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Chapter 1

Introduction

Since the emergence of modern transportation, human lfdaeome much more efficient
and convenient than before. More and more people have theirpoivate vehicles, and
have more freedom to travel to any destination they wantatiare they like. However, if
the number of vehicles intending to travel on roads growgdiaand larger, but the capacity
of these roads is limited, or could not increase as fast agrthweing of the number of the
vehicles, then the drivers on roads cannot drive as free fasebanymore. Therefore, in
order to keep the public roads used in a well-organized waglbthe drivers, it is very
important to adopt traffic control systems to manage trartapon in a good manner.

1.1 Overview of research background

Since 1914, when the first traffic control signal was impletadntraffic control has been
developed in several aspects. From the control point of Mtedeveloped from fixed-time
controllers to traffic-responsive controllers, from mottek controllers to model-based
controllers, and from heuristic controllers to optimipatibased controllers. The controllers
developed so that they can not only deal with under-satiteadfic, but can also work with
saturated or even over-saturated traffic. The controlled developed from initially isolated
intersections to a string (a long road with multiple intetgns on it), and then to a whole
traffic network.

At the beginning of the development of traffic control, fixiéate control were used
at intersections. In each intersection, the length of tleeigtime durations is then always
fixed, or at least fixed during time segments of the whole dawg fixed-time control actions
are predefined according to the historical traffic informati However, fixed-time control
is a kind of open-loop controller, which cannot adapt itstoalractions to the current traffic
condition. Therefore, traffic-responsive control has be&oduced, along with the applica-
tion of a variety of detectors (loop detectors, video, dizneasure the traffic information.
Traffic-responsive control belongs to the feedback cordabégory, which can adjust the
control actions according to the currently measured trafiiaditions.

Either for the fixed-time control or the traffic-responsiantrol, the control strategies
are not built on traffic models, but on the historical traffibormation or the currently mea-
sured traffic information. These control strategies cay oahsider the past and the current

1



2 1 Introduction

traffic condition, but cannot look ahead into the future. idey to avoid this, traffic models
are applied in traffic control to predict the future traffiatsts, which results in model-based
traffic control strategies. At the beginning, the traffic ratsdused were derived inductively
through traffic data identification. After that, more eladtertraffic models, which are de-
ductively derived to describe the physical dynamics ofizdfows, were applied, and they
provided more accurate predictions. However, generataking, the dynamic traffic mod-
els are also more computationally complex, thus need marguating time. Therefore, it
is very important to find a trade-off between the accuracythadomputational complexity
of the model, so that the model-based controllers can makerwentrol decisions and also
keep being applicable in real-life traffic.

Before using traffic models, the traffic control decisiongeveainly made heuristi-
cally, e.g. in traffic-responsive control, if the measuregth of the vehicle queue is getting
longer, then more green time will be allocated to the cowadng traffic stream. But, as
soon as traffic models are used, it is not necessary to mdkie trantrol decisions heuris-
tically anymore. Optimization tools can be made to searclitfe best sequence of future
control decisions, based on the traffic information predidby the models. These kind
of control strategies are model-based optimization comethods, which can predict far
into the future and make the best current control decisimom fa long-term point of view,
and then roll the prediction horizon forward and repeatisglthe control problem again.
Model Predictive Control, which is selected as the contrethnd of this thesis, belongs to
this category.

Initially, traffic intersections were controlled sepatgtey local controllers in a decen-
tralized structure [104, 122, 127]. For the local contnaljenly local traffic information is
taken into consideration, and no interactions among eduér.oSo, when the traffic is in
an under-saturated scenario with a low density, local traffintrollers are enough to easily
regulate the local traffic and maintain it in an organizedatibn. However, if the traffic
density grows higher or the traffic demands are providedemig\from different directions,
then it is not enough to just make decisions based on the iofmamation. Because bet-
ter local control performance does not always mean bettdradjicontrol performance, i.e.
sometimes local traffic delay can be reduced, but at the ¢@stem more traffic delay and
congestion emerged somewhere else in the same traffic netivoerefore, it is necessary
to investigate traffic control strategies to coordinatedrettings (e.g. a highway or a main
road in urban areas), and even to coordinate the traffic imeaaf a network.

A number of coordinated urban network control strategie® lsready been developed
[56,/104, 112]. Fixed-time coordinated control strategiegke control decisions off-line
based on the traffic flow data collected and stored in the pEstffic-responsive coordi-
nated control strategies can in real time measure the tetfftes in the network, and adapt
the control schemes according to the current measureccteffies. Model-based coor-
dinated control strategies [3, 17,142, 44, 49, 60, 104, 123] tlo not only introduce in
feedback control so as to adjust in real time the controlgi@eiaccording to the current
detected traffic states, but also predict into the futuraguprediction model to make deci-
sions good also in a long term run. The structures for thedipated control strategies can
be centralized, distributed, or hierarchical. Centralizeordination control strategy opti-
mizes the whole traffic network and searches for a globahmtsolution for the network.
Distributed coordination control strategy allocates tbatml efforts to each local traffic
controller, and coordinate the local controllers througfloimation exchange. Hierarchical
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coordination control strategy divides the overall comptexitrol problem for large-scale
system into multiple levels, on each level, a specific cdmroblem will be solved.

There are already well-known coordinated traffic-respansontrol strategies for urban
traffic networks. SCOOT [21, 112] and SCATS [91] are widelydisn many big cities
around the world [104], e.g. SCOQT is used in Beijing, SCAE8diin Shanghai. They are
both dynamic traffic control strategies based on measunedrtutraffic states in distributed,
multi-level, hierarchical system structures. It has alselaeen shown that these two systems
work effectively in real traffic world. But, these two systerre more focusing on dynamic
intersection controllers, and local coordinations thatsider only a few neighbor intersec-
tions. In the 1980s and 1990s, a number of model-based aatiimin control strategies
based on simple traffic models emerged, e.g. OPAC [49], PRO[M], CRONOS [17],
RHODES [115], and MOTION [12], which can forecast the futtnaffic behavior of the
network based on models. With these forecasting models;ahiol strategies are able to
make control decisions to guarantee better performandensn area of the traffic network
in a near future. A real test was realized for OPAC in Restd®AWJ16 intersections) [48],
and for MOTION in the center of &In-Deutz, Germany (12 intersections) [13]. However,
the models used in these control approaches are mainlyesitngflic models based on the
traffic data measured by upstream detectors, which to soteetdimits the performance
for the future. Coordinated traffic-responsive contrahtggies that are able to avoid parts
of the on-line computational complexity, were also propb4¢TOPIA/SPOT [93] is a hier-
archical system with simple local intersection contr@lend a central controller for an area
of urban networks. The central controller optimizes theticdractions for the whole area
based on the model of the network. The local controller mékeslecision only based on
local information, but with a penalty term to guarantee thatlocal decision is not too far
from the central decision. Therefore, UTOPIA/SPOT avoidg pf the on-line computa-
tional burden, but results in suboptimal solutions. TUM3], was proposed for controlling
an urban traffic network based on the well-known simple sto@-forward model. TUC
designs a feedback regulator off-line based on the stade@amward model, and on-line
derives the traffic signals using a feedback control law legliieg it with the real-time mea-
sured traffic states. Therefore, the TUC strategy reducesthline computational com-
plexity significantly by moving the time-consuming optimation off-line. Compared with
the fixed-time controller, TUC can reduce the Total Time $g®n20-54% for different
scenarios [40]. TUC has been implemented in three cities -an@h Greece (23 intersec-
tions), Southampton, UK (53 intersection), and Munich,r@amy (25 intersections) — and
has been proved to have good control effects [68]. Howeueeyvthe real traffic conditions
change, the feedback control law needs to be redesigneddaugto the new current traffic
conditions, which is also computational complex if it octwo frequently.

In summary, traffic control methodologies have been dewldpr a long period of
time, and the results are fruitful. A number of urban traffantol systems have been
presented in literatures or even applied in practice. Sohtleese systems, that were im-
plemented in real-life traffic field, have been proved effectn practice. However, the
efficiency of coordination algorithms, especially of netivavide coordination algorithms
for large-scale urban traffic networks, is still needed tdusther improved. In this thesis,
we are going to mainly focus on the solutions to address $bisa.
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1.2 Motivation

One promising control methodology that can meet all the sémdcontrolling and coordi-
nating a large-scale traffic network with a number of traffimtzol measures (e.g. traffic
signals, ramp metering, speed limits, etc.), is Model Rtad Control (MPC)/[23, 92, 108].
In the late 1970s, MPC was first proposed and successfulljeaidp the process industry.
MPC executes model-based optimization control on-lineralléng horizon way, and thus
it has shown to be able to respond in an effective way to thertiances in many practical
process control applications. Therefore, MPC is widelyeated in the process industry.

MPC is a methodology that implements and repeatedly appliisnal control in a
rolling horizon way. In each control step, an optimal cohfnmblem is solved over a pre-
diction horizon, but only the first control sample of the omdi control sequence is imple-
mented. Next, the prediction horizon is shifted one samptkthe optimization is restarted
again with new information of the measurements. The opttion is redone based on the
prediction model of the process and an estimate of the thatwes.

MPC has a number of advantages for controlling large-scatfict networks. MPC can
easily deal with multi-input and multi-output problems kwitonstraints. Therefore, differ-
ent traffic control measures (e.g. traffic lights, ramp metgrspeed limits, etc.) are able
to be controlled and coordinated at the same time. Since Mip@ach is a model-based
optimization control strategy, it can combine multiple edijves into one control problem,
if the optimization problem of the MPC controller is a mudtdjective optimization prob-
lem. Thus, MPC can combine multiple control objectives iot@ control problem, so it
is easy to integrate different control objectives (e.dgfir@ongestion control, traffic emis-
sions control, etc.) into MPC controllers. Moreover, du¢he rolling horizon procedure,
MPC becomes a closed-loop controller, which can in realta&pt the controller by the
feedback information measured from the real-life traffion€equently, MPC has the ability
to deal with the uncertainty of the traffic system, which carchused by the unpredictable
disturbances, the (slow) variation over time of the paransetand model mismatches in the
prediction model. Another advantage of MPC is that one cailyeselect and replace the
prediction model based on the control requirements.

However, although MPC is a well-established control metteotig difficulty to im-
plement MPC in practice is the high on-line computationatlen. When using MPC, for
each time step, we have to solve an optimization probleminvaHimited period of time.
The solving speed depends on both the scale of the optimizptoblem, and the features
of the optimization problem itself. Of course, the solvimqped can be also improved by
using very fast computers, but the development of the coenfnatrdware capability cannot
always catch up with the complexity expansion of practicabfems. So, we will mainly
discuss about the scale of the optimization problem, anddatires of the optimization
problem. The scale of the optimization problem increasesnithe scale of the traffic net-
work controlled grows larger, and when the length of the jotemh horizon gets longer.
Optimization problems differ from each other by their feag1 Some can be solved easily
and quickly, such as linear programming, quadratic prognarg, and convex optimization.
But, some are hard and time-consuming to solve, like noatimen-convex optimization.
Due to the nonlinearity of most traffic prediction models thptimization problem of the
MPC controller is in general a nonlinear optimization. Tfere, when the on-line opti-
mization problem of MPC controller is time-consuming tov&ylno matter because of the
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large scale of the optimization problem or because of thd-tmsolve feature of the opti-
mization problem, the MPC controller becomes real-timeasible in practice, even though
its optimization problem is solvable in theory.

Therefore, we are going to focus on the approaches to iretbaseal-time feasibility
of the on-line optimization problems, when we apply MPC tmtcol large-scale urban
traffic networks. The approaches investigated in this thes:

¢ Reducing the computational complexity of the urban traffintcol model,

e Reformulating the on-line optimization problem so thatahde solved more effi-
ciently,

e Dividing the network into small subnetworks, and buildirigtdbuted network con-
trollers.

In this thesis, we are going to mainly investigate the firgi approaches to reduce the on-
line computing time of the MPC optimization problems for MB@htrollers. Regarding to
the third approach, we are going to present a general frankeaoMPC control of large-
scale urban traffic networks, and analyze the differentrobstructures for the network-
wide traffic controller. Consequently, all the centrali2d8C controllers presented in this
thesis are able to fit into the framework, and can act as laoatallers for the urban traffic
subnetworks. Some of the results can be also extended atidchigpfreeway networks, or
even mixed freeway and urban road networks.

1.3 Scope and contributions of the thesis

In this thesis, we mainly focus on the coordinated controldoge-scale urban traffic net-
works. The control method we apply is MPC. The main problemaveegoing to deal with
is the large online computational complexity when the MPé&otly is applied to the real-
life traffic system. Before the story starts, a state-ofdltditerature survey on coordinated
traffic control is given, which summarizes former researnfthas topic, and which gives
some general information for the students or researchessandninterested in this topic.

When the scale of traffic networks we need to manage growsrlargklarger, the con-
trol problems for the large-scale traffic networks also Ibeeanore and more complex.
In order to control a large-scale traffic network, and get laf@e between the local per-
formances and the global performance, the controllersidhaperate in a well-designed
structure. Therefore, in this thesis, MPC controllers aiganized and coordinated in a
distributed control framework for large-scale traffic netkhs. Under this framework, the
possible network-wide traffic control structures are désmd and analyzed.

In the distributed control structure, MPC based traffic culigrs are designed as local
controllers for urban traffic subnetworks. A part of the @sé work of this thesis is to
improve the feasibility of the MPC subnetwork controllemspiractice, and to improve the
efficiency of the higher level algorithms when coordinataigthe subnetwork MPC con-
trollers. More efficient subnetwork MPC controllers fordarscale urban traffic networks
are obtained by model reduction and optimization probleiorneulating. The traffic mod-
els included in this thesis are all discussed and evaluatea & control point of view. To
improve the applicability of the MPC controllers for largeale urban traffic networks, we



6 1 Introduction

are mainly focusing on the trade-off between the efficiemzythe complexity of the traffic
models.

Since traffic pollution is also an issue for the people livengn big metropolis, it is
necessary to take traffic emissions into consideration wieare controlling urban traffic.
Therefore, MPC controllers that integrated both trafficagietontrol and traffic emission
control are also discussed in the thesis.

The main contributions of this thesis are:

¢ A macroscopic traffic model for urban traffic networks, cdlBLX model?, is es-
tablished. To further reduce the computational complezityore simplified macro-
scopic new model, the S modglis proposed. The S model is very fast, but is still
able to provide all the necessary information that is neéalettaffic control. We also
introduce another model with an adjustable sample timetbt#ontains features of
both the BLX and the S model, and that is excellently suitetute the trade-off
between accuracy and computational complexity.

e MPC controllers are built for urban traffic networks basedtiom BLX and the S
model. The on-line computational efficiency of the MPC coliérs based on the S
model is improved greatly compared to MPC based on the BLXehahd only a
limited loss of control performance is incurred.

e The nonlinear optimization problem of the urban traffic MP@hizollers is refor-
mulated for the S model into a mixed-integer linear programgn{MILP) problem,
which can be solved very efficiently by existing MILP solvek§e also introduce a
further simplification of the S model, called thé Bodel, that results in a smaller
MILP problem. For both the S model and thé Bodel the on-line computational
efficiency of the MPC controllers is further improved sigeéfintly compared to the
nonlinear optimization approach.

e In order to control traffic delay as well as traffic emissiond &uel consumption in big
cities, an integrated urban traffic, emission, and fuel com#ion model is proposed.
MPC controllers are built based on this model, which resuals balanced trade-off
between minimizing travel time and reducing both emissiam fuel consumption.

1.4 Structure of the thesis

This thesis contains eight chapters, and this introductiakes the first chapter of the the
sis. Chapter 2 is a literature survey on this research topitapter 3 gives an overview
of the general control framework. Chapter 4 discusses alrbain traffic network models.
In Chapter 5, model predictive controllers are establidhezkd on different traffic models,
while Chapter 6 further reformulates the optimization peab of these MPC controllers.
Chapter 7 also focuses on traffic emission problem. The asiwris can be found in Chap-
ter 8.

1The macroscopic traffic model is extended from the model of M demBerg et al. [119], and then is revised
by S. Lin and Y. Xi, thus is called BLX model.
2A Simplified model proposed by S. Lin et al. [80]
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The detailed content of the main chapters is summarizedlas/f

e Chapter 2is a literature survey summarizing the state-of-the-ataordinated traf-
fic control, where the main existing coordinated traffic cohstrategies are summa-
rized by the control methods for both freeways and surfaadsoThe characteristics
of these coordinated traffic control strategies are dismliasd compared in this chap-
ter.

e Chapter 3 gives the framework for constructing structured netwoilentraffic con-
trollers based on MPC. Different traffic network controlustiures, including decen-
tralized structure, centralized structure, distributedcture, and hierarchical struc-
ture, are discussed in this chapter. Coordination algostfare also presented to
coordinate traffic subnetworks controlled by MPC contmslle

e Chapter 4 discusses about the macroscopic urban traffic models, venehll spa-
tiotemporally discrete. New models are presented whichdvasomputational com-
plexity, at the same time, keeps enough modeling accuractrdtiic control pur-
poses.

e Chapter 5 presents the method of constructing model predictive ofiats for ur-
ban traffic subnetworks, based on the models discussed ipt€ha The MPC con-
trollers based on different urban traffic subnetwork moeetsfurther compared in
this chapter.

e Chapter 6 presents how to reformulate the on-line optimizations ofdvi®ntrollers
for urban traffic networks to increase the computationatiefficy. To this aim, the
former nonlinear non-convex optimization problem is refatated into a mixed-
integer linear programming optimization problem, and #femmulated optimization
problem can be solved much faster than the former nonlinea+convex optimiza-
tion problem.

e Chapter 7 focuses on integrated MPC controllers for the reductiorrafdl delays
as well as traffic emissions and fuel consumption in urbdfidnaetworks. The inte-
grated functions of the MPC controller depend on the traffocled, which integrates
a microscopic vehicle emission and fuel consumption mod#i the macroscopic
traffic flow model proposed in Chapter 4.

In Fig.[1.1, an overview of all the chapters in this thesidlisstrated in a flowchart.
Chapter 1 gives the motivation and a brief overview of thérerthesis. Chapter 2 sum-
marized most of the related research work, further motvéte research of this thesis.
Chapter 3 and Chapter 4 present a general framework forattiméy large-scale urban traf-
fic networks, and prediction models, which are the basis efrdst of the thesis. Based
on the previous chapters, MPC subnetwork traffic contrele designed in Chapter 5,
Chapter 6, and Chapter 7, aiming at solving three problenteérurban traffic network
control. Chapter 8 concludes the thesis and gives recomatiend for the future research
directions.
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Chapter 2

Coordinated Traffic Control —
The State of the Art

2.1 Introduction

In recent years, the number of vehicles has grown larger aigef, and the requirements
for traveling by vehicles are getting more and more stringEuen though large and sound
traffic networks (freeways and roads) are already congd ttaffic congestion still can not
be avoided efficiently. Moreover, it is often too time and rprconsuming to build more
common transportation infrastructures or reconstrucoties that already exist. Therefore,
traffic jams occur frequently and have a severe impact, wheplp need to use the common
infrastructures with limited capacity at the same time eesgdly during rush hours. Traffic
congestion can give rise to traffic delays, economic logsaffic pollution, and so on. To
reduce traffic jams and to promote efficiency in travelinge&fve traffic control methods
are necessary. In this context, traffic control strategie®ae of the most efficient and also
effective methods to solve the problem.

Since traffic control emerged, a large number of control dilgms were proposed
and implemented in the field, like fuzzy control, PID cont(Broportional—Integral—
Derivative controller), etc. However, these algorithms auainly focusing on controlling a
single intersection or a single traffic control measure.seheontrollers are without global
scope, and have limited control effect for the whole traffitwork. As we known, traffic
intersections are not isolated; the traffic states of roadstiaffic network will interact with
each other; a traffic jam that happens here is maybe causes®yisregular event (e.g. an
incident) that happened somewhere else in the same traffiorie Therefore, it is neces-
sary to understand the behavior of traffic networks, andvestigate network-wide traffic
coordinated control approaches that can coordinate arttotdraffic networks to a better
performance.

2.1.1 Scope and aims

This literature survey focuses on coordinated traffic arstirategies, both for freeways and
urban roads. By searching and summarizing the recent wareneral idea of the state-

9
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of-the-art traffic coordination control methods is obtainéfter analyzing and comparing
the collected approaches, we provide insight into the dbaratics of different kinds of
coordinated traffic control strategies. Then, a conclusfomhich approach is both effective
and suitable to be implemented in the field at present is wbtkiand future directions for
investigation are presented.

2.1.2 Overview

The structure of this literature survey is as follows:

In Section 2.2 coordination strategies for traffic netwosks introduced and summa-
rized into several categories.

Although a traffic string (i.e. an artery or a freeway linkpipart of the traffic network,
several papers and articles still only focus on the cootdah@ontrol problem of traffic
strings. Section 2.3 therefore discusses coordinatedaiattategies at the string level.

In Section 2.4, the characteristics of different kinds afrclinated traffic control strate-
gies are analyzed and compared.

In Section 2.5, the conclusions of the literature surveypaogided, and possible future
directions for traffic coordinated control are given.

2.2 Network coordination approaches

Coordinated traffic control strategies both for freewayvweks and urban networks are dis-
cussed in this section. They are classified into differetegmies according to the control
methodologies adopted, i.e. optimal control approachexjéMPredictive Control (MPC)
approaches, rule-based approaches, case-based appraauth@pproaches based on the
network macroscopic fundamental diagram.

2.2.1 Optimal control

After the emergence of suitable traffic models, more advédinuedel-based controllers (e.g.
optimal control) started to be used to coordinate freewawyaorks. The main idea of optimal
control is to find the optimal control measures of the whotefvay network in the future
by optimizing the cost function based on a network model foerain future time horizon.
The optimal control approach can coordinate the freewayaordtin a centralized structure.
It not only can coordinate the control measures on diffespatce locations and different
time points in the future, but it can also coordinate differypes of control measures (e.g.
ramp metering, speed limits, and route guidance). Optirmalrol approaches for freeway
networks and urban networks are both discussed below.

Freeway networks AMOC (Advanced Motorway Optimal Control) [70] and OASIS (Op
timal Advanced System for Integrated Strategies) are twiarobsoftware tools based on
optimal control theory. They both adopt the macroscopievitay traffic model METANET
[96] as optimization model. However, because the freewaword& model is nonlinear,
one of the big challenges of applying optimal control is talfan efficient algorithm to
solve the large-scale optimization problem. A numerichltson algorithm that is based on
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a feasible-direction nonlinear optimization method, isgmsed to successfully solve this
problem [69, 71, 72]. The AMOC approach has been appliedd¢dthsterdam ring-road
[70], and proved to have good coordination control effestess.

Urban networks In recent years, a number of urban traffic models have begopeal.
For different urban traffic models, different optimal cartapproaches have subsequently
been derived.

The store-and-forward model is a linear state-space modeb&d networks of arbitrary
size, topology, and characteristics, and is given by

x(k+ 1) = x(k) + Bg(k) + Td(K) (2.1)

wherek is the counter of time step§, is the control time intervalx(k) is the state vector

(consisting of the number of vehicles of each linkz); g(k) is the control vector (con-

sisting of the green timgj;; of each stage at each junctionj); d(k) is the disturbance

vector (consisting of the demand flowsof each linkz); B is a constant matrix of appropri-
ate dimensions containing the network characteristigso{tayy, saturation flows, turning

rates). The linear state-space feature of the store-amekfd model opens the way to the
application of a number of highly efficient optimization acohtrol methods (such as lin-
ear programming, quadratic programming, and multivagabbulators) with polynomial

complexity. Based on the store-and-forward model, an dpep-quadratic-programming

control (QPC) [3] approach is developed, which can be effttyesolved by using broadly

available codes of commercial software.

However, to keep the linear characteristic, the storefandard model is only appli-
cable under a saturated traffic scenario. Therefore, an-lmegnnonlinear optimal control
(NOC) [3] approach is developed based on a nonlinear urlzfictmodel, that is more
elaborate to describe more complex traffic dynamics. A nigakfeasible-direction opti-
mization algorithm is applied to solve the nonlinear opgation iteratively, which requires
more computational complexity than QPC.

To avoid the inherent drawbacks of an open-loop structuliegar-quadratic (LQ) op-
timal control approach, Traffic-responsive Urban ContidlC) [3, 41, 68], is developed
based on the store-and-forward model. Instead of optigithie control inputs (i.e. green
times), TUC optimizes the linear multivariable feedbadjulator off-line, as

(k) = g" —Lx(k), (2.2)

where the feedback gain mattixresults as a straightforward solution of the corresponding
algebraic Riccati equation, argl is a nominal vector fog. The feedback regulator is
actually a feedback control law, which is assumed to be atifienction of the traffic states
x(k) for the linear traffic control problem presented in TUC. Tlaegmeters of the feedback
control law, i.e. the feedback gain mattix can be obtained through off-line optimization.
Then, the optimized feedback regulator can be actuatedhertd derive the new green
times, fed with the real-time measured traffic statéls), and no on-line optimization is
needed.

Dynamic Intersection Signal Control Optimization (DISC[O}] is a dynamic urban
traffic optimization control approach based on the celtdraission model. A cell-transmission



12 2 Coordinated Traffic Control — The State of the Art

model [32, 33] is a convergent numerical approximation &ttdrodynamic model of traf-
fic flow. It considers the entire fundamental diagram and agtwe traffic phenomena
such as shock waves and queue dynamics. The timing plans afttlan traffic network are
derived by solving the optimization problem via a genetgoalthm. DISCO is proved to
be superior to TRANSYT, especially under congested sitnati

In spite of all the advantages, the optimal control apprasdhill open-loop. It solves
the optimization problem based on the approximation of tharé network disturbances,
which can be inaccurate, or even be the opposite to realignwimpredictable events occur.
Moreover, mismatches between the model and the real warttlireaccuracies in estimat-
ing initial traffic states can always happen. Under thesaunistances, the control results
derived from optimal control methods are not the best coatitin control actions anymore.

2.2.2 MPC

Model Predictive Control (MPC) [23, 92] is a methodologyttimplements and repeats
optimal control in a rolling horizon way. This means thateach control step, only the first
control sample of the optimal control sequence is impleegnsubsequently the horizon
is shifted one sample and the optimization is restartednagiéh new information of the
measurements. The optimization is calculated based orrélgécion model of the process
and of disturbances.

Taking optimal control as the core algorithm, MPC presealethe advantages of opti-
mal control. It can predict and find the coordinated optirdigelution for the entire network
in the future. It can also coordinate different types and neirs of control measures. Due
to the rolling horizon methodology, the MPC controller bews closed-loop by adjusting
the controller with a real-time feedback. The MPC controtleus obtains the ability to
deal with the uncertainty of the real world, caused by unigtatile disturbances, (slow)
variation over time of the parameters, and mismatch errattsegprediction model.

In principle, a centralized MPC method can maximize theubgtput of the whole net-
work, and provide network-wide coordination of the traffantrol measures. However, the
real-time computation complexity is a big challenge for iempenting MPC controllers to
traffic networks in practice. In general, the computatics@hplexity will increase expo-
nentially when the scale of the network grows (if the pradittmodel is nonlinear). To
overcome this problem, different structures (e.g. deediméd and hierarchical structures)
other than the original centralized structure are takendmtain the real-time feasibility of
MPC controller.

Centralized structure

Freeway networks Hegyi et al. [59, 60] apply MPC taking METANET as the predic-
tive model to control and coordinate the freeway networkh@écentralized structure (see
Fig.[2.1).

To suppress shock waves, coordination of variable speet$ limmstudied adopting the
MPC methodology. Simulations are carried out on a benchmettkork consisting of a link
of 12 km, where 6 segments of 1 km are controlled by speeddiniihe simulation results
show that the MPC controller is effective for coordinatipged limits against shock waves.
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Figure 2.1: The MPC scheme for traffic control [58].

The shock wave generated from the downstream end of linkdsessfully eliminated by
the coordinated control of the speed limits.

There are several control measures for freeways, e.g. raeterimg, dynamic speed
limits, and main-stream metering. These control measuaesidluence each other, or
may have different effectiveness in different traffic sc@sa An MPC controller is used
to coordinate these different types of freeway control mezs Experiment results show
that the speed limits can complement ramp metering, whetrafffiec demand is so high
that ramp metering alone is not efficient anymore. Conchssiare also drawn that the
coordinated and integrated control of speed limits and ramefering results in a higher
outflow and a significantly lower total time spent. It is al$ated that the choice between
speed limits and main-stream metering should be made bas#tealemands on the on-
ramp and the freeway.

Urban networks In the 1980s and 1990s, a number of model-based optimizatiotmol
strategies emerged: OPAC [49], PRODYN [44], CRONOS [17H RHODES [115]. The
prediction models for these strategies are similar. Theyniynaredict the future traffic de-
mands at the intersections through the historical data medd$rom the upstream detectors
or the detectors of upstream links. These strategies shadeshtages compared with the
traffic-responsive strategies that do not use any predistitlowever, this kind of predic-
tion models are limited in the length of the time horizon owdrich they can predict. The
longest prediction horizon is the time taken by the vehicleming from the upstream de-
tector to the stop-line of the intersection. Therefore aiwtrol strategies cannot look ahead
far enough due to this limitation.

In recent years, some macroscopic urban traffic models warelaped for establish-
ing more elaborate and effective model-based rolling loorizontrol approaches. These
models can describe the traffic dynamic mechanics of theeuwnddan traffic network, and
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overcome the drawbacks of the previous models.

The model proposed in [8] and extended in [42] is computatigrintensive and it can
describe different traffic scenarios, but it is also conmgikcl and needs historical data to
estimate the coming traffic flow rate of each intersection. oAtmller based on a rolling
horizon methodology is developed by optimizing this traffiodel fed with the historical
data from last iteration.

The model proposed by Kashani et al. [66] has a lower modg@lavger, and in partic-
ular cannot depict scenarios other than saturated traffie. riiodel of van den Berg et al.
[58,1119, 120] is an extension of the Kashani model that isbkpof simulating the evo-
lution of traffic dynamics in all traffic scenarios (unsated saturated, and over-saturated
traffic conditions) by updating the discrete-time modeliradl simulation steps. This model
provides a good trade-off between accuracy and computdtcammplexity. An MPC con-
troller is developed based on the model [58,/120], whichgig@od control effects.

Mixed freeway and urban networks Freeway networks and urban networks are closely
connected. Congestion on the freeway often causes spll dlaarban queues, slowing
down the urban traffic, and vice versa. As a consequenceratanéasures taken in one
of the two areas can have a significant influence on the otleer. 8y connecting the ur-
ban traffic model [120] and the freeway traffic model METANETthwthe on-ramp and
off-ramp model, an integrated MPC controller is establisttecoordinate the mixed free-
way and urban network [121]. The coordinated control apghda proved to have a high
performance.

Distributed structure

Freeway networks A distributed control structure can be developed to avoedkpo-
nential growth of the computational complexity for the catized MPC, when the network
scale keeps on increasing. Game theory has been intrododedltthe optimal coordi-
nation of ramp metering and variable speed limits in a lacge freeway traffic network
[54]. The large-scale freeway traffic network is then decosagl into subproblems, each of
which is controlled by MPC based on the METANET model. Ganetii (i.e. sample fic-
titious play) coordinates the sub-MPC controllers. Eacyet (sub-MPC controller) finds
its best strategy assuming that other players play the kretvategy, which can be drawn
from the history of their past plays. Thus, players learnriovk other player’s strategies
iteratively.

The sample fictitious play (SFP) algorithm is explained &§:[5

1. Initialization - The set of initial strategies is chosen randomly for eaayegi and
stored as historical data.

2. Sampling - For each player, a strategy is drawn from the history of planpitrarily
with equal probability.

3. Best-reply- Each player computes its best reply or strategy assumatgther play-
ers play the strategies drawn in the previous step.

4. Store- The best replies obtained in Step 3 are stored in the history
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5. Stop Condition - It is checked whether the stopping criterion is satisfiédo] then
stop, else go to Step 2.

In [54], for a case study of 4 players (i.e. 2 on-ramp metedagtrollers and 2 speed
limit controllers), the SFP-MPC, which can compute in patateduces the optimization
time by 81.1%, from 106 s to 20 s, compared with the originatiedized MPC controller.

Urban networks Game theory is also used as distributed control method faarunet-
works in CoSIGN[25]. The problem of finding optimal coordied signal timing plans for
a large number of traffic signals is a challenging problenahse of the exponential growth
in the number of joint timing plans that need to be exploredhasnetwork size grows.
However, if we decompose the problem into smaller subprobleve may be able to find a
sufficiently good solution in a reasonable amount of timee @kcomposition of the prob-
lem can be accomplished by assuming that each signal in eaabd@s an independent
decision maker. The effect is to reduce an exponential nuoftaternatives to consider to
a linear number by solving small subproblems, and coorttigdhem in a iterative way. To
coordinate the decision makers (traffic signals), gameyhatitious play [22, 76, 94, 98])
is applied in [25]. If each decision maker who controls a tipeeiod for a signal is viewed
as a player in the game, and the average travel time of altle=hin the traffic network is
viewed as a common payoff for every player, the coordinataffic-signal-control problem
can then be represented as a game of identical interestantAdjrision is called a Nash
equilibrium if no individual player can improve its payoff binilaterally deviating from the
original joint decision. The Nash equilibrium can be viewastla coordinated local opti-
mum. The equilibrium situation is not always uniquely detered and it is even possible
that oscillations occur. The equilibrium situation thaahieved after an iterative adjust-
ment of traffic control is not always a system optimum [118h évent-based mesoscopic
deterministic traffic simulator, INTEGRATION-UM, is used the traffic simulating model
for the coordination algorithm.

Hierarchical structure

Freeway networks Due to the open-loop nature of the optimal control approaktOL,
the derived optimal control actions are deteriorated biiallls of system errors, such as
initial states estimation error, future disturbance petdn error, model parameter mismatch
error, and unpredictable incident errors. Therefore, idtds et al. [73] proposed an MPC
approach based on the AMOC algorithm under a hierarchiggtalstructure to avoid the
drawbacks by introducing in the rolling horizon procedure.

The hierarchical control structure consists of three blasiers (see Fig. 22): the Esti-
mation/Prediction Layer, the Optimization Layer, and thieebx Control Layer. The Esti-
mation/Prediction Layer receives historical informataond real-time detected traffic states
to generate the current state estimation and future predscof the disturbances for the
next layer. The Optimization Layer (AMOC) optimizes the ttohstate trajectory over a
future time horizon based on the initial states estimatiwh fature disturbance prediction
from the upper layer. Then, in the Local Direct Layer, thealo&LINEA (Asservissement
LIN éaire d’Entee Autoroutere) controller is adapted by the real-time optimized trafét-
points obtained from the upper Optimization Layer. ALINEA4 local proportional ramp
metering control strategy with feedback [103].
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Figure 2.2: Hierarchical structure [73]

The rolling horizon hierarchical coordinated control hastvapplied to the Amsterdam
ring-road, and outperforms the local ramp metering apgraaterms of both efficiency and
equity [73]. The Amsterdam test is a real test. The comtonatf AMOC with ALINEA
preserves the positive features of both and cancels thigietecies.
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Urban networks For centralized control strategies, the real-time contmral complex-
ity will increase exponentially when the scale of the urbaific network grows, which
makes these strategies real-time infeasible for largevorés. Distributed control strate-
gies can avoid this problem, but more effort needs to be té&kenordinate the local con-
trollers. Therefore, hierarchical control structures adepted to address the problem by
implementing the centralized control algorithms as locaitmllers for an intersection or a
small subnetwork [48, 97, 122, 123]. A hierarchical constlicture divides the complex
control problem of a large traffic system into different cohievels or layers. In differ-
ent layers, control problems with different focuses areestl Moreover, control problems
with different details are addressed in different levelg, ¢he lower control level mainly
focuses on local control in a more elaborate way, and theehighntrol level deals with
network-wide coordinated control in a more general way.

1. Virtual-Fixed-Cycle OPAC (VFC-OPAC) [48] is the hierhical version of OPAC,
which consists of a three-layer control architecture asvshia Fig.[2.3. The OPAC
(Optimized Policies for Adaptive Control) control strayeg the adaptive algorithm
implemented as the local controller of the hierarchicahfeavork. The Local Control
Layer implements the OPAC rolling horizon procedure: it towmously calculates
optimal switching sequences for the predictive horizobjext to the VFC constraint
communicated from the Upper Synchronization Layer. Ther@ioation Layer, op-
timizes the offsets at each intersection (once per cycleg Synchronization Layer,
calculates the network-wide virtual-fixed-cycle (oncergvfew minutes as specified
by the user). The cycle length can be calculated separatefydups of intersections,
as desired. Over time the flexible cycle length and offsedsupdated as the system
adapts to changing traffic conditions.

Synchronization Layer

Coordination Layer

Local Control Layer

Figure 2.3: Control structure in VFC-OPAC (adopted from [#8

2. The RHODES system is developed into a multi-level hidviaad structure [97], see
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Fig.[2.4. There are three levels: At the highest level, tieaedynamic network load-
ing model that captures the slow-varying characteristidsadfic, which are caused
by the network geometry, e.g. road closures and constructd the middle level,
network flow control, which making decisions according te girediction and esti-
mation of the traffic flow loads on the roads, is actuated tadioate road network.
At the bottom level, intersection control is carried out lpplying a model-based
rolling horizon optimization approach.
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Figure 2.4: The RHODES hierarchical architecture (adopftexm [97])

At the middle level, a string coordination approach, nam&&RBAND, is adopted
to coordinate intersections. Dynamics of platoons, whiehcharacterized in terms
of size (number of vehicles) and speed, are predicted. Wherfdmmore) platoons
are predicted to arrive at the same intersection and requp@stsing signal phases,
conflicts happen. Based on the predicted platoon movemeatpire-defined time
horizon, REALBAND then searches for the best solution toroeme the conflicts
using a decision tree. This decision tree lists all the fbssesolutions for the con-
flicts, and then makes a decision. Thereafter, the REALBANDIgions, i.e. phase
durations, are used as constraints to the optimizationeoitiersection control logic.
The intersection controller will decide the phase start@mdi times based on recent,
and more accurate observations of the vehicles in eachoplato

. In [122] a hierarchical traffic control structure is deymtd. For the bottom level, a

multi-agent approach is applied to reduce the computdtimoraplexity, and to add
scalability to the control system. For the upper level, tieal controllers are coordi-
nated in both the microscopic and the macroscopic way. Hiéctcontrol problem is
divided into several loosely coupled subproblems, suctthigacombination of all the

solutions of the subproblems together approximate theisalof the original control

problem. In the framework of [122], each piece of infrastawe is represented by an
agent that tries to attain its local objective in close coapen with other agents.

For a local intersection controller, a new look-ahead wadfiaptive control approach
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is proposed. Currently, most of the control approachegidamintrol actions based on
stages, i.e. they optimize the green times for the pre-ditBteges. But the new ap-
proach decides the control actions based on the predicteements of the individual
vehicles arriving at the intersection. The movement-baggatoach is more flexible
than the stage-based approach as it allows green for sigrdifferent phases to start
sooner if demand for all conflicting movements in the curghdse has cleared.

The coordination procedures of the agents are developétedrasis of the actions of
nearby agents for two levels, i.e. the microscopic leveltiednacroscopic level. In
the microscopic coordination level, local controllersteege information of arriving

vehicles. When a conflict is anticipated based on the infdondtom neighborhood

controllers, the corresponding optimal solution will ber#tively derived by the lo-

cal controllers. In the macroscopic coordination levelpider to prevent that traffic
breaks down on vulnerable parts of the network, the inflowraffit toward these

parts of the network should be constrained. The coordingirecedure developed
employs two types of constraints: (1) hard constraints reirig that the volume of

traffic entering the vulnerable area does not exceed thensmhhe infrastructure is
able to handle, and (2) soft constraints used to tempt adertker upstream in the
network to steer traffic away from the vulnerable area, so afle¢viate the stress put
on downstream agents that have already started gating. iEhestopic coordination

procedure is able to adapt to different traffic volumes amdagin ratios, and to cre-
ate and to dissolve progression between consecutive éatéras. The macroscopic
coordination procedure can be used to coordinate all kihttaific control measures
(e.g. traffic lights, ramp-metering installations, DRIByfamical Route Information

Panels), etc.) at the level of capacities and flows.

Both the distributed and the hierarchical structures cachiosen to reduce the on-line
computational complexity, and to make the centralized robistystem more scalable. The
hierarchical control system can be made up of multi-agexatst(oller) belonging to differ-
ent levels, as Fig. 2.5 shows. Each agent is supposed td itslfiiredefined task and can
make its own control decisions. Agents communicate withesdker by transferring infor-
mation. Therefore, the computational complexity of theti@ized controller is separated
into multiple small subproblems. A test bed for multi-ageontrol systems in road traffic
management is developed in [123]. Such a test bed can beaiassgdss different strategies
for the application of multi-agent systems for dynamicficainanagement and to examine
their applicability. It facilitates the development of rtitdgent systems for dynamic traffic
management.

2.2.3 Rule-based strategies

Rule-based systems solve a problem using “if-then” rul&s {3 3]. These rules are con-
structed using expert knowledge and stored in an inferemgi@e. The inference engine has
an internal memory that stores rules and information ablmiptoblem, a pattern matcher,
and a rule applier. The pattern matcher searches througheh®ry to decide which rules
are suitable for the problem, and next the rule applier chedtise rule to apply. These sys-
tems are suited to solve problems where experts can makalenhfiecisions. However,
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Figure 2.5: lllustration of the coordination of the hierdrical multi-agent system [123]

these systems work only with already created rules and intihsic implementation do not
involve learning.

Freeway networks
HERO

When the congestion is imported from downstream, local raregering almost has no
effect. To this end, coordinated control strategies arelege HERO (HEuristic Ramp-
metering coOrdination) [105] is a simple rule-based camaté#d ramp-metering strategy
that applies ALINEA for the local regulators. HERO can capade freeway networks of
arbitrary size, including a string containing a number afca&ssive ramps.

The main coordination principle for a string is as followsdrive the real-time detected
ramp queue lengths and mainstream densities from the locdtatlers; Check whether
the relative ramp queue lengtby wmax €xceeds a certain activation threshold, and whether
the merge density is close to (or higher than) the criticalsitg. If both conditions are
satisfied, this ramp is defined as the master ramp, where tgegmay soon reach the
maximum admissible value, and then congestion may happeereiore, the coordinated
control strategy needs to be activated. In order to prevengestion at the master ramp,
coordinated control actions are adopted at the slave rathpsipstream ramps). Define a
minimum ramp queue lengttni, for the slave ramps, which is updated according to the
real-time changing of the master ramp queue length. Bythew-adjustingomi, according
to the traffic state of the master ramp, the queue lengthsedltive ramps are increased to
stay close to the queue length of the master ramp. In thigleweted control algorithm, the
slave ramps hold back some traffic so as to release the pegssar the master ramp, and
prevent congestion. When the relative queue of the mastegy datreases below a certain
threshold or the mainstream density becomes clearly uriteat, the coordination stops.
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The ALINEA-based HERO is shown to outperform the uncooriddocal ramp me-
tering and approximate the efficiency of the sophisticatetinwal control schemes (e.qg.
AMOC) without the effort for real-time modeling calculati® or external disturbance pre-
diction [105].

In Netherlands, the HERO algorithm is also applied to the #entkam beltway network,
but with RWS controller as local controllers. The RWS conttohtegy, developed by the
Dutch Ministry of Transport, is derived from the demand-&eaity strategy, which is a feed-
forward control approach based on the measured traffic déroarthe freeway and the
pre-defined capacity of the freeway [117].

ACCEZZ

Fuzzy logic systems, like humans, can handle situationgevtiee available information
about the system is vague or imprecise [67, 100]. To deal sutih situations, fuzzy sets
are used to qualify the variables of the system in a non-dfatime way. Fuzzy sets are
characterized using membership functions (e.g. Gaussiangle, or normal) that take a
value between 0 and 1, and that indicate to what degree a gieement belongs to the set
(e.g., a speed could be 60% “high” and 40 % “medium”). The mensitip degrees can
then be used to combine various rules and to derive condsisithis process consists of
three parts: fuzzification, inference, and defuzzificatiinzzification involves the trans-
formation of a value of a variable into a fuzzy value, by limdiit to a given fuzzy set and
determining a value for degree of membership. Inference aseet of rules based on ex-
pert opinions and system knowledge and combines them usiay et operators such as
complement, intersection, and union of sets. Defuzzificationverts the fuzzy output of
the inference step in to a crisp value using techniques ssioieaimum, mean-of-maxima,
and centroid defuzzification. One of main difficulties of afy system can be the selection
of appropriate membership functions for the input and dutamiables. Moreover, fuzzy
systems are often combined with other Al techniques for tt@inplete deployment.

As indicated before fuzzy systems can be used when accufatenation of the traffic
model is difficult to obtain or is not available [15, 74]. A fizlogic controller for ramp
metering with a description of the various steps (fuzzifaatinference, and defuzzifica-
tion) is presented in [126]. Several fuzzy sets that canegelavariable (input, output) to a
particular situation can be defined such as fuzzy sets fai &pred, local traffic flow, queue
occupancy, metering rate, and local occupancy. Usingfigation input variables such as
speeds, flows, occupancy levels in the vicinity of the fuzamp meter controller and output
variables such as metering rates can be translated to fiefireed fuzzy sets and to obtain
values for the degree of membership. Next, these valuesedrofthe inference engine,
which is constructed using a set of rules based on the exyerief traffic control center
operators and on off-line simulations. The result of thelehce is then transformed into
a crisp value in the defuzzification step, after which thelfirault is applied to the traffic
system or presented to the operator of the traffic contrdiecdar further assessment.

ACCEZZ (Adaptive and Coordinated Control of Entrance Ramjil Fuzzy Logic)
[16] is a rule-based algorithm for coordinated ramp metgrifhe rule base is defined as a
set of rules in fuzzy logic, incorporated with human expsertiFuzzy logic allows simple
development and modification, because rules are easy tcedefier, or eliminate. The
fuzzy controller also compensates for poor, inaccuratesmreanents. Since a fuzzy con-
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troller can easily handle nonlinear systems with unknowdets it has a distinct advantage
for controlling complex traffic systems.

The ACCEZZ approach can be developed into several versibtiealgorithms, i.e.
Neuro-Fuzzy Online, Neuro-Fuzzy Offline, Genetic Fuzzyi@ml Genetic Fuzzy Offline,
and Genetic Fuzzy Reality. The core of the ACCEZZ model fansila fuzzy controller
(see Figl 2.6). The control rules are expressed by definingvebar of fuzzy sets that are
identified and derived from heuristics, expert knowledge, simulation testing. The inputs
of the fuzzy controller are measured on the mainlines anthops, i.e. local speed, local
traffic flow, and local occupancy, upstream and downstreatheobn-ramp. The output of
the fuzzy controller, the metering rate, is calculated gweinute based on these real-time
measured and historical traffic data.
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Occupaney’
58}
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Figure 2.6: Fuzzy ramp metering [16]

In order to coordinate the local fuzzy ramp metering coigrs| the shape of each in-
put or output fuzzy set at each on-ramp location of the mdténeeway is adjusted dy-
namically. So, one way of modifying the behavior of the ramgtening algorithm is by
recalibrating the parameters of each fuzzy set, i.e. redgfthe linguistic variables. Learn-
ing/optimization methods obtained from neural networlotlyeor evolutionary algorithms
are used to find the optimal parameters of the fuzzy sets. @amrfuzzy algorithm learns
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the fuzzy parameters aiming at minimizing the Total Timer8jrethe metered freeway sys-
tem. The macroscopic traffic model METANET is used to evatla¢ different coordinated
ramp metering strategies, and helps to find the best systdmstrategy. Alternatively, a
genetic algorithm can be used to determine the optimal coated parameters of the fuzzy
ramp metering controllers based on macroscopic traffic igdETANET. The resulting
systems are either called neuro-fuzzy or genetic fuzzy rar@ering.

Comparing with five other standard ramp metering algorithrasdemand-capacity, oc-
cupancy strategy, ALINEA, Denver's HELPER algorithm, anthiesota’s Zone approach,
all developed versions of the ACCEZZ model family substdhtimprove the traffic con-
ditions for the freeway analyzed [16].

Urban networks
Urban traffic control based on hybrid petri nets

An urban network of signalized intersections can be sujtaideled as a hybrid systém

in which the vehicle flow behavior is described by means ofreetdriven model and the
traffic light dynamics are represented by a discrete-eventain Petri nets are known to be
very suitable to model discrete-event systems, since tleegitae to capture the precedence
relations and interactions among the concurrent and asyneobs events that are typical of
discrete-event systems. A Petri net is a directed bipagt#ph, in which the transitions (i.e.
events that may occur) are signified by bars and the plages(nditions) are signified by
circles. Based on the hybrid Petri net model, a rule-badeainuraffic control structure [39]
(see Fig. 2.7) is proposed to control and coordinate traéftevarks, aiming at improving
the performance of some classes of special vehicles, ibdiccand emergency vehicles.

HPN model

Supervisor

/

Priority Local
controller <— controller

Intersection

Figure 2.7: Control structure based on a hybrid Petri net rab@dopted from [39])

Traffic lights can be optimized under both regular and specaditions with this con-

IHybrid systems are systems that are characterized by botmoons and discrete-event dynamics (switch-
ing). They exhibit both continuous dynamics (which can be nreatlby differential or difference equations) and
discrete-event behavior (switching).
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trol structure. That is to say with or without a public or egercy vehicle asking for a
privilege. Fig. 2.7 illustrates the operation of the systddhThe local controller regulates
the intersection under the hypothesis of regular conditiday optimizing the traffic light
plan based on the traffic model; 2) The priority controlleaiuated to force a modified
traffic light plan when a particular event occurs; 3) The suiser coordinates all the local
and priority controllers and solves all the problems inumdvseveral intersections.

The local controller executes a traffic-responsive plan tipimizes the phase splits
taking the queue length at the intersection as the perfareahhe priority control rule at
a intersection is: 1) If a privileged vehicle asks for prigrithen the arriving time of the
vehicle will be predicted by the hybrid traffic model; 2) I&tkraffic light is green, when the
vehicle arrives, then there will be no intervention (i.ee #igorithm stops); 3) If a red light
is expected, the local priority controller has to decide thbeto extend the current green
time, or to stop the current red light earlier, and to antitéthe next green time.

The rule-based urban traffic coordinated control structiadybrid Petri nets is able to
take public and emergency vehicles into consideration.liieid Petri net model used has
been validated through real traffic data about the Italignafi Torino [39].

Fuzzy rule control system

Similar to ACCEZZ for freeway networks, fuzzy-logic contess with genetic algorithms
or neural network algorithms as adapting approaches fdiuttey rules are also applied in
urban traffic systems.

In [61], a decentralized urban traffic structure is proposedpplies a fuzzy-logic con-
troller as local intersection controller, and a dynamiogsamming technique to coordinate
the control results obtained from fuzzy-logic controllarsd to derive the green time for
each phase in a traffic-light cycle. In each fuzzy-logic coltér, a GA algorithm is applied
to learn and update in real-time the fuzzy sets.

A more complex urban network control hierarchical archite is given in/[26] based
on a fuzzy neural decision support principle, as Fig. 2.8wsholhe architecture consists
of three layers. The lowest layer consists of intersectmmtroller agents that control indi-
vidual, preassigned intersections in the traffic networke middle layer consists of zone
controller agents that control several preassigned ie¢tic controller agents. The highest
level consists of one regional controller agent contrgliti the zone controller agents.

In each layer, every agent can obtain traffic data and maksidies autonomously. Both
lower layer agents and upper layer agents can send coggefatitors (requests) to each
other. In the zone controller agents, fuzzy control aldons$ are adapted by changing the
fuzzy rules using evolutionary algorithm, i.e. neural netikvalgorithm. Several techniques,
including reinforcement learning, weight adjustment, adjustment of fuzzy relations,
have been applied to adapt the dynamics of the agents online.

2The basic idea behind dynamic programming is to decompose a magéisecision problem into a number
of subproblems that calculate the optimal path between a#istsefore and after one decision stage.
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Figure 2.8: Multi-agent architecture for urban traffic sighcontrol (adopted from [26])

Mixed freeway and urban networks
HARS

HARS (Het Alkmaar RegelSysteem) [75, 124, 125], which médime Alkmaar Control
System”, is a state-of-the-art traffic management systepieimented in the Alkmaar re-
gion in the Netherlands. The HARS system combines both atey traffic management
strategy and a bottom-up traffic management strategy int@rarchical traffic network
management architecture. The two traffic management gteateomplement each other.
The top-down strategy makes decisions on the control schdrased on the predefined
traffic scenarios stored in the expert database. In orderdmmome some drawbacks of the
top-down structure, the HARS system adopts an agent-bagthbup traffic management
architecture. In the bottom-up strategy, all road segmantsnodes that connect the seg-
ments are defined as agents. The agents can communicateaakittoer, and coordinate
with each other to make control decisions according to tleelgfined rules based on the
expert knowledge.

Fig. 2.9 shows the structure of the HARS system. In the “Datheying” block, the
real-time traffic information (traffic states) are measuaad collected through the loop de-
tectors. Based on these measurements, the traffic model M4 is used to determine
what the traffic state is on links that have no sensors of iheir in the “Traffic model”
block. In addition, MaDAM predicts what the traffic statedlwie for the links in the next
30 minutes in blocks of 5 minutes. In the “Network managerhbluck, both the agent
controllers and the expert control schemes are implemefidthe top-down expert con-
troller, proper control strategies are chosen based ordth#ified scenario. For the agent
controllers, link agents compare the information (obtdifrem the “Traffic model” block)
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Figure 2.9: The structure of the HARS system (adopted frd@f) [7

about their traffic state with a so called reference fram&w®dhe reference framework de-
fines criteria that the traffic state on the link should mekthe link’s traffic state deviates
from the reference framework, or will deviate in the neaufat links will communicate via
intermediate nodes with other links and ask them to redutfeoauin order to meet the cri-
teria. If the upstream link is not able to adjust its outflomrtake the downstream link meet
the criteria, then it will forward the service-call to its stpeam neighboring link(s). The
derived coordinated control actions are sent back to tHfictrrocess to be implemented.
All the predefined configurations of the control strategy Hrelreference frameworks are
stored in a database, represented by the “Expert contrehnse$’ block. The “Measure
control” block represents the local controller, which ikga as backup controller in case
that the coordinated controller fails.

Alkmaar has two types of control measures: traffic light sgst and Dynamic Route
Information Panels (DRIPs). The DRIPs will be used for rérayand informing drivers.
The traffic light systems will be used as an instrument to geantensities of traffic flows.

2.2.4 Case-based strategies

Case-based reasoning, as the name suggests, solves arptaiihg the knowledge that
was gained from previously experienced similar situati@gases) [1, 111]. In this way, this



2.2 Network coordination approaches 27

technique learns the way a new problem is solved and stoge®eth solution in a database.
A disadvantage of this approach is that it might not be cldzatvghould be done for a case
that is not yet present in the case base. However, new caskktmadded on-line to deal
with this problem.

Dynamic traffic management focuses on the integrated (assggito isolated) and co-
ordinated (combination of different measures, e.g. rangpenng, variable speed limits,
dynamic route guidance, opening shoulder lanes, providiote information, etc.) deploy-
ment of measures, anticipating on future changes in trafficlitions. In the regional traffic
management centers, traffic operators decide when and whi@mic traffic management
measures are to be deployed in case of recurrent and norreetconditions. To improve
the existing dynamic traffic management systems, BSES (Bossario Evaluation System)
[38,/64, 65] based on fuzzy multi-agent case-based reag@proposed.

BSES can evaluate control scenarios in real time, predidtieir effects in terms of
various measures of effectiveness, such as total travel, timhicle loss hours, average
speeds, fuel consumption, etc. The main characteristitteeadystem are 1) that it is case-
based, i.e., it uses either synthetic or real-life exampfethe effect of control scenarios
under different circumstances; 2) that it determines thelafity of the current situation to
different examples in the case base using fuzzy logic, atldad)t is agent-based, meaning
that it predicts the effects of the different measures foalksubnetworks and combines
these predictions afterwards.

Due to the exponential growth of the case base, straightfichapplication of case-
based reasoning to the decision support task is not feaJibkrefore, representative cases
that can occur in practical situations are required to findioat how to reduce the case base
scale. To address this problem, two aspects are introdutedhie case-based reasoning
framework: 1) Fuzzy logic is used to combine different cdaebe case base (fuzzy case-
based reasoning); 2) The network to be controlled is divited partially independent
subnetworks for which the aforementioned fuzzy case-basasoning approach can be
applied. An iterative approach is used to find consistenttgwis for the subnetworks.

The main advantages of the BSES approach are the speed ofizdiop (compared to
using traffic flow models), the ability to use actual knowledtirectly (rather than general
knowledge or simulated data), and the ability to learn fraavipus experiences (continuous
step-wise learning). It turns out that the system is ablesty quickly produce predictions
on the impact of different control scenarios to the traffieigtions in the network, and that
it can thus support operators in their decision tasks in latire@ decision environment.

2.2.5 Anticipatory control strategies integrated with traffic assignment

Traffic control discussed here generally refers to contmplthe traffic control measures
(e.g. traffic lights, traffic information, and ramp-meteyjrio reduce the traffic delay in the
traffic network. However, the travelers inside the netwodyrohange their routes, when the
new traffic control measures change the traffic in the netwbhlerefore, traffic control and
the behavior of the travelers influence each other. As atresnkw traffic control strategy
is constructed by combining the traffic control problem with traffic assignment problem.
The new traffic control problem is formulated into a bi-lepebgram in which the upper
level deals with the control problem, and the lower levehwite assignment problem.

In [116], an anticipatory control strategy is proposed tatonl and coordinate urban
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traffic networks by predicting the future traffic flows withine network taking the varia-
tion of the traffic assignment into consideration. As thdficaontrol and the behavior of
the travelers have different goals, game theory is apptiesblve the bi-level optimization
problem of the anticipatory control. The traffic control eregr and all the road users are
then considered as two players. The traffic engineer cartnel signal settings and the road
users have route choice. A Nash game is played when bothrpleg&ct on each other’s
moves: the traffic engineer sets the signal control plaresrdlad users travel and select
routes based on their individual preferences and the expead travel times. The game
ends when reaching the Nash equilibrium, which is the saoavhen no player can benefit
by changing his strategy, while the others keep their gir@seunchanged. In every itera-
tion, an optimization problem is solved to obtain the besttid plan for the predicted time
period and for the whole traffic network in the upper levelefmhthe road users chose their
routes according to the travel costs under the new plan. rEfiictengineer decides on a
signal plan based on the anticipated traffic flows and the usads react by changing their
routes, and this procedures repeats until an equilibriuredshed.

Fig.[2.10 illustrates the framework for developing, tegtiand evaluating all kinds of
network control strategies. The “optimization controlrglés the part where the anticipa-
tory control strategy is determined. After the control piamlerived by certain algorithm,
a simulation is started with a dynamic network loading mdadedee how traffic propagates
through the network with this control plan; based on thesalts a dynamic traffic assign-
ment is run to obtain a new route flow distribution, and agahedynamic network loading
model is run to come to a final evaluation of the control plan.
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Figure 2.10: Framework for anticipatory control (adoptadr [116])
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2.2.6 Alternative approaches

According to [35], a Macroscopic Fundamental Diagram (MF&)urban traffic streets is
proved to exist, and [53] shows that an MFD also exists on ghtieirhood-sized sections
of cities, and that it is independent of the demand. Thisltéstested in neighborhoods of
the order of 10 krfiin cities like Yokohama, Japan, etc. The experiment datayatieered
by GPS-equipped taxis and fixed detectors. The network MARiméd is illustrated in
Fig.'2.11. It can be used to control network demands to ingpmscessibility. Simple
versions of the control strategies based on the network MieCaleady used in London,
Stockholm, and Singapore, etc.
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Figure 2.11: Network MFD

A large traffic network can be divided into several small héigrhood subnetworks.
The subnetworks are controlled and coordinated so thatrém@gain in Region B on the
MFD (see Figl 2.11), in order to maximize throughput of thewueks. Based on the MFD
of the subnetworks, a series of coordination approachebeaeveloped:

e Rule-based control
e Proportional control

¢ Anticipative control

Rule-based control As Fig.[2.12 shows, the network is divided into 5 subnetwavith
different subnetwork MFDs. We can see that subnetwork 4ngested. The coordination
control rules can be designed as: 1) Check the neighborimgeswork status of the prob-
lem subnetwork (i.e. subnetwork 4), to see whether theyratieea safe regions (Region A
and Region B) on the MFDs (as subnetwork 2 and 5 are in safenggi 2) Alleviate the
congestion by reducing the output flow of the neighboringnstlvorks from the subnet-
work with the lowest priority on until the problem is solvad. first reduce the flow from
subnetwork 5 to subnetwork 4.

Proportional control  Proportional control is applied to control network traffiovilin the
Region B of Fig. 2.11, which takes the real-time detected/ogk traffic states as feedback:

Q*(k+1) = Q(k) +a(N*—N(k)) (2.3)
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Subnetwork 4 has a problem
There is space for control in Subnetwork 2 and 5
Subnetwork 5 has a lower priority than 2
Subnetwork 5 limits the inflow to 4 (primary)
Subnetwork 2 limits the inflow to 4 (secondary)

Figure 2.12: Rule-based control strategy based on netwdfoM

whereQ(k) is the network flow rate at timie N(k) is the number of vehicles in the network
at time stegk, N* is the traffic state control set-point derived from the MFRpjessed as
the number of vehicles in the network), amdls the control gain. Proportional control aims
at controlling the traffic network within the predefined @ui(e.g. Region B) by adjusting
in real-time the input and output traffic flow of the network.

Anticipative control A simplecontinuous dynamisubnetwork model is established based
on the network MFD. For subnetworkwe have

=S a0 - Q). @4
J

wherej € N; is the neighborhood subnetwork of subnetwio; (t) is the anticipated output
flow rate of subnetwork into subnetwork at timet, andy ; q;(t) is the sum of the input
flow rates for subnetwork Q;j(Nj(t)) is the predicted output flow rate of subnetwark
derived from the MFD function based on the current netwoslfitr stateN;(t) (i.e. the
number of vehicles). This model can roughly describe andiptéhe traffic states evolution
of the subnetworks, which are influenced by the traffic flowhextge among subnetworks.
An anticipative control strategy can be derived to coortdirtae subnetworks based on this
simple model.
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2.3 String coordination approaches

A string is a link in the freeway network, or a road in an urbatwork. It belongs to a
freeway network or a urban traffic network, and it generallyp an important role in the
traffic networks. Therefore, some research has been dedkfopusing on coordination of
strings. As a part of the traffic network, almost all the cawation strategies mentioned
above are also suitable for the string. Moreover, somedraféinagement systems [48, 97]
above are designed taking the string coordinated contjettie as the target of one of the
layers in the hierarchical control structure. Neverthglékere are also some approaches
that focus explicitly on strings, and they will be discussedt.

Freeway strings

The cell transmission model [33, 77] divides a freeway iNtsections or cells, each with
one on-ramp and one off-ramp (see Fig. 2.13). In the figurieicles move from the right
to the left. Section is upstream of section— 1. There are two boundary conditions: free
flow prevails downstream towards Section 0, and on the upstie the freeway here is an
on-ramp with an inflow ofy. The flow accepted by Sectidd— 1 is fy(K) vehicles per
period at time stef. The cumulative difference leads to a queue of sigék) in periodk,
andr; ands are on-ramp flow and off-ramp flow for Sectiomt time stefk respectively.
The densityn; in Sectioni is updated as

ni(k+1) =ni(k) — fi(k)/(1—Bi) + fisa(k) +ri(k), 0<i<N-1 (2.5)

wheref; is the split ratio.

Figure 2.13: The freeway has N sections. Each section hasooneand one off-ramp.
(adopted from [55])

Reference [55] provides a complete analysis of the behafitihe cell transmission
model of a freeway with stationary demand. The state of theadhcal system is thil-
dimensional vecton of vehicle densities in th&l sections. The key to the behavior of
cell transmission model is the location of bottleneck sextiwhere flow equals capacity.
The bottlenecks partition the freeway into decoupled segsaeEach decoupled segment
starts with a bottleneck and ends just before the next ugstittleneck. In each segment,
the equilibrium set is determined only on its own conditiand the number of congested
sections in the segment depends on which equilibrium in ¢héhe segment belongs to.
Each equilibrium is stable and every dynamic trajectoryhef traffic states converges to
certain equilibrium state. Lat be a demand vector for all segments amthe resulting
equilibrium flow vector for all segments, then

N=rN, @ =(1-Bi)(@r1+ri), 0<i<N-1, (2.6)
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Table 2.1: Comparison of the features for different traffioaination control methodolo-

gies
> =
c T > qc)
2 5 | % 8 =
£ ° | & © 2|38
S € | E ol T |2
X = (@] @] = (&) o
Methodologies £ O |0 £ n | <
o | Centralized Global H+ | H Yes No | H
% Hierarchical || Compromise| H | H Yes Yes | H
Distributed Local H | H Yes Yes | H
Optimal control Global M | H Yes No | H
Rule-based Compromise| M+ | L | Potentially | Yes | M
Case-based Compromise| M+ | M Yes Yes | M
Anticipatory control Global H+ | H Yes No | H
MFD-based Global M- | L Yes Yes | L

H - High; M - Medium; L - Low; Compromise - between global and local

which means that the equilibrium flows in the segments deparubth the traffic demands
and the current traffic flow states for the segments.

It is proved that, under the following two conditions: 1) whigottleneck is caused by
demand exceeding the capacity; 2) when congestion alredstg as initial condition, ramp
metering control can avoid congestion from happening aevelcongestion that already
exists.

Urban strings

Urban string control mainly refers to arterial progressimordination, which maximizes
the green traffic light band to reduce the traffic delays oretteries. In [51], a mathemati-
cal programming model for the development of optimal asdsased progression schemes
is proposed. Under such a scheme, a continuous green baralidgul in each direction
along the artery at the desired speed of travel to facilititdernovement of the principal
through-flows along the arterial. Both uniform and varidiéedwidth models are formu-
lated. New approaches generate variable bandwidth pigresin which each directional
road section is allocated an individually weighted band tha be adapted to the prevailing
traffic flows on that link. Mixed-integer linear programmiiggused for the optimization.
Simulation results indicate that this method can producsicierable gains in performance
when compared with traditional progression methods. Atiead progression optimization
approach can be also found in [50], which is a multi-level-teae traffic-adaptive control
algorithm taking the dynamic traffic assignment and theingutapacity into consideration.
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2.4 Comparison

The main characteristics of the methods discussed abowiarmarized in Table 2.1 and
Table 2.2. As Table 2.1 illustrates, in general, the morbatate information that the con-
troller takes into consideration, the better control resill be obtained. The centralized
MPC approach makes use of the total global information bylyapgp a traffic network
model and feeding the model with real-time detected traféites. So, the centralized MPC
approach has the highest coordination control quality. &ls it also has a high com-
putational complexity at the same time, and needs moretgfforimplement. Therefore,
distributed and hierarchical MPC structures are develapaolve this problem by making
some compromises. They give up a part of the global infoilrnaty obtain simplified sub-
problems, and improve the applicability of the approachesdntrolling and coordinating
the subproblems. Moreover, a distributed structure alskesthe controller scalable. De-
spite of the drawback of the high computational complexitg,centralized MPC approach
still has the best global control performance, and can bd f@dong-term traffic control
or planning, in which the control algorithm does not neecktact very fast. Other solutions
to this problem are to use distributed and hierarchical M&Qo develop efficient model
predictive control algorithms for large traffic networkstlare applicable to real-life traffic,
and keep good control performance as well.

Rule-based and case-based approaches are control stsategstly based on histori-
cal information and expert experience. Because they ar@aratively easy to implement,
simple rule-based and case-based approaches first havepq@esd in traffic management
system to coordinate traffic networks at the beginning. oeee they are the control ap-
proaches that are easy to coordinate all kinds of trafficrobmeasures and manage large
complex transportation systems. However, the control9laistained by rule-based and
case-based strategies are in general not optimal solutiuts some smart rule-based and
case-based control systems (e.g. HERO, ACCEZZ, HARS, BS$tS, can adjust them-
selves by updating their rules or databases according t@#éhdime measured traffic states
or the predicted traffic states through the traffic modelsis Thakes the rule-based and
case-based approaches more adaptive to the variation mdahaffic.

In fact, when the traffic control plans change, the traffic 8aathe traffic network will
be reassigned, because the road users will also changedhtss. Therefore, it is more
realistic to also consider the traffic assignment while alihg the traffic. The anticipatory
control approach constructs a bi-level program problemwlich the upper level deals
with the control problem, and the lower level with the assigmt problem. The control
results of the anticipatory control are good because ohtpttie dynamic traffic assignment
information into consideration. However, because of theiive feature of the solver, the
anticipatory control approach suffers the same drawbadke®/PC control approaches,
i.e. high computational complexity. Just like the ceniadi MPC, the anticipatory control
can also be used for long-term traffic control and planning.

Recently, the Macroscopic Fundamental Diagram (MFD) has bBeen discovered to
exist for a neighborhood-sized traffic network. The famifynetwork MFD-based ap-
proaches to coordinate traffic subnetworks is scalable eti®est strategy to be imple-
mented, and they have a very low computational complexitiycddrse, they also result
in a rougher approach, which cannot guarantee a very higinatauality.
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2.5 Summary

Traffic states and traffic control measures are not isolatesy; interact with each other.
Therefore, coordinated traffic control strategies are wenyortant for coordinating all the
traffic control measures to improve the transportationremvnent.

In this literature survey, coordinated traffic control stgies for both traffic networks
and strings are summarized. As a part of the traffic netwagffi¢ strings can also be
controlled and coordinated by most of the strategies fdfi¢raetworks. From the view
of traffic control methodologies, the existing coordinateaffic control strategies can be
classified into MFD-based (Macroscopic Fundamental Diaghbased) approaches, case-
based approaches, rule-based approaches, anticipatdrglapproaches, optimal control
approaches, and MPC (Model Predictive Control) approaghder centralized, distributed,
and hierarchical control structures. The characterigtifdhese methodologies have been
analyzed and compared in this literature survey.

Anticipatory control, optimal control, and MPC all belong the same category, ad-
vanced model-based optimization control methods. Thelyaofimodel-based optimiza-
tion control approaches is the most powerful strategy, &t high control quality and
is capable of coordinating all integrated control measatebe same time. However, the
drawbacks of model-based optimization approaches arg: thee a comparatively high
real-time computational complexity, and it takes more réffo be implemented and get it
working in real-life traffic applications.

On the other hand, the MFD-based approaches are scalableagtiest strategies to
be implemented, and have a very low computational compiegf course, they are also
rougher approaches that cannot guarantee a very high tqaality. However, at present
the network MFD-based control approaches are methods @nabe implemented in prac-
tice and start working in a short time period.

Compared with the former categories of control method@sgiule-based approaches
and case-based approaches seem to offer a good tradeveddvetontrol performance and
complexity.

In this chapter, we provide a general summary on the stasetaff the existing coordi-
nated traffic control approaches. In the following of thesthgwe will focus on a specific
layer of coordinated traffic control problems for urbanficahetworks. To achieve higher
control quality in the future, more advanced traffic cooadéu control approaches need
to be considered. MPC approaches are promising methodsahairovide a good global
coordination performance for traffic networks. But more kvisrnecessary to improve the
efficiency of MPC controllers for traffic networks to make fipdicable in practice, and to
build user-friendly interface to make MPC easier to be imm@ated in reality. Therefore,
the emphasis of the thesis is mainly put on investigatingiefit model predictive control
methods for large-scale urban traffic networks.
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Chapter 3

Framework for MPC Control of
Large-scale Urban Traffic
Networks

Traffic congestion is a serious issue for urban areas, edfyefor big cities. Because the
population density in large cities is particularly highdathus the requirements for trans-
portation are also high for both commercial reasons andpatseasons. Moreover, urban
road networks grow larger and larger, and become more and ownplex. Therefore,
an efficient transportation management system is necesBang, a traffic control system
based on Model Predictive Control (MPC) is proposed for nrtraffic. To better control
a large-scale urban road network, a proper framework didradntrollers is necessary for
the following reasons:

e Physical structures:
When a city becomes very large, it can be composed of manyotstvith their own
local traffic management centers, or by a downtown area arefalesatellite cities
surrounding the downtown. So, a large-scale urban traftword can be geograph-
ically divided into many subnetworks. Therefore, it is resagy to design a control
framework with multiple levels to optimize the overall pemihance and to coordinate
the underlying subnetworks.

e System dynamics:

The dynamics of a traffic system can be either slowly changinast changing.
For instance, similar traffic flow features will repeat on aeklg basis, while slowly
changing during months or even years. But, traffic flow caa elfenge fast within an
hour or even a minute. Moreover, the traffic system dynanadosatso vary differently
for different levels of the traffic network scale. For examphe traffic dynamics of
an intersection can be modeled at a faster time scale, viglgaffic dynamics at the
network level may be described at a slower time scale. Toerghccording to the
specific dynamics of traffic systems, a structured trafficimdrsystem is necessary
aiming at regulating the traffic on different temporal leszel

37
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e Control objectives:
A traffic system is a large complex system composed of fregreagportation, urban
transportation, public transportation, pedestrians, &tte integrated traffic system
has different control objectives for different types ofnsportation. A structured
control system can coordinate the multiple control obyeti

e Control models:

The traffic models used for control differ from each other &a [6here are models
for a variety of transportation systems, freeways, urbasppedestrians, etc. There
are also models with different modeling powers, i.e., défé modeling details or
different levels of descriptive abilities. Some modelsrage elaborate and complex,
while some are rougher and simpler. Due to the differencesngntraffic models,
a distributed control structure can be applied to cooréinahd multiple levels of
controllers can be designed based on different models giatisolving the specified
problem.

e Computation complexity:

When the scale of the urban traffic network increases, the atatipnal complexity

of a centralized MPC controller grows about exponentiailpiacticé. So the CPU

time needed for solving the on-line optimization problem ttoe centralized MPC
controller will become very long, and as a consequence thien@ation problem

will become real-time infeasible when the MPC controlleiniplemented in a real-
life traffic network. Therefore, the large urban traffic netk needs to be divided
into several smaller subnetworks so as to divide the conipat burdens and then
be coordinated by a coordination framework.

3.1 Network-wide control structures

When a traffic network becomes large, it is necessary to cathiedarge-scale traffic net-
work under a proper control structure. A well-structureadfic control system can avoid or
solve the problems mentioned above, and also may help thensyshieve a better perfor-
mance [114].

3.1.1 Centralized control structure

In centralized control, the controlled system is modeledabole system, and is controlled
by one overall controller (see Fig. 3.1). This controllgpstyises the whole system, and has
full information about the system. Based on the full infotima, the controller makes the
decisions that are optimal for the entire system, and sémufs to the system to implement.
The centralized controller has full information shared lhg éntire system, which is called
classical information pattern, in which the overall infa@tion of the system is centralized
and known by every element within the system. For a systeimswtements, the classical

1The MPC optimization problem is in general non-convex andinear, and thus NP-hard [47]. In practice,
this means that the execution time will increase exponeyialithe problem size increases.
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information pattern can be expressed as

[(t) = {(ui, yi)|ui : [to,t] = R™ 1T — ui(T), Vi : [to,t] = R™ 11— vyi(1),i=1,2--- s}
ut)=f (@), (3.1)

whereu; andy; are the input and the output signals of elemeintthe system, andl(t) is
the overall full information of the system at time instantThe full vector of the control
inputs to the system,

ut) = . , 3.2)

depends on the overall information of the system,| (.

Controller

System

Figure 3.1: Centralized control structure

In principle, if an MPC controller is applied in a centralizstructure, it can derive and
guarantee the globally optimal control actions for the whiwaffic network based on the
classical information pattern. It can maximize the thrqughof the whole network, and
provide network-wide coordination of the traffic control aseres. However, the problem is
that the on-line computational complexity for centraliZd8C grows about exponentially
in practice, when the network scale gets larger. Therefaren though centralized MPC
can guarantee the best overall control performance for tiwentraffic network in theory,
it also pays the highest computational cost for its goodgwardnce, and suffers from the
risk of not being applicable in real-life traffic.

3.1.2 Decentralized control structure

Decentralized control divides the overall system iatsubsystems, and controls the sub
systems separately based only on the local model and theriafmn of the corresponding
subsystem (see Fig. 3.2). By dividing the original systetn Bubsystems and by design-
ing decentralized controllers, the full information of théole system is also separated
into parts. The information interactions between subsystare cut off, which results in a
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non-classical information pattern:

li(t) = {(ui, yi)|ui : [to,t] = R™ T ui(1), Vi : [to,t] = RM i T—yi(1)}

ui(t) = fi(li(t)) for each subsystein=1,2,--- s, (3.3)

whereu; andy; are the input vector and the output vector of subsysteamdl;(t) is the
local information of subsystelin So here, the vector of the control inputs to subsystem
ui(t), depends only on its local informatidytt).

Controller 1 Controllerg - - - - Controllers
Y1 ua Y2 uz Ys Us
System 1 System 2 Systems

Figure 3.2: Decentralized control structure

Decentralized control can be opposed to centralized clonfitee computational com-
plexity of the centralized MPC controller of a large urbaaffic network can be reduced
efficiently by dividing the network into small subnetworks\d controlling the local subnet-
work MPC controllers separately in a decentralized stmect@ he traffic flow interactions
between subnetworks are cut off (or disconnected), andbeilconsidered constant and
known by each subnetwork in advance. Because the estimhthe oput traffic flows
from other subnetworks may be far from the real values, tballIBIPC controllers may not
be able to find the real optimal solutions for the subnetwolésreover, since the subnet-
works are completely disconnected, the overall perforrmariche whole network will be
deteriorated.

3.1.3 Distributed control structure

Similar to the decentralized control, distributed contatdo uses independent local con-
trollers for different subsystems. Different from decatfired control, the local controllers

exchange information and coordinate between each othereldre, each local controller

will make its own decisions based on both information frora slubsystem itself and the
information obtained from other subsystems (seelFig. 313¢.information pattern is non-

classical and is expressed as

li(t) = {(uj, yj)luj : [to,t] = R™ : 1= uj(1), ¥y - fto,t] = R™ 11— yj(1),j € AGU{i}}
ui(t) = fi(li(t)) for each subsystein=1,2,--- s, (3.4)
wherel;(t) is the local information of subsystema is the set of the neighboring sub-

systems of subsystem(“neighbor” can be pre-defined by the designer, which carhbe t
adjacent subnetworks, or even including the subnetworksatte not directly connecting to
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subnetwork), andu;(t) is the vector of the control inputs to subsystemvhich depends on
its local information and the information from the neighipgrsubsystems of subsystém

Controller 1 Controller 2‘_ T Controllers
y1 uz Y2 uz Ys Us
System 1 System2[ T | Systems

Figure 3.3: Distributed control structure

Distributed MPC offers a compromise between the decent@IMPC and the central-
ized MPC. It keeps the advantage of decentralized MPC asdegamputational efficiency,
and at the same time it also considers the status of otheystelss and tries to approach
the overall performance of the centralized MPC. The morepteta information the local
MPC controllers have, the better overall performance ofwthele traffic network will be
achieved. However, if the amount of information that thealddPC controllers take in to
consideration of increases, the computational complexilybecome very high, and can
then be comparable with the centralized MPC.

3.1.4 Hierarchical control structure

Hierarchical control (Fig. 314) is another control struettihat tries to find a compromise
between decentralized control and centralized contraitelrd of giving all the control au-
thority to local controllers, the hierarchical controlstture divides the control problem into
multiple control problems at multiple levels. On differéaxels, the controllers mainly aim-
ing at solving specified different tasks. Generally spegkihe upper-level controllers will
coordinate (or supervise) the subsystems from a globat pbwiew. The lower-level con-
trollers make decisions by themselves taking the adviaes the upper-level controllers
into consideration. Therefore, the information patterrigfrarchical control can contain
two formats: on the coordination (or supervision) levelgan be a classical information
pattern as the centralized controller; on the local le¥&lan be a non-classical information
pattern either as in the decentralized controller or as éndistributed controller. Hierar-
chical control (see Fig. 3.4) allocates the control taskdifferent control levels, on which
control problems of different spatial/temporal scalesaealt with. This results in small-
sized control problems to be solved at each control level.

According to the tasks allocated to the different contrekls, the hierarchical control
structure can be classified into two types:

e Bottom-up:
If the local control decisions are made mainly by the locaitoallers themselves,
and the upper-level controller is only responsible foihetthe subnetworks commu-
nicate and coordinate with each other, then the hierarcbargrol structure is in a
bottom-up format. The main control tasks are done by thd mmatrollers, while the
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Coordinator/Supervisor

SN

Controller 1 Controller 2 Controllers
Y1 Uy Y2 uz Ys Us
System 1 Ssystem2[ T | Systems

Figure 3.4: Hierarchical control structure

coordinator (or supervisor) will balance the resourcdecate the benefits among the
subnetworks, etc.

e Top-down:

If the upper-level controller takes the main control taskha whole system like a
centralized controller, it will make decisions for the wloletwork and give the com-
mands to the local controllers, while the tasks of the locaitwllers are to decide
how to carry out the commands obtained from the upper-leostroller, then the
hierarchical control structure is in a top-down format. fBiént from a centralized
control problem, a top-down hierarchical control problestves a more general con-
trol problem on the higher level, e.g. a control problem dase a more aggregate
subnetwork input/output model, and then assigns the domisalts as the references
for the lower level controllers. In this case, the supenvisom the upper level does
not only coordinate the subnetworks, but also generategltiml optimal solution
for them, while the local controllers are just followers wivdl carry out the deci-
sions.

Therefore, comparing all the control structures above dibibuted control structure
and the hierarchical control structure can reduce the ctettipnal complexity of control-
ling a large-scale traffic network as a whole, and meanwl#e ean achieve a trade-off
between the overall control performance of the entire ndtwaod the local control perfor-
mances of subnetworks. This multi-subnetwork controlctitme makes a modular design
for the controller of each subnetwork possible, which eadbk the network-wide con-
troller to be expanded or reduced by adding or cutting suioréts easily. As a result, both
the flexibility and the scalability of the network-wide caiter increase for the sake of the
modular design for the multi-subnetwork control structlfarthermore, the reliability, the
sustainability, and the robustness of the traffic contretesy are also increased. Each local
controller can, in the worst case, work independently. Thins control system will not
break down, even if there are failures in other local cofdrslor even at the coordinator
(or supervisor). However, for the top-down hierarchicalisture, if the supervisor breaks
down, the local controllers cannot work properly, but bagklocal (i.e. decentralized or
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distributed) control strategies can be switched on in time tbf system failure. Moreover,
a local controller can be maintained separately withoutigrfting the others because of
the independence. As a result, an MPC-based urban trafftcotsgstem is suitable to be
implemented under a hierarchical or a distributed stregtas Fig. 3.5 shows.

- -

/ I \

----- .

Figure 3.5: Distributed control structure for road netwark

No matter which coordination scheme is selected for thdid¢ratibnetworks, an ad-
vanced subnetwork controller is the foremost thing to besiciared, so as to provide enough
communication of information required by the coordinatioModel Predictive Control
(MPC) is chosen to be the control strategy for the subnetsydokcause it can not only
use the current traffic data, but also the predicted traff@rimation in the future.

3.2 General problem formulation

Model Predictive Control (MPC) is applied to control urbaaffic networks. Any traffic
model that can predict the future could be selected as thdighian model of MPC con-
trollers. In the thesis, discrete-time macroscopic trdffiey models are used as prediction
models of MPC controllers in the following expressions. Bhmulation time interval (i.e.,
the sampling time interval) of the discrete-time model inated byTs. In order to control
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the urban traffic network, a common control time intervaléimed asl;:

with N an integer. Definés andk; as step counters of the simulation time interval and the
control time interval respectively. Note that these cotmgatisfy the following relation:

ks
o= ). (36)
where| x| with x € R denotes the largest integer smaller than or equal bo the remainder
of this section, whenevédg andk; appear in the same equation, their relation is assumed to
be given by/(3.6).

The prediction models of the MPC controllers should be abf@aedict the future traffic
states used for evaluating the objective function baseth®imformation of current states,
predicted demands, and future control inputs. They arergbneescribed as

nks+1) = f(n(ks)ag(kc)7d(ks)) ) (3.7)

wheren(ks) is the traffic state needed for the objective functidtks) is the traffic demand;
g(ke) is the future control input (e.g., the green time splits).

In the thesis, only the green time split is considered in th&trol measure. But, it is
straightforward to add cycle time and offset as the contedsures in the future. One of the
advantages of MPC controllers is they can easily optimizecordinate different control
measures at the same time. Thus, the overall optimizatwivigum of the whole urban traffic
network for the MPC controller can be expressed as

min J = Jg(A(ks),
min b (A(ks), g(ke))
st. f(ks) =f(n(ks), 9(ke),d(ks));
®(g(ke)) =0;
Gmin < 9(Ke) < Omax ) (3.8)

wheren(ks) is the real or measured state of the network at timeks - Ts.
When the prediction horizon ¥, then the predicted future traffic states are predicted
at simulation time stegs as

fi(ks) = [T (Ks + Llks) AT (Ks+2/Ks) - AT (ks + NNp ks)] "
based on the predicted traffic demands at simulation tinpekste

d(ks) = [dT (kslks) dT (ks + 1]ks) - d" (ks+ NN, — 1ks)],
and the future traffic control inputs at control step

a(ke) = (9" (kelke) 97 (ke +2lke) - @7 (ke +Np— 1[ke)] T .

In (3.8), there are equality constraints and inequalityst@ints for the control inputs, where
the inequality constraint puts an upper bound and a lowendhéwi the control inputs.

Different control objective functions can be selected fa MPC controller aiming at
solving different traffic management problem. Objectlyeepresents the objective function
for performanced. Possible performance indices are Total Time Spent (TT&g| Delay
Time (TDT), Total Emissions (TE), etc.



3.2 General problem formulation 45

Remark 3.1 The objective function for the Total Time Spent (TTS) of than traffic
network is
N(ke+Np)
Jrrs = Ts- Ay (ks), (3.9)
(u,d)eL ks=Nk.+1

whereri, 4(ks) stands for the predicted number of vehicles on {jnjd) at simulation time
stepks. O

Remark 3.2 The objective function for the Total Emissions (TE) of théam traffic net-
work is
N(ke+Np)

Jre= % Eua(ks), (3.10)
(udyel ks=NR+1

whereE, 4(ks) stands for the predicted total vehicle emissions on (inki) during simula-
tion time intervallksTs, (ks + 1) Tg]. O

The objective function of traffic subnetworks can be deri@ecording to the above remarks.
For the objective function of a large-scale traffic networithwnultiple subnetworks, we
assume that the overall objective function equals the suail dfhe subnetwork objective
functions, as
J= Z J, (3.11)
les
which holds for all kinds of control performances, e.g. TT8 dE.

In order to reduce the on-line computational complexitg, ldrge urban road network
can be divided into several small subnetworks, and accghdithe overall optimization
problem in|(3.8) can be rewritten into sub-problems for ezfdhe subnetworks. The set of
the subnetworks is defined as For the optimization problem (3.8), there are no couplings
between subnetworks (i.e., all can be decomposed, ingutimobjective function, the cy-
cle time constraint, and the upper bounds and lower bountleajreen times), except the
coupling terms between the models of the subnetworks,hestraffic flows interactions
among subnetworks. Therefore, the overall optimizatiaybfgm can be decomposed di-
rectly into subnetwork optimization problems, if the irgetion traffic flow constraints are
ignored. The subnetwork optimization problems of subnétwand subnetworl can be
formulated as follows:

e Subnetwork:

min J, = min Jg; (Aj(ks), gi
atke) gilk) e’l( (ko) gl(kC))

st. fi(ks) = f(ni(ks)7gi(kC)vai(k5)7Zh,i(kS)’ZJ'z,i(kS)’ e 7Zjni~,i(k3));
®i(gi(ke)) =0;
Ji,min < gi(ke) < Gi,max
Yij (ks) = fi out(fi (ks), Gi (ke), di(ks)),  for all j € (3.12)
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e Subnetworkj:

min Jj = min J j (A1 (Ks),gj (k)

gj (ke) gj(ke)
st. fj(ks) = f(“j(kS)agj(kC)vaj(kS)»Zil,j(kS),Ziz,j(kS)a o ’Zian(kS));
®j(gj(ke)) =0;
9jmin < 9j(ke) < gj,max
Yii(ks) = fj ou(fij (ks), g (ke),dj (ks)), foralli € =y (3.13)

where the sets of the neighbor subnetworks of Subnetwarkd j are defined asy; =
{it 2, in} andaj = {ig,io,--- ,inj}, zj(ks) stands for the vector of the input traffic
flows running from subnetworkinto subnetworkj, andy; j(ks) represents for the vector
of the output traffic flows running out of subnetworland then into subnetwork (see
Fig./3.6). The output traffic flow; ;(ks) depends on the output functiég, with respect to
the traffic states, the traffic signal inputs, and the traffimednds of subnetwoik

Yi,i(ks) z j(ks)
Subnetwork i Subnetwork]
zj,i (ks) Yii(ks)

Figure 3.6: The interactions between subnetwork i and stvior |

As in (3.12) and_(3.13), the model of Subnetwdso has to be updated based on the
input traffic flow information provided by the neighbor submerks, i.e zj, i (ks),zj, i (Ks),. . -
It is also the same for the model of SubnetwgrkThe interactions between subnetworks
need to be guaranteed by extra interaction constrains. riteeaction constraints between
subnetworks cannot be added explicitly to the control potd of the subnetworks, but
they can be adjusted and guaranteed by the upper-levelinatyd[99]. The interaction
constraints satisfy amteraction balance conditignwhich makes sure that the vector of
the input traffic flows running from subnetworknto subnetworkj, z; j(ks), equals to the
vector of the output traffic flows running out of subnetwordnd then into subnetwork
yi,j (ks); and vice versa. The interaction constraints can be fortedlas

zj(ks) =i j(ks) foralli € s and for allj € (3.14)

just as Figl 3.6 illustrated. These interaction constsagntarantee that the traffic flows run-
ning out of subnetworkequals the traffic flows getting into subnetwqréit each simulation
step during the whole prediction horizon.

Coordination algorithms are needed for the subnetworkrotiats to guarantee the in-
teraction balance condition. However, due to the finite beation of the convergence pro-
cess of the coordination algorithms, the interaction caiss can be only approximately
satisfied. We will come back to this in Section 3.3. Howevaeppmosed all the interaction
constraints among subnetworks are satisfied, and

min Ji = J (A (ks), o (ke)) (3.15)
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for all subnetworks, then in view of (3.11) the objectivedtion of the whole traffic network
converges as

min J = z minJ; = ZJ, (ks),d (Ke)), (3.16)

i€s i€s

and the optimal green times for the overall network become

g (ke) = [07" (ke) 03" (ke) -+ 02T (ke)] T (3.17)

wheres ={1,2,---,s}.

3.3 Two coordination algorithms

In order to make sure that the interaction balance conditaanong subnetworks are sat-
isfied, the traffic subnetwork controllers need to commumri@nd coordinate with each
other, and make an agreement. Algorithms for coordinatiegstibnetworks are necessary.
The coordination algorithms under a distributed contrnictire can make a trade-off be-
tween the computational complexity of the controller angl dlrerall control performance
of the whole network. Of course, the coordination among stikarks also introduces ex-
tra computations, but the computation effort for coordimgathe subnetworks can be much
less than the computational complexity of a centralized M&Ghe entire traffic network,
which in practice tends to increase exponentially with egian of the network scale.

The dual optimization method (or the augmented Lagrangietinod) [10, 20, 24] is a
promising way to solve the coordination problem of subnekso First, we consider the
overall optimization problem of the network that can be esged as

min J = Jg(A(Ks)
g(kc) e( o kc))

st. f( ,9(ke),d(Ks));
( ( )=
Omin < g(kc) S Omax, (3.18)

with additional output functions for subnetworks, as

Yij (ks) = fiﬁout(ﬁi(ks),gi(kc),ai(ks)), forallies,jea;, (3.19)

where the set( contains the indices of all the neighbor subnetworks of stisorki.

Then, by introducing in Lagrangian multiplier variakbe all the interaction constraints
(zj,i(ks) =yij,i(ks)) can be considered, the Lagrangian equation of the oveptthzation
problem with a relaxed interaction constraint term can bi&evr as

L=J(Ake).glke)) + T T (ko) (Zji(ke) — Vii(ke) - (320)

€S jea
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The optimization problem can be then written into its dualrajzation problem as

mex(mnt )
st. fi(ks) =f(n(ks),g(ke), d(Ks));
®(g(ke)) =0;
Omin < 9(ke) < Omax
yij(ks) = fiyout(ﬁi(ks),gi(kc)ﬂi(ks)) forallies,jea;. (3.22)

By introducing in the Lagrangian multipliers, the inteliaotconstraints are relaxed, and the
overall dual problem is divisible into separate sub-protsef the Lagrangian multipliers
are fixed. The Lagrangian multipliers are the interactioarafors, which will help to co-
ordinate the subnetworks, i.e. the subnetwork controligiide punished if the interaction
constraints are violated. Once the interaction operatadi®ed, the Lagrangian term of
(3.20) can be decomposed as
L= z Li, (3.22)
les
where
Li = Jo;i (fi(ks), Gi (ke)) + > w2 (Ks) — > W Yi j(Ks). (3.23)
JEAG JEAG

Therefore, the overall optimization problem pf (3.21) candolved on two levels: on the
lower level, subnetwork optimization problems can be stlvelependently with respect
to only local variables when the interaction operators awedfi while on the upper level, a
global optimization problem will be solved to coordinate thteraction balance among sub-
networks by adjusting the interaction operators. On theufgvel, coordination algorithms
are needed to make sure the interaction balance constrainty; ;, can be satisfied or ap-
proximated, even though the subnetwork optimization gnotsl are solved separately. The
lower and upper level optimization problems will be adjdstad then solved iteratively,
until the interaction balance constraints are satisfiedherfinite termination condition is
satisfied.

Within this multi-level control structure, there are twoportant approaches [95] to
coordinate the subnetworks so as to approximate the initenatalance conditions:

¢ Interaction balance principle
e Interaction prediction principle

In the next subsections, these methods will be explainedire etail.

3.3.1 Interaction balance principle

In the interaction balance principle, the interactions agheubnetworks are completely
disconnected, and the input interaction variat#gks) are considered as a new variable,
which will be optimized by each of the subnetwork contralleFherefore, the optimization
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problem of the lower level becomes

min  Li(fAj(Ks),gi(ke), zi (Ks), w(ks))

9i(ke),Zi (ks)
st fi(ks) = f(ni(Ks), Gi(Ke), di(Ks), Zji(Ks), Zjyi (Ks), - 5 Zj i (Ks));
®i(gi(ke)) = 0;
Gi,min < Gi(ke) < Gimax (3.24)
¥ij (ks) = fi.out(fi (Ks), Gi(Ke), di (ks))  forall j € A (3.25)

for subnetwork controller, wherez; (ks) is the vector of input interaction variables for all
the interactions with the neighbors of subnetwoffor AG = {j1, j2,---,n })

zi(ks) = [ i1, |(ks) j2, i(ks) - -jrn“i(ks)]Ta (3.26)

and vectorw(ks) contains the interaction operators of the whole networbrfstwork set
S = {1727 78})

wi (ks) = [0 (Ks) w3 i(ks) -~ o j (Ks)] "
w(ks) = [w] (Ks) W] (Ks) -+ (k)] T, (3.27)

which is obtained from the upper level coordinator, and issi@ered constant during the
local optimizations. On the lower level, such local optiatian problems are solved for
each subnetwork.

On the upper level, the interaction operators are revisedrding to the differences be-
tween the desired traffic flow inpat(ks) and the real traffic flow supply; (ks) from neigh-
boring subnetworks, so as to punish the subnetwork coetsalfl the interaction constraints
cannot be satisfied, or to award the subnetwork controllengiinteraction constraints are
satisfied. The output interaction vectg(ks) is defined corresponding to the input interac-
tion vectorz; (ks) as

Vilks) = V],.i(ke) Y i (ks) -y, i (Ks)] T (3.28)
The global optimization problem on the upper level becomes
max(@(eike)) = max(minL(fke).alko) ) 0lle) ). (329)
0(Ks) w(ks) \9(ke)

The lower level optimization and the upper level optimiaatiare calculated iteratively,
until the interaction balance constraints are satisfiedheffinite termination condition is
reached. In the signak,is defined as the counter for the iterations, for instamtiés) and
y¥(ks) are the input interaction variable and the output inteoactiariable at iteratiok.

Since variablesfi(ks),g(ke),z(ks), are already fixed on lower level subnetwork con-
trollers, the gradient direction of the objective functiminthe upper level optimization can
be calculated as

Y1
K(ks) — v (ks
ooty = | 9T | Zae, (3.30)

24(ke) — y¥(ke)
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Therefore, the interaction operataxks) can be updated for iteratiok+ 1 towards the
gradient direction as
W (ks) = W (Ks) + p¥e(ks), (3.31)

wherepX € Rt is a positive scalar that represents the search lengthhvdaic be a fixed
value for all the iterations, or can vary and be optimizeddach iteration. The iteration
will end, when the error disappears or becomes very smgllwhen the norm of the error
satisfies the conditiofie!(ks)|| < € for € > 0. The coordination structure of the interaction
balance principle is shown in Fig. 3.7.

Coordinator

W (ks) = ¥ (ks) + pie¥(ko)

Local MPC controller L Local MPC controller § Local MPC controller §
min  Lp min Ly min  Lg
91 (ke),z1(ks) O2(Ke),22(ks) 9s(ke) Zs(ks)
Subnetwork 1 Subnetwork 2 Subnetwork s

Figure 3.7: The coordination structure for the interactibalance principle

3.3.2 Interaction prediction principle

Different from the interaction balance principle, the naigtions among subnetworks are not
disconnected in interaction prediction principle, but esémated by the coordinator based
on the information from the neighboring subnetworks. Irtipafar, the input traffic flows

of subnetworki, i.e. zi(ks), is not considered as a variable that needs to be optimized by
the subnetwork controlldar but as a value that can be estimated based on the information
provided by the neighboring subnetworks. Therefore, thgropation problem of the lower
level becomes

5‘2&3 Li(fi (ks), 9i (ke), Zi(ks), w(ks))

s.t. ﬁi(ks) = f(ni (ks),gi (kc),a| (ks), Zjl,i(ks); ij,i(ks); cee ’Zjni .i(ks));
Pi(gi(ke)) =0;
Oi,min < i(ke) < Ji,max: (3.32)
yi,j(ks) = fi’out(ﬁi(ks),gi(kc),ai(ks)) for all j € A (3.33)
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where both the interaction operatorand the vector of the traffic flows going into subnet-
worki, z;, are all estimated by the supervisor (the upper level catjpand are transferred
to the lower level controller. When solving the lower levebratwork optimization prob-
lems,w andz; are both considered constant.

On the upper level, the estimated traffic flow input at itenat + 1, i.e.Z<1, can be
updated directly by the real traffic flow output from neighhgrsubnetworks at current
iterationk as

Z (k) = yK(ks) foralli € 5. (3.34)

In the same way as the interaction balance principle, tleedation operator can be updated
by
Wt (k) = wF(ko) + pie(ks), (3.35)

wherepX is also a positive scalar representing the update weighihwdan be selected in
a similar way as in the interaction balance principle. Thersrbetween the desired traffic
flow inputs and the real traffic flow supplies from neighborsubnetworks are calculated
as

Zi(ks) - yli(ks>
Z5(ks) — y5 (k)

<

(k) =

le((ks) - ylé(ks)

According to(3.34), the error can also be written as

Y& L(ke) — y¥(ke)

which means that the interaction operatois updated according to the differences between
the old output traffic flows/*~1 and the newly obtained input traffic flow&, so as to
penalize the subnetwork controllers if the new obtaineguttraffic flows differ a lot from
the output traffic flows from the previous iteration, or to ehd iteration if the absolute
difference between them is smaller than a given threshold.

The condition to end the coordination is the same as theaictien balance principle,
i.e.||€(ks)|| < € for € > 0. The coordination structure of the interaction preditgoinciple
is shown in Figl 3.B.

Both the interaction balance principle and interactiordpotton principle are coordina-
tion algorithms for distributed control structures. The&nde applied to coordinate MPC
controllers of urban traffic subnetworks. Here are some rksfar these two coordination
algorithms:

Remark 3.3 In both the interaction balance principle and the intecacprediction prin-
ciple, when the termination condition for the coordinatisrsatisfied, ifék = 0, then the
optimal solution is achieved for the overall urban traffidwerk; if € £ 0, then a sub-
optimal solution will be obtained for the overall urban fr@hetwork. O
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Coordinator

24 (ke) = y¥ (ke); 0L (ks) = 6 (Ks) + pFeX (ko)

Local MPC controller L Local MPC controller Local MPC controller g
min L min Ly min Lg
9i(ke) G2(ke) Os(ke)
Subnetwork 1 Subnetwork 2 Subnetwork s

Figure 3.8: The coordination structure for interaction plietion principle

Remark 3.4 The interaction balance principle endures more computatiburden com-
pared to the interaction prediction principle, since egeimization variablesz) are intro-
duced when completely disconnecting the interactions @nsobnetworks [95]. However,
in this context, the interaction balance principle alsmganore freedom for the subnetwork
optimizations. O

Remark 3.5 According to the coordination algorithms based on eitherititeraction bal-
ance principle or the interaction prediction principles thore interaction constraints among
the subnetworks, the more efforts are needed for coordimafiherefore, one principle of
decomposing the urban traffic network is to make sure the euitinteraction constraints
among subnetworks is as small as possible. O

3.4 Summary

A well-defined control structure is necessary for contnglla complex, large-scale, urban
traffic network, because of the existing layout structunerbin traffic networks, the dynam-
ics of the urban traffic systems, the multiple control ohjes, and the high computational
complexity. By defining urban traffic control systems undegafic control structures, the
above problems of a complex large-scale network can be sskelilanore concretely.

The control structure for a large-scale network can be riyugassified into four types:
centralized control structure, decentralized contraicitrre, distributed control structure,
and hierarchical control structure. The centralized adrtan achieve the best overall con-
trol performance of the whole network, but meanwhile ssffeom high computational
complexity (especially for the centralized MPC contrdllefhe decentralized control di-
vides the large urban traffic network into smaller subnekspand designs subnetwork
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controllers for each subnetwork in a disconnected way fitoarrést of the subnetwork con-
trollers. The computational complexity of subnetwork cohérs is reduced significantly
by dividing a large-scale network into smaller subnetwptst the overall control per-

formance of the whole network will inevitably deterioratéo keep the simplicity of the

subnetwork controllers and increase the overall contrdbp@mance of the whole network,
distributed control and hierarchical control are introgldic Distributed control increases
the overall control performance by sharing and exchangifaymation among subnetwork
controllers. In addition, hierarchical control improvée toverall control performance by
adding a coordinator or supervisor at a higher control léwvejuide the subnetwork con-
trollers to agree on a global solution. Distributed contmotl hierarchical control are able
to provide a trade-off between the centralized controltet the decentralized controller.
Therefore, a complex large-scale urban traffic network eabéiter controlled under dis-
tributed control structures or hierarchical control stanes [18, 39, 48, 70, 97].

After a large urban traffic network is divided into subnetksralgorithms are needed to
coordinate the subnetwork controllers so that the oveaaitrol performance of the original
traffic network will be achieved. Two possible coordinatiarinciples based on the dual
optimization method are discussed in this chapter. Extesaation operators are introduced
to guide the subnetwork MPC controllers to coordinate wébheother iteratively, and the
coordination will finish if all the input and the output traffilow interaction constraints are
satisfied within a pre-defined tolerance.

No matter which coordination scheme is selected for thdid¢ratibnetworks, an ad-
vanced subnetwork controller is the foremost object to hesicered, so as to achieve a
good overall network control performance. Model Pred&@®ontrol (MPC) is chosen to
be the control strategy for the subnetworks, because it maride enough communication
information, including not only the current traffic statbst also the predicted traffic states
in the future. However, due to the on-line computationadiearof MPC, the subnetwork
controller may become infeasible in practice. An efficienP® controller for the urban
traffic subnetworks is always necessary. Therefore, ingkeaf this thesis, we will inves-
tigate the efficiency and accuracy of urban traffic controtlels, and address the real-time
feasibility problem of the MPC controllers for urban trafficbnetworks.






Chapter 4

Macroscopic Spatiotemporal
Discrete Urban Traffic model

Traffic models that can predict future traffic states are #sisof model-based urban traffic
predictive controllers. In this chapter, we are going tcspre macroscopic spatiotemporal
discrete urban traffic control models, and to discuss abfmutdatures of the models with
respect to different spatial and temporal sampling intetva

4.1 Introduction

Traffic models can be mainly classified into three categdrésed on the modeling details:
microscopic models, macroscopic models, and mesoscopieisio Microscopic models
are detailed traffic models that describe the dynamics di eatividual vehicle, like car-
following models. In contrast, macroscopic models are nracigher models focusing only
on the dynamics of traffic flows, i.e. the average behaviorrotigs of vehicles instead of
individual vehicles. Mesoscopic models combine both treperties of the microscopic
models and the macroscopic models. A first-order macrosaopidel was proposed by
Lighthill and Whitham [79] to describe the dynamic of traffiouls, and it was extended
into second-order macroscopic models [107]. But, this rhade criticized for not being
able to reproduce enough descriptive accuracy for modétiagphenomena of real traffic
in [34]. In general, macroscopic models are approximatimfrisaffic dynamics, and they
ignore some details of individual vehicles and make a lotrapéifications, so macroscopic
traffic models are in general not as accurate as the modéisigiter level-of-detail. How-
ever, this statement does not always hold in practice. Oresotgasions, macroscopic
modeling approaches may provide better results than nrafdalproaches with a higher
level-of-detail [63]. In addition, macroscopic models opge way for efficiently running
the models using digital computers, and thus they are apipligraffic applications that are
characterized by high computational requirements.

For different traffic applications, we need to select su&ataffic models with proper
modeling accuracy and limited computation burden. Bothrosicopic models and macro-

1The content of this chapter was published in [80, 82, 87].
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scopic models offer various levels of modeling power. Usutie more detailed the traffic
dynamics is modeled, the more complex the model will be, Aecheavier computational
burden the model will have. Therefore, when selecting &i¢rafodel in practice, a criterion
needs be followed. The criterion [102] is that the model sthtwave sufficient descriptive
power to reproduce all important phenomena for the interaggadication, and at the same
time the execution speed of a simulation should be fast énéugthis particular applica-
tion. That is to say we need to find a trade-off between thergigs® accuracy of the model
and the computational complexity. This is the most impdrtaaue-off of the traffic models
that we are focusing on in the thesis. The degree of non#iiyesf the models is not really
relevant with the analytical complexity of the models.

In urban areas, the traffic flows are influenced a lot by thdid¢rafgnals. Therefore,
the store-and-forward model [52] was proposed to deschibstop-and-go traffic flow dy-
namics controlled by the traffic lights for urban roads. Tteresand-forward model, later
used for control by [40], is a simple model with a low compigta&l complexity, but it only
applies for saturated traffic, i.e. when the vehicle queasslting from the red phase can-
not be dissolved completely at the end of the following grpkase. The model proposed
by [8] and extended by [42] can describe vehicle queues amdirtie delay for vehicles
reaching the queues in a link, and is able to describe diffeseenarios. Cell Transmis-
sion Model [33] and Link Transmission Model [128] are bothdals based on kinematic
wave theory by Lighthill and Whitham [79], and Richards [L0Bhese two models are also
spatiotemporally discrete traffic models. The model preddsy [66] has a lower model-
ing power, but cannot describe scenarios other than satutadffic either. The model of
[58, 80, 81, 119, 120] is capable of simulating the evolutidriraffic dynamics (includ-
ing vehicle queues) in all traffic scenarios (unsaturatetlyrated, and over-saturated traffic
conditions) by updating the discrete-time model in smatidation steps. To reduce the
computational complexity of this model, [82, 83] proposedadel with a longer sampling
time interval based on the previous model, but has intamecycle times that can differ
from intersection to intersection. The model is much fattan the previous model, with
only a limited loss in modeling accuracy.

Actually, all the macroscopic urban traffic models mentibiaove are spatiotempo-
rally discrete models, which are spatially sampled intarsegments and temporally sam-
pled with a sampling time interval. For urban areas, the s@ad comparatively short and
divided by intersections with traffic lights, and thus anamtvoad is usually taken as a road
segment. The sampling time interval can vary for differebtan traffic models. A trade-off
also needs be made when selecting the sampling time infernvtde discrete urban traffic
model. Normally, a higher sampling frequency results in aevaccurate model, but also
gives rise to more computations because of having to uptatenbdel more frequently.
When the sampling time interval becomes too large, the diser@del cannot represent
the continuous traffic flow behavior anymore. Therefore, ddliteonal criterion (Courant-
Friedrichs-Lewy condition for urban traffic models) needsbe satisfied when sampling
urban traffic models into spatiotemporally discrete madstsas to keep the descriptive
ability of these models.

In this chapter, a spatiotemporally discrete urban trafficiet with a variable sampling
time interval is proposed for model-based predictive aantrhich allows to balance mod-
eling accuracy and computational complexity. The discoeban traffic model is derived
by sampling the first-order continuous traffic flow model st and temporally. A CFL
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Figure 4.1: A link connecting two traffic-signal-contralléntersections

condition is deduced for the spatiotemporally discreteanrbraffic model to make sure

the descriptive ability of the model can be still guaranteEgperiments are designed and
evaluated to verify whether the models have sufficient detez power to reproduce the

important phenomena for traffic control, and whether thepatation speeds of models are
fast.

4.2 Notations

In order to describe the model, we defihas the set of nodes (intersections), anaks the
set of links (roads) in the urban traffic network. Lifkk d) is marked by its upstream node
u (u e J) and downstream node (d € J). The sets of the upstream nodes of input links
and downstream nodes of output links for liakd) arel, g € J andO, 4 C J (e.g., for the
situation of Figl 4.1 we havig g = {i1,i2,iz} andOy g4 = {01,02,03}).

The variable notations (see also Fig. 4.1) used in the madelksted as follows:

General symbols

lud : set of upstream nodes of input links of lik, d),

Oud : set of downstream nodes of output links of lifik d),

Te : control time interval,

Cy . cycle time for Intersection,

Cd : cycle time for Intersectiod,

vﬂ%e (km/h) : free-flow vehicle speed in linfu, d),

Cu.d (veh) : capacity of linku,d) expressed in number of vehicles,

Nfane : number of lanes in linKu,d),

Ac'u.,d (s) : offset between node and noded, which represents the offset time

between the cycles of the upstream and the downstreamentinss
at the beginning of every control time step,
lven (M) : average vehicle length.
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Spatiotemporally

Ta
kg
Nud(kd) (veh)
Qud(ka) (veh)

Sud(ka) (veh)

a3 (ka)
(vehrh)
adq (ka)
(veh/h)

Gﬁ?jter(kd)
(veh/h)
Bu,d,o(kd )

Hu,d.0 (veh/h)
Yud.o(Kd) (S)

discrete model symbols

: simulation time interval for Intersectiash
: simulation step counter for Intersectidn
: number of vehicles in linku, d) at stepky,
: queue length (expressed as the number of vehiclestgplky in link

(u,d), qud,o is the queue length of the sub-stream turning to (ithjo),

: available storage space of lifik d) at stepky expressed in number of

vehicles,

. average flow rate leaving linfu, d) at stepky, a!®3¢(ky) is the leaving

u,d,o
average flow rate of the sub-stream going towards (thlo),

: average flow rate arriving at the tail of the queue in ljnkd) at step

Ky, uﬁf&‘fg(kd) is the arriving average flow rate of the sub-stream going

towards link(d, o),

: average flow rate entering lirfk, d) at stepkyq,

: fraction of the traffic in link(u,d) anticipating to turn to linkd,0) at

stepky,

: saturation flow rate leaving lir{k, d) turning to link (d, 0),
: green time length during time intenfldy Ty, (kg + 1) Ty] for the traffic

stream towards linkd, o) in link (u,d).

BLX model symbols

Ts
k
Nud(K) (veh)
Au.d(k) (veh)

%gt’g(k) (veh) :
mi5¥ (k) (veh)
mER*(k) (veh)
Sud(k) (veh)
Bu,d,o(k)

Hud o (veh/h)
bu,d.0(K) (S)

: simulation time interval for BLX model,

: simulation step counter for the BLX model,

: number of vehicles in linku,d) at stepk,

: queue length (expressed as the number of vehicleggpk in link

(u,d), qud,0 is the queue length of the sub-stream turning to (o),
number of vehicles leaving lirki, d) and turning to link(d, 0) at time
interval [KTs, (K+ 1) T/,

: number of vehicles arrivingt the (tail of the) queué link (u,d) at

time intervallkTs, (k+ 1)Tg], f{,‘}g(k) is the number of arriving cars in
the sub-stream going towards i, o),
number of vehicles entering lifls, d) at time intervalkTs, (k+ 1) T,

: available storage space of lifik d) at stepk expressed in number of

vehicles,

: fraction of the traffic in link(u,d) anticipating to turn to linkd,0) at

stepk,

: saturation flow rate leaving lirfki, d) turning to link(d, 0),
: green time length during time intervidTs, (k+ 1)T] for the traffic

stream towards linkd, o) in link (u,d), which can be considered as a
boolean value indicating whether the traffic signal at isgetiond for
the traffic stream in linKu, d) turning to link(d, o) is green (1) or red
0)if Ts=1s.
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S model symbols

Cd : simulation time interval for Intersecticsh

Kq : simulation step counter for Intersectidn

Nud(kd) (veh) : number of vehicles in linku, d) at stepky,

Jud(kdq) (veh) : queue length (expressed as the number of vehiclesgplky in link
(u,d), dud,o is the queue length of the sub-stream turning to (o),

aleave(ky) : average flow rate leaving linfu, d) at stepky, O‘Eg\,/c?(kd) is the leaving

(vehrh) average flow rate of the sub-stream going towards (),

oy (ka) : average flow rate arriving at the tail of the queue in ljnkd) at step

(veh/h) ka, 0¥ (ka) is the arriving average flow rate of the sub-stream going
towards link(d, 0),

afjf‘dter(kd) : average flow rate entering linfa, d) at stepkg,

(veh/h)

Bu.d,o(kd) : fraction of the traffic in link(u,d) anticipating to turn to linkd, 0) at
stepky,

Hudo (veh/h) : saturation flow rate leaving lir{k, d) turning to link (d, 0),
Oudo(kd) (s)  : green time length during time intervlthcy, (kg + 1)cq] for the traffic
stream towards linkd, o) in link (u,d).

4.3 Discrete-time delay

In this chapter, the urban traffic models are discrete-timodets with a time delay, during
which a vehicle travels from the beginning of the road untiéaches the queues waiting in
the road. In[2], a method is presented to sample a contintimgssystem with a time delay
into a discrete-time system. Given this method, the disetiate delay, which the vehicles
take to reach the end of the queues in a link, will be obtainket a linear continuous
time-invariant system with time delayc R* be described By

X(t) =AX(t)+BUO(t—y) . (4.1)
Let us now sample this system using a sampling pefiobefine
T
o= roor{?} , y=rem{1,T}, (4.2)

where floofx} refers to the largest integer smaller than or equa, ®nd renfx,y} is the
remainder of the division of by y. Sodis an integer, and the time delagan be expressed
as

1=0-T+y 0<y<T. (4.3)

If the input of the systerrf((t)) is assumed to be piece-wise constant during each sampling
time interval, the sampled discrete-time system will be

X(k+1) = dX(k) +ToU(k—08)+T1U(k—0—-1) , (4.4)

2 represents a continuous variable.
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where
T-y
o= / eASdsB (4.5)
0
Y
M= AT / eASdsB . (4.6)
0

Thus, the vehicles that enter into a link normally will runtviree-flow speed for a
certain time, and finally join the tail of the queues. Thisdiperiod is a time delay that is
needed before the vehicles join the queues waiting at theliste of the link. Then, the
gueue length in a link is updated by the number of vehicleangghe link and the number
of delayed vehicles entering the link. The differential @pn describing the evolution of
the queue length can be therefore written as

Gud.olt) = Bud.o(DEEHE(t— 1) — GEAS(H)., (4.7)

i.e. the changing rate of the queue Iengimc(o(t)) is equal to the difference between the
input flow rate (delayed by and then divided by multiplying the current turning rateylan
the output flow rate. In (4.7), the traffic flow turning raf, §o(t)), and the traffic flow
rate entering or leaving the quetﬁfge'(t) andd'jg‘,’g(t)), are all piece-wise constant during
the sampling time intervals. The traffic flow turning ratelvaié influenced by the traffic
flows and traffic signals the drivers experienced upstrebmiraffic signals in front, and
the origin-destination of the drivers. Then, accordinghe addition principle of linear

equations, (4.7) can be divided into two equations, as

(a.olt) = —Gsa(t) (4.8)

dﬁ,d,o(w = Bu,d,o(t)dﬁﬁer(t - T)7 (4-9)
such that

Gud.ot) = Gia.o(t) +Gaolt) - (4.10)

To sample differential equation (4.8) without a time delapia discrete equation, we define
A =0 andB = —1, then according to (4.4), (4.5), and (4.6), we have

QoK+ 1) = Dl 4 o(K) + Taga (k) (4.11)
where
o=eT=1
= " AR = T (4.12)

Similarly, we can sample differential equation (4.9) withime delayt into a discrete
equation. Since, in Section 4.4 the time detayill vary slowly with timet, then according
to (4.2) and (4.8) we can approximately have

o(k) = ﬂoor{ T(Tk)} , y(k) =rem{t(k), T}, (4.13)
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and
(k) =8(K) - T+yk) 0<yk <T . (4.14)

Next, we defined; = 0 andB; = 1, and then according to (4.4), (4.5), and (4.6),(4.9) tesul
in

Grdo(K+1) =Pcq g o(K) +Bud.o(K) (Moo (k— 8(K))
+r1agg(k—a(k) - 1)), (4.15)

where
o, = =1
T—y(k)
o= / e %dsB; — T — y(K)
0
vy M s
M=tV / e'SdsB; = y(k) (4.16)
0
Therefore, by adding (4.11) and (4.15) together, we derive

Qudo(K+1) = Guao(k) — Talae(k)
+Budo(K) (T — y(k)) o€k — 5(K))
+y(k)orﬁf‘d‘er(k—6(k) — 1)), (4.17)

-

and the arriving average traffic flow at the tail of the queues

@ (k) = ! _Ty(k) aghi®(k—3(k)) + @aﬁj@}ezk— 3(k)—1). (4.18)

4.4 Spatiotemporally discrete urban traffic model

In this section, we will derive a spatiotemporally discretban traffic model with a variant
sampling time interval.

4.4.1 Traffic dynamics on a link

Suppose the sampling time interval for intersectiba J and all the links that connect to
intersectiond is Ty andky is the corresponding time step counter. Due to the physical
structure of urban networks, the original urban roads aexdy taken as spatially sampled
link segments. For the sake of simplicity, only controllatersections are considered, but
it can also extended to un-controlled intersections.

Assumption 4.1 The cycle time of intersection(§ J) can be defined as
Cj = MjTj, (4.19)

where M and T; are integers, an@ < T; < ¢j. Sampling time intervals and cycle times can
be different for intersections.
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Assumption 4.2 We assume parallel turning lanes exist in the traffic modék Vehicles
getting into a link will run on the link freely without turngnseparations, until they reach
the tail of the waiting vehicle queues. Once they reach thetahe queues, they will be
divided to join the queues of the turning direction theymatéo go.

Therefore, a spatiotemporally discrete urban traffic modalbe derived as follows:
The number of the vehicles in linki, d) is updated by the input and output average flow
rate over sampling time interva at every time stepy by

nua(ks +1) = nua(ka) + (aS5%(ka) - oS3"ke) ) - Ta | (4.20)
and consequently we can update the storage capacity as

Sud(Kd) = Cud —Nud(ka). (4.21)

The leaving average flow rate is the sum of the leaving flowsratming to each output
link:
aga(k) = 2 agaelke) - (4.22)
00y d

The leaving average flow rate ovEy is determined by:

aygio(ka) = min (uu,d,o “Gud.o(kd)/Ta, (4.23)
Quao(ke)/Ta+ado(ka).

Hudo Cdo— nd,o(kd) )
Z Hu d,0 Tq ’

Uelgo

wherepy q o is the saturation flow rate that can leave liftkd) turning to link (d,0) de-
pending on the physical structure of ligl, d). The leaving flow rate is the minimum value
of three flow rate values, average saturated flow rate, asenagpturated flow rate, and av-
erage over-saturated flow rate, which are given respegtinethe three formulas in (4.23).
The first term calculates the average saturated flow rateghadigpends on the saturation
flow ratepy g0 and green time duration; the second term calculates thageemsaturated
flow rate based on the vehicles waiting in and arriving theugsethe third term calculates
the average over-saturated flow rate depending on the piropalrstorage capacity of the
downstream link. In some cases, there exists an inconsistestween the downstream
storage capacity and the traffic flow demands of upstrears, linlt this inconsistency can
be checked and solved according to the approaches givefliafi [58, Chapter 8].

The number of vehicles waiting in the queue turning to l{dko) is updated as

qu,d,o(kd+1) = QU,d,o(kd>+
(o (o) — alsiis(ia) ) T (4.24)

Here we made an assumption that the vehicles getting intokadld not separate for
their turning directions. They run on the link freely untiety reach the tail of the waiting
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vehicle queues. Then they will join the queues of the turmingction they intend to go.
Thus, the number of waiting vehicles in lirile,d) is

Qud(ka) = Qud.o(Ka) - (4.25)

0€0yq
The flow rate entering linku, d) will arrive at the end of the queues after a time delay

(Cu,d - CIu,d(kd)) “lven
NL?Qe, VH%e' Ty )

T(kg) = (4.26)

then with8(kq) andy(ky) derived from formulas (4.2) and (4.3), according/to (4.1 t
delayed flow rate arriving at the end of queues is
. Ty —
i) = N agek sk +

yka)

=0 (ke —B(ka) — 1) (4.27)
d

Before reaching the tail of the waiting queues in liakd), the flow rate of arriving
vehicles need be divided by multiplying it with the turnireges:

o (ka) = Budo(ka) - alf(ka)- (4.28)
The flow rate entering linku, d) is made up from the flow rates from all the input links:
agfi®l(ky) = Z of%24(kg ). (4.29)
ie ud

If cg # cy, thencx}ﬁi‘ée(kd) cannot be directly obtained from upstream links. Thus, kymc

nization between the intersections need to be further addoe

4.4.2 Synchronization between two intersections

In (4.29), the flow rate entering lintu,d) is provided by the combination of the flow rates
leaving the upstream links. Recall that we may have diffesampling time intervals be-
tween upstream and downstream intersectidpsATq). Thus, the simulation time steps
may be not equal to each other. Therefore, in order to synitedhe traffic flows in the
links connecting to the upper and the downstream inteiwestit is necessary to synchro-
nize the leaving and entering flow rates. First of all, a leastmon multiple time interval
has to be defined as
Tiem = Nj - Cj forall j €J, (4.30)

with Nj an integer, as Fig. 4.2(a) shows.

Then, in each time intervdic,, we will recast the flow rates expressed in the timing
of intersectionu into the timing of intersectionl. As illustrated in Fig; 4.2(b), first, we
transform the discrete time leaving flow rates from the wastr links into continues time
using the zero-order hold strategy, as

) = oS (ky), ko Tu<t< (ku+1)- T, (4.31)
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Figure 4.2: Synchronization of upstream and downstreaersatctions

and then sample them again to obtain the average flow rateseérstepky so as to be able
used by the downstream link

1 (kg+1)Tg+Acyg
oSl = | BB ot (4.32)

Ta Jkg Ty+cyg

whereAcy 4 represents the offset time between the cycle times of th&agm and the
downstream intersections at the beginning of a control tep. Then, the flow rate enter-
ing link (u,d) can be computed by

agy(ka) :_Z afig(ka). (4.33)
IS ud

Remark 4.1 The BLX model [80, 82] and the S model [82] proposed in presimsearch
work can be qualitatively considered as special cases®patiotemporally discrete urban
traffic model. But, they have different sampling time ineds/(BLX: T; = 1 s, S:Tj = ¢;j).

In addition, the BLX model is updated by the input and outpunber of vehicles, while
the S model is updated by the input and output average flow.r&mce the relationship
between the average flow rate and the number of vehiclesmytarleaving a link is

Oya(ka) =My q(ka)/Ta, (4.34)

wherem, 4(kq) represents the number of vehicles leaving or arriving linkl) at time step
kg, while o, 4(ka) represents the corresponding average traffic flow rate gldiis time
interval. Therefore, it is equivalent to update the diserabdel with the vehicles entering
or leaving a link in term of either the number of vehicles ar #verage flow rates. O

4.5 CFL condition for urban traffic models

The Courant-Friedrichs-Lewy condition (CFL condition)L]3s a necessary condition for
convergence while solving certain partial differentialiations (PDESs) (usually hyperbolic
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PDEs) numerically. In general, it is not a sufficient coratitfor convergence. The CFL
condition for one dimensional case can be expressed as

UAt
A <C, (4.35)
whereu is the velocity of flow dynamicd)t is the time step sizé)x is the spatial step size,
andC is a constant scale parameter. Equation (4.35) makes satrththtime step must be
less than a certain value, otherwise the simulation wiltlpiee wildly incorrect results.

We will derive the CFL condition for spatiotemporally diste urban traffic models as
follows:

The maximum number of vehicles that can leave ljnkd) € L with a saturation flow
rate (also called as link-intersection capacity) shouldexceed the number of vehicles on
this link, that is

HudTa < nyd(ka) < Cugd, (4.36)

where the number of vehicles on liril, d) is bounded by its storage capadilyy, and the
link-intersection capacity, 4 is the sum of the saturation flow rates that leave linld)
turning into different directions:

Hud = Hu,d,o0- (4.37)

00y d

Then, by dividing the number of vehicles on lil, d) into two parts, the number of vehi-
cles in the queusy,4(kq)) and the number of vehicles running freely on the lifikq(kq)),
as Fig! 4.3 shows, we have

Ty < Mud(ke) _ Gualka) + fualke) (4.38)

|
N

Figure 4.3: lllustration for the free-speed flow and the gegu

Uy

< (k) e 19U y) ]

Uz

According to traffic theory, if we define(ﬂfae as the traffic flow rate for the vehicles
freely running on link(u,d) before joining the tail of the vehicle queues, then the taffi
flow running with free-flow speed on the link always has a lofl@w rate than the link-
intersection capacity, i.@tﬁ%e(kd) < Hud, and the traffic flow rate for the vehicles moving

5
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in queues is also lower than the link-intersection capacieyay (ks) < pua. Hence,
(4.38) can be further written into

QUd(kd) + fu,d(kd)
g ka) - affe(ky)
_pqueu'ad )|q’léeue(kd) pfreﬂj.d(kd”f':%e(kd)
) ale(k)
g k) '”fée(kd)
queue(kd V[L%e 9

Tg <

(4.39)

wherep ¢ (k) and plf%*(ky) are the density of the queue and the density of the free-

running traffic flow on Imk(u,d) at time stepkq respectively. Furthermore, because the

Iength of link (u,d) equals to the sum of the queue length and the free-runnikddirgth,
e.lng Ka) +1T%R(ka) = Ly, andvily Tka) < VIS, we have

|QUeue(kd |free(kd) - |—u q

QUeue(kd VLr%e Vglgeue(kd) .

(4.40)

Since the average speed of the vehicles waiting in queuesuisded as 6 Vg (kd) <

viee then (4.40) can be further written as

queu free
g Tha) | 105°(ka) min(lus ) _ Lud.
Vi

<
queu > queu
e(l( Vfr7ee e(l(

Hence, we derive a sufficient condition for the sampling tinterval Ty of the model, as

(4.41)

Lud

free’
Vu d

Tg <

(4.42)

which is exactly a CFL condition. The condition can be intetpd intuitively as requiring
that the d|stance"%er traveled by a traffic flow in one time step should not exceed one
spatial stepAx, or equwalently that the numerical traffic flow speagy /Ty should be at
least as fast as the physical traffic flow speﬁf. In practice, a CFL condition can be used
as a criterion for selecting proper sampling time interfaighe spatiotemporally discrete
traffic models.

However, for urban intersections, the sampling time irdkrof intersectior not only
depend on the linKu,d), but also on the rest of the links connecting to this intdisac
We defineUy C J is the set of the possible upstream intersections of intésed < J.
Therefore, to guarantee that the spatiotemporally disardian traffic model can correctly
represent the urban traffic dynamics, the simulation timerual Ty (i.e. sampling time
interval) needs to satisfy condition:

Ly d
Ty < Ur/r;g] (vfree> . (4.43)

u.d
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4.6 BLX model and S model

In this section we present the original model of M. van dergBaral. [119] and S. Lin et

al. [80] (indicated as the BLX model) as well as a new simpdifieodel [82] (called the S

model). According to Remark 4.1, the BLX model and the S mbd#h can be qualitatively

considered as special cases of the spatiotemporally thaeriean traffic model described in
previous sections.

4.6.1 BLX model

In the BLX model a queue is modeled as follows. For the sakengflgcity, the assumption
is made that at an intersection the cars going to the sammalsh move into the correct
lane, so that they do not block the traffic flows going to othestihations. For each lane
(or destination), a separate queue is constructed (withejlengths denoted hy). Fur-
thermore, the simulation time stdpis typically set to 1s and cars arriving at the end of a
queue in simulation periofkTs, (k+ 1)Ts) are allowed to cross the intersection in that same
period (provided that they have green, that there is enopgbesin the destination link, and
that there are no other restrictions).

Consider link(u,d) (see Figl 4.1). For eaohe O, g the number of cars leaving link
(u,d) for destinatioro in the periodKkTs, (k+ 1)Ts) is given by

Tao(K) =
0 if byd.o(k) =0
max(0,
MiN(Hud.oTs, Su.0(K),
Qu,d,o(K) + f{,i}g(k))) if bygo(k) =1.
The traffic arriving at the tail of the queue in lirfla, d) is given by the traffic entering
the link via the upstream intersection delayed by the tofle - Ts + y(k) needed to drive

from the upstream intersection to the end of the queue initike fo this extenmﬁrg" is
updated as follows:

(4.44)

eV (k) = TS_TV(k)'HZ eave i 1(k)) +
S i,u)€lyg

. > mEc -, (4.45)
(iuelu,d

Ts
where

(k) = ﬂoor{ Sud(K) - Iven } ,

NEe- Vi Ts
y(k) = rem{Su,d(k) -Iven, N2He- Ve, TS} . (4.46)
The fraction of the arriving traffic in linKu, d) turning too € Oy 4 is

™ (K) = Bud,o(k) - MET(K) . (4.47)
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The new queue lengths are given by the old queue lengthst@westiving traffic minus the
leaving traffic

Audo(K+1) = dua.o(k) +mEH5(K) — mE3s(k) (4.48)
for eacho € O 4, and
Qua(k) = Qud.o(K) - (4.49)

0€0y q

The new available storage stage depends on the number dhaaenter and leave the link
in the periodkTs, (k+1)Ts):

Su,d(k+1)=31,d(k)—z i%e(kﬂg Tao(K) - (4.50)

i 00y g

This BLX model is derived by extending the model of M. van degrd@et al. [119].
The difference between the BLX model and M. van den Berg'sehisdequation (4.45). In
(4.45), the tail of the waiting queues in a link is fixed, and ttumber of arriving vehicles
joining the queues is calculated by the number of vehiclésred the link a certain time
delay before (i.e. historical data). On the contrary, in linden Berg’s thesis, the calcu-
lation is made based on the time when vehicles enter the dind,predict the number of
vehicles join the queue in future. Better results were oletiby the BLX model compared
with M. van den Berg’s model (see [80]).

However, we found that there is a problem with the BLX modal tih consumes too
much computation time, even though as a macroscopic mddeales the MPC controller
based on BLX model impossible to be used in practice. Thesgfee come up with the idea
to find a more simple and fast model, which results in the S mddee S model has a larger
sampling time interval, and updates by the average trafficfides over the time interval. It
also allows different cycle times for intersections. Thenpaiting time was largely reduced
by the S model compared with the BLX model. Therefore, it nsatkee MPC controllers
possible to be implemented in urban traffic networks.

4.6.2 Simplified model (S model)

In the simplified model, every intersection takes the cyioeetas its simulation time inter-
val. The cycle times for intersectianandd, which are denoted by, andcq respectively,
can be different from each other, as Fig. 4.2(a) illustratdsreover, the S model works
with (average) flow rates rather than with number of cars &scdbing flows leaving or
entering links.
Taking the cycle timecy as the length of the simulation time interval for lirfl, d)

andky as the corresponding time step counter, the number of thielgshin link (u,d) is
updated according to the input and output average flow raecg\at every time stegy by

Mg (ka -+ 1) = g (ka) + (0Eka) — aleSka) ) ca - (4.51)

The leaving average flow rate is the sum of the leaving flonsrateing to each output
link:
a3t = 3 addsika) . (4.52)

0€0yd
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which keeps positive in realitw{fg"e(kd) >0).
The leaving average flow rate ovey is determined by the capacity of the intersection,
the number of cars waiting and/or arriving, and the avadaplace in the downstream link:
i) = min (Mugo- Guao(ka) /Ca, (453)
Gu.d.o(Ka)/Ca+aggo(Ka),

Bu,d,o(cd,o — nd,o(kd))/cd> .
The number of vehicles waiting in the queue turning is updated as

Qudo(ka+1) = dudo(ka)+
(adhh (k) — clSielia) ) -ca - (4.54)

Then, the number of waiting vehicles in lirile, d) is

Oud(ka) = Oudo(ka) - (4.55)

0c0yd

The flow rate entered linku,d) will arrive at the tail of the queues after a time delay
T(kg) - Ca +Y(ka), i.€.,
afita) = SN o -tk +
V) gemeriey — t(k) — 1), (4.56)

Cd

_ (Cu,d - QU,d(kd)) “lven
T(ka) —floor{ NI }7
y(ka) = fem{(Cu,d —Qua(ka)) - Iven NZGS- VISP cd} : (4.57)

Before reaching the tail of the waiting queues in liakd), the flow rate of arriving
vehicles need be divided by multiplying the turning rates:

aﬁ,rcrji}é:(kd) = Budo(kd) aﬁf&iv(kd) (4.58)
The flow rate entering linku,d) is made up from the flow rates from all the input links:
afi(ka) = > a5 ka)- (4.59)
e ud

In this formula, we see that the flow rate entering ljinkd) is provided by the combi-
nation of the flow rates leaving the upstream links. Recall te have different cycle times
between the upstream and downstream intersections, santiiéaton time steps are not
the same. Some operations need to be carried out to synzartha leaving and entering
flow rates.
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Thus,Ticm is defined as the least common multiple of all the intersaatiale times in
the traffic network. As Fig. 4.2(a) shows, we have

with Nj an integer, and equatio¥, - ¢, = Ny - ¢4 can be satisfied.

In order to control the urban traffic network, a common cdrttroe interval need to be
specified for the network model, so that intersections camgonicate with each other and
be synchronous.

Te=N-Ticm (4.61)

with N an integer.

Now we show how the flow rates expressed in the timing of ietgisnu can be recast
into the timing of intersectiod. First, we smooth the leaving flow rates from the upstream
links as

afReo(t) = altky), k- Cu <t < (kit1)-cu, (4.62)

and then sample them again to obtain the average flow rateménstepky so as to be
able used by the downstream link, as Fig. 4.2(b) shows:

1 r(ka+1)-Ca+Acyd
affk =g [ e (4.63)
) u,

Then, [(4.59) can be computed instead as follows:

ﬁﬁngamm> (4.64)
1€lud

4.7 Model assessment

In this section, we will evaluate the effectiveness of tlpatotemporally discrete urban
traffic model, and analyze its sensitivity from a controlmiaf view. Experiments are de-
signed to demonstrate how the Total Time Spent (TTS, fretfjuselected as traffic control
performance criterion) will change by varying green timedths of traffic signals. The
evaluated urban road network is shown in Fig. 4.4. It is a Brapban road network with 3
intersections, and 8 origins. The origins, marked ag’;@re the origin nodes where traf-
fic flows enter the network. The evaluation performance moiteis the Total Time Spent
(TTS), which is the accumulated time spent by all the vekiahea region of the road net-
work for the entire simulation time. If the region is the eatioad network, then it is the
TTS of the network; If the region is only a link, then it is th&$ of that particular link.

As Fig.|4.4 shows, the length of the roads in the network aterd@nd 900 m, and all
the links have 3 lanes. The vehicle anticipating turningsftare constant, i.e. 0.33 for left
turn, through turn, and right turn respectively. The sdtareflow ratesy are 1800 veh/h,
1600 veh/h, and 1500 veh/h respectively for turning througf, and right in each link.
The average vehicle lengtiy, is set to 7 m, and the free-flow spea{f%e is 50 km/h. Then
the storage capaciti€® are 193 veh for link (1,2) and link (2,1), and 386 veh for thstre
of the links in the network. Fixed-time control is executed éach intersection, where the
phases, the cycle times, and the green time lengths areraitastt during each simulation.
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Figure 4.4: Layout of an urban road network
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Figure 4.5: Intersection traffic signal phases

The phases and their order for all the intersections arengivé=ig.[4.5. The green time
lengths and cycle times are shown in Table 4.1. The sympo$tands for the green time
length of theith phase for intersection The offsets between intersections are specified
as 0. The network input flow rates of the subnetwork are se¢tedual to each other and
constant in time (2000 veh/h). The simulation time durai®80 min.

In order to evaluate how the evaluation performance (TT&hgks with the traffic sig-
nals, we allow the green time lengths of intersection 2 armlé&ange within a given time
region, 921,931 € {15,20,25,30,35,40,45,50,55,60,65,70,75}. The lower bound and
the upper bound for a green time duration is 15 s and 75 sgandndgs » change accord-
ingly with gz 1 andgs 1, due to the cycle time constraint of each intersection. Thegsed
spatiotemporally discrete traffic model is sampled by d#fe sampling time intervals (sim-
ulation time intervals), i.eT =1's, 30 s, and 90 s respectively. Then, for each set-up of the
traffic signals, all the sampled discrete traffic models arefor the same period of time

Table 4.1: Traffic signal fixed-time control setup

Intersection Phase 1(s) Phase?2(s) Cycletime (s)
1 45 45 90
2 O2.1 90—021 90
3 031 90—0s1 90
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Figure 4.6: TTS of the network in Fig. 4.4 for discrete modithwdifferent sampling time
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Figure 4.7: TTS of link (1,2) in Fig. 4.4 for discrete modellwiifferent sampling time
intervals

(30 min). According to the CFL condition for urban traffic nedslin Sectioh 4.5, the upper
bounds of the sampling time intervals for every intersecteT; max = T2,max= 32 s and
Tsmax= 64 s. Therefore, whef = T, = Tz = 30, the urban CFL conditions are satisfied
in all the three intersections, as 30T max = Tomax < Tamax wWhenTy = To = Tz = 90,
the urban CFL condition is violated. The comparison of thaults are shown in Fig. 4.6
and Fig. 4.7 for the TTS of the entire network and for the TTSrK (1,2), in which the
urban CFL condition is easier to be violated. If the boundeniys are full, extra vehicles
coming are stored, and are released if there is space deaillhese stored vehicles were
also counted when calculating the TTS.

From Fig/ 4.6 and Fig. 4.7, we can see that the spatiotenipaliatrete traffic model
can describe a more detailed variation of the TTS changinly thie green time lengths,
when the sampling time interval is small. For= 1s andT = 30s, the shapes of the
TTS curves are very similar to each other for both the entisvark and the single link
(1,2). Although the surface in Fig. 4.7(b) is not as smoothhassurface in Fig. 4.7(a),
the scales of the values shown in both figures are the samer&@lgrspeaking, the larger
the sampling time interval is, the faster the model will réror the discrete traffic models
with sampling time intervals as 1 s and 30 s, the time neededhtthe simulation are 5.6 s
and 0.4 s respectively. Consequently, the discrete modelfwi= 30 s is a better choice for
urban traffic network control, because it can guarantee stlthe same performance as the
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discrete model witAh = 1's, but requires less computing time.

For the discrete model with sampling time 90, the time nédédeun the simulation
is even less, 0.2s. But, the sampling time becomes too larges 40 violate the CFL
condition. Thus, the model fail to describe the correctation of the traffic phenomenon.
In Fig.|4.6(c), the values of the TTS become much higher thahdf the discrete models
with T = 1s andT = 30s. In Fig. 4.7(c), the TTS curve becomes very flat, whiclo&n
capture the variation of TTS values anymore. Thereforen ¢éleugh the discrete model
with T = 90s is very fast, but it does not have sufficient accuracy tadesl as a control
model. Consequently, in this case study, the spatiotertipaliacrete urban traffic model
with sampling timeT = 30 s is comparatively more suitable to be used as a predictoatel
for the urban traffic controllers, which gives a good tradfdsetween the modeling accuracy
and the computational complexity.

If we reduce the length of link (1,2) and link (2,1) from 450 n1t50 m, then the CFL
condition is even tighter for intersection 1 and 2, i.e. tipper bounds of the sampling
time interval for intersection 1 and 2 becoifigmax = T2, max= 10s. Thus, even though the
sampling time interval is selected @s= 30 s, the CFL condition is also violated. In such
condition, the comparisons of the TTS of the entire netwaidk @f the TTS of link (1,2) are
shown in Figl 4.8 and Fig. 4.9.
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Figure 4.8: TTS of the network for the spatiotemporally dite model with different sam-
pling time intervals when the length of link (1,2) equals 150

As Fig. 4.8 and Fig. 4.9 illustrate, similar conclusions dmnderived as above. In
addition, since the CFL condition is violated wh&n= 30 s, Fig. 4.9(b) also fails to follow
the trend of the curve in Fig. 4.9(a). As the CFL conditiongesgs, the shorter the network
links are, the higher the free-flow speed is, and the smatlamgling time interval is needed
to provide enough accuracy for the spatiotemporally disaneban traffic model.

When green times are set gs; = 45s andgs; = 45s, the evolution of the number
of vehicles in link (2,1) is shown in Fig. 4.10 for differerdrapling time intervals. As the
figure illustrates, for all situations, there exists spiltk on link (2,1), where the number
of vehicles in link (2,1) reaches its storage capacity, ailtiblock the departures from
upstream links. However, whéh= 90 s, the spillback cannot occur as fast as the spillback
illustrated on the curves whéin=1s andTl = 30s.

In urban networks, the turning movements depend on theidasisf individual drivers,
which are with large uncertainty. Actually, in the modelghuf thesis, the turning move-
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Figure 4.10: The evolution of the number of vehicles in B4

ments are related to the turning rates, which are paramfetettse models. Due to the high
complexity, the parameters are assumed to be constanifonadlels in this thesis. In fact,
these parameters should not be static, but will vary witletinm reality, these parameters
will change with time for different O-D allocations, diffemt route guidance information,
different effects of weather conditions, seasonal vanej events (like concerts or soccer
games), etc. Therefore, for future work, we are going to stigate time-varying urban
traffic control models that will adapt their parameters adtw to the dynamic traffic in-
formation of the network. This was also proposed as one aftb@mmendations for future
research in Chapter 8. We will also add uncertainty to futineulations on testing the
time-varying urban traffic models.

4.8 Summary

Traffic models that can predict future traffic states are tsdfor establishing model-based
traffic control strategies. Model-based control, espgchbdel Predictive Control (MPC),
requires fast models due to the use of on-line optimizafidverefore, a suitable prediction
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traffic model that is both accurate enough and fast enougteaded.

Consequently, macroscopic urban traffic models are selederediction models. In
this chapter, a macroscopic spatiotemporally discretarutbaffic model with a variable
sampling time interval is proposed for model-based prediatontrol. Applying varying
sampling time intervals allows to balance the modeling esmp and the computational
complexity of the discrete traffic models, and allows to skdor the best trade-off for
specific control requirements. A CFL condition is deduceadHe spatiotemporally discrete
urban traffic model to make sure the descriptive ability eftiodel can be still guaranteed
when the sampling time interval grows.

The criterion for selecting a model is that the model shoadehsufficient descriptive
power to reproduce all important phenomena for the interaggadication, and at the same
time the execution speed of a simulation should make the h@a¢able for use in the given
application. Therefore, experiments are designed toyeitifether the model has sufficient
descriptive power to reproduce the necessary phenometraffior control, and whether the
computation speed of the model is high enough. The expetimsnlts illustrate that the
higher the sampling frequency is, the more detailed theelisenodel will be, but also the
more computation time is needed. Hence, a trade-off can ble lmetween the computation
time and the accuracy by selecting a proper sampling tinesvat.

In the following chapters, model-based urban traffic cdigrs will be established and
tested for large-scale urban traffic networks based on ttdealescribed in this chapter.






Chapter 5

Subnetwork MPC Controllers

Due to the high concentration of population and economiwitiess, a lot of traffic conges-
tion arises in urban areas. Therefore, traffic managemetérsg are installed to improve
the performance of the existing urban transportation stftecture, and thus to alleviate
traffic congestion. Network-wide coordinated traffic magmagnt systems, which automat-
ically and in real time determine appropriate control siats based on the current and fu-
ture traffic conditions, provide an effective control apgb for improving the performance
of the transportation services in cities.

A complex large-scale urban traffic network is usually déddnto many small sub-
networks due to the reasons mentioned in Chapter 3. Theffie sabnetworks will be
controlled and coordinated under a well-defined contraicstire. No matter which coor-
dination scheme is used for the control structure, an asgghsabnetwork controller is the
foremost thing to be considered. In this chapter, a framkwsgiven to establish MPC
(Model Predictive Control) controllers for urban road setworks. Traffic models with
different modeling details, as discussed in Chdpter 4, doptad as prediction models for
the subnetwork MPC controllers. By selecting a proper mtézti model, the real-time
feasibility of the MPC controller can be improved a lot in giae!.

5.1 Introduction

Model-based control methods (including Model Predictiventol, MPC) use a predic-
tion model and optimization in order to find the best contretidions for the network.
There are already many model-based control strategiesopeeefor urban traffic. In the
1980s and 1990s, a number of model-based optimizationalaitategies based on sim-
ple traffic models emerged: OPAC [49], PRODYN [44], CRONOS3][land RHODES
[115]. The model used in these control approaches are maimlyle traffic flow forecasting
models based on the traffic data measured by upstream dstegfter that, model-based
control strategies (including MPC) were developed basethore detailed traffic models
[3,142, 121], and they obtained good control effects. Theitbet traffic models are able
to describe and predict the traffic flow dynamics in the futurbese model-based control

1The content of this chapter was published in [83].
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approaches all share a similar control framework, whichtaios model-based prediction,
on-line optimization, and rolling time horizon. The preibha model enables the controller
to look ahead into the future to avoid myopic decisions. Buotfftiple intersections and mul-
tiple control measures can be easily coordinated through aumodel-based optimization.
Moreover, by using the rolling horizon procedure, feedhiadktroduced, which makes the
controllers more robust to disturbances and model mismetteirs. All these advantages
make the model-based control methods very attractive. Memvéhe real-time feasibilify
is the most common practical issue encountered when impigngeMPC in practice.

When the number of controlled intersections gets largerptitgnization problems of
model-based control strategies (including MPC) becomedoaputationally complex to be
solved on-line. To improve the real-time feasibility, tleldwing methods can be consid-
ered. First, dividing the network into small subnetworks] auilding distributed controllers
[18, 39, 48, 70, 97]. Second, solving the optimization peabbff-line, such as optimizing
a feedback regulator off-line and using it with real-timeasared traffic states to derive
control decisions [3, 104]. Third, approximating the opgation problem by one that can
be solved more efficiently. Most of the previously mentiogedtrol strategies end up with
controlling the network in a distributed structure. In thlsapter, we mainly focus on the
third approach. In particular, we simplify the traffic pretitbn model to reduce the on-line
computation time. Given the initial traffic states, traffiendands, and future control deci-
sions, any model that can predict the future traffic stateb@furban traffic network, can
theoretically be used as a prediction model for MPC corgrslIBut, different models pro-
vide different levels of modeling detail and may yield a eiint computational complexity.
It is very important for a prediction model to offer a gooddeaoff between accuracy and
computational complexity, so that it can be fast enoughdotolling large-scale networks,
while at the same time also guaranteeing effective confrberefore, macroscopic traffic
models, which do not describe the details of individual gkds, but use more aggregated
values like traffic flows and traffic densities, are suitableréal-time control purposes. Two
macroscopic urban traffic network models have already beesepted in Chapter 4, and
we will use them as prediction model for MPC controllers. vigetn the two models, the
BLX model is more detailed, but more complex in computatighile the S model is a sim-
plified model that is proposed aiming at improving the réaletfeasibility of the controller.
This model is much faster than the previous model, while dwdyng a limited amount of
accuracy.

5.2 Model Predictive Control: General framework

Model Predictive Control (MPC) [23, 92, 108] is a methodgldhat implements and re-
peatedly applies optimal control in a rolling horizon ways Rig. 5.1 shows, in each control
step, an optimal control problem is solved over a predictiorizon, but only the first con-
trol sample of the optimal control sequence is implemeni&kt, the horizon is shifted one
sample and the optimization is restarted again with newrimétion of the measurements.
The optimization is redone based on the prediction modéi@process and an estimate of
the disturbances.

2Real-time feasibility means that the on-line optimizationipleen can be solved fast enough so that the result
is found before the time at which the controller should geteettze next control signal.
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Figure 5.1: Schematic representation of MPC

In all MPC methods, three important items are recognizabtbe design procedure:

e Prediction model: A model for the controlled system that can predict the feitur
states. The model should be able to predict the future systatas based on the
information of current measured system states, the pegtifoture disturbances, and
the future control inputs. The model can be either linearamiinear. On the basis of
the model a prediction of the process signals over a spetitidgdon (i.e. prediction
horizonN;) is made.

e On-line optimization: An optimization algorithm will be applied to compute a se-
quence of future control signala(k)) that minimizes the performance index subject
to the given constraints, angdk + j |k) is the control input at thgth control step in the
future from the current control time stép For linear models with linear constraints
and a quadratic performance index the solution can be fosimwquadratic pro-
gramming algorithms. For a nonlinear problem with nonlin@adels or constraints
or performance index, nonlinear non-convex optimizatigodthms can be applied,
such as multi-start sequential quadratic programming,[Cb@pter 5], pattern search
[7], genetic algorithm [36], etc.

¢ Rolling horizon principle : Predictive control uses the so-called rolling horizompri
ciple. This means that after computation of the optimal @sequence, only the first
control sample will be implemented, subsequently the looriz shifted one sample
and the optimization is restarted with new information @& theasurements.

In order to reduce the computational complexity, two meshatk usually applied to
reduce the computational complexity of the on-line optatiian:

1. Define control horizom. with N < Np;

2. Adopt aggregation techniques. Both methods decreasmthputational complexity
by reducing the number of control variables optimized.

In the first method, the vector of the control inputs is

u(k) = [uT(klk) uT(k+1|K)---uT (k+ N — 1K), (5.1)
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and we set
u(k+ilk) =u(k+Nc—1]k) i=N,---,Np—1.

In the second method, the vector of the optimized contrabbégsu(k) € R is sub-
stituted by a vectow(k) € RS with a lower dimension by introducing an aggregation (or
blocking) matrixH:

u(k) = Hv(k), (5.2)

whereH € RM>S with s < Np. The aggregation matrix is the key factor of aggregation
techniques. Different aggregation matrices allow difféi@ggregation schemes. One of the
most typical aggregation schemes is the blocking schemel[ldd, which groups the opti-
mized variables into several blocks, in each block the dggmare set equal to each other.
Actually, method 1 is a special case of method 2. By definirgtitocking matrix, the
number of the variables needed to be optimized is reduceldhareal-time computational
complexity of the MPC controller also decreases. Howewercontrol effect also deterio-
rates to some extent, because the aggregation constrdirte®the number of degrees of
freedom of the optimization.

5.3 MPC for traffic subnetworks

Past A Future
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Figure 5.2: Principle of the receding horizon used in an MPC

In order to control the urban traffic subnetwork, a commont@dime interval needs
to be defined, so that intersections within the subnetwonkccanmunicate with each other
and be synchronous. Thus, the control time inteyas defined as

Te=N-T, (5.3)

whereN is an integer,Tx stands for the common simulation time interval over therenti
urban traffic network, which is eithéli; for the BLX model (1 s, in general), or the least
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common multiple time intervalicy, of the cycle times for all the intersections within the
subnetwork for the S model. For example,

Tx=NjTjforall j e J, (5.4)

as presented in Chapter 4.
For intersectiord € J, we defineMyq = N - Ng, then we have

Te=Mq-Tq, (5.5)

whereTy is the simulation time interval for the prediction modes, ily = 1 s for the BLX
model, orTy = ¢4 s for the S model. For any given model simulation time steptenky
of intersectiord € J, the corresponding value &f can be calculated by

k) = | o | 56)
d

where | x| with x a real number denotes the largest integer less than or egxaldn the

other hand, a given valug of the control time step corresponds to the $QJI\/Id, keMg +

1 (ke+ DMy — 1} of simulation time steps for intersectidn Therefore, due to the the

difference between the simulation time interval and thetrmbnime interval of the urban

traffic model, the traffic states(k)) are actually estimated more frequent than the variation

of the control inputs (i.e. traffic signalg(kc)), just as Fig. 5.2 shows.
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Figure 5.3: The framework of the MPC controller

The structure of the MPC controller can be illustrated by. Bi§. The MPC controller
obtains current traffic stategk) from the process detectors, which can be loop detectors
from real road networks. The prediction model of the MPC wultgr estimates the future
traffic states according to the measured current traffiestek), the future traffic demands

d(k), and the given future traffic signal inpuigk;). Based on this prediction model, an
optimization problem can be solved, and generate a sequanaptimal traffic control
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signalsg*(kc) for the future. But only the first optimal traffic control sighg* (ke|kc) for the
following time step is sent back to the process to be impleatkim the real traffic network.
Then, the time moves one step further, and all the calculatiepeat in a rolling horizon
way. In the following, we are going to explain the MPC constrategy in more detail.

5.3.1 Prediction model

The prediction models can be selected as the spatiotemgliscaiete urban traffic models
in Chapter 4. These models can predict the future traffiestased for evaluating the
objective function based on the information of current raeed traffic states, the predicted
future traffic demands (i.e. future input traffic flows to tretwork), and the future control
inputs. These traffic models, including the BLX model and $hmodel, can be generally
described as

Nud(ka+1) = f(Nua(Ka),Ga(ke),dua(ke)) forall (u,d) € L (5.7)

whereny 4(kq) is the traffic state (e.g. the number of vehicles in a link atwation time
stepky),which is estimated for evaluating the objective functidpg(kq) is the predicted
disturbance (or the traffic demand) for littk, d) at time stegky, which is specifically the
future input traffic flow rate to the subnetwoudii(k;) is the future control input of intersec-
tion d, e.g. the green times. The future traffic demands can be astihaccording to the
historical data, or provided by the neighbor subnetworks.

5.3.2 Optimization problem

Given a prediction horizofl,, the future traffic states for linku,d) are predicted at simu-
lation time stefky as

fua(ka) = [Aua(ka + 1K) Aua(ka+2/Ka) - Aua(ka +MaNplka)] ", (5.8)

based on the predicted traffic demands for ljokd) at simulation time stegy

dyd(ka) = [dua(kalka) dud(ka + 1Kq) - -~ thya(ka + MaNp — 1kg)] T, (5.9)

and the future traffic control inputs for nodeat control stegk.

aa(ke) = [0 (kelke) 94 (ke + /ke) -+ gg (ke +Np — 1]ke)] " (5.10)

wheregq(k: + jlk:) denotes the control input at thigh control step in the future from
the current control time stek.. Assume without loss of generality that node et
{1,2,...,®} for the traffic subnetwork, then the optimized control infartthe subnetwork

is a vector expressed gke) = (9] (ke) 93 (k) - gTo(kc)]T. Therefore, the optimization
problem of MPC can be expressed as

minJ = min Jug(N ,
phing olke) (u7%gL u,d( u,d(kd) gd(kc))

st. Nyg(ka) = Nud(ka);
Nud(Ka+J+1) = f (Aua(ka+),9d (Ke(Ka + ), dud(ka + 1)),
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for j=0,...,MgNp — 1, for all (u,d) € L;
®(g(ks)) =0 (cycle time constrainis
Imin < 9(Ke) < Gmax; (5.11)

whereJ, 4 is the objective function for linKu,d), ke(kq) is given by|(5.6), and cycle time
constraints guarantee that the sum of all the green timdidnssfor an intersection equals
the given cycle time. However, since the prediction modebislinear, and the optimization
problem is computed on-line, the time taken to solve it isallgua big issue for MPC.
To decrease the on-line computational complexity, a cbhimazon N; (Ne < Np) can be
defined, such that

9a (ke + ike) = Ga(Ke + N — 1]ke) for i = Ne, -+, Np — 1. (5.12)

5.3.3 Rolling horizon

Once the optimal control inpgf* (k;) is derived from the optimization, then the first sample
of the optimal results, i.e.

9" (kelke) = [07" (Kelke) 03" (Kelke) -+ G (Kelke)]T, (5.13)

is transferred to the process and implemented. When arriwitite next control stek. + 1,
the prediction model is fed with real measured traffic stateswhole prediction horizon is
shifted one step forward, and the optimization starts ogeaira This rolling horizon scheme
closes the control loop, enables the system get feedbacktfre real traffic network, and
makes the MPC controller robust to the uncertainty and hstces.

Remark 5.1 The objective function in (5.11) can be selected as the Tatad Spent (TTS),
Total Delay Time (TDT), Total Emission (TE), etc. (See Clea®) However, in the case
studies of this chapter, TTS of the subnetwork is choseneaslifective function, i.e.

(ke+Np)Mg
min J = min Ta-Aud(kd) - (5.14)
g(ke) g(ke) (ud)el ky=KcMg+1

d

5.4 Case studies

MPC has a comparatively high requirement for on-line corapomal complexity. The
on-line computational complexity can be decreased by &sing the efficiency, i.e. the
computational speed of the prediction model. Thereforesrasropic models are selected
as the prediction models, within which the S model is progdsefurther reduce the com-
putational time. In this section, we are going to design &rpents to show whether or
not the selected prediction model is fast, and meanwhile atsurate enough for control
purposes. In addition, the experiments will also test therebperformance of the designed
MPC controllers. The simulated urban road subnetwork isvahin Fig.5.4. Nodes marked
as “" are the source nodes where traffic flows enter and leave theeswork, and also
where subnetworks connect with each other.
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Figure 5.4: An urban road subnetwork with a main street (angf1S6-6-7-8-9-10-S7)

5.4.1 Model test

To evaluate the effectiveness of the proposed urban traffidets, the microscopic model
CORSIM developed by (FHWA, 2001) is employed to simulaterdad traffic. The com-
parisons are performed with two measure of effectivenefisatkin CORSIM, “content”
and “trips”. The “content” is the cumulative count of velgslon a link, accumulated every
time step. In fact, if the simulation time step is set to 1 s DRSIM, the “content” exactly
correspondents to the TTS of a link at current simulatioretinstance, i.e. the performance
of the controller. The “trips” is the number of vehicles tlmatve been discharged from a
link since simulation begins. Similar to the “content”, thigps” correspondents to the to-
tal number of departure vehicles (Total Vehicle Departfwe) link, which illustrates the
control effect of the control inputs (green time splits, leyime, offset, phase) of the corre-
sponding intersection. For control purposes, a decisietfaonsidered when selecting a
model is whether the model can provide enough accurateaesdtip for the control inputs
and the control outputs (performances). Thus both meadwefieativeness are chosen to
evaluate the urban road subnetwork model.

The structure of a urban road subnetwork with the lengthsn@ter) of the roads are
shown in Figl 5.4. In the model of this subnetwork, all theigkehturning rates (left 33%,
through 34%, right 33%), the number of lanes (3 lanes for éakhand the storage capac-
ities of the links are considered to be fixed and known. The-flew speed is 30 km/h. The
network input flow rates of the subnetwork are all set to 208k, which are constant in
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time. A fixed-time control strategy is executed in this submek, where the phases, the
cycle times, and the green time splits are all constant, lamdffsets are set to be zero. The
cycle time is 60 s for intersection 6, 8, 9, 10, and 11, and is #0 the other intersections.
The fixed-time signals are designed based on the data foatheated scenario [101], i.e.
the green times are proportional to the traffic demands fraaoh @lirection, which depend
on the saturated flow rates and the turning rates under theagad scenario. Defing as
the maximum saturation flow rate of phgsas

rp=max{y }, (5.15)
lelp

wherel , is the set of lanes of phagg andy, is saturation flow rate for larle Then, define
R as the summation of all maximum saturation flow rates comedimg to each of tha
phases in one cycle:

n
R=Y rp. (5.16)
p=1

For each phasp, its optimum green timetg -, is calculated by distributing the total avail-
able green time, i.eC—Y (C is the cycle time lengthy is the total yellow time length), in
proportion to its saturation flow rates of the correspondiingctions:

r
tgreen— ﬁp(c -Y). (5.17)

Fig. 5.5 shows the comparisons of the S model, BLX model, 20&EIM on the in-
dices of TTS and total vehicle departure for two links in teéwork of Figl 5.4. As Fig. 5.5
shows, even though they are macroscopic models, the BLX haodeS model are able to
provide curves of the two measure of effectiveness that ameistent with that of micro-
scopic traffic simulator, CORSIM, for both links. But the eas of the BLX model and S
model will drift away from the curves of CORSIM when the timmegs. The reason is that
the longer time the models run, the more errors will be acdatad for the macroscopic
models because of neglecting the detailed driving behafimdividual vehicles compared
with a microscopic model. The figures also show that the niegelccuracy is higher for
the link near the source nodes of the network (i.e. link (D0&an for the link inside the
network (i.e. link (9,8)). This is because that the farthery a link is located from the
network boundary, the more errors will be accumulated, ag #ne passed down from the
upstream links.

The evolution of the average number of departure vehickagrg from link (9,8) and
link (10,9) are shown in Fig. 5.6. The S model is obtainedulglomodel reduction from
the more detailed BLX model, and thus it sacrifices some nioglelccuracy to gain more
computation efficiency. But, Fig. 5.5 illustrates that then8del has similar curve trends
as the BLX model in both the CORSIM measure of effectivenésiseatwo links. Similar
experiment results can be derived for the other links withim network. Therefore, this
experiment illustrates that both the macroscopic modeés St model and the BLX model,
are accurate enough to be selected as the prediction mol#?Gfcontrollers in this case.

When used as prediction models for MPC, the computationadsjsealso very impor-
tant. The experiments above were also used to compare thd &perunning a simulation
by using CORSIM, the BLX model, and the S model. The three riscgle provided with
the same traffic network, the same network parameters affid¢ ttamands as the previous
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Figure 5.5: TTS and Total Vehicle Departure (TVD) compatisbthe S model, BLX model,
and CORSIM for different links

experiment set-up, and simulate for a same period of timan®0 The results turn out
to be that the BLX model and the S model reduce the computdtione by 70.8 % and
99.2 % respectively compared to CORSIM. The S model reddeesdmputational time
by 97.4 % compared to the BLX model. Therefore, as macrosaopdels, both the BLX
model and the S model are faster and in this context morebdaigs prediction model for
the MPC controller than the CORSIM simulator. Moreover,$hmodel is much faster than
the BLX model, which can further increase the on-line feiéisibof MPC controller, but
with a limited loss of the control performance.

5.4.2 Urban subnetwork control using MPC

Two MPC controllers are designed for the urban road subrétafmown in Figl 5.4, taking
the BLX model and the S model as prediction models respégtiviehe structure of the
BLX-based MPC controller and the S-based MPC controllethisas in Fig.[5.7. The
fixed-time (FT) controller is simulated as a benchmark tduate and compare these two
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control strategies. In order to evaluate these contralegiias, CORSIM is used to simulate
the real traffic environment.

Traffic demands
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Figure 5.7: lllustration of MPC controllers

The same experiment set-up of the previous subsection iedpmain for this sub-
section. During the experiments, the simulation time wakof the BLX model is set to
1s, while in the S model, the simulation time intervals ares 60 40 s. For both the MPC
controllers, the control time interva is 120 s, the prediction horizdd, is 5, andNy = Nj.
All the simulations implemented with different controlategies run for the same time pe-
riod, 1 h. Total Time Spent (TTS) is the control objective lné tMPC controllers, but the
performance indicators used for the evaluation are selexgtehe TTS and the Total Delay
Time (TDT). TTS is the accumulated amount of time spent bythal vehicles inside the
road network since the beginning of the simulation, inahgdboth the vehicles freely run-
ning on a link and the vehicles slowing down or waiting in geeuTDT is the total time
spent by all the vehicles traveling with speed lower tharfthe-flow speed inside the road



88 5 Subnetwork MPC Controllers

network since the beginning of the simulation, i.e. theltataount of time that the vehicles
are delayed. Using extra performance indicator TDT, traffilays can be further evaluated
and compared for the urban traffic network. Two traffic sciErsaare considered:

1. Balanced scenarioThe traffic demands (traffic flows) from all the source nodés in
the subnetwork are the same, and they all increase with tinfréga 5.8 shows.

2. Imbalanced scenarioT he traffic demands of all the source nodes are very low (500
veh/h), but the traffic demands for source nodes S6 and S&ardigh (3000 veh/h).
Therefore, the road between S6 and S7 becomes a busy andtreatro§the subnet-
work.
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Figure 5.8: The variation of the supply flow rates for the rate
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Figure 5.9: TTS and TDT comparisons for the subnetwork in5ig of the S-based MPC,
the BLX-based MPC, and the fixed-time controller at everyrobtime step in
the balanced scenario

For the balanced scenario, Fig. 5.9 illustrates the cormparof the two control per-
formance indicators for all the control strategies (S-Had®C, BLX-based MPC, and FT
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controller). As Fig| 5.9(a) shows, the three controllers cantrol the subnetwork to al-
most the same value of the TTS at the beginning of the sinomatit means that all the
three controllers are almost equally effective, when théfitr demands are low, and the
subnetwork has a comparatively low traffic density. Thisasduse, if the cycle times of
intersections and off-sets between intersections are,ftkedcontrol performance mainly
depends on the traffic demands rather than on the trafficlssgties when the subnetwork
is far from saturated. However, as the traffic demands isereand the traffic density of
the subnetwork grows, the MPC controllers become more arré superior to the fixed-
time controller. Even though the TTS is selected as the obotrjective for the MPC
controllers, the TDT is reduced correspondingly, as Fig§(k5.shows. In order to further
improve the control performance in unsaturated scendm® cycle time lengths and the
traffic signal off-sets can be further optimized. Howeviee, tomputational complexity will
also increase correspondingly, as the number of the omiariables grows. To avoid
increasing the computational complexity, we can leave éspansibility of optimizing and
deciding the cycle time lengths and off-sets to the higheslleontroller (i.e. the supervisor
or the coordinator).
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Figure 5.10: TTS and TDT comparisons for the string in Fig. &mong the S-based MPC,
the BLX-based MPC, and the fixed-time controller at everytrobtime step
in the unbalanced scenario

For the unbalanced scenario, both the TTS and TDT are reainéausly for the string
S6-6-7-8-9-10-S7 in Fig. 5.4 by the MPC controllers comgardth the fixed-time con-
troller, as Figl 5.10 shows. In average, the TTS is reducgthBand the TDT is reduced
14.1%. However, TTS and TDT for the other links of the subrek/except the string keep
the same as that of the fixed-time controller, and sometimegwen worse, as Fig. 5.11
shows. This means that, in order to reduce the delays onting,sthe MPC controllers
hold the traffic flows back on the other links in the subnetwdrksuch unbalanced situa-
tion, the MPC controllers coordinate the traffic signaldwitthe subnetwork by sacrificing
certain performances of the links that is less crowded, s achieve a better network
overall performance. Comparing Fig. 5.9 and Fig. 5.10, tHeQvtontrollers are able to
balance the traffic flow distribution and coordinate the oamheasures within the subnet-
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Figure 5.11: TTS and TDT comparisons for other links exdeg@string among the S-based
MPC, the BLX-based MPC, and the fixed-time controller atyeentrol time
step in the unbalanced scenario

work. Therefore, the coordination function of the MPC cofiérrs is more obvious in the
unbalanced scenario than in the balanced scenario.

Fig. 5.12 shows the evolution of the average number of vesiii link (6,7) and (7,8)
for S-based MPC, BLX-based MPC, and the fixed-time contrafiéoth the balanced and
the imbalanced scenario. As the figure shows, there are Mbagis in the two links
in either the balanced scenario or the imbalanced scen#&in, the vehicles controlled
by MPC controllers spread more evenly than the vehiclesrotbed by the FT controller,
which make better use of the capacity of the traffic networld eesult in better overall
control performance.

In the previous simulation, we can derive that the CFL caoditn Chapter 4 is not
always kept. Therefore, a new simulation was run for the sasay, in which the CFL
condition is not violated. All the setups are the same as tb@qus simulation, except the
traffic network is as Fig. 5.14 shows, new supply flow ratestiernetwork are changed as
Fig.[5.13 shows to create a peak for the traffic supply, andyble time becomes 120 s for
Intersection 6, and 60 s for the other intersections.

The TTS curves are very similar for the fixed-time contrglBLX-based MPC, and
S-based MPC in the balanced scenario, as Fig. 5.15 showse limbalanced scenario,
the string allows more traffic flow under the MPC controllessnpared with the fixed-time
controller, and alleviates the traffic burden in the resthef hetwork (see Fig. 5.16 and
Fig.[5.17).

To on-line solve the nonlinear optimization problem/in ®.for the MPC controller,
the prediction model has to be simulated thousands of timié& speed for solving the
optimization problem can be significantly improved by redgche computational speed
of the prediction model. The on-line optimization problefrtiee S-based controller can
be solved within 1 min for the subnetwork of Fig. 5.4, and tpe time can be reduced
around 96% compared to the BLX-based controller. Thus, thasgd controller requires
much less on-line computational time than the BLX-basedrotiar because of the effi-
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Figure 5.14: An urban road subnetwork with a main street (agtS6-6-7-8-9-10-S7)
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Figure 5.15: TTS comparisons for the subnetwork in[Fig. 5at&-based MPC, BLX-based
MPC, and the fixed-time controller at every control time stefhe balanced

scenario

ciency of the S model. Moreover, it is able to keep a similafgyenance as the BLX-based
controller. Therefore, the real-time computational fbaity of the MPC controller can be
greatly improved by using the S model as the prediction mdulél without losing much
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performance.

In theory, it is possible to solve an MPC problem with 100 iséetions. However, the
on-line computational complexity will almost increase ewpntially with the expansion of
the network scale. Therefore, it maybe not practical to @rit00 intersections with the
current computing capability. But, we could divide the Ergetwork into subnetworks, and
apply hierarchical or distributed control structures agg@sted in in Chapter 3.

5.5 Summary

As an advanced control methodology, MPC has many advantiigeesobustness to distur-
bances, long-term sight, easy dealing with constraints,sanon. However, despite of all
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these advantages, it also inevitably gives rise to the protadf high on-line computational
complexity. In this chapter, an efficient but also effect®C controller for urban road
subnetworks is presented. The efficiency of the subnetwamnkrallers is also the basis of
an efficient coordinating algorithm for the subnetworks.

To improve the applicability of the MPC controller in prasi the characteristics of
the prediction models are considered. Two macroscopic feoithe S model and the BLX
model, described in Chapter 4, are considered as the pmdinbdels of MPC controllers.
To further increase the computational speed, the S modethws a reduced version of
the BLX model, is selected. Simulation results show thahlibe S model and the BLX
model are suitable as prediction model of MPC, and that thee&efris much faster while
still offering acceptable accuracy in the predictions. M&ddtrollers taking the two mod-
els as prediction model respectively are constructed amasiigated. The MPC controllers
show great capability for coordinating the traffic measwata and intersections within the
subnetworks and achieve a good overall performance, edlyeiti the situation that the
traffic flows are not uniformly scattered within the roads obsetwork. From a compu-
tational point of view, the S model-based MPC controller isctnmore efficient than the
BLX model-based MPC controller, while only incurring a lied reduction of the control
performance.



Chapter 6

Fast MPC for Urban Traffic
Subnetworks via MILP

In this chapter, we are going to investigate another methatctease the real-time feasibil-
ity of the on-line optimization problems, when we apply MRCcontrol large-scale urban
traffic networks. The presented method is to reformulateotiine optimization problem
into another format, so that it can be solved more efficiettin beforé.

6.1 Introduction

Due to the nonlinear nature of the prediction model (e.gntloelels discussed in Chapter
[4), the optimization problem of MPC for urban traffic netwsik a nonlinear non-convex
optimization problem. As a consequence, the on-line coatfmurtal complexity becomes a
big challenge for the MPC controller, if it is implementedraal-life traffic network. One
can reduce the on-line computational complexity througldehoeduction (as the S model
in Chaptef 4), but the degree that the computation speed eamgroved is still limited
due to the nonlinear non-convex nature of the optimizatiomblem. Therefore, in this
chapter, we mainly focus on improving the real-time fedisjbof MPC controllers through
improving the efficiency of solving optimization problems.

In general, a nonlinear non-convex optimization probleradseto be solved by non-
linear optimization algorithms, e.g. multi-start Sequ&nQuadratic Programming (SQP)
[106, Chapter 5], Pattern Search [7], Genetic Algorithn®],[&nd Simulated Annealing
[43]. Among them, SQP is local optimization method, whilears are global optimiza-
tion methods. But, through selecting multiple initial $tag points, and choosing the best
solution, multi-start SQP is able to refine the solution apgraach the global optimum.
However, all the optimization methods mentioned above ireqau huge number of eval-
uations of the objective function, which results in runnihg prediction model a huge
number of times. Although the S model is fast already, it &ikes quite some time to
simulate the model repeatedly. Therefore, the optimingtimblem inevitably suffers from
an exponentially growing computational complexity whea sigale of the controlled traffic

1The content of this chapter was published in [84, 85, 88].

95
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network grows. Consequently, the MPC controller will beeoreal-time infeasible when
the scale of the controlled traffic network grows. Therefare will reformulate this nonlin-
ear non-convex optimization problem into an optimizatioolgbem that can be solved more
efficiently.

To this aim, the nonlinear macroscopic urban traffic netwmiddel, the S model of
Chapter 4, i.e. the prediction model of the MPC controllenedformulated and linearized
into linear equalities and inequalities by introducing inxéiary integer variables. Based
on this reformulated model, the original nonlinear nonvenon-line optimization prob-
lem of the MPC controller is rewritten into a Mixed-Integeinear Programming (MILP)
problem, which can be solved efficiently by an existing Mild¥er. Thereafter, the real-
time feasibility of the MPC control strategy can be furthereased. Moreover, we propose
an approach to reduce the complexity of the MILP optimizapooblem even further. The
simulation results show that the MILP-based MPC contrslean reach the same perfor-
mance as the original MPC controller, but the time taken teestive optimization becomes
only a few seconds, which is a significant reduction compuaiigtithe time required by the
original MPC controller.

6.2 Rules for equivalent transformation into MLD model

6.2.1 Preliminaries

First, some basic tools are introduced for transformingcllgstatements involving contin-
uous variables into mixed-integer linear inequalies

Capital lettersx; are used to represent statements, exg< 0” or “Color is black”. X
is commonly referred to as a literal, and has a truth valuetbé&e“T” (true) or “F” (false).
Boolean algebra enables statements to be combined in comBbatements by means of
connectives:

e “A” — and;

o YV — or;

e “~ — not;

e “=" — implies;

o 'S if and only if;
e “@®@" — exclusive or.

These connectives are defined by means of the truth table ivieable 6.1. The following
propertities will be used later on:

X1 = Xo isthe sameas ~ X1V Xy (6.1)
X1 = Xo isthesameas ~ Xo =~ X3 (6.2)
X1 < Xy isthe same as (X1 = X2) A (X2 = Xp). (6.3)

2This subsection is based on [9, 37].
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Table 6.1: Truth table

X Xo | XiAXy XiVXy ~X1 X1=X XieX XieX
T T T T F T T F
T F| F T F F F T
F T F T T T F T
F F| F F T T T F

One can associate with a literl a logical variabled; € {0,1}, which has a value of
either 1ifX; =T, or 0 if X; = F. The following propositions and linear constraints aemth
equivalent:

X1 A X is equivalent to 0q=0=1 (6.4)
X1V X is equivalent to n+d <1 (6.5)
~ X1 is equivalent to 01=0 (6.6)
X1 = Xo is equivalent to 01—0,<0 (6.7)
X1 < X is equivalent to 5 —-06=0 (6.8)
X1 @ Xo is equivalent to O+ =1 (6.9)

We can use this computational inference technique to madgtdl parts of processes
(on/off switches, discrete mechanisms, combinationalsaugiential networks) and heuris-
tics knowledge about plant operation as integer linearuaéties. In this way, we can
construct models of hybrid systems.

6.2.2 Equivalent transformation into MLD model

A Mixed Logical Dynamical (MLD) model [9, 37] allows specifyg the evolution of con-
tinuous variables through linear dynamic equations, afréig variables through proposi-
tional logic statements and automata, and the mutual ictierabetween the two. The key
idea of transforming a model into an MLD model consists of edding the logic part in
the state equations by transforming boolean variables(titantegers and by expressing
the relations as mixed-integer linear inequalities.

According to [27], consider the statemef(x) < 0, wheref : R" — R. Assume that
x € x, wherex C R"is a given bounded set, and define

M = maxf(x), m=minf(x) . (6.10)
Xex Xex
Theoretically, an over-estimate (or under-estimateylafr m suffices for our purpose.
However, more realistic estimates provide computatioealfits. Now, by introducing in
o€ {0,1}, itis easy to verify that

[f(X) <O]A[d=1] is true if and only if f(x)—0<-14+m(1-0) (6.11)
[f(x)<O]V[d=1] is true if and only if f(x) <Md (6.12)
~ [f(x) <0 is true if and only if f(x) > ¢, (6.13)
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whereeg is a small tolerance (typically the machine precision),ds&lywhich the constraint
is regarded as violated.

Remark 6.1 The reason for introducing is that an equation likef (x) > 0 does not fit
the mixed integer linear programming framework, in whiclyamonstrict inequalities are
allowed. Therefore, the equatidi{x) > 0 is replaced by the equatiof{x) > € with € a
small tolerance, typically the machine precision, whereaggsume that in practice the case
0 < f(x) < € cannot occur due to the finite number of bits used for repteggereal numbers
on a computer. O

Then, the following equivalence holds

[f(x)<0]=[0=1] istrueifandonlyif  f(x) >e+(m—¢g)d (6.14)
[f(X) <0< [0=1] is true if and only if { () <M(1-9) (6.15)
B f(x) > e+(m—¢)d

Moreover, the termdf(x), wheref : R" — R andd € {0,1}, can be replaced by the
auxiliary real variablez = 6f (x) which satisfied6 = 0] = [z=0], [0 = 1] = [z= f(X)].
Therefore, by defining/l andmas in|(6.10)z= 6f (X) is equivalent to

z<Md
z>md
z< f(x)—m(1-09)
z> f(x)—M(1-9)

(6.16)

6.3 Reformulation of the urban traffic model

Now we will show that the nonlinear non-convex optimizatimmoblem [(5.10) can be re-
formulated into a mixed-integer linear optimization prerol [84], which can be solved ef-
ficiently by existing MILP (Mixed-Integer Linear Programingj) solvers [6, 46, 89]. The
MILP solver is more efficient than the SQP solver for this jgatar optimization problem,
and can find the global optimum rather than a local optimum.

6.3.1 Model reformulation into mixed-integer linear model

We now show how the model (4.53) can be reformulated as minteder linear equations
and inequalities using the equivalent reformulation rallesve. Let

a=Pudo(Kd) " Hud-GudolKd)/Cd

b= (Gud.o(ka)/Ca) + aﬁ,’&%(k@ (6.17)
C = Bu,d,o(Kd)(Cd,0 —Ng,0(Ka))/Ca
d = min(a,b),

then (4.53) becomes
a3'e(ke) = min(a, b,c) = min(d,c) . (6.18)
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Let
fi=b-a, (6.19)
and define
5 — 1 iffi<0 (6.20)
"o iff>0’ ‘

whered; = 1 means free flow demand, adgd= 0 means queue discharge demand. Then
we have

d:a+(b—a)~61:a+f1-61 . (6.21)
Similarly, let
f,=c—d, (6.22)
and define
5 — 1 iffa<O0 (6.23)
270 iff,>0’ '

whered; = 1 means spillback regime, add = 0 means free entry flow regime. Then we
have

min(d,c) =d+(c—d)- S, =d+f2- 8, . (6.24)

Let
) = f1~51 (6.25)
Zn = f2~62 (6.26)

and substitute (6.21) intb (6.24), thén (6.18) becomesliras
afeky) =a+z+2 . (6.27)

According to the equivalent transformation rules, (6.2@) 66.25) are equivalent to the
inequality constraints

fi <My (1-8)

fi1>e+(m—¢€)0;

71 < M16; (6.28)
21> md;

71 < f1— m1(1—61)

zn>f— M1(1—61) .

Similarly, (6.23) and (6.26) are equivalent to the inedyalonstraints

fo < Mz(l—éz)

fo>e+(mp—€)&

2 < M2d, (6.29)
2 > Mpd;

2 < f—mp(1-9y)

Z > fz—Mz(l—ég) .
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Here,M1 andmy are the maximum value and the minimum valueggfandM, andnmy, are

the maximum value and the minimum valuefef These upper and lower bounds depend on
the capacity or the saturated flow rate of lilkd), or the capacity of its downstream link.
According to[(6.17), the upper bounds and lower bounds bfc, andd can be deduced as

amin = 0<a< Uyd = amax
Brmin =0 < b < Cyd/Cd = Bmax (6.30)
Cmin=0<c< Cd,o/Cd = Cmax
Omin = 0 < d < min(Wyd,Cud/Cd) = dmax,
where all the lower bounds are 0, which represents the agdraffic flow rate is non-
negative in reality; the upper bounds depend on the capafdityk (u, d) or its downstream
link. With the upper bounds and lower boundsapb, ¢, andd, we can derive
M1 = Bmax— 8min = Cu,d/cd
M1 = Bmin — 8max = —Hu,d
M2 = Cmax— Omin = Cd,0/Cd (6.31)
My = Cmin — Omax= — min(liu,d,cu,d/cd) .
Therefore, by introducing the additional auxiliary binasgriablesd; andd,, and the
auxiliary real variabled, f,, z1, andz, the original formula/(4.53) in the urban traffic

model is equivalently reformulated as linear equation9%.(6.22), and (6.27), and mixed-
integer linear inequalities (6.28)-(6.29).

6.3.2 Reformulation of the model synchronization
Consider[(4.63) for fixed u,d, andky. We will now show that this results in
af§(ka) = Fin (o), - ol Tka +0), (6.32)

with £ an integer andi, a linear function.

In (4.63),0{°2°°"t) is a piecewise constant function with intervaisy), - , & (ky+¢)
and function values®f(k,), - -- ,a!?&‘c’,e(ku + (), whereg(x) depends omg, ¢y, andAcy 4.
Once these variables are fixédx) is fixed. Hence, we have linear expression

1 - H eave, H
o k) = o 3 Galkut Deaiitkat 1), (6.33)
as Fig[ 6.1 shows.

The linear functionsj, can be derived by the following approach. Given (4.63), we
define

1)- A
kj:floor{(kd+ ) Cat C“"d},
Cu
8, =rem{(kyg+1)-Cq+ACud,Cu},
. JAY
ku:floor{kd i C“’d},
u

8, =rem{ky-Cq+ACyd,Cy}- (6.34)
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wherek| > k; and 0< 8% < ¢y, 0< 6~ < ¢,. Then, we obtain
k§cu+8y

g enter _ 7/ a!eavecontt dt
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Then, the synchronization function (4.63) can be rewrittea a linear equation of the
form (6.32). Due to the definition of the control time intepthe synchronization formula
will be the same in each control time interval. Taking theeciasFig. 6.1 for example, the
synchronization functions within one control time intdraee

afieke) = a!‘*ﬁée(ku (6.35)
ofg ke +1) = [(cu — Ay — Ca)alStky)
+ (ACy + 204 — €)% Ky + 1) ] (6.36)
ofligka +2) = ;ﬂkwﬂwwiwmﬁﬁM+D

+AcyaafSSiika+2)] (6.37)
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whereky = Ngke andk, = Ncke. Therefore, the linear synchronization relationship can b
pre-specified explicitly according to the given cycle tintgsandc, of the corresponding
intersections.

When the flow rate leaving linku, d) is computed in the S model, the number of vehicles
in downstream link®iy (ko) is used to calculate the number of vehicles that the dowarstre
links can accept at most. The simulation time step counténtefsectiono is ky. If kg
is different fromky, an output synchronization function is needed for synciaing the
original number of vehicles in the downstream link of linkd), ng " (ko), from time step

ko to kg, as
Na.o(Ke) = Four (NG (o), -+, NG (Ko + 1)), (6.38)

which is also a linear expression that can be derived usiag@me rules as deriving the
input synchronization function above.

6.3.3 Link time delay assumption

Assumption 6.1 We assume that the time delay of the vehicles traveling tierbeginning
of the link to the end of the queues in the link is constant txrex and link.

Then, having Assumption 6.1, (4.56) becomes linear as

aﬁ,rcriiv(kd) = (1 Yeonst) - O((S,ndter(kd — Teonst) +
Yeonst' Gﬁ,"(}er(kd —Tconst— 1), (6.39)

whereTgonstandyeonst are constant values obtained by (4.57) with the queue Iefivggt.
This queue length can be pre-calibrated for different tadfienarios and environments
according to the historical data, and stored in a databasee $he queue length in a link
always changes over time, it is impossible to find an exadhgbtconstant queue length
to suit the assumption. However, what we could do is to gieedheue lengthl) several
fixed values, e.d.= 0 when the traffic signal is greehs# 0 when the traffic signal is red.
The queue length for red signals can be scaled into severgklaccording to the traffic
scenarios, and may also consider a environment factor.eTdnesue length levels could be
analyzed from the historical information of the link, andalig form a table that can be
looked up. This method cannot derive very accurate timeydelaut it can partially make
up the errors for assuming the time delay constant.

With the reformulations above, the S model is reformulated & mixed-integer linear
model. Thereafter, an MILP method can be used to solve thimiggition problem of the
MPC controller based on the mixed-integer linear predictrmdel.

The reformulation above is not a standard and straightfahpeocedure that we could
follow, it can be different for different characteristic6tbe problems we are focusing on.
The main part that makes this work different from other’sag/lwe tackle the synchroniza-
tion between two successive intersections with differgetectimes in Section 6.3.2. We
linearized the synchronization equation, and gave a pardf.f
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6.4 MILP-based MPC controller

For intersectiord, the control time interval and the simulation time intersatisfy T, =
NNycg. Then, for a given control time stdg, the corresponding simulation time steps are
kg = NNgke, NNgke +1,- - ,NNg (ke +1) — 1.

After the model reformulation, the optimization problemtioé MPC controller can be
expressed as an MILP problem of the following form:

minJrrs = ¢ - u(ke)
u(ke)

st. Au(k) <b (6.40)
Aequ(Ke) = beg
Umin < U(Ke) < Umax
Ui(ke) € Z fori e 3

for appropriately defined matricég Aeg, and vectors, b, beg, Umin, Umax. and Sets, where
vectoru(ke) contains all the optimization variables for control timegske, - - - , ke +Np—1
(see A for more details).

The vector of optimized variables at control time skgjn optimization problend (6.40)
is
U(ke) =" (kelke) U" (ke +1lke) -+
u' (ke +Np—1lke)]™ (6.41)

whereu(k: + j|k;) at any control time step consists of control variables @reen time
splits), state variables, and auxiliary variables for ladl hodes and links in the traffic net-
work as:

Control variables
T
u-)=[ 9
State variables
T T T T T T
q () n () ndownLink(') aleave(') aarriv(') aentev(‘)
Auxiliary variables

81() %) H() () A()Z()]" . (6.42)

where () stands forke+ j[Ke), NlgunLink(Kc) represents the numbers of vehicles in the down-
stream links. All the optimized variables are real valuesegx for the binary variables
01(ke) anddy (k). Supplied with initial traffic states and traffic demandshef hetwork, the
optimization problem can be solved at each control time lggdyy the MILP solver.

Several efficient branch-and-bound algorithms [46] ardlavie for MILP problems.
Moreover, there already exist several commercial and fseess for MILP problems such
as, e.g, CPLEX, Xpress-MP, GLPK, or fwlve (see [6, 89] for an overview).
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6.5 S model-based MPC controller via MILP

6.5.1 S model

For the S model described in Chapter 4, the formula (4.53)etimg the average flow rate
leaving link (u,d) is the minimum of three terms. Each term gives the possilaeirig
flow rate under a traffic scenario. Under the saturated sierthe average leaving flow
rate depends on the saturated flow rate and the green time lifilh under the unsaturated
scenario, the average flow rate is calculated accordingetavtiting and arriving flow rate
at the intersection; under the over-saturated scenaecavhrage flow rate depends on the
flow rate that the downstream link can accept. The trafficvisgs in the scenario that has
the minimal average flow rate that could possible leave tile s an urban traffic model,
the S model is capable of describing all the situations tret happen in reality. However,
when the S model is taken as a control model of the MPC coatrdhe third part of (4.53)
can be removed from the S model to leave the over-saturagethso out by adding extra
constraints. Therefore, the S model can be rewritten intm&del by rephrasing (4.53) by

a3 e(ke) = min (Bu,d,o(kd) “Hu,d - Gu.d,o(Kd)/Cd, dud,0(Ka) /Cd + Gﬁf&%(h)) . (6.43)

and adding upper bound constraink, 4(kg) < C, 4 to traffic staten, 4(kq) (number of
vehicles in a link) to make sure that the number of vehiclegim a link will not exceed
its storage capacit§, 4, i.e. no more vehicles can enter the link when it is alreadsilo
congested.

6.5.2 S model-based MPC controller

An MPC controller can be established based on then8del using the same method as
shown in Sectioh 6.4. A similar MILP optimization problem(@&s40) can be built through
reformulating the Smodel into an MLD model. But, for the new MILP optimizationotr
lem, the number of the auxiliary variables is reduced by batfause of the reduction of the
S* model. Although the Smodel does not take the over-saturated scenario into cenasid
tion, the free spaces of the downstream links can still beidened due to the constraints
added. Instead of constraining the average traffic flow na@gng links, the maximum
number of vehicles that the downstream link can accept is tomstrained by the upper
bound. The traffic stata(k), which is the number of vehicles in a link, is already an op-
timization variable of the MILP optimization problem. Henao extra effort is needed to
add constraints to the traffic state) of all the links within the network at every simula-
tion time stepk. In fact, the key idea of this approach lies in simplifying thptimization
problem by reducing one equation in the prediction moded @model), and adding up-
per bounds to the optimized state variabdk) instead. As a result, the main complexity
of the S model-based optimization problem (i.e. the number of aanilinteger variables
introduced) is reduced by half.

6.6 Case study

CORSIM is a microscopic traffic simulation software develdjpy FHWA [45], which can
be used as a benchmark to design or test traffic control thgasi We use CORSIM to
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simulate the real traffic environment, and design MPC cdien®according to Chapter 5
to decide control inputs for the traffic signals in CORSIM Fag.[6.2 shows. The on-line
optimization of the MPC controller is reformulated intofdifent optimization problems,
which are solved using different optimization methods, #reh the control performances
(TTS) of the MPC controllers are compared. Multi-start Sagial Quadratic Programming
(SQP) is applied to solve the original S model-based noatim®n-convex optimization
problem. An MILP solver is used to solve the S model-based*om8&8del-based MILP
problems obtained after reformulation according to Sedid.

Current traffic stath Control action for next step

CORSIM

MPC controller

Optimization

S/S* model

Figure 6.2: lllustration of the traffic control simulation

For the SQP solver, we applyi ncon provided by the optimization toolbox of Matlab.
As MILP solver, we use CPLEX, implemented through tipéex interface function of the
Matlab Tomlab toolbox.

The urban traffic network investigated is a grid network unldhg 4 intersections (see
Fig.[6.3). The cycle times are 120 s for intersection A andrid, 80 s for intersection B and
C. The cycle times are constant, and off-sets are 0 duringithelation. The variation of
cycle times and offsets is not considered in this case studywe can distribute multiple
control tasks to different layers of a hierarchical conélso that the control task for a
single layer is not too complex. Cycle times have compagbtitighter constraints, and
do not have too much space for optimization. Therefore, weachust it on a higher level
with a low frequency. Maybe we could try to add offsets asrofation variables in the
lower level controller in the future. The control time intal is set to the least common
multiple of all the cycle times in the network, i.& is 120s. The prediction horizon is 10
control intervals. The control simulations run for the saime period of 3600s for all the
experiments. The length of the links are 1220 m, all the linkge 3 lanes. The average
vehicle length is 5 m, and the free-flow speed on the links isrB. Therefore, the storage
capacity of each link in the network is 732 veh, and the candtme delay of all the links
is set to be 87.8 s. The input traffic flow rates to the netwoekcanstant. The simulations
are carried out under 4 scenarios, according to differdnegeof the input traffic flow rates
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B L

1220m © [1220m

H H

Figure 6.3: The layout of an urban road network

supplied to the network (input traffic demands), i.e. 500keh000 veh/h, 2000 veh/h, and
3000 veh/h. The simulation results are compared for thderelit traffic scenarios. The
cost function is TTS for the entire simulation. The numbeinitial points for the SQP
algorithm is 5. In the 5 initial points for SQP, one is the ami solution derived in the
optimization of the previous step (by shifting the optimallusion of the previous step one
step forward, and adding a new decision to the end of the apsimiution sequence), the
other 4 initial points are generated randomly within thedoand upper bounds.

MPC controllers are built for the urban traffic network baseddifferent optimization
algorithms. The MILP approaches for the reformulated S rhadd the reformulatedS
model are called respectively “S MILP" and *S/1ILP” here. The control performance
(TTS) of the controllers at every control step since the taigig of the simulation is ex-
tracted from CORSIM, and compared in Fig. 6.4 to Fig. 6.7 fothe scenarios. In general,
both S MILP and S MILP have either better performance (lower TTS) than, oraéger-
formance to the nonlinear optimization algorithm, SQP. fideeson is that the optimization
problem at hand is a nonlinear non-convex problem becausieeafionlinearity of the S
model, so that it may have multiple local optima. The SQP ritlgm is only able to search
for the local optimum, which in general results in a sub-oti solution. A multi-start
method can be applied to help select a better sub-optimatisol However, the multi-start
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Figure 6.4: TTS comparison of the SQP, S MILP, ahd/B_P approaches for 500 veh/h
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Figure 6.5: TTS comparison of the SQP, S MILP, ahd/8LP approaches for 1000 veh/h

procedure also results in more CPU time. On the contrary, &fPNMroblem can be solved
efficiently by existing solvers that guarantee the globaimpm.

We can see from Fig. 6.4 and Fig. 6.5 that the SQP algorithnbatsr performance
(lower TTS) than S MILP, when the traffic flow demands are lovhisTis mainly caused
by Assumption 6.1 made during the model reformulation. Rekat in order to turn the
optimization problem into an MILP problem, Assumption 6GInade to linearize the origi-
nal model. In the assumption, the time delay for vehiclesingfrom the beginning of the
link to the end of the queues in the link is considered to bestzon. In the situation with
high traffic demands, the number of leaving vehicles dependbe saturated flow rate of
the link. In that case, the assumption almost does not hay@énence on the results of
MILP. However, in the situation with low traffic demands, thember of leaving vehicles
from the link depends mainly on the number of waiting velsdlethe queues, which will
be affected by the vehicles arriving from upstream afterréagetime delay in the link.
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Figure 6.6: TTS comparison of the SQP, S MILP, ahd/_P approaches for 2000 veh/h
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Figure 6.7: TTS comparison of the SQP, S MILP, ahd/8LP approaches for 3000 veh/h

Therefore, the assumption causes a mismatch between tirabroptimization problem
and the reformulated MILP problem. As a result, the MILP aildpon fails to achieve better
results than the SQP algorithm, when the network is lessdrdwlow traffic demands).
The reduced SMILP is able to keep similar control performance as S MILR] ansome
situations it performs even better. This is because MIERe8ves out the third term (i.e.
the supply of the receiving link) in the equation for caldirg the departure traffic flow and
thereby, it also implicitly introduces another constraint

G[fSYg(M) =min (Bu.d,o(kd) “Mud - Gu.d,o(Kd)/Cd , dud,0(Kd)/Cd +G3,r&i,\g(kd)) <Cd,0—Nd,o(kd)
(6.44)
to the S MILP problem, which means that the demandafd) cannot exceed the supply
of the receiving link. This extra constraint has a functiorirtform the upstream links to
control their permissions to the coming traffic demands, spdlback may happen in the
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downstream link. As a result, when the network is unsatdratieere is more space to
allocate traffic demands more reasonably, thus MIERsSable to achieve a better control
performance.

When the traffic flow demands are high, and the traffic networkage crowded (satu-
rated), the MILP approaches achieve better performancetti@gaSQP approach, as Fig. 6.6
to Fig.[6.7 shows. The influence of Assumption 6.1, as in lomaled scenarios, almost
disappears then. But, due to the high traffic demands arfittdeinsity, there is also less
space for the MILP approaches to improve the control perémee, and hence, the TTS
curves stay very close (see Fig. 6.7).
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Figure 6.8: The evolution of the average number of vehiatebnk (A,B) when network
traffic flow demands are 500 veh/h
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Figure 6.9: The evolution of the average number of vehiatebnk (A,B) when network
traffic flow demands are 2000 veh/h
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In Fig.[6.8 and Fig. 6.9, we give the evolution of the averagmer of vehicles in
link (A,B) for two scenarios with network traffic flow demand$ 500 veh/h and 2000
veh/h respectively. We can see from the figures that the nuofbeshicles in link (A,B)
fluctuates over time in the scenario with 500 veh/h, whilerthember of vehicles in link
(A,B) accumulates until the link becomes saturated in tlemado with 2000 veh/h, which
illustrates that the vehicles spill back to the upstrearkslin

Table 6.2: Comparison of computation times and the numbeptimization variables for
different optimization algorithms in all scenarios

CPU time (s) # variables

tavrg tmax ~Real Boolean

SQP 461.4 601.7 120 -
500veh/h S MILP 0.8 29 6880 1440
S* MILP 11 1.2 4480 720

SQP 459.1 5485 120 -
1000 veh/h S MILP 1.3 2.5 6880 1440
S* MILP 13 1.9 4480 720

SQP 4534 5525 120 -
2000 veh/h S MILP 1.2 2.3 6880 1440
S* MILP 1.6 2.5 4480 720

SQP 452.4 526.4 120 -
3000 veh/h S MILP 11 26 6880 1440
S* MILP 11 15 4480 720

Scenario  Algorithm

In Table] 6.2, the computation time and the number of optitiopavariables are com-
pared for the different optimization approaches, whesgg" is the average optimization
CPU time over all the control steps, anthax’ is the maximum optimization CPU time.
The SQP approach does not have boolean optimization vasial¥l MILP has less opti-
mization variables than S MILP, where the number of auxiliariables is reduced by half
because of the model adaptation. In general, the MILP pnolbléh less boolean variables
will be solved faster than the one with more boolean varmlidee to the branch-and-search
procedure of MILP solvers. But, this is not always true far fimulation results of S MILP
and S MILP. Nevertheless, S MILP and*SMILP problems can be both solved very fast
by MILP solvers. The CPU times are reduced significantly flmmndreds of seconds to a
few seconds compared to the SQP solver. The number of ipitiats selected for SQP is
5. Therefore, the average CPU time for one single run of S@Meaomputed by dividing
5. Thus, takeing the scenario with 500 veh/h as an exampeavberage CPU time for a
single run of SQP is 92.3 s, the average CPU time for S MILPdsand the average CPU
time for S MILP is 1.1 s. Therefore, by reformulating the original naelar non-convex
optimization problem into an MILP problem, the MPC conteolfor urban traffic network
becomes much more time efficient on-line.
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6.7 Conclusion

Model predictive control provides many advantages for idlitig urban traffic networks.
But it also has a high requirement for the computationaliefficy of the on-line optimiza-
tion. Due to the nonlinear non-convex nature of the optitigzeproblem, the on-line com-
putational complexity is a big challenge for the MPC conéol To solve this problem, in
this chapter, the nonlinear S model was reformulated int@deat) which can be expressed
by mixed-integer linear equalities and inequalities. Thadlel and the reduced $nhodel
are both reformulated according to this method, and theér@igonlinear non-convex op-
timization problem is written in the form of MILP problemsdzal on the reformulated S
model and Smodel respectively. An efficient MILP solver can then be &apto solve the
reformulated MILP optimization problems of MPC.

The simulation experiments indicate that the MILP-basqut@ches may maintain the
same control performance as the multi-start SQP-basedat@pproach, and sometimes
can achieve even better control performance. However,drsitiuation of low traffic de-
mands and traffic density, the assumption made during thehneidrmulation may cause a
mismatch between the reformulated MILP problem with thgiogl optimization problem.
However, this mismatch can be alleviated by calibratingdlitiletime delay beforehand for
the low traffic demand scenario. The biggest advantage dfith®-based MPC controllers
is that the on-line computational speed is increased dieatigtcompared to the original
MPC controller (e.g. in the case study, the time for solving bptimization problem is
reduced from hundreds of seconds to only a few seconds). ifitlisates that the MILP
approach is a potential method that can be selected to retiecen-line computational
complexity of the S model-based MPC controller, and to frrincrease the applicability
of the MPC controller in real-life traffic networks.






Chapter 7

Integrated MPC for the
Reduction of Travel Delays and
Emissions

In urban areas, the density of the population is relativégyrh People living in big cities

usually live busy lives, and suffer comparatively worseigmmental conditions (less living
space, more air pollution, etc.). One of the biggest sounééise environmental pollution

in cities comes from the emissions of the busy traffic flows. éllsdesigned urban traffic
management system, which can control both travel delaysrafiit emissions effectively,

and accordingly make the transportation more efficient amdfortable, is very important.

Therefore, integrated urban traffic control strategiesimjnat reducing both travel delays
and emissions will be discussed in this chahter

7.1 Introduction

The emissions of vehicles contain several harmful substrstich as nitrogen oxides (RO
such as nitrogen monoxide, nitrogen dioxide), hydrocaskstC), carbon monoxide (CO),
carbon dioxide (C@), and fine particulate matter. N®nay participate in several reactions
after being released into the open air, and thus generatepaoid rain, and fine particles.
Among them, the generated ground-level ozone may triggeatians in people who have
asthma, acid rain will cause damage to soil, agriculturéexyatc. Fine particles will give
rise to sufferance from respiratory or cardiovascularaiiss. HC, such as methane, ethane,
propane, irritates the mucous membranes, and causes heagéeer damage, and even
cancer. CO is a colorless and odorless gas generated byphetenracombustion of gasoline.
Driving is the cause of over half of global CO emissions. C@ dacrease the ability of
the blood to carry oxygen, and may cause heart disease. iCabt directly harmful to
humans, but is very bad for the environment. Because it isyairgortant gas that causes
the greenhouse effect. The gases released by vehicles pakéaiof the total green house

1The content of this chapter was published in [86].
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gases released around the world. Due to the high concemi@tiransportation, the vehicle
emissions will form big smog over the city areas, and thusriteiate the climate of large
cities. In general, traffic pollution deteriorates our tigienvironment, thus increases the
risk for the people who already have heart or lung diseasestefore, it is very necessary
to integrate traffic emissions control into the urban traffianagement system, so as to
provide a healthier, safer, and more comfort living envinemt for the people living in
urban areas.

So far, most of the ongoing research is focusing on reducaffc delays and traffic
congestion, and improving the traffic flow throughput. Hoain some circumstances, an
increased traffic flow throughput may result in even high@ltwaffic emissions [129]. In
general, we cannot take for granted that the smaller traalalyds, the less traffic emissions
will be generated. In fact, the emissions of a vehicle deggedtly on the operational con-
ditions of the vehicle [4, 28, 29]. Large emissions can beigiout by a vehicle with either
too high speed or too low speed. Therefore, an integratetiai@trategy is necessary that
balances performance in terms of both travel delays angdktof traffic emissions. Traf-
fic control strategies considering both travel delays aafficremissions for highways have
been already discussed in [129-131]. Since the speed rangthe behavior of vehicles
are different for urban and highway, in this chapter we wditleess travel delays and traffic
emissions for urban areas.

To this aim, first a macroscopic urban traffic model that alstineates the emissions
of traffic flows is proposed, and an MPC controller considgtioth traffic delays and
emissions is built using this model as the prediction mo&hce at each step the MPC
controller solves an optimization problem on-line, it haghhrequirements for the on-line
computational complexity of the prediction model. The S eldd Chapter 4 is taken as
the prediction model for the MPC controller. This model is aanoscopic urban traffic
model, which is fast to compute and also accurate enoughdiatral purposes [82]. In
order to well capture the emissions of a vehicle running ooaal iin urban area, a micro-
scopic traffic emission model that is based on both veloaity acceleration, is selected.
This vehicle emission model provides reasonable estimatesn the vehicle is decelerat-
ing, accelerating, or moving slowly in front of the stopdim red signals. Integrated with
this microscopic traffic emission model, the overall macaopsc prediction model is able to
provide estimations of both travel delays and emissionthi®MPC controller.

7.2 Microscopic traffic emission and fuel consumption model

Vehicle emissions depend on many factors, such as vehilesstlike engine, chassis,
age, and maintenance), environmental conditions (suahfiasiructure and weather), and
operational factors (such as speed, acceleration, andestagid). These last factors are the
most decisive elements for the fuel consumption and thestomf harmful substances.
A traffic emission and fuel consumption model calculatesghantity of the generated
emissions and consumed fuel based on the operating cargldidhe vehicles.
Technology-based emission or fuel consumption modelsaaedetailed models. These
kind of models are developed for a specific vehicle (or erjgnedel [62]. Such models
are used for the assessment of new technological develdpnae for regulation purposes
[62]. Since these models are very detailed, they are difftoulise for online prediction or
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on-line estimation of emissions and fuel consumption dfitrlow. Therefore, for compu-
tational reasons it is advisable not to use such models ftinenrmodel-based traffic control
purposes [129].

There are simpler emission and fuel consumption modelsatteasuitable for control
purposes, i.e. average-speed-based models and dynaseidmadels.

Average-speed-based models calculate the emissions elncbfussumption of each ve-
hicle based on the average traveling speed of the vehicls.alkrage traveling speed can
be calculated either over the entire trip, or over some ltoa periods to take some vari-
ations of the speed into consideration [19]. The mathemlatiguations for CO, NQ, and
HC emissions from this model are:

Eco(V) = (0.001728% — 0.245/+9.617) [g/km| (7.1)
Eno, (V) = 10-4(0.854/2 — 857+ 5260) [g/km| (7.2)
Enc(V) = 10 4(0.521v2 — 88.8v+ 4494 [g/km| (7.3)

wherev is the average speed of a vehicle on a given route,Eied Eno,, andEc are
emission levels of carbon monoxide, nitrogen oxides anddgatbons in g/km. This model
is only based on the average speed of a vehicle.

However, dynamic-based models use more detailed knowlgithe vehicle dynamics,
i.e. the speed and acceleration data of each vehicle at ¢éiveeyinstant. As they are
microscopic traffic emission and fuel consumption modejsadhic-based models are more
accurate than the average-speed-based models.

VT-micro [4] is a microscopic dynamic-based traffic emissind fuel consumption
model. It evaluates the emissions based on not only the spfeeekry vehicle, but also
the acceleration or the deceleration of each vehicle. V@rongenerates emissions and fuel
consumption of an individual vehicle with indéat every time stej based on the current
speedv; (k) and acceleratiog; (k) of the vehicle, as

Eq, (vi(K). i (k) = exp(¥] (k)Po&i(K)), (7.4)

whereEg; stands for the emission or fuel consumption o€ M = {CO,NOy,HC, FC},
and the vectors of velocities and accelerations with th@eepts going up from 0 to 3 are
defined asi (k) = [1 vi(k) VA(K) V¥(K)]", & (k) = [1 & (k) a?(k) a¥(K)]", while Pg is the
parameter matrix of the model for emission or fuel consuamptyped € M. The matrices
Pg for the emission variable8 = {CO,HC,NOy} and the fuel consumption are initially
given in [4, 5], and are adapted for metric system as:

88.7447 488324 328837 —4.7675
21232920 41656 —3.2843 0

Peo=10"| 08503 03291 05700 —0.0532 (7.5)
0.0163 —0.0082 —0.0118 0
~72.8040 0 251563 —0.3284

R — 10°2 8.1857 109200 —1.9423 —1.2745 7.6)

—0.2260 —0.3531 04356 01258 |’
0.0069 00072 —0.0080 -0.0021
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—1067680 834524 95433 —3.3549
152306 166647 101565 —3.7076

o =10%| T0'830 04501 06836 00737 | (7.7)
0.0020 00038 00091 —0.0016
and
_67.9440 443809 171641 —4.2024
h._102| 97326 51753 (02942 —0.7068 78)

—0.3014 -0.0742 00109 00116
0.0053 00006 —0.0010 —0.0006

The emissions of C@are proportional to vehicle fuel consumption, i.e. the nfaed con-
sumed, the more COwill be released. Therefore, the emissions of,(fan be derived
from the fuel consumption model as in [130]:

Eco,.i(Vi(k),ai(k)) = 1.17x 10_5+2.65E,:ue“ (vi(K),a(K)) [I/km]. (7.9)

Fig. 7.1 illustrates the variations of the emissions for MiEro model as a function of the
speed of the vehicles.

In this chapter, we are going to use VT-micro model to integweath the S model so as
to estimate the vehicle emissions and fuel consumptionrtmarutraffic.

7.3 Integrated traffic flow, traffic emission, and fuel con-
sumption model

7.3.1 Urban traffic behaviors for individual vehicles

As a microscopic model, the VT-micro model provides the ainiss of an individual ve-
hicle at a certain location and a time instant. But, as a ns@oic model, the S model
only provides information of traffic flows instead of evenytaikof each individual vehicle.
However, the S model can capture the main behavior of thecheshiwhen they are run-
ning along a road. The time period spent by a vehicle runnioggaa road can be divided
into several parts, in each of which the behavior of the dehicassumed to be uniform.
Define the set of the behaviors Bs= {free idling, dec acc nonstog. Fig.[7.2 shows how
the velocity of a vehicle could vary in different behaviogiens, when it travels along an
urban road. Therefore, the emission and fuel consumptiateirfor an individual vehicle
in behaviomb € B can be derived fo € M = {CO, CO,, NOx,HC, FC} according to Section
7.2.

As Fig.| 7.2(a) shows, in the regions “free” and “idling”, thehicle runs with a constant
velocity, i.e. the acceleration &= 0. The region “free” stands for the time period that the
vehicle is running on the link with free-flow spegd-= viee, While the region “idling” rep-
resents the time period that the vehicle is moving in a quedie®nt of an intersection with
a very low speed = viow. Therefore, the emission functions for the vehicle runnrit
free-flow speed and the vehicle idling with a very low speeth&queues are respectively

Eg,?e(k) = Eg;(Viree, 0), (7.10)
Eiec,ji”ng(k) = Eg i (Viow; 0) - (7.11)



7.3 Integrated traffic flow, traffic emission, and fuel congtion model 117

25
---a=1 ---al
a=0 a=0
€ on a=-1 L a=-1
4 s
2 C)
c 15 [ o
2 k]
7} 0
2 @
5 10/ - 5
o P o]
o _ - I
5f - _ 4
O -----------------------------------------
0 10 20 30 40 50 0 10 20 30 40 50
Velocity (km/h) Velocity (km/h)
@ (b)
3.5
! ---a=1
3! a=0
— 1 —
..... = €
£ 2shi a=1 S
) 1 g
g 2 S
£ @
G 5
Q )
z o
0 10 20 30 40 50 0 10 20 30 40 50
Velocity (km/h) Velocity (km/h)
(c) (d)

Fuel consumption (I/km)

0 10 20 30 40 50
Velocity (km/h)

(e)

Figure 7.1: Vehicle emissions of VT-micro 60, HC, andNOy, CO;,, and fuel consump-
tion at various acceleration &n/s’)

The regions “dec” and “acc” respectively represent the ideaton and acceleration behav-
ior of the vehicle near an intersection. Here, the assumpsianade that the vehicle will
decelerate and accelerate with constant acceleraigre 0 andagcc > O respectively. The
average velocityayrg is used in the emission function to approximate the veloditsing
decelerating and accelerating. Then, the emission fumefiar the vehicle decelerating and
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Figure 7.2: Vehicle dynamic behavior on a road

accelerating are

Edec(k) Eg,i (Vavrg, adec) s (7.12)
E§S(K) = Eg, (Vavrg @ace) » (7.13)

where the average velocity of the vehicle is an average oléhecity before and after
accelerationVayrg = (Viree+ Viow) /2.

If the vehicle arrives at the stop line, where no queue isantfof it and the traffic light
is also green, then the vehicle will leave the link without@psat a constant speed. This
constant speedj,,, is a little bit lower than the free-flow speed, because dsiweill in
general be more cautious while passing the intersectioherefore, the emissions for the
nonstop vehicles are

”°“S‘°p(k Eg,i (Veau, 0). (7.14)

Remark 7.1 In this subsection, all the variables are assumed to be the ar a vehicle
on any link. If the locations of vehicles are considerednttiee emissiorEg; of vehiclei

on link (u,d) in behaviorb should be remarked ﬁ_’u_d,i. O

7.3.2 Integrated VT-S traffic emission and fuel consumptiormodel

The S model provides macroscopic traffic states for each(linit) € L in each simulation

time interval (cycle time). The traffic states include thenner of vehicles traveling with
free-flow speed, the number of vehicles decelerating angleating, the number of vehicle
waiting in queues. Based on this macroscopic informatiah the microscopic emission
and fuel consumption model of the previous section, a maoms traffic emission and
fuel consumption model can be obtained by combining the asgopic S model and the
VT-micro model, which results in a macroscopic integratadfit flow, emission, and fuel

consumption model, which we call the VT-S model.
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The VT-S model for emission and fuel consumpt®e M) in link (u,d) € L during
time period[cq - Kq,Cq - (Kg +1)] is

Bouak)=> > T E8 uai(K)
beBkex [ky) icv (budk)
- EBEg,u.d<kd>-Nl'j’,d(kd)w&d(kd), (7.15)
be

where (b,u,d,k) is the set of vehicles that have behavioat time stegk in link (u,d),
% (d,kq) is the set of time steps k such th&t € [cq - Ky, Cq - (Kg + 1)] at which the vehicles
are in behaviobin link (u,d), Egu’d(kd) is the constant traffic emission for emissignf a
vehicle on link(u,d) with behaviorb during time periodcy -Kg, ¢q - (kg +1)], N2 4 (kq) is the
number of vehicles that have behavidn link (u, d) during time periodcy - kg, Cq- (kg +1)],
andtfj{d(kd) is the time period that the vehicles keep having this bemavio

Urban traffic states on a link can be separated into diffeseaharios according to the
level of the traffic density. In the saturated traffic scemattie queues of vehicles resulting
from the red phase cannot be dissolved completely at thedolh green phase, i.e. all the
arriving vehicles have to stop and wait once for the nextgitegt to leave the link. For
the over-saturated traffic scenario, the vehicles need tbferaeven more cycle times in
the queues than in a saturated scenario. On the contrahg imisaturated traffic scenario,
all the accumulated vehicles during the red phase are aldave the link in the following
green phase, and some vehicles can even leave the link wihgistop. Since the traffic
behaviors could differ between these scenarios, the VT-&eatrean be further derived for
each of the three scenarios.

First, we are going to recall some of the notations of the Sehitt will be used in the
following content:

Ougd : set of downstream nodes of output links of lifkk d),
Nud(Kd) : number of vehicles in linku, d) at stepkg,
Ou,d(kd) : queue length (expressed as the number of vehicles) aksteplink
, (u,d),
ag{ (ka) : average flow rate arriving at the tail of the queue in ljokd) at step
’ IQjY
Bu,d.o(kd) : fraction of the traffic in link(u,d) anticipating to turn to linkd,0) at
stepky,
Hud : saturation flow rate leaving linfu,d),
Ou,d,o(Kd) : green time length during stegy for the traffic stream towards link

(d,0) in link (u,d)

Saturated scenario

In the saturated scenario, not all the vehicles waiting aridiag in the queues could leave
the link in the current green phase. So some vehicles havaitamtil the next green phase,
i.e. the number of vehicles waiting and arriving in the lindkceeds the maximum number
of vehicles that could leave at most in one cycle time, howéwve queues waiting in the
link can be dissolved in the following green phase. This iasrahterized by the following
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condition:

QU,d(kd) < Bu,d,o(kd) “Hud - gu,d.o(kd)

0€0yq

< cg- a2V (ka) + Gua(Ka) - (7.16)

Therefore, all the vehicles have to wait once for a red traffioal in the queues before
leaving the link, i.e. no vehicle can leave the link withotdps For the saturated scenario,
the number of vehicles that have behawat B in link (u,d) during time periodcy - kg, Cq -
(kg +1)] is given by

NGE(ka) = Nua(ka) — Ca - a3e (Ka) — Cua(Ka) (7.17)
NG (ka) = Ca - 025" (ka) + Qua(ka) - (7.18)
Bu,d,o(kd) “Hud - gu,d.o(kd) (7-19)
€0yd
N @%(ka) = Y Bud.olka) Hud Gud.o(Ke) — Gua(ka) (7.20)
€0y,d

|d||ng 3(kd) _ (7.21)
|d||ng 4(kd) = qu d(kd) (7.22)
deC(kd) — arr|v<kd) (7_23)
acc(kd) Bu do(Kd) - Hud - Qud.o(Kd) (7.24)
nonstoptkd (7.25)

and the time periods that the vehicles keep having this hehavlink (u,d) during time
period|cqy - kg, Cq - (kg + 1)] are given by

thee(ka) = (7.26)
tg 1(kd) — (Viow — Viree) /@dec (7.27)
"’"”9 2(ka) = Ca — (Viow — Viree) / Qdec— (Viree — Viow) /Bace (7.28)
'd"”g 3(kg) =0 (7.29)
'd"”g *(Kg) = Cg — (Viree — Viow) /Bace (7.30)
tS%f( Kd) = (Viow — Viree) /adec (7.31)
tia(ka) = (Vfree— Viow)/acc (7.32)
tog - Nka) = (7.33)

Equation|(7.17) gives the number of vehicles that are rupnomlink (u,d) with free-
flow speed during the time period shown in (7.26). The vebkidtking in front of the
stop-line in link(u,d) can be classified into four groups:

1. Vehicles idling for the rest of the cycle time after decaton;
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2. Vehicles idling between deceleration and acceleration;
3. Vehicles idling for the entire cycle time;
4. Vehicles idling for the rest of the cycle time before aecation.

In the saturated scenario, (7.19) gives the number of vehitlat arrive at the end of
the queues and decelerate to a low speed in(iink), and then keep idling for the time
period as in[(7.27). Equation (7.20) gives the number ofalebithat decelerate to arrive at
the end of the queues, keep idling for time period in (7.28), then accelerate to leave link
(u,d). Equation|(7.22) gives the number of vehicles in the quelaskeep idling for the
time period as i (7.30), and finally accelerate and leake(lind). All the vehicles arriving
at the end of the queues need to decelerate as (7.23) shahal] tre vehicles leaving link
(u,d) will accelerate as (7.24) shows.

Over-saturated scenario

In the over-saturated scenario, the vehicles waiting irgtheues could not leave the link in
the current green phase. So, some vehicles have to wait imametwo red traffic phases,
i.e. the number of vehicles waiting in the queues to leavdittkeexceeds the maximum
number of vehicles that could leave at most in one cycle time:

Bu.d,o(Kd) - Hud - Gud,o(kKd) < qud(Ka) - (7.34)

€0y d

For the over-saturated scenario, the number of vehiclehtwe behaviob € B in link
(u,d) during time periodcq - Kg,Cq - (kg + 1)] is given by

NGE(ka) = Nua(ka) — Ca - afe (Ka) — Cua(Ka) (7.35)
Ny (ka) = ca- aﬁ&&”(k@ (7.36)
|d||ng Z(kd) _ (7.37)
"‘"”g (k) = Gua(ka) = Y Budo(ke)-Hud-Gudolka) (7.38)

NG (ka) = S Budolka) - Hud - Gug.o(k) (7.39)

Ndec(kd) = cy Gargv(kd) (740)

NiG(ka) = Bud.o(Kd) - Hud - Gud.o(Ka) (7.41)

u.d
nonstop(kd (7.42)

and the time periods that the vehicles keep having this behavlink (u,d) during time
period[cq - kg, Cq - (kg + 1)] are given by

tMe(ka) = cq (7.43)

ttljc,lcljmgyl(kd) = Cq — (Viow — Viree) /Adec (7.44)
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tha 2 (ke) = (7.45)
'd"”g B(ka) = (7.46)
'd"”g *(ka) = cd — (Viree — Viow) /@acc (7.47)
dec( ka) = (Vlow Viree) /adec (7.48)
thd(ka) = (Vfree — Viow) /@ace (7.49)
nonstoptkd (7.50)

Except for the “idling” behavior, all the above formulas éne same as in the saturated
scenario. All the vehicles arriving at the end of the queseshawn in (7.36) will decelerate
and be idling for time period (7.44). A part of the vehiclestwg in the queues as in (7.38)
cannot leave linku,d), and will be idling for the entire cycle time. All the vehislas
shown in [(7.39) will be idling for time period (7.47), and thaccelerate and leave link
(u,d).

Unsaturated scenario

In the unsaturated scenario, the queues can be dissolvereltee current green phase
ends. Thus, the traffic demand, i.e. the number of vehiclésngaand arriving to leave
the link is less than the maximum number of vehicles that eawd in one cycle, which is
characterized as

Ca- 0@V (kg) + qua(ka) < Y Budo(kd) - Hud - Gudo(ka)- (7.51)

0€0y d

Therefore, during a green phase, the vehicles waiting irgtieaes can be considered
to first leave the link according to the saturated flow ratéheflink |, 4, and then, after the
queues are dissolved, the arriving vehicles will leaveitilewithout a stop according to the
arriving flow rateaa”'"(kd) in the rest of the green time. Hereafter, the green time fx i
(u,d) in thekgth cycle, 0ud(kd), can be approximately separated into two parts: one is the
green timeg;, 4 (k) in which the traffic leaves the link with the saturated floverahe other
is the green timgﬂ_d(kd) during which the traffic leaves the link with the arriving floate.

The quantities o8 4 (k) andgid(kd) satisfy the following relationship

ca0d (Kg) + dua(ka) = G g (ka)Hu.a + 95 a(Ka) a3 (ka) (7.52)
95.a(ka) + 90 4(ka) = Gua(ka)- (7.53)

Hence, we have

S Cdaﬁrcrilv(kd) + qu’d(kd) — gu,d(kd)aﬁréiVU(d)
T i ) 7.54
gu,d(kd) Uu,d . aﬁ:‘(I;IV(kd) ( )

d o Gua(ka)bud —ca0ds (Ka) —du(ka)
Qua(ka) = oa— (k) : (7.55)
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For the unsaturated scenario, the number of vehicles that ehaviob € B in link
(u,d) during time periodcq - Kg,Cq - (kg + 1)] is given by

Nf®(kg) = Nua(Ka) — Ca - @37 (Kg) — g (Ka) (7.56)
Ny %™ (ka) =0 (7.57)
N9 (ka) = (Ca — 5 (ka)) 05" (Ke) = 05 (ka)ug — Qg (ko) (7.58)
'd"”93(kd) 0 (7.59)
Ny (ka) = Qua(ka) (7.60)
NG (ka) = (ca — 0 q(ka)) g (ka) = 0% a (Ka)Mua — Cua(Ka) (7.61)
NE%i(ka) = 05 g (ka) Mg (7.62)
Noa™ ka) = o g (ka) ol (ka) (7.63)

and the time periods that the vehicles keep having this behavlink (u,d) during time
period[cq - kg, Cq - (kg + 1)] are given by

tree(ka) = cg (7.64)
thg 2 (ka) =0 (7.65)
tig 2 (ka) = Ca — g 4(Ka) — (Viow — Viree) /adec (7.66)

- (Vfree_ Viow) /@acc (7.67)
i (ka) = (7.68)
'd"”g #(ka) = €4 — 08 g (Kd) — (Viree — Viow),/Bacc (7.69)
dec( Ka) = (Viow — Viree) /adec (7.70)
t3e(ka) = (Viree — Viow) /@acc (7.71)
o kg) = o g(ka) (7.72)

In the unsaturated scenario, no vehicle will be held at tbp-Bhe for more than one
cycle time, i.e. all the queues will be dissolved in the faflog green time. Thus, only
vehicles for “idling,2” and “idling,4” exist. All the arrilng vehicles except the “nonstop”
vehicles (as in (7.58)) will experience deceleration ancklaration, and be idling for the
time period in[(7.617). All the waiting vehicles in the quelirg7.60) will be idling for
the time period (7.69), and then accelerate to leave. Omlyathiving vehicles except the
vehicles that do not need to stop will decelerate and waituieues as if (7.61). All the
vehicles leaving at the saturation flow rate have to acceldmleave the link as (7.62)
shows. In time period (7.72), the arriving vehicles as show{7.63) will leave link(u,d)
without a stop.

7.4 Objective function

Given the control time interval, and the simulation time interval of noded € J, there
exists an integely such that
Te = Nycy, (7.73)
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according to the definition of the cycle times for the nodea traffic network, as shown in
(4.60). For a givelky (a counter for simulation time steps for natle J ), the corresponding
value ofk is given by
kg
k) = | 2. (7.7
d
where |x] for x a real number denotes the largest integer less than or egual®n the
other hand, a given valug of the control time step corresponds to the geﬂ\ld,chd +
1,--+,(ke+1)Ng — 1} of simulation time steps.
The objective function of the integrated urban control peabat control time stef is

Ng (ke+Np

Y’ )
M= 2 Eonomina Eoua(ke), (7.75)
(ke) 96% E&nominal(udz)e'_kd:’gdkﬁ_l o.u.d(Kd)

whereEy , 4(kd) denotes the estimated partial criterion@an link (u,d) at simulation time
stepky, © = {TTS,CO,NOy, HC,CO;,, FC} is the set of the control objectivelSg nominal iS
the nominal performance for objecti¥ec © to normalize the partial objective 6f andAg
is the weight parameter for objecti@e For the Total Time Spent (TTS), we have

Errsud(ka) = Ts-Nua(ka), (7.76)

and|(7.15) will be used for emissions and fuel consumptidre doal of the control problem
is to reduce the combined performance of the Total Time Saedtthe variety of traffic
emissions (i.e. CO, N HC, and CQ) of the whole urban traffic network over the entire
prediction horizon. Hence, it turns out to be a multiple abje control problem. Each of
the objective functions is normalized by its nominal parfance. By changing the weights
of the objective function, a different emphasis can be assidor different kinds of control
purposes.

7.5 Case study

CORSIM is a microscopic traffic simulation software develdjpy FHWA [45], which can
be used as a benchmark to design or test traffic control thgasi We use CORSIM to
simulate the real traffic environment, and design MPC cdisn®according to Chapter 5 to
decide control inputs for the traffic signals in CORSIM, ag.F.3 shows. The simulated
urban road subnetwork is shown in Fig. [7.4. Nodes marked ds4di® the source nodes
where traffic flows enter and leave the network. The stringgS68-9-10-S7 is the main
road of the network that has comparatively higher traffic deds. The lightly shaded land
in the network is an area of residences or schools, wherdgtipudensity is high, and the
requirement for the air condition is also stricter accogtiin

Model predictive controllers for urban traffic are designededuce both TTS and TE
(Total Emissions for CO, N@ and HC) for this urban traffic network. Given different
weights to the partial objective functions, the MPC corénotan emphasize on different
traffic issues, and focus on improving different perfornaimdications. MPC controllers
are designed based on the weights specified for the diffelgattives, as shown in Table
[7.1. Since the C®emission of a vehicle is reduced monotonously when the iekjeed
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MPC controller
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Figure 7.3: lllustration of the traffic control simulation

increases (see Fig. 7.1(d)), we can deduce that the lowerdatay is, the higher average
traveling speed the vehicles will have, and thus the less &fission will be released.

The structure of a urban road subnetwork is shown in Fig. ttamain street (a string
S6-6-7-8-9-10-S7) and a resident or a school area (theylightaded area). The lengths of
the roads are given on the figure in meter. Each of the roadeinr#ific network have 3
lanes, and the turning rates for each link are all the sameleift turn 33%, through turn
34%, right turn 33%. The storage capacities of the links asedfiaccording to the link
lengths, the number of lanes, and the average vehicle I€igth). The free-flow speed is
30 km/h. The traffic demands of all the source nodes are vary360 veh/h), but the traffic
demands for source nodes S6 and S7 are very high (3000 veh/h).

For the set-up of the traffic controllers of this subnetwdainke, cycle time is set to 60 s for
intersection 6, 8, 9, 10, and 11, and 40 s for the other intéses. During the experiments,
the simulation time interval of the BLX model is set to 1 s, lghn the S model, the simu-
lation time intervals are 60 s or 40 s. For both the MPC colers| the control time interval
Tc is 1205s, the prediction horizdd, is 5, and the control horizon is sethy = Np. All the
simulations implemented with different control strategien for the same time period, 1 h.
To illustrate the effectiveness of the MPC controllersythee compared with a fixed-time
strategy. The fixed-time control strategy is defined havimgstant phases, cycle times, and
green time splits, and the offsets are set to be zero. The-fimedsignals/[101] are de-

Table 7.1: Weight parameters for the multi-objective MP@Gtoallers
MPC  Arrs Aco Anoc  AHc
MPC-1 1 0 0 0
MPC-2 0 0.33 0.33 0.34
MPC-3 05 0.16 0.17 0.17
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Figure 7.4: An urban road network with a main street (a strif§-6-7-8-9-10-S7) and a
resident or a school area (the lightly shaded area)

signed based on the data for the saturated scenario, i.gréka times are proportional to
the traffic demands from each direction, which depend on dheated flow rates and the
turning rates under the saturated scenario.

The performance indicators that CORSIM provides to eveltia¢ effect of the con-
trollers are the TTS, the Total Fuel Consumption (TFC), tliefér CO, NQ,, and HC
respectively. For the performance TTS, we further compae€eliTS for the entire network
and the TTS for the main road of the network (i.e. the stringgS68-9-10-S7, see Fig. 7.4).
The TFC represents the total fuel consumption for the whetevork, which also reflects
the amount of the C@emission (because of the proportional mapping betweenciuel
sumption and C@emission [130], see alsb (7.9)). The TE is the total amourgaskes,
including CO, NQ, and HC, released on the roads surrounding the lightly shesfion
in Fig. 7.4. The fixed-time controller is defined accordingte rule described in the an-
swer for Section 5.4.1, which is decided based on the prigpoof the saturation flow rates
for saturated scenario. But this is not an optimal contrtitsan for real-time traffic, be-
cause the traffic demands may change with time, and the tsafficarios may also switch.
The results of every control performance are illustrateddhle 7.2 for different control
strategies.
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As Table 7.2 shows, all the MPC controllers are able to sigmifily reduce the TTS,
the TFC, and the TE compared to the FT controller, exceptHerTTS performance of
the string. The MPC controllers can improve the TTS perfaroeafor the entire traffic
network, but also sacrifice some of the TTS performance onriai@ road. MPC-1 and
MPC-2 are MPC controllers taking only the TTS of the wholenark or only the TE as
control objective respectively. For the MPC-1, the TTS amel TFC are very low, but the
TE for each of the gases is higher than that of MPC-2. For th€MPthe TE for each of
the gases is reduced, but the TTS and the TFC become higheMBRE&-1, and the TTS
for the string also deteriorates a lot for the main road. Wheth bhe TTS and the TE
are considered for the control objective as in MPC-3, allatieantages of the MPC-1 and
MPC-2 are preserved, where all the performances, inclutied TS, the TFC, and the TE
of each gas, keep being minimized with only small deviations

The TTS and TE are not conflicting objectives for urban traffiat they do conflict to
each other for highways, because the speed range and thadvatfarehicles are different
for urban and highway. In urban areas, the range of the speeglicles is usually from O
to 50 km/h. We know from the VT-micro model that the emissiand the fuel consumption
of a vehicle almost monotonously decrease when the spede okhicle increases within
this range. Hence, the more congested status the vehicletisei more emissions will be
released, and the more fuel will be consumed. Thereforebiantraffic, similar results will
be derived when the MPC controller takes TTS and TE as theaastijectives. However,
this is not the case for highways. The speed of vehicles ohwdyg can go up to 120
veh/h or higher, at which vehicles will also release moressinns and consume more fuel.
Therefore, a confliction between TTS and TE will occur in ssithation.

7.6 Conclusions

In urban areas, traffic delays and traffic emissions are twiouseconsequences caused by
heavy transportation demands. An integrated MPC contrfdleurban areas is established
to reduce both travel delays and various types of traffic sions.

A new integrated traffic flow and emission model to be used agtkdiction model
of the MPC controller is proposed in this chapter. The VTnmiemission model for indi-
vidual vehicles is selected, and integrated with a macmsaaban traffic flow model, the
S-model, so as to form an integrated macroscopic urbanctfédfiv and emission model,
which we call VT-S model. The microscopic emission model eatimate the amount of
gases released by a vehicle at different operational dongite. the speed and the acceler-
ation speed. Thus, by combine the traffic flow model and theni@ro model together, the
integrated traffic flow and emission model is able to prediettraffic flow states, as well
as the massive emissions released by all vehicles. Moreafter the emission model is
integrated with a macroscopic model, the prediction modglstill keep the computational
efficiency of a macroscopic model for control purposes. figkhis model as the predic-
tion model, MPC controller can address problems with midtgbjectives with respect to
both travel delays and emissions. The aim and the prefedtbe MPC controller can be
changed by assigning different weights for the multiplesgbyes.

This approach was illustrated by a case study. The simulagisults show that the MPC
controllers can reduce both total emissions and total tipe@ts and thus reduce total fuel
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consumption and C&£emissions accordingly.
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Chapter 8

Conclusions and
Recommendations

This thesis mainly focuses on how to coordinate and contiariee-scale traffic network ef-
fectively and in a network-wide way, and it also addressesfficiency of the computation
problem when the network scale grows large.

In this chapter, general conclusions will be drawn, firstharwhole thesis, and then for
each chapter separately. Furthermore, recommendatiofistfioe research directions will
be presented.

8.1 Summary of conclusions

Model Predictive Control (MPC) is a promising control medbtogy that can meet the
needs for controlling and coordinating a large-scale traffitwork with a number of traffic
measures. MPC has several advantages for controlling-tge traffic networks: MPC
can easily coordinate various control measures implerdanteaffic networks, it can pre-
dict the future traffic states to make a long-term decisibig fobust to disturbances and
model uncertainty, it can be implemented modularly, etoweleer, a big difficulty to imple-
ment MPC in practice is the high on-line computational bard&hen using MPC, at each
time step, we have to solve an optimization problem withimratéd period of time. If the
optimization problem of MPC controller is too time-consuigito be solved on-line, due
to the large scale of the optimization problem or due to the-lireear, non-convex nature
of the optimization problem, the MPC controller becomed-tiaae infeasible in practice,
even though the problem is solvable in theory.

Therefore, in the thesis, we have established MPC contsdibe urban traffic networks,
and presented several ways to address the computatioridepr® arising when MPC is
used to control and coordinate large-scale urban traffiwerés. The main methods con-
sidered in the thesis can be summarized as follows:

e Model reduction: The computational efficiency of urban traffic models was im-
proved through reducing the complexity of the models. Adouagly, the on-line
optimization problems of the model-based predictive aulgrs were solved more
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efficiently based on these models. In this context, a sgatiporally discrete urban
traffic model with a variable sampling time interval was peed for model-based
predictive control, which allows to search for a trade-affween modeling accuracy
and computational complexity. The on-line computatiofiiadiency of the MPC con-
trollers were improved greatly by adjusting the samplimgetiinterval, and accord-
ingly reducing the computational complexity of the preidictmodels. The control
performance loss, caused by the model reduction, can bietirtirough balancing
between the modeling accuracy and the computational coiptef the models.

Reformulation of the optimization problem : We have reformulated the nonlinear
non-convex optimization problem of the urban traffic MPCtcolters into a mixed-
integer linear programming (MILP) problem, where the forrizehard to solve by
nature, while the latter can be solved efficiently by exgfihiLP solvers.

Hierarchical control structure: The computational complexity of a centralized MPC
controller for a large-scale urban traffic network can beiced by dividing the net-
work into several smaller sub-networks, each of which tedala much lower com-
putational burden. These traffic sub-networks are cootéihao as to approximate
the global control performance of a centralized MPC coterol

MPC controllers are also built to address multiple contnalyems for urban traffic
networks, e.g. traffic delays as well as vehicle emissiomsfaal consumption. In order
to control traffic delay as well as traffic emissions and fumtsumption in big cities, an
integrated urban traffic, emission, and fuel consumptiomehds proposed. MPC con-
trollers are established based on this model, which resulishalanced trade-off between
minimizing travel time and reducing emissions and fuel comgtion.

Main conclusions for the chapters

e Chapter 2:

A literature survey is made to summarize coordinated traffictrol strategies for
both traffic networks and strings. From the view of traffic wzohmethodologies,
the existing coordinated traffic control strategies can lassified into MFD-based
(Macroscopic Fundamental Diagram based) approachesbeasel approaches, rule-
based approaches, anticipatory control approach, optwrol approaches, and
MPC (Model Predictive Control) approaches under cenedlizlistributed, and hier-
archical control structures. The characteristics of tmethodologies have been an-
alyzed and compared in this literature survey. The modséta@ptimization control
methodology, including anticipatory control approacloggimal control approaches,
and MPC approaches, is comparatively a very powerful gtyatdowever, the prob-
lem for model-based optimization control methods is thénlig-line computational
complexity, which handicaps them to be applied in realiliédfic.

Chapter 3:

A well-defined network-wide control framework is necesdandesigning controllers
for a complex large-scale urban traffic network. By desigrarproper control frame-
work for MPC controllers, the on-line computational conxite can be further re-
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duced. Moreover, a suitable control structure can also addbflity, reliability, scal-
ability, sustainability for the complex large-scale traffiontrol system. Therefore,
various control structures for large-scale urban traffismoeks were discussed and
compared in this chapter. The control structure for a lagge traffic network can
be roughly classified into four types: centralized conttnicture, decentralized con-
trol structure, distributed control structure, and hiehézal control structure. The
centralized control can in theory achieve the best oveaaltrol performance of the
whole network, while the decentralized control has the kiveemputational burden.
Distributed control and hierarchical control provide a guomise between the cen-
tralized controller and the decentralized controller. rEffi@re, distributed or hierar-
chical control structures are suitable for controlling @bex large-scale urban traffic
networks. As a result, a distributed MPC-based controcttine was presented, and
coordination algorithms were given in this chapter, whicbmdes a general coordi-
nation framework for the subnetwork MPC controllers desitjim Chapter 5, 6, and
7.

e Chapter 4:

Traffic models that can predict future traffic states are #Hsdof model-based control
strategies. The traffic models included in this thesis drdistussed and evaluated
from a control point of view. To improve the applicability thfe MPC controllers for
large-scale urban traffic networks, we are mainly focusinghe trade-off between
the efficiency and the complexity of the traffic models. Aahie traffic model that is
both accurate enough and fast enough, is very important éolefrbased controllers
from a practical point of view. In this context, several masmopic urban traffic mod-
els were presented in this chapter. Two urban traffic netwookiels, called BLX
model and S model respectively, were proposed. The BLX migdebre accurate,
while the S model is much faster. Moreover, a spatiotempodicrete urban traffic
model with a variable sampling time interval was proposediodel-based predic-
tive control, which allows to easily search for a trade-affieen modeling accuracy
and computational complexity. It contains the featuresathlthe BLX and the S
model. The models analyzed and evaluated in this chapter wsd as prediction
models of the MPC controllers designed in the later chapters

e Chapter 5:

In this chapter, MPC controllers were established for utpaffic subnetworks, tak-
ing respectively the BLX model and the S model proposed inp@hat as prediction
model. The S model was selected to further increase thenercémputational speed
of the MPC controller. Simulation results illustrated tiath the S model and the
BLX model were suitable to be used as prediction models of MB@rollers, and
that the S model was much faster while still offering accelgtaccuracy in the traf-
fic states predictions. Furthermore, the MPC controllersevdeemonstrated to have
sufficient capability for coordinating the traffic contragsals and all intersections
within the subnetworks and to achieve a good overall perdmce

e Chapter 6:

The on-line computational complexity of MPC controllerssfarther reduced through
reformulating the optimization problem. Due to the nondinaon-convex nature of



134 8 Conclusions and Recommendations

the optimization problem, the on-line computational coexfily of the correspond-
ing MPC controllers may become real-time infeasible in ficac To address this
problem, the nonlinear S model was reformulated into a miréeber linear model,
which can be expressed by mixed-integer linear equalitiesimequalities. The S
model and the reduced $hodel were both reformulated according to this method,
and the original nonlinear non-convex optimization problas written in the form
of a Mixed-Integer Linear Programming (MILP) problem basedthe reformulated
S model and Smodel respectively. Hence, existing efficient MILP solveas be
applied to solve the reformulated MILP MPC optimizationgems. The simulation
experiments illustrated that the MILP-based approachesyaintain a similar con-
trol performances as the multi-start SQP-based contrabagh. Moreover, the most
important advantage of the MILP-based MPC controllers & the on-line compu-
tational speed is dramatically increased compared withotlggnal MPC controller,
which greatly increases the applicability of the MPC coltrs in practice.

e Chapter 7:

In order to meet the needs of maintaining a good living emvirent for citizens, MPC
controllers that can consider traffic delay, traffic emissiand fuel consumption were
presented in this chapter. An integrated urban traffic, sias and fuel consumption
model was proposed, which combined a macroscopic urbdictfiaiv model, the
S model, with a microscopic vehicle emission and fuel corsion model, the VT-
micro model. This model can predict the future traffic flowtsta as well as the
emissions released and the fuel consumed by the vehicldgngTthis model as a
prediction model, the MPC controller can address probleiitts multiple objectives
with respect to travel delays, emissions, and fuel consiomptBased on this inte-
grated model, we established urban traffic MPC controlleas provide a balanced
trade-off between minimizing travel time and reducing bathissions and consumed
fuel.

8.2 Recommendations for future research

Based on the content of this thesis, we will further give soemmmendations on the
possible future research directions for both the thesigladrban traffic control field.

8.2.1 Recommendations for the thesis

Due to the advantages of Model Predictive Control (MPC) mash in this thesis, we ap-
plied MPC to control and coordinate urban traffic networke] tsied several approaches to
reduce the high on-line computational complexity of MPCteoliers. However, although
the MPC controllers for urban traffic networks proposed is thesis are much more effi-
cient than before, it is still not sufficient enough if the lecaf a urban traffic becomes too
large. Therefore, a well-defined control structure andesponding proper coordination
algorithms are necessary for controlling such a complegelacale urban traffic network.
A general distributed and hierarchical control structuae been presented in the thesis, but
the corresponding evaluation and analysis are still missirherefore, it is highly recom-
mended to further investigate effective hierarchical aistritbuted control structures and
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algorithms for large-scale urban traffic networks, and tmpare the new methods with the
presented algorithms. The possible research directi@enasafollows:

e A hierarchical control structure can be built to address the traffic control problems
of large-scale traffic networks at different levels. Thetcolfer can be specified into
multiple layers, on each of which a specific traffic contralgem will be solved. The
control layers can be defined based on traffic system dynasiims changing and
fast changing dynamics), characteristics of traffic cdnroblems (traffic control,
traffic guidance, etc.), and so on. For each layer, the cleitrcan be established
based on a suitable traffic model, which has the best tradeetiveen descriptive
ability and computational complexity, so as to be suitabletiie particular control
problem of this layer. On the local control level (i.e. irgection level), simple and
efficient control methods can be also applied, such as ragedb controllers, PID
controllers, fuzzy controllers. Information needs to belanged among the layers
to achieve a good overall control performance.

e A distributed control structure can be also built for controlling and coordinating
large-scale traffic networks. A large traffic network can bdded into multiple
agents, which can be either traffic sub-networks or everl aatrol actuators (e.g.
traffic signals, ramp metering, speed limits, etc.). Age@is exchange information
with each other, and can make their own control decisionsbiy bwn taking into
consideration of the information from other agents. Thenéggeommunicate with
each other, and work together for a good overall controlgserince of the whole
traffic network. To improve the intelligence of the agentang theory can be applied
to design the communication and coordination algorithmgte agents. In this con-
text, the agents do not only exchange information, but aégmtiate with each other,
and finally converge to a global equilibrium.

Both the hierarchical control structure and the distridutentrol structure provide a
compromise between the centralized control structure laadlécentralized control struc-
ture. However, the main challenge for designing hieraahi@ffic control structures and
algorithms is how to define the control problems of differkayers, while the main chal-
lenge for designing distributed traffic control structusesl algorithms lies on how to ex-
change the information among subsystems and how to usentbisniation. In addition,
before designing the structure and algorithms for hieiaed¢hand distributed controllers,
the partitioning of large-scale urban traffic networks istoaller subnetworks need to be
investigated.

In Chapter 5, the BLX model and the S model were selected agréukiction models
of MPC controllers for urban traffic networks. Actually, teeare other urban traffic models
that have similar or even better modeling accuracy as thestaaadl this thesis, such as the
dynamic network loading model of Bliemer [14], Cell Transsion Model [33] and Link
Transmission Model [128] etc. In future, more research om these models perform when
used as prediction models of MPC controllers for urban traiitworks will be carried on.

In Chapter 6, the time delay of the vehicles traveling from ieginning of the link to
the end of the queues in the link is constant over time and Buit, in future, this time delay
can be further estimated by pre-calibrating queue lendtiradifferent traffic scenarios and
environments according to the historical data. In addjteimulations with shorter link
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length of an urban traffic network can be carried out to furtheestigate the dependence
between traffic signals and the effect of offsets.

In Chapter 7, an integrated MPC controller was proposedrajnat controlling both
travel delays and traffic emissions for urban traffic networkehicle emissions in a par-
ticular area, e.g. streets in the neighborhood of schootssidences, were estimated and
controlled. However, the dispersion of vehicle emissiors wot considered in the the-
sis. In reality, vehicle emissions will float and spreaderthey are released into open air.
The spreading direction and speed depends on the curretiteveaspecially the wind. In
order to estimate the vehicle emissions in a particular arege accurately, an emission
dispersion model, which describes the dispersion dynaafittse emissions after they are
released to open air, needs to be further integrated inttrdffec flow and traffic emission
model. Therefore, the MPC controller based on this moddlbeilable to better limit the
vehicle emissions on a school or a residence area more s&lguta addition, the realtime
feasibility of the MPC controller in this chapter can becoim if the scale of traffic net-
works increases, thus the optimization problem will beHfartreformulated into an MILP
problem to be solved more efficiently by MILP solvers.

8.2.2 Recommendations for the field

In addition, some possible successive research direatambe further considered for urban
traffic control field. They can be summarized as follows:

e Time-varying model-based traffic control. In fact, an urban traffic network nor-
mally is a large-scale system with extreme high complexfar such a complex
traffic network, the model will also become very complicatéa general, both the
parameters and the traffic loads of the traffic network modelnat static, but will
vary with time. However, due to the high complexity, they wearely considered or
were not considered sufficiently, when designing the urbaffi¢ controllers, both in
this thesis and in the field. Some of the parameters of the Impdeposed in the the-
sis, e.g. turning rates, were assumed to be constant. AgttrEdse parameters will
change with time for different O-D allocations, differentite guidance information,
different effects of weather conditions, seasonal vamiej events (like concerts or
soccer games), etc. For instance, the traffic flow turningsraf each intersection
will change, if the O-D matrices and traffic route guidandeimation of the urban
traffic network vary from time to time. Moreover, if the vaian of the traffic loads
for the traffic network model is not considered, the conteffprmance of the MPC
controller will also be deteriorated to some extent. Thanefpredictions on the dy-
namics of the future network traffic loads are also necessérich can be derived
based on the future traffic demand estimation, future dyoaraffic route guidance
information, future dynamic road pricing policy, etc. Thfare, time-varying urban
traffic models with dynamic network traffic loads predicsoran be investigated to
adapt both the parameters and the future traffic loads takibogconsideration the
dynamic traffic information of the network, and MPC conteodl can be further built
based on these adaptive urban traffic models. In additiegélographic structure of
links, e.g. turning pockets and sources of traffic flows inrttiddle of a link, can be
further considered in urban traffic models.
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e Stochastic-information-based traffic control. From a microscopic point of view,
due to the participation of individual drivers, the traffimates are not only time-
varying, but also stochastic. For individual drivers, thevel plan, the time of de-
parture, the route choice, the origin and the destinatimat stochastic, and hard to
estimate. But the decisions and choices made by all theithdgivdrivers collectively
define the macroscopic traffic phenomena. Therefore, thésésea connection be-
tween the microscopic vehicle dynamics and the macrosaogffcc flow dynamics.
Traffic control decisions (like traffic signals, ramp meteyi variable speed limits,
etc.) are made according to the macroscopic traffic flow stago in this regard,
the traffic control decisions also indirectly depend on tkieainics of all the indi-
vidual vehicles. Therefore, further traffic control stgigs can be investigated based
on the stochastic traffic information of individual vehiglevhich will also take the
psychological influences of road users into consideratlarthis context, we could
also make use of the growing availability of in-car integratoute planning and com-
munication systems to collect more detailed informati@mfindividual vehicles and
incorporate it to get more accurate predictions of the &iteaffic evolution.

e Design of higher-level controllers. In a hierarchical control structure for a large-
scale urban traffic network, controllers can be designedrfoltiple layers, where
at different levels different types of control problems éaw be solved. In general,
for the higher level control problem, the description of treffic dynamics can be
at a slower rate, the area of the controlled traffic networklwa larger, and the traf-
fic model at this level can be more general and less accuratemdly, high-level
controllers will solve an overall control problem with anesview of the whole in-
formation of the traffic network, and thus determine senfmireference trajectories
and/or constraints for the low-level controllers. Howewtbese control advices will
be only guidelines, which need to be further implementechieyldw-level local con-
trollers. In the literature a lot of research is present entlievel controllers for urban
traffic networks, but the results for high-level contradlare still partially lacking,
in particular regarding performance guarantees, the toffdeetween optimality and
efficiency, scalability, and robustness. In addition, wechtd establish more general
traffic models for high-level controllers. For instanceg timacroscopic fundamen-
tal diagram (MFD) is a very important and useful finding fobam traffic networks,
which can be used as a general traffic control model for thb-legel urban traffic
controllers.

¢ High-level models for analysis and design of urban traffic newvorks. In the ur-
ban traffic control field, control algorithms are mainly exated quantitatively by a
control performance index, e.g. Total Time Spent (TTS).ralty, the lower the per-
formance index is, the better the control algorithm will étion. However, there is
lack of qualitative analysis for the cause and effect of timergence of congestion
in large-scale urban traffic networks, especially for theretion between the urban
traffic network topology and the emergence of congestion.c@irse, this can be
also analyzed by means of microscopic simulations, butrgéenclusions are not
easy to derive for different urban traffic networks. Furthealysis can be made for
investigating more fundamentally the causes and effedtsffic congestion in urban
traffic networks. For instance, what kinds of urban trafficaak topology will more
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easily or more frequently give rise to traffic congestionjchtinks or intersections
of an urban traffic network are the places at which traffic @stign will probably
happen first, how will the traffic congestion propagate in dvan traffic network
with a specific topology, and so on. More detailed analysithese topics needs to
be performed, and new higher-level or aggregate analydisads have to be devel-
oped. The resulting high-level models can then be used falysis and design of
urban traffic networks and will allow to answer questionsarding which currently
uncontrolled intersections to equip with traffic signalfjet topology changes to the
current network layout have the largest effect on the rédoaf congestion, etc.



Appendix A

Detalls for the MILP-based MPC
Controller

After the model reformulation, the optimization problemtbé MPC controller can be
expressed as an MILP problem in the form of (6.40). The oatidn problem inl (6.40)
can be written in detail as follows:

For any link (u,d) € L in the network,l,q and O, 4 are the set of input nodes and
the set of output nodes to linki(d) respectively. The inequality constraints lin (6.40) are
the mixed-integer inequality constraints obtained thto&gctiod 6.3.1 made up by the
inequality constraints (6.28) and (6.29) for all the trafficeams in the network and for alll
the predicted simulation time steps in the future (i.ekfgkyg + 1, -- ,kg+MN, —1). Here,
the inequality constraints for the traffic stream leavind I{u, d) turning to nodeo € Oy ¢
at time steyky are

udo(kd)S M{d,00(1 — 8}, 4.60) (Ka)
Gdo(Ka) > €+ (MG g o — )3y g .0(ka)

Ztljdo(kd)SM ,000d0(Ke)

Zao(ka) = Mg udo(kd)

Z d0(ka) < fig.olka m]jdo(l a.0(kd))

Zﬁdo(kd)zf&d( ) Gdo(1—8q0(ka)) (A1)
Caolks) <Mig o(l_éud o(kd))
Caolka) = €+ (MG g o — )3 g o(ka)

Zﬁdo(kd)SMS & d0(ka)

Zigo(ke) > Mg éﬁdo(kd)

thjdo(kd)SfLJZ rTﬁdo:l- 6udo kd))

Zoaolka) > g, (kd) Miao0(1— &g o(ka)) -

In (6.40), the equality constraints for link,d) at time stefkq are: the linear equations,
(4.51) and((4.54), for updating traffic states (the numbesediicles in the link and vehicles
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waiting in the queue respectively),

Nua(ka +1) = Nua(ke) +a3g"(ka)ca — % aae(ke) - Ca, (A.2)

0€0yd

QU,d,o(kd + 1) = qu,d o( ) + Bu d o( )aamv(kd)cd G{fg\'g’(l@) - Cd, (A-3)

the reformulated equations (6.19), (6.22) dnd (6.27) tatuibe the min-max equation of
(4.53),

fu d. o(kd) = CIu,d,o(kd)/Cd + G‘f}f&“ﬁ,(kd) - Bu,d,o(kd) . Uu,d . gu,d,o(kc)/cm (A-4)

fu d.o(Kd) = Bud.o(kd) (Cd.o —Ndo(Ka)) /Cd — Bud.o(Kd) - Hud - Gud.o(Ke)/Ca — Zl:ljﬂd,o(kd)
(A.5)

0 g e(ka) = Bud.o(Ka) - Mud - Gudo(Ke)/Ca + 2 g o(Ka) + 2 g 0(Ka), (A.6)

the linearized equatioh (6.39) to derive the average agiflow rate to the end of the queues
in the link based on Assumption 6.1,

aﬁ,rgv(kd) (1— Yeonst - aenter(kd — Tconst) + Yeonst aﬁﬂjter(kd —Teonst— 1), (A7)

the reformulated synchronization equations, (6.33) and8g(6 for the average input flow
rate to the link and the number of vehicles in the downstraakndf link (u, d) respectively,

of i (ka Ebzkd (ko Daniatka+ ), (A8)
Ndo(Ka) = fout(ngrl,g'”(ko) nﬁrl,g'”(ko +0)), (A.9)
and the cycle time equality constraint for every intersaiin the urban traffic network
Op(ke) =¢q - (A.10)
PPy

(A.10) is the cycle time constraint which guarantees thastim of the green time splits
of all the phasesy € Py) in intersectiord equals to the cycle time of intersectidnExcept
(A.10), all the other equality constraints exist for all theedicted simulation time steps
in the future (i.ekqg,kg+1,--- kg + MN, — 1). The cycle time equality constraint (A.10)
works only for the future control time steps (ilg,kc +1,--- ke +Np —1).



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. Aamodt and E. Plaza. Case-based reasoning: Foumdaissues, methodological
variations, and system approach&s Communications7(1):39-59, March 1994.

K.J. Astrom and B. WittenmarkComputer-Controlled Systems: Theory and Design
Prentice Hall, New York, USA, 1996.

K. Aboudolas, M. Papageorgiou, and E. Kosmatopoulofresand-forward based
methods for the signal control problem in large-scale cetegeurban road networks.
Transportation Research Part C: Emerging Technologl642):163—-174, 2009.

K. Ahn, A.A. Trani, H. Rakha, and M. Van Aerde. Microscopiuel consumption and
emission models. IRProceedings of the 78th Annual Meeting of the Transpontatio
Research BoardNashington DC, USA, January 1999. CD-ROM.

K. Ahn, H. Rakha, A. Trani, and M. Van Aerde. Estimatinghige fuel consump-
tion and emissions based on instantaneous speed and aticalézvels.Journal of
Transportation Engineeringl28(2):182-190, March/April 2002.

A. Atamtirk and M.W.P. Savelsbergh. Integer-programming softwgstems.An-
nals of Operations Research40(1):67-124, November 2005.

C. Audet and J. E. Dennis Jr. Analysis of generalizedgoatsearchessIAM Journal
on Optimization13(3):889-903, 2007.

[8] A. Barisone, D. Giglio, R. Minciardi, and R. Poggi. A mascopic traffic model for

real-time optimization of signalized urban areas. Piioceedings of the 41st IEEE
Conference on Decision and Contrplages 900-903, Las Vegas (NV), USA, 2002.

[9] A. Bemporad and M. Morari. Control of systems integrgtiogic, dynamics, and

[10]

[11]

constraints Automatica 35(3):407-427, March 1999.

D.P. BertsekasConstrained Optimization and Lagrange Multiplier Methodsca-
demic Press, London, UK, 1982.

E.M. Bezembinder and F. Brandt. Application of an inmsgd static and dynamic

traffic modelling system for large scale detailed networls.Proceedings of the
European Transport Conferenc8traatsburg, France, 2004.

141



142

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

C. Bielefeldt and F. Busch. MOTION-a new on-line traffignal network control
system. InProceedings of the 7th International Conference on Roadfi€r&loni-
toring and Contro) pages 55-59, London, UK, April 1994,

C. Bielefeldt and F. Busch. MOTION-a new on-line traffignal network control
system. InProceedings of the 7th International Conference on Roadfi€r&loni-
toring and Contro] pages 55-59. IET, 2002.

M.C.J. Bliemer. Dynamic Queuing and Spillback in Artadgl Multiclass Dynamic
Network Loading Model. Transportation Research Record: Journal of the Trans-
portation Research Boay@029(-1):14-21, 2007. ISSN 0361-1981.

K. Bogenberger, H. Keller, and A. D. May. A neuro-fuzzypsoach for ramp meter-
ing. In Proceedings of the 10th International Conference on Roah3port Infor-
mation and Contrglpages 101-105, London, UK, 2000.

K. Bogenberger, S. Vukanovic, and H. Keller. ACCEZZ —agptive fuzzy algo-
rithms for traffic responsive and coordinated ramp meterimgProceedings of the
Applications of Advanced Technology in Transportation2@ages 94-94, Boston
(MA), USA, 2002.

F. Boillot, J.M. Blosseville, J.B. Lesort, V. Motyka, MPapageorgiou, and S. Sellam.
Optimal signal control of urban traffic networks. Rroceedings of the Conference
on Road Traffic Monitoring and Contrgbages 75—-79, 1992.

F. Boillot, S. Midenet, and J. C. Pierrelee. The realdiurban traffic control system
CRONOS: Algorithm and experiment3ransportation Research Part C: Emerging
Technologies14(1):18-38, 2006.

P.G. Boulter, T. Barlow, I.S. McCrae, S. Latham, D. Ebld E. Van der Burgwal.
Road traffic characteristics, driving patterns and emisgtors for congested situ-
ations. Technical report, TNO Automotive, Department Poraens-Environmental

Studies and Testing, Delft, The Netherlands, 2002.

S.P. Boyd and L. Vandenbergh&onvex OptimizationCambridge University Press,
Cambridge, UK, 2004.

D. Bretherton, M. Bodger, and N. Baber. SCOOT-the faturban traffic control. In
Proceedings of the 12th IEEE International Conference oadRtransport Informa-
tion and Contro] pages 301-306, London, UK, April 2004.

G.W. Brown. lterative solution of games by fictitiousapl Activity Analysis of
Production and Allocation13(1):374-376, 1951.

E.F. Camacho and C. Bordon#lodel Predictive Control in the Process Industry
Springer-Verlag, Berlin, Germany, 1995.

E. Camponogara, D. Jia, B.H. Krogh, and S. Talukdartribisted model predictive
control. IEEE Control Systems Magazir22(1):44-52, 2002.



Bibliography 143

[25] S.F. Cheng, M. A. Epelman, and R. L. Smith. CoSIGN: A flatalgorithm for
coordinated traffic signal controlEEE Transactions on Intelligent Transportation
Systems7(4):551-564, 2006.

[26] M.C. Choy, D. Srinivasan, and R.L. Cheu. Cooperatiydrid agent architecture for
real-time traffic signal controlEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humar&3(5):597-607, 2003.

[27] D. ChristiansenElectronics Engineers’ HandbookEEE Press/McGraw Hill, New
York, USA, 4th edition, 1997.

[28] M.C. Coelho, T.L. Farias, and N.M. Rouphail. Impact pésd control traffic signals
on pollutant emissionslransportation Research Part,[20(4):323-340, July 2005.

[29] M.C. Coelho, T.L. Farias, and N.M. Rouphail. Effect elundabout operations on
pollutant emissions. Transportation Research Part,[11(5):333-343, September
2006.

[30] R. Corthout, C.M.J. Tanmgre, Rodric. Frederix, and L.H. Immers. Marginal dynamic
network loading for large-scale simulation-based apfiics. InProceedings of the
90th Annual Meeting of the Transportation Research Bp@fdshington D.C., USA,
2011. Paper 11-0681.

[31] R. Courant, K. Friedrichs, and H. Lewy. On the partidfetience equations of math-
ematical physicsIBM Journal of Research and Developmeht(2):215-234, 1967.

[32] C.F. Daganzo. The cell transmission model, part ii: ek traffic. Transportation
Research Part B: Methodologice29(2):79 — 93, 1995.

[33] C.F. Daganzo. The cell transmission model: A dynampresentation of highway
traffic consistent with the hydrodynamic theoryransportation Research Part B:
Methodological 28(4):269-287, 1994. ISSN 0191-2615.

[34] C.F. Daganzo. Requiem for second-order fluid approtiona of traffic flow. Trans-
portation Research Part BR9(4):277-286, 1995.

[35] C.F. Daganzo and N. Geroliminis. An analytical approation for the macroscopic
fundamental diagram of urban traffictansportation Research Part B: Methodolog-
ical, 42(9):771-781, 2008.

[36] L. Davis, editor. Handbook of Genetic AlgorithmsvVan Nostrand Reinhold, New
York, USA, 1991.

[37] B. De Schutter and T.J.J. van den Boom. Model predictosgtrol for discrete-event
and hybrid systems — Part II: Hybrid systems. Aroceedings of the 16th Interna-
tional Symposium on Mathematical Theory of Networks ante8ys(MTNS 2004)
Leuven, Belgium, July 2004. Paper 313.

[38] B. De Schutter, S.P. Hoogendoorn, H. Schuurman, andr&m8ioli. A multi-agent
case-based traffic control scenario evaluation systenPrdceedings of the IEEE
6th International Conference on Intelligent TransportetiSystems (ITSC'03)ages
678-683, Shanghai, China, October 2003.



144 Bibliography

[39] A. Di Febbraro, D. Giglio, and N. Sacco. Urban traffic tmh structure based on
hybrid petri nets. IEEE Transactions on Intelligent Transportation Systef(9):
224-237, Dec. 2004.

[40] C. Diakaki, M. Papageorgiou, and K. Aboudolas. A mutiable regulator approach
to traffic-responsive network-wide signal contr@ontrol Engineering Practicel0
(2):183-195, 2002.

[41] V. Dinopoulou, C. Diakaki, and M. Papageorgiou. Applions of the urban traffic
control strategy TUC. European Journal of Operational Reseayctir5(3):1652—
1665, 2006.

[42] M. Dotoli, M. P. Fanti, and C. Meloni. A signal timing piaformulation for urban
traffic control. Control Engineering Practicel4(11):1297-1311, 2006.

[43] R.W. Eglese. Simulated annealing: A tool for operasiomsearchEuropean Journal
of Operational Research6(3):271-281, June 1990.

[44] J.L. Farges, J.J. Henry, and J. Tufal. The PRODYN rima¢tiraffic algorithm. In
Proceedings of the 4th IFAC Symposium of Transportatiote8yspages 307-312,
Baden Baden, Germany, 1983.

[45] FHWA. Traffic Software Integrated System Version 5.1 User’'s GU20€1.

[46] R. Fletcher and S. Leyffer. Numerical experience wittwér bounds for MIQP
branch-and-boundsIAM Journal on Optimizatiqr8(2):604—-616, May 1998.

[47] M.R. Garey and D.S. Johnso@omputers and Intractability: A Guide to the Theory
of NP-CompletenesdV.H. Freeman and Company, San Francisco (CA), USA, 1979.

[48] N. H. Gartner, F. J. Pooran, and C. M. Andrews. Impleragon of the OPAC adap-
tive control strategy in a traffic signal network. Rroceedings of the 2001 IEEE
International Intelligent Transportation Systems Coafere pages 195-200, Oak-
land (CA), USA, 2001.

[49] N.H. Gartner. Simulation study of OPAC: A demand-rasgive strategy for traffic
signal control.Transportation and Traffic Theorpages 233-250, 1983.

[50] N.H. Gartner and C. Stamatiadis. Integration of dyratréffic assignment with real-
time traffic adaptive control systenransportation Research Record: Journal of the
Transportation Research Boar(lL644):150-156, 1998.

[51] N.H. Gartner and C. Stamatiadis. Arterial-based adrdf traffic flow in urban grid
networks.Mathematical and computer modellings(5-6):657-672, 2002.

[52] D.C. Gazis and R.B. Potts. The oversaturated inteim®cin Proceedings of the 2nd
International Symposium on Traffic Thepi¥63.

[53] N. Geroliminis and C.F. Daganzo. Existence of urbasesemacroscopic fundamen-
tal diagrams: Some experimental findingsansportation Research Part B: Method-
ological, 42(9):759-770, 2008.



Bibliography 145

[54] A.H. Ghods and A. Rahimi-Kian. A game theory approacloptimal coordinated
ramp metering and variable speed limitsPioceedings of the 2008 Chinese Control
and Decision Conferengpages 91-96, Yantai, China, 2008.

[55] G. Gomes, R. Horowitz, A.A. Kurzhanskiy, P. Varaiyadah Kwon. Behavior of the
cell transmission model and effectiveness of ramp metefiramsportation Research
Part C: Emerging Technologie$6(4):485-513, 2008.

[56] D.K. Hale. Traffic Network Study Tool, TRANSYT-7F, Ueitl States VersionMc-
Trans Center in the University of Florid&005.

[57] F. Hayes-Roth. Rule-based systen@mmunications of the ACN28(9):921-932,
1985.

[58] A. Hegyi. Model Predictive Control for Integrating Traffic Control Meures PhD
thesis, Delft University of Technology, Delft, The Nethartls, 2004.

[59] A.Hegyi, B. De Schutter, and J. Hellendoorn. Optimadbnation of variable speed
limits to suppress shock wavedEEE Transactions on Intelligent Transportation
Systems6(1):102-112, 2005.

[60] A. Hegyi, B. De Schutter, and J. Hellendoorn. Model petde control for optimal
coordination of ramp metering and variable speed limiteansportation Research
Part C: Emerging Technologie43(3):185-209, 2005.

[61] T.H. Heung, T.K. Ho, and Y.F. Fung. Coordinated roadejiion traffic control by
dynamic programminglEEE Transactions on Intelligent Transportation Systeéns
(3):341-350, 2005.

[62] J. Heywood.Internal Combustion Engine FundamentalcGrawHill, New York,
1988.

[63] S.P. Hoogendoorn and P.H.L. Bovy. State-of-the-artedficular traffic flow mod-
elling. Proceedings of the Institution of Mechanical Engineersit PaJournal of
Systems and Control EngineerirL5(4):283-303, 2001. ISSN 0959-6518.

[64] S.P. Hoogendoorn, B. De Schutter, and H. Schuurmanisidecsupport in dynamic
traffic management. Real-time scenario evaluatiBaropean Journal of Transport
and Infrastructure ReseargB3(1):21-38, 2003.

[65] S.P. Hoogendoorn, H. Schuurman, and B. De Schutter.l-titea traffic manage-
ment scenario evaluation. Proceedings of the 10th IFAC Symposium on Control in
Transportation Systems (CTS 2003ages 343—-348, Tokyo, Japan, August 2003.

[66] H.R. Kashani and G.N. Saridis. Intelligent control foban traffic systemsAuto-
matica 19(2):191-197, 1983.

[67] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications
Prentice Hall, New York, USA, 1995.



146

Bibliography

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

E. Kosmatopoulos, M. Papageorgiou, C. Bielefeldt, \indpoulou, R. Morris,
J. Mueck, A. Richards, and F. Weichenmeier. Internatiooahgarative field eval-
uation of a traffic-responsive signal control strategy ireéhcities. Transportation
Research Part A: Policy and Practicé0(5):399-413, 2006.

A. Kotsialos and M. Papageorgiou. Motorway networKficacontrol systemsEu-
ropean Journal of Operational Researdb2(2):321-333, 2004.

A. Kotsialos and M. Papageorgiou. Efficiency and equitpperties of freeway
network-wide ramp metering with AMOCTransportation Research Part C: Emerg-
ing Technologiesl2(6):401-420, 2004.

A. Kotsialos and M. Papageorgiou. Nonlinear optimaitrol applied to coordinated
ramp metering/EEE Transactions on Control Systems Technaldgy6):920-933,
2004.

A. Kotsialos, M. Papageorgiou, M. Mangeas, and H. Hale$. Coordinated and
integrated control of motorway networks via non-lineariima control. Transporta-
tion Research Part C: Emerging Technologi#8(1):65-84, 2002.

A. Kotsialos, M. Papageorgiou, and F. Middelham. Loaadl optimal coordinated
ramp metering for freeway networkdournal of Intelligent Transportation Systems
9(4):187-203, 2005.

B. Krause and C. von Altrock. A complete fuzzy logic canttapproach for exist-
ing traffic control systems. IMobility for Everyone, Proceedings of the 4th World
Congress on Intelligent Transportation SysteBerlin, Germany, October 1997. Pa-
per no. 2045.

R.H. Krikke. HARS: The next generation traffic contrgstem. InProceedings of the
11th IFAC Symposium on Control in Transportation Systédetft, The Netherlands,
August 2006.

T.J. Lambert lii, M.A. Epelman, and R.L. Smith. A fictitis play approach to large-
scale optimizationOperations Research-Linthicyrs3(3):477—-489, 2005.

J.P. Lebacque. The Godunov scheme and what it meangdbofder traffic flow
models. InProceedings of the International Symposium on Transporiand Traf-
fic Theory pages 647—677, Lyon, France, 1996.

D.W. Li and Y.G. Xi. The general framework of aggregatistrategy in model pre-
dictive control and stability analysis. Proceedings of the 11th IFAC Symposium on
Large Scale Systems Theory and Applicati@dansk, Poland, 2007.

M.J. Lighthill and G.B. Whitham. On kinematic waves. A.theory of traffic flow
on long crowded road$?roceedings of the Royal Society of London. Series A, Math-
ematical and Physical Scienceg29(1178):317-345, 1955.

S.LinandY. Xi. An efficient model for urban traffic netwkocontrol. InProceedings
of the 17th World Congress The International Federationwtbfatic Control pages
14066-14071, Seoul, Korea, July 2008.



Bibliography 147

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

S. Lin, Y. Xi, and Y Yang. Short-term traffic flow forecasy using macroscopic
urban traffic network model. IRroceedings of the 11th International IEEE Confer-
ence on Intelligent Transportation Systempages 134-138, Beijing, China, October
2008.

S. Lin, B. De Schutter, Y. Xi, and J. Hellendoorn. A sinfigld macroscopic urban
traffic network model for model-based predictive contralProceedings of the 12th
IFAC Symposium Control Transportation Systepeges 286—291, Redondo Beach
(CA), USA, September 2009.

S. Lin, B. De Schutter, Y. Xi, and J. Hellendoorn. Study fast model predictive
controllers for large urban traffic networks. Rroceedings of the 12th International
IEEE Conference on Intelligent Transportation Systepages 691-696, St. Louis
(MO), USA, October 2009.

S. Lin, B. De Schutter, Y. Xi, and H. Hellendoorn. Modeggictive control for urban
traffic networks via MILP. IrProceedings of the 2010 American Control Conference
pages 2272-2277, Baltimore (MA), USA, June—July 2010.

S. Lin, B. De Schutter, Y. Xi, and H. Hellendoorn. An efint model-based method
for coordinated control of urban traffic networks. Pnoceedings of the 2010 IEEE
International Conference on Networking, Sensing and @brpages 8-13, Chicago
(IL), lMiinois, April 2010.

S. Lin, B. De Schutter, S.K. Zegeye, H. Hellendoorn, &hdi. Integrated urban
traffic control for the reduction of travel delays and enossi. InProceedings of
the 13th International IEEE Conference on Intelligent partation Systems (ITSC
2010) pages 677-682, Madeira Island, Portugal, September 2010.

S. Lin, B. De Schutter, A. Hegyi, Y. Xi, and H. Hellendoor Spatiotemporally
discrete urban traffic model. Kaccepted for publication in 18th World Congress The
International Federation of Automatic ContrdMilano, Italy, July 2011.

S. Lin, B. De Schutter, Y. Xi, and H. Hellendoorn. Fastdabpredictive control
for urban road networks via milplEEE Transactions on Intelligent Transportation
SystemsPP(99):1-11, 2011.

J.T. Linderoth and T.K. Ralphs. Noncommercial softevéor mixed-integer linear
programmingInteger Programming: Theory and Practigeages 253-303, 2005.

H.K. Lo, E. Chang, and Y.C. Chan. Dynamic network traffimtrol. Transportation
Research Part A: Policy and Practic85(8):721-744, 2001.

P.R. Lowrie. The sydney coordinated adaptive traffistegn: Principles, method-
ology, algorithms. InProceedings of the International Conference on Road Traffic
Signalling pages 67-70, 1982.

J.M. Maciejowski.Predictive Control with ConstraintsPrentice Hall, Harlow, UK,
2002.



148 Bibliography

[93] V. Mauro and C. Di Taranto. Utopia. IRroceedings of the 2nd IFAC-IFIP-IFORS
Symposium on Traffic Control and Transportation Systgrages 575-597, 1989.

[94] R.D. McKelvey and A. McLennan. Computation of equilébin finite gamesHand-
book of Computational Economick87-142, 1996.

[95] M.D. Mesarovic, D. Macko, and Y. Takahara. Two coordioa principles and their
application in large scale systems contilitomatica 6(2):261-270, 1970.

[96] A. Messmer and M. Papageorgiou. METANET: A macroscainculation program
for motorway networksTraffic Engineering and ContrpB1(8-9):466—70, 1990.

[97] P. Mirchandani and L. Head. A real-time traffic signahtrol system: Architrcture,
algorithm, and analysisTransportation Research Part C: Emerging Technologées
(6):415-432, 2001.

[98] D. Monderer and L.S. Shapley. Fictitious play propeidy games with identical
interests.Journal of Economic Theoy%8(1):258-265, 1996.

[99] R.R. Negenborn, B. De Schutter, and J. Hellendoorn. tiMiglent model predictive
control for transportation networks: Serial versus patadchemes. Engineering
Applications of Artificial Intelligence21(3):353—-366, April 2008.

[100] H. T. Nguyen and E. A. WalkerA First Course in Fuzzy LogicRCS Publications,
2nd edition, 1999.

[101] M. PapageorgiouApplications of Automatic Control Concepts to Traffic FlovadA
eling and Control Springer-Verlag New York, Secaucus (NJ), USA, 1983.

[102] M. Papageorgiou. Some remarks on macroscopic tradficfiodelling.Transporta-
tion Research Part A: Policy and Practic82(5):323-329, 1998.

[103] M. Papageorgiou, H. Hadj-Salem, and J.M. BlossevleINEA: A local feedback
control law for on-ramp meterindglransportation Research Reco(d320), 1991.

[104] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsis, and Y. Wang. Review of
road traffic control strategie®roceedings of the IEE®1(12):2043—-2067, 2003.

[105] I. Papamichail and M. Papageorgiou. Traffic-respanfinked ramp-metering con-
trol. IEEE Transactions on Intelligent Transportation Syste®($):111-121, 2008.

[106] P.M. Pardalos and M.G.C. Resende, editorandbook of Applied Optimization
Oxford University Press, Oxford, UK, 2002.

[107] H.J. Payne. Models of freeway traffic and contriathematical Models of Public
Systemsl1(1):51-61, 1971.

[108] J.B. Rawlings and D.Q. Mayn&lodel Predictive Control: Theory and DesigNob
Hill Publishing, Madison (WI), USA, 2009.

[109] P.I. Richards. Shock waves on the highw@yperations Resear¢h(1):42-51, 1956.



Bibliography 149

[110] N. Lawrence Ricker. Use of quadratic programming fonstrained internal model
control. Industrial and Engineering Chemistry Process Design anddlepment24
(4):925-936, 1985.

[111] S. G. Ritchie. A knowledge-based decision suppottiggcture for advanced traffic
managementTransportation Research Part, 24(1):27-37, January 1990.

[112] D.I. Robertson and R.D. Bretherton. Optimizing netkeoof traffic signals in real
time - The SCOOT methodIEEE Transactions on Vehicular Technologd0O(1):
11-15, 1991.

[113] S. Russell and P. Norvidhrtificial Intelligence: A Modern ApproachHPrentice-Hall,
Englewood Cliffs (NE), USA, 2003.

[114] R. Scattolini. Architectures for distributed anddaiechical Model Predictive Control-
A review. Journal of Process Contrpll9(5):723—731, 2009.

[115] S. Sen and K.L. Head. Controlled optimization of plsagean intersectionTrans-
portation Science31(1):5-17, 1997.

[116] H. Taale. Integrated Anticipatory Control of Road Networks - A garheeretical
approach PhD thesis, Delft University of Technology, Delft, The Retlands, 2008.

[117] H. Taale and F. Middelham. Ten years of ramp-meterin@tie Netherlands. In
Proceedings of the 10th International Conference on Roahgport Information
and Contro|] pages 106—-110, London, UK, April 2000.

[118] H. Taale and H.J. van Zuylen. Traffic control and routeice: Occurrence of insta-
bilities. In Proceedings of the 5th TRAIL Congress: Five Years Crossrofdheory
and Practice volume 2, pages 1-19, Rotterdam, The Netherlands, 1999.

[119] M. van den Berg, A. Hegyi, B. De Schutter, and J. Hellzordi. A macroscopic
traffic flow model for integrated control of freeway and urligadfic networks. In
Proceedings of the 42nd IEEE Conference on Decision andr@lonqtages 2774—
2779, Maui (HI), USA, 2003.

[120] M. van den Berg, B. De Schutter, A. Hegyi, and J. Hellzowi. Model predictive
control for mixed urban and freeway networks. Rroceedings of the 83rd Annual
Meeting of the Transportation Research Bagafdashington D.C., USA, 2004. Paper
04-3327.

[121] M. van den Berg, A. Hegyi, B. De Schutter, and J. Heltmomd. Integrated traffic
control for mixed urban and freeway networks: A model priddiccontrol approach.
European Journal of Transport and Infrastructure Reseai@8):223-250, 2007.

[122] R.T. Van Katwijk. Multi-Agent Look-Ahead Traffic-Adaptive ContrdPhD thesis,
Delft University of Technology, Delft, The Netherlands,80

[123] R.T. van Katwijk, P. van Koningsbruggen, B. De Schytend J. Hellendoorn. A
test bed for multi-agent control systems in road traffic ngemaent. In F. Kiligl,
A. Bazzan, and S. Ossowski, editofgplications of Agent Technology in Traffic and



150 Bibliography

Transportation Whitestein Series in Software Agent Technologies, pag8s131.
Birkhauser Verlag, Basel, Switzerland, 2005.

[124] J. Vrancken and F. Ottenhof. A bottom-up approach f@émenting sustainable traf-
fic control. InProceedings of the 11th IFAC Symposium on Control in Trartafion
SystemgDelft, The Netherlands, August 2006.

[125] J. Vrancken, F. Ottenhof, and M. Scares. Regional toaftic management in The
Netherlands.Urban Transport XllI: Urban Transport and the Environmentthe
21st Century96:275-282, 2007.

[126] S.Vukanovic and O. Ernhofer. Evaluation and field iempentation of the fuzzy logic
based ramp metering algorithm accezz Phaceedings of the 9th IEEE Conference
on Intelligent Transportation Systenmages 437-441, Toronto, Canada, 2006.

[127] F.V. Webster. Traffic signaldraffic Engineering Practicepages 117-121, 1963.

[128] I. Yperman, S. Logghe, C.M.J. Taime, and L.H. Immers. The Multi-Commodity
Link Transmission Model for Dynamic Network Loading. Pnoceedings of the 85th
Annual Meeting of the Transportation Research Bo&dshington D.C., 2006.

[129] S.K. Zegeye, B. De Schutter, H. Hellendoorn, and EuBesse. Reduction of travel
times and traffic emissions using model predictive contiiol.Proceedings of the
2009 American Control Conferencpages 5392-5397, St. Louis (MO), USA, June
2009.

[130] S.K.Zegeye, B. De Schutter, H. Hellendoorn, and EuBesse. Model-based traffic
control for balanced reduction of fuel consumption, enoissj and travel time. In
Proceedings of the 12th IFAC Symposium on TransportatisteByspages 149-154,
Redondo Beach (CA), USA, September 2009.

[131] S.K. Zegeye, B. De Schutter, J. Hellendoorn, and E#&uBesse. Model-based traf-
fic control for the reduction of fuel consumption, emissicersd travel time. IrPro-
ceedings of the mobil. TUM 2009 — International Scientifiof@cence on Mobility
and TransportMunich, Germany, May 2009.



TRAIL Thesis Series

The following list contains the most recent dissertationthe TRAIL Thesis Series. For a
complete overview of more than 100 titles see the TRAIL wiebsiww.rsTRAIL.nl.

The TRAIL Thesis Series is a series of the Netherlands TRA#sdarch School on
transport, infrastructure and logistics.

Lin, S.,Efficient Model Predictive Control for Large-Scale Urbaraffic NetworksT2011/3,
April 2011, TRAIL Thesis Series, the Netherlands

Oort, N. van,Service Reliability and Urban Public Transport Desjdi2011/2, April 2011,
TRAIL Thesis Series, the Netherlands

Mahmod, M.K.M.,Using Co-Operative Vehicle-Infrastructure Systems tougedTraffic
Emissions and Improve Air Quality at Signalized Urban Istmtions T2011/1, March
2011, TRAIL Thesis Series, the Netherlands

Corman, F.,Real-Time Railway Traffic Management: dispatching in caxplarge and
busy railway networksT2010/14, December 2010, TRAIL Thesis Series, the Nethdd

Kwakkel, J.,The Treatment of Uncertainty in Airport Strategic Plannifg2010/13, De-
cember 2010, TRAIL Thesis Series, the Netherlands

Pang, Y. Intelligent Belt Conveyor Monitoring and Contral'2010/12, December 2010,
TRAIL Thesis Series, the Netherlands

Kim, N.S.,Intermodal Freight Transport on the Right Track? Enviromta and economic
performances and their trade-pff2010/11, December 2010, TRAIL Thesis Series, the
Netherlands

Snelder, M.,Designing Robust Road Networks: a general design methotiedpip the
NetherlandsT2010/10, December 2010, TRAIL Thesis Series, the Nethed

Hinsbergen, C.P.1J. vaBayesian Data Assimilation for Improved Modeling of Roaafflt,
T2010/9, November 2010, TRAIL Thesis Series, the Nethedan

Zuurbier, F.S.Intelligent Route Guidan¢d2010/8, November 2010, TRAIL Thesis Series,
the Netherlands

Larco Martinelli, J.A.,Incorporating Worker-Specific Factors in Operations Maaagent
Models T2010/7, November 2010, TRAIL Thesis Series, the Nethelda

Ham, J.C. vanZeehavenontwikkeling in Nederland: naar een beter beleiasingsproces
T2010/6, August 2010, TRAIL Thesis Series, the Netherlands

Boer, E. de School Concentration and School Trav€R2010/5, June 2010, TRAIL Thesis

151



152 TRAIL Thesis Series

Series, the Netherlands

Berg, M. van den]ntegrated Control of Mixed Traffic Networks using Model diotive
Control, T2010/4, April 2010, TRAIL Thesis Series, the Netherlands

Top, J. van denModelling Risk Control Measures in Railway$2010/3, April 2010,
TRAIL Thesis Series, the Netherlands

Craen, S. deThe X-factor: a longitudinal study of calibration in youngvice drivers
T2010/2, March 2010, TRAIL Thesis Series, the Netherlands

Tarau, A.N.,Model-based Control for Postal Automation and Baggage HiagdT2010/1,
January 2010, TRAIL Thesis Series, the Netherlands

Knoop, V.L., Road Incidents and Network Dynamics: effects on drivingaktur and
traffic congestionT2009/13, December 2009, TRAIL Thesis Series, the Nedthdd

Baskar, L.D.,Traffic Control and Management with Intelligent Vehicle Higay Systems
T2009/12, November 2009, TRAIL Thesis Series, the Netheda

Konings, J.W. Intermodal Barge Transport: network design, nodes and aitipeness
T2009/11, November 2009, TRAIL Thesis Series, the Netheda

Kusumaningtyas, 1Mind Your Step: exploring aspects in the application of laggeler-
ating moving walkwaysr2009/10, October 2009, TRAIL Thesis Series, the Nethelda

Gong, Y.,Stochastic Modelling and Analysis of Warehouse Operatib2809/9, September
2009, TRAIL Thesis Series, the Netherlands

Eddia, S.,Transport Policy Implementation and Outcomes: the caseaofiivde in the
1990s T2009/8, September 2009, TRAIL Thesis Series, the Nethdd

Platz, T.E.,The Efficient Integration of Inland Shipping into Contirerihtermodal Trans-
port Chains: measures and decisive factdr2009/7, August 2009, TRAIL Thesis Series,
the Netherlands

Tahmasseby, SReliability in Urban Public Transport Network Assessmentl &esign
T2009/6, June 2009, TRAIL Thesis Series, the Netherlands

Bogers, E.A.l.,Traffic Information and Learning in Day-to-day Route Chgid2009/5,
June 2009, TRAIL Thesis Series, the Netherlands

Amelsfort, D.H. van,Behavioural Responses and Network Effects of Time-vafmap
Pricing, T2009/4, May 2009, TRAIL Thesis Series, the Netherlands

Li, H., Reliability-based Dynamic Network Design with Stochasgtworks T2009/3, May
2009, TRAIL Thesis Series, the Netherlands

Stankova, K. Stackelberg and Inverse Stackelberg Games & their Apjidinatin the Opti-
mal Toll Design Problem, the Energy Markets LiberalizatRnoblem, and in the Theory of
Incentives T2009/2, February 2009, TRAIL Thesis Series, the Netheda



Samenvatting

Efficiente modelgebaseerde voorspellende regeling voor
grootschalige stedelijke verkeersnetwerken

Congestie in stedelijke omgevingen, in het bijzonder ingsieden, vormt een uitdagend
probleem. Een veelbelovende regelstrategie die voldaetdaameeste vereisten die no-
dig zijn voor de gecordineerde regeling van grootschalige stedelijke vedwatwerken,
is modelgebaseerde voorspellende regelMgdel Predictive ContrgIMPC). MPC is een
regelstrategie die gebaseerd is op optimalisatie en dienala regelingangen kan bepa-
len voor systemen met verscheidene ingangs- en uitgamgdsigmet zowel lineaire als
niet-lineaire beperkingen. MPC biedt een aantal voordetem het regelen van grootscha-
lige verkeersnetwerken: MPC kan op eenvoudige wijze véfsnde verkeersmaatregelen
coordineren, MPC kan de toekomstige toestand van het verketgrerk voorspellen en
zo lange-termijn-beslissingen nemen, MPC is robuust veosteringen en modelonzeker-
heden en MPC kan modulair geplementeerd worden. Daarom is MPC voor stedelijke
verkeersnetwerken als onderwerp van dit proefschrift geko

Het belangrijkste probleem om MPC in de praktijk te impleteeen is de hoge online
rekentijd die vereist is. Bij MPC moet immers voor elke tigjsin korte tijd een optimali-
satieprobleem opgelost worden. Als ten gevolge van de ggbatigheid van het optimali-
satieprobleem of van het niet-lineaire, niet-convexe liktaravan dit probleem het oplossen
van het MPC-optimalisatieprobleem te veel tijd vergt ommnbpgelost te kunnen worden,
wordt de MPC-regelaar in de praktijk onuitvoerbaar in rirmle, hoewel het optimalisatie-
probleem theoritisch gezien wel een oplossing kan hebberoriline rekeneffiéntie van
MPC-regelaars is het kernprobleem dat opgelost moet wovdendat MPC toegepast kan
worden in grootschalige stedelijke verkeersnetwerken.

In dit proefschrift stellen we verscheidene manieren voorde rekenproblemen aan te
pakken die ontstaan wanneer MPC wordt gebruikt voor hetleagen c@rdineren van
grootschalige stedelijke verkeersnetwerken. De belfstei methoden die beschouwd
worden in dit proefschrift, kunnen als volgt worden sameage

e Modelreductie: Vanwege het niet-lineaire karakter van modellen vooredigdver-
keer wordt het MPC-optimalisatieprobleem een niet-lingdet-convex optimalisa-
tieprobleem. Zo'n probleem kan opgelost worden door niretdire optimalisatie-
algoritmen, die echter een groot aantal evaluaties van eéuthatie door middel van
het voorspellingsmodel vereisen. Dit betekent dat hoe éexephet gebruikte model
voor stedelijk verkeer is, hoe meer rekentijd nodig is omdmine optimalisatiepro-
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ces uit te voeren. Bijgevolg kan de online rekengdiitie van MPC verbeterd wor-
den door de complexiteit van het voorspellingsmodel daeiivié*C-regelaar gebruikt
wordt te reduceren.

e Herformulering van het optimalisatieprobleem: Vanwege het niet-lineaire, niet-
convexe karakter van het MPC-optimalisatieprobleem zaklencomplexiteit in de
praktijk min of meer exponentieel toenemen als de omvanghetrgeregelde ver-
keersnetwerk toeneemt. Alhoewel de online rekenéffite van de MPC-regelaar
verbeterd kan worden door de complexiteit van het gebruigt@spellingsmodel te
reduceren, is het effect daarvan nog steeds beperkt vote geokeersnetwerken.
Om dit te vermijden kan de online rekeneféintie ook verbeterd worden door het
niet-lineaire, niet-convexe MPC-optimalisatieproblegnherformuleren als een op-
timalisatieprobleem dat veel efféiter opgelost kan worden.

e Hiérarchische regeling: De rekencomplexiteit van een gecentraliseerde MPC-rege-
laar voor een grootschalig stedelijk verkeersnetwerk keaminderd worden door het
netwerk op te delen in verscheidene deelnetwerken, dieetarteren in een veel la-
gere rekenbelasting. Deze deelnetwerken moeten dan wabgkweerd worden om
de globale regelprestatie van een gecentraliseerde M§&aa zo goed mogelijk te
benaderen.

In dit proefschrift worden in het bijzonder de eerste twe¢hodes onderzocht, name-
lijk ,modelreductie” enherformulering van het optimalisatieprobleem”. Wij torean dat
de online rekentijd voor de MPC-optimalisatieproblemeardteze twee methodes geredu-
ceerd wordt. Voor de derde methode presenteren we een agdraenework voor de MPC-
regeling van grootschalige stedelijke verkeersnetwedteanalyseren we de verschillende
regelstructuren voor netwerkbrede verkeersregelinge gdicentraliseerde MPC-regelaars
die in dit proefschrift worden voorgesteld, passen in hatniework en kunnen gebruikt
worden als lokale regelaars voor de deelnetwerken. In da#ext kunnen de belangrijkste
bijdragen van het proefschrift als volgt worden samengevat

e We ontwikkelen een nieuw macroscopisch verkeersmodel steatelijke verkeers-
netwerken, het zogenaamde BLX-model. Om de rekencomeitexérder te reduce-
ren stellen we een macroscopisch model voor dat nog eeryeidi, het S-model.
Het S-model is zeer snel, maar is ook nog steeds in staat enbatiodigde infor-
matie te verschaffen die nodig is voor de regeling van verkéke introduceren ook
een ander model met een aanpasbare bemonsteringstijoaa¢ken van zowel het
BLX-model als het S-model bevat en dat uitstekend geschiti de afweging tussen
nauwkeurigheid en rekencomplexiteit in te stellen.

e We maken MPC-regelaars voor stedelijke verkeersnetweritgaande van het BLX-
model en het S-model. De online rekeneffitie van de MPC-regelaars gebaseerd
op het S-model blijkt veel beter te zijn dan MPC gebaseerdesBhX-model, en
gaat slechts met een zeer beperkt verlies aan regelpessiapaard.

e Het niet-lineaire, niet-convexe optimalisatieprobleeam\de MPC-regelaars voor
stadsverkeer wordt voor het S-model geherformuleerd aldieeair optimalisatie-
probleem met réle en gehele variabelemixed integer linear programmind/ILP),
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dat efficent opgelost kan worden door momenteel beschikbare MIL&vacé. We
stellen ook een verdere vereenvoudiging van het S-mode| @anodel genoemd,
die resulteert in een kleiner MILP probleem. Zowel voor henh&del als het S
model geldt dat de online rekenefficitie van de MPC-regelaars sterk verbeterd wordt
ten opzichte van de aanpak gebaseerd op niet-lineaire aligatie.

Om zowel vertragingen als uitstoot en brandstofverbruifgnote steden te regelen,
ontwikkelen we een gategreerd model voor verkeersstroom, uitstoot en brafidst
verbruik. Op basis van dit model worden MPC-regelaars g&hidia resulteren in
een gebalanceerde afweging tussen het minimaliseren veertlaging, de uitstoot
en het brandstofverbruik.






Summary

Efficient model predictive control for large-scale urban
traffic networks

Traffic congestion in urban areas, especially in big citie®s challenging problem. One
promising control methodology that can meet most of the sdedcontrolling and coor-
dinating large-scale urban traffic networks using a varadtyraffic control measures, is
Model Predictive Control (MPC). MPC is an optimization-bdsontrol approach that can
optimize and control multi-input multi-output systems lwiioth linear and nonlinear con-
straints. MPC has several advantages for controlling faogde traffic networks: MPC can
easily coordinate various control measures implementecaffic networks, it can predict
the future traffic states to make long-term decisions, iblust to disturbances and model
uncertainty, and it can be implemented modularly. Thegeftire topic of this thesis is MPC
for urban traffic networks.

However, a big difficulty to implement MPC in practice is thigin on-line compu-
tational burden. When using MPC, at each time step, we havelte sn optimization
problem within a limited period of time. If the optimizatiggroblem of MPC controller is
too time-consuming to be solved on-line, due to the largkesafahe optimization problem
or due to the nonlinear, non-convex nature of the optinmorgpiroblem, the MPC controller
becomes real-time infeasible in practice, even though thblem is solvable in theory.
Thus, the on-line computing efficiency of the MPC contrdler the key problem that has
to be solved, before MPC can be applied to large-scale urbéfitthetworks.

Therefore, we present several ways in this thesis to adtiressomputational problems
arising when MPC is applied to control and coordinate lasgale urban traffic networks.
The main methods considered in the thesis can be summagZetavs:

e Model reduction: Due to the nonlinear nature of the urban traffic models, the op
mization problem of MPC controllers is a nonlinear non-anweptimization prob-
lem. It can be solved by nonlinear optimization algorithmvhjch requires a huge
number of objective function evaluations based on the ptiedi model. Thus, the
more complex the urban traffic model is, the longer time théimmoptimization pro-
cess will take. Therefore, the on-line computational efficy of the MPC controller

can be improved by reducing the complexity of the predictioodel of the MPC
controller.
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e Reformulation of the MPC optimization problem: Due to the nonlinear non-
convex nature of the MPC optimization problem, the componal complexity will
in practice increase almost exponentially when the scalbeo€ontrolled traffic net-
work grows. Even though the on-line computational efficieoicthe MPC controller
can be improved by reducing the complexity of the predictimdel of the MPC con-
troller, the effect is still limited for huge traffic netwakTherefore, to avoid this, the
on-line computational efficiency of the MPC controller carabso improved by refor-
mulating the nonlinear non-convex MPC optimization probli@to an optimization
problem that can be solved much more efficiently.

e Hierarchical control structure: The computational complexity of a centralized MPC
controller for a large-scale urban traffic network can baiced by dividing the net-
work into several smaller sub-networks, each of which tesnla much lower com-
putational burden. These traffic sub-networks have to bedowated, so as to approx-
imate the global control performance of a centralized MPQtradler.

In this thesis, we have mainly investigated the first two apphes, i.e. “model reduc-
tion” and “reformulation of the optimization problem”. Tla-line computing time of the
MPC optimization problems was illustrated to be reducedeg¢ two approaches for MPC
controllers. Regarding to the third approach, we preseatgéneral framework for MPC
control of large-scale urban traffic networks, and analheedifferent control structures for
the network-wide traffic controller. All the centralized M@Rcontrollers presented in this
thesis are able to fit into the framework, and can act as lan#tallers for the urban traffic
subnetworks. In this context, the main topics consideretérthesis can be summarized as
follows:

e A new macroscopic traffic model for urban traffic networkslezhBLX model, is es-
tablished. To further reduce the computational complezityore simplified macro-
scopic model, the S model, is proposed. The S model is vetybasis still able
to provide all the necessary information that is neededrfdfi¢ control. We also
introduce another model with an adjustable sample time tst@pcontains features
of both the BLX and the S model, and that is excellently suitetline the trade-off
between accuracy and computational complexity.

e MPC controllers are built for urban traffic networks basedtiom BLX and the S
model. The on-line computational efficiency of the MPC coliérs based on the S
model is improved greatly compared to MPC based on the BLXehahd only a
limited loss of control performance is incurred.

e The nonlinear non-convex optimization problem of the urtvafiic MPC controllers
is reformulated for the S model into a mixed-integer lineesgopamming (MILP)
problem, which can be solved very efficiently by existing Mllsolvers. We also
introduce a further simplification of the S model, called 8ienodel, that results in
a smaller MILP problem. For both the S model and therf®del the on-line compu-
tational efficiency of the MPC controllers is further impealsignificantly compared
to the nonlinear optimization approach.

e In order to control traffic delay as well as traffic emissions uel consumption in
big cities, an integrated urban traffic flow, emissions, are €onsumption model is
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proposed. MPC controllers are built based on this modelghvigsults in a balanced
trade-off between minimizing travel time, reducing enossi, and fuel consumption.

S. Lin
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