
Efficient model predictive control for
large-scale urban traffic networks

S. Lin



.



Efficient model predictive control for
large-scale urban traffic networks

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 19 april 2011 om 12.30 uur
door Shu LIN,

Master of Science in Control Engineering, Shandong University,
geboren te Chengde, Hebei, China.



Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. B. De Schutter
Prof.dr.ir. J. Hellendoorn
Prof.dr. Y. Xi

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. B. De Schutter Technische Universiteit Delft,promotor
Prof.dr.ir. J. Hellendoorn Technische Universiteit Delft, promotor
Prof.dr. Y. Xi Shanghai Jiao Tong Universiteit, promotor
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Chapter 1

Introduction

Since the emergence of modern transportation, human life has become much more efficient
and convenient than before. More and more people have their own private vehicles, and
have more freedom to travel to any destination they want at any time they like. However, if
the number of vehicles intending to travel on roads grows larger and larger, but the capacity
of these roads is limited, or could not increase as fast as thegrowing of the number of the
vehicles, then the drivers on roads cannot drive as free as before anymore. Therefore, in
order to keep the public roads used in a well-organized way byall the drivers, it is very
important to adopt traffic control systems to manage transportation in a good manner.

1.1 Overview of research background

Since 1914, when the first traffic control signal was implemented, traffic control has been
developed in several aspects. From the control point of view, it developed from fixed-time
controllers to traffic-responsive controllers, from model-free controllers to model-based
controllers, and from heuristic controllers to optimization-based controllers. The controllers
developed so that they can not only deal with under-saturated traffic, but can also work with
saturated or even over-saturated traffic. The controlled area developed from initially isolated
intersections to a string (a long road with multiple intersections on it), and then to a whole
traffic network.

At the beginning of the development of traffic control, fixed-time control were used
at intersections. In each intersection, the length of the green time durations is then always
fixed, or at least fixed during time segments of the whole day. The fixed-time control actions
are predefined according to the historical traffic information. However, fixed-time control
is a kind of open-loop controller, which cannot adapt its control actions to the current traffic
condition. Therefore, traffic-responsive control has beenintroduced, along with the applica-
tion of a variety of detectors (loop detectors, video, etc.)to measure the traffic information.
Traffic-responsive control belongs to the feedback controlcategory, which can adjust the
control actions according to the currently measured trafficconditions.

Either for the fixed-time control or the traffic-responsive control, the control strategies
are not built on traffic models, but on the historical traffic information or the currently mea-
sured traffic information. These control strategies can only consider the past and the current
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2 1 Introduction

traffic condition, but cannot look ahead into the future. In order to avoid this, traffic models
are applied in traffic control to predict the future traffic states, which results in model-based
traffic control strategies. At the beginning, the traffic models used were derived inductively
through traffic data identification. After that, more elaborate traffic models, which are de-
ductively derived to describe the physical dynamics of traffic flows, were applied, and they
provided more accurate predictions. However, generally speaking, the dynamic traffic mod-
els are also more computationally complex, thus need more computing time. Therefore, it
is very important to find a trade-off between the accuracy andthe computational complexity
of the model, so that the model-based controllers can make better control decisions and also
keep being applicable in real-life traffic.

Before using traffic models, the traffic control decisions were mainly made heuristi-
cally, e.g. in traffic-responsive control, if the measured length of the vehicle queue is getting
longer, then more green time will be allocated to the corresponding traffic stream. But, as
soon as traffic models are used, it is not necessary to make traffic control decisions heuris-
tically anymore. Optimization tools can be made to search for the best sequence of future
control decisions, based on the traffic information predicted by the models. These kind
of control strategies are model-based optimization control methods, which can predict far
into the future and make the best current control decisions from a long-term point of view,
and then roll the prediction horizon forward and repeat solving the control problem again.
Model Predictive Control, which is selected as the control method of this thesis, belongs to
this category.

Initially, traffic intersections were controlled separately by local controllers in a decen-
tralized structure [104, 122, 127]. For the local controllers, only local traffic information is
taken into consideration, and no interactions among each other. So, when the traffic is in
an under-saturated scenario with a low density, local traffic controllers are enough to easily
regulate the local traffic and maintain it in an organized situation. However, if the traffic
density grows higher or the traffic demands are provided unevenly from different directions,
then it is not enough to just make decisions based on the localinformation. Because bet-
ter local control performance does not always mean better global control performance, i.e.
sometimes local traffic delay can be reduced, but at the cost of even more traffic delay and
congestion emerged somewhere else in the same traffic network. Therefore, it is necessary
to investigate traffic control strategies to coordinate road strings (e.g. a highway or a main
road in urban areas), and even to coordinate the traffic in an area of a network.

A number of coordinated urban network control strategies have already been developed
[56, 104, 112]. Fixed-time coordinated control strategiesmake control decisions off-line
based on the traffic flow data collected and stored in the past.Traffic-responsive coordi-
nated control strategies can in real time measure the trafficstates in the network, and adapt
the control schemes according to the current measured traffic states. Model-based coor-
dinated control strategies [3, 17, 42, 44, 49, 60, 104, 115, 121] do not only introduce in
feedback control so as to adjust in real time the control decision according to the current
detected traffic states, but also predict into the future using prediction model to make deci-
sions good also in a long term run. The structures for the coordinated control strategies can
be centralized, distributed, or hierarchical. Centralized coordination control strategy opti-
mizes the whole traffic network and searches for a global optimal solution for the network.
Distributed coordination control strategy allocates the control efforts to each local traffic
controller, and coordinate the local controllers through information exchange. Hierarchical
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coordination control strategy divides the overall complexcontrol problem for large-scale
system into multiple levels, on each level, a specific control problem will be solved.

There are already well-known coordinated traffic-responsive control strategies for urban
traffic networks. SCOOT [21, 112] and SCATS [91] are widely used in many big cities
around the world [104], e.g. SCOOT is used in Beijing, SCATS used in Shanghai. They are
both dynamic traffic control strategies based on measured current traffic states in distributed,
multi-level, hierarchical system structures. It has already been shown that these two systems
work effectively in real traffic world. But, these two systems are more focusing on dynamic
intersection controllers, and local coordinations that consider only a few neighbor intersec-
tions. In the 1980s and 1990s, a number of model-based optimization control strategies
based on simple traffic models emerged, e.g. OPAC [49], PRODYN [44], CRONOS [17],
RHODES [115], and MOTION [12], which can forecast the futuretraffic behavior of the
network based on models. With these forecasting models, thecontrol strategies are able to
make control decisions to guarantee better performance within an area of the traffic network
in a near future. A real test was realized for OPAC in Reston, USA (16 intersections) [48],
and for MOTION in the center of K̈oln-Deutz, Germany (12 intersections) [13]. However,
the models used in these control approaches are mainly simple traffic models based on the
traffic data measured by upstream detectors, which to some extent limits the performance
for the future. Coordinated traffic-responsive control strategies that are able to avoid parts
of the on-line computational complexity, were also proposed. UTOPIA/SPOT [93] is a hier-
archical system with simple local intersection controllers and a central controller for an area
of urban networks. The central controller optimizes the control actions for the whole area
based on the model of the network. The local controller makesthe decision only based on
local information, but with a penalty term to guarantee thatthe local decision is not too far
from the central decision. Therefore, UTOPIA/SPOT avoids part of the on-line computa-
tional burden, but results in suboptimal solutions. TUC [3,40] was proposed for controlling
an urban traffic network based on the well-known simple store-and-forward model. TUC
designs a feedback regulator off-line based on the store-and-forward model, and on-line
derives the traffic signals using a feedback control law by feeding it with the real-time mea-
sured traffic states. Therefore, the TUC strategy reduces the on-line computational com-
plexity significantly by moving the time-consuming optimization off-line. Compared with
the fixed-time controller, TUC can reduce the Total Time Spent by 20-54% for different
scenarios [40]. TUC has been implemented in three cities — Chania, Greece (23 intersec-
tions), Southampton, UK (53 intersection), and Munich, Germany (25 intersections) — and
has been proved to have good control effects [68]. However, when the real traffic conditions
change, the feedback control law needs to be redesigned according to the new current traffic
conditions, which is also computational complex if it occurs too frequently.

In summary, traffic control methodologies have been developed for a long period of
time, and the results are fruitful. A number of urban traffic control systems have been
presented in literatures or even applied in practice. Some of these systems, that were im-
plemented in real-life traffic field, have been proved effective in practice. However, the
efficiency of coordination algorithms, especially of network-wide coordination algorithms
for large-scale urban traffic networks, is still needed to befurther improved. In this thesis,
we are going to mainly focus on the solutions to address this issue.
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1.2 Motivation

One promising control methodology that can meet all the needs for controlling and coordi-
nating a large-scale traffic network with a number of traffic control measures (e.g. traffic
signals, ramp metering, speed limits, etc.), is Model Predictive Control (MPC) [23, 92, 108].
In the late 1970s, MPC was first proposed and successfully applied in the process industry.
MPC executes model-based optimization control on-line in arolling horizon way, and thus
it has shown to be able to respond in an effective way to the disturbances in many practical
process control applications. Therefore, MPC is widely accepted in the process industry.

MPC is a methodology that implements and repeatedly appliesoptimal control in a
rolling horizon way. In each control step, an optimal control problem is solved over a pre-
diction horizon, but only the first control sample of the optimal control sequence is imple-
mented. Next, the prediction horizon is shifted one sample and the optimization is restarted
again with new information of the measurements. The optimization is redone based on the
prediction model of the process and an estimate of the disturbances.

MPC has a number of advantages for controlling large-scale traffic networks. MPC can
easily deal with multi-input and multi-output problems with constraints. Therefore, differ-
ent traffic control measures (e.g. traffic lights, ramp metering, speed limits, etc.) are able
to be controlled and coordinated at the same time. Since MPC approach is a model-based
optimization control strategy, it can combine multiple objectives into one control problem,
if the optimization problem of the MPC controller is a multi-objective optimization prob-
lem. Thus, MPC can combine multiple control objectives intoone control problem, so it
is easy to integrate different control objectives (e.g. traffic congestion control, traffic emis-
sions control, etc.) into MPC controllers. Moreover, due tothe rolling horizon procedure,
MPC becomes a closed-loop controller, which can in realtimeadapt the controller by the
feedback information measured from the real-life traffic. Consequently, MPC has the ability
to deal with the uncertainty of the traffic system, which can be caused by the unpredictable
disturbances, the (slow) variation over time of the parameters, and model mismatches in the
prediction model. Another advantage of MPC is that one can easily select and replace the
prediction model based on the control requirements.

However, although MPC is a well-established control method, a big difficulty to im-
plement MPC in practice is the high on-line computational burden. When using MPC, for
each time step, we have to solve an optimization problem within a limited period of time.
The solving speed depends on both the scale of the optimization problem, and the features
of the optimization problem itself. Of course, the solving speed can be also improved by
using very fast computers, but the development of the computer hardware capability cannot
always catch up with the complexity expansion of practical problems. So, we will mainly
discuss about the scale of the optimization problem, and thefeatures of the optimization
problem. The scale of the optimization problem increases when the scale of the traffic net-
work controlled grows larger, and when the length of the prediction horizon gets longer.
Optimization problems differ from each other by their features. Some can be solved easily
and quickly, such as linear programming, quadratic programming, and convex optimization.
But, some are hard and time-consuming to solve, like nonlinear non-convex optimization.
Due to the nonlinearity of most traffic prediction models, the optimization problem of the
MPC controller is in general a nonlinear optimization. Therefore, when the on-line opti-
mization problem of MPC controller is time-consuming to solve, no matter because of the



1.3 Scope and contributions of the thesis 5

large scale of the optimization problem or because of the hard-to-solve feature of the opti-
mization problem, the MPC controller becomes real-time infeasible in practice, even though
its optimization problem is solvable in theory.

Therefore, we are going to focus on the approaches to increase the real-time feasibility
of the on-line optimization problems, when we apply MPC to control large-scale urban
traffic networks. The approaches investigated in this thesis are:

• Reducing the computational complexity of the urban traffic control model,

• Reformulating the on-line optimization problem so that it can be solved more effi-
ciently,

• Dividing the network into small subnetworks, and building distributed network con-
trollers.

In this thesis, we are going to mainly investigate the first two approaches to reduce the on-
line computing time of the MPC optimization problems for MPCcontrollers. Regarding to
the third approach, we are going to present a general framework for MPC control of large-
scale urban traffic networks, and analyze the different control structures for the network-
wide traffic controller. Consequently, all the centralizedMPC controllers presented in this
thesis are able to fit into the framework, and can act as local controllers for the urban traffic
subnetworks. Some of the results can be also extended and applied to freeway networks, or
even mixed freeway and urban road networks.

1.3 Scope and contributions of the thesis

In this thesis, we mainly focus on the coordinated control for large-scale urban traffic net-
works. The control method we apply is MPC. The main problem weare going to deal with
is the large online computational complexity when the MPC theory is applied to the real-
life traffic system. Before the story starts, a state-of-the-art literature survey on coordinated
traffic control is given, which summarizes former research on this topic, and which gives
some general information for the students or researchers who are interested in this topic.

When the scale of traffic networks we need to manage grows larger and larger, the con-
trol problems for the large-scale traffic networks also become more and more complex.
In order to control a large-scale traffic network, and get a balance between the local per-
formances and the global performance, the controllers should operate in a well-designed
structure. Therefore, in this thesis, MPC controllers are organized and coordinated in a
distributed control framework for large-scale traffic networks. Under this framework, the
possible network-wide traffic control structures are discussed and analyzed.

In the distributed control structure, MPC based traffic controllers are designed as local
controllers for urban traffic subnetworks. A part of the research work of this thesis is to
improve the feasibility of the MPC subnetwork controllers in practice, and to improve the
efficiency of the higher level algorithms when coordinatingall the subnetwork MPC con-
trollers. More efficient subnetwork MPC controllers for large-scale urban traffic networks
are obtained by model reduction and optimization problem reformulating. The traffic mod-
els included in this thesis are all discussed and evaluated from a control point of view. To
improve the applicability of the MPC controllers for large-scale urban traffic networks, we
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are mainly focusing on the trade-off between the efficiency and the complexity of the traffic
models.

Since traffic pollution is also an issue for the people livinga in big metropolis, it is
necessary to take traffic emissions into consideration whenwe are controlling urban traffic.
Therefore, MPC controllers that integrated both traffic delay control and traffic emission
control are also discussed in the thesis.

The main contributions of this thesis are:

• A macroscopic traffic model for urban traffic networks, called BLX model 1, is es-
tablished. To further reduce the computational complexity, a more simplified macro-
scopic new model, the S model2, is proposed. The S model is very fast, but is still
able to provide all the necessary information that is neededfor traffic control. We also
introduce another model with an adjustable sample time stepthat contains features of
both the BLX and the S model, and that is excellently suited totune the trade-off
between accuracy and computational complexity.

• MPC controllers are built for urban traffic networks based onthe BLX and the S
model. The on-line computational efficiency of the MPC controllers based on the S
model is improved greatly compared to MPC based on the BLX model, and only a
limited loss of control performance is incurred.

• The nonlinear optimization problem of the urban traffic MPC controllers is refor-
mulated for the S model into a mixed-integer linear programming (MILP) problem,
which can be solved very efficiently by existing MILP solvers. We also introduce a
further simplification of the S model, called the S∗ model, that results in a smaller
MILP problem. For both the S model and the S∗ model the on-line computational
efficiency of the MPC controllers is further improved significantly compared to the
nonlinear optimization approach.

• In order to control traffic delay as well as traffic emissions and fuel consumption in big
cities, an integrated urban traffic, emission, and fuel consumption model is proposed.
MPC controllers are built based on this model, which resultsin a balanced trade-off
between minimizing travel time and reducing both emissionsand fuel consumption.

1.4 Structure of the thesis

This thesis contains eight chapters, and this introductionmakes the first chapter of the the-
sis. Chapter 2 is a literature survey on this research topic.Chapter 3 gives an overview
of the general control framework. Chapter 4 discusses abouturban traffic network models.
In Chapter 5, model predictive controllers are establishedbased on different traffic models,
while Chapter 6 further reformulates the optimization problem of these MPC controllers.
Chapter 7 also focuses on traffic emission problem. The conclusions can be found in Chap-
ter 8.

1The macroscopic traffic model is extended from the model of M. vanden Berg et al. [119], and then is revised
by S. Lin and Y. Xi, thus is called BLX model.

2A Simplified model proposed by S. Lin et al. [80]
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The detailed content of the main chapters is summarized as follows:

• Chapter 2 is a literature survey summarizing the state-of-the-art oncoordinated traf-
fic control, where the main existing coordinated traffic control strategies are summa-
rized by the control methods for both freeways and surface roads. The characteristics
of these coordinated traffic control strategies are discussed and compared in this chap-
ter.

• Chapter 3 gives the framework for constructing structured network-wide traffic con-
trollers based on MPC. Different traffic network control structures, including decen-
tralized structure, centralized structure, distributed structure, and hierarchical struc-
ture, are discussed in this chapter. Coordination algorithms are also presented to
coordinate traffic subnetworks controlled by MPC controllers.

• Chapter 4 discusses about the macroscopic urban traffic models, whichare all spa-
tiotemporally discrete. New models are presented which haslow computational com-
plexity, at the same time, keeps enough modeling accuracy for traffic control pur-
poses.

• Chapter 5 presents the method of constructing model predictive controllers for ur-
ban traffic subnetworks, based on the models discussed in Chapter 4. The MPC con-
trollers based on different urban traffic subnetwork modelsare further compared in
this chapter.

• Chapter 6 presents how to reformulate the on-line optimizations of MPC controllers
for urban traffic networks to increase the computational efficiency. To this aim, the
former nonlinear non-convex optimization problem is reformulated into a mixed-
integer linear programming optimization problem, and the reformulated optimization
problem can be solved much faster than the former nonlinear non-convex optimiza-
tion problem.

• Chapter 7 focuses on integrated MPC controllers for the reduction of travel delays
as well as traffic emissions and fuel consumption in urban traffic networks. The inte-
grated functions of the MPC controller depend on the traffic model, which integrates
a microscopic vehicle emission and fuel consumption model with the macroscopic
traffic flow model proposed in Chapter 4.

In Fig. 1.1, an overview of all the chapters in this thesis is illustrated in a flowchart.
Chapter 1 gives the motivation and a brief overview of the entire thesis. Chapter 2 sum-
marized most of the related research work, further motivates the research of this thesis.
Chapter 3 and Chapter 4 present a general framework for controlling large-scale urban traf-
fic networks, and prediction models, which are the basis of the rest of the thesis. Based
on the previous chapters, MPC subnetwork traffic controllers are designed in Chapter 5,
Chapter 6, and Chapter 7, aiming at solving three problems inthe urban traffic network
control. Chapter 8 concludes the thesis and gives recommendations for the future research
directions.
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Chapter 2

Coordinated Traffic Control —
The State of the Art

2.1 Introduction

In recent years, the number of vehicles has grown larger and larger, and the requirements
for traveling by vehicles are getting more and more stringent. Even though large and sound
traffic networks (freeways and roads) are already constructed, traffic congestion still can not
be avoided efficiently. Moreover, it is often too time and money consuming to build more
common transportation infrastructures or reconstruct theones that already exist. Therefore,
traffic jams occur frequently and have a severe impact, when people need to use the common
infrastructures with limited capacity at the same time, especially during rush hours. Traffic
congestion can give rise to traffic delays, economic losses,traffic pollution, and so on. To
reduce traffic jams and to promote efficiency in traveling, effective traffic control methods
are necessary. In this context, traffic control strategies are one of the most efficient and also
effective methods to solve the problem.

Since traffic control emerged, a large number of control algorithms were proposed
and implemented in the field, like fuzzy control, PID control(Proportional—Integral—
Derivative controller), etc. However, these algorithms are mainly focusing on controlling a
single intersection or a single traffic control measure. These controllers are without global
scope, and have limited control effect for the whole traffic network. As we known, traffic
intersections are not isolated; the traffic states of roads in a traffic network will interact with
each other; a traffic jam that happens here is maybe caused by some irregular event (e.g. an
incident) that happened somewhere else in the same traffic network. Therefore, it is neces-
sary to understand the behavior of traffic networks, and to investigate network-wide traffic
coordinated control approaches that can coordinate and control traffic networks to a better
performance.

2.1.1 Scope and aims

This literature survey focuses on coordinated traffic control strategies, both for freeways and
urban roads. By searching and summarizing the recent works,a general idea of the state-

9
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of-the-art traffic coordination control methods is obtained. After analyzing and comparing
the collected approaches, we provide insight into the characteristics of different kinds of
coordinated traffic control strategies. Then, a conclusionof which approach is both effective
and suitable to be implemented in the field at present is obtained, and future directions for
investigation are presented.

2.1.2 Overview

The structure of this literature survey is as follows:
In Section 2.2 coordination strategies for traffic networksare introduced and summa-

rized into several categories.
Although a traffic string (i.e. an artery or a freeway link) isa part of the traffic network,

several papers and articles still only focus on the coordinated control problem of traffic
strings. Section 2.3 therefore discusses coordinated control strategies at the string level.

In Section 2.4, the characteristics of different kinds of coordinated traffic control strate-
gies are analyzed and compared.

In Section 2.5, the conclusions of the literature survey areprovided, and possible future
directions for traffic coordinated control are given.

2.2 Network coordination approaches

Coordinated traffic control strategies both for freeway networks and urban networks are dis-
cussed in this section. They are classified into different categories according to the control
methodologies adopted, i.e. optimal control approaches, Model Predictive Control (MPC)
approaches, rule-based approaches, case-based approaches, and approaches based on the
network macroscopic fundamental diagram.

2.2.1 Optimal control

After the emergence of suitable traffic models, more advanced model-based controllers (e.g.
optimal control) started to be used to coordinate freeway networks. The main idea of optimal
control is to find the optimal control measures of the whole freeway network in the future
by optimizing the cost function based on a network model for acertain future time horizon.
The optimal control approach can coordinate the freeway network in a centralized structure.
It not only can coordinate the control measures on differentspace locations and different
time points in the future, but it can also coordinate different types of control measures (e.g.
ramp metering, speed limits, and route guidance). Optimal control approaches for freeway
networks and urban networks are both discussed below.

Freeway networks AMOC (Advanced Motorway Optimal Control) [70] and OASIS (Op-
timal Advanced System for Integrated Strategies) are two control software tools based on
optimal control theory. They both adopt the macroscopic freeway traffic model METANET
[96] as optimization model. However, because the freeway network model is nonlinear,
one of the big challenges of applying optimal control is to find an efficient algorithm to
solve the large-scale optimization problem. A numerical solution algorithm that is based on



2.2 Network coordination approaches 11

a feasible-direction nonlinear optimization method, is proposed to successfully solve this
problem [69, 71, 72]. The AMOC approach has been applied to the Amsterdam ring-road
[70], and proved to have good coordination control effectiveness.

Urban networks In recent years, a number of urban traffic models have been proposed.
For different urban traffic models, different optimal control approaches have subsequently
been derived.

The store-and-forward model is a linear state-space model for road networks of arbitrary
size, topology, and characteristics, and is given by

x(k+1) = x(k)+Bg(k)+Td(k) (2.1)

wherek is the counter of time steps,T is the control time interval;x(k) is the state vector
(consisting of the number of vehiclesxz of each linkz); g(k) is the control vector (con-
sisting of the green timeg j;i of each stagei at each junctionj); d(k) is the disturbance
vector (consisting of the demand flowsdz of each linkz); B is a constant matrix of appropri-
ate dimensions containing the network characteristics (topology, saturation flows, turning
rates). The linear state-space feature of the store-and-forward model opens the way to the
application of a number of highly efficient optimization andcontrol methods (such as lin-
ear programming, quadratic programming, and multivariable regulators) with polynomial
complexity. Based on the store-and-forward model, an open-loop quadratic-programming
control (QPC) [3] approach is developed, which can be efficiently solved by using broadly
available codes of commercial software.

However, to keep the linear characteristic, the store-and-forward model is only appli-
cable under a saturated traffic scenario. Therefore, an open-loop nonlinear optimal control
(NOC) [3] approach is developed based on a nonlinear urban traffic model, that is more
elaborate to describe more complex traffic dynamics. A numerical feasible-direction opti-
mization algorithm is applied to solve the nonlinear optimization iteratively, which requires
more computational complexity than QPC.

To avoid the inherent drawbacks of an open-loop structure, alinear-quadratic (LQ) op-
timal control approach, Traffic-responsive Urban Control (TUC) [3, 41, 68], is developed
based on the store-and-forward model. Instead of optimizing the control inputs (i.e. green
times), TUC optimizes the linear multivariable feedback regulator off-line, as

g(k) = gN −Lx(k), (2.2)

where the feedback gain matrixL results as a straightforward solution of the corresponding
algebraic Riccati equation, andgN is a nominal vector forg. The feedback regulator is
actually a feedback control law, which is assumed to be a linear function of the traffic states
x(k) for the linear traffic control problem presented in TUC. The parameters of the feedback
control law, i.e. the feedback gain matrixL , can be obtained through off-line optimization.
Then, the optimized feedback regulator can be actuated on-line to derive the new green
times, fed with the real-time measured traffic statesx(k), and no on-line optimization is
needed.

Dynamic Intersection Signal Control Optimization (DISCO)[90] is a dynamic urban
traffic optimization control approach based on the cell-transmission model. A cell-transmission
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model [32, 33] is a convergent numerical approximation to the hydrodynamic model of traf-
fic flow. It considers the entire fundamental diagram and can capture traffic phenomena
such as shock waves and queue dynamics. The timing plans of the urban traffic network are
derived by solving the optimization problem via a genetic algorithm. DISCO is proved to
be superior to TRANSYT, especially under congested situations.

In spite of all the advantages, the optimal control approachis still open-loop. It solves
the optimization problem based on the approximation of the future network disturbances,
which can be inaccurate, or even be the opposite to reality when unpredictable events occur.
Moreover, mismatches between the model and the real world, and inaccuracies in estimat-
ing initial traffic states can always happen. Under these circumstances, the control results
derived from optimal control methods are not the best coordination control actions anymore.

2.2.2 MPC

Model Predictive Control (MPC) [23, 92] is a methodology that implements and repeats
optimal control in a rolling horizon way. This means that, ineach control step, only the first
control sample of the optimal control sequence is implemented, subsequently the horizon
is shifted one sample and the optimization is restarted again with new information of the
measurements. The optimization is calculated based on the prediction model of the process
and of disturbances.

Taking optimal control as the core algorithm, MPC preservesall the advantages of opti-
mal control. It can predict and find the coordinated optimized solution for the entire network
in the future. It can also coordinate different types and numbers of control measures. Due
to the rolling horizon methodology, the MPC controller becomes closed-loop by adjusting
the controller with a real-time feedback. The MPC controller thus obtains the ability to
deal with the uncertainty of the real world, caused by unpredictable disturbances, (slow)
variation over time of the parameters, and mismatch errors of the prediction model.

In principle, a centralized MPC method can maximize the throughput of the whole net-
work, and provide network-wide coordination of the traffic control measures. However, the
real-time computation complexity is a big challenge for implementing MPC controllers to
traffic networks in practice. In general, the computationalcomplexity will increase expo-
nentially when the scale of the network grows (if the prediction model is nonlinear). To
overcome this problem, different structures (e.g. decentralized and hierarchical structures)
other than the original centralized structure are taken to maintain the real-time feasibility of
MPC controller.

Centralized structure

Freeway networks Hegyi et al. [59, 60] apply MPC taking METANET as the predic-
tive model to control and coordinate the freeway networks inthe centralized structure (see
Fig. 2.1).

To suppress shock waves, coordination of variable speed limits is studied adopting the
MPC methodology. Simulations are carried out on a benchmarknetwork consisting of a link
of 12 km, where 6 segments of 1 km are controlled by speed limits. The simulation results
show that the MPC controller is effective for coordinating speed limits against shock waves.
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Figure 2.1: The MPC scheme for traffic control [58].

The shock wave generated from the downstream end of link is successfully eliminated by
the coordinated control of the speed limits.

There are several control measures for freeways, e.g. ramp metering, dynamic speed
limits, and main-stream metering. These control measures can influence each other, or
may have different effectiveness in different traffic scenarios. An MPC controller is used
to coordinate these different types of freeway control measures. Experiment results show
that the speed limits can complement ramp metering, when thetraffic demand is so high
that ramp metering alone is not efficient anymore. Conclusions are also drawn that the
coordinated and integrated control of speed limits and rampmetering results in a higher
outflow and a significantly lower total time spent. It is also stated that the choice between
speed limits and main-stream metering should be made based on the demands on the on-
ramp and the freeway.

Urban networks In the 1980s and 1990s, a number of model-based optimizationcontrol
strategies emerged: OPAC [49], PRODYN [44], CRONOS [17], and RHODES [115]. The
prediction models for these strategies are similar. They mainly predict the future traffic de-
mands at the intersections through the historical data measured from the upstream detectors
or the detectors of upstream links. These strategies showedadvantages compared with the
traffic-responsive strategies that do not use any predictions. However, this kind of predic-
tion models are limited in the length of the time horizon overwhich they can predict. The
longest prediction horizon is the time taken by the vehiclesrunning from the upstream de-
tector to the stop-line of the intersection. Therefore, thecontrol strategies cannot look ahead
far enough due to this limitation.

In recent years, some macroscopic urban traffic models were developed for establish-
ing more elaborate and effective model-based rolling horizon control approaches. These
models can describe the traffic dynamic mechanics of the whole urban traffic network, and
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overcome the drawbacks of the previous models.
The model proposed in [8] and extended in [42] is computationally intensive and it can

describe different traffic scenarios, but it is also complicated and needs historical data to
estimate the coming traffic flow rate of each intersection. A controller based on a rolling
horizon methodology is developed by optimizing this trafficmodel fed with the historical
data from last iteration.

The model proposed by Kashani et al. [66] has a lower modelingpower, and in partic-
ular cannot depict scenarios other than saturated traffic. The model of van den Berg et al.
[58, 119, 120] is an extension of the Kashani model that is capable of simulating the evo-
lution of traffic dynamics in all traffic scenarios (unsaturated, saturated, and over-saturated
traffic conditions) by updating the discrete-time model in small simulation steps. This model
provides a good trade-off between accuracy and computational complexity. An MPC con-
troller is developed based on the model [58, 120], which gives good control effects.

Mixed freeway and urban networks Freeway networks and urban networks are closely
connected. Congestion on the freeway often causes spill back of urban queues, slowing
down the urban traffic, and vice versa. As a consequence, control measures taken in one
of the two areas can have a significant influence on the other area. By connecting the ur-
ban traffic model [120] and the freeway traffic model METANET with the on-ramp and
off-ramp model, an integrated MPC controller is established to coordinate the mixed free-
way and urban network [121]. The coordinated control approach is proved to have a high
performance.

Distributed structure

Freeway networks A distributed control structure can be developed to avoid the expo-
nential growth of the computational complexity for the centralized MPC, when the network
scale keeps on increasing. Game theory has been introduced to find the optimal coordi-
nation of ramp metering and variable speed limits in a large-scale freeway traffic network
[54]. The large-scale freeway traffic network is then decomposed into subproblems, each of
which is controlled by MPC based on the METANET model. Game theory (i.e. sample fic-
titious play) coordinates the sub-MPC controllers. Each player (sub-MPC controller) finds
its best strategy assuming that other players play the knownstrategy, which can be drawn
from the history of their past plays. Thus, players learn to know other player’s strategies
iteratively.

The sample fictitious play (SFP) algorithm is explained as [54]:

1. Initialization - The set of initial strategies is chosen randomly for each player and
stored as historical data.

2. Sampling - For each player, a strategy is drawn from the history of plays arbitrarily
with equal probability.

3. Best-reply - Each player computes its best reply or strategy assuming that other play-
ers play the strategies drawn in the previous step.

4. Store - The best replies obtained in Step 3 are stored in the history.
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5. Stop Condition - It is checked whether the stopping criterion is satisfied. If so, then
stop, else go to Step 2.

In [54], for a case study of 4 players (i.e. 2 on-ramp meteringcontrollers and 2 speed
limit controllers), the SFP-MPC, which can compute in parallel, reduces the optimization
time by 81.1%, from 106 s to 20 s, compared with the original centralized MPC controller.

Urban networks Game theory is also used as distributed control method for urban net-
works in CoSIGN [25]. The problem of finding optimal coordinated signal timing plans for
a large number of traffic signals is a challenging problem because of the exponential growth
in the number of joint timing plans that need to be explored asthe network size grows.
However, if we decompose the problem into smaller subproblems, we may be able to find a
sufficiently good solution in a reasonable amount of time. The decomposition of the prob-
lem can be accomplished by assuming that each signal in each period is an independent
decision maker. The effect is to reduce an exponential number of alternatives to consider to
a linear number by solving small subproblems, and coordinating them in a iterative way. To
coordinate the decision makers (traffic signals), game theory (fictitious play [22, 76, 94, 98])
is applied in [25]. If each decision maker who controls a timeperiod for a signal is viewed
as a player in the game, and the average travel time of all vehicles in the traffic network is
viewed as a common payoff for every player, the coordinated-traffic-signal-control problem
can then be represented as a game of identical interests. A joint decision is called a Nash
equilibrium if no individual player can improve its payoff by unilaterally deviating from the
original joint decision. The Nash equilibrium can be viewedas a coordinated local opti-
mum. The equilibrium situation is not always uniquely determined and it is even possible
that oscillations occur. The equilibrium situation that isachieved after an iterative adjust-
ment of traffic control is not always a system optimum [118]. An event-based mesoscopic
deterministic traffic simulator, INTEGRATION-UM, is used as the traffic simulating model
for the coordination algorithm.

Hierarchical structure

Freeway networks Due to the open-loop nature of the optimal control approach AMOC,
the derived optimal control actions are deteriorated by allkinds of system errors, such as
initial states estimation error, future disturbance prediction error, model parameter mismatch
error, and unpredictable incident errors. Therefore, Kotsialos et al. [73] proposed an MPC
approach based on the AMOC algorithm under a hierarchical control structure to avoid the
drawbacks by introducing in the rolling horizon procedure.

The hierarchical control structure consists of three basiclayers (see Fig. 2.2): the Esti-
mation/Prediction Layer, the Optimization Layer, and the Direct Control Layer. The Esti-
mation/Prediction Layer receives historical informationand real-time detected traffic states
to generate the current state estimation and future predictions of the disturbances for the
next layer. The Optimization Layer (AMOC) optimizes the control state trajectory over a
future time horizon based on the initial states estimation and future disturbance prediction
from the upper layer. Then, in the Local Direct Layer, the local ALINEA (Asservissement
LINéaire d’Entŕee Autoroutìere) controller is adapted by the real-time optimized traffic set-
points obtained from the upper Optimization Layer. ALINEA is a local proportional ramp
metering control strategy with feedback [103].
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Figure 2.2: Hierarchical structure [73]

The rolling horizon hierarchical coordinated control has been applied to the Amsterdam
ring-road, and outperforms the local ramp metering approach in terms of both efficiency and
equity [73]. The Amsterdam test is a real test. The combination of AMOC with ALINEA
preserves the positive features of both and cancels their deficiencies.
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Urban networks For centralized control strategies, the real-time computational complex-
ity will increase exponentially when the scale of the urban traffic network grows, which
makes these strategies real-time infeasible for larger networks. Distributed control strate-
gies can avoid this problem, but more effort needs to be takento coordinate the local con-
trollers. Therefore, hierarchical control structures areadopted to address the problem by
implementing the centralized control algorithms as local controllers for an intersection or a
small subnetwork [48, 97, 122, 123]. A hierarchical controlstructure divides the complex
control problem of a large traffic system into different control levels or layers. In differ-
ent layers, control problems with different focuses are solved. Moreover, control problems
with different details are addressed in different levels, e.g. the lower control level mainly
focuses on local control in a more elaborate way, and the higher control level deals with
network-wide coordinated control in a more general way.

1. Virtual-Fixed-Cycle OPAC (VFC-OPAC) [48] is the hierarchical version of OPAC,
which consists of a three-layer control architecture as shown in Fig. 2.3. The OPAC
(Optimized Policies for Adaptive Control) control strategy is the adaptive algorithm
implemented as the local controller of the hierarchical framework. The Local Control
Layer implements the OPAC rolling horizon procedure: it continuously calculates
optimal switching sequences for the predictive horizon, subject to the VFC constraint
communicated from the Upper Synchronization Layer. The Coordination Layer, op-
timizes the offsets at each intersection (once per cycle). The Synchronization Layer,
calculates the network-wide virtual-fixed-cycle (once every few minutes as specified
by the user). The cycle length can be calculated separately for groups of intersections,
as desired. Over time the flexible cycle length and offsets are updated as the system
adapts to changing traffic conditions.

Synchronization Layer

Coordination Layer

Local Control Layer

Figure 2.3: Control structure in VFC-OPAC (adopted from [48])

2. The RHODES system is developed into a multi-level hierarchical structure [97], see
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Fig. 2.4. There are three levels: At the highest level, thereis a dynamic network load-
ing model that captures the slow-varying characteristics of traffic, which are caused
by the network geometry, e.g. road closures and construction. At the middle level,
network flow control, which making decisions according to the prediction and esti-
mation of the traffic flow loads on the roads, is actuated to coordinate road network.
At the bottom level, intersection control is carried out by applying a model-based
rolling horizon optimization approach.
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Figure 2.4: The RHODES hierarchical architecture (adoptedfrom [97])

At the middle level, a string coordination approach, named REALBAND, is adopted
to coordinate intersections. Dynamics of platoons, which are characterized in terms
of size (number of vehicles) and speed, are predicted. When two (or more) platoons
are predicted to arrive at the same intersection and requestopposing signal phases,
conflicts happen. Based on the predicted platoon movement ina pre-defined time
horizon, REALBAND then searches for the best solution to overcome the conflicts
using a decision tree. This decision tree lists all the possible resolutions for the con-
flicts, and then makes a decision. Thereafter, the REALBAND decisions, i.e. phase
durations, are used as constraints to the optimization of the intersection control logic.
The intersection controller will decide the phase start andend times based on recent,
and more accurate observations of the vehicles in each platoon.

3. In [122] a hierarchical traffic control structure is developed. For the bottom level, a
multi-agent approach is applied to reduce the computational complexity, and to add
scalability to the control system. For the upper level, the local controllers are coordi-
nated in both the microscopic and the macroscopic way. The traffic control problem is
divided into several loosely coupled subproblems, such that the combination of all the
solutions of the subproblems together approximate the solution of the original control
problem. In the framework of [122], each piece of infrastructure is represented by an
agent that tries to attain its local objective in close cooperation with other agents.

For a local intersection controller, a new look-ahead traffic-adaptive control approach
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is proposed. Currently, most of the control approaches decide control actions based on
stages, i.e. they optimize the green times for the pre-defined stages. But the new ap-
proach decides the control actions based on the predicted movements of the individual
vehicles arriving at the intersection. The movement-basedapproach is more flexible
than the stage-based approach as it allows green for signalsin different phases to start
sooner if demand for all conflicting movements in the currentphase has cleared.

The coordination procedures of the agents are developed on the basis of the actions of
nearby agents for two levels, i.e. the microscopic level andthe macroscopic level. In
the microscopic coordination level, local controllers exchange information of arriving
vehicles. When a conflict is anticipated based on the information from neighborhood
controllers, the corresponding optimal solution will be iteratively derived by the lo-
cal controllers. In the macroscopic coordination level, inorder to prevent that traffic
breaks down on vulnerable parts of the network, the inflow of traffic toward these
parts of the network should be constrained. The coordination procedure developed
employs two types of constraints: (1) hard constraints enforcing that the volume of
traffic entering the vulnerable area does not exceed the volume the infrastructure is
able to handle, and (2) soft constraints used to tempt agentsfurther upstream in the
network to steer traffic away from the vulnerable area, so as to alleviate the stress put
on downstream agents that have already started gating. The microscopic coordination
procedure is able to adapt to different traffic volumes and platoon ratios, and to cre-
ate and to dissolve progression between consecutive intersections. The macroscopic
coordination procedure can be used to coordinate all kinds of traffic control measures
(e.g. traffic lights, ramp-metering installations, DRIPs (Dynamical Route Information
Panels), etc.) at the level of capacities and flows.

Both the distributed and the hierarchical structures can bechosen to reduce the on-line
computational complexity, and to make the centralized control system more scalable. The
hierarchical control system can be made up of multi-agents (controller) belonging to differ-
ent levels, as Fig. 2.5 shows. Each agent is supposed to fulfill its predefined task and can
make its own control decisions. Agents communicate with each other by transferring infor-
mation. Therefore, the computational complexity of the centralized controller is separated
into multiple small subproblems. A test bed for multi-agentcontrol systems in road traffic
management is developed in [123]. Such a test bed can be used to assess different strategies
for the application of multi-agent systems for dynamic traffic management and to examine
their applicability. It facilitates the development of multi-agent systems for dynamic traffic
management.

2.2.3 Rule-based strategies

Rule-based systems solve a problem using “if-then” rules [57, 113]. These rules are con-
structed using expert knowledge and stored in an inference engine. The inference engine has
an internal memory that stores rules and information about the problem, a pattern matcher,
and a rule applier. The pattern matcher searches through thememory to decide which rules
are suitable for the problem, and next the rule applier chooses the rule to apply. These sys-
tems are suited to solve problems where experts can make confident decisions. However,



20 2 Coordinated Traffic Control — The State of the Art

agent 1

agent 2

supervisor 1 supervisor 2

high−level supervisor

agent 4

agent 3

agent 5

Figure 2.5: Illustration of the coordination of the hierarchical multi-agent system [123]

these systems work only with already created rules and in their basic implementation do not
involve learning.

Freeway networks

HERO

When the congestion is imported from downstream, local ramp metering almost has no
effect. To this end, coordinated control strategies are needed. HERO (HEuristic Ramp-
metering coOrdination) [105] is a simple rule-based coordinated ramp-metering strategy
that applies ALINEA for the local regulators. HERO can coordinate freeway networks of
arbitrary size, including a string containing a number of successive ramps.

The main coordination principle for a string is as follows: Receive the real-time detected
ramp queue lengths and mainstream densities from the local controllers; Check whether
the relative ramp queue lengthω/ωmax exceeds a certain activation threshold, and whether
the merge density is close to (or higher than) the critical density. If both conditions are
satisfied, this ramp is defined as the master ramp, where the queue may soon reach the
maximum admissible value, and then congestion may happen. Therefore, the coordinated
control strategy needs to be activated. In order to prevent congestion at the master ramp,
coordinated control actions are adopted at the slave ramps (the upstream ramps). Define a
minimum ramp queue lengthωmin for the slave ramps, which is updated according to the
real-time changing of the master ramp queue length. By real-time adjustingωmin according
to the traffic state of the master ramp, the queue lengths of the slave ramps are increased to
stay close to the queue length of the master ramp. In this coordinated control algorithm, the
slave ramps hold back some traffic so as to release the pressure from the master ramp, and
prevent congestion. When the relative queue of the master ramp decreases below a certain
threshold or the mainstream density becomes clearly undercritical, the coordination stops.
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The ALINEA-based HERO is shown to outperform the uncoordinated local ramp me-
tering and approximate the efficiency of the sophisticated optimal control schemes (e.g.
AMOC) without the effort for real-time modeling calculations or external disturbance pre-
diction [105].

In Netherlands, the HERO algorithm is also applied to the Amsterdam beltway network,
but with RWS controller as local controllers. The RWS control strategy, developed by the
Dutch Ministry of Transport, is derived from the demand-capacity strategy, which is a feed-
forward control approach based on the measured traffic demand on the freeway and the
pre-defined capacity of the freeway [117].

ACCEZZ

Fuzzy logic systems, like humans, can handle situations where the available information
about the system is vague or imprecise [67, 100]. To deal withsuch situations, fuzzy sets
are used to qualify the variables of the system in a non-quantitative way. Fuzzy sets are
characterized using membership functions (e.g. Gaussian,triangle, or normal) that take a
value between 0 and 1, and that indicate to what degree a givenelement belongs to the set
(e.g., a speed could be 60 % “high” and 40 % “medium”). The membership degrees can
then be used to combine various rules and to derive conclusions. This process consists of
three parts: fuzzification, inference, and defuzzification. Fuzzification involves the trans-
formation of a value of a variable into a fuzzy value, by linking it to a given fuzzy set and
determining a value for degree of membership. Inference uses a set of rules based on ex-
pert opinions and system knowledge and combines them using fuzzy set operators such as
complement, intersection, and union of sets. Defuzzification converts the fuzzy output of
the inference step in to a crisp value using techniques such as maximum, mean-of-maxima,
and centroid defuzzification. One of main difficulties of a fuzzy system can be the selection
of appropriate membership functions for the input and output variables. Moreover, fuzzy
systems are often combined with other AI techniques for their complete deployment.

As indicated before fuzzy systems can be used when accurate information of the traffic
model is difficult to obtain or is not available [15, 74]. A fuzzy logic controller for ramp
metering with a description of the various steps (fuzzification, inference, and defuzzifica-
tion) is presented in [126]. Several fuzzy sets that can relate a variable (input, output) to a
particular situation can be defined such as fuzzy sets for local speed, local traffic flow, queue
occupancy, metering rate, and local occupancy. Using fuzzification input variables such as
speeds, flows, occupancy levels in the vicinity of the fuzzy ramp meter controller and output
variables such as metering rates can be translated to fit the defined fuzzy sets and to obtain
values for the degree of membership. Next, these values are fed to the inference engine,
which is constructed using a set of rules based on the experience of traffic control center
operators and on off-line simulations. The result of the inference is then transformed into
a crisp value in the defuzzification step, after which the final result is applied to the traffic
system or presented to the operator of the traffic control center for further assessment.

ACCEZZ (Adaptive and Coordinated Control of Entrance Rampswith Fuzzy Logic)
[16] is a rule-based algorithm for coordinated ramp metering. The rule base is defined as a
set of rules in fuzzy logic, incorporated with human expertise. Fuzzy logic allows simple
development and modification, because rules are easy to define, alter, or eliminate. The
fuzzy controller also compensates for poor, inaccurate measurements. Since a fuzzy con-
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troller can easily handle nonlinear systems with unknown models, it has a distinct advantage
for controlling complex traffic systems.

The ACCEZZ approach can be developed into several versions of the algorithms, i.e.
Neuro-Fuzzy Online, Neuro-Fuzzy Offline, Genetic Fuzzy Online, Genetic Fuzzy Offline,
and Genetic Fuzzy Reality. The core of the ACCEZZ model family is a fuzzy controller
(see Fig. 2.6). The control rules are expressed by defining a number of fuzzy sets that are
identified and derived from heuristics, expert knowledge, and simulation testing. The inputs
of the fuzzy controller are measured on the mainlines and on-ramps, i.e. local speed, local
traffic flow, and local occupancy, upstream and downstream ofthe on-ramp. The output of
the fuzzy controller, the metering rate, is calculated every minute based on these real-time
measured and historical traffic data.

Traffic Data

Fuzzyfication

Interface

Defuzzyfication

Fuzzy Controller

On−Ramp
Occupancy

Upstream
Flow and Occupancy

Stop−Bar
Occupancy

Metering Rate
or

Cycle Time

Downstream
Flow and Speed
Bottleneck Capacity

Traffic
signal

Figure 2.6: Fuzzy ramp metering [16]

In order to coordinate the local fuzzy ramp metering controllers, the shape of each in-
put or output fuzzy set at each on-ramp location of the metered freeway is adjusted dy-
namically. So, one way of modifying the behavior of the ramp metering algorithm is by
recalibrating the parameters of each fuzzy set, i.e. redefining the linguistic variables. Learn-
ing/optimization methods obtained from neural network theory or evolutionary algorithms
are used to find the optimal parameters of the fuzzy sets. The neuro-fuzzy algorithm learns
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the fuzzy parameters aiming at minimizing the Total Time Spent in the metered freeway sys-
tem. The macroscopic traffic model METANET is used to evaluate the different coordinated
ramp metering strategies, and helps to find the best system-wide strategy. Alternatively, a
genetic algorithm can be used to determine the optimal coordinated parameters of the fuzzy
ramp metering controllers based on macroscopic traffic model METANET. The resulting
systems are either called neuro-fuzzy or genetic fuzzy rampmetering.

Comparing with five other standard ramp metering algorithms, i.e. demand-capacity, oc-
cupancy strategy, ALINEA, Denver’s HELPER algorithm, and Minnesota’s Zone approach,
all developed versions of the ACCEZZ model family substantially improve the traffic con-
ditions for the freeway analyzed [16].

Urban networks

Urban traffic control based on hybrid petri nets

An urban network of signalized intersections can be suitably modeled as a hybrid system1,
in which the vehicle flow behavior is described by means of a time-driven model and the
traffic light dynamics are represented by a discrete-event model. Petri nets are known to be
very suitable to model discrete-event systems, since they are able to capture the precedence
relations and interactions among the concurrent and asynchronous events that are typical of
discrete-event systems. A Petri net is a directed bipartitegraph, in which the transitions (i.e.
events that may occur) are signified by bars and the places (i.e. conditions) are signified by
circles. Based on the hybrid Petri net model, a rule-based urban traffic control structure [39]
(see Fig. 2.7) is proposed to control and coordinate traffic networks, aiming at improving
the performance of some classes of special vehicles, i.e. public and emergency vehicles.

Priority
controller

Local
controller

Intersection

Supervisor

HPN model

Figure 2.7: Control structure based on a hybrid Petri net model (adopted from [39])

Traffic lights can be optimized under both regular and special conditions with this con-

1Hybrid systems are systems that are characterized by both continuous and discrete-event dynamics (switch-
ing). They exhibit both continuous dynamics (which can be modeled by differential or difference equations) and
discrete-event behavior (switching).
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trol structure. That is to say with or without a public or emergency vehicle asking for a
privilege. Fig. 2.7 illustrates the operation of the system. 1) The local controller regulates
the intersection under the hypothesis of regular conditions, by optimizing the traffic light
plan based on the traffic model; 2) The priority controller isactuated to force a modified
traffic light plan when a particular event occurs; 3) The supervisor coordinates all the local
and priority controllers and solves all the problems involving several intersections.

The local controller executes a traffic-responsive plan that optimizes the phase splits
taking the queue length at the intersection as the performance. The priority control rule at
a intersection is: 1) If a privileged vehicle asks for priority, then the arriving time of the
vehicle will be predicted by the hybrid traffic model; 2) If the traffic light is green, when the
vehicle arrives, then there will be no intervention (i.e. the algorithm stops); 3) If a red light
is expected, the local priority controller has to decide whether to extend the current green
time, or to stop the current red light earlier, and to anticipate the next green time.

The rule-based urban traffic coordinated control structurevia hybrid Petri nets is able to
take public and emergency vehicles into consideration. Thehybrid Petri net model used has
been validated through real traffic data about the Italian city of Torino [39].

Fuzzy rule control system

Similar to ACCEZZ for freeway networks, fuzzy-logic controllers with genetic algorithms
or neural network algorithms as adapting approaches for thefuzzy rules are also applied in
urban traffic systems.

In [61], a decentralized urban traffic structure is proposed. It applies a fuzzy-logic con-
troller as local intersection controller, and a dynamic-programming2 technique to coordinate
the control results obtained from fuzzy-logic controllersand to derive the green time for
each phase in a traffic-light cycle. In each fuzzy-logic controller, a GA algorithm is applied
to learn and update in real-time the fuzzy sets.

A more complex urban network control hierarchical architecture is given in [26] based
on a fuzzy neural decision support principle, as Fig. 2.8 shows. The architecture consists
of three layers. The lowest layer consists of intersection controller agents that control indi-
vidual, preassigned intersections in the traffic network. The middle layer consists of zone
controller agents that control several preassigned intersection controller agents. The highest
level consists of one regional controller agent controlling all the zone controller agents.

In each layer, every agent can obtain traffic data and make decisions autonomously. Both
lower layer agents and upper layer agents can send cooperative factors (requests) to each
other. In the zone controller agents, fuzzy control algorithms are adapted by changing the
fuzzy rules using evolutionary algorithm, i.e. neural network algorithm. Several techniques,
including reinforcement learning, weight adjustment, andadjustment of fuzzy relations,
have been applied to adapt the dynamics of the agents online.

2The basic idea behind dynamic programming is to decompose a multistage decision problem into a number
of subproblems that calculate the optimal path between all states before and after one decision stage.
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Figure 2.8: Multi-agent architecture for urban traffic signal control (adopted from [26])

Mixed freeway and urban networks

HARS

HARS (Het Alkmaar RegelSysteem) [75, 124, 125], which means“The Alkmaar Control
System”, is a state-of-the-art traffic management system implemented in the Alkmaar re-
gion in the Netherlands. The HARS system combines both a top-down traffic management
strategy and a bottom-up traffic management strategy into a hierarchical traffic network
management architecture. The two traffic management strategies complement each other.
The top-down strategy makes decisions on the control schemes based on the predefined
traffic scenarios stored in the expert database. In order to overcome some drawbacks of the
top-down structure, the HARS system adopts an agent-based bottom-up traffic management
architecture. In the bottom-up strategy, all road segmentsand nodes that connect the seg-
ments are defined as agents. The agents can communicate with each other, and coordinate
with each other to make control decisions according to the predefined rules based on the
expert knowledge.

Fig. 2.9 shows the structure of the HARS system. In the “Data gathering” block, the
real-time traffic information (traffic states) are measuredand collected through the loop de-
tectors. Based on these measurements, the traffic model MaDAM [11] is used to determine
what the traffic state is on links that have no sensors of theirown in the “Traffic model”
block. In addition, MaDAM predicts what the traffic states will be for the links in the next
30 minutes in blocks of 5 minutes. In the “Network management” block, both the agent
controllers and the expert control schemes are implemented. For the top-down expert con-
troller, proper control strategies are chosen based on the identified scenario. For the agent
controllers, link agents compare the information (obtained from the “Traffic model” block)
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Figure 2.9: The structure of the HARS system (adopted from [75])

about their traffic state with a so called reference framework. The reference framework de-
fines criteria that the traffic state on the link should meet. If the link’s traffic state deviates
from the reference framework, or will deviate in the near future, links will communicate via
intermediate nodes with other links and ask them to reduce outflow in order to meet the cri-
teria. If the upstream link is not able to adjust its outflow tomake the downstream link meet
the criteria, then it will forward the service-call to its upstream neighboring link(s). The
derived coordinated control actions are sent back to the traffic process to be implemented.
All the predefined configurations of the control strategy andthe reference frameworks are
stored in a database, represented by the “Expert control schemes” block. The “Measure
control” block represents the local controller, which is taken as backup controller in case
that the coordinated controller fails.

Alkmaar has two types of control measures: traffic light systems and Dynamic Route
Information Panels (DRIPs). The DRIPs will be used for rerouting and informing drivers.
The traffic light systems will be used as an instrument to change intensities of traffic flows.

2.2.4 Case-based strategies

Case-based reasoning, as the name suggests, solves a problem using the knowledge that
was gained from previously experienced similar situations(cases) [1, 111]. In this way, this
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technique learns the way a new problem is solved and stores the new solution in a database.
A disadvantage of this approach is that it might not be clear what should be done for a case
that is not yet present in the case base. However, new cases could be added on-line to deal
with this problem.

Dynamic traffic management focuses on the integrated (as opposed to isolated) and co-
ordinated (combination of different measures, e.g. ramp-metering, variable speed limits,
dynamic route guidance, opening shoulder lanes, providingroute information, etc.) deploy-
ment of measures, anticipating on future changes in traffic conditions. In the regional traffic
management centers, traffic operators decide when and whichdynamic traffic management
measures are to be deployed in case of recurrent and non-recurrent conditions. To improve
the existing dynamic traffic management systems, BSES (BossScenario Evaluation System)
[38, 64, 65] based on fuzzy multi-agent case-based reasoning is proposed.

BSES can evaluate control scenarios in real time, predicting their effects in terms of
various measures of effectiveness, such as total travel time, vehicle loss hours, average
speeds, fuel consumption, etc. The main characteristics ofthe system are 1) that it is case-
based, i.e., it uses either synthetic or real-life examplesof the effect of control scenarios
under different circumstances; 2) that it determines the similarity of the current situation to
different examples in the case base using fuzzy logic, and 3)that it is agent-based, meaning
that it predicts the effects of the different measures for small subnetworks and combines
these predictions afterwards.

Due to the exponential growth of the case base, straightforward application of case-
based reasoning to the decision support task is not feasible. Therefore, representative cases
that can occur in practical situations are required to find out first how to reduce the case base
scale. To address this problem, two aspects are introduced into the case-based reasoning
framework: 1) Fuzzy logic is used to combine different casesin the case base (fuzzy case-
based reasoning); 2) The network to be controlled is dividedin n partially independent
subnetworks for which the aforementioned fuzzy case-basedreasoning approach can be
applied. An iterative approach is used to find consistent solutions for the subnetworks.

The main advantages of the BSES approach are the speed of computation (compared to
using traffic flow models), the ability to use actual knowledge directly (rather than general
knowledge or simulated data), and the ability to learn from previous experiences (continuous
step-wise learning). It turns out that the system is able to very quickly produce predictions
on the impact of different control scenarios to the traffic operations in the network, and that
it can thus support operators in their decision tasks in a real-time decision environment.

2.2.5 Anticipatory control strategies integrated with traffic assignment

Traffic control discussed here generally refers to controlling the traffic control measures
(e.g. traffic lights, traffic information, and ramp-metering) to reduce the traffic delay in the
traffic network. However, the travelers inside the network may change their routes, when the
new traffic control measures change the traffic in the network. Therefore, traffic control and
the behavior of the travelers influence each other. As a result, a new traffic control strategy
is constructed by combining the traffic control problem withthe traffic assignment problem.
The new traffic control problem is formulated into a bi-levelprogram in which the upper
level deals with the control problem, and the lower level with the assignment problem.

In [116], an anticipatory control strategy is proposed to control and coordinate urban
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traffic networks by predicting the future traffic flows withinthe network taking the varia-
tion of the traffic assignment into consideration. As the traffic control and the behavior of
the travelers have different goals, game theory is applied to solve the bi-level optimization
problem of the anticipatory control. The traffic control engineer and all the road users are
then considered as two players. The traffic engineer controls the signal settings and the road
users have route choice. A Nash game is played when both players react on each other’s
moves: the traffic engineer sets the signal control plans, the road users travel and select
routes based on their individual preferences and the experienced travel times. The game
ends when reaching the Nash equilibrium, which is the situation when no player can benefit
by changing his strategy, while the others keep their strategies unchanged. In every itera-
tion, an optimization problem is solved to obtain the best control plan for the predicted time
period and for the whole traffic network in the upper level. Then, the road users chose their
routes according to the travel costs under the new plan. The traffic engineer decides on a
signal plan based on the anticipated traffic flows and the roadusers react by changing their
routes, and this procedures repeats until an equilibrium isreached.

Fig. 2.10 illustrates the framework for developing, testing, and evaluating all kinds of
network control strategies. The “optimization control plan” is the part where the anticipa-
tory control strategy is determined. After the control planis derived by certain algorithm,
a simulation is started with a dynamic network loading modelto see how traffic propagates
through the network with this control plan; based on these results a dynamic traffic assign-
ment is run to obtain a new route flow distribution, and again the dynamic network loading
model is run to come to a final evaluation of the control plan.
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Optimisation control plans

Dynamic network loading

Dynamic assignment

Generation control plans

Dynamic network loading

Dynamic assignment

Dynamic network loading

fold,gold,cold

fold,gnew,cold

fold,gnew,cnew
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fold = fnew

gold = gnew

cold = cnew

Figure 2.10: Framework for anticipatory control (adopted from [116])



2.2 Network coordination approaches 29

2.2.6 Alternative approaches

According to [35], a Macroscopic Fundamental Diagram (MFD)for urban traffic streets is
proved to exist, and [53] shows that an MFD also exists on a neighborhood-sized sections
of cities, and that it is independent of the demand. This result is tested in neighborhoods of
the order of 10 km2 in cities like Yokohama, Japan, etc. The experiment data aregathered
by GPS-equipped taxis and fixed detectors. The network MFD obtained is illustrated in
Fig. 2.11. It can be used to control network demands to improve accessibility. Simple
versions of the control strategies based on the network MFD are already used in London,
Stockholm, and Singapore, etc.
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Figure 2.11: Network MFD

A large traffic network can be divided into several small neighborhood subnetworks.
The subnetworks are controlled and coordinated so that theyremain in Region B on the
MFD (see Fig. 2.11), in order to maximize throughput of the networks. Based on the MFD
of the subnetworks, a series of coordination approaches canbe developed:

• Rule-based control

• Proportional control

• Anticipative control

Rule-based control As Fig. 2.12 shows, the network is divided into 5 subnetworkswith
different subnetwork MFDs. We can see that subnetwork 4 is congested. The coordination
control rules can be designed as: 1) Check the neighboring subnetwork status of the prob-
lem subnetwork (i.e. subnetwork 4), to see whether they are in the safe regions (Region A
and Region B) on the MFDs (as subnetwork 2 and 5 are in safe regions). 2) Alleviate the
congestion by reducing the output flow of the neighboring subnetworks from the subnet-
work with the lowest priority on until the problem is solved,i.e. first reduce the flow from
subnetwork 5 to subnetwork 4.

Proportional control Proportional control is applied to control network traffic flow in the
Region B of Fig. 2.11, which takes the real-time detected network traffic states as feedback:

Q∗(k+1) = Q(k)+α(N∗−N(k)) (2.3)
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Subnetwork 4 has a problem

There is space for control in Subnetwork 2 and 5

Subnetwork 5 has a lower priority than 2

Subnetwork 5 limits the inflow to 4 (primary)

Subnetwork 2 limits the inflow to 4 (secondary)

Figure 2.12: Rule-based control strategy based on network MFD

whereQ(k) is the network flow rate at timek, N(k) is the number of vehicles in the network
at time stepk, N∗ is the traffic state control set-point derived from the MFD (expressed as
the number of vehicles in the network), andα is the control gain. Proportional control aims
at controlling the traffic network within the predefined region (e.g. Region B) by adjusting
in real-time the input and output traffic flow of the network.

Anticipative control A simplecontinuous dynamicsubnetwork model is established based
on the network MFD. For subnetworki, we have

dNi

dt
= ∑

j
q j(t)−Qi(Ni(t)), (2.4)

where j ∈Ni is the neighborhood subnetwork of subnetworki; q j(t) is the anticipated output
flow rate of subnetworkj into subnetworki at timet, and∑ j q j(t) is the sum of the input
flow rates for subnetworki; Qi(Ni(t)) is the predicted output flow rate of subnetworki
derived from the MFD function based on the current network traffic stateNi(t) (i.e. the
number of vehicles). This model can roughly describe and predict the traffic states evolution
of the subnetworks, which are influenced by the traffic flow exchange among subnetworks.
An anticipative control strategy can be derived to coordinate the subnetworks based on this
simple model.
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2.3 String coordination approaches

A string is a link in the freeway network, or a road in an urban network. It belongs to a
freeway network or a urban traffic network, and it generally plays an important role in the
traffic networks. Therefore, some research has been developed focusing on coordination of
strings. As a part of the traffic network, almost all the coordination strategies mentioned
above are also suitable for the string. Moreover, some traffic management systems [48, 97]
above are designed taking the string coordinated control objective as the target of one of the
layers in the hierarchical control structure. Nevertheless, there are also some approaches
that focus explicitly on strings, and they will be discussednext.

Freeway strings

The cell transmission model [33, 77] divides a freeway intoN sections or cells, each with
one on-ramp and one off-ramp (see Fig. 2.13). In the figure, vehicles move from the right
to the left. Sectioni is upstream of sectioni −1. There are two boundary conditions: free
flow prevails downstream towards Section 0, and on the upstream of the freeway here is an
on-ramp with an inflow ofrN. The flow accepted by SectionN−1 is fN(k) vehicles per
period at time stepk. The cumulative difference leads to a queue of sizenN(k) in periodk,
andr i andsi are on-ramp flow and off-ramp flow for Sectioni at time stepk respectively.
The densityni in Sectioni is updated as

ni(k+1) = ni(k)− fi(k)/(1−βi)+ fi+1(k)+ r i(k), 0≤ i ≤ N−1 (2.5)

whereβi is the split ratio.

f0 fi−1 fi fi+1 fN rN

nNs0 si sN−1r0 r i rN−1

0 i−1 i i +1 N−1

Figure 2.13: The freeway has N sections. Each section has oneon- and one off-ramp.
(adopted from [55])

Reference [55] provides a complete analysis of the behaviorof the cell transmission
model of a freeway with stationary demand. The state of the dynamical system is theN-
dimensional vectorn of vehicle densities in theN sections. The key to the behavior of
cell transmission model is the location of bottleneck sections where flow equals capacity.
The bottlenecks partition the freeway into decoupled segments. Each decoupled segment
starts with a bottleneck and ends just before the next upstream bottleneck. In each segment,
the equilibrium set is determined only on its own condition,and the number of congested
sections in the segment depends on which equilibrium in the set the segment belongs to.
Each equilibrium is stable and every dynamic trajectory of the traffic states converges to
certain equilibrium state. Letr be a demand vector for all segments andφ the resulting
equilibrium flow vector for all segments, then

φN = rN, φi = (1−βi)(φi+1 + r i), 0≤ i ≤ N−1, (2.6)
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Table 2.1: Comparison of the features for different traffic coordination control methodolo-
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Hierarchical Compromise H H Yes Yes H
Distributed Local H H Yes Yes H

Optimal control Global M H Yes No H
Rule-based Compromise M+ L Potentially Yes M
Case-based Compromise M+ M Yes Yes M
Anticipatory control Global H+ H Yes No H
MFD-based Global M- L Yes Yes L

H - High; M - Medium; L - Low; Compromise - between global and local

which means that the equilibrium flows in the segments dependon both the traffic demands
and the current traffic flow states for the segments.

It is proved that, under the following two conditions: 1) when bottleneck is caused by
demand exceeding the capacity; 2) when congestion already exists as initial condition, ramp
metering control can avoid congestion from happening or relieve congestion that already
exists.

Urban strings

Urban string control mainly refers to arterial progressioncoordination, which maximizes
the green traffic light band to reduce the traffic delays on thearteries. In [51], a mathemati-
cal programming model for the development of optimal arterial-based progression schemes
is proposed. Under such a scheme, a continuous green band is provided in each direction
along the artery at the desired speed of travel to facilitatethe movement of the principal
through-flows along the arterial. Both uniform and variablebandwidth models are formu-
lated. New approaches generate variable bandwidth progressions in which each directional
road section is allocated an individually weighted band that can be adapted to the prevailing
traffic flows on that link. Mixed-integer linear programmingis used for the optimization.
Simulation results indicate that this method can produce considerable gains in performance
when compared with traditional progression methods. A real-time progression optimization
approach can be also found in [50], which is a multi-level real-time traffic-adaptive control
algorithm taking the dynamic traffic assignment and the routing capacity into consideration.
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2.4 Comparison

The main characteristics of the methods discussed above aresummarized in Table 2.1 and
Table 2.2. As Table 2.1 illustrates, in general, the more elaborate information that the con-
troller takes into consideration, the better control result will be obtained. The centralized
MPC approach makes use of the total global information by applying a traffic network
model and feeding the model with real-time detected traffic states. So, the centralized MPC
approach has the highest coordination control quality. However, it also has a high com-
putational complexity at the same time, and needs more efforts to implement. Therefore,
distributed and hierarchical MPC structures are developedto solve this problem by making
some compromises. They give up a part of the global information to obtain simplified sub-
problems, and improve the applicability of the approaches by controlling and coordinating
the subproblems. Moreover, a distributed structure also makes the controller scalable. De-
spite of the drawback of the high computational complexity,the centralized MPC approach
still has the best global control performance, and can be used for long-term traffic control
or planning, in which the control algorithm does not need to react very fast. Other solutions
to this problem are to use distributed and hierarchical MPC,or to develop efficient model
predictive control algorithms for large traffic networks that are applicable to real-life traffic,
and keep good control performance as well.

Rule-based and case-based approaches are control strategies mostly based on histori-
cal information and expert experience. Because they are comparatively easy to implement,
simple rule-based and case-based approaches first have beenapplied in traffic management
system to coordinate traffic networks at the beginning. Moreover, they are the control ap-
proaches that are easy to coordinate all kinds of traffic control measures and manage large
complex transportation systems. However, the control plans obtained by rule-based and
case-based strategies are in general not optimal solutions. But, some smart rule-based and
case-based control systems (e.g. HERO, ACCEZZ, HARS, BSES,etc.) can adjust them-
selves by updating their rules or databases according to thereal-time measured traffic states
or the predicted traffic states through the traffic models. This makes the rule-based and
case-based approaches more adaptive to the variation of thereal traffic.

In fact, when the traffic control plans change, the traffic flows in the traffic network will
be reassigned, because the road users will also change theirroutes. Therefore, it is more
realistic to also consider the traffic assignment while controlling the traffic. The anticipatory
control approach constructs a bi-level program problem, inwhich the upper level deals
with the control problem, and the lower level with the assignment problem. The control
results of the anticipatory control are good because of taking the dynamic traffic assignment
information into consideration. However, because of the iterative feature of the solver, the
anticipatory control approach suffers the same drawback asthe MPC control approaches,
i.e. high computational complexity. Just like the centralized MPC, the anticipatory control
can also be used for long-term traffic control and planning.

Recently, the Macroscopic Fundamental Diagram (MFD) has also been discovered to
exist for a neighborhood-sized traffic network. The family of network MFD-based ap-
proaches to coordinate traffic subnetworks is scalable, theeasiest strategy to be imple-
mented, and they have a very low computational complexity. Of course, they also result
in a rougher approach, which cannot guarantee a very high control quality.
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2.5 Summary

Traffic states and traffic control measures are not isolated,they interact with each other.
Therefore, coordinated traffic control strategies are veryimportant for coordinating all the
traffic control measures to improve the transportation environment.

In this literature survey, coordinated traffic control strategies for both traffic networks
and strings are summarized. As a part of the traffic network, traffic strings can also be
controlled and coordinated by most of the strategies for traffic networks. From the view
of traffic control methodologies, the existing coordinatedtraffic control strategies can be
classified into MFD-based (Macroscopic Fundamental Diagram based) approaches, case-
based approaches, rule-based approaches, anticipatory control approaches, optimal control
approaches, and MPC (Model Predictive Control) approachesunder centralized, distributed,
and hierarchical control structures. The characteristicsof these methodologies have been
analyzed and compared in this literature survey.

Anticipatory control, optimal control, and MPC all belong to the same category, ad-
vanced model-based optimization control methods. The family of model-based optimiza-
tion control approaches is the most powerful strategy, as ithas high control quality and
is capable of coordinating all integrated control measuresat the same time. However, the
drawbacks of model-based optimization approaches are: they have a comparatively high
real-time computational complexity, and it takes more effort to be implemented and get it
working in real-life traffic applications.

On the other hand, the MFD-based approaches are scalable, the easiest strategies to
be implemented, and have a very low computational complexity. Of course, they are also
rougher approaches that cannot guarantee a very high control quality. However, at present
the network MFD-based control approaches are methods that can be implemented in prac-
tice and start working in a short time period.

Compared with the former categories of control methodologies, rule-based approaches
and case-based approaches seem to offer a good trade-off between control performance and
complexity.

In this chapter, we provide a general summary on the state-of-art of the existing coordi-
nated traffic control approaches. In the following of the thesis, we will focus on a specific
layer of coordinated traffic control problems for urban traffic networks. To achieve higher
control quality in the future, more advanced traffic coordinated control approaches need
to be considered. MPC approaches are promising methods thatcan provide a good global
coordination performance for traffic networks. But more work is necessary to improve the
efficiency of MPC controllers for traffic networks to make it applicable in practice, and to
build user-friendly interface to make MPC easier to be implemented in reality. Therefore,
the emphasis of the thesis is mainly put on investigating efficient model predictive control
methods for large-scale urban traffic networks.
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Chapter 3

Framework for MPC Control of
Large-scale Urban Traffic
Networks

Traffic congestion is a serious issue for urban areas, especially for big cities. Because the
population density in large cities is particularly high, and thus the requirements for trans-
portation are also high for both commercial reasons and personal reasons. Moreover, urban
road networks grow larger and larger, and become more and more complex. Therefore,
an efficient transportation management system is necessary. Thus, a traffic control system
based on Model Predictive Control (MPC) is proposed for urban traffic. To better control
a large-scale urban road network, a proper framework of traffic controllers is necessary for
the following reasons:

• Physical structures:
When a city becomes very large, it can be composed of many districts with their own
local traffic management centers, or by a downtown area and several satellite cities
surrounding the downtown. So, a large-scale urban traffic network can be geograph-
ically divided into many subnetworks. Therefore, it is necessary to design a control
framework with multiple levels to optimize the overall performance and to coordinate
the underlying subnetworks.

• System dynamics:
The dynamics of a traffic system can be either slowly changingor fast changing.
For instance, similar traffic flow features will repeat on a weekly basis, while slowly
changing during months or even years. But, traffic flow can also change fast within an
hour or even a minute. Moreover, the traffic system dynamics can also vary differently
for different levels of the traffic network scale. For example, the traffic dynamics of
an intersection can be modeled at a faster time scale, while the traffic dynamics at the
network level may be described at a slower time scale. Therefore, according to the
specific dynamics of traffic systems, a structured traffic control system is necessary
aiming at regulating the traffic on different temporal levels.

37



38 3 MPC-Framework

• Control objectives:
A traffic system is a large complex system composed of freewaytransportation, urban
transportation, public transportation, pedestrians, etc. The integrated traffic system
has different control objectives for different types of transportation. A structured
control system can coordinate the multiple control objectives.

• Control models:
The traffic models used for control differ from each other a lot. There are models
for a variety of transportation systems, freeways, urban roads, pedestrians, etc. There
are also models with different modeling powers, i.e., different modeling details or
different levels of descriptive abilities. Some models aremore elaborate and complex,
while some are rougher and simpler. Due to the differences among traffic models,
a distributed control structure can be applied to coordinate, and multiple levels of
controllers can be designed based on different models aiming at solving the specified
problem.

• Computation complexity:
When the scale of the urban traffic network increases, the computational complexity
of a centralized MPC controller grows about exponentially in practice1. So the CPU
time needed for solving the on-line optimization problem for the centralized MPC
controller will become very long, and as a consequence the optimization problem
will become real-time infeasible when the MPC controller isimplemented in a real-
life traffic network. Therefore, the large urban traffic network needs to be divided
into several smaller subnetworks so as to divide the computational burdens and then
be coordinated by a coordination framework.

3.1 Network-wide control structures

When a traffic network becomes large, it is necessary to control the large-scale traffic net-
work under a proper control structure. A well-structured traffic control system can avoid or
solve the problems mentioned above, and also may help the system achieve a better perfor-
mance [114].

3.1.1 Centralized control structure

In centralized control, the controlled system is modeled asa whole system, and is controlled
by one overall controller (see Fig. 3.1). This controller supervises the whole system, and has
full information about the system. Based on the full information, the controller makes the
decisions that are optimal for the entire system, and sends them to the system to implement.
The centralized controller has full information shared by the entire system, which is called
classical information pattern, in which the overall information of the system is centralized
and known by every element within the system. For a system with s elements, the classical

1The MPC optimization problem is in general non-convex and nonlinear, and thus NP-hard [47]. In practice,
this means that the execution time will increase exponentially as the problem size increases.
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information pattern can be expressed as

I(t) = {(ui , yi)|ui : [t0, t] → R
nu,i : τ 7→ ui(τ), yi : [t0, t] → R

ny,i : τ 7→ yi(τ), i = 1,2, · · · ,s}

u(t) = f (I(t)) , (3.1)

whereui andyi are the input and the output signals of elementi in the system, andI(t) is
the overall full information of the system at time instantt. The full vector of the control
inputs to the system,

u(t) =





u1(t)
u2(t)

...
us(t)




, (3.2)

depends on the overall information of the system, i.e.I(t).

Controller

System

y u

Figure 3.1: Centralized control structure

In principle, if an MPC controller is applied in a centralized structure, it can derive and
guarantee the globally optimal control actions for the whole traffic network based on the
classical information pattern. It can maximize the throughput of the whole network, and
provide network-wide coordination of the traffic control measures. However, the problem is
that the on-line computational complexity for centralizedMPC grows about exponentially
in practice, when the network scale gets larger. Therefore,even though centralized MPC
can guarantee the best overall control performance for the whole traffic network in theory,
it also pays the highest computational cost for its good performance, and suffers from the
risk of not being applicable in real-life traffic.

3.1.2 Decentralized control structure

Decentralized control divides the overall system intos subsystems, and controls the sub-
systems separately based only on the local model and the information of the corresponding
subsystem (see Fig. 3.2). By dividing the original system into subsystems and by design-
ing decentralized controllers, the full information of thewhole system is also separated
into parts. The information interactions between subsystems are cut off, which results in a
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non-classical information pattern:

Ii(t) = {(ui , yi)|ui : [t0, t] → R
nu,i : τ 7→ ui(τ), yi : [t0, t] → R

ny,i : τ 7→ yi(τ)}

ui(t) = fi (Ii(t)) for each subsystemi = 1,2, · · · ,s, (3.3)

whereui andyi are the input vector and the output vector of subsystemi, andIi(t) is the
local information of subsystemi. So here, the vector of the control inputs to subsystemi,
ui(t), depends only on its local informationIi(t).

Controller 1 Controller 2 Controllers

System 1 System 2 Systems

y1 y2 ysu1 u2 us

Figure 3.2: Decentralized control structure

Decentralized control can be opposed to centralized control. The computational com-
plexity of the centralized MPC controller of a large urban traffic network can be reduced
efficiently by dividing the network into small subnetworks,and controlling the local subnet-
work MPC controllers separately in a decentralized structure. The traffic flow interactions
between subnetworks are cut off (or disconnected), and willbe considered constant and
known by each subnetwork in advance. Because the estimates of the input traffic flows
from other subnetworks may be far from the real values, the local MPC controllers may not
be able to find the real optimal solutions for the subnetworks. Moreover, since the subnet-
works are completely disconnected, the overall performance of the whole network will be
deteriorated.

3.1.3 Distributed control structure

Similar to the decentralized control, distributed controlalso uses independent local con-
trollers for different subsystems. Different from decentralized control, the local controllers
exchange information and coordinate between each other. Therefore, each local controller
will make its own decisions based on both information from the subsystem itself and the
information obtained from other subsystems (see Fig. 3.3).The information pattern is non-
classical and is expressed as

Ii(t) = {(u j , y j)|u j : [t0, t] → R
nu, j : τ 7→ u j(τ), y j : [t0, t] → R

ny, j : τ 7→ y j(τ), j ∈ N i ∪{i}}

ui(t) = fi (Ii(t)) for each subsystemi = 1,2, · · · ,s, (3.4)

whereIi(t) is the local information of subsystemi, N i is the set of the neighboring sub-
systems of subsystemi (“neighbor” can be pre-defined by the designer, which can be the
adjacent subnetworks, or even including the subnetworks that are not directly connecting to
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subnetworki), andui(t) is the vector of the control inputs to subsystemi, which depends on
its local information and the information from the neighboring subsystems of subsystemi.

Controller 1 Controller 2 Controllers

System 1 System 2 Systems

y1 y2 ysu1 u2 us

Figure 3.3: Distributed control structure

Distributed MPC offers a compromise between the decentralized MPC and the central-
ized MPC. It keeps the advantage of decentralized MPC as regards computational efficiency,
and at the same time it also considers the status of other subsystems and tries to approach
the overall performance of the centralized MPC. The more complete information the local
MPC controllers have, the better overall performance of thewhole traffic network will be
achieved. However, if the amount of information that the local MPC controllers take in to
consideration of increases, the computational complexitywill become very high, and can
then be comparable with the centralized MPC.

3.1.4 Hierarchical control structure

Hierarchical control (Fig. 3.4) is another control structure that tries to find a compromise
between decentralized control and centralized control. Instead of giving all the control au-
thority to local controllers, the hierarchical control structure divides the control problem into
multiple control problems at multiple levels. On differentlevels, the controllers mainly aim-
ing at solving specified different tasks. Generally speaking, the upper-level controllers will
coordinate (or supervise) the subsystems from a global point of view. The lower-level con-
trollers make decisions by themselves taking the advices from the upper-level controllers
into consideration. Therefore, the information pattern ofhierarchical control can contain
two formats: on the coordination (or supervision) level, itcan be a classical information
pattern as the centralized controller; on the local level, it can be a non-classical information
pattern either as in the decentralized controller or as in the distributed controller. Hierar-
chical control (see Fig. 3.4) allocates the control tasks todifferent control levels, on which
control problems of different spatial/temporal scales aredealt with. This results in small-
sized control problems to be solved at each control level.

According to the tasks allocated to the different control levels, the hierarchical control
structure can be classified into two types:

• Bottom-up:
If the local control decisions are made mainly by the local controllers themselves,
and the upper-level controller is only responsible for letting the subnetworks commu-
nicate and coordinate with each other, then the hierarchical control structure is in a
bottom-up format. The main control tasks are done by the local controllers, while the
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Coordinator/Supervisor

Controller 1 Controller 2 Controllers

System 1 System 2 Systems

y1 y2 ysu1 u2 us

Figure 3.4: Hierarchical control structure

coordinator (or supervisor) will balance the resources, allocate the benefits among the
subnetworks, etc.

• Top-down:
If the upper-level controller takes the main control task ofthe whole system like a
centralized controller, it will make decisions for the whole network and give the com-
mands to the local controllers, while the tasks of the local controllers are to decide
how to carry out the commands obtained from the upper-level controller, then the
hierarchical control structure is in a top-down format. Different from a centralized
control problem, a top-down hierarchical control problem solves a more general con-
trol problem on the higher level, e.g. a control problem based on a more aggregate
subnetwork input/output model, and then assigns the control results as the references
for the lower level controllers. In this case, the supervisor from the upper level does
not only coordinate the subnetworks, but also generates theglobal optimal solution
for them, while the local controllers are just followers whowill carry out the deci-
sions.

Therefore, comparing all the control structures above, thedistributed control structure
and the hierarchical control structure can reduce the computational complexity of control-
ling a large-scale traffic network as a whole, and meanwhile also can achieve a trade-off
between the overall control performance of the entire network and the local control perfor-
mances of subnetworks. This multi-subnetwork control structure makes a modular design
for the controller of each subnetwork possible, which enable the the network-wide con-
troller to be expanded or reduced by adding or cutting subnetworks easily. As a result, both
the flexibility and the scalability of the network-wide controller increase for the sake of the
modular design for the multi-subnetwork control structure. Furthermore, the reliability, the
sustainability, and the robustness of the traffic control system are also increased. Each local
controller can, in the worst case, work independently. Thus, the control system will not
break down, even if there are failures in other local controllers or even at the coordinator
(or supervisor). However, for the top-down hierarchical structure, if the supervisor breaks
down, the local controllers cannot work properly, but back-up local (i.e. decentralized or
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distributed) control strategies can be switched on in the time of system failure. Moreover,
a local controller can be maintained separately without influencing the others because of
the independence. As a result, an MPC-based urban traffic control system is suitable to be
implemented under a hierarchical or a distributed structure, as Fig. 3.5 shows.

Supervisor/Coordinator

Controller 1

Controller 2Controller 3

Controller 4

Subnetwork 1

Subnetwork 2

Subnetwork 3

Subnetwork 4

Figure 3.5: Distributed control structure for road networks

No matter which coordination scheme is selected for the traffic subnetworks, an ad-
vanced subnetwork controller is the foremost thing to be considered, so as to provide enough
communication of information required by the coordination. Model Predictive Control
(MPC) is chosen to be the control strategy for the subnetworks, because it can not only
use the current traffic data, but also the predicted traffic information in the future.

3.2 General problem formulation

Model Predictive Control (MPC) is applied to control urban traffic networks. Any traffic
model that can predict the future could be selected as the prediction model of MPC con-
trollers. In the thesis, discrete-time macroscopic trafficflow models are used as prediction
models of MPC controllers in the following expressions. Thesimulation time interval (i.e.,
the sampling time interval) of the discrete-time model is denoted byTs. In order to control



44 3 MPC-Framework

the urban traffic network, a common control time interval is defined asTc:

Tc = N ·Ts (3.5)

with N an integer. Defineks andkc as step counters of the simulation time interval and the
control time interval respectively. Note that these counters satisfy the following relation:

kc =

⌊
ks

N

⌋
, (3.6)

where⌊x⌋ with x∈R denotes the largest integer smaller than or equal tox. In the remainder
of this section, wheneverks andkc appear in the same equation, their relation is assumed to
be given by (3.6).

The prediction models of the MPC controllers should be able to predict the future traffic
states used for evaluating the objective function based on the information of current states,
predicted demands, and future control inputs. They are generally described as

n(ks+1) = f
(
n(ks),g(kc),d(ks)

)
, (3.7)

wheren(ks) is the traffic state needed for the objective function;d(ks) is the traffic demand;
g(kc) is the future control input (e.g., the green time splits).

In the thesis, only the green time split is considered in the control measure. But, it is
straightforward to add cycle time and offset as the control measures in the future. One of the
advantages of MPC controllers is they can easily optimize and coordinate different control
measures at the same time. Thus, the overall optimization problem of the whole urban traffic
network for the MPC controller can be expressed as

min
g(kc)

J = Jθ
(
n̂(ks),g(kc)

)

s.t. n̂(ks) = f
(
n(ks),g(kc), d̂(ks)

)
;

Φ(g(kc)) = 0;

gmin ≤ g(kc) ≤ gmax , (3.8)

wheren(ks) is the real or measured state of the network at timet = ks ·Ts.
When the prediction horizon isNp, then the predicted future traffic states are predicted

at simulation time stepks as

n̂(ks) = [n̂T(ks+1|ks) n̂T(ks+2|ks) · · · n̂
T(ks+NNp|ks)]

T,

based on the predicted traffic demands at simulation time step ks

d̂(ks) = [d̂T(ks|ks) d̂T(ks+1|ks) · · · d̂
T(ks+NNp−1|ks)]

T,

and the future traffic control inputs at control stepkc

g(kc) = [gT(kc|kc) gT(kc +1|kc) · · · gT(kc +Np−1|kc)]
T .

In (3.8), there are equality constraints and inequality constraints for the control inputs, where
the inequality constraint puts an upper bound and a lower bound to the control inputs.

Different control objective functions can be selected for the MPC controller aiming at
solving different traffic management problem. ObjectiveJθ represents the objective function
for performanceθ. Possible performance indices are Total Time Spent (TTS), Total Delay
Time (TDT), Total Emissions (TE), etc.
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Remark 3.1 The objective function for the Total Time Spent (TTS) of the urban traffic
network is

JTTS = ∑
(u,d)∈L

N(kc+Np)

∑
ks=Nkc+1

Ts · n̂u,d(ks) , (3.9)

wheren̂u,d(ks) stands for the predicted number of vehicles on link(u,d) at simulation time
stepks. 2

Remark 3.2 The objective function for the Total Emissions (TE) of the urban traffic net-
work is

JTE = ∑
(u,d)∈L

N(kc+Np)

∑
ks=Nkc+1

Êu,d(ks) , (3.10)

whereÊu,d(ks) stands for the predicted total vehicle emissions on link(u,d) during simula-
tion time interval[ksTs,(ks+1)Ts]. 2

The objective function of traffic subnetworks can be derivedaccording to the above remarks.
For the objective function of a large-scale traffic network with multiple subnetworks, we
assume that the overall objective function equals the sum ofall the subnetwork objective
functions, as

J = ∑
i∈S

Ji , (3.11)

which holds for all kinds of control performances, e.g. TTS and TE.
In order to reduce the on-line computational complexity, the large urban road network

can be divided into several small subnetworks, and accordingly the overall optimization
problem in (3.8) can be rewritten into sub-problems for eachof the subnetworks. The set of
the subnetworks is defined asS . For the optimization problem (3.8), there are no couplings
between subnetworks (i.e., all can be decomposed, including the objective function, the cy-
cle time constraint, and the upper bounds and lower bounds ofthe green times), except the
coupling terms between the models of the subnetworks, i.e. the traffic flows interactions
among subnetworks. Therefore, the overall optimization problem can be decomposed di-
rectly into subnetwork optimization problems, if the interaction traffic flow constraints are
ignored. The subnetwork optimization problems of subnetwork i and subnetworkj can be
formulated as follows:

• Subnetworki:

min
gi(kc)

Ji = min
gi(kc)

Jθ,i
(
n̂i(ks),gi(kc)

)

s.t. n̂i(ks) = f
(
ni(ks),gi(kc), d̂i(ks),z j1,i(ks),z j2,i(ks), · · · ,z jni ,i

(ks)
)
;

Φi(gi(kc)) = 0;

gi,min ≤ gi(kc) ≤ gi,max;

yi, j(ks) = f i,out(n̂i(ks),gi(kc), d̂i(ks)), for all j ∈ N i (3.12)
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• Subnetworkj:

min
g j (kc)

Jj = min
g j (kc)

Jθ, j
(
n̂ j(ks),g j(kc)

)

s.t. n̂ j(ks) = f
(
n j(ks),g j(kc), d̂ j(ks),zi1, j(ks),zi2, j(ks), · · · ,zinj , j

(ks)
)
;

Φ j(g j(kc)) = 0;

g j,min ≤ g j(kc) ≤ g j,max;

y j,i(ks) = f j,out(n̂ j(ks),g j(kc), d̂ j(ks)), for all i ∈ N j (3.13)

where the sets of the neighbor subnetworks of Subnetworki and j are defined asN i =
{ j1, j2, · · · , jni} andN j = {i1, i2, · · · , in j}, zi, j(ks) stands for the vector of the input traffic
flows running from subnetworki into subnetworkj, andyi, j(ks) represents for the vector
of the output traffic flows running out of subnetworki and then into subnetworkj (see
Fig. 3.6). The output traffic flowyi, j(ks) depends on the output functionfout with respect to
the traffic states, the traffic signal inputs, and the traffic demands of subnetworki.

Subnetworki Subnetworkj

zi, j (ks)

z j,i(ks)

yi, j (ks)

y j,i(ks)

Figure 3.6: The interactions between subnetwork i and subnetwork j

As in (3.12) and (3.13), the model of Subnetworki also has to be updated based on the
input traffic flow information provided by the neighbor subnetworks, i.e.z j1,i(ks),z j2,i(ks),. . .
It is also the same for the model of Subnetworkj. The interactions between subnetworks
need to be guaranteed by extra interaction constrains. The interaction constraints between
subnetworks cannot be added explicitly to the control problems of the subnetworks, but
they can be adjusted and guaranteed by the upper-level coordinator [99]. The interaction
constraints satisfy aninteraction balance condition, which makes sure that the vector of
the input traffic flows running from subnetworki into subnetworkj, zi, j(ks), equals to the
vector of the output traffic flows running out of subnetworki and then into subnetworkj,
yi, j(ks); and vice versa. The interaction constraints can be formulated as

zi, j(ks) = yi, j(ks) for all i ∈ S and for all j ∈ N i , (3.14)

just as Fig. 3.6 illustrated. These interaction constraints guarantee that the traffic flows run-
ning out of subnetworki equals the traffic flows getting into subnetworkj at each simulation
step during the whole prediction horizon.

Coordination algorithms are needed for the subnetwork controllers to guarantee the in-
teraction balance condition. However, due to the finite termination of the convergence pro-
cess of the coordination algorithms, the interaction constraints can be only approximately
satisfied. We will come back to this in Section 3.3. However, supposed all the interaction
constraints among subnetworks are satisfied, and

min Ji = Ji(n̂∗
i (ks),g∗i (kc)) (3.15)
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for all subnetworks, then in view of (3.11) the objective function of the whole traffic network
converges as

min J = ∑
i∈S

minJi = ∑
i∈S

Ji(n̂∗
i (ks),g∗i (kc)), (3.16)

and the optimal green times for the overall network become

g∗(kc) = [g∗T
1 (kc) g∗T

2 (kc) · · ·g∗T
s (kc)]

T (3.17)

whereS = {1,2, · · · ,s}.

3.3 Two coordination algorithms

In order to make sure that the interaction balance conditions among subnetworks are sat-
isfied, the traffic subnetwork controllers need to communicate and coordinate with each
other, and make an agreement. Algorithms for coordinating the subnetworks are necessary.
The coordination algorithms under a distributed control structure can make a trade-off be-
tween the computational complexity of the controller and the overall control performance
of the whole network. Of course, the coordination among subnetworks also introduces ex-
tra computations, but the computation effort for coordinating the subnetworks can be much
less than the computational complexity of a centralized MPCfor the entire traffic network,
which in practice tends to increase exponentially with expansion of the network scale.

The dual optimization method (or the augmented Lagrangian method) [10, 20, 24] is a
promising way to solve the coordination problem of subnetworks. First, we consider the
overall optimization problem of the network that can be expressed as

min
g(kc)

J = Jθ
(
n̂(ks),g(kc)

)

s.t. n̂(ks) = f
(
n(ks),g(kc), d̂(ks)

)
;

Φ(g(kc)) = 0;

gmin ≤ g(kc) ≤ gmax, (3.18)

with additional output functions for subnetworks, as

yi, j(ks) = f i,out(n̂i(ks),gi(kc), d̂i(ks)), for all i ∈ S , j ∈ N i , (3.19)

where the setN i contains the indices of all the neighbor subnetworks of subnetwork i.

Then, by introducing in Lagrangian multiplier variableω, all the interaction constraints
(z j,i(ks) = y j,i(ks)) can be considered, the Lagrangian equation of the overall optimization
problem with a relaxed interaction constraint term can be written as

L = Jθ
(
n̂(ks),g(kc)

)
+ ∑

i∈S
∑
j∈N i

ωT
j,i(ks)(z j,i(ks)−y j,i(ks)) . (3.20)
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The optimization problem can be then written into its dual optimization problem as

max
ω(ks)

(
min
g(kc)

L

)

s.t. n̂(ks) = f
(
n(ks),g(kc), d̂(ks)

)
;

Φ(g(kc)) = 0;

gmin ≤ g(kc) ≤ gmax;

yi, j(ks) = f i,out(n̂i(ks),gi(kc), d̂i(ks)) for all i ∈ S , j ∈ N i . (3.21)

By introducing in the Lagrangian multipliers, the interaction constraints are relaxed, and the
overall dual problem is divisible into separate sub-problems if the Lagrangian multipliers
are fixed. The Lagrangian multipliers are the interaction operators, which will help to co-
ordinate the subnetworks, i.e. the subnetwork controllerswill be punished if the interaction
constraints are violated. Once the interaction operators are fixed, the Lagrangian term of
(3.20) can be decomposed as

L = ∑
i∈S

Li , (3.22)

where

Li = Jθ,i
(
n̂i(ks),gi(kc)

)
+ ∑

j∈N i

ωT
j,iz j,i(ks)− ∑

j∈N i

ωT
i, jyi, j(ks). (3.23)

Therefore, the overall optimization problem of (3.21) can be solved on two levels: on the
lower level, subnetwork optimization problems can be solved independently with respect
to only local variables when the interaction operators are fixed, while on the upper level, a
global optimization problem will be solved to coordinate the interaction balance among sub-
networks by adjusting the interaction operators. On the upper level, coordination algorithms
are needed to make sure the interaction balance constraint,zj,i = y j,i , can be satisfied or ap-
proximated, even though the subnetwork optimization problems are solved separately. The
lower and upper level optimization problems will be adjusted and then solved iteratively,
until the interaction balance constraints are satisfied, orthe finite termination condition is
satisfied.

Within this multi-level control structure, there are two important approaches [95] to
coordinate the subnetworks so as to approximate the interaction balance conditions:

• Interaction balance principle

• Interaction prediction principle

In the next subsections, these methods will be explained in more detail.

3.3.1 Interaction balance principle

In the interaction balance principle, the interactions among subnetworks are completely
disconnected, and the input interaction variableszi(ks) are considered as a new variable,
which will be optimized by each of the subnetwork controllers. Therefore, the optimization
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problem of the lower level becomes

min
gi(kc),zi(ks)

Li(n̂i(ks),gi(kc),zi(ks),ω(ks))

s.t. n̂i(ks) = f
(
ni(ks),gi(kc), d̂i(ks),z j1,i(ks),z j2,i(ks), · · · ,z jni ,i

(ks)
)
;

Φi(gi(kc)) = 0;

gi,min ≤ gi(kc) ≤ gi,max; (3.24)

yi, j(ks) = f i,out(n̂i(ks),gi(kc), d̂i(ks)) for all j ∈ N i (3.25)

for subnetwork controlleri, wherezi(ks) is the vector of input interaction variables for all
the interactions with the neighbors of subnetworki (for N i = { j1, j2, · · · , jni})

zi(ks) = [zT
j1,i(ks) zT

j2,i(ks) · · ·zT
jni ,i

(ks)]
T , (3.26)

and vectorω(ks) contains the interaction operators of the whole network (subnetwork set
S = {1,2, · · · ,s})

ωi(ks) = [ωT
1,i(ks) ωT

2,i(ks) · · ·ωT
ni ,i(ks)]

T

ω(ks) = [ωT
1(ks) ωT

2(ks) · · ·ωT
s (ks)]

T , (3.27)

which is obtained from the upper level coordinator, and is considered constant during the
local optimizations. On the lower level, such local optimization problems are solved for
each subnetwork.

On the upper level, the interaction operators are revised according to the differences be-
tween the desired traffic flow inputzi(ks) and the real traffic flow supplyyi(ks) from neigh-
boring subnetworks, so as to punish the subnetwork controllers if the interaction constraints
cannot be satisfied, or to award the subnetwork controllers if the interaction constraints are
satisfied. The output interaction vectoryi(ks) is defined corresponding to the input interac-
tion vectorzi(ks) as

yi(ks) = [yT
j1,i(ks) yT

j2,i(ks) · · ·yT
jni ,i

(ks)]
T . (3.28)

The global optimization problem on the upper level becomes

max
ω(ks)

(ϕ(ω(ks))) = max
ω(ks)

(
min
g(kc)

L(n̂(ks),g(kc),z(ks),ω(ks))

)
. (3.29)

The lower level optimization and the upper level optimization are calculated iteratively,
until the interaction balance constraints are satisfied, orthe finite termination condition is
reached. In the signal,k is defined as the counter for the iterations, for instance,zk(ks) and
yk(ks) are the input interaction variable and the output interaction variable at iterationk.

Since variables,̂n(ks),g(kc),z(ks), are already fixed on lower level subnetwork con-
trollers, the gradient direction of the objective functionof the upper level optimization can
be calculated as

∇ϕ(ω(ks)) =





zk
1(ks)−yk

1(ks)
zk

2(ks)−yk
2(ks)

...
zk

s(ks)−yk
s(ks)




= ek(ks) . (3.30)
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Therefore, the interaction operatorω(ks) can be updated for iterationk+ 1 towards the
gradient direction as

ωk+1(ks) = ωk(ks)+ρkek(ks), (3.31)

whereρk ∈ R
+ is a positive scalar that represents the search length, which can be a fixed

value for all the iterations, or can vary and be optimized foreach iteration. The iteration
will end, when the error disappears or becomes very small, e.g. when the norm of the error
satisfies the condition‖ek(ks)‖ < ε for ε > 0. The coordination structure of the interaction
balance principle is shown in Fig. 3.7.

Coordinator

ωk+1(ks) = ωk(ks)+ρkek(ks)

Local MPC controller 1

min
g1(kc),z1(ks)

L1

Local MPC controller 2

min
g2(kc),z2(ks)

L2

Local MPC controller s

min
gs(kc),zs(ks)

Ls

Subnetwork 1 Subnetwork 2 Subnetwork s

zk1
(ks)

,y
k
1
(ks)

zk 2
(k

s)
,y

k 2
(k

s) z k
s (ks),y k

s (ks)

ω
k (ks)

ω
k (k

s)

ω k
(ks)

Figure 3.7: The coordination structure for the interactionbalance principle

3.3.2 Interaction prediction principle

Different from the interaction balance principle, the interactions among subnetworks are not
disconnected in interaction prediction principle, but areestimated by the coordinator based
on the information from the neighboring subnetworks. In particular, the input traffic flows
of subnetworki, i.e. zi(ks), is not considered as a variable that needs to be optimized by
the subnetwork controlleri, but as a value that can be estimated based on the information
provided by the neighboring subnetworks. Therefore, the optimization problem of the lower
level becomes

min
gi(kc)

Li(n̂i(ks),gi(kc),zi(ks),ω(ks))

s.t. n̂i(ks) = f
(
ni(ks),gi(kc), d̂i(ks),z j1,i(ks),z j2,i(ks), · · · ,z jni ,i

(ks)
)
;

Φi(gi(kc)) = 0;

gi,min ≤ gi(kc) ≤ gi,max; (3.32)

yi, j(ks) = f i,out(n̂i(ks),gi(kc), d̂i(ks)) for all j ∈ N i (3.33)
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where both the interaction operatorω and the vector of the traffic flows going into subnet-
work i, zi , are all estimated by the supervisor (the upper level controller), and are transferred
to the lower level controller. When solving the lower level subnetwork optimization prob-
lems,ω andzi are both considered constant.

On the upper level, the estimated traffic flow input at iteration k+ 1, i.e.zk+1, can be
updated directly by the real traffic flow output from neighboring subnetworks at current
iterationk as

zk+1
i (ks) = yk

i (ks) for all i ∈ S . (3.34)

In the same way as the interaction balance principle, the interaction operator can be updated
by

ωk+1(ks) = ωk(ks)+ρkek(ks), (3.35)

whereρk is also a positive scalar representing the update weight, which can be selected in
a similar way as in the interaction balance principle. The errors between the desired traffic
flow inputs and the real traffic flow supplies from neighboringsubnetworks are calculated
as

ek(ks) =





zk
1(ks)−yk

1(ks)
zk

2(ks)−yk
2(ks)

...
zk

s(ks)−yk
s(ks)




.

According to (3.34), the error can also be written as

ek(ks) =





yk−1
1 (ks)−yk

1(ks)

yk−1
2 (ks)−yk

2(ks)
...

yk−1
s (ks)−yk

s(ks)




,

which means that the interaction operatorω is updated according to the differences between
the old output traffic flowsyk−1 and the newly obtained input traffic flowsyk, so as to
penalize the subnetwork controllers if the new obtained output traffic flows differ a lot from
the output traffic flows from the previous iteration, or to endthe iteration if the absolute
difference between them is smaller than a given threshold.

The condition to end the coordination is the same as the interaction balance principle,
i.e.‖ek(ks)‖< ε for ε > 0. The coordination structure of the interaction prediction principle
is shown in Fig. 3.8.

Both the interaction balance principle and interaction prediction principle are coordina-
tion algorithms for distributed control structures. They can be applied to coordinate MPC
controllers of urban traffic subnetworks. Here are some remarks for these two coordination
algorithms:

Remark 3.3 In both the interaction balance principle and the interaction prediction prin-
ciple, when the termination condition for the coordinationis satisfied, ifek = 0, then the
optimal solution is achieved for the overall urban traffic network; if ek 6= 0, then a sub-
optimal solution will be obtained for the overall urban traffic network. 2
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Figure 3.8: The coordination structure for interaction prediction principle

Remark 3.4 The interaction balance principle endures more computational burden com-
pared to the interaction prediction principle, since extraoptimization variables (z) are intro-
duced when completely disconnecting the interactions among subnetworks [95]. However,
in this context, the interaction balance principle also gains more freedom for the subnetwork
optimizations. 2

Remark 3.5 According to the coordination algorithms based on either the interaction bal-
ance principle or the interaction prediction principle, the more interaction constraints among
the subnetworks, the more efforts are needed for coordination. Therefore, one principle of
decomposing the urban traffic network is to make sure the number of interaction constraints
among subnetworks is as small as possible. 2

3.4 Summary

A well-defined control structure is necessary for controlling a complex, large-scale, urban
traffic network, because of the existing layout structure ofurban traffic networks, the dynam-
ics of the urban traffic systems, the multiple control objectives, and the high computational
complexity. By defining urban traffic control systems under specific control structures, the
above problems of a complex large-scale network can be addressed more concretely.

The control structure for a large-scale network can be roughly classified into four types:
centralized control structure, decentralized control structure, distributed control structure,
and hierarchical control structure. The centralized control can achieve the best overall con-
trol performance of the whole network, but meanwhile suffers from high computational
complexity (especially for the centralized MPC controller). The decentralized control di-
vides the large urban traffic network into smaller subnetworks, and designs subnetwork
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controllers for each subnetwork in a disconnected way from the rest of the subnetwork con-
trollers. The computational complexity of subnetwork controllers is reduced significantly
by dividing a large-scale network into smaller subnetworks, but the overall control per-
formance of the whole network will inevitably deteriorate.To keep the simplicity of the
subnetwork controllers and increase the overall control performance of the whole network,
distributed control and hierarchical control are introduced. Distributed control increases
the overall control performance by sharing and exchanging information among subnetwork
controllers. In addition, hierarchical control improves the overall control performance by
adding a coordinator or supervisor at a higher control levelto guide the subnetwork con-
trollers to agree on a global solution. Distributed controland hierarchical control are able
to provide a trade-off between the centralized controller and the decentralized controller.
Therefore, a complex large-scale urban traffic network can be better controlled under dis-
tributed control structures or hierarchical control structures [18, 39, 48, 70, 97].

After a large urban traffic network is divided into subnetworks, algorithms are needed to
coordinate the subnetwork controllers so that the overall control performance of the original
traffic network will be achieved. Two possible coordinationprinciples based on the dual
optimization method are discussed in this chapter. Extra interaction operators are introduced
to guide the subnetwork MPC controllers to coordinate with each other iteratively, and the
coordination will finish if all the input and the output traffic flow interaction constraints are
satisfied within a pre-defined tolerance.

No matter which coordination scheme is selected for the traffic subnetworks, an ad-
vanced subnetwork controller is the foremost object to be considered, so as to achieve a
good overall network control performance. Model Predictive Control (MPC) is chosen to
be the control strategy for the subnetworks, because it can provide enough communication
information, including not only the current traffic states,but also the predicted traffic states
in the future. However, due to the on-line computational burden of MPC, the subnetwork
controller may become infeasible in practice. An efficient MPC controller for the urban
traffic subnetworks is always necessary. Therefore, in the rest of this thesis, we will inves-
tigate the efficiency and accuracy of urban traffic control models, and address the real-time
feasibility problem of the MPC controllers for urban trafficsubnetworks.





Chapter 4

Macroscopic Spatiotemporal
Discrete Urban Traffic model

Traffic models that can predict future traffic states are the basis of model-based urban traffic
predictive controllers. In this chapter, we are going to present macroscopic spatiotemporal
discrete urban traffic control models, and to discuss about the features of the models with
respect to different spatial and temporal sampling intervals1.

4.1 Introduction

Traffic models can be mainly classified into three categoriesbased on the modeling details:
microscopic models, macroscopic models, and mesoscopic models. Microscopic models
are detailed traffic models that describe the dynamics of each individual vehicle, like car-
following models. In contrast, macroscopic models are muchrougher models focusing only
on the dynamics of traffic flows, i.e. the average behavior of groups of vehicles instead of
individual vehicles. Mesoscopic models combine both the properties of the microscopic
models and the macroscopic models. A first-order macroscopic model was proposed by
Lighthill and Whitham [79] to describe the dynamic of traffic flows, and it was extended
into second-order macroscopic models [107]. But, this model was criticized for not being
able to reproduce enough descriptive accuracy for modelingthe phenomena of real traffic
in [34]. In general, macroscopic models are approximationsof traffic dynamics, and they
ignore some details of individual vehicles and make a lot of simplifications, so macroscopic
traffic models are in general not as accurate as the models with higher level-of-detail. How-
ever, this statement does not always hold in practice. On some occasions, macroscopic
modeling approaches may provide better results than modeling approaches with a higher
level-of-detail [63]. In addition, macroscopic models open a way for efficiently running
the models using digital computers, and thus they are applied in traffic applications that are
characterized by high computational requirements.

For different traffic applications, we need to select suitable traffic models with proper
modeling accuracy and limited computation burden. Both microscopic models and macro-

1The content of this chapter was published in [80, 82, 87].
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scopic models offer various levels of modeling power. Usually, the more detailed the traffic
dynamics is modeled, the more complex the model will be, and the heavier computational
burden the model will have. Therefore, when selecting a traffic model in practice, a criterion
needs be followed. The criterion [102] is that the model should have sufficient descriptive
power to reproduce all important phenomena for the intendedapplication, and at the same
time the execution speed of a simulation should be fast enough for this particular applica-
tion. That is to say we need to find a trade-off between the descriptive accuracy of the model
and the computational complexity. This is the most important trade-off of the traffic models
that we are focusing on in the thesis. The degree of non-linearity of the models is not really
relevant with the analytical complexity of the models.

In urban areas, the traffic flows are influenced a lot by the traffic signals. Therefore,
the store-and-forward model [52] was proposed to describe the stop-and-go traffic flow dy-
namics controlled by the traffic lights for urban roads. The store-and-forward model, later
used for control by [40], is a simple model with a low computational complexity, but it only
applies for saturated traffic, i.e. when the vehicle queues resulting from the red phase can-
not be dissolved completely at the end of the following greenphase. The model proposed
by [8] and extended by [42] can describe vehicle queues and the time delay for vehicles
reaching the queues in a link, and is able to describe different scenarios. Cell Transmis-
sion Model [33] and Link Transmission Model [128] are both models based on kinematic
wave theory by Lighthill and Whitham [79], and Richards [109]. These two models are also
spatiotemporally discrete traffic models. The model proposed by [66] has a lower model-
ing power, but cannot describe scenarios other than saturated traffic either. The model of
[58, 80, 81, 119, 120] is capable of simulating the evolutionof traffic dynamics (includ-
ing vehicle queues) in all traffic scenarios (unsaturated, saturated, and over-saturated traffic
conditions) by updating the discrete-time model in small simulation steps. To reduce the
computational complexity of this model, [82, 83] proposed amodel with a longer sampling
time interval based on the previous model, but has intersection cycle times that can differ
from intersection to intersection. The model is much fasterthan the previous model, with
only a limited loss in modeling accuracy.

Actually, all the macroscopic urban traffic models mentioned above are spatiotempo-
rally discrete models, which are spatially sampled into road segments and temporally sam-
pled with a sampling time interval. For urban areas, the roads are comparatively short and
divided by intersections with traffic lights, and thus an urban road is usually taken as a road
segment. The sampling time interval can vary for different urban traffic models. A trade-off
also needs be made when selecting the sampling time intervalfor the discrete urban traffic
model. Normally, a higher sampling frequency results in a more accurate model, but also
gives rise to more computations because of having to update the model more frequently.
When the sampling time interval becomes too large, the discrete model cannot represent
the continuous traffic flow behavior anymore. Therefore, an additional criterion (Courant-
Friedrichs-Lewy condition for urban traffic models) needs to be satisfied when sampling
urban traffic models into spatiotemporally discrete models, so as to keep the descriptive
ability of these models.

In this chapter, a spatiotemporally discrete urban traffic model with a variable sampling
time interval is proposed for model-based predictive control, which allows to balance mod-
eling accuracy and computational complexity. The discreteurban traffic model is derived
by sampling the first-order continuous traffic flow model spatially and temporally. A CFL



4.2 Notations 57

u d

o1

o2

o3

i1

i2

i3

link (u,d)

link (d,u)

menter
u,d (αenter

u,d ) marriv
u,d (αarriv

u,d )
qu,d,o1
qu,d,o2
qu,d,o3

mleave
u,d,o1

(αleave
u,d,o1

)

mleave
u,d,o2

(αleave
u,d,o2

)

mleave
u,d,o3

(αleave
u,d,o3

)

mleave
i1,u,d (αleave

i1,u,d)

mleave
i2,u,d (αleave

i2,u,d)

mleave
i3,u,d (αleave

i3,u,d)

Figure 4.1: A link connecting two traffic-signal-controlled intersections

condition is deduced for the spatiotemporally discrete urban traffic model to make sure
the descriptive ability of the model can be still guaranteed. Experiments are designed and
evaluated to verify whether the models have sufficient descriptive power to reproduce the
important phenomena for traffic control, and whether the computation speeds of models are
fast.

4.2 Notations

In order to describe the model, we defineJ as the set of nodes (intersections), andL as the
set of links (roads) in the urban traffic network. Link(u,d) is marked by its upstream node
u (u ∈ J) and downstream noded (d ∈ J). The sets of the upstream nodes of input links
and downstream nodes of output links for link(u,d) areIu,d ⊂ J andOu,d ⊂ J (e.g., for the
situation of Fig. 4.1 we haveIu,d = {i1, i2, i3} andOu,d = {o1,o2,o3}).

The variable notations (see also Fig. 4.1) used in the modelsare listed as follows:

General symbols

Iu,d : set of upstream nodes of input links of link(u,d),
Ou,d : set of downstream nodes of output links of link(u,d),
Tc : control time interval,
cu : cycle time for Intersectionu,
cd : cycle time for Intersectiond,
vfree

u,d (km/h) : free-flow vehicle speed in link(u,d),
Cu,d (veh) : capacity of link(u,d) expressed in number of vehicles,
Nlane

u,d : number of lanes in link(u,d),
∆cu,d (s) : offset between nodeu and noded, which represents the offset time

between the cycles of the upstream and the downstream intersections
at the beginning of every control time step,

lveh (m) : average vehicle length.
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Spatiotemporally discrete model symbols

Td : simulation time interval for Intersectiond,
kd : simulation step counter for Intersectiond,
nu,d(kd) (veh) : number of vehicles in link(u,d) at stepkd,
qu,d(kd) (veh) : queue length (expressed as the number of vehicles) atstepkd in link

(u,d), qu,d,o is the queue length of the sub-stream turning to link(d,o),
Su,d(kd) (veh) : available storage space of link(u,d) at stepkd expressed in number of

vehicles,
αleave

u,d (kd)
(veh/h)

: average flow rate leaving link(u,d) at stepkd, αleave
u,d,o(kd) is the leaving

average flow rate of the sub-stream going towards link(d,o),
αarriv

u,d (kd)
(veh/h)

: average flow rate arriving at the tail of the queue in link(u,d) at step
kd, αarriv

u,d,o(kd) is the arriving average flow rate of the sub-stream going
towards link(d,o),

αenter
u,d (kd)

(veh/h)
: average flow rate entering link(u,d) at stepkd,

βu,d,o(kd) : fraction of the traffic in link(u,d) anticipating to turn to link(d,o) at
stepkd,

µu,d,o (veh/h) : saturation flow rate leaving link(u,d) turning to link(d,o),
gu,d,o(kd) (s) : green time length during time interval[kdTd,(kd +1)Td] for the traffic

stream towards link(d,o) in link (u,d).

BLX model symbols

Ts : simulation time interval for BLX model,
k : simulation step counter for the BLX model,
nu,d(k) (veh) : number of vehicles in link(u,d) at stepk,
qu,d(k) (veh) : queue length (expressed as the number of vehicles) atstepk in link

(u,d), qu,d,o is the queue length of the sub-stream turning to link(d,o),
mleave

u,d,o(k) (veh) : number of vehicles leaving link(u,d) and turning to link(d,o) at time
interval[kTs,(k+1)Ts],

marriv
u,d (k) (veh) : number of vehicles arrivingat the (tail of the) queuein link (u,d) at

time interval[kTs,(k+1)Ts], marriv
u,d,o(k) is the number of arriving cars in

the sub-stream going towards link(d,o),
menter

u,d (k) (veh) : number of vehicles entering link(u,d) at time interval[kTs,(k+1)Ts],
Su,d(k) (veh) : available storage space of link(u,d) at stepk expressed in number of

vehicles,
βu,d,o(k) : fraction of the traffic in link(u,d) anticipating to turn to link(d,o) at

stepk,
µu,d,o (veh/h) : saturation flow rate leaving link(u,d) turning to link(d,o),
bu,d,o(k) (s) : green time length during time interval[kTs,(k+ 1)Ts] for the traffic

stream towards link(d,o) in link (u,d), which can be considered as a
boolean value indicating whether the traffic signal at intersectiond for
the traffic stream in link(u,d) turning to link(d,o) is green (1) or red
(0) if Ts = 1 s.
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S model symbols

cd : simulation time interval for Intersectiond,
kd : simulation step counter for Intersectiond,
nu,d(kd) (veh) : number of vehicles in link(u,d) at stepkd,
qu,d(kd) (veh) : queue length (expressed as the number of vehicles) atstepkd in link

(u,d), qu,d,o is the queue length of the sub-stream turning to link(d,o),
αleave

u,d (kd)
(veh/h)

: average flow rate leaving link(u,d) at stepkd, αleave
u,d,o(kd) is the leaving

average flow rate of the sub-stream going towards link(d,o),
αarriv

u,d (kd)
(veh/h)

: average flow rate arriving at the tail of the queue in link(u,d) at step
kd, αarriv

u,d,o(kd) is the arriving average flow rate of the sub-stream going
towards link(d,o),

αenter
u,d (kd)

(veh/h)
: average flow rate entering link(u,d) at stepkd,

βu,d,o(kd) : fraction of the traffic in link(u,d) anticipating to turn to link(d,o) at
stepkd,

µu,d,o (veh/h) : saturation flow rate leaving link(u,d) turning to link(d,o),
gu,d,o(kd) (s) : green time length during time interval[kdcd,(kd +1)cd] for the traffic

stream towards link(d,o) in link (u,d).

4.3 Discrete-time delay

In this chapter, the urban traffic models are discrete-time models with a time delay, during
which a vehicle travels from the beginning of the road until it reaches the queues waiting in
the road. In [2], a method is presented to sample a continuous-time system with a time delay
into a discrete-time system. Given this method, the discrete-time delay, which the vehicles
take to reach the end of the queues in a link, will be obtained.Let a linear continuous
time-invariant system with time delayγ ∈ R

+ be described by2

˙̃X(t) = AX̃(t)+BŨ(t − γ) . (4.1)

Let us now sample this system using a sampling periodT. Define

δ = floor
{ τ

T

}
, γ = rem{τ,T} , (4.2)

where floor{x} refers to the largest integer smaller than or equal tox, and rem{x,y} is the
remainder of the division ofx by y. Soδ is an integer, and the time delayτ can be expressed
as

τ = δ ·T + γ 0≤ γ < T . (4.3)

If the input of the system (̃U(t)) is assumed to be piece-wise constant during each sampling
time interval, the sampled discrete-time system will be

X(k+1) = ΦX(k)+Γ0U(k−δ)+Γ1U(k−δ−1) , (4.4)

2.̃ represents a continuous variable.
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where

Γ0 =
Z T−γ

0
eAsdsB (4.5)

Γ1 = eA(T−γ)
Z γ

0
eAsdsB . (4.6)

Thus, the vehicles that enter into a link normally will run with free-flow speed for a
certain time, and finally join the tail of the queues. This time period is a time delay that is
needed before the vehicles join the queues waiting at the stop-line of the link. Then, the
queue length in a link is updated by the number of vehicles leaving the link and the number
of delayed vehicles entering the link. The differential equation describing the evolution of
the queue length can be therefore written as

˙̃qu,d,o(t) = β̃u,d,o(t)α̃enter
u,d (t − τ)− α̃leave

u,d,o(t) , (4.7)

i.e. the changing rate of the queue length (˙̃qu,d,o(t)) is equal to the difference between the
input flow rate (delayed byτ and then divided by multiplying the current turning rate) and
the output flow rate. In (4.7), the traffic flow turning rate (β̃u,d,o(t)), and the traffic flow
rate entering or leaving the queue (α̃enter

u,d (t) andα̃leave
u,d,o(t)), are all piece-wise constant during

the sampling time intervals. The traffic flow turning rate will be influenced by the traffic
flows and traffic signals the drivers experienced upstream, the traffic signals in front, and
the origin-destination of the drivers. Then, according to the addition principle of linear
equations, (4.7) can be divided into two equations, as

˙̃q1
u,d,o(t) = −α̃leave

u,d,o(t) (4.8)

˙̃q2
u,d,o(t) = β̃u,d,o(t)α̃enter

u,d (t − τ), (4.9)

such that

q̃u,d,o(t) = q̃1
u,d,o(t)+ q̃2

u,d,o(t) . (4.10)

To sample differential equation (4.8) without a time delay into a discrete equation, we define
A = 0 andB = −1, then according to (4.4), (4.5), and (4.6), we have

q1
u,d,o(k+1) = Φq1

u,d,o(k)+Γαleave
u,d,o(k) (4.11)

where

Φ = eAT = 1

Γ =
Z T

0
eAsdsB = −T (4.12)

Similarly, we can sample differential equation (4.9) with atime delayτ into a discrete
equation. Since, in Section 4.4 the time delayτ will vary slowly with time t, then according
to (4.2) and (4.3) we can approximately have

δ(k) = floor

{
τ(k)
T

}
, γ(k) = rem{τ(k),T} , (4.13)
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and
τ(k) = δ(k) ·T + γ(k) 0≤ γ(k) < T . (4.14)

Next, we defineAτ = 0 andBτ = 1, and then according to (4.4), (4.5), and (4.6), (4.9) results
in

q2
u,d,o(k+1) =Φτq

2
u,d,o(k)+βu,d,o(k)

(
Γ0αenter

u,d (k−δ(k))

+Γ1αenter
u,d (k−δ(k)−1)

)
, (4.15)

where

Φτ = eAT = 1

Γ0 =
Z T−γ(k)

0
eAsdsBτ = T − γ(k)

Γ1 = eA(T−γ(k))
Z γ(k)

0
eAsdsBτ = γ(k) (4.16)

Therefore, by adding (4.11) and (4.15) together, we derive

qu,d,o(k+1) = qu,d,o(k)−Tαleave
u,d,o(k)

+βu,d,o(k)
(
(T − γ(k))αenter

u,d (k−δ(k))

+ γ(k)αenter
u,d (k−δ(k)−1)

)
, (4.17)

and the arriving average traffic flow at the tail of the queues

αarriv
u,d (k) =

T − γ(k)
T

αenter
u,d (k−δ(k))+

γ(k)
T

αenter
u,d (k−δ(k)−1) . (4.18)

4.4 Spatiotemporally discrete urban traffic model

In this section, we will derive a spatiotemporally discreteurban traffic model with a variant
sampling time interval.

4.4.1 Traffic dynamics on a link

Suppose the sampling time interval for intersectiond ∈ J and all the links that connect to
intersectiond is Td and kd is the corresponding time step counter. Due to the physical
structure of urban networks, the original urban roads are directly taken as spatially sampled
link segments. For the sake of simplicity, only controlled intersections are considered, but
it can also extended to un-controlled intersections.

Assumption 4.1 The cycle time of intersection j(∈ J) can be defined as

c j = M jTj , (4.19)

where Mj and Tj are integers, and0< Tj ≤ c j . Sampling time intervals and cycle times can
be different for intersections.
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Assumption 4.2 We assume parallel turning lanes exist in the traffic model. The vehicles
getting into a link will run on the link freely without turning separations, until they reach
the tail of the waiting vehicle queues. Once they reach the tail of the queues, they will be
divided to join the queues of the turning direction they intend to go.

Therefore, a spatiotemporally discrete urban traffic modelcan be derived as follows:
The number of the vehicles in link(u,d) is updated by the input and output average flow

rate over sampling time intervalTd at every time stepkd by

nu,d(kd +1) = nu,d(kd)+
(

αenter
u,d (kd)−αleave

u,d (kd)
)
·Td , (4.20)

and consequently we can update the storage capacity as

Su,d(kd) = Cu,d −nu,d(kd). (4.21)

The leaving average flow rate is the sum of the leaving flow rates turning to each output
link:

αleave
u,d (kd) = ∑

o∈Ou,d

αleave
u,d,o(kd) . (4.22)

The leaving average flow rate overTd is determined by:

αleave
u,d,o(kd) = min

(
µu,d,o ·gu,d,o(kd)/Td, (4.23)

qu,d,o(kd)/Td +αarriv
u,d,o(kd),

µu,d,o

∑
u′∈Id,o

µu′,d,o
·
Cd,o−nd,o(kd)

Td

)
,

whereµu,d,o is the saturation flow rate that can leave link(u,d) turning to link (d,o) de-
pending on the physical structure of link(u,d). The leaving flow rate is the minimum value
of three flow rate values, average saturated flow rate, average unsaturated flow rate, and av-
erage over-saturated flow rate, which are given respectively by the three formulas in (4.23).
The first term calculates the average saturated flow rate, which depends on the saturation
flow rateµu,d,o and green time duration; the second term calculates the average unsaturated
flow rate based on the vehicles waiting in and arriving the queues; the third term calculates
the average over-saturated flow rate depending on the proportional storage capacity of the
downstream link. In some cases, there exists an inconsistency between the downstream
storage capacity and the traffic flow demands of upstream links, but this inconsistency can
be checked and solved according to the approaches given in [30] and [58, Chapter 8].

The number of vehicles waiting in the queue turning to link(d,o) is updated as

qu,d,o(kd +1) = qu,d,o(kd)+
(

αarriv
u,d,o(kd)−αleave

u,d,o(kd)
)
·Td. (4.24)

Here we made an assumption that the vehicles getting into a link do not separate for
their turning directions. They run on the link freely until they reach the tail of the waiting
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vehicle queues. Then they will join the queues of the turningdirection they intend to go.
Thus, the number of waiting vehicles in link(u,d) is

qu,d(kd) = ∑
o∈Ou,d

qu,d,o(kd) . (4.25)

The flow rate entering link(u,d) will arrive at the end of the queues after a time delay

τ(kd) =
(Cu,d −qu,d(kd)) · lveh

Nlane
u,d ·vfree

u,d ·Td
, (4.26)

then withδ(kd) andγ(kd) derived from formulas (4.2) and (4.3), according to (4.17) the
delayed flow rate arriving at the end of queues is

αarriv
u,d (kd) =

Td − γ(kd)

Td
·αenter

u,d (kd −δ(kd))+

γ(kd)

Td
·αenter

u,d (kd −δ(kd)−1) . (4.27)

Before reaching the tail of the waiting queues in link(u,d), the flow rate of arriving
vehicles need be divided by multiplying it with the turning rates:

αarriv
u,d,o(kd) = βu,d,o(kd) ·αarriv

u,d (kd). (4.28)

The flow rate entering link(u,d) is made up from the flow rates from all the input links:

αenter
u,d (kd) = ∑

i∈Iu,d

αleave
i,u,d (kd). (4.29)

If cd 6= cu, thenαleave
i,u,d (kd) cannot be directly obtained from upstream links. Thus, synchro-

nization between the intersections need to be further addressed.

4.4.2 Synchronization between two intersections

In (4.29), the flow rate entering link(u,d) is provided by the combination of the flow rates
leaving the upstream links. Recall that we may have different sampling time intervals be-
tween upstream and downstream intersections (Tu 6= Td). Thus, the simulation time steps
may be not equal to each other. Therefore, in order to synchronize the traffic flows in the
links connecting to the upper and the downstream intersections, it is necessary to synchro-
nize the leaving and entering flow rates. First of all, a leastcommon multiple time interval
has to be defined as

Tlcm = Nj ·c j for all j ∈ J, (4.30)

with Nj an integer, as Fig. 4.2(a) shows.
Then, in each time intervalTlcm, we will recast the flow rates expressed in the timing

of intersectionu into the timing of intersectiond. As illustrated in Fig. 4.2(b), first, we
transform the discrete time leaving flow rates from the upstream links into continues time
using the zero-order hold strategy, as

α̃leave
i,u,d (t) = αleave

i,u,d (ku), ku ·Tu ≤ t < (ku +1) ·Tu, (4.31)
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j
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(a) Relationship between cycle times and control
time interval

αleave
i,u,d (ku)

αenter
i,u,d (kd)
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kd
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(b) Illustration for synchronizing flow rates

Figure 4.2: Synchronization of upstream and downstream intersections

and then sample them again to obtain the average flow rates in time stepkd so as to be able
used by the downstream link

αenter
i,u,d (kd) =

1
Td

Z (kd+1)·Td+∆cu,d

kd·Td+∆cu,d

α̃leave
i,u,d (t)dt , (4.32)

where∆cu,d represents the offset time between the cycle times of the upstream and the
downstream intersections at the beginning of a control timestep. Then, the flow rate enter-
ing link (u,d) can be computed by

αenter
u,d (kd) = ∑

i∈Iu,d

αenter
i,u,d (kd). (4.33)

Remark 4.1 The BLX model [80, 82] and the S model [82] proposed in previous research
work can be qualitatively considered as special cases of this spatiotemporally discrete urban
traffic model. But, they have different sampling time intervals (BLX: Tj = 1 s, S:Tj = c j ).
In addition, the BLX model is updated by the input and output number of vehicles, while
the S model is updated by the input and output average flow rates. Since the relationship
between the average flow rate and the number of vehicles entering or leaving a link is

αu,d(kd) = mu,d(kd)/Td, (4.34)

wheremu,d(kd) represents the number of vehicles leaving or arriving link (u,d) at time step
kd, while αu,d(kd) represents the corresponding average traffic flow rate during this time
interval. Therefore, it is equivalent to update the discrete model with the vehicles entering
or leaving a link in term of either the number of vehicles or the average flow rates. 2

4.5 CFL condition for urban traffic models

The Courant-Friedrichs-Lewy condition (CFL condition) [31] is a necessary condition for
convergence while solving certain partial differential equations (PDEs) (usually hyperbolic
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PDEs) numerically. In general, it is not a sufficient condition for convergence. The CFL
condition for one dimensional case can be expressed as

u∆t
∆x

≤C, (4.35)

whereu is the velocity of flow dynamics,∆t is the time step size,∆x is the spatial step size,
andC is a constant scale parameter. Equation (4.35) makes sure that the time step must be
less than a certain value, otherwise the simulation will produce wildly incorrect results.

We will derive the CFL condition for spatiotemporally discrete urban traffic models as
follows:

The maximum number of vehicles that can leave link(u,d) ∈ L with a saturation flow
rate (also called as link-intersection capacity) should not exceed the number of vehicles on
this link, that is

µu,dTd ≤ nu,d(kd) ≤Cu,d, (4.36)

where the number of vehicles on link(u,d) is bounded by its storage capacityCu,d, and the
link-intersection capacityµu,d is the sum of the saturation flow rates that leave link(u,d)
turning into different directions:

µu,d = ∑
o∈Ou,d

µu,d,o. (4.37)

Then, by dividing the number of vehicles on link(u,d) into two parts, the number of vehi-
cles in the queue (qu,d(kd)) and the number of vehicles running freely on the link (fu,d(kd)),
as Fig. 4.3 shows, we have

Td ≤
nu,d(kd)

µu,d
=

qu,d(kd)+ fu,d(kd)

µu,d
. (4.38)

u

Lu,d

l free
u,d (kd) lqueue

u,d (kd)

d

u1

u2

u3

Figure 4.3: Illustration for the free-speed flow and the queues

According to traffic theory, if we defineαfree
u,d as the traffic flow rate for the vehicles

freely running on link(u,d) before joining the tail of the vehicle queues, then the traffic
flow running with free-flow speed on the link always has a lowerflow rate than the link-
intersection capacity, i.e.αfree

u,d (kd) ≤ µu,d, and the traffic flow rate for the vehicles moving
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in queues is also lower than the link-intersection capacity, i.e. αqueue
u,d (kd) ≤ µu,d. Hence,

(4.38) can be further written into

Td ≤
qu,d(kd)

αqueue
u,d (kd)

+
fu,d(kd)

αfree
u,d (kd)

=
ρqueueu,d(kd)lqueue

u,d (kd)

αqueue
u,d (kd)

+
ρfreeu,d(kd)l free

u,d (kd)

αfree
u,d (kd)

=
lqueue
u,d (kd)

vqueue
u,d (kd)

+
l free
u,d (kd)

vfree
u,d

, (4.39)

whereρqueue
u,d (kd) and ρfree

u,d (kd) are the density of the queue and the density of the free-
running traffic flow on link(u,d) at time stepkd respectively. Furthermore, because the
length of link(u,d) equals to the sum of the queue length and the free-running link length,
i.e. lqueue

u,d (kd)+ l free
u,d (kd) = Lu,d, andvqueue

u,d (kd) ≤ vfree
u,d , we have

lqueue
u,d (kd)

vqueue
u,d (kd)

+
l free
u,d (kd)

vfree
u,d

≤
Lu,d

vqueue
u,d (kd)

. (4.40)

Since the average speed of the vehicles waiting in queues is bounded as 0≤ vqueue
u,d (kd) ≤

vfree
u,d , then (4.40) can be further written as

lqueue
u,d (kd)

vqueue
u,d (kd)

+
l free
u,d (kd)

vfree
u,d

≤ min(
Lu,d

vqueue
u,d (kd)

) =
Lu,d

vfree
u,d

. (4.41)

Hence, we derive a sufficient condition for the sampling timeintervalTd of the model, as

Td ≤
Lu,d

vfree
u,d

, (4.42)

which is exactly a CFL condition. The condition can be interpreted intuitively as requiring
that the distancevfree

u,d Td traveled by a traffic flow in one time step should not exceed one
spatial step∆x, or equivalently that the numerical traffic flow speedLu,d/Td should be at
least as fast as the physical traffic flow speedvfree

u,d . In practice, a CFL condition can be used
as a criterion for selecting proper sampling time intervalsfor the spatiotemporally discrete
traffic models.

However, for urban intersections, the sampling time intervals of intersectiond not only
depend on the link(u,d), but also on the rest of the links connecting to this intersection.
We defineUd ⊂ J is the set of the possible upstream intersections of intersection d ∈ J.
Therefore, to guarantee that the spatiotemporally discrete urban traffic model can correctly
represent the urban traffic dynamics, the simulation time interval Td (i.e. sampling time
interval) needs to satisfy condition:

Td ≤ min
u′∈Ud

(
Lu′,d

vfree
u′,d

)
. (4.43)
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4.6 BLX model and S model

In this section we present the original model of M. van den Berg et al. [119] and S. Lin et
al. [80] (indicated as the BLX model) as well as a new simplified model [82] (called the S
model). According to Remark 4.1, the BLX model and the S modelboth can be qualitatively
considered as special cases of the spatiotemporally discrete urban traffic model described in
previous sections.

4.6.1 BLX model

In the BLX model a queue is modeled as follows. For the sake of simplicity, the assumption
is made that at an intersection the cars going to the same destination move into the correct
lane, so that they do not block the traffic flows going to other destinations. For each lane
(or destination), a separate queue is constructed (with queue lengths denoted byq). Fur-
thermore, the simulation time stepTs is typically set to 1 s and cars arriving at the end of a
queue in simulation period[kTs,(k+1)Ts) are allowed to cross the intersection in that same
period (provided that they have green, that there is enough space in the destination link, and
that there are no other restrictions).

Consider link(u,d) (see Fig. 4.1). For eacho ∈ Ou,d the number of cars leaving link
(u,d) for destinationo in the period[kTs,(k+1)Ts) is given by

mleave
u,d,o(k) =





0 if bu,d,o(k) = 0

max
(
0,

min(µu,d,oTs,Sd,o(k),

qu,d,o(k)+marriv
u,d,o(k))

)
if bu,d,o(k) = 1.

(4.44)

The traffic arriving at the tail of the queue in link(u,d) is given by the traffic entering
the link via the upstream intersection delayed by the timeτ(k) ·Ts + γ(k) needed to drive
from the upstream intersection to the end of the queue in the link; to this extentmarriv

u,d is
updated as follows:

marriv
u,d (k) =

Ts− γ(k)
Ts

· ∑
(i,u)∈Iu,d

mleave
i,u,d (k− τ(k))+

γ(k)
Ts

· ∑
(i,u)∈Iu,d

mleave
i,u,d (k− τ(k)−1) , (4.45)

where

τ(k) = floor

{
Su,d(k) · lveh

Nlane
u,d ·vfree

u,d ·Ts

}
,

γ(k) = rem
{

Su,d(k) · lveh,N
lane
u,d ·vfree

u,d ·Ts

}
. (4.46)

The fraction of the arriving traffic in link(u,d) turning too∈ Ou,d is

marriv
u,d,o(k) = βu,d,o(k) ·m

arriv
u,d (k) . (4.47)
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The new queue lengths are given by the old queue lengths plus the arriving traffic minus the
leaving traffic

qu,d,o(k+1) = qu,d,o(k)+marriv
u,d,o(k)−mleave

u,d,o(k) (4.48)

for eacho∈ Ou,d, and
qu,d(k) = ∑

o∈Ou,d

qu,d,o(k) . (4.49)

The new available storage stage depends on the number of carsthat enter and leave the link
in the period[kTs,(k+1)Ts):

Su,d(k+1)=Su,d(k)−∑
i∈Iu,d

mleave
i,u,d (k)+ ∑

o∈Ou,d

mleave
u,d,o(k) . (4.50)

This BLX model is derived by extending the model of M. van den Berg et al. [119].
The difference between the BLX model and M. van den Berg’s model is equation (4.45). In
(4.45), the tail of the waiting queues in a link is fixed, and the number of arriving vehicles
joining the queues is calculated by the number of vehicles entered the link a certain time
delay before (i.e. historical data). On the contrary, in M. van den Berg’s thesis, the calcu-
lation is made based on the time when vehicles enter the link,and predict the number of
vehicles join the queue in future. Better results were obtained by the BLX model compared
with M. van den Berg’s model (see [80]).

However, we found that there is a problem with the BLX model that it consumes too
much computation time, even though as a macroscopic model. It makes the MPC controller
based on BLX model impossible to be used in practice. Therefore, we come up with the idea
to find a more simple and fast model, which results in the S model. The S model has a larger
sampling time interval, and updates by the average traffic flow rates over the time interval. It
also allows different cycle times for intersections. The computing time was largely reduced
by the S model compared with the BLX model. Therefore, it makes the MPC controllers
possible to be implemented in urban traffic networks.

4.6.2 Simplified model (S model)

In the simplified model, every intersection takes the cycle time as its simulation time inter-
val. The cycle times for intersectionu andd, which are denoted bycu andcd respectively,
can be different from each other, as Fig. 4.2(a) illustrates. Moreover, the S model works
with (average) flow rates rather than with number of cars for describing flows leaving or
entering links.

Taking the cycle timecd as the length of the simulation time interval for link(u,d)
andkd as the corresponding time step counter, the number of the vehicles in link (u,d) is
updated according to the input and output average flow rate overcd at every time stepkd by

nu,d(kd +1) = nu,d(kd)+
(

αenter
u,d (kd)−αleave

u,d (kd)
)
·cd . (4.51)

The leaving average flow rate is the sum of the leaving flow rates turning to each output
link:

αleave
u,d (kd) = ∑

o∈Ou,d

αleave
u,d,o(kd) , (4.52)
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which keeps positive in reality (αleave
u,d (kd) ≥ 0).

The leaving average flow rate overcd is determined by the capacity of the intersection,
the number of cars waiting and/or arriving, and the available space in the downstream link:

αleave
u,d,o(kd) = min

(
µu,d,o ·gu,d,o(kd)/cd,

qu,d,o(kd)/cd +αarriv
u,d,o(kd),

βu,d,o(Cd,o−nd,o(kd))/cd

)
.

(4.53)

The number of vehicles waiting in the queue turning too is updated as

qu,d,o(kd +1) = qu,d,o(kd)+
(

αarriv
u,d,o(kd)−αleave

u,d,o(kd)
)
·cd . (4.54)

Then, the number of waiting vehicles in link(u,d) is

qu,d(kd) = ∑
o∈Ou,d

qu,d,o(kd) . (4.55)

The flow rate entered link(u,d) will arrive at the tail of the queues after a time delay
τ(kd) ·cd + γ(kd), i.e.,

αarriv
u,d (kd) =

cd − γ(kd)

cd
·αenter

u,d (kd − τ(kd))+

γ(kd)

cd
·αenter

u,d (kd − τ(kd)−1) , (4.56)

τ(kd) = floor

{
(Cu,d −qu,d(kd)) · lveh

Nlane
u,d ·vfree

u,d ·cd

}
,

γ(kd) = rem
{

(Cu,d −qu,d(kd)) · lveh,N
lane
u,d ·vfree

u,d ·cd

}
. (4.57)

Before reaching the tail of the waiting queues in link(u,d), the flow rate of arriving
vehicles need be divided by multiplying the turning rates:

αarriv
u,d,o(kd) = βu,d,o(kd) ·αarriv

u,d (kd). (4.58)

The flow rate entering link(u,d) is made up from the flow rates from all the input links:

αenter
u,d (kd) = ∑

i∈Iu,d

αleave
i,u,d (kd). (4.59)

In this formula, we see that the flow rate entering link(u,d) is provided by the combi-
nation of the flow rates leaving the upstream links. Recall that we have different cycle times
between the upstream and downstream intersections, so the simulation time steps are not
the same. Some operations need to be carried out to synchronize the leaving and entering
flow rates.
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Thus,Tlcm is defined as the least common multiple of all the intersection cycle times in
the traffic network. As Fig. 4.2(a) shows, we have

Tlcm = Nj ·c j , (4.60)

with Nj an integer, and equationNu ·cu = Nd ·cd can be satisfied.
In order to control the urban traffic network, a common control time interval need to be

specified for the network model, so that intersections can communicate with each other and
be synchronous.

Tc = N ·Tlcm (4.61)

with N an integer.
Now we show how the flow rates expressed in the timing of intersectionu can be recast

into the timing of intersectiond. First, we smooth the leaving flow rates from the upstream
links as

αleave,C
i,u,d (t) = αleave

i,u,d (ku), ku ·cu ≤ t < (ku +1) ·cu, (4.62)

and then sample them again to obtain the average flow rates in time stepkd so as to be
able used by the downstream link, as Fig. 4.2(b) shows:

αenter
i,u,d (kd) =

1
cd

Z (kd+1)·cd+∆cu,d

kd·cd+∆cu,d

αleave,C
i,u,d (t)dt . (4.63)

Then, (4.59) can be computed instead as follows:

αenter
u,d (kd) = ∑

i∈Iu,d

αenter
i,u,d (kd). (4.64)

4.7 Model assessment

In this section, we will evaluate the effectiveness of this spatiotemporally discrete urban
traffic model, and analyze its sensitivity from a control point of view. Experiments are de-
signed to demonstrate how the Total Time Spent (TTS, frequently selected as traffic control
performance criterion) will change by varying green time lengths of traffic signals. The
evaluated urban road network is shown in Fig. 4.4. It is a simple urban road network with 3
intersections, and 8 origins. The origins, marked as “Ox”, are the origin nodes where traf-
fic flows enter the network. The evaluation performance criterion is the Total Time Spent
(TTS), which is the accumulated time spent by all the vehicles in a region of the road net-
work for the entire simulation time. If the region is the entire road network, then it is the
TTS of the network; If the region is only a link, then it is the TTS of that particular link.

As Fig. 4.4 shows, the length of the roads in the network are 450 m and 900 m, and all
the links have 3 lanes. The vehicle anticipating turning ratesβ are constant, i.e. 0.33 for left
turn, through turn, and right turn respectively. The saturation flow ratesµ are 1800 veh/h,
1600 veh/h, and 1500 veh/h respectively for turning through, left, and right in each link.
The average vehicle lengthlveh is set to 7 m, and the free-flow speedvfree

u,d is 50 km/h. Then
the storage capacitiesC are 193 veh for link (1,2) and link (2,1), and 386 veh for the rest
of the links in the network. Fixed-time control is executed for each intersection, where the
phases, the cycle times, and the green time lengths are all constant during each simulation.
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Figure 4.4: Layout of an urban road network

Phase 1 Phase 2

Figure 4.5: Intersection traffic signal phases

The phases and their order for all the intersections are given in Fig. 4.5. The green time
lengths and cycle times are shown in Table 4.1. The symbolg j,i stands for the green time
length of theith phase for intersectionj. The offsets between intersections are specified
as 0. The network input flow rates of the subnetwork are set to be equal to each other and
constant in time (2000 veh/h). The simulation time durationis 30 min.

In order to evaluate how the evaluation performance (TTS) changes with the traffic sig-
nals, we allow the green time lengths of intersection 2 and 3 to change within a given time
region, g2,1,g3,1 ∈ {15,20,25,30,35,40,45,50,55,60,65,70,75}. The lower bound and
the upper bound for a green time duration is 15 s and 75 s, andg2,2 andg3,2 change accord-
ingly with g2,1 andg3,1, due to the cycle time constraint of each intersection. The proposed
spatiotemporally discrete traffic model is sampled by different sampling time intervals (sim-
ulation time intervals), i.e.T =1 s, 30 s, and 90 s respectively. Then, for each set-up of the
traffic signals, all the sampled discrete traffic models are run for the same period of time

Table 4.1: Traffic signal fixed-time control setup

Intersection Phase 1 (s) Phase 2 (s) Cycle time (s)

1 45 45 90
2 g2,1 90−g2,1 90
3 g3,1 90−g3,1 90
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(c) TTS (T = 90 s)

Figure 4.6: TTS of the network in Fig. 4.4 for discrete model with different sampling time
intervals
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Figure 4.7: TTS of link (1,2) in Fig. 4.4 for discrete model with different sampling time
intervals

(30 min). According to the CFL condition for urban traffic models in Section 4.5, the upper
bounds of the sampling time intervals for every intersection areT1,max = T2,max = 32 s and
T3,max = 64 s. Therefore, whenT1 = T2 = T3 = 30, the urban CFL conditions are satisfied
in all the three intersections, as 30< T1,max = T2,max < T3,max; whenT1 = T2 = T3 = 90,
the urban CFL condition is violated. The comparison of the results are shown in Fig. 4.6
and Fig. 4.7 for the TTS of the entire network and for the TTS oflink (1,2), in which the
urban CFL condition is easier to be violated. If the boundarylinks are full, extra vehicles
coming are stored, and are released if there is space available. These stored vehicles were
also counted when calculating the TTS.

From Fig. 4.6 and Fig. 4.7, we can see that the spatiotemporally discrete traffic model
can describe a more detailed variation of the TTS changing with the green time lengths,
when the sampling time interval is small. ForT = 1 s andT = 30 s, the shapes of the
TTS curves are very similar to each other for both the entire network and the single link
(1,2). Although the surface in Fig. 4.7(b) is not as smooth asthe surface in Fig. 4.7(a),
the scales of the values shown in both figures are the same. Generally speaking, the larger
the sampling time interval is, the faster the model will run.For the discrete traffic models
with sampling time intervals as 1 s and 30 s, the time needed torun the simulation are 5.6 s
and 0.4 s respectively. Consequently, the discrete model with T = 30 s is a better choice for
urban traffic network control, because it can guarantee almost the same performance as the
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discrete model withT = 1 s, but requires less computing time.
For the discrete model with sampling time 90 s, the time needed to run the simulation

is even less, 0.2 s. But, the sampling time becomes too large so as to violate the CFL
condition. Thus, the model fail to describe the correct variation of the traffic phenomenon.
In Fig. 4.6(c), the values of the TTS become much higher than that of the discrete models
with T = 1 s andT = 30 s. In Fig. 4.7(c), the TTS curve becomes very flat, which cannot
capture the variation of TTS values anymore. Therefore, even though the discrete model
with T = 90 s is very fast, but it does not have sufficient accuracy to beused as a control
model. Consequently, in this case study, the spatiotemporally discrete urban traffic model
with sampling timeT = 30 s is comparatively more suitable to be used as a predictionmodel
for the urban traffic controllers, which gives a good trade-off between the modeling accuracy
and the computational complexity.

If we reduce the length of link (1,2) and link (2,1) from 450 m to 150 m, then the CFL
condition is even tighter for intersection 1 and 2, i.e. the upper bounds of the sampling
time interval for intersection 1 and 2 becomeT1,max = T2,max = 10 s. Thus, even though the
sampling time interval is selected asT = 30 s, the CFL condition is also violated. In such
condition, the comparisons of the TTS of the entire network and of the TTS of link (1,2) are
shown in Fig. 4.8 and Fig. 4.9.
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Figure 4.8: TTS of the network for the spatiotemporally discrete model with different sam-
pling time intervals when the length of link (1,2) equals 150m

As Fig. 4.8 and Fig. 4.9 illustrate, similar conclusions canbe derived as above. In
addition, since the CFL condition is violated whenT = 30 s, Fig. 4.9(b) also fails to follow
the trend of the curve in Fig. 4.9(a). As the CFL condition suggests, the shorter the network
links are, the higher the free-flow speed is, and the smaller asampling time interval is needed
to provide enough accuracy for the spatiotemporally discrete urban traffic model.

When green times are set asg2,1 = 45 s andg3,1 = 45 s, the evolution of the number
of vehicles in link (2,1) is shown in Fig. 4.10 for different sampling time intervals. As the
figure illustrates, for all situations, there exists spillback on link (2,1), where the number
of vehicles in link (2,1) reaches its storage capacity, and will block the departures from
upstream links. However, whenT = 90 s, the spillback cannot occur as fast as the spillback
illustrated on the curves whenT = 1 s andT = 30 s.

In urban networks, the turning movements depend on the decisions of individual drivers,
which are with large uncertainty. Actually, in the models ofthis thesis, the turning move-
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Figure 4.9: TTS of link (1,2) for the spatiotemporally discrete model with different sampling
time intervals when the length of link (1,2) equals 150 m
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Figure 4.10: The evolution of the number of vehicles in link (2,1)

ments are related to the turning rates, which are parametersfor the models. Due to the high
complexity, the parameters are assumed to be constant for the models in this thesis. In fact,
these parameters should not be static, but will vary with time. In reality, these parameters
will change with time for different O-D allocations, different route guidance information,
different effects of weather conditions, seasonal variations, events (like concerts or soccer
games), etc. Therefore, for future work, we are going to investigate time-varying urban
traffic control models that will adapt their parameters according to the dynamic traffic in-
formation of the network. This was also proposed as one of therecommendations for future
research in Chapter 8. We will also add uncertainty to futuresimulations on testing the
time-varying urban traffic models.

4.8 Summary

Traffic models that can predict future traffic states are the basis for establishing model-based
traffic control strategies. Model-based control, especially Model Predictive Control (MPC),
requires fast models due to the use of on-line optimization.Therefore, a suitable prediction
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traffic model that is both accurate enough and fast enough, isneeded.
Consequently, macroscopic urban traffic models are selected as prediction models. In

this chapter, a macroscopic spatiotemporally discrete urban traffic model with a variable
sampling time interval is proposed for model-based predictive control. Applying varying
sampling time intervals allows to balance the modeling accuracy and the computational
complexity of the discrete traffic models, and allows to search for the best trade-off for
specific control requirements. A CFL condition is deduced for the spatiotemporally discrete
urban traffic model to make sure the descriptive ability of the model can be still guaranteed,
when the sampling time interval grows.

The criterion for selecting a model is that the model should have sufficient descriptive
power to reproduce all important phenomena for the intendedapplication, and at the same
time the execution speed of a simulation should make the model tractable for use in the given
application. Therefore, experiments are designed to verify whether the model has sufficient
descriptive power to reproduce the necessary phenomena fortraffic control, and whether the
computation speed of the model is high enough. The experiment results illustrate that the
higher the sampling frequency is, the more detailed the discrete model will be, but also the
more computation time is needed. Hence, a trade-off can be made between the computation
time and the accuracy by selecting a proper sampling time interval.

In the following chapters, model-based urban traffic controllers will be established and
tested for large-scale urban traffic networks based on the models described in this chapter.





Chapter 5

Subnetwork MPC Controllers

Due to the high concentration of population and economic activities, a lot of traffic conges-
tion arises in urban areas. Therefore, traffic management systems are installed to improve
the performance of the existing urban transportation infrastructure, and thus to alleviate
traffic congestion. Network-wide coordinated traffic management systems, which automat-
ically and in real time determine appropriate control strategies based on the current and fu-
ture traffic conditions, provide an effective control approach for improving the performance
of the transportation services in cities.

A complex large-scale urban traffic network is usually divided into many small sub-
networks due to the reasons mentioned in Chapter 3. These traffic subnetworks will be
controlled and coordinated under a well-defined control structure. No matter which coor-
dination scheme is used for the control structure, an advanced subnetwork controller is the
foremost thing to be considered. In this chapter, a framework is given to establish MPC
(Model Predictive Control) controllers for urban road subnetworks. Traffic models with
different modeling details, as discussed in Chapter 4, are adopted as prediction models for
the subnetwork MPC controllers. By selecting a proper prediction model, the real-time
feasibility of the MPC controller can be improved a lot in practice1.

5.1 Introduction

Model-based control methods (including Model Predictive Control, MPC) use a predic-
tion model and optimization in order to find the best control decisions for the network.
There are already many model-based control strategies developed for urban traffic. In the
1980s and 1990s, a number of model-based optimization control strategies based on sim-
ple traffic models emerged: OPAC [49], PRODYN [44], CRONOS [17], and RHODES
[115]. The model used in these control approaches are mainlysimple traffic flow forecasting
models based on the traffic data measured by upstream detectors. After that, model-based
control strategies (including MPC) were developed based onmore detailed traffic models
[3, 42, 121], and they obtained good control effects. The detailed traffic models are able
to describe and predict the traffic flow dynamics in the future. These model-based control

1The content of this chapter was published in [83].
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approaches all share a similar control framework, which contains model-based prediction,
on-line optimization, and rolling time horizon. The prediction model enables the controller
to look ahead into the future to avoid myopic decisions. Bothmultiple intersections and mul-
tiple control measures can be easily coordinated through such a model-based optimization.
Moreover, by using the rolling horizon procedure, feedbackis introduced, which makes the
controllers more robust to disturbances and model mismatcherrors. All these advantages
make the model-based control methods very attractive. However, the real-time feasibility2

is the most common practical issue encountered when implementing MPC in practice.
When the number of controlled intersections gets larger, theoptimization problems of

model-based control strategies (including MPC) become toocomputationally complex to be
solved on-line. To improve the real-time feasibility, the following methods can be consid-
ered. First, dividing the network into small subnetworks, and building distributed controllers
[18, 39, 48, 70, 97]. Second, solving the optimization problem off-line, such as optimizing
a feedback regulator off-line and using it with real-time measured traffic states to derive
control decisions [3, 104]. Third, approximating the optimization problem by one that can
be solved more efficiently. Most of the previously mentionedcontrol strategies end up with
controlling the network in a distributed structure. In thischapter, we mainly focus on the
third approach. In particular, we simplify the traffic prediction model to reduce the on-line
computation time. Given the initial traffic states, traffic demands, and future control deci-
sions, any model that can predict the future traffic states ofthe urban traffic network, can
theoretically be used as a prediction model for MPC controllers. But, different models pro-
vide different levels of modeling detail and may yield a different computational complexity.
It is very important for a prediction model to offer a good trade-off between accuracy and
computational complexity, so that it can be fast enough for controlling large-scale networks,
while at the same time also guaranteeing effective control.Therefore, macroscopic traffic
models, which do not describe the details of individual vehicles, but use more aggregated
values like traffic flows and traffic densities, are suitable for real-time control purposes. Two
macroscopic urban traffic network models have already been presented in Chapter 4, and
we will use them as prediction model for MPC controllers. Between the two models, the
BLX model is more detailed, but more complex in computation,while the S model is a sim-
plified model that is proposed aiming at improving the real-time feasibility of the controller.
This model is much faster than the previous model, while onlylosing a limited amount of
accuracy.

5.2 Model Predictive Control: General framework

Model Predictive Control (MPC) [23, 92, 108] is a methodology that implements and re-
peatedly applies optimal control in a rolling horizon way. As Fig. 5.1 shows, in each control
step, an optimal control problem is solved over a predictionhorizon, but only the first con-
trol sample of the optimal control sequence is implemented.Next, the horizon is shifted one
sample and the optimization is restarted again with new information of the measurements.
The optimization is redone based on the prediction model of the process and an estimate of
the disturbances.

2Real-time feasibility means that the on-line optimization problem can be solved fast enough so that the result
is found before the time at which the controller should generate the next control signal.
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Figure 5.1: Schematic representation of MPC

In all MPC methods, three important items are recognizable in the design procedure:

• Prediction model: A model for the controlled system that can predict the future
states. The model should be able to predict the future systemstates based on the
information of current measured system states, the predicted future disturbances, and
the future control inputs. The model can be either linear or nonlinear. On the basis of
the model a prediction of the process signals over a specifiedhorizon (i.e. prediction
horizonNp) is made.

• On-line optimization: An optimization algorithm will be applied to compute a se-
quence of future control signals (u(k)) that minimizes the performance index subject
to the given constraints, andu(k+ j|k) is the control input at thejth control step in the
future from the current control time stepk. For linear models with linear constraints
and a quadratic performance index the solution can be found using quadratic pro-
gramming algorithms. For a nonlinear problem with nonlinear models or constraints
or performance index, nonlinear non-convex optimization algorithms can be applied,
such as multi-start sequential quadratic programming [106, Chapter 5], pattern search
[7], genetic algorithm [36], etc.

• Rolling horizon principle : Predictive control uses the so-called rolling horizon prin-
ciple. This means that after computation of the optimal control sequence, only the first
control sample will be implemented, subsequently the horizon is shifted one sample
and the optimization is restarted with new information of the measurements.

In order to reduce the computational complexity, two methods are usually applied to
reduce the computational complexity of the on-line optimization:

1. Define control horizonNc with Nc < Np;

2. Adopt aggregation techniques. Both methods decrease thecomputational complexity
by reducing the number of control variables optimized.

In the first method, the vector of the control inputs is

u(k) = [uT(k|k) uT(k+1|k) · · ·uT(k+Nc−1|k)]T, (5.1)
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and we set
u(k+ i|k) = u(k+Nc−1|k) i = Nc, · · · ,Np−1.

In the second method, the vector of the optimized control variablesu(k) ∈ R
Np is sub-

stituted by a vectorv(k) ∈ R
s with a lower dimension by introducing an aggregation (or

blocking) matrixH:
u(k) = Hv(k) , (5.2)

whereH ∈ R
Np×s with s < Np. The aggregation matrix is the key factor of aggregation

techniques. Different aggregation matrices allow different aggregation schemes. One of the
most typical aggregation schemes is the blocking scheme [78, 110], which groups the opti-
mized variables into several blocks, in each block the variables are set equal to each other.
Actually, method 1 is a special case of method 2. By defining the blocking matrix, the
number of the variables needed to be optimized is reduced, and the real-time computational
complexity of the MPC controller also decreases. However, the control effect also deterio-
rates to some extent, because the aggregation constraint reduces the number of degrees of
freedom of the optimization.

5.3 MPC for traffic subnetworks

Past Future

n(k)

g(kc)

kc

kc +1 kc +Nc kc +Np

kdkd +1 kd +MdNc kd +MdNp

Figure 5.2: Principle of the receding horizon used in an MPC

In order to control the urban traffic subnetwork, a common control time interval needs
to be defined, so that intersections within the subnetwork can communicate with each other
and be synchronous. Thus, the control time intervalTc is defined as

Tc = N ·Tx, (5.3)

whereN is an integer,Tx stands for the common simulation time interval over the entire
urban traffic network, which is eitherTs for the BLX model (1 s, in general), or the least
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common multiple time intervalTlcm of the cycle times for all the intersections within the
subnetwork for the S model. For example,

Tx = NjTj for all j ∈ J , (5.4)

as presented in Chapter 4.
For intersectiond ∈ J, we defineMd = N ·Nd, then we have

Tc = Md ·Td , (5.5)

whereTd is the simulation time interval for the prediction model, i.e.Td = 1 s for the BLX
model, orTd = cd s for the S model. For any given model simulation time step counterkd

of intersectiond ∈ J, the corresponding value ofkc can be calculated by

kc(kd) =

⌊
kd

Md

⌋
, (5.6)

where⌊x⌋ with x a real number denotes the largest integer less than or equal to x. On the
other hand, a given valuekc of the control time step corresponds to the set

{
kcMd,kcMd +

1, · · · ,(kc +1)Md −1
}

of simulation time steps for intersectiond. Therefore, due to the the
difference between the simulation time interval and the control time interval of the urban
traffic model, the traffic states (n(k)) are actually estimated more frequent than the variation
of the control inputs (i.e. traffic signals,g(kc)), just as Fig. 5.2 shows.

MPC Controller

Process

Optimization

Prediction Model

d̂(k)
n(k)

g∗(kc | kc)

g∗(kc | kc)

g(kc)
JTTS

Figure 5.3: The framework of the MPC controller

The structure of the MPC controller can be illustrated by Fig. 5.3. The MPC controller
obtains current traffic statesn(k) from the process detectors, which can be loop detectors
from real road networks. The prediction model of the MPC controller estimates the future
traffic states according to the measured current traffic statesn(k), the future traffic demands
d̂(k), and the given future traffic signal inputsg(kc). Based on this prediction model, an
optimization problem can be solved, and generate a sequenceof optimal traffic control
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signalsg∗(kc) for the future. But only the first optimal traffic control signal g∗(kc|kc) for the
following time step is sent back to the process to be implemented in the real traffic network.
Then, the time moves one step further, and all the calculations repeat in a rolling horizon
way. In the following, we are going to explain the MPC controlstrategy in more detail.

5.3.1 Prediction model

The prediction models can be selected as the spatiotemporaldiscrete urban traffic models
in Chapter 4. These models can predict the future traffic states used for evaluating the
objective function based on the information of current measured traffic states, the predicted
future traffic demands (i.e. future input traffic flows to the network), and the future control
inputs. These traffic models, including the BLX model and theS model, can be generally
described as

nu,d(kd +1) = f
(
nu,d(kd),gd(kc),du,d(kd)

)
for all (u,d) ∈ L (5.7)

wherenu,d(kd) is the traffic state (e.g. the number of vehicles in a link at simulation time
stepkd),which is estimated for evaluating the objective function; du,d(kd) is the predicted
disturbance (or the traffic demand) for link(u,d) at time stepkd, which is specifically the
future input traffic flow rate to the subnetwork;gd(kc) is the future control input of intersec-
tion d, e.g. the green times. The future traffic demands can be estimated according to the
historical data, or provided by the neighbor subnetworks.

5.3.2 Optimization problem

Given a prediction horizonNp, the future traffic states for link(u,d) are predicted at simu-
lation time stepkd as

n̂u,d(kd) = [n̂u,d(kd +1|kd) n̂u,d(kd +2|kd) · · · n̂u,d(kd +MdNp|kd)]
T, (5.8)

based on the predicted traffic demands for link(u,d) at simulation time stepkd

d̂u,d(kd) = [d̂u,d(kd|kd) d̂u,d(kd +1|kd) · · · d̂u,d(kd +MdNp−1|kd)]
T, (5.9)

and the future traffic control inputs for noded at control stepkc

gd(kc) = [gT
d(kc|kc) gT

d(kc +1|kc) · · · gT
d(kc +Np−1|kc)]

T , (5.10)

wheregd(kc + j|kc) denotes the control input at thejth control step in the future from
the current control time stepkc. Assume without loss of generality that node setJ =
{1,2, . . . ,Φ} for the traffic subnetwork, then the optimized control inputfor the subnetwork

is a vector expressed asg(kc) =
[
gT

1(kc) gT
2(kc) · · · gT

Φ(kc)
]T

. Therefore, the optimization
problem of MPC can be expressed as

min
g(kc)

J = min
g(kc)

∑
(u,d)∈L

Ju,d
(
n̂u,d(kd),gd(kc)

)

s.t. n̂u,d(kd) = nu,d(kd);

n̂u,d(kd + j +1) = f (n̂u,d(kd + j),gd (kc(kd + j)) ,du,d(kd + j)) ,
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for j = 0, . . . ,MdNp−1, for all (u,d) ∈ L;

Φ(g(kc)) = 0 (cycle time constraints);

gmin ≤ g(kc) ≤ gmax, (5.11)

whereJu,d is the objective function for link(u,d), kc(kd) is given by (5.6), and cycle time
constraints guarantee that the sum of all the green time durations for an intersection equals
the given cycle time. However, since the prediction model isnonlinear, and the optimization
problem is computed on-line, the time taken to solve it is usually a big issue for MPC.
To decrease the on-line computational complexity, a control horizon Nc (Nc < Np) can be
defined, such that

gd(kc + i|kc) = gd(kc +Nc−1|kc) for i = Nc, · · · ,Np−1. (5.12)

5.3.3 Rolling horizon

Once the optimal control inputg∗(kc) is derived from the optimization, then the first sample
of the optimal results, i.e.

g∗(kc|kc) = [g∗T
1 (kc|kc) g∗T

2 (kc|kc) · · · g∗T
Φ (kc|kc)]

T , (5.13)

is transferred to the process and implemented. When arrivingto the next control stepkc+1,
the prediction model is fed with real measured traffic states, the whole prediction horizon is
shifted one step forward, and the optimization starts over again. This rolling horizon scheme
closes the control loop, enables the system get feedback from the real traffic network, and
makes the MPC controller robust to the uncertainty and disturbances.

Remark 5.1 The objective function in (5.11) can be selected as the TotalTime Spent (TTS),
Total Delay Time (TDT), Total Emission (TE), etc. (See Chapter 3) However, in the case
studies of this chapter, TTS of the subnetwork is chosen as the objective function, i.e.

min
g(kc)

J = min
g(kc)

∑
(u,d)∈L

(kc+Np)Md

∑
kd=kcMd+1

Td · n̂u,d(kd) . (5.14)

2

5.4 Case studies

MPC has a comparatively high requirement for on-line computational complexity. The
on-line computational complexity can be decreased by increasing the efficiency, i.e. the
computational speed of the prediction model. Therefore, macroscopic models are selected
as the prediction models, within which the S model is proposed to further reduce the com-
putational time. In this section, we are going to design experiments to show whether or
not the selected prediction model is fast, and meanwhile also accurate enough for control
purposes. In addition, the experiments will also test the control performance of the designed
MPC controllers. The simulated urban road subnetwork is shown in Fig. 5.4. Nodes marked
as “Sx” are the source nodes where traffic flows enter and leave the subnetwork, and also
where subnetworks connect with each other.



84 5 Subnetwork MPC Controllers

1

2
3

4

5

6 7 8 9 10

11 12 13

14

15 16 17

S
1

S
2

S
3

S
4

S5

S6 S7

S8

S
9

S10

S
11

S12

S
13

S
14

800 300

300

500

400 400 400 500

700

450 350 350 350

450 450 400 350

400
350

380 380

500 350

Figure 5.4: An urban road subnetwork with a main street (a string S6-6-7-8-9-10-S7)

5.4.1 Model test

To evaluate the effectiveness of the proposed urban traffic models, the microscopic model
CORSIM developed by (FHWA, 2001) is employed to simulate thereal traffic. The com-
parisons are performed with two measure of effectiveness defined in CORSIM, “content”
and “trips”. The “content” is the cumulative count of vehicles on a link, accumulated every
time step. In fact, if the simulation time step is set to 1 s in CORSIM, the “content” exactly
correspondents to the TTS of a link at current simulation time instance, i.e. the performance
of the controller. The “trips” is the number of vehicles thathave been discharged from a
link since simulation begins. Similar to the “content”, the“trips” correspondents to the to-
tal number of departure vehicles (Total Vehicle Departure)for a link, which illustrates the
control effect of the control inputs (green time splits, cycle time, offset, phase) of the corre-
sponding intersection. For control purposes, a decisive factor considered when selecting a
model is whether the model can provide enough accurate relationship for the control inputs
and the control outputs (performances). Thus both measure of effectiveness are chosen to
evaluate the urban road subnetwork model.

The structure of a urban road subnetwork with the lengths (inmeter) of the roads are
shown in Fig. 5.4. In the model of this subnetwork, all the vehicle turning rates (left 33%,
through 34%, right 33%), the number of lanes (3 lanes for eachlink) and the storage capac-
ities of the links are considered to be fixed and known. The free-flow speed is 30 km/h. The
network input flow rates of the subnetwork are all set to 2000 veh/h, which are constant in
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time. A fixed-time control strategy is executed in this subnetwork, where the phases, the
cycle times, and the green time splits are all constant, and the offsets are set to be zero. The
cycle time is 60 s for intersection 6, 8, 9, 10, and 11, and is 40s for the other intersections.
The fixed-time signals are designed based on the data for the saturated scenario [101], i.e.
the green times are proportional to the traffic demands from each direction, which depend
on the saturated flow rates and the turning rates under the saturated scenario. Definerp as
the maximum saturation flow rate of phasep as

rp = max
l∈Lp

{µl}, (5.15)

whereLp is the set of lanes of phasep, andµl is saturation flow rate for lanel . Then, define
R as the summation of all maximum saturation flow rates corresponding to each of then
phases in one cycle:

R=
n

∑
p=1

rp. (5.16)

For each phasep, its optimum green time,tgreen
p , is calculated by distributing the total avail-

able green time, i.e.C−Y (C is the cycle time length,Y is the total yellow time length), in
proportion to its saturation flow rates of the correspondingdirections:

tgreen
p =

rp

R
(C−Y). (5.17)

Fig. 5.5 shows the comparisons of the S model, BLX model, and CORSIM on the in-
dices of TTS and total vehicle departure for two links in the network of Fig. 5.4. As Fig. 5.5
shows, even though they are macroscopic models, the BLX model and S model are able to
provide curves of the two measure of effectiveness that are consistent with that of micro-
scopic traffic simulator, CORSIM, for both links. But the curves of the BLX model and S
model will drift away from the curves of CORSIM when the time grows. The reason is that
the longer time the models run, the more errors will be accumulated for the macroscopic
models because of neglecting the detailed driving behaviorof individual vehicles compared
with a microscopic model. The figures also show that the modeling accuracy is higher for
the link near the source nodes of the network (i.e. link (10,9)) than for the link inside the
network (i.e. link (9,8)). This is because that the farther away a link is located from the
network boundary, the more errors will be accumulated, as they are passed down from the
upstream links.

The evolution of the average number of departure vehicles leaving from link (9,8) and
link (10,9) are shown in Fig. 5.6. The S model is obtained through model reduction from
the more detailed BLX model, and thus it sacrifices some modeling accuracy to gain more
computation efficiency. But, Fig. 5.5 illustrates that the Smodel has similar curve trends
as the BLX model in both the CORSIM measure of effectiveness at the two links. Similar
experiment results can be derived for the other links withinthe network. Therefore, this
experiment illustrates that both the macroscopic models, the S model and the BLX model,
are accurate enough to be selected as the prediction model ofMPC controllers in this case.

When used as prediction models for MPC, the computational speed is also very impor-
tant. The experiments above were also used to compare the speed for running a simulation
by using CORSIM, the BLX model, and the S model. The three models are provided with
the same traffic network, the same network parameters and traffic demands as the previous
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Figure 5.5: TTS and Total Vehicle Departure (TVD) comparison of the S model, BLX model,
and CORSIM for different links

experiment set-up, and simulate for a same period of time, 30min. The results turn out
to be that the BLX model and the S model reduce the computational time by 70.8 % and
99.2 % respectively compared to CORSIM. The S model reduces the computational time
by 97.4 % compared to the BLX model. Therefore, as macroscopic models, both the BLX
model and the S model are faster and in this context more suitable as prediction model for
the MPC controller than the CORSIM simulator. Moreover, theS model is much faster than
the BLX model, which can further increase the on-line feasibility of MPC controller, but
with a limited loss of the control performance.

5.4.2 Urban subnetwork control using MPC

Two MPC controllers are designed for the urban road subnetwork shown in Fig. 5.4, taking
the BLX model and the S model as prediction models respectively. The structure of the
BLX-based MPC controller and the S-based MPC controller is shown in Fig. 5.7. The
fixed-time (FT) controller is simulated as a benchmark to evaluate and compare these two
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Figure 5.6: The evolution of the average number of departurevehicles from CORSIM, BLX,
and S model

control strategies. In order to evaluate these control strategies, CORSIM is used to simulate
the real traffic environment.

MPC Controller

CORSIM

Optimization

S (BLX) Model

Traffic demands Measured traffic states

Control actions

Figure 5.7: Illustration of MPC controllers

The same experiment set-up of the previous subsection is applied again for this sub-
section. During the experiments, the simulation time interval of the BLX model is set to
1 s, while in the S model, the simulation time intervals are 60s or 40 s. For both the MPC
controllers, the control time intervalTc is 120 s, the prediction horizonNp is 5, andNu = Np.
All the simulations implemented with different control strategies run for the same time pe-
riod, 1 h. Total Time Spent (TTS) is the control objective of the MPC controllers, but the
performance indicators used for the evaluation are selected as the TTS and the Total Delay
Time (TDT). TTS is the accumulated amount of time spent by allthe vehicles inside the
road network since the beginning of the simulation, including both the vehicles freely run-
ning on a link and the vehicles slowing down or waiting in queues. TDT is the total time
spent by all the vehicles traveling with speed lower than thefree-flow speed inside the road
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network since the beginning of the simulation, i.e. the total amount of time that the vehicles
are delayed. Using extra performance indicator TDT, trafficdelays can be further evaluated
and compared for the urban traffic network. Two traffic scenarios are considered:

1. Balanced scenario:The traffic demands (traffic flows) from all the source nodes into
the subnetwork are the same, and they all increase with time as Fig. 5.8 shows.

2. Imbalanced scenario:The traffic demands of all the source nodes are very low (500
veh/h), but the traffic demands for source nodes S6 and S7 are very high (3000 veh/h).
Therefore, the road between S6 and S7 becomes a busy and main street of the subnet-
work.
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Figure 5.8: The variation of the supply flow rates for the network
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Figure 5.9: TTS and TDT comparisons for the subnetwork in Fig. 5.4 of the S-based MPC,
the BLX-based MPC, and the fixed-time controller at every control time step in
the balanced scenario

For the balanced scenario, Fig. 5.9 illustrates the comparison of the two control per-
formance indicators for all the control strategies (S-based MPC, BLX-based MPC, and FT
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controller). As Fig. 5.9(a) shows, the three controllers can control the subnetwork to al-
most the same value of the TTS at the beginning of the simulation. It means that all the
three controllers are almost equally effective, when the traffic demands are low, and the
subnetwork has a comparatively low traffic density. This is because, if the cycle times of
intersections and off-sets between intersections are fixed, the control performance mainly
depends on the traffic demands rather than on the traffic signal splits when the subnetwork
is far from saturated. However, as the traffic demands increase, and the traffic density of
the subnetwork grows, the MPC controllers become more and more superior to the fixed-
time controller. Even though the TTS is selected as the control objective for the MPC
controllers, the TDT is reduced correspondingly, as Fig. 5.9(b) shows. In order to further
improve the control performance in unsaturated scenario, the cycle time lengths and the
traffic signal off-sets can be further optimized. However, the computational complexity will
also increase correspondingly, as the number of the optimized variables grows. To avoid
increasing the computational complexity, we can leave the responsibility of optimizing and
deciding the cycle time lengths and off-sets to the higher level controller (i.e. the supervisor
or the coordinator).
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Figure 5.10: TTS and TDT comparisons for the string in Fig. 5.4 among the S-based MPC,
the BLX-based MPC, and the fixed-time controller at every control time step
in the unbalanced scenario

For the unbalanced scenario, both the TTS and TDT are reducedobviously for the string
S6-6-7-8-9-10-S7 in Fig. 5.4 by the MPC controllers compared with the fixed-time con-
troller, as Fig. 5.10 shows. In average, the TTS is reduced 6.3%, and the TDT is reduced
14.1%. However, TTS and TDT for the other links of the subnetwork except the string keep
the same as that of the fixed-time controller, and sometimes are even worse, as Fig. 5.11
shows. This means that, in order to reduce the delays on the string, the MPC controllers
hold the traffic flows back on the other links in the subnetwork. In such unbalanced situa-
tion, the MPC controllers coordinate the traffic signals within the subnetwork by sacrificing
certain performances of the links that is less crowded, so asto achieve a better network
overall performance. Comparing Fig. 5.9 and Fig. 5.10, the MPC controllers are able to
balance the traffic flow distribution and coordinate the control measures within the subnet-
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Figure 5.11: TTS and TDT comparisons for other links except the string among the S-based
MPC, the BLX-based MPC, and the fixed-time controller at every control time
step in the unbalanced scenario

work. Therefore, the coordination function of the MPC controllers is more obvious in the
unbalanced scenario than in the balanced scenario.

Fig. 5.12 shows the evolution of the average number of vehicles in link (6,7) and (7,8)
for S-based MPC, BLX-based MPC, and the fixed-time controller in both the balanced and
the imbalanced scenario. As the figure shows, there are no spillbacks in the two links
in either the balanced scenario or the imbalanced scenario.But, the vehicles controlled
by MPC controllers spread more evenly than the vehicles controlled by the FT controller,
which make better use of the capacity of the traffic network, and result in better overall
control performance.

In the previous simulation, we can derive that the CFL condition in Chapter 4 is not
always kept. Therefore, a new simulation was run for the casestudy, in which the CFL
condition is not violated. All the setups are the same as the previous simulation, except the
traffic network is as Fig. 5.14 shows, new supply flow rates forthe network are changed as
Fig. 5.13 shows to create a peak for the traffic supply, and thecycle time becomes 120 s for
Intersection 6, and 60 s for the other intersections.

The TTS curves are very similar for the fixed-time controller, BLX-based MPC, and
S-based MPC in the balanced scenario, as Fig. 5.15 shows. In the imbalanced scenario,
the string allows more traffic flow under the MPC controllers compared with the fixed-time
controller, and alleviates the traffic burden in the rest of the network (see Fig. 5.16 and
Fig. 5.17).

To on-line solve the nonlinear optimization problem in (5.11) for the MPC controller,
the prediction model has to be simulated thousands of times.The speed for solving the
optimization problem can be significantly improved by reducing the computational speed
of the prediction model. The on-line optimization problem of the S-based controller can
be solved within 1 min for the subnetwork of Fig. 5.4, and the cpu time can be reduced
around 96% compared to the BLX-based controller. Thus, the S-based controller requires
much less on-line computational time than the BLX-based controller because of the effi-
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(a) Link (6,7), Balanced scenario
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(b) Link (6,7), Imbalanced scenario
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(c) Link (7,8), Balanced scenario
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(d) Link (7,8), Imbalanced scenario

Figure 5.12: The evolution of the average number of vehiclesin links (6,7) and (7,8) for
S-based MPC, BLX-based MPC, and the fixed-time controller
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Figure 5.13: The variation of the supply flow rates for the network
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Figure 5.14: An urban road subnetwork with a main street (a string S6-6-7-8-9-10-S7)
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Figure 5.15: TTS comparisons for the subnetwork in Fig. 5.14for S-based MPC, BLX-based
MPC, and the fixed-time controller at every control time stepin the balanced
scenario

ciency of the S model. Moreover, it is able to keep a similar performance as the BLX-based
controller. Therefore, the real-time computational feasibility of the MPC controller can be
greatly improved by using the S model as the prediction model, but without losing much
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Figure 5.16: TTS comparisons for the string in Fig. 5.14 for S-based MPC, BLX-based
MPC, and the fixed-time controller at every control time stepin the unbal-
anced scenario
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Figure 5.17: TTS comparisons for the other links except the string in Fig. 5.14 for S-based
MPC, BLX-based MPC, and the fixed-time controller at every control time step
in the unbalanced scenario

performance.
In theory, it is possible to solve an MPC problem with 100 intersections. However, the

on-line computational complexity will almost increase exponentially with the expansion of
the network scale. Therefore, it maybe not practical to control 100 intersections with the
current computing capability. But, we could divide the large network into subnetworks, and
apply hierarchical or distributed control structures as suggested in in Chapter 3.

5.5 Summary

As an advanced control methodology, MPC has many advantages, like robustness to distur-
bances, long-term sight, easy dealing with constraints, and so on. However, despite of all
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these advantages, it also inevitably gives rise to the problem of high on-line computational
complexity. In this chapter, an efficient but also effectiveMPC controller for urban road
subnetworks is presented. The efficiency of the subnetwork controllers is also the basis of
an efficient coordinating algorithm for the subnetworks.

To improve the applicability of the MPC controller in practice, the characteristics of
the prediction models are considered. Two macroscopic models, the S model and the BLX
model, described in Chapter 4, are considered as the prediction models of MPC controllers.
To further increase the computational speed, the S model, which is a reduced version of
the BLX model, is selected. Simulation results show that both the S model and the BLX
model are suitable as prediction model of MPC, and that the S model is much faster while
still offering acceptable accuracy in the predictions. MPCcontrollers taking the two mod-
els as prediction model respectively are constructed and investigated. The MPC controllers
show great capability for coordinating the traffic measurements and intersections within the
subnetworks and achieve a good overall performance, especially in the situation that the
traffic flows are not uniformly scattered within the roads of subnetwork. From a compu-
tational point of view, the S model-based MPC controller is much more efficient than the
BLX model-based MPC controller, while only incurring a limited reduction of the control
performance.



Chapter 6

Fast MPC for Urban Traffic
Subnetworks via MILP

In this chapter, we are going to investigate another method to increase the real-time feasibil-
ity of the on-line optimization problems, when we apply MPC to control large-scale urban
traffic networks. The presented method is to reformulate theon-line optimization problem
into another format, so that it can be solved more efficientlythan before1.

6.1 Introduction

Due to the nonlinear nature of the prediction model (e.g. themodels discussed in Chapter
4), the optimization problem of MPC for urban traffic networks is a nonlinear non-convex
optimization problem. As a consequence, the on-line computational complexity becomes a
big challenge for the MPC controller, if it is implemented inreal-life traffic network. One
can reduce the on-line computational complexity through model reduction (as the S model
in Chapter 4), but the degree that the computation speed can be improved is still limited
due to the nonlinear non-convex nature of the optimization problem. Therefore, in this
chapter, we mainly focus on improving the real-time feasibility of MPC controllers through
improving the efficiency of solving optimization problems.

In general, a nonlinear non-convex optimization problem needs to be solved by non-
linear optimization algorithms, e.g. multi-start Sequential Quadratic Programming (SQP)
[106, Chapter 5], Pattern Search [7], Genetic Algorithms [36], and Simulated Annealing
[43]. Among them, SQP is local optimization method, while others are global optimiza-
tion methods. But, through selecting multiple initial starting points, and choosing the best
solution, multi-start SQP is able to refine the solution and approach the global optimum.
However, all the optimization methods mentioned above require a huge number of eval-
uations of the objective function, which results in runningthe prediction model a huge
number of times. Although the S model is fast already, it still takes quite some time to
simulate the model repeatedly. Therefore, the optimization problem inevitably suffers from
an exponentially growing computational complexity when the scale of the controlled traffic

1The content of this chapter was published in [84, 85, 88].
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network grows. Consequently, the MPC controller will become real-time infeasible when
the scale of the controlled traffic network grows. Therefore, we will reformulate this nonlin-
ear non-convex optimization problem into an optimization problem that can be solved more
efficiently.

To this aim, the nonlinear macroscopic urban traffic networkmodel, the S model of
Chapter 4, i.e. the prediction model of the MPC controller, is reformulated and linearized
into linear equalities and inequalities by introducing in auxiliary integer variables. Based
on this reformulated model, the original nonlinear non-convex on-line optimization prob-
lem of the MPC controller is rewritten into a Mixed-Integer Linear Programming (MILP)
problem, which can be solved efficiently by an existing MILP solver. Thereafter, the real-
time feasibility of the MPC control strategy can be further increased. Moreover, we propose
an approach to reduce the complexity of the MILP optimization problem even further. The
simulation results show that the MILP-based MPC controllers can reach the same perfor-
mance as the original MPC controller, but the time taken to solve the optimization becomes
only a few seconds, which is a significant reduction comparedwith the time required by the
original MPC controller.

6.2 Rules for equivalent transformation into MLD model

6.2.1 Preliminaries

First, some basic tools are introduced for transforming logical statements involving contin-
uous variables into mixed-integer linear inequalities2.

Capital lettersXi are used to represent statements, e.g. “x≤ 0” or “Color is black”. Xi

is commonly referred to as a literal, and has a truth value of either “T” (true) or “F” (false).
Boolean algebra enables statements to be combined in compound statements by means of
connectives:

• “∧” — and;

• “∨” — or;

• “∼” — not;

• “⇒” — implies;

• “⇔” — if and only if;

• “⊕” — exclusive or.

These connectives are defined by means of the truth table given in Table 6.1. The following
propertities will be used later on:

X1 ⇒ X2 is the same as ∼ X1∨X2 (6.1)

X1 ⇒ X2 is the same as ∼ X2 ⇒∼ X1 (6.2)

X1 ⇔ X2 is the same as (X1 ⇒ X2)∧ (X2 ⇒ X1). (6.3)

2This subsection is based on [9, 37].
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Table 6.1: Truth table

X1 X2 X1∧X2 X1∨X2 ∼ X1 X1 ⇒ X2 X1 ⇔ X2 X1⊕X2

T T T T F T T F
T F F T F F F T
F T F T T T F T
F F F F T T T F

One can associate with a literalXi a logical variableδi ∈ {0,1}, which has a value of
either 1 ifXi = T, or 0 if Xi = F. The following propositions and linear constraints are then
equivalent:

X1∧X2 is equivalent to δ1 = δ2 = 1 (6.4)

X1∨X2 is equivalent to δ1 +δ2 ≤ 1 (6.5)

∼ X1 is equivalent to δ1 = 0 (6.6)

X1 ⇒ X2 is equivalent to δ1−δ2 ≤ 0 (6.7)

X1 ⇔ X2 is equivalent to δ1−δ2 = 0 (6.8)

X1⊕X2 is equivalent to δ1 +δ2 = 1. (6.9)

We can use this computational inference technique to model logical parts of processes
(on/off switches, discrete mechanisms, combinational andsequential networks) and heuris-
tics knowledge about plant operation as integer linear inequalities. In this way, we can
construct models of hybrid systems.

6.2.2 Equivalent transformation into MLD model

A Mixed Logical Dynamical (MLD) model [9, 37] allows specifying the evolution of con-
tinuous variables through linear dynamic equations, of discrete variables through proposi-
tional logic statements and automata, and the mutual interaction between the two. The key
idea of transforming a model into an MLD model consists of embedding the logic part in
the state equations by transforming boolean variables into0/1 integers and by expressing
the relations as mixed-integer linear inequalities.

According to [27], consider the statementf (x) ≤ 0, where f : R
n → R. Assume that

x∈ X , whereX ⊂ R
n is a given bounded set, and define

M = max
x∈X

f (x), m= min
x∈X

f (x) . (6.10)

Theoretically, an over-estimate (or under-estimate) ofM or m suffices for our purpose.
However, more realistic estimates provide computational benefits. Now, by introducing in
δ ∈ {0,1}, it is easy to verify that

[ f (x) ≤ 0]∧ [δ = 1] is true if and only if f (x)−δ ≤−1+m(1−δ) (6.11)

[ f (x) ≤ 0]∨ [δ = 1] is true if and only if f (x) ≤ Mδ (6.12)

∼ [ f (x) ≤ 0] is true if and only if f (x) ≥ ε, (6.13)
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whereε is a small tolerance (typically the machine precision), beyond which the constraint
is regarded as violated.

Remark 6.1 The reason for introducingε is that an equation likef (x) > 0 does not fit
the mixed integer linear programming framework, in which only nonstrict inequalities are
allowed. Therefore, the equationf (x) > 0 is replaced by the equationf (x) ≥ ε with ε a
small tolerance, typically the machine precision, where weassume that in practice the case
0< f (x) < ε cannot occur due to the finite number of bits used for representing real numbers
on a computer. 2

Then, the following equivalence holds

[ f (x) ≤ 0] ⇒ [δ = 1] is true if and only if f (x) ≥ ε+(m− ε)δ (6.14)

[ f (x) ≤ 0] ⇔ [δ = 1] is true if and only if

{
f (x) ≤ M(1−δ)

f (x) ≥ ε+(m− ε)δ
(6.15)

Moreover, the termδ f (x), where f : R
n → R andδ ∈ {0,1}, can be replaced by the

auxiliary real variablez = δ f (x) which satisfies[δ = 0] ⇒ [z = 0], [δ = 1] ⇒ [z = f (x)].
Therefore, by definingM andm as in (6.10),z= δ f (x) is equivalent to






z≤ Mδ
z≥ mδ
z≤ f (x)−m(1−δ)

z≥ f (x)−M(1−δ)

(6.16)

6.3 Reformulation of the urban traffic model

Now we will show that the nonlinear non-convex optimizationproblem (5.10) can be re-
formulated into a mixed-integer linear optimization problem [84], which can be solved ef-
ficiently by existing MILP (Mixed-Integer Linear Programming) solvers [6, 46, 89]. The
MILP solver is more efficient than the SQP solver for this particular optimization problem,
and can find the global optimum rather than a local optimum.

6.3.1 Model reformulation into mixed-integer linear model

We now show how the model (4.53) can be reformulated as mixed-integer linear equations
and inequalities using the equivalent reformulation rulesabove. Let

a = βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd

b = (qu,d,o(kd)/cd)+αarriv
u,d,o(kd) (6.17)

c = βu,d,o(kd)(Cd,o−nd,o(kd))/cd

d = min(a,b),

then (4.53) becomes
αleave

u,d,o(kd) = min(a,b,c) = min(d,c) . (6.18)
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Let
f1 = b−a, (6.19)

and define

δ1 =

{
1 if f1 ≤ 0

0 if f1 > 0
, (6.20)

whereδ1 = 1 means free flow demand, andδ1 = 0 means queue discharge demand. Then
we have

d = a+(b−a) ·δ1 = a+ f1 ·δ1 . (6.21)

Similarly, let
f2 = c−d, (6.22)

and define

δ2 =

{
1 if f2 ≤ 0

0 if f2 > 0
, (6.23)

whereδ2 = 1 means spillback regime, andδ2 = 0 means free entry flow regime. Then we
have

min(d,c) = d+(c−d) ·δ2 = d+ f2 ·δ2 . (6.24)

Let
z1 = f1 ·δ1 (6.25)

z2 = f2 ·δ2 (6.26)

and substitute (6.21) into (6.24), then (6.18) becomes linear, as

αleave
u,d,o(kd) = a+z1 +z2 . (6.27)

According to the equivalent transformation rules, (6.20) and (6.25) are equivalent to the
inequality constraints

f1 ≤ M1(1−δ1)

f1 ≥ ε+(m1− ε)δ1

z1 ≤ M1δ1 (6.28)

z1 ≥ m1δ1

z1 ≤ f1−m1(1−δ1)

z1 ≥ f1−M1(1−δ1) .

Similarly, (6.23) and (6.26) are equivalent to the inequality constraints

f2 ≤ M2(1−δ2)

f2 ≥ ε+(m2− ε)δ2

z2 ≤ M2δ2 (6.29)

z2 ≥ m2δ2

z2 ≤ f2−m2(1−δ2)

z2 ≥ f2−M2(1−δ2) .
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Here,M1 andm1 are the maximum value and the minimum value off1, andM2 andm2 are
the maximum value and the minimum value off2. These upper and lower bounds depend on
the capacity or the saturated flow rate of link(u,d), or the capacity of its downstream link.
According to (6.17), the upper bounds and lower bounds ofa, b, c, andd can be deduced as

amin = 0≤ a≤ µu,d = amax

bmin = 0≤ b≤Cu,d/cd = bmax (6.30)

cmin = 0≤ c≤Cd,o/cd = cmax

dmin = 0≤ d ≤ min(µu,d,Cu,d/cd) = dmax,

where all the lower bounds are 0, which represents the average traffic flow rate is non-
negative in reality; the upper bounds depend on the capacityof link (u,d) or its downstream
link. With the upper bounds and lower bounds ofa, b, c, andd, we can derive

M1 = bmax−amin = Cu,d/cd

m1 = bmin−amax = −µu,d

M2 = cmax−dmin = Cd,o/cd (6.31)

m2 = cmin−dmax = −min(µu,d,Cu,d/cd) .

Therefore, by introducing the additional auxiliary binaryvariablesδ1 andδ2, and the
auxiliary real variablesf1, f2, z1, andz2, the original formula (4.53) in the urban traffic
model is equivalently reformulated as linear equations (6.19), (6.22), and (6.27), and mixed-
integer linear inequalities (6.28)-(6.29).

6.3.2 Reformulation of the model synchronization

Consider (4.63) for fixedi,u,d, andkd. We will now show that this results in

αenter
i,u,d (kd) = F in

(
αleave

i,u,d (ku), · · · ,αleave
i,u,d (ku + ℓ)

)
, (6.32)

with ℓ an integer andF in a linear function.
In (4.63),αleave,cont

i,u,d (t) is a piecewise constant function with intervalsξ(ku), · · · ,ξ(ku+ℓ)

and function valuesαleave
i,u,d (ku), · · · ,αleave

i,u,d (ku + ℓ), whereξ(x) depends oncd, cu, and∆cu,d.
Once these variables are fixed,ξ(x) is fixed. Hence, we have linear expression

αenter
i,u,d (kd) =

1
cd

ℓ

∑
j=0

ξkd(ku + j)αleave
i,u,d (ku + j) , (6.33)

as Fig. 6.1 shows.
The linear functionF in can be derived by the following approach. Given (4.63), we

define

k+
u = floor

{
(kd +1) ·cd +∆cu,d

cu

}
,

θ+
u = rem

{
(kd +1) ·cd +∆cu,d,cu

}
,

k−u = floor

{
kd ·cd +∆cu,d

cu

}
,

θ−u = rem
{

kd ·cd +∆cu,d,cu
}

. (6.34)
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αleave
i,u,d (ku)

αenter
i,u,d (kd)

kc ·Nu

kc ·Nd

ku

kd
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δ0(0)

δ1(0)

δ1(1)
δ2(1)

δ2(2)

Figure 6.1: Illustration for linear intersection synchronization

wherek+
u ≥ k−u and 0≤ θ+ < cu, 0≤ θ− < cu. Then, we obtain

αenter
i,u,d (kd) =

1
cd

Z k+
u cu+θ+

u

k−u cu+θ−u
αleave,cont

i,u,d (t)dt

=
1
cd

[
Z (k−u +1)cu

k−u cu+θ−u
αleave

i,u,d (k−u )dt

+
k+
u −k−u −1

∑
i=1

Z ((k−u +i+1)cu

(k−u +i)cu

αleave
i,u,d (k−u + i)dt

+
Z k+

u cu+θ+
u

k+
u cu

αleave
i,u,d (k+

u )dt

]

=
1
cd

[
(cu−θ−u )αleave

i,u,d (k−u )+

cu

k+
u −k−u −1

∑
i=1

αleave
i,u,d (k−u + i)+θ+

u αleave
i,u,d (k+

u )
]

.

Then, the synchronization function (4.63) can be rewritteninto a linear equation of the
form (6.32). Due to the definition of the control time interval, the synchronization formula
will be the same in each control time interval. Taking the case in Fig. 6.1 for example, the
synchronization functions within one control time interval are

αenter
i,u,d (kd) = αleave

i,u,d (ku) , (6.35)

αenter
i,u,d (kd +1) =

1
cd

[
(cu−∆cu,d −cd)αleave

i,u,d (ku)

+(∆cu,d +2cd −cu)αleave
i,u,d (ku +1)

]
, (6.36)

αenter
i,u,d (kd +2) =

1
cd

[
(2cu−∆cu,d −2cd)αleave

i,u,d (ku +1)

+∆cu,dαleave
i,u,d (ku +2)

]
, (6.37)
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wherekd = Ndkc andku = Nckc. Therefore, the linear synchronization relationship can be
pre-specified explicitly according to the given cycle timescd andcu of the corresponding
intersections.

When the flow rate leaving link(u,d) is computed in the S model, the number of vehicles
in downstream linksnd,o(ko) is used to calculate the number of vehicles that the downstream
links can accept at most. The simulation time step counter ofintersectiono is ko. If ko

is different fromkd, an output synchronization function is needed for synchronizing the
original number of vehicles in the downstream link of link (u,d), norigin

d,o (ko), from time step
ko to kd, as

nd,o(kd) = Fout
(
norigin

d,o (ko), · · · ,n
origin
d,o (ko + ℓ)

)
, (6.38)

which is also a linear expression that can be derived using the same rules as deriving the
input synchronization function above.

6.3.3 Link time delay assumption

Assumption 6.1 We assume that the time delay of the vehicles traveling from the beginning
of the link to the end of the queues in the link is constant overtime and link.

Then, having Assumption 6.1, (4.56) becomes linear as

αarriv
u,d (kd) =(1− γconst) ·αenter

u,d (kd − τconst)+

γconst·αenter
u,d (kd − τconst−1) , (6.39)

whereτconst andγconst are constant values obtained by (4.57) with the queue lengthfixed.
This queue length can be pre-calibrated for different traffic scenarios and environments
according to the historical data, and stored in a database. Since the queue length in a link
always changes over time, it is impossible to find an exact optimal constant queue length
to suit the assumption. However, what we could do is to give the queue length (l ) several
fixed values, e.g.l = 0 when the traffic signal is green,l 6= 0 when the traffic signal is red.
The queue length for red signals can be scaled into several levels according to the traffic
scenarios, and may also consider a environment factor. These queue length levels could be
analyzed from the historical information of the link, and finally form a table that can be
looked up. This method cannot derive very accurate time delays, but it can partially make
up the errors for assuming the time delay constant.

With the reformulations above, the S model is reformulated into a mixed-integer linear
model. Thereafter, an MILP method can be used to solve the optimization problem of the
MPC controller based on the mixed-integer linear prediction model.

The reformulation above is not a standard and straightforward procedure that we could
follow, it can be different for different characteristics of the problems we are focusing on.
The main part that makes this work different from other’s is how we tackle the synchroniza-
tion between two successive intersections with different cycle times in Section 6.3.2. We
linearized the synchronization equation, and gave a proof for it.
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6.4 MILP-based MPC controller

For intersectiond, the control time interval and the simulation time intervalsatisfyTc =
NNdcd. Then, for a given control time stepkc, the corresponding simulation time steps are
kd = NNdkc,NNdkc +1, · · · ,NNd(kc +1)−1.

After the model reformulation, the optimization problem ofthe MPC controller can be
expressed as an MILP problem of the following form:

min
u(kc)

JTTS = cT ·u(kc)

s.t. Au(kc) ≤ b (6.40)

Aequ(kc) = beq

umin ≤ u(kc) ≤ umax

ui(kc) ∈ Z for i ∈ B

for appropriately defined matricesA, Aeq, and vectorsc, b, beq, umin, umax, and SetB , where
vectoru(kc) contains all the optimization variables for control time stepskc, · · · ,kc+Np−1
(see A for more details).

The vector of optimized variables at control time stepkc in optimization problem (6.40)
is

u(kc) =[uT(kc|kc) uT(kc +1|kc) · · ·

uT(kc +Np−1|kc)]
T , (6.41)

whereu(kc + j|kc) at any control time step consists of control variables (i.e.green time
splits), state variables, and auxiliary variables for all the nodes and links in the traffic net-
work as:

u(·) = [

Control variables︷︸︸︷
gT(·)

State variables︷ ︸︸ ︷
qT(·) nT(·) nT

downLink(·) αT
leave(·) αT

arriv(·) αT
enter(·)

Auxiliary variables
︷ ︸︸ ︷
δT

1(·) δT
2(·) f T

1 (·) f T
2 (·) zT

1(·) zT
2(·)]T . (6.42)

where (·) stands for (kc+ j|kc), nT
downLink(kc) represents the numbers of vehicles in the down-

stream links. All the optimized variables are real values except for the binary variables
δ1(kc) andδ2(kc). Supplied with initial traffic states and traffic demands of the network, the
optimization problem can be solved at each control time stepkc by the MILP solver.

Several efficient branch-and-bound algorithms [46] are available for MILP problems.
Moreover, there already exist several commercial and free solvers for MILP problems such
as, e.g, CPLEX, Xpress-MP, GLPK, or lpsolve (see [6, 89] for an overview).
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6.5 S∗ model-based MPC controller via MILP

6.5.1 S∗ model

For the S model described in Chapter 4, the formula (4.53) computing the average flow rate
leaving link (u,d) is the minimum of three terms. Each term gives the possible leaving
flow rate under a traffic scenario. Under the saturated scenario, the average leaving flow
rate depends on the saturated flow rate and the green time of the link; under the unsaturated
scenario, the average flow rate is calculated according to the waiting and arriving flow rate
at the intersection; under the over-saturated scenario, the average flow rate depends on the
flow rate that the downstream link can accept. The traffic is always in the scenario that has
the minimal average flow rate that could possible leave the link. As an urban traffic model,
the S model is capable of describing all the situations that may happen in reality. However,
when the S model is taken as a control model of the MPC controller, the third part of (4.53)
can be removed from the S model to leave the over-saturated scenario out by adding extra
constraints. Therefore, the S model can be rewritten into S∗ model by rephrasing (4.53) by

αleave
u,d,o(kd) = min

(
βu,d,o(kd) ·µu,d ·gu,d,o(kd)/cd ,qu,d,o(kd)/cd +αarriv

u,d,o(kd)
)

, (6.43)

and adding upper bound constraint 0≤ nu,d(kd) ≤ Cu,d to traffic statenu,d(kd) (number of
vehicles in a link) to make sure that the number of vehicles inside a link will not exceed
its storage capacityCu,d, i.e. no more vehicles can enter the link when it is already totally
congested.

6.5.2 S∗ model-based MPC controller

An MPC controller can be established based on the S∗ model using the same method as
shown in Section 6.4. A similar MILP optimization problem as(6.40) can be built through
reformulating the S∗ model into an MLD model. But, for the new MILP optimization prob-
lem, the number of the auxiliary variables is reduced by halfbecause of the reduction of the
S∗ model. Although the S∗ model does not take the over-saturated scenario into considera-
tion, the free spaces of the downstream links can still be considered due to the constraints
added. Instead of constraining the average traffic flow ratesleaving links, the maximum
number of vehicles that the downstream link can accept is then constrained by the upper
bound. The traffic staten(k), which is the number of vehicles in a link, is already an op-
timization variable of the MILP optimization problem. Hence, no extra effort is needed to
add constraints to the traffic statesn(k) of all the links within the network at every simula-
tion time stepk. In fact, the key idea of this approach lies in simplifying the optimization
problem by reducing one equation in the prediction model (the S model), and adding up-
per bounds to the optimized state variablesn(k) instead. As a result, the main complexity
of the S∗ model-based optimization problem (i.e. the number of auxiliary integer variables
introduced) is reduced by half.

6.6 Case study

CORSIM is a microscopic traffic simulation software developed by FHWA [45], which can
be used as a benchmark to design or test traffic control algorithms. We use CORSIM to
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simulate the real traffic environment, and design MPC controllers according to Chapter 5
to decide control inputs for the traffic signals in CORSIM, asFig. 6.2 shows. The on-line
optimization of the MPC controller is reformulated into different optimization problems,
which are solved using different optimization methods, andthen the control performances
(TTS) of the MPC controllers are compared. Multi-start Sequential Quadratic Programming
(SQP) is applied to solve the original S model-based nonlinear non-convex optimization
problem. An MILP solver is used to solve the S model-based or S∗ model-based MILP
problems obtained after reformulation according to Section 6.3.

CORSIM

Optimization

S/S∗ model

MPC controller

Current traffic states Control action for next step

Figure 6.2: Illustration of the traffic control simulation

For the SQP solver, we applyfmincon provided by the optimization toolbox of Matlab.
As MILP solver, we use CPLEX, implemented through thecplex interface function of the
Matlab Tomlab toolbox.

The urban traffic network investigated is a grid network including 4 intersections (see
Fig. 6.3). The cycle times are 120 s for intersection A and D, and 60 s for intersection B and
C. The cycle times are constant, and off-sets are 0 during thesimulation. The variation of
cycle times and offsets is not considered in this case study,but we can distribute multiple
control tasks to different layers of a hierarchical controller, so that the control task for a
single layer is not too complex. Cycle times have comparatively tighter constraints, and
do not have too much space for optimization. Therefore, we can adjust it on a higher level
with a low frequency. Maybe we could try to add offsets as optimization variables in the
lower level controller in the future. The control time interval is set to the least common
multiple of all the cycle times in the network, i.e.Tc is 120 s. The prediction horizon is 10
control intervals. The control simulations run for the sametime period of 3600s for all the
experiments. The length of the links are 1220 m, all the linkshave 3 lanes. The average
vehicle length is 5 m, and the free-flow speed on the links is 50km/h. Therefore, the storage
capacity of each link in the network is 732 veh, and the constant time delay of all the links
is set to be 87.8 s. The input traffic flow rates to the network are constant. The simulations
are carried out under 4 scenarios, according to different values of the input traffic flow rates
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A B

C D

1220 m

1220 m1220 m

1220 m

Figure 6.3: The layout of an urban road network

supplied to the network (input traffic demands), i.e. 500 veh/h, 1000 veh/h, 2000 veh/h, and
3000 veh/h. The simulation results are compared for these different traffic scenarios. The
cost function is TTS for the entire simulation. The number ofinitial points for the SQP
algorithm is 5. In the 5 initial points for SQP, one is the optimal solution derived in the
optimization of the previous step (by shifting the optimal solution of the previous step one
step forward, and adding a new decision to the end of the optimal solution sequence), the
other 4 initial points are generated randomly within the lower and upper bounds.

MPC controllers are built for the urban traffic network basedon different optimization
algorithms. The MILP approaches for the reformulated S model and the reformulated S∗

model are called respectively “S MILP” and “S∗ MILP” here. The control performance
(TTS) of the controllers at every control step since the beginning of the simulation is ex-
tracted from CORSIM, and compared in Fig. 6.4 to Fig. 6.7 for all the scenarios. In general,
both S MILP and S∗ MILP have either better performance (lower TTS) than, or equal per-
formance to the nonlinear optimization algorithm, SQP. Thereason is that the optimization
problem at hand is a nonlinear non-convex problem because ofthe nonlinearity of the S
model, so that it may have multiple local optima. The SQP algorithm is only able to search
for the local optimum, which in general results in a sub-optimal solution. A multi-start
method can be applied to help select a better sub-optimal solution. However, the multi-start
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Figure 6.4: TTS comparison of the SQP, S MILP, and S∗ MILP approaches for 500 veh/h
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Figure 6.5: TTS comparison of the SQP, S MILP, and S∗ MILP approaches for 1000 veh/h

procedure also results in more CPU time. On the contrary, an MILP problem can be solved
efficiently by existing solvers that guarantee the global optimum.

We can see from Fig. 6.4 and Fig. 6.5 that the SQP algorithm hasbetter performance
(lower TTS) than S MILP, when the traffic flow demands are low. This is mainly caused
by Assumption 6.1 made during the model reformulation. Recall that in order to turn the
optimization problem into an MILP problem, Assumption 6.1 is made to linearize the origi-
nal model. In the assumption, the time delay for vehicles running from the beginning of the
link to the end of the queues in the link is considered to be constant. In the situation with
high traffic demands, the number of leaving vehicles dependson the saturated flow rate of
the link. In that case, the assumption almost does not have any influence on the results of
MILP. However, in the situation with low traffic demands, thenumber of leaving vehicles
from the link depends mainly on the number of waiting vehicles in the queues, which will
be affected by the vehicles arriving from upstream after a certain time delay in the link.
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Figure 6.6: TTS comparison of the SQP, S MILP, and S∗ MILP approaches for 2000 veh/h
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Figure 6.7: TTS comparison of the SQP, S MILP, and S∗ MILP approaches for 3000 veh/h

Therefore, the assumption causes a mismatch between the original optimization problem
and the reformulated MILP problem. As a result, the MILP algorithm fails to achieve better
results than the SQP algorithm, when the network is less crowded (low traffic demands).
The reduced S∗ MILP is able to keep similar control performance as S MILP, and in some
situations it performs even better. This is because MILP-S∗ leaves out the third term (i.e.
the supply of the receiving link) in the equation for calculating the departure traffic flow and
thereby, it also implicitly introduces another constraint

αleave
u,d,o(kd)= min

(
βu,d,o(kd)·µu,d ·gu,d,o(kd)/cd ,qu,d,o(kd)/cd+αarriv

u,d,o(kd)
)
≤Cd,o−nd,o(kd)

(6.44)
to the S∗ MILP problem, which means that the demand of(u,d) cannot exceed the supply
of the receiving link. This extra constraint has a function to inform the upstream links to
control their permissions to the coming traffic demands, if aspillback may happen in the
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downstream link. As a result, when the network is unsaturated, there is more space to
allocate traffic demands more reasonably, thus MILP-S∗ is able to achieve a better control
performance.

When the traffic flow demands are high, and the traffic network ismore crowded (satu-
rated), the MILP approaches achieve better performance than the SQP approach, as Fig. 6.6
to Fig. 6.7 shows. The influence of Assumption 6.1, as in low demand scenarios, almost
disappears then. But, due to the high traffic demands and traffic density, there is also less
space for the MILP approaches to improve the control performance, and hence, the TTS
curves stay very close (see Fig. 6.7).
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Figure 6.8: The evolution of the average number of vehicles in link (A,B) when network
traffic flow demands are 500 veh/h
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Figure 6.9: The evolution of the average number of vehicles in link (A,B) when network
traffic flow demands are 2000 veh/h
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In Fig. 6.8 and Fig. 6.9, we give the evolution of the average number of vehicles in
link (A,B) for two scenarios with network traffic flow demandsof 500 veh/h and 2000
veh/h respectively. We can see from the figures that the number of vehicles in link (A,B)
fluctuates over time in the scenario with 500 veh/h, while thenumber of vehicles in link
(A,B) accumulates until the link becomes saturated in the scenario with 2000 veh/h, which
illustrates that the vehicles spill back to the upstream links.

Table 6.2: Comparison of computation times and the number ofoptimization variables for
different optimization algorithms in all scenarios

Scenario Algorithm
CPU time (s) # variables
tavrg tmax Real Boolean

500 veh/h
SQP 461.4 601.7 120 -

S MILP 0.8 2.9 6880 1440
S∗ MILP 1.1 1.2 4480 720

1000 veh/h
SQP 459.1 548.5 120 -

S MILP 1.3 2.5 6880 1440
S∗ MILP 1.3 1.9 4480 720

2000 veh/h
SQP 453.4 552.5 120 -

S MILP 1.2 2.3 6880 1440
S∗ MILP 1.6 2.5 4480 720

3000 veh/h
SQP 452.4 526.4 120 -

S MILP 1.1 2.6 6880 1440
S∗ MILP 1.1 1.5 4480 720

In Table 6.2, the computation time and the number of optimization variables are com-
pared for the different optimization approaches, where “tavrg” is the average optimization
CPU time over all the control steps, and “tmax” is the maximum optimization CPU time.
The SQP approach does not have boolean optimization variables. S∗ MILP has less opti-
mization variables than S MILP, where the number of auxiliary variables is reduced by half
because of the model adaptation. In general, the MILP problem with less boolean variables
will be solved faster than the one with more boolean variables, due to the branch-and-search
procedure of MILP solvers. But, this is not always true for the simulation results of S MILP
and S∗ MILP. Nevertheless, S MILP and S∗ MILP problems can be both solved very fast
by MILP solvers. The CPU times are reduced significantly fromhundreds of seconds to a
few seconds compared to the SQP solver. The number of initialpoints selected for SQP is
5. Therefore, the average CPU time for one single run of SQP can be computed by dividing
5. Thus, takeing the scenario with 500 veh/h as an example, the average CPU time for a
single run of SQP is 92.3 s, the average CPU time for S MILP is 0.8 s, and the average CPU
time for S∗ MILP is 1.1 s. Therefore, by reformulating the original nonlinear non-convex
optimization problem into an MILP problem, the MPC controller for urban traffic network
becomes much more time efficient on-line.
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6.7 Conclusion

Model predictive control provides many advantages for controlling urban traffic networks.
But it also has a high requirement for the computational efficiency of the on-line optimiza-
tion. Due to the nonlinear non-convex nature of the optimization problem, the on-line com-
putational complexity is a big challenge for the MPC controller. To solve this problem, in
this chapter, the nonlinear S model was reformulated into a model, which can be expressed
by mixed-integer linear equalities and inequalities. The Smodel and the reduced S∗ model
are both reformulated according to this method, and the original nonlinear non-convex op-
timization problem is written in the form of MILP problems based on the reformulated S
model and S∗ model respectively. An efficient MILP solver can then be applied to solve the
reformulated MILP optimization problems of MPC.

The simulation experiments indicate that the MILP-based approaches may maintain the
same control performance as the multi-start SQP-based control approach, and sometimes
can achieve even better control performance. However, in the situation of low traffic de-
mands and traffic density, the assumption made during the model reformulation may cause a
mismatch between the reformulated MILP problem with the original optimization problem.
However, this mismatch can be alleviated by calibrating thelink time delay beforehand for
the low traffic demand scenario. The biggest advantage of theMILP-based MPC controllers
is that the on-line computational speed is increased dramatically compared to the original
MPC controller (e.g. in the case study, the time for solving the optimization problem is
reduced from hundreds of seconds to only a few seconds). Thisindicates that the MILP
approach is a potential method that can be selected to reducethe on-line computational
complexity of the S model-based MPC controller, and to further increase the applicability
of the MPC controller in real-life traffic networks.





Chapter 7

Integrated MPC for the
Reduction of Travel Delays and
Emissions

In urban areas, the density of the population is relatively high. People living in big cities
usually live busy lives, and suffer comparatively worse environmental conditions (less living
space, more air pollution, etc.). One of the biggest sourcesof the environmental pollution
in cities comes from the emissions of the busy traffic flows. A well-designed urban traffic
management system, which can control both travel delays andtraffic emissions effectively,
and accordingly make the transportation more efficient and comfortable, is very important.
Therefore, integrated urban traffic control strategies aiming at reducing both travel delays
and emissions will be discussed in this chapter1.

7.1 Introduction

The emissions of vehicles contain several harmful substances, such as nitrogen oxides (NOx,
such as nitrogen monoxide, nitrogen dioxide), hydrocarbons (HC), carbon monoxide (CO),
carbon dioxide (CO2), and fine particulate matter. NOx may participate in several reactions
after being released into the open air, and thus generate ozone, acid rain, and fine particles.
Among them, the generated ground-level ozone may trigger reactions in people who have
asthma, acid rain will cause damage to soil, agriculture, water, etc. Fine particles will give
rise to sufferance from respiratory or cardiovascular diseases. HC, such as methane, ethane,
propane, irritates the mucous membranes, and causes headaches, liver damage, and even
cancer. CO is a colorless and odorless gas generated by incomplete combustion of gasoline.
Driving is the cause of over half of global CO emissions. CO can decrease the ability of
the blood to carry oxygen, and may cause heart disease. CO2 is not directly harmful to
humans, but is very bad for the environment. Because it is a very important gas that causes
the greenhouse effect. The gases released by vehicles make up 14% of the total green house

1The content of this chapter was published in [86].
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gases released around the world. Due to the high concentration of transportation, the vehicle
emissions will form big smog over the city areas, and thus deteriorate the climate of large
cities. In general, traffic pollution deteriorates our living environment, thus increases the
risk for the people who already have heart or lung diseases. Therefore, it is very necessary
to integrate traffic emissions control into the urban trafficmanagement system, so as to
provide a healthier, safer, and more comfort living environment for the people living in
urban areas.

So far, most of the ongoing research is focusing on reducing traffic delays and traffic
congestion, and improving the traffic flow throughput. However, in some circumstances, an
increased traffic flow throughput may result in even higher total traffic emissions [129]. In
general, we cannot take for granted that the smaller travel delay is, the less traffic emissions
will be generated. In fact, the emissions of a vehicle dependgreatly on the operational con-
ditions of the vehicle [4, 28, 29]. Large emissions can be given out by a vehicle with either
too high speed or too low speed. Therefore, an integrated control strategy is necessary that
balances performance in terms of both travel delays and all types of traffic emissions. Traf-
fic control strategies considering both travel delays and traffic emissions for highways have
been already discussed in [129–131]. Since the speed range and the behavior of vehicles
are different for urban and highway, in this chapter we will address travel delays and traffic
emissions for urban areas.

To this aim, first a macroscopic urban traffic model that also estimates the emissions
of traffic flows is proposed, and an MPC controller considering both traffic delays and
emissions is built using this model as the prediction model.Since at each step the MPC
controller solves an optimization problem on-line, it has high requirements for the on-line
computational complexity of the prediction model. The S model in Chapter 4 is taken as
the prediction model for the MPC controller. This model is a macroscopic urban traffic
model, which is fast to compute and also accurate enough for control purposes [82]. In
order to well capture the emissions of a vehicle running on a road in urban area, a micro-
scopic traffic emission model that is based on both velocity and acceleration, is selected.
This vehicle emission model provides reasonable estimates, when the vehicle is decelerat-
ing, accelerating, or moving slowly in front of the stop-line in red signals. Integrated with
this microscopic traffic emission model, the overall macroscopic prediction model is able to
provide estimations of both travel delays and emissions forthe MPC controller.

7.2 Microscopic traffic emission and fuel consumption model

Vehicle emissions depend on many factors, such as vehicle status (like engine, chassis,
age, and maintenance), environmental conditions (such as infrastructure and weather), and
operational factors (such as speed, acceleration, and engine load). These last factors are the
most decisive elements for the fuel consumption and the emission of harmful substances.
A traffic emission and fuel consumption model calculates thequantity of the generated
emissions and consumed fuel based on the operating conditions of the vehicles.

Technology-based emission or fuel consumption models are very detailed models. These
kind of models are developed for a specific vehicle (or engine) model [62]. Such models
are used for the assessment of new technological developments, and for regulation purposes
[62]. Since these models are very detailed, they are difficult to use for online prediction or
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on-line estimation of emissions and fuel consumption of traffic flow. Therefore, for compu-
tational reasons it is advisable not to use such models for on-line model-based traffic control
purposes [129].

There are simpler emission and fuel consumption models thatare suitable for control
purposes, i.e. average-speed-based models and dynamic-based models.

Average-speed-based models calculate the emissions and fuel consumption of each ve-
hicle based on the average traveling speed of the vehicle. This average traveling speed can
be calculated either over the entire trip, or over some localtime periods to take some vari-
ations of the speed into consideration [19]. The mathematical equations for CO, NOx , and
HC emissions from this model are:

ECO(v̄) = (0.001728¯v2−0.245v̄+9.617) [g/km] (7.1)

ENOx(v̄) = 10−4(0.854v̄2−85v̄+5260) [g/km] (7.2)

EHC(v̄) = 10−4(0.521v̄2−88.8v̄+4494) [g/km] (7.3)

wherev̄ is the average speed of a vehicle on a given route, andECO, ENOx, andEHC are
emission levels of carbon monoxide, nitrogen oxides and hydrocarbons in g/km. This model
is only based on the average speed of a vehicle.

However, dynamic-based models use more detailed knowledgeof the vehicle dynamics,
i.e. the speed and acceleration data of each vehicle at everytime instant. As they are
microscopic traffic emission and fuel consumption models, dynamic-based models are more
accurate than the average-speed-based models.

VT-micro [4] is a microscopic dynamic-based traffic emission and fuel consumption
model. It evaluates the emissions based on not only the speedof every vehicle, but also
the acceleration or the deceleration of each vehicle. VT-micro generates emissions and fuel
consumption of an individual vehicle with indexi at every time stepk based on the current
speedvi(k) and accelerationai(k) of the vehicle, as

Eθ,i(vi(k),ai(k)) = exp(ṽT
i (k)Pθãi(k)) , (7.4)

whereEθ,i stands for the emission or fuel consumption forθ ∈ M̃ = {CO,NOx,HC,FC},
and the vectors of velocities and accelerations with the exponents going up from 0 to 3 are
defined as̃vi(k) = [1 vi(k) v2

i (k) v3
i (k)]

T, ãi(k) = [1 ai(k) a2
i (k) a3

i (k)]
T, while Pθ is the

parameter matrix of the model for emission or fuel consumption typeθ ∈ M̃. The matrices
Pθ for the emission variablesθ = {CO,HC,NOx} and the fuel consumption are initially
given in [4, 5], and are adapted for metric system as:

PCO = 10−2





88.7447 48.8324 32.8837 −4.7675
23.2920 4.1656 −3.2843 0
−0.8503 0.3291 0.5700 −0.0532
0.0163 −0.0082 −0.0118 0



 , (7.5)

PHC = 10−2





−72.8040 0 25.1563 −0.3284
8.1857 10.9200 −1.9423 −1.2745
−0.2260 −0.3531 0.4356 0.1258
0.0069 0.0072 −0.0080 −0.0021



 , (7.6)
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PNOx = 10−2





−106.7680 83.4524 9.5433 −3.3549
15.2306 16.6647 10.1565 −3.7076
−0.1830 −0.4591 −0.6836 0.0737
0.0020 0.0038 0.0091 −0.0016



 , (7.7)

and

Pfuel = 10−2





−67.9440 44.3809 17.1641 −4.2024
9.7326 5.1753 0.2942 −0.7068
−0.3014 −0.0742 0.0109 0.0116
0.0053 0.0006 −0.0010 −0.0006



 . (7.8)

The emissions of CO2 are proportional to vehicle fuel consumption, i.e. the morefuel con-
sumed, the more CO2 will be released. Therefore, the emissions of CO2 can be derived
from the fuel consumption model as in [130]:

ECO2,i(vi(k),ai(k)) = 1.17×10−5 +2.65EFuel,i(vi(k),ai(k)) [l/km]. (7.9)

Fig. 7.1 illustrates the variations of the emissions for VT-micro model as a function of the
speed of the vehicles.

In this chapter, we are going to use VT-micro model to integrate with the S model so as
to estimate the vehicle emissions and fuel consumption for urban traffic.

7.3 Integrated traffic flow, traffic emission, and fuel con-
sumption model

7.3.1 Urban traffic behaviors for individual vehicles

As a microscopic model, the VT-micro model provides the emissions of an individual ve-
hicle at a certain location and a time instant. But, as a macroscopic model, the S model
only provides information of traffic flows instead of every detail of each individual vehicle.
However, the S model can capture the main behavior of the vehicles, when they are run-
ning along a road. The time period spent by a vehicle running along a road can be divided
into several parts, in each of which the behavior of the vehicle is assumed to be uniform.
Define the set of the behaviors asB = {free, idling,dec,acc,nonstop}. Fig. 7.2 shows how
the velocity of a vehicle could vary in different behavior regions, when it travels along an
urban road. Therefore, the emission and fuel consumption model for an individual vehicle
in behaviorb∈B can be derived forθ∈M = {CO,CO2,NOx,HC,FC} according to Section
7.2.

As Fig. 7.2(a) shows, in the regions “free” and “idling”, thevehicle runs with a constant
velocity, i.e. the acceleration isa = 0. The region “free” stands for the time period that the
vehicle is running on the link with free-flow speedv = vfree, while the region “idling” rep-
resents the time period that the vehicle is moving in a queue in front of an intersection with
a very low speedv = vlow. Therefore, the emission functions for the vehicle runningwith
free-flow speed and the vehicle idling with a very low speed inthe queues are respectively

Efree
θ,i (k) = Eθ,i(vfree,0) , (7.10)

Eidling
θ,i (k) = Eθ,i(vlow,0) . (7.11)
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Figure 7.1: Vehicle emissions of VT-micro forCO, HC, andNOx, CO2, and fuel consump-
tion at various acceleration a(m/s2)

The regions “dec” and “acc” respectively represent the deceleration and acceleration behav-
ior of the vehicle near an intersection. Here, the assumption is made that the vehicle will
decelerate and accelerate with constant accelerationadec< 0 andaacc> 0 respectively. The
average velocityvavrg is used in the emission function to approximate the velocityduring
decelerating and accelerating. Then, the emission functions for the vehicle decelerating and



118 7 Integrated MPC for the Reduction of Travel Delays and Emissions

v

vfree

vlow

adec aacc

t

free

idling

dec acc

(a) Vehicle dynamic behavior on a road with a stop
v

vfree
vcau

t

free nonstop

(b) Vehicle dynamic behavior on a road without any stops

Figure 7.2: Vehicle dynamic behavior on a road

accelerating are

Edec
θ,i (k) = Eθ,i(vavrg,adec) , (7.12)

Eacc
θ,i (k) = Eθ,i(vavrg,aacc) , (7.13)

where the average velocity of the vehicle is an average of thevelocity before and after
acceleration:vavrg = (vfree+vlow)/2.

If the vehicle arrives at the stop line, where no queue is in front of it and the traffic light
is also green, then the vehicle will leave the link without a stop at a constant speed. This
constant speed,vcau, is a little bit lower than the free-flow speed, because drivers will in
general be more cautious while passing the intersections. Therefore, the emissions for the
nonstop vehicles are

Enonstop
θ,i (k) = Eθ,i(vcau,0) . (7.14)

Remark 7.1 In this subsection, all the variables are assumed to be the same for a vehicle
on any link. If the locations of vehicles are considered, then the emissionEb

θ,i of vehicle i

on link (u,d) in behaviorb should be remarked asEb
θ,u,d,i . 2

7.3.2 Integrated VT-S traffic emission and fuel consumptionmodel

The S model provides macroscopic traffic states for each link(u,d) ∈ L in each simulation
time interval (cycle time). The traffic states include the number of vehicles traveling with
free-flow speed, the number of vehicles decelerating and accelerating, the number of vehicle
waiting in queues. Based on this macroscopic information and the microscopic emission
and fuel consumption model of the previous section, a macroscopic traffic emission and
fuel consumption model can be obtained by combining the macroscopic S model and the
VT-micro model, which results in a macroscopic integrated traffic flow, emission, and fuel
consumption model, which we call the VT-S model.
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The VT-S model for emission and fuel consumptionθ (∈ M) in link (u,d) ∈ L during
time period[cd ·kd,cd · (kd +1)] is

Eθ,u,d(kd) = ∑
b∈B

∑
k∈K (d,kd)

T · ∑
i∈V (b,u,d,k)

Eb
θ,u,d,i(k)

= ∑
b∈B

Eb
θ,u,d(kd) ·N

b
u,d(kd) · t

b
u,d(kd) , (7.15)

whereV (b,u,d,k) is the set of vehicles that have behaviorb at time stepk in link (u,d),
K (d,kd) is the set of time steps k such thatkT ∈ [cd ·kd,cd · (kd +1)] at which the vehicles
are in behaviorb in link (u,d), Eb

θ,u,d(kd) is the constant traffic emission for emissionθ of a

vehicle on link(u,d) with behaviorb during time period[cd ·kd,cd ·(kd +1)], Nb
u,d(kd) is the

number of vehicles that have behaviorb in link (u,d) during time period[cd ·kd,cd ·(kd +1)],
andtb

u,d(kd) is the time period that the vehicles keep having this behavior.

Urban traffic states on a link can be separated into differentscenarios according to the
level of the traffic density. In the saturated traffic scenario, the queues of vehicles resulting
from the red phase cannot be dissolved completely at the following green phase, i.e. all the
arriving vehicles have to stop and wait once for the next green light to leave the link. For
the over-saturated traffic scenario, the vehicles need to wait for even more cycle times in
the queues than in a saturated scenario. On the contrary, in the unsaturated traffic scenario,
all the accumulated vehicles during the red phase are able toleave the link in the following
green phase, and some vehicles can even leave the link without any stop. Since the traffic
behaviors could differ between these scenarios, the VT-S model can be further derived for
each of the three scenarios.

First, we are going to recall some of the notations of the S model that will be used in the
following content:

Ou,d : set of downstream nodes of output links of link(u,d),
nu,d(kd) : number of vehicles in link(u,d) at stepkd,
qu,d(kd) : queue length (expressed as the number of vehicles) at stepkd in link

(u,d),
αarriv

u,d (kd) : average flow rate arriving at the tail of the queue in link(u,d) at step
kd,

βu,d,o(kd) : fraction of the traffic in link(u,d) anticipating to turn to link(d,o) at
stepkd,

µu,d : saturation flow rate leaving link(u,d),
gu,d,o(kd) : green time length during stepkd for the traffic stream towards link

(d,o) in link (u,d)

Saturated scenario

In the saturated scenario, not all the vehicles waiting and arriving in the queues could leave
the link in the current green phase. So some vehicles have to wait until the next green phase,
i.e. the number of vehicles waiting and arriving in the link exceeds the maximum number
of vehicles that could leave at most in one cycle time, however the queues waiting in the
link can be dissolved in the following green phase. This is characterized by the following
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condition:

qu,d(kd) ≤ ∑
o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd)

≤ cd ·αarriv
u,d (kd)+qu,d(kd) . (7.16)

Therefore, all the vehicles have to wait once for a red trafficsignal in the queues before
leaving the link, i.e. no vehicle can leave the link without stop. For the saturated scenario,
the number of vehicles that have behaviorb∈ B in link (u,d) during time period[cd ·kd,cd ·
(kd +1)] is given by

Nfree
u,d (kd) = nu,d(kd)−cd ·αarriv

u,d (kd)−qu,d(kd) (7.17)

Nidling,1
u,d (kd) = cd ·αarriv

u,d (kd)+qu,d(kd)− (7.18)

∑
o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) (7.19)

Nidling,2
u,d (kd) = ∑

o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd)−qu,d(kd) (7.20)

Nidling,3
u,d (kd) = 0 (7.21)

Nidling,4
u,d (kd) = qu,d(kd) (7.22)

Ndec
u,d (kd) = cd ·αarriv

u,d (kd) (7.23)

Nacc
u,d (kd) = ∑

o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) (7.24)

Nnonstop
u,d (kd) = 0, (7.25)

and the time periods that the vehicles keep having this behavior in link (u,d) during time
period[cd ·kd,cd · (kd +1)] are given by

t free
u,d (kd) = cd (7.26)

t idling,1
u,d (kd) = cd − (vlow −vfree)/adec (7.27)

t idling,2
u,d (kd) = cd − (vlow −vfree)/adec− (vfree−vlow)/aacc (7.28)

t idling,3
u,d (kd) = 0 (7.29)

t idling,4
u,d (kd) = cd − (vfree−vlow)/aacc (7.30)

tdec
u,d (kd) = (vlow −vfree)/adec (7.31)

tacc
u,d(kd) = (vfree−vlow)/aacc (7.32)

tnonstop
u,d (kd) = 0. (7.33)

Equation (7.17) gives the number of vehicles that are running on link (u,d) with free-
flow speed during the time period shown in (7.26). The vehicles idling in front of the
stop-line in link(u,d) can be classified into four groups:

1. Vehicles idling for the rest of the cycle time after deceleration;
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2. Vehicles idling between deceleration and acceleration;

3. Vehicles idling for the entire cycle time;

4. Vehicles idling for the rest of the cycle time before acceleration.

In the saturated scenario, (7.19) gives the number of vehicles that arrive at the end of
the queues and decelerate to a low speed in link(u,d), and then keep idling for the time
period as in (7.27). Equation (7.20) gives the number of vehicles that decelerate to arrive at
the end of the queues, keep idling for time period in (7.28), and then accelerate to leave link
(u,d). Equation (7.22) gives the number of vehicles in the queues that keep idling for the
time period as in (7.30), and finally accelerate and leave link (u,d). All the vehicles arriving
at the end of the queues need to decelerate as (7.23) shows, and all the vehicles leaving link
(u,d) will accelerate as (7.24) shows.

Over-saturated scenario

In the over-saturated scenario, the vehicles waiting in thequeues could not leave the link in
the current green phase. So, some vehicles have to wait more than two red traffic phases,
i.e. the number of vehicles waiting in the queues to leave thelink exceeds the maximum
number of vehicles that could leave at most in one cycle time:

∑
o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) < qu,d(kd) . (7.34)

For the over-saturated scenario, the number of vehicles that have behaviorb∈ B in link
(u,d) during time period[cd ·kd,cd · (kd +1)] is given by

Nfree
u,d (kd) = nu,d(kd)−cd ·αarriv

u,d (kd)−qu,d(kd) (7.35)

Nidling,1
u,d (kd) = cd ·αarriv

u,d (kd) (7.36)

Nidling,2
u,d (kd) = 0 (7.37)

Nidling,3
u,d (kd) = qu,d(kd)− ∑

o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) (7.38)

Nidling,4
u,d (kd) = ∑

o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) (7.39)

Ndec
u,d (kd) = cd ·αarriv

u,d (kd) (7.40)

Nacc
u,d (kd) = ∑

o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) (7.41)

Nnonstop
u,d (kd) = 0, (7.42)

and the time periods that the vehicles keep having this behavior in link (u,d) during time
period[cd ·kd,cd · (kd +1)] are given by

t free
u,d (kd) = cd (7.43)

t idling,1
u,d (kd) = cd − (vlow −vfree)/adec (7.44)
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t idling,2
u,d (kd) = 0 (7.45)

t idling,3
u,d (kd) = cd (7.46)

t idling,4
u,d (kd) = cd − (vfree−vlow)/aacc (7.47)

tdec
u,d (kd) = (vlow −vfree)/adec (7.48)

tacc
u,d(kd) = (vfree−vlow)/aacc (7.49)

tnonstop
u,d (kd) = 0. (7.50)

Except for the “idling” behavior, all the above formulas arethe same as in the saturated
scenario. All the vehicles arriving at the end of the queues as shown in (7.36) will decelerate
and be idling for time period (7.44). A part of the vehicles waiting in the queues as in (7.38)
cannot leave link(u,d), and will be idling for the entire cycle time. All the vehicles as
shown in (7.39) will be idling for time period (7.47), and then accelerate and leave link
(u,d).

Unsaturated scenario

In the unsaturated scenario, the queues can be dissolved before the current green phase
ends. Thus, the traffic demand, i.e. the number of vehicles waiting and arriving to leave
the link is less than the maximum number of vehicles that can leave in one cycle, which is
characterized as

cd ·αarriv
u,d (kd)+qu,d(kd) < ∑

o∈Ou,d

βu,d,o(kd) ·µu,d ·gu,d,o(kd) . (7.51)

Therefore, during a green phase, the vehicles waiting in thequeues can be considered
to first leave the link according to the saturated flow rate of the link µu,d, and then, after the
queues are dissolved, the arriving vehicles will leave the link without a stop according to the
arriving flow rateαarriv

u,d (kd) in the rest of the green time. Hereafter, the green time for link
(u,d) in thekdth cycle,gu,d(kd), can be approximately separated into two parts: one is the
green timegs

u,d(kd) in which the traffic leaves the link with the saturated flow rate, the other

is the green timegd
u,d(kd) during which the traffic leaves the link with the arriving flowrate.

The quantities ofgs
u,d(kd) andgd

u,d(kd) satisfy the following relationship

cdαarriv
u,d (kd)+qu,d(kd) = gs

u,d(kd)µu,d +gd
u,d(kd)αarriv

u,d (kd) (7.52)

gs
u,d(kd)+gd

u,d(kd) = gu,d(kd) . (7.53)

Hence, we have

gs
u,d(kd) =

cdαarriv
u,d (kd)+qu,d(kd)−gu,d(kd)αarriv

u,d (kd)

µu,d −αarriv
u,d (kd)

(7.54)

gd
u,d(kd) =

gu,d(kd)µu,d −cdαarriv
u,d (kd)−qu,d(kd)

µu,d −αarriv
u,d (kd)

. (7.55)
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For the unsaturated scenario, the number of vehicles that have behaviorb ∈ B in link
(u,d) during time period[cd ·kd,cd · (kd +1)] is given by

Nfree
u,d (kd) = nu,d(kd)−cd ·αarriv

u,d (kd)−qu,d(kd) (7.56)

Nidling,1
u,d (kd) = 0 (7.57)

Nidling,2
u,d (kd) = (cd −gd

u,d(kd))αarriv
u,d (kd) = gs

u,d(kd)µu,d −qu,d(kd) (7.58)

Nidling,3
u,d (kd) = 0 (7.59)

Nidling,4
u,d (kd) = qu,d(kd) (7.60)

Ndec
u,d (kd) = (cd −gd

u,d(kd))αarriv
u,d (kd) = gs

u,d(kd)µu,d −qu,d(kd) (7.61)

Nacc
u,d (kd) = gs

u,d(kd)µu,d (7.62)

Nnonstop
u,d (kd) = gd

u,d(kd)αarriv
u,d (kd) , (7.63)

and the time periods that the vehicles keep having this behavior in link (u,d) during time
period[cd ·kd,cd · (kd +1)] are given by

t free
u,d (kd) = cd (7.64)

t idling,1
u,d (kd) = 0 (7.65)

t idling,2
u,d (kd) = cd −gd

u,d(kd)− (vlow −vfree)/adec (7.66)

− (vfree−vlow)/aacc (7.67)

t idling,3
u,d (kd) = 0 (7.68)

t idling,4
u,d (kd) = cd −gd

u,d(kd)− (vfree−vlow)/aacc (7.69)

tdec
u,d (kd) = (vlow −vfree)/adec (7.70)

tacc
u,d(kd) = (vfree−vlow)/aacc (7.71)

tnonstop
u,d (kd) = gd

u,d(kd) . (7.72)

In the unsaturated scenario, no vehicle will be held at the stop-line for more than one
cycle time, i.e. all the queues will be dissolved in the following green time. Thus, only
vehicles for “idling,2” and “idling,4” exist. All the arriving vehicles except the “nonstop”
vehicles (as in (7.58)) will experience deceleration and acceleration, and be idling for the
time period in (7.67). All the waiting vehicles in the queuesin (7.60) will be idling for
the time period (7.69), and then accelerate to leave. Only the arriving vehicles except the
vehicles that do not need to stop will decelerate and wait in queues as in (7.61). All the
vehicles leaving at the saturation flow rate have to accelerate to leave the link as (7.62)
shows. In time period (7.72), the arriving vehicles as shownin (7.63) will leave link(u,d)
without a stop.

7.4 Objective function

Given the control time intervalTc and the simulation time intervalcd of noded ∈ J, there
exists an integerNd such that

Tc = Ndcd, (7.73)
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according to the definition of the cycle times for the nodes ina traffic network, as shown in
(4.60). For a givenkd (a counter for simulation time steps for noded∈ J ), the corresponding
value ofkc is given by

kc(kd) =

⌊
kd

Nd

⌋
, (7.74)

where⌊x⌋ for x a real number denotes the largest integer less than or equal to x. On the
other hand, a given valuekc of the control time step corresponds to the set

{
kcNd,kcNd +

1, · · · ,(kc +1)Nd −1
}

of simulation time steps.
The objective function of the integrated urban control problem at control time stepkc is

J(kc) = ∑
θ∈Θ

λθ
Eθ,nominal

∑
(u,d)∈L

Nd(kc+Np)

∑
kd=Ndkc+1

Eθ,u,d(kd) , (7.75)

whereEθ,u,d(kd) denotes the estimated partial criterion forθ in link (u,d) at simulation time
stepkd, Θ = {TTS,CO,NOx,HC,CO2,FC} is the set of the control objectives,Eθ,nominal is
the nominal performance for objectiveθ ∈ Θ to normalize the partial objective ofθ, andλθ
is the weight parameter for objectiveθ. For the Total Time Spent (TTS), we have

ETTS,u,d(kd) = Ts ·nu,d(kd) , (7.76)

and (7.15) will be used for emissions and fuel consumption. The goal of the control problem
is to reduce the combined performance of the Total Time Spentand the variety of traffic
emissions (i.e. CO, NOx, HC, and CO2) of the whole urban traffic network over the entire
prediction horizon. Hence, it turns out to be a multiple objective control problem. Each of
the objective functions is normalized by its nominal performance. By changing the weights
of the objective function, a different emphasis can be assigned for different kinds of control
purposes.

7.5 Case study

CORSIM is a microscopic traffic simulation software developed by FHWA [45], which can
be used as a benchmark to design or test traffic control algorithms. We use CORSIM to
simulate the real traffic environment, and design MPC controllers according to Chapter 5 to
decide control inputs for the traffic signals in CORSIM, as Fig. 7.3 shows. The simulated
urban road subnetwork is shown in Fig. 7.4. Nodes marked as “Sx” are the source nodes
where traffic flows enter and leave the network. The string S6-6-7-8-9-10-S7 is the main
road of the network that has comparatively higher traffic demands. The lightly shaded land
in the network is an area of residences or schools, where population density is high, and the
requirement for the air condition is also stricter accordingly.

Model predictive controllers for urban traffic are designedto reduce both TTS and TE
(Total Emissions for CO, NOx, and HC) for this urban traffic network. Given different
weights to the partial objective functions, the MPC controller can emphasize on different
traffic issues, and focus on improving different performance indications. MPC controllers
are designed based on the weights specified for the differentobjectives, as shown in Table
7.1. Since the CO2 emission of a vehicle is reduced monotonously when the vehicle speed
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CORSIM

Optimization

VT-S model

MPC controller

Current traffic states Control action for next step

Figure 7.3: Illustration of the traffic control simulation

increases (see Fig. 7.1(d)), we can deduce that the lower time delay is, the higher average
traveling speed the vehicles will have, and thus the less CO2 emission will be released.

The structure of a urban road subnetwork is shown in Fig. 7.4 with a main street (a string
S6-6-7-8-9-10-S7) and a resident or a school area (the lightly shaded area). The lengths of
the roads are given on the figure in meter. Each of the road in the traffic network have 3
lanes, and the turning rates for each link are all the same, i.e. left turn 33%, through turn
34%, right turn 33%. The storage capacities of the links are fixed according to the link
lengths, the number of lanes, and the average vehicle length(7 m). The free-flow speed is
30 km/h. The traffic demands of all the source nodes are very low (500 veh/h), but the traffic
demands for source nodes S6 and S7 are very high (3000 veh/h).

For the set-up of the traffic controllers of this subnetwork,the cycle time is set to 60 s for
intersection 6, 8, 9, 10, and 11, and 40 s for the other intersections. During the experiments,
the simulation time interval of the BLX model is set to 1 s, while in the S model, the simu-
lation time intervals are 60 s or 40 s. For both the MPC controllers, the control time interval
Tc is 120 s, the prediction horizonNp is 5, and the control horizon is set toNu = Np. All the
simulations implemented with different control strategies run for the same time period, 1 h.
To illustrate the effectiveness of the MPC controllers, they are compared with a fixed-time
strategy. The fixed-time control strategy is defined having constant phases, cycle times, and
green time splits, and the offsets are set to be zero. The fixed-time signals [101] are de-

Table 7.1: Weight parameters for the multi-objective MPC controllers

MPC λTTS λCO λNOx λHC

MPC-1 1 0 0 0
MPC-2 0 0.33 0.33 0.34
MPC-3 0.5 0.16 0.17 0.17
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Figure 7.4: An urban road network with a main street (a stringS6-6-7-8-9-10-S7) and a
resident or a school area (the lightly shaded area)

signed based on the data for the saturated scenario, i.e. thegreen times are proportional to
the traffic demands from each direction, which depend on the saturated flow rates and the
turning rates under the saturated scenario.

The performance indicators that CORSIM provides to evaluate the effect of the con-
trollers are the TTS, the Total Fuel Consumption (TFC), the TE for CO, NOx, and HC
respectively. For the performance TTS, we further compare the TTS for the entire network
and the TTS for the main road of the network (i.e. the string S6-6-7-8-9-10-S7, see Fig. 7.4).
The TFC represents the total fuel consumption for the whole network, which also reflects
the amount of the CO2 emission (because of the proportional mapping between fuelcon-
sumption and CO2 emission [130], see also (7.9)). The TE is the total amount ofgases,
including CO, NOx, and HC, released on the roads surrounding the lightly shaded region
in Fig. 7.4. The fixed-time controller is defined according tothe rule described in the an-
swer for Section 5.4.1, which is decided based on the proportion of the saturation flow rates
for saturated scenario. But this is not an optimal control solution for real-time traffic, be-
cause the traffic demands may change with time, and the trafficscenarios may also switch.
The results of every control performance are illustrated inTable 7.2 for different control
strategies.
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As Table 7.2 shows, all the MPC controllers are able to significantly reduce the TTS,
the TFC, and the TE compared to the FT controller, except for the TTS performance of
the string. The MPC controllers can improve the TTS performance for the entire traffic
network, but also sacrifice some of the TTS performance on themain road. MPC-1 and
MPC-2 are MPC controllers taking only the TTS of the whole network or only the TE as
control objective respectively. For the MPC-1, the TTS and the TFC are very low, but the
TE for each of the gases is higher than that of MPC-2. For the MPC-2, the TE for each of
the gases is reduced, but the TTS and the TFC become higher than MPC-1, and the TTS
for the string also deteriorates a lot for the main road. When both the TTS and the TE
are considered for the control objective as in MPC-3, all theadvantages of the MPC-1 and
MPC-2 are preserved, where all the performances, includingthe TTS, the TFC, and the TE
of each gas, keep being minimized with only small deviations.

The TTS and TE are not conflicting objectives for urban traffic, but they do conflict to
each other for highways, because the speed range and the behavior of vehicles are different
for urban and highway. In urban areas, the range of the speed for vehicles is usually from 0
to 50 km/h. We know from the VT-micro model that the emissionsand the fuel consumption
of a vehicle almost monotonously decrease when the speed of the vehicle increases within
this range. Hence, the more congested status the vehicle is in, the more emissions will be
released, and the more fuel will be consumed. Therefore, in urban traffic, similar results will
be derived when the MPC controller takes TTS and TE as the control objectives. However,
this is not the case for highways. The speed of vehicles on highway can go up to 120
veh/h or higher, at which vehicles will also release more emissions and consume more fuel.
Therefore, a confliction between TTS and TE will occur in suchsituation.

7.6 Conclusions

In urban areas, traffic delays and traffic emissions are two serious consequences caused by
heavy transportation demands. An integrated MPC controller for urban areas is established
to reduce both travel delays and various types of traffic emissions.

A new integrated traffic flow and emission model to be used as the prediction model
of the MPC controller is proposed in this chapter. The VT-micro emission model for indi-
vidual vehicles is selected, and integrated with a macroscopic urban traffic flow model, the
S-model, so as to form an integrated macroscopic urban traffic flow and emission model,
which we call VT-S model. The microscopic emission model canestimate the amount of
gases released by a vehicle at different operational condition, i.e. the speed and the acceler-
ation speed. Thus, by combine the traffic flow model and the VT-micro model together, the
integrated traffic flow and emission model is able to predict the traffic flow states, as well
as the massive emissions released by all vehicles. Moreover, after the emission model is
integrated with a macroscopic model, the prediction model can still keep the computational
efficiency of a macroscopic model for control purposes. Taking this model as the predic-
tion model, MPC controller can address problems with multiple objectives with respect to
both travel delays and emissions. The aim and the preferenceof the MPC controller can be
changed by assigning different weights for the multiple objectives.

This approach was illustrated by a case study. The simulation results show that the MPC
controllers can reduce both total emissions and total time spent, and thus reduce total fuel
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consumption and CO2 emissions accordingly.
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Chapter 8

Conclusions and
Recommendations

This thesis mainly focuses on how to coordinate and control alarge-scale traffic network ef-
fectively and in a network-wide way, and it also addresses the efficiency of the computation
problem when the network scale grows large.

In this chapter, general conclusions will be drawn, first forthe whole thesis, and then for
each chapter separately. Furthermore, recommendations for future research directions will
be presented.

8.1 Summary of conclusions

Model Predictive Control (MPC) is a promising control methodology that can meet the
needs for controlling and coordinating a large-scale traffic network with a number of traffic
measures. MPC has several advantages for controlling large-scale traffic networks: MPC
can easily coordinate various control measures implemented in traffic networks, it can pre-
dict the future traffic states to make a long-term decision, it is robust to disturbances and
model uncertainty, it can be implemented modularly, etc. However, a big difficulty to imple-
ment MPC in practice is the high on-line computational burden. When using MPC, at each
time step, we have to solve an optimization problem within a limited period of time. If the
optimization problem of MPC controller is too time-consuming to be solved on-line, due
to the large scale of the optimization problem or due to the non-linear, non-convex nature
of the optimization problem, the MPC controller becomes real-time infeasible in practice,
even though the problem is solvable in theory.

Therefore, in the thesis, we have established MPC controllers for urban traffic networks,
and presented several ways to address the computational problems arising when MPC is
used to control and coordinate large-scale urban traffic networks. The main methods con-
sidered in the thesis can be summarized as follows:

• Model reduction: The computational efficiency of urban traffic models was im-
proved through reducing the complexity of the models. Accordingly, the on-line
optimization problems of the model-based predictive controllers were solved more
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efficiently based on these models. In this context, a spatiotemporally discrete urban
traffic model with a variable sampling time interval was proposed for model-based
predictive control, which allows to search for a trade-off between modeling accuracy
and computational complexity. The on-line computational efficiency of the MPC con-
trollers were improved greatly by adjusting the sampling time interval, and accord-
ingly reducing the computational complexity of the prediction models. The control
performance loss, caused by the model reduction, can be limited through balancing
between the modeling accuracy and the computational complexity of the models.

• Reformulation of the optimization problem : We have reformulated the nonlinear
non-convex optimization problem of the urban traffic MPC controllers into a mixed-
integer linear programming (MILP) problem, where the former is hard to solve by
nature, while the latter can be solved efficiently by existing MILP solvers.

• Hierarchical control structure: The computational complexity of a centralized MPC
controller for a large-scale urban traffic network can be reduced by dividing the net-
work into several smaller sub-networks, each of which results in a much lower com-
putational burden. These traffic sub-networks are coordinated, so as to approximate
the global control performance of a centralized MPC controller.

MPC controllers are also built to address multiple control problems for urban traffic
networks, e.g. traffic delays as well as vehicle emissions and fuel consumption. In order
to control traffic delay as well as traffic emissions and fuel consumption in big cities, an
integrated urban traffic, emission, and fuel consumption model is proposed. MPC con-
trollers are established based on this model, which resultsin a balanced trade-off between
minimizing travel time and reducing emissions and fuel consumption.

Main conclusions for the chapters

• Chapter 2:

A literature survey is made to summarize coordinated trafficcontrol strategies for
both traffic networks and strings. From the view of traffic control methodologies,
the existing coordinated traffic control strategies can be classified into MFD-based
(Macroscopic Fundamental Diagram based) approaches, case-based approaches, rule-
based approaches, anticipatory control approach, optimalcontrol approaches, and
MPC (Model Predictive Control) approaches under centralized, distributed, and hier-
archical control structures. The characteristics of thesemethodologies have been an-
alyzed and compared in this literature survey. The model-based optimization control
methodology, including anticipatory control approaches,optimal control approaches,
and MPC approaches, is comparatively a very powerful strategy. However, the prob-
lem for model-based optimization control methods is the high on-line computational
complexity, which handicaps them to be applied in real-lifetraffic.

• Chapter 3:

A well-defined network-wide control framework is necessaryfor designing controllers
for a complex large-scale urban traffic network. By designing a proper control frame-
work for MPC controllers, the on-line computational complexity can be further re-
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duced. Moreover, a suitable control structure can also add flexibility, reliability, scal-
ability, sustainability for the complex large-scale traffic control system. Therefore,
various control structures for large-scale urban traffic networks were discussed and
compared in this chapter. The control structure for a large-scale traffic network can
be roughly classified into four types: centralized control structure, decentralized con-
trol structure, distributed control structure, and hierarchical control structure. The
centralized control can in theory achieve the best overall control performance of the
whole network, while the decentralized control has the lowest computational burden.
Distributed control and hierarchical control provide a compromise between the cen-
tralized controller and the decentralized controller. Therefore, distributed or hierar-
chical control structures are suitable for controlling complex large-scale urban traffic
networks. As a result, a distributed MPC-based control structure was presented, and
coordination algorithms were given in this chapter, which provides a general coordi-
nation framework for the subnetwork MPC controllers designed in Chapter 5, 6, and
7.

• Chapter 4:

Traffic models that can predict future traffic states are the basis of model-based control
strategies. The traffic models included in this thesis are all discussed and evaluated
from a control point of view. To improve the applicability ofthe MPC controllers for
large-scale urban traffic networks, we are mainly focusing on the trade-off between
the efficiency and the complexity of the traffic models. A suitable traffic model that is
both accurate enough and fast enough, is very important for model-based controllers
from a practical point of view. In this context, several macroscopic urban traffic mod-
els were presented in this chapter. Two urban traffic networkmodels, called BLX
model and S model respectively, were proposed. The BLX modelis more accurate,
while the S model is much faster. Moreover, a spatiotemporally discrete urban traffic
model with a variable sampling time interval was proposed for model-based predic-
tive control, which allows to easily search for a trade-off between modeling accuracy
and computational complexity. It contains the features of both the BLX and the S
model. The models analyzed and evaluated in this chapter were used as prediction
models of the MPC controllers designed in the later chapters.

• Chapter 5:

In this chapter, MPC controllers were established for urbantraffic subnetworks, tak-
ing respectively the BLX model and the S model proposed in Chapter 4 as prediction
model. The S model was selected to further increase the on-line computational speed
of the MPC controller. Simulation results illustrated thatboth the S model and the
BLX model were suitable to be used as prediction models of MPCcontrollers, and
that the S model was much faster while still offering acceptable accuracy in the traf-
fic states predictions. Furthermore, the MPC controllers were demonstrated to have
sufficient capability for coordinating the traffic control signals and all intersections
within the subnetworks and to achieve a good overall performance

• Chapter 6:

The on-line computational complexity of MPC controllers was further reduced through
reformulating the optimization problem. Due to the nonlinear non-convex nature of
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the optimization problem, the on-line computational complexity of the correspond-
ing MPC controllers may become real-time infeasible in practice. To address this
problem, the nonlinear S model was reformulated into a mixed-integer linear model,
which can be expressed by mixed-integer linear equalities and inequalities. The S
model and the reduced S∗ model were both reformulated according to this method,
and the original nonlinear non-convex optimization problem was written in the form
of a Mixed-Integer Linear Programming (MILP) problem basedon the reformulated
S model and S∗ model respectively. Hence, existing efficient MILP solverscan be
applied to solve the reformulated MILP MPC optimization problems. The simulation
experiments illustrated that the MILP-based approaches can maintain a similar con-
trol performances as the multi-start SQP-based control approach. Moreover, the most
important advantage of the MILP-based MPC controllers is that the on-line compu-
tational speed is dramatically increased compared with theoriginal MPC controller,
which greatly increases the applicability of the MPC controllers in practice.

• Chapter 7:

In order to meet the needs of maintaining a good living environment for citizens, MPC
controllers that can consider traffic delay, traffic emissions and fuel consumption were
presented in this chapter. An integrated urban traffic, emission, and fuel consumption
model was proposed, which combined a macroscopic urban traffic flow model, the
S model, with a microscopic vehicle emission and fuel consumption model, the VT-
micro model. This model can predict the future traffic flow states, as well as the
emissions released and the fuel consumed by the vehicles. Taking this model as a
prediction model, the MPC controller can address problems with multiple objectives
with respect to travel delays, emissions, and fuel consumption. Based on this inte-
grated model, we established urban traffic MPC controllers that provide a balanced
trade-off between minimizing travel time and reducing bothemissions and consumed
fuel.

8.2 Recommendations for future research

Based on the content of this thesis, we will further give somerecommendations on the
possible future research directions for both the thesis andthe urban traffic control field.

8.2.1 Recommendations for the thesis

Due to the advantages of Model Predictive Control (MPC) methods, in this thesis, we ap-
plied MPC to control and coordinate urban traffic networks, and tried several approaches to
reduce the high on-line computational complexity of MPC controllers. However, although
the MPC controllers for urban traffic networks proposed in this thesis are much more effi-
cient than before, it is still not sufficient enough if the scale of a urban traffic becomes too
large. Therefore, a well-defined control structure and corresponding proper coordination
algorithms are necessary for controlling such a complex large-scale urban traffic network.
A general distributed and hierarchical control structure has been presented in the thesis, but
the corresponding evaluation and analysis are still missing. Therefore, it is highly recom-
mended to further investigate effective hierarchical and distritbuted control structures and
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algorithms for large-scale urban traffic networks, and to compare the new methods with the
presented algorithms. The possible research directions are as follows:

• A hierarchical control structure can be built to address the traffic control problems
of large-scale traffic networks at different levels. The controller can be specified into
multiple layers, on each of which a specific traffic control problem will be solved. The
control layers can be defined based on traffic system dynamics(slow changing and
fast changing dynamics), characteristics of traffic control problems (traffic control,
traffic guidance, etc.), and so on. For each layer, the controller can be established
based on a suitable traffic model, which has the best trade-off between descriptive
ability and computational complexity, so as to be suitable for the particular control
problem of this layer. On the local control level (i.e. intersection level), simple and
efficient control methods can be also applied, such as rule-based controllers, PID
controllers, fuzzy controllers. Information needs to be exchanged among the layers
to achieve a good overall control performance.

• A distributed control structure can be also built for controlling and coordinating
large-scale traffic networks. A large traffic network can be divided into multiple
agents, which can be either traffic sub-networks or even local control actuators (e.g.
traffic signals, ramp metering, speed limits, etc.). Agentscan exchange information
with each other, and can make their own control decisions by their own taking into
consideration of the information from other agents. The agents communicate with
each other, and work together for a good overall control performance of the whole
traffic network. To improve the intelligence of the agents, game theory can be applied
to design the communication and coordination algorithms for the agents. In this con-
text, the agents do not only exchange information, but also negotiate with each other,
and finally converge to a global equilibrium.

Both the hierarchical control structure and the distributed control structure provide a
compromise between the centralized control structure and the decentralized control struc-
ture. However, the main challenge for designing hierarchical traffic control structures and
algorithms is how to define the control problems of differentlayers, while the main chal-
lenge for designing distributed traffic control structuresand algorithms lies on how to ex-
change the information among subsystems and how to use this information. In addition,
before designing the structure and algorithms for hierarchical and distributed controllers,
the partitioning of large-scale urban traffic networks intosmaller subnetworks need to be
investigated.

In Chapter 5, the BLX model and the S model were selected as theprediction models
of MPC controllers for urban traffic networks. Actually, there are other urban traffic models
that have similar or even better modeling accuracy as the models in this thesis, such as the
dynamic network loading model of Bliemer [14], Cell Transmission Model [33] and Link
Transmission Model [128] etc. In future, more research on how these models perform when
used as prediction models of MPC controllers for urban traffic networks will be carried on.

In Chapter 6, the time delay of the vehicles traveling from the beginning of the link to
the end of the queues in the link is constant over time and link. But, in future, this time delay
can be further estimated by pre-calibrating queue lengthesfor different traffic scenarios and
environments according to the historical data. In addition, simulations with shorter link
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length of an urban traffic network can be carried out to further investigate the dependence
between traffic signals and the effect of offsets.

In Chapter 7, an integrated MPC controller was proposed aiming at controlling both
travel delays and traffic emissions for urban traffic networks. Vehicle emissions in a par-
ticular area, e.g. streets in the neighborhood of schools orresidences, were estimated and
controlled. However, the dispersion of vehicle emissions was not considered in the the-
sis. In reality, vehicle emissions will float and spread, after they are released into open air.
The spreading direction and speed depends on the current weather, especially the wind. In
order to estimate the vehicle emissions in a particular areamore accurately, an emission
dispersion model, which describes the dispersion dynamicsof the emissions after they are
released to open air, needs to be further integrated into thetraffic flow and traffic emission
model. Therefore, the MPC controller based on this model will be able to better limit the
vehicle emissions on a school or a residence area more accurately. In addition, the realtime
feasibility of the MPC controller in this chapter can becomelow if the scale of traffic net-
works increases, thus the optimization problem will be further reformulated into an MILP
problem to be solved more efficiently by MILP solvers.

8.2.2 Recommendations for the field

In addition, some possible successive research directionscan be further considered for urban
traffic control field. They can be summarized as follows:

• Time-varying model-based traffic control. In fact, an urban traffic network nor-
mally is a large-scale system with extreme high complexity.For such a complex
traffic network, the model will also become very complicated. In general, both the
parameters and the traffic loads of the traffic network model are not static, but will
vary with time. However, due to the high complexity, they were rarely considered or
were not considered sufficiently, when designing the urban traffic controllers, both in
this thesis and in the field. Some of the parameters of the models proposed in the the-
sis, e.g. turning rates, were assumed to be constant. Actually, these parameters will
change with time for different O-D allocations, different route guidance information,
different effects of weather conditions, seasonal variations, events (like concerts or
soccer games), etc. For instance, the traffic flow turning rates of each intersection
will change, if the O-D matrices and traffic route guidance information of the urban
traffic network vary from time to time. Moreover, if the variation of the traffic loads
for the traffic network model is not considered, the control performance of the MPC
controller will also be deteriorated to some extent. Therefore, predictions on the dy-
namics of the future network traffic loads are also necessary, which can be derived
based on the future traffic demand estimation, future dynamic traffic route guidance
information, future dynamic road pricing policy, etc. Therefore, time-varying urban
traffic models with dynamic network traffic loads predictions can be investigated to
adapt both the parameters and the future traffic loads takinginto consideration the
dynamic traffic information of the network, and MPC controllers can be further built
based on these adaptive urban traffic models. In addition, the geographic structure of
links, e.g. turning pockets and sources of traffic flows in themiddle of a link, can be
further considered in urban traffic models.
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• Stochastic-information-based traffic control. From a microscopic point of view,
due to the participation of individual drivers, the traffic states are not only time-
varying, but also stochastic. For individual drivers, the travel plan, the time of de-
parture, the route choice, the origin and the destination, are all stochastic, and hard to
estimate. But the decisions and choices made by all the individual drivers collectively
define the macroscopic traffic phenomena. Therefore, there exists a connection be-
tween the microscopic vehicle dynamics and the macroscopictraffic flow dynamics.
Traffic control decisions (like traffic signals, ramp metering, variable speed limits,
etc.) are made according to the macroscopic traffic flow states. So in this regard,
the traffic control decisions also indirectly depend on the dynamics of all the indi-
vidual vehicles. Therefore, further traffic control strategies can be investigated based
on the stochastic traffic information of individual vehicles, which will also take the
psychological influences of road users into consideration.In this context, we could
also make use of the growing availability of in-car integrated route planning and com-
munication systems to collect more detailed information from individual vehicles and
incorporate it to get more accurate predictions of the future traffic evolution.

• Design of higher-level controllers. In a hierarchical control structure for a large-
scale urban traffic network, controllers can be designed formultiple layers, where
at different levels different types of control problems have to be solved. In general,
for the higher level control problem, the description of thetraffic dynamics can be
at a slower rate, the area of the controlled traffic network can be larger, and the traf-
fic model at this level can be more general and less accurate. Normally, high-level
controllers will solve an overall control problem with an overview of the whole in-
formation of the traffic network, and thus determine set-points, reference trajectories
and/or constraints for the low-level controllers. However, these control advices will
be only guidelines, which need to be further implemented by the low-level local con-
trollers. In the literature a lot of research is present on low-level controllers for urban
traffic networks, but the results for high-level controllers are still partially lacking,
in particular regarding performance guarantees, the trade-off between optimality and
efficiency, scalability, and robustness. In addition, we need to establish more general
traffic models for high-level controllers. For instance, the macroscopic fundamen-
tal diagram (MFD) is a very important and useful finding for urban traffic networks,
which can be used as a general traffic control model for the high-level urban traffic
controllers.

• High-level models for analysis and design of urban traffic networks. In the ur-
ban traffic control field, control algorithms are mainly evaluated quantitatively by a
control performance index, e.g. Total Time Spent (TTS). Normally, the lower the per-
formance index is, the better the control algorithm will function. However, there is
lack of qualitative analysis for the cause and effect of the emergence of congestion
in large-scale urban traffic networks, especially for the connection between the urban
traffic network topology and the emergence of congestion. Ofcourse, this can be
also analyzed by means of microscopic simulations, but general conclusions are not
easy to derive for different urban traffic networks. Furtheranalysis can be made for
investigating more fundamentally the causes and effects oftraffic congestion in urban
traffic networks. For instance, what kinds of urban traffic network topology will more
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easily or more frequently give rise to traffic congestion, which links or intersections
of an urban traffic network are the places at which traffic congestion will probably
happen first, how will the traffic congestion propagate in an urban traffic network
with a specific topology, and so on. More detailed analysis onthese topics needs to
be performed, and new higher-level or aggregate analysis methods have to be devel-
oped. The resulting high-level models can then be used for analysis and design of
urban traffic networks and will allow to answer questions regarding which currently
uncontrolled intersections to equip with traffic signals, which topology changes to the
current network layout have the largest effect on the reduction of congestion, etc.



Appendix A

Details for the MILP-based MPC
Controller

After the model reformulation, the optimization problem ofthe MPC controller can be
expressed as an MILP problem in the form of (6.40). The optimization problem in (6.40)
can be written in detail as follows:

For any link (u,d) ∈ L in the network,Iu,d and Ou,d are the set of input nodes and
the set of output nodes to link (u,d) respectively. The inequality constraints in (6.40) are
the mixed-integer inequality constraints obtained through Section 6.3.1 made up by the
inequality constraints (6.28) and (6.29) for all the trafficstreams in the network and for all
the predicted simulation time steps in the future (i.e. forkd,kd +1, · · · ,kd +MNp−1). Here,
the inequality constraints for the traffic stream leaving link (u,d) turning to nodeo∈ Ou,d

at time stepkd are

f 1
u,d,o(kd) ≤ M1

u,d,oo(1−δ1
u,d,oo)(kd)

f 1
u,d,o(kd) ≥ ε+(m1

u,d,o− ε)δ1
u,d,o(kd)

z1
u,d,o(kd) ≤ M1

u,d,oδ1
u,d,o(kd)

z1
u,d,o(kd) ≥ m1

u,d,oδ1
u,d,o(kd)

z1
u,d,o(kd) ≤ f 1

u,d,o(kd)−m1
u,d,o(1−δ1

u,d,o(kd))

z1
u,d,o(kd) ≥ f 1

u,d,o(kd)−M1
u,d,o(1−δ1

u,d,o(kd)) (A.1)

f 2
u,d,o(kd) ≤ M2

u,d,o(1−δ2
u,d,o(kd))

f 2
u,d,o(kd) ≥ ε+(m2

u,d,o− ε)δ2
u,d,o(kd)

z2
u,d,o(kd) ≤ M2

u,d,oδ2
u,d,o(kd)

z2
u,d,o(kd) ≥ m2

u,d,oδ2
u,d,o(kd)

z2
u,d,o(kd) ≤ f 2

u,d,o(kd)−m2
u,d,o(1−δ2

u,d,o(kd))

z2
u,d,o(kd) ≥ f 2

u,d,o(kd)−M2
u,d,o(1−δ2

u,d,o(kd)) .

In (6.40), the equality constraints for link (u,d) at time stepkd are: the linear equations,
(4.51) and (4.54), for updating traffic states (the number ofvehicles in the link and vehicles
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waiting in the queue respectively),

nu,d(kd +1) = nu,d(kd)+αenter
u,d (kd)cd − ∑

o∈Ou,d

αleave
u,d,o(kd) ·cd, (A.2)

qu,d,o(kd +1) = qu,d,o(kd)+βu,d,o(kd)αarriv
u,d (kd)cd −αleave

u,d,o(kd) ·cd, (A.3)

the reformulated equations (6.19), (6.22) and (6.27) to substitute the min-max equation of
(4.53),

f 1
u,d,o(kd) = qu,d,o(kd)/cd +αarriv

u,d,o(kd)−βu,d,o(kd) ·µu,d ·gu,d,o(kc)/cd, (A.4)

f 2
u,d,o(kd) = βu,d,o(kd)(Cd,o−nd,o(kd))/cd −βu,d,o(kd) ·µu,d ·gu,d,o(kc)/cd −z1

u,d,o(kd)

(A.5)

αleave
u,d,o(kd) = βu,d,o(kd) ·µu,d ·gu,d,o(kc)/cd +z1

u,d,o(kd)+z2
u,d,o(kd), (A.6)

the linearized equation (6.39) to derive the average arriving flow rate to the end of the queues
in the link based on Assumption 6.1,

αarriv
u,d (kd) = (1− γconst) ·αenter

u,d (kd − τconst)+ γconst·αenter
u,d (kd − τconst−1) , (A.7)

the reformulated synchronization equations, (6.33) and (6.38), for the average input flow
rate to the link and the number of vehicles in the downstream link of link (u,d) respectively,

αenter
i,u,d (kd) =

1
cd

ℓ

∑
j=0

ξkd(ku + j)αleave
i,u,d (ku + j), (A.8)

nd,o(kd) = Fout
(
norigin

d,o (ko), · · · ,n
origin
d,o (ko + ℓ)

)
, (A.9)

and the cycle time equality constraint for every intersections in the urban traffic network

∑
p∈Pd

gp(kc) = cd . (A.10)

(A.10) is the cycle time constraint which guarantees that the sum of the green time splits
of all the phases (p∈ Pd) in intersectiond equals to the cycle time of intersectiond. Except
(A.10), all the other equality constraints exist for all thepredicted simulation time steps
in the future (i.e.kd,kd + 1, · · · ,kd + MNp−1). The cycle time equality constraint (A.10)
works only for the future control time steps (i.e.kc,kc +1, · · · ,kc +Np−1).
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Samenvatting

Effici ënte modelgebaseerde voorspellende regeling voor
grootschalige stedelijke verkeersnetwerken

Congestie in stedelijke omgevingen, in het bijzonder in grote steden, vormt een uitdagend
probleem. Een veelbelovende regelstrategie die voldoet aan de meeste vereisten die no-
dig zijn voor de gecöordineerde regeling van grootschalige stedelijke verkeersnetwerken,
is modelgebaseerde voorspellende regeling (Model Predictive Control, MPC). MPC is een
regelstrategie die gebaseerd is op optimalisatie en die optimale regelingangen kan bepa-
len voor systemen met verscheidene ingangs- en uitgangssignalen met zowel lineaire als
niet-lineaire beperkingen. MPC biedt een aantal voordelenvoor het regelen van grootscha-
lige verkeersnetwerken: MPC kan op eenvoudige wijze verschillende verkeersmaatregelen
coördineren, MPC kan de toekomstige toestand van het verkeersnetwerk voorspellen en
zo lange-termijn-beslissingen nemen, MPC is robuust voor verstoringen en modelonzeker-
heden en MPC kan modulair geı̈mplementeerd worden. Daarom is MPC voor stedelijke
verkeersnetwerken als onderwerp van dit proefschrift gekozen.

Het belangrijkste probleem om MPC in de praktijk te implementeren is de hoge online
rekentijd die vereist is. Bij MPC moet immers voor elke tijdstap in korte tijd een optimali-
satieprobleem opgelost worden. Als ten gevolge van de grootschaligheid van het optimali-
satieprobleem of van het niet-lineaire, niet-convexe karakter van dit probleem het oplossen
van het MPC-optimalisatieprobleem te veel tijd vergt om online opgelost te kunnen worden,
wordt de MPC-regelaar in de praktijk onuitvoerbaar in real-time, hoewel het optimalisatie-
probleem theoritisch gezien wel een oplossing kan hebben. De online rekenefficïentie van
MPC-regelaars is het kernprobleem dat opgelost moet worden, voordat MPC toegepast kan
worden in grootschalige stedelijke verkeersnetwerken.

In dit proefschrift stellen we verscheidene manieren voor om de rekenproblemen aan te
pakken die ontstaan wanneer MPC wordt gebruikt voor het regelen en cöordineren van
grootschalige stedelijke verkeersnetwerken. De belangrijkste methoden die beschouwd
worden in dit proefschrift, kunnen als volgt worden samengevat:

• Modelreductie: Vanwege het niet-lineaire karakter van modellen voor stedelijk ver-
keer wordt het MPC-optimalisatieprobleem een niet-lineair, niet-convex optimalisa-
tieprobleem. Zo’n probleem kan opgelost worden door niet-lineaire optimalisatie-
algoritmen, die echter een groot aantal evaluaties van de doelfunctie door middel van
het voorspellingsmodel vereisen. Dit betekent dat hoe complexer het gebruikte model
voor stedelijk verkeer is, hoe meer rekentijd nodig is om hetonline optimalisatiepro-
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ces uit te voeren. Bijgevolg kan de online rekenefficiëntie van MPC verbeterd wor-
den door de complexiteit van het voorspellingsmodel dat in de MPC-regelaar gebruikt
wordt te reduceren.

• Herformulering van het optimalisatieprobleem: Vanwege het niet-lineaire, niet-
convexe karakter van het MPC-optimalisatieprobleem zal derekencomplexiteit in de
praktijk min of meer exponentieel toenemen als de omvang vanhet geregelde ver-
keersnetwerk toeneemt. Alhoewel de online rekenefficiëntie van de MPC-regelaar
verbeterd kan worden door de complexiteit van het gebruiktevoorspellingsmodel te
reduceren, is het effect daarvan nog steeds beperkt voor grote verkeersnetwerken.
Om dit te vermijden kan de online rekenefficiëntie ook verbeterd worden door het
niet-lineaire, niet-convexe MPC-optimalisatieprobleemte herformuleren als een op-
timalisatieprobleem dat veel efficiënter opgelost kan worden.

• Hiërarchische regeling:De rekencomplexiteit van een gecentraliseerde MPC-rege-
laar voor een grootschalig stedelijk verkeersnetwerk kan verminderd worden door het
netwerk op te delen in verscheidene deelnetwerken, die dan resulteren in een veel la-
gere rekenbelasting. Deze deelnetwerken moeten dan wel gecoördineerd worden om
de globale regelprestatie van een gecentraliseerde MPC-regelaar zo goed mogelijk te
benaderen.

In dit proefschrift worden in het bijzonder de eerste twee methodes onderzocht, name-
lijk

”
modelreductie” en

”
herformulering van het optimalisatieprobleem”. Wij tonenaan dat

de online rekentijd voor de MPC-optimalisatieproblemen door deze twee methodes geredu-
ceerd wordt. Voor de derde methode presenteren we een algemeen framework voor de MPC-
regeling van grootschalige stedelijke verkeersnetwerkenen analyseren we de verschillende
regelstructuren voor netwerkbrede verkeersregeling. Alle gecentraliseerde MPC-regelaars
die in dit proefschrift worden voorgesteld, passen in het framework en kunnen gebruikt
worden als lokale regelaars voor de deelnetwerken. In deze context kunnen de belangrijkste
bijdragen van het proefschrift als volgt worden samengevat:

• We ontwikkelen een nieuw macroscopisch verkeersmodel voorstedelijke verkeers-
netwerken, het zogenaamde BLX-model. Om de rekencomplexiteit verder te reduce-
ren stellen we een macroscopisch model voor dat nog eenvoudiger is, het S-model.
Het S-model is zeer snel, maar is ook nog steeds in staat om alle benodigde infor-
matie te verschaffen die nodig is voor de regeling van verkeer. We introduceren ook
een ander model met een aanpasbare bemonsteringstijd dat kenmerken van zowel het
BLX-model als het S-model bevat en dat uitstekend geschikt is om de afweging tussen
nauwkeurigheid en rekencomplexiteit in te stellen.

• We maken MPC-regelaars voor stedelijke verkeersnetwerkenuitgaande van het BLX-
model en het S-model. De online rekenefficiëntie van de MPC-regelaars gebaseerd
op het S-model blijkt veel beter te zijn dan MPC gebaseerd op het BLX-model, en
gaat slechts met een zeer beperkt verlies aan regelprestaties gepaard.

• Het niet-lineaire, niet-convexe optimalisatieprobleem van de MPC-regelaars voor
stadsverkeer wordt voor het S-model geherformuleerd als een lineair optimalisatie-
probleem met rëele en gehele variabelen (mixed integer linear programming, MILP),
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dat efficïent opgelost kan worden door momenteel beschikbare MILP software. We
stellen ook een verdere vereenvoudiging van het S-model voor, S∗-model genoemd,
die resulteert in een kleiner MILP probleem. Zowel voor het S-model als het S∗-
model geldt dat de online rekenefficiëntie van de MPC-regelaars sterk verbeterd wordt
ten opzichte van de aanpak gebaseerd op niet-lineaire optimalisatie.

• Om zowel vertragingen als uitstoot en brandstofverbruik ingrote steden te regelen,
ontwikkelen we een geı̈ntegreerd model voor verkeersstroom, uitstoot en brandstof-
verbruik. Op basis van dit model worden MPC-regelaars gemaakt die resulteren in
een gebalanceerde afweging tussen het minimaliseren van devertraging, de uitstoot
en het brandstofverbruik.

S. Lin





Summary

Efficient model predictive control for large-scale urban
traffic networks

Traffic congestion in urban areas, especially in big cities,is a challenging problem. One
promising control methodology that can meet most of the needs for controlling and coor-
dinating large-scale urban traffic networks using a varietyof traffic control measures, is
Model Predictive Control (MPC). MPC is an optimization-based control approach that can
optimize and control multi-input multi-output systems with both linear and nonlinear con-
straints. MPC has several advantages for controlling large-scale traffic networks: MPC can
easily coordinate various control measures implemented intraffic networks, it can predict
the future traffic states to make long-term decisions, it is robust to disturbances and model
uncertainty, and it can be implemented modularly. Therefore, the topic of this thesis is MPC
for urban traffic networks.

However, a big difficulty to implement MPC in practice is the high on-line compu-
tational burden. When using MPC, at each time step, we have to solve an optimization
problem within a limited period of time. If the optimizationproblem of MPC controller is
too time-consuming to be solved on-line, due to the large scale of the optimization problem
or due to the nonlinear, non-convex nature of the optimization problem, the MPC controller
becomes real-time infeasible in practice, even though the problem is solvable in theory.
Thus, the on-line computing efficiency of the MPC controllers is the key problem that has
to be solved, before MPC can be applied to large-scale urban traffic networks.

Therefore, we present several ways in this thesis to addressthe computational problems
arising when MPC is applied to control and coordinate large-scale urban traffic networks.
The main methods considered in the thesis can be summarized as follows:

• Model reduction: Due to the nonlinear nature of the urban traffic models, the opti-
mization problem of MPC controllers is a nonlinear non-convex optimization prob-
lem. It can be solved by nonlinear optimization algorithms,which requires a huge
number of objective function evaluations based on the prediction model. Thus, the
more complex the urban traffic model is, the longer time the on-line optimization pro-
cess will take. Therefore, the on-line computational efficiency of the MPC controller
can be improved by reducing the complexity of the predictionmodel of the MPC
controller.
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• Reformulation of the MPC optimization problem: Due to the nonlinear non-
convex nature of the MPC optimization problem, the computational complexity will
in practice increase almost exponentially when the scale ofthe controlled traffic net-
work grows. Even though the on-line computational efficiency of the MPC controller
can be improved by reducing the complexity of the predictionmodel of the MPC con-
troller, the effect is still limited for huge traffic networks. Therefore, to avoid this, the
on-line computational efficiency of the MPC controller can be also improved by refor-
mulating the nonlinear non-convex MPC optimization problem into an optimization
problem that can be solved much more efficiently.

• Hierarchical control structure: The computational complexity of a centralized MPC
controller for a large-scale urban traffic network can be reduced by dividing the net-
work into several smaller sub-networks, each of which results in a much lower com-
putational burden. These traffic sub-networks have to be coordinated, so as to approx-
imate the global control performance of a centralized MPC controller.

In this thesis, we have mainly investigated the first two approaches, i.e. “model reduc-
tion” and “reformulation of the optimization problem”. Theon-line computing time of the
MPC optimization problems was illustrated to be reduced by these two approaches for MPC
controllers. Regarding to the third approach, we presenteda general framework for MPC
control of large-scale urban traffic networks, and analyze the different control structures for
the network-wide traffic controller. All the centralized MPC controllers presented in this
thesis are able to fit into the framework, and can act as local controllers for the urban traffic
subnetworks. In this context, the main topics considered inthe thesis can be summarized as
follows:

• A new macroscopic traffic model for urban traffic networks, called BLX model, is es-
tablished. To further reduce the computational complexity, a more simplified macro-
scopic model, the S model, is proposed. The S model is very fast, but is still able
to provide all the necessary information that is needed for traffic control. We also
introduce another model with an adjustable sample time stepthat contains features
of both the BLX and the S model, and that is excellently suitedto tune the trade-off
between accuracy and computational complexity.

• MPC controllers are built for urban traffic networks based onthe BLX and the S
model. The on-line computational efficiency of the MPC controllers based on the S
model is improved greatly compared to MPC based on the BLX model, and only a
limited loss of control performance is incurred.

• The nonlinear non-convex optimization problem of the urbantraffic MPC controllers
is reformulated for the S model into a mixed-integer linear programming (MILP)
problem, which can be solved very efficiently by existing MILP solvers. We also
introduce a further simplification of the S model, called theS∗ model, that results in
a smaller MILP problem. For both the S model and the S∗ model the on-line compu-
tational efficiency of the MPC controllers is further improved significantly compared
to the nonlinear optimization approach.

• In order to control traffic delay as well as traffic emissions and fuel consumption in
big cities, an integrated urban traffic flow, emissions, and fuel consumption model is
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proposed. MPC controllers are built based on this model, which results in a balanced
trade-off between minimizing travel time, reducing emissions, and fuel consumption.

S. Lin
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