x

f (x)

]
+

N∑

j=1
µ jℓxTP j x < 0,

which readily shows that for each active subsystem ℓ the derivative of the Lyapunov func-

tion Vℓ is negative along the trajectories of the subsystem ℓ (we follow the same reasoning

as for (8.42), see also [102]). Hence, we conclude that the derivative of the positive-definite

function V j = xTP j x+2
n∑

i=1
λi

∫xi

0 fi (ξ)dξ is strictly negative along the trajectories of (8.51).

The optimization problem (8.43)–(8.45) involves solving a Bilinear Matrix Inequality
(BMI) problem, which is in general computationally hard. Essentially, we have to deal
with two types of issues:
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1. Multiplication of the unknown Metzler elements µ jℓ by Pℓ.

2. The term TℓDαDβ in the upper left component of the matrix inequality (8.44)
would prevent using any congruence transformation to transform (8.44) into an
LMI. For instance, the nonlinearity caused by the term PℓBℓKℓ can be avoided by
pre- and post-multiplication with P−1

ℓ
(and of course by defining new variables).

However, by doing this, a new nonlinear term P−1
ℓ

TℓDαDβP−1
ℓ

would be intro-
duced.

For the first issue, we can limit our search for Metzler matrices to the cases in which the
diagonal elements µi i are all equal to each other (as is also done in [49, 73, 75]). Later on,
this choice will help us to transform (8.44) into an LMI, although it is a more conservative
approach, in general.

For the second issue, we use a transformation that brings the nonlinear functions
fi in (8.1) into the sector [0,1]. Using this transformation, we can eliminate the term
TℓDαDβ from the upper left component of (8.44). The transformed system, with non-
linear functions f̄i bounded in the sector [0,1], has the following structure:

ẋ(t)=Āσ(t ) x(t)+Bσ(t )u(t)+ Ēσ(t ) f̄
(
x(t)

)
+Hσ(t )ω(t), (8.52)

u(t) =K̄σ(t ) x(t)+ F̄σ(t ) f (x), (8.53)

y(t)=Cσ(t ) g
(
x(t)

)
, (8.54)

with the following system matrices:

Āσ(t ) = Aσ(t ) +Eσ(t )Dα, Ēσ(t ) = Eσ(t )Γ,

K̄σ(t ) = Kσ(t ) +Fσ(t )Dα, F̄σ(t ) = Fσ(t )Γ, (8.55)

where Dα = diag{α1, . . . ,αn }, Γ= diag{β1 −α1, . . . ,βn −αn }, and f̄i defined as

f̄i (xi ) =
1

βi −αi

(
fi (xi )−αi xi

)
. (8.56)

Moreover, the Lyapunov function (8.34) has to be adapted to the transformed system.
Therefore, we have

V̄ℓ(x) = xTP̄ℓx +2
n∑

i=1
λ̄i

∫xi

0
f̄i (ξ)dξ, (8.57)

where

P̄ℓ = Pℓ+diag
{
α1λ1, . . . ,αnλn

}
, (8.58)

λ̄i =λi (βi −αi ). (8.59)

It should be noted that this transformation does not introduce any conservatism. The
following theorem provides the design tools for robust H∞ control of the transformed
switched system (8.52)–(8.54).
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Theorem 8.5. Suppose there exist positive definite matrices Qℓ and Sℓ, positive diagonal

matrices Z and Uℓ, matrices Wℓ,Yℓ, and scalar µ̄< 0, such that the following problem:

min{
Qℓ

}N

ℓ=1 ,
{

Wℓ

}N

ℓ=1,
{

Yℓ

}N

ℓ=1,
{

Sℓ

}N

ℓ=1,
{

Uℓ

}N

ℓ=1 ,Z ,ρ,µ̄

ρ (8.60)

subject to:




ĀℓQℓ+Qℓ ĀT
ℓ
+BℓWℓ+W T

ℓ
B T
ℓ
+ µ̄Qℓ ⋆ ⋆ ⋆ ⋆

ĀℓQℓ+BℓWℓ+Y T
ℓ

B T
ℓ
+Z ĒT

ℓ
+Sℓ BℓYℓ+ ĒℓZ +Z ĒT

ℓ
+Y T

ℓ
B T
ℓ
−Uℓ ⋆ ⋆ ⋆

HT
ℓ

HT
ℓ

−ρI ⋆ ⋆

‖Cℓ‖F∆Qℓ 0 0 −I ⋆

−µ̄Qℓ 0 0 0 µ̄Q j



< 0,

(8.61)
[

Qℓ Qℓ

Qℓ D−1
α,(1)(Dβ−Dα)Z

]
> 0, ∀ℓ, j ∈ {1, . . . , N }, ℓ 6= j (8.62)

has an optimal solution, then the switching rule

σ̄(t) = r̄ (x(t)) = arg min
ℓ=1,...,N

V̄ℓ(x(t)), (8.63)

with P̄ℓ =Q−1
ℓ

and Λ̄= Z−1, along with the state feedback control law

u(t) = K̄ℓx(t)+ F̄ℓ f̄ (x(t)), (8.64)

with K̄ℓ = WℓQ−1
ℓ

, F̄ℓ = YℓZ−1, make the closed-loop switched system (8.52)–(8.54) glob-

ally asymptotically stable in the absence of disturbances, and further, guarantee the min-

imized upper bound γ=p
ρ for the L2-gain.

Proof. We use a backward reasoning approach. First, we consider a Metzler matrix with
equal diagonal elements, i.e. µi i = µ̄, µ̄< 0. This implies that µ̄−1 ∑N

j=1, j 6=ℓµ jℓ = 1 (note

that only µ̄ is preserved in the final optimization problem (8.60)–(8.62)). Taking this into
account, the Schur complement is performed to (8.61) with respect to the last row and
column. Multiplying the result by µ jℓ, summing up for all j 6= ℓ and multiplying by µ̄−1

will yield





ĀℓQℓ +Qℓ ĀT
ℓ
+BℓWℓ+W T

ℓ
BT
ℓ
+

N∑

j=16=ℓ
µ jℓ(QℓQ−1

j
Qℓ −Qℓ) ⋆ ⋆ ⋆

ĀℓQℓ +BℓWℓ+Y T
ℓ

BT
ℓ
+Z Ē T

ℓ
+Sℓ BℓYℓ+ ĒℓZ +Z Ē T

ℓ
+Y T

ℓ
BT
ℓ
−Uℓ ⋆ ⋆

HT
ℓ

HT
ℓ

−ρI ⋆

‖Cℓ‖F∆Qℓ 0 0 −I



< 0,

∀ℓ ∈ {1, . . . , N }. (8.65)

Now, we pre- and post-multiply (8.65) by the matrix diag{Q−1
ℓ

, Z−1, I , I } with Q−1
ℓ

=
P̄ℓ, Z−1 = Λ̄, and next, we change the variables WℓQ−1

ℓ
= K̄ℓ, YℓZ−1 = F̄ℓ, SℓQ−1

ℓ
= 0.5T̄ℓ,

and finally UℓZ−1 = T̄ℓ. Furthermore, we assign a new matrix Tℓ to be equal to the posi-
tive diagonal matrix Λ̄T̄ℓ. Applying again the Schur complement to the resulting matrix
with respect to the fourth row and column, rearranging terms and pre-multiplying by
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[xT, f̄ T(x),ωT] and post-multiplying by its transpose yields



x

f̄ (x)
ω





T 


P̄ℓ(Āℓ+BℓK̄ℓ)+ (Āℓ+BℓK̄ℓ)TP̄ℓ ⋆ ⋆

(Ēℓ+BℓF̄ℓ)TP̄ℓ+ Λ̄(Āℓ+BℓK̄ℓ) Λ̄(Ēℓ+BℓF̄ℓ)+ (Ēℓ+BℓF̄ℓ)T
Λ̄ ⋆

H T
ℓ

P̄ℓ H T
ℓ
Λ̄ 0








x

f̄ (x)
ω





︸ ︷︷ ︸
∂V̄ℓ
∂x

(
Āℓx+Bℓu+Ēℓ f̄ (x)+Hℓω

)

<
[

x

f̄ (x)

][
0 ⋆

− 1
2Tℓ Tℓ

][
x

f̄ (x)

]
−

N∑

j=1
µ jℓxTP̄ j x −‖Cℓ‖2

FxT
∆

2x +ρωTω. (8.66)

Now the final matrix inequality has the form of (8.61), but with αi = 0,βi = 1 for the
transformed system.

The positive-definiteness of the Lyapunov functions (8.34) defined for the origi-
nal system should be preserved under the proposed transformation. Pre- and post-
multiplying (8.62) by the diagonal matrix diag{Q−1

ℓ
, I }, and then performing the Schur

complement to the result, we obtain

P̄ℓ−Dα,(1)(Dβ−Dα)−1
Λ̄> 0, (8.67)

since Q−1
ℓ

= P̄ℓ and Z−1 = Λ̄. Now we use the fact that Dα = diag{αi } can be written as
subtraction of two positive definite diagonal matrices, i.e. Dα =Dα,(1)−Dα,(2). Therefore,
(8.67) guarantees

P̄ℓ−Dα(Dβ−Dα)−1
Λ̄> 0. (8.68)

On the other hand, using (8.58)–(8.59), we get

0 <P̄ℓ−Dα(Dβ−Dα)−1
Λ̄= Pℓ+DαΛ−Dα(Dβ−Dα)−1(Dβ−Dα)Λ= Pℓ. (8.69)

Finally, adding and subtracting the term DαΛ from the condition Q−1
ℓ

= P̄ℓ > 0, yields

0 < P̄ℓ−DαΛ+DαΛ= Pℓ+DαΛ. (8.70)

Condition (8.70) has the form of (8.18) which ensures positive-definiteness of Lyapunov
functions (8.34).

Remark 8.5. Note that if the variable µ̄ is fixed, the optimization problem (8.60)–(8.62)

can be efficiently solved by any LMI solver. However, the optimal value of µ̄ correspond-

ing to the minimum gain γ=p
ρ can be obtained by a line search method together with

feasibility checking of an LMI.

Proposition 8.2. The switching law σ determined by (8.38) with

λi = (Z−1)i i · (βi −αi )−1, (8.71)

Pℓ =Q−1
ℓ −Z−1 ·diag

{ α1

β1 −α1
, . . . ,

αn

βn −αn

}
, (8.72)

together with the state feedback control law (8.2) with gains

Fℓ = F̄ℓΓ
−1, Kℓ = K̄ℓ−FℓDα (8.73)

make the closed-loop switched system (8.1)–(8.3) globally asymptotically stable for ω≡ 0,

and guarantee the upper bound γ for the L2-gain (obtained from optimization (8.60)-

(8.62)) for disturbance signals that belong to the L2 space. The proof follows directly from

the relations between the system matrices of the original and the transformed system.
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8.6. CASE STUDIES

In order to illustrate the performance of the proposed robust switching control ap-
proach and also to emphasize that other methods in the literature are not able to cope
with the more general cases we discussed in this chapter, we present two examples in
this section.

8.6.1. EXAMPLE 1
We choose an example of the switched nonlinear system (8.1)–(8.3) with the following
nonlinear functions:

f1(x1) =
{

|sin(x1)| −π< x1 < π

0 otherwise
(8.74)

f2(x2) =
{

2x2 0 ≤ x2

0.5x2 0 > x2
(8.75)

and the system matrices

A1 =
[

4 1
2.3 3

]
, A2 =

[
−2 1
2 4

]
, A3 =

[
2 −1
−7 4

]
(8.76)

E1 =
[

2 8
−3 1

]
, E2 =

[
−3 5
0 2

]
, E3 =

[
4 8
−1 1

]
, (8.77)

and Hℓ = I2×2, Bℓ = [1,1]T, Cℓ = [1,1]. Moreover, gi (xi ) = xi and the disturbance signals
are taken as ω1(t) = ω2(t) = 100, for 0 ≤ t ≤ 1, and otherwise equal to zero. Note that
none of the subsystems has matrices with negative eigenvalues and hence all are not
stable. Moreover, the function f1 does not have an unbounded integral as it is required
for the methods in [132] and [4]. On the other hand, since the function f2 consists of
linear functions with different slopes, our approach (which is able to cope with arbitrary
sector bounds) would be less conservative in tackling the stability and control problem.
Now following the design procedure in Theorem 8.5 with sector bounds (α1,β1) = (−1,1)
and (α2,β2) = (0.5,2), the state feedback control law (8.2) along with the switching rule
(8.38) make the equilibrium x = 0 globally asymptotically stable in the absence of distur-
bance. Using a line search method and the convex optimization problem (8.60)–(8.62)
(solved using the Yalmip toolbox and the SeDuMi solver), the best value obtained for γ
is 0.1318. Moreover, the obtained matrices for the Lyapunov functions are

P1 =
[

10.3307 −10.3314
−10.3314 10.3323

]
, P2 =

[
9.4144 −9.4169
−9.4169 9.4197

]

P3 =
[

11.4676 −11.4666
−11.4666 11.4658

]
, Λ=

[
0.5078 0

0 0.2979

]

Furthermore, the resulting feedback gain matrices are

K1 = 104 ·
[
4.8258 −5.9892

]
, F1 =

[
4.6502 −5.2399

]

K2 = 104 ·
[
4.2731 −5.0686

]
, F2 =

[
1.6438 −3.3400

]

K3 = 105 ·
[
−1.2504 1.0872

]
, F3 =

[
2.3197 −4.6176

]
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Figure 8.1: (a) State evolution of the closed-loop system, (b) Switching signal selecting the active subsystem

As depicted in Fig. 8.1, the designed switching control strategy is able to reduce the ef-
fects of severe disturbance signals influencing the system in the period [0,1] and fur-
thermore, makes the closed-loop system stable. The response of the system contains
oscillations with a very small amplitude, mainly because of function (8.74).

For the simulated example and the given disturbance inputs, the actual L2-gain cal-
culated based on the simulation is 0.0529, which is indeed smaller than the upper bound
γ∗ = 0.1318.

8.6.2. EXAMPLE 2
In this section, the urban network case study discussed before in Section 7.5 of Chapter 7
is selected again. We will show that the MFD-based two-region model can be considered
as a sector-bounded switched nonlinear system and therefore, we can take advantage of
the proposed robust switching control design presented in this chapter.

SET-UP

First, we review the model’s structure. For an urban network divided into two regions (as
in Fig. 8.2): the periphery (region 1) and the city center (region 2), a hybrid MFD-based
model is formulated as follows:

ṅ1(t) =−G1, j (n1(t)) ·u(t)+ω1(t), (8.78)

ṅ2(t) =−G2, j (n2(t))+G1, j (n1(t)) ·u(t)+ω2(t), (8.79)
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Figure 8.2: Schematic two-region urban network.

where ni (t), i = 1,2, is the accumulation in region i at time t . The trip completion flow
Gi , j (ni (t)) (veh/s) is defined as the rate of vehicles reaching their destinations [71]. The
timing plans for intersections inside each region can be altered. Consequently, instead
of one MFD, a set of MFDs (each corresponding to a different timing plan) is defined.
Therefore, Gi , j , with j = 1, . . . , Ni , constitute the MFDs for region i , with Ni the total
number of MFDs (timing plans) defined for region i .

The perimeter control u ∈ [0,1] may restrict vehicles to transfer between regions (in
our case, the flow of vehicles is restricted from region 1, the periphery, to region 2, the
city center). The perimeter control can be realized by e.g. coordinating green and red
durations of signalized intersections placed on the border between two regions.

We assume that each of the regions has three timing plans and therefore three MFDs
(N1 = N2 = 3). Each MFD is modeled by an exponential function Gi , j (n2) = 1/3600 ·ai , j ·
ni ·exp(−1/2 · (ni /ni ,cr, j )2), i ∈ {1,2}, j ∈ {1, . . . ,3}. The parameters used in our simulation
are as follows:

G1, j : a1,1 = 17.8 (1/h), a1,2 = 9.75 (1/h), a1,3 = 13 (1/h), n1,cr, j = 3500 (veh)

G2, j : a2, j = a1, j /1.3, n2,cr, j = n1,cr, j /1.2

Furthermore, the perimeter control input u is assumed as to be a quantized input that
can take values from the set {0.1,0.3,0.5,0.7,0.9}.

By quantizing the perimeter control input, the MFD-based model (8.78)–(8.79) can
be reformulated in the format of the switched system (8.1)–(8.3). The quantized perime-
ter input introduces 5 modes. Each region is assumed to have 3 MFDs. Therefore, the
total number of modes (subsystems) will be 3×3×5 = 45. The resulting system matrices
are as follows (we only mention E1; for other subsystems the structure of the E matrix is
the same, only the MFD coefficients ai , j and the value for the perimeter control input
differ.):

Aℓ = 0, Bℓ = 0, Hℓ =
[

1 0
0 1

]
, Cℓ =

[
1 0
0 1

]
, (8.80)

E1 =
[
−0.1 ·a1,1/3600 0
0.1 ·a1,1/3600 −a2,1/3600

]
, · · · (8.81)
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Figure 8.3: Trip demands: region 1 to 2 (ω1), and inside region 2 (ω2).

The sector bounded nonlinear function f = [ f1, f2]T is

f =
[

n1 ·exp

(
−0.5(

n1
n1,cr

)2
)
,n2 ·exp

(
−0.5(

n2
n2,cr

)2
) ]T

. (8.82)

For the sector slopes we take (α1,β1) = (0.0168,0.607) for f1 and (α2,β2) = (0.0028,0.655)
for f2. Moreover, the output function g in (8.3) is [n1,n2]T.

The assumed trip demands are depicted in Fig. 8.3. The uncertainty in the demands
is modeled using zero mean white Gaussian noise with variance 0.2 (veh2/s2) added to
the average profiles. Moreover, we have included a sudden jump in ω2 to evaluate the
robustness of our control approach.

RESULTS AND DISCUSSION

The matrices of the Lyapunov functions along with the minimum upper bound for the
L2-gain are determined offline by solving (8.60)–(8.62) using the Yalmip toolbox and the
SeDuMi solver. For simulation, we use the model (8.78)–(8.79) along with the noisy de-
mand profiles depicted in Fig. 8.3. The accumulations are measured and plugged into
the switching law (8.38) to determine the active subsystem (and subsequently, to obtain
the specific MFD and the proper perimeter control input). The converted control inputs
are applied to the simulation model (used to represent the real traffic network). The ob-
tained results are depicted in Fig. 8.4. As can be inferred from Fig. 8.4(a), the switching
control stabilizes the system and also significantly reduce the effects of the trip demands
(disturbances).

Moreover, in order to demonstrate the effectiveness of the proposed control strat-
egy, the results are compared with two control strategies. In the first one, a greedy feed-
back controller is designed as follows: if the accumulation of the center is higher than
the critical one, the perimeter control input is set to the minimum and otherwise to
the maximum. Nine combinations are possible based on the number of MFDs defined
for each region. In all cases, one or both regions end up in the gridlock situation. In
Fig. 8.4(b), we have illustrated the performance of the greedy controller with MFDs G1,1

and G2,1 fixed for each region, respectively. In the second control strategy, we imple-
ment an MPC scheme based on the method presented in Chapter 4. For the prediction
model, we use a discretized form of (8.78)–(8.79) with Ts = 30 s and Tc = 60 s. Moreover,
the MPC controller is supplied by the information about the average time evolution of
the trip demands, i.e. without the additive noise and without the sudden jump.



8.7. CONCLUDING REMARKS

8

141

0 500 1000 1500 2000 2500 3000 3500

2000

4000

6000

8000

10000

Time (s)

A
cc

um
ul

at
io

n 
(v

eh
)

 

 
n

1
n

2

(a)

0 500 1000 1500 2000 2500 3000 3500

2000

4000

6000

8000

10000

Time (s)

A
cc

um
ul

at
io

n 
(v

eh
)

 

 

n
1

n
2

(b)

Time (s)
0 500 1000 1500 2000 2500 3000 3500

A
cc

um
ul

at
io

n 
(v

eh
)

0

2000

4000

6000

8000

10000
n

1
n

2

(c)

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time (s)
P

er
im

et
er

 in
pu

t (
−

)

 

 
u

(d)

0 500 1000 1500 2000 2500 3000 3500
1

1.5

2

2.5

3

Time (s)

T
im

in
g 

pl
an

 (
M

F
D

) 
fo

r 
re

gi
on

 1

(e)

0 500 1000 1500 2000 2500 3000 3500

1

1.5

2

2.5

3

Time (s)

T
im

in
g 

pl
an

 (
M

F
D

) 
fo

r 
re

gi
on

 2

(f)

Figure 8.4: Accumulations: (a) Robust switching control, (b) greedy feedback controller, (c) MPC scheme. Con-
verted control inputs from the designed switching signal: (d) perimeter signal, (e) switching between MFDs of
region 1, (f) switching between MFDs of region 2.

As can be inferred from Fig. 8.4(a) and (c), the performance of the MPC scheme is
better than the robust controller before the sudden jump occurs in the trip demand ω1.
However, since MPC does not have information about the jump, the congestion builds
up again until the demand flow reduces to the lower level. Note that in the robust con-
trol case, there is also increase in the accumulations but it is less than in the MPC case.
Furthermore, the best performance of the MPC scheme is achieved with Np = 30 and
Nc = 2 (further increasing Np and Nc does not have considerable effects in this case).

Furthermore, the robust control strategy is computationally efficient (compared to
MPC), as it only requires computing 45 Lyapunov functions and determining the index
of the active sub-system during the simulation period. Moreover, setting the initial ac-
cumulations to zero, the actual L2-gain is 0.1237·3600 which is lower than the theoretical
upper bound 0.1418 ·3600 obtained by solving optimization problem (8.60)–(8.62).

8.7. CONCLUDING REMARKS

In this chapter, we have considered stability analysis and H∞ control for a class of
switched nonlinear systems with general point symmetric sector conditions and with
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arbitrary sector slopes. Combining multiple Lyapunov functions that contain both
quadratic functions of the state and integrals of the nonlinearities of the system, we
have formulated stability conditions under arbitrary switching in the form of matrix in-
equalities. Furthermore, the design of robust stabilizing controllers is proposed as a
bi-level optimization problem where the high-level problem is non-convex in a single
scalar variable only and the low-level problem is convex. This is a great advantage in
contrast to the general case for switched nonlinear systems, which is based on search-
ing for Lyapunov functions without a pre-defined structure and which involves solving
multi-parametric optimization problems.

Possible extensions to the current work are 1) introducing different sector bounds for
different quadrants to better characterize the sector-bounded nonlinear functions and
to reduce the conservatism even more, 2) investigating the possibility of using polyno-
mial Lyapunov functions [33] for stability analysis, and 3) calculating the largest sector
bounds that ensure stability.



9
STABILIZATION AND ROBUST

CONTROL FOR MIXED SWITCHING

AFFINE SYSTEMS

This chapter presents stability analysis and robust H∞ control for a general class of
switched systems characterized by nonlinear functions. The proposed approach con-
sists in approximating the switched nonlinear system with a switched affine system that
has a mixture of controlled and autonomous switching behavior. Utilizing a joint poly-
hedral partitioning approach, we propose a stabilizing switching law based on quadratic
Lyapunov functions and with taking into account the autonomous switching between
polyhedral regions. In order to ensure the decrease of the overall Lyapunov function, we
propose two approaches. The first method consists in guaranteeing continuity of the
Lyapunov function over the boundaries of polyhedral regions. The second approach is
based on relaxing the continuity requirement by using additional matrix inequalities.
The second approach is less conservative but has more variables and matrix inequal-
ities than the first method. If one scalar variable is fixed, the stabilization conditions
will have the form of linear matrix inequalities (LMIs). Moreover, we extend the two
proposed methods for robust H∞ control. The design procedures result in bi-level op-
timization problems that are nonconvex only in a single scalar variable while the lower-
level problems are convex. Furthermore, we present sufficient conditions for stabilizing
the original switched nonlinear system using the proposed switching schemes. Finally,
through several worked examples, we demonstrate the performance of the proposed
stabilization and robust control methods.

143
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9.1. INTRODUCTION

A S discussed in the previous chapters, in contrast to the switched linear case, there
is no concrete procedure for stability analysis and control of general nonlinear sys-

tems. Stability analysis for switched nonlinear systems has been investigated for par-
ticular cases only, e.g. for switched nonlinear systems with generalized homogeneous
mappings [244], for a class of switched nonlinear systems with nonminimum phase
modes [236], and for sector-bounded switched nonlinear systems [4, 93], as presented
in Chapter 8. In [35, 55], a multiple Lyapunov functions approach is proposed for sta-
bility analysis under arbitrary switching and design of stabilizing controllers. However,
as stated in [35], the difficult part is to search for suitable Lyapunov functions. Even if
one manages to find a proper structure for the Lyapunov function candidates, the de-
sign procedure would in general involve solving multi-parametric optimization prob-
lems subject to nonlinear inequality constraints that have multiplication of matrices and
state variables.

Therefore, in this chapter we aim at tackling the stability problem for switched non-
linear systems with smooth nonlinear functions using a different and novel framework.
The main idea is to approximate each nonlinear subsystem with a piecewise affine func-
tion. In this way, we obtain a switched system composed of piecewise affine subsystems
and a controllable switching signal that orchestrates the switching between PWA sub-
systems. Note that there also exists an autonomous type of switching between these
affine functions of each PWA subsystem. This autonomous switching makes the stabil-
ity analysis and control of such system a tedious task.

This chapter has four main contributions. The first contribution is the design of a
stabilizing switching law for the mixed switched affine system. The design conditions
are in the form of linear matrix inequalities. Compared to the existing min switching
techniques [73, 74], which are based on the Metzler matrices, the proposed approach
is less conservative. The key feature is to replace the elements of a Metzler matrix with
matrix variables. This however comes at the price of introducing more variables in the
stability conditions. The second contribution is to relax the continuity of the Lyapunov
functions over the boundaries of partitions (which is essential for the methods proposed
in [197, 204]) using additional linear matrix inequalities. The third contribution is the
design of robust switching and state feedback controllers for reducing the effects of dis-
turbances. The design procedure is formulated as a bi-level optimization problem that
consists of line search on the higher level along with a convex optimization problem on
the lower level. Finally, the last main contribution is to present sufficient conditions for
which the proposed switching control schemes would be able to stabilize the original
switched nonlinear system.

Stabilization of the mixed switched affine system is performed using multiple
quadratic Lyapunov functions and a min switching strategy. However, as mentioned
in [197], the decrease of the overall Lyapunov function should be ensured in order to
obtain global asymptotic stability. To this aim, [197] parameterized the Lyapunov func-
tions using matrices that define the boundary between polyhedral regions. In this way,
the overall piecewise quadratic Lyapunov function will by construction be continuous
over the boundaries of regions. Instead of doing that, in this work, we propose two ap-
proaches to either enforce continuity of the Lyapunov function on the boundary be-
tween regions, or to guarantee decrease of the overall Lyapunov function. In the first
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approach, we use additional equality constraints to impose continuity over boundaries.
This makes the design of robust state feedback controllers easy, since we do not limit
the matrices of the Lyapunov function to take a particular structure [99, 197, 204]. In
the second approach, we propose less conservative conditions in which the continuity
of the Lyapunov function over the boundaries of the polyhedral regions is relaxed and
instead, through additional inequality constraints, the decrease of the overall Lyapunov
function is ensured.

Next, we further extend these two approaches to the joint design of stabilizing
switching laws and state feedback controllers to attenuate the effects of disturbances on
the switched system. Using linear matrix inequality (LMI) techniques, we formulate the
design conditions in the form of an optimization problem that is non-convex in a single
scalar variable only. The optimization problem can be recast as a convex optimization
problem along with a line search on the single scalar variable.

Finally, the connection of the control scheme and the original switched nonlinear
system is discussed. Since the design conditions are developed based on the approxi-
mated switched affine system, there might be a performance deterioration or even in-
stability if the proposed controllers are connected to the switched nonlinear system.
Therefore, sufficient conditions to guarantee stability of the original switched nonlin-
ear system are determined based on the accuracy of the approximated switched affine
system.

The chapter is organized as follows. In Section 9.2, we discuss the switched nonlin-
ear system and the way it is approximated by a switched affine system with integrated
autonomous and controlled switching. Section 9.3 presents two procedures for the de-
sign of stabilizing switching rules. In Section 9.4, we formulate the robust H∞ control
of the switched affine system. Stabilization of the original switched nonlinear system
using the proposed switching control schemes is discussed in Section 9.5. Next, through
several worked examples in Section 9.6, we illustrate the performance of the proposed
stabilization and robust control methods. The chapter concludes with further discus-
sion of the obtained results and remained challenges.

9.2. PROBLEM STATEMENT

Consider the following switched nonlinear system

ẋ(t)= fσ(t )
(
x(t)

)
+Gσ(t )u(t)+Hσ(t )ω(t), (9.1)

y(t) =Cσ(t )x(t), (9.2)

with x ∈ Rn the state, u ∈ Rnu the control input, ω ∈ Rnω the disturbance input, and y ∈
R

ny the output of the system. The switching signal is denoted by σ(·), which is assumed
to be piecewise constant over time. The variable σ(t) takes values from a pre-defined
index set. In other words, for each value that σ(t) assumes, the state space model (9.1)–
(9.2) is governed by different vector functions fi from the following set:

fσ(t ) ∈ { f1, . . . , fN } (9.3)

A function φ : Ω → R
m is PWA if there exists a polyhedral partition {Ωi }i∈I (∪i∈IΩi =

Ω, Ωi 6=∅, int(Ωi )∩ int(Ω j ) =∅, ∀i 6= j ) of Ω ⊆ Rn such that φ is affine on each poly-
hedron Ωi . By considering a sufficiently large number of regions, one can smoothly ap-
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proximate nonlinear functions fi by PWA functions with arbitrary accuracy. The piece-
wise affine (PWA) approximation of fi will have the following form:

fi (x) ∼=
(

Ai ,ℓ ·x +bi ,ℓ
)
, if x ∈Xi ,ℓ , (9.4)

with Ai ,ℓ(n × n) and bi ,ℓ(n × 1), Xi ,ℓ the corresponding polyhedron, and ℓ ∈ Mi =
{1, . . . , Mi }, with Mi the number of polyhedral partitions for the function fi .

Now the switched system (9.1) can be approximated by the following switched affine
system:

ẋ(t) = Aσ(t ),ℓx(t)+bσ(t ),ℓ+Gσ(t )u(t)+Hσ(t )ω(t), (9.5)

y(t)=Cσ(t )x(t), if x ∈Xσ(t ),ℓ, (9.6)

where the controlled switching signal σ takes values from the set N = {1, . . . , N }, with N

the total number of affine subsystems.
Note that two types of switching are integrated in (9.5), one associated with switch-

ing between affine functions describing the dynamics of each PWA subsystem i ; this
type of switching is therefore uncontrolled, and the other one is the controlled switch-
ing between subsystems driven by σ. In the following sections, the focus is first on the
stabilization and robust control of (9.5) and next, on connecting the obtained results to
the stability problem for the original switched nonlinear system (9.1). Before proceed-
ing, two useful lemmas from the literature are presented.

Lemma 9.1 (Finsler Lemma [128, 208]). Let x ∈ Rn , Q ∈ Rn×n and B ∈ Rm×n such that

rank(B) < n. The following statements are equivalent:

• xTQx < 0, ∀x 6= 0 such that B x = 0

• B⊥T
QB⊥ < 0

• ∃λ ∈R : Q −λBTB < 0

• ∃ζ ∈Rn×m : Q +ζB +BTζT < 0

where B⊥ = 0 is a basis for the null space of B, which means that each x 6= 0 such that

B x = 0 can be obtained as x = B⊥z, for some z 6= 0.

Lemma 9.2 (Matrix Inversion Lemma [180]). It can be easily proved that:

(
A −BD−1C

)−1 =A −1 +A −1B
(
D−C A −1B

)−1
C A −1 (9.7)

for matrices A ,B,C ,D with compatible dimensions and provided that all the inverses

exist (see page 147 of [180] for the proof).

9.3. STABILIZATION USING STATE-BASED SWITCHING

The main aim is to drive the state of system (9.5), with u,ω ≡ 0, to a desired state xr.
Given the desired state xr and the switched system (9.5), the error system can be formu-
lated as follows:

ė(t)= Aσ(t ),ℓe(t)+qσ(t ),ℓ+Gσ(t )u(t)+Hσ(t )ω(t), (9.8)

ye (t)=Cσ(t )e(t), if e ∈ Eσ(t ),ℓ (9.9)

e(t)= x(t)− xr, qσ(t ),ℓ = bσ(t ),ℓ+ Aσ(t ),ℓxr.



9.3. STABILIZATION USING STATE-BASED SWITCHING

9

147

X1 X2 X3 X4 X5

f1

f2

x

Figure 9.1: Example of the piecewise affine approximation of two nonlinear functions f1 and f2.

Now the aim is re-defined as to design a switching rule that asymptotically steers the
state of the error system to the origin.

Before proceeding with the main results, a joint partitioning of the state space is pre-
sented that helps with the design procedure. The main motivation is that the functions
fi in (9.1) may not all be approximated using the same number of affine functions and
also, not with the same polyhedral regions. Therefore, as depicted in Fig. 9.1, even if the
number of affine pieces is not the same for all nonlinear functions, we can split the affine
functions in such a way that the number of affine functions will be identical for all non-
linear functions fi and moreover, the polyhedral regions will be common for all piece-
wise affine subsystems. For instance, in Fig. 9.1, 5 polyhedral regions are defined and the
number of affine functions approximating each nonlinear function fi is extended to 5 in
order to provide a common partitioning of the state space for all subsystems (note that
each nonlinear function fi is originally approximated by 3 affine functions but in order
to create a common partition of the state space with same boundaries for both func-
tions, the number of affine functions (and regions) is extended to 5). Since we provide a
common partitioning for all subsystems, from now we use Eℓ instead of Eσ(t ),ℓ.

Each polyhedral region Eℓ is characterized by:

Fℓe + fℓ ≥ 0, iff e ∈ Eℓ, (9.10)

where the inequality is element-wise. Further, (9.10) can be reformulated as follows:

F̄ℓ

[
e

1

]
≥ 0, F̄ℓ =

[
Fℓ fℓ

]
. (9.11)

Furthermore, the boundary hyperplane for each pair of neighboring regions Eℓ and Eℓ′

is represented by

hT
ℓℓ′e + gℓℓ′ = 0 ⇔

[
hT
ℓℓ′ gℓℓ′

]
︸ ︷︷ ︸

h̄T
ℓℓ′

[
e

1

]
= 0 (9.12)
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Moreover, for each polyhedral region Eℓ,ℓ ∈M = {1, . . . , M}, with M the total number
of polyhedral regions (number of affine functions associated to each subsystem), the
following auxiliary functions are defined:

Vi ,ℓ(e) =
[

e

1

]T [
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

]

︸ ︷︷ ︸
P̄i ,ℓ

[
e

1

]

︸︷︷︸
ē

, ∀i ∈N ,∀ℓ ∈M , (9.13)

with Pi ,ℓ ∈ Rn×n symmetric, si ,ℓ ∈ Rn , and ri ,ℓ ∈ R. For each Eℓ, a Lyapunov function is
proposed as follows:

Vℓ(e) = min
i∈N

Vi ,ℓ(e). (9.14)

The following theorem presents the design procedure for a stabilizing switching rule
that brings the state of the error system (9.8) to the origin, provided that at least for one
subsystem qi ,ℓ = 0 in the polyhedral regions containing the origin. This means that the
desired state xr is an (unstable or stable) equilibrium of at least one of the subsystems of
(9.5).

Theorem 9.1. Assume there exists at least one subsystem î with qî ,ℓ = 0 in regions con-

taining the origin. Moreover, suppose there exist symmetric matrices Pi ,ℓ and Ti , j ,ℓ , vec-

tors si ,ℓ, ζℓℓ′ , scalars ri ,ℓ, and symmetric matrices Uℓ, Zℓ with nonnegative elements that

satisfy

[
Pi ,ℓ Ai ,ℓ+ AT

i ,ℓPi ,ℓ ⋆

sT
i ,ℓ Ai ,ℓ +qT

i ,ℓPi ,ℓ qT
i ,ℓsi ,ℓ + sT

i ,ℓqi ,ℓ

]

−
∑

j∈N , j 6=i

Ti , j ,ℓ + F̄ T
ℓUℓF̄ℓ < 0,

∀(i ,ℓ) ∈
{
(i ,ℓ)∈N ×M |i 6= î

}
∪

{
(î ,ℓ) ∈N ×M |0∉ Eℓ

}
, (9.15)

P î ,ℓA î ,ℓ+ AT
î ,ℓ

P î ,ℓ−
∑

j∈N , j 6=î

Tî , j ,ℓ+F T
ℓUℓFℓ < 0, ∀ℓ ∈M : 0 ∈ Eℓ, (9.16)

Ti , j ,ℓ < µmin ·
([

Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

]
−

[
P j ,ℓ ⋆

sT
j ,ℓ r j ,ℓ

])
, ∀i , j ∈N , i 6= j , ∀ℓ ∈M , (9.17)

[
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

]
− F̄ T

ℓ ZℓF̄ℓ > 0, ∀i ∈N , ℓ ∈M , (9.18)

sî ,ℓ = 0, ∀ℓ ∈M : 0 ∈ Eℓ, (9.19)

r î ,ℓ < r j ,ℓ, ∀ j ∈N , j 6= î , ∀ℓ ∈M : 0 ∈ Eℓ, (9.20)
[

Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

]
=

[
Pi ,ℓ′ ⋆

sT
i ,ℓ′ ri ,ℓ′

]
+ h̄ℓℓ′ζ

T
ℓℓ′ +ζℓℓ′ h̄

T
ℓℓ′ ,

∀ℓ,ℓ′ ∈M : Eℓ∩Eℓ′ 6= ;, ∀i ∈N , (9.21)

for a given positive scalar µmin > 0. Then the switching rule1

σ(t) = arg min
i∈N

Vi ,ℓ(e(t)), if e(t) ∈ Eℓ, (9.22)

with Vi ,ℓ defined as in (9.13), will asymptotically bring the state of the error system (9.8),

with u,ω≡ 0, to the origin.
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x

X1X2

V1,1

V2,1V1,2

V2,2

Figure 9.2: Example of increase in the Lyapunov function at the boundary between regions. The overall
switched affine system might then become unstable.

x

X1X2

V1,1

V2,1

V1,2

V2,2

Figure 9.3: Example of preventing an increase in the overall Lyapunov function. At the boundary between re-
gions X1 and X2, the values of Lyapunov functions V1,1 and V1,2 coincide. Right after switching to region X2,
the switching rule (9.22) determines the minimum of the Lyapunov functions and switches to the correspond-
ing subsystem.
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Proof. Suppose that at an arbitrary time instant t ≥ 0 and based on the polyhedral region
ℓ in which the state of the error system resides, the switching law is given by σ(t) =
r (e(t))= i for some i ∈Iℓ(e) = {i : Vℓ(e) =Vi ,ℓ(e)}. Hence, following the definition of the
Dini derivative [35, 64], for our error system (9.8), we have

D+(
Vℓ(e)

)
= min

j∈Iℓ(e(t ))

[∂V j ,ℓ

∂e

(
A j ,ℓe +q j ,ℓ

)]
≤

∂Vi ,ℓ

∂e

(
Ai ,ℓe +qi ,ℓ

)
, (9.23)

where i denotes the index of the active subsystem in region ℓ determined from (9.22).
Pre-multiplying (9.15) by [eT,1] and post-multiplying by its transpose, using (9.17) and
also the fact that for the polyhedral region ℓ, (9.11) holds, and Uℓ has nonnegative en-
tries, we obtain

[
e

1

]T
[

Pi ,ℓ Ai ,ℓ+ AT
i ,ℓPi ,ℓ ⋆

sT
i ,ℓ Ai ,ℓ+qT

i ,ℓPi ,ℓ qT
i ,ℓsi ,ℓ+ sT

i ,ℓqi ,ℓ

][
e

1

]

︸ ︷︷ ︸
∂Vi ,ℓ
∂e

(
Ai ,ℓe+qi ,ℓ

)

<

∑

j∈N , j 6=i

[
e

1

]T

Ti , j ,ℓ

[
e

1

]
−

[
e

1

]T

F̄ T
ℓUℓF̄ℓ

[
e

1

]
<

[
e

1

]T ∑

j∈N , j 6=i

µmin

[
Pi ,ℓ−P j ,ℓ ⋆

sT
i ,ℓ− sT

j ,ℓ ri ,ℓ− r j ,ℓ

][
e

1

]

(9.24)

Now since for the active subsystem i , Vi ,ℓ ≤ V j ,ℓ,∀ j 6= i , j ∈ {1, . . . , N }, the last inequality
in (9.24) is less than zero, which means that the derivative of the Lyapunov function
Vi ,ℓ along the trajectory of the subsystem i in the polyhedral region ℓ is negative. The
same procedure is applied to (9.16). Note that (9.16) provides the same condition as in
(9.15) but with illuminating the rows and columns with zero elements. This condition
guarantees that the derivative of the Lyapunov function Vî ,ℓ would be zero only when
the state e is zero and the value of the Lyapunov function is less than the other Lyapunov
functions. Note that using the conditions (9.19) and (9.20) we ensure that the minimum
of the overall Lyapunov function occurs at the origin and the derivative of the active
Lyapunov function at the origin is zero.

Moreover, the Lyapunov functions (9.13) are not required to be positive definite in
the entire space but only in the active polyhedral region. This is ensured using constraint
(9.18) and it can be easily proved using (9.11).

In order to have global asymptotic stability, the decrease of the Lyapunov function
inside the polyhedral regions is not enough. As depicted in Fig. 9.2, the overall Lya-
punov function may increase over time and the state of the error system may then grow
unboundedly. Therefore, we should connect the Lyapunov functions in neighboring
polyhedral regions in such a way that the decrease in the overall Lyapunov function is
ensured. One way to tackle this problem is to equalize the values of the Lyapunov func-
tions Vℓ and Vℓ′ for the boundary hyperplane of neighboring regions Eℓ and E ′

ℓ
. Note that

at the boundary between polyhedral regions an uncontrolled switching between affine
functions of the same subsystem i occurs2. Therefore, we only need to connect the Lya-

1Note that in (9.22), we take the minimum argument, in case there are multiple minima Vi ,ℓ.
2Note that the uncontrolled switching may occur between affine functions of the same subsystem, since we

redefine and unify the partitions for all subsystems.
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punov functions associated with each subsystem i at the boundary between neighbor-
ing regions ℓ and ℓ′. Hence, we need

ēTP̄i ,ℓ ē = ēTP̄i ,ℓ′ ē, ∀e : h̄T
ℓℓ′ ē = 0 (9.25)

In order to recast (9.25) as an LMI, we define auxiliary vectors ζℓℓ′ and combine the two
equalities in (9.25) in the following way:

ēTP̄i ,ℓ ē = ēTP̄i ,ℓ′ ē + ēTh̄ℓℓ′ζ
T
ℓℓ′ ē + ēTζℓℓ′ h̄

T
ℓℓ′ ē. (9.26)

Since (9.26) should hold for all e, we can instead check the feasibility of the equality
(9.21).

Remark 9.1. Note that in case there are multiple subsystems of (9.8) that have an equilib-

rium at the origin, we assign the index î to one of them arbitrarily and check the feasibility

of the conditions in Theorem 9.1. In case the conditions are found to be infeasible, we can

assign the index î to another subsystem and repeat the procedure.

Remark 9.2. In order to solve the LMIs (9.15)–(9.21), one should set a value for µmin. In

fact, µmin is acting like a bound on the elements of a Metzler matrix. Instead of constrain-

ing the diagonal elements of a Metzler matrix to be identical (as is suggested in [35, 73]),

we fix a lower bound for all the elements and moreover, we introduce auxiliary matrix

variables Ti , j ,ℓ. These two steps will make the approach less conservative. Hence, in order

to solve the feasibility problem (9.15)–(9.21), one can set a value for µmin and next, solve

the resulting LMIs.

Constraint (9.21) could be conservative in the sense that subsystem i in region ℓ

might not become active right before the uncontrolled switching at the boundary be-
tween regions ℓ and ℓ′. Therefore, the following theorem is proposed in which con-
straint (9.21) is removed and instead, we impose constraints on the Lyapunov functions
of the active subsystems at the boundary between polyhedral regions.

Theorem 9.2. Assume there exist symmetric matrices Pi ,ℓ , Ti , j ,ℓ, Ri , j ,ℓ , vectors si ,ℓ, ζℓℓ′ ,
scalars ri ,ℓ, βmin > 0,µmin > 0, and symmetric matrices Uℓ, Zℓ with nonnegative elements

that satisfy (9.15)–(9.20) and the following matrix inequalities:

P̄i ,ℓ′ − P̄ j ,ℓ−Ri , j ,ℓ + h̄ℓℓ′ζ
T
ℓℓ′ +ζℓℓ′ h̄

T
ℓℓ′ ≤ 0, (9.27)

Ri , j ,ℓ <βmin(P̄i ,ℓ− P̄ j ,ℓ), (9.28)

∀i , j ∈N , i 6= j , ∀ℓ,ℓ′ ∈M : Eℓ∩Eℓ′ 6= ;,

then the switching rule (9.22) with Vi ,ℓ defined as in (9.13), will asymptotically bring the

state of the error system (9.8) to the origin.

Proof. We consider a transition from region Eℓ to region Eℓ′ . Pre- and post-multiplying
(9.27) and (9.28) by ēT and by its transpose respectively, will result in

Vi ,ℓ′ −V j ,ℓ+ ēTh̄ℓℓ′ζ
T
ℓℓ′ ē + ēTζℓℓ′ h̄

T
ℓℓ′ ē︸ ︷︷ ︸

=0, if e∈Eℓ∩Eℓ′

≤ ēTRi , j ,ℓ ē <βmin(Vi ,ℓ−V j ,ℓ), ∀ℓ,ℓ′M : Eℓ∩Eℓ′ 6= ;

(9.29)
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Now if at the boundary between regions Eℓ and Eℓ′ , subsystem i is active, which means

βmin(Vi ,ℓ−V j ,ℓ) ≤ 0, ∀ j ∈N , (9.30)

then, due to (9.29), Vi ,ℓ′ ≤V j ,ℓ, ∀ j ∈N . Hence, the value of the Lyapunov function Vi ,ℓ′

for the subsequent polyhedral region Eℓ′ would be

Vi ,ℓ′ ≤ min
j∈N , j 6=i

V j ,ℓ (9.31)

The same reasoning holds for moving from region Eℓ′ to Eℓ. In contrast to condition
(9.21), conditions (9.27)–(9.28) impose constraints only on the values of the Lyapunov
functions of the active subsystems at the boundaries and moreover, these values no
longer need to coincide with the ones of the respective subsystems in the previous re-
gions.

In the end, based on (9.31) we can conclude that the overall Lyapunov function for
the error system (9.8) will be decreasing and therefore, the error state would asymptoti-
cally approaches zero using the switching strategy (9.22).

Remark 9.3. With fixed scalar variables µmin and βmin, conditions (9.15)–(9.18) and

(9.27)–(9.28) will become LMIs. Therefore, the overall feasibility problem can be solved

using LMI solvers along with line search on µmin and βmin.

Remark 9.4. The previous results are developed without taking into account the possible

sliding modes inside polyhedral regions and/or on the boundaries. For inside the poly-

hedral regions we prove that even if a sliding mode occurs (as a result of switching be-

tween subsystems) it will be always stable. It can be shown that the time-derivative of the

minimum Lyapunov function is strictly negative along the Filippov solution of the system

(similar to the approach in Remark 2 of [73]), as follows (0≤ θi ,ℓ ,
∑

i∈N θi ,ℓ = 1):

∂V j ,ℓ

∂e

∑

i∈N

θi ,ℓ

(
Ai ,ℓe +qi ,ℓ

)
≤

∑

i∈N

θi ,ℓ
∂Vi ,ℓ

∂e

(
Ai ,ℓe +qi ,ℓ

)
< 0, for e ∈ Eℓ, (9.32)

where the last inequality is justified using the same reasoning as in (9.23) and (9.24), and

the first inequality holds from the fact that under sliding mode a switching from subsys-

tem j to subsystem i is allowed only if

∂V j ,ℓ

∂e
(Ai ,ℓe +qi ,ℓ) ≤

∂Vi ,ℓ

∂e
(Ai ,ℓe +qi ,ℓ). (9.33)

However, if there exist attractive sliding modes on the boundaries of polyhedral regions,

they should be taken into account in the stability analysis as it is also studied in [126]

for PWA systems. Similar to the approach of [126], if there exists a sliding set S of the

following general form:

S = {e| Φē ≥ 0∧Ψē = 0}, (9.34)

with Φ and Ψ the matrices characterizing the sliding set, then for neighboring polyhedral

regions Eℓ and Eℓ′ with Eℓ∩S 6= 0, Eℓ′ ∩S 6= 0, we need to have

∂Vi ,ℓ

∂e

(
Ai ,ℓ′ e +qi ,ℓ′

)
< 0, ∀e ∈S , ∀i ∈N , (9.35)
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in order to ensure the stability of the Filippov solutions. Since the uncontrolled switching

at the boundaries occurs only for the affine functions of the same subsystem, therefore in

(9.35) we require the negativeness of Vi ,ℓ only on the trajectories of the same subsystem i

in the neighboring region ℓ′. Using the S-procedure and the Finsler Lemma, the following

LMIs can be established:

P̄i ,ℓ Āi ,ℓ′ + ĀT
i ,ℓ′ P̄i ,ℓ+Φ

T
Λi ,ℓ,ℓ′Φ+ηi ,ℓ,ℓ′Ψ

T
Ψ< 0, ∀i ∈N , ∀ℓ,ℓ′ ∈M , (9.36)

with Λi ,ℓ,ℓ′ symmetric matrices with nonnegative elements, and ηi ,ℓ,ℓ′ scalar multipliers.

9.4. ROBUST SWITCHING CONTROL DESIGN FOR L2-GAIN

MINIMIZATION

In the previous section, we have discussed the stabilization problem for the switched
system (9.8)–(9.9) using only the controlled switching signal σ. In this section, we
synthesize switching laws together with the state feedback control input u in order to
asymptotically stabilize the error system and moreover, to minimize the effects of the
disturbance ω on the output ye (note that the extension of Theorems 9.1 and 9.2 for ro-
bust H∞ control of (9.5) using only the switching signal σ would be straightforward and
it is skipped for presentation in this chapter).

We assume that the disturbance vector ω belongs to the space of square integrable
functions, i.e. the L2 space. The switched system is said to have L2-gain bounded
above by γ > 0 under some switching law σ if the L2-norm of the output is bounded
by ‖ye‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] for all nonzero ω that belong to the L2-space and for initial
condition x(0) = 0 (to eliminate the transient response caused by nonzero initial condi-
tions). The following two theorems provide the design procedure to achieve the goals
mentioned above. Note that the desired state xr does not have to be an equilibrium of
any of the subsystems.

Note that in the following theorems we use the augmented system matrices and vec-
tors defined as follows [197]:

Āi ,ℓ =
[

Ai ,ℓ qi ,ℓ

01×n 0

]
, Ḡi =

[
Gi

01×nu

]
, H̄i =

[
Hi

01×nω

]
, C̄i =

[
Ci 0ny×1

]
(9.37)

Theorem 9.3. Assume there exist symmetric matrices Qi ,ℓ, Ti , j ,ℓ , positive definite matri-

ces Wℓ,Rℓ with nonpositive off-diagonal elements, and scalars λℓℓ′ such that the convex

optimization problem

minγ (9.38)

s.t.




Āi ,ℓQi ,ℓ+Qi ,ℓ ĀT
i ,ℓ+Ḡi Yi ,ℓ+Y T

i ,ℓḠT
i
−

∑
j∈N , j 6=i

Ti , j ,ℓ ⋆ ⋆ ⋆

H̄ T
i

−γI ⋆ ⋆

C̄i Qi ,ℓ 0 −I ⋆

F̄ℓQi ,ℓ 0 0 −Wℓ




< 0,

∀(i ,ℓ)∈
{
(i ,ℓ)∈N ×M |i 6= î

}
∪

{
(î ,ℓ) ∈N ×M |0∉ Eℓ

}
, (9.39)
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



A î ,ℓQ î ,ℓ+Q î ,ℓAT
î ,ℓ

+G î Yî ,ℓ+Y T
î ,ℓ

GT
î
−

∑

j∈N , j 6=î

Tî , j ,ℓ ⋆ ⋆ ⋆

H T
î

−γI ⋆ ⋆

C î 0 −I ⋆

FℓQ î ,ℓ 0 0 −Wℓ




< 0,

∀ℓ ∈M : 0 ∈ Eℓ, (9.40)
[

Qi ,ℓ−µ−1
minTi , j ,ℓ ⋆

Qi ,ℓ Q j ,ℓ

]
> 0, ∀i , j ∈N , i 6= j , ∀ℓ ∈M , (9.41)

[
Qi ,ℓ ⋆

F̄ℓQi ,ℓ Rℓ

]
> 0, ∀i ∈N , ∀ℓ ∈M , (9.42)

[
Q î ,ℓ ⋆

FℓQ î ,ℓ Rℓ

]
> 0, ∀ℓ ∈M : 0 ∈ Eℓ, (9.43)

[
Qi ,ℓ′ −Qi ,ℓ ⋆

h̄T
ℓℓ′Qi ,ℓ −(λℓℓ′ − h̄T

ℓℓ′Qi ,ℓh̄ℓℓ′ )

]
≥ 0, (9.44)




Qi ,ℓ′ ⋆ ⋆

Qi ,ℓ′ Qi ,ℓ ⋆

h̄T
ℓℓ′Qi ,ℓ′ 0 λℓℓ′



≥ 0, ∀ℓ,ℓ′ ∈M : Eℓ∩Eℓ′ 6= ;, ∀i ∈N , (9.45)

Wℓ,Rℓ > 0,(Wℓ)i j ≤ 0,(Rℓ)i j ≤ 0, ∀i , j ∈N , i 6= j ,∀ℓ ∈M ,

Qi ,ℓ > 0, µmin > 0, λℓℓ′ > 0, γ> 0, ∀i ∈N ,∀ℓ,ℓ′ ∈M , ℓ 6= ℓ′

with î the index of an arbitrary selected subsystem, has an optimal solution γ∗ > 0 for a

given positive scalar µmin > 0, then the switching rule (9.22) with matrices

P̄i ,ℓ =Q−1
i ,ℓ , ∀(i ,ℓ) ∈

{
(i ,ℓ)∈N ×M |i 6= î

}
∪

{
(î ,ℓ) ∈N ×M |0 ∉ Eℓ

}
(9.46)

and

P î ,ℓ =Q−1
î ,ℓ

, ∀ ℓ ∈M : 0 ∈ Eℓ, (9.47)

with Vî ,ℓ(e) = eTP î ,ℓe, and the state feedback control laws ui ,ℓ = Ki ,ℓ ē with gains

Ki ,ℓ = Yi ,ℓQ−1
i ,ℓ , ∀(i ,ℓ) ∈

{
(i ,ℓ)∈N ×M |i 6= î

}
∪

{
(î ,ℓ) ∈N ×M |0∉ Eℓ

}
(9.48)

and

uî ,ℓ = Yî ,ℓQ−1
î ,ℓ

e +kî ,ℓ, ∀ℓ ∈M : 0∈ Eℓ, (9.49)

with kî ,ℓ a solution of qî ,ℓ +G î ,ℓkî ,ℓ = 0, stabilize the system (9.8)–(9.9) and moreover

ensure an upper bound
√
γ∗ for the L2-gain of the system from the disturbance input ω

to the output ye .

Proof. First, the Schur complement is performed on (9.41) with respect to the second
row and column. Next, the result is multiplied from both sides by Q−1

i ,ℓ = P̄i ,ℓ and Q−1
j ,ℓ is

replaced by P̄ j ,ℓ. This yields

P̄i ,ℓTi , j ,ℓP̄i ,ℓ <µmin(P̄i ,ℓ − P̄ j ,ℓ). (9.50)
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Similarly, by performing the Schur complement and substituting the matrices in (9.42)
we obtain (9.18) with R−1

ℓ
= Zℓ (note that in case the subsystem i∗ is involved and

ℓ : 0 ∈ Eℓ, then sizes of the matrices must be adjusted by appropriate addition of zero
elements in rows and columns). Note that the inverse of Rℓ is a matrix with nonnega-
tive elements (which is necessary for the condition (9.18)), since Rℓ is a positive definite
matrix with nonpositive off-diagonal elements (The inverse of a real symmetric positive
definite matrix with nonpositive off-diagonal elements, as known as a Stieltjes matrix, is
a nonsingular matrix with nonnegative elements [79]).

On the other hand, we perform the Schur complement on (9.39) 2 times, each time
with respect to the last row and column. Next, we pre- and post-multiply the result by
Q−1

i ,ℓ = P̄i ,ℓ , change the variables Yi ,ℓQ−1
i ,ℓ = Ki ,ℓ, rearrange the terms, and finally multiply

both sides by [ēT,ωT] and its transpose. Using (9.50) and (9.10), we obtain

[
ē

ω

]T [
P̄i ,ℓ(Āi ,ℓ+Ḡi Ki ,ℓ)+(Āi ,ℓ+Ḡi Ki ,ℓ)TP̄i ,ℓ ⋆

H̄ T
i

P̄i ,ℓ 0

][
ē

ω

]

<
∑

j∈N , j 6=i

ēTTi , j ,ℓ ē − ēTF̄ T
ℓ W −1

ℓ F̄ℓē − yT
e ye +γωTω

<µmin
∑

j∈N , j 6=i

(Vi ,ℓ−V j ,ℓ)− yT
e ye +γωTω. (9.51)

Since for the active subsystem i in region ℓ, Vi ,ℓ ≤V j ,ℓ, ∀ j ∈N , we finally have

D+(
Vℓ(e(t))

)
<−yT

e ye +γωTω. (9.52)

The same procedure is applied to (9.40). Note that since we select the constant part kî ,ℓ
of the feedback input as a solution of qî ,ℓ +G î ,ℓkî ,ℓ = 0, the affine part of the system
dynamics is vanished and therefore, the derivative of Vî ,ℓ along the trajectories of the

closed-loop system î will be eTP î ,ℓ(A î ,ℓ +G î Yî ,ℓQ−1
î ,ℓ

)+ (A î ,ℓ +G î Yî ,ℓQ−1
î ,ℓ

)TP î ,ℓe, where

P î ,ℓ =Q−1
î ,ℓ

.

Moreover, we show that the continuity of the overall Lyapunov function is preserved
through the conditions (9.44) and (9.45). Applying the Schur complement to the last row
and column of (9.44) and using Lemma 9.2 results in (note that in case the subsystem
i∗ is involved and ℓ : 0 ∈ Eℓ, then sizes of the matrices must be adjusted by appropriate
addition of zero elements in rows and columns)

Qi ,ℓ′ −Qi ,ℓ+Qi ,ℓh̄ℓℓ′ (λℓℓ′ − h̄T
ℓℓ′Qi ,ℓh̄ℓℓ′ )

−1h̄T
ℓℓ′Qi ,ℓ ≥ 0

⇒Qi ,ℓ′ +Qi ,ℓ

(
−Q−1

i ,ℓ︸ ︷︷ ︸
A −1

+Q−1
i ,ℓ Qi ,ℓh̄ℓℓ′︸ ︷︷ ︸

B

(
λℓℓ′︸︷︷︸
D−1

−h̄T
ℓℓ′Qi ,ℓQ−1

i ,ℓQi ,ℓh̄ℓℓ′

)−1
h̄T
ℓℓ′Qi ,ℓ︸ ︷︷ ︸

C

Q−1
i ,ℓ

)
Qi ,ℓ ≥ 0

Lemma 9.2
========⇒Qi ,ℓ′ +Qi ,ℓ

(
−Qi ,ℓ−Qi ,ℓh̄ℓℓ′λℓℓ′ h̄

T
ℓℓ′Qi ,ℓ

)−1
Qi ,ℓ ≥ 0

⇒Qi ,ℓ′ −Qi ,ℓ

(
Qi ,ℓ+Qi ,ℓh̄ℓℓ′λ

−1
ℓℓ′ h̄

T
ℓℓ′Qi ,ℓ

)−1
Qi ,ℓ ≥ 0

⇒
[

Qi ,ℓ+Qi ,ℓh̄ℓℓ′λ
−1
ℓℓ′ h̄

T
ℓℓ′Qi ,ℓ Qi ,ℓ

Qi ,ℓ Qi ,ℓ′

]
≥ 0

⇒Qi ,ℓ+Qi ,ℓh̄ℓℓ′λ
−1
ℓℓ′ h̄

T
ℓℓ′Qi ,ℓ−Qi ,ℓQ−1

i ,ℓ′Qi ,ℓ ≥ 0 (9.53)
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Pre- and post-multiplying (9.53) by Q−1
i ,ℓ = P̄i ,ℓ yields

P̄i ,ℓ′ − P̄i ,ℓ −λ−1
ℓℓ′ h̄ℓℓ′ h̄

T
ℓℓ′ ≤ 0. (9.54)

Now pre- and post-multiplying the result by ēT and its transpose and using Lemma 9.1,
we obtain

Vi ,ℓ′ ≤Vi ,ℓ when h̄T
ℓℓ′ ē = 0. (9.55)

On the other hand, applying the Schur complement twice to (9.45) with respect to the
last column and row, and then pre- and post-multiplying the result by Q−1

i ,ℓ′ = P̄i ,ℓ′ and

assigning Q−1
i ,ℓ = P̄i ,ℓ yields (note that in case the subsystem i∗ is involved and ℓ : 0 ∈ Eℓ,

then sizes of the matrices must be adjusted by appropriate addition of zero elements in
rows and columns)

P̄i ,ℓ′ − P̄i ,ℓ −λ−1
ℓℓ′ h̄ℓℓ′ h̄

T
ℓℓ′ ≥ 0. (9.56)

Now pre- and post-multiplying (9.56) by ēT and its transpose and using the Finsler
Lemma, results

Vi ,ℓ′ ≥Vi ,ℓ when h̄T
ℓℓ′ ē = 0. (9.57)

Finally, (9.55) and (9.57) imply that the values of the Lyapunov functions Vi ,ℓ and Vi ,ℓ′

should coincide at the boundary between the neighboring regions Eℓ and Eℓ′ .
The overall Lyapunov function is continuous over the boundaries between the poly-

hedral regions. Moreover, in the origin, the Lyapunov function has its minimum value,
i.e. Vî ,ℓ(0) = 0 and the derivative the Lyapunov function is also zero because the state
feedback input uî ,ℓ makes the closed loop subsystem linear ( qî ,ℓ +G î ,ℓkî ,ℓ = 0). Fur-
ther, it is assumed that the initial state is zero and V (e(0)) = 0. The reason for this
assumption is to eliminate the transient response of the system due to nonzero initial
conditions. Now since asymptotic stability implies V (e(∞)) = 0, using (9.52) we obtain
‖ye‖2 ≤ γ‖ω‖2.

Remark 9.5. In order to obtain the lowest value for γ, one can assign the index î each time

to one subsystem, solves the optimization problem in Theorem 9.3 based on this selection,

and in the end, compare the minimum values γ∗ obtained from solving the optimization

problems and use the corresponding solution for state feedback and switching laws.

Remark 9.6. The optimization problem (9.38)–(9.45) can be recast as a bi-level optimiza-

tion problem in which on the higher level a line search on µmin is performed, while on the

lower level a convex optimization problem subject to LMI constraints (with fixed µmin) is

solved.

The next theorem presents a less conservative approach to ensure the overall de-
crease in the Lyapunov function. This comes at the price of adding more conditions that
involve bilinear matrix inequalities and gridding on one variable.

Theorem 9.4. Assume there exist symmetric matrices Qi ,ℓ, Ti , j ,ℓ , Si , j ,ℓ , positive defi-

nite matrices Wℓ,Rℓ with nonpositive off-diagonal elements, and scalars λℓℓ′ , µmin > 0,
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βmin > 0, such that the optimization problem (9.38)–(9.42) with additional constraints

formulated as follows:




βminQi ,ℓ ⋆ ⋆

Qi ,ℓ β−1
minQi ,ℓ ⋆

0 β−1
minQ j ,ℓ Si , j ,ℓ +β−1

minQ j ,ℓ



> 0, (9.58)





Q j ,ℓ ⋆ ⋆ ⋆

h̄T
ℓℓ′Q j ,ℓ λℓℓ′ ⋆ ⋆

Q j ,ℓ 0 Qi ,ℓ′ ⋆

0 0 Qi ,ℓ′ Qi ,ℓ′ −Si , j ,ℓ



> 0, (9.59)

∀i , j ∈N , i 6= j , ∀ℓ,ℓ′ ∈M : Eℓ∩Eℓ′ 6= ;

has an optimal solution γ∗ > 0, then the switching rule (9.22) with matrices

P̄i ,ℓ =Q−1
i ,ℓ , ∀(i ,ℓ)∈

{
(i ,ℓ)∈N ×M |i 6= î

}
∪

{
(î ,ℓ) ∈N ×M |0∉ Eℓ

}
(9.60)

and

P î ,ℓ =Q−1
î ,ℓ

, ∀ℓ ∈M : 0 ∈ Eℓ, (9.61)

with Vî ,ℓ(e) = eTP î ,ℓe, and the state feedback control laws ui ,ℓ = Ki ,ℓ ē with gains

Ki ,ℓ = Yi ,ℓQ−1
i ,ℓ, ∀(i ,ℓ) ∈

{
(i ,ℓ)∈N ×M |i 6= î

}
∪

{
(î ,ℓ) ∈N ×M |0∉ Eℓ

}
(9.62)

and

uî ,ℓ = Yî ,ℓQ−1
î ,ℓ

e +kî ,ℓ, ∀ℓ ∈M : 0 ∈ Eℓ, (9.63)

with kî ,ℓ a solution of qî ,ℓ +G î ,ℓkî ,ℓ = 0, stabilize the system (9.8)–(9.9) and moreover

ensure an upper bound
√

γ∗ for the L2-gain of the system from the disturbance input ω

to the output ye .

Proof. First, we apply the Schur complement to (9.58) with respect to the last row and
column, as follows (note that in case the subsystem i∗ is involved and ℓ : 0 ∈ Eℓ, then
sizes of the matrices must be adjusted by appropriate addition of zero elements in rows
and columns):

[
βminQi ,ℓ ⋆

Qi ,ℓ β−1
minQi ,ℓ−β−1

minQ j ,ℓ(Si , j ,ℓ +β−1
minQ j ,ℓ)−1β−1

minQ j ,ℓ

]
> 0. (9.64)

Next, using Lemma 9.2 the following reformulation of (9.64) is obtained

[
βminQi ,ℓ ⋆

Qi ,ℓ (βminQ−1
j ,ℓ+S −1

i , j ,ℓ)−1

]
> 0. (9.65)

Performing the Schur complement once more with respect to the second row and col-
umn, and multiplying the result by Q−1

i ,ℓ = P̄i ,ℓ and substituting Q−1
j ,ℓ = P̄ j ,ℓ, S −1

i , j ,ℓ =Ri , j ,ℓ

yields

βmin(P̄i ,ℓ− P̄ j ,ℓ)−Ri , j ,ℓ > 0. (9.66)
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On the other hand, applying the Schur complement to (9.59) with respect to the last
row and column, multiplying the resulting matrices and adding to the first matrix yields
(note that in case the subsystem i∗ is involved and ℓ : 0 ∈ Eℓ, then sizes of the matrices
must be adjusted by appropriate addition of zero elements in rows and columns)




Q j ,ℓ ⋆ ⋆

h̄T
ℓℓ′Q j ,ℓ λℓℓ′ ⋆

Q j ,ℓ 0 Qi ,ℓ′ −Qi ,ℓ′ (Qi ,ℓ′ −Si , j ,ℓ)−1Qi ,ℓ′



> 0. (9.67)

Using Lemma 9.2, (9.67) can be reformulated as follows:




Q j ,ℓ ⋆ ⋆

h̄T
ℓℓ′Q j ,ℓ λℓℓ′ ⋆

Q j ,ℓ 0 (Q−1
i ,ℓ′ −S −1

i , j ,ℓ)−1



> 0. (9.68)

Now performing the Schur complement twice with respect to the last row and column,
and multiplying the result by Q−1

j ,ℓ = P̄ j ,ℓ and substituting Q−1
i ,ℓ′ = P̄i ,ℓ′ , S −1

i , j ,ℓ =Ri , j ,ℓ, we

obtain

P̄ j ,ℓ− P̄i ,ℓ′ +Ri , j ,ℓ−λ−1
ℓℓ′ h̄ℓℓ′ h̄

T
ℓℓ′ > 0. (9.69)

Conditions (9.66) and (9.69) are of the same form as of conditions (9.27)–(9.28) in Theo-
rem 9.2. The only difference is that here we use scalar multipliers λℓℓ′ instead of matrix
multipliers ζℓℓ′ (see Lemma 9.1). Therefore, following the proof of Theorem 9.2 we can
conclude that the overall Lyapunov function will decrease over time.

Remark 9.7. Fixing the scalar variables µmin and βmin, the optimization problem stated

in Theorem 9.4 will become a convex optimization problem subject to LMI constraints.

Therefore, the overall optimization problem can be solved using convex optimization

methods along with line searches on µmin and βmin.

9.5. STABILIZATION OF THE ORIGINAL SWITCHED NONLIN-

EAR SYSTEM

In this section, we discuss the stability of the switched nonlinear system (9.1) using the
switching law designed based on the approximated switched affine system (9.5). For
simplicity and without loss of generality we assume that xr = 0. The approximation error
can be defined as follows:

ǫi (x) = fi (x)−
(

Ai ,ℓx +bi ,ℓ
)

if x ∈Xℓ, ∀i ∈N . (9.70)

Suppose that the original switched nonlinear system (9.1) is controlled by the switching
law (9.22). Therefore when σ(t) = i , the dynamics of (9.1) is governed by fi . Hence, the
derivative of the Lyapunov function (9.14) along the trajectories of (9.1) is

V̇ℓ =
[

fi (x)
0

]T [
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

][
x

1

]
+

[
x

1

]T [
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

][
fi (x)

0

]
(9.71)
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for x ∈ Xℓ (note that since the continuity of Vℓ on the boundaries of the polyhedral
regions is preserved under conditions of Theorem 9.1, we only consider the behavior of
Vℓ and V̇ℓ inside the polyhedral regions). Replacing fi (x) by ǫi (x)+ Ai ,ℓx +bi ,ℓ yields

V̇ℓ =
[

x

1

]T
[

AT
i ,ℓPi ,ℓ +Pi ,ℓ Ai ,ℓ ⋆

bi ,ℓPi ,ℓ+ sT
i ,ℓ Ai ,ℓ 2bT

i ,ℓsi ,ℓ

][
x

1

]
+2

[
x

1

]T [
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

][
ǫi (x)

0

]
. (9.72)

Now since the inequalities in (9.15) of Theorem 9.1 are strict, there should exist a positive
scalar variable denoted by α such that

[
Pi ,ℓ Ai ,ℓ+ AT

i ,ℓPi ,ℓ ⋆

bT
i ,ℓPi ,ℓ+ sT

i ,ℓ Ai ,ℓ 2bT
i ,ℓsi ,ℓ

]

−
∑

j∈N , j 6=i

Ti , j ,ℓ + F̄ T
ℓUℓF̄ℓ <−αI,

∀i , j ∈N , i 6= j , ∀ℓ ∈M . (9.73)

Now if (9.73) holds, we obtain

[
x

1

]T
[

Pi ,ℓ Ai ,ℓ+ AT
i ,ℓPi ,ℓ ⋆

bT
i ,ℓPi ,ℓ + sT

i ,ℓ Ai ,ℓ 2bT
i ,ℓsi ,ℓ

][
x

1

]
<−α‖x̄‖2

2 (9.74)

for the active subsystem i in (9.5). Therefore, for (9.72) we have

V̇ℓ <−α‖x̄‖2
2 +2

[
x

1

]T [
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

][
ǫi (x)

0

]
(9.75)

for x ∈Xℓ. Therefore, in order to have V̇ℓ < 0 for the switched nonlinear system, we need
to have

2

[
x

1

]T [
Pi ,ℓ ⋆

sT
i ,ℓ ri ,ℓ

][
ǫi (x)

0

]
<α‖x̄‖2

2. (9.76)

The following proposition provides the sufficient condition for stabilization of the
switched nonlinear system (9.1) using switching law (9.22).

Proposition 9.1. Assume there exist matrices Pi ,ℓ and Ti , j ,ℓ , vectors si ,ℓ, ζℓℓ′ , scalars ri ,ℓ,

α> 0 and symmetric matrices Uℓ, Zℓ with nonnegative elements that satisfy (9.17)–(9.21)

and (9.73) for a given positive scalar µmin > 0. Then the switching rule (9.22) asymptoti-

cally stabilizes (9.1) provided that the norm of the PWA approximation error is bounded

by

‖ǫi (x)‖2 <
α‖x̄‖2

2amax(P̄i ,ℓ)
, ∀i ∈N , for x ∈Xℓ, (9.77)

where amax(P̄i ,ℓ) denotes the largest singular value of P̄i ,ℓ.

Proof. First, it can be easily proved that

x̄TP̄i ,ℓ

[
ǫi (x)

0

]
≤ ‖x̄‖2amax(P̄i ,ℓ)‖ǫi (x)‖2. (9.78)
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Therefore, using (9.77) we obtain

2x̄TP̄i ,ℓ

[
ǫi (x)

0

]
≤ 2‖x̄‖2amax(P̄i ,ℓ)‖ǫi (x)‖2 ≤α‖x̄‖2

2, (9.79)

which yields V̇ℓ < 0 as in (9.75) and hence, asymptotic stability of the switched nonlinear
system (9.1) is ensured.

Remark 9.8. As can be inferred from (9.77), the upper bound on the approximation error

ǫi (x) depends on the maximum singular values of the P̄i ,ℓ matrices. Therefore, the upper

bound on the approximation error can be further relaxed if a search for P̄i ,ℓ matrices that

satisfy (9.17)–(9.21) and (9.73), and with minimized maximum singular values is per-

formed. Furthermore, a similar extension can be performed for the results of Section 9.4

for robust H∞ control of the switched nonlinear system (9.1)–(9.2).

9.6. CASE STUDIES

In this section, three examples are presented to evaluate and compare the performance
of the stabilizing approaches proposed in Section 9.3 and Section 9.4. In the first exam-
ple, the conditions of Theorem 9.1 are used to design a stabilizing switching law. In the
second example, with the same system description but with an additional state feedback
control input and disturbance signals, we use Theorem 9.3 to design a robust switching
control scheme. In the last example, we consider the urban traffic model used in Sec-
tions 7.5 and 8.6, reformulate it, and then design a robust switching controller based on
Theorem 9.2.

9.6.1. EXAMPLE 1
In this example, we use the conditions presented in Theorem 9.1 to design a stabilizing
switching controller. We directly use the error model (9.8) with the following matrices:

F1 =−F3 =
[
−1 1
1 1

]
, F2 =−F4 =

[
1 −1
1 1

]
,

h̄12 = h̄34 =
[
1 −1

]T
, h̄23 = h̄41 =

[
1 1

]T
,

Region 1 :

A1,1 =
[

3 1
−5 −8

]
, A2,1 =

[
−2 6
2 9

]
, A3,1 =

[
4 4
−2 3

]
,

Region 2 :

A1,2 =
[

2 5
−1 −3

]
, A2,2 =

[
−4 1
−2 6

]
, A3,2 =

[
2.5 7
2 −9

]
,

Region 3 :

A1,3 =
[

5 3
−2 −4

]
, A2,3 =

[
3 −1
4 2

]
, A3,3 =

[
2 −3
−1 −4

]
,

Region 4 :

A1,4 =
[

6 −2
−4 5

]
, A2,4 =

[
−5 1
−2 3

]
, A3,4 =

[
−1 −3
2 8

]
.
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Figure 9.4: Example 9.6.1: Simulation of the closed-loop system for different initial states. The dashed blue
and red lines represent the boundaries between regions.

Note that none of the subsystems is stable. Using line search and the Yalmip toolbox
(with the SeDuMi solver), the feasibility problem (9.15)–(9.21) is solved and the following
matrices are obtained for the switching rule (9.22):

P1,1 =
[

0.2854 −0.1497
−0.1497 0.5810

]
, P1,2 =

[
0.0587 0.0823
0.0823 0.3513

]
,

P2,1 =
[

0.2821 −0.1472
−0.1472 0.5934

]
, P2,2 =

[
0.0581 0.0820
0.0820 0.3551

]
,

P3,1 =
[

0.2852 −0.1486
−0.1486 0.5843

]
, P3,2 =

[
0.0590 0.0827
0.0827 0.3488

]
,

P1,3 =
[
−2.5457 0.3938
0.3938 3.5848

]
, P1,4 =

[
3.0332 0.1662
0.1662 −1.5240

]
,

P2,3 =
[
−2.5563 0.4027
0.4027 3.6083

]
, P2,4 =

[
2.9895 0.1710
0.1710 −1.4888

]
,

P3,3 =
[
−2.5553 0.3921
0.3921 3.5788

]
, P3,4 =

[
3.0063 0.1578
0.1578 −1.5287

]
.

As depicted in Fig. 9.4, the designed switching control strategy is able to steer the error
state to the origin for different initial conditions. Moreover, Fig. 9.5 illustrates the overall
Lyapunov function (obtained by taking the minimum of the Lyapunov functions in each
region).

9.6.2. EXAMPLE 2
In this example we use Theorem 9.3 to design a robust control scheme for the system
presented in Example 9.6.1, but now with an additional state feedback control u = Ki ,ℓx
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Figure 9.5: Example 9.6.1: Plot of the overall Lyapunov function; note that its continuity is preserved over
boundaries of the regions.

and a disturbance signal ω with system matrices Gi = [1,1]T and Hi = Ci = I2. The Lya-
punov matrices and the feedback gains are determined using the optimization problem
(9.38)–(9.45) with line search on µmin (from 0 to 200, with steps of 1). The obtained value
of µmin corresponding to the minimum upper bound on the L2-gain is 184.

P1,1 =
[

0.7911 0.7904
0.7904 0.7910

]
, P1,2 =

[
0.7755 0.7748
0.7748 0.7752

]
,

P2,1 =
[

0.8088 0.8082
0.8082 0.8089

]
, P2,2 =

[
0.7890 0.7885
0.7885 0.7891

]
,

P3,1 =
[

0.7998 0.7991
0.7991 0.7997

]
, P3,2 =

[
0.7817 0.7809
0.7809 0.7812

]
,

P1,3 =
[

8.0485 −8.0465
−8.0465 8.0446

]
, P1,4 =

[
9.5119 −9.5121
−9.5121 9.5124

]
,

P2,3 =
[

7.9614 −7.9584
−7.9584 7.9556

]
, P2,4 =

[
8.6968 −8.6983
−8.6983 8.6999

]
,

P3,3 =
[

7.8345 −7.8312
−7.8312 7.8282

]
, P3,4 =

[
9.3655 −9.3663
−9.3663 9.3671

]
,

K1,1 =
[
−7397 −7389

]
, K1,2 =

[
−7322 −7318

]
,

K2,1 =
[
−7245 −7249

]
, K2,2 =

[
−7517 −7520

]
,

K3,1 =
[
−7323 −7317

]
, K3,2 =

[
−7761 −7756

]
,

K1,3 =
[
−121831 108113

]
, K1,4 =

[
53567 −81067

]
,

K2,3 =
[
−168194 154613

]
, K2,4 =

[
696943 −725951

]
,

K3,3 =
[
−216848 203056

]
, K3,4 =

[
215898 −240181

]
.
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The switching control scheme is able to stabilize the system and further significantly
attenuate the impact of the disturbance on the output of the system. Simulation results
for a particular disturbance input are presented in Fig. 9.6(a)-(d). The calculated L2-gain
for the closed-loop system is 0.00382, while the minimum upper bound for the L2-gain
obtained by solving the optimization problem (9.38)–(9.45) is 0.21814.

9.6.3. EXAMPLE 3
In this example, we again consider the MFD-based urban traffic model discussed in Sec-
tions 7.5 and 8.6. Using the proposed switching control strategies for mixed switching
affine system, we aim at designing a robust H∞ controller for this nonlinear system.
First, we review the model’s description.

SET-UP

As also discussed in Chapters 7 and 8, for an urban network divided into two regions:
the city center (region 2) and the periphery (region 1), the following macroscopic model
is proposed [86, 91, 92]:

ṅ1(t)=−G1(n1(t)) ·u(t)+ω1(t), (9.80)

ṅ2(t)=−G2(n2(t))+G1(n1(t)) ·u(t)+ω2(t), (9.81)

with ni (t) (veh) the accumulation in region i at time t . The trip completion flow
Gi (ni (t)) (veh/s) is defined as the rate of vehicles reaching their destinations and is ap-
proximated by an exponential function Gi (ni ) = 1/3600·ai ·ni ·exp(−1/2·(ni /ni ,cr)2), i ∈
{1,2}, with a1 = 16.95, a2 = 15.83. Further, the perimeter control u ∈ [0,1] may restrict ve-
hicles to transfer between regions (in our case, the flow of vehicles is restricted from the
periphery to the city center). The perimeter control can be realized by e.g. coordinating
green and red durations of signalized intersections placed on the border between two
regions. Moreover, trips generated in the network are denoted by ωi (veh/s) and con-
sidered as disturbances affecting the system. The assumed profile for trip demands are
depicted in Fig. 9.8. The uncertainty in the demands is modeled using zero mean white
Gaussian noise with variance 0.2 (veh2/s2) added to the average profiles.

The exponential functions Gi can be approximated by PWA functions, as illustrated
in Fig. 9.7. The result will be a PWA system with four partitions in the state space defined
based on the critical accumulations ni ,cr .

Furthermore, our investigations in Chapter 4 showed that the evolution of flows is
not very sensitive to small changes in the perimeter signal. Therefore, we assume that u

can take values from the finite set {0.1,0.35,0.65,0.9}. Doing this along with approximat-
ing the trip flow functions will result in a switched affine system with mixed controlled
and uncontrolled switching behavior and with the following system matrices:

F1 =



1 0

0 1



, F2 =





1 0 −n1,cr

0 −1 n2,cr

0 1 0

−1 0 n1,jam




,
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Figure 9.6: Example 9.6.2: (a) state trajectories over time, (b) switching signal σ over time (switching between
subsystems), (c) overall Lyapunov function, (d) disturbance signals.
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Figure 9.7: Example 9.6.3: Piecewise affine approximation of the trip completion flow function Gi .
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Figure 9.8: Example 9.6.3: trip demands, (a) from region 1 to 2, (b) inside region 2.

F3 =





−1 0 n1,cr

0 1 −n2,cr

1 0 0

0 −1 n2,jam




, F4 =





1 0 −n1,cr

0 1 −n2,cr

−1 0 n1,jam

0 −1 n2,jam




,

h̄12 = h̄34 =
[

1 0 −n1,cr

]T
,

h̄13 = h̄24 =
[

0 1 −n2,cr

]T
,

Ai ,1 =



−ui · 10
n1,cr

0

ui · 10
n1,cr

− 7
n2,cr



, bi ,1 =



0

0



,

Ai ,2 = ·




ui · 8

n1,jam−n1,cr
0

−ui · 8
n1,jam−n1,cr

− 7
n2,cr



, bi ,2 =



−ui ·16.22

ui ·16.22



,

Ai ,3 = ·



−ui · 10
n1,cr

0

ui · 10
n1,cr

5
n2,jam−n2,cr



, bi ,3 =



 0

−10.75



,

Ai ,4 = ·




ui · 8

n1,jam−n1,cr
0

−ui · 8
n1,jam−n1,cr

5
n2,jam−n2,cr



, bi ,4 =



 −ui ·16.22

ui ·16.22−10.75



,
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Figure 9.9: Example 9.6.3, Accumulations: (a) robust control, (b) MPC method, (c) greedy feedback control.
Perimeter control input: (d) robust switching scheme, (e) MPC scheme, (f) greedy control.

with n1,cr = 3500 (veh), n2,cr = 3000 (veh), n1,jam = 10000 (veh), n2,jam = 9000 (veh) and
ui ∈ {0.1,0.35,0.65,0.9}.

RESULTS AND DISCUSSION

The matrices of the Lyapunov functions along with the minimum upper bound of the
L2-gain are determined using an extended version of conditions in Theorem 9.2 (the
conditions of Theorem 9.1 were found infeasible for this example) for robust H∞ control
(since there is no state feedback controller u, the extension is quite straightforward and
the presentation is skipped in this chapter). Note that we use the LMI solver SeDuMi
and the Yalmip toolbox along with line search on µmin and βmin (from 0 to 200 for each,
with steps of 1). We implement a tri-level optimization problem where in the highest
level, line search on µmin is performed. On the middle level, gridding on βmin is carried
out. And on the lowest level, the minimization of γ subject to LMI constraints (with fixed
µmin and βmin) is performed. The obtained values for µmin and βmin corresponding to
the minimum achieved γ, are 159 and 10, respectively.

The Lyapunov matrices are presented in Box I.
For simulation, we use the model (9.80)–(9.81) along with the noisy demand profiles

depicted in Fig. 9.8. The measured accumulations are supplied to (9.22) to determine
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P1,1 =



15.8293 2.1235

2.1235 4.5335



, P2,1 =



15.8000 2.1260

2.1260 4.5335



, P3,1 =



15.7649 2.1291

2.1291 4.5335



, P4,1 =



15.7358 2.1317

2.1317 4.5334



,

P1,2 =





3.9867 ·10−5 8.4224 ·10−5 0.7128

8.4224 ·10−5 5.3187 ·10−5 −0.6935

0.7128 −0.6935 32.7528



, P2,2 =





3.9820 ·10−5 8.4245 ·10−5 0.7139

8.4245 ·10−5 5.3190 ·10−5 −0.6937

0.7139 −0.6937 16.3897



,

P3,2 =





3.9779 ·10−5 8.4272 ·10−5 0.7151

8.4272 ·10−5 5.3190 ·10−5 −0.6939

0.7151 −0.6939 −2.2494



, P4,2 =





3.9828 ·10−5 8.4306 ·10−5 0.7154

8.4306 ·10−5 5.3190 ·10−5 −0.6942

0.7154 −0.6942 −12.4139



,

P1,3 =





9.8171 ·10−7 5.7418 ·10−7 −5.4657 ·10−4

5.7418 ·10−7 2.7229 ·10−7 1.7718 ·10−3

−5.4657 ·10−4 1.7718 ·10−3 3.8305



, P1,4 =





−8.6688 ·10−6 9.2617 ·10−6 1.3909 ·10−2

9.2617 ·10−6 −1.1040 ·10−5 1.2609 ·10−2

1.3909 ·10−2 1.2609 ·10−2 2.1053



,

P2,3 =





9.8085 ·10−7 5.7385 ·10−7 −5.4408 ·10−4

5.7385 ·10−7 2.7229 ·10−7 1.7718 ·10−3

−5.4408 ·10−4 1.7718 ·10−3 3.8306



, P2,4 =





−8.6925 ·10−6 9.2750 ·10−6 1.4019 ·10−2

9.2750 ·10−6 −1.1039 ·10−5 1.2486 ·10−2

1.4019 ·10−2 1.2486 ·10−2 2.0895



,

P3,3 =





9.7980 ·10−7 5.7347 ·10−7 −5.4113 ·10−4

5.7347 ·10−7 2.7229 ·10−7 1.7718 ·10−3

−5.4113 ·10−4 1.7718 ·10−3 3.8306



, P3,4 =





−8.7211 ·10−6 9.2911 ·10−6 1.4151 ·10−2

9.2911 ·10−6 −1.1039 ·10−5 1.2338 ·10−2

1.4151 ·10−2 1.2338 ·10−2 2.0632



,

P4,3 =





9.7886 ·10−7 5.7316 ·10−7 −5.3873 ·10−4

5.7316 ·10−7 2.7228 ·10−7 1.7718 ·10−3

−5.3873 ·10−4 1.7718 ·10−3 3.8304



, P4,4 =





−8.7452 ·10−6 9.3046 ·10−6 1.4263 ·10−2

9.3046 ·10−6 −1.1039 ·10−5 1.2214 ·10−2

1.4263 ·10−2 1.2214 ·10−2 2.0362



.

Box I. The obtained matrices for the Lyapunov functions.

the active subsystem (to obtain the proper perimeter input). The results are depicted
in Fig. 9.9. As inferred from Fig. 9.9(a), the switching control resolves the initial conges-
tion in the network and also significantly reduces the effects of the high-level trip de-
mands. Moreover, the robust control method is compared with an MPC perimeter con-
trol scheme and a greedy feedback control strategy. As for MPC, the prediction model
is selected as the discretized form of (9.80)–(9.81) with Ts = 30 s and Tc = 60 s. More-
over, the MPC controller is supplied by the information about the average time evolu-
tion of the trip demands, without the additive noise. Further, the prediction horizon
and the control horizon are selected as Np = 20 and Nc = 2 (increasing Np and Nc had
little effects in this scenario). The greedy feedback controller designed as follows. The
perimeter input is set to u = 0.1 when n2 > n2,cr = 3000 (veh), and otherwise u = 0.9.

As can be observed from Fig. 9.9(b), MPC is able to prevent gridlock and moreover,
reduce congestion in both regions. Although MPC scheme is supplied by an estimation
of the demand, its performance is slightly worse (the accumulation in region 1 increases
in the middle of the simulation period) than that of the robust switching method. More-
over, the greedy feedback controller is not able to prevent gridlock, as can be seen in
Fig. 9.9(c). The perimeter controller inputs obtained from the three methods are de-
picted in Fig. 9.9(d)-(f).

Finally, setting the initial accumulations to zero, the actual L2-gain is 0.0881 ·3600,
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which is lower than the upper bound 0.1332 ·3600 obtained by solving the optimization
problem.

9.7. CONCLUDING REMARKS

Stability analysis and design of stabilizing controllers for switched affine systems with
mixed switching types have been presented. The switched system has both autonomous
and controlled switching included in the model. To tackle the stabilization and robust
disturbance attenuation problem for such a system, first we have proposed a joint poly-
hedral partitioning of the entire state space and then multiple state-based switching
rules defined for each polyhedral region. Further, the continuity of the Lyapunov func-
tions on the boundaries of the regions was relaxed and less conservative results have
been presented. Moreover, the proposed design conditions have been developed in the
form optimization problems that are nonconvex only in scalar variables. Finally, we
have presented sufficient conditions for stabilizing switched nonlinear systems using
the proposed control schemes. Simulation results for different systems have shown that
the proposed switching control schemes are able asymptotically stabilize the system.
Furthermore, we have demonstrated that the proposed control schemes can be used for
control of nonlinear systems. As a possible extension of the current work, we can further
reducing the conservatism using a joint time-based and state-based switching strategy
and the concept of average dwell-time [6, 53, 112].



10
CONCLUSIONS AND

RECOMMENDATIONS

In this thesis, we have presented efficient model predictive control schemes to reduce
congestion and to improve the travel time in both freeway and urban traffic networks.
Further, we have proposed robust stabilizing switching control strategies for switched
nonlinear systems. Several examples and case studies have shown the effectiveness of
our proposed optimal and robust control schemes. In this final chapter, we first sum-
marize the main results from the previous chapters, after which we will present several
suggestions and recommendations on topics that can be interesting for further research.

10.1. CONCLUSIONS

T HE main contributions of the work presented in this dissertation can be summarized
as follows:

• Extension of the Link Transmission Model for traffic control

In order to achieve an efficient model-based predictive control scheme for freeway
networks, we have extended the Link Transmission Model, to include the effects
of the traffic measures, ramp metering and variable speed limits.

• Integrated hybrid perimeter and timing plans control for large-scale urban net-

works

We have proposed a hybrid model predictive control scheme for large-scale multi-
region urban networks. In this scheme, we have provided the opportunity to con-
trol inside urban regions, rather than only at the boundaries. This has been real-
ized using a new hybrid multi-region network model and via switching between
timing plans of urban intersections.

• Efficient robust H∞ control of sector-bounded switched nonlinear systems via

bi-level optimization

For switched nonlinear systems with nonlinearities bounded in sector sets with
arbitrary slopes, we have developed a robust H∞ switching control scheme. We

169
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have formulated the design procedure as a bi-level optimization problem that can
be efficiently solved using a line search method along with a convex optimization
method subject to linear matrix inequality constraints.

• Robust stabilization of switched affine systems with mixed switching behavior

We have proposed stabilizing and robust H∞ control schemes for switched affine
systems with mixed controlled and autonomous switching behavior. In order to
reduce the conservatism, we have relaxed the continuity of the overall Lyapunov
function using linear matrix inequality techniques.

OTHER HIGHLIGHTS

Extensive discussions and concluding remarks on the conducted research in this thesis
have been presented in the previous chapters. Here we briefly present some highlights.

In the first part of this thesis, we have focused on reducing the complexity of mod-
eling and control of large-scale freeway and urban networks. Particularly, in order to
reduce the computation time required to solve the online optimization problems, we
have used some approximations and model transformation techniques in order to for-
mulate mixed integer linear optimization problems. Simulation results in Chapters 3
and 4 have shown that the computational effort for solving the mixed integer linear op-
timization problems is significantly lower than in the nonlinear optimization problem
case and hence, they are more suitable for real-time traffic control. Furthermore, we
have also proposed a hierarchical predictive scheme that efficiently solves the dynamic
route guidance problem for large-scale urban networks in a regional fashion.

In the second part, we have presented three main approaches to design robust sta-
bilizing controllers for switched nonlinear systems: 1) a direct approach that uses the
nonlinear functions for control synthesis, 2) a more efficient approach that uses sec-
tor bounds on the nonlinear functions to design controllers and also to find sufficient
conditions for asymptotic stability under arbitrary switching with average dwell time
constraint, and 3) a method that reduces the conservatism of the second approach
even more, via approximating the switched nonlinear system by a switched affine sys-
tem and uses the approximate system as basis for robust control design. In the second
and third approaches, we have achieved a structured design procedure that can be effi-
ciently performed using convex optimization methods. The main advantages of all three
approaches are 1) the offline design of the switching laws and the feedback control in-
puts that limits the online computation to simple multiplications and min operations, 2)
minimization of the effects of disturbances on the output of the system without having
exact knowledge of the evolution over time of the disturbances.
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10.2. RECOMMENDATIONS FOR FUTURE RESEARCH

In this section, we present open problems that still have to be tackled along with some
additional directions for future research.

10.2.1. FREEWAY NETWORK MODELING AND CONTROL USING THE LINK

TRANSMISSION MODEL

The Link Transmission Model (LTM) provides an efficient modeling approach for large-
scale freeway networks due to its special link and node modeling structure. With our
proposed extensions, we have prepared the LTM for use as a prediction model in the
framework of MPC. However, the modeling abilities of the LTM can be still improved.

• Multi-rate LTM

Although the LTM allows large sample times in general, the network layout at cer-
tain parts (in particular the mainstream road between successive off-ramps/on-
ramps) needs to be represented by relatively short links, which forces us to take
shorter sampling periods (the sample time should be selected such that no vehi-
cle entering a link reaches the downstream end in less than one sampling period).
Therefore, in order to further increase the efficiency of modeling, we propose to
investigate the possibility of having multiple sampling periods in the LTM.

• Modeling capacity drop

The traffic scenarios in which capacity drop occurs and influences the traffic flows
cannot yet be accurately modeled by the LTM. Therefore, further extension of the
LTM to integrate the effects of the capacity drop case is recommended. One con-
ceptual idea is to have state-dependent capacity parameters in the LTM. However,
this would need additional conditions that should be designed such that the ad-
vantages of the LTM are not deteriorated.

• Evaluation of variable speed limit modeling using real data

The evaluation of the theoretical extensions of the LTM, particularly integrating
the effects of variable speed limits control in the model, must be performed using
data collected from freeway networks equipped with variable speed limit signs.

• Field implementation

More extensive micro-simulations with different traffic scenarios and network lay-
outs are required to better evaluate our proposed ramp metering and variable
speed limits control scheme using the LTM. After this stage, we propose to perform
the field implementation of the proposed modeling and control scheme. This will
shed more light on the performance of this approach under real traffic conditions.

10.2.2. MACROSCOPIC MODELING AND HYBRID PREDICTIVE CONTROL

OF URBAN NETWORKS

Proper network partitioning, use of MFD-based models, and a hierarchical control
scheme help to reduce the computational complexity of control and coordination of
large-scale urban networks. However, there are still several open problems and research
directions to investigate.
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• Mutual interaction of perimeter and timing plans controllers

Generally, the perimeter and the switching controllers may affect the performance
of each other. However, in sufficiently large subnetworks these mutual impacts
can be neglected, as in our modeling approach. Nevertheless, more research can
be allocated to identify and model the impacts of perimeter control and switching
between timing plans on each other.

• Estimation of traffic states

While the total accumulations in a subnetwork can be measured using GPS data or
other sensing tools, it is not easy to estimate the destination-dependent accumu-
lations. One solution is to use the information from the in-car navigation systems.
However, this may trigger controversy related to the privacy concerns. As an al-
ternative solution, we propose to estimate and extract the destination-dependent
accumulations from the total accumulations. However, we have to take into ac-
count the hybrid nature of the closed-loop traffic system and also difference types
of noises that exist in the system. Possible solutions to investigate are particle fil-
tering approaches, identification and estimation methods for hybrid systems and
machine learning techniques.

• Micro-simulation and field implementation of the MFD-based control scheme

Implementing the proposed control approaches using micro-simulation software
packages would shed more light on how the control schemes change the spatial
distribution of congestion in the network and how the two types of controllers
may interact. In this process, proper realization of the optimal perimeter control
inputs using local traffic signal controllers along with designing effective timing
plans that correspond to well-defined desired MFDs is important. As a next step,
field implementation of the proposed predictive control strategies should be con-
sidered.

• Characterizing the effects of route choice on the MFD

In our proposed route guidance scheme, we have assumed that manipulating
the splitting rates for flows of vehicles heading to a certain destination region
is performed mostly in the areas close to the borders between regions in order
to keep the MFDs unaltered. This assumption can be relaxed by defining mul-
tiple MFDs for each region to include the effects of manipulating destination-
dependent flows. Characterizing the effects of the route choice on the MFDs and
obtaining high-level models that incorporate these effects is an interesting re-
search direction.

• Integrating user preferences in the route guidance

As an extension to the proposed approach, we can incorporate the preferences of
the drivers and their desired routes in the optimization procedure used to deter-
mine the traffic flow splitting rates. Game-theoretic approaches can be employed
to include the preferences of drivers in the design process and also to influence
their decisions.

• Designing lower-level local controllers

In the current work, we have focused on the higher level of the route guidance
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scheme. We have assumed that there exist local traffic signal controllers, dynamic
route information panels (DRIPs), and in-car navigation devices that help to re-
alize the optimal distribution of destination-dependent flows. The design of the
lower level controllers that realize the optimal splitting rates is retained as future
work.

10.2.3. STABILITY ANALYSIS AND ROBUST CONTROL SYNTHESIS FOR

SWITCHED NONLINEAR SYSTEMS

In this part, we present some ideas for improving the performance of the proposed
methodologies and also for extending to other cases of switched systems.

• Reducing conservatism by using tighter sector sets

Introducing different sector bounds for different quadrants with arbitrary slopes
would better characterize the sector-bounded nonlinear functions and would also
reduce more the conservatism. Maintaining the efficiency of the design approach
and formulating or approximating the stability conditions as linear matrix in-
equalities is the main aim. Combining linear matrix inequality techniques, linear
annihilators, and the Finsler Lemma may be useful to solve this problem.

• Combining dwell time constraint with state-based switching

To reduce the conservatism of the proposed stabilizing methods, we can integrate
time-based and state-based switching such that admissible increases in the value
of the overall Lyapunov function at the switching time instants would be allowed.
Designing such a switching scheme for (sector-bounded) switched nonlinear sys-
tems and meanwhile, maintaining the efficiency of the procedure is challenging.
As a starting point, one can try to derive bounds on the decay rates of the Lya-
punov functions between consecutive switching instants using the sector slopes.

• Relaxing the decrease of the Lyapunov function over boundaries using dwell

time constraints

To stabilize switched affine systems with mixed switching types, the value of the
overall Lyapunov function does not need to decrease over the boundaries of the
polyhedral regions. Using a dwell time constraint on the controlled switching, we
can allow the Lyapunov function to grow inside and at the boundaries of regions.
However, the automatic switching that occurs at the boundaries makes the devel-
opment of such a dwell time constrained switching scheme difficult. Estimating
and imposing a minimum time duration that the system composed of several sub-
systems is allowed to stay in one polyhedral region is a possible solution direction.

• Using other robust performance criteria

In our robust control approaches we have considered the H∞ performance crite-
rion mainly because it is suitable for our particular traffic application. However,
extension of the proposed methods for other criteria such as the H2 performance
index which maintains the efficiency of the design procedures is worthwhile to
explore.

• Control synthesis for discrete-time switched nonlinear systems

In this thesis, we have focused on the continuous-time switched nonlinear sys-
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tems, while as a future direction, we can look into the robust control design prob-
lem for the discrete-time counterpart.

ADDITIONAL DIRECTIONS FOR FUTURE RESEARCH

As a final outlook, we present some more general research directions.

• Distributed mixed integer linear programming

The macroscopic modeling approach and the reformulation of the optimization
problems have contributed to the computational efficiency of the proposed traffic
control approaches. However, if the scale of the network becomes too large, the
centralized MPC scheme will not be real-time feasible. One solution is to decom-
pose the centralized MILP optimization problem and to solve it in a distributed
way. However, efficiently decomposing the centralized MILP problem, coordinat-
ing the subproblems, and characterizing the degree of suboptimality of the solu-
tion are among the challenges.

• Combining MPC and robust H∞ control

We suggest to combine the robust H∞ control method and the MPC scheme. The
conceptual approach is as follows. The MPC controller uses the prediction model
along with the nominal time profile of the disturbance to optimally compute the
control inputs. Meanwhile, the actual perturbation around the nominal distur-
bance is measured and supplied to the robust H∞ controller. The robust con-
troller is designed such that it minimizes the L2-gain from the perturbation of the
disturbance to the output of the system. Design of such control system for our
case of switched nonlinear systems would be interesting to investigate.

• Robust control of switched systems using Integral Quadratic Constraints (IQCs)

An IQC is an integral inequality describing the relation between input/output
signals of a system, in a structured and unified form. The IQC description pro-
vides a structural approach to characterize and to analyze uncertain dynam-
ics, time-varying parameters, disturbances, nonlinearities, and combinations of
them. IQC-based stability analysis and robust control often lead to efficient and
relatively smaller size convex optimization problems. Therefore, we propose to in-
vestigate the possibility of using the IQC-based stability analysis and control syn-
thesis for switched systems. In particular, for switched nonlinear systems, IQC
may provide more efficient control design approaches with less inequality con-
straints for large number of subsystems. However, due to the multiple dynamics
governing the switched system and the controlled/uncontrolled switching behav-
ior, applying the IQC theories may need significant theoretical extensions.

• Stochastic control for switched nonlinear systems

Using the stochastic properties of disturbance signals affecting the switched sys-
tem, we can design stochastic optimal controllers. Although this is a challenging
theoretical problem but the resulting methods would be less conservative than
the robust control approach.

• Distributed coordinated robust switching control

For large-scale applications of switched systems, e.g. urban networks with mul-
tiple regions and several timing plans or large-scale smart power networks with
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considerable number of power converters, we would need to extend our robust
switching control approach to a distributed and coordinated switching scheme.
The problem is to design coordinated switching controllers for interconnected
switched systems in order to achieve a global performance.

• Application of our macroscopic modeling and control approaches in other

large-scale networks

Since the conservation law holds for many infrastructure networks such as wa-
ter management systems, logistic systems, communication networks, smart grids,
and even future traffic networks which may involve combined road and air traf-
fic with perhaps private flying vehicles, we can extend our macroscopic modeling
and hierarchical management schemes to design efficient control strategies for
other large-scale networks.
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SUMMARY

In this thesis, we develop optimal and robust control techniques for hybrid systems.
The thesis has two main parts, 1) traffic flow modeling and design of predictive con-
trol schemes for large-scale freeway and urban networks, 2) stability analysis and robust
stabilization of switched nonlinear systems.

In the first part, we focus on traffic flow modeling and control from a macroscopic
point of view. For freeway networks, we extend the recently developed Link Transmis-
sion Model for on-ramp metering and for variable speed limit control. For urban net-
works, we propose a high-level hybrid multi-region model. In this modeling framework,
an urban network is partitioned into multiple subnetworks and it is controlled by lim-
iting the flows of vehicles between subnetworks and moreover, by switching between
signal timing plans of intersections inside each subnetwork. Using the proposed mod-
els in the freeway and urban traffic frameworks, we develop model predictive control
(MPC) schemes in order to attenuate congestion and to decrease the total travel times.
Since the obtained models are nonlinear and hybrid in the sense that both continuous
and discrete dynamics exist in the model, suitable approximation techniques are pro-
posed in order to transform the models into systems of linear equations and inequali-
ties with mixed real and integer variables. Utilizing the transformed models, we formu-
late mixed integer linear optimization problems and integrate them in the MPC frame-
work. Finally, as the last main contribution of the first part, we provide a solution for the
problem of route guidance in large-scale urban networks. Utilizing another high-level
multi-region model, we propose a bi-level optimal dynamic route guidance scheme in
which we aggregate the origins and destinations in the entire network towards regional-
based origin-destinations. At the higher level, optimal regional routes are determined
based on the predictions provided by the multi-region model. At the lower level, the lo-
cal controllers realize the optimal routes obtained from the higher level by altering the
split fractions of vehicles traveling between neighboring regions. Overall, the obtained
results regarding freeway and urban network control and route guidance show consid-
erable performance and computational efficiency of the proposed schemes.

In the second part of the thesis, we investigate the stability analysis and the design
of robust stabilizing controllers for switched nonlinear systems. As a connection to first
part, the hybrid traffic flow models developed before can be also interpreted as switched
systems. A switched nonlinear system comprises of several nonlinear dynamical subsys-
tems and a switching signal that orchestrates the switching between subsystems. In this
part of the thesis, we present three main contributions for stability analysis and stabi-
lization of switched nonlinear systems. First, we propose a robust H∞ switching con-
troller for switched system with constrained control input. Next, for switched systems
with nonlinear functions bounded in asymmetric sector bounds, we present stability
analysis under arbitrary switching with average dwell time and furthermore, we formu-
late the design of robust stabilizing switching laws as an optimization problem that can
be solved using a line search method along with a convex optimization algorithm. As
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the last main contribution, we propose methods on stabilization and robust control for
a general class of switched systems that can be approximated by switched affine systems
with mixed controlled and autonomous switching behavior. We present two approaches
for the design of robust stabilizing switching laws with a trade-off between computa-
tional effort and conservatism. As for the design procedure, we develop bi-level opti-
mization problems that can be solved using line search methods along with convex op-
timization algorithms. Furthermore, we provide sufficient conditions for stabilizing the
original switched nonlinear system using the proposed switching schemes. To evaluate
the performance of all control schemes proposed in this part of the thesis, we present
several case studies. Overall, the major advantages of the proposed robust switching
control approaches are the efficiency in obtaining the parameters of controllers using
convex optimization algorithms, and also fast and real-time control, which is crucial for
our particular traffic applications.



SAMENVATTING

In dit proefschrift ontwikkelen we optimale en robuuste regeltechnieken voor hybride
systemen. Het proefschrift bestaat uit twee hoofdbestanddelen, 1) het modeleren
van verkeersstromen en het ontwerp van voorspellende regelaars voor grootschalige
snelweg- en stedelijke netwerken, 2) stabiliteitsanalyse en robuuste stabilisatie van
schakelende niet-lineaire systemen.

In het eerste deel leggen we de focus op het modeleren en regelen van de verkeers-
stromen vanuit een macroscopisch oogpunt. Voor snelwegnetwerken breiden we het
recent ontwikkelde Link Transmission Model uit met toeritdosering en met variabele
snelheidslimieten. Voor stedelijke netwerken stellen we een hoog-niveau hybride multi-
regio model voor. In dit modelleringskader is een stedelijk netwerk verdeeld in verschei-
dene subnetwerken en wordt het geregeld door het beperken van de stromen van voer-
tuigen tussen de subnetwerken alsmede door het schakelen tussen tijdsplanningen van
verkeerslichten op kruispunten binnen elk subnetwerk. Door gebruik te maken van de
voorgestelde modellen voor snelweg- en stedelijk verkeer, ontwikkelen we modelgeba-
seerde voorspellende regeling (in het Engels: Model Predictive Control (MPC)) schema’s
met als doel files te verminderen en de totale reistijden te verkorten. Doordat de verwor-
ven modellen niet-lineair en hybride zijn, in de zin dat continue en discrete dynamica
deel uitmaken van het model, worden er geschik benaderingsmethodes voorgesteld met
als doel de modellen om te zetten in systemen met lineaire vergelijkingen en ongelijkhe-
den met reële en gehele variabelen. Gebruikmakend van de benaderende modellen for-
muleren we lineaire problemen met reële en gehele variabelen en integreren die in het
MPC kader. De laatste bijdrage van het eerste deel is de oplossing die we voorstellen voor
het probleem van routegeleiding in grootschalige stedelijke netwerken. Gebruikmakend
van een hoog-niveau multi-regio model stellen we een twee-laags optimaal dynamisch
routegeleidingsconcept voor waarin we de herkomsten en bestemmingen in het gehele
netwerk vertalen naar herkomsten en bestemmingen op regioniveau. Op hoger niveau
worden de optimale regionale routes bepaald aan de hand van de voorspellingen gele-
verd door het multi-regio model. Op lager niveau realiseren de lokale regelaars de opti-
male routes die bepaald zijn op het hogere niveau door het aanpassen van de verdeling
van de fracties van de voertuigen tussen aangrenzende regio’s. Met betrekking tot de re-
geling van snelweg- en stedelijke netwerken en de routegeleiding tonen over het geheel
genomen de behaalde resultaten de zeer goede prestaties en de rekenkundige efficiëntie
van de voorgestelde methodes aan.

In het tweede deel van dit proefschrift onderzoeken we de stabiliteitsanalyse en het
ontwerp van robuuste stabiliserende regelaars voor schakelende niet-lineaire systemen.
Het verband met het eerste deel van het proefschrift bestaat eruit dat de hybride ver-
keersstroommodellen die daar ontwikkeld zijn gezien kunnen worden als geschakeld
systemen. Een geschakeld niet-lineair systeem bestaat uit verscheidene niet-lineaire
dynamische deelsystemen en een schakelsignaal dat het schakelen tussen deelsyste-
men orkestreert. In dit deel van het proefschrift presenteren we drie belangrijke bij-

199



200 SAMENVATTING

dragen aan de stabiliteitsanalyse en stabilisatie van schakelende niet-lineaire systemen.
Als eerste stellen we een robuuste H∞ schakelende regelaar voor schakelende systemen
met een begrensde regelingang voor. Daarna stellen we, voor schakelende systemen met
niet-lineaire functies begrensd door asymmetrische sectorgrenzen, stabiliteitsanalyses
voor willekeurige schakelgedrag met een gemiddelde verblijftijd voor en verder formu-
leren we het ontwerp van robuuste stabiliserende schakelregels als een optimalisatie
probleem dat kan worden opgelost door gebruik te maken van een lijnzoekmethode in
combinatie met een convex optimalisatie-algoritme. Als laatste bijdrage stellen we me-
thodes voor voor de stabilisatie en robuuste regeling van een algemene groep schake-
lende systemen die benaderd kan worden door schakelende affiene systemen met een
mengeling van geregeld en autonoom schakelend gedrag. We presenteren twee metho-
des voor het ontwerp van robuuste stabiliserende schakelregels met een afweging tus-
sen rekenkundige inspanning en conservatisme. Als ontwerpprocedure ontwikkelen we
twee-laagsoptimalisatieproblemen die opgelost kunnen worden met bisectiezoekme-
thodes in combinatie met convexe optimalisatie-algoritmes. Bovendien geven we vol-
doende voorwaarden voor de stabilisatie van het originele schakelende niet-lineaire sys-
teem gebruikmakend van de voorgestelde schakelmethodes. Om de prestaties van alle,
in dit deel van het proefschrift voorgestelde regeltechniekmethodes te evalueren pre-
senteren we een aantal casussen. Over het geheel genomen zijn de grootste voordelen
van de voorgestelde robuust schakelende regelmethodes de efficiëntie in het bepalen
van de parameters van de regelaars door gebruik te maken van convexe optimalisatie-
algoritmes, en ook de snelle en in reële tijd uitvoerbare regeling, wat van cruciaal belang
is in de door ons beschouwde verkeerstoepassingen.
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