
Modeling and Control of Switching
Max-Plus-Linear Systems

Rescheduling of railway traffic and changing
gaits in legged locomotion

B. Kersbergen

.

Modeling and Control of Switching
Max-Plus-Linear Systems

Rescheduling of railway traffic and changing
gaits in legged locomotion

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben;
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
22 oktober 2015 om 10:00 uur

door

Bart Kersbergen
Ingenieur in systeem- en regeltechniek,

Technische Universiteit Delft
geboren te Nieuwegein, Nederland

This dissertation has been approved by the
promotor: Prof.dr.ir. B. De Schutter
copromotor: Dr.ir. A.J.J. van den Boom

Composition of the doctoral committee:

Rector Magnificus chairman
Prof.dr.ir. B. De Schutter Delft University of Technology
Dr.ir. A.J.J. van den Boom Delft University of Technology

Independent members:

Prof.dr.ir. R.P.B.J. Dollevoet Delft University of Technology
Prof.dr. B.F. Heidergott Vrije Universiteit Amsterdam
Dr. A. D’Ariano Università degli Studi Roma Tre
Dr. R.M.P. Goverde Delft University of Technology
Prof.dr.ir. J. Hellendoorn Delft University of Technology, reserve member

Other member:

Dr. G.A.D. Lopes Delft University of Technology

This thesis has been completed in partial fulfillment of the requirements of the Dutch
Institute of Systems and Control (DISC). This research is supported by the Dutch Tech-
nology Foundation STW, which is part of the Netherlands Organisation for Scientific
Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

TRAIL Thesis Series T2015/16, The Netherlands, TRAIL Research School

Published and distributed by: B. Kersbergen
E-mail: bartkersbergen@gmail.com

ISBN: 978-90-5584-196-7

Keywords: Railway traffic management, discrete-event systems, max-plus-linear algebra,
switching max-plus-linear systems, distributed model predictive control, mixed integer
linear programming, legged locomotion, gait switching.

Copyright © 2015 by B. Kersbergen

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission of the author.

Printed in the Netherlands.

Preface

The research presented in this thesis has been conducted as part of the STW project
“Model-Predictive Railway Traffic Management”. The project consists of work done at
the Department of Transport & Planning by Pavle Kecman and his supervisors dr. Rob
Goverde and prof.dr.ing. Ingo Hansen, and at the Delft Center for Systems and Control
of the Delft University of Technology by the author of this thesis and his supervisors
dr.ir. Ton van den Boom and prof.dr.ir. Bart De Schutter. The goal of the project was
the development of new models and a new (predictive) control approach for anticipative
management of railway networks. To achieve this goal the research was split up into
three subjects: Monitoring methods that actively monitor trains in the network, detect
and predict conflicts, and determine up-to-date process times and estimate future process
times, models of the railway traffic that can be updated continuously with the latest
information and selected control actions, and model predictive controllers that optimizes
future control decisions by using predictions of the future behavior of the railway traffic.
The research in this thesis focuses on the model predictive controllers and the model
used in the model predictive controller. The research performed at the Department of
Transport & Planning was aimed at developing the monitoring methods and models for
predictive railway traffic management. The work of Pavle Kecman has already been
published in “Models for Predictive Railway Traffic Management” [53].

First and foremost, I would like to thank my daily supervisor Ton van den Boom.
Whenever we discussed my research or just made small talk he was always very helpful
and enthusiastic, thinking up new ideas, or telling about one of his many commuting
experiences on the train. The support and guidance he gave me really helped me finish
this my research. It has been a pleasure working with him. I would also like to thank my
promotor Bart De Schutter. He always made sure I kept the end goal in mind and made
sure I would not get lost or stuck (for too long) on the way there. He always made sure
he had time to read my unpublished work and provide plenty of feedback. The feedback
sometimes felt a little overwhelming but, after processing it, always resulted in much
better papers.

I would like to thank the other members of the project, namely Pavle Kecman, Rob
Goverde, and Ingo Hansen. Pavle, thank you for having time to discuss my research and
ideas from time to time, help prepare for the STW users’ group meeting, and having fun
during the RailCopenhagen conference. Rob and Ingo, thank you for sharing your vast
knowledge and experience on everything related to railways and for showing a different
perspective on my work from time to time. Furthermore I would like to thank the members
of the users’ committee of the project: Bob Janssen, Leo Kroon, Edo Nugteren, Alfons

v

vi Modeling and Control of Switching Max-Plus-Linear Systems

Schaafsma, Ello Weits, and Jianxin Yuan for their continued dedication to the project
and their support and feedback.

In the last four years I have shared the office with several others: Yashar, Ismini,
Dang, Amol, Alfredo, Max, Hildo, Jun, and Armand. Thank you all for putting up with
me, sharing your knowledge, helping me out, and for making the office a friendly and
enjoyable environment. I would also like to thank our secretariat: Kitty, Heleen, Marieke,
and Kiran for all their help and support.

There have been occasions where we have had time to engage in social activities
outside of work and I thank Sachin, Hans, Paolo, Laurens, Hildo, Edwin, Renshi, Subra-
manya, Elisabeth, Reinier, and Baptiste for inviting me to the game nights and having
fun with me.

The first conference you go to can be quite an event. I was glad I was not the only
one going there and I am grateful to Yihui Wang for letting me tag along during the
conference.

Another conference was in Qingdao, China, and I would like to thank Zhe Cong for
traveling with me to Qingdao and helping me find my hotel. Furthermore I would like to
thank Yu Hu for showing some of the most interesting spots of Qingdao. I would also like
to thank Le Li for letting me tag along to the dinner with your old classmates in Qingdao,
and for showing me the city of Beijing and going to the Great Wall of China with me. I
really enjoyed my time in China and greatly appreciate that you were all willing to show
me a small part of China.

I would also like to thank Max Potters for the early morning talks. A friendly chitchat
in the office at 7:00 in the morning is a good way to start working. I would also like to
thank Mohammad Hajiahmadi and Yu Hu for their time in answering my questions about
the LaTeX template for this thesis and other questions relating to the doctoral regulations.

I want to thank my friends for all the great times we have had these last years, from
summer holidays to Italy and Greece, to ski trips to Winterberg, for the times we went
out for drinks together and had a good time, for the fun we had playing volleyball, and
for all the other times.

Finally I would like to thank my parents, Jan and Lineke, and my brother and sister,
Frank and Janneke, for all the support and love they have given me all these years and
for always believing in me.

Bart Kersbergen,
Delft, October 2015.

Contents

Preface v

1 Introduction 1

1.1 Introduction to railway traffic management 2

1.1.1 Microscopic and macroscopic models 2

1.1.2 Railway traffic management methods 4

1.2 Introduction to legged locomotion . 7

1.3 Thesis outline and contributions . 9

2 Max-plus-linear algebra and max-plus-linear systems 13

2.1 Introduction . 13

2.2 Max-plus algebra . 13

2.3 Max-plus-linear systems . 18

2.3.1 Max-plus-linear systems . 18

2.3.2 Switching max-plus-linear systems 19

2.4 Summary . 20

3 Implicit and explicit models of the railway traffic networks 21

3.1 Introduction . 21

3.2 Nominal operation . 22

3.2.1 Constraints connecting the train runs 22

3.2.2 Max-plus-linear model . 25

3.2.3 System matrices for the nominal operation 27

3.3 Perturbed operation . 30

3.3.1 Changing the order of trains . 31

3.3.2 Breaking connections . 34

3.3.3 Coupling trains . 34

3.3.4 Switching between tracks . 35

3.4 Explicit switching max-plus-linear model 38

3.4.1 Explicit model for a single cycle . 38

3.4.2 Explicit model for multiple cycles 40

vii

viii Contents

3.4.3 Structured approach to matrix multiplication 41

3.5 Reduction of the explicit switching max-plus-linear model 46

3.5.1 Delay model . 46

3.5.2 Removing redundant control variables 47

3.6 Modeling and control of freight trains . 48

3.6.1 Unscheduled stop at a station . 49

3.6.2 Reduced speed/full stop on open track 50

3.6.3 Optimization constraints for freight trains 50

3.6.4 Example . 51

3.7 Summary . 53

4 Model predictive control for railway traffic management 55

4.1 Introduction . 55

4.2 MPC for on-line railway traffic management 57

4.2.1 Prediction and control horizon at time instant t(κ) 58

4.2.2 Events and control variables at time instant t(κ) 58

4.2.3 Model at time instant t(κ) . 59

4.2.4 Cost function at t(κ) . 59

4.2.5 Optimization at time instant t(κ) 61

4.2.6 Example . 61

4.2.7 Explicit SMPL and the cost function 66

4.3 Distributed model predictive control . 67

4.3.1 Model-based partitioning . 68

4.3.2 Distributed method 1 . 71

4.3.3 Distributed method 2 . 72

4.3.4 Adjusting cost functions . 73

4.4 Case studies: Implicit versus explicit MPC 74

4.4.1 Case study 1: Minimization of the sum of delays 75

4.4.2 Case study 2: Minimization of the sum of arrival delays 82

4.5 Case studies: MPC versus DMPC . 86

4.5.1 Case study 3: MPC versus DMPC part 1 86

4.5.2 Case study 4: MPC versus DMPC part 2 90

4.6 Summary . 99

5 Legged locomotion 103

5.1 Introduction . 103

5.2 Modeling of legged locomotion . 104

5.2.1 Central pattern generators . 105

5.2.2 Buehler clock . 106

5.2.3 Switching max-plus-linear models 107

Contents ix

5.2.4 Control structure . 113

5.3 Max-plus eigenstructure of the system matrix 117

5.3.1 Precedence graph of Ā . 118

5.3.2 The critical graph of A . 122

5.3.3 Coupling time . 125

5.4 Gait switching . 126

5.4.1 Compatible gaits for switching . 126

5.4.2 Variable swing time, constant stance model 128

5.4.3 Variable velocity . 130

5.5 Simulations . 130

5.5.1 Simulation of the max-plus gait scheduler 131

5.6 Summary . 131

6 Conclusions and recommendations 135

6.1 Conclusions . 135

6.2 Recommendations . 137

6.2.1 Railway traffic management . 137

6.2.2 Legged locomotion . 140

6.2.3 Additional research recommendations 140

Appendix A Train lines and their frequencies 143

Bibliography 145

TRAIL Thesis Series publications 153

Samenvatting 155

Summary 157

About the author 159

x Contents

Chapter 1

Introduction

Often stabilizing or improving the dynamical behavior of a system is the goal when de-
signing a controller. But for some systems the timing between discrete events is more
important than the dynamical behavior between the events. Such systems can be de-
scribed as discrete event systems. Especially in manufacturing, transport, and logistics
such systems are often found.

Examples of discrete event system are the scheduler of the print tasks in an indus-
trial printer, the job scheduler in a manufacturing plant, a baggage handling system, a
passenger railway system, and the gait scheduler for a legged robot. The scheduler of the
printer determines the order in which the print tasks are processed in the printer such
that the throughput is optimized. In a manufacturing plant with multiple machines that
can perform different tasks, the job scheduler makes a schedule and updates it during
the day to maximize the productivity of all machines. Baggage handling systems can be
found in almost all airports and ensure that the enormous amount of bags are transported
from the baggage drop off points at the airport to the planes and from the planes to the
baggage retrieval areas in the airports. There are kilometers of tracks in the airport to
move all those bags and an automated system determines the routes and the order in
which the bags are transported to ensure all bags arrive at their destination in time. The
trains of a passenger railway system can be modeled by the arrival and departure times at
stations and junctions. These events occur in a specific order and at set times determined
by the timetable. For a legged robot the gait, or pattern of movement of the legs, can
be described by the touchdowns and lift-offs of the feet from the ground and the order in
which these events occur.

A system that can be described by a max-plus-linear model can be characterized as a
discrete event system in which only synchronization occurs, but no concurrency or choice
[3]. In some of these systems the order of the events can be changed, they can then be
described by switching max-plus-linear systems. In this chapter we give an introduction
to the two applications of switching max-plus-linear systems that will be the subject of
this thesis: railway traffic management and legged locomotion. In Section 1.1 railway
traffic management will be discussed shortly, including a short review of the different
approaches used for on-line railway traffic management in literature. In Section 1.2 the
subject of legged locomotion is introduced as well as the different methods of modeling

1

2 Modeling and Control of Switching Max-Plus-Linear Systems

legged locomotion in the literature. The outline of this thesis is given in Section 1.3.

1.1 Introduction to railway traffic management

In many countries in the world large, complex, and very busy railway networks have been
built. Especially in North and West Europe, China, and Japan the railway networks are
used near their maximum capacity. As a result, very little buffer time is available to
recover from delays.

Every day small delays occur in almost all railway networks, such small delays are of-
ten called “disturbances” in literature. In literature “disruptions” are large perturbations,
such as trains breaking down and tracks being blocked, causing trains to be canceled.

In order to deal with disturbances dispatchers reschedule and reroute trains, or break
connections. Currently most dispatchers take these decisions based on their experience,
a given set of ground rules, and a limited overview of the network situation.

To be able to handle disruptions trains may need to be canceled, they may need to be
rerouted through the entire network. These changes affect the rolling stock circulation and
the personnel schedules. As a result the rolling stock circulation needs to be recomputed
and adjustments to the personnel schedules need to be made.

In this thesis we focus on railway traffic management for disturbances, and therefore
we will not consider the rolling stock circulation or the personnel schedules. For an
overview of those research areas, literature on disruption management, and integrated
approaches combining several of these research areas the reader is referred to the survey
paper of Cacchiani et al. [7].

The literature on methods to railway traffic management for disturbances can, for
the most part, be split up into two groups based on the size of the problem instances
they consider: there are approaches that focus on a small part of the railway network and
there are approaches that take the entire (national) network into account. We will call
railway management for small parts of the railway network “local control” and railway
management for the entire network “global control”.

For both the local and global control models of the trains and railway network are
used to predict the effect of the rescheduling actions on future arrival and departure
times of the trains. The models used by the local and global controllers can have different
levels of detail. There are microscopic models which consider as many details as possible,
macroscopic models which only model the most important details, and mesoscopic models
which model some parts in great detail and some parts with only the most important
details depending on the application of the model. Next, we will discuss the microscopic
and macroscopic models.

1.1.1 Microscopic and macroscopic models

Consider the small network in Figure 1.1. It is shown in microscopic detail in the top half
and in macroscopic detail in the bottom half. In the microscopic model the tracks are

Chapter 1 – Introduction 3

microscopic

macroscopic

stationjunction open track

Figure 1.1: Small example railway network with one station, a junction, and

a track connecting the two.

built up from block sections and include the signals that are used for the safety system
and indicate whether a block section is available. The length, gradient, and maximum
velocity of each block section is given. Each signal of the signaling system is modeled
and operates according to the signaling rules of the network. Trains have to stop for red
signals and yellow signals are used to indicate that the next signal is currently red and
the train should start breaking. For each station all platforms are considered separately
and all block sections of all tracks are considered. In the interlocking area of stations
the signaling system has specific rules to ensure no conflicting movements of trains occur.
This is modeled by a limited number of paths the trains can chose and excluding paths
that cause conflicts with other trains. In some cases the train dynamics are also modeled
using a dynamic model of the train. The model of the train is based on the length, weight,
the train resistance, and the power of the locomotive. The acceleration, deceleration, and
velocity of the train also depends on the characteristics of the block section.

In many of the decision support systems the train dynamics and block section char-
acteristics are used to determine the running times of all trains for all block sections
they traverse off-line. These running times are then used as fixed times during the on-line
rescheduling where only the departure times of the trains are changed, but the trains drive
according to the off-line determined speed profile and running times. In some of the rail-
way traffic management methods the running times are computed during the rescheduling
and for every new schedule and new route the running times are recomputed [22].

In the macroscopic model the block sections of the tracks are modeled as a single
section for each track with averaged characteristics. The signaling system is not modeled
explicitly, but instead headway times between trains are used. Tracks and platforms in
stations are not modeled, only a point for arrival and a point for departure and a link
connecting them are modeled. Routes through station areas are not considered, and
in some cases the capacity at stations is not considered either, but it is assumed to be
sufficient such that each train that arrives can enter the station and stop at a platform.
The junction is modeled in the same way as the station.

Microscopic models can be used to determine schedules and routes through station

4 Modeling and Control of Switching Max-Plus-Linear Systems

areas and smaller networks, but for large or nationwide networks these models quickly
become too complex for the purpose of railway traffic management. Since macroscopic
models are less detailed even models of nationwide networks can be used in railway traffic
management. The routes through station areas however cannot be determined by these
macroscopic models. If a different route is set, the time for the train to traverse through
the station may change, which will affect the results. In this case the process times in the
macroscopic model needs to be adjusted.

Some of the first papers where control of the railway systems in order to achieve
optimal schedules are de Waal et al. [28], Minciardi et al. [70]. Since then developing
methods to determine optimal schedules and routes for trains in the case of disturbances
has become a topic many researchers have been working on. This field of research will be
discussed next.

1.1.2 Railway traffic management methods

In this subsection we will discuss various railway traffic management methods, for the
rescheduling and rerouting of trains, that are currently being developed or have been
developed in recent years. We will make a distinction between methods for local control
and global control.

Many methods for local control have been proposed in the recent years such as the
methods of Caimi et al. [8], Corman [10], Corman et al. [12, 15], D’Ariano [21], D’Ariano
and Pranzo [22], D’Ariano et al. [23], Rodriguez [77].

Caimi et al. [8] developed a railway traffic management method that tries to sched-
ule and route all trains in an area in and around a large station. A model predictive
control approach with a microscopic model of the railway operations is used based on
blocking times. At each point where rescheduling of a train is possible, a set of possible
blocking times for different routes and departure times at platforms or arrival times at
the boundaries of the area are considered for that train. As many trains as possible are
then assigned a route with corresponding blocking times while all safety and operational
constraints are respected. The objective is to optimize the passenger satisfaction, mea-
sured by punctuality and reliability. The resulting optimization problem is a binary linear
programming problem.

Rodriguez [77] proposes a method for the routing and scheduling of trains through
an area around the Pierrefitte-Gonesse junction north of Paris. They use a microscopic
simulation to model the train and driver behavior and describe the routing and scheduling
problem as a constraint programming problem. For the given case study they are able to
reduce the delays between 63 and 96%.

In the work of D’Ariano [21], D’Ariano and Pranzo [22], D’Ariano et al. [23] the
railway operation is also modeled as a microscopic model based on blocking times with an
Alternative Graph approach. In their alternative graph approach for every train occupying
a block section a node is created in the graph. The nodes of a single train are then
connected to each other through running time constraints and for every pair of trains
occupying the same block section headway/separation constraints are added. If the order
in which the trains can occupy the block sections can be changed with rescheduling actions,

Chapter 1 – Introduction 5

then a pair of alternative arcs defining the two orders in which the trains can occupy the
block section are added to the graph. A new schedule for the railway traffic is found
when for each pair of alternative arcs only one arc is chosen and no circuits of positive
length are present in the graph. The graph has an extra node, to which all nodes are
connected and the weights of the arcs from all nodes to this extra node are chosen such
that minimizing the maximum weight of all paths from the starting to the ending node
corresponds to minimizing the maximum consecutive delay. To solve this problem the
authors use their own branch and bound algorithm.

Corman [10], Corman et al. [12, 15] have extended the work of D’Ariano et al. [23]
to also consider breaking connections. For different sets of maintained connections the
maximum consecutive delay is determined and the decrease of the maximum consecutive
delay is weighted against the number of broken connections. The biggest differences in
modeling between this work and our work is the level of detail considered and the solver
used to solve the problem. We do not consider block sections, but only tracks between
stations and the interlocking area of a station is considered as a single node. Our models
are also built as cyclic models allowing us to easily expand the simulation and control
period to multiple cycles without having to rebuild the entire model. The method for
solving the optimization problem is also different. D’Ariano et al. [23] and Corman et al.
[15] use a specifically designed branch and bound algorithm made for minimizing the
maximum consecutive delay. In most cases the methods for local control use microscopic
models. By using microscopic models they can model the routes, the signaling and safety
system, and the speed profiles of the trains. In some cases they can even change the
routes and adjust the speed profiles of the trains. Because of the microscopic models
the networks they consider must be relatively small for the railway traffic management
methods to be able to find solutions quickly.

Several researchers made strides to extend their work to large scale networks, or
developed new methods for large scale networks such as Corman [10], Corman et al.
[13, 14, 16], Kanai et al. [51], Kecman et al. [56], Törnquist [82], Törnquist and Persson
[83], Törnquist-Krasemann [84].

Corman [10], Corman et al. [13, 14, 16] extend their previous work to multiple areas
using a supervisory controller that coordinates between the areas. For smaller instances
and a limited number of areas the bi-level approach works well, but once the prediction
horizon becomes larger and the number of areas increases a good feasible solution is not
always found.

Törnquist and Persson [83] proposes a railway traffic management method for large
network instances, covering a part of the Swedish railway network in the south of the
country. Specifically they consider a network with multiple parallel tracks that can be
used between stations. They assume that there are no restrictions on the tracks the trains
can use. They propose a mixed integer programming problem to schedule the trains and
divide them over the tracks such that the delays are minimized. For some instances the
MIP solver cannot find a feasible solution within the available time. To solve this problem
they propose a heuristic method to solve the problems in [82]. Törnquist-Krasemann [84]
extends the model and solution procedures to also consider the available routes through

6 Modeling and Control of Switching Max-Plus-Linear Systems

the stations limiting the number of available tracks for each train.

Kecman et al. [56] uses the same Alternative Graph approach as Corman et al.
[13, 14, 15, 16], D’Ariano and Pranzo [22], D’Ariano et al. [23] but now for macroscopic
models with different levels of details. The level of detail in this model is similar to our
own work. One of the differences between their work and ours is that they model the
system as an alternative graph and not as a max-plus-linear system and the alternative
graph is specifically designed such that the maximum consecutive delay can be minimized
using the branch and bound algorithm of D’Ariano et al. [23]. This branch and bound
algorithm is specifically designed to minimize the weight of the longest path and the
alternative graph is adjusted such that the weight of the longest path corresponds to the
maximum consecutive delays. If they want to consider breaking connections they have to
adjust the whole solution procedure as was done by Corman et al. [15].

Kanai et al. [51] propose a tabu search method to determine the connections of the
trains for the entire network. The goal is to minimize the passenger dis-utility For this
they propose various linear and non-linear objective functions. By simulating the railway
traffic and the passenger behavior they are able to determine the passenger dis-utility for
a given set of connections. The tabu search algorithm optimizes the set of connections
to minimize the dis-utility They test their tabu search on a case study consisting of a
part of the Japanese railway consisting of 41 stations and 40 trains. For this test case the
process time of the algorithm was about 6 minutes in all scenarios using a PC with an
Intel Core2Duo CPU.

Many more papers have been published on this subject and several review papers
on this subject have recently been published: Cacchiani et al. [7], Corman and Meng
[11], Fang et al. [30]. The authors of these review papers conclude that much research
has been done in the recent years on railway traffic management, but most of it has been
on small networks or parts of a network. There is a need for railway traffic management
methods for large scale networks and possible directions are the use of macroscopic models
and multi-level control.

The research in this thesis on railway traffic management is based on the framework
given in Figure 1.2. In the framework it is assumed that several local controllers determine
the routes and trajectories of the trains in small parts of the network. The global model
predictive controller determines an updated timetable for the entire network by changing
the order of the trains on the tracks and by changing the departure and arrival times
at stations and junctions such that the delays in the network are reduced. The updated
timetable is given to the local controllers and used to set local and boundary conditions
that ensure global feasibility. The local controllers can interact with the global controller
when the updated timetable is not feasible for their part of the network. Based on this
feedback the global controller updates its information and updates the timetable again.
The monitoring part of the framework tracks the location of the trains and monitors
the situation of the network. Furthermore, it predicts future conflicts, process times,
and arrival and departure times and provides this information to the model predictive
controller.

In this thesis we concentrate on the global model predictive controller and the model

Chapter 1 – Introduction 7

Framework for railway traffic management

MonitoringModel Predictive Controller

Model

External disturbances

Railway System

Local

Control

Subsystem

Local

Control

Subsystem

Local

Control

Subsystem. . .

Figure 1.2: Framework for railway traffic management.

used to predict the future arrival and departure times of the trains. The goal is to develop
a railway traffic management system for the entire Dutch railway network. We will use a
macroscopic model for the prediction of the future arrival and departure time that can be
described by a switching max-plus-linear model. To improve the computation time of the
model predictive controller a method is proposed to convert and reduce the macroscopic
model in size. Furthermore several distributed model predictive control approaches are
proposed and compared.

Currently the monitoring of the trains in the Netherlands is done based on data from
the signaling system and the train describer system. In the future this may be replaced
by systems using a global positioning system for even more accurate information. The
research for the monitoring system and the prediction of future process times has been
done by Kecman [53], Kecman and Goverde [54, 55], while the local control can be done
by one of the local railway traffic management methods described earlier in this section,
possibly in combination with trajectory planning [4, 89–91] in the future.

1.2 Introduction to legged locomotion

Legged robots are becoming increasingly prominent in the robotics field. Their advantages
on unstructured terrain combined with the challenges in mechatronics and control have
fueled a community of academics and industry alike that aims to build truly autonomous
legged robots with agility akin to animals. The recent successes by Boston Dynamics on
quadrupeds [74], and the efforts of the Japanese community on developing home assistance
anthropomorphic robots, such as humanoid robots developed by Honda [46] or ASIMO
[78], or robots such as HRP [52], contribute to this growing interest in legged robots.

A fundamental element in the control of a legged robot is the synchronization of its

8 Modeling and Control of Switching Max-Plus-Linear Systems

legs. For bipedal robots synchronization is usually addressed implicitly, since balancing
is the biggest challenge [36, 63, 96]. For robots with more than two legs, many different
locomotion patterns can be chosen, resulting in the number of distinct gaits increasing
with the number of legs (see Holmes et al. [47] for an extensive review on the elements
of dynamic legged locomotion). The second part of this thesis focuses on the systematic
design of gait controllers for robots with many legs where the number of available gaits is
high. From a control design point of view, legged locomotion can be implemented via a
gait reference generator module and a dynamic tracking controller module, as illustrated
in Figure 1.3.

Gait reference

generator

Dynamic tracking

controller

Robot +

environment

Legged locomotion controller

Figure 1.3: The standard partitioning of a legged locomotion controller. The

gait reference generator subsystem provides reference signals to

the tracking controller. Feedback can exist from both the robot

and the tracking controller to the gait reference generator.

The gait reference generator is a component that generates cyclic reference signals
in a synchronized way, and the dynamic tracking controller translates the typically low-
dimensional reference signals into the high-dimensional motion of the robot’s limbs and
implements other desirable dynamical properties such as balancing, see e.g. Vukobratovic
and Borovac [88]. The advantage of the partition into a gait reference generator and a
dynamic tracking controller is that the gait reference generator can be designed without
explicit knowledge of the mechanics of the robot (other than the number of legs) while
the latter is designed specifically for each robot model.

Most gait reference generator designs are based on Central pattern generators (CPGs)
(see Ijspeert [48] for a survey on CPGs). CPGs are neural networks found in animals that
can generate complex periodic signal patterns. They are called central pattern generators
because they do not require sensory feedback to produce the patterns. In animals they
generate rhythmic patterns for movement. So CPGs offer a natural bio-inspired control
framework that addresses locomotion patterns.

Although widely used, CPGs offer their own set of challenges because of their math-
ematical formulation as sets of coupled differential equations. One of those challenges
is the transient behavior that exists during gait transitions. Gait transitions are a very
natural occurrence in nature; animals change gait to accommodate for different types of
terrain, locomoting speeds, and to minimize the energy needed to move at the desired
speed. As in normal systems modeled by differential equations, the transient behavior
is typically less understood than the steady-state behavior. A lot of researchers have

Chapter 1 – Introduction 9

worked on gait transition in the CPG framework (see Aoi et al. [1], Daun-Gruhn and
Toth [24], Inagaki et al. [49, 50], Li et al. [62], Nagashino et al. [72], Santos and Matos
[79], Zhang et al. [95], and the references within [48]). Other work on gait transition
without using CPGs in the continuous-time domain has been performed by Haynes and
Rizzi [41], Haynes et al. [43]. The traditional approach for gait transition in the CPG
framework exploits the bifurcations that occur when changing parameters in the set of
coupled differential equations. This can lead to intricate analysis of the global behavior
due to the continuous-time models used. As a result, changing the locomotion pattern in
a short time and without the robot falling over is a difficult task that is hard to implement
on-line.

An alternative approach to CPGs for the synchronization of cyclic systems is called
the “Buehler clock” [80]. Related work has also been published in [64]. In this frame-
work, the control structure is built up as shown in Figure 1.3. The gait reference generator
generates piecewise constant phase velocity reference signals. The dynamic tracking con-
troller maps the phases and velocities to the movement of the feet and ensures the feet
move according to the reference signals. The advantage of the Buehler clock is that, since
it is constructed as a piecewise function, its computation is very simple, as opposed to
solving differential equations in the case of CPGs. The research in this thesis on legged
locomotion will be focused on providing a generalization of the Buehler clock approach
based on max-plus-linear systems that allows for easy, fast and stable gait transitions.

1.3 Thesis outline and contributions

The outline of the thesis is given in Figure 1.4. The introduction and background on rail-
way management systems and legged locomotion are presented in Chapter 1. In Chapter
2 the theory of max-plus algebra and max-plus-linear systems is discussed. Then the re-
search consists of two parts: Chapter 3 and 4 on railway traffic management, and Chapter
5 on legged locomotion. The conclusions and recommendations of both parts of research
are combined in Chapter 6.

The research on railway traffic management described in this thesis is based on the
framework for railway traffic management given in Figure 1.2. The model for the model
predictive controller is the focus of Chapter 3. First the model for the railway traffic during
nominal operations, when no control actions are taken, is introduced and described as a
max-plus-linear system. This model is then extended to include rescheduling actions
such as reordering of trains, breaking connections, switching tracks, and splitting coupled
trains, resulting in a switching max-plus-linear system. It is then shown how this model
can be transformed and reduced in size. The main contributions of this chapter are the
introduction of rescheduling actions for switching tracks, the formulation of the system in
matrix form, the transformation of the model into its explicit form, the reduction method
for the explicit form, and the modeling of freight trains.

In Chapter 4 the model predictive control approach is described and methods for
improving the time needed to solve a single step of the model predictive controller are

10 Modeling and Control of Switching Max-Plus-Linear Systems

Chapter 1: Introduction

Chapter 2:

Max-plus-linear algebra and

max-plus-linear systems

Chapter 3:

Implicit and explicit models of

railway traffic networks

Chapter 4:

Model predictive control for

railway traffic management

Chapter 5:

Legged locomotion

Chapter 6:

Conclusions and

recommendations

Figure 1.4: Outline of the thesis.

proposed. In a single step the model predictive controller solves the railway traffic man-
agement problem for the railway operations on the entire passenger railway network using
a macroscopic model of the railway operations for a given prediction and control horizon.
The control actions are limited to changing the order of trains, breaking train connections,
changing the tracks trains are driving on, and breaking joined trains. Rerouting trains in
and around the interlocking areas of stations is not considered. We first focus on a single
step because each step needs to be solved very fast, since the controller needs to be usable
during real-time operations. Because the problem is a mixed integer linear programming
(MILP) problem the computation time will, in the worst case, increase exponentially with
the number of binary control variables. For the model predictive controller to be usable
on-line, the railway traffic management problem has to be solved fast for the network of
a whole country for a long prediction and control horizon. This is especially true when
the optimization has to be repeated several times with updated information because of
the interaction between the model predictive controller and the trajectory and local route
planning system. The main contributions of Chapter 4 are the distributed model predic-
tive control methods that are proposed to reduce the computation time of a single step
of the controller. Furthermore in Chapter 4 the different models and approaches are ex-
tensively tested in various case studies including simulations of a single step of the model
predictive controller but also using a receding horizon in order to determine whether the
proposed control approach results in an overall reduction in the delays or only moves the
delays out of the prediction horizon.

In Chapter 5 an alternative to the common continuous time modeling approach for
legged locomotion is proposed. An abstraction to represent the combinatorial nature of

Chapter 1 – Introduction 11

the gait space for multi-legged robots into ordered sets of leg index numbers is introduced.
This abstraction combined with max-plus-linear equations allows for systematic synthesis
and implementation of motion controllers for multi-legged robots where gait switching
is natural and the translation to continuous-time motion controllers is straightforward.
The methodology presented is particularly relevant for robots with four, six, or higher
numbers of legs where the number of possible gaits and gait switches becomes very large.
For a large number of legs it is not obvious in which order each leg should be in swing
or in stance. Most legged animals, in particular large mammals, are known to walk and
run with various gaits on a daily basis, depending on the terrain or on how fast they
need to move. The discrete-event framework presented in Chapter 5 enables the same
behavior for multi-legged robots. The main contributions in this chapter consist of the
proof of the uniqueness of the eigenvector, optimal gait switching, and the simulations of
the max-plus-gait scheduler.

In Chapter 6 the contributions to the research on railway traffic management and
legged locomotion are discussed and recommendations for future research are given.

12 Modeling and Control of Switching Max-Plus-Linear Systems

Chapter 2

Max-plus-linear algebra and

max-plus-linear systems

In this chapter an overview of the theory and definitions of max-plus algebra and max-
plus-linear systems is given. Furthermore max-plus-linear and switching max-plus-linear
systems are described. The chapter is meant as background information for those unfa-
miliar with max-plus algebra.

2.1 Introduction

In the sixties of the last century several researchers [17, 18, 33, 34] independently dis-
covered that discrete-event systems in which only synchronization and no concurrency or
choice occur, can be described by models using only the operators max (used to model
the synchronization between events: an event can only occur as soon as all processes it
depends on have finished) and + (used to model the process times: the moment a process
finishes equals the moment it started plus the time the process takes to finish). These
discrete-event systems are called max-plus-linear systems since they are “linear” in the
max-plus algebra [3, 45]. In Section 2.2 the theory and definitions of the max-plus algebra
that are needed in the rest of the thesis are explained. In Section 2.3 the max-plus system
theory is explained and extended to switching max-plus-linear systems.

2.2 Max-plus algebra

The max-plus algebra is an idempotent semi-ring, consisting of the set Rε = R∪ {ε},
where ε = −∞, equipped with the two operators ⊕ and ⊗, which are defined as follows
[3, 19, 45]:

a⊕ b= max(a,b) (2.1)

a⊗ b= a+ b, (2.2)

for a,b ∈ Rε. During evaluation ⊗ has priority over ⊕. Note that a⊗ε= ε for all a ∈ Rε.

13

14 Modeling and Control of Switching Max-Plus-Linear Systems

For example

max(a+ c,b+ c,d+ e) = (a⊗ c) ⊕ (b⊗ c) ⊕ (d⊗e).

For matrices these operators are defined as:

[A⊕B]i,j = [A]i,j ⊕ [B]i,j = max([A]i,j , [B]i,j) (2.3)

[A⊗C]i,j =
n⊕

m=1

[A]i,m ⊗ [C]m,j = max
m=1,...,n

([A]i,m + [C]m,j), (2.4)

where A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

As an example consider the matrices

A=







ε ε ε

2 ε 2
ε 3 ε







B =







3 ε 1
4 2 ε

5 ε ε







C =







2 ε

3 ε

ε 1






,

then

[A⊕B] =







ε⊕3 ε⊕ε ε⊕1
2 ⊕4 ε⊕2 2 ⊕ε

ε⊕5 3 ⊕ε ε⊕ε







=







3 ε 1
4 2 2
5 3 1







[A⊗C] =







ε⊗2 ⊕ε⊗3 ⊕ε⊗ε ε⊗ε⊕ε⊗ε⊕ε⊗1
2 ⊗2 ⊕ε⊗3 ⊕2 ⊗ε 2 ⊗ε⊕ε⊗ε⊕2 ⊗1
ε⊗2 ⊕3 ⊗3 ⊕ε⊗ε ε⊗ε⊕3 ⊗ε⊕ε⊗1







=







ε ε

4 3
6 ε






.

The matrix E is the max-plus-algebraic zero matrix: Ei,j = ε for all i, j and denote
a max-plus-algebraic zero matrix of dimension m by n as Em×n. A max-plus diagonal
matrix D = diag⊕(δ1, . . . , δn) ∈Rn×n

ε has elements [D]i,j = ε for i 6= j and diagonal elements
[D]i,i = δi for i= 1, . . . ,n. A max-plus permutation matrix T ∈ Rm×m

ε has one zero in each
row and one zero in each column and ε elsewhere.

For A, B ∈ R
n×m
ε we say that A overcomes B, written as A ≥ B if A⊕B = A (i.e.,

[A]i,j ≥ [B]i,j for all i, j).

Before the rest of the properties and definitions of max-plus algebra can be described,
some definitions from graph theory are needed. These definitions will be described next.
First the definition of a directed graph is given:

Definition 2.1 Directed graph

A directed graph G is defined as an ordered pair (V,A), where V is a set of vertices and
A is a set of ordered pairs of vertices. The elements of A are called arcs. An arc of the
form (v,v) is called a (self-)loop. 2

Chapter 2 – Max-plus-linear algebra and max-plus-linear systems 15

v1

v2

v3

Figure 2.1: Example graph consisting of three vertices and three arcs.

An example of a graph is given in Figure 2.1. The graph has three vertices V =
{v1,v2,v3} and three arcs A = {(v1,v2),(v2,v3),(v3,v2)}.

A directed graph may contain several paths. A path is defined as:

Definition 2.2 Path in a directed graph

Let G = (V,A) be a directed graph with V = {v1,v2, . . . ,vn}. A path p of length l is a
sequence of vertices vi1

, vi2
, . . . , vil+1

such that (vik
, vik+1

) ∈ A for k = 1,2, . . . , l. We
represent this path by vi1

→ vi2
→ . . . → vil+1

and we denote the length of the path by
|p|l = l. Vertex vi1

is the initial vertex of the path and vil+1
is the final vertex of the path.

2

The example in Figure 2.1 has several paths such as v1 → v2 → v3, and v3 → v2.

The set of all paths of length l from vertex vi1
to vil

is denoted by P (vi1
,vil

; l). If
for any two different vertices vi, vj ∈ V there exists a path from vi to vj then a directed
graph G = (V,A) is called strongly connected.

Some paths may have the same initial and final vertex; such paths are called circuits:

Definition 2.3 Circuit in a directed graph

Given a path vi1
→ vi2

→ . . . → vil+1
, if vi1

= vil+1
this path is called a circuit.

If no vertex in the circuit appears more than once, except for the initial vertex vi1

that appears exactly twice, then this circuit is called an elementary circuit 2

In the graph of Figure 2.1 there is one elementary circuit: v2 → v3 → v2. It can also be
denoted by v3 → v2 → v3, but both describe the same elementary circuit.

If we have a directed graph G = (V,A) with V = {1,2, . . . ,n} and if we associate a real
number [A]i,j with each arc (j, i) ∈ A, then G is a weighted directed graph. The numerical
value of [A]i,j denotes the weight of the arc (j, i). Note that the first subscript of [A]i,j
corresponds to the final (and not the initial) vertex of the arc (j, i). This leads us to the
next definition:

Definition 2.4 Precedence graph

Consider A ∈ Rn×n
ε . The precedence graph of A, denoted by G(A), is a weighted directed

graph with vertices 1, 2, . . . , n and an arc (j, i) with weight [A]i,j for each [A]i,j 6= ε. 2

16 Modeling and Control of Switching Max-Plus-Linear Systems

Consider again the graph in Figure 2.1 and assign the following weights to the arcs:
(1,2) weighs 2, (2,3) weighs 3, (3,2) weighs 2, then the matrix A associated to this graph
is given by:

A=







ε ε ε

2 ε 2
ε 3 ε






.

Let A ∈ Rn×n
ε and consider G(A). The weight |p|w of a path p : i1 → i2 → . . . → il+1

is defined as the sum of the weights of the arcs that compose the path: |p|w = [A]i2,i1
+

[A]i3,i2
+ . . .+ [A]il+1,il

=
⊗l

k=1[A]ik+1,ik
. The average weight of a circuit is defined as the

weight of the circuit divided by the length of the circuit: |p|w/|p|l.

Furthermore the element [A⊗p]i,j is the maximum of the weights of all paths in the
graph G(A) of length p from node j to node i:

[A⊗p]i,j =
⊕

{vi0
→vi1

→...→vip−1
→vip}∈P (j,i;p)

Aip,ip−1
⊗Aip−1,ip−2

⊗·· ·Ai1,i0
. (2.5)

Using the above graph-theoretical definitions several max-plus definitions can be
described next.

Definition 2.5 Irreducibility

A matrix A ∈ Rn×n
ε is called irreducible if its precedence graph is strongly connected. 2

Using the definitions of the precedence graph and circuits the following theorem can
be stated:

Theorem 2.1 (Theorem 3.17 of Baccelli et al. [3])

Consider the following system of linear equations in the max-plus algebra:

x= A⊗x⊕ b, (2.6)

with A ∈ Rn×n
ε and b,x ∈ Rn×1

ε . There exists a solution to this equation if there are only

circuits of non-positive weight (or no circuits at all) in G(A) and the solution is given by

x= A∗ ⊗ b, (2.7)

where A∗ is defined as

A∗ :=
∞⊕

p=0

A⊗p. (2.8)

If the circuits have negative weight, or there are no circuits, this solution is unique.

In some cases the infinite max-plus sum in (2.8) can be limited to a finite number:

Theorem 2.2 (Theorem 3.20 of Baccelli et al. [3])

If the precedence graph G(A) has no circuits of positive weight, then

A∗ = E⊕A⊕A⊗2 ⊕ . . .⊕A⊗n−1,

where n is the dimension of A.

Chapter 2 – Max-plus-linear algebra and max-plus-linear systems 17

This means that if A⊗p for p = 1, . . . ,n does not contain any positive diagonal elements
then the infinite sum in (2.8) can be limited to the range p= 1, . . . ,n−1.

Related to this theorem is the definition of a nilpotent matrix [3]:

Definition 2.6 Nilpotent Matrix

The matrix A ∈ Rn×n
ε is called nilpotent if there exists a finite positive integer p0 such

that for all integers p≥ p0 we have A⊗p = E . 2

Next the max-plus eigenvalue and eigenvector are defined:

Definition 2.7 Max-plus eigenvalue and eigenvector

Let A∈ Rn×n
ε . If there exist a number λ ∈ R and a vector v ∈ Rn

ε with v 6= En×1 such that

A⊗v = λ⊗v, (2.9)

then λ is a max-plus eigenvalue of A and v is a corresponding max-plus eigenvector of A.
2

In contrast to linear algebra, the number of max-plus eigenvalues of an n by n matrix can
be less than n. In max-plus algebra every square matrix with entries in Rε has at least
one max-plus eigenvalue. If that matrix is irreducible, it has only one max-plus eigenvalue
(see e.g. [3]). Similarly to an eigenvector in regular algebra, if a vector v is a max-plus
eigenvector of A, then α⊗v with α ∈ R is also a max-plus eigenvector of A.

The max-plus eigenvalue can be interpreted in the following graph-theoretical man-
ner.

Consider A ∈ R
n×n
ε . If λ satisfies (2.9) then there exists a circuit in G(A) with

average weight equal to λ. If A is irreducible then λ is the maximal average weight of
all elementary circuits in G(A) and is the unique eigenvalue of A. We denote the unique
eigenvalue with λmax.

Every circuit of G(A) with an average weight that is equal to λmax is called a critical
circuit. The critical graph Gc(A) of the matrix A is the set of all critical circuits.

Another max-plus algebraic property related to the eigenvector and eigenvalue is the
cyclicity of a matrix. The cyclicity is defined as:

Definition 2.8 Cyclicity of a matrix

A matrix A is said to be cyclic if there exists an eigenvalue λ ∈ R, and integers c ∈ N and
k0 ∈ N such that

∀p≥k0 : A⊗p+c = λ⊗c ⊗A⊗p. (2.10)

The smallest c that satisfies this definition is called the cyclicity of matrix A; k0 is called
the coupling time of A. 2

Theorem 2.3 (Irreducibility and cyclicity [3, 45])

Any irreducible matrix A is cyclic.

18 Modeling and Control of Switching Max-Plus-Linear Systems

2.3 Max-plus-linear systems

In the introduction of this chapter it was mentioned that discrete-event systems in which
only synchronization and no concurrency or choice occur, can be modeled as max-plus-
linear systems. In this section we will describe these max-plus-linear systems and extend
the description to switching max-plus-linear systems.

2.3.1 Max-plus-linear systems

Some examples of discrete-event systems that can be modeled as max-plus-linear systems
are manufacturing plants, railway traffic, the movement of legged robots, the scheduler
for a multi-core processor. In all of these systems the behavior is defined by a sequence
of activities that occur. The start and end of these activities are called the events of the
discrete-event system. In the case of a manufacturing plant materials undergo several
processes in a certain order to arrive at a final product. In this case the events are the
start and end of the processes the materials undergo. Often the complete process from raw
material till finished product is repeated resulting in a periodic behavior. This periodic
event based behavior can be described by a max-plus-linear system.

Consider a (period-varying) max-plus-linear system with m inputs and l outputs,
this system can be described as:

x(k) =
µmax⊕

µ=0

Aµ(k) ⊗x(k−µ) ⊕B(k) ⊗h(k) (2.11)

y(k) = C(k) ⊗x(k), (2.12)

where k is the cycle counter, x(k−µ) ∈ Rn×1
ε is the state vector of the system containing

the times that the events occurred for the (k−µ)-th time. For example the start and
end of all processes for the first batch of raw materials is in x(1), the start and end
of all processes for the second batch of materials is in x(2). The vector h(k) ∈ Rm×1

ε

is the input vector of the system containing the times the inputs are available for the
system for the k-th time. For the manufacturing plant h(k) would contain the times the
raw materials of the k-th batch are available to undergo the processes. y(k) ∈ R

l×1
ε is

the output vector containing the times the system outputs started or finished. For the
example of the manufacturing plants the output is usually the finished product and then
y(k) contains the time(s) the k-th batch of finished products is ready. Aµ(k) ∈ Rn×n

ε for
µ ∈ {0, . . . ,µmax}, B(k) ∈ Rn×m

ε , and C(k) ∈ Rl×n
ε are the system matrices containing the

process times between events, and µmax is the maximum µ for which a relation exists
between x(k) and x(k−µ). If the system is period-varying the system matrices may be
different for different k, if it is not event-varying the system matrices remain the same for
all k.

The system in (2.11)–(2.12) is in the so-called implicit form since the state vector
x(k) not only depends on previous state vectors, but also on itself (µ starts at zero and not
at one). When the state vector only depends on previous state vectors the max-plus-linear

Chapter 2 – Max-plus-linear algebra and max-plus-linear systems 19

system is said to be in its explicit form. The explicit form is given by:

x(k) =
µmax⊕

µ=1

Ǎµ(k) ⊗x(k−µ) ⊕ B̌(k) ⊗h(k) (2.13)

y(k) = C(k) ⊗x(k), (2.14)

where Ǎµ(k) ∈Rn×n
ε , B̌(k) ∈Rn×m

ε , and C(k) ∈Rl×n
ε are the new system matrices. Matrix

C(k) is the same for the implicit and explicit form.

Using Theorem 2.1 implicit max-plus-linear systems can be transformed into explicit
max-plus-linear systems if there are only circuits of non-positive weight (or no circuits at
all) in G(A0). For the implicit system (2.11)–(2.12) this means that the precedence graph
G(A0(k)) can only have circuits of non-positive weight or have no circuits at all. If that is
the case then the system matrices of the explicit max-plus-linear system can be written
as a function of the system matrices of the implicit max-plus-linear system:

Ǎµ(k) = A∗
0(k) ⊗Aµ(k) for µ= 1, . . . ,µmax

B̌(k) = A∗
0(k) ⊗B(k).

The theory of max-plus algebra can be used to analyze the behavior of these systems.
The most important are the max-plus eigenvalue and eigenvector, which can be used to
determine the asymptotic behavior of the system, and the cyclicity and coupling time,
which can be used to analyze the transient behavior. The coupling time determines the
maximum number of cycles needed to reach the asymptotic behavior and the cyclicity c

determines whether the asymptotic behavior will be determined by a single eigenvector
for c= 1 or if it will follow a repeating pattern of l vectors (for c= l).

2.3.2 Switching max-plus-linear systems

Discrete-event systems that have different operating modes, for example if the manufac-
turing plant produces different products using the same processes but in a different order,
then each mode is described by a different set of system matrices. This type of system can
be described by a switching max-plus-linear (SMPL) system [85]. The mode is denoted
by ϑ(k) ∈ {1, . . . ,o} for event counter k, where o is the number of modes of the system.
Switching the mode of operation means the system matrices change. An implicit SMPL
system is described by

x(k) =
µmax⊕

µ=0

Aϑ(k)
µ (k) ⊗x(k−µ) ⊕Bϑ(k)(k) ⊗h(k) (2.15)

y(k) = Cϑ(k)(k) ⊗x(k), (2.16)

where Aϑ(k)
µ (k), Bϑ(k)(k), Cϑ(k)(k) are the system matrices for mode ϑ(k). The switching

makes it possible for the behavior of the system to change, which means the order of
events can change or the process times may change. In general, the mode ϑ(k) of the
system is determined by a switching function:

ϑ(k) = φ(x(k−1), . . . ,x(0),ϑ(k−1),h(k),g(k)), (2.17)

20 Modeling and Control of Switching Max-Plus-Linear Systems

where φ(·) : Rn×1
ε ×N ×R

m×1
ε × R

p×1
ε → N may depend on the previous state-vectors

x(k−1), . . . ,x(0), the previous mode ϑ(k−1), the input of the system h(k), and a control
vector g(k) ∈ Rp×1

ε .

For the implicit SMPL model it also applies that it can be transformed into the
explicit form, but only if Aϑ(k)

0 (k) satisfies the conditions of Theorem 2.1 for every mode.

A special type of SMPL systems exists where the system matrices of all different
modes can be combined into a single set of system matrices Aµ(u(k−µ),k) ∈ Rn×n

ε for
µ= 0, . . . ,µmax, B(u(k),k) ∈ Rn×m

ε , and C(u(k),k) ∈ Rl×n
ε that depends on a set of max-

plus binary decision variables u(k), where ui(k) is defined as ui(k) ∈ {0,ε} and define the
adjoint ui(k) ∈ {0,ε} as:

ui(k) =

{

ε if ui(k) = 0
0 if ui(k) = ε.

(2.18)

For this special type of SMPL system each element of the system matrices can be described
as a max-plus-linear equation of the form

f =
⊕⊗

j

τj(k) ⊗
⊗

i

ui(k),

where τj(k) ∈ Rε is a process time and ui(k) ∈ {0,ε} is a max-plus binary variable. In
this case the implicit SMPL system can be described as:

x(k) =
µmax⊕

µ=0

Aµ(u(k),k) ⊗x(k−µ) ⊕B(u(k),k) ⊗h(k) (2.19)

y(k) = C(u(k),k) ⊗x(k). (2.20)

This type of SMPL systems can also be transformed into its explicit form, but only if
for all combinations of binary variables the matrix A0(u(k),k) satisfies the conditions of
Theorem 2.1. In special cases this requirement can be relaxed, but this depends on the
application as we will show in the next chapter.

2.4 Summary

In this chapter the basics of the max-plus algebra were explained. The max-plus algebra
is an idempotent semi-ring, consisting of the set Rε = R∪{ε}, where ε= −∞, equipped
with the two operators ⊕ and ⊗. Furthermore it was explained that discrete-event sys-
tems in which only synchronization and no concurrency or choice occur, can be modeled
as max-plus-linear systems. The mathematical description of max-plus-linear systems
was given. It was shown how the implicit model description is turned into the explicit
model description. For those discrete-event systems that have different operating modes
an extension to max-plus-linear systems was described, namely switching max-plus-linear
systems. The switching max-plus-linear system can switch between the different operat-
ing modes using a switching function. Conditions were given under which the implicit
switching max-plus-linear system can be rewritten into its explicit form.

Chapter 3

Implicit and explicit models of the

railway traffic networks

An implicit switching max-plus-linear model of passenger railway traffic, for use in on-
line railway traffic management, is presented in this chapter. Further more it is shown
how this model can be converted into its explicit form and reduced in complexity. The
presented model is extended to also model freight trains. Parts of this chapter have
been published in [57]. The main contributions of this chapter are the formulation of the
system in matrix form in Sections 3.2.3 and 3.3, the introduction of rescheduling actions
for switching tracks in 3.3.4, the transformation of the model into its explicit form in
Section 3.4, the reduction method for the explicit form in Section 3.5, and the modeling
of freight trains in Section 3.6.

3.1 Introduction

In this chapter a model of railway traffic networks for on-line railway traffic management
is proposed. In the work of Braker [5, 6] it has been shown that a macroscopic model of a
railway network, with a fixed routing schedule and fixed connections, can be described as
a max-plus-linear model. A system that can be described by a max-plus-linear model can
be characterized as a discrete-event system in which only synchronization occurs, but no
concurrency or choice [3]. Braker [5, 6] models only the departures of the trains and no
dispatching actions can be made. de Vries et al. [27] and Heidergott and Vries [44] extend
the max-plus-linear model to include dispatching actions that allow the cancelation of
connections. In the work of Goverde [37] and Goverde [38] the arrival events were modeled
explicitly for the first time. Furthermore Goverde [37] and Goverde [38] introduce the
concepts of slack time and recovery matrix to analyze the stability of a given timetable. In
the work of Goverde [37] and Goverde [39] an algorithm to determine the delay propagation
through the network is developed and further analysis of timetable stability is done.
Furthermore van den Boom et al. [86] extend the work of de Vries et al. [27] and Heidergott
and Vries [44] by introducing a method to reorder the trains on the tracks and determine
the optimal schedule by solving a MILP problem.

21

22 Modeling and Control of Switching Max-Plus-Linear Systems

We continue the work of van den Boom et al. [86] by extending the control actions
to allow the trains to switch tracks when there are multiple tracks between stations.
Furthermore a new max-plus matrix formulation is introduced. The matrix formulation
is used to convert the model into its explicit form. For that explicit form a reduction
method is proposed. Finally the modeling of the railway traffic is extended with extra
constraints for freight trains. We only model the stations and junctions where the order
of the trains can be changed. These stations and junctions are modeled as single nodes
with infinite capacity. Stations where the train order cannot be changed are seen as part
of the tracks. Each track between stations is modeled as a single link. The movement of
the trains over the tracks and the operational constraints on the trains are modeled using
constraints. These constraints are explained for the nominal operation in Section 3.2.
Furthermore it is shown in Section 3.2 how the model can be written as a max-plus-linear
one using the theory from Chapter 2. In Section 3.3 the max-plus-linear model is extended
to be able to model rescheduling actions resulting in a switching max-plus-linear model.
Section 3.4 shows how the switching max-plus-linear model can be transformed into its
explicit form. In Section 3.5 a method is introduced to reduce the number of constraints
in the explicit switching max-plus-linear model. Section 3.6 describes how freight trains
can be modeled in this framework. In Section 3.7 the chapter is summarized.

3.2 Nominal operation

The nominal operation of the railway network is modeled as a cyclic discrete-event system,
with cycle counter k. The events of the discrete-event system are the arrival and departure
events of the trains at the stations and junctions.

The combination of the following actions: a train departing from a station, traversing
a track, and arriving at the next station, is called a train run. Each train run has an
index i, and an associated departure time di and arrival time ai. A set of train runs,
modeling the same ‘physical’ train, will be called a line. During nominal operation, the
railway traffic operates according to the nominal timetable: the trains follow their pre-
determined routes, the order in which the trains depart and arrive at stations is fixed, all
connections are maintained and there are no delays in the network. The operation of the
railway network can be described as a set of train runs connected to each other through
various constraints.

3.2.1 Constraints connecting the train runs

There are six different constraints connecting the trains:

• Running time constraints

• Continuity constraints

• Timetable constraints

• Headway constraints

Chapter 3 – Implicit and explicit models of the railway traffic networks 23

• Coupling constraints

• Connection constraints

Next all of these constraints are described in more detail for the nominal operation.

Running time constraints

The relation between the arrival time and departure time of a train run can be described
by a running time constraint. In the rest of this chapter we will simply refer to a ‘train
run’ as a ‘train’. A running time constraint is defined such that the arrival and departure
of a train belong to the same cycle. This was done to simplify the structure of the system
matrices as described in the next section of this chapter. If a running time is much longer
than the period of the timetable it is split up into multiple connected train runs.

This results in the following definition for the running time constraint for train i in
cycle k:

ai(k) ≥ di(k) + τr,i(k), (3.1)

where τr,i(k) is the running time, i.e. the time the train needs to traverse the track, for
train run i in cycle k. Note that process times may vary each cycle, even during nominal
operation, e.g. due to a changing number of passengers and different rolling stock, and
therefore the running times depend on k.

Because of the way the running time constraints are defined, not all arrival and
departure times in the same period of the timetable will be in the same cycle of the model.
As a result multiple cycles may need to be considered when determining the arrival and
departure times in a given time interval. The events in the cycle are all departure events
of all trains for one period of the timetable and the arrival events associated to those
departure events, not the arrival events that occur in that same period of the timetable.

Continuity constraints

A continuity constraint connects two trains of the same line to each other, e.g. a ‘physical’
train driving from one station to the next and then continuing on to a third station. This
also includes trains turning or changing lines at their end station. This can be modeled by
considering train i and its predecessor pi. Let train pi model the ‘physical’ train driving
from the first to the second station and let train i model the ‘physical’ train driving from
the second to the third station. Train i can then only start some time after train pi has
arrived:

di(k) ≥ api
(k−µi,pi

) + τd,i,pi
(k), (3.2)

where µi,pi
= 0 if train pi in cycle k continues as train i in cycle k and µi,pi

= α if train pi

in cycle k−α continues as train i in cycle k, and τd,i,pi
(k) is the dwell time, i.e. the time

the train waits at the station for passengers to board and alight.

Timetable constraints

Since the passenger railways operate according to a timetable, none of the trains are
allowed to depart before their scheduled departure times and in some cases they may not
arrive before their scheduled arrival times either. This requirement can be modeled by

24 Modeling and Control of Switching Max-Plus-Linear Systems

adding timetable constraints:

di(k) ≥ rd,i(k) (3.3)

ai(k) ≥ ra,i(k), (3.4)

where rd,i(k) and ra,i(k) are the scheduled departure and arrival time of train i in cycle
k. Note that for a cyclic timetable it holds that rd,i(k) = rd,i(0) + kT and ra,i(k) =
ra,i(0) +kT , where T is the period of the timetable/footnoteBy definition of the running
time constraints the scheduled departure times of cycle k are in [(k− 1)T,kT), but the
scheduled arrival times may not be.. In many countries trains are allowed to arrive before
their scheduled arrival time; in that case the timetable constraint on the arrival time, as
in (3.4), should be left out for those trains. For junctions there are no scheduled arrival or
departure times the trains should adhere to, so for those events no timetable constraints
are defined.

Headway constraints

Headway constraints define the order in which trains traverse tracks and they indirectly
define the minimum distance between trains. This is done by relating the arrival and
departure times of one train to the arrival and departure time of the other trains traversing
the same track. The headway times can be chosen such that, as long as there are no
unexpected delays on the tracks, none of the trains run into a yellow or red signal and
have to break, or norms defined by the industry can be used. If several trains traverse a
track in the same direction, then for train i set Hi is defined as the set of trains that start
on the track before train i and traverse the track in the same direction during nominal
operation. The headway constraints for train i for the trains traversing the track in the
same direction are:

di(k) ≥ dl(k−µi,l) + τh,d,i,l(k) (3.5)

ai(k) ≥ al(k−µi,l) + τh,a,i,l(k), (3.6)

for each l ∈ Hi, where τh,d,i,l(k) is the headway time for departures, i.e. the time needed
between the departure of train l in cycle k−µi,l and the departure of train i in cycle k,
τh,a,i,l(k) is the headway time needed between the arrival of train l in cycle k−µi,l and
the arrival of train i in cycle k, and where µi,l is defined in the same way as for (3.2).

If trains traverse the track in the opposite direction, then for train run i, the set Si

is defined as the set of trains that start on the same track before train i and traverse the
track in opposite direction during nominal operation. The headway constraints for train
i for the trains traversing the track in the opposite direction are:

di(k) ≥ am(k−µi,m) + τs,i,m(k), (3.7)

for each m ∈ Si, where τs,i,m(k) is the separation time, i.e. the time the train i in cycle k
must wait before it can enter the track after train m in cycle k−µi,m has left the track
and where µi,m is defined in the same way as for (3.2).

Chapter 3 – Implicit and explicit models of the railway traffic networks 25

Coupling constraints

At some stations two ‘physical’ trains are coupled and continue as a single ‘physical’ train;
this is modeled by coupling constraints. In the literature it is common to model the single
‘physical’ train with a single train run in the model. In our model the two trains are
modeled separately, even when they continue as a single ‘physical’ train, and connected
to each other through coupling constraints. This allows us to decide if the trains should
be coupled or if they should continue as two separate ‘physical’ trains by changing the
coupling constraints. This will be shown in the Section 3.3.

The coupling constraints ensure that the arrival and departure times of the two
‘physical’ trains are the same. Consider train i and let train oi be the train to which train
i should be coupled to during nominal operation. For these trains the coupling constraints
are:

di(k) = doi
(k) (3.8)

ai(k) = aoi
(k). (3.9)

Here it is assumed both trains are in the same cycle, since they have the same depar-
ture and arrival times. These two equality constraints can be written as four inequality
constraints:

di(k) ≥ doi
(k) (3.10)

doi
(k) ≥ di(k) (3.11)

ai(k) ≥ aoi
(k) (3.12)

aoi
(k) ≥ ai(k). (3.13)

These four inequality constraints are used instead of the two equality constraints. This
is because in the perturbed operation (see Section 3.3) it will be possible to cancel the
coupling if one of the trains is delayed, and using these inequalities instead of equalities
makes it easier to support that modification.

Connection constraints

At some stations passengers can transfer to another train. Transfers that are guaranteed,
are modeled by connection constraints. Connection constraints ensure that passengers
can change trains at stations by defining a relation between the departure time of one
train and the arrival time of the train from which the passengers transfer. Define Ci as
the set of train runs, train i has to give a connection to during nominal operation. Then
the connection constraints for train i are defined as:

di(k) ≥ ae(k−µi,e) + τc,i,e(k), (3.14)

for each e ∈ Ci, and where τc,i,e(k) is the connection time, i.e. the time needed for the
passengers to transfer from train e in cycle k−µi,e to train i in cycle k.

3.2.2 Max-plus-linear model

If all constraints are satisfied, the trains can depart and arrive without running into any
conflict with other trains. Therefore, we assume that all trains depart and arrive as soon

26 Modeling and Control of Switching Max-Plus-Linear Systems

as all constraints are satisfied. Then the constraints for train i can be written using two
equations, one for the arrival and one for the departure time:

di(k) = max

(

api
(k−µi,pi

) + τd,i,pi
(k),

max
l∈Hi

(

dl(k−µi,l) + τh,d,i,l(k)
)

,

max
m∈Si

(

am(k−µi,m) + τs,i,m(k)
)

,

max
e∈Ci

(

ae(k−µi,e) + τc,i,e(k)
)

,

doi
(k), rd,i(k)

)

(3.15)

ai(k) = max

(

max
l∈Hi

(

al(k−µi,l) + τh,a,i,l(k)
)

,

di(k) + τr,i(k), aoi
(k), ra,i(k)

)

. (3.16)

Note that in an undisturbed, well-defined time schedule the terms rd,i(k) and ra,i(k)
in (3.15) and (3.16) respectively will be the largest. However, if one of the trains pi, l,m,e

or oi has a delay, due to unforeseen circumstances (an incident, a late departure, etc.),
then the corresponding term can become larger than the others and train i will depart
later than the scheduled departure time rd,i(k) and will therefore be delayed as well.

Now let us consider a network with n ‘trains’ and define the vectors

x(k) =
















d1(k)
...

dn(k)
a1(k)

...
an(k)
















∈ R
2n
ε , r(k) =
















rd,1(k)
...

rd,n(k)
ra,1(k)

...
ra,n(k)
















∈ R
2n
ε .

By defining appropriate matrices Aµ(k) ∈ R2n×2n
ε for µ= 0,1, . . . ,µmax, where

µmax = maxi,j µi,j , (3.15) and (3.16) can be rewritten as

xi(k) = max
(

max
j

(xj(k) + [A0(k)]i,j),max
j

(xj(k−1) + [A1(k)]i,j), . . . ,

max
j

(xj(k−µmax) + [Aµmax(k)]i,j), ri(k)
)

, (3.17)

where [Aµ(k)]i,j is the (i, j)th entry of Aµ(k)1.

Using the max-plus algebra explained in Chapter 2, (3.17) can be written as a max-
plus-linear equation:

xi(k) = ri(k) ⊕
µmax⊕

µ=0

2n⊕

j=1

[Aµ(k)]i,j ⊗xj(k−µ). (3.18)

1The matrices Aµ(k) can be completed by adding [Aµ(k)]i,j = −∞ for all combinations (µ,i,j,k) that

do not appear in (3.17).

Chapter 3 – Implicit and explicit models of the railway traffic networks 27

By determining this max-plus-linear equation for all xi(k) the model can be written
as a max-plus-linear (MPL) model defined as:

x(k) = r(k) ⊕
µmax⊕

µ=0

Aµ(k) ⊗x(k−µ), (3.19)

which is an MPL model of a railway network with a fixed routing schedule and fixed
connections, such as the models of Braker [5] and Goverde [39]. The current cycle of the
MPL model is denoted by k. For all preceding cycles k−n, n ∈ N, all event times are
assumed to be known, fixed, and in the past. That means that cycle k is the first cycle
for which event times are unknown and events still have to occur.

3.2.3 System matrices for the nominal operation

From (3.19) it is clear that the dynamics of the railway system are described by the
matrices Aµ(k), µ= 0, . . . ,µmax. In the remainder of this section (k) will be omitted from
the notation of the Aµ(k) matrices to improve the readability. In this section we will
study the structure of the matrices Aµ for the nominal operation. It can be verified that
the matrices Aµ, µ= 0, . . . ,µmax can be written as

Aµ =

[

Aµ,4,d ⊕Aµ,6,d Aµ,2 ⊕Aµ,3 ⊕Aµ,5

Aµ,1 Aµ,4,a ⊕Aµ,6,a

]

, (3.20)

with Aµ,1, Aµ,2, Aµ,3, Aµ,4,d, Aµ,4,a, Aµ,5, Aµ,6,d, Aµ,6,a ∈ R
n×n
ε . The structure of these

six matrices will now be discussed in detail.

The running time matrix

The running time matrix, denoted by Aµ,1, represents the running time constraints. Since
by definition the arrival and departure of a train belong to the same cycle, Aµ,1 = E for
all µ 6= 0. As a result, Aµ,1 has the following structure:

Aµ,1 =







diag⊕(τr,1(k), τr,2(k), · · · , τr,n(k)) for µ= 0

E for µ 6= 0.
(3.21)

The dwell time matrix

The dwell time matrix, denoted by Aµ,2, represents the continuity constraints. The struc-
ture of this matrix is defined as follows:

[Aµ,2]i,j =







τd,i,pi
(k) if j = pi and µ= µi,pi

ε else.
(3.22)

Let nL be the number of lines in the network, let nl,m be the number of trains on line m,
m= 1, . . . ,nL, so nl,1 +nl,2 + . . .+nl,nL

= n, and let Lm ∈ R
nl,m be a vector containing the

indices of the trains of line m, with Lm,i the ith element of vector Lm. Define a max-plus
permutation matrix Edwell ∈ R

n×n
ε that orders the rows and columns of Aµ,2, such that

the associated event times are ordered by line2 and per line by the scheduled departure

2Recall that a line is defined as the set of train runs modeling the same ‘physical’ train.

28 Modeling and Control of Switching Max-Plus-Linear Systems

times:

Aµ,2 = Edwell ⊗











Âµ,2,1 E · · · E

E Âµ,2,2
. . .

...
...

. E

E · · · E Âµ,2,nL











⊗E⊤
dwell, (3.23)

where Âµ,2,m ∈ R
nl,m×nl,m can be described as:

Âµ,2,m =













ε · · · · · · ε τ̂d,m,µ,1,nl,m
(k)

τ̂d,m,µ,2,1(k)
.

... ε

ε τ̂d,m,µ,3,2(k)
. . .

...
...

...
. ε

...
ε · · · ε τ̂d,m,µ,nl,m,nl,m−1(k) ε














, (3.24)

where

τ̂d,m,µ,i,j(k) =







τd,Lm,i,Lm,j
(k) if Lm,j = pLm,i

and µ= µLm,i,Lm,j

ε else.

If Lm,i = pLm,j
then train Lm,i is the predecessor of train Lm,j – in other words, train

Lm,i continues as train Lm,j – and there should be a dwell time between the arrival of
train Lm,j and the departure of train Lm,i.

The connection matrix

The connection matrix represents the connection constraints and is denoted by Aµ,3. This
matrix is structured as follows:

[Aµ,3]i,j =







τc,i,j(k) if j ∈ Ci and µ= µi,j

ε else.
(3.25)

The headway matrices

The matrices Aµ,4,d and Aµ,4,a represent the headway constraints for trains in the same
direction on the same track.

Let nT be the number of tracks in the network, let nt,m be the number of trains
on track m, m = 1, . . . ,nT, so nt,1 +nt,2 + . . .+nt,nT

= n, and let Tm ∈ Rnt,m be a vector
containing the indices of the trains on track m, ordered according to the timetable. Define
a max-plus permutation matrix Et ∈ Rn×n

ε that reorders the half of the state vector x(k)
containing the departure events d1(k) up to dn(k) such that the event times are ordered
per track and for each track the events are ordered according to the scheduled departure
times. The matrices Aµ,4,d can then be defined as:

Aµ,4,d = Et ⊗











Âµ,4,d,1 E · · · E

E Âµ,4,d,2
. . .

...
...

. E

E · · · E Âµ,4,d,nT











⊗E⊤
t , (3.26)

Chapter 3 – Implicit and explicit models of the railway traffic networks 29

where Âµ,4,d,m ∈ R
nt,m×nt,m and where for µ= 0 we have

Â0,4,d,m =











ε τ̂h,d,m,0,1,2(k) . . . τ̂h,d,m,0,1,nt,m
(k)

...
.

...
...

. . . τ̂h,d,m,0,nt,m−1,nt,m
(k)

ε ε











, (3.27)

and for µ= 1, . . . ,µmax

[Âµ,4,d,m]i,j = τ̂h,d,m,µ,i,j(k), (3.28)

with

τ̂h,d,m,µ,i,j(k) =







τh,d,Tm,i,Tm,j
(k) if Tm,j ∈ HTm,i

, and µ= µTm,i,Tm,j

ε else.
(3.29)

For Aµ,4,a, the structure of the matrix is the same as for Aµ,4,d, the only differences
being that in (3.26)- (3.29) Âµ,4,d,m is replaced by Âµ,4,a,m, τ̂h,d,m,µ,i,j(k) is replaced by
τ̂h,a,m,µ,i,j(k), and τh,d,Tm,i,Tm,j

(k) is replaced by τh,a,Tm,i,Tm,j
(k).

As an example consider the headway constraints of three trains running over the
same track in the same cycle (so µ= 0 for the headway constraints). Let us assume that
the headway times between all three trains are 3 minutes, then

T1 =
[

1 2 3
]⊤

H1 = ∅

H2 = {1}

H3 = {1,2},

and the headway constraints between the departures can be determined with (3.42) re-
sulting in:

A0,4,d(u(k),k) =







ε ε ε

3 ε ε

3 3 ε






.

These headway constraints ensure that train 2 departs at least 3 minutes after train 1,
and train 3 departs at least 3 minutes after train 2. There is an extra constraint that
ensures train 3 departs at least 3 minutes after train 1, but in this case that constraint is
not needed, since the other two constraints already ensure that train 3 departs at least 6
minutes after train 1. This constraint is only there in case the order of trains is changed
during the disturbances and train 3 is driving directly behind train 1.

The separation matrix

The separation matrix is denoted by Aµ,5, and represents the headway constraints for
trains driving over the same track in the opposite direction. Using the same permutation

30 Modeling and Control of Switching Max-Plus-Linear Systems

matrix Et as for the headway matrices, Aµ,5 can be written as:

Aµ,5 = Et ⊗











Âµ,5,1 E · · · E

E Âµ,5,2
. . .

...
...

. E

E · · · E Âµ,5,nT











⊗E⊤
t , (3.30)

where Âµ,5,m ∈ Rnt,m×nt,m and can be described as:

[Âµ,5,m]i,j =







τs,Tm,i,Tm,j
(k) if Tm,j ∈ STm,i

and µ= µTm,i,Tm,j

ε else.
(3.31)

The coupling matrices

The coupling matrices, denoted by Aµ,6,d and Aµ,6,a, define which trains are coupled into
one single train. The matrices Aµ,6,d and Aµ,6,a have the following structure:

[Aµ,6,d]i,j =







0 if j = oi and µ= 0

0 if i= oj and µ= 0

ε else.

(3.32)

Furthermore, Aµ,6,a = Aµ,6,d. The reason for defining two matrices that are identical is
that during perturbed operation these matrices may differ: they will depend on max-plus
binary variables and different process times and for many combinations of the max-plus
binary variables they will be different.

3.3 Perturbed operation

The model described in the previous section has a static structure: the order of the
trains on the tracks is fixed, connections cannot be broken, coupled trains cannot be
decoupled, process times are fixed, and when there are multiple tracks trains can use,
they cannot change tracks. In this section the abilities to change the order of the trains,
break connections, decouple trains, and change tracks will be added step by step. These
abilities are added by extending the model of the previous section to a switching max-plus-
linear (SMPL) model by modifying constraints and adding max-plus binary variables, as
defined in (2.18), to the constraints. It is called an SMPL model, since it can switch
between behaviors (train orders, track choices, broken connections). The SMPL model
can be described as:

x(k) =r(k) ⊕
µmax⊕

µ=0

Aµ(k,u(k−µ)) ⊗x(k−µ)⊕
−1⊕

µ=−µmax

Aµ(k,u(k)) ⊗x(k−µ), (3.33)

where u(k−µ) is a vector containing all max-plus binary variables used in the rest of
this section. The elements of Aµ contain the modified constraints with max-plus binary
variables from u. The first max-plus sum for µ = 0,1, . . . ,µmax contains the part of the

Chapter 3 – Implicit and explicit models of the railway traffic networks 31

model that describes the dependency of the event times of the current cycle to the event
times of previous cycles. Since the event times of previous cycles are known, fixed and
in the past the max-plus binary variables relating these event times to event times of the
current cycle are also fixed, known and in the past. As a result Aµ depends on u(k−µ)
when µ≥ 0 and not on u(k). By adding the ability to change the order of the trains, break
connections, decouple trains, and change tracks new constraints are introduced between
trains in the current cycle k and future cycles k−µ, for µ < 0. For example if a train
in the current cycle is delayed a lot and is delaying a train in the next cycle we should
be able to change the order of these trains. This involves constraints between an event
in cycle k and in cycle k+ 1. By adding the second max-plus sum from −µmax to −1
these constraints can also be modeled. Since the max-plus binary variables in the second
max-plus sum are taken during the kth cycle, Aµ in the second max-plus sum depends
on u(k).

For Aµ(k,u(k−µ)), with µ ∈ {0, . . . ,µmax}, and their sub matrices, the argument is
always (k,u(k−µ)) and will therefore be omitted in the remainder of this section. For
Aµ(k,u(k)), with µ ∈ {−µmax, . . . ,−1}, and their sub matrices, the argument is always
(k,u(k)) and will also be omitted in the sequel.

3.3.1 Changing the order of trains

To change the order of trains on a track, the headway constraints need to be manipulated.
As an example consider two trains running over the same track and in the same direction.
These trains are described by train i in cycle k and l in cycle k−µi,l. If the order of trains
is ‘l before i’, then headway constraints (3.5) and (3.6) define this order. If the order is ‘i
before l’ then the following headway constraints should replace (3.5) and (3.6):

dl(k−µi,l) ≥ di(k) ⊗ τh,d,l,i(k−µi,l) (3.34)

al(k−µi,l) ≥ ai(k) ⊗ τh,a,l,i(k−µi,l). (3.35)

To be able to change the order of trains, it is necessary to be able to turn headway
constraints on and off. This can be done by multiplying the right-hand side of (3.5) and
(3.6) with binary variable ui,l(k−µi,l) ∈ {0,ε}, and that of (3.34) and (3.35) with the
adjoint binary variable ui,l(k−µi,l) ∈ {0,ε}. Then we obtain:

di(k) ≥ dl(k−µi,l) ⊗ τh,d,i,l(k) ⊗ui,l(k−µi,l) (3.36)

ai(k) ≥ al(k−µi,l) ⊗ τh,a,i,l(k) ⊗ui,l(k−µi,l) (3.37)

dl(k−µi,l) ≥ di(k) ⊗ τh,d,l,i(k−µi,l) ⊗ui,l(k−µi,l) (3.38)

al(k−µi,l) ≥ ai(k) ⊗ τh,a,l,i(k−µi,l) ⊗ui,l(k−µi,l). (3.39)

To illustrate the effect of the max-plus binary variables consider the case that uil(k−

µi,l) = 0 in (3.36)-(3.39), then uil(k−µi,l) = ε and the equations become:

di(k) ≥ dl(k−µi,l) ⊗ τh,d,i,l(k) ⊗0 = dl(k) ⊗ τh,d,i,l(k)

ai(k) ≥ al(k−µi,l) ⊗ τh,a,i,l(k) ⊗0 = al(k) ⊗ τh,a,i,l(k)

dl(k−µi,l) ≥ di(k) ⊗ τh,d,l,i(k−µi,l) ⊗ε= ε

al(k−µi,l) ≥ ai(k) ⊗ τh,d,l,i(k−µi,l) ⊗ε= ε.

32 Modeling and Control of Switching Max-Plus-Linear Systems

The first two equations are identical to (3.5) and (3.6), and the last two equations simply
state that dl(k−µi,l) and al(k−µi,l) should be larger than ε, which they always are. This
results in the default order of the train runs: first l, then i.

If ui,l(k−µi,l) = ε, then ui,l(k−µi,l) = 0 and the equations become:

di(k) ≥ dl(k−µi,l) ⊗ τh,d,i,l(k) ⊗ε= ε

ai(k) ≥ al(k−µi,l) ⊗ τh,a,i,l(k) ⊗ε= ε

dl(k−µi,l) ≥ di(k) ⊗ τh,d,l,i(k−µi,l) ⊗0 = di(k) ⊗ τh,d,l,i(k−µi,l)

al(k−µi,l) ≥ ai(k) ⊗ τh,d,l,i(k−µi,l) ⊗0 = ai(k) ⊗ τh,a,l,i(k−µi,l).

Now the first two equations simply state that di(k) and ai(k) should be larger than ε,
which they always are, and the last two equations are equal to equations (3.34) and (3.35).
This results in the changed order of train runs: first i, then l.

For two trains running over the same track, and in opposite direction the same
procedure of multiplying the right-hand side of the constraints by control inputs can be
applied:

di(k) ≥ am(k−µi,m) ⊗ τs,i,m(k) ⊗ui,m(k−µi,m) (3.40)

dm(k−µi,m) ≥ ai(k) ⊗ τs,m,i(k−µi,m) ⊗ui,m(k−µi,m). (3.41)

Using this methodology the matrices Aµ,4,d, Aµ,4,a, and Aµ,5 can be modified to allow
reordering of trains. The new matrices can be described by (3.26) and (3.30) respectively,
where Âµ,4,d,m ∈ Rnt,m×nt,m and Âµ,5,m ∈ Rnt,m×nt,m are defined as:

[Âµ,4,d,m]i,j =







τh,d,Tm,i,Tm,j
(k) ⊗uTm,i,Tm,j

(k−µ) if Tm,j ∈ HTm,i
and

µ= µTm,i,Tm,j

τh,d,Tm,i,Tm,j
(k) ⊗uTm,j ,Tm,i

(k) if Tm,i ∈ HTm,j
and

µ= −µTm,j ,Tm,i

ε else,

(3.42)

[Âµ,5,m]i,j =







τs,Tm,i,Tm,j
(k) ⊗uTm,i,Tm,j

(k−µ) if Tm,j ∈ STm,i
and

µ= µTm,i,Tm,j

τs,Tm,i,Tm,j
(k) ⊗uTm,j ,Tm,i

(k) if Tm,i ∈ STm,j
and

µ= −µTm,j ,Tm,i

ε else,

(3.43)

where Tm is again the vector containing the indices of the trains on track m, ordered
according to the timetable. The first if-condition in both equations describes the nominal
situation where the jth train on track m is in the set HTm,i

or STm,i
respectively and

denotes the headway or separation times between the trains with the added max-plus
binary variable uTm,i,Tm,j

(k−µ). The second if-condition in both equations states that

Chapter 3 – Implicit and explicit models of the railway traffic networks 33

if the default order of the trains on track m is ‘i before j’ then element i, j should con-
tain a headway or separation time respectively and an adjoint max-plus binary variable
uTm,j,Tm,i

(k), since it corresponds to a train order that is different from the nominal order.

For Aµ,4,a, the structure of the matrix is the same as for Aµ,4,d, the only differences
are that in (3.42) Âµ,4,d,m is replaced by Âµ,4,a,m, and τh,d,Tm,i,Tm,j

(k) is replaced by
τh,a,Tm,i,Tm,j

(k).

The reader should note that for a track with ntrain trains running over it the num-
ber of max-plus binary variables added to the model is ntrain(ntrain − 1)/2. The number
of possible combinations of max-plus binary variables is then 2ntrain(ntrain−1)/2, but the
number of possible train orders is only ntrain!. For ntrain ≥ 3 there are more combinations
of max-plus binary variables than possible train orders. As a result some combinations
of max-plus binary variables do not correspond to possible train orders; they describe
infeasible train orders and make the model slightly more complex than absolutely nec-
essary. The reason for adding more max-plus binary variables than necessary is because
it is easier to formulate the model: each combination of two trains on a track has one
max-plus binary variable that determines the order.

As an example consider again the headway constraints of the three trains running
over the same track in the same cycle (so µ= 0 for the headway constraints) with

T1 =
[

1 2 3
]⊤
, H1 = ∅, H2 = {1}, H3 = {1,2},

and the headway constraints between the departures can be determined with (3.42) re-
sulting in:

A0,4,d(u(k),k) =







ε 3 ⊗u2,1(k) 3 ⊗u3,1(k)
3 ⊗u2,1(k) ε 3 ⊗u3,2(k)
3 ⊗u3,1(k) 3 ⊗u3,2(k) ε






,

where u2,1(k) determines the order between train 1 and 2, u3,2(k) determines the order
between train 2 and 3, and u3,1(k) determines the order between train 1 and 3. Now if
we set u2,1(k) = 0, then train 1 traverses the track before train 2; if we set u3,2(k) = 0,
then train 2 traverses the track before train 3; and if we set u3,1(k) = ε, then train 3
traverses the track before train 1. But this is impossible because if train 1 traverses the
track before train 2 and 2 traverses the track before 3 then u2,1 = 0 together with u3,2 = 0
implies that train 1 traverses the track before train 3, which is exactly the opposite of what
u3,1 = ε implies. Clearly the combination u2,1 = 0, u3,2 = 0, and u3,1 = ε is an infeasible
combination.

These infeasible train orders can be derived from the matrix powers of A0,4,d:

A⊗2

0,4,d(u(k),k) =







6 ⊗u2,1(k)⊗u2,1(k) 6 ⊗u3,2(k) ⊗u3,1(k) 6 ⊗u2,1(k) ⊗u3,2(k)
6 ⊗u3,2(k)⊗u3,1(k) 6 ⊗u3,2(k) ⊗u3,2(k) 6 ⊗u2,1(k) ⊗u3,1(k)
6 ⊗u2,1(k) ⊗u3,2(k) 6 ⊗u2,1(k) ⊗u3,1(k) 6 ⊗u3,1(k) ⊗u3,1(k)







=







ε 6 ⊗u3,2(k) ⊗u3,1(k) 6 ⊗u2,1(k) ⊗u3,2(k)
6 ⊗u3,2(k)⊗u3,1(k) ε 6 ⊗u2,1(k) ⊗u3,1(k)
6 ⊗u2,1(k) ⊗u3,2(k) 6 ⊗u2,1(k) ⊗u3,1(k) ε






.

34 Modeling and Control of Switching Max-Plus-Linear Systems

The diagonal elements in A⊗2

0,4,d(u(k),k) are ε by definition since ui(k) ⊗ui(k) = ε and
ε⊗a= ε. The next matrix power of A0,4,d is:

A⊗3

0,4,d(u(k),k) =
[

AP1(u(k),k) AP2(u(k),k) AP3(u(k),k)
]

,

with

AP1(u(k),k) =







9 ⊗ (u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ⊕u2,1(k) ⊗u3,2(k)⊗u3,1(k))
9 ⊗u2,1(k) ⊗u3,2(k) ⊗u3,2(k)
9 ⊗u3,2(k) ⊗u3,2(k) ⊗u3,1(k)







AP2(u(k),k) =







9 ⊗u2,1(k) ⊗u3,1(k) ⊗u3,1(k)
9 ⊗ (u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ⊕u2,1(k) ⊗u3,2(k)⊗u3,1(k))

9 ⊗u3,2(k) ⊗u3,1(k) ⊗u3,1(k)







AP3(u(k),k) =







9 ⊗u2,1(k) ⊗u2,1(k) ⊗u3,1(k)
9 ⊗u2,1(k) ⊗u2,1(k) ⊗u3,2(k)

9 ⊗ (u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ⊕u2,1(k) ⊗u3,2(k)⊗u3,1(k))






.

All non-diagonal elements of A⊗3

0,4,d(u(k),k) are ε by definition. The diagonal elements

are positive if u2,1(k)⊗u3,2(k)⊗u3,1(k) = 0 or u2,1(k)⊗u3,2(k)⊗u3,1(k) = 0. That means
these combinations of max-plus binary variables correspond to infeasible train orders.
So by simply determining the matrix powers, which has to be done to determine the
explicit model anyway, and looking at the diagonal elements the infeasible combinations
of max-plus binary variables can be found.

3.3.2 Breaking connections

Breaking connections can be done by manipulating the entries of Aµ,3. By setting the
elements of Aµ,3 to ε the connection is broken. This can be done by adding a max-
plus binary variable ui,j+n(k−µi,j) ∈ {ε,0} to the connection constraint, as was already
shown by de Vries et al. [27] and Heidergott and Vries [44]. If ui,j+n(k−µi,j+n) = ε the
connection is broken, if ui,j+n(k−µi,j+n) = 0 the connection is maintained. This results
in a new matrix:

[Aµ,3]i,j =







τc,i,j(k) ⊗ui,j+n(k−µi,j) if j ∈ Ci and µ= µi,j

ε else.
(3.44)

The max-plus binary variable has indices (i, j + n) since element [Aµ,3]i,j has indices
(i, j+n) in Aµ. This ensures there is no overlap in the indices of the max-plus binary
variables for the different dispatching actions.

3.3.3 Coupling trains

At some stations two ‘physical’ trains are coupled and continue as a single ‘physical’ train;
this is modeled by coupling constraints. When one of the two trains is delayed it may
be better not to couple the trains. To ensure the trains are not coupled the coupling
constraints need to be removed and headway constraints between the two trains need to

Chapter 3 – Implicit and explicit models of the railway traffic networks 35

be added. These headway constraints should also allow the trains to depart in a different
order. For the decoupling new max-plus binary variables are used: vi,j(k) ∈ {ε,0} and
its adjoint vi,j(k) ∈ {ε,0}. These max-plus binary variables are defined as in (2.18). This
results in the following build-up of the coupling matrix Aµ,6,d:

[Aµ,6,d]i,j =







0 ⊗ui,j(k) ⊕ τh,d,i,j(k) ⊗vi,j(k) ⊗ui,j(k) if j = oi, i > j,

and µ= 0

0 ⊗ui,j(k) ⊕ τh,d,i,j(k) ⊗vi,j(k) ⊗ui,j(k) if i= oj, i < j,

and µ= 0

ε else,

(3.45)

where vi,j(k) is the max-plus binary variable for coupling and vi,j(k) is the max-plus binary
variable that determines the order of the train departures if the trains are not coupled. The
matrices Âµ,6,a are defined in the same way as Âµ,6,d with only one difference: τh,d,i,j(k)
is replaced by τh,a,i,j(k).

Clearly if vi,j(k) = 0 then vi,j(k) = ε and the trains remain coupled. If vi,j(k) = 0 then
either [Aµ,6,d]i,j = τh,d,i,j(k) and [Aµ,6]j,i = ε or [Aµ,6]i,j = ε and [Aµ,6,d]j,i = τh,d,j,i(k).

3.3.4 Switching between tracks

Between certain stations in a railway network, there may be two (or more) parallel tracks
that can be used by trains. To determine which track should be used, extra max-plus
binary variables are added per train. In this thesis we will be dealing with at most two
parallel tracks in each direction (two sets of two unidirectional tracks). This is done for
the sake of simplicity. As a result only one max-plus binary variable has to be added
per train traversing one of these parallel tracks. However, this approach can easily be
generalized to the case where there are more parallel tracks. In that case one max-plus
binary variable per track per train is added that indicates whether the train is on that
track. Although this will result in many more max-plus binary variables than needed in
theory, it will keep the constraints as simple as possible.

The tracks are numbered in such a way that parallel tracks always have consecutive
numbers. If trains can switch between track m and m+ 1, then this can be modeled by
changing the headway matrices Aµ,4,d. Consider the part of Aµ,4,d, as described in (3.26),
consisting of

Ãµ,4,d,m =

[

Âµ,4,d,m E

E Âµ,4,d,m+1

]

,

where Âµ,4,d,m and Âµ,4,d,m+1 contain the headway times for the departures of the trains
on track m and m+1, respectively. Define Tm as the vector containing the indices of the
trains on track m, ordered according to the timetable and T̃m = [T⊤

m T⊤
m+1]⊤ is the vector

containing the indices of the trains on track m and track m+ 1. To enable switching
between parallel tracks new max-plus binary variables are introduced: wi,j(k) and its
adjoint wi,j(k). These max-plus binary variables are defined as in (2.18). Switching

36 Modeling and Control of Switching Max-Plus-Linear Systems

between tracks can then be done by redefining the entries of Ãµ,4,d,m as follows:

[

Ãµ,4,d,m

]

i,j
=







τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,i,T̃m,j
(k−µ)⊗

(

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)⊕

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)
)

if T̃m,j ∈ HT̃m,i
and

µ= µT̃m,i,T̃m,j

τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,j ,T̃m,i
(k)⊗

(

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)⊕

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)
)

if T̃m,i ∈ HT̃m,j
and

µ= −µT̃m,j ,T̃m,i

τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,i,T̃m,j
(k−µ)⊗

(

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)⊕

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)
)

if rd,T̃m,i
(k) ≥ rd,T̃m,j

(k−µ),

µ= µT̃m,i,T̃m,j
≥ 0 and

T̃m,i ∈ HTm, T̃m,j ∈ HTm+1
or

T̃m,i ∈ HTm+1
, T̃m,j ∈ HTm

τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,j ,T̃m,i
(k)⊗

(

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)⊕

wT̃m,i
(k) ⊗wT̃m,j

(k−µ)
)

if rd,T̃m,j
(k−µ)> rd,T̃m,i

(k),

µ= −µT̃m,j ,T̃m,i
≤ 0 and

T̃m,i ∈ Tm, T̃m,j ∈ HTm+1
or

T̃m,i ∈ HTm+1
, T̃m,j ∈ HTm.

(3.46)

The max-plus binary variables uT̃m,i,T̃m,j
(k), uT̃m,i,T̃m,j

(k−µ) are used to determine the

order of the trains T̃m,i and T̃m,j . The max-plus binary variables wT̃m,i
(k) and wT̃m,j

(k−µ)

are used to determine on which track trains T̃m,i and T̃m,j are respectively. The values are
chosen such that if wT̃m,j

(k) = 0 and wT̃m,j
(k−µ) = 0, trains T̃m,i and T̃m,j are on the same

track as in the nominal case. The first two if-statements describe the headway constraints
for trains that are on the same track during nominal operation with the added max-plus
binary variables for the different tracks. The last two if-statements are the headway
constraints between trains that, during the nominal operation, traverse parallel tracks.
The default order between these trains is chosen according to their scheduled departure
times.

For Ãµ,4,a,m, the structure of the matrix is the same as for Ãµ,4,d,m, the only difference
is that in (3.46) τh,d,T̃m,i,T̃m,j

(k) is replaced by τh,a,T̃m,i,T̃m,j
(k).

To illustrate the method of adding and removing headway constraints based on the
track the trains are on consider the following example consisting of two parallel tracks,
track 1 and 2, with two trains on each of the tracks. Trains 1 and 2 traverse track 1 and
trains 3 and 4 traverse track 2. All trains are running in the same cycle. The timetable

period is 1 hour, and the timetable vector is r(0) =
[

0 30 5 35 15 50 20 55
]⊤

. We

Chapter 3 – Implicit and explicit models of the railway traffic networks 37

can define the following sets and vectors based on this example:

T1 =
[

1 2
]⊤
, T2 =

[

3 4
]⊤
, T̃1 =

[

1 2 3 4
]⊤
,

H1 = ∅, H2 = {1}, H3 = ∅, H4 = {3}.

Using these sets, vectors and (3.46) we can determine the entries of Ãµ,4,d,1. Since all
trains are in the same cycle only µ = 0 needs to be considered. The first if-condition of
(3.46) results in the following non-ε elements of Ã0,4,d,1:

[Ã0,4,d,1]1,2 = τh,d,1,2(k) ⊗u2,1(k)⊗
(

w1(k) ⊗w2(k) ⊕w1(k) ⊗w2(k)
)

[Ã0,4,d,1]3,4 = τh,d,3,4(k) ⊗u4,3(k)⊗
(

w3(k) ⊗w4(k) ⊕w3(k) ⊗w4(k)
)

,

and the second if-condition results in the following non-ε elements of Ã0,4,d,1:

[Ã0,4,d,1]2,1 = τh,d,2,1(k) ⊗u2,1(k) ⊗
(

w1(k) ⊗w2(k) ⊕w1(k) ⊗w2(k)
)

[Ã0,4,d,1]4,3 = τh,d,4,3(k) ⊗u4,3(k) ⊗
(

w3(k) ⊗w4(k) ⊕w3(k) ⊗w4(k)
)

.

The first two if-conditions result in the headway times between departure events of the
trains that traverse the same track during nominal operation, with the addition of the
max-plus binary variables for track selection. The third if-condition results in the following
non-ε elements Ã0,4,d,1:

[Ã0,4,d,1]1,3 = τh,d,1,3(k) ⊗u3,1(k)⊗
(

w1(k) ⊗w3(k) ⊕w1(k) ⊗w3(k)
)

[Ã0,4,d,1]1,4 = τh,d,1,4(k) ⊗u4,1(k)⊗
(

w1(k) ⊗w4(k) ⊕w1(k) ⊗w4(k)
)

[Ã0,4,d,1]2,4 = τh,d,2,4(k) ⊗u4,2(k)⊗
(

w2(k) ⊗w4(k) ⊕w2(k) ⊗w4(k)
)

[Ã0,4,d,1]3,2 = τh,d,3,2(k) ⊗u2,3(k)⊗
(

w3(k) ⊗w2(k) ⊕w3(k) ⊗w2(k)
)

,

and the fourth if-condition results in the final non-ε elements Ã0,4,d,1:

[Ã0,4,d,1]3,1 = τh,d,3,1(k) ⊗u3,1(k) ⊗
(

w1(k) ⊗w3(k) ⊕w1(k) ⊗w3(k)
)

[Ã0,4,d,1]4,1 = τh,d,4,1(k) ⊗u4,1(k) ⊗
(

w1(k) ⊗w4(k) ⊕w1(k) ⊗w4(k)
)

[Ã0,4,d,1]4,2 = τh,d,4,2(k) ⊗u4,2(k) ⊗
(

w2(k) ⊗w4(k) ⊕w2(k) ⊗w4(k)
)

[Ã0,4,d,1]2,3 = τh,d,2,3(k) ⊗u2,3(k) ⊗
(

w3(k) ⊗w2(k) ⊕w3(k) ⊗w2(k)
)

.

These headway times define the order of the trains if a train from track 1 switches to track
2 or the other way around. For the headway times between arrival events only τh,d,i,j(k)
needs to be replaced with τh,a,i,j(k).

When trains 1 and 2 remain on track 1, and trains 3 and 4 remain on track 2 the
max-plus binary variables w1(k), w2(k),w3(k), and w4(k) are all zero (and w1(k), w1(k),

38 Modeling and Control of Switching Max-Plus-Linear Systems

w1(k), and w1(k) are ε), resulting in the following headway constraints:

[Ã0,4,d,1]1,2 = τh,d,1,2(k) ⊗u2,1(k) [Ã0,4,d,1]2,4 = ε

[Ã0,4,d,1]3,4 = τh,d,3,4(k) ⊗u4,3(k) [Ã0,4,d,1]3,2 = ε

[Ã0,4,d,1]2,1 = τh,d,2,1(k) ⊗u2,1(k) [Ã0,4,d,1]3,1 = ε

[Ã0,4,d,1]4,3 = τh,d,4,3(k) ⊗u4,3(k) [Ã0,4,d,1]4,1 = ε

[Ã0,4,d,1]1,3 = ε [Ã0,4,d,1]4,2 = ε

[Ã0,4,d,1]1,4 = ε [Ã0,4,d,1]2,3 = ε.

Leaving only the headway constraints between trains 1 and 2, and the headway constraints
between trains 3 and 4.

Now if train 3 changes tracks to track 1, then the max-plus binary variable w3(k)
changes to ε (and w3(k) = 0) and the headway constraints become:

[Ã0,4,d,1]1,2 = τh,d,1,2(k) ⊗u2,1(k) [Ã0,4,d,1]3,4 = ε

[Ã0,4,d,1]2,1 = τh,d,2,1(k) ⊗u2,1(k) [Ã0,4,d,1]4,3 = ε

[Ã0,4,d,1]1,3 = τh,d,1,3(k) ⊗u3,1(k) [Ã0,4,d,1]1,4 = ε

[Ã0,4,d,1]3,2 = τh,d,3,2(k) ⊗u2,3(k) [Ã0,4,d,1]2,4 = ε

[Ã0,4,d,1]3,1 = τh,d,3,1(k) ⊗u3,1(k) [Ã0,4,d,1]4,1 = ε

[Ã0,4,d,1]2,3 = τh,d,2,3(k) ⊗u3,2(k) [Ã0,4,d,1]4,2 = ε.

Clearly the headway constraints between train 3 and 4 have been turned ‘off’ and headway
constraints between train 3 and trains 1 and 2 have been turned ‘on’ such that the default
order of departure on track 1 is: train 1 first, train 3 second, and train 2 third.

3.4 Explicit switching max-plus-linear model

The model introduced in (3.33) has a specific structure called the implicit form. In an
equation in the implicit form the state vector x(k) does not only depend on the state
vector of the previous cycles (and the timetable reference), but also on itself. In this
section we will first describe how the implicit SMPL for a single cycle can be converted
into its explicit form and after that the method is extended to an implicit SMPL for
multiple cycles.

3.4.1 Explicit model for a single cycle

When only the event times in x(k) need to be determined only a single cycle of the
(switching) max-plus-linear model needs to be considered. For a model of a single cycle
only the state vectors of the current and past cycles needs to be considered and no state
vectors of future cycles, i.e. only x(k−µ) with µ < 0, are considered. As a result, Aµ is
only needed for µ= 0, . . . ,µmax. This reduces the implicit model to

x(k) = r(k) ⊕A0 ⊗x(k) ⊕
µmax⊕

µ=1

Aµ ⊗x(k−µ).

Chapter 3 – Implicit and explicit models of the railway traffic networks 39

Next, A∗
0 will need to be determined. In Section 2.2 it was shown how A∗ can be de-

termined for a constant matrix by using Theorem 3.17 and Theoremm 3.20 of Baccelli
et al. [3]. For the given model calculating the max-plus matrix powers A⊗p

0 can be done
in the same way as for a constant matrix. In order to calculate max-plus matrix powers
the possibility of infinite event times needs to be considered, since infinite event times
may be caused by circuits of positive weight in the graph of A0 and a requirement for
calculating A∗

0 is that circuits of positive weight do not exist in the graph of A0. If one or
more event times are +∞, the timetable is infeasible. Since the nominal model results in
a feasible timetable, infinite event times can only result from the max-plus binary vari-
ables. More specifically, infinite event times can only have two causes: infinite process
times or positive diagonal elements in one of the max-plus matrix powers A⊗p

0 (positive
diagonal elements in the matrix powers of A0 correspond to circuits of positive weight).
Since none of the process times in the model can be infinite, the only cause that remains
is positive diagonal elements. It is therefore clear that the combinations of max-plus bi-
nary variables resulting in infinite event times also result in positive diagonal elements
of A⊗p

0 for p ∈ {1, . . . ,∞}. Hence, it is necessary to determine the value combinations of
max-plus binary variables that result in positive diagonal elements when calculating A∗

0

and remove all elements containing these specific value combinations of max-plus binary
variables from the matrix powers of A0. This can be done by simply calculating the ma-
trix powers of A0 and each time a non-ε diagonal element is in the matrix, check which
value combination(s) of max-plus binary variables the diagonal elements consist of and
set all elements of the matrix powers of A that have those value combinations of max-plus
binary variables to ε.

By removing these infeasible value combinations of inputs from the model a feasible
explicit switching max-plus-linear model of the following form is found:

x(k) = A∗,feas
0 ⊗



r(k) ⊕
µmax⊕

µ=1

Aµ ⊗x(k−µ)



 , (3.47)

where A∗,feas
0 is the feasible part of A∗

0 (so the infeasible combinations of max-plus binary
variables are removed from the matrix).

Consider the example of the three trains traversing the same track given in Sec-
tion 3.3.1. The following value combinations of max-plus binary variables correspond to
infeasible train orders:

u2,1(k) ⊗u3,2(k) ⊗u3,1(k) = 0

u2,1(k) ⊗u3,2(k) ⊗u3,1(k) = 0.

These value combinations of max-plus binary variables can be removed by replacing
u2,1(k) ⊗u3,2(k) ⊗u3,1(k) and u2,1(k) ⊗u3,2(k) ⊗u3,1(k) with ε.

To ensure the model predictive controller does not use these value combinations
of max-plus binary variables we add constraints to the model predictive controller that
ensure the following max-plus-linear inequalities are satisfied:

u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ≤ ε

u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ≤ ε.

40 Modeling and Control of Switching Max-Plus-Linear Systems

3.4.2 Explicit model for multiple cycles

Some dispatching actions may have an effect on the event times in the next cycle, or even
the cycles after that, and therefore it may be needed to consider multiple cycles of the
switching max-plus-linear model. Multiple cycles can be considered at once by extending
the model which will be done in this part of the chapter.

A model with multiple cycles is used to predict the arrival and departure times for
the current and future cycles and the effects of the dispatching actions on these arrival
and departure times based on the current situation. That means x(k) and the event times
of subsequent cycles (x(k−µ), with µ < 0) need to be determined. The model for m+ 1
cycles can be described by the following set of equations:

x(k+ q) =r(k+ q) ⊕
µmax⊕

µ=1

Aµ ⊗x(k+ q−µ) ⊕
0⊕

µ=−min(µmax,m−q)

Aµ ⊗x(k+ q−µ), (3.48)

for the range q = 0, . . . ,m. By extending the state vector to

x̆(k) =
[

x⊤(k) x⊤(k+ 1) . . . x⊤(k+m−1) x⊤(k+m)
]⊤
,

the above set of equations can be written as

x̆(k) = r̆(k) ⊕ Ă0 ⊗ x̆(k) ⊕
µmax⊕

µ=1

Ăµ ⊗x(k−µ), (3.49)

where Ă0(k,v(k)) contains the matrices with the process times for the constraints between
event times of the current and future cycles (x(k−µ), with µ ≤ 0), and the max-plus
sum with µ ranging from 1 to µmax contains the matrices with the process times for the
constraints between event times of preceding cycles (x(k−µ), with µ> 0) and event times
of the current and future cycles. These matrices are defined as follows:

[Ă0(k,u(k))]i,j =







Ai−j(k+ i−1,u(k+ j−1)) if 0 ≤ i− j ≤ µmax

and 1 ≤ i, j ≤m+ 1

Ai−j(k+ i−1,u(k+ i−1)) if −µmax ≤ i− j ≤ −1

and 1 ≤ i, j ≤m+ 1

E else,

and
Ăµ =

[

A⊤
µ A⊤

µ+1 . . . A⊤
µmax

E⊤ . . . E⊤
]⊤
.

The reference vector r̆(k) containing the planned event times is defined as follows:

r̆(k) =
[

r⊤(k) r⊤(k+ 1) . . . r⊤(k+m−1) r⊤(k+m)
]⊤
.

The same procedure as for the model of one cycle can now be applied to Ă0, resulting
in Ă∗,feas

0 and a feasible explicit switching max-plus-linear model for multiple cycles:

x̆(k) = Ă∗,feas
0 ⊗



r̆(k) ⊕
µmax⊕

µ=1

Ăµ ⊗x(k−µ)



 . (3.50)

Chapter 3 – Implicit and explicit models of the railway traffic networks 41

For example if we want to determine the event times in the current cycle k and
the next cycles k+ 1 and k+ 2 then according to (3.48) with m = 2 the following set of
equations needs to be solved:

x(k) = r(k) ⊕
µmax⊕

µ=1

Aµ ⊗x(k−µ) ⊕
0⊕

µ=−2

Aµ ⊗x(k−µ)

= r(k) ⊕
µmax⊕

µ=1

Aµ ⊗x(k−µ) ⊕A−2 ⊗x(k+ 2) ⊕A−1 ⊗x(k+ 1) ⊕A0 ⊗x(k)

x(k+ 1) = r(k+ 1) ⊕
µmax⊕

µ=1

Aµ ⊗x(k+ 1 −µ) ⊕
0⊕

µ=−1

Aµ ⊗x(k+ 1 −µ)

= r(k+ 1) ⊕
µmax⊕

µ=1

Aµ ⊗x(k+ 1 −µ) ⊕A−1 ⊗x(k+ 2) ⊕A0 ⊗x(k+ 1)

x(k+ 2) = r(k+ 2) ⊕
µmax⊕

µ=1

Aµ ⊗x(k+ 2 −µ) ⊕
0⊕

µ=0

Aµ ⊗x(k+ 2 −µ)

= r(k+ 2) ⊕
µmax⊕

µ=1

Aµ ⊗x(k+ 2 −µ) ⊕A0 ⊗x(k+ 2).

Now by defining the extended state vector as:

x̆(k) =
[

x⊤(k) x⊤(k+ 1) x⊤(k+ 2)
]⊤
,

and the extended reference vector as:

r̆(k) =
[

r⊤(k) r⊤(k+ 1) r⊤(k+ 2)
]⊤
.

the extended switching max-plus-linear model can be described by (3.49) with system
matrices:

Ă0(k,u(k)) =







A0(k,u(k)) A−1(k,u(k)) A−2(k,u(k))

A1(k+ 1,u(k)) A0(k+ 1,u(k+ 1)) A−1(k+ 1,u(k+ 1))

A2(k+ 2,u(k)) A1(k+ 2,u(k+ 1)) A0(k+ 2,u(k+ 2))






.

and
Ăµ =

[

A⊤
µ A⊤

µ+1 . . . A⊤
µmax

E⊤ . . . E⊤
]⊤
.

3.4.3 Structured approach to matrix multiplication

The calculation of the matrix powers of A0 can be done in a structured manner by
making use of graph theory and the structure of the matrix as shown in (3.20) and the
sub matrices that are described in Sections 3.2 and 3.3. First denote A0,4,d ⊕A0,6,d as Aa,
A0,2 ⊕A0,3 ⊕A0,5 as Ab, A0,1 as Ac, and A0,4,a ⊕A0,6,a as Ad.

Then matrix A0 can be written as:

A0 =

[

Aa Ab

Ac Ad

]

,

42 Modeling and Control of Switching Max-Plus-Linear Systems

1 2

A b

A c

A a A d

Figure 3.1: Graph G(A0).

The graph G(A0) is given in Figure 3.1, where each sub-matrix Aa, Ab, Ac, and Ad is
considered as a single edge of length 1 between the nodes. According to graph theory
[A⊗m]i,j corresponds to the maximum weight of all paths of length m from node j to node
i in the precedence graph of A. If we apply this to matrix A0 for element [A⊗2

0]1,1, then
we should look at all paths of length 2 in the graph that start and end at node 1. There
are two paths of length 2 from node 1 to node 1. One consists of taking the edge from
node 1 to node 1 twice resulting in a weight of A⊗2

a . The other path of length two consists
of taking the edge from node 1 to node 2 and the edge from node 2 to node, resulting in
a path weight of Ab ⊗Ac. The value of [A⊗2

0]1,1 is the maximum of the weight of both
paths: [A⊗2

0]1,1 = A⊗2
a ⊕Ab ⊗Ac. For the other elements of A⊗2

a this results in:

[A⊗2
0]1,2 = Aa ⊗Ab ⊕Ab ⊗Ad

[A⊗2
0]2,1 = Ac ⊗Aa ⊕Ad ⊗Ac

[A⊗2
0]2,2 = A⊗2

d ⊕Ac ⊗Ab.

For the elements of A⊗3
0 we should look at all paths of length 3. There are four path of

length 3 starting at node 1 and ending at node 1:

• Take the edge from node 1 to node 1 three times. This path has a weight of A⊗3
a .

• Take the edge from node 1 to node 1 a single time and then go to node 2 and back.
This path has a weight of Aa ⊗Ab ⊗Ac.

• First go to node 2 and back, then take the edge from 1 node to node 1. This path
has a weight of Ab ⊗Ac ⊗Aa.

• Take the edge from node 1 to node 2, then the edge from node 2 to node 2, and
finally the edge from node 2 to node 1. This path has a weight of Ab ⊗Ad ⊗Ac.

This can also be done for the other elements and for all elements of all other matrix
powers. By looking at the graph of A0 and the relation between paths in the graph and
elements of the matrix powers of the matrix, it is clear only a limited number of paths is
possible and that there is a clear structure in these paths.

This structure follows a given set of rules that can directly be derived from graph
theory.

For paths starting and ending in node 1 the following rules apply:

1) The number of times edge Ac from node 1 to node 2 is in the path must be equal
to the number of times edge Ab from node 2 to node 1 is in the path.

Chapter 3 – Implicit and explicit models of the railway traffic networks 43

2) If edge Ad from node 2 to node 2 is in the path then edge Ab and edge Ac must
also be in the path.

3) Edge Aa from node 1 to node 1 can only be in the path after edge Ac, and after
itself.

4) Edge Ad from node 2 to node 2 can only be in the path after edge Ab, and after
itself.

5) Edge Ac from node 1 to node 2 can only be at the start of the path or after edge
Aa or edge Ab.

6) Edge Ab from node 2 to node 1 can only be in the path after edge Ad or edge Ac.

7) The path must start with edge Aa or edge Ac.

8) The path must end with edge Aa or edge Ab.

9) The number of edges is equal to the matrix power.

This translates into the following equations for [A⊗m
0]1,1:

[A⊗m
0]1,1 =

⊕

(q1,q2,q3)∈S1,1,m

l⊗

i=1

A
⊗q1,i
a ⊗A

⊗q2,i

b ⊗A
⊗q3,i

d ⊗A
⊗q2,i
c , (3.51)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S1,1,m contains all tuples
(q1, q2, q3) of vectors that satisfy the following equation:

l∑

i=1

q1,i + 2q2,i + q3,i = m, (3.52)

with q1,i ∈ {0, . . . ,m}, q2,i ∈ {0,1}, and q3,i = 0 if q2,i = 0 and q3,i ∈ {0, . . . ,m} if q2,i = 1.

Rule 1 is ensured by setting the max-plus power of Ab equal to that of Ac. Rule 2
ensured by the if-condition on q3,i. Rules 3-8 are ensured by the order in which Aa, Ab,
Ac, and Ad are put in 3.51. The sum in (3.52) ensures rule 9.

The rules for paths starting and ending in node 2 are:

1) The number of times edge Ac from node 1 to node 2 is in the path must be equal
to the number of times edge Ab from node 2 to node 1 is in the path.

2) If edge Aa from node 1 to node 1 is in the path then edge Ab from node 1 to node
2 and edge Ac from node 2 to node 1 must also be in the path.

3) Edge Aa from node 1 to node 1 can only be in the path after edge Ac, and after
itself.

4) Edge Ad from node 2 to node 2 can only be in the path after edge Ab, and after
itself.

5) Edge Ac from node 1 to node 2 can only be after edge Aa or edge Ab.

44 Modeling and Control of Switching Max-Plus-Linear Systems

6) Edge Ab from node 2 to node 1 can only be at the start the path or after edge Ad

or edge Ac.

7) The path must start with edge Ad or edge Ab.

8) The path must end with edge Ad or edge Ac.

9) The number of edges is equal to the matrix power.

These rules result in:

[A⊗m
0]2,2 =

⊕

(q1,q2,q3)∈S2,2,m

l⊗

i=1

A
⊗q1,i

d ⊗A
⊗q2,i
c ⊗A

⊗q3,i
a ⊗A

⊗q2,i

b , (3.53)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S2,2,m contains all tuples
(q1, q2, q3) that satisfy the following equation:

l∑

i

q1,i + 2q2,i + q3,i =m,

where q1,i ∈ {0, . . . ,m}, q2,i ∈ {0,1}, q3,i = 0 if q2,i = 0 and q3,i ∈ {0, . . . ,m} if q2,i = 1.

The rules for paths starting in node 1 and ending in node 2 are:

1) The number of times edge Ac from node 1 to node 2 is in the path must be 1 larger
than the number of times edge Ab is in the path.

2) If edge Ad from node 2 to node 2 is in the path then edge Ac must also be in the
path.

3) Edge Aa from node 1 to node 1 can only be in the path after edge Ac, and after
itself.

4) Edge Ad from node 2 to node 2 can only be in the path after edge Ab, and after
itself.

5) Edge Ac from node 1 to node 2 can only be at the start of the path or after edge
Aa or edge Ab.

6) Edge Ab from node 2 to node 1 can only be in the path after edge Ad or edge Ac.

7) The path must end with either edge Ac or Ad.

8) The path must start with either edge Aa or Ac.

9) The number of edges is equal to the matrix power.

These rules result in:

A2,1,m =
⊕

(q1,q2,q3,q4)∈S2,1,m

l⊗

i=1

A
⊗q1,i

d ⊗A
⊗q2,i
c ⊗A

⊗q3,i
a ⊗A

⊗q4,i

b , (3.54)

Chapter 3 – Implicit and explicit models of the railway traffic networks 45

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S2,1,m contains all tuples
(q1, q2, q3, q4) that satisfy the following equation:

l∑

i=1

q1,i + 2q2,i −1 + q3,i =m,

where q1,i ∈ {0, . . . ,m}, q2,i ∈ {0,1}, q2,l = 1, q3,i = 0 if q2,i = 0 and q3,i ∈ {0, . . . ,m} if
q2,i = 1, q4,i = q2,i, for i= 1, . . . , l−1, and q4,l = 0.

The rules for paths starting in node 2 and ending in node 1 are:

1) The number of times edge Ab from node 2 to node 1 is in the path must be 1 larger
than the number of times edge Ac is in the path.

2) If edge Aa from node 2 to node 2 is in the path then edge Ab must also be in the
path.

3) Edge Aa from node 1 to node 1 can only be in the path after edge Ac, and after
itself.

4) Edge Ad from node 2 to node 2 can only be in the path after edge Ab, and after
itself.

5) Edge Ac from node 1 to node 2 can only in the path after edge Aa or edge Ab.

6) Edge Ab from node 2 to node 1 can only be at the start of the path or after edge
Ad or edge Ac.

7) The path must end with either edge Ab or Aa.

8) The path must start with either edge Ab or Ad.

9) The number of edges is equal to the matrix power.

These rules result in:

[A⊗m
0]1,2 =

⊕

(q1,q2,q3,q4)∈S1,2,m

l⊗

i=1

A
⊗q1,i
a ⊗A

⊗q2,i

b ⊗A
⊗q3,i

d ⊗A
⊗q4,i
c , (3.55)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S1,2,m contains all tuples
(q1, q2, q3, q4) that satisfy the following equation:

l∑

i=1

q1,i + 2q2,i −1 + q3,i =m,

where q1,i ∈ {0, . . . ,m}, q2,i ∈ {0,1}, q2,l = 1, q3,i = 0 if q2,i = 0 and q3,i ∈ {0, . . . ,m} if
q2,i = 1, q4,i = q2,i, for i= 1, . . . , l−1, and q4,l = 0.

The same approach can be applied to Ă0 by reordering the state vector as follows:
the event times should be split up in departure and arrival times, the first half of the state
vector should consist of the departure times, the second half should consist of the arrival
times, and both arrival and departure times should be sorted per track. This results in
the same structure for matrix Ă0 as A0; the dimensions of the sub matrices are just larger.

46 Modeling and Control of Switching Max-Plus-Linear Systems

3.5 Reduction of the explicit switching max-
plus-linear model

At stations where trains can be reordered, the model can model the change in order of
any two trains running over the next track, even if there is a very large time difference
between the scheduled departure times. If the maximum of the delays of all trains is
known, it is possible to determine which (combinations of) max-plus binary variables will
not be used when determining the optimal dispatching actions for reducing the delays. In
this section it is explained how these (combinations of) max-plus binary variables can be
determined and removed from the model. First, the delay model will be explained. After
that the reduction method is explained using the delay model.

3.5.1 Delay model

The model as defined in Section 3.3 has a state vector x(k) that corresponds to the arrival
and departure times of the trains. When dealing with delays and trying to minimize them
it can be more useful to transform the model such that the transformed state vector xd(k)

shows the delays, with respect to the timetable, instead of the arrival and departure times
of the trains. Another advantage of this model transformation is that the elements of the
transformed matrix Ad

µ are the negative slack times between the events. The concepts
of the delay model and negative slack time are based on slack time, realizability, and
structural delays as described by Goverde [38, 39]. Define an activity (j, i) as the activity
taking place between event j and i connecting event i to event j. In the case of the railway
model are the trains running over the tracks, the trains dwelling at the stations, the trains
giving connections to other trains, and the signaling system modeled by the headways to
keep the trains separated by a safe distance. The slack time is defined in Goverde [38] as:

Definition 3.1 Slack time

For any activity (j, i) the slack time is the difference of the end xj(k−µi,j)+ai,j(k,u(k−

µi,j)) of the activity and the start xi(k) of the new activity. 2

The slack time can be used to analyze the model with respect to robustness against
delays, and in the perturbed mode, it can be used to analyze the effects of the different
dispatching actions.

The matrix Aµ is transformed into Ad
µ, containing the negative slack times:

[Ad
µ]i,j = [Aµ]i,j − (ri(0) − (rj(0) −µT)), (3.56)

where we used

r(k) = r(0) +kT. (3.57)

With these matrices the model from (3.33) can be transformed into

xd(k) = 0⊕
µmax⊕

µ=0

Ad
µ(k,u(k−µ)) ⊗xd(k−µ) ⊕

−1⊕

µ=−µmax

Ad
µ(k,u(k)) ⊗xd(k−µ), (3.58)

Chapter 3 – Implicit and explicit models of the railway traffic networks 47

where the state vector xd(k) contains the delays of the events of cycle k and 0 is a vector
of the same length as r(k) filled with zeros.

Because the elements of the matrix Ad
µ represent the negative slack times between

events, the value of the elements shows how much one event is delayed directly by another
event. For example, if [Ad

0]i,j = 2, then xi(k) is delayed by at least 2 minutes by xj(k).
Therefore, during nominal operation all the elements of the matrices should be negative,
since otherwise there would be delays during nominal operation.

3.5.2 Removing redundant control variables

With the use of the delay model and the negative slack times the combinations of max-
plus binary variables that cause large delays can be determined. With the use of the
following theorem these combinations of max-plus binary variables can be determined.

Theorem 3.1 The elements of the matrix powers of Ad
0 give lower bounds for the delays

caused by the max-plus binary variables if and only if the process times used are the

minimal process times. The minimal process times are the smallest possible process times

that are achievable by the trains and the railway operations.

Proof: By using the minimum process times, an element of Ad
0 and can be written as:

[Ad
0]i,j = τmin

i,j + ∆i,j +ui,j − (ri(0) − rj(0)).

where τmin
i,j is a minimum process time(s), ∆i,j is a positive value equal to the difference

between the (sum of) actual process time(s) and the (sum of) minimum process time(s),
and ui,j is a max-plus binary variable.

Since (ri(0)−rj(0)) is fixed by the timetable and tmin
i,j is as small as possible, a lower

bound for the negative slack time is given for ∆i,j = 0:

[Ad
0]i,j,lb = tmin

i,j +ui,j − (ri(0) − rj(0)).

Since a positive value for [Ad
0]i,j,lb indicates a delay for xi, for the ui,j = 0, and the

minimum process times are used, these values are minimum as well; they are a lower
bound to the delay of xi.

The lower bound on the negative slack time for any element of any power of Ad
0 can

be written as

[Ad
0]⊗p

i,j,lb(k,u(k)) =
⊕

l

(
⊗

q
τmin

i,j,q,l(k) ⊗
⊗

s
ui,j,s,l(k) − (ri(0) − rj(0))),

where tmin
i,j,q,l(k) is a minimum process time and ui,j,s,l(k) is a max-plus binary variable. If

the element is independent of max-plus binary variables the max-plus product
⊗

sui,j,s(k)

has zero terms. Each element of the max-plus sum is a lower bound for the negative slack
term and each of these lower bounds is also a lower bound to the delay for xi for the
combination of ui,j,s,l(k) for which

⊗

sui,j,s,l(k) = 0.
2

48 Modeling and Control of Switching Max-Plus-Linear Systems

By using the delay model together with the minimal process times the minimum
delays caused by the values of the (combinations of) max-plus binary variables can be
determined. Then by assuming there is a known maximum value or upper bound for the
delays, the values of the (combinations of) max-plus binary variables that would result in
delays larger than the maximum delay, can be identified and the elements of the matrix
powers that are non-ε only for the values of those (combinations of) max-plus binary
variables can be removed. Removing these elements will have no effect on the solution of
the dispatching problem, but it will reduce the computational complexity of the problem.

The values of these (combinations of) max-plus binary variables can be found by
determining which values of the max-plus binary variables result in at least one element
of the max-plus powers of Ăd

0 being larger than the maximum value for the delays. These
values can be determined off-line by making use of Theorem 3.1 and the minimal process
times. By using the minimal process times the values of the max-plus powers of Ăd

0 are
a lower bound of the delays caused by the different value (combinations of) max-plus
binary variables. The reduction is done by replacing the elements that are non-ε only for
those values of the (combinations of) max-plus binary variables by ε in all elements of the
max-plus powers of Ăd

0 , effectively removing them from the model. The reduction can be
applied while calculating the feasible explicit model resulting in a reduced explicit model:

x̆d(k) = Ăd,∗,red
0 ⊗



0̆(k) ⊕
µmax⊕

µ=1

Ăd,red
µ ⊗xd(k−µ)



 . (3.59)

This reduction method can also be applied to the implicit model, but it will not be
as effective, because most combinations of max-plus binary variables are only modeled
explicitly in the max-plus matrix powers of Ăd,∗,red

0 and therefore the value combinations
can not be removed from the implicit model. In fact, in the implicit model most combi-
nations of max-plus binary variables are modeled implicitly through the dependency of
x(k) on itself.

3.6 Modeling and control of freight trains

In many countries parts of the passenger railways are shared with freight trains. Since
freight trains are usually longer and have a heavier load than passenger trains, their
dynamics are also quite different: they accelerate and decelerate much slower; especially
starting up again after a stop takes a long time. Therefore, changes in the running time
and unscheduled stops have much larger effects on the headway times of freight trains
compared to passenger trains and this relation between headway times and running times
and unscheduled stops must be modeled and if possible avoided.

To be able to model and control the running times and stops of the freight trains
we need to make changes to the switching max-plus-linear model and add extra control
constraints to the model predictive controller. First we will describe the changes to
the model to include unscheduled stops at stations and reduced speed or full stops on
open track for freight trains. After that we give the constraints for the model predictive

Chapter 3 – Implicit and explicit models of the railway traffic networks 49

controller.

3.6.1 Unscheduled stop at a station

At some points in the network, such as stations and special overtaking tracks, the freight
train can make unscheduled stops to allow other trains to overtake it. This is a dispatching
action that needs to be modeled. To be able to model this the running time, continuity,
and the headway constraints need to be adjusted. The running time constraints need
to be changed since an unscheduled stop will increase the running time of the train run
before and after the unscheduled stop, because of the deceleration and acceleration. This
increase can be modeled by adjusting the running time constraint. Consider a freight
train with train runs pi and i that has no scheduled stop between train run pi and i, but
it can stop there. This is then modeled by:

api
(k) ≥ dpi

(k) ⊗ τr,pi
(k) ⊗ (0 ⊕ τr,pi,2(k) ⊗ud,pi,2(k)) (3.60)

ai(k) ≥ di(k) ⊗ τr,i(k) ⊗ (0 ⊕ τr,i,2(k) ⊗ud,pi,2(k)), (3.61)

where ud,pi,2 ∈ {0,ε} is a max-plus binary variable that determines whether the freight
train makes an unscheduled stop or not. If the max-plus binary variable is ε the extra
running times τr,pi,2(k) and τr,i,2(k) are added; if it is 0 the normal running time is used.

The continuity constraint between pi and i has to be modified as well to model the
increased dwell time:

di(k) ≥ api
(k) ⊗ τd,i,pi

(k) ⊗ (0 ⊕ τd,i,pi,2(k) ⊗ud,pi,2(k)), (3.62)

where τd,i,pi,2(k) is the minimum increase in dwell time due to the stop.

The increase in running time and the deceleration at the end of train run pi(k) also
have an effect on the arrival headway times between the trains traversing the track after
the train of train run pi(k). For simplicity let the train of train run pi(k) be the first train
to traverse the track and let Hpi

be the set of train runs on the same track as pi(k) that
start after train run pi(k). The headway constraints can then be written as:

dj(k) ≥ dpi
(k) ⊗ τh,d,j,pi

(k) (3.63)

aj(k) ≥ api
(k) ⊗ τh,a,j,pi

(k) ⊗ (0 ⊕ τh,a,j,pi,2(k) ⊗ud,pi,2(k)), (3.64)

for j ∈ Hpi
, and where τh,a,j,pi

(k) is the default headway time and τh,a,j,pi
(k)+τh,a,j,pi,2(k)

is the headway time when the train of train run pi(k) makes an unscheduled stop after
train run pi(k).

The departure headway times of the trains traversing the track after train run i(k)

are also increased if the freight train has an unscheduled stop before train run i(k). Let
Hi be the set of train runs on the same track as i(k) that start after train run i(k). The
headway constraints can then be written as:

dj(k) ≥ di(k) ⊗ τh,d,j,i(k) ⊗ (0 ⊕ τh,d,j,i,2(k) ⊗ud,pi,2(k)) (3.65)

aj(k) ≥ ai(k) ⊗ τh,a,j,i(k), (3.66)

50 Modeling and Control of Switching Max-Plus-Linear Systems

for j ∈ Hpi
, and where τh,d,j,i(k) is the default headway time and τh,d,j,i(k) + τh,d,j,i,2(k)

is the headway time when the train of train run i(k) has made an unscheduled stop at
the station before i(k).

The headway constraints can be extended to allow the reordering of the trains on
the tracks as described in Section 3.3.

3.6.2 Reduced speed/full stop on open track

Besides making stops at stations or at special overtaking tracks in the network it can
happen that a freight train has to slow down to avoid a yellow or red signal light. Slowing
down the freight train has a large impact on the headway times. Furthermore it takes
much longer for freight trains to slow down and speed up to the maximum allowed velocity.
We should therefore try to having freight trains run into yellow or red signal lights. To
model this we include additional process times that depend on binary variables into the
running and headway constraint. For the running time constraints this results in:

api
(k) ≥ dpi

(k) ⊗ τr,pi
(k) ⊗

⊗

l

(0 ⊕ τr,pi,l(k) ⊗ur,pi,l(k)), (3.67)

for l = 1, Different max-plus binary variables ur,pi,l increase the running time with
different amounts denoted by τr,pi,pi,l(k), allowing control of the increase of running time.
The number of terms l in the sum is the choice of the designer. Having more terms in
the sum allows for more choices in the length of the running times, but also increases
the number of max-plus binary variables of the model, which will make determining the
optimal dispatching actions more computationally complex.

For the headway constraints the adjustment results in:

aj(k) ≥ api
(k) ⊗ τh,a,j,pi

(k) ⊗
⊗

l

(0 ⊕ τh,a,j,pi,l(k) ⊗ur,pi,l(k)) (3.68)

dj(k) ≥ dpi
(k) ⊗ τh,d,j,pi

(k) ⊗
⊗

l

(0 ⊕ τh,d,j,pi,l(k) ⊗ur,pi,l(k)), (3.69)

where τh,a,j,pi,l and τh,d,j,pi,l are the increased headway times for the arrivals and depar-
tures due to the decreased velocity of the trains on the track.

3.6.3 Optimization constraints for freight trains

With the SMPL model the events take place as soon as all constraints are satisfied, this
also means that the defined process times are just minimal times and during the calcu-
lation of the dispatching actions and new timetable there is no restriction on the length
of the process times, even without changing the max-plus binary variables. Constraints
must be added to give upper bounds on the process times based on the values of the
max-plus binary variables. These constraints ensure that during the calculation of the
dispatching actions and new timetable the max-plus binary variables are used when the
running and dwell times need to be increased. Furthermore these constraints do not
model any dynamics of the railway traffic or network, and therefore they are not part
of the SMPL model, but are optimization constraints. Therefore these constraints are
described as mixed-integer-linear equations instead of max-plus-linear equations.

Chapter 3 – Implicit and explicit models of the railway traffic networks 51

For the unscheduled stop at a station or special overtaking track the constraints to
limit the running times are given by:

api
(k) ≤ dpi

(k) + τr,pi
(k) + τr,pi,2(k)υd,pi,2(k) + τr,pi,3(k) (3.70)

ai(k) ≤ di(k) + τr,i(k) + τr,i,2(k)υd,pi,2(k) + τr,i,3(k), (3.71)

where υd,pi,2(k) = 0 if ud,pi,2(k) = 0 and υd,pi,2(k) = 1 if ud,pi,2(k) = ε, and τr,i,3(k) is the
maximum increase in running time before the headway times need to be adjusted. These
constraints ensure that the running time for train run pi is between τr,pi

(k) and τr,pi
(k)+

τr,pi,3(k) if ud,pi,2(k) = ε and between τr,pi
(k)+ τr,pi,2(k) and τr,pi

(k)+ τr,pi,2(k)+ τr,pi,3(k)

if ud,pi,2(k) = 0.

The constraint to limit the dwell time in case of an unscheduled stop at a station or
special overtaking track is given by:

di(k) ≤ api
(k) + τd,i,pi

(k) + τd,i,pi,3(k) −βυd,pi,2, (3.72)

where υd,pi,2 is defined as before, β ≪ 0 is a large negative value, and τd,i,pi
(k)+τd,i,pi,3(k)

is the upper limit to the dwell time if the freight train does not stop. If it does stop, υd,pi,2

is set to 1 and a large positive value −β is added effectively removing the upper bound
on the dwell time.

In the case of breaking and/or stopping because of a signal light the constraint for
the upper limit on the running time constraint is given by:

api
(k) ≤ dpi

(k) + τr,pi,1(k) + τr,pi,3(k) +
∑

l

τr,pi,l(k)υr,pi,l, (3.73)

where l is the same as in (3.67) and is chosen by the designer, υr,pi,l(k) = 0 if ur,pi,l(k) = 0

and υr,pi,l(k) = 1 if ur,pi,l(k) = ε, τr,pi,3(k) is the maximum increase in running time without
needing to increase the headway times, and the upper limit on the running time is given
by τr,pi,1(k) + τr,pi,3(k) +

∑

l τr,pi,pi,l(k)vr,pi,l.

The headway constraints do not need upper limits; during the determination of the
dispatching actions and the new timetable, the headway times may be longer than the
minimum headway times, that just means the trains are traversing the tracks further
apart than strictly required and there is still some buffer time between the trains.

3.6.4 Example

As an example consider a freight train and a passenger train on a small network three sta-
tions and two tracks connecting the three stations. The trains only drive in one direction
and do not continue after the third station. The freight train can make an unscheduled
stop at the station connecting the two tracks. On both tracks the order of the trains can
be changed. On both tracks the freight train can run into signal lights and may have to
slow down or stop.

Let the freight train on the first track be denoted by train run 1 and on the second
track by train run 3. Let the passenger train on the first track be denoted by train run 2
and on the second track by train run 4.

52 Modeling and Control of Switching Max-Plus-Linear Systems

First we will describe the running time constraints on the first track:

a1(k) ≥d1(k) ⊗ τr,1(k) ⊗ (0 ⊕ τr,1,2(k) ⊗ud,1,2(k)) ⊗
⊗

l=3...,b

(0 ⊕ τr,1,l(k) ⊗ur,1,l(k))

a2(k) ≥d2(k) ⊗ τr,2(k).

The running time constraints have max-plus binary variable ud,1,2(k) for planning an
unscheduled stop at the station connecting the two tracks, and for the reduced speed and
full stop at track 1 the max-plus binary variables ur,1,l(k), for l = 1 . . . , b, where b can be
chosen by the freely and determines the number of possible steps in the speed reduction
that are modeled.

The linear optimization constraint that ensures the running time of the freight train
cannot increase without changing the max-plus binary variables is given by:

a1(k) ≤d1(k) + τr,1(k) + τr,1,2(k)υd,1,2(k) + τr,1,3(k) +
∑

l=3...,b

τr,1,l(k)υr,pi,l,

where υd,1,2(k) = 0 if ud,1,2(k) = 0 and υd,1,2(k) = 1 if ud,1,2(k) = ε, and υd,1,l(k) = 0 if
ud,1,l(k) = 0 and υd,1,l(k) = 1 if ud,1,l(k) = ε.

The headway constraints on the first track are:

d2 ≥d1 ⊗ τh,d,2,1(k) ⊗ (0 ⊕ τh,d,2,1,2(k) ⊗ud,1,2(k)) ⊗u2,1(k)⊗
⊗

l=3...,b

(0 ⊕ τh,d,2,1,l(k) ⊗ur,1,l(k))

d1 ≥d2 ⊗ τh,d,1,2(k) ⊗u2,1(k)

a2 ≥a1 ⊗ τh,a,2,1(k) ⊗u2,1(k) ⊗
⊗

l=3...,b

(0 ⊕ τh,a,2,1,l(k) ⊗ur,1,l(k))

a1 ≥a2 ⊗ τh,a,1,2(k) ⊗u2,1(k).

The headway constraints include max-plus binary variable u2,1(k) for changing the order
of the trains, ud,1,2(k) for planning an unscheduled stop at the station connecting the two
tracks, and variables ur,1,l(k), for l = 1 . . . , b, for the reduced speed and full stop at track
1.

The continuity constraints on the station connecting the two tracks are given by:

d3(k) ≥a1(k) ⊗ τd,3,1(k) ⊗ (0 ⊕ τd,3,1,2(k) ⊗ud,1,2(k))

d4(k) ≥a2(k) ⊗ τd,4,2(k).

The constraint to limit the dwell time of the freight train at the station is given by:

d3(k) ≤ a1(k) + τd,3,1(k) + τd,3,1,3(k) −βυd,1,2,

The running time constraints on the second track are similar to those of the first
track, except that the freight train is already scheduled to stop at the third station, so no
unscheduled stop can be planned:

a3(k) ≥d3(k) ⊗ τr,3(k) ⊗
⊗

l=3...,b

(0 ⊕ τr,3,l(k) ⊗ur,3,l(k))

a4(k) ≥d4(k) ⊗ τr,4(k).

Chapter 3 – Implicit and explicit models of the railway traffic networks 53

The headway constraints on the second track are:

d4 ≥d3 ⊗ τh,d,4,3(k) ⊗u4,3(k) ⊗
⊗

l=3...,b

(0 ⊕ τh,d,4,3,l(k) ⊗ur,3,l(k))

d3 ≥d4 ⊗ τh,d,3,4(k) ⊗u4,3(k)

a4 ≥a3 ⊗ τh,a,4,3(k) ⊗u4,3(k) ⊗
⊗

l=3...,b

(0 ⊕ τh,a,4,3,l(k) ⊗ur,3,l(k))

a3 ≥a4 ⊗ τh,a,3,4(k) ⊗u4,3(k).

There are no continuity constraints for the trains at station 3 since we assume they do
not continue after arriving there.

3.7 Summary

In this chapter it has been shown how railway traffic for passenger railways that is driving
according to a given schedule, can be modeled as max-plus-linear models. By using max-
plus binary variables the max-plus-linear model has been extended to a switching max-
plus-linear model. The switching max-plus-linear model can model the effects of different
dispatching actions such as reordering of trains on a track, switching between parallel
tracks between stations, and breaking connections. Furthermore, it has been shown how
an implicit SMPL model of the railway traffic can be converted into its explicit form for
single and multiple cycles. Finally an extension to the model for passenger railways was
introduced such that freight trains can also be modeled and controlled. This includes
new dispatching actions for unscheduled stops of freight trains and for increasing running
times.

54 Modeling and Control of Switching Max-Plus-Linear Systems

Chapter 4

Model predictive control for railway

traffic management

This chapter introduces the concepts of model predictive control (MPC) and distributed
model predictive control (DMPC) and gives an overview of the history of (D)MPC. We
show how MPC can be used to solve the problem of railway traffic management in Section
4.2. In Section 4.3 we propose four DMPC methods. In Sections 4.4 and 4.5 we perform
various case studies to determine the effectiveness of the proposed MPC and DMPC
methods. In Section 4.6 we draw conclusions and summarize the results. The main
contributions of this chapter are the proposed MPC and DMPC methods for railway
traffic management and the case studies that were performed.

Parts of this chapter have been published in the papers by Kersbergen et al. [57, 58,
59].

4.1 Introduction

In this chapter model predictive control (MPC), in particular for the application of railway
traffic management, will be explained. But before the details of the application are
explained, the basics of MPC will be discussed. MPC is a control methodology that, at
discrete time instants t(κ) for κ = 0, 1, . . . determines the control inputs for the system
that minimize a cost function or maximize a performance criterion, based on a prediction
of the evolution of the state of the system under control. The prediction is done using a
model of the system under control. MPC can be characterized by five components:

• A model of the system (and of disturbances).
The model is used to predict the effects of the control inputs on the evolution of
the system over a given prediction horizon and to determine the control actions
that minimize or maximize a given performance index. The disturbances are also
modeled to predict the effects of the disturbances on the system and to minimize
them.

55

56 Modeling and Control of Switching Max-Plus-Linear Systems

• A cost function (performance critter)
The cost function (performance critter) is a function of the predicted state evolution,
a reference signal and the control inputs. It is used as a measure to evaluate the
quality of the control actions and is chosen by the designer of the controller.

• Constraints.
One of the differentiating characteristics of MPC is that it can directly handle
constraints. These constraints can be on the input, the output, or the state of the
system, e.g. to limit the rate of change in the output, or to limit the range or shape
of the input.

• Optimization.
At time instants t(κ) the controller receives information about the system, usually
the output, and it uses the information and a model of the system under control
to determine the control input(s) over the control horizon, that minimize the cost
function. To determine the control inputs that minimize the performance index
each time instant an optimization problem is built using the model,cost function,
and the constraints. Depending on the type of model (e.g. linear, non-linear, discrete
event) and the cost function (e.g. linear, quadratic, 1-norm, ∞-norm) the resulting
optimization can be a (mixed integer) linear, non-linear, or quadratic programming
problem.

Depending on the system the optimization problem can be very hard to solve. To
limit the size of the optimization problem a finite prediction horizon is chosen. The
computational complexity of the optimization can be further reduced by reducing
the length prediction horizon. A second possibility to reduce the computational
complexity is the control horizon. The controller predicts the evolution of the system
over the whole prediction horizon but is only allowed to change the control input
during the control horizon. The control horizon is from t(κ) till t(κ)+cτH, where τH

is the step size and c is the number of steps on the control horizon. The prediction
horizon is from t(κ) till t(κ)+pτH, where p is the number of steps in the prediction
horizon.

• A receding horizon.
A receding horizon means that once the controller has determined the control
input(s) at time instant t(κ) it only implements the control input(s) in the in-
terval [t(κ), t(κ) + τH) and the next time instant t(κ+ 1) it shifts the prediction
and control horizon of the optimization problem to [t(κ+ 1), t(κ+ 1) + pτH) and
[t(κ+1), t(κ+1)+ cτH) respectively, and repeats the optimization described above.
It repeats this process of implementing only the first part of the control inputs,
shifting the horizon and recomputing the control actions using the optimization at
every time instant.

The time between two time instants may vary depending on the system. In the case of
continuous-time dynamical models the time between two time instants may be a fixed time
τH. We call this time-based MPC. For discrete-event systems another possible definition

Chapter 4 – Model predictive control for railway traffic management 57

for the time between two instants is the time it takes for a number of events to occur
after the current time instant t(κ). When this is the case we call it event-based MPC.
Another possibility is that the time between two time instants is defined by the time it
takes for the system performance to drop below a given threshold, or for the model error
to become larger than a given maximum, usually this time is bounded between a minimum
time τmin and a maximum time ατmin (α> 1). The time between two instant may also be
determined by the time it takes for new information from past events or measurements
of the system to become available.

MPC for linear models was first described and successfully applied in the late 1970s
and early 1980s by Richalet et al. [75] and Cutler and Ramaker [20] in the chemical
process industry. In the next decades MPC was applied successfully many more times
and extended to include non-linear models (see [32, 71, 73] and the references therein).
In the early 2000s a further extension of MPC to max-plus-linear discrete-event systems
was made by De Schutter and van den Boom [25, 26].

As was discussed in the introduction many papers have been published on the devel-
opment of railway traffic management systems. In almost all of these papers some form
of MPC is used. But most of these methods only consider a part of the network and
almost none of them consider how the whole network can be controlled. Expanding the
current methods to consider the whole network is one possibility, but then most of these
methods will run in computation problems. Another possibility is the approach with a
supervisory controller such as the one by Corman et al. [13, 14, 16], but then solving the
supervisory problem may become very hard for a large number of subnetworks. A third
possibility is distributed model predictive control (DMPC) [9, 29, 31, 76]. With DMPC
there is no supervisory controller: instead the model predictive controllers solving the
dispatching problems for the subnetworks communicate and coordinate with each other
to reach a global feasible solution. For an overview of DMPC methods the interested
reader is referred to [69].

In Section 4.2 we describe the basics of MPC for on-line railway traffic management
and how the optimization problem can be built up with the use of the model described
in Chapter 3. The DMPC methods we propose are given in Section 4.3. The next two
sections consist of two case studies. In Section 4.4 we test the performance of the model
predictive controllers using the implicit and explicit models of the previous chapter. In
Section 4.5 we compare the performance of the DMPC methods to the centralized MPC
method. Finally in Section 4.6 we summarize the chapter.

4.2 MPC for on-line railway traffic management

We will use time-based model predictive control, with a fixed step size for the time in-
stants, to do the rescheduling of the railway traffic. The reason for using time-based MPC
is that the time between two time instants is fixed, where as for event-based MPC it varies
between time instants, depending on how much time there is between events. The biggest
challenge of on-line railway traffic management is determining the new schedule in a short

58 Modeling and Control of Switching Max-Plus-Linear Systems

amount of time. If the maximum time to compute the solution is not known since the time
between time instants constantly varies, it is hard to ensure that the solution is found in
time. It is easier to do when the time between time instants is fixed and known, then a
clear bound on the computation time for the optimization can be given. The model used
in this case is the SMPL model described in the previous chapter and given in (3.49) or
(3.50) for the implicit and explicit model respectively.

4.2.1 Prediction and control horizon at time instant t(κ)

Recall that the time instants are denoted by t(κ), for κ = 0,1, . . ., where κ is the time
instant counter. Since we use time-based model predictive control with a fixed time step
t(κ+1) = t(κ)+ τH, where τH is the step size. To be able to describe the control problem
at time instant t(κ) we first need to define the prediction and control horizon. After
that we explain how the events and control inputs that are in the prediction and control
horizon can be determined for each time instant t(κ) and how that information is used to
determine the part of the model that is needed for the optimization at t(κ).

The prediction horizon determines the events that need to be considered and for
which the event time must be determined. Let the length of the prediction horizon be
defined by the number of time steps, denoted by p, then the prediction horizon is defined
to be from t(κ) till t(κ) +pτH.

The control horizon determines for which events the binary variables can be adjusted.
The length of the control horizon is defined by the number of time steps and is denoted
by c, with c≤ p. The control horizon is then defined to be from t(κ) till t(κ) +pτH.

4.2.2 Events and control variables at time instant t(κ)

Let X (κ) contain all event times in the extended state vector x̆(k) from (3.49) or (3.50)
that have not yet occurred and are predicted at t(κ) or scheduled according to the original
timetable to occur in [t(κ), t(κ) +pτH):

x̆i(k) ∈ X (κ) if







t(κ) ≤ x̆i(k)< t(κ) +pτH

or
t(κ) ≤ x̆i(k) and r̆i(k) < t(κ) +pτH

, (4.1)

and let χ(κ) be a vector containing all elements of X(κ).

Not all max-plus binary variables can be changed at each time instant. To determine
the max-plus binary variables that can be changed at t(κ) consider the SMPL model in
(3.49). Each element of the matrices of the SMPL model relates two events to each other.
If the value of that element depends on a max-plus binary variable and if at least one
of the events associated to it is in the control horizon and the other is in the control
or prediction horizon that max-plus binary variable can be changed at the current time
instant and is in ψ(κ). Let ŭ(k) be a vector containing all max-plus binary variables
of the system in (3.49). Each max-plus binary variable ŭi(k) is related to one or more
variables in x̆(k) through the constraints in Section 3.3. Let Xŭi(k) be the set containing
the continuous variables in x̆(k) related to ŭi(k), then the set U(κ) contains all max-plus
binary variables that can be changed by the model predictive controller at time instant

Chapter 4 – Model predictive control for railway traffic management 59

t(κ), resulting in

ŭi(k) ∈ U(κ) if







t(κ) ≤ x̆j(k)< t(κ) + cτH for ∃x̆j(k) ∈ Xŭi(k)

and
x̆j(k) ∈ χ(κ) for ∀x̆j(k) ∈ Xŭi(k)

, (4.2)

and let ψ(κ) be the vector containing all elements of U(κ).

All events, and their associated control variables that occurred before t(κ) are as-
sumed to be in the past and their event times are assumed to be known. The max-plus
binary variables that are only associated to the events that are predicted at t(κ) or sched-
uled according to the original timetable to occur in [t(κ)+cτH, t(κ)+pτH) are set to their
nominal value, which is zero1.

4.2.3 Model at time instant t(κ)

The part of the SMPL model needed to determine the event times in χ(κ) is extracted from
the complete model and will be converted into a set of mixed integer linear constraints.
This process is shown in Section 4.2.6. By describing the SMPL model as a set of mixed-
integer-linear constraints and choosing a linear cost function the optimization problem
can be solved as a mixed integer linear programming (MILP) problem.

In order to convert the SMPL model into a set of mixed-integer-linear constraints
the max-plus binary control variables will be modeled by regular binary variables υi(κ) ∈

{0,1}. This can be done by multiplying the normal binary variables by a large negative
number β ≪ 0:

ψi(κ) ≈ υi(κ)β ψi(κ) ≈ (1 −υi(κ))β, (4.3)

where β must be a sufficiently large negative number such that constraints containing υiβ

are always satisfied when υi = 1.

4.2.4 Cost function at t(κ)

Before the possible cost functions are proposed, first the definition for delay should be
given:

Definition 4.1 Delay

For any event xi(k) with a scheduled event time ri(k) the delay is defined as the deviation
from its scheduled event time ri(k):

xd
i (k) = xi(k) − ri(k), (4.4)

where xd
i (k) is the delay of event xi(k). 2

Since all of these events have a scheduled event time, they also have a timetable constraint,
therefore xi(k) ≥ ri(k) and xd

i (k) ≥ 0. Next several vectors need to be defined. Define υ(κ)

1When the control variables are zero the trains run over the tracks in the nominal order, all connections

are maintained, and all trains run on the tracks they were originally planned on; only the arrival and

departure times are adjusted to avoid conflicts.

60 Modeling and Control of Switching Max-Plus-Linear Systems

as the vector containing all binary variables associated to the max-plus binary variables
in ψ(κ). Define ι(κ) as the vector containing the scheduled arrival or departure times of
the events in the prediction horizon at t(κ). Define χd(κ) as the delays of the events in
χ(κ). Finally define 11×m as a 1 by m vector containing only ones. With these definition
the cost function can be defined.

For railway traffic management the goal is almost always to minimize the delays;
so it makes sense that the performance criterion reflects this. Obvious choices for the
performance criterion would be the minimization of the sum of all delays, or the sum
of arrival delays, or minimizing the passenger delays if detailed passenger information is
available. The sum of all delays would translate to the following cost function of the
optimization:

J(κ) = 11×nχ(κ) ·χd(κ) +̺11×nυ(κ) ·υ(κ)

= 11×nχ(κ) · (χ(κ) − ι(κ)) +̺11×nυ(κ) ·υ(κ)

= 11×nχ(κ) ·χ(κ) +̺1×nυ(κ) ·υ(κ) −11×nχ(κ) · ι(κ),

where ̺ is a small positive value used to ensure that the minimum number of changes are
made to the schedule when multiple solution result in the same value for the sum of delays,
nχ(κ) is the number of event times in χ(κ), and nυ is the number of binary variables in
υ(κ). The preference for solutions with minimal changes compared to the schedule is
based on the idea that at some point in the future all trains should run according to
the schedule again and that means that any change made to the schedule must also be
reversed at some point, therefore we prefer solutions with less changes if the delays are
the same for the solutions. Note that 11×nχ(κ) · ι(κ) is a constant value and the goal is to
minimize the cost function, there the constant term does not influence the solution and
can be removed from the cost function. This means that minimizing the sum of delays is
the same as minimizing the sum of event times.

For the sum of arrival delays this results in the cost function:

J(κ) = [11×na(κ) 01×nd(κ)] ·

([

χa(κ)

χd(κ)

]

−

[

ιa(κ)

ιd(κ)

])

+̺11×nυ(κ) ·υ(κ),

where 01×nd(κ) is a vector containing only zeros of length nd(κ), nd(κ) is the number
of departure times in χ(κ), na(κ) is the number of arrival times in χ(κ), χa(κ) is the
vector containing the arrival times, χd(κ) is the vector containing the departure times,
and ιa(κ), ιd(κ) contain the scheduled arrival and departure times respectively. For the
sum of departure delays the zero and one vector in the cost function should be switched.

Another possibility is to minimize the maximum (arrival/departure) delay. For this
a new continuous variable χmax needs to be added to the optimization problem that is the
maximum of all (arrival/departure) delays. This can be achieved quite easily by adding
a set of constraints for the maximum of all delays:

χmax ≥ χi(κ) − ιi(κ) for ∀χi(κ) ∈ χ(κ).

For the arrival delays the set of constraints would be

χmax ≥ χa,i(κ) − ιa,i(κ) for ∀χa,i(κ) ∈ χ(κ).

Chapter 4 – Model predictive control for railway traffic management 61

For the departure delays the set of constraints would be:

χmax ≥ χd,i(κ) − ιa,i(κ) for ∀χd,i(κ) ∈ χ(κ).

The cost function would then be:

J(κ) = χmax +̺11×nυ(κ) ·υ(κ).

All of these cost functions are based on the delays of trains, but for the passengers
it would be better to focus on the delays the passengers get. To be able to do that a lot
of information on the passengers and their behavior would be needed. With the recent
introduction of smart cards to pay for the railway tickets, railway operators gained a
new source of information to estimate the number of passengers in the trains and several
researchers have been working on using this data to estimate the passenger flows [2, 61, 87].
With this research the cost functions can be changed from a measure of train delays to
a measure of passenger delays. As future research changing the cost function from a
measure of train delays to a measure of passenger delays would be very interesting, but
is outside the scope of this thesis.

4.2.5 Optimization at time instant t(κ)

With the partial SMPL model converted into a set of mixed-integer-linear constraints and
the cost function defined the optimization problem can be written as:

min
z(κ)

c⊤(κ)z(κ) (4.5)

s.t. A(κ)z(κ) ≤ b(κ), (4.6)

where

z(κ) =

[

χ(κ)

υ(κ)

]

.

Equation (4.5) contains the cost function that needs to be minimized, where c(κ) is a
weighting vector, and (4.6) contains the mixed-integer-linear constraints.

4.2.6 Example

To illustrate the whole process consider an SMPL model of three trains traversing a track
every half hour and assume that all headway times are 3 minutes. To keep the example
simple there will be no delays in this scenario. The scheduled departure, arrival, and
minimum running times are given in Table 4.1.

This results in the following timetable vector:

r(0) =
[

0 5 10 20 25 28
]⊤
.

For the simplicity of the example we assume trains can only change order in the next,
the same or the previous cycle, so µmax = 1.

62 Modeling and Control of Switching Max-Plus-Linear Systems

Table 4.1: Timetable for the three trains of the example.

Train Departure (min) Arrival (min) Running time (min)

1 0 20 18
2 5 25 18
3 10 28 17

The state vector for cycle k is defined as

x(k) =
[

d1(k) d2(k) d3(k) a1(k) a2(k) a3(k)
]⊤
.

The reference signal, in this case the periodic timetable is defined as

r(k) = r(0) ⊗30⊗k

,

and the implicit SMPL model can be written as

x(k) = A0(k,u(k)) ⊗x(k) ⊕A1(k,u(k−1)) ⊗x(k−1)⊕

A−1(k,u(k)) ⊗x(k+ 1) ⊕ r(k),

with

A0(k,u(k)) =

[

A0,a(k,u(k)) A0,b(k,u(k))

A0,c(k,u(k)) A0,d(k,u(k))

]

A1(k,u(k−1)) =

[

A1,a(k,u(k−1)) A1,b(k,u(k−1))

A1,c(k,u(k−1)) A1,d(k,u(k−1))

]

A−1(k,u(k)) =

[

A−1,a(k,u(k)) A−1,b(k,u(k))

A−1,c(k,u(k)) A−1,d(k,u(k))

]

,

where A0,a(k,u(k)) contains the headway times between the departure events of cycle k
and is defined as

A0,a(k,u(k)) =







ε 3 ⊗u1(k) 3 ⊗u3(k)

3 ⊗u1(k) ε 3 ⊗u2(k)

3 ⊗u3(k) 3 ⊗u2(k) ε






.

Since this simple example has no connections or trains traversing the track in opposing
direction, we have: A0,b(k,u(k)) = E .

The running times are given by

A0,c(k,u(k)) = diag⊕(18,18,17).

The matrix A0,d(k,u(k)) contains the headway times between the arrival events of
cycle k, but since we assumed all headway times were 3 minutes, the matrix is the same
as for the headway times between the departure events:

A0,d(k,u(k)) = A0,a(k,u(k)).

Chapter 4 – Model predictive control for railway traffic management 63

The matrix A1(k,u(k− 1)) only defines the headway times between trains of the
current and previous cycle. The headway constraints are only found in A1,a(k,u(k− 1))

and A1,d(k,u(k−1)); therefore A1,b(k,u(k−1)) =A1,c(k,u(k−1)) = E . Since the headway
times are all 3 minutes A1,a(k,u(k−1)) is equal to A1,d(k,u(k−1)) and defined as:

A1,a(k,u(k−1)) =







3 ⊗u7(k−1) 3 ⊗u5(k−1) 3 ⊗u4(k−1)

3 ⊗u10(k−1) 3 ⊗u8(k−1) 3 ⊗u6(k−1)

3 ⊗u12(k−1) 3 ⊗u11(k−1) 3 ⊗u9(k−1)






,

and u4(k−1), . . . ,u12(k−1) are max-plus binary variables used to determine the order of
the trains.

Similarly A−1(k,u(k)) only defines the headway times between trains of the current
and next cycle; therefore A−1,b(k,u(k)) =A−1,c(k,u(k)) = E and since the headway times
are all 3 minutes A−1,a(k,u(k)) is equal to A−1,d(k,u(k)) and defined as:

A−1,a(k,u(k)) =







3 ⊗u7(k) 3 ⊗u10(k) 3 ⊗u12(k)

3 ⊗u5(k) 3 ⊗u8(k) 3 ⊗u11(k)

3 ⊗u4(k) 3 ⊗u6(k) 3 ⊗u9(k)






.

Now let us define the current cycle k as cycle 1, then x(0) = r(0) and since there were no
delays in the past no control actions had to be taken and therefore ui(k−1) = 0, ∀i.

To keep the example small and illustrative a prediction and control horizon length of
16 minutes is chosen. Each time step is one minute: τH = 1 minute and time instant κ= 0

is t(0) = 0. We will look at time instant t(29) = 29 minutes, since at that time instant all
events of cycle 0 have already occurred, and none of the events in cycle 1 have occurred
yet. For this time instant χ(29) is given by:

χ(29) =
[

d1(1) d2(1) d3(1)
]⊤
,

since only these event times of x(1) are predicted and scheduled in the interval [29,45).

The max-plus binary variables that can be changed at this time are those that are
in a constraint for which both continuous variables have their event times in χ(κ).

Only for the elements in A0,a(1,u(1)) both event times are in χ(29), as a result the
control variables in ψ(29) are:

ψ(29) =
[

u1(1) u2(1) u3(1)
]⊤
.

Furthermore ui(1) = 0 for i= 4, . . . ,12 since they are associated to future events that are
outside the prediction horizon and it is assumed no control actions are taken for those
future events at time instant t(κ). As a result A−1(k,u(k)) = E , simplifying the implicit
SMPL model for the optimization problem at time instant t(29) to:







d1(1)

d2(1)

d3(1)







= A0,a(1,u(1)) ⊗







d1(1)

d2(1)

d3(1)







⊕
[

A1,a(1,u(0)) E
]

⊗x(0) ⊕







30

35

40






,

64 Modeling and Control of Switching Max-Plus-Linear Systems

= A0,a(1,u(1)) ⊗







d1(1)

d2(1)

d3(1)







⊕







3 3 3

3 3 3

3 3 3







⊗







0

5

10







⊕







30

35

40







= A0,a(1,u(1)) ⊗







d1(1)

d2(1)

d3(1)







⊕







30

35

40







=







3 ⊗u1(1)⊗d2(1) ⊕3 ⊗u3(1)⊗d3(1) ⊕30

3 ⊗u1(k) ⊗d1(1) ⊕3 ⊗u2(1) ⊗d3(1) ⊕35

3 ⊗u3(k) ⊗d1(1) ⊕3 ⊗u2(1) ⊗d2(1) ⊕40






.

Now we convert the implicit SMPL model into a set of mixed-integer-linear constraints:

d1(1) = 3 ⊗u1(1)⊗d2(1) ⊕3 ⊗u3(1)⊗d3(1) ⊕30

⇒

d1(1) ≥ (1 −υ1(1))β+d2(1) + 3

d1(1) ≥ (1 −υ3(1))β+d3(1) + 3

d1(1) ≥ 30

d2(1) = 3 ⊗u1(1) ⊗d1(1) ⊕3 ⊗u2(1)⊗d3(1) ⊕35

⇒

d2(1) ≥ υ1(1)β+d1(1) + 3

d2(1) ≥ (1 −υ2)(1)β+d3(1) + 3

d2(1) ≥ 35

d3(1) = 3 ⊗u3(1) ⊗d1(1) ⊕3 ⊗u2(1) ⊗d2(1) ⊕40

⇒

d3(1) ≥ υ3(1)β+d1(1) + 3

d3(1) ≥ υ2(1)β+d2(1) + 3

d3(1) ≥ 40.

Now these constraints need to be transformed into the form of (4.6). First define

z(29) =
[

d1(1) d2(1) d3(1) υ1(1) υ2(1) υ3(1)
]⊤
,

then rewrite the constraints such that all elements of z(κ) are on one side of the inequality:

−z4(29)β+ z2(29)−z1(29) ≤ −β−3

−z6(29)β+ z3(29)−z1(29) ≤ −β−3

−z1(29) ≤ −30

z4(29)β+ z1(29)−z2(29) ≤ −3

−z5(29)β+ z3(29)−z2(29) ≤ −3 −β

−z2(29) ≤ −35

Chapter 4 – Model predictive control for railway traffic management 65

z6(29)β+ z1(29)−z3(29) ≤ −3

z5(29)β+ z2(29)−z3(29) ≤ −3

−z3(29) ≤ −40.

The optimization problem at t(29) is then given by:

min
z(29)















1

1

1

0

0

0















⊤

·















z1(29)−30

z2(29)−35

z3(29)−40

z4(29)

z5(29)

z6(29)















=















1

1

1

0

0

0















⊤

·















z1(29)

z2(29)

z3(29)

z4(29)

z5(29)

z6(29)















−105

s.t.























−1 1 0 −β 0 0

−1 0 1 0 0 −β

−1 0 0 0 0 0

1 −1 0 β 0 0

0 −1 1 0 −β 0

0 −1 0 0 0 0

1 0 −1 0 0 β

0 1 −1 0 β 0

0 0 −1 0 0 0





































z1(29)

z2(29)

z3(29)

z4(29)

z5(29)

z6(29)















≤




















−β−3

−β−3

−30

−3

−3 −β

−35

−3

−3




















.

The implicit model can also be converted to its explicit form before define the opti-
mization problem. Consider the reduced implicit SMPL model we derived earlier:







d1(1)

d2(1)

d3(1)







= A0,a(1,u(1)) ⊗







d1(1)

d2(1)

d3(1)







⊕







30

35

40







=







3 ⊗u1(1)⊗d2(1) ⊕3 ⊗u3(1)⊗d3(1) ⊕30

3 ⊗u1(k) ⊗d1(1) ⊕3 ⊗u2(1) ⊗d3(1) ⊕35

3 ⊗u3(k) ⊗d1(1) ⊕3 ⊗u2(1) ⊗d2(1) ⊕40






.

The powers of A0,a(1,u(1)) have already been calculated in Section 3.3.1. The matrix
A0,a(1,u(1))∗ is just the max-plus addition of these powers and the max-plus identity
matrix E resulting in:

A0,a(1,u(1))∗ =
[

As1(1,u(1)) As2(1,u(1)) As3(1,u(1))
]

,

with

As1(1,u(1)) =







e

3 ⊗u1(1) ⊕6 ⊗u2(1) ⊗u3(1)

3 ⊗u3(1) ⊕6 ⊗u1(1) ⊗u2(1)







As2(1,u(1)) =







3 ⊗u1(1) ⊕6 ⊗u2(1) ⊗u3(1)

e

3 ⊗u2(1) ⊕6 ⊗u1(1) ⊗u3(1)







66 Modeling and Control of Switching Max-Plus-Linear Systems

As3(1,u(1)) =







3 ⊗u3(1) ⊕6 ⊗u1(1) ⊗u2(1)

3 ⊗u2(1) ⊕6 ⊗u1(1) ⊗u3(1)

e






,

with the following constraints ensuring infeasible combinations of max-plus binary vari-
ables are not chosen:

u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ≤ ε

u2,1(k) ⊗u3,2(k) ⊗u3,1(k) ≤ ε.

This results in the following feasible explicit SMPL:






d1(1)

d2(1)

d3(1)







= A0,a(1,u(1))∗ ⊗







30

35

40






.

This should then be rewritten into a set of mixed-integer-linear constraints and rewritten
such that all elements of z(κ) are on one side of the inequality as we have shown before.

The resulting optimization problem at t(29) is then given by:

min
z(29)















1

1

1

0

0

0















⊤

·















z1(29)−30

z2(29)−35

z3(29)−40

z4(29)

z5(29)

z6(29)















=















1

1

1

0

0

0















⊤

·















z1(29)

z2(29)

z3(29)

z4(29)

z5(29)

z6(29)















−105

s.t.












































−1 0 0 −β 0 0

−1 0 0 0 0 −β

−1 0 0 0 β −β

−1 0 0 −β −β 0

−1 0 0 0 0 0

0 −1 0 β 0 0

0 −1 0 0 −β 0

0 −1 0 0 −β β

0 −1 0 β 0 −β

0 −1 0 0 0 0

0 0 −1 0 0 β

0 0 −1 0 β 0

0 0 −1 β β 0

0 0 −1 −β 0 β

0 0 −1 0 0 0

0 0 0 1 1 −1

0 0 0 −1 −1 1


























































z1(29)

z2(29)

z3(29)

z4(29)

z5(29)

z6(29)















≤












































−β−38

−β−43

−41 −β

−46 −2β

−30

−33

−β−43

−36 −β

−46 −β

−35

−33

−38

−36

−41 −β

−40

1

0












































.

4.2.7 Explicit SMPL and the cost function

For the explicit model the choice of the cost function affects the number of constraints
in (4.6) since by construction the state vector x̆(k) only depends on the max-plus binary

Chapter 4 – Model predictive control for railway traffic management 67

variables and the state vectors of previous cycles x̆(k−µ) for µ ∈ {1, . . . ,µmax} and not
on x̆(k) itself. As a result if the cost function only weighs a subset of the event times with
nonzero weights, such as the arrival times and not the departure times, then the part of
the explicit SMPL model describing the departure times can be removed as shown here.

To show why part of the explicit SMPL model can be removed we will look at
the structure of the explicit switching max-plus-linear model as described in (3.50) and
repeated here for convenience:

x̆(k) = Ă∗,feas
0 ⊗



r̆(k) ⊕
µmax⊕

µ=1

Ăµ ⊗x(k−µ)



 .

We expand it by splitting the state vector into the arrival and departure delays:

x̆(k) = Ă∗,feas
0 ⊗ r̆(k) ⊕

µmax⊕

µ=1

Ăexp,µ ⊗x(k−µ)

[

d̆(k)

ă(k)

]

=




Ă∗,feas

0,a Ă∗,feas
0,b

Ă∗,feas
0,c Ă∗,feas

0,d



⊗

[

r̆d(k)

r̆a(k)

]

⊕
µmax⊕

µ=1

[

Ăexp,µ,a Ăexp,µ,b

Ăexp,µ,c Ăexp,µ,d

][

d̆(k−µ)

ă(k−µ)

]

,

where Ăexp,µ = Ă∗,feas
0 ⊗ Ăµ, and

Ă∗,feas
0 =




Ă∗,feas

0,a Ă∗,feas
0,b

Ă∗,feas
0,c Ă∗,feas

0,d





Ăexp,µ =

[

Ăexp,µ,a Ăexp,µ,b

Ăexp,µ,c Ăexp,µ,d

]

.

This can be split into two equations, one to calculate the arrivals and one to calculate the
departures:

d̆(k) =
[

Ă∗,feas
0,a Ă∗,feas

0,b

]

⊗

[

r̆d(k)

r̆a(k)

]

⊕
µmax⊕

µ=1

[

Ăexp,µ,a Ăexp,µ,b

]
[

d̆(k−µ)

ă(k−µ)

]

(4.7)

ă(k) =
[

Ă∗,feas
0,c Ă∗,feas

0,d

]

⊗

[

r̆d(k)

r̆a(k)

]

⊕
µmax⊕

µ=1

[

Ăexp,µ,c Ăexp,µ,d

]
[

d̆(k−µ)

ă(k−µ)

]

. (4.8)

In these equations the arrival delays only depend on the arrival and departure delays of
the previous cycles and not on the departure delays of the current cycle. If we only want to
determine the arrival delays, for example in the case we are only interested in minimizing
the sum of arrival delays, then we do not need to calculate the departure delays. The
same is true for any other subset of event times of x̆(k).

4.3 Distributed model predictive control

For very large and complex systems the optimization problem resulting from a centralized
MPC approach may not be solvable within the time available, or the solution found may be
far from optimal. A solution for this problem can be distributed model predictive control

68 Modeling and Control of Switching Max-Plus-Linear Systems

(DMPC) [9, 29, 31, 76]. Most DMPC approaches have been developed for continuous
or discrete-time systems [69]. Since our model is a discrete-event model, these DMPC
approaches cannot be directly applied to our problem. Instead, we develop our own
DMPC methods.

In DMPC the system is partitioned into a number of subsystems and each subsystem
is controlled by its own model predictive controller. The controllers determine the opti-
mal control inputs for the subsystems while interacting with the controllers of the other
subproblems to ensure global feasibility and good global performance. Each subsystem
only contains a part of the dynamics of the whole system and the controller only controls
that part of the system. The controller may model the effects of its control actions on the
rest of the network, but for the control actions in the rest of the network the controller
depends on the other subsystems and their controllers. In the case of railway traffic man-
agement each subsystem consists of a subset of all stations and tracks and the trains on
that part of the network and the controller of the subsystem can only control that part of
the network. In that part of the network the controller can take any dispatching action.
In the rest of the network the other controllers decide the schedule.

The advantage of partitioning the system into subsystems is that the optimization
problem that must be solved to find the control inputs for the subsystems can in general
be solved much faster since it is smaller and less complex than the optimization problem
used to determine the control inputs for the centralized MPC method. The downside is
that the control inputs found may be suboptimal for the complete system.

4.3.1 Model-based partitioning

In this section we propose several DMPC methods to find the dispatching actions for the
whole network.

Before the DMPC methods are explained we will first reorder the rows and columns
of the constraint matrix A and reorder the variables in vector z such that the structure of
A gets as close as possible to a block-diagonal structure. The number of blocks depends
on the choice of the number of subsystems which is nsub. The number of subsystems can
be chosen by the designer, but there is limit to the number of subsystems which depends
on the system itself.

This reordering is based on the following goals:

• The constraints that cannot be placed in the block diagonal structure should only
depend on continuous variables.

• Each diagonal block has its own unique set of binary and continuous variables it
depends on, there is no overlap between those sets, and the union of the sets contains
all the binary and continuous variables.

• The number of constraints that cannot be placed in the block diagonal structure
should be minimized.

• The size of the blocks should be of the same magnitude.

Chapter 4 – Model predictive control for railway traffic management 69

• The difference in the number of binary variables and continuous variables each block
depends on should be minimized.

If running time constraints are outside the block diagonal structure the headway
constraints between the arrival and departures of the trains, which depend on the same
binary variables, will be in separate blocks, and as a result two blocks depend on the
same binary variables, which means the second goal would not be achieved. Therefore
running time constraints should be in the block diagonal structure to ensure the first two
goals. Furthermore headway, separation, and breakable connection constraints all depend
on binary variables, and therefore should not be outside the block-diagonal structure
to ensure the first two goals. Only continuity and unbreakable connection constraints
remain. By only allowing continuity and unbreakable connection constraints to be outside
the block-diagonal structure, the first two goals can be achieved.

If we look at the railway model this means that the constraints describing the trains
traversing a track, the headway, and separation constraints between the trains on that
track should all be in the same block.

The steps to reorder the constraint matrix such that it has nsub diagonal blocks are
as follows:

1) Group the variables and constraints per track, resulting in nT sets of constraints
and variables, where nT is the number of tracks in the model as defined in Chapter
3.

2) Merge all sets that are connected via a breakable connection constraint, resulting
in nT2 remaining sets.

3) Solve a mixed integer quadratic programming (MIQP) problem that minimizes the
sum of the maximum difference in the number of constraints of the nsub subproblems
and minimizes the number of constraints connecting the nsub subproblems. The
values of the binary variables determine for each of the nT2 sets to which of the nsub

subproblem they are assigned to.

The MIQP problem can be set up as follows:

• Define nsub continuous variables, denoted by Si for i= 1, . . . ,nsub that represent the
number of constraints each subproblem has.

• Define one continuous variable Smax that is the maximum difference between the
values Si for i= 1, . . . ,nsub.

• For each constraint set CONj , j = 1, . . . ,nT2 define nsub binary variables denoted
by υj,i, for i= 1, . . . ,nsub. If binary variable υj,i = 1 then set CONj is part of block
i of the reordered constraint matrix.

• Define the cost function as

J = ̺Smax −
nT2∑

j=1

nT2∑

k=1

nsub∑

i=1

υj,iQj,kυk,i,

70 Modeling and Control of Switching Max-Plus-Linear Systems

where ̺ is a tuning parameter that determines the importance of minimizing Smax.
The element Qj,k has the value equal to the number of constraints connecting set
CONk to set CONj . For each combination of two sets CONj and CONk the cost
function reduces in value equal to Qj,k if and only if both sets are in the same
subproblem. This ensures that the optimization problem will minimize the number
of constraints connecting the resulting nsub blocks of the constraint matrix.

• In order for Smax to be equal to the maximum difference between the values Si for
i= 1, . . . ,nsub the following set of constraints is used:

Smax ≥ Si −Sj for i ∈ {1, . . . ,nsub}, j ∈ {1, . . . ,nsub} \ {i}.

• To ensure each constraint set is assigned to exactly one block of the constraint
matrix the following set of constraints is used:

nsub∑

i=1

υj,i = 1 for j = 1, . . . ,nT2.

• The number of constraints each block has is determined by the following constraints:

Si ≥
nT2∑

j=1

υj,isj for i ∈ {1, . . . ,nsub},

where sj is the number of constraints of constraint set CONj .

Once the constraint matrix has been reordered the optimization problem at time
instant t(κ) of the MPC problem can be written as

min
z(κ)

[

c̃⊤
1 (κ) c̃⊤

2 (κ) . . . c̃⊤
nsub

(κ)
] [

z̃⊤
1 (κ) z̃⊤

2 (κ) . . . z̃⊤
nsub

(κ)
]⊤

(4.9)

s.t.











A1,1(κ) A1,2(κ) . . . A1,nsub
(κ)

A2,1(κ)
. . . A2,nsub

(κ)
...

. . .
...

Ansub,1(κ) Ansub,2(κ) . . . Ansub,nsub
(κ)




















z̃1(κ)

z̃2(κ)
...

z̃nsub
(κ)










≤










b̃1(κ)

b̃2(κ)
...

b̃nsub
(κ)










, (4.10)

where c̃i(κ), z̃i(κ), b̃i(κ) for i ∈ {1, . . . ,nsub} are vectors of appropriate size, Ai,j(κ) for
i ∈ {1, . . . ,nsub}, j ∈ {1, . . . ,nsub} are matrices of appropriate size, and

z̃i(κ) =
[

χ̃⊤
i (κ) υ̃⊤

i (κ)
]⊤

Ai,i(κ) =
[

Ai,i,x(κ) Ai,i,υ(κ)
]

Ai,j(κ) =
[

Ai,j,x(κ) 0(κ)
]

,

for i ∈ {1, . . . ,nsub} and j ∈ {1, . . . ,nsub} \ {i}, and where χ̃i(κ) and υ̃i(κ) are vectors of
appropriate size. The matrices Ai,i(κ) are split up into a part Ai,i,x(κ) that is multiplied
by χ̃i(κ), and a part Ai,i,υ(κ) that is multiplied by υ̃i(κ) in (4.10). The matrices Ai,j(κ)

are also split up into two parts. One part Ai,j,x(κ) is multiplied by χ̃j(κ) in (4.10). The
part that is multiplied by υ̃j(κ) in (4.10) is guaranteed to be a zero matrix.

Chapter 4 – Model predictive control for railway traffic management 71

4.3.2 Distributed method 1

Based on the reordered constraint matrix two methods for solving the problem in a dis-
tributed manner are developed. The resulting structure of matrix shows that there are
only a few constraints connecting each of the blocks, so there is very little interaction
between the variables of each block. Therefore it makes sense to develop DMPC meth-
ods based on this block structure. For the first method each subproblem optimizes the
centralized cost function while considering all constraints of the centralized problem, but
for subproblem i at time instant t(κ) only χ(κ) and υ̃i(κ) can be used to optimize the
cost function. By using the same cost function as the centralized problem, each subprob-
lem considers the effects of its dispatching actions on the entire network. By limiting the
binary variables that can be changed to υi(κ) the subproblem is computationally less com-
plex to solve than the centralized problem. As a result the MILP problem can be solved
much faster. The subproblems are then solved in sequence. When solving a subproblem
the binary variables of the other subproblems are fixed to the value found when their
respective subproblems were solved previously. Since all subproblems share the same cost
function; the cost function of the centralized problem, every time a subproblem is solved
the centralized cost function is reduced. This continuous until none of the subproblems
can improve the cost function anymore. A feasible initial solution can always be found as
follows. The simplest feasible solution is the solution when no dispatching action is taken;
more specifically, all binary variables will be zero, and the trains would just continue to
drive as regular and no order would be changed or connections broken.

To summarize the method:

Each subproblem can be written as2:

min
χ(κ),υ̃i(κ)

c⊤(κ)z(κ)

s.t. A(κ)z(κ) ≤ b(κ).

The steps to determine the solution are:

1) Define an initial estimate for the solution of the centralized MPC z(κ) denoted by
ẑ(κ).

2) Use ẑ(κ) as an initial solution for subproblem i:

min
χ(κ),υ̃i(κ)

c⊤(κ)z(κ)

s.t. A(κ)z(κ) ≤ b(κ).

and solve it. Denote the solution as ẑi(κ). The initial solution is needed to up-
date the values of the binary variables that have been determined by the other
subproblems and cannot be changed by subproblem i.

3) Update the estimate of the solution of the centralized MPC: ẑ(κ) = ẑi(κ)

2Recall that z(κ) is split up into nsub sub-vectors z̃i(κ), and υ̃i(κ) are the binary variables in z̃i(κ)

and are part of z(κ).

72 Modeling and Control of Switching Max-Plus-Linear Systems

4) Repeat steps 2 and 3 for the other subproblems.

5) Repeat steps 2, 3, and 4 until ẑ(κ) no longer changes.

The initial estimate can be determined by a heuristic method such as first-come, first-
served, or can be the result when no dispatching actions are taken, which can be deter-
mined very fast.

Since a feasible initial estimate can always be found, and all subproblems consider the
centralized problem, but can only change a limited number of binary variables, a feasible
solution for the centralized problem will always be found in step 2. Furthermore every
feasible solution found can and will be used as a starting solution for the next subproblem.
Therefore, every subproblem either improves the found solution or cannot find a better
solution than the current solution. If no better solution than the current solution is found,
the current solution is used for the next subproblem. Once no subproblem can improve
the solution the algorithm stops. We call this method “DMPC method 1”.

4.3.3 Distributed method 2

Since the number of constraints of each subproblem for DMPC method 1 is equal to the
number of constraints for the central MPC problem, for very large systems the speed up
in computation time may still not enough. For very large systems increasing the number
of subproblem is not a solution either, since the number of constraints remain the same.
Therefore another DMPC approach is proposed.

For the second DMPC method each subproblem only considers a part of the MPC
problem in (4.10). It only optimizes the continuous and binary variables of one of the
diagonal blocks. Each subproblem can then be written as:

min
z̃i(κ)

c̃⊤
i (κ) z̃i(κ) (4.11)

s.t. Ai,i(κ)z̃i(κ) ≤ bi(κ) −
∑

j∈{1,...,nsub}\{i}

Ai,j(κ)z̃j(κ), (4.12)

where z̃j(κ), for j ∈ {1, . . . ,nsub} \ {i} is determined by the other local model predictive
controllers.

The steps to determine a feasible centralized solution are:

1) Define an initial estimate for the solution of the centralized MPC z(κ) denoted by
ẑ(κ), define the iteration counter l = 0, and define ˆ̃zl

i(κ) = ẑi(κ) for i= 1, . . . ,nsub.

2) Increase the iteration counter by one: l= l+1. For subproblem i, denoted by (4.11)
and (4.12), assume z̃j(κ) for j ∈ {1, . . . ,nsub} \ {i} is known and equal to ˆ̃zj(κ) and
solve subproblem i for i= 1. Denote the solution as ˆ̃zl

i(κ).

3) Update the estimate ˆ̃zi(κ) = ˆ̃zl
i(κ).

4) Repeat steps 2 and 3 for i= 2, . . . ,nsub.

Chapter 4 – Model predictive control for railway traffic management 73

5) Repeat steps 2, 3, and 4 until |ˆ̃zl
i(κ) − ˆ̃zl−1

i (κ)| < ∆ for i = 1, . . . ,nsub, where ∆

is a very small value. If there is no convergence within itermax iterations then
lock the binary variables υ̃(κ) to their last determined values and determine the
corresponding continuous variables χ̃(κ).

A feasible solution can always be found in step 2, since taking no dispatching actions will
always result in a feasible solution; the delays however may be much higher in that case
compared to the optimal solution.

The advantage of this method is that the subproblems are even smaller and can be
solved faster. However since all subproblems only consider a part of the network, the
subproblems have no way of taking into account the effects of their control actions on the
other subproblems. It is therefore likely that the solutions found will be worse than those
found with method 1. We will simply call this “DMPC method 2”.

4.3.4 Adjusting cost functions

For the second DMPC method in this section the local model predictive controllers do
not consider the delay propagation to the other parts of the network and as a result the
train orders at the border of their area of control tend to be suboptimal for the total
network, since a large part of the effects of the order changes are only noticed in the
next area. To reduce the delay propagation from one area controlled by a local model
predictive controller to another area we will improve the second method by adjusting the
weights of the events of the trains leaving to another area. The weights are adjusted
only at the start of the optimization at each time instant. The weights that need to
be adjusted can be found easily. For the local model predictive controller i the indices
of the weights of the MILP problem in c̃i(κ) that we want to adjust can be determined
by finding the variables of MILP problem i that are connected to MILP problem j for
j ∈ {1, . . . ,nsub} \ {i} through a constraint.

If we look at how MILP problem i is defined in (4.11) and (4.12) it is clear that the
indices of the variables of MILP problem i on which MILP problem j depends coincide
with the indices of the non-zero columns in Aj,i(κ). The indices of c̃i(κ) that need to
be adjusted therefore coincide with the indices of the non-zero columns of Aj,i(κ) for
i= 1, . . . ,nsub and j ∈ {1, . . . ,nsub} \ {i}. Denote these weights by c̃out

i (κ) and denote the
corresponding variables as z̃out

i (κ).

By increasing the weights c̃out
i (κ) the local controllers are forced to focus on reducing

the delays of the corresponding events, and by doing so possibly reduce the delay propa-
gation to the other areas, at the cost of the total delay in the local area. There are many
possible choices for the values of the weights c̃out

i (κ). In this chapter we will consider two
different choices:

• Increase the values of weights c̃out
i (κ) with the same factor.

• Increase the values of weights c̃out
i (κ) based on the number of continuous variables

the corresponding trains have in the other MILP problems.

The first option is really simple: just choose a factor with which to increase all weights

74 Modeling and Control of Switching Max-Plus-Linear Systems

c̃out
i (κ). Our choice is to double the weights. The reason for this is that every continuous

variable corresponding to these weights is connected to at least one continuous variable
in one of the other MILP problems, and the dependency between the delays of these two
continuous variables is very high. We call this method “DMPC method 3”.

For the second option we need to determine for every train leaving the area which
events are used to model this train in the other areas. This corresponds to the continu-
ous variables that are connected through continuity and running time constraints to the
variables z̃out

i (κ). Denote the set containing these continuous variables by Zout
i (κ). The

weights c̃out
i (κ) are then set to:

c̃out
i (κ) = c̃out

i (κ) +
∑

z̃j(κ)∈Zout
i (κ)

c̃j(κ), (4.13)

which is the sum of the weights of the standard cost function of the continuous variables
in Zout

i (κ) plus the weight on z̃out
i (κ). We call this method “DMPC method 4”. In the

next section we will show what the effects of these changes to the cost function are on the
quality of the solution found with the DMPC methods and what influence they have on
the computation time.

4.4 Case studies: Implicit versus explicit MPC

In this section the effects of the reduction method in combination with the explicit model
on the solution time of the rescheduling problem will be evaluated. Furthermore, the
effects of different objective functions on the solution found and computation time will be
evaluated via a case study. In this case study we will look at a single step of the model
predictive controller.

The case study will be based on the Dutch Railway network and the timetable of
the year 2004. For the running times a 4% buffer time is assumed. For the dwell times
a 2% buffer time is assumed. At end stations a 10 minute buffer time is assumed. The
model is simplified because only intercity and interregional trains are considered, no local
trains are considered. he headway times between the trains are assumed to be 3 minutes.
Furthermore, only stations and junctions are considered where the trains can be resched-
uled. Arrivals and departures at stations where trains can only stop and not overtake
are not explicitly modeled. The only dispatching actions in this case study involve the
reordering of trains. The timetable period is one hour and we test the MPC methods for
a prediction horizon of 60 and 120 minutes. The resulting model consists of 40 stations
with 109 tracks connecting the stations. Per hour 164 trains are considered.

Delays in the network can be divided into two types: “unavoidable” and “avoidable”
delays. For each train the unavoidable delays are the delays that cannot be avoided. They
are caused by increased process times of that train or because of trains that hinder it and
cannot be avoided by rescheduling. The avoidable delays of a train are the delays that
can be avoided by giving that train the highest priority and letting it leave as soon as
possible, ignoring all other trains. For the entire network none of the unavoidable delays
can be recovered with the use of dispatching actions. Only the avoidable delays of some

Chapter 4 – Model predictive control for railway traffic management 75

trains can be recovered with rescheduling. Not all avoidable delays can be recovered since
some rescheduling actions may reduce the avoidable delays of one train, but increase the
avoidable delays of another train. The goal is to minimize the sum of avoidable delays in
the entire network.

To test the effectiveness of the rescheduling method and the computation time needed
for the implicit and reduced explicit model we have built a set of 500 delay scenarios. We
consider the railway traffic for two hours. In the first hour for each scenario 20% of
the trains are randomly selected and given a random unavoidable delay by increasing
the running time of those trains. The value of the delay is determined by a Weibull
distribution [92] with scale parameter 6 and shape parameter 0.8. The shape parameter
is based on the data on arrival and departure delays from [94]. The scale parameter is
chosen such that the average delay is around 5 to 6 minutes. The maximum delay is set
to 12 minutes, meaning we cut off the Weibull distribution at 12 minutes. Any delay
above 12 minutes is set to 12 minutes. The resulting delays have a mean of 5.2 minutes
and a standard deviation of 4.3 minutes. The model predictive controller then optimizes
the dispatching actions for the next hour. In this hour no new unavoidable delays are
introduced. The only delays present in this hour are the delays that propagated from the
unavoidable delays in the previous period. The same is also done with a model predictive
controller that optimizes the dispatching actions for the next two hours. Determining the
optimal dispatching actions can be done by solving an MILP problem.

The value for the maximum delay used in the reduction method is set to 15 minutes,
since many trains in the busiest parts of the Dutch railway network drive once every 15
minutes and for larger delays it is more likely that these trains are canceled.

All calculations are done on an AMD Phenom II X4 960T at 3GHz with 16GB of
memory, running 64bit Windows 7. The model is built in MATLAB and all solvers are
called using the mex interface of MATLAB. The solvers used are GLPK 4.46 [35], Gurobi
5.60 [40], and TOMLAB/CPLEX 12.5 [81].

4.4.1 Case study 1: Minimization of the sum of delays

In this section we compare the performance of the MPC problems based on the implicit
and reduced explicit models described in Chapter 3. The cost function we will use is the
sum of all delays: c(κ)⊤ z(κ) = [1⊤(χ(κ)) 0.0001 × 1⊤(υ(κ))] [x⊤(κ) υ⊤(κ)]⊤, where
1(χ(κ)) and 1(υ(κ)) are column vectors of appropriate size containing only ones. The
implicit model is converted to the explicit model and reduced using the reduction method
of Section 3.5 with an assumed maximum delay of 15 minutes.

First we will illustrate the structure of the constraint matrices of the optimization
problems. The size of the constraint matrices vary from scenario to scenario because
the exact set of trains and dispatching actions that are considered depends on the delay
scenario. In general, the structure of the matrices remains the same for the different delay
scenarios, just the number of constraints varies. The constraints in the implicit MILP
problem all have one or two continuous variables. The constraints in the explicit MILP
problem all have one continuous variable, except for the constraints used to ensure that
certain combinations of control variables are not chosen, such as the combinations that

76 Modeling and Control of Switching Max-Plus-Linear Systems

result in an infeasible train order and the combinations of control variables removed by
the reduction method. Those constraints have no continuous variables in them. For an
example see Section 4.2.6. The general structure of the constraint matrices is shown in
Figures 4.1 and 4.2 for the implicit and reduced explicit MILP problem.

200 400 600
6000

5000

4000

3000

2000

1000

0

Continuous variables

C
o

n
s
tr

a
in

t
(#

)

800 1000 1200 1400
6000

5000

4000

3000

2000

1000

0

Integer variables

Figure 4.1: Structure of the constraint matrix of the implicit MILP problem.

200 400 600
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

Continuous variables

C
o

n
s
tr

a
in

t
(#

)

800 1000 1200 1400
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

Integer variables

Figure 4.2: Structure of the constraint matrix of the explicit MILP problem.

Chapter 4 – Model predictive control for railway traffic management 77

Case study 1.1: A prediction horizon of one hour

The first case study consists of 500 scenarios where in each scenario two hours of the
railway traffic is modeled. In the first hour the delays are built up and then for the
second hour the model predictive controller is used to minimize the sum of all delays.
The conversion into and reduction of the explicit model is done off-line and takes around
40 seconds to complete for the prediction horizon of one hour.

The average, minimum, and maximum number of continuous variables, binary vari-
ables, and constraints for the implicit and explicit model for a prediction horizon of one
hour are given in Table 4.2.

Table 4.2: Number of constraints, continuous and binary variables of the

MILP problems for a 1 hour prediction horizon.

Average min max

Continuous variables 774 759 790
Binary variables 671 633 711
Constraints-Implicit 5946 5794 6118
Constraints-Explicit 3591 3109 4325

For the 500 scenarios we will first look at how much the avoidable delays are reduced
by applying control. First the delays are calculated when no reordering is applied. The
resulting delay is considered the nominal case. The unavoidable delays are calculated
per train by allowing it to run free after the delays have occurred (all other trains are
ignored). The difference between the nominal case and the unavoidable delays we consider
the avoidable delays.

This is shown in Figure 4.3. On average the reduction in avoidable delays is 34.17%.
In three scenarios there was no reduction and no increase in avoidable delays.

To compare the distribution of delays we have taken all delays over the entire one
hour prediction horizon of the 500 scenarios together. We have only considered the events
that were delayed in the controller or uncontrolled case, or delayed in both cases. Events
that were not delayed in either the uncontrolled or controlled case are not considered.
By doing so the cumulative distribution of the delays starts at 0 for a 0 minute delay in
the uncontrolled case. For these events the distributions are shown in Figure 4.4 for the
uncontrolled and controlled case. By comparing the two distributions, it is clear that in
the controlled case several events are no longer delayed, since the probability of a 0 minute
delay is about 7%, meaning that 7% of the events that were delayed in the nominal case
are no longer delayed in the controlled case. From the comparison of the distributions in
Figure 4.4, it is also clear that in the controlled case there are more short delays and less
longer delays. The longest delays are at most three minutes larger for the controlled case.
But there are very few of those delays.

Next we will look at the computation time of the solution of the MILP problems
with the use of the solvers GLPK 4.46, CPLEX 12.5, and Gurobi 5.60 for the implicit

78 Modeling and Control of Switching Max-Plus-Linear Systems

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Reduction of avoidable delays (%)

s
oir

a
n

e
c

s f
o r

e
b

m
u

N

Figure 4.3: Histogram of the reduction of avoidable delays for the 500 scenar-

ios for the one hour prediction horizon.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (min)

Uncontrolled

Controlled

P
ro

b
a

b
ili

ty

Figure 4.4: Cumulative distribution of the delays for the controlled and uncon-

trolled case for the one hour prediction horizon over all scenarios.

and explicit models. All calculations are done on an AMD Phenom II X4 960T at 3GHz
with 16GB of memory, running 64bit Windows 7. The model is built in MATLAB and all
solvers are called using the mex interface of MATLAB. The solvers used are GLPK 4.46

Chapter 4 – Model predictive control for railway traffic management 79

[35], Gurobi 5.60 [40], and TOMLAB/CPLEX 12.5 [81]. Box plots3 of the computation
times for the 500 scenarios for the implicit and explicit MILP problem are given in Figure
4.5. Statistics on the computations are given in Table 4.3 for CPLEX, Gurobi, and
GLPK. The mex interface of GLPK did not provide any solver statistics except for the
computation time. The statistics that are given are the number of simplex iterations and
the computation time. The integrality gap is also given, which is not a solver statistic,
but a statistic of the MILP problem. It is the objective value of the optimal solution of
the MILP problem divided by the objective value of the optimal solution of the linear
programming relaxation of the MILP problem. The minimum value of the integrality
gap is one, since the objective value of the optimal solution of the MILP problem can
never be lower than the objective value of the optimal solution of the linear programming
relaxation of the MILP problem. In general it is assumed that if the integrality gap is
closer to one the problem is easier to solve.

10
−2

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

10
−2

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

Figure 4.5: Computation time of the MILP solvers for the implicit and explicit

MILP problem for the one hour prediction horizon.

For the GLPK solver the difference in computation time of the explicit MILP problem
compared to the explicit MILP problem is the largest. The explicit MILP problem is
solved 513 times faster on average than the MILP for the implicit model. For the Gurobi
solver the difference is much smaller. The explicit MILP problem is solved only 4.69
times faster on average. On average the Gurobi solver needs to perform 3.26 times less

3Box plots divide the results into four equally sized parts: the 25% of the results with the lowest

values are indicated by the lower vertical dashed line and bottom horizontal solid line. The 25% of the

results with the highest values are represented by the upper vertical dashed line and top horizontal solid

line. The other 50% is shown in the (blue) rectangle between the two dashed vertical lines, where the

median of the results is presented by the (red) horizontal line splitting the box in two.

80 Modeling and Control of Switching Max-Plus-Linear Systems

Table 4.3: Computation statistics for the given MILP solvers for the one hour

prediction horizon.

Implicit Explicit
mean min max mean min max

Comp. time (s) (GLPK) 11.93 0.1014 603.92 0.0233 0.0096 0.2161
Comp. time (s) (Gurobi) 0.1477 0.0459 0.3494 0.0315 0.0196 0.1358
Comp. time (s) (CPLEX) 0.1266 0.0754 0.3400 0.0331 0.0112 0.0902
Simplex iter. (Gurobi) 159.72 17 869 49.06 0 411
Simplex iter. (CPLEX) 119.7 14 617 27.97 0 232

Integrality gap 1.0813 1.0148 1.2158 1.0715 1.0135 1.1757

simplex iterations. For the CPLEX solver we see a similar picture. The computation
time is on average about 3.83 times faster. The number of simplex iterations that need
to be performed is on average 4.28 times higher for the implicit MILP problem. The
distance of the integrality gap to the value one is 12.1% lower for the explicit model
compared to the implicit model (0.0715 compared to 0.0813), this is likely due to the
reduction method, that simplifies the explicit problem. When we compare the fastest
implicit solver (CPLEX) with the fastest explicit solver (GLPK), then the computation
time needed to solve the implicit MILP problem is 5.44 times higher.

In some cases the solvers solving the optimization problem using the explicit model
structure did not perform any simplex operations. This is likely due to the scenarios
that had no reduction in avoidable delays. In that case the provided initial solution was
the optimal solution and the solvers could prove optimality without performing any more
simplex operations. The initial solution that is provided is the solution found when no
control actions are taken.

Case study 1.2: A prediction horizon of two hours

In this case study we consider the same 500 scenarios as in the previous case study but
now the model predictive controller has a prediction horizon of two hours to determine
the dispatching actions that minimize the sum of all delays. The conversion into and
reduction of the explicit model is done off-line and takes around 4 minutes to complete
for the prediction horizon of two hour. For the implicit and explicit MILP problems based
on the prediction horizon of two hours the average, minimum, and maximum number of
continuous variables, binary variables, and constraints for are given in Table 4.4.

For the prediction horizon of two hours we will only look at the computation time
and solver statistics, since the reduction of delays and the distribution of the delays are
similar to those shown for the prediction horizon of one hour, the reduction is just a
bit higher, and there are a few more smaller delays. The computation times for the 500
scenarios for the implicit and explicit MILP problem are given as box plots in Figure 4.6.

Statistics on the computation time for CPLEX, Gurobi, and GLPK are given in

Chapter 4 – Model predictive control for railway traffic management 81

Table 4.4: Number of constraints, continuous and binary variables of the

MILP problems for the two hour prediction horizon.

mean min max

Continuous 1543 1530 1559
Binary 2348 2307 2400
Constraints-Implicit 14037 13870 14233
Constraints-Explicit 50981 46044 57332

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

Figure 4.6: Computation time of the MILP solvers for the implicit and explicit

MILP problem for the two hour prediction horizon.

Table 4.5.

In this case the average computation time of the explicit model for GLPK is 254
times lower, while the maximum is 156 times lower. For Gurobi the explicit model is
solved 1.09 times slower on average. The number of simplex iterations is much higher for
the explicit model. The increased computation time and number of simplex iterations is
due to the increased size of the problem. The number of constraints is, on average, 3.63
times higher for the explicit model. For CPLEX the number of simplex iterations is lower
for the explicit model, but the average computation time is still 1.04 times higher. This
is again due to the increased size of the constraint matrix and as a result the simplex
iterations take more time to complete. The maximum computation time however is 6.15
times lower for CPLEX when solving the explicit MILP problem. The distance of the
integrality gap to the value one is 16.0% lower for the explicit model compared to the
implicit model (0.100 compared to 0.119)

82 Modeling and Control of Switching Max-Plus-Linear Systems

Table 4.5: Computation statistics for the given MILP solvers for the two hour

prediction horizon.

Implicit Explicit
mean min max mean min max

Comp. time (s) (GLPK) 155.8 0.9599 903.7 0.6132 0.2286 5.792
Comp. time (s) (Gurobi) 0.5451 0.1870 1.4355 0.5943 0.4515 1.1903
Comp. time (s) (CPLEX) 0.5019 0.3007 5.0470 0.5247 0.3900 0.8200
Simplex iter. (Gurobi) 188.9 39 1175 525.2 0 1633
Simplex iter. (CPLEX) 242.2 55 923 71.98 0 262

Integrality gap 1.119 1.022 1.267 1.100 1.021 1.228

4.4.2 Case study 2: Minimization of the sum of arrival delays

When considering the delay in the network it can make more sense to only consider one
delay per train at each station, so only the arrival or the departure delay at the station.
Since passengers are mostly interested in the time they arrive we will consider minimizing
the sum of arrival delays as the cost function.

In this case the cost function of the MILP problem becomes:

c⊤(κ)z(κ) =
[

0⊤ 1⊤ 0.0001 ×1⊤
]⊤







d(κ)

a(κ)

υ(κ)






.

where d(κ) and a((κ)) are the departure and arrival time in χ(κ) respectively.

We do not need the departure delays and therefore we can simply calculate the
arrival delay. For the explicit MILP problem this means that the constraint matrix A

only needs to consist of the constraints from (4.8), and the constraints from the reduction
method and infeasible train orders. This effectively reduces the size of the explicit MILP
problem. To test the effects of the reduced number of constraints on the computation
time of the solvers we have generated 250 new scenarios, using the same parameters as
in the previous case study, and have compared the computation time needed to solve the
implicit and explicit MILP problems again for one and two hour prediction horizons. In
this case study we will only look at the computation time and computational statistics
of the solvers, since the distribution and reduction of the delays are again similar to the
distribution and reduction in the first case study.

Case Study 2.1: A prediction horizon of one hour

The specifications of the MILP problems for a prediction horizon of one hour are given
in Table 4.6.

The explicit MILP problem has about half the number of continuous variables since
it only needs to determine the arrival delays thanks to the explicit model structure; the
implicit MILP problem has to determine all delays since the arrival delays depend on the
arrival and departure delays of other trains through the implicit constraints. Because of

Chapter 4 – Model predictive control for railway traffic management 83

Table 4.6: Number of constraints, continuous and binary variables of the

MILP problems.

Implicit Explicit
mean min max mean min max

Continuous variables 774 759 792 385 378 393
Binary variables 671 639 710 671 639 710
Constraints 5950 5794 6252 2210 1954 3061

the reduction method and the lower number of continuous variables the explicit MILP
problem needs to consider, the number of constraints is on average 2.69 times lower than
the number of constraints of the implicit MILP problem. We therefore expect the explicit
MILP problem to be solved faster than the implicit MILP problem. The computation
time needed to solve the implicit and explicit MILP problem for the three solvers is shown
in Figure 4.7. The computation time, number of simplex iterations, and the integrality
gap for the different MILP problems for CPLEX, Gurobi, and GLPK are given in Table
4.7.

10
−2

10
−1

10
0

10
1

10
2

C
P

U
 t
im

e
 (

s
)

10
−2

10
−1

10
0

10
1

10
2

C
P

U
 t
im

e
 (

s
)

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

Figure 4.7: Computation time of the MILP solvers for the implicit and explicit

MILP problem for the sum of arrival delays for the prediction

horizon of one hour.

From these results we can conclude that the difference in computation time between
the explicit and implicit MILP problem is the largest for GLPK. The explicit MILP
problem is solved 272.7 times faster on average. For Gurobi the difference is much smaller,

84 Modeling and Control of Switching Max-Plus-Linear Systems

Table 4.7: Computation statistics for the given MILP solvers for the predic-

tion horizon of one hour.

Implicit Explicit
mean min max mean min max

Comp. time (s) (GLPK) 3.4993 0.0648 59.03 0.0128 0.0413 0.0078
Comp. time (s) (Gurobi) 0.1438 0.0438 0.3109 0.0122 0.0173 0.0610
Comp. time (s) (CPLEX) 0.1284 0.0836 0.2090 0.0259 0.0095 0.0506
Simplex iter. (Gurobi) 168.18 17 524 20.84 0 162
Simplex iter. (CPLEX) 103.39 14 331 15.27 0 66

Integrality Gap 1.098 1.026 1.181 1.086 1.023 1.169

but still significant, with the implicit MILP problem being solved 7.8 times slower on
average. The number of simplex relaxations that need to be solved is on average 8.1
times higher for the implicit model. With CPLEX the implicit MILP problem is solved
5.0 times slower than the explicit MILP problem on average. The difference in the number
of simplex relaxations that need to be solved is on average 6.8 times lower for the explicit
model. When we compare the fastest implicit MILP solver (CPLEX) with the fastest
explicit MILP solver (GLPK) the solution is found 10.0 times faster on average using the
explicit MILP problem with GLPK. The distance of the integrality gap to the value one
is 11.8% lower for the explicit model compared to the implicit model (0.086 compared to
0.098)

Case Study 2.2: A prediction horizon of two hours

For the two hour prediction horizon the number of constraints, continuous and binary
variables of the MILP problems are given in Table 4.8.

Table 4.8: Number of constraints, continuous, and binary variables of the

MILP problems for the prediction horizon of two hours.

Implicit Explicit
mean min max mean min max

Continuous variables 1543 1530 1559 769 762 776
Binary variables 2347 2307 2382 2347 2307 2382
Constraints 14035 13870 14212 28791 26208 32092

Due to the increased size of the prediction horizon the number of constraints, con-
tinuous, and binary variables have increased. The number of constraints of the explicit
MILP problems is now 2.05 times higher than the number of constraints in the implicit
model. This will affect the computation time of the solvers of the explicit MILP prob-
lems. The computation time needed to solve the implicit and explicit MILP problem for
the three solvers is given in Figure 4.8. The computation time, number of iterations and

Chapter 4 – Model predictive control for railway traffic management 85

number of nodes explored for the different MILP problems for CPLEX and Gurobi are
given in Table 4.9.

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

Figure 4.8: Computation time of the MILP solvers for the implicit and explicit

MILP problem for the sum of arrival delays for the prediction

horizon of two hours.

Table 4.9: Computation statistics for the given MILP solvers.

Implicit Explicit
mean min max mean min max

Comp. time (s) (GLPK) 65.58 0.3904 902.7 0.2043 0.1484 0.4157
Comp. time (s) (Gurobi) 0.5906 0.2041 1.2246 0.3552 0.2862 0.8465
Comp. time (s) (CPLEX) 0.5213 0.3011 5.1109 0.2656 0.1328 0.4099
Simplex iter. (Gurobi) 227.0 31 1069 275 0 608
Simplex iter. (CPLEX) 224.5 46 642 33.42 0 128

Integrality gap 1.137 1.001 1.320 1.115 1.000 1.234

The GLPK solver solves the explicit MILP problems the fastest. It solves the explicit
MILP problems 321 times faster on average than the implicit MILP problems. Gurobi
solves the explicit MILP problems 1.66 times faster than the implicit MILP problems on
average. CPLEX solves the explicit MILP problems 1.96 times faster than the implicit
MILP problems on average. The fastest solver for the implicit MILP problems is CPLEX
with an average computation time of 0.5213 seconds. The fastest solver for the explicit
MILP problems is GLPK with an average computation time of 0.2043 seconds. The

86 Modeling and Control of Switching Max-Plus-Linear Systems

explicit MILP is thus solved 2.55 times faster than the implicit MILP. This may be
explained by the lower integrality gap of the explicit model. The distance of the integrality
gap to the value one is 16.1% lower for the explicit model compared to the implicit model
(0.115 compared to 0.137).

4.5 Case studies: MPC versus DMPC

In this section we compare the performance of the centralized MPC method to the four
DMPC methods called DMPC method 1, 2, 3, and 4 that we introduced in Section
4.3. We use a model of the part of the Dutch railway network that is used by the
Nederlandse Spoorwegen with the timetable of 20114. The train lines, the line type, and
their frequencies are shown in Appendix A. In the model 66 stations and/or junctions are
considered where the order of the trains can be changed. There are 180 tracks connecting
the stations and junctions. Per hour 326 trains traverse the network. A 12% buffer time
on all running times is assumed. For the dwell times between 0 and 2 minutes buffer
time is assumed, and at stations where a train must turn between 10 and 30 minutes
buffer time is assumed. The headway times are based on norms and are between 3 and 5
minutes.

We use the same computer as in the previous case study with an AMD Phenom II
X4 960T at 3.00GHz with 16GB memory running 64bit Windows 7 with MATLAB 2013b
and we have solved the optimization problems with Gurobi 5.6.0.

Using the method described in Section 4.3 we have determined partitions of 2, 3, 4,
6, and 8 parts for the DMPC methods. The partitions can be seen in Figure 4.9 (b)-(f).
The structure of the constraint matrix can be seen in Figure 4.10.

The case study will consists of two parts.

4.5.1 Case study 3: MPC versus DMPC part 1

For the first part we will compare the solution quality of the four DMPC approaches to
each other and the centralized MPC approach for 1000 scenarios. The cost function of the

centralized MPC is the sum of all delays: c(κ)⊤ z(κ) = [11×nx(κ) 0.0001 ·11×nυ(κ)]

[

χ(κ)⊤

υ(κ)⊤

]

,

where 11×m is a 1 by m vector containing only ones, nx(κ) is the number of continuous
variables at time instant t(κ), and nυ(κ) is the number of binary variables at time instant
t(κ). In this case study we only used the partition consisting of four parts and a prediction
horizon of 60 minutes is used. For each scenario we generate delays in the first hour of
the railway traffic and the controller will be activated after the first hour. No new delays
are introduced after the first hour when the controllers are active. We delay 10% of the

4The complete timetable is too large to include in this paper and is no longer available on-

line Since there have been very few major changes in the timetable in the last years the reader

can get a general idea of the timetable from the 2015 timetable. The timetable of 2015 can

be found (in Dutch) at http://www.ns.nl/reizigers/reisinformatie/informatie/informatie-tijdens-uw-

reis/download-dienstregeling-2014-2015.html.

Chapter 4 – Model predictive control for railway traffic management 87

(a) (b)

(d)(c)

(e) (f)

Figure 4.9: Model of the Dutch Network (a), and the partitions used for

DMPC, partitioned in two (b), three (c), four (d), six (e), and

eight (f) parts.

88 Modeling and Control of Switching Max-Plus-Linear Systems

(a)

(c)

(b)

(d)

(e) (f)

Figure 4.10: Structure of the constraint matrix for the entire network (a), and

the partitions used for DMPC, partitioned in two (b), three (c),

four (d), six (e), and eight (f) parts.

Chapter 4 – Model predictive control for railway traffic management 89

trains with a randomly generated delay according to a Weibull distribution with scale
parameter 5 and shape parameter 0.8. We will only look at the first time instant after
the first hour, so time instant t(κ) = 60, in which the controllers have to determine the
optimal new schedule for the next hour based on the current situation of the railway
network and traffic.

The relative increase in the sum of all delays because of the use of the DMPC ap-
proaches is shown in Figure 4.11. The absolute increase in the sum of all delays is shown
in Figure 4.12. The computation time for the global model predictive controller and the
four DMPC approaches to find their solution is shown in Figure 4.13.

0

1

2

3

4

5

6

7

8

9

10

DMPC 4DMPC 2DMPC 1

In
c
re

a
s
e
 i
n
 d

e
la

y
 (

%
)

DMPC 3

Figure 4.11: Relative increase in delays (%) compared to the solution of the

global MPC, DMPC 1, DMPC 2, DMPC 3, and DMPC 4.

DMPC 4DMPC 2 DMPC 1 DMPC 3

0

20

40

60

80

100

120

140

160

180

200

In
c
re

a
s
e
 i
n
 d

e
la

y
 (

m
in

)

Figure 4.12: Absolute increase in delays (min) compared to the solution of

the global MPC, DMPC 1, DMPC 2, DMPC 3, and DMPC 4.

From Figures 4.11 and 4.12 it is clear that the adjustment of the weights in DMPC
methods 3 and 4 has a beneficial effect on the solution quality. Especially DMPC 4 finds

90 Modeling and Control of Switching Max-Plus-Linear Systems

10
0

10
1

10
2

10
3

10
4

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

MPC DMPC 1 DMPC 2 DMPC 3 DMPC 4

Figure 4.13: Computation time of the global MPC, DMPC 1, DMPC 2,

DMPC 3, and DMPC 4.

very good solutions; the average increase in delays is only 0.14% (2.9 minutes), which is
much lower than the average of 0.63% (12.7 minutes) for DMPC 1, and the 1.27% (25.1
minutes) average increase of DMPC 2. From Figure 4.13 it is clear that the that the
adjustment of the weights does not have a significant effect on the computation time.
DMPC 3 and 4 are slightly slower than DMPC 2, but still much faster than DMPC 1 and
the global MPC approach.

4.5.2 Case study 4: MPC versus DMPC part 2

For the second part we have generated 100 scenarios, in each scenario the scheduled arrival
and departure times for a 3 hour window are considered. The controllers have to update
the schedule every minute and are in a closed loop such that the control actions each time
instant are implemented and the consequences of those control actions affect the current
and future time instants. The closed loop continues until all trains drive according to
the normal schedule again. As a result between 180 and 200 optimizations are done per
scenario depending on the delays. The same parameters are used for the delays of the
trains, but this time the delays are added in between time instants while the trains are
running. All partitions are considered and prediction horizons of lengths of 30, 45, 60, and
75 minutes are considered. For each scenario we have solved the rescheduling problem for
the centralized MPC method and the four DMPC methods for the five different partitions
for prediction horizons of length 30, 45, 60, and 75 minutes.

We assume the system initially has no delays, but that during operation delays occur.
Therefore there are no delays at the start, and the first delays are added during the closed
loop operation. As a result during the first 30 minutes the amount of delays increases,
after that it stabilizes. Therefore, we do not consider the computation times of the
optimizations for the first 30 minutes. Depending on the length of the prediction horizon
the size of the optimization problems decreases near the end of the 3 hour window, and
therefore we only consider the computation times up to the 130th minute, leaving us with

Chapter 4 – Model predictive control for railway traffic management 91

100 computation times for each scenario, or 10000 computation times in total, for each
method, and each partition.

For methods based on MPC at each step the solution, or control input, should be
determined before the new information is received and the next step starts. The imple-
mentation may take longer and depending on the time needed for the implementation
the MPC method can be adjusted. In this case study we assume we get new information
every minute and therefore the schedule is recomputed every minute. Because of that the
computation time should be well below one minute, an acceptable maximum computation
time would be 20 seconds, but lower would be better since the local controllers in our
framework also have to compute the local schedules and routes based on the information
our global controller provides.

Computation times

First consider the computation times of the centralized MPC method as given in Figure
4.14. Most of the time the new schedule is computed well within 20 seconds, but for the
prediction horizons of 45, 60, and 75 minutes, some computation times are already above
60 seconds with a maximum of 158 seconds for the prediction horizon of 45 minutes.
For a prediction horizon of 60 minutes this increases to 736 seconds and for a prediction
horizon of 75 minutes the maximum becomes 1009 seconds. Because of the maximum
computation time the implementations of the centralized MPC with a prediction horizon
of 45, 60, and 75 minutes are currently not suitable for on-line railway traffic management.

30 45 60 75

10
−1

10
0

10
1

10
2

10
3

C
o

m
p

u
ta

ti
o

n
 t
im

e
 (

s
)

Figure 4.14: Computation time needed for the centralized model predictive

control approach with a prediction horizon of 30, 45, 60, and 75

minutes.

Next consider the computation times of DMPC method 1 as shown in 4.15 and given
in Table 4.10. For the prediction horizons of 30 minutes increasing the number of parts
in the partition above three parts only increases the computation time. This is because

92 Modeling and Control of Switching Max-Plus-Linear Systems

solving the optimization problem of the centralized MPC method is already relatively
easy, therefore the computation time for each subproblem of the DMPC method is only
slightly shorter than the centralized MPC method and with an increased number of parts
in the partition the number of iterations the DMPC method needs to perform increases,
resulting in an increase in computation time instead of a decrease. Since the optimization
problem becomes harder to solve for larger prediction horizons, the number of parts for
which the computation time still reduces is higher for larger prediction horizons. Only for
prediction horizons of 60 and 75 minutes with a partitioning into two parts the maximum
computation time goes above 60 seconds, with a maximum of 67 seconds for a prediction
horizon of 60 minutes and 2 parts and 103 seconds for a prediction horizon of 75 minutes
and 2 parts. For a prediction horizon of 75 minutes the maximum computation time
is above 20 seconds for all partitions. For a prediction horizon of 60 minutes only the
partition with 2 parts has a maximum computation time above 20 seconds. For the
prediction horizons of 30 and 45 minutes the maximum computation time is below 20
seconds for all partitions.

30

 2

30

 3

30

 4

30

 6

30

 8

45

 2

45

 3

45

 4

45

 6

45

 8

60

 2

60

 3

60

 4

60

 6

60

 8

75

 2

75

3

75

 4

75

 6

75

 8

10

10
0

10
1

10
2

10
3

Pred (min)
Sub (#)

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Figure 4.15: Computation time needed for DMPC method 1 with a prediction

horizon of 30, 45, 60, and 75 minutes for the partitions in 2, 3,

4, 6, and 8 parts.

Since DMPC methods 2, 3, and 4 are similar methods, their computation times are
also similar, as shown in Figures 4.16-4.18 respectively. We will therefore discuss the com-
putation times of these three methods at the same time. Compared to the computation
times of DMPC method 1 there are clear differences. For DMPC methods 2, 3, and 4
increasing the number of parts in the partition decreases the computation time for all
lengths of the prediction horizon tested and all partitions, except for DMPC 4, with a
prediction horizon of 60 minutes and eight parts in the partition and with a prediction
horizon of 75 minutes and four parts in the partition. In both of these cases the maximum
computation time is slightly higher than for some of the other partitions with less parts.
The cause of the decrease in computation time is that each subproblem only contains of
a part of the constraints of the centralized problem with no overlap in constraints of the

Chapter 4 – Model predictive control for railway traffic management 93

Table 4.10: Computation time for the MPC and DMPC methods for Case

Study 3.

30 min 45 min 60 min 75 min

avg min max avg min max avg min max avg min max

MPC 0.31 0.12 4.34 1.93 0.30 158 5.60 0.48 736 11.8 0.75 1009

DMPC1 (2) 0.41 0.19 1.79 1.24 0.45 11.8 2.88 0.90 67.4 5.50 1.16 103

DMPC1 (3) 0.53 0.30 1.34 1.46 0.62 5.05 2.78 1.06 18.5 4.73 1.22 52.4

DMPC1 (4) 0.66 0.35 1.39 1.65 0.81 4.71 3.01 1.18 11.3 5.22 1.57 47.5

DMPC1 (6) 0.89 0.52 1.72 2.15 1.18 5.44 4.17 1.99 14.5 6.20 2.34 26.8

DMPC1 (8) 1.12 0.69 2.85 2.54 1.36 6.92 4.80 2.42 15.1 7.32 2.86 32.0

DMPC2 (2) 0.23 0.09 1.06 0.86 0.23 12.4 1.99 0.38 64.9 3.47 0.54 118

DMPC2 (3) 0.20 0.08 0.56 0.70 0.22 3.20 1.43 0.37 12.2 2.24 0.44 28.1

DMPC2 (4) 0.19 0.08 0.46 0.53 0.18 2.40 1.03 0.31 5.57 1.70 0.35 13.0

DMPC2 (6) 0.17 0.08 0.40 0.45 0.17 1.63 0.78 0.25 4.95 1.20 0.34 7.54

DMPC2 (8) 0.16 0.08 0.38 0.38 0.15 1.05 0.64 0.23 2.38 0.98 0.25 5.84

DMPC3 (2) 0.23 0.08 1.02 0.85 0.23 16.5 1.99 0.46 120 3.42 0.54 43.9

DMPC3 (3) 0.20 0.08 0.93 0.70 0.22 3.24 1.47 0.37 13.0 2.32 0.44 24.5

DMPC3 (4) 0.19 0.08 0.58 0.53 0.18 2.03 1.06 0.31 5.59 1.75 0.40 11.3

DMPC3 (6) 0.17 0.08 0.56 0.45 0.17 1.79 0.79 0.25 3.41 1.22 0.31 9.24

DMPC3 (8) 0.16 0.08 0.36 0.37 0.15 1.44 0.64 0.23 3.36 0.97 0.24 7.37

DMPC4 (2) 0.23 0.08 1.17 0.86 0.23 12.6 2.06 0.46 75.6 3.49 0.54 69.6

DMPC4 (3) 0.20 0.08 0.90 0.67 0.22 4.89 1.47 0.37 10.6 2.39 0.45 19.0

DMPC4 (4) 0.19 0.08 0.49 0.53 0.18 2.74 1.09 0.28 6.07 1.82 0.32 21.7

DMPC4 (6) 0.17 0.08 0.57 0.44 0.16 2.58 0.79 0.25 5.48 1.25 0.33 10.5

DMPC4 (8) 0.16 0.08 0.34 0.37 0.15 1.06 0.63 0.23 9.82 0.94 0.24 5.81

subproblems. Thus increasing the number of subproblems reduces the number of con-
straints of each subproblem. This is in contrast with the subproblems of DMPC method
1, where each subproblem contains all constraints of the centralized problem. Therefore,
increasing the number of subproblems does not reduce the number of the constraints of
each subproblem.

For DMPC method 2 the maximum computation time is above 60 seconds in only
two cases: a prediction horizon of 60 minutes and the partition into two parts with a
maximum of 65 seconds, and a prediction horizon of 75 minutes and the partition into
two parts with a maximum of 118 seconds. There is only one case where the maximum
computation time is between 20 and 60 seconds: a prediction horizon of 75 minutes and
the partition in three parts with a maximum of 24 seconds. All other combinations of
partitions and prediction horizon lengths have a maximum computation time below 20
seconds and can be used for on-line railway traffic management.

For DMPC method 3 the maximum computation time is above 60 seconds in only
one case: A prediction horizon of 60 minutes and the partition in two parts with a
maximum of 120 seconds. There are two cases where the computation time is between

94 Modeling and Control of Switching Max-Plus-Linear Systems

10

10
0

10
1

10
2

10
3

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

30

 2

30

 3

30

 4

30

 6

30

 8

45

 2

45

 3

45

 4

45

 6

45

 8

60

 2

60

 3

60

 4

60

 6

60

 8

75

 2

75

3

75

 4

75

 6

75

 8

Pred (min)
Sub (#)

Figure 4.16: Computation time needed for DMPC method 2 with a prediction

horizon of 30, 45, 60, and 75 minutes for the partitions in 2, 3,

4, 6, and 8 parts.

20 and 60 seconds: A prediction horizon of 75 minutes and the partitions in two and
three parts with maximum computation times of 44 and 24 seconds respectively. All
other combinations of prediction horizon lengths and partitions are below 20 seconds
and therefore suitable for on-line railway traffic management. It is unexpected that the
maximum computation time of the prediction horizon of 75 minutes with the partition
in two parts is lower than the maximum computation time with the prediction horizon
of 60 minutes and the partition in two parts. The longer prediction horizon in general
makes the problems harder to solve, but due to the binary nature of the problems there
may be a few scenarios that are especially hard to solve and may take much longer than
most. Therefore no strict conclusions can be drawn about the maximum computation
time, which is some cases may still exceed the computation times we have found. We can
only say that it is highly unlikely that the maximum computation time is higher than the
maximum we have determined under the similar delay scenarios.

Finally for DMPC method 4 there are again two cases where the maximum compu-
tation time is above 60 seconds: the prediction horizon of 60 seconds with the partition
in two parts with a maximum computation time of 76 seconds and the prediction horizon
of 75 minutes with the partition in two parts with a maximum computation time of 70
seconds. Only for the case of the prediction horizon of 75 minutes and the partition in
four parts is the maximum computation time between 20 and 60 seconds. For all other
cases the maximum computation time is below 20 seconds.

Next we will discuss the delay reduction achieved with the various (D)MPC methods
proposed.

Delay reduction

In order to determine the delay reduction achieved with the various control methods
we compare the total delay of the 100 scenarios combined for all methods, prediction

Chapter 4 – Model predictive control for railway traffic management 95

10

10
0

10
1

10
2

10
3

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

30

 2

30

 3

30

 4

30

 6

30

 8

45

 2

45

 3

45

 4

45

 6

45

 8

60

 2

60

 3

60

 4

60

 6

60

 8

75

 2

75

3

75

 4

75

 6

75

 8

Pred (min)
Sub (#)

Figure 4.17: Computation time needed for DMPC method 3 with a prediction

horizon of 30, 45, 60, and 75 minutes for the partitions in 2, 3,

4, 6, and 8 parts.

10

10
0

10
1

10
2

10
3

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

30

 2

30

 3

30

 4

30

 6

30

 8

45

 2

45

 3

45

 4

45

 6

45

 8

60

 2

60

 3

60

 4

60

 6

60

 8

75

 2

75

3

75

 4

75

 6

75

 8

Pred (min)
Sub (#)

Figure 4.18: Computation time needed for DMPC method 4 with a prediction

horizon of 30, 45, 60, and 75 minutes for the partitions in 2, 3,

4, 6, and 8 parts.

horizon lengths, and partitions to the nominal case. In the nominal case no train orders
are changed: only the arrival and departure times are changed to avoid conflicts. We
determine the reduction in delays compared to the nominal case for all cases in percent of
the total delay of the nominal case. For the centralized MPC approach the delay reduction
is given in the bar plot in Figure 4.19.

For the DMPC approaches the delay reduction is given in the bar plots in Figure
4.20 for the various prediction horizon lengths and partitions..

All the data is also given in Table 4.11.

96 Modeling and Control of Switching Max-Plus-Linear Systems

30 45 60 75
15

16

17

18

19

20

21

22

23

24

25

D
e

la
y
 r

e
d

u
c
ti
o

n
 (

%
)

Prediction horizon length (min)

Figure 4.19: Reduction of the delays in percentage compared to the nominal

case for the centralized MPC approach for Case Study 3.

30 45 60 75
15

16

17

18

19

20

21

22

23

24

25

D
e

la
y
 r

e
d

u
c
ti
o

n
 (

%
)

Prediction horizon length (min)

2

3

4

6

8

(a)

30 45 60 75
15

16

17

18

19

20

21

22

23

24

25

D
e

la
y
 r

e
d

u
c
ti
o

n
 (

%
)

Prediction horizon length (min)

2

3

4

6

8

(b)

30 45 60 75
15

16

17

18

19

20

21

22

23

24

25

D
e

la
y
 r

e
d

u
c
ti
o

n
 (

%
)

Prediction horizon length (min)

2

3

4

6

8

(c)

30 45 60 75
15

16

17

18

19

20

21

22

23

24

25

D
e

la
y
 r

e
d

u
c
ti
o

n
 (

%
)

Prediction horizon length (min)

2

3

4

6

8

(d)

Figure 4.20: Reduction of the delays in percentage compared to the nomi-

nal case for (a) DMPC approach 1, (b) DMPC approach 2, (c)

DMPC approach 3, and (d) DMPC approach 4 for the partitions

in 2, 3, 4, 6, and 8 parts.

It is clear that DMPC method 4 always outperforms methods 2 and 3 in terms of

Chapter 4 – Model predictive control for railway traffic management 97

Table 4.11: Delay reduction in % for the centralized MPC and the DMPC

methods.

30 min 45 min 60 min 75 min

MPC 17.9% 20.0% 21.6% 21.9%

DMPC 1 (2) 17.9% 20.2% 21.5% 21.7%
DMPC 1 (3) 17.7% 19.9% 21.2% 21.4%
DMPC 1 (4) 17.9% 20.0% 21.4% 21.6%
DMPC 1 (6) 17.6% 19.6% 21.0% 21.1%
DMPC 1 (8) 18.0% 20.0% 21.2% 21.4%

DMPC 2 (2) 17.4% 19.2% 20.6% 20.8%
DMPC 2 (3) 17.1% 17.8% 20.1% 20.2%
DMPC 2 (4) 16.1% 17.4% 18.6% 18.5%
DMPC 2 (6) 16.1% 16.7% 18.9% 19.0%
DMPC 2 (8) 16.3% 17.2% 19.2% 19.2%

DMPC 3 (2) 17.8% 19.9% 21.2% 21.4%
DMPC 3 (3) 17.7% 18.5% 20.7% 20.8%
DMPC 3 (4) 17.2% 18.9% 20.0% 20.0%
DMPC 3 (6) 17.0% 17.8% 19.8% 19.8%
DMPC 3 (8) 16.9% 18.2% 20.1% 20.2%

DMPC 4 (2) 17.9% 20.2% 21.6% 21.8%
DMPC 4 (3) 17.8% 19.9% 21.3% 21.4%
DMPC 4 (4) 17.8% 20.1% 21.2% 21.4%
DMPC 4 (6) 17.7% 19.6% 21.1% 21.1%
DMPC 4 (8) 17.7% 19.9% 21.0% 21.0%

delay reduction. The difference in computation time between DMPC methods 2, 3, and
4 is negligible. Therefore, we will not consider DMPC methods 2 and 3 in the rest of the
discussion.

In Figure 4.21 the delay reduction is plotted against the maximum computation for
DMPC methods 1 and 4 and the MPC method. As is clear from this figure, the DMPC
methods can achieve a similar delay reduction in a lot less time. In most cases DMPC
method 4 is even slightly faster than DMPC 1 when comparing for similar reductions in
delay.

Furthermore it is clear that by increasing the prediction horizon the delays are re-
duced more. The effects of increasing the prediction horizon further diminishes when the
prediction horizon is longer: from 30 to 45 minutes the delay reduction for the centralized
MPC is improved with 12.0%, from 45 to 60 minutes it is already slightly lower with an
improvement of 7.8%, and from 60 to 75 minutes the improvement is only 1.2%. For
the DMPC approaches we see similar results. An explanation for this is that the further
ahead the controller predicts the future arrival and departure times, the less accurate
those departure and arrival times become. As a result most of the future arrival and

98 Modeling and Control of Switching Max-Plus-Linear Systems

10 10
0

10
1

10
2

10
3

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Computation time (s)

D
e
la

y
 r

e
d
u
c
ti
o
n
 (

%
)

DMPC1|60|3

DMPC1|60|6

DMPC1|60|8

DMPC1|75|6

DMPC4|60|3

DMPC4|60|4

DMPC4|60|6

DMPC4|60|8

DMPC4|75|6

DMPC4|75|8

(c) MPC|60

MPC|75

DMPC1|60|2

DMPC1|60|4

DMPC1|75|2

DMPC1|75|3

DMPC1|75|4

DMPC1|75|8

DMPC4|60|2

DMPC4|75|2

DMPC4|75|3

DMPC4|75|4

MPC|45

DMPC1|45|2

DMPC1|45|3

DMPC1|45|4

DMPC1|45|6

DMPC1|45|8

DMPC4|45|2

DMPC4|45|3

DMPC4|45|4

DMPC4|45|6

DMPC4|45|8

MPC|30

DMPC1|30|2

DMPC1|30|3

DMPC1|30|4

DMPC1|30|6

DMPC1|30|8

DMPC4|30|2

DMPC4|30|3

DMPC4|30|4

DMPC4|30|6

DMPC4|30|8

(a) (b)

(d)

(a)

(b)

(c)

(d)

Figure 4.21: Reduction of the delays in percentage plotted against the maxi-

mum computation for DMPC method 1, DMPC method 4, and

the MPC method for the partitions in 2, 3, 4, 6, and 8 parts, and

the prediction horizons of 30, 45, 60, and 75 minutes.

Chapter 4 – Model predictive control for railway traffic management 99

departure times will be changed at future time instants when new information becomes
available and better predictions can be made.

When we only consider the delay reduction and not the computation time, the cen-
tralized MPC with a prediction horizon of 75 minutes reduces the delays the most: 21.9%.
Of the DMPC methods, DMPC method 4 with a prediction horizon of 75 minutes and
partitioned into two parts has the highest delay reduction: 21.8%. The difference in delay
reduction between the two is almost negligible, but the difference in computation time
is substantial; the average computation time needed for DMPC method 4 is 3.38 times
lower than for the centralized MPC method and the maximum computation time is 14.5
times lower.

When we consider a limit on the maximum computation time of 20 seconds DMPC
method 1 with a prediction horizon of 60 minutes and partitioned into four parts and
DMPC method 4 with a prediction horizon of 75 minutes and partitioned into three parts
have the best results. DMPC method 4 has a slightly lower average computation time,
but a higher maximum computation time. Both methods achieve a 21.4% reduction in
delays, which is the highest of all methods with a maximum computation time below 20
seconds.

4.6 Summary

In this chapter the basics of MPC were explained and it has been shown how MPC can
be applied to the problem of on-line railway traffic management using the switching max-
plus-linear model explained in the previous chapter. At each time instant an optimization
problem then needs to be solved to determine the dispatching actions that minimize the
delays. If the cost function of the optimization problem is a linear function of the event
times and control variables and the switching max-plus-linear model is rewritten into a
set of mixed integer linear constraints a mixed integer linear programming problem is
obtained.

A case study using a model based on the Dutch railway network, excluding regional
trains, was conducted. The goal was to test the performance in terms of computation
speed and delay reduction of the proposed MPC approach using the implicit and reduced
explicit switching max-plus-linear model for prediction horizons of one and two hours for
the sum of all delays and the sum of arrival delays. In all cases the MILP problem based on
the reduced explicit model was faster, while achieving the same delay reduction, especially
for the sum of arrival delays and a prediction horizon of 1 hour the explicit MILP was
solved much faster; the average computation time was 10 times lower. For the other
instances the difference was smaller. The computation time needed to convert and reduce
the implicit model to the reduced explicit model took around 40 seconds for the model
using a one hour prediction horizon. When the prediction horizon was increased to two
hours the computation time increase to around 4 minutes. It may happen that for large
models that include all trains the conversion takes much longer or becomes impractical
to calculate. Further research is needed to determine this. Furthermore for larger delays

100 Modeling and Control of Switching Max-Plus-Linear Systems

the reduction method is less effective and the benefits may be reduced further. But if the
conversion from the implicit to the explicit model, and the reduction method, could be
sped up such that it can be applied on-line the reduction method can be changed such
that the limitation of the control actions is based on a maximum deviation from the last
known solution. By making this change the solutions found with the model predictive
controller using the reduced explicit model are optimal for larger deviations from the
nominal timetable without increasing the problem complexity, as long as the change in
situation in the network between time instants is limited.

For large instances the model predictive control problem can be too hard to solve.
To overcome this problem four distributed model predictive control approaches were pro-
posed. With distributed model predictive control the centralized problem is partitioned
into smaller, faster to solve subproblems. These subproblems are then solved iteratively
and the solutions are found are used to update the other subproblem until they converge
to a global solution.

To test the proposed DMPC approaches two new case studies were performed. In
the first case study a model of the Dutch railway network containing all Nederlandse
Spoorwegen trains as described in the timetable of 2011 was used. The network was
partitioned into four parts for the DMPC approaches. A prediction horizon of 60 minutes
was used and the approaches were compared in terms of computation time and delay
reduction for a single time-instant for 1000 scenarios. The result was that DMPC method
4 was the best by finding solutions that on average only had 1.27% more delays than
the centralized MPC approach, while the computation time was much lower than for the
centralized approach and among the lowest for the DMPC approaches.

In the second case study the centralized problem was partitioned into 2, 3, 4, 6, and
8 parts for the DMPC approaches and tested for prediction horizons of 30, 45, 60, and 75
minutes. Instead of comparing the performance of a single time instant for multiple sce-
narios, now the performance was compared for a three hour window, where the controller
was in a closed loop, such that the control actions each time instant are implemented
and the consequences of those control actions affect the current and future time instants.
Therefore, each minute a new optimization had to be solved and implemented. The to-
tal delay in this three hour was compared for all four approaches, for all five partitions,
and four prediction horizon lengths, for 100 scenarios. In the end the DMPC methods
1 and 4 performed comparable in both computation time and delay reduction and when
considering limits on the maximum computation time outperformed the centralized MPC
approach. The benefit of increasing the prediction horizon on the delay reduction lessens
as the prediction horizon becomes larger, while the computation time grows exponentially.
Based on the case studies we performed it seems that a prediction horizon with length
between 60 and 75 minutes gives the best delay reduction compared to the computation
time. There are several possible explanations for the lower increase in the delay reduction
for increasing prediction horizons. First of all the predictions further ahead in the future
are less accurate and more likely to change when new information becomes available in the
future. A second explanation could be that due to the buffer times in dwell and running
times, the delays are absorbed and for longer prediction horizons more delays will have

Chapter 4 – Model predictive control for railway traffic management 101

been absorbed at the end of the horizon and for smaller delays the controller is less likely
to take control actions. Further research should be done on the effect of buffer times and
the amount of delays on the delay reduction for large prediction horizons.

102 Modeling and Control of Switching Max-Plus-Linear Systems

Chapter 5

Legged locomotion

This chapter gives an overview on current approaches for the modeling of locomotion
patterns for legged locomotion namely central pattern generators and Buehler clocks.
A max-plus approach is proposed that generalizes the Buehler clock approach and with
the use of max-plus theories the transient and steady-state behavior is analyzed. Using
the max-plus properties that have been derived optimal gait switches are derived and
a method is proposed to let the robot accelerate or decelerate at a constant pace. This
chapter is based on the papers of [67, 68]. The contributions in those papers that have been
written by the author of this thesis are the main focus of this chapter. The contributions
consist of the proof of the uniqueness of the eigenvector found in Section 5.3, optimal gait
switching in Section 5.4, and the simulations of the max-plus-gait scheduler in Section
5.5.

5.1 Introduction

The controller for the legged locomotion of a robot can be structured in two subsystems:
A gait reference generator and a tracking controller, as shown in Figure 1.3 from Chapter 1
and repeated here for convenience in Figure 5.1. The gait reference generator generates the
cyclic reference signals that describe synchronization between the legs resulting in a cyclic
motion. The dynamic tracking controller translates these reference signals into the actual
movement the feet of the robot should make. In this chapter a novel approach for the gait
reference generator is presented. The gait reference generator is described by a class of
max-plus-linear systems that realize schedules for the touchdown and lift-off of the legs of a
robot for a given class of gaits. Modeling the gait reference generator as a max-plus-linear
system was first described in Lopes et al. [65, 66]. In this chapter closed-form expressions
for the max-plus eigenvalue and eigenvector of the system matrix will be derived, and
it will be shown that the max-plus eigen-parameters are max-plus unique, implying a
unique steady-state behavior. The importance of having closed-form expressions and
uniqueness of the max-plus eigenstructure is that, not only can one compute the following
parameters very fast without having to run simulations or numerical algorithms (e.g.
Karp’s algorithm [3]), but one also has guarantees of uniqueness: the motion of the robot

103

104 Modeling and Control of Switching Max-Plus-Linear Systems

Gait reference

generator

Dynamic tracking

controller

Robot +

environment

Legged locomotion controller

Figure 5.1: The standard partitioning of a legged locomotion controller. The

gait reference generator subsystem provides reference signals to

the tracking controller. Feedback can exist from both the robot

and the tracking controller to the gait reference generator.

will always converge in a finite number of steps to the behavior described by the current
gait and its parameters, even after gait switches or temporary disturbances1. The class of
max-plus-linear systems also ensure kinematic stance stability2 during disturbances and
gait switches. Ensuring kinematic stance stability is fundamental when designing gait
controllers for robotics. Additionally we present a bound on the number of cycles needed
to reach steady-state motion after changing gaits.

Finally the results of simulations of the proposed legged locomotion controller are
presented.

The chapter is built up as follows: in Section 5.2 a short literature survey is given
on legged locomotion controllers and the approach proposed in this chapter is compared
to the approaches in literature. In Section 5.3 several properties of the max-plus-linear
system defining the gaits are derived. In Section 5.4 methods for determining optimal
gait switches are presented. In Section 5.5 simulation using the max-plus gait reference
generator are given. Finally in Section 5.6 the chapter is summarized, conclusions on the
proposed approach are drawn, and recommendations for future research are given.

5.2 Modeling of legged locomotion

Central pattern generators (CPGs) are currently the standard tool for designing gait
reference generators (see Ijspeert [48] for a survey on CPGs). CPGs are neural networks
found in animals that can generate complex periodic signal patterns. They are called
central pattern generators because they do not require sensory feedback to produce the
patterns. In animals they generate rhythmic patterns for movement. So CPGs offer a
natural bio-inspired control framework that addresses locomotion patterns.

1The disturbances considered in this chapter are delayed lift-off and touchdown times, due to tem-

porary obstructions.
2In this thesis a robot is “kinematic stance-stable” if it can be guaranteed that there are always

sufficient legs in stance to ensure the robot does not fall over.

Chapter 5 – Legged locomotion 105

Although widely used, CPGs offer their own set of challenges because of their math-
ematical formulation as sets of coupled differential equations. One of those challenges
is the transient behavior that exists during gait transitions. Gait transitions are a very
natural occurrence in nature; animals change gait to accommodate for different types of
terrain, locomoting speeds, and to minimize the energy needed to move at the desired
speed. As in normal systems modeled by differential equations, the transient behavior
is typically less understood than the steady-state behavior. A lot of researchers have
worked on gait transition in the CPG framework (see Aoi et al. [1], Daun-Gruhn and
Toth [24], Inagaki et al. [49, 50], Li et al. [62], Nagashino et al. [72], Santos and Matos
[79], Zhang et al. [95], and the references within [48]). Other work on gait transition
without using CPGs in the continuous-time domain has been performed by Haynes and
Rizzi [41], Haynes et al. [43]. The traditional approach for gait transition in the CPG
framework exploits the bifurcations that occur when changing parameters in the set of
coupled differential equations. This can lead to intricate analysis of the global behavior
due to the continuous-time models used.

5.2.1 Central pattern generators

In robotics, CPGs are usually implemented by solving sets of coupled differential equations
on-line [48]. An abstract phase θi ∈ S1 is associated to each leg i representing its periodic
motion, with S1 representing the circle. The dynamical equations for the full phase state
θ = [θ1 · · · θn]⊤ ∈ Tn can be written as:

θ̇(τ) = V +h(θ(τ)), (5.1)

where Tn is the n-torus (the Cartesian product of n circles), V ∈Rn represents the desired
phase velocity vector, τ represents time, and the function h includes the desired coupling
between each phase. A common realization of (5.1) is presented below [47]:

θ̇i(τ) = v+
∑

j

wi,j sin(θj(τ) −θi(τ) −φi,j), (5.2)

where v ∈ R is a common phase velocity, the weights wi,j represent the coupling strength
between phases θi(τ) and θj(τ), and φi,j is their phase difference (typically φi,j = −φji).
In traditional robotic applications that use CPGs, the phase θ is used to generate reference
trajectories for the “limbs” of the robot via a parameterized map g:

qref(τ) = g(p,θ(τ)), (5.3)

where qref(τ) represents the reference trajectories of each actuator at time τ , and p is a
set of parameters that modulate the shape of the resulting phase curves into a physical
motion in space. The desired reference trajectory qref is then fed into a tracking controller,
or a reference vector field (as a function of θ(τ)) that can be pushed back through g (if
g is differentiable [60]). Equation (5.1) corresponds to subsystem 1 in Figure 5.1, while
equation (5.3) corresponds to subsystem 2.

Designing gaits in the CPG framework is accomplished by choosing the values for
parameters wi,j , φi,j , and p. Despite the widespread use of CPGs and their straightforward

106 Modeling and Control of Switching Max-Plus-Linear Systems

implementation, there are some disadvantages to this approach that should be considered.
First, it is necessary to continuously solve the differential equation (5.1) in real-time.
Many approaches have been taken, including dedicated analog CPG implementations
(see references within [48]). Second, the transient behavior of (5.1) may be difficult to
describe. Especially in the case of gait transitions or variable velocity, since changing
parameters in dynamical systems typically results in bifurcations. Such behavior can be
difficult to analyze but with the approach proposed in this chapter theories of max-plus
algebra can be used to analyze that behavior.

5.2.2 Buehler clock

As was mentioned in the introduction an alternative approach to CPGs for the syn-
chronization of cyclic systems is called the “Buehler clock” [80]. The Buehler clock is
illustrated in Figure 5.2 for a hexapod robot.

φs

τs

τd

−

τc

2

τc

2

π

−π

time

phase

left tripod

right tripod

Figure 5.2: The “Buehler clock” model for a hexapod robot: piecewise con-

stant phase velocity (Figure reproduced from Saranli et al. [80]).

Each trajectory corresponds to the reference phase of a group of

legs in time.

The control structure in this framework is built up as shown in Figure 5.1. The gait
reference generator generates piecewise constant phase velocity reference signals. The
phase velocity reference signals are based on the set of these parameters:

the cycle time is τc,

the stance time is τs,

the “stance phase” is φs,

the double stance time is τd, with τd = τs − τc/2.

Chapter 5 – Legged locomotion 107

The stance phase φs represents the part of the abstracted phase when the legs are assumed
to be in stance. For a gait where the legs are divided into two groups the mathematical
model can be written as:

θ1(τ) =







φs

τs
τ̄ if −

τs

2
< τ̄ <

τs

2
,

π−φs

τc − τs



τ̄ −
τs

2



+
φs

2
if τ̄ ≥

τs

2
,

π−φs

τc − τs



τ̄ +
τs

2



−
φs

2
if τ̄ ≤ −

τs

2
,

(5.4)

and

θ2(τ) = θ1



τ +
τc

2



 , (5.5)

with τ̄ = ((τ + τc/2) modulo τc)−τc/2. The reference phases θ1(τ) and θ2(τ) in (5.4) and
(5.5), represent the right and left tripod of a hexapod robot respectively, as in Figure
5.2, and τ represents the current time instant. In the paper of Saranli et al. [80], θ1(τ)

is used as a phase reference for legs 1, 4, and 5; and θ2(τ) is used for legs 2, 3, and 6,
following the notation of the left-most image in Figure 5.3. The max-plus approach that
is proposed in the next part of this chapter generalizes the Buehler clock approach and
with the use of max-plus theories the transient and steady-state behavior is analyzed.

Figure 5.3: Left: Zebro and RQuad robots developed at the Delft Center for

Systems and Control, morphologically identical to RHex [80]. The

numbers indicate the leg labeling for each robot.

5.2.3 Switching max-plus-linear models

The timing of the touchdown and lift-off and synchronization of the legs of a robot can
be described as a discrete event system. The state variables of this system are:

• ti(k) is the time instant the foot of leg i touches down for the kth cycle

108 Modeling and Control of Switching Max-Plus-Linear Systems

• li(k) is the time instant the foot of leg i lifts off the ground for the kth cycle

The equations describing the time evolution of the state variables and the synchronization
of a walking bipedal robot are then:

t1(k) = l1(k) + τf (5.6)

t2(k) = l2(k) + τf (5.7)

l1(k) = max(t1(k−1) + τg, t2(k−1) + τ∆) (5.8)

l2(k) = max(t2(k−1) + τg, t1(k) + τ∆) . (5.9)

Equations (5.6)–(5.9) capture the synchronization requirements of the legs for a traditional
biped walk. Equation (5.6) states that foot 1 touches down τf time units after it has lifted
off the ground. Equation (5.8) states that foot 1 will lift off the ground after both feet
have spent a total of τg time units in stance and τ∆ time units after foot 2 has touched
down. Equations (5.7) and (5.9) have an analogous interpretation. Note that the time
parameters τf , τg, and τ∆ represent the minimal swing, stance, and double-stance times,
respectively, as opposed to their exact times. Equations (5.6)–(5.9) contain only the max

and + operations, motivating the use of the max-plus algebra due to the following reasons:
first, (5.6)–(5.9) is nonlinear in the traditional algebra, but it is linear in the max-plus
algebra; second, the theory of the max-plus algebra is well developed, and as such many
properties can be inferred from the system matrices of the max-plus linear system. In the
next section we explore these properties.

Equations (5.6)–(5.9) describe the synchronization constraints between two legs.
These equations can be written in max-plus-linear algebra as

ti(k) = li(k) ⊗ τf for i= 1,2 (5.10)

l1(k) = t1(k−1) ⊗ τg ⊕ t2(k) ⊗ τ∆ (5.11)

l2(k) = t2(k−1) ⊗ τg ⊕ t1(k−1) ⊗ τ∆. (5.12)

This can be extended to robots with any number of legs and for many different gaits. In
order to do so we must first define for which gaits this is possible.

Definition 5.1 Leg partition

Let n be the number of legs of the robot and define m as the number of leg groups, where
a leg group is defined as a set containing the indices of all legs that lift off and touch down
at the same time. Let ℓ1, . . . , ℓm be ordered sets of integers such that

m⋃

p=1

ℓp = {1, . . . ,n}, ∀i 6= j,ℓi ∩ ℓj = ∅, and ∀i, ℓi 6= ∅, (5.13)

i.e., the sets ℓp, p= 1, . . . ,m, form a partition of {1, . . . ,n}. 2

Definition 5.2 Gait and gait space

A gait G is defined as an ordering relation of groups of legs:

G = ℓ1 ≺ ℓ2 ≺ ·· · ≺ ℓm. (5.14)

The gait space is the set of all gaits that satisfy the previous definitions. 2

Chapter 5 – Legged locomotion 109

By considering that each ℓp contains the indices of a set of legs that are synchronized in
phase, the previous ordering relation is interpreted in the following manner: the set of
legs indexed by ℓi swings synchronously. Once all legs in ℓi touch down and have been
on the ground for at least τ∆ time units, then all legs in ℓi+1 initiate their swing motion.
The same is true for ℓm and ℓ1, closing the cycle. For example, a trotting gait, where
diagonal pairs of legs move synchronously, for a quadruped robot as illustrated in Figure
5.3, is represented by:

Gtrot = {1,4} ≺ {2,3}. (5.15)

The gait space defined above can represent gaits for which all legs have the same
cycle time. As such, gaits where one leg cycles twice while another cycles only once are
not captured by this model. Examples of such gaits are not common, but have been used
on hexapod robots to transverse very inclined slopes sideways [93].

For an n-legged robot any gait in the gait space defined before can be described in
max-plus algebra. First we can generalize equations (5.10), (5.11), and (5.12) for n-legged
robots by defining the following vectors:

t(k) = [t1(k) · · · tn(k)]⊤ (5.16)

l(k) = [l1(k) · · · ln(k)]⊤ . (5.17)

Equation (5.10) is then written as:

t(k) = τf ⊗ l(k). (5.18)

If one assumes that the synchronization is always enforced on the lift-off time of a leg,
equations (5.11) and (5.12) are written jointly as:

l(k) = τg ⊗ t(k−1) ⊕P ⊗ t(k) ⊕Q⊗ t(k−1), (5.19)

where the matrices P and Q encode the synchronization between lift-off of a leg related to
a touchdown of the current event (as in equation (5.9)) and a touchdown of the previous
event (as in equation (5.8)), respectively. The rationale behind this particular model is
to prevent that a legged platform has too many legs in swing while walking3, and the
robot risks falling down. Synchronization constraints are always imposed on legs that are
in stance and are about to swing: some legs should only swing if others are in stance
(equation (5.19)). By doing so we can ensure that for any disturbance at most one group
of legs is in swing and therefore we can guarantee that a minimum number of legs is
always on the ground. This ensures kinematic stance stability, under the assumption that
the gait during steady state is kinematic stance-stable, i.e. no matter which group of
legs is in swing, the legs in the other groups ensure the robot is kinematic stance-stable.
Once in swing, legs are never constrained to go into stance (equation (5.18)). With the

3As mentioned previously in this chapter we do not consider gaits with aerial phases, although it can

still be achieved using the same class of models.

110 Modeling and Control of Switching Max-Plus-Linear Systems

previously defined gait notation matrices P and Q can be derived:

[P]pq =

{

τ∆ ∀j ∈ {1, . . . ,m−1};∀p ∈ ℓj+1;∀q ∈ ℓj
ε otherwise

(5.20)

[Q]pq =

{

τ∆ ∀p ∈ ℓ1;∀q ∈ ℓm
ε otherwise

. (5.21)

Matrix P ensures that the lift-off of the legs in ℓj+1 in the current cycle is τ∆ time units
after the touchdown of the legs in ℓj in the current cycle (for all j ∈ {1, . . . ,m−1}). Matrix
Q ensures that the lift-off of the legs in ℓ1 in the current cycle is after the touchdown
of ℓm in the previous cycle. These matrices ensure that the synchronization between the
sets of legs and ensure only one set of legs can be in the air at all times, even during
disturbances.

For the trotting gait Gtrot we obtain:

Ptrot =









ε ε ε ε

τ∆ ε ε τ∆

τ∆ ε ε τ∆

ε ε ε ε









and Qtrot =









ε τ∆ τ∆ ε

ε ε ε ε

ε ε ε ε

ε τ∆ τ∆ ε









. (5.22)

Equations (5.18) - (5.22) can be written in state-space form as:
[

t(k)

l(k)

]

=

[

E τf ⊗E

P E

]

⊗

[

t(k)

l(k)

]

⊕

[

E E

τg ⊗E⊕Q E

]

⊗

[

t(k−1)

l(k−1)

]

. (5.23)

Define the matrices

A0 =

[

E τf ⊗E

P E

]

; A1 =

[

E E

τg ⊗E⊕Q E

]

. (5.24)

Consider the full state x defined as x(k) = [t⊤(k) l⊤(k)]T . Equation (5.23) can then be
written in simplified notation:

x(k) = A0 ⊗x(k) ⊕A1 ⊗x(k−1). (5.25)

Note that additional max-plus identity matrices E are introduced in the diagonal of matrix
A1. This results in the extra trivial constraints ti(k) ≥ ti(k− 1) and li(k) ≥ li(k− 1),
also resulting in the final system matrix (defined in page 112, equation (5.35)) being
irreducible. This is observed later on in Lemma 5.4.

Define the function ♭4 that transforms a gait into a vector of integers:

♭ : {[ℓ1]1, . . . , [ℓ1]i1
} ≺ · · · ≺ {[ℓm]1, . . . , [ℓm]im} 7→

[[ℓ1]1, . . . , [ℓ1]i1
. . . [ℓm]1, . . . , [ℓm]im]⊤ . (5.26)

Using again the previous trotting example we get that ♭(Gtrot) = [1 4 2 3]⊤. Note that
the gaits {1,4} ≺ {2,3} and {4,1} ≺ {2,3} although resulting in indistinguishable motion
in practice, have different mathematical representations since
♭({1,4} ≺ {2,3}) 6= ♭({4,1} ≺ {2,3}).

4The symbol flat “♭” is chosen since it “flattens” the ordered collection of ordered sets of a gait into

a vector.

Chapter 5 – Legged locomotion 111

Definition 5.3 Normal gait

A gait Ḡ is called a normal gait if the elements of the vector ♭
(

Ḡ
)

are in increasing
numerical order. 2

For a gait G, define the similarity matrix C̄ ∈ Rn×n
ε as:

[

C̄
]

i,j
=

{

e if [♭(G)]i = j

ε otherwise
,∀i, j ∈ {1, . . . ,n}. (5.27)

The similarity matrix C̄ is such that C̄⊗ C̄⊤ = C̄⊤ ⊗ C̄ = E.

The similarity matrix associated with the trotting gait Gtrot is:

C̄trot =









e ε ε ε

ε ε ε e

ε e ε ε

ε ε e ε









. (5.28)

The similarity matrix C̄ has the property of “normalizing” the P and Q matrices to a
max-plus algebraic lower triangular form P̄ and a max-plus algebraic upper triangular
form Q̄ respectively:

P̄ = C̄⊗P ⊗ C̄⊤ (5.29)

Q̄= C̄⊗Q⊗ C̄⊤. (5.30)

Taking the previous example of the trotting gait, the normalized matrices take the form

P̄trot =









ε ε ε ε

ε ε ε ε

τ∆ τ∆ ε ε

τ∆ τ∆ ε ε









and Q̄trot =









ε ε τ∆ τ∆

ε ε τ∆ τ∆

ε ε ε ε

ε ε ε ε









, (5.31)

which are generated by the normal gait {1,2} ≺ {3,4}. Let #ℓi represent the number of
elements of the set ℓi and define 1#ℓi×#ℓj

as a matrix of dimensions #ℓi ×#ℓj containing
only ones. Then for a general normal gait

Ḡ = ℓ1 ≺ ℓ2 ≺ ·· · ≺ ℓm, (5.32)

with 1̄i,j = 1#ℓi×#ℓj
the structure of P̄ and Q̄ is:

P̄ =













E · · · E

τ∆ ⊗ 1̄2,1 E
...

E τ∆ ⊗ 1̄3,2 E
...

. . .

E · · · τ∆ ⊗ 1̄m,m−1 E













, (5.33)

and

Q̄=

[

E τ∆ ⊗ 1̄1,m

E E

]

. (5.34)

From (5.33) it is clear that the matrix P̄ is always max-plus nilpotent, since the upper
triangle is max-plus zero.

112 Modeling and Control of Switching Max-Plus-Linear Systems

Lemma 5.1

Max-plus nil-potency is invariant to max-plus similarity transformations (e.g. as defined

in equations (5.29), (5.30)).

Proof: See Lopes et al. [68]. 2

Given an arbitrary gait G with associated matrices P , Q, A0, and A1 one can find the
normal matrix P̄ which is max-plus nilpotent. From Lemma 5.1 P is then also max-plus
nilpotent.

Lemma 5.2

A sufficient condition for A∗
0 to exist is that the matrix P is nilpotent in the max-plus

sense.

Proof: See Lopes et al. [68]. 2

Since P is always max-plus nilpotent for gaits generated by expressions (5.20) and
(5.21), we conclude that A∗

0 is well defined. In the beginning of this section we have
presented the implicit form of the synchronization equations (5.25). However, if A∗

0 exists
then using equations (2.6) and (2.7), system (5.25) can be transformed into an explicit
set of equations.

Let A, which we call system matrix, be defined by:

A= A∗
0 ⊗A1. (5.35)

Using Theorem 2.1 equation (5.25) can be rewritten as:

x(k) = A∗
0 ⊗A1 ⊗x(k−1) = A⊗x(k−1). (5.36)

With the system matrix A defined the max-plus theory from Chapter 2 can be used
to analyze the behavior of the system described in (5.36).

For the analysis of the system the system matrix A is transformed using a similarity
transformation with matrix:

C =

[

C̄ E

E C̄

]

. (5.37)

The similarity matrix C transforms the system matrix A of an arbitrary gait G into the
system matrix Ā of a normal gait Ḡ via the similarity transformation Ā = C⊗A⊗C⊤.

The structure of Ā is derived and analyzed in Lopes et al. [68] and (5.38)–(5.40)
illustrate the resulting structure of Ā written in the system form x̄(k) = Ā⊗ x̄(k− 1),
with x̄(k) = C⊗x(k), and Ēi = E#ℓi

.

Chapter 5 – Legged locomotion 113

x̄(k) = Ā⊗ x̄(k−1) ⇔ (5.38)

x̄(k) =




τf ⊗ (τg ⊗W ⊕V) τf ⊗W

τg ⊗W ⊕V W



⊗ x̄(k−1) ⇔ (5.39)

















tℓ1
(k)
...

tℓm(k)

lℓ1
(k)
...

lℓm(k)

















︸ ︷︷ ︸

x̄(k)

=















A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43















︸ ︷︷ ︸

Ā

⊗

















tℓ1
(k−1)

...

tℓm(k−1)

lℓ1
(k−1)

...

lℓm(k−1)

















︸ ︷︷ ︸

x̄(k−1)

, (5.40)

with (the ⊗ operator is omitted in unambiguous locations):

[

A11 A12

A21 A22

]

=











τγĒ1 · · · E τδ1̄1,m

τγτδ1̄2,1 τγĒ2
... τ⊗2

δ 1̄2,m
...

. . .
...

τγτ
⊗(m−1)
δ 1̄m,1 · · · τγτδ1̄m,m−1 τγĒm ⊕ τ⊗m

δ 1̄m,m











(5.41)

[

A31 A32

A41 A42

]

=














τgĒ1 · · · E τ∆1̄1,m

τgτδ1̄2,1 τgĒ2
... τ∆τδ1̄2,m

...
. . .

...

τgτ
⊗(m−1)
δ 1̄m,1 · · · τgτδ1̄m,m−1

τgĒm⊕

τ∆τ
⊗(m−1)
δ 1̄m,m














(5.42)










A13

A23

A33

A43










=
























τfĒ1 · · · E

τfτδ1̄2,1 τfĒ2
...

...
. . .

τfτ
⊗(m−1)
δ 1̄m,1 · · · τfĒm

Ē1 · · · E

τδ1̄2,1 Ē2
...

...
. . .

τ
⊗(m−1)
δ 1̄m,1 · · · Ēm
























. (5.43)

5.2.4 Control structure

In this section the modular control structure is given that implements the presented
max-plus framework both in simulation and in reality on the legged robots illustrated in
Figure 5.3. This structure, illustrated in Figure 5.4, consists of four control blocks: the
supervisory controller, tasked with choosing a gait; the max-plus gait generator, which
generates an event schedule; the continuous time scheduler, which transforms the event
schedule into a continuous time reference trajectory; and finally the tracking controller,

114 Modeling and Control of Switching Max-Plus-Linear Systems

which enforces the desired reference trajectory. Note that both the supervisory controller
and the max-plus gait generator blocks use feedback on the phase state to update the
internal scheduling.

µref

v

µ, µ̇

Supervisory

controller

Gait reference generator

Max-plus gait

scheduler

Tracking

controller

Robot +

environment

Continuous time

scheduler

Figure 5.4: Block diagram of the control structure using the max-plus algebra

framework for legged locomotion presented in this chapter.

The choice of the supervisory controller can be a function of the terrain, desired
speed, or other considerations. Section 5.4 will be dedicated to gait transitions, further
elaborating on the operation of the supervisory control block.

The event schedule S ∈ R
2n×(2p+1)
ε for p≥ 1 (in the case of the robots utilized in this

chapter p= 1 is used) is defined to be the matrix

S =
[

x(k−p) · · · x(k) · · · x(k+p)
]

. (5.44)

Denote the i-th row of S as [S]i,·. Then the parameters p and k are chosen such that at
the time instant τ for each row of S we get that

min([S]i,·)< τ <max([S]i,·), (5.45)

i.e., for each leg S contains both events that have happened in the past and events that are
scheduled to occur in the future (in a practical implementation the matrix S is updated
at discrete time instants that are a function of the total cycle time, thus S is actually a
function of time). If we consider that foot i always touches down when its phase is at a
fixed value θt and always lifts off the ground at the fixed phase θl, then it is possible to
generate a reference phase via the function

θref(τ,S(τ)) : R×R
2n×(2p+1)
ε → T

n, (5.46)

that takes as inputs time τ ∈ R and the event schedule and outputs a piecewise affine

Chapter 5 – Legged locomotion 115

trajectory for each of the leg’s phases:

[θref]i :=







θl (ti(kti) − τ) + (θt+2π)(τ − li(kli))

ti(kti) − li(kli)

if τ ∈ [li(kli), ti(kti))

θt (li(kli+1) − τ) + θl (τ − ti(kti))

li(kli+1) − ti(kti)

if τ ∈ [ti(kti), li(kli + 1))

. (5.47)

Since the legs do not all lift off and touch down at the same time, some legs may have
already finished the current cycle k and have started a new cycle k+ 1, while other
legs are still in cycle k, therefore we differentiate between the cycle counters for each
leg with the event counter variables kti and kli, where i indicates the index of the leg.
The interpretation of expression (5.47) is as follows: the function θref interpolates the
phase parameters θt and θl linearly in time τ . For a specific leg i, if it is in stance, then
the interval [ti(kti), li(kli + 1)) is used for interpolation of the phase, such that at time
τ = ti(kti) the reference phase is θt and at time τ = li(kli +1) the reference phase for leg i
is θl. If the leg is in swing, then the interpolation interval [li(kli), ti(kti)) is used instead.
Figure 5.5 illustrates a sample simulation where the reference phase is represented by the
dashed lines. For each leg, each graph ranges from −π to π and the phase “wraps around”
when crossing π, as illustrated by the vertical lines.

0 1 2 3 4 [s]

1

leg

disturbance

2

3

4

Figure 5.5: Experimental run on a quadruped: the dashed lines represent the

reference phase, ranging from (−π,π] (vertical lines represent the

phase wrapping around), the solid lines represent the actual phase

of each leg. In this experiment, leg 1 is prevented from touching

down, resulting in the phase of all other legs to be delayed.

Note that function θref(τ,S(τ)) is general, and can be used instead of a CPG type
generator, as in (5.1), resulting in a new discrete-event type of reference trajectory gen-
erator for the actuators of the robot:

qref(τ) = g(p,θref(τ,S(τ))). (5.48)

For a tripod gait {1,4,5} ≺ {2,3,6} with the parameters φs = θt +θl, (5.47) results in the
Buehler Clock equations (5.4)-(5.5). Thus, the switching max-plus method is a generaliza-

116 Modeling and Control of Switching Max-Plus-Linear Systems

tion of the Buehler Clock. We can now establish a comparison between the standard CPG
versus the switching max-plus methodology, illustrated in Table 5.1. CPGs use differential
equations to describe continuous dynamics whereas the proposed switching max-plus ap-
proach uses max-plus-linear equations to describe a discrete event system representation
of the dynamics. For CPGs the desired gait can be achieved by meticulously choosing the
appropriate phase offset parameters and two gains to get an attractive limit cycle that de-
termines the phase differences between the legs, for the switching max-plus approach the
gait is determined by an ordered set of numbers and three time parameters, resulting in a
max-plus-linear system matrix associated to the gait. The eigenvalue and eigenvector de-
termine the cycle time and timing between the groups of legs. For the max-plus approach
the convergence to the steady state behavior is guaranteed to occur in at most two cycles
after the last disturbance has occurred while remaining kinematic stance stable. This is
based on Lemma 5.8 in Section 5.3.3. For the CPG approach convergence depends on the
chosen gains and might not happen without causing instability. Stable gait transitions are
guaranteed for the switching max-plus approach thanks to the way the synchronization
is set up. For CPGs stable gait transitions can only be achieved by encoding subspaces
in the vector fields describing the phase behavior of the legs that must be avoided. To
implement the CPG approach in robots differential equations must be solved on-line us-
ing numerical algorithms. For the switching max-plus approach calculation of the event
times can be done with additions and maximizations and the event times must be used
to design piece-wise affine reference velocity signals using interpolation.

Table 5.1: Comparison between standard CPG and switching max-plus meth-

ods.

Property CPG Switching max-plus

Dynamics continuous discrete

System representation differential equation (5.1) max-plus linear system
(5.23)

Control parameteriza-
tion

set of phase offset parame-
ters and gains: wi,j , φi,j

ordered set of numbers ℓ1 ≺

ℓ2 ≺ ·· · ≺ ℓm and time pa-
rameters τf , τg, τ∆

Steady state limit cycle max-plus eigenvector

Cycle time depends on the gain max-plus eigenvalue

Convergence depends on the gain maximum 2 cycles

Transitions with con-
straint guarantees

obstacles encoded in vector
fields

switch state matrices

Implementation numerical differential equa-
tion solver

additions, maximizations,
linear interpolation

Chapter 5 – Legged locomotion 117

5.3 Max-plus eigenstructure of the system ma-
trix

Given a parameterization of a gait, it is fundamental to understand whether the system
x(k) = A⊗x(k−1) reaches a unique steady state behavior. In robotics this is the equiv-
alent to asking: “does the legged robot move as specified?” and “If one of the legs gets
blocked by an obstacle for a short time and therefore cannot move can the robot recover
from this?”. These questions are answered by analyzing the max-plus eigenstructure of
the system matrix: a unique eigenvalue means that the legs have a unique cycle time, and
a unique (up to scaling) eigenvector means that the legs always reach the same motion
pattern, independently of the initial condition or temporary disturbances. The results ob-
tained below use various analysis techniques available for max-plus linear systems. This
is necessary due to the intrinsic time structure associated with the problem. In Section
5.3.2 we show that for a fixed structure (i.e. a single Petri net) unique or non-unique
eigenvectors are found by changing the holding time parameters.

Consider the following assumption (which is always satisfied in practice since the leg
swing and stance times are always positive numbers):

Assumption 1 (A1) τg, τf , τ∆ > 0.

Furthermore let:

τδ = τf ⊗ τ∆ and τγ = τf ⊗ τg. (5.49)

Then the following lemma defines an eigenvalue and eigenvector for the system matrix A.

Lemma 5.3

If Assumption A1 is satisfied then

λ := τ⊗m
δ ⊕ τγ , (5.50)

where λ is a max-plus eigenvalue of the system matrix A (and Ā) defined by (5.36), and

v ∈ R2n
ε defined by

∀j ∈ {1, . . . ,m},∀q ∈ ℓj : [v]q := τf ⊗ τ⊗j−1
δ (5.51)

[v]q+n := τ⊗j−1
δ , (5.52)

where v is a max-plus eigenvector of A.

Proof: See Lopes et al. [68] 2

118 Modeling and Control of Switching Max-Plus-Linear Systems

Consider again the trotting gait for a quadruped Gtrot defined in (5.15). For this gait
m= 2, resulting in:

vtrot =




















τf

τ∆ ⊗ τ⊗2
f

τ∆ ⊗ τ⊗2
f

τf

0

τ∆ ⊗ τf

τ∆ ⊗ τf

0




















; λtrot = (τf ⊗ τ∆)⊗2 ⊕ τf ⊗ τg. (5.53)

Lemma 5.4

The system matrix A is irreducible.

Proof: See Lopes et al. [68]. 2

Corollary 5.5 The max-plus eigenvalue λ of A is given by (5.50) is unique.

The max-plus eigenvector v defined by (5.51)–(5.52) is not necessarily unique, given As-
sumption A1 alone. Since, to the author’s best knowledge, there exists no algebraic
method to prove uniqueness of a max-plus eigenvector in general, without having to de-
termine the critical graph first, we take advantage of the critical graph of A to further
investigate this property. If the critical graph of an irreducible max-plus system matrix
has a single strongly connected subgraph, then its max-plus eigenvector is unique up to
a max-plus scaling factor (see Theorem 3.101 in the work of Baccelli et al. [3],). We
proceed by computing the precedence graph of Ā.

5.3.1 Precedence graph of Ā

Since this graph can be quite large for a general Ā, it is more efficient to first group
“similar” nodes into a single node, i.e. apply a procedure called node reduction (Figure
5.6).

Next various subgraphs of the graph of Ā are shown to better illustrate its structure
(Figure 5.7). The total precedence graph of Ā is thus the combination of figures of the
form 5.6 and 5.7. The process of constructing the graph of Ā starts by grouping all nodes
of an event associated with a group of legs ℓi into a single node. This can be accomplished
since the incoming and outgoing arcs of event nodes from the same group of legs ℓi for
the most part connect to the same nodes. As an example, consider the first set of #ℓ1
rows of Ā as defined in expression (5.40):

tℓ1
(k) = τγ ⊗E1 ⊗ tℓ1

(k−1) ⊕ τδ ⊗11,m ⊗ tℓm(k−1) ⊕ (5.54)

τf ⊗E1 ⊗ lℓ1
(k−1).

The precedence graph for equation (5.54) consists of 3 ×#ℓ1 nodes, since it involves the
vectors tℓ1

, tℓm, and lℓ1
. The relation between tℓ1

(k) and tℓ1
(k−1) in this example results

Chapter 5 – Legged locomotion 119

·
·
·

·
·
·

···

·
·
·

···

·
·
·

···

·
·
·

·
·
·

· · ·

·
·
·

·
·
·

·
·
·

·

·
·

·
·
·

·
·
·

·
·
·

·

·
·

·
·
·

·
·
·

·
·
·

·

·
·

·
·
·

·
·
·

·
·
·

·

·
·

·
·
·

·
·
·

·
·
·

·

·
·

·
·
·

·
·
·

·
·
·

·

·
·

a1)

b1)

c1) c2)

c3) c4)

b2)

a2) a3) a4)

lℓp
lℓp

lℓp
lℓp

tℓp
tℓp

tℓp
tℓp

τf

τg

τf

τg

τf

τg

τf

τg

e

e

e e

τγ

τγ

τγτγ

tℓm

tℓq

tℓq

tℓm
tℓm

tℓq

lℓq

lℓq

lℓq

τA

τA

τA

τA

τA

τA

τA
τA

τA

τB

τB

τB

τB

τB

τB

τB
τB

τB

τa

τa

τa

τa

τa

τa

τa

τa
τa

τa

τb

τb

τb

τb

τb

τb

τb

τb
τb

τb

τc

τc

τc

τc

τc

τc

τc

τc
τc

τc

τd

τd

τd

τd

τd

τd

τd
τd

τd

τd

τd = τ
⊗(q−p)
δτc = τf ⊗ τ

⊗(q−p)
δ

q > pq > p

q > pq > p

τb = τg ⊗ τ
⊗(q−p)
δτa = τγ ⊗ τ

⊗(q−p)
δ

τB = τ∆ ⊗ τ
⊗(q−1)
δτA = τ

⊗q
δ

τ⊗m
δ

τ⊗m
δ

τ⊗m
δ τ⊗m

δ

τ⊗m
δ

τ⊗m
δτ⊗m

δ

τ⊗m
δ τ⊗m

δ

τ⊗m
δ

t[ℓm]1

t[ℓm]1

t[ℓm]2

t[ℓm]2

t[ℓm]i

t[ℓm]i

t[ℓm]1

t[ℓm]2

t[ℓm]i

t[ℓp]i

t[ℓp]i

t[ℓp]i

t[ℓp]1

t[ℓp]1t[ℓp]1

t[ℓp]2

t[ℓp]i

t[ℓp]1

t[ℓp]2

t[ℓp]2

t[ℓp]2

l[ℓp]1

l[ℓp]1l[ℓp]1

l[ℓp]2

l[ℓp]2

l[ℓp]2

l[ℓp]i

l[ℓp]1

l[ℓp]2

l[ℓp]i

l[ℓp]i

l[ℓp]i

l[ℓq]j

l[ℓq]j

l[ℓq]1

l[ℓq]1

l[ℓq]2

l[ℓq]j

l[ℓq]1

l[ℓq]2

l[ℓq]2
t[ℓq]2

t[ℓq]1

t[ℓq]j

t[ℓq]2

t[ℓq]1

t[ℓq]j

t[ℓq]2

t[ℓq]1

t[ℓq]j

Figure 5.6: Graph reductions. Touchdown and lift off events with indices

belonging to the same set ℓq can be grouped together since they

have the same number of output and input arcs with the same

weights.

120 Modeling and Control of Switching Max-Plus-Linear Systems

in #ℓ1 self-connected arcs in the tℓ1
events with weights τγ . Instead of expressing all

elements of tℓ1
as individual nodes with self-arcs, we reduce then to a single node with one

self-arc, as seen in Figure 5.6-a2. The dashed attribute used on the self-arc indicates that
for each node in the group only self-arcs exist, as expressed by the matrix E1. The relation
between tℓ1

(k) and tℓm(k− 1) is somewhat more involved, since it contains #ℓ1 × #ℓm
arcs, as expressed by the matrix 11,m. The resulting node reduction is illustrated in Figure
5.6-b1. The node reduction for the relation between tℓ1

and lℓ1
is illustrated in Figure

5.6-a4. Again we use dashed attributes on the arcs to represent the connecting matrix
E1. For all other relations with connecting matrices 1 we use solid arcs. We make an
exception in Figures 5.6-c1 to 5.6-c4 where different line attributes are used to distinguish
arcs from tℓp → tℓq , tℓp → lℓq , etc. The same line attributes are used in Figures 5.7-c1 and
5.7-c2. Note that multiple incoming arcs to a node are related via the ⊕ operation, e.g.
as in the example (5.54) the node tℓ1

has 3 incoming arcs, illustrated in Figure 5.7.

The following list summarizes the node reduction:

• Figure 5.6-a1 illustrates node reduction of the term τ⊗m
δ ⊗1m,m of the sub matrix

A22 from expression (5.41).

• Figure 5.6-a2 illustrates the node reduction of the block diagonal of the sub matrix
A11 and the τγ ⊗ Ēm term of A22.

• Figure 5.6-a3 illustrates the node reduction of the block diagonal of the sub matrix
[A⊤

33 A⊤
43]⊤.

• Figure 5.6-a4 illustrates the node reduction of the term τg ⊗Em of the sub matrix
A42 together with the block diagonals of matrices A31 and [A⊤

13 A⊤
23]⊤.

• Figures 5.6-b1 and 5.6-b2 illustrate the node reduction for the columns formed by
the sub matrices A12 and [A⊤

32 A⊤
42]⊤ respectively (not including the term τg ⊗Em

from matrix A42 already represented in Figure 5.6-a4).

• Figures 5.6-c1 to 5.6-c4 illustrate the node reduction of the off-diagonal elements of
the matrices τγ ⊗W , τf ⊗W , τg ⊗W , and W , from expression (5.39) respectively.

Given the node reduction one can now proceed to construct the precedence graph of Ā:

• Figure 5.7-a is the graph of the block diagonal of Ā together with the block diag-

onals of the sub matrices

[

A31 A32

A41 A42

]

and [A⊤
13 A⊤

23]T using the node reductions

presented in Figures 5.6-a1 to 5.6-a4.

• Figure 5.7-b is the graph of the columns formed by the sub matrices A12 and
[A⊤

32 A⊤
42]⊤ using node reductions presented in Figures 5.6-b1 and 5.6-b2.

• Figures 5.7-c1 and 5.7-c2 illustrate two subgraphs of the remaining columns of Ā.
Note that we only present the subgraphs of the first sets of #ℓ1 and #ℓ2 out of a total
of m−1 columns. These follow the same pattern. We use different attributes on the
arcs, such as dashed, thick solid, etc., to distinguish the different node reductions,
as presented in Figures 5.6-c1 to 5.6-c4.

Chapter 5 – Legged locomotion 121

τγ τγ τγ τγ τγ

τ
⊗m
δ

e eeee

τ∆ ⊗ τ
⊗(m−1)
δ

τ
⊗q
δ

τ
⊗2
δ

τ
⊗(m−1)
δ

τδ

τ∆ ⊗ τδ
τ∆ ⊗ τ

⊗(q−1)
δ

τ∆

τ∆ ⊗ τ
⊗(m−2)
δ

τ
⊗(m−1)
δ

τ
⊗(m−2)
δ

τγ ⊗ τ
⊗(m−1)
δ

τγ ⊗ τ
⊗(m−2)
δ

τγ ⊗ τδ

τδ

a)

b)

c1)

c2)

τγ ⊗ τ
⊗(q−1)
δ

τ
⊗(q−1)
δ

τ
⊗(m−2)
δ

τγ ⊗ τ
⊗(m−2)
δ

τ
⊗(q−2)
δ

τγ ⊗ τ
⊗(q−2)
δ

tℓ2tℓ1 tℓq
tℓm−1

tℓm

lℓm
lℓm−1

lℓ1 lℓ2 lℓq

tℓ2tℓ1 tℓq
tℓm−1

tℓm

lℓm
lℓm−1

lℓ1 lℓ2 lℓq

tℓ2tℓ1 tℓq
tℓm−1

tℓm

lℓm
lℓm−1

lℓ1 lℓ2 lℓq

tℓ2tℓ1 tℓq
tℓm−1

tℓm

lℓm
lℓm−1

lℓ1 lℓ2 lℓq

τfτgτfτgτfτg τfτg τfτg

τg ⊗ τ
⊗(m−1)
δ

τf ⊗ τ
⊗(m−1)
δ

τf ⊗ τ
⊗(q−1)
δ

τg ⊗ τ
⊗(q−1)
δ

τg ⊗ τ
⊗(m−2)
δ

τg ⊗ τ
⊗(m−2)
δ

τf ⊗ τ
⊗(m−2)
δ

τf ⊗ τ
⊗(m−2)
δ

τf ⊗ τ
⊗(q−2)
δ

τg ⊗ τ
⊗(q−2)
δ

τg ⊗ τδ

τf ⊗ τδ

Figure 5.7: Elements of the precedence graph of the system matrix A. The

total precedence graph of A is composed of all the arcs presented

in a) and b), together with the m− 1 remaining subgraphs that

follow the pattern of Figures c1 and c2.

122 Modeling and Control of Switching Max-Plus-Linear Systems

5.3.2 The critical graph of A

Before we look at the critical graph of A we first use a similarity transformation on A to
get Ā and then we derive the critical graph of Ā from the precedence graph of Ā. This
is done in the proof of Lemma 5.6. Recall that the critical graph Gc(A) of the matrix A
is the set of all critical circuits and that every circuit of the precedence graph G(A) with
an average weight that is equal to λmax is called a critical circuit. The critical graphs of
A and Ā are equivalent up to a label renaming. Therefore properties derived from the
critical graph of Ā are also valid for A.

The critical graph of Ā is given in Figure 5.8 for the three different possibilities of
the eigenvalue: λ= τγ = τ⊗m

δ , λ= τ⊗m
δ > τγ , and λ= τγ > τ⊗m

δ .

Consider the following assumption:

Assumption 2 (A2) τγ ≤ τ⊗m
δ .

Lemma 5.6

If assumption A2 is verified then the critical graph of Gc(A) (and Gc(Ā)) has one strongly

connected subgraph.

Proof: We consider three cases:

• Case 1: τγ = τ⊗m
δ = λ

• Case 2: τγ < τ⊗m
δ = λ

• Case 3: τ⊗m
δ < τγ = λ

For each of these cases the critical graph is derived from the precedence graph and it
is shown that for the first two cases (for which Assumption A2 holds) the critical graph
has a single strongly connected subgraph.

• Case 1: τγ = τ⊗m
δ = λ

In this situation the circuits presented in Figures 5.6-a1 and 5.6-a2 all belong to the
critical graph since their weights are τγ or τ⊗m

δ and thus both equal to the max-plus
eigenvalue λ. Note that any circuit of the type c1 of length l made from the nodes
of tℓm, illustrated in Figure 5.6-a1, has an average weight of

|c1|w
|c1|1

=

(

τ⊗m
δ

)⊗l

l
= τ⊗m

δ = λ, (5.55)

and as such also belongs to the critical graph. Any other circuit in the precedence
graph of Ā must pass through at least one node of tℓm, as illustrated in Figures
5.7-b, 5.7-c1, and 5.7-c2 (with the exception of the self-loops in Figure 5.6-a3 and
the circuits in Figure 5.6-a4 that we do not consider since their weights are e and
τγ/2, i.e., both less then λ). Additionally, arcs starting in nodes from a group tℓq

Chapter 5 – Legged locomotion 123

l
1

l
2

l
q

l
m−1 l

m

· · ·

· · ·

· · ·

· · ·

τγ τγ τγ τγ τγ

l
1

l
2

l
q

l
m−1 l

m

τγ
τγ τγ

τγ
τγ

τγ ⊗ τδ

· · ·

τγ ⊗ τ
⊗(m−2)
δ

τγ ⊗ τ
⊗(m−1)
δ

· · ·

τγ ⊗ τ
⊗(m−3)

δ

τγ ⊗ τ
⊗(m−2)
δ

· · ·

· · ·

τγ ⊗ τδ

τ
⊗m
δ

τδ

τ
⊗2
δ

···

τ
⊗(m−1)
δ

t
1

t
2

t
q

t
m−1

l
1

l
2

l
q

l
m−1 l

m

τ
⊗m
δ

a)

b)

c)

tℓ1 tℓm−1
tℓm

tℓq
tℓ2

tℓ1 tℓm−1
tℓm

tℓm

tℓq
tℓ2

Figure 5.8: Critical graphs of the system matrix Ā. a) Case 1: τγ = τ⊗m
δ = λ.

b) Case 2: τγ < τ⊗m
δ = λ. c) Case 3: τ⊗m

δ < τγ = λ.

124 Modeling and Control of Switching Max-Plus-Linear Systems

with q < m are only connected to nodes in tℓq+p
for p ≥ 0 (or lℓq+p

). This is again
illustrated in Figures 5.7-a, 5.7-c1, and 5.7-c2. Let t[ℓq]i denote the i-th element of
tℓq . Consider the circuit of type

c2 : t[ℓm]i → t[ℓq]j → t[ℓm]i , (5.56)

with q < m. The average weight is (with τγ = τ⊗m
δ)

|c2|w
|c2|1

=
τ⊗q

δ ⊗ τγ ⊗ τ
⊗(m−q)
δ

2
=
τ⊗m

δ ⊗ τγ

2
= λ. (5.57)

Circuit c2 is thus also in the critical graph. For the general circuit of the type

c3 : t[ℓm]i → t[ℓq1
]j1

→ t[ℓq2
]j2

→ ·· · → t[ℓql
]jl

︸ ︷︷ ︸

l nodes

→ t[ℓm]i , (5.58)

with q1 < q2 < · · ·< ql <m, the average weight is

|c3|w
|c3|1

=
τ⊗l

γ ⊗ τ⊗q1

δ ⊗ τ
⊗(q2−q1)
δ ⊗·· ·⊗ τ

⊗(m−ql)
δ

l+ 1
(5.59)

=
τ⊗l

γ ⊗ τ⊗m
δ

l+ 1
= λ. (5.60)

Hence, circuits of type c3 are also part of the critical graph.

However, any circuit that passes through any node in lℓq , for any q, will never be
in the critical graph. This is due to the fact that arcs within touchdown nodes of
different leg groups yield a higher weight:

t[ℓq]i → t[ℓp]j weight: τγ ⊗ τ
⊗(q−p)
∆ (5.61)

t[ℓq]i → l[ℓp]j weight: τg ⊗ τ
⊗(q−p)
∆ (5.62)

l[ℓq]i → t[ℓp]j weight: τf ⊗ τ
⊗(q−p)
∆ (5.63)

l[ℓq]i → l[ℓp]j weight: τ⊗(q−p)
∆ . (5.64)

As such, a path that connects a touchdown node to a lift off node “loses” τγ −τg = τf

from the maximum possible weight, a path from lift off to lift off nodes loses τγ ,
and a path from lift off nodes to touchdown nodes loses τg in weight. This can
also be observed in the structure of Ā, in equation (5.39), where the sub matrix
τf ⊗ (τg ⊗W ⊕V) overcomes the sub matrices τg ⊗W ⊕V , τf ⊗W , and W . Consider
the circuit of type c4:

c4 : t[ℓm]i → t[ℓp]j0
→ l[ℓp+q]jq

→ t[ℓm]i , (5.65)

then

|c4|w
|c4|1

=
τ⊗p

δ ⊗ (τg ⊗ τ⊗q
δ) ⊗ (τf ⊗ τ

⊗(m−(p+q))
δ)

3
(5.66)

=
τγ ⊗ τ⊗m

δ

3
< λ. (5.67)

Chapter 5 – Legged locomotion 125

Since all the nodes in the critical graph are connected (they are all touchdown
nodes) we conclude that for the case τγ = τ⊗m

δ = λ the critical graph of Ā has a
single strongly connected subgraph. Figure 5.8-a illustrates the complete critical
graph of Ā for this case.

• Case 2: τγ < τ⊗m
δ = λ

In this situation only circuits of the type c1 are part of the critical graph. Circuits
of the type c2 or c3 are not part of the critical graph. Figure 5.8-b illustrates the
resulting critical graph of Ā. Since all the nodes of tℓm are connected to each other
we conclude that for the case τγ < τ⊗m

δ = λ the critical graph of Ā has a single
strongly connected subgraph.

• Case 3: τ⊗m
δ < τγ = λ

In this situation the critical graph of Ā does not have a single strongly connected
subgraph. Figure 5.8-c illustrates this situation, which we document here without
proof.

2

This lemma leads to the following theorem about the uniqueness of the eigenvalue and
eigenvector:

Theorem 5.7 Given assumptions A1 and A2, the max-plus eigenvalue λ of the system

matrix A (and Ā), defined by equation (5.50), is unique, and the max-plus eigenvector

v of A (and Ā), defined by equations (5.51)–(5.52) is unique up to a max-plus scaling

factor.

Proof: According to Lemma 5.4 the matrix A is irreducible, and as such it has a
unique max-plus eigenvalue. According to Lemma 5.6 the critical graph of Gc(A) has a
single strongly connected subgraph, and as such its max-plus eigenvector is unique up to
a max-plus scaling factor (see Theorem 3.101 in the work of Baccelli et al. [3]). 2

5.3.3 Coupling time

Theorem 2.3 on page 17 describes an important property of max-plus-linear systems when
the system matrix A is irreducible: it guarantees the existence of an autonomous steady-
state regime that is achieved in a number of finite steps k0, called the coupling time.
Computing the coupling time is very important for the application of legged locomotion
since it provides the number of steps a robot needs to take to reach steady state after a
gait transition or a perturbation.

Lemma 5.8

Given assumptions A1, A2, the coupling time for the max-plus-linear system defined by

equation (5.23) is k0 = 2 with cyclicity c = 1.

Proof: See Lopes et al. [68]. 2

Next gait switching is discussed.

126 Modeling and Control of Switching Max-Plus-Linear Systems

5.4 Gait switching

We now address the problem of choosing gaits and their transition parameters when
changing rhythms. In Section 5.4.1 we discuss how to choose gaits to obtain the best
possible transitions given the models presented earlier. In Section 5.4.2 we introduce a
new scheme that results in an equal stance time for all legs during transitions. This result
is used in Section 5.4.3 to enable constant acceleration/deceleration in legged robots while
switching gaits.

5.4.1 Compatible gaits for switching

Let Gn, called the gait space, be the set of all gaits defined according to expression (5.14)
for an n-legged robot. Also, let An be the set of all system matrices for gaits generated
from (5.14) with equation (5.36):

An = {A(1), . . . ,A(n)}, (5.68)

One can write the switching max-plus linear system

x(k+ 1) = Aϑ(k) ⊗x(k), (5.69)

where ϑ(k) is a switching function whose value is determined by the supervisory controller
based on the desired gait. By construction, gait switching is kinematic stance stable, in
the sense that for two different gaits that swing at most qi and qj legs simultaneously,
we will have at most max(qi, qj) legs swinging during the transition between both. For
example during the transition between a walk and a trot on a quadruped robot, no
more than two legs can swing simultaneously (note that since we are not taking into
consideration the dynamics of the robot this measure of “stability” applies only to the
discrete-event supervisory controller). By looking at the definition of a gait in expression
(5.14) it is clear that the size of the gait space Gn is combinatorial in n (in fact #Gn = n!×

(2(n−1) −1), i.e. the number of permutations of n elements times the number of possible
set partitions, excluding the partition consisting of a set with n elements). However,
different representations for a gait as an ordered set of ordered sets can lead to the same
exact robot physical motion behavior, as in the following example:

G1 = {1,2} ≺ {3,4} ≺ {5,6} (5.70)

G2 = {2,1} ≺ {3,4} ≺ {5,6} (5.71)

G3 = {5,6} ≺ {1,2} ≺ {3,4} (5.72)

G4 = {4,3} ≺ {6,5} ≺ {2,1} (5.73)

. . . (5.74)

The difference lies in the fact that the transition between the above defined gaits and a
new different gait, say G5 = {3,4,6} ≺ {1,2,5}, will result in a different transient behavior,
as illustrated in the examples of Figures 5.9.a) and 5.9.b). This poses the question of how
to optimally switch gaits, in the sense of minimizing the variation of the leg stance time

Chapter 5 – Legged locomotion 127

during gait switching. For applications of climbing robots [42] it is fundamental that all
legs exert the same force on the attaching wall at all times, thus motivating constant
foot velocity (viewed from a frame attached to the robot). The same is valid for walking
robots, as different leg velocities can result in turning moments that can make the legged
platform unstable. For the n-legged robot with gaits represented by (5.14) suppose the
gait switching mechanism consists in moving a single leg from one group of legs ℓi to
a different group of legs ℓj with i, j ∈ {1, . . . ,}. By inspecting the max-plus eigenvector
(thus assuming steady-state behavior), one can observe that the moment that a leg in the
set ℓi lifts off the ground happens at the time instant

(τf ⊗ τ∆)⊗i, (5.75)

assuming the cycle starts at zero time. Analogously, for a leg in the set ℓj we get the
lift-off time to be:

(τf ⊗ τ∆)⊗j. (5.76)

Moving a leg from the set ℓi to the set ℓj results in a change of lift-off time of

(τf ⊗ τ∆)⊗(j−i). (5.77)

If j > i, then the switching leg will stay in stance for an extra (τf ⊗ τ∆)⊗(j−i) time units
during the transition to synchronize with the new leg group. This is always the case since
the time of flight τf is fixed. If j < i then all the legs in the original group of the switching
leg will have their lift-off times postponed by (τf ⊗τ∆)⊗(i−j) time units. Thus, the larger
the magnitude of j− i the larger the stance time variation during the transition will be.
For instance, the gait transition of

{1,2} ≺ {3,4} ≺ {5} ≺ {6} → {1} ≺ {2,3,4} ≺ {5} ≺ {6} (5.78)

has less stance time variation than the transition

{1,2} ≺ {3,4} ≺ {5} ≺ {6} → {1} ≺ {3,4} ≺ {2,5} ≺ {6}. (5.79)

The difference is in the position of leg 2, indicated in bold, after the transition. The same
is true when changing the number of leg groups, e.g. the gait transition of

{1,2,3} ≺ {4,5,6} → {1,2} ≺ {3,4} ≺ {5,6} (5.80)

has less stance time variation than the transition

{1,2,3} ≺ {4,5,6} → {5,6} ≺ {1,2} ≺ {3,4}. (5.81)

This provides a simple mechanism for choosing gaits without requiring to search the gait
space for all structurally equivalent gaits. Figure 5.9 illustrates the comparison of a non-
optimal gait switch (in Figure 5.9.a) with an optimal one (in Figure 5.9.b). To quantify
the quality of a gait transition, we introduce the following measure:

σ̄ =
1

τg

√
√
√
√

1

n

n∑

i=1

(τ̄gi − ¯̄τg)2, (5.82)

128 Modeling and Control of Switching Max-Plus-Linear Systems

where τ̄gi is the true stance time of leg i, and ¯̄τg is the average stance time for all legs,
both during the transition. In formula (5.82) we divide the unbiased standard deviation
of τ̄gi by the desired stance time τg to obtain a non-dimensional measure. If σ̄= 0 then the
transition maintains a constant stance time for all legs. Note that minimizing σ̄ results
in minimizing the variation of the foot velocities during stance (assuming a constant foot
velocity for the stance phase range).

5.4.2 Variable swing time, constant stance model

As shown before, by selecting the leg indices in the proper way when switching a gait,
one can achieve a better switching behavior. However, by construction, since the syn-
chronization happens at the lift-off time, during gait transitions some legs will inevitably
stay longer on the ground, which can cause undesired behavior of the robotic platform,
because the legs will move at different velocities causing some legs to slip, or the robot to
turn slightly. We now show that by manipulating the flight time of each leg independently
one can achieve a unique stance time for all legs under well-defined assumptions. Consider
the new model:

[

t(k)

l(k)

]

=

[

E R

P E

]

⊗

[

t(k)

l(k)

]

⊕

[

E E

τg ⊗E⊕Q E

]

⊗

[

t(k−1)

l(k−1)

]

, (5.83)

where the diagonal matrix R represents different swing times:

R =










τf1 ε · · · ε

ε τf2
...

. . .

ε τfn










. (5.84)

Following the definition (5.35) let

Ā(G,R,τg, τ∆) :=

[

E R

PG,τ∆
E

]∗

⊗

[

E E

τg ⊗E⊕QG,τ∆
E

]

, (5.85)

where the matrices PG,τ∆
and QG,τ∆

are constructed according to expressions (5.20) and
(5.21), respectively, for a gait G. Then, the system matrix of (5.36) is parameterized as:

Ā(G, τf ⊗E,τg, τ∆), (5.86)

and the resulting system matrix of (5.83) is parameterized by:

Ā(G,R,τg, τ∆). (5.87)

Let maxv : Rn → R and minv : Rn → R be operators on vectors that return the maximum
or the minimum element of a vector, respectively. Now consider two different gaits G1

and G2 with respective eigenvectors vG1
= [t⊤G1

l⊤G1
]⊤ and vG2

= [t⊤G2
l⊤G2

]⊤. During a
transition from gait G1 to the gait G2 the extra time each leg will stay in stance can be
computed by:

π = (lG2
− tG1

) −min
v

(lG2
− tG1

). (5.88)

Chapter 5 – Legged locomotion 129

A transition system matrix Ā(G1,R1, τg, τ∆) can be constructed such that for each leg an
element of the “extra time” vector π ∈ Rn

ε is subtracted from the flight time τf so that in
the next cycle, now using gait G2, will make the real stance time τ̄g the same for each leg.
Note that this is only possible if

τfG1
≥ max

v
(π), (5.89)

where τfG1
is the swing time parameter for gait G1. If that is not the case, then an

additional transition matrix, now using gait G2, can be constructed as Ā(G2,R2, τg, τ∆)

such that the time that cannot be subtracted from the transition matrix R1 is subtracted
from the matrix R2. The resulting transition algorithm is summarized as follows:

1. Given two gaits G1 and G2 compute π via (5.88).

2. If τfG1
≥ maxv(π) then compute the vector:

πt1 = [(τfG1
− [π]1) · · · (τfG1

− [π]n)]⊤, (5.90)

and the system matrix

Ā(G1,diag(πt1), τgG1
, τ∆G1

). (5.91)

where diag : Rn → R
n×n returns a matrix with the elements of a vector on the

leading diagonal. The transition sequence is obtained by the following sequence of
system matrices:

A(k−p) = Ā(G1, τfG1
⊗E,τgG1

, τ∆G1
) (5.92)

... (5.93)

A(k−1) = Ā(G1, τfG1
⊗E,τgG1

, τ∆G1
) (5.94)

A(k) = Ā(G1,diag(πt1), τgG1
, τ∆G1

) (5.95)

A(k+ 1) = Ā(G2, τfG2
⊗E,τgG2

, τ∆G2
) (5.96)

... (5.97)

A(k+p) = Ā(G2, τfG2
⊗E,τgG2

, τ∆G2
). (5.98)

3. If τfG1
<maxv(π) then create two transition matrices

Ā(G1,diag(πt1), τgG1
, τ∆G1

), (5.99)

and

Ā(G2,diag(πt2), τgG2
, τ∆G2

), (5.100)

where

[πt1]i = max(min([π]i, τfG1
), τf,min), (5.101)

130 Modeling and Control of Switching Max-Plus-Linear Systems

with τf,min > 0 the minimum leg swing time, and

[πt2]i = τfG2
− ([πt1]i − [π]i) −min

v
(πt1 −π). (5.102)

The transition sequence is obtained by the following sequence of system matrices:

A(k−p) = Ā(G1, τfG1
⊗E,τgG1

, τ∆G1
) (5.103)

... (5.104)

A(k−1) = Ā(G1, τfG1
⊗E,τgG1

, τ∆G1
) (5.105)

A(k) = Ā(G1,diag(πt1), τgG1
, τ∆G1

) (5.106)

A(k+ 1) = Ā(G2,diag(πt2), τgG2
, τ∆G2

) (5.107)

A(k+ 2) = Ā(G2, τfG2
⊗E,τgG2

, τ∆G2
) (5.108)

... (5.109)

A(k+p) = Ā(G2, τfG2
⊗E,τgG2

, τ∆G2
). (5.110)

5.4.3 Variable velocity

Variable velocity can be achieved by scaling the time τ . As presented earlier, the actuator
reference trajectories qref are generated by the following equation:

qref(τ) = g(p,θref(τ,S(τ))). (5.111)

By introducing a “time modulating” function α : R → R we obtain a new reference phase
generator:

qref(τ) = g(p,θref(α(τ),S(α(τ)))). (5.112)

A constant accelerating robot can be obtained by choosing α(τ) = aτ where a is the
desired acceleration. Taking into account the minimum time required for a leg to swing,
gait switching can be triggered automatically when due to the acceleration the minimum
flight time is reached (it is assumed that the gaits are specified such that Assumptions
A1 and A2 are satisfied, therefore gaits with less leg groups have a longer flight time for
a given ground time compared to gaits with more leg groups, so switching to a gait with
less leg groups when the minimum flight time is reached allows the robot to continue
accelerating).

5.5 Simulations

The robots Zebro and RQuad, which are morphologically identical to RHex [80], are
utilized for experimental validation and are illustrated in Figure 5.3. The physical robots
have a single motor per leg, and as such the dimensions of the vectors qref and θ match.

Chapter 5 – Legged locomotion 131

5.5.1 Simulation of the max-plus gait scheduler

In this subsection simulations of the max-plus gait scheduler when performing gait tran-
sitions and when accelerating are presented.

Figure 5.9.a) illustrates non-optimal gait switches for the hexapod robot Zebro. The
order of gaits is:

{1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6} → {5,2} ≺ {3,6} ≺ {1,4} →

{2,3,6} ≺ {1,4,5} → {1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6}.

The non-dimensional standard deviation σ̄ for transition 1 is (σ̄)1 = 0.57, for transition 2
is (σ̄)2 = 0.45, and for transition 3 is (σ̄)3 = 0.80.

Figure 5.9.b) illustrates optimal gait switches with fixed flight time τf for the hexapod
robot Zebro. The order of gaits is:

{1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6} → {1,4} ≺ {5,2} ≺ {3,6} →

{1,4,5} ≺ {2,3,6} → {1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6}.

The non-dimensional standard deviation for transition 1 is (σ̄)1 = 0.14, for transition 2 is
(σ̄)2 = 0.33, and for transition 3 is (σ̄)3 = 0.19. These deviations are clearly much lower
than those of the non-optimal gait switches.

Figure 5.9.c) illustrates an example transition with constant stance times τg and
different flight times τf for each leg during the transitions, highlighted by the green shades
of color. The order of gaits is the same as for Figure 5.9.b):

{1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6} → {1,4} ≺ {5,2} ≺ {3,6} →

{1,4,5} ≺ {2,3,6} → {1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6}.

In this case by adjusting the flight times the non-dimensional standard deviation is (σ̄)1 =

(σ̄)2 = (σ̄)3 = 0.

Figure 5.9.d) illustrates a hexapod robot that is constantly accelerating and per-
forming gait transitions with variable flight times τf . In this case there are only two gait
transitions:

{1} ≺ {4} ≺ {5} ≺ {2} ≺ {3} ≺ {6} → {1,4} ≺ {5,2} ≺ {3,6} → {1,4,5} ≺ {2,3,6}.

5.6 Summary

In this chapter an overview was given on current approaches for the modeling of locomo-
tion patterns for legged locomotion namely central pattern generators and Buehler clocks.
The main drawbacks of these approaches are the limited knowledge on the transitional be-
havior during gait switches and ensuring stable gait switches. Therefore a generalization
of the Buehler clock approach was proposed, where the each foot’s interaction with the
ground is modeled via switching max-plus-linear systems. The advantage of the switch-
ing max-plus-linear description is that the techniques of max-plus algebra can be used to
analyze the behavior of the gaits and the transitional behavior during gait switches.

132 Modeling and Control of Switching Max-Plus-Linear Systems

5 10 15 20 s

5 10 15 20 s

5 10 15 20 s

5 10 15 20 s

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

a) non-optimal gait switching

b) optimal gait switching

c) gait switching with constant stance time

d) gait switching with constant acceleration

Figure 5.9: Various real walking experiments executed using the Zebro robot.

The color bars represent legs in stance and the transparent areas

represent leg swing. Transition steps are indicated by the green

shades of color outlines. Sub-figure a) non-optimal gait switches.

Sub-figure b) optimal gait transitions with fixed τf . Sub-figure c)

optimal gait switch with transitions with variable τf . Sub-figure

d) gait transitions with constant acceleration.

Chapter 5 – Legged locomotion 133

For the switching max-plus linear systems describing the gait reference generator im-
portant structural properties of the max-plus system matrix are obtained in closed-form.
On the graph side, the node-reduction procedure has allowed for a compact graphical
representation of the system matrix describing the gait for an arbitrary number of legs
and leg groups. This was achieved by grouping all nodes per leg group into a touchdown
and liftoff node and by making use of repeating patterns in the graph. We have shown
that the eigenvector is unique (up to a scaling factor) if the design parameters for the gaits
are chosen such that two assumptions are met. The uniqueness of the eigenvector was
proven by showing that the critical graph of the system matrix consists of one strongly
connected subgraph.

With the steady state behavior uniquely defined for all gaits we were able to determine
optimal gait switches. Furthermore a method was developed that manipulated the flight
times of the legs during gait switches to ensure the ground time of all legs is the same
and to speed up the gait switch.

Finally a method was developed to allow the robot to accelerate (or decelerate) at a
constant pace by adjusting the timing function of the robot.

In the future we will research instant gait transitions (without waiting for a cycle
to finish), and the modeling of more general gaits, including those with an aerial phase.
Another topic of future research should be the automatic switching of gaits and adjustment
of the gait parameters based on the current environmental circumstances.

134 Modeling and Control of Switching Max-Plus-Linear Systems

Chapter 6

Conclusions and recommendations

6.1 Conclusions

The main contributions in this thesis can be summarized as follows:

• A switching max-plus-linear model of the railway traffic that can be used for network-
wide on-line railway traffic management has been presented in this thesis. The
modeling of the railway traffic was extended compared to models in the literature
by extending the control actions to allow the trains to switch tracks when there are
multiple tracks between stations. Furthermore a new max-plus matrix formulation
is introduced. Finally the modeling of the railway traffic is extended with extra
constraints for freight trains.

• With the use of max-plus algebraic theories and the newly introduced matrix for-
mulation the implicit switching max-plus linear model of the railway traffic network
has been converted into its explicit form. A reduction method was developed to
reduce the size and complexity of the explicit model, resulting in a decrease in the
computation time needed to solve the rescheduling problem using the explicit model
compared to the implicit model. For a model consisting of the largest part of the
Dutch railway network the average computation time of a single step of the model
predictive control problem was reduced by a factor 5.44 for a one-hour prediction
horizon when trying to minimize the sum of delays and by a factor 10 when trying
to minimize the sum of arrival delays. For a two-hour prediction horizon the av-
erage computation time did not decrease for the sum of delays, but the maximum
computation time was 6.15 times lower. For the sum of arrival delays the average
computation was reduced by a factor 2.55. The proposed conversion to the explicit
model and subsequent reduction of the model clearly reduces the time needed to
solve the dispatching problem using that model, and shows the advantage of the ex-
plicit model when trying to minimize a subset of the delays such as only the arrival
delays. For larger models and larger prediction horizons the improvement in the
computation time will likely be even lower. The conversion to the explicit model
and the subsequent reduction is therefore more appropriate for smaller models.

135

136 Modeling and Control of Switching Max-Plus-Linear Systems

• Several distributed model predictive (DMPC) control methods have been developed
in this thesis and extensively tested in various case studies using a model of the
complete Dutch railway network for various lengths of the prediction horizon.

In the first case study a model of the Dutch railway network containing all Ne-
derlandse Spoorwegen trains as described in the timetable of 2011 was used. The
network was partitioned into four parts for the DMPC approaches. A prediction
horizon of 60 minutes was used and the approaches were compared in terms of com-
putation time and delay reduction for a single time-instant for 1000 scenarios. The
result was that DMPC method 4 was the best by finding solutions that on average
only had 1.27% more delays than the centralized MPC approach, while the compu-
tation time was much lower than for the centralized approach and among the lowest
for the DMPC approaches.

In the second case study the centralized problem was partitioned into 2, 3, 4, 6, and
8 parts for the DMPC approaches and tested for prediction horizons of 30, 45, 60,
and 75 minutes. Instead of comparing the performance of a single time instant for
multiple scenarios, now the performance was compared for a three hour window,
where the controller was in a closed loop, such that the control actions each time
instant are implemented and the consequences of those control actions affect the
current and future time instants. Therefore, each minute a new optimization had
to be solved and implemented. The total delay in this three hour was compared
for all four approaches, for all five partitions, and four prediction horizon lengths,
for 100 scenarios. In the end the DMPC methods 1 and 4 performed comparable
in both computation time and delay reduction and when considering limits on the
maximum computation time outperformed the centralized MPC approach. The
benefit of increasing the prediction horizon on the delay reduction lessens as the
prediction horizon becomes larger, while the computation time grows exponentially.
Based on the case studies we performed it seems that a prediction horizon with
length between 60 and 75 minutes gives the best delay reduction compared to the
computation time. There are several possible explanations for the lower increase in
the delay reduction for increasing prediction horizons. First of all the predictions
further ahead in the future are less accurate and more likely to change when new
information becomes available in the future. A second explanation could be that
due to the buffer times in dwell and running times, the delays are absorbed and for
longer prediction horizons more delays will have been absorbed at the end of the
horizon and for smaller delays the controller is less likely to take control actions.

• In this thesis the steady state cyclic behavior of the max-plus-linear systems describ-
ing the gaits, and the transition to the steady state cyclic behavior, are analyzed.
We have proven that, given mild conditions, the eigenvector is unique (up to a scal-
ing factor). This was done by showing that the critical graph of the system matrix
consists of one strongly connected subgraph. In order to show this we had to sim-
plify the critical graph. To do that we proposed a node-reduction procedure that
has allowed for a compact graphical representation of the system matrix describ-
ing the gait for an arbitrary number of legs and leg groups. This was achieved by

Chapter 6 – Conclusions and recommendations 137

grouping all nodes per leg group into a touchdown and liftoff node and by making
use of repeating patterns in the graph. The graph of the system matrix was used
to determine that, if the design parameters for the gaits are chosen such that two
assumptions are met, the critical graph consists of one strongly connected subgraph
which is equivalent to proving the uniqueness of the max-plus eigenvector.

• With the steady state behavior uniquely defined for all gaits we were able to deter-
mine gait switches that minimized the variation in ground time between the legs.
Furthermore a method was developed that manipulated the flight times of the legs
during gait switches to ensure the ground time of all legs is the same and to speed
up the gait switch.

• Finally a method was developed to allow the robot to accelerate (or decelerate) at
a constant pace by adjusting the timing function of the robot.

6.2 Recommendations

In this section recommendations for future research are presented. First we will discuss
some of the open problems in railway traffic management, after that we will propose some
research directions for legged locomotion and finally we will give some general recommen-
dations for future research.

6.2.1 Railway traffic management

In this thesis we presented a framework for on-line railway traffic management using a
switching max-plus-linear model of the railway traffic and (distributed) model predictive
control to determine a new schedule for the railway traffic in the case of delays. As a
cost function for the criterion the sum of (arrival) delays was used. This cost function
is based on the event times of the trains and does not consider the passengers in the
trains. Furthermore we assume there are no major disruptions in the network such as
blocked tracks, or broken-down trains. Railway traffic management includes many more
facets than just the schedule of departures and arrivals of the trains. Other facets are
the personnel schedules and the rolling stock schedule. To find a complete solution to the
problem of railway traffic management all of these open problems need to be tackled.

• Explicit model and reduction method
Currently the conversion of the implicit model to the explicit model, and the ap-
plication of the reduction method, is done off-line and for larger models can take
several minutes to complete. Furthermore the reduction method is based on a lim-
itation of the control actions such that the solutions found are only optimal if the
maximum deviation from the nominal timetable is limited. But if the conversion
from the implicit to the explicit model, and the reduction method, could be sped up
such that it can be applied on-line the reduction method can be changed such that
the limitation of the control actions is based on a maximum deviation from the last

138 Modeling and Control of Switching Max-Plus-Linear Systems

known solution. By making this change the solutions found with the model pre-
dictive controller using the reduced explicit model are optimal for larger deviations
from the nominal timetable without increasing the problem complexity, as long as
the change in situation in the network between time instants is limited.

• Explicit model and DMPC
From the case study it is clear that the improvement in computation time from
using the reduced explicit model for the model predictive controller is especially
effective for smaller problems. Since we want to use global control on large networks
with prediction horizons around 60 minutes the problem size is relatively large and
therefore using the reduced explicit model does not yield much better computation
times. With the DMPC methods we proposed the network is split up into smaller
sub-networks. A future direction for research would be to combine the DMPC
methods with the conversion and reduction from the implicit to the reduced explicit
model.

• The effect of buffer times and delay scenarios on the delay reduction
Based on the case studies we performed we concluded that a prediction horizon
with length between 60 and 75 minutes gives the best delay reduction compared to
the computation time. But the scenarios we considered all had a similar amount of
delays and we only tested for one network with a fixed amount of buffer time. It
is possible that for scenarios with more (and larger) delays and networks with less
buffer time increasing the prediction horizon has a larger effect on the delay reduc-
tion. By testing the (D)MPC methods in case studies with scenarios with different
amounts of delay and for networks with varying buffer times more general conclu-
sions on the length of the prediction horizon can be drawn and recommendations
for a large class of railway networks can be given.

• Coordination and integration of local controllers
The coordination and integration of local controllers in the framework for railway
traffic management has not been considered in this thesis, but it is an important
part of the framework. Especially the feedback from the local controllers, when a
solution of the global controller is not feasible, is crucial. What information must
be fed back to the global controller? Are updated process times enough? Or can
the local controllers propose new headway constraints, that may be needed when
they reroute trains.

• Real-time monitoring
Another part of the framework is real-time monitoring of the trains and the pre-
diction of future process times. Research on this was done by Pavle Kecman [53],
but before the control methods proposed in this thesis and the monitoring and pre-
diction methods in his thesis can be combined the data from his monitoring and
prediction methods needs to be aggregated to the macroscopic level used in our
model predictive controller. Furthermore the value for the time step in the receding
horizon must be chosen based on the time needed to gather and process the data,

Chapter 6 – Conclusions and recommendations 139

compute the new schedule, the time needed to implement the solution, and the time
needed to reiterate if the solution is found to be infeasible by the local controllers.

• Passenger delays
Most research on railway traffic management has mainly tried to minimize train
delays, but the real goal should be to minimize passenger delays. Therefore we rec-
ommend to research passenger behavior and make use of the passenger information
that is currently already being gathered by railway operators using on-line check-in
systems, such as the OV-chipkaart in The Netherlands, to predict the passenger
flows through the network and to use this information. By determining how many
passengers board and alight of each train at each station, the cost function of the op-
timization can be adjusted such that the weight on each arrival time is proportional
to the number of passengers alighting from that train at that station. Weights can
also be put on the variables determining whether or not a connection is maintained,
with a weight proportional to the number of people missing the connection and the
extra delay they incur because of that.

• Major disturbances and integration with rolling stock and personnel schedules
Our research on railway traffic management and most research in literature has
focused on minor disturbances and how to deal with those. So far very little research
has been on how to handle major disruptions such as blocked tracks, power outages
resulting in large parts of the network being inaccessible, or reduced velocity of all
trains due to sudden (extreme) weather changes, which require major changes to the
timetable and possibly implementing emergency timetables. Emergency timetables
are usually available, but the hardest part may be how to get from the current
situation to the emergency timetable and once the disruptions are gone how to
effectively return to the normal timetable. This will require an integration of rolling
stock, personnel, and timetable schedules and methods to adjust all of them at
the same time. A good first step would be to extend the current methods for
railway traffic management such that they can quickly determine a new emergency
schedule and a way to transition to that schedule. This will require extensions of the
current approaches such that they can short turn, reroute trains through the entire
network, cancel trains, and introduce new trains. A way to integrate the rolling
stock, personnel schedules, and timetable schedules would be to use a hierarchical
or multi-level control scheme, where the new timetable is determined first, then for
that schedule the rolling stock problem is solved, if it is infeasible extra constraints
are added to the rescheduling problem and a new timetable is determined, then
the process is repeated. Once a feasible solution has been found the personnel
scheduling problem should be solved and if that cannot be solved with the new
timetable, constraints are added to the railway traffic rescheduling problem and the
whole process is repeated again.

• Real world application
Future research should also be on the realization of automated railway traffic man-
agement. A great deal of research has already been published on how these systems

140 Modeling and Control of Switching Max-Plus-Linear Systems

work in theory, but very few are ever implemented or even tested. The models need
to be verified and the control algorithms tested. This will require cooperation with
the railway operators and railway managers. Interfaces must be built between the
real world and the computer systems, the models need to be verified and if they do
not suffice, they need to be adjusted.

6.2.2 Legged locomotion

The second subject of this thesis was the modeling and control of the locomotion patterns
of legged robots. An approach based on switching max-plus-linear systems was proposed,
where each gait is described by a max-plus-linear system and switching between gaits can
be done by changing the system matrices of the max-plus-linear system. The class of gaits
that were considered were limited to gaits without an aerial phase, and the moment of
gait switching was limited to the start/end of a cycle. These limitations should be tackled
in future research:

• Gaits with aerial phases
For legged locomotion a possible subject for future research would be to consider
gaits with aerial phases and possibly other more general gaits. Aerial phases are
already theoretically possible in the framework presented in this paper. By setting
τ∆< 0 aerial phases can be achieved, but what kind of effects this will have on gait
transitions and steady state behavior still has to be determined.

• Gait switching at any given time
Currently the gait transitions occur after a full cycle in the max-plus gait scheduler
has been completed, but to be able to start switching gaits at any given moment
the research should be extended to include gait switches during cycles. A possible
way to do this may be to redefine the previous cycle, at the moment of transition,
such that the previous cycle consists of the most recent touchdown and lift-off times
of each of the legs. Then the proposed method of gait switches in this thesis can be
used to perform the gait switch at any given time.

• Energy efficient locomotion
For a legged robot to be as mobile as possible it should have an internal power supply.
Such an internal power supply has a limited capacity, therefore it is important that
the robot uses its energy efficiently. With that in mind a possible subject for future
research would be to determine the most energy efficient gaits and gait parameters
for different velocities.

6.2.3 Additional research recommendations

Finally some general recommendations for future research are given:

• Multi-modal public transportation
When using the public transportation passengers often transfer from one means of
transport to the other, e.g. from the bus to the train, or from tram to subway.

Chapter 6 – Conclusions and recommendations 141

In order to provide the best service for passengers, a multi-modal model including
all types of public transport should be developed such that it can take all of these
transfers between different means of transportation into account. A first step can be
to set up communication to notify the operators of the other modes of transportation
when there are delays and to include constraints in each of the separate scheduling
problems to ensure transfers to the other modes of public transportation. Canceling
these transfers should be possible, but only if canceling them results in a large
reduction of the total (passenger) delays.

• Baggage handling systems
Behind the scenes on airports there are major transportation systems that move
the luggage from check-in to the airport apron and from the apron to the baggage
claim area. These baggage handling systems can be described in a similar fashion as
railway systems, where the events are the arrivals of the different pieces of luggage
at specific points in the network and discrete choices have to be made about the
route the luggage takes. Since the baggage handling systems can be described
as a discrete-event system similar methods as the model predictive control and
distributed model predictive control methods in this thesis can be used to optimize
the operation of this system. Instead of minimizing the delay in the network the
goal could be maximizing the throughput of the network, or minimize the sum of
total travel time, or minimize the maximum travel time.

142 Modeling and Control of Switching Max-Plus-Linear Systems

Appendix A

Train lines and their frequencies

The train lines and their frequencies are shown in Table A.1. Each line is in both directions
and the frequency is per direction.

Table A.1: Train lines and their frequencies for the 2011 timetable of the

Dutch Network. InterCity (IC) trains are interregional trains and

Sprinters (SP) are local trains.

Train line Train type Frequency

Alkmaar - Maastricht CS IC every 30 minutes
Arnhem - Ede-Wageningen SP every 60 minutes
Arnhem - Zutphen SP every 30 minutes
Amsterdam CS - Almere Oostvaarders SP every 30 minutes
Amsterdam CS - Amersfoort SP every 30 minutes
Amsterdam CS - Breda SP every 30 minutes
Amsterdam CS - Den Haag CS IC every 30 minutes
Amsterdam CS - Dordrecht IC every 60 minutes
Amsterdam CS - Haarlem SP every 30 minutes
Amsterdam CS - Hoofddorp SP every 30 minutes
Amsterdam CS - Lelystad Centrum IC every 30 minutes
Amsterdam CS - Rotterdam CS IC every 60 minutes
Amsterdam CS - Roosendaal IC every 60 minutes
Amsterdam CS - Uitgeest (Haarlem) SP every 30 minutes
Amsterdam CS - Uitgeest (Zaandam) SP every 30 minutes
Amsterdam CS - Vlissingen IC every 60 minutes
Apeldoorn - Enschede SP every 30 minutes
Breukelen - Rhenen SP every 30 minutes
Den Haag CS - Breda SP every 30 minutes
Den Haag CS - Enschede IC every 60 minutes
Den Haag CS - Groningen IC every 60 minutes
Den Haag CS - Gouda Goverwelle SP every 30 minutes
Den Haag CS - Haarlem SP every 30 minutes

Continued on next page

143

144

Table A.1 – continued from previous page

Train line Train type Frequency

Den Haag CS - Hoorn SP every 30 minutes
Den Haag CS - Lelystad Centrum IC every 30 minutes
Den Haag CS - Lelystad Centrum SP every 30 minutes
Den Haag CS - Utrecht CS IC every 30 minutes
Den Haag CS - Utrecht CS SP every 30 minutes
Den Haag CS - Venlo IC every 30 minutes
Den Haag CS - Roosendaal SP every 30 minutes
Den Helder - Nijmegen IC every 30 minutes
Enkhuizen - Amersfoort IC every 30 minutes
Eindhoven - Weert SP every 30 minutes
Eindhoven - Tilburg SP every 30 minutes
Groningen - Zwolle IC every 60 minutes
’s Hertogenbosch - Nijmegen SP every 30 minutes
’s Hertogenbosch - Deurne SP every 30 minutes
Hoorn - Hoofddorp SP every 30 minutes
Roermond - Maastricht Randwyck SP every 30 minutes
Roosendaal - Vlissingen IC every 60 minutes
Roosendaal - Zwolle SP every 30 minutes
Rotterdam CS - Amersfoort IC every 30 minutes
Rotterdam CS - Deventer IC every 60 minutes
Rotterdam CS - Leeuwarden IC every 60 minutes
Rotterdam CS - Uitgeest SP every 30 minutes
Schiphol - Groningen IC every 60 minutes
Schiphol - Eindhoven IC every 30 minutes
Schiphol - Enschede IC every 60 minutes
Schiphol - Leeuwarden IC every 60 minutes
Schiphol - Nijmegen IC every 30 minutes
Sittard - Heerlen IC every 30 minutes
Sittard - Heerlen SP every 30 minutes
Utrecht CS - Almere Centrum IC every 30 minutes
Utrecht CS - Breda SP every 30 minutes
Utrecht CS - Breukelen SP every 30 minutes
Utrecht CS - Hoofddorp SP every 30 minutes
Utrecht CS - Tiel SP every 30 minutes
Utrecht CS - Zwolle SP every 30 minutes

Bibliography

[1] S. Aoi, T. Yamashita, A. Ichikawa, and K. Tsuchiya. Hysteresis in gait transition
induced by changing waist joint stiffness of a quadruped robot driven by nonlinear
oscillators with phase resetting. In Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 1915–1920, Taipei, Taiwan,
2010.

[2] Y. Asakura, T. Iryo, Y. Nakajima, and T. Kusakabe. Estimation of behavioural
change of railway passengers using smart card data. Public Transport, 4(1):1–16,
2012.

[3] F. Baccelli, G. Cohen, G. J. O. Olsder, and J.-P. Quadrat. Synchronization and

Linearity: An Algebra for Discrete Event Systems. Wiley, New York, 1992.

[4] N. Bes̆inović, E. Quaglietta, and R. M. P. Goverde. A simulation-based optimization
approach for the calibration of dynamic train speed profiles. Journal of Rail Transport

Planning & Management, 3(4):126–136, 2013.

[5] J. G. Braker. Max-algebra modelling and analysis of time-dependent transportation
networks. In Proceedings of the 1st European Control Conference, pages 1831–1836,
Grenoble, France, July 1991.

[6] J. G. Braker. An extended algorithm for performance evaluation of timed event
graphs. In Proceedings of the 2nd European Control Conference, pages 524–529,
Groningen, The Netherlands, June 1993.

[7] V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wage-
naar. An overview of recovery models and algorithms for real-time railway reschedul-
ing. Transportation Research Part B: Methodological, 63:15–37, 2014.

[8] G. Caimi, M. Fuchsberger, M. Laumanns, and M. Lüthi. A model predictive control
approach for discrete-time rescheduling in complex central railway station areas.
Computers and Operations Research, 39(11):2578–2593, 2012.

[9] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar. Distributed model predictive
control. Control Systems, IEEE, 22(1):44–52, Feb 2002.

[10] F. Corman. Real-time Railway Traffic Management: dispatching in complex, large

and busy railway networks. PhD thesis, Delft University of Technology, TRAIL Thesis
Series T2010/14, Delft, The Netherlands, 2010.

145

146 Bibliography

[11] F. Corman and L. Meng. A review of online dynamic models and algorithms for
railway traffic management. Intelligent Transportation Systems, IEEE Transactions

on, 16(3):1274–1284, June 2015.

[12] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. A tabu search algorithm
for rerouting trains during rail operations. Transportation Research Part B: Method-

ological, 44(1):175–192, 2010.

[13] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Centralized versus dis-
tributed systems to reschedule trains in two dispatching areas. Public Transport, 2
(3):219–247, 2010.

[14] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Optimal inter-area coor-
dination of train rescheduling decisions. Transportation Research Part E: Logistics

and Transportation Review, 48(1):71–88, 2012.

[15] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Bi-objective conflict detec-
tion and resolution in railway traffic management. Transportation Research Part C:

Emerging Technologies, 20(1):79–94, 2012.

[16] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Dispatching and coordina-
tion in multi-area railway traffic management. Computers & Operations Research,
44(1):146–160, 2014.

[17] R. A. Cuninghame-Green. Process synchronisation in a steelworks – A problem
of feasibility. In J. Banbury and J. Maitland, editors, Proceedings of the 2nd In-

ternational Conference on Operations Research, pages 323–328. London: English
University Press, 1960.

[18] R. A. Cuninghame-Green. Describing industrial processes with interference and ap-
proximating their steady-state behaviour. Operational Research Society, 13(1):95–
100, 1962.

[19] R. A. Cuninghame-Green. Minimax Algebra, volume 166 of Lecture Notes in Eco-

nomics and Mathematical Systems. Springer-Verlag, Berlin, Germany, 1979.

[20] C. R. Cutler and B. L. Ramaker. Dynamic matrix control – a computer control
algorithm. In Proceedings of the Joint Automatic Control Conference, San Francisco,
California, 1980.

[21] A. D’Ariano. Improving Real-Time Train Dispatching: Models, Algorithms and Ap-

plications. PhD thesis, Delft University of Technology, TRAIL Thesis Series T2008/6,
Delft, The Netherlands, 2008.

[22] A. D’Ariano and M. Pranzo. An advanced real-time train dispatching system for
minimizing the propagation of delays in a dispatching area under severe disturbances.
Networks and Spatial Economics, 9(1):63–84, 2009.

Bibliography 147

[23] A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research,
183(2):643–657, 2007.

[24] S. Daun-Gruhn and T. I. Toth. An inter-segmental network model and its use in
elucidating gait-switches in the stick insect. Journal of Computational Neuroscience,
31(1):43–60, 2011.

[25] B. De Schutter and T. van den Boom. Model predictive control for max-plus-linear
discrete event systems. Automatica, 37(7):1049–1056, 2001.

[26] B. De Schutter and T. van den Boom. MPC for discrete-event systems with soft
and hard synchronisation constraints. International Journal of Control, 76(1):82–94,
Jan. 2003.

[27] R. de Vries, B. De Schutter, and B. De Moor. On max-algebraic models for trans-
portation networks. In Proceedings of the 4th International Workshop on Discrete

Event Systems (WODES’98), pages 457–462, Cagliari, Italy, Aug. 1998.

[28] P. de Waal, A. Overkamp, and J. H. van Schuppen. Control of railway traffic on a
single line. In Proceedings of the European Control Conference (ECC’97), Brussels,
Belgium, paper 230, July 1997.

[29] W. Dunbar. Distributed receding horizon control of dynamically coupled nonlinear
systems. IEEE Transactions on Automatic Control, 52(7):1249–1263, July 2007.

[30] W. Fang, S. Yang, and X. Yao. A survey on problem models and solution approaches
to rescheduling in railway networks. Intelligent Transportation Systems, IEEE Trans-

actions on, pages 1–20, 2015.

[31] M. Farina and R. Scattolini. Distributed predictive control: A non-cooperative algo-
rithm with neighbor-to-neighbor communication for linear systems. Automatica, 48
(6):1088–1096, 2012.

[32] C. E. Garcí, D. M. Prett, and M. Morari. Model predictive control: Theory and
practice - a survey. Automatica, 25(3):335–348, 1989.

[33] B. Giffler. Scheduling general production systems using schedule algebra. Naval

Research Logistics Quarterly, 10(3):237–255, Sept. 1963.

[34] B. Giffler. Schedule algebra: A progress report. Naval Research Logistics Quarterly,
15(2):255–280, June 1968.

[35] GLPK. Gnu Linear Programming Kit, 2014. URL http://www.gnu.org/software/
glpk/.

[36] A. Goswami and V. Kallem. Rate of change of angular momentum and balance main-
tenance of biped robots. In Proceedings of the 2004 IEEE International Conference

on Robotics and Automation, pages 3785–3790, April 2004.

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

148 Bibliography

[37] R. M. P. Goverde. Punctuality of Railway Operations and Timetable Stability Anal-

ysis. PhD thesis, Delft University of Technology, TRAIL Thesis Series T2005/10,
Delft, The Netherlands, 2005.

[38] R. M. P. Goverde. Railway timetable stability analysis using max-plus system theory.
Transportation Research Part B: Methodological, 41(2):179–201, 2007.

[39] R. M. P. Goverde. A delay propagation algorithm for large-scale railway traffic
networks. Transportation Research Part C: Emerging Technologies, 18(3):269–287,
2010.

[40] Gurobi. Gurobi optimizer reference manual, 2014. URL http://www.gurobi.com.

[41] G. C. Haynes and A. A. Rizzi. Gaits and gait transitions for legged robots. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages
1117–1122, Orlando, Florida, USA, 2006.

[42] G. C. Haynes and A. A. Rizzi. Gait regulation and feedback on a robotic climbing
hexapod. In Robotics: Science and Systems, Philadelphia, USA, 2006.

[43] G. C. Haynes, F. R. Cohen, and D. E. Koditschek. Gait transitions for quasi-static
hexapedal locomotion on level ground. In Proceedings of the International Symposium

of Robotics Research, pages 105–121, Lucerne, Switzerland, 2009.

[44] B. Heidergott and R. Vries. Towards a (max,+) control theory for public transporta-
tion networks. Discrete Event Dynamic Systems, 11(4):371–398, 2001.

[45] B. Heidergott, G. J. Olsder, and J. van der Woude. Max Plus at Work: Model-

ing and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its

Applications. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton, NJ, 2006.

[46] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of honda hu-
manoid robot. In Proceedings of the 1998 IEEE International Conference on Robotics

and Automation, volume 2, pages 1321–1326, May 1998.

[47] P. Holmes, R. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged
locomotion: models, analyses, and challenges. SIAM Review, 48(2):207–304, 2006.

[48] A. Ijspeert. Central pattern generators for locomotion control in animals and robots:
A review. Neural Networks, 21(4):642–653, 2008.

[49] S. Inagaki, H. Yuasa, and T. Arai. CPG model for autonomous decentralized multi-
legged robot system - generation and transition of oscillation patterns and dynamics
of oscillators. Robotics and Autonomous Systems, 44(3–4):171–179, 2003.

[50] S. Inagaki, H. Yuasa, T. Suzuki, and T. Arai. Wave CPG model for autonomous de-
centralized multi-legged robot: Gait generation and walking speed control. Robotics

and Autonomous Systems, 54(2):118–126, 2006.

http://www.gurobi.com

Bibliography 149

[51] S. Kanai, K. Shiina, S. Harada, and N. Tomii. An optimal delay management algo-
rithm from passengers’ viewpoints considering the whole railway network. Journal

of Rail Transport Planning & Management, 1(1):25–37, 2011. Robust Modelling of
Capacity, Delays and Rescheduling in Regional Networks.

[52] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi,
and T. Isozumi. Humanoid robot hrp-2. In Proceedings of 2004 IEEE International

Conference on Robotics and Automation, volume 2, pages 1083–1090, April 2004.

[53] P. Kecman. Models for Predictive Railway Traffic Management. PhD thesis, Delft
University of Technology, TRAIL Thesis Series T2014/5, Delft, The Netherlands,
2014.

[54] P. Kecman and R. Goverde. Process mining of train describer event data and au-
tomatic conflict identification. In C. Brebbia, N. Tomii, J. Mera, B. Ning, and
P. Tzieropoulos, editors, WIT Transactions on The Built Environment, Computers

in Railways XIII, volume 127, pages 227–238. WIT press, Southampton, United
Kingdom, 2012.

[55] P. Kecman and R. Goverde. Adaptive, data-driven, online prediction of train event
times. In 16th International IEEE Conference on Intelligent Transportation Systems

(ITSC2013), pages 803–808, Oct 2013.

[56] P. Kecman, F. Corman, A. D’Ariano, and R. M. Goverde. Rescheduling models for
railway traffic management in large-scale networks. Public Transport, 5(1-2):95–123,
2013.

[57] B. Kersbergen, J. Rudan, T. van den Boom, and B. De Schutter. Towards railway
traffic management using switching max-plus-linear systems. Discrete Event Dynamic

Systems, pages 1–41, 2014.

[58] B. Kersbergen, T. J. J. van den Boom, and B. De Schutter. Distributed model
predictive control for rescheduling of railway traffic. In Proceedings of the 17th Inter-

national IEEE Conference on Intelligent Transportation Systems (ITSC2014), pages
2732–2737, China, October 2014.

[59] B. Kersbergen, T. J. J. van den Boom, and B. De Schutter. Improved distributed
model predictive control for rescheduling of railway traffic by manipulation of the cost
functions. In Proceedings of the 6th International Seminar on Railway Operations

Modelling and Analysis (RailTokyo), pages 25:1–13, Japan, March 2015.

[60] E. Klavins and D. Koditschek. Phase regulation of decentralized cyclic robotic sys-
tems. International Journal of Robotics Research, 21(3):257–275, 2002.

[61] T. Kusakabe, T. Iryo, and Y. Asakura. Estimation method for railway passengers’
train choice behavior with smart card transaction data. Transportation, 37(5):731–
749, 2010.

150 Bibliography

[62] B. Li, Y. Li, and X. Rong. Gait generation and transitions of quadruped robot
based on wilson-cowan weakly neural networks. In IEEE International Conference

on Robotics and Biomimetics (ROBIO), pages 19–24, Tianjin, China, 2010.

[63] T. Li, Y.-T. Su, S.-H. Liu, J.-J. Hu, and C.-C. Chen. Dynamic balance control
for biped robot walking using sensor fusion, kalman filter, and fuzzy logic. IEEE

Transactions on Industrial Electronics, 59(11):4394–4408, Nov 2012.

[64] G. A. D. Lopes. Abstractions for legged locomotion. In K. Kozlowski, M. O. Tokhi,
and G. S. Virk, editors, Mobile Service Robotics. World Scientific, 2014.

[65] G. A. D. Lopes, R. Babuška, B. De Schutter, and A. J. J. van den Boom. Switch-
ing max-plus models for legged locomotion. In IEEE International Conference on

Robotics and Biomimetics (ROBIO), pages 221–226, Dec 2009.

[66] G. A. D. Lopes, T. J. J. van den Boom, B. De Schutter, and R. Babuška. Modeling
and control of legged locomotion via switching max-plus systems. In Proceedings of

the 10th International Workshop on Discrete Event Systems (WODES 2010), pages
392–397, Berlin, Germany, Aug.–Sept. 2010.

[67] G. A. D. Lopes, B. Kersbergen, T. J. J. van den Boom, B. De Schutter, and
R. Babuška. Modeling and control of legged locomotion via switching max-plus
models. IEEE Transactions on Robotics, 30(3):652–665, June 2014.

[68] G. A. D. Lopes, B. Kersbergen, B. De Schutter, T. van den Boom, and R. Babuška.
Synchronization of a class of cyclic discrete-event systems describing legged locomo-
tion. Discrete Event Dynamic Systems, pages 1–37, 2015.

[69] J. M. Maestre and R. R. Negenborn. Distributed Model Predictive Control Made

Easy. Springer Publishing Company, Incorporated, 2013.

[70] R. Minciardi, M. Paolucci, and R. Pesenti. Generating optimal schedules for an
underground railway line. In Proceedings of the 34th IEEE Conference on Decision

and Control, pages 4082–4085, New Orleans, Louisiana, Dec. 1995.

[71] M. Morari and J. H. Lee. Model predictive control: past, present and future. Com-

puters & Chemical Engineering, 23(4–5):667–682, 1999.

[72] H. Nagashino, Y. Nomura, and Y. Kinouchi. A neural network model for quadruped
gait generation and transitions. Neurocomputing, 38–40(0):1469–1475, 2001.

[73] S. Qin and T. A. Badgwell. A survey of industrial model predictive control technology.
Control Engineering Practice, 11(7):733–764, 2003.

[74] M. Raibert, K. Blankespoor, R. P. Gabriel Nelson, and the BigDog Team. Bigdog,
the rough-terrain quadruped robot. In Proceedings of the 17th IFAC World Congress,
pages 10822–10825, July 2008.

Bibliography 151

[75] J. Richalet, A. Rault, J. Testud, and J. Papon. Model predictive heuristic control:
Applications to industrial processes. Automatica, 14(5):413–428, 1978.

[76] A. Richards and J. P. How. Robust distributed model predictive control. Interna-

tional Journal of Control, 80(9):1517–1531, 2007.

[77] J. Rodriguez. A constraint programming model for real-time train scheduling at
junctions. Transportation Research Part B: Methodological, 41(2):231–245, 2007.
Advanced Modelling of Train Operations in Stations and Networks.

[78] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura.
The intelligent asimo: system overview and integration. In Proceedings of the 2002

IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3,
pages 2478–2483, October 2002.

[79] C. P. Santos and V. Matos. Gait transition and modulation in a quadruped robot:
A brainstem-like modulation approach. Robotics and Autonomous Systems, 59(9):
620–634, 2011.

[80] U. Saranli, M. Buehler, and D. E. Koditschek. Rhex: a simple and highly mobile
hexapod robot. International Journal of Robotics Research, 20(7):616–631, 2001.

[81] TOMLAB. Tomlab optimization environment, 2014. URL http://tomopt.com/
tomlab/.

[82] J. Törnquist. Railway traffic disturbance management – an experimental analysis of
disturbance complexity, management objectives and limitations in planning horizon.
Transportation Research Part A: Policy and Practice, 41(3):249–266, 2007.

[83] J. Törnquist and J. A. Persson. N-tracked railway traffic re-scheduling during dis-
turbances. Transportation Research Part B: Methodological, 41(3):342–362, 2007.

[84] J. Törnquist-Krasemann. Design of an effective algorithm for fast response to the
re-scheduling of railway traffic during disturbances. Transportation Research Part C:

Emerging Technologies, 20(1):62–78, 2012.

[85] T. J. J. van den Boom and B. De Schutter. Modelling and control of discrete event
systems using switching max-plus-linear systems. Control Engineering Practice, 14
(10):1199–1211, Oct. 2006.

[86] T. J. J. van den Boom, N. Weiss, W. Leune, R. M. P. Goverde, and B. De Schutter.
A permutation-based algorithm to optimally reschedule trains in a railway traffic
network. In Proceedings of the 18th IFAC World Congress, pages 9537–9542, Milan,
Italy, Aug.–Sept. 2011.

[87] E. van der Hurk, L. Kroon, G. Maroti, and P. Vervest. Deduction of passengers’ route
choices from smart card data. Intelligent Transportation Systems, IEEE Transactions

on, 16(1):430–440, Feb 2015.

http://tomopt.com/tomlab/
http://tomopt.com/tomlab/

152 Bibliography

[88] M. Vukobratovic and B. Borovac. Zero-moment point – thirty five years of its life.
International Journal Of Humanoid Robotics, 01(01):157–173, 2004.

[89] Y. Wang. Optimal Trajectory Planning and Train Scheduling for Railway Systems.
PhD thesis, Delft University of Technology, TRAIL Thesis Series T2014/7, Delft,
The Netherlands, 2014.

[90] Y. Wang, B. D. Schutter, T. J. van den Boom, and B. Ning. Optimal trajectory plan-
ning for trains - a pseudospectral method and a mixed integer linear programming
approach. Transportation Research Part C: Emerging Technologies, 29(0):97–114,
2013.

[91] Y. Wang, B. D. Schutter, T. J. van den Boom, and B. Ning. Optimal trajectory
planning for trains under fixed and moving signaling systems using mixed integer
linear programming. Control Engineering Practice, 22(0):44–56, 2014.

[92] W. Weibull. A statistical distribution function of wide applicability. Journal of

Applied Mechanics, 18:293–297, 1951.

[93] J. Weingarten, R. Groff, and D. Koditschek. A framework for the coordination of
legged robot gaits. In Proceedings of the IEEE Conference on Robotics, Automation

and Mechatronics, pages 679–686, Singapore, 2004.

[94] J. Yuan. Stochastic modelling of train delays and delay propagation in stations. PhD
thesis, Delft University of Technology, TRAIL Thesis Series T2006/6, Delft, The
Netherlands, 2006.

[95] X. Zhang, H. Zheng, and L. Chen. Gait transition for a quadrupedal robot by
replacing the gait matrix of a central pattern generator model. Advanced Robotics,
20(7):849–866, 2006.

[96] C. Zhou and Q. Meng. Dynamic balance of a biped robot using fuzzy reinforcement
learning agents. Fuzzy Sets and Systems, 134(1):169–187, 2003. Fuzzy Set Techniques
for Intelligent Robotic Systems.

TRAIL Thesis Series publications

The following list contains the most recent dissertations in the TRAIL Thesis Series. For
a complete overview of more than 100 titles, see the TRAIL website: www.rsTRAIL.nl.
The TRAIL Thesis Series is a series of the Netherlands TRAIL Research School on trans-
port, infrastructure and logistics.

Kersbergen, B., Modeling and Control of Switching Max-Plus-Linear Systems: Reschedul-

ing of railway traffic and changing gaits in legged locomotion, T2015/16, October 2015,
TRAIL Thesis Series, the Netherlands

Brands, T., Multi-Objective Optimisation of Multimodal Passenger Transportation Net-

works, T2015/15, October 2015, TRAIL Thesis Series, the Netherlands

Ardiç, Özgül, Road Pricing Policy Process: The interplay between policy actors, the media

and public, T2015/14, September 2015, TRAIL Thesis Series, the Netherlands

Xin, J., Control and Coordination for Automated Container Terminals, T2015/13, Septem-
ber 2015, TRAIL Thesis Series, the Netherlands

Anand, N., An Agent Based Modelling Approach for Multi-Stakeholder Analysis of City

Logistics Solutions, T2015/12, September 2015, TRAIL Thesis Series, the Netherlands

Hurk, E. van der, Passengers, Information, and Disruptions, T2015/11, June 2015,
TRAIL Thesis Series, the Netherlands

Davydenko, I., Logistics Chains in Freight Transport Modelling, T2015/10, May 2015,
TRAIL Thesis Series, the Netherlands

Schakel, W., Development, Simulation and Evaluation of In-car Advice on Headway, Speed

and Lane, T2015/9, May 2015, TRAIL Thesis Series, the Netherlands

Dorsser, J.C.M. van, Very Long Term Development of the Dutch Inland Waterway Trans-

port System: Policy analysis, transport projections, shipping scenarios, and a new per-

spective on economic growth and future discounting, T2015/8, May 2015, TRAIL Thesis
Series, the Netherlands

Hajiahmadi, M., Optimal and Robust Switching Control Strategies: Theory, and applica-

tions in traffic management, T2015/7, April 2015, TRAIL Thesis Series, the Netherlands

Wang, Y., On-line Distributed Prediction and Control for a Large-scale Traffic Network,
T2015/6, March 2015, TRAIL Thesis Series, the Netherlands

Vreeswijk, J.D., The Dynamics of User Perception, Decision Making and Route Choice,
T2015/5, February 2015, TRAIL Thesis Series, the Netherlands

Lu, R., The Effects of Information and Communication Technologies on Accessibility,

153

154 Modeling and Control of Switching Max-Plus-Linear Systems

T2015/4, February 2015, TRAIL Thesis Series, the Netherlands

Ramos, G. de, Dynamic Route Choice Modelling of the Effects of Travel Information us-

ing RP Data, T2015/3, February 2015, TRAIL Thesis Series, the Netherlands

Sierzchula, W.S., Development and Early Adoption of Electric Vehicles: Understanding

the tempest, T2015/2, January 2015, TRAIL Thesis Series, the Netherlands

Vianen, T. van, Simulation-integrated Design of Dry Bulk Terminals, T2015/1, January
2015, TRAIL Thesis Series, the Netherlands

Risto, M., Cooperative In-Vehicle Advice: A study into drivers’ ability and willingness to

follow tactical driver advice, T2014/10, December 2014, TRAIL Thesis Series, the Nether-
lands

Djukic, T., Dynamic OD Demand Estimation and Prediction for Dynamic Traffic Man-

agement, T2014/9, November 2014, TRAIL Thesis Series, the Netherlands

Chen, C., Task Complexity and Time Pressure: Impacts on activity-travel choices, T2014/8,
November 2014, TRAIL Thesis Series, the Netherlands

Wang, Y., Optimal Trajectory Planning and Train Scheduling for Railway Systems, T2014/7,
November 2014, TRAIL Thesis Series, the Netherlands

Wang, M., Generic Model Predictive Control Framework for Advanced Driver Assistance

Systems, T2014/6, October 2014, TRAIL Thesis Series, the Netherlands

Kecman, P., Models for Predictive Railway Traffic Management, T2014/5, October 2014,
TRAIL Thesis Series, the Netherlands

Davarynejad, M., Deploying Evolutionary Metaheuristics for Global Optimization, T2014/4,
June 2014, TRAIL Thesis Series, the Netherlands

Li, J., Characteristics of Chinese Driver Behavior, T2014/3, June 2014, TRAIL Thesis
Series, the Netherlands

Mouter, N., Cost-Benefit Analysis in Practice: A study of the way Cost-Benefit Analysis is

perceived by key actors in the Dutch appraisal practice for spatial-infrastructure projects,
T2014/2, June 2014, TRAIL Thesis Series, the Netherlands

Ohazulike, A., Road Pricing mechanism: A game theoretic and multi-level approach,
T2014/1, January 2014, TRAIL Thesis Series, the Netherlands

Cranenburgh, S. van, Vacation Travel Behaviour in a Very Different Future, T2013/12,
November 2013, TRAIL Thesis Series, the Netherlands

Samsura, D.A.A., Games and the City: Applying game-theoretical approaches to land

and property development analysis, T2013/11, November 2013, TRAIL Thesis Series, the
Netherlands

Huijts, N., Sustainable Energy Technology Acceptance: A psychological perspective, T2013/10,
September 2013, TRAIL Thesis Series, the Netherlands

Samenvatting

De werking van veel systemen kan beschreven worden aan de hand van de timing van
gebeurtenissen, zoals bij vliegvelden, waar de vliegtuigen landen en vertrekken op speci-
fieke tijden, bij fabricage processen en chemische processen, waar materialen verschillende
processen ondergaan in een specifieke volgorde om zodoende het gewenste eindproduct te
verkrijgen, bij spoorverkeer, waar de treinen vertrekken en aankomen volgens de dienst-
regeling, en bij de voortbeweging van dieren met poten, waar de poten worden opgetild
en neergezet in een bepaalde volgorde. Deze systemen kunnen beschouwd worden als
zogenaamde systemen met discrete gebeurtenissen waar de gebeurtenissen (aankomsten,
vertrekken, de start en het einde van een proces, het optillen en neerzetten van poten) met
elkaar zijn verbonden door middel van voorwaarden. Wanneer het systeem beschreven
kan worden door vergelijkingen die “lineair” zijn in de max-plus algebra, welke maximali-
satie en optelling als basis operatoren heeft, dan is wordt het systeem een max-plus-lineair
systeem genoemd.

In veel van deze systemen kan het nodig zijn om de volgorde van de gebeurtenis-
sen aan te passen door veranderingen in de omstandigheden, of de voorwaarden, of door
onvoorziene omstandigheden. Voor elke mogelijke volgorde van gebeurtenissen is een an-
dere max-plus-lineaire systeembeschrijving nodig. Dit soort systemen, dat de volgorde
van gebeurtenissen kan aanpassen worden schakelende max-plus-lineaire (SMPL) syste-
men genoemd.

In dit proefschrift beschouwen we twee toepassingen van SMPL systemen. De eer-
ste toepassing van SMPL systemen modelleert de netwerken met treinverkeer en wordt
gebruikt voor het on-line herplannen van het treinverkeer in het geval van vertragingen.
In dit proefschrift wordt een macroscopisch model voor het netwerk met treinverkeer
gepresenteerd dat de gevolgen van verschillende regel acties kan modeleren zoals: het
veranderen van de volgorde van treinen, het verbreken van verbindingen, het wisselen van
treinen over parallelle sporen tussen stations, en het annuleren van koppel opdrachten
tussen treinen. Voor elke reeks van regel acties wordt de nieuwe volgorde en het tijdstip
van de gebeurtenissen bepaald. De structuur van de systeem matrices van het SMPL
systeem is geanalyseerd en het is aangetoond hoe de structuur gebruikt kan worden om
het systeem van zijn impliciete naar zijn expliciete vorm geconverteerd kan worden. Er is
een reductie methode ontwikkeld, die profiteert van de structuur van het expliciete model
zodat het de complexiteit van het expliciete model significant kan verminderen, door het
aantal, dat de gebeurtenissen verbinden aanzienlijk te verminderen.

Om het probleem van het on-line herplannen voor het netwerk met treinverkeer op

155

156 Modeling and Control of Switching Max-Plus-Linear Systems

te lossen wordt een globaal model-gebaseerde voorspellende regeltechniek aanpak en vier
gedistribueerde model-gebaseerde voorspellende regeltechniek aanpakken voorgesteld. Op
discrete ogenblikken in de tijd moeten de regelaars een optimalisatie probleem oplossen
dat geschreven kan worden als een mixed integer lineair programmeer probleem. Al deze
aanpakken zijn uitgebreid getest op een model van het Nederlandse spoorwegnet met de
treinen van de Nederlandse Spoorwegen voor verschillende lengtes van de voorspellings-
horizon. Aan de hand van deze casus kunnen we concluderen dat de gedistribueerde
aanpakken veel minder tijd nodig hebben om een oplossing te vinden voor het mixed
integer lineair programmeer probleem, terwijl gemiddeld genomen de oplossing gevonden
met de gedistribueerde aanpakken maar iets minder optimaal is dan die van de globale
aanpak qua reductie van vertragingen.

De tweede toepassing van SMPL systemen modelleert de voortbeweging van een robot
door middel van het gebruik van poten voor verschillende gangen. In dit proefschrift wordt
het cyclische stabiele gedrag van het max-plus-lineaire systeem dat de gangen beschrijft,
en de overgang naar het cyclische stabiele gedrag, geanalyseerd. We hebben bewezen dat,
onder milde voorwaarden, de eigenvector uniek is (tot aan een schaalfactor). Dit werd
bewezen door aan te tonen dat de kritieke graaf van de systeem matrix bestaat uit één
sterk samenhangende subgraaf.

Nu het cyclische stabiele gedrag uniek gedefinieerd is voor alle gangen, konden we
schakelingen tussen gangen bepalen die de variatie in de grond tijd tussen de poten mi-
nimaliseren. Tevens hebben we een methode ontwikkeld dat de vlieg tijden van de poten
tijdens de schakelingen tussen gangen aanpast om er voor te zorgen dat de grond tijd van
alle poten hetzelfde is en om de schakeling te versnellen. Als laatste hebben we een me-
thode ontwikkeld om de robot met een constant tempo te laten versnellen (of afremmen)
door de functie van de tijd van de robot te manipuleren.

Bart Kersbergen

Summary

The operation of many systems can be described by the timing of events, such as airports,
where planes arrive and depart at specific times, manufacturing and chemical processes,
where materials need to undergo several processes in a specific order to obtain the desired
end product, railway traffic, where trains depart and arrive according to a timetable, and
the locomotion of legged animals, where the legs lift off and touch down in order. These
systems can be considered as discrete-event systems where the events (arrivals, departures,
the start and end of a process, touch down, and lift off of legs) are connected to each
other through constraints. When the system behavior can be described by equations that
are “linear” in the max-plus algebra, which has maximization and addition as its basic
operations, the system is called a max-plus-linear system.

In many of these systems the order of the events may need to be changed due to
changes in the conditions, or the requirements, or unforeseen consequences. For each
possible order of events a different max-plus-linear system description is needed. Such
systems that can change the order of events are called switching max-plus-linear systems.
In this thesis we describe methods for the modeling and control of two types of switching
max-plus-linear (SMPL) systems.

The first application of SMPL systems models the railway traffic networks and is used
for on-line rescheduling of railway traffic in the case of delays. In this thesis a macro-
scopic model for the railway traffic network is presented that can model the effects on the
railway traffic of several control actions: changing the train orders, breaking connections,
switching trains over parallel tracks between stations, and canceling coupling orders for
trains. For every set of control actions the new event order and times are determined.
The structure of the system matrices of the SMPL system is analyzed and it is shown how
the structure can be used to convert the model from its implicit into its explicit form. A
reduction method is developed that takes advantage of the explicit model structure to sig-
nificantly reduce the complexity of the model, in the sense that the number of constraints
connecting the events is reduced considerably.

In order to solve the on-line rescheduling problem for a railway traffic network a
global model predictive control (MPC) approach and four distributed model predictive
control (DMPC) approaches are proposed. At discrete time instants the controllers have to
solve an optimization problem that can be written as a mixed integer linear programming
problem. All of these approaches are extensively tested on a model of the Dutch railway
traffic network for various lengths of the prediction horizon. From this case study we can
conclude that the DMPC approaches require much less time to compute a solution to

157

158 Modeling and Control of Switching Max-Plus-Linear Systems

the given mixed integer linear programming problem, while on average the solution found
with the DMPC approaches is only a little less optimal than the one of the centralized
MPC in terms of delay reduction.

The second type of SMPL system models legged locomotion for different gaits. In
this thesis the steady state cyclic behavior of the max-plus-linear systems describing the
gaits, and the transition to the steady state cyclic behavior, are analyzed. It has been
proven that, given mild conditions, the eigenvector is unique (up to a scaling factor). This
was done by showing that the critical graph of the system matrix consists of one strongly
connected subgraph.

With the steady state behavior uniquely defined for all gaits we were able to determine
gait switches that minimized the variation in ground time between the legs. Furthermore
a method was developed that manipulated the flight times of the legs during gait switches
to ensure the ground time of all legs is the same and to speed up the gait switch. Finally
a method was developed to allow the robot to accelerate (or decelerate) at a constant
pace by adjusting the timing function of the robot.

Bart Kersbergen

About the author

Bart Kersbergen was born on September 4, 1987 in Nieuwegein, the Netherland. He ob-
tained his B.Sc. degree in Electrical Engineering in 2009 from the Delft University of
Technology. In 2011 Bart received his M.Sc. degree in Systems and Control from the
Delft University of Technology in 2011. In August 2011 he joined the Delft Center for
Systems and Control as a Ph.D. candidate. As a Ph.D. candidate Bart worked on the
STW project: “Model-Predictive Railway Traffic Management” under the supervision of
dr.ir. Ton van den Boom and prof.dr.ir. Bart De Schutter. His research has been focused
on the development of model predictive control methods for the on-line management of
railway traffic and optimal gait switching for legged robots. Bart Kersbergen followed sev-
eral courses from graduate schools of the Landelijk Netwerk Mathematische Besliskunde
(LNMB) and the Dutch Institute of Systems and Control (DISC). In 2013 he obtained
the course certificate of DISC.

Besides his work as a Ph.D. candidate Bart has also been actively involved in the
management of the local volleyball club in Benschop, as the secretary of the board from
2008 till 2014. Together with the other members of the board he was responsible for
ensuring the organization of the club was operating efficiently, that there was a friendly
and sporty atmosphere and that the teams had the tools they needed to perform well.

159

	Preface
	Introduction
	Introduction to railway traffic management
	Microscopic and macroscopic models
	Railway traffic management methods

	Introduction to legged locomotion
	Thesis outline and contributions

	Max-plus-linear algebra and max-plus-linear systems
	Introduction
	Max-plus algebra
	Max-plus-linear systems
	Max-plus-linear systems
	Switching max-plus-linear systems

	Summary

	Implicit and explicit models of the railway traffic networks
	Introduction
	Nominal operation
	Constraints connecting the train runs
	Max-plus-linear model
	System matrices for the nominal operation

	Perturbed operation
	Changing the order of trains
	Breaking connections
	Coupling trains
	Switching between tracks

	Explicit switching max-plus-linear model
	Explicit model for a single cycle
	Explicit model for multiple cycles
	Structured approach to matrix multiplication

	Reduction of the explicit switching max-plus-linear model
	Delay model
	Removing redundant control variables

	Modeling and control of freight trains
	Unscheduled stop at a station
	Reduced speed/full stop on open track
	Optimization constraints for freight trains
	Example

	Summary

	Model predictive control for railway traffic management
	Introduction
	MPC for on-line railway traffic management
	Prediction and control horizon at time instant t()
	Events and control variables at time instant t()
	Model at time instant t()
	Cost function at t()
	Optimization at time instant t()
	Example
	Explicit SMPL and the cost function

	Distributed model predictive control
	Model-based partitioning
	Distributed method 1
	Distributed method 2
	Adjusting cost functions

	Case studies: Implicit versus explicit MPC
	Case study 1: Minimization of the sum of delays
	Case study 2: Minimization of the sum of arrival delays

	Case studies: MPC versus DMPC
	Case study 3: MPC versus DMPC part 1
	Case study 4: MPC versus DMPC part 2

	Summary

	Legged locomotion
	Introduction
	Modeling of legged locomotion
	Central pattern generators
	Buehler clock
	Switching max-plus-linear models
	Control structure

	Max-plus eigenstructure of the system matrix
	Precedence graph of
	The critical graph of A
	Coupling time

	Gait switching
	Compatible gaits for switching
	Variable swing time, constant stance model
	Variable velocity

	Simulations
	Simulation of the max-plus gait scheduler

	Summary

	Conclusions and recommendations
	Conclusions
	Recommendations
	Railway traffic management
	Legged locomotion
	Additional research recommendations

	Appendix Train lines and their frequencies
	Bibliography
	TRAIL Thesis Series publications
	Samenvatting
	Summary
	About the author

