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Chapter 1

Introduction

In this chapter we present the background and the motivétiotihe research addressed in
this thesis. In Section 1.1 we first introduce the type ofeyst that we consider: trans-
portation networks in general, and power networks in paléic In Section 1.2 we then
discuss controlling such systems and motivate the use df-aggnt control structures. In
Section 1.3 the conceptual ideas of model predictive cbat® presented as strategy for
the control agents to determine which actions to take, andusissues to be addressed in
relation with model predictive control and multi-agent trmhstructures for transportation
networks are discussed. In Section 1.4 we discuss opptesifor the use of multi-agent
model predictive control in the power networks of the fufuared in Section 1.5 we conclude
the chapter with an overview and road map of this thesis, dist af the contributions to
the state of the art.
Parts of this chapter have been published in [107].

1.1 Transportation networks

Transportation or infrastructure networks, like powettidizition networks|[82], traffic and
transportation systems [33], water distribution netwdekg|, logistic operations networks
[88], etc., are the corner stones of our modern society. Aatmefficient, reliable, and safe
operation of these systems is of huge importance for theaunamngrowth, the environment,
and the quality of life, not only when the systems are pressdbe limits of their perfor-
mance, but also under regular operating conditions. Remarnples illustrate this. E.g.,
the problems in the USA and Canada [141], Italy [139], Derkvaard Sweden [43], The
Netherlands, Germany, Belgium, and France [140], and mémgr @ountries [114, 148]
due to power outages have shown that as power network opeigeis closer to its limits,
small disturbances in heavily loaded lines can lead to latgek-outs causing not only huge
economic losses, but also mobility problems as trains artdosienay not be able to oper-
ate. Also, as road traffic operation gets closer to its limitsexpected situations in road
traffic networks can lead to heavy congestion. Not only thgehtraffic congestion after
incidents such as bomb alerts are examples of this, alsdntestdaily road-traffic jams
due to accidents illustrate this convincingly.

Expanding the physical infrastructure of these networkdatbelp to relieve the issues

1



2 1 Introduction

Figure 1.1: Generic transportation network. Commodityezathe network at sources (cir-
cles with an arrow pointing towards them), flows over linkstioer elements in
the network that alter the flows (at each circle, and leavesnbtwork at sinks
(circles with an arrow pointing outward). Dotted lines regent connections
with other parts of the network.

in transportation networks, although at extremely hight€oAs alternative to spending this
money on building new infrastructure, it is worth spendifffgi on investigating improved
use of the existing infrastructure by employing intelligenntrol technigues that combine
state-of-the-art techniques from fields like systems amtrobengineering [6], optimization
[18], and multi-agent systems [147], with domain-specifiokledge.

The examples of networks just mentioned are only some piatitypes of networks
within the much larger class of transportation networks.m@wn to transportation net-
works is that at a generic level they can be seen as a set of n@geesenting the compo-
nents or elements of the network, and interconnectionsdmtwhese nodes. In addition,
transportation networks have some sort of commodity, théarought into the network at
source nodes, that flows over links to sink nodes, and thafliseinced in its way of flow-
ing over the network by elements inside the network, astitited in Figure 1.1. Other
characteristics that are common to transportation netsvark:

o they typically span a large geographical area;

e they have a modular structure consisting of many subsystems
¢ they have many actuators and sensors;

¢ they have dynamics evolving over different time scales.

In addition to this, transportation networks often contaith continuous (e.g., flow evolu-
tion) and discrete dynamics (e.g., on and off switching}l are therefore also referred to
as hybrid systems [143]. This mixture of characteristickesahat transportation networks
can show extremely complex dynamics.

Even though transportation networks differ in the detaflsmmmodity, sources, sinks,
etc., it is worth to consider them in a generic setting. Onahe hand, methods developed
for generic transportation networks can be applied to a wateye of specific domains,
perhaps using additional fine-tuning and domain-specifimaoements to improve the per-
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control actions

structure

system

measurements

Figure 1.2: The relation between a general system and thé&r@ostructure that controls
the system.

formance. On the other hand, approaches specifically desdlfor a particular domain can
be applied to other domains after having transfered themaaéneric framework.

1.2 Control structures

There are many users, controllers, players, actors, anditmps involved in the evolution
of transportation networks. Each of these refers to estthiat directly or indirectly change
the way commodity is flowing. Different users may have defgrobjectives, and these ob-
jectives may be conflicting. Objectives that users may hawvelve avoiding congestion of
links, maximizing throughput, minimizing costs of conteaitions, minimizing travel times,
etc. An example of conflicting objectives in a road trafficwertk is given by the objectives
that the individual road users have on the one hand and rahdrity has on the other: The
individual road users want to minimize the travel time toitldestination, whereas the road
authority wants to minimize overall network congestion413An example in the domain
of power networks is given by the objectives that the indieidhouseholds have on the
one hand and the government has on the other: The individueddiholds aim at minimiz-
ing the costs on energy, whereas the government aims at rizaxgmsage of the perhaps
more expensive green energy. Also, in power networks, it s@yetimes be beneficial
for the overall network performance to cut off certain partshe network from electricity
consumption in a controlled way in order to prevent largecklauts [142], even though
individual consumers perhaps do not want this.

In order to formalize the operation of transportation nakgoconsider Figure 1.2. The
figure illustrates the overall picture ofsystenon the one hand anda@ntrol structureon
the other. The system is the entity that is under control, thedcontrol structure is the
entity that controls the system. Hence, the control stnecisithe concept used to indicate
the structure that produces actuator settings. The costinatture monitors the system by
making measurements and based on these chooses controbkabitat are implemented on
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the system. The system evolves subject to these actionsaw atate, which is again mea-
sured by the control structure. The control structure cxingdf one or more components,
called control agents These control agents try to determine settings for theadots in-
side the system in such a way that their own objectives areametosely as possible and
any constraints are satisfied. In our case, the system tondithe transportation network,
and the components of the control structure consists ohallisers, controllers, operators,
players, etc., from now on only referred to as the controhidgie

The control structure is a very general concept and can hare/ mifferent shapes. A
first important distinguishing feature between controustures is the number of control
agents that constitute the control structure. E.g., thérobstructure can consist of a single
control agent or multiple control agents. Some other prig@®in which control structures
can differ are:

e the access that the control agents have to the sensors aadicastin the network,

e the communication that the control agents have among ortb@mo

the way in which the control agents process sensor data &noéttions,

the authority relations between the control agents,

the beliefs, desires, and intentions of the control agents,
e eftc.

Defining different types of control structures is difficulielto the large amount of prop-
erties that they can have. However, some general types tfotatructures can be identi-
fied, that have increasing complexity, that are commonlyantered in theory and practice,
and that will also be of particular interest in the subsedqebapters:

e When it is assumed that there is only one control agent, thatabaess to all ac-
tuators and sensors of the network and thus directly canthe physical network,
then this control structure is referred to asideal single-agentontrol structure, as
illustrated in Figure 1.3(a). The control structure is reéé to as an ideal structure,
since in principle such a control structure can determirt@as that give optimal
performance.

e When there are multiple control agents, each of them corieglenly its own part of
the network and being able to access only sensors and actuatbat particular part
of the network, then the control structure is referred to asudti-agent single-layer
control structure, as illustrated in Figure 1.3(b). If irdétébn the agents in the control
structure do not communicate with each other, the contratsire isdecentralized
If the agents do communicate with each other, the controtsire isdistributed

e When there are multiple control agents, and some of theseatagtents have author-
ity over other control agents, in the sense that they careforadirect other control
agents, then the control structure isnalti-layer control structure, as illustrated in
Figure| 1.3(c) A multi-layer control structure typically mesent when one control
agent determines set-points to a group of other controltagérat work in a decen-
tralized or distributed way. Due to the authority relatibipsbetween agents or groups
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control structure

control agent

'

measurements actior

(a) Single-agent control structure. The single
control agent makes measurements of the sys-
tem and provides actions to the network.

control structure

control agen control age
2 8 1

H control agent
] 1
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(b) Multi-agent single-layer control structure. Multipontrol agents make
measurements and provide actions to the network. Communidagioveen the
control agents is optionally present (dashed line).

control structure

(IR | (R |

control agent
2

control agent
1

measurementsneasurements actions measurements actions measurements actionsactions

(c) Multi-layer control structure. A higher-layer contragent can make measurements and provide
actions to the network and can in addition direct or steemeetaontrol layer.

Figure 1.3: Some important types of control structures.
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of agents, the multi-layer control structure can also berrefl to as a supervisory
control structure, or a hierarchical control structure.

1.2.1 Control structure design

Suppose that a particular network is given and that any obstttucture can be implemented
on it. The question that then arises is the question of hoarite determined what the best
control structure is. Unfortunately, theories for detering general control structures are
lacking. However, motivations for preferring one type ohtol structure over another can

be given.

Advantages of single-agent control structures are in garibat they can deliver the
best performance possible, and that they have been studtieksevely in the literature, in
particular for small-scale systems. However, there arersdissues that complicate the use
of single-agent control structures for large-scale traniggion networks such as:

e undesirable properties with respect to robustness, itfialscalability, and respon-
siveness;

e technical issues related to communication delays and ctatipoal requirements;

e commercial, legal, and political issues related to unatslity of information and
restricted control access.

These reasons motivate the use of multi-agent controltsires[135, 145, 147], which
are expected to be able to deal or at least relieve thesesisBludti-agent control structures
can in principle:

e improve robustness and reliability, since if one contramtg fails, another can take
over, and improve responsiveness, since the control aggpitally use only local
measurements and therefore can react quicker to changiragisis;

e reduce communication delays, since the control agentsatptcally and therefore
solve problems that may be smaller, and since coomunicéfjminally takes place
among nearby control agents;

e deal with unavailability of information and restricted ¢yl access, since the con-
trol agents only require information of their own part of thetwork and since they
determine actions only for their own part of the network.

However, typically multi-agent control structures havewér performance than the perfor-
mance of ideal single-agent control structures and impieimg schemes that give desired
performance is far from trivial.

An advantage of the decentralized over the distributediragint single-layer control
structures is that there is no communication between theatars, resulting in lower com-
putational requirements and faster control. However, dldigantage will typically be at the
price of decreased overall performance. The advantage istibdted multi-agent single-
layer control structure is therefore that improved perfance can be obtained, although
at the price of increased computation time due to cooperatommunication, and per-
haps negotiation among control agents. However, even thoagroved performance can
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be obtained, the performance will still typically be lowbah the performance of an ideal
single-agent control structure.

The multi-agent multi-layer control structure provides thossibility to obtain a trade-
off between system performance and computational contgle&i higher layer considers
a larger part of the system and can therefore direct the l@watrol layer to obtain co-
ordination. Such a multi-layer control structure can thosmbine the advantages of the
single-agent control structure with the multi-agent sialglyer control structure, i.e., over-
all system performance with tractability. It is noted, hoee that communication in a
multi-agent multi-layer control structure is typically mocomplex than in a single-agent
control structure and a multi-agent single-layer conttnl&ure.

Note that in practice often a particular control structiww@lready in place, and that the
control structure cannot be redesigned from scratch. Tlestgpn in this case is not so
much the question of what control structure is best, but of tiee currently existing control
structure can be changed, such that the performance is wegroOf course here it has
to be defined what the performance is, and in a control streatith control agents with
conflicting objectives it may not be possible to reach cosssion this.

1.2.2 Assumptions for design and analysis

In this thesis we develop control strategies for severatrobstructures. Due to the com-
plexity of transportation networks, we have to narrow thepgcof control problems that we
will consider. Our focus will mostly be on the most fundansmf transportation network
control problems: the operational control of transpoaathetworks, in which amounts of
commodity to be transported over the network are given, amdrollers have to ensure that
transport over the network can take place at acceptablécsdavels, while satisfying any
constraints, both under normal and emergency operatingditons.

In order to make the analysis and the design of the controtttres more tractable,
assumptions have to be made, both on the network and theotetrtrcture. Assumptions
relating to the network are made on the dynamics of the nétvi@r., the way in which the
components in the network function. E.g., the dynamics eaadsumed to evolve over con-
tinuous time or in discrete-time, they can be assumed tdiavanly continuous dynamics,
or both continuous and discrete dynamics, and they can lbenaskto be instantaneous or
not. In each chapter we explicitly point out which particidasumptions are made on the
network.

With respect to the control structure, we assume in eacheofdtowing chapters that:

e the control agents are already present;

the control agents control fixed parts of the network, ang tten access actuators
and sensors in these parts of the network;

the control agents know what qualitative behavior is delsice the parts of the net-
work they control;

the control agents strive for the best possible overallgyarnce of the network;

the control agents can measure the state of the parts of thverkethat they control.
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Under such assumptions it remains to be decided on how thesaigethe control structure
get from their measurements to actuator settings, i.e.t wiaocols, computations, and
information exchanges take place inside the control airect Assumptions on these are
made in the subsequent chapters. In the following sectiodisaiss the approach that we
propose to be used by the control agents in a multi-agentaitucture for transportation
network control: model predictive control.

1.3 Model predictive control

To find the actions that meet the control objectives as wefiassible, the control agents
have to make a trade-off between the different availabl®@ast In order to make the best
decision and hence find the best actions, all relevant irdition about the consequences of
choosing actions should be taken into account. For poweratks, typical information that
is available consists of forecasts on power consumptioreanbdanges [55], capacity limits
on transmission lines, dynamics of components like geaesatapacitor banks, transform-
ers, and loads [82]. Furthermore, typically area-wide raezmsents of voltage magnitude
and angles across the network can be made to provide an dgtdcstatus of the situation
of the network. A particularly useful form of control for maportation network that in
principle can use all information available is model prégteecontrol (MPC) [27, 93].

1.3.1 Single-agent MPC

Over the last decades MPC (also knowns as receding horizatnot@r moving horizon

control) has become an important strategy for finding cdpécies for complex, dynamic
systems. MPC in a single-agent control structure has showeessful application in the
process industry [93, 102], and is now gaining increasingnéibn in fields like amongst
others power networks [49, 61], road traffic networks [58jjway networks| [36], steam
networks [94], supply chain management [146], food praoggd.30], mine planning [56],

heat-exchanger networks [54], greenhouse control [12&],caug delivery [22].

Concept

MPC is a control strategy that is typically used in a disctétee control context, i.e., control
actions are determined in discrete control cycles of a @aleir duration which in itself is
expressed in continuous time uritsFrom the beginning of one control cycle until the
beginning of the next control cycle, the control actiong/dtged, i.e., a zero-order hold
strategy is employed.

In each control cycle the MPC control agent uses the follgwitformation, as illus-
trated in Figure 1.4:

e anobjective functiorexpressing which system behavior and actions are desired;

e aprediction modetlescribing the behavior of the system subject to actions;

1Although usually the term control sample step is used to atdiche discrete step at which a control agent
determines its actions, we refer to this as control cycleeslater on we will require control step to denote certain
steps inside multi-agent MPC strategies.
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Figure 1.4: Single-agent MPC.

e possiblyconstraintson the states, the inputs, and the outputs of the system éher
inputs and the outputs of the system correspond to the actiod the measurements
of the control agent, respectively);

e possibly known information about future disturbances;
e ameasurementf the state of the system at beginning of the current cocrde.

The objective of the control agent is to determine thoseastthat optimize the behav-
ior of the system and minimize costs as specified through Ijective function. In order
to find the actions that lead to the best performance, the@asgent uses the prediction
model to predict the behavior of the system under varioumiagtover a certain predic-
tion horizon, starting from the state at the beginning ofebetrol cycle. Once the control
agent has determined the actions that optimize the systeorpance over the prediction
horizon, it implements the actions until the beginning & tiext control cycle, at which
point the control agent determines new actions over theigtfed horizon starting at that
point, using updated information. Hence, the control aggetates in a receding or rolling
horizon fashion to determine its actions.

In general it is preferable to have a longer prediction hmrizsince by considering a
longer prediction horizon, the control agent can bettersse the consequences of its ac-
tions. At some length, however, increasing the length ofgiesiction horizon may not
improve the performance, if transients in the dynamics mayehbecome negligible. For
computational reasons, determining the actions over a legry horizon typically is not
tractable, and in addition due to potential uncertaintyhimprediction model and in predic-
tions of future disturbances, a smaller prediction horiunsually considered. Hence, in
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practice, the prediction horizon should be long enough t@cthe most important dynam-
ics, i.e., those dynamics dominating the performance, &odt £nough to give tractable
computations. It should hereby also be noted that if a ptiedidiorizon is used that is too
short, the system could arrive in states from which it carmootinue due to the presence of
constraints, e.g., on the actions. The prediction horizmukl thus have such a length that
arriving in such states can be avoided.

MPC Algorithm

Summarizing, a control agent in a single-agent controlcstme using MPC to determine
its actions performs at each control cycle the following:

1. Measure the current state of the system.

2. Determine which actions optimize the performance overgfediction horizon by
solving the following optimization problem:

minimize  the objective function in terms of actions over gediction horizon
subjectto the dynamics of the whole network over the presfidtorizon,
the constraints on, e.g., ranges of actuator inputs ancchplacities,
the measurement of the initial state of the network at théninégg
of the current control cycle.

3. Implement the actions until the next control cycle, artdneto step 1.

Advantages and issues

Advantages of MPC are that in principle it can take into acta@ll available information
and that it can therefore anticipate undesirable situatianthe future at an early stage.
Additional advantages of MPC are [93]:

e its explicit way of handling constraints on actions, statesl outputs;
e its ability to operate without intervention for long pergd

e its ability to adapt to slow changes in the system parameters

e its ability to control systems with multiple inputs and niplé outputs;
e its relatively easy tuning procedure;

e its built-in robustness properties.

However, there are also some issues that have to be addiesteed a control agent
using an MPC strategy can be implemented successfully:

e the control goals have to be specified;

¢ the prediction model has to be constructed,;
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e the measurement of the system state has to be available;
e asolution approach has to be available that can solve the dfpfi@ization problem;

¢ the solution approach has to be tractable.

Basic issues, e.g., stability and robustness, have extndieen studied for MPC in
single-agent control structures [102], in particular forelar time-invariant systems. For
other classes of systems there are still many open issugstiactability issues of MPC for
nonlinear and discrete-event systems, and for systems ichwiariables take on discrete
values, still deserve attention. E.g., in [106] we propose approach to make the MPC
problem for a system modeled as a Markov decision process tramtable and to deal with
changing system dynamics by including experience usingasiement learning. Another
class of systems for which there are still many open questame hybrid systems, i.e.,
systems including both continuous and discrete dynamibss dlass of systems currently
receives significant attention in MPC research and will besatered in more detail in
Chapters 3 and 4.

1.3.2 Multi-agent MPC

As mentioned in the previous section, in a multi-agent ardiructure, there are multiple
control agents, each of them controlling only its own sutmoek, i.e., a part of the overall
network. Multi-agent MPC issues have been investigatecksine 90s in [1, 2, 12, 25, 28,
38,41, 48,53,72,74, 75,77, 117, 129, 144].

In multi-agent MPC, multiple control agents in the contriolisture use MPC, but now
they first measure the subnetwork state, then they deterthnbest actions over the pre-
dicted subnetwork evolution, and then they implement astid\lthough this may seem like
a straightforward extension of single-agent MPC at firshsigzthen considering the details
it is not.

The actions that an agent in a multi-agent control structakes influence both the
evolution of the subnetwork it controls, and the evolutidnhe subnetworks connected to
its subnetwork. Since the agents in a multi-agent contratsire usually have no global
overview and can only access a relatively small number d@srand actuators, predicting
the evolution of a subnetwork over a horizon involves evemenmcertainty than when a
single agent is employed. In addition, when a control ageatrulti-layer control structure
provides set-points to another agent, this supervisorgrobnhanges the way in which
the other agent chooses its actions, and thus the higher-tantrol agent changes the
performance of the system. Hence, the interactions bettfeeagents make multi-agent
MPC involved.

Under the assumption that the control agents strive for dimap overall network per-
formance, the challenge in implementing such a multi-ag@RtC strategy comes from
ensuring that the actions that the individual agents choeselt in a performance that is
as good as when a hypothetical single-agent control steigtuwhich all information is
available would be used.
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Figure 1.5: Multi-agent single-layer MPC.

Multi-agent single-layer MPC

In the multi-agent single-layer control structure eachtmragent only has information
gathering and action capabilities that are restricted &b plart of the network that a particu-
lar control agent controls, as illustrated in Figure| 1.5e Thallenge in implementing multi-
agent single-layer MPC comes from predicting the dynamfah® subnetwork, since as
mentioned, its evolution is influenced by the other agent® Underlying problem of MPC
for multi-agent control structures can therefore be seeoptisnization over a distributed
simulation.

Issues To make accurate predictions of the evolution of the subagtya control agent
requires the current state of its subnetwork, a sequencetioina over the prediction hori-
zon, and predictions of the evolution of the interconneiwith other subnetworks. The
predictions of the evolution of the interconnections withey subnetworks are based on the
information communicated with the neighboring control mige In Chapter 2 we classify
how existing approaches implement this. One particulasctd methods aims at achieving
cooperation among control agents in an iterative way in tviviceach control cycle control
agents perform several iterations consisting of local fmobsolving and communication.
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Figure 1.6: Multi-agent multi-layer MPC.

In each iteration agents obtain information about what taagof neighboring agents are.
Ideally at the end of the iterations the agents have foundracthat lead to overall optimal
performance. In Chapter 2 we discuss such schemes.

As is the case with MPC for single-agent control structun@sjng both continuous and
discrete dynamics causes computational problems. Ingaatagion networks this combina-
tion is commonly encountered, and it is therefore relevastiidy models that take this into
account. In Chaptér 3 such models and MPC for multi-ageglesilayer control structures
for these models are considered.

A further complicating issue arises when the subnetworlks tihe agents control are
overlapping. Existing strategies assume that the submksvibat the control agents control
are non-overlapping. However, in some applications thenswtorks considered by the
control agents are overlapping. In Chapter 5 this issuertbdu addressed.
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Multi-agent multi-layer MPC

In the multi-layer multi-agent MPC case there are multipbateol layers in the control
structure, i.e., there are authority relationships betwise agents in the sense that some
agents provide set-points or directions to other agents.agents at higher layers typically
consider a larger region of the network and consider sloines scales than agents in lower
layers. Figuré 1.6 illustrates this.

MPC can also be used by a control agent in a higher layer of dinéral structure.
This higher-layer control agent can then coordinate thesldayer, which may consist of
control agents using multi-agent single-layer MPC, or oftoal agents that use alternative
control strategies. The higher-layer control agent thesrdinates the lower control layer
by enforcing penalty terms, providing additional consttgj or providing set-points. The
advantage of the higher-layer control agent is in particcle@ar when the control agents of
the lower layer are working decentralized, i.e., not comizating with one another.

Issues An important issue to be addressed when designing MPC foti-agént multi-
layer control structures is the choice of the prediction eldtat the higher-layer control
agent uses. A higher-layer control agent has to be able t@ med&vant predictions of the
physical system, but since the physical system is underaaftthe lower-control layer, the
lower control layer has to be taken into account by the hiddnger control agent as well. In
addition, the prediction model that the higher-layer coraigent uses will typically involve
both continuous and discrete elements, since it has todenailarger part of the network
than lower-layer agents. This makes the resulting MPC obptoblem more complex, and
efficient ways have to be found to solve it efficiently. In Cteajt we address these issues.

1.4 Power networks

In this thesis we develop MPC for multi-agent control stames. In order to illustrate
the performance of the developed techniques we use prolilemsthe domain of power
networks.

1.4.1 Physical power networks

Power networks [82, 92, 128] are large transportation neksvoonsisting of a large num-
ber of components. The dynamics of the power network as aenvéu@ the result of the
interactions between the individual components. The ggaes produce power that is in-
jected into the network on the one side, while the loads amespower from the network
on the other. The distribution of the power in the networkitated by Kirchhoff’s laws
and influenced by the settings of the generators, loadsforaners, and potentially also by
capacitor banks and FACTS devices. This ensemble of conmi®megether produces an
evolution over time of active and reactive power, and vatatagnitudes and angles. Power
networks do not only exhibit continuous dynamics, but alszréte dynamics. Discrete
dynamics in power networks appear due to discrete eveggeaimed by on and off switch-
ing of generators and loads, breaking of transmission Jidesrete switching logic inside
transformers, saturation effects in generators, etc. Elepower networks are large-scale
hybrid systems with complex dynamics.
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1.4.2 Future power networks

Power networks are evolving towards a new structure. Cdiwmeally, in power networks,
power was generated in several large power generators. pbigr was then transported
through the transmission and distribution network to theatmn where it was consumed,
e.g., households and industry. Power flows were relativedgiptable, and the number of
control agents was relatively low. Due to the ongoing delegipn in the power generation
and distribution sector in the U.S. and Europe, the numbetayfers involved in the gener-
ation and distribution of power has increased significaritlythe near future the number of
source nodes of the power distribution network will everitier increase as also large-scale
industrial suppliers and small-scale individual housdbalill start to feed electricity into
the network [73].

As a consequence, the structure of the power distributidwork is changing from a
hierarchical top-down structure into a much more deceiardlsystem with many generat-
ing sources and distributing agencies. This multi-playercture thus results in a system
with many interactions and interdependencies. In additiea following interesting devel-
opments are taking or will take place:

e At a European scale the electricity networks of the indigidecountries are becom-
ing more integrated as high-capacity power lines are coatd to enhance system
security [132]. The national network operators will havetmperate and coordinate
more at a European scale to operate the power network in eabisivay.

e Ata national scale power does not any longer only flow frontthesmission network
in the direction of the distribution network and onwards lte industrial sites and
cities, but can also flow from the industrial sites and citeethe distribution network
and into the transmission network [73]. The network flowd walry more and it will
therefore be necessary to improve the coordination of deadéred local controllers,
and to improve the cooperation between power regions.

e At the local scale loads at consumption nodes become ctatiteland it becomes
possible to store energy using batteries [73]. In additgroups of households can
become independent of the large electricity suppliers byraying energy exchanges
among each other.

Hence, to still guarantee basic requirements and serwedslesuch as voltage levels, fre-

guency, bounds on deviations, stability, elimination ehsients, etc., and to meet the de-
mands and requirements of the users, new control technigases to be developed and

implemented. These control techniques have to be adaptivemline as the input patterns

and demands may vary over time.

1.4.3 Opportunities for multi-agent control

The developments outlined above offer many new opporesiifior multi-agent control.
In this thesis we deal in particular with and propose newtsmhs for control problems
inspired by the following power domain control problems:

e distributed load-frequency control of non-overlappingveo areas (Chapters 2 and

3);



16 1 Introduction

e distributed FACTS devices control for security of overlagppower areas (Chapter
5);

e supervisory emergency voltage control for coordinatioradéayer of decentralized
controllers (Chapter 4);

¢ decentralized control of electricity and heat usage in bhokls (Chaptér 3).

The first three problems aim at improving the operationatiaf power networks, ensur-
ing adequate system performance under normal and emergeecgting conditions. Here,
system security is the main issue, and economical objective less important. The last
problem aims more at economical optimization, and assuheesystem operations to be
reliable.

1.5 Overview of this thesis

1.5.1 Thesis outline

In this thesis current issues in model predictive controP@) in multi-agent control struc-
tures with applications to control problems in power netiwgosre discussed and new solu-
tions are proposed. This thesis is organized as follows:

e In Chapter 2 communication and decision making schemes for multi-ag&nC
are discussed, with a particular focus on serial versudlpbhsghemes. A novel se-
rial scheme for multi-agent MPC is proposed and comparek anitexisting parallel
scheme. The emphasis is on networks modeled as intercecHewtar time-invariant
subnetworks, a basic, yet important class of networks. Tkery developed is ap-
plied to the load-frequency control problem in power netiegor

¢ In Chapter 3 multi-agent MPC for networked hybrid systems is studie@nbtating
discrete phenomena like saturation into systems of in@@sals discussed, and an
extension of the schemes of Chapter 2 for dealing with intenected linear time-
invariant subnetworks with both real and integer inputsragppsed. A decentralized
MPC controller for household optimization is constructadd the load-frequency
control problem of Chapter 2 is extended by including disemavitching of power
generation.

e In Chapter 4the focus is on multi-layer multi-agent control. Creatirgext-oriented
prediction models to construct models of complex systerds@issed, and a medium-
layer MPC controller is proposed that uses such a model ermidte set points for a
lower decentralized control layer. The theory is applied twltage collapse problem
in a nine-bus dynamic power network.

¢ In Chapter 5 higher-layer multi-agent MPC for controlling networks irhieh the
subnetworks are overlapping is proposed. Conventionatogghes assume non-
overlapping subnetworks, in which control objectives apstesm dynamics can be
clearly assigned to individual subnetworks. An extensibm oecently developed
scheme for multi-agent MPC is proposed for situations inclvtthe subnetworks are
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Figure 1.7: Road map. Arrows indicatead beforeelations.

overlapping. The developed scheme is used for FACTS-cledroptimal power
flow control.

e Chapter 6 summarizes the results of this thesis and outlines dinestfor future
research.

1.5.2 Road map

Figurd 1.7 illustrates a grouping of the chapters in relatgijects and an ordering in which
the chapters can be read. It is suggested to read the chaptbes order as they appear
in the thesis. Chapter 1 contains a general introductiomeadpics in this thesis, and is
therefore suggested to be read first. Chapters 2 and 3 fothi®hadssues related to control
by control agents that have equal authority relationshapsl, therefore operate in a single
layer. In addition, the schemes discussed in these chagéstsne that subnetworks are
non-overlapping. Chapters 4 and 5 focus on issues relateshtiool by control agents with
different authority relationships, and therefore opeiatenultiple layers. In addition, in
Chapter 5 it is assumed that subnetworks are overlappingtherefore suggested to read
Chapters 2 and 3 before Chapters 4 and 5. Chapter 6 summtriessults of this thesis
and gives directions for future research. This chapter eareld after the other chapters.
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1.5.3 Contributions
Main contributions

The main contributions of the research described in this Bt&3is with respect to model
predictive control and multi-agent systems are the foltayvi

e A serial scheme for multi-agent single-layer MPC has beepgsed for intercon-
nected linear time-invariant systems in [109, 112], andafatass of interconnected
linear hybrid systems in [108] (see also Chapters 2 and 3).

e A coordinating MPC control strategy using an object-orehprediction model has
been proposed in [113], and using a linearized object-tettprediction model in
[110] (see also Chapter 4).

e A parallel scheme for multi-agent single-layer MPC for rina&r overlapping sub-
networks has been proposed in [69] (see also Chapter 5).

With respect to power network control our main contribuiare:

e A solution approach for distributed load-frequency cohigs been proposed for con-
tinuous problems in [109, 112], and for hybrid problems i081(see also Chapters
2and 3).

¢ A decentralized MPC controller for optimization of energgnsumption in house-
holds has been proposed in [68] (see also Chapter 3).

e Two solution approaches for coordinating decentralizedtrodlers for emergency
voltage control have been proposed in [110] and [113] (s&® @hapter 4).

e A solution approach for FACTS-based security control inrtaygping power areas
has been proposed in [69] (see also Chapter 5).
Contributions to the state-of-the-art

Besides our main contributions, the research involved is BhD thesis has resulted in
additional contributions to the state-of-the-art in thidi@ing ways:

¢ A unified framework of multi-agent MPC strategies has beappsed in [107] (see
also Chapter2).

e A parallelization of the serial multi-agent MPC scheme hesrbproposed in [111].

The integration of multi-level, in particular bi-level, otvol and multi-agent MPC has
been discussed in [90].

Challenges for process system engineering in transpomtatetwork control have
been identified in [89].

An MPC controller for Markov decision processes using eipere to decrease com-
putational requirements has been proposed in [106].



Chapter 2

Serial versus parallel schemes

In this chapter we consider multi-agent single-layer MRGwhich the network is divided
into several non-overlapping subnetworks, and each swlonleis controlled by one control
agent, as shown in Figure 1.5. The agents have to locallysentimse actions that give an
overall optimal performance. In Sectibn 2.1 we introduce séissumptions that we make
on the network and control structure. In Secfion 2.2 we tleemélate the MPC problem
considering only one particular control agent, assumirg ithknows how the surrounding
network behaves. In Sectibn 2.3 we relax this assumptiomaudiss how interconnections
between control problems of different agents are formdlemed how the multi-agent single-
layer MPC approaches can differ in dealing with these imlenections. In Section 2.4
we focus on particular types of schemes, \@gnchronous, multi-iteration, parallebnd
serial schemes. We propose a novel serial scheme based on Lagn@ogg &ind compare
this scheme with a related parallel scheme. In Settion 2.prepose the application of
the approaches to the load-frequency control problem ofepavetworks. A benchmark
network is defined and through experimental simulationistudn this network we illustrate
the performance of the parallel and the serial scheme.

Parts of this chapter have been published in[89, 107, 10®paesented in [112].

2.1 Network and control setup

2.1.1 Network dynamics

As discussed in Chapter 1, transportation networks areacgle systems with complex
dynamics. In order to analyze them, assumptions have to e mathe dynamics, i.e., on
the way the networks behave. Therefore, assume a netwarkstdavided inton subnet-
works, where each subnetwork consists of a set of nodes aridtérconnections between
these nodes. Assume furthermore that the dynamics of subrlet € {1,...,n} are given
by a deterministic linear discrete-time time-invariantdeb(possibly obtained after sym-
bolic or numerical linearization of a nonlinear model in damation with discretization):

Xi(k+1) = Ajxi(K) +Bq,ui(k) +Bz;d;(K) +Bz;vi(k) (2.1)
yi(k) = Cixi (k) +Dy,ui (k) + D2, (k) + D3;vi (), (2.2)

19
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Figure 2.1: From continuous time to discrete time.

where at time steg, for subnetwork, x;(k) € R™ are the local statesi (k) € R™i are the
local inputs,di(k) € R™i are the local known exogenous inpuggk) € R™i are the local
outputs,vi(k) € R™ are the remaining variables influencing the local dynanstaies and
outputs, andyj € R™ ™, By; € R™*Mi, By; € R™*Mi, Bg; € R™*™, Cj € RYi*™i,
Dy € RN Dyj € R " Dg; e R*™ determine how the different variables influ-
ence the local states and outputs of subnetworlev; (k) variables appear due to the fact
that a subnetwork is connected to other subnetworks. Hehes; (k) variables represent
the influence of other subnetworks on subnetwotkthe values of; (k) are fixed, then the
dynamics of subnetworkare decoupled from the other subnetworks.

Remark 2.1 For completeness inputg (k) are also allowed to influence outputgk) at
time k. A situation in which such direct feed-through terms tyflicappear is when al-
gebraic relations are linearized, e.g., when lineariziggations describing instantaneous
(power) flow distributions. O

Remark 2.2 In the subnetwork description that we consider here, alatdes involved take
on values in the real domain. This assumes that no discrettsndue to, e.g., switches, are
present. In addition, in the subnetwork description thatwesider here, the dynamics are
assumed linear. Therefore, discrete behavior, e.g., dsa&ttwation or discrete logic, cannot
be included. In Chapter 3 we discuss issues related to iimguslich discrete elements]

Remark 2.3 In general the dynamics of the networks take place in cootisuime. For
computational reasons, however, it is convenient to asghatethe continuous-time dy-
namics are adequately represented by discrete-time dgsaience, instead of specifying
and computing the dynamics of the network for each contisttoue instant € [0, «), the
dynamics are only specified and computed at discrete timemtral cycle stepk, each
representing continuous-time time units, as shown in Figure 2.1. In Chagtwve discuss
issues related to dealing with continuous-time dynamicaane detail. O

Remark 2.4 In general, the dynamics of the subnetworks are nonlinea€Hapter 4 we
discuss in more detail how to obtain linear models from madr models by linearization.
O

2.1.2 Control structure

We consider a multi-agent single-layer control structw@é&roduced in Section 1.3.2. Each
of the subnetworkse {1,...,n} is controlled by a control agenthat:

¢ has a prediction modél; of the dynamics of subnetwoikthat matches the subnet-
work dynamics given by (2.1)-(2.2);
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e can measure the statgk) of its subnetwork;
e can determine settingsg (k) for the actuators of its subnetwork;

e can obtain exogenous inputgk+l) of its subnetwork over a certain horizon of length
N, forl ={0,...,N};

e can communicate with neighboring agents, i.e., the agemgalling the subnet-
works j € Af, whereA{ = {ji1,..., jim} IS the set of indexes of they subnetworks
connected to subnetworkalso referred to as theeighborsof subnetwork or agerit

Remark 2.5 The agents have no authority relations over one anotherhare is no agent
that can force another agent to do something, and each ageonly information about its
own subnetwork. In Chapter 4 we discuss how supervisorytagbat can steer or direct
other agents can be used. O

Remark 2.6 The multi-agent control structure studied here may be us¢@mly for con-
trol of networks that span large geographical areas, botfalscontrol of relatively small
networks, when restrictions on acting and sensing makeéesanggent control impossiblel

2.2 MPC of a single subnetwork

Assume for now that the control agent of subnetwiargerates individually, that it therefore
does not communicate with other agents, and that it knowsthevsurrounding network
behaves. Below we will relax these assumptions.

The control agent employs MPC to determine which actionalte.tin MPC, an agent
determines its actions by computing optimal actions overediption horizon ofN control
cycles according to an objective function, subject to a rhotihe subnetwork, the behavior
of the surrounding network, and additional constraints.

The MPC strategy of agenat timek consists of measuring the initial local staig(k),
determining local exogenous inputs over the horiziptk+1), for | = {0,...,N-1}, and
predicting influences of the rest of the network over the jmtémh horizonv;(k+1), for
I ={0,...,N-1}. Here, for notational convenience, the bar over variableécates that
the values of these variables are known. In addition, belaitde over variables is used
to denote variables over the prediction horizon, eagk) = [ a(K)T,...,a(k+N-1)T ] .
Control agent then solves the following optimization problem:

N-1

Xi(k+1)%iigl]<),yi(k) Jiocali (Xi(k+1),0i(k),yi(k) = |;J5tagei (X (K+21+1),ui(k+1),yi(k+1))
(2.3)

1The measured initial local state is in this case the exadhiriical state, since no measurement noise is
considered.
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subject to
Xi(k+ 1+|) = AiXi(k+|) +Bl7iui(k+l) +Bzyiai(k+|) +Bg,iVi(k+|) (2.4)
yi(k+1) = Cixj(k+1)+Dqui(k+1) +D2;di(k+1) +Dg;vi(k+1) (2.5)
vi(k+1) = vi(k+1) (2.6)
forl =0,...,N-1
Xi (k) = Xi (k), (2.7)

whereJsiagei is a twice differentiable function that gives the cost pexdiction step given a
certain local state, local input, and local output. A typidaoice for the stage cost is:

xi(k+D)]"  [xi(k+1) xi (k+1)
Jstagei (xi(k+l),ui(k),yi(k)) = |: Ui(k) ] Qi |: Ui(k) ] +fiT Ui(k) ] , (2.8)
yi(K) yi(K) yi(K)

whereQ; andf; are a positive definite weighting matrix and a vector, retipely. After
control agent has solved the optimization problem and found khactions over the hori-
zon, it implements the actions(k) until the next control cycle, the control cydkemoves
tok+1, and the control agent performs the MPC strategy at thataaycle by setting up
and solving the MPC optimization problem fiot 1.

We have assumed here through (2.6) that the agent does nmimseunication and that
it can by itself locally predict the influence of the surroimginetwork over the prediction
horizon, i.e., it knowsy;(k+1), for I =0,...,N—-1. However, control ageritcannot know
this influencea priori, since actions taken by control ageninfluence the dynamics of
its own subnetwork and therefore also the dynamics of a heighg subnetworkj € Aj,
which therefore changes the decision making of neighbagentj and, hence, changes the
actions that control agentchooses, which change the dynamics of subnetwpad thus
changew;(k+1). Therefore,/(2.6) cannot be added explicitly. To relax thguanption that
this is possible, constraints between control problemscamdmunication between control
agents has to be used. Below we discuss this in more detail.

2.3 Interconnected control problems

The interconnections between control problems are modededy so-callednterconnect-
ing variables A particular variable of the control problem of agéns$ an interconnecting
variable with respect to the control problem of aggiftthe variable of agentcorresponds
to the same physical quantity as a variable in the contrdblpra of agentj. E.g., a flow
going from subnetwork into subnetworkj is represented with an interconnecting variable
in the control problems of both agents.

Given the interconnecting variables of two agents corredjpg to the same quantity,
it is convenient to define one of these variables as an imeexinginput variable and
the other as an interconnectimgitput variable. On the one hand, interconnecting input
variableswin ji (k) of the control problem of agenmtwith respect to agentat control cycle
k can be seen as inputs caused by agemt the control problem of agent On the other
hand, interconnecting output variableg,ij (k) of the control problem of agenit with
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Figure 2.2: lllustration of the relation between the modai&l interconnecting variables of
control agents i and j.

respect to the control problem of agémian be seen as the influence that agems on the
control problem of agernit Figure 2.2 illustrates this. We consider interconnectiagables
Win ji (K) € R™inii andwoy ji (k) € R™outi,

Define the interconnecting inputs and outputs for the coipirmblem of agent over a
prediction horizon at control cycleas:

Wini (K) = Vi (K (2.9)
Wouri (K) = Ki [Ri(k+ )T ai()T %i(kT]", (2.10)

N2

whereK; is an interconnecting output selection matrix that corstaieros everywhere, ex-
cept for a single 1 per row corresponding to a local varialhée telates to an interconnecting
output variable.

The variablesvin i (K), Wouti (K) are partitioned such that:

i () = (Wi (0T, W i 9T] (211)
Wouti (K) = [Woutji,i(K)T,... aWout,jimi(k)T}T- (2.12)

The interconnecting inputs to the control problem of agenith respect to agent must
be equal to the interconnecting outputs from the controblenm of agent with respect to
agenti, since the variables of both control problems model the squaatity. For ageni
this thus gives rise to the followinigterconnecting constraints

Win, ji (k) = Woutjj (k) (2.13)
Wout ji (K) = Win jj (K), (2.14)

forall j € A¢.

An interconnecting constraint depends on variables of tifferént control agents.
Therefore, a particular control agent will always miss infiation that it requires to include
the interconnecting constraint explicitly in its MPC caitproblem formulation. Hence,
the agent has to use communication with another agent t@agehinformation that it uses
to determine which values it should give to the interconimgcinputs and outputs. Below,
we survey how schemes for multi-agent single-layer MPCediffi the type of information
exchanged and the moments at which information exchangs falkce.
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2.3.1 Types of information exchange

The challenge is to find a suitable way for the control agemtietll with the interconnecting
variableswin ji (k) andWoytji (k). In order to make a prediction of the evolution of the
subnetwork, values of the interconnecting variables havbet known or assumed over
the prediction horizon. There are several approaches tlindeaith the interconnecting
variables, each yielding different types of informatioattis exchanged:

1. Ignore the influence of the interconnecting variables.is @pproach is used in a
completely decentralized setting. A control agent igndhespresence of other sub-
networks completely. This type of control scheme can be ugdezh interconnecting
variables have negligible effect on the subnetwork dynam#n advantage of this
approach is the absence of communication overhead. Howiétbe influence of
the interconnecting variables turns out not to be negliggibbntrol performance will
degenerate.

2. Use constant values for the values of the interconnestanigbles over the full pre-
diction horizon based on a local measurement made or olotdioen a neighbor-
ing agent. This approach may be useful when the intercomgeeariables change
slowly. This approach may also be used to monitor the intereoting variables on-
line and to switch to a different way of dealing with the itennecting variables
when the variables start changing significantly. An advgetaf this approach is rela-
tively fast control, since the control agents only exchanf@mation at the beginning
of each control cycle once and after that solve their comtroblems decentralized. A
disadvantage of this approach is that if the values of trexdonnecting variables ex-
changed at the beginning of a control cycle are not valid twecomplete prediction
horizon, the performance of the control will decrease.

3. Use predictions of the values of the interconnectingaldeés over the full prediction
horizon as obtained from a neighboring agent [28, 48, 75]. aflmantage of this
approach is that there is only communication at the beg@wiha control cycle,
after which the control agents solve their control problatesentralized. However,
the neighboring agent providing the predictions has to nzake that the predictions
are correct. In practice, if the subnetwork of the neighhgragent relies on other
neighboring subnetworks this will be difficult to ensuresrétions as discussed below
in Section 2.3.2 are then necessary.

4. Use upper and lower bounds on the values of the interctéingecariables, as ob-
tained from a neighboring agent. This assumes that neigidpagents do not com-
municate exact trajectories, but instead bounds on theesadfithe interconnecting
variables. By enforcing these bounds, an agent can compartst-asase optimal in-
puts. The agent providing the bounds also has to make surédleactual trajectory
stays within the bounds it has communicated. So-called edibifity constraints can
do this for certain linear-time invariant systems [37]. ldepan advantage of this ap-
proach is that control agents do not have to make accuratiéctioms of the values of
interconnecting variables. However, the resulting cdmray be conservative, since
the control agents determine worst-case optimal inputadtfition, if a control agent
requires accurate values for the interconnecting varsatsleorder to make accurate
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predictions of the evolution of its subnetwork, only usingper and lower bounds
may give bad predictions, and consequently, bad performanc

5. Use a model that predicts the values of the interconmgsi@miables based on dy-
namics of neighboring subsystems [37]. When this is used &al@gent knows the
dynamics or part of the dynamics that generate the valudgedhterconnecting vari-
ables [37]. This is, e.g., the case when the local agent hapyaaf the subnetwork
models used by its neighbors. These models will depend aables of the neigh-
boring subnetworks, like inputs, and perhaps intercoringatariables of neighbors
of neighbors. An advantage of this approach is that more taheuinterconnecting
variables is known. A disadvantage of this approach can tre@sed computational
time required to determine the predictions.

6. Use a model about the evolution of the interconnectingibes that has been learned
given available information from neighboring agents. Tdpproach can be employed
if the agent does not have a model of the subnetwork that gersethe interconnect-
ing variables. Instead it may employ learning techniquesiarld up experience to
learn a model. An advantage of this approach is that the aloeent may exploit the
model learned from experience to improve its performancewéVer, learning such
a model in the first place is challenging.

7. Use knowledge about the objective function of neighlzpaigents together with mod-
els of the dynamics of the neighboring system [79]. The @adratigent can use this
information to compute which actions the neighbors willedk9]. It can determine
the actions that will be applied to that subsystem and caresgty determine the evo-
lution of the values of the interconnecting variables. Kremige about the objectives
of neighboring subnetworks can be used to make local desstat are not counter-
acting the objectives of other control agents. Hence, aardge of this approach is
that a control agent can anticipate what other control aggnet going to do and there-
fore possibly increase the efficiency of the decision makiaglisadvantage of this
approach is that one controller effectively is solving tatrol problems of multiple
subnetworks. Hence, the computational requirementsmgiase significantly, even
more than when approach 5 is used. In an approach that sontelmomunicates the
computed actions to the neighboring subnetworks this cbeltbme an advantage
however.

2.3.2 Timing of information exchange

Schemes for multi-agent MPC do not only differ in the typergbrmation exchanged, but
also in the moment at which information exchange takes pEsshown in Figure 2.3. The
schemes are distinguished by the following charactesistic

1. Synchronou®r asynchronousi.e., do agents have to wait for one another when it
comes to sending and receiving information and determimihigh actions to take,
or can they send and receive information and determine wdition to take at any
time.
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Figure 2.3: Different communication schemes between tvemizg Arrows indicate infor-
mation exchange. Dotted lines indicate actions being implated. Horizontal
lines indicate optimization problems being solved.

2. Singleor multipleiterations, i.e., do agents decide on their actions aftedisg and
receiving information once, or do agents decide on theiiloastafter a number of
information exchanges.

3. Parallel or serial, i.e., are multiple agents performing computations at #reestime,
or is there only one agent at a time performing its computiatio

Asynchronous schemes have as advantage over synchromamsesthat agents do not
have to wait for other agents to solve their problems andd#ech which actions to take.
However, agents will have to include newly received infotiorafrom neighboring agents
at any time while solving their own optimization problemso Multi-agent MPC methods
can do this at present.

Single-iteration schemes have as advantage over muitgiion schemes that the
amount of communication between agents is less, sinceniafdon is exchanged only
once after an agent has solved its problem, and that timdreshjto make a decision is
less, since only one iteration is done. Multiple-iteratemhemes have as advantage over
single-iteration schemes that it is more likely that intemesecting constraints are satisfied at
the end of the iterations. In addition, over the iteratiogsras obtain implicit information
about the objectives of their neighbors. Multiple-itesatischemes therefore have a larger
potential to achieve overall optimal performance than Isiigration schemes.

Serial schemes have as advantage over parallel schemegjéms use the most up-to-
date information from their neighbors. In parallel schentls information that is received
is usually outdated. However, in serial schemes only onataggerforming computations
at a time and therefore decision making is potentially skativan when a parallel scheme is
used.

In the literature, several aspects of synchronous sirtglation parallel schemes have
been considered, e.g., in [37, 75, 79]. For certain lingaetinvariant systems stability
can be proved when a so-called contracting stability cairgtis placed on the first state
of each subsystem [75]. Stability results for settings wttbe evolution of interconnecting
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variables does not depend on neighbors of neighbors are givi87, 79]. Synchronous
multiple-iterations serial and parallel schemes have loeesidered in [28, 48, 74]. Condi-
tions for convergence of iterations to local solutions atubgl solutions are given in [28].
A Lagrange-based scheme for the parallel case is employd@jn

In the following we relax the assumption made in Section A& the control agent
operates individually and knows what the influence of thginledring agents is going to be.
We extend the scheme of Section 2.2 to take into account fgblars through an iterative
procedure. The procedure uses as information predictivasthe full horizon as obtained
from neighboring agents, and employs multiple iterationa synchronous fashion, aiming
for satisfaction of the interconnecting constraints.

2.4 Lagrange-based multi-agent single-layer MPC

For feasible overall solutions, the interconnecting caists as defined in (2.13)—(2.14)
have to be satisfied at the moment that control agents deaidéhizh action to take. As
discussed above, when one agent solves its optimizatidrniguroit has to assume trajecto-
ries for the interconnecting variables of its neighboringsetworks over the horizon. If the
neighboring control agents do not respect the assumedtajes that they communicated,
it is unlikely that such a trajectory will appear in the trystem evolution. The neighboring
control agents will only have an incentive to respect themmunicated trajectories if these
trajectories yield optimal inputs for their own subsystems

Even if the agents make an agreement in advance to respetcajietories communi-
cated, in practice they may not be able to implement thiseagemt. The reason for this
is that at the time of trajectory generation the agents dicknow what the values of the
interconnecting variables of the other agents will be. €Fme, they may require infeasi-
ble inputs to local subsystems to respect the communicedgzttories. To deal with this,
a scheme can be used in which the agents perform a numberatidtes to come to an
agreement on interconnecting variable trajectories trehaceptable to all agents, instead
of holding on to the first trajectories communicated.

In each iteration each agent optimizes both over its actmmsover the predictions of
trajectories of neighboring subnetworks. In this way, eaghnt is sure that the predicted
trajectories it assumes are optimal for its own subsystefter &ach of the agents has in this
way determined its own optimal actions and predicted imtenecting variables trajectory, it
communicates the predicted interconnecting variablectayies to the neighboring agents.
This basically means that each agent tells its neighboryggns how it would like to see
the interconnecting variables of those agents evolve deehorizon.

Ideally, the interconnecting variable trajectories thaige neighboring agents receive
will exactly correspond to their predictions of their intennecting variable trajectories if
they would implement their optimal input sequences. Howeités more likely that the
received trajectories will not correspond to their preelittrajectories, as discussed before.
To encourage the agents to come to an agreement on the prktitgdrconnecting variable
trajectories a penalty term is added to the objective famotif each agent. By updating the
penalty terms over a series of iterations using the infoiwnateceived from neighboring
agents, convergence may be obtained under appropriatenptiens, as we will discuss
below.
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To derive a scheme that implements these ideas we consaltallbwing steps:

1. Formulate the combined overall control problem, i.egragate the subproblems in-
cluding the interconnecting constraints;

2. Construct an augmented Lagrange formulation by repipeimch interconnecting
constraint with an additional linear cost term, based onréiage multipliers, and
a quadratic penalty term [19, 23];

3. Decompose this formulation again into subproblems foheagent.

We now focus on these steps in more detalil.

2.4.1 Combined overall control problem

We define the combined overall control problem as the prodienmed by the aggrega-
tion of the local control problems without assuming that itiffuence from the rest of the
network formulated through (2.6) is known, but including thefinition of the interconnect-
ing inputs and outputs (2.9)—(2.10) and the interconngatonstraints (2.13)~(2.14). After
defining:
X(k+1) = [Fa(k+1)T,... Zn(k+1)T]T
U(k) = [01(K)T, ..., 0n(K) ]
Y(K) =[F1(K)7.. . (K],

the control problem at control cycleis defined as:

n
_ min _ ZiJlocal.i(f(i(k+1)al]i(k)a37i(k)) (2.15)
X (k+1),0(k).¥ (k) &

subject to, foi =1,...,n,

Win, ji 1i (K) = Woutjj; , (K) (2.16)

Wi, i (K) = Woui () (217)

and the dynamics (2.4)—(2.5) of subnetwadr&ver the horizon, and the initial constraint
(2.7) of subnetwork. Note that it is sufficient to include in the combined overaihtrol
problem formulation only the interconnecting input coasits (2.9) for each agentsince
the interconnecting output constraints (2.10) of ademill also appear as interconnecting
input constraints of its neighboring agents.

2.4.2 Augmented Lagrange formulation

The overall control problem (2.15) is not separable intgablems using only local vari-
ablesx; (k+1), G;(k), yi (k) of one agentalone due to the interconnecting constraints (2.16)—
(2.17). In order to deal with the interconnecting constisimn augmented Lagrange for-
mulation of this problem can be formulated [19, 23]. An augted Lagrange formulation
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combines a penalty formulation with a Lagrange formulataond therefore can provide
improved convergence [18]. Using such a formulation, thersonnecting constraints are
removed from the constraint set and added to the objectetifan in the form of addi-
tional linear cost terms, based on Lagrange multiplierd,additional quadratic terms. The
augmented Lagrange function is defined as:

k 1 U Win(k)awout(k)aAin(k))

—~

+ ), Y (K
<J|OC3|I (Xi(k+1),0i(k),yi(k),)

M:

+,-EZM (Xm,,—i(k)(win,ji(k)—woum( Hw.n,. WOULij(k)“z)>, (2.18)

where

V~Vin(k) = [Win,Jl.ll(k)Ta e aWin,jn‘mnn(k)T]T
Wout(k) = [Wout,h,ll(k)Ta e 7V~V0U“n,mqn(k)T]T
Ain(K) = [Ain,j121(K) - N jmen(K) 1T,

and wherey. is a positive constant, anidm’ ji(k) are the Lagrange multipliers associated
with the interconnecting constrainig, ji (k) = Wou ji (K).

By duality theory|[19, 23], the resulting optimization ptetn follows as maximization
over the Lagrange multipliers while minimizing over the etlvariables, i.e.:

max{ min L ()”((k+1),U(k),\?(k),v”vin(k),v”vout(k),[xin(k)) . (2.19)
Ain(k) | X(k+1),0(K),Y (k),
Win (k). Wout()

subject to the dynamics (2.4)—(2.5) of subnetwbdver the horizon, and the initial con-
straint (2.7) of subnetwork fori =1,....n

Under convexity assumptions on the objective functionsaffidity of the subnetwork
model constraints it can be proved that a minimum of the nabgproblem|((2.15) can be
found iteratively by repeatedly solving the minimizatioarpof (2.19) for fixed Lagrange
multipliers, followed by updating the Lagrange multipBassing the solution of the mini-
mization, until the Lagrange multipliers do not change aagerfrom one iteration to the
next [19]. These convexity assumptions are satisfied folitiear model[(2.1)+(2.2) that
we assume, in combination with a linear local objective fiorg or in combination with a
quadratic local objective function as defined in (2.8). lat®® 2.5 we show an example of
such a model with a quadratic local objective function.

2.4.3 Distributing the solution approach

The iterations to compute the solution of the combined divecatrol problem based on
the augmented Lagrange formulation (2.18) include quadtatms and can therefore not
directly be distributed over the agents. To deal with thig, hon-separable problem (2.18)
can be approximated by solvingseparated problems, each of which is based on local
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dynamics, local objectivediocali, and an additional cost terdierj. The problem for the
control agent controlling subnetworks defined as follows:

i Jiocati (Xi(k+1),G;(k),Vi(k
] >'<i(k+l)r,]f?il(?).yi(k), hocali (Xi ( ), Ui (K),¥i(K)) ) )
Winji 31 (K)o Wiy i () 4 > Jinteri (Win,ji(k)aWouLji(k),Ain,ji(k)(s>,>\ou;ij(k)(s))7
WOuLji,li(k)ﬂ"-:WOULJ’iAmii(k) JENS

(2.20)

subject to the dynamics (2.4)—(2.5) of subnetwbdver the horizon, and the initial con-
straint (2.7) of subnetwork As we will see below, the structure of the additional coainte
Jinteri differs depending on the type of communication scheme useiterations, the vari-
ables:\in,ji (k)® are the Lagrange multipliers computed by agiefur its interconnecting
constraintsviy ji (k) = Woutj (k), and the variableioum (k)(s) are the Lagrange multipliers
for its interconnecting constrain®oyt ji (k) = Win jj (k). The 5\0ut,ij (k)(s) variables are re-
ceived by agentthrough communication with ageptwhich computed these variables for
its interconnecting constraints with respect to agefihe general multi-agent MPC scheme
that results from this comprises at control cyklthe following steps:

1. Fori =1,...,n, agenti makes a measurement of the current state of the subnetwork
%i (k) = x(k) and estimates the expected exogenous irg(iks-1 ), forl =0,...,N-1.

2. The agents cooperatively solve their control problentiéifollowing iterative way:

(a) Setthe iteration counteto 1 and initialize the Lagrange multipliedg, ji (k)(®,
Woutjj (K)(® arbitrarily.

(b) Either serially or in parallel, for = 1,...,n, agenti determinesx;(k+ 1)(S>,
0 (K)1S), Win,ji (K)19, Woutij (K)(9, for j € A¢, by solving:

i Jiocali (Xi(K+1),G;(Kk),yi(k
] )?i(k+l)l:]l;|il(lill),)7i(k), local,i (XI( );Ul( )7Y|( )) ] )
iNi”‘ji-li(k)""’vyi”‘jiﬁmii(k)" + Z Jinter,i (Win,ji(k)»woutji(k)a)\in.ji(k)(s)a)\outij(k)(s))7
Woutjirli(k)r-wWout,ji,mii(k) JeN

(2.21)

subject to the local dynamics (2.4)—(2.5) of subnetwiooker the horizon and
the initial constraint (2.7) of subnetwork

(c) Update the Lagrange multipliers,
Xin, ji (K) S = Xin i (K)©®) +7¢ (Win,ji (K)' = Wouij (k)(s)) : (2.22)

(d) Move on to the next iteratioa+1 and repeat steps 2.(b)-2.(c). The iterations
stop when the following stopping condition is satisfied:

S‘inJlAll(k)(Sﬂ) - S‘in-h.ll(k)(s)
< Ve term, (2.23)
)‘in,jnmnn(k)@ﬂ) - iian‘nhn(k)(S) .
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wherey. 1erm is @ small positive scalar and || denotes the infinity norm. Note
that satisfaction of this stopping condition can be deteediin a distributed
way, because each individual component of the infinity noapethds only on
variables of one particular agent [111].

3. The agents implement the actions until the beginning@htixt control cycle.

4. The next control cycle is started.

Remark 2.7 The Lagrange multipliers can be initialized arbitrarilyowever, initializing
them with values close to the optimal Lagrange multipliei wcrease the convergence
of the decision making process. Therefore, also initiatizihe Lagrange multipliers with
values obtained from the previous decision-making steigeficial, since typically these
Lagrange multipliers will be good initial guesses for thevreolution. We refer to this as a
warm start O

The schemes proposed in the literature implement step i2.@parallel fashion, e.g.,
[28, 41, 48]. In the following we first discuss a scheme thaplaments step 2.(b) in a
parallel fashion and then we propose a novel scheme thaeimeits it in a serial fashion.
We then assess the performance of both schemes experimental

2.4.4 Serial versus parallel schemes
Parallel implementation

The parallel implementation is the result of using theiliary problem principle[14, 81,
127] of approximating the non-separable quadratic terrhéraiigmented Lagrange formu-
lation of the combined overall control problem. The palaigheme involves a number of
parallel iterations in which all agents perform their locamputing step at the same time.

Given for the agent§ € 4§, the previous informatioin previj (K) = Win jj (k)Y and
Wout prevji (K) = Wout ji (K) 5™V of the last iteration s 1, agent solves problem (2.21) using
the following additional objective function term for theiémconnecting constraints:

Jinter; (Win,ji (K), Wout ji (K), Ain.ji (K)®, Aoutij (k)(s))

- T ~ -
- [ {‘insii(k)(s) ] {Win,ji(k)} 4 I [Winvprev,ij(k)‘Wout,ji(k)] ?
~Aoutij ()] [Wourji(K)| 2 || |Wout,previj (K) =Win,ji (K) |||,
L b {Win,ji(k)_win,pre\/,ji(k) } ?
2 Wounji(k)_wout,previi(k) 2'

This scheme uses only information computed during the tasations—1. The parallel
implementation of step 2.(b) of the general multi-agent M#¢Geme therefore consists of
the following steps at decision st&piterations:

2 (b) Forallagentse {1,...,n}, at the same timeagent solves the problen (2.21)
to determine; (k+ 1), i (K)®), Win ji (K)1¥, Woutji (K)®, and sends to agent
j € A{ the computed valueBoy ji (k).
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The positive scalat; penalizes the deviation from the interconnecting varidtelates
that were computed during the last iteration. This causaswhen is chosen larger, the
interconnecting variables that agemomputes at the current iteration will stay close to the
interconnecting variables that neighboring aggratA{ computed earlier. With increasing
7, it becomes more expensive for an agent to deviate from ttegcionnecting-variable
values computed by the other agents. This results in a fasterergence of the intercon-
necting variables to values that satisfy the interconngatbnstraints. However, it may still
take some iterations to obtain optimal values for the loeaiables. A highery results in
a higher number of iterations before reaching optimalithaugh the interconnecting con-
straints will be satisfied quickly. A lowey. results in a lower number of iterations before
reaching optimality and interconnecting constraints dratsatisfied. However, whep is
chosen too small, a larger number of iterations will agaimbeessary, since it will take a
longer time for the interconnecting constraints to be fiatls

As additional parameter this scheme uses a positive sgaldf v, > ¢, then the term
penalizes the deviation between the interconnecting limseof the current iteration and the
interconnecting variables of the last iteration of ageittthus gives the agent less incentive
to change its interconnecting variables from one iteratmrthe next. Wheny, > 2+,
and moreover the overall combined problem is convex, it caproved that the iterations
converge toward the overall minimum for sufficiently smalterm [20, 81].

Serial implementation

The novel serial implementation that we propose is the tesfulising block coordinate
descenf{20, 127] for dealing with the non-separable quadratic terrthe augmented La-
grange formulation of the combined overall control problgril8). This approach mini-
mizes the quadratic term directly, in a serial way. Conlyda the parallel implementation,
in the serial implementation one agent after another mirgsits local and interconnecting
variables while the other variables stay fixed.

Given the informatioin previj (K) = Win ij (K)(®, Wout,previj (K) = Woutjj (K)® computed
at the current iteratios for each agenj € A that has solved its problelmeforeagenti

in the currentiterations, and given the previous informatiofyrey;j (k) = \ivi(js_l)(k) of the
last iterations—1 for the other agents, agensolves problem (2.20) using the following

additional objective function:
) o]
outlj Ut’“
k
k

HWm prevu( k) - Woutjl( )
Wout, prew](k) Win, ]I( )

Jinter (Win,ji(k),woutji(k)75\in.,ji(k)(s)75\our,ij (k)(s)) =

Ye
2

+

Il

Thus, contrarily to the parallel implementation, the den#lementation uses both infor-
mation from the current iteration and from the last iteratioThe serial implementation
implements step 2.(b) of the general scheme as follows didacstepk, iterations:

(i) 2 Fori=1,...,n, one agent after anotheagent determines;(k+1)®, Gj;(k)(®,
Win ji (K)(®), Woutji (K)® by solving (2.21), and sends to each aggmrt4{ the
computed valuesioy ji (k).
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Figure 2.4: Example of two subnetworks, each with loads sowlgp generation facilities.
Power flows over the transmission line between the subnkswofhe load-
frequency control problem involves adjusting the genersitih each subnetwork
such that the frequency deviation is maintained close to arder load distur-
bances.

The role of the scalatc is similar as for the parallel implementation, except tratthe
serial implementation; penalizes the deviation from the interconnecting varidtgieates
that were computed by the agents before ageéntthe current iteration and by the other
agents during the last iteration. Note that when for the lggrschemey, = . the addi-
tional objective functions are the same for the parallel turedserial scheme, except for the
previous information used: the parallel implementatioesusnly information from the last
iteration, the serial also from the current.

In the next section we experimentally assess the perforenahthe parallel and the
serial scheme and discuss which of the two schemes yielddea performance.

2.5 Application: Load-frequency control

In this section we propose the use of the techniques for ragkint single-layer MPC dis-
cussed above for a particular problem in power networks. groblem that we consider is
load-frequency contrdB2]. The frequency is one of the main variables charadtegithe
power network. The purpose of load-frequency control isdefkpower generation close to
power consumption under consumption disturbances, sathtta frequency is maintained
close to a nominal frequency of typically 50 or 60 Hz [82]. Atiaternational level power
networks become more interconnected and in addition powessfbecome more unpre-
dictable, e.g., due to large-scale unpredictable poweemgion using wind turbines. In
order to assure correct load-frequency control in the fjtgurrent control strategies will
be replaced by more advanced strategies that automataradlyonline determine how the
actuators in the network have to be set. Since at an intemtievel countries are not will-
ing to give away access to actuators and sensors in their olameswvorks, they will have to
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Figure 2.5: The overall network, consisting of 13 subnetsor

install controllers that cooperatively control the ovéredtwork.

A large number of control strategies has been developedé&ar-frequency control [70].
In the 70s, load-frequency control started being develapiéu control strategies based on
centralized, non-MPC control (see [42, 47, 125]). From t@e 8n also, distributed, non-
MPC schemes appeared [3, 78, 119, 151, 152]. Recently, a®0-bhsed schemes have
been proposed. A centralized MPC scheme for load-frequenngrol was proposed in
[126]. A decentralized MPC scheme for load-frequency aimtias proposed in [8]. The
latter approach is a decentralized approach that does ketha interconnections between
subnetworks explicitly into account. In [28] a distributéldPC scheme is proposed for load-
frequency control assuming that only once per control stégrination between agents can
be exchanged. Also in [144] a distributed MPC scheme is eppib a load-frequency
control example. The scheme uses distributed state egtimtatprovide nominal stability
and performance properties. We consider distributed MPi6guthe parallel and serial
scheme of Section 2.4.4, which explicitly take into accatinet interconnections between
subnetworks, and use multiple iterations of informatiootenge before deciding on which
actions to take.

2.5.1 Benchmark system

Our benchmark network consists of subnetworks with condiem@nd generation capa-
bilities, as illustrated in Figure 2.4 for two subnetworkéle consider a network divided
into 13 subnetworks as shown in Figlre 2.5. Each subnetvgarhiitrolled by one control
agent. This control agent has to keep the frequency dewiatithin its subnetwork close to
zero under minimal generation changes. Each control agembnoly make measurements
and set actuators in its own subnetwork.

We consider rather simplified dynamics for the subnetworldet® that do however
include the basic elements of power injection, power comgion, and power flow over



2.5 Application: Load-frequency control 35

constant| value
K, i 120
7S,ij 0.5
75, ji 0.5

nri(s) | 20

Table 2.1: Values of the parameters of the subnetworks,ddfl,...,n} and j€ Af.

power lines, and that do show the basic characteristicseofdd-frequency control prob-
lem. Let the continuous-time linearized dynamics of sulwoeét i be described by the
following second-order dynamics, as taken from [28]:

dXas.i
35" (t) = 2mxari(t)
dXaft,i 1 MK, TK,i
~(t) = —Xafj(t)+—=u i(t)-——d s (8
q =~ Xati(O)+ AR (0) =y )
+& < 77257” (XAg,j(t)_XAéﬁi(t))>
i \jexg <™

yit) = {XMJ (t)] :

Xaft,i(t)

where at timet, for subnetworki, xas,i(t) is the incremental phase angle deviation in rad,
Xat,i(t) is the incremental frequency deviation in HEAPyeni (t) is the incremental change
in power generation in per unit (p.udapi(t) is a disturbance in the load in p.y;(t)
are the measurements of the states, andis the subnetwork gainyr; is the subnetwork
time constant in sysj is a synchronizing coefficient of the line between subnekvwand

j. The values for these constants are given in Table 2.1. Siecassume that the outputs
yi(t) measure the state variables noise-free, we will withowt ifggenerality leave out the
outputsy;(t) and only focus on the statggt) in the following.

Remark 2.8 For subnetworki the derivativedxﬁf*i (t) depends orxas j(t), for j € A,
which are variables of the subnetworkg A§. The variablexa; j(t) will therefore cause
an interconnecting constraint between the control problefragents andj. O

Defining the local control inputi (K) = Uapy.,i(K), the local exogenous inpuf(k) =
dap,.i(K), the local statesi(k) = [Xasi(K), Xati(K)]T, the remaining variableg;(k) =
(Xas,ji1 (K), - - Xas,ji (k)]T, and discretizing the continuous-time model using an Eager
proximation (with a step size &, = 0.25s), the dynamics of subnetwarkan be written
as:

Xj (k+ 1) = AjX; (k) + Bl,i Ui (k) + Bszi (k) + BgJVi (k), (2.24)

where

Aj=

1 Tp2m B 0
— 1i = |1 i
Yjeng (Tpig};%ﬁ ') 1-Tor T
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2.5.2 Control setup

The agents use the multi-agent single-layer MPC approachsasssed in Section 2.4.3.
In order to implement this scheme, the prediction modeljnterconnecting variables, the
control objectives, and possibly additional constrairagehto be specified:

e Prediction model. Agerituses as prediction model; (2.24) over the time span from
k+1 until K+N.

e Interconnecting variables. The interconnecting inputsafgenti are defined as in
(2.9), and the interconnecting outputs for ageate defined as in (2.10), with:

1 0 0 1

10 0

10 0

such that the interconnecting inputs ares j(k+1+1), and the interconnecting out-
puts arexas,i(k+1+1), for j € Afandl =0,...,N-1.

e Local control objectives. Since agdntas to minimize the frequency deviation and
the control input changes in its subnetwork, it uses theWdhg quadratic local ob-
jective function:

Docat (i (k+ 1), 5 (K)) = lN_XZ e T S5 o e
where _
00 8] auma

A quadratic function has the advantage that larger deviatarve penalized more, and
moreover that the objective function is convex.

e Additional constraints. Upper and lower bounds are impasethe changes in power
generation and on the changes in angle and frequency:

Umini < Ui(K+1) < Umax;
Ximin < Xi(K+1+1) < Xi max,

fOI’ I - 0, . .,N _1, and Umin7i - _03, Umax_| - 03, Xi7min - [_10, _1O]T, Xi,max -
[10,10].

The defined subnetwork models, interconnecting varialdes) control objectives, and
additional constraints lead to an overall combined comiroblem|(2.15) that is convex.
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Figure 2.6: Uncontrolled simulation of frequency deviatafter a small disturbance in sub-
network 5.

2.5.3 Simulations

We simulate the network in Matlab v7.3 [98]. The network isiglated in discrete time
steps of 0.25 s, foks = 20 steps. Every 0.25 s the control agents measure the sttteiof
subnetwork after which they either employ the serial or taeaflel scheme to determine
which action to take next. As reference for the performanbgpothetical single agent that
uses the overall combined control problem (2.15) is emmloygach of the schemes uses a
warm start when possible, i.e., when the solution from aipres/control cycle is available.
Iterations are stopped when the stopping condition (2 23atisfied, or when a maximum
number of 5000 iterations has been performed.

The MPC problems solved by the individual control agentsaheteration are quadratic
programming problems with linear constraints. These @otd are efficiently solved by the
ILOG CPLEX v10 Barrier QP solver [71], which we use througk ffomlab v5.7 [66] in-
terface in Matlab v7.3 [98].

To assess the performance of the schemes discussed abofiestwkistrate the un-
controlled behavior of the network after a disturbance fqraaticular scenario, then we
consider the performance of the schemes over the full stioul@pan for a particular set-
ting of the parameters, and then we focus on how the parasmgtand-y. term influence the
performance of the schemes at a single control cycle.

Scenario without control

It is easy to verify by inspection of the eigenvalues of therall network that the network
is unstable when no control is employed. To illustrate thigability, we first consider the
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following uncontrolled scenario. The subnetworks stasteady state, i.ex;(0) = [0,0]T,
fori={1,...,n}). A disturbancedap,i(k) = 1.102 is imposed ak = -1 in subnetwork
5.

Figure 2.6 shows the evolution of the frequency deviatigitriafter the disturbance
has appeared, i.e., starting frdin= 0, in a number of representative subnetworks when
no control actions are taken. Clearly, without control ggeatting on the generation, the
dynamics of the network directly after the disturbance Ibeeainstable, and the magnitudes
of the oscillations of the frequency deviations increaseldy after the fault.

Performance of control over the full simulation span

We now consider the performance that the parallel and sseciaémes discussed in this
chapter can achieve for particular values of the controhpeaters. We compare the perfor-
mance of the serial and parallel scheme with each other atdawiypothetical centralized
control agent that solves the overall combined MPC problem.

We consider 50 scenarios in which a randomly chosen distegbdap, i from the
domain[-1.1072,1.107?] appears in a randomly chosen subnetwiazk{1,...,13}. In each
scenario, we let time stép= 0 correspond to the time step right after the disturbance has
appeared. Hence, we consider the performance of the cageoits with respect to dealing
with the consequences of the disturbance.

To compare the performance of the schemes over the full sitioul period, costs are
computed over the full simulation as:

n kf—l

Jsim = i; I;Jstagei ()_(i(1+|)aui(|)vyi(|))7

where the bar indicates that the value of the variable is thgshvalue as appearing in the
evolution of the network, and not the predicted value asipted by a control agent during
its optimization. E.g.x;(k) refers to the actual state of subnetwordt timek, and not to
the state predicted by a control agent. No penalty term isidtedd for violation of the upper
or lower bounds on the variables.

As parameters we here consider as specific setting for tlygHeat the prediction hori-
zonN = 5, and for the values of the parameters of the schefges 1, v term = e,
and~y, = 2+, which for overall convex problems guarantees convergémward an over-
all optimal solution. Below we will further discuss the influce of different values of the
parameters on the performance of the control.

Table[ 2.2 shows over all scenarios the average results ofdchemes, consisting of
the average performanclim avg the average number of iterations requimdg,avg and
the total computation time in secorfdsWVe observe that the average performadge avg
that is obtained over a full simulation by the serial and theafiel scheme are very close
to each other. In addition the performance of these mukindgchemes is very close to

2For computing the total computation time required for the paraind the serial scheme, only the time spent
on solving the optimization problems is summed, since the timel\ied in setting up the optimization problems
is negligible. The simulations are implemented in a central Eition environment. Hence, the parallel scheme is
in fact executed in a serial fashion. Therefore, the compmrtaime of a single iteration is taken as the maximum
computation time required for solving either of the local ap#iation problems. Since the simulations are executed
in a central simulation environment also no communication dedag accounted for.
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scheme Jsim,avg Niter,avg Tcomp,avg
centralized| 0.2746 - 0.3
serial 0.2746| 129 16.6
parallel | 0.2746| 335 5.9

Table 2.2: Results of the schemes over all experiments.abiteeghows over all 50 scenar-
ios the average performancegidavg the average number of iterationsidiavg
and the average total computation timgnip,avg(s). The results have been ob-
tained for parameter settings N5, k= 20, vc = 1, e term = 1.107%, and starting
from 50 different initial states, each of which are a statpegring right after a
random disturbance between -0.01 and 0.01 p.u. in one ofutheetworks has
occurred.

the performance of the centralized scheme. Hence, theaisrsigents have obtained the
performance of the centralized control agent in a distaduvay.

We also observe from Table 2.2 that the serial scheme ongweegjuires fewer itera-
tions Niter,avg Per simulation than the parallel scheme. This can be exgdélty the fact that
the serial scheme uses information from both the previodstamcurrent iteration, whereas
the parallel scheme only uses information from a previcergiton.

In Table/ 2.2 we also observe that the total computation timsetonds per simulation
on averageleomp,avgiS larger for the serial scheme than for the parallel scheiftas is
explained by the fact that in the serial scheme only one agfemtime performs a computa-
tion step within an iteration, whereas in the parallel sce@nultiple control agents perform
computations at the same time. Compared to the centralctezhse, the parallel and serial
scheme have a larger total computation time than the cergtdascheme.

Below we will discuss these results further, after illustrg the influence of different
parameter values on the performance of the parallel andl sstheme.

Iterations at a single control cycle

To illustrate the operation of the serial scheme at a pdafaontrol cycle, consider Figure
|2.7. The figure illustrates the typical behavior of valuesntérconnecting variables going
toward each other over the iterations at a particular coetrole for a network consisting
of two subnetworks. In this network, the valuesxphre unconstrained.

The figure illustrates for a particular interconnectinguhpariable of agent 1 over the
prediction horizon and the corresponding interconnectintput variable of agent 2 over
the prediction horizon, the values that both agents woukdltheir interconnecting variable
to take on. After each local computation step, these valtes@mmunicated to the other
agent, which uses these to update its interconnecting thlgdanction. As the iterations
progress the values of the interconnecting input and thesponding interconnecting out-
put converge to each other, indicating that the values garwatisfying interconnecting
constraints. In addition, since in our case the combinedatieroblem is convex, the val-
ues converge to the solution that would have been obtainddanentralized control agent
that would have access to all actuators and sensors in therket

Depending on the value of the parameigferm the iterations will terminate sooner or
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Figure 2.7: Convergence of the values for interconnectimaut variables of agent 1 (solid
line with circle) and the corresponding interconnectingtmut variables of
agent 2 (solid line with cross), each corresponding to theéakdes xas 1(k+1)
over a prediction horizon of 6 steps, hence, fer IL,2,...,6. Over the itera-
tions the values converge to the overall optimal soluticasted line).
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later, and depending on the value of the parametethe values of the interconnecting
variables will converge sooner or later to values for which interconnecting constraints
are satisfied. Below we go into this in more detail.

Parameter sensitivity at a single control cycle

To gain more insight into the role of the parametgysind-~y. term and into the iterations that
the serial and the parallel scheme perform, we illustrateglrformance of the schemes
for a particular representative control problem at a paféc control cycle under varying
parameter values. The control problem that we consideradsviRC control problem that
the agents have to solve right after a disturbamce,,; of magnitude 11072 has occurred
in subnetwork 5.

To evaluate the solution over the prediction horizon debeech by the different schemes
at a single control cycle, the inputs coming from the difféarechemes are implemented to
determine the resulting state trajectory, after which thelec performanceleycie is deter-
mined as:

n N-1

Jeycle = Jstagei X2+, ui(h),yi()).
P
No penalty term is included for violations of the bound coaisits.

Varying the penalty coefficient We first vary the parameteg, while keepingy. term fixed

at 110°°. For varying values of the parametgrwe determine the cycle performandgcie

at each intermediate iteration. Hence, after each itevatiwe actions that the control agents
would then choose are used to evaluate the cycle performépgeover the prediction
horizon.

Figures 2.8 and 2.9 illustrate how the cycle performaigge of the control agents
using the serial and the parallel scheme changes over théates, under various values for
~vc. We clearly observe that as the number of iterations ine®athe performance of the
solution that the control agents have determined increasesell.

We observe in Figure 2.8 that, indeed, on the one hand for semgll values of the
penalty ternryc, the convergence is slow, whereas on the other hand, faraejues of the
penalty termy., the convergence is faster. However, we observe in Fig@¢hat, indeed,
when the penalty term is chosen too large, the convergence slows down again.

For a given value ofy, the serial scheme requires fewer iterations and convédagbsr
than the parallel scheme. This behavior is best observddriyer values ofy. in Figure 2.9.
The difference in the number of iterations required is duth#fact that the serial scheme
uses information earlier than the parallel scheme. Forlemedlues ofy., as those shown
in Figure 2.8, the influence of the additional objective fiimitJier; of both the parallel and
the serial scheme vanishes, making that the differencedegtihe two schemes vanishes as
well.

Varying the stopping tolerance Given a value for we determine the cycle performance
Jeyele that the control agents obtain at termination using varieaises for the stopping
tolerancey. term. We vary~y. termin the set{1.108,1.107,...,1,10}.
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Figure 2.10: The cycle performance versus the number adtitans for N= 5, 7. = 100,
and varyingy. term. Each circle and star represent a scenario with a different
value fory, term. The value ofy. erm decreases when going from left to right.

Figure[ 2.10 shows the results for varyingierm, While keepingy. fixed at 100. We
observe that with a decreasing value of the stopping toberanierm, more iterations are
required before the stopping condition is satisfied. We alsgerve that if an appropriate
value fory, term is chosen, convergence toward the centralized solutiohteired within a
reasonable bound.

It is noted that there is minimal performance that is achdewden . term becomes
larger than a certain value. In Figure 2.10 this is obsereedtfe parallel scheme, which
for values ofy. term larger than 0.1 achieves the same performance.

When comparing the serial scheme with the parallel schemeghserve that the se-
rial scheme outperforms the parallel scheme in convergepeed and performance. Fur-
thermore, Figure 2.10 illustrates that over the iteratitves performance of both schemes
converges toward the performance of the centralized dvachéme.

Discussion

The experiments reported in this section represent a velgtsmall portion of all experi-
ments that could have been done, involving multiple contimna of network topologies,
scheme parameters, prediction horizons, etc. Nonethelesgesults obtained here give an
indication of the potential of the approaches discussehigchapter.

It is noted that both schemes discussed only communicatemation common to the
control problems of several agents; all other data is ongduscally. Agents have only a
prediction model of their own subnetwork. This gives flekipiand security, since other
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agents do not have to know the exact parameters of a partgutmetwork, and in fact the
subnetwork may be changed, without having to inform othensg

The time required to complete the iterations at one conirdicin these experiments is
typically larger than a real-time online implementationulballow. However, as Figures
[2.8 and 2.9 illustrate, after already a few iterations atiegy good solution can have been
obtained, and thus if necessary the iterations could begstbparlier.

In our experiments we have seen that the serial scheme caerfarm the parallel
scheme in terms of convergence speed in terms of iteratioth$hee performance obtained.
However, we also observed that the serial scheme requires coonputation time in sec-
onds in order to perform its computations, when comparetiégtrallel scheme.

If the time required for one serial iteration is reduced, $keeial scheme may also out-
perform the parallel scheme in total computation time regpli Our idea to achieve this
is to parallelize the serial scheme, either only within amation, or also over iterations.
Parallelization can be done when the topology of subnetsvodn be seen as a tree. This
tree structure of the network makes that control problemsooitrol agents can be solved
(partially) in parallel, thus reducing total computatiogmé. Groups of agents operating in
parallel may be constructed. Within each group, the secia¢me may be employed [111].

It should be noted that the overall network that the contgalrds control in this section
is highly unstable. As we have seen, a small disturbancesimtierall network gives large
oscillations if not controlled properly. For this reasarnisiimportant for the control agents
to obtain very accurate values of the interconnecting éegmover the prediction horizon.
For applications in which the local subnetwork dynamics ahpctives do not depend as
much on the values of the interconnecting variables detisiaking speed can be increased
by lowering the value of the stopping tolerangerm.

The dynamics used in this section for representing the pawexorks dynamics are
highly simplified, and the values representing the devigtitherefore can also not directly
be related to physical values. The linear dynamics assumeetypically valid only over
small prediction horizons. However, for our purpose of singrthe performance of the
control schemes, this is not an issue. More advanced linedets may be used in combi-
nation with the schemes considered above to more adequatelsent the actual network
physics.

2.6 Summary

In this chapter we have considered multi-agent singlerldj@C for the control of trans-
portation networks. We have started with formalizing theayics of the subnetworks and
the control structure. Then, we have formulated the MPC lpralfor an individual con-
trol agent, assuming that it knows how its surrounding nekvibehaves. Subsequently, we
have relaxed this assumption and introduced intercormestbetween control problems.
We have surveyed how these interconnections can be dehlbyitliscussing the various
ways of information exchange and moments at which inforomagixchange takes place.
Then, we have focused on a particular type of schemes andptapesed a novel serial
scheme, which we have compared with a related parallel sehé&tthough under convex-
ity assumptions on the overall combined control problemsttieemes converge to overall
optimal solutions, it remains to be investigated what the o convergence is, how the rate
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of convergence can be improved, and how this scheme can éeded to other classes of
models.

We have proposed the application of the schemes for a laap+éncy control prob-
lem. Through experimental studies on a network consisting3osubnetworks, we have
compared the serial scheme with the parallel and a cergthtizerall scheme. For the se-
rial and the parallel schemes, the performance of the swiuibtained converged toward
the performance of the solution obtained by the overall mdmroblem, provided that the
overall control problem is convex.

The results of the experiments illustrate that the propasethl scheme generally has
preferable properties in terms of the solution quality amelnumber of iterations required.
However, the parallel scheme requires less time. Throughllplzation the total com-
putation time required per iteration by the serial schemg beamade more efficient, ulti-
mately resulting in a scheme that requires also fewer totaputation time than the parallel
scheme.

In Chapter 3 we extend the serial method to situations in kvthie problem of control-
ling the transportation network cannot be formulated asraveo problem. In particular we
extend the method to deal with networks modeled as hybritéBysin which both contin-
uous and discrete dynamics appear, a situation typicajyeamng when, e.g., continuous
flows together with discrete actions are present.

In Chapter 4 we discuss how a supervisory control layer catrabthe control agents
of a lower control layer, that are organized as, e.g., thectitre considered in this chapter.
The supervisory control layer takes into account the dyearof both the lower control
layer and the underlying physical network.

In Chapter 5 we consider how an even higher supervisory abtayer can control
the control agents in a lower control layer. The control dgém the higher control layer
do not take into accounts the dynamics of the lower layer,doly consider steady-state
characteristics. A scheme related to the schemes addriesttesl chapter is used to obtain
coordination among the control agents controlling suboete that are overlapping and
may have nonlinear steady-state characteristics.






Chapter 3

Networked hybrid systems

In Chapter 2 we have considered multi-agent control of partation networks involving
only continuous variables and dynamics. In this chapter aresicler multi-agent control
of hybrid systems, i.e., distributed control of systemshwibth continuous and discrete
dynamics. In Section 3.1 we introduce hybrid systems, tithiie how transportation net-
works can be seen as hybrid systems, and discuss which isaueso be dealt with when
developing multi-agent single-layer MPC approaches fohssystems. In Sectidn 3.2 we
focus on formulating prediction models of hybrid systemd discuss how transformations
can be used to recast descriptions of hybrid systems intermsgsof linear mixed-integer
constraints. In Sectian 3.3 we then apply these transfoomato construct a model of a
particular hybrid system. In Section 3.4 we focus on muigiat control of interconnected
hybrid systems and propose an extension of the serial mgéit single-layer MPC scheme
of Chapter 2.

In this chapter we apply the discussed techniques to twacgtigins. In Section 3|3 we
consider a decentralized multi-agent single-layer MPQ@ggh for optimization of energy
consumption in households. In Section 3.5 we propose anggieof the serial multi-agent
approach of Chapter 2 for load-frequency control with désergeneration switching.

Parts of this chapter have been published in [68, 108].

3.1 Transportation networks as hybrid systems

Many of the transportation networks of our interest can nseshybrid systemsHybrid
systems [4, 104, 143] arise when continuous dynamics aréic@u with discrete dynam-
ics. The following examples show how particular transpiwtanetworks can be seen as
hybrid systems:

¢ In power networks, the transients and the evolution of tHeage and power levels
and the demands of generators and users yield continuoasdgs, whereas the acti-
vation or deactivation of generators, lines, or users spoads to discrete dynamics.

e In road traffic networks the flow of the cars through the netweoan be modeled
with continuous dynamics, and elements such as ramp meteraffic signals, lane
closures, route directions, etc., yield discrete dynaraoicthe system.

47
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o In water networks the evolution of the water levels can be efedi with continuous
dynamics, whereas opening and closing of dams, and aativati deactivating of
pumps yield discrete dynamics.

More generally speaking, hybrid dynamics are the resuhetiiscrete dynamics caused
by, e.g., saturation effects, discrete switching of acxgdiscrete controller logic, priorities
on control, reaching of physical bounds, etc., in combaratiith the continuous dynamics
of, e.g., flows, pressures, speeds, levels, etc.

Conventional control approaches usually either consiady oontinuous or only dis-
crete dynamics. The control approaches that do consideretisand continuous dynam-
ics simultaneously are mostly based on a centralized dopéradigm, since multi-agent
control has mostly been approached either from a computense point of view, which
focuses on discrete dynamics, or from a control enginegigt of view, which focuses
on continuous dynamics. Structured control design metfadarge-scale hybrid systems
are therefore lacking.

In a multi-agent single-layer MPC control structure thewwek is divided inton sub-
networks, each controlled by a single control agent, cf.ti8ed.3.2. Each of the control
agents uses MPC to determine which actions to take. Each bgeby uses a prediction
model to predict the evolution of its subnetwork under vasi@actuator settings over a cer-
tain prediction horizon. For transportation networks tha hybrid systems, all or some of
the subnetworks will be hybrid systems. Issues that we addnethe following sections are
related to:

e Formalizing the hybrid behavior into suitable mathemadtivedels. The control
agents have to use prediction models that on the one handiaegqrepresent the
hybrid dynamics, while on the other hand give MPC problenat ttan be solved
efficiently, e.g., by making it possible to use state-of-tiiecommercially available
optimization problem solvers.

e Making control agents choose local actions that give peréorce that is as close as
possible to overall optimal network performance, when thiengtworks of the con-
trol agents are hybrid systems. When the subnetwork that siat@gent controls
is a hybrid system, the corresponding prediction model tyglically contain both
continuous and discrete variables. This has as conseqtigaicthe MPC optimiza-
tion problem of a particular control agent will be nhonconvard that therefore also
the overall combined control problem defined in Section 2iltbe nonconvex. Ap-
proaches as discussed in Section 2.4 for coordinating @oagients may not give
satisfactory performance, and a way has to be found to ingpttae.

We first focus on the first issue, i.e., modeling of hybrid eyss$, by discussing how
transformations can be used to transform discrete logiz inixed-integer equality and
inequality constraints. We then employ these transforonatifor designing a prediction
model used by a decentralized multi-agent single-layer MB®trol structure to control
household energy consumption. Next, we consider the sassa€, i.e., multi-agent control
of interconnected hybrid systems, by extending the segpt@ach of Section 2.4 to deal
with hybrid subnetworks. The approach is experimentallseased on a load-frequency
control problem in which generation can be changed in disgaantities.
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X € Inv(qo) X € Inv(ay)

7]

R(do,q2)

=@

X € Inv(ap)

Figure 3.1: Schematic representation of a hybrid automaton

3.2 Modeling of hybrid systems

There are many ways in which models of hybrid systems can betagted. Typically
the continuous dynamics are represented by systems ofatiffal or difference equations
and the discrete dynamics are represented by automata tar $tiaite machines [29, 30].
Combining these two types of models results in hybrid autarfi®4 3], a type of model that
can represent a large class of hybrid systems.

Figurel 3.1 depicts an example of a such a hybrid automatooh Bade represents a
modeof the system. The modes represent the discrete operatintspioe.,do, g1, anddp.

In this case, each mode is governed by its own continuousndigsagiven by a system of
differential equations, e.g% = f(g1,x) for modeq;. The system can stay in a particular
mode as long as the continuous state stays inside the invaea of that mode, e.gx €
Inv(g1). The system can also transition to a different mode, anddhifas to transition to

a new mode if the continuous statés no longer inside the invariant set. The system can
only transition from one mode to another, if the transiti@iveen these modes is enabled.
The guard se(; indicates for which states the transition from one mode to another is
enabled. The reset s& indicates which values the states can take on when a tramsiti
made to a new mode. If each sequence of continuous state ateltraasitions is uniquely
determined only by the initial continuous state and modentthe hybrid automaton is
deterministic. Otherwise, the hybrid automaton is noredatnistic.

Hybrid automata have a large expressibility, in the senagthiey can in principle repre-
sent the dynamics of any hybrid system. However, this exsfivdisy comes at the price of
increased difficulties for analytical studies, simulatietc. By making assumptions on the
possible mode transitions, the dynamics inside the moaektiee guard and the reset sets,
different types of models can be defined. Each of these typemdels will have different
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characteristics when it comes to the easiness of perfortirimg-domain simulations, the
possibility for analytical analysis, and the range of hgilsystems that can be represented.
Some types of models that can be considered as special ddsd®id automata are timed
Petri-nets [34], mixed-logical dynamic models [16], pietse-affine models [133], max-
min-plus scaling models [35], etc. The equivalence of sofmthese types of models is
shown in [57].

3.2.1 Models for MPC control

In the description of dynamics of hybrid systems discretgdstatements are commonly
encountered, e.g., in the form of if-then or if-then-elskesu For a deterministic hybrid
automaton an example of a discrete logic statements is¢ifinv(q;) andx € G(qg1, ),
thenq = gy andx € R(q1,q2)". This statement means that if continuous steienot in the
invariant set ofj; anymore and is in the guard se® guarding the transition frorg; to gy,

that then the transition to modg is made, and the continuous state obtains a value from the
reset set associated with that transition. Discrete logitlee dealt with when formulating
the prediction model of a control agent in the following ways

e Software can be used that simulates the system, includimglidtrete logic. This
software accepts a starting state and a series of inputsgeivers an ending state
and a series of outputs. Hence, the software is the prediatiodel of the system.
The control agent can include this prediction model usinglinear constraints in
its MPC optimization problem. It can then use nonlinearm#ation techniques to
solve the nonlinear MPC optimization problem.

e The discrete logic can be transformed into linear equality mequality constraints.
The prediction model of the system will then consist of aeysbf linear equality and
inequality constraints, in the case that the dynamics divesnl discrete dynamics are
linear. The control agent can include this prediction mamkithg mixed-integer linear
constraints in its MPC optimization problem. It can then msred-integer linear or
guadratic programming techniques to solve the MPC optiticiagroblem.

In Chapter 4 we discuss the first approach. Below, we disthesseacond approach, first
from a more theoretical point of view in Sectipn 3.2.2, thesnf a more applied point of
view in Section 3.3.

3.2.2 From discrete logic to linear mixed-integer constraits

In [16, 149] it is shown how discrete logic statements carrdwesformed into linear mixed-
integer equality and inequality constraints, i.e., caiats involving both variables that take
on values from a continuous set of values, and variablegdkaton values from a discrete
set of values. As in [16], we denote e R" continuous variables and hye {0,1} a
binary logical variable. In addition, we denote Bxpg a logic statement, which has as
value the evaluation of an expression exp to true or false.[f$®) < 0] evaluates to true
when f(x) < 0, and to false otherwise.

It would be convenient if these logic statements could besfiarmed into linear mixed-
integer constraints, since optimization problem solveaet know how to deal with these
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constraints are available. Some useful transformations fiogic statements into linear
mixed-integer inequality constraints are given by [16]:

[f(X) <OA[6 =1]is trueiff f(x) -0 < 1+7m(1 J) (3.1)

[f(X) <OV I[6=1]is true iff f(X) <wm (3.2)

~ [f(x) <0]is true iff f(X) > vemach (3.3)

[f(X) <0] = [0 = 1] is true iff f(X) > e macht (Ym = Ye,mach)d (3.4)
1 - f(x) < ym(1-9)

[f(x) <0] < [§ =1] is true iff {f(x) > e macht (Ym = Yemach)d, (3.5)

wheref : R™ — R is linear,x € X, X is a given bounded set, machis a small positive
constant, e.g., the machine precision, which indicategweheonstraint is considered to be
violated, and where

m = maxf(x) (3.6)
Ym = Xm€|)r(1f( ). (3.7)

Remark 3.1 Formally ~ [f(x) < O] is true iff f(x) > 0. However, for numerical reasons
optimization problem solvers cannot deal with such a striequality. Therefore in (3.3)
the strict inequalityf (x) > O is approximated by the inequalif{x) > ~. mach In practice,
for a sufficiently small value of. machthis approximation is typically acceptable. O

As we will see in Sectioh 3.3, as a byproduct of transformingid statements into
mixed-integer constraints, constraints involving praguaf logical variables and constraints
involving products of continuous and logical variables rappear. Although these products
are not linear, they can be transformed into linear inegjeali E.g., the product teridy o
can be replaced by an auxiliary binary variable The value of variablés should be 1,
when the values of botfy andé, are 1, and 0 otherwise. This behavior can be expressed in
a logic statement and corresponding linear inequalitiéslémvs [16]:

—-01+03<0
[03 =1] & ([61 = 1 A [02 = 1)) is true iff —02+03<0 (3.8)
01+0r—03< 1.

Also, the product termd f(x), for a linear functionf : R™ — R andé € {0,1}, can be
transformed into linear inequalities. The product tefii{x) is replaced by an auxiliary
variablez. The value of variabla should bef (x) when the value of is 1, and 0 otherwise.
This behavior can be expressed and transformed into lineguiality constraints as follows
[16]:

z< ymé

Z> Ymé
2< £()~1m(1-0)
25 £(x) = (1-0),

whereyy andyn, are as defined in (3.6)—(3.7). Note that in fact the relat{@®) and|(3.9)
transform if-then-else statements into linear inequalaystraints.

(0=1=[z=fX)])A(~[0 =1 = [z=0]) is true iff (3.9
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3.2.3 Mixed-logical dynamic models

A prediction modeM based on the transformations discussed above can be castikad-
logical dynamic form to obtain a compact representatiorhefttybrid dynamics as follows
[16]:

x(k+1) = Ax(K) +B1u(k) +B2d (k) +B3z(k)
y(k) = Cx(k) + D1u(k) + D24 (k) + D3z(k)
Ezts(k) + Egz(k) < Elu(k) + E4X(k) +Es,

where
Xc(k)] [yc(k)} [uc(k)]
b= e vto=ea]uto= [l
are the state, output, and input, respectively, separat®edcontinuous components and
binary components, i.exc(k) € R™e, xp(k) € R™b, ny = ny +ny,, Ye(k) € R, yp(k) €

R™s, ny = ny, +ny,, Uc(k) € RMe, up(k) € R™s, ny = ny, +ny,. In addition,s(k) are the
binary variables and(k) are the auxiliary continuous variables.

3.3 Application: Household energy optimization

In this section we consider a decentralized multi-agerglsiteyer MPC approach for con-
trolling energy in households. We discuss distributed @nezsources, formalize the hybrid
dynamics of a household in a model, and show how this modddeaised for MPC control.

3.3.1 Distributed energy resources

Distributed energy resources, comprising distributed grogenerators, electricity storage
units, and responsive loads, can play a crucial role in sdipgothe European Union’s key
policy objectives of market liberalization, combatingweéte change, increasing the amount
of electricity generated from renewable sources, and esihgrenergy saving. Large-scale
diffusion of distributed energy resources will have a profd impact on the functioning of
the electricity infrastructure: It will bring radical chgas to the traditional model of gener-
ation and supply as well as to the business model of the enedugtry [67]. Drivers for
distributed energy resources are the generation and saledaific energy and accompany-
ing goods, such as G@mission rights, and the provision of ancillary servicesrfetwork
operators.

Distributed generation of electricity, e.g., via photdtaas, wind turbines, or combined
heat and power plants, has a good chance of pervading thei@tgdnfrastructure in the
future [67, 120]. Distributed generation offers enviromts benefits (e.g., due to the use
of renewable energy sources and the efficient use of fosd#¥ureduced investment risks,
fuel diversification and energy autonomy, and increasecdygredficiency (e.g., due to fewer
line losses and co-generation options). In addition, sf\edectricity storage technologies
are under development, e.g., lithium-ion batteries and4auhybrid electric vehicles [91].
Furthermore, options for load response are foreseen fdutiee power system [24].
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Energy supplier
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Y Y Y

Household with local Household with local Household with local
generation and storage generation and storage generation and storage
capabilities capabilities capabilities

A A ? A ‘ ? A

Figure 3.2: Households and an external energy supplier. $étwlds can buy and sell en-
ergy to and from an external energy supplier or to and fronghbbring house-
holds.

With an increase in distributed energy resources combiniga nvore ICT and intel-
ligence in the power network, the options for consumers \étspect to energy demand
response increase. In this section, we focus on residetfisaibuted energy resources.
Households with distributed energy resources operate mdependently of energy sup-
pliers, they can devise new contractual arrangements wigplgers and network managers,
and they can buy and sell power among one another, and to amdtheir supplier, as
shown in Figuré 3]2. As a first step toward developing corgmictures that are installed
in households for optimizing energy usage, we consider divigtual household, not tak-
ing into account the possibility of energy exchange wittghboring households, i.e., we
consider a decentralized multi-agent single-layer céstrocture.

3.3.2 System description

The system under study consists of a household interactitiyits energy supplier, as
depicted in Figure 3.3. As in conventional households, theskhold can buy electricity
and gas from its energy supplier. In addition to this, thededwold can sell electricity to the
energy supplier. The household can produce this elegtritsing a micro combined heat
and power (CHP) unit [120]. This unit can simultaneously produce heak power for the
household. It is typically located in a basement, undetnaatink, hanging from a wall, or
outside. It can provide various energy needs, such as spaceater heating, electricity,
and, possibly, cooling.

We assume that theCHP unit in the household is based on Stirling technolog¥]12
The unit provides electricity to an electricity storagetuand heat to a heat storage unit. The
1CHP unit consists of a Stirling engine prime mover, con@rsinit 1, and an auxiliary
burner, conversion unit 2. Conversion unit 1 converts ratgaszy (k) (in kWh) into

1The control agent that we will develop for control of a housidrcould be located in a physical device such
as the Qbox, which will soon become commerically available.tBeevebsite of Qurrent, the manufacturer of the
Qbox, at http://www.qurrent.com/.
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Figure 3.3: Conceptual overview of the system under stufly [6

electricity producedze p(k) (in kWh) and heat producesh p 1(k) (in kWh), with a fixed
ratio. The conversion unit can operateguiartial or full mode and has a minimum activation
constraint. Conversion unit 2 converts natural gagk) (in kWh) to provide additional heat
zn,p,2(K) (in kWh). For energy efficiency reasons conversion unit 2 &hbe used as backup
heat generator only. Therefore, priority has to be givendversion unit 1. Conversion
units 1 and 2 are equipped with built-in fixed controllerstthie designed to keep the level
of the heat storage uni (k) (in kwWh) between certain upper and lower bounds.

The generated heat is supplied to a heat storage unit in the &6 hot water. We
consider an aggregated heat demand for the household, areddte make no distinction
between heat storage units for, e.g., space heating artdtiamheating. It is therefore also
appropriate to assume that there is a single large heagstomzit. Such a configuration is
commercially availabfe The level of the heat storage unit is indicated by the eneygk)

(in kWh) in the heat storage unit. Heat consumptia(k) (in kwh) takes heat from the
storage unit, and therefore lowers the level of the heaag®unitx, s(k). The level of the
heat storage unit changes over time depending on the hehiged by the conversion units
and the heat consumed.

2See, e.g., Gledhill Water Storage, http://www.gledhét/n
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The generated electricity can be stored in a battery, elghiam-ion battery, of which
the level is indicated by the energy in the battegy(k) (in kwh). Electricity can flow to
and from the battery, representeday,(k) (in kWh) andze oK) (in kWh), respectively. In
addition to storing electricity, electricity can be useredtly by the household for consump-
tion, indicated byde (k) (in kWh), or it can be sold to the supplier through export, aaded
by Ue exdK) (in kWh). Electricity can also be imported from the supplieraugh import,
indicated byue imp(k) (in KWh). The level of the electricity storage unit changesraime
depending on the electricity produced by conversion urtié electricity imported from or
exported to the energy supplier, and the electricity coreiby the household.

System dynamics

Below we formalize the dynamics of the household. As we vk sthese dynamics are
hybrid, and the transformations from Section 3.2.2 can leel ts obtain a prediction model
consisting of only linear mixed-integer equality and inalify constraints.

Conversion unit 1 Conversion unit 1 can operate at partial generation or falega-
tion. The control inputs are therefovg pan(k) € {0,1} anduy run (k) € {0,1}, where input
uzfun (k) can only be used whem par(k) = 1. Depending on the control inputs, the con-
version unit uses a different amount of ggg (k). Conversion unit 1 converts this gas into
electricity ze s(k) and heaiz, p 1(k). The gas usedy1(k), the electricity provided to the
internal networkze (k), and the heat provided to the heat storage zijiti(k) are given by:

Zg,l(k) = ﬁg,parﬂl,part(k) + (ng,max‘ﬂg,part) Uz full (k)
Ze p(K) = nezg,1(K)
Z,pa(K) = (7ot =1e) Zg,1(K),

whereng part (in KWh) is the gas used when the conversion unit operate@arig max (in
kWh) is the gas used when the conversion unit operates at k8mom, 7. is the electric
efficiency of the unit, angy is the total efficiency of the unit, i.e., the electric and tieat
efficiency together.

When the conversion unit is in operation the dynamics of theskbold will be different
from when the conversion unit is not in operation. In ordemtodel logic rules relying on
such information, a device-in-operation variable thaid¢ates when conversion unit 1 is in
operation is used. Based on the actuator setinygr(k), which takes on binary values 0
and 1, the device-in-operation indicati, 1(K) € {0, 1} is defined as:

[0dio,1(K) = 1] < [U pan(K) = 1],
which can be directly transformed into the linear equalitpstraint:
5dio,l(k) = Ul,part(k)-

Using the device-in-operation variabig,1(k), the constraint that the full generation can
only be switched on after the partial generatiany (K) has been switched on is modeled
with the inequality constraint:

Uy funl (K) = ddio,1(K) < 0.
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Conversion unit 1 has a minimum activation constraint tddast wear and tear of the
device due to frequent on and off switching. The minimumvation constraint specifies
that when the device has been switched on it has to stay imtpefor at leastactmin € N*
time units, withN* the positive natural numbers. In order to model the minimativation
constraint, introduce the countesc(k) € [0, Xactmax] (With Xactmax @ finite upper bound on
the maximum time that a device can be in operation), whicmtotine number of time units
that the device has been in operation so far. The evolutighisfvariable is given by the
relation:

_ [ Xac(K)+1 if dgioa(k) =1
Xaci(k+1) { 0 otherwise

Using (3.9) this relation can be transformed into mixeddmr inequality constraints.

If the activationxaci(K) is O, then the conversion unit is allowed to stay switchedoff
to be switched on. However, if the activatiag.(k) is larger than 0, then the conversion
unit is not allowed to be switched off, until the activatirg:(k) has reached the minimum
activationnactmin. Hence, as long agc(k) is larger than 0 and smaller thagcimin, the
value of inputuy part(K) should stay at its maximum, i.e., 1. After the activatige(k) has
reached the minimum activation, the inputpar(k) is allowed to have a different value
again. To model this, introduce a constraint on the minimaie ofu; par(k) as follows:

Ul,partmin(k) < Uy part(K), (3.10)

with Uy partmin(K) € {0,1}. Using the activation variabl&,c(k) and this constraint we
can enforce the minimum activation constraint by adjustimg lower limit uy partmin(K)
of uy par(K) with the relation:

[1 < Xact(k) < Nactmin _1] Aad [Ul.partmin(k) = 1]-

To transform this relation we introduce auxiliary binaryiadlesds (k), d2(k), andds(k) for
which it holds that:

[1 < Xact(k)] < [d2(k) = 1]
Xact(K) < Nactmin -1] & [62(k) = 1]
1350 = 1 > [52(K) = A [52(K) = 1.

Hence, wherds(k) is equal to 1, themaci(k) is larger than 0, although it has not yet passed
the minimum activatiomacimin, implying that the conversion unit should be kept in opera-
tion. To transform these three relations into mixed-intdgequality constraints, (3.5) and
(3.8) are used.

Variable d3(K) is 1 if the device should be kept in operation, and O otherwiEhis
behavior is exactly the same behavior as variahlgatmin(k) should have. Therefore,
U1 partmin(K) = d3(k), and the constraint that the conversion unit can only beched off
after an activation ofjacimin is enforced by substitutingg(K) for ug partmin(K) in (3.10).

A fixed controller is installed in conversion unit 1. This fikeontroller is installed to
guarantee a minimum level of heat in the heat storage unié fiked controller switches
the conversion unit on when the level of the heat storagexyrik) is lower than a lower
limit 7 s im,min,z @nd switches it off when the level of the heat storage xmitk) is larger
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than an upper limit s im,max,2 Letus part imdK) € {0, 1} denote the actuator setting that the
fixed controller would choose if the minimum activation ctvagit would not be present.
The fixed controller determines the value for this variatddalows:

1 for Xn,s(K) < 1h,s lim,min,1
Ul,part,tmp(k) = Ul,part(k_l) for 7n,s,lim,min,1 < Xn,s(K) < 7h,s,lim,max,1
for Xh,s(k) = 7h,s,lim,max,

To transform this relation auxiliary variablég(k), 6s(k), ds(k), andd7(k) are defined such
that:

[04(K) = 1] < [Xn,s(K) < 7h,s,im,min,1
[55(k) = 1] Aad [Xh,s(k) > TIh,s,Iim,max,i
[06(K) = 1] < [da(k) = O] A [65(k) = O]

Using (3.5) and (3.8) these relations are transformed intal mixed-integer constraints.
Given the values for these auxiliary variables, the fixedtiadier determines the value for
U1 parttmp(K) @s:

ULpart,tmp(k) = 1.54(k) +0.55(Kk) +67(k).

In determining the actual setting for conversion unit 1,ftked controller has to respect
the minimum activation constraint. Therefore, the valia the fixed controller of conver-
sion unit 1 chooses as inpuf part(K) to the actuator of conversion unit 1 is not the value of
U1 parttmp(K) directly, but the value determined as follows:

U par(K) = 1 if the conversion unit is not allowed to switch off
LRt = UppartimgK)  Otherwise,

which can be written as:

U part(K) = 1.3(K) + (1= 03(K)) Uz part,tmg(K),

whereds(K) is defined through the minimum activation constraints. Thkiation can be
transformed into linear mixed-integer constraints usiB\ig).

Conversion unit 2 Conversion unit 2 has as control input(k) € [0, uz may. Depending
on the control input, it uses a different amount of gag k) and provides a different amount
of heatz, p »(K) to the heat storage unit. The gas uggg k) and the heat providezh p o(k)
are given by:

2g,2(K) = U2(K) (.11
Zn,p.2(K) = 7otZg,2(K).- (3.12)

A device-in-operation variabl&jio 2(k) € {0,1} indicating when conversion unit 2 is in
operation is defined as:

[U2(K) > Ye,mach < [ddio2(K) = 1].
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This relation can be converted into linear mixed-integ@gimality constraints using (3.5).
The device-in-operation variabl&io 2(k) is used to enforce that conversion unit 2 is in
operation only when conversion unit 1 is in operation thitotige following constraints:

ddio,2(K) —ddio,1(K) < 0. (3.13)

A fixed controller is installed in conversion unit 2, simil@r the fixed controller as in
conversion unit 1. The fixed controller of conversion unit2etmines an auxiliary actuator
settinguz imp(k) € {0,1} as follows:

Uz,tmp(k_l) for nn s lim,min.2< Xn.s(K) < 7h,s limmax,2

1 for Xp s(K) < 7n,s lim,min,2
U2,tmp(k) =
for Xn,s(K) > s lim,max,2

To transform this relation, auxiliary variablég(k), d10(k), d11(k), anddi2(k) are defined
such that:

[09(K) = 1] < [Xn,s(K) < 7, lim,min 3
[010(K) = 1] < [Xn,s(K) > 1h,s,lim,max.3
[612(K) = 1] < [d9(K) = O] A [d10(k) = O]

Using (3.5) and (3.8) these relations are transformed inwal mixed-integer constraints.
The fixed controller now determines the value for the ausjl@ctuator settingiz imp(K) as:

UZ,tmp(k) = 1.§g(k) +0.510(k) +512(k).

The auxiliary actuator settingp imp(K) is used by the fixed controller to determine the actual
input for conversion unit 2 as:

uz(k) = U2,tmp(k) TfracU2, max,

wherernac is the part of the maximum outpup max that is activated when conversion unit
2 is switched on by the fixed controller.

Electricity and heat storage units The electricity and heat storage units are used to store
energy. The storage units have a limited capacity. The lei/tie electricity storage unit

xe «(K) is determined by the amount of electricity,(k) that goes into the storage unit,
and the amount of electricitg o, k) that is taken out. It is assumed that the charging and
discharging of the battery is without energy loss. The dyicarof the level of the electricity
storage unit are given by:

Xe d(k+1) = Xe o(K) +Ze in(k) = Z,0uf(K)-

The level of the heat storage umifs(k) is influenced by the heat production of conver-
sion units 1 and 2, i.ez, p 1(k) andz, p 2(k), resepectively. The heat storage unit dynamics
are given by:

Xn,s(K+1) = Xns(K) +2n,p,1(K) +Zn,p,2(K) = 0h,c(K).
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The levels of the electricity and heat storage units aretéichby minimum and maxi-
mum values, i.e.:

Xe,smin < Xes(k) < Xe,smax
Xh,smin < Xh,s(k) < Xn,smax-

Power balance A power balance relating the power output of conversion Ligity(k), the
input ze in(k) and outputze oufk) Of the electricity storage unit, the electricity consuropti
de c(K), and electricity boughtle imp(K) or soldue exdK) to the energy supplier, has to hold.
This power balance is given by:

0= Zo p(K) + Ue,imp(K) + Ze,0ut K) — Ue,exg K) = Ze,in(K) = de o(K)-

3.3.3 MPC problem formulation

We now use the derived model as prediction maddbr a control agent controlling the en-
ergy flows of a household. The control agent has the task tovattcally determine which
actions should be taken in order to minimize the operatianats of fulfilling residential
electricity and heat requirements, while maintaining tnel of the heat storage unit be-
tween a desired upper and lower limit, and respecting theatip@al constraints, including
a minimal activation of 2 time units. The control agent use$/PC strategy such that the
control agent can:

e optimize the usage of the heat and electricity storage junits

e take into account the decision freedom due to electricifydrhand export possibili-
ties, and generation of energy by itself;

e incorporate predictions on residential electricity andteemands;

e incorporate models of the dynamics and constraints ofliestgenerators and storage
units.

MPC scheme

At each control cyclé& the control agent makes a measurement of the system staistimg

of values for the level of the heat storage uxii(k), the level of the electricity storage
unit Xe k), and the activation countegc(k). Then the control agent determines values
for the control inputsuy fui (K), Ueimp(K), andueexgk) by solving the MPC optimization
problem that minimizes an objective function, subject ® prediction modeM and initial
constraints. Note that with respect to the conversion ytiiescontrol agent only determines
uzfui (K), since the values fany part(k) anduy(k) are determined by the fixed controllers
installed in the conversion units.

Objective function The main objective of the control agent is to minimize thdydap-
erational costs of residential energy use. These costdepethe pricep; (euro/kwh) for
gas consumption, the prigamp(k) (euro/kWh) at which electricity can be bought, and the
price pexp (€Uro/kWh) at which electricity can be sold. Note that in pifite, the prices for
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gas, electricity import and electricity output vary oveettlay. However, as a first step we
assume that the price for gas consumption and power expocosstant, whereas the price
for importing electricity varies over the day.

In addition to minimizing the daily operational cost, thentrol agent should also main-
tain the level of the heat storage unit between the desirgeruand lower limit. This
goal is included as a soft constraint by penalizing an aanilvariableza x(k+1) > 0, for
I ={1,...,N}, with a large positive cogbses. This auxiliary variablezyx(k+1) is defined
such that:

Xh,s(k"'l) ~h,s,limmax for Xh,s(k+ |) 2 1h,s,limmax
Zaux(k+1)=¢ O for mn,s limmin < Xh,s(K+1) < 1.5 limmax
Mh,s,limmin _Xh,s(k+ |) for Xh,s(k+ |) < 1h,s,limmin,

which in combination with the minimization of the terponizaux(k+1) can also be written
as:

h.s limmin — Zaux(K+1) < Xp s(K+1) <7 s limmaxt Zaux(K+1).

The cost function at control cycle over a prediction horizon ol control cycles, in-
cluding the cost for the soft constraints, is defined as:

J= Ni(pf (Zg,a(k+1) +2g,2(k +1)) + Pimp(k+1) e jmp(k +1)

=
= PexpUe,exd K+ 1) + PsoftZaux(K+1 +1 ))

Note thatpsest Should not be chosen too larger, since otherwise minimiziggk+1) has
too much weight.

Prediction model The prediction modeM that the control agent uses is based on the rela-
tions that describe the system model as given in Selctio@,3pecified over the prediction
horizon. Hence, the prediction moddl consists of a large system of linear mixed-integer
equality and inequality constraints. The values of the patars of the prediction model
are given in Table 3.1.

Initial constraints  The initial constraints fok = 1 are:

Xe,s(K) = Xe s(K)
Xn,s(K) = %n,s(K)
Xact(K) = Xact(K)
Uy part(k_ 1) = Ul,part(k_ 1)
uz tmp(k_ 1) = l]Z,tmp(k_ 1)7

where the variables with a bar are known, e.g., through nreasents.
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parameter| value parameter | value

U2 max 4.9383 T)g,max 1.8333
Xactmax 1106 7g,part 0.9167
Xe,smax 2 Thot 1.0125
Xe,smin 0 Th,slimmax | 8.1278
Xh,smax 9.1728 || Mns limmax,1| 6.9667
Xh,smin 0 Mh,slimmax,2 | 5.2250
“Ye,mach 1~10_8 Th,s,limmin 2.3222
MNactmin 2 h,s,limmin,1 | 4.0639

Tle 0.15 Th,s,lim,min,2 2.9028

Tfrac 0.6

Table 3.1: Values of the parameters of the household system.
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(a) Heat demand data. (b) Electricity demand data.

Figure 3.4: Energy demand data for average Dutch househaldanuary 29. One time
unit corresponds to 15 minutes.

Solving the optimization problem The MPC optimization problem is a mixed-integer
linear programming problem. Itis linear, since the objexfunction and all constraints are
linear and it is mixed integer, since the problem involvesttwous and discrete variables.
For solving the optimization problem at each control cyckewge the ILOG CPLEX v10.0
[71] linear mixed-integer programming solver through thenfab v5.7 interface [66] in
Matlab v7.3 [98].

3.3.4 Simulations

To illustrate the operation of the proposed controller, wefigrm experiments for a particu-
lar winter day, January 29, 2006. For this day, average eesial electricity and aggregated
heat demand profiles have been created with 2006 data froengi&Ned’, the Dutch Feder-
ation of Energy Companies. Figures 3.4(a) and 3.4(b) sheva¢at and electricity demand
profiles of an average household on this day. Given suchrirdtion, the control agent of
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Figure 3.5: Electricity import price per kwh for January 22006. One time unit corre-
sponds to 15 minutes.

the household determines every 15 minutes new actions ingats MPC problem at that
time. To set up the control problem prices for electricitypiont, electricity export, and gas
consumption have to be calculated first.

Price calculation

The variable electricity import pricgimp(k) is calculated as follows. The Dutch Cen-
tral Bureau of Statistics states a total electricity taftff small consumers for 2006 of
194 euro/MWH (household class: single tariff, 3000 kwWh). The variablet péthe total
tariff (including energy and VAT taxes) is around 90 % of toat tariff*, so this becomes
0.1746 euro/kWh. The variable supply part of the total taaidtounts for 32 % of the to-
tal tariff3. For this variable supply part we have substituted Dutchgrosxchange values
taken from the Amsterdam Power Exchange data. In this wapitmrices as shown in
Figure 3.5 were derived. For the value of the feedback taff, we have taken average
‘EnergieNed’ data for 2006, which gives 0.0601 euro/kWh.

The gas pricey is determined as follows. At the website of the Dutch CerBrakau of
Statistics, a total gas tariff for small consumers of 5521000 n# is given (for consumer
class: 2000 r#). According to the ECN website, 91 % of the gas tariff is vialéa(including
taxes). This leads to a gas price of 0.50232 eufo/m

Simulations

Below we first illustrate the operation of the proposed MP@toa agent for a particular
setting of the prediction horizon length. After that, we vary the length of the prediction
horizon to see how this influences the performance over a\taywill then not only con-
sider a household with fixed controllers in the conversioitsuinstalled, but also a house-
hold without these fixed controllers. This gives more freedo the MPC control agent and
is expected to improve the performance.

3See http://www.cbs.nl/, Dutch central bureau of statistic
4See http://www.energie.nl/, Energy Research Center ofNétberlands (ECN).
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Figure 3.6: (a) Activation time (k) of conversion unit 1. The dotted horizontal line indi-
cates the minimal activation time. (b) Evolutiondef 62, andds.

In principle the longer the prediction horizon is, the bettee performance becomes.
However, in practice the time required to solve the mixegger optimization problem
restricts the length of the prediction horizon that can ficatly be used. To illustrate the
operation of the proposed approach, we therefore belowcinssider a prediction horizon
with lengthN = 16. The initial values for the simulation of the household taken as:

Results forN = 16

Figure3.6(a) shows the activation time of conversion unit 1. Cosiea unit 1 is switched
on 5 times throughout the day, and stays in operation at Rdishe units. Hence, the
constraints on the minimal activation time of 2 time unitsaspected. Figure 3.6(b) shows
the evolution of the variable$ (k), d2(k), andds(k) throughout the day. It is easy to verify
that indeed, when conversion unit 1 is brought into operatig(k) becomes 1, and when
conversion unit 1 has been in operation for at least 2 timesuhi(k) becomes 0 again.
Figure[ 3.7 shows the level of the heat storage unit. The fixedrollers installed in
the conversion units should switch on the conversion urefedding on the level of the
heat storage unit. Figure 3.8(a) depicts the binary vaghi(k), ds(k), ds(k), anddz(k),
which are used to indicate when conversion unit 1 should biéclksed on partially. In
addition, Figure 3.8(b) shows the binary values used foerdeining the actuator values
of conversion units 1 and 2. It is observed that, indeed, wtherevel of the heat storage
unit reaches one of the lower limits, the respective conearanit is switched on, whereas
when the level reaches one of the upper limits, the respectiviversion unit is switched
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Xn,s (KWh)

Figure 3.7: The level of the heat storage units§k). The dashed and dashed-dotted lines
indicate upper and lower activation bounds of the fixed adlgrs. The solid
horizontal lines indicate physical upper and lower bounds.
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Figure 3.8: (a) Evolution ob4(k), d5(K), ds(k). (b) Evolution of the binary variables asso-
ciated with the actuators of conversion units 1 and 2.
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Figure 3.9: The gas consumed by the conversion units.
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Figure 3.10: Performancegy, for varying prediction horizon lengths N, both for the sce-
nario in which the fixed controllers is installed, and for th&enario in which
the fixed controllers are not installed.

off. Hence, the fixed controllers installed in the convengimits operate as they should. In
addition, the MPC control agent decides to switch convaersioit 1 into full operation a
number of times. When this happens, the MPC control agentimsed that conversion
unit 1 is already operating partially. Figure 3.9 shows the gonsumed by the conversion
units, resulting from the actuator settings as chosen byitee controllers and the MPC
control agent.

Results for varying prediction horizon lengths

We now consider the performance of the MPC control agent uwalging lengths of the
prediction horizorN. We consider two scenarios: the scenario considered sodarthe
scenario in which the MPC control agent controls the houlskincluding fixed controllers
in the conversion units, and a scenario in which the fixed rotlats in the conversion
units are not present. In this second scenario, the MPC aomgent has more decision
freedom, since it can in the second scenario determine &l ithen conversion unit 1 and
conversion unit 2 should be switched on or off. Note thataltth the MPC control agent
has this additional decision freedom, the prioritizing swaint for using conversion unit 1
before conversion unit 2, the constraint that conversiahlushould operate partially before
switching to full operation, and the minimum activation &roonstraint for conversion unit
1 are still present.

Figure 3.10 shows the codti, defined over the full simulation period for varying pre-
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diction horizon lengths For both scenarios, there is a general trend that as thécpioed
horizon length increases, the performance increases ds telvever, since the control
agent does not take into account the energy consumptioerpstand electricity price fluc-
tuations after its prediction horizon, it can choose aditrat are not optimal over the full
simulation. Therefore, in our case it is not strictly neeggghat the performance increases
with a longer prediction horizon. We also observe this inufgy3.10. From the figure we
also observe that if the fixed controllers are not preseat,ttten, indeed, the MPC control
agent can expoit the the increased decision freedom. Thidtsein a higher performance
for the scenario in which the fixed controllers are not iristhl

Discussion

With a longer prediction horizon, the number of binary vhtés increases linearly. This

also implies that the computations involved in solving tlkeresponding MPC optimiza-

tion problem increase. The household system that we cand@ks not go to a stable or

steady state, since the electricity and heat consumptiotiremusly keep varying. There-

fore, in principle the prediction horizon should be takereiothe same time span as in-
formation about consumption and prices are available. Wewelue to the computational

requirements, this is currently not practical. In order tak® computations involving pre-

diction horizons of larger lengths approaches have to bestiyated that somehow reduce
the number of binary variables and possibly aggregate rimdtion regarding energy usage
at prediction steps further away.

In this section we have considered energy control of an iddal household, as a first
step toward cooperative energy control of several intanested households. The next step
could consist of modeling interconnections between haalsshand developing a scheme
that makes control agents of individual households obtgireement on the values of the
variables involved in modeling these interconnectionsghinext section we go more into
the issues involved in dealing with such interconnections.

3.4 Control of interconnected hybrid subnetworks

In the previous section we have assumed that the subnetwargksthe households, are
independent of each other. In this section we do not makeagsamption anymore, but
instead allow for the subnetworks to be interconnected.theftefore a transportation net-
work be divided inton subnetworks. The subnetworks are interconnected as ino8ect
[1.3.2, hence, typically the interconnections are phydioék between subnetworks over
which commodity flows from one subnetwork into another. Assuhat each subnetwork
has a control agent assigned to it. If the overall combinedCMBntrol problem is con-

vex, then the agents can use the multi-agent single-layet Bproaches of Section 1.3.2.

5In order to compare the performance of the control for the twaecstudies a shrinking horizon [137] has
been taken. In the shrinking horizon approach, initially driginal prediction horizol is taken, but as soon as
predictions would go over the actual simulation time spanptieeliction horizon will be reduced. If no shrinking
horizon is taken, then comparing the performance for varfirigased on the performance over 1 day is not fair,
since the control agent using a largéwill at the end of the day already takes into account what kéfppen the
next day, whereas the control agent using a smallesll not consider this, since it optimizes over a shorter term.
This will have an influence on the actions chosen at the enldeodiay and therefore on the performance.
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In that case, the control agents locally determine in a nurobierations control actions
that are overall optimal. However, when the subnetworkshgteid systems and modeled
with both continuous and discrete variables, then the diveoatrol problem will not be
convex. Itis then the question what difficulties arise duthts nonconvexity, and how the
approaches of Section 1.3.2 can be extended to give at Hetibee that are close to or
equal to overall optimal solutions, and at least solutitag &re feasible solutions.

3.4.1 Hybrid subnetwork models

In Section 3.2 we have developed means to transform the dgearhhybrid systems into
linear mixed-integer equality and inequality constraimes., mixed-logical dynamic mod-
els. Here, we consider a subclass of this type of models, lyghese models for which the
discrete dynamics are caused by inputs that can take onsvxshua a discrete set only. In
addition, we assume that all other variables, includingrnterconnecting variables between
subnetworks, are continuous variables. Note that this tfprodels is an extension of the
type of models considered in Chagter 2, since we now allowretis inputs. An example
of a situation in which the considered type of models app&atsansportation networks
is, e.g., in road traffic networks a situation in which locetiens consist of discrete speed
limit settings and interconnecting constraints betwedmstworks are expressed in terms
of continuously modeled car flows. In power networks an eXanmop such a situation is,
e.g., a situation in which local actions consist changingavier generation or consumption
in discrete quantities and interconnecting constrainte/éen subnetworks involve contin-
uous amounts of power flowing between the subnetworks.

Remark 3.2 There are two different types of discrete inputs:

1. discrete inputs that have a direct meaning as a quantite ghey are represented
as numbers, typically taking on values from a set of integereal numbers, e.g.,
{0,0.2,...,1.0};

2. discrete inputs that only have a symbolic meaning, taking/alues from a set of
symbolic values, e.g{red yellow, greer}.

Although these are different types of discrete inputs, tiudé, however, the second class of
discrete inputs can typically be transformed into the fitass of inputs, and vice versal

Hence, assume that a network is divided intgsubnetworks and that the dynamics
of each subnetwork € {1,...,n} are given by a deterministic linear discrete-time time-
invariant model, with noise-free outputs:

xj(k+1) =Aix(k)+ Byiu; (k) + Bz’idi (k) + Bs,jvi (k)

yi(k) = Cixi(K) +Da,ui(K) +Dojd; (K) +D3;vi (K), (3.14)

where at time stef, for subnetworki, xj(k) € R™ are local statesyi(k) € 7 (with

a finite set of discrete values) are local inpudgk) € R™i are known local exogenous
inputs,y; (k) € R™i are local outputsy;(k) € R™ are remaining variables influencing the
local dynamical states and outputs, e.g., variables ofhieigng subnetworks, and; €
Rnxi ani' Bl.i c Rnxi ><nui' BZ.i c Rnxi xndi’ B3‘i c Rnxi xnvi’ Ci c Rnyi ani’ Dl,i c Rnyl xnui’

Dai € RMi XN andDs; € R™ *™ determine how the different variables influence the local
state and output of subnetwark
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3.4.2 Non-convergence due to the discrete inputs

Suppose that we would setup the MPC control problems as iticBek 3.2, but now based
on the model including discrete inputs, i.€., (3.14). Thizams that the optimization prob-
lems become mixed-integer programming problems. In aufditfor fixed values of the
integer variables, the optimization problems are convex.

If we would use the schemes of Section 1.3.2 to solve the ragknt control problem
based on the models including the discrete inputs, it mapéease that the agents cannot
come to agreement on the values of the interconnectinghlasawhile choosing locally
optimal discrete inputs. A non-converging sequence cae af values of the interconnect-
ing variables on which the agents do not reach agreement.

In the original approaches, i.e., the serial and the pamalldti-agent single-layer MPC
schemes with convex overall MPC problems, a control agestieives the information from
each neighboring ageite A{ regarding the values that neighboring aggntould like the
interconnecting variables with respect to agetd have. Then, control agenfprocesses
this information by updating its interconnecting objeetifunctionJiner;, and determines
which values for the discrete inputs and interconnectingptaes it prefers itself.

In the continuous case, the new values for the inputs anctiomeecting variables will
usually be slightly different from the values communicatecarlier iterations. However,
when the inputs are discrete, the values foritiuts cannot slightly change, but only in
discrete jumps. Hence, when a neighboring agesuiggests slightly different values for the
interconnecting/ariables, control agemwill first include these values in its interconnecting
objective function. After control agerithas solved its optimization problem using these
new values, it will typically have obtained slightly chanigealues for the interconnecting
variables, while having obtained values for the discrepeiia that are the same as the values
at the previous iteration. So, the values of the discretatmpiill typically not change at
each iteration, but only when the interconnecting objectinctionJineri has reached such
a level that switching to different discrete inputs is betiefi

The relatively large jumps in the values of the discrete tafhave as a consequence
that the values for the interconnecting variables can 8aritly change as well. A control
agent will therefore then suggest rather different valua@stlie interconnecting variables
to its neighboring agents. This may cause that for anothetralbagent after some more
iterations a certain threshold of the interconnecting didje function has been reached,
making it better for that agent to switch the values of itedite inputs. Due to this mecha-
nism, a series of discrete jumps in the values of discreteténpan emerge that prevents the
iterations from terminating. We will see an example of théhavior in Sectioh 3.5.

3.4.3 Possible extensions of the original schemes

There are several ways in which the original schemes of @edti3.2 could be extended in
order to break such a series of non-converging discrete surBglow we discuss some of
these alternatives, based on straightforward extensitthg @riginal schemes. We consider
the following extensions:

1. Increasing the accuracy threshold The accuracy thresholg. term is used in the stop-
ping condition to determine when the iterations should stbjs linked to the maximum
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allowable violation of the interconnecting constraintshefefore, if this threshold is in-
creased, the iterations will stop sooner since the valuggeiconnecting variables involved
in an interconnecting constraint are allowed further afvarh each other. However, this can
obviously lead to predictions of the subnetwork that do efiect the evolution of the phys-
ical subnetwork, and therefore to sub-optimally chosemisp In addition, it is a priori
unknown to which value the accuracy threshold should besas®d. If the increase is not
large enough, the iterations may still continue.

2. Refining the discretization By making the discretization of the discrete inputs finer
over the iterations, at some point the discretization wallfine enough to let the iterations
converge to values for the interconnecting variables thaiterthe stopping condition sat-
isfied. By making a finer discretization for the discrete itgpthe changes in the discrete
inputs from one iteration to another will be smaller, hermgproximating the case when
there are only continuous inputs. In practice, however,diseretization of the discrete
inputs may be given, and may not be adjustable. In that casértér discretization can
be rounded to the closest original discrete value. Howeweemding of values has some
consequences, as discussed in the next approach.

3. Relaxing and rounding The extreme case of refinement of the discretization appears
when the discrete inputs are relaxed to continuous inpstss done, e.g., in [15]. In this
case, the original schemes can be applied. At terminatidhefterations, the resulting
values for the continuous inputs can then be rounded to theest discrete values for the
discrete inputs. However, in particular when making prédits over a longer horizon this
rounding can lead at least to sub-optimality and sometimes ® infeasibility. This is due

to the fact that in general a rounded input has a differentiémfte on the evolution of the
subnetwork over a time step when compared to the influentatbantinuous input would
have. So in practice the evolution of the subnetwork will iféecent from the predictions
made using the prediction model in the optimization.

4. Fixing the integer inputs The discrete inputs can be fixed once the non-converging
series of values of the discrete inputs has been detecteddibrete inputs can be fixed to
the locally most optimal values, or they can be fixed to thetrfreguently appearing values
over a predefined number of earlier iterations. The remgioirerall optimization problem
will then become convex and the values of the other variablbsonverge to values that
are optimal given the fixed discrete variables. In additanthe end of the iterations the
interconnecting constraints will be satisfied and thus tenés will have agreed on how the
internetwork variables should evolve over the predictionizon. Furthermore, the agents
will have determined inputs that are feasible, and the ages¢s regarding the values for
the interconnecting constraints will be fulfilled when thesputs are implemented. How-
ever, the fixed discrete variables may be sub-optimal froratevork-wide perspective, and
determining when the non-converging series of discreteesbrises is a hard problem.

5. Increasing the penalty coefficient The penalty coefficien. can be increased to a
very high value once the non-converging series of discraliges has been detected. A large
value for the penalty coefficient places all emphasis on obtaining satisfied interconnecting
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constraints, and the discrete inputs that come with thigloan be implemented. However,

it may not be known a priori what the value of the penalty caédfit+.; should have in order

to give convergence and in addition it is hard to determinemtie non-converging series
of discrete values appears. Therefore, inspired by [2@}eid of increasing the penalty
coefficienty; abruptly when the non-converging series of discrete vahasseen detected,
the penalty coefficient. can be increased in steps several times over the iteratiBys.
increasing the penalty coefficieft in steps, the agents get some time to try to converge to
values for the interconnecting variables that satisfy topging condition. If this conver-
gence does not happen within a certain number of iteratibes, the penalty coefficient

is increased again.

Discussion Comparing the alternatives, the main disadvantage of tieenaltives based
on increasing the accuracy threshold, and relaxing or rejiof the discretization and then
rounding, is that the values for the interconnecting vdealmbserved in the system will
be significantly different from those determined during tipgimization. For the alternative
based on increasing the accuracy threshold the reasoridalisadvantage is that during the
optimization the accuracy required on satisfying the icdenecting constraints is lowered,
and thus the values that different control agents assigartecplar interconnecting variables
are allowed to be further apart. For the alternative basedetaxing or refining of the
discretization and then rounding, the reason for this digatage is that the control agents
have reached agreement on values for the interconnectiaples for a particular set of
inputs, whereas a different set of inputs will be implemdrdr the system. The alternatives
based on fixing the integer inputs and increasing the penakjficient do not suffer from
this disadvantage.

The alternative based on fixing the integer inputs requiiasit can be detected when
the integer inputs have to be fixed and it requires a strategletermine to which values
the inputs should be fixed. It is not straightforward to immpént such strategies. The al-
ternative based on increasing the penalty coefficient doekawve to address these issues.
However, for this alternative it has to be determined at Wlifequency the penalty coeffi-
cient should be increased, and with which factor. The sgdtihat give the best performance
will be problem specific and therefore require tuning. Frdm &lternatives discussed, this
last alternative has the most natural way of dealing withrtbe-converging behavior, by
emphasizing over the iterations more and more that a solstiould be obtained with in-
terconnecting constraints that are satisfied. The predistihat each control agent therefore
makes of its subnetwork are accurate at termination of #ratibns.

Below we use the alternative based on increasing the pec@difficient to formulate a
multi-agent single-layer MPC approach for interconnedtglorid systems.

3.4.4 Serial and parallel single-layer hybrid MPC approactes

For control of interconnected hybrid systems, in which tbbretworks are linear time-
invariant systems with discrete inputs as modeled usirigij3and the MPC overall control
problem is convex for fixed values of the integer variables,propose the serial and par-
allel scheme of Sectidn 1.3.2, with the extension that thra|e coefficienty. varies over
the iterations, i.e., extension 5 above. Hence, the origiexdal and parallel scheme are fol-
lowed in the sense that the agents perform local optimiratieps and communication, but
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the way in which the information from neighboring agentsnisliided in updating the in-
terconnecting objective function is different. Insteadising a fixed penalty coefficient, an
iteration-varying penalty coefficient is taken. EveMys iterations, the penalty coefficient
~c is multiplied byyac, with yac > 1.

Remark 3.3 The approaches proposed in this section for multi-agent M&@rol of the
assumed class of systems follow from rather straightfoaveattensions of the original ap-
proaches of Section 1.3.2. More complex extensions coulthéeesult of combining the
original approaches of Section 1.3.2 with optimizatiorht@ques for integer programming,
such as distributed branch and bound or ADOPT [101]. In aatitee way of alternating be-
tween the distributed branch and bound and the approact&esctibn 1.3.2, the distributed
branch and bound approach could determine values for thgéntvariables, after which the
integer values can be fixed, and the resulting convex ovprablem can be solved using
the approaches of Sectipn 1.3.2. Such an approach couldtiadifeaddress a larger class
of systems than assumed here, although that remains to éstigated. O

In the following section we perform experiments with the pwsed scheme on a load-
frequency control problem with discrete power generation.

3.5 Application: Discrete-input load-frequency control

We consider the load-frequency control problem as defineSleiction 2.5. In this load-
frequency control problem a power network is divided inteubnetworks, each equipped
with power generation and consumption capabilities. A mmrdgent is assigned to each
subnetwork. The objective of each control agent is to keeguency deviations at a min-
imum after load disturbances. In order to achieve this dbjeeach control agent can
adjust the power generation in its subnetwork. In the odabproblem definition of Section
[2.5, power generation was considered as a continuous ik{re, we assume that power
generation can be adjusted in discrete amounts, hencer generation is considered as a
discrete input. Such discrete power generation is presemt,if generators can be switched
on or off, or if actuators on the generator can take on valudg from a discrete set of
values. Furthermore, also load shedding, which can be seanniay as negative power
generation, is typically done in discrete amounts.

3.5.1 Network setup

For illustrative purposes, we consider a network congistifi 2 subnetworks, as shown
in Figure/ 3.11. The dynamics and parameter of the subnetnan as described in Sec-
tion|2.5, with the exception that the inputs can only take mcréte values from the set
{-1.0,-0.9,...,0.9,1.0}.

3.5.2 Control setup

The control agents controlling subnetworks 1 and 2 use tlectibe function as defined
in Section 2.5. The mixed-integer optimization problemt thach control agent solves at
an iteration is solved using the quadratic mixed-integéresaf ILOG CPLEX v10 [71],
which we use through the Tomlab v5.7 [66] interface in Matl@ts [98].
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Figure 3.11: Network consisting of 2 subnetworks. Each stork has generation and
consumption capabilities.
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Figure 3.12: Resultsvithout using the extended version of the serial MPC scheme. Per
iteration the values of the interconnecting input variabfesubnetwork 1 for
prediction steps 2, 3, and 4 are shown. The values of the biaritor the
prediction steps 2, 3, and 4 are shifted with +5, +10, and +Espectively.

3.5.3 Simulations

To show the non-converging series of discrete values of ipets, consider the experi-
ment in which we take a prediction horizon with lengdh= 5 steps, an accuracy threshold
~eterm = 0.0001, and an initial penalty coefficient(0) of 1. The penalty coefficieni.(s)

is updated everfNas = 50 iterations, with a factor ofaoc = 1.5. The initial state of the
network iSXAf"l(O) =0, XAgﬁl(O) =0, XAfyz(O) =0, andxas,2(0) = —-1.0745.

3.5.4 Results

When the control agents do not use the adjustment of the peteath ., then the non-
converging series of discrete values appears, as illestiatFigure$ 3.12 and 3.13 for the
serial approach. The figures illustrate that as the contgehts exchange information, the
value of the interconnecting input of control agent 1 changéso when the values of the
discrete inputs do not change. At the moments that the désgrputs change, a clear jump
is also observed in the value of the interconnecting input.

When the control agents use the penalty term increments &&terthen the iterations
converge, as illustrated in Figures 3.14, 3.15,/and 3.1¢aritbe seen that in this case as the
penalty coefficient(s) increases, the number of jumps in the discrete inputs resjacel
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Figure 3.13: Resultsvithout using the extended version of the serial MPC scheme. The
values of the discrete inputs chosen by the agents of subrietd (top) and 2
(bottom), respectively, for prediction steps 2, 3, and 4sdrewn. The values
of the inputs for the prediction steps 2, 3, and 4 are shiftéti w5, +10,
and +15, respectively. In addition, the values of the in@rsscaled (before
shifting) to take on integer values between -10 and 10.
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Figure 3.14: Evolution of penalty coefficieptusing the extended version of the serial MPC
scheme.
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Figure 3.15: Interconnecting variable resulting from ugithe extended version of the serial
MPC scheme. The values of the variable for the predictiopss® 3, and 4
are shifted with +5, +10, and +15, respectively.
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Figure 3.16: Inputs resulting from using the extended wersif the serial MPC scheme.
The values of the inputs for the prediction steps 2, 3, ana4hifted with +5,
+10, and +15, respectively. In addition, the values of thputs are scaled
(before shifting) to take on integer values between -10 d@hd 1
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that ultimately convergence is obtained. It is worth notihgt the inputs that are chosen
by the control agents are the same as those that would hawechesen by a centralized
overall control agent.

3.6 Summary

In this chapter we have discussed multi-agent MPC controbosportation networks mod-
eled as interconnected hybrid systems. In this settingaéitvwork is divided into a number
of subnetworks, each being controlled by a control agentibas a model of its subnetwork
and MPC to determine its actions.

We have first focused on modeling of hybrid systems and diszifiow logic state-
ments, which commonly appear in the description of hybristams, can be transformed
into linear mixed-integer equality and inequality constte. Then, we have illustrated the
use of the transformations to construct a prediction modelah a single MPC control
agent. Subsequently, we have focused on multi-agent dawitnoetworks consisting of
subnetworks that are modeled as hybrid systems. We haveddan a patrticular type of
hybrid subnetworks, viz. subnetworks with linear timeamant dynamics that accept in-
puts that take on values from a discrete set of values onigh&umore, we have discussed
the problems that arise when the serial and parallel sché@bapter 2 would be applied
to this type of system without modification. Moreover, we éaliscussed several alterna-
tive extensions of the original schemes to deal with thesblpms, and we have chosen
one extension that results in control agents choosingbkasiteger inputs, based on ac-
curate subnetwork predictions. Several issues still havmetaddressed in future research,
including among others investigating formally whether pineposed scheme converges, de-
termining formally what the quality of the solutions is, atetermining when the penalty
coefficient should be increased and with what value it shbalthcreased. In addition, how
to combine distributed optimization problem solvers fontiouous and integer variables
should be investigated.

In this chapter we have applied the topics discussed on tplicagtions: energy control
in households, and load-frequency control with discreteegation switching. For the en-
ergy control in households application we have used thetoamations to derive a model
for a household equipped with its own power generation (viaieco combined heat and
power unit) and storage capabilities (via a water tank andttety). As a first step toward
a control structure in which multiple control agents, eagpresenting a single household,
jointly control the energy usage in a district, we have pggiba decentralized multi-agent
single-layer MPC approach in which the control agents onlysider their own household
and no communication with other control agents takes plicthe application of the load-
frequency control with discrete generation switching weeheonsidered how the proposed
extension of the serial scheme of Chapter 2 performs whesutheetworks do have inter-
connections, and the respective control agents do comiaienizth one another. We have
illustrated that the extension proposed for dealing with-tonvergence of the iterations of
the MPC scheme can make the iterations converge.

In this chapter, as well as in Chaptér 2, we have focused oessgarticular to single-
layer control, i.e., control in which the control agents édagqual authority relationships with
respect to one another. In Chapters 4land 5 we focus more omohake into account also
control agents with different authority relationships.






Chapter 4

Multi-layer control using MPC

In the previous chapters we have discussed common issge®gatile to the nature of large-
scale transportation networks. In those chapters we hauesénl on particular issues in
single-layer control, i.e., control in which control ageihiave equal authority relationships
with respect to one another and control dynamics that takeepat similar time scales. In
this chapter we consider particular issues involved in majter control, i.e., control in
which control agents of higher control layers have autlyasiter control agents in lower
control layers, and control agents in higher control laygrscally control dynamics at
lower time scales. In Section 4.1 we introduce multi-layeP@®control for transportation
networks, and in particular discuss how the prediction netieat the control agents use
can to be constructed. In Section 4.2 we discuss predictimhefs constructed for a higher-
layer control agent using object-oriented modeling, whchkuited for making prediction
models of large-scale systems, and prediction models etefiom such object-oriented
models by linearization. We formulate an MPC problem baseduxh an object-oriented
prediction model in Section 4.3. As we will see, the MPC peablbased on the object-
oriented prediction model leads to a nonconvex MPC probleitlh, an objective function
that is expensive to evaluate. We consider two approachiemdfiressing this issue: i) the
nonlinear MPC optimization problem is solved directly,ngspattern search as solver; ii) a
linearized approximation of the nonlinear optimizationlgiem is solved, using an efficient
linear programming solver.

In this chapter we consider as application emergency veltamtrol. In Section 4.4
we develop an object-oriented model of a 9-bus dynamic paeerork and experimen-
tally assess the performance of the proposed approachas emergency voltage control
problem.

Parts of this chapter have been published in [110] and predem[113].

4.1 Multi-layer control of transportation networks

As we have discussed in Chapter 1, there are several chasticteof transportation net-
works that make their control challenging. In Chapters 2[@nd/e have discussed how
to deal with the large geographical region and the hybridadyics that transportation net-
works typically have. In this chapter, we discuss how to daéth the wide range of time
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scales over which the dynamics of transportation netwoykgcally evolve. Multi-layer
control can be used for this.

4.1.1 Multi-layer control

If dynamics evolve over a wide range of time scales, thenrobof such dynamics can be
done using multiple control agents that each consider &péat range of time scales. The
control agents can be grouped into layers depending onrtleedcales they control.

Figure| 4.1 illustrates multi-layer control of a network, Which the control structure
consists of a higher, medium, and lower control layer. Atdovayers, control agents that
control faster dynamics are located. The faster dynamitt$ypically require faster control,
hence at the lower control layers the time available to deitez control actions is relatively
small. However, to adequately describe the fast dynamiose metailed dynamics have to
be considered. Therefore at lower control layers, typjcatiore localized models of the
dynamics will be used. Control agents that control sloweratyics are located at higher
control layers. There more time is available to determingoas. However, the slower
dynamics considered at the higher layers will typicallydive larger regions of the network.
Therefore, at higher control layers less detailed modedsiaed. The result is a multi-layer
or hierarchical control structure in which control takeaq® at different control layers based
on space and/or time division [17]. The higher-layer cardigents determine both actions
to be implemented directly in the physical network, and s®hts to be provided to the
control agents in a lower control layer. Hence, control agém higher control layers can
be seen as supervisory control agents.

In principle each control layer can consist of multiple cohtigents, each controlling
their own group of control agents in a lower control layer. n@ounication among the
control agents in each layer may or may not be present.

4.1.2 Multi-layer control in power networks

As an example of the multi-layer control of transportatiagtwiorks, we consider power
networks. Power networks in general are controlled usintiiffayer control in which con-
trol of the physical network is the result of the joint effoftseveral control layers at local,
regional, national, and sometimes international leve] . The physical power network
consists of multiple interconnected subsystems, like ggaes, loads, transmission lines,
etc. This physical network is controlled by several contaglers in order to control the
network in a desired way. The lowest control layer consi$tsomtrol agents that locally
control the actuators in the physical network. The highertic layers consists of con-
trol agents that determine actions and set-points for laveertrol layers. The set-points
can be used to obtain coordination between the control agenthe lower control lay-
ers. The higher control layers typically consist of, e.ggional or national human network
operators. These human operators decide on the actionetbased on offline studies, ex-
perience, heuristics, knowledge bases, and actual sysieditions obtained via telemetry
or obtained from state estimators and soft sensors. Theasets should be determined in
such a way that objectives defined for the higher controlrlaye achieved [100, 131]. The
higher control layer hereby typically takes into accounnlireear behavior of the system,
behavior that may be neglected by lower control layers.
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Figure 4.1: lllustration of multi-layer control. A higheayer provides set-points to a lower
layer (dashed lines). The lower layer controls the actustior the physical
system (dotted lines).

It is in general not possible to rapidly change the set-gougted by a lower control
layer in an online and coordinated manner to achieve imptrperformance [45]. As it
becomes more complex for human operators to adequatelycptbé consequences of
faults and disturbances in the network (e.g., for power pets; due to deregulation of the
energy market, the increase in power demands, and the encergéembedded generation
[73]), the need for intelligent automatic online controk®ms increases. These automatic
control systems can be used to determine which set-poimtsicipe provided, at a first
stage outside the control loop in the form of a decision suppestem, and at a later stage
inside the control loop in the form of closed-loop control.

4.1.3 MPC in multi-layer control

Although in general there can be many control layers, antl eantrol layer can consist of
multiple control agents, in this chapter we restrict ound®to two control layers, a medium
and a lower control layer. The medium control layer consi$ts single control agent, and
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the lower control layer consists of multiple decentralizemtrol agents. In Chapter 5 we
consider the control by a higher control layer that consi$tsultiple control agents that
can communicate with one another.

To be able to obtain its control objectives, a control agera particular layer has to
monitor the current state of the part of the lower controklagf its interest and the underly-
ing physical network. Based on this, the control agent hdsresee when the behavior of
the system is going into an undesirable direction such tltain provide adequate set-points
to that part of the lower control layer that it considers. Wepgmse a medium-layer control
agent that at each control cycle uses MPC to determine wigichants to provide to the
lower control layer.

In order for the medium-layer MPC control agent to meet itstod objectives, it has
to be able to predict how set-point changes influence therdigsaof the network. The
performance of the control agent relies for a large part anabcuracy of the prediction
model that it uses. The prediction model has to describehesli the actions of the control
agent affect the behavior of the network and the lower-lay@trol agents. Ideally, the
control agent should have a model of the complete dynamitiseofietwork, including the
behavior of the other control agents. However, such an isealel can be very complex or
impossible to construct, thus making the optimization pthae in the control agent slow
or impossible. Instead, the control agent has to use an gippation of the model. If this
approximation fits in a suitable form, relatively efficierptonization techniques can be
used to determine the actions to take (e.g., linear or mixeztyer linear programming).

Suppose that the dynamics of the transportation networlbeaapresented by a system
of ordinary differential equations (ODES) as:

d vVery siow

% (1) fuery slow(xvery slow(t) s Xstow(t) , Xrast(t))
dxgtﬂ (t) = 1Eslow(xvery sIovv(t)’ Xslow(t), Xfast(t)) )
d%a“ (t) ffast(xvery slow(t), Xslow(t), Xrast(t))

where the dynamics have been grouped into “very slow”, “§Jaand “fast dynamics”.
Suppose that the medium-layer control agent has as olgectivontrol the slow dynamics
only. The question is whether and how this control agent baake into account the very
slow and the fast dynamics. Although the control agent isdictly interested in the
very slow and fast dynamics, these dynamics can influencsltve dynamics in which
the control agent is interested. Simply ignoring the veomsand the fast dynamics may
lead to unacceptable loss of model accuracy. Instead ofiiggehe very slow and the
fast dynamics completely, the control agent can approxartted very slow dynamics with
constants, and the fast dynamics with instantaneous dysarmhe model that the control
agent then considers can be described as:

dxveéty slow (t) 0
dxgtﬂ (t) | = |fstow(Xvery slow(t), Xsiow(t), Xfast(t)) | , (4.1)
0 ffast(xvery slow(t) ) Xslow(t) ) Xtast(t))

which constitutes a system of differential-algebraic diues (DAES). Note that with re-
spect to the fast dynamics a model such as discussed in Chapteerges. Note also that
the very slow dynamics can include changes in set-points ligéhe medium-layer control
agent. The medium-layer control agent can receive updatesHigher-layer control agents
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with respect to the very slow dynamics that it assumes cohsitecluding the set-points,
and it can in addition determine the set points for the lolager control agents, e.g., in
such a way that the objectives related to its time scale diagsaane achieved.

Constructing the prediction model

Due to the complexity of transportation networks, congtngcappropriate prediction mod-
els that can be used in control of these networks is a difftask. Constructing a model im-
plementing (4.1) involves formalizing many componentffedéntial equations, algebraic
equations, mixed continuous and discrete elements, anahtigs at different time scales.
Over the last decade modeling languages and simulatioroemaents have been introduced
that allow general-purpose physical modeling based onsatawiodeling, mixing physical
modeling using equations with the usedlfject-orientedconstructs, and therewith signif-
icantly easing the development of such complex predicti@uets [13, 39, 99, 122]. In
the next section we discuss object-oriented modeling andsé for constructing object-
oriented prediction models implementing models such d9.( addition, we discuss how
prediction models approximating these object-orientedljotion models can be derived us-
ing linearization. These models will then be used in Sedi@for setting up MPC control
problems.

4.2 Constructing prediction models with object-oriented
modeling

4.2.1 Object-oriented modeling

To face the difficulty of constructing models of complex gyst, object-oriented approaches
for analysis and simulation of such networks have receimedensing attention [95]. In
object-oriented modeling, the structure of models of carpystems are determined by
defining objects for subsystems in these complex systems. obfects are used to map
the structure of the model as closely as possible to thetsteiof the system. The ob-
jects are described in a declarative way by defining onlylleqaations of objects and the
connections between the objects. To facilitate modelimgolgiect-oriented approach for
modeling offers inheritance and composition conceptsetitdince offers the possibility to
form new classes of objects using classes that have alresaty defined. The new classes
take over or inherit attributes and behavior, e.g., dynami€ the already existing classes.
Extended models can then be constructed by inheriting digzaamd properties of more
basic or more general models. E.g., for power networks, @ek@é generator objects are
designed in this way by extending a basic generator objketisdnly contains the basic
dynamics of a synchronous machine. Composition offers ¢issipility to combine simple
objects into more complex ones. E.g., for power networksemitomposing an object of
a voltage regulator and an object of a turbine governor witlolject of a basic generator,
an object for a regulated generator with complex dynamiabtained. Objected-oriented
concepts enable proper structuring of models and gendegltyto more flexible, modular,
and reusable models.
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4.2.2 Modeling tools

Several object-oriented approaches have been develogedhmsyears, e.g., [13, 39, 99,
122, 136]. The approaches typically support both highlevedeling by composition and
detailed component modeling using equations. Models déaysomponents are typically
organized in model libraries. A component model may be a amite model to support
hierarchical modeling and may specify the system topolagterms of components and
connections between the components. Using a graphicallmadder, e.g., Dymola [39],
a model can be defined by drawing a composition diagram, bplgipositioning icons
that represent the models of the components and drawingections between the icons.
Parameter values of the underlying models are then conviiynigpecified in dialog boxes.
Most of the object-oriented simulation software packagesime that a system can be
decomposed into objects with fixed causal relations [7]. Sahtelations are relations be-
tween causes and effects. E.g., if there is a causal rethipietween two objects A and
B, then this means that if the variables of object A changa, tthen the variables of object
B change as a consequence of the change of the variableseaf @bjIn a fixed causal
relations this behavior is defined in one direction only. egnfor objects A and B, the
variables of object A do not change as a consequence of chamgariables of object B.
In general, causality implies that the model of the systembmaexpressed as the intercon-
nection of objects with an explicit state-space represiemtain which algebraic relations
as in (4.1) cannot be present. Often a significant effort imgeof analysis and analytical
transformations is required to obtain a model in this for@][3n particular for systems in
which causality is not naturally present, as is the case, ie.gower networks. Setting the
causality in a voltage-current formulation would mean thatrents are expressed as func-
tion of voltages, or vice versa. Acausal modeling permitsetax the causality constraint
and allows to focus on the elements and the way these elearertsnnected to each other,
i.e., the system’s topology. An environment that allowsused modeling, is Dymola [39],
which implements the object-oriented modeling languagel®fioa [136]. In Section 4.4
we will develop an object-oriented Modelica model for powetworks using Dymola.

4.2.3 Object-oriented prediction models

Using an object-oriented modeling approach, each of theadbpf a transportation network
can be modeled with a mixture of differential equationsghlgic equations, and discrete
logic. The model of the overall system then consists of thelet®for the objects and in
addition algebraic equations interconnecting the indigicbbjects.

For the object-oriented model to be useful as a predictiodehtihat can be used by an
MPC control agent, a method has to be available that canaeathe model over a time
horizon from timetg until t; given the initial state of the system at tige So, it should be
possible to solve a so-called initial value problem thaegithe initial stateg(tg) € R,
the initial inputsu(t) € R, and inputau(t) specified over the full time interval, computes
the outputs/(t) € R, fort € [to, t].

Note that a medium-layer control agent in fact does not pl@get-points to a lower
control layer continuously, but only at discrete controtiesk., for k. = {0,1,...}, where
control cyclek; corresponds to continuous timkgT;, with T, the control cycle time in
continuous time units, as shown in Figlre 4.2. A zero-oraéd is used to make the trans-
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Figure 4.2: Overview of different time scales.

formation between the continuous-time input signdl) and the discrete-time input signal
u(ke). So,u(ke) = ug, becomes in continuous time:

ut) =uy, forte keTe, (ke+1)Te).

Therefore, instead of specifying the continuous-time tngignal u(t) to the prediction
modelM, a sequence d¥ inputs is specified to the prediction modédl The N inputs
are collected ini(k;) as[(u(ke)) ', ..., (U(ke+Ne—1))T]T, whereN; = % +1is the length
of the prediction horizon in control cycles, and where far #ake of simplicity it is assumed
thatt; —tg is an integer multiplier offc.

In general there is no analytic expression for the solutibthe initial value problem.
Instead, the trajectories of the variables of interest havee approximated by numerical
means to obtain values for these variables at discreteguwiritme. For control purposes
we are typically interested in the outputét). Assume that computing a sample of the
continuous-time outpug(t) for everyT, time units is sufficient to adequately represent the
underlying continuous signals, whefg is the length of one discrete time step, as illus-
trated in Figuré 4.2. We then define the prediction horizothvai lengthN, = ‘f;go +1
in discrete time steps, where for the sake of simplicity iagssumed thak -tg is an in-
teger multiplier ofT,. We denote the outputs over the prediction horizon with tierid,
by ¥(kp) = [y(kp)T,...,y(kp +Np—1)T]T, where discrete time stelg, = 0 corresponds to
continuous time = 0 and discrete time std@ +1 corresponds to continuous tinflg, +1) Tp.

Transition betweent, T,, and T¢

Below the notations(t), v(ky), andv(k), for some variables each have to be interpreted
in their own way. The notatiom(t) refers to the variables defined at continuous tinte
the notatiorv(kp) refers to the variableg defined at discrete time stekg and the notation
v(kc) refers to the variablesdefined at control cyclk;. In particular, if the continuous-time
signaly(t) is sampled with a sample sidg, the signaly(Tp) is obtained. If the continuous-
time signaly(t) is sampled with a sample siZg, the signal(T.) is obtained. The variables
X(t), andy(t) can be transitioned in a similar way. Furthermore, if thetog@rinputs at
control cycleu(k:) are subjected to a zero-order hold, the sign#lg,) andu(t) can be
obtained. The variablda®(k;) can be transitioned in a similar way. The zero-order hold for
the control inputs to make the transition betwegRk:) andu(k,) can be implemented as:

U(kp+1+12) = u(ky+1),for | = {O,L,2L,...,Ne-1},andl, = {1,2,...,.L-1}, (4.2)

wherel = m—ﬁ and whereu(k, +1) at discrete timéx, +1 corresponds toi(k. + 'E) at control
cycleke+ .
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General object-oriented prediction model

Given the previous considerations, in the following we asswvithout loss of generality
that the object-oriented prediction model of the transg@yh network is given by the map-

ping:
(ko) =M (X, 0,0(ke)), (4.3)

where the prediction modéfl maps the initial states = x(k;), the previous inputsi =
u(k.—1), and theN inputs collected irii(k:) to the N, outputs collected iry(ky). The
prediction model thus includes the procedure to perforntithe-domain simulation of the
object-oriented model.

Remark 4.1 Here we have assumed that the initial derivati%é@kc) and initial algebraic
variablesz(k:) can be uniquely determined wh&randu are given. If this is not the case,
then the initial derivatives and algebraic variables havée provided to the prediction
modelM as well. O

A transformed prediction model

For the interconnected individual objects modeled witHedéntial equations, algebraic
equations, and discrete-event logic, there is no diretiainialue problem solver. However,
the object-oriented model can be transformed into a systesynzhronous differential, al-
gebraic, and discrete equations|[39], leading to detestimbehaviour and automatic syn-
chronization of the continuous and discrete parts of theghdthe continuous dynamics are
modeled using a system of DAEs. For handling discrete ewamamics, the synchronous
data flow principle is employed [44]. The idea of this prireifs that at each time instant
all active equations have to be fulfilled concurrently. Tloéve@ equations at a particular
time instant consist of those equations representing théremus dynamics at that time
and possibly the equations related to the discrete evettatime [118].

If no discrete events would be present, and thus only a puhtinuous system of
DAEs is considered, a time domain simulation can be perfdromng the DAE solver
DASSL [26, 121]. DASSL implements a variable integraticepsand variable order version
of the backward differentiation formula [121]. Due to therig@le integration step size,
DASSL is in particular suited for performing simulations eé)fnamics involving fast and
slow dynamics. Variable step size methods are well-suibeddich dynamics, since these
methods automatically choose a larger step size when nalyastmics are present, and a
smaller step size when they are [26]. The solver uses a poediorrector scheme. First,
the predictor makes a guess of the solution at a new integratint. Then, the corrector
determines the final solution by solving a system of algebeguation, which is obtained
after substituting the derivative with the backward diffietiation formula. To use DASSL,
the functions of the system of DAEs have to be specified. Thehlan of this system of
DAEs, which is used in the solution of the system of DAEs, carstpplied as a function,
or it can be approximated numerically by DASSL.

To be able to adequately handle the discrete events prestrd systems of our model,
the solver DASSL-RT can be used. DASSL-RT is an extendedoreas the DASSL solver,
including a root finder [121, 124]. The root finder is necegsarallow efficient simulation
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of the discrete events. The root finder checks mathematidaator expressions that indi-
cate when discrete events should be simulated. These ind@®gressions are given in the
same variables as the dynamics, and will therefore chanigevavhen the dynamics are
simulated. If one of the indicator expressions changes digimg the simulation, the root
finder will back track the solution until the time instanceeamhthe indicator expression is
equal to zero. The values of the simulation at that time valrbturned. At event instants
mixed continuous and discrete systems of equations arestiieed to determine new values
for the discrete variables and possibly the continuousaties.

4.2.4 Linearized object-oriented prediction models

The prediction modeM in (4.3) typically is nonlinear and non-smooth, involvirtgetnu-
merical solution of systems of DAEs in combination with dete logic. Therefore, com-
puting the predictions is a costly process. This will hageeiffect on the time required to
compute control actions. Instead of using the object-tei@prediction model directly, we
can also try to derive an approximate prediction model fromdbject-oriented prediction
model. This will result in optimization problems that are maefficient to solve.

One way to approximate the object-oriented prediction rhizdey deriving a discrete-
time linearized prediction model from the continuous-tidy@amics represented in the sys-
tem of DAEs, assuming small variations of the variables adothe operation point for
which the model is linearized. At each control cy&le corresponding to continuous time
k:Tc the continuous-time linearization for the system of DAEs:

X 0 = 100),20,u00)
0=g(x(1).2(1),u(t)
y(t) = h(x(t) 2(0), ult)).

aroundx = x(k¢), U = u(k; - 1), z= z(k:), andy = y(k;) is given by the system:

%(t) = AcX(t) +Bcu(t) +Fc (4.4)
Z(t) = CC,ZX(t) +Dc,zu(t) +Ge; (4.5)
y(t) = CeyX(t) +Deyu(t) +Gey, (4.6)
where
o of (a9, N\ (dg,. __
pe= gz iz (-2xz0) (Gxzo)
Cof o of (g _ N\tog._ _
Be— gx 20+ pxzn (-2xa0) xzo
o9, _ \tog,. _
cz— <_ag(x7zau)> ai)g((xvzvu)
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Coy = %(x,z,u) +%(x,2,u) <—((zg(x,z,u)>_lgg(x,z,u)
ey = %(x,z,uw%(x,zu) <—gg(x,z,u)>_188(x,z,u)
FC:—%(X,Z,U) (—gg(x,z,U)>_l <—9(X,U72)+gg(x»z,u) %(KZUY
+gg(x,z,u)z> - (a)f((x,z, )X+ ?(x,z, u)u+ %(x,z, u)z—f(x,u,z))
Gey = (g:(x,z,u)+g:(x,z,u) gz(x,z,u)—h(x,z,u)>
—%(x,z,u) <—Z§(x,z,u))_l (—g(x,u,z) +%(x,z,a)*+%(x,z,u)*

When%(x,z, 0) is invertible. The required Jacobians can either be dervedytically [83]
or computed numerically. Using the modeling tool Dymolag timearized model of the
object-oriented model is conveniently obtained using sylmlifferentiation.

Remark 4.2 It is assumed that initial algebraic variablg&:) can be uniquely determined
givenx andu. If this is not the case, thez{k:) should be specified to the prediction model
M. O

Remark 4.3 The linearized prediction model can give adequate apprations when the
discrete dynamics do not have a too large impact on the dysarand the changes in the
continuous values are not too large. If the variations atesmall, mode changes have to be
considered in the model, e.g., by using piecewise affinemitai models [83]. O

The continuous-time linearization can be discretized whih sampling interval,, to
obtain the following discrete-time linearized model in tféne expressions of(k,), u(kp),

andy (kp):

X(kp+1) = Ax(kp) +Bu(kp) +F (4.7)
y(kp) = Cx(kp) +Du(kp) + G, (4.8)
wherek, denotes the discrete time step, and where
A =gt

To

B :/ &CTdTBC
0
Tp

F :/ éAchTFC
0
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C == Cc_’y
D - Dcﬁy
G == Gc7y.

The value ofT, determines how well the dynamics of the discrete-time magproximate
the dynamics of the continuous-time linearized model (44p). With a smaller value
for Ty the approximation will be more accurate than with a largduedor T,. However,
with a smaller value foil, the number of variables over a prediction horizon will beeom
larger, which yields increased computational requiremémtperforming a simulation over
a prediction horizon.

The discrete-time prediction model fatk, + 1) over a prediction horizon with length
N, discrete time steps is given by:

A B F

A B F
(K +1) = LX) L |t

A B F

where the empty entries represent blocks of zeros. Sutistjtthe expression fox(k, +1 -
1) in the expression fox(k, +1), for | = {1,...,Ny,—1}, we can rewrite these equations as:

%(ko+1) = Bu(kp) +F(X),

where
B
AB B
B— | AB AB B
AN—1B AN2B AN3B | B
and
A F
A? (A+1)F

Fx)= | A% |x+| (A*+A+I)F

ANP (ANP‘1+....+A+I) F

The discrete-time prediction model f§(k,) over the prediction horizon of lengtR, in
discrete time steps is given by:

C D G
C D G
(kp) = EO o |ater]
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which after substitution of the prediction model fdik,) yields:

where
D
CB D
B—| CAB CB D
cAM?B cAMS3B ... CB D
and
C
CA CIF+G
G(X) = CA? |+ (CA+CHF+G
CAMN~? (CAN™2+  +CA+CI)F+G

To take into account that the control inputs can not be agljliat each discrete time stk
but only at each control cycle, the equalities defining the zero-order hold on the (4.2) are
added to the model. We can then denote the prediction modg(Kg) by:

y(kp) = Miin ()_(7Uﬂ0(k0))7 (49)

where Mji, = {DO (kp) +é(>’()]. The obtained discrete-time approximation can be em-

ployed as a prediction model in the MPC problem formulatibthe medium-layer control
agent. It approximates the object-oriented prediction @h¢4l3).

4.3 Supervisory MPC control problem formulation

We now use the prediction models as discussed in the presemigon to formulate the MPC
problems that a medium-layer control agent can use. EVgtiyne units the control agent
has to determine inputs and set-points for the coniytime units. These variables have to
be chosen in such a way that costs over a prediction horizbly obntrol cycles, i.e., over a
time span oN: T time units, are minimized. Let the control objectives of doatrol agent
consist of determining inputs and set-points such that thesentire prediction horizon:

e the values of the output variablggk,) are maintained between given upper and lower
bounds;

e the changes in the values of the set-poir(e) are minimized.

We formulate the MPC problems as a nonlinear optimizatiatlam and a linear optimiza-
tion problem.
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4.3.1 Nonlinear MPC formulation

To formulate the MPC problem as a nonlinear optimizatiorbpgm, we first transform the
control objectives in a straightforward way into a nonlinehjective function as follows:

Np—1
|=

I(¥(kp), Uke)) = % 1QyYerr(y(ko *1))les

Nc-1
+[[Qu(u(ke) —U)[l2+ Zi [Qu(u(ke+1) ~u(ke +1=1))[|2, ~ (4.10)
I=

whereu are the set-points provided at the last control cycle,i.es u(k.—1), Qy andQ, are
penalty matrices||v||» and||v||1 denote the infinity and one norm of vectgrrespectively,
and whereyer(y(kp)) are the violations of the desired output bounds, the entfi@ghich
are computed as:

Yq desiredmin ~Yq(Kp)  for Yq(Kp) < Yq desiredmin
Yq,err(Yq(kp)) = 0 for Yq,desiredmin < yq(kp) < Yg,desiredmax
YOI(kp) —Yq,desiredmax  for Yq(kp) 2 Yq,desiredmax,
(4.12)

where vy indicates entryg of vectorv, andyq desiredmin and Yq desiredmax are the desired
upper and lower bounds g§. The infinity norm is taken for minimization of the variables
Yerr(Y(Kp)), such that the worst error is minimized. The one norm is usethie changes in
the inputsu(k: +1) —u(k: +1 —1), such that the changes in each of the inputs are minimized.

The values of the output variablgék,) are related to the inputs(kc) through the pre-
diction model, as specified in (4.3). Hence, the supervisd®C control problem can be
formulated as:

y(kpn)],iﬂr(]kc) J(¥(kp), U(ke)) (4.12)
subject to
Y(kp) =M (x,0,t(ke)) (4.13)
L~jmin < D(kc) < L~Jmax» (4-14)

wherelimin andlmax are vectors with bounds on the element&@t), and the variables with
a bar are given. Instead of keeping the relation (4.13) fepttediction model as an explicit
equality relation, this relation can be eliminated by sitbbsig it into the objective function,
since only the objective function depends ¥ik,). This substitution has computational
advantages, since after the substitution the optimizatioblem has fewer variables and no
nonlinear equality constraints. Hence, the MPC probleruced to:

min J(M (x,,8(kc)), U k) (4.15)
subject to
Upin < l~«l(kc) < Umax. (4-16)

Since the objective function of this problem includes thediction modeM and due to the
definition of yer(y(kp)) the optimization problem is in general a nonconvex optinidera
problem subject to simple bound constraints.
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Below we consider two approaches to solve the problem at.h&idt, we propose
to use the direct-search method pattern search as an ajajecgolver for directly solving
the nonlinear MPC problem. Pattern search has as advartageore effective way of
dealing with the problem at hand when compared to solveradatinear optimization that
require gradient or Hessian information. However, compiotal time requirements may
be large. As an alternative, we consider solving the noalindPC problem by using a
linearized approximation of the problem. The advantagéiisfapproach is that it may be
more efficient in terms of computational requirements. Hevethe restricted validity of
linearized models may jeopardize the quality of the resgltontrol actions. In Sectidon 4.4
we experimentally compare the two approaches.

4.3.2 Direct-search methods for nonlinear optimization

In the MPC problem/ (4.15)—(4.16), evaluating the objecfiwaction is expensive due to
the evaluation of the prediction model. In practice, comfiah time is limited and within
the available computation time a solution that is as goodoasiple has to be determined.
Many nonlinear optimization methods rely on gradient anddim information [18, 115].
However, the saturation and the use of the infinity norm indbgective function make
that the objective function has many flat areas in which tlzgignt and Hessian are both
equal to zero and thus not informative. Solvers that usefitssorder or second-order
information will therefore perform unnecessary numeriapproximation of the gradient
and the Hessian, involving numerous objective functioruatioons. In addition, the MPC
problem [(4.15)-+(4.16) typically has many local minima iniethgradient-based solvers
typically quickly can get stuck.

Instead of using gradient or Hessian-based solvers, weopeofo use so-called direct-
search optimization methods, which do not explicitly requradient and Hessian infor-
mation [32, 150]. The only property that these methods meqisi that the values of the
objective function can be ranked [87]. This feature togethith the feature that direct-
search methods are suitable for non-smooth problems [32kenthat these methods are
suitable for solving the nonlinear problem (4.15).

Pattern search

For solving the nonlinear MPC problem (4.15)—(4.16), whichased on the object-oriented
prediction model, we propose to use the direct-search ndeplattern search [87], for its
straightforward implementation and its ability to yieldagbsolutions, even for objective
functions with many local minima, in combination with a nitdtart method [96], to im-
prove the probability of obtaining a solution close to a gl optimal solution. Several
theoretical issues of pattern search have been discus§@dlid, 84, 138].

Pattern search works in an iterative way. Given the solusi8® at iterations—1, if
a new solutions" is found for which it holds thafi(s") < J(ssV), then the solution at
iterations becomess*. If such a new solution is not found, then the solution atitien s
equals the solution at the previous iteration. The new &olig’ has to be selected from a
finite set of candidate solutions in a me&H® that is updated at each iteration. An iteration
of pattern search for an unconstrained problem is sumnthitzthe following steps [87]:
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o A mesha/(® around the last solutiosiS™V) is constructed, consisting of a discrete set
of candidate solutions iR"™ in which the algorithm searches for a new solution. The

coarseness of the mesh is determined by the meshyg]zée R*.
e The meshM (¥ is explored in one or two phases:

— In the search phasany strategy can be used to find a solut&re (S for
which J(s*) < J(sY), as long as a finite number of points is considered. If a
solutions® is found, the search was successful and the next phase iso&eid.

— In the polling phasea new solutiors* for which J(s") < J(sY) is searched
for in a subset of solutions i/ (¥, consisting of those solutions that are in the
direct neighborhood of the last solutiaf®2. This neighborhood is defined
through a set of vectors called a pattern and the currentisoluf a solutions*
is found in this neighborhood then the polling phase wasessfal.

o If either of the phases was successful, tls&h= s*, the coarseness of the mesh
is set tovﬁésh: yexpyéf;%, with expansion factorjexp > 1, and the next iteration
starts. Ifs* was not found, thes® = s, the coarseness of the mesh is set to

vrfésh: “Ycontﬁr(r?;ir)v with contraction factofycony € (0,1), and the next iteration starts.

The iterations continue until a stopping condition is g e.g., the mesh size is less
than a given tolerance, the total number of objective furmctvaluations reaches a given
maximum, or the distance between the point found at one safidepoll and the point at
the next successful poll is less than a given tolerance.

Approaches of pattern search for solving constraint o#ttion problems have been
addressed in the literature, e.g., for optimization protdewith bound constraints [86],
linear constraints [84], and nonlinear constraints [85].

Multi-start pattern search

The combination of pattern search with multi-start for sdpthe control problem at control
cycle k; consists of solving the control problem froNy,; different initial solutions, with
Ninit @ positive integer. In general, the largdk;, the larger the chance of obtaining a
solution close to a globally optimal solution. However, iragtice computation time is
limited, since control set-points have to be provided ateaantrol cycle. Therefore, our
multi-start implementation involves starting from diféet initial solutions as long as time
is available. The first initial solution is based on the (@gxh shifted) solution of control
cyclek; -1, since the solution of control cycle -1 typically gives a good guess of the
solution at control cyclé.. The solution with the minimal objective function valueeaft
optimization with pattern search when the maximum comjmnaime has elapsed is used
as the final solution at control cycle. See [96] for an overview of further characteristics
of multi-start methods.

Although multi-start methods generally increase the tieguired to solve an optimiza-
tion problem significantly, multi-start methods can typighe executed in a highly parallel
fashion. In particular when a straightforward multi-staréthod is chosen that relies on
randomly generated initial solutions, then each optinmzraproblem involved in the multi-
start method can be solved on an independent processaXiftanitial solutions executed
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on p processors the overall execution time is then expected poave with approximately
a factorp compared to when a single processor is used.

In Section 4.4 we experimentally compare the performancmulti-start pattern search
with a multi-start gradient-based optimization.

4.3.3 Linear MPC formulation

The approach proposed above for solving the nonlinear apdiion problem based on
multi-start pattern search may still require a significamoant of computation time. In-
stead of solving the nonlinear optimization problem diygove here discuss solving an
approximation of the nonlinear optimization problem byelamization. This approach has
the potential to require a significantly smaller amount ahpaitation time, although possi-
bly at the price of reduced performance.

To obtain a linear approximation of the MPC formulation ofl2)—(4.14), the linearized
prediction model (4.9) can be used instead of the objeetatei prediction model (4.3), and
a transformation of the nonlinear objective function (4.40d the expression foeq(y(kp))
in (4.11) can be made into linear objective terms and inétyuebnstraints. First, note that
the following optimization problem:

min [Yer(y (k)
whereyer as defined in (4.11), for any fixedk,), is equivalent to the optimization problem:

min ||Yerr||e
Yerr
subject to

y(kp) = Ydesiredmin ~ Yerr
y(kp) < Ydesiredmax* Yerr
Yerr >0,

where0 is a zero vector of lengthy,.. Note also that the infinity-norm based optimization
problem:

nvn ||QV||°°7

wherev € R, andQ € RV*V is equivalent to the linear programming problem:
min Z,
V,Zo

subject to—1z, < Qv
Qv < 1z,

wherez, € R, andlis a one vector of lengthy. In addition, note that the one-norm based
optimization problem:

min [|QV/[s,
v
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wherev € R, Q € R™*™ is equivalent to the linear programming problem:

min1'z,

V,Z1

subject to-z; < Qv
Qv<z,
wherez; € R™ and1lis a one vector of length,, . Using these equivalences the nonlinear
optimization problem as defined in (4.12)—(4.14) is transfed into:
Np-

1 Np-1
min Zo(ko+1)+ § 1725 (ko + 4.17
9(kp),(ke) Terr(kp) Zeo (Kp) 21 (ke) | (ko +1) go 1(ko +1) ( )

subject to
Y(Kp+1) > Ydesiredmin —Yerr(Ko +1)
Y(Kp+1) < Ydesiredmax+Yerr(Ko 1)
Yerr(ko+1) >0
~Zo(Kp 1) < QyYen(kp+l)
QyYerr(Kp+1) < Zn(kp+1)
forl =0,...,Ny—-1
-21(ke) < Qu(u(ke)—T)
Qu(u(ke) —0) < za(ke)
~z(ke+1) < Qu(u(ke+1) —u(ke+1-1))
Qu(u(ke+1) —u(ke+1-1)) < z3 (ke +1)
forl =1,...,N.—1

u
l]min < LNl(kc) < L~jmax- (4-18)

Since we have a linear objective function with linear egyalnd inequality constraints, and
since all variables are continuous, this MPC optimizatiosbfem is a linear programming
problem, for which there exist good commercial and free exaly103].

4.4 Application: Voltage control in a 9-bus power network

A major source of power outages is voltage instability [14&)Itage instability in general
stems from the attempt of load dynamics to restore poweruraption beyond the capabil-
ity of the combined transmission and generation system affault. The control problem
we are dealing with in this section is emergency voltagerobnte., control to prevent a
particular type of voltage instability. After a fault, e.@.partial or total outage of a line, the
generation and transmission network may not have sufficiapacity to provide the loads
with power. A lower layer of decentralized control agentdl @y to restore the behavior
of the system to an acceptable level. However, due to thecestitrtansmission capacity of
the network the requested load demand together with thegystem configuration place
the network under an excessive amount of strain and voltaggsstart to drop. Corrective
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Figure 4.3: Network topology of the 9-bus dynamic netwotie @enerators are shown with
their nominal apparent power ratings.

actions have to be taken to coordinate the decentralizettat@gents in the lower con-
trol layer such that negative effects of this voltage insitytare minimized and such that
the induced transients that drive the system to collaps@wse unwanted and hazardous
sustained oscillations are avoided.

Traditionally, offline static stability studies are cadieut in order to avert the occur-
rence of voltage instability. The approach we propose ig figiction is an application of
online control that takes into account both the inherent tempoyahdhics and that deter-
mines the most appropriate control sequence required twhraa acceptable and secure
operating point. We therefore propose the use of the MPQOwseheliscussed in Section 4.3
by a medium-layer control agent to determine the set-pdartlower-layer control agents
in such a way that negative effects due to voltage instgtafier faults are minimized.

In the following we describe the power network and contrélipeformulate MPC prob-
lems based on an object-oriented and a linearized predictiodel, and experimentally
assess the performance of the medium-layer control agerg tleese MPC formulations.

4.4.1 The 9-bus dynamic benchmark network

We perform simulation studies on a 9-bus power network. feigu3 shows the topology
of the physical network. This system is an adjusted versfahe9-bus Anderson-Farmer
network [46], taken from the Dynamical Systems Benchmalbiaiy [63]. The following
list contains more details on the dynamics of the network:

e Synchronous machines: The network consists of 4 synchenmachines @ Gy,
Gz and G.. The synchronous machines are connected to the networlosseks
step-up transformers featuring a fixed turns ratio. Synebus machines £and
Gs represent single physical unit, whereas synchronous mest@ and G denote
aggregate machines comprising several physical unitsmgahanical power and the
level of the excitation field can be adjusted for each machine

e Loads: There are 5 loadsg)lLg, L7, Lg, Lg. Part of the loads can be disabled by
using load shedding.
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Figure 4.4: lllustration of the control of the power network

e Capacitor bank: A capacitor bank C at bus 7 provides additimactive power to the
network to locally stabilize bus voltage magnitudes. Cépescan be connected or
disconnected from the network in discrete quantities.

e Transmission lines: The transmission lines between thesoasd components trans-
fer the power from one location to another.

Note that this power network contains very fast dynamicg ttuthe transmission lines,
fast dynamics, due to the generators, and slow dynamicstaltiee loads. Control of
the physical network is done through two-layered controhsisting of a lower, primary,
control layer, and a medium, secondary, control layer. g4 illustrates this control
structure.

Lower control layer

The lower control layer in the network regulates power flowd &oltage levels at the bus
terminals of generators. The lower control layer consi§the following elements:

e Turbine governors: All generators feature a turbine goweoontrolling the mechan-
ical power acting on the shaft of the machine in order to Batise active power
demand of the network and maintain a desired frequency. Utténe governors act
on a time scale of tens of seconds. The turbine governorgpaseepoints for the
mechanical power and frequency.

e Automatic voltage regulators: All generators feature atomatic voltage regulator
(AVR) maintaining the level of the excitation field in the ootwindings at the value
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required to keep the bus voltage magnitude close to theatksat-point. The maxi-
mum current in the excitation system is limited. Once a maelhias reached one of
its limits it cannot produce additional reactive power aad therefore no longer par-
ticipate in sustaining the voltage magnitudes in the nétvi@2]. The AVR voltage
references of the generators can be set in the range 0.9-1.Tlpe AVRs act on a
time scale of seconds. The AVRs accept set-points for thagelmagnitudes of the
generators’ terminal buses.

e Power system stabilizers: Generators &d G feature a power system stabilizer
(PSS) eliminating the presence of unwanted rotor osaltetiby measuring the ro-
tational speed and adding a corrective factor to the voltaggnitude reference for
the AVRs. The corrective factor saturates at a lower and uppend. Generators G
and G feature no power system stabilizer since these generapresent multiple
physical generators. The PSSs act on a time scale of tentbscohds. The PSSs
accept set-points for the frequency.

Control handles available to a medium control layer

Given the description of the network and the lower contrgklathe control handles avail-
able to a higher control layer in the form of set-point anerefce settings are summarized
as follows:

o the voltage references for the AVRs;

e the mechanical power set-points for the turbine governors;

the reference frequency for the turbine governors and ttf&sPS
e the amount of load to shed;
e the amount of capacitor banks to connect to the grid.

Depending on the particular control problem a higher-lag@ntrol agent will adjust the
values of these control handles. In particular for the \gdtaontrol problem at hand the
amount of load shed and the set points of the AVRs will be taethe available control
handles.

4.4.2 Object-oriented model of the network

To construct an object-oriented model of the network, we filsfine several classes to
describe the components in the power network. Using theitlefirof the classes we for-

malize the structure of the network. To each class we assiggt af variables and a set
of equations, typically consisting of a system of DAEs. Theations of a class constrain
the values of variables over time, and therefore add to tihe\der of the object-oriented

model. The equations of a particular class first of all tyfiycaonstrain variables of that

particular class. In addition, the equations of a particalass can also constrain the vari-
ables in classes from which that particular class is a sabclafter having defined the

classes and the associated constraints, the classes castd#tiated into objects to form
the object-oriented representation of the 9-bus network.



4.4 Application: Voltage control in a 9-bus power network 97

ropLo  Pin

|
Bus Machine | CapBank Load

Classic Detailed Line TraFo

’_L‘ PSS . AVR Gov
Aggregate Single

Figure 4.5: Class diagram for a power network.

Class definitions

Figure 4.5 shows the class diagram of the components thapmsider. Below we motivate
the definition of the classes shown in the figure.

The components in the physical network all have in commonttiey are connected to
other components. To model this, the connector classP89is defined. Thd?in connec-
tor class defines variables for the voltage magnitude anttaagd the current magnitude
and angle. No additional constraints on the values of thasahles are defined, however
when two components are connected to each other througRitheonnector class, four
constraints are defined that force the voltage magnitudeésagles of both components to
be equal, and that force the sum of the current magnitudesagiés of both components
to be zero.

Components like buses, machines, loads, and capacitos la@alconnected to the net-
work at one point. We therefore define the basic cl@s&Pin This class has a single
variableP1, which refers to an object of claB$n, and has no further additional constraints.
Components like transmission lines and transformers aneaxted to the network at two
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points. Therefore, we define the claBsoPinas an extension of th@nePinclass. This
class has a single varial®2, which refers to an object of claB$n. Note that by extending
theOnePinclass, th@woPinclass inherits access to the variables of@mePinclass, hence
it inherits access to variabRl and thePin class variables associated with this variable.

Since no additional constraints are defined in@mePinandTwoPinclasses, the values
for the variables involved in either of the two classes, ¢siitgy of the four variables of
the P1 variable, cannot be determined. These classes are thepdial classes [39].
Subclasses of partial classes have to be defined contaiomsgraints to give these variables
values.

Subclasses of the cla@nePinrepresent those components in the network that are con-
nected at a single point, i.e., buses, machines, loads,apatitor banks. Therefore, classes
Bus Maching Load, andCapBankare defined as subclasses of clas®ePin There are
different types of machines and we therefore define as ssdetaof the cladglachinethe
classelassicandDetailed The following lists the most important characteristicsttod
dynamics associated with these classes, and the varidisliethe classes expect as control
inputs or provide as outputs:

e TheBusclass involves two constraints that force the current ntagei and angle of
the pin of the bus to be zero.

e TheClassicclass is equipped with classical 2nd-order mechanical myes[63, 82].
The dynamics of this machine depend on the level of field gelta (t) and mechani-
cal powerupm(t). The value of the voltage magnitugig(t) of the bus of the machine
and the frequency deviation,, (t) are made available to other classes.

e TheDetailedclass is equipped with a detailed 6th-order model|[63, 8@Liding the
mechanical equations and the electrical transient andramisient dynamics of the
machine, since it represents a single physical unit. Thiabtas that the dynamics
depend on are the same as for @lassicclass. Also the values that are available to
other classes are the same.

¢ Ifthe original benchmark definition would be used, ttead class would be equipped
with a static voltage dependent and constant impedancenhoai@! [76]. However,
to model the loads in more detail and to obtain slow load dyiosna 2nd-order ZIP
model [59] is assigned to tHevad class. Among others, two constraints are included
describing the relation between the current angle and magmand the voltage angle
and magnitude under different amounts of active and reagtower consumption.
The class accepts as input the amount of load to shedt).

e The CapBankclass is equipped with two static constraints relating tbelber of
capacitorsicap(t) connected to the power network to the current magnitude agka
and the voltage magnitude and angle of its pin [63]. The cda&septs as input the
number of capacitorecag(t) to connect to the network. This input is a variable that
can take on only discrete values.

Subclasses of the cla$a/oBusrepresent those components in the network that are con-
nected to two buses, i.e., transmission lines and trangi@nTherefore, classésne and
TraFo are defined as subclasses of claa®Pin The most important characteristics of the
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dynamics associated with these classes and the variablethéhclasses expect as control
inputs or provide as outputs are:

e Thelineclass is equipped with the static equations of th@odel for transmission
lines [63, 82]. Four constraints relate the eight variabliethe two pins.

e TheTraFoclass is equipped with the static equations ofthmodel for transmission
lines [63, 82], but with the resistance and susceptanceosadrb. Four constraints
relate the eight variables of the two pins.

Each of the classes defined so far contains variables rdtateé particular component
being modeled, i.e., input, state, algebraic, and outpuabies, and equations describing
the behavior of the components. Moreover, each of theseadatefines constraints involv-
ing the variables of th©nePinor TwoPinclass.

There are also several components that do not directly @briaghe power network,
and that therefore are not defined as a subclass oDtePinor TwoPinclass. These
components consist, e.g., of the components in the lowdraldayer, which determine the
inputs to components directly connected to the power nddwlBkamples of these are the
AVRs, turbine governors, and possibly PSSs. CorrespondegsesAVR GOV, andPSS
are therefore defined. For the clad¢R subclasseSMP andBBC are defined, depicting
two different types of AVRs. The most important charact@sof the dynamics of these
classes, and the variables that the classes expect asldéoptis or provide as outputs, are
the following:

e TheSMPclass is equipped with the equations of a 3rd-order AVR [@3, BheSMP
class accepts as inputs a bus voltage magnitiugdgg(t) of the bus of which the AVR
should regulate the voltage magnitude, and a voltage matmiet-pointl psqt).
In addition, theSMPclass accepts as input voltage magnitude set-pgigt(t). The
SMPclass provides the excitation field voltage(t) as output. The excitation field
voltageye () saturates at a lower limye min and an upper limiye max.

e TheBBCclass is equipped with 2nd-order dynamics [63, 82]. Thisslaas the same
inputs and outputs as ttf&MPclass. Also this AVR class considers saturation of the
excitation field voltage/e (t).

e TheGOV class is equipped with 3rd-order dynamics [63, 82]. The dyica have as
input a frequency deviation,, (t) of a machine. Th&OV class acceptSrorger(t) as
set-point for the mechanical power. The class provides @@chl powelypm(t) as
output.

e ThePSSclass is equipped with 3rd-order dynamics [63, 82]. It usemput a fre-
quency deviation, (t) to determine a voltage magnituggpsdt). The voltage mag-
nitudeyy psdt) saturates at upper bouggdpssmaxand lower boundy pssmin.

Having defined the classes for these individual componénits convenient to define
some classes by composition. E.g., the clasnis defined as the composition of a machine
with a specific lower control configuration. As subclassesieine the classesggregate
andSingle The classefggregateandSingleinclude references to specii®/R GOV, and
PS&classes.
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Figure 4.6: The 9-bus power network as object diagram.

Remark 4.4 In the example of the division of the power network into ckssand subclasses
given here only the components that will be used later haea ldefined. It is straightfor-

ward, however, to include many more subclasses, e.g., fariteng different loads, trans-
formers, and additional generators. In [105] several exasgf additional components that
can be added can be found. The classification of componeawtslmsses facilitates easy
experimenting with models with different levels of detail. O

Object diagram

Given the classes and the associated dynamics, we can ntamtiate the classes into
objects to form an object diagram for the power network urfedy. Generators Gand
G4 are of clasAggregate Generators @and G are of classSingle The loads are of class
Load The capacitor bank is of cla€apBank The buses are of claBais The transmission
lines are of clas&ine, and the transformers are of claBsFo. Figurd 4.6 shows the layout
of the resulting object diagram as created in Dymola. The Blgnmodel can be obtained
from the author on request.

4.4.3 Control problem formulation for the higher control layer

To illustrate the control problem, we consider a typicalreré with no medium-layer
MPC control agent installed, in which we use the model coiegd in the previous section
as model of the physical network. In the scenario that weidensthe network is initially

in steady state. Then, &, = 26.5 s a fault of 600% impedance increase in the transformer
between bus 1 and 5 occurs. Figure 4.7 illustrates the éwalof the voltage magnitudes
of three representative buses. The fault occurring in thesfiormer between bus 1 and 5
changes the transmission capacity of the network. Due totthrged transmission capacity
of the network and due to the dynamics of the loads, the veltaggnitudes start to start 0s-
cillating, despite the actions of the lower control layéthe set-points to the control agents
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Figure 4.7: Voltage magnitude profileg yof three representative buses=i2, i = 6, and
i =7), for a typical scenario in which no medium control layer iegent. After
a fault of 600% impedance increase occurs in the transforpegéween buses 1
and 5 at 5t = 26.5s, the voltage magnitudeg jystart oscillating, ultimately
resulting in a network collapse.

of the lower control layer are not changed, perhaps in coatldin with other measures, the
network ultimately collapses.

To prevent such a collapse from occurring, a higher-layeitrob agent should be in-
stalled with the task to [49]:

1. Maintain the voltage magnitudes betweef @nd 11 p.u., i.e., sufficiently close
to nominal values to ensure a safe operation of the systenebpikg the voltage
magnitudes sufficiently distant from low voltages.

2. Effectively achieve a steady-state point of operatiohilevminimizing changing of
the control inputs so that a constant and appropriate seipoft ivalues is ultimately
applied to the power network and the lower control layer.

For the second objective, in particular the option of sheddbad is to be avoided un-
less absolutely necessary in order to fulfill the primaryeahive, as load shedding is the
most disruptive countermeasure available. Since typical soltage collapses without a
medium-layer control agent installed emerge over time spdseveral tens of seconds up
to several minutes [142], a control cycle time of 20 s is ataigle. It should be noted that
the speed at which a voltage collapse unfolds depends ondbgaitade of the fault occur-
ring. A collapse will take place sooner with a larger faulathwith a smaller fault. So,
depending on the range of faults that should be adequataliwlith, the control cycle time
will have to be decreased or increased.
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Below we formulate the nonlinear and linear higher-layer@/problem of the 9-bus
power network, and we assess the performance of the rggaltieed-loop control structure
in experiments.

Nonlinear MPC problem formulation

The control problem of the supervisory control agent usimg abject-oriented prediction
model is based on the formulation specified in Section 4tl = 0,...,N.—1, the inputs
U(ke+1) correspond to the AVR set-pointiayr i(ke+1), fori = {1,...,4}, and the amounts
of load to shedishegi (ke +1), fori ={5,...,9}. Forl =0,...,N,—1, the outputg(k, +I)
correspond to the voltage magnitudes(ky), fori = {1,...,9}, at the 9 buses.

One control cycle takes 20 s, herlggs 20 s. Although in principle a the prediction hori-
zon should include all important dynamics, for computagiaeasons a prediction horizon
with a length of only 2 control cycles is taken. The continsieoltage signal is sampled
every 0.5s, hencg, is 0.5s, and the length of the prediction horizgpis therefore 40
prediction steps.

The MPC control problem is formulated as in (4.15)—(4.16heveyq desiredmin iS 0.9
P.U. andyq desiredmax is 1.1 p.u. for each element vtk, +1). The elements afimin andumax
corresponding to AVR settingsavr i (Kc+1) are set to 0.9 and 1.1 p.u., respectively. The
elements olumin andumax corresponding to load settinggheqi(k: +1) are set to 0 and 1,
respectively, corresponding to full load shedding or nallsbaedding, respectively.

The cost matrixQy contains on its diagonal eIeme%ZOO andQ, contains the

value 1 on the diagonal elements corresponding to AVR sgttifyr i (Kc+1), and the value
20 on the diagonal elements corresponding to load sheddttiggsusnedi (ke +1). This way

of penalizing the voltage bound violations, the AVR settingnd the load shedding settings
ensures that the main objective of the control agent is isfgahe voltage objectives, and
that load shedding should only be chosen as a last resort.

Linear MPC problem formulation

The control problem of the supervisory control agent ushmeglinearized prediction model
is based on the formulation given in Section 4.3.3. The MPfrobis formulated using
(4.17)—-(4.18). The length of the prediction horizon in petidn stepsN; is 40, and the
length of the prediction horizon in control cyclég is 2. The inputdi(k;) correspond to
the set-points for the AVR8avr i (Kc +1) and the amounts of load to shagheqi (k; +1) over
the prediction horizon. The outpuygk,) correspond to the voltage magnitudgs(k, +1)
at the 9 buses.

Similar as for the nonlinear MPC formulation, the cost n@sQy andQ, are defined
such that a weight o,-(,ﬁzoo is placed on the violation of each soft constraint. Tipaiia
are weighted with the penalty coefficients 1 and 20 for the AéRingsuavr,i (k) and the
load shedding settin@gnedi (Kc), respectively.

The linearized prediction model is obtained at each comyole k. by linearizing the
object-oriented prediction model around the current stétg) and the inputs applied at the
preceding time instani(k; —1). The sampling interval, = 0.5s.

In the following we first focus on the performance of the cohtagent when it uses
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the nonlinear MPC formulation. We illustrate the differenoetween pattern search and
gradient-based optimization methods, and illustrate hosvproposed approach chooses
adequate set points that prevent the network from collgpsirhen, we also consider the
performance of the control agent, when it uses the linear N?@ulation. We illustrate
how the two strategies compare.

4.4.4 Control using the nonlinear MPC formulation
Direct search versus gradient-based optimization

We compare pattern search as part of Matlab’s Direct SeardiGanetic Algorithms tool-
box in Matlab v7.3/[97] with the derivative-based solver SNIOv5.8 [50], as implemented
in Tomlab v5.7([65], and accessed from Matlab. SNOPT usesmsssequential quadratic
programming method, using limited-memory quasi-Newtopragimations to the Hessian
of the Lagrange. In principle it requires gradient inforioat but this information can be
approximated numerically if it is not available.

To compare the performance of the solvers, we perform 50rerpats in which a
single fault occurs at varying locations in the power netiwe., at the 4 transformers and
the lines), with varying magnitudes (i.e., an impedancesiase of 100% up to 800%), and
at varying times (i.e., the fault time varies between se@hdnd 28). The control problems
of the first control cycle after a fault has been applied ateesbby both pattern search and
SNOPT, allowing a decision making time of 300 s

In Figure' 4.8 we see that SNOPT considers far more initialtsms within the given
time span. The time that SNOPT requires to obtain a localtinggd solution is much lower
than the time required by pattern search. This is explainethé fact that SNOPT uses
much fewer prediction model evaluations per optimizatisince it does not explore the
search space as much as pattern search does.

Figurel 4.9 shows, as decision time progresses, the avewagelb experiments of the
best objective value of pattern search so far divided by ts¢ bbjective value of SNOPT
so far. This fraction is 1, if the best objective values oftpat search and SNOPT are on
average the same. Itis larger than 1, if SNOPT on average Ibeitea solution, and smaller
than 1 if pattern search has a better solution on average fiine considers only points
for which the fraction can be computed, i.e., both patteardeand SNOPT have finished
at least one optimization problem. We observe that patteanck on average has a best
objective value so far that is about a factor 5 smaller thanbigsst objective value so far of
SNOPT.

The comparison shows that pattern search, although it duteequire gradient or Hes-
sian information and is straightforward to implement, gafig provides solutions that out-
perform the solutions provided by SNOPT.

1This relatively long decision making time is taken to illusérhiow the performance of both solvers varies over
time. In practice, multiple processors can be employed to ledizal the multi-start approach and to obtain accept-
able solutions in a more realistic time frame. In addition alecan be optimized for speed and implemented in
object code (currently only the SNOPT code is in object coddjis is in particular important for the objective
function evaluations, since these consume the most sigrtifigahof the computation time.
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Figure 4.8: Average Ni,avg Of accumulated number of initial solutions considered by th
solvers as decision time t progresses.

Control for a single scenario

To illustrate the performance of the medium-layer contigerat using the nonlinear MPC
formulation, we now discuss a single scenario. We reconsigefault of 600% impedance
increase atgr = 26.5s in the transformer in the line from bus 1 to 5. Figure 4.7wgho
the evolution of three representative buses when no metiiyar-control agent is installed.
We now consider using a supevisory control agent that usesdahlinear MPC formula-
tion. The supervisory control agent operate$at 20 s using multi-start pattern search as
discussed before to solve the nonlinear MPC problem. Thersigory control agent uses
a prediction horizon with a length of of 40 s, and samples thitage magnitudes from its
prediction model every 0.5s.

Figurel 4.10 shows the resulting voltage magnitude profitesEigurd 4.11 shows the
chosen set-points. It should be noted that the load sheddihgoint is scaled to take on
values between 0 and 50, corresponding to 100% load sheddidgio load shedding,
respectively, and that the AVR set-points for the automatitage regulators are scaled to
take on values between 0 and 20, corresponding to 0.9 p.ul.ammu., respectively.

After the fault has appeared, the control agent is able tulsta the voltage magnitude
between 0.9 and 1.1 p.u. with a low number of set-point chawagel thus achieves its
objectives. The control agent obtains a total performané®8.7, and it takes the control
agent in total 157.4 s to determine its control actions.

2The total performance is obtained by evaluating the nonfinkgective function over the full day witl, =
0.1s.
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Figure 4.9: Average relative performancg,Jof pattern search compared to SNOPT over
all experiments. The average relative performanggeat a particular time t is
computated as follows: best objective value of patternceso far divided by
best objective value of SNOPT so far, averaged over all é@xgets.

4.4.5 Control using the linear MPC formulation

As alternative to solving the optimization problem usindt@an search, we now use the
linear MPC problem formulation. To solve the linear programg problems at each control
cycle, we use the ILOG CPLEX v10 linear programming problexver [71], which we
access through the Tomlab v5.7[66] interface in Matlab y983.

We consider the following scenario. The network is in stestdye, when &ty it = 26.5
a fault appears, which increases the impedance in the tnamsf between buses 1 and 5
with 600%. The medium-layer control agent again operatdsat20 s, and uses the linear
MPC formulation with a prediction horizon with a length of g0vhile sampling the voltage
magnitudes every 0.5s.

Figures 4.12 and 4.12 show the evolution of the voltages theisimulation and the
set-points chosen by the control agent, respectively. Weeme that the control agent
can determine actions that stabilize the voltages at aabkplevels, despite the linearized
approximation that the control agents uses for the preaficthodel. The control agent
using the linear MPC formulation obtains a total perfornant 142.4, and it takes the
control agent in total 26.3 s to determine its control actiohlence, although the control
agent does not obtain an improved performance when compaitée control agent using
the nonlinear MPC formulation, it does achieve stabilizing voltage magnitudes using
significantly fewer computation time.
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Figure 4.10: Voltage magnitude profiles for simulation intihg a medium-layer nonlinear
MPC control agent.
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Figure 4.11: Set-points provided by the supervisory cdragent for simulation including
the nonlinear medium-layer MPC control agent. Load shegdialues are
scaled to lie within 0 and 50. AVR set-points are scaled tavitain 0 and 20.
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Figure 4.12: Voltage magnitude profiles for controlled slation using the linear MPC for-
mulation.
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Figure 4.13: Set-points provided by the control agent usirglinear MPC formulation for
controlled simulation. Load shedding values are scaledetavithin O and 50.
AVR set-points are scaled to lie within 0 and 20.
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4.5 Summary

In this chapter we have discussed MPC in multi-layer controparticular we have focused
on issues related to the model that a medium-layer MPC doagent uses and discussed
why object-oriented modeling is suitable for this. We haveppsed an MPC strategy in
which the prediction model is formulated either as an obginted model, allowing rela-
tively easy construction of models of complex systems, & lsearized approximation of
such a model, allowing the use of efficient optimization peatosolvers. Due to the nature
of power networks, the object-oriented prediction modeblues differential, algebraic, and
logic relations and is nonlinear, non-smooth, and costivmuate.

To solve the nonlinear MPC problem of the medium-layer aaraggent using the con-
structed prediction model, we have proposed to use patéanrcls as optimization method.
Pattern search is a direct-optimization method that doesarapute or approximate gradi-
ents and/or Hessians, which are not available in analyficcel in the situation considered.
Moreover, due to the discrete elements, e.g., saturatienMiPC optimization problem is
non-smooth, making approaches using gradient or Hesdliamiation less suitable.

We have applied the proposed control strategy for the cbagrent in a medium control
layer of a power network. The medium-layer control agenvtes set-points to a lower
control layer with the aim of preventing voltage collapsesyf occurring. Simulation stud-
ies on a 9-bus dynamic power network have shown the poteftiaé proposed approaches.
For the MPC formulation based on the object-oriented magehave illustrated the differ-
ence in performance between a gradient-based and themps#tarch method and we have
shown that the voltage collapses can be prevented from iiegur=or the MPC problem
based on the linearized model, we have compared the penfaerat the control for a spe-
cific example with the performance obtained by the MPC cdrtgent using the original
model. We have observed that the MPC control agent usingrtearlzed prediction model
can determine set-points that stabilize the voltage mades, despite the linearized model
used. Although the control actions that the MPC control ageimg the linearized model
chooses result in higher costs than the actions that thénalitylPC control agent would
choose, the total computation time is significantly lowartfte MPC control agent using
the linearized model. It is therefore interesting to inigestie further what the performance
loss is due to the linearization, and for which type of disturces the control agent using
the linearized model can yield good performance.



Chapter 5

Overlapping subnetworks

In Chapter 4 we have considered the control of several cbagents in a lower control
layer by a single control agent in a medium control layer. Taetrol agent in the medium
control layer has used a prediction model including bothtzleavior of the lower control
layer and the physical network. In this chapter we consiadertrol by multiple control
agents in a higher control layer. The control agents asshatdlie dynamics of the lower
control layers and the physical network are instantanediesfocus on the question of how
nodes of a network should be assigned to subnetworks. Int€tsehand 3 the subnetworks
into which the transportation networks were divided weréa@rlapping. In this chapter
we will discuss how subnetworks can be defined that are qygirig.

We first formalize the way in which we model general transgiioh networks in this
chapter in Section 5.1. We then discuss several approachegfining subnetworks and
the properties of the resulting subnetworks in Section $r2Section 5.3 we focus on a
particular approach for defining subnetworks based on tfgeince that actuators in these
subnetworks have. Currently existing approaches for ragént control assume that the
subnetworks that control agents control are not overlappltowever, as we will see, the
influence-based approach might result in subnetworks tieabeerlapping. To deal with
this, in Section 5.4 we first discuss a recently proposedagmbr that can be used for the
higher-layer multi-agent control of subnetworks that ané overlapping, but that do have
links among them. We then propose an extension of this approa application to higher-
layer multi-agent control of subnetworks that are overlagpn Section 5.5.

In this chapter we consider as application optimal power fbmatrol of large power
networks. In particular, in Section 5.6 we apply the apphofac overlapping subnetworks
to an optimal power flow control problem using FACTS devideswhich each FACTS
device is controlled by a different control agent. Expetiiseare carried out on an adjusted
IEEE 57-bus power network.

Parts of this chapter have been published in [69].

5.1 Steady-state models of transportation networks

As explained in Chapter|1, in a transportation network thergome commodity flowing
through the network over links between nodes inside the ortwThe nodes can be ar-

109
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ranged in a topology to reflect how the elements inside thear&tare connected to each
other. Depending on the flows of the commodity in the netwtitk,values of the variables
associated with the nodes, e.g., pressures, speedsakécart different values. By chang-
ing the values of actuators that are located in the netwbekflows and, hence, the values
of the variables can be changed. Control agents are usedaiordee how the values of the
actuators should be changed in order to achieve desirediibghahich is directly related
to desired values for the variables associated with the iodéde the network.

In Chapter 4, we have discussed multi-layer control, anderadistinction between
lower, medium, and higher control layers, as depicted irukéigh.1. In that chapter, we
have in particular considered control of an individual medilayer control agent, that uses
a model of the dynamics of the lower control layer and physieawork. Here we consider
the control of multiple control agents in a higher controlda The control agents in this
higher control layer are interested in controlling the velgw dynamics or the long term
behavior, and therefore assume that dynamics of the lowdradayers and physical net-
work can be represented by instantaneous dynamics. Therefee control agents in the
higher control layer consider only steady-state charesties, i.e., the characteristics of the
lower control layers and the network when transients hadedaout and the network has
settled in a steady state, e.g., after a change in the setifren actuator.

To model the steady-state characteristics, each of thesnindlee network has associated
with it variables and constraints used to compute the ststatg values for these variables,
given values for actuator settings and exogenous inputgheaetwork consist of nodes,
and lete, for . € {1,...,v} denote a particular node. The constraints of a particuldeno
involve variables of that particular nod@nd possibly variables of the nodes of neighboring
nodesw € A, whereA\l* = {w, 1,... >‘“L=“NL} is the set of neighboring nodes of node
The set of neighboring nodeX¥* of node. contains those nodes that can be reached from
node: by going over one link in the topology.

Let for noder € {1,...,v}, the variableg’ € R"*, u* € R, andd* € R", denote the
algebraié, the input, and the exogenous input variables associatbdaile,, respectively,
and let the constraints of nodée given by:

0=g'(z",ut,d", 21, .. 27" (5.1)

wherez® are the variables of neighboring node= A(*, andg* are smooth constraint func-
tions of node. A steady-state model for the overall network is obtaineédgregating the
constraints (5.1) for all nodesc {1,...,v}, and is compactly represented as:

0=g9(zu,d), (5.2)

wherez, u, andd are the algebraic, input, and exogenous input variablefi@foverall
network, andg defines the steady-state characteristics of the networkerGhe inputsu
and the exogenous inputls the steady state in which the network settles is deterntiyed
solving the system of equations (5.2).

Assume that there are multiple control agents, with the aibje to reach overall net-
work objectives, like safety and security. With each nodeimlber of objective terms can
be associated. These objective terms are used to indicaté Wwehavior is desired for the

1Sometimes the algebraic variables are also referred to s Stztes.
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variablesz* andu* of that node. The terms involve the variables of nod®d possibly the
variables of the neighboring nodes= A’*. The aggregation of the objectives terms of each
node gives the objective for the control of the overall netwo

The nodes that a control agent considers in its decision mgakirm the subnetwork
of that control agent. Given that each control agent hassacdwea particular actuator, the
issue that we address below is how to determine which nodes of/erall network a control
agent should consider, i.e., how should the subnetwork oh#al agent be determined.

5.2 Subnetworks and their properties

We firstintroduce some properties of subnetworks, and thediscuss different approaches
for defining subnetworks and the properties of the resubimgnetworks.

5.2.1 Properties of subnetworks

We make distinctions amongpn-overlappingtouching andoverlappingsubnetworks. If
for each subnetwork, the nodes belonging to that subnetdmrot coincide with the nodes
belonging to any other subnetwork, and if there are no linkisg from nodes in one sub-
network into nodes of another subnetwork, then the subn&srare non-overlapping. If for
each subnetwork, the nodes belonging to that subnetworlotiogincide with the nodes
of any other subnetwork, but if there are links between nadesme subnetwork and nodes
of another subnetwork, then the subnetworks are touchfrtfelnodes belonging to some
subnetworks partially coincide with the nodes belongingtter subnetworks, then the sub-
networks are overlapping. In that casemmorsubnetworks of particular subnetworks are
defined as the subnetworks consisting of those nodes thaid#d each of these particular
subnetworks. Figurfe 5.1 illustrates the different typesuifnetwork divisions. Note that it
is not strictly necessary that each node is part of a submitwo

In addition to non-overlapping, touching, and overlappsngnetworks, we make a dis-
tinction betweenime-invariantandtime-varyingsubnetworks. With a time-invariant sub-
network we refer to a subnetwork of which the assignment afesadoes not change over
time. With a time-varying subnetwork we refer to a subnetnafrwhich the assignment of
nodes does change over time.

5.2.2 Defining subnetworks

Given an overall transportation network, there are sevegpproaches that can be taken to
define subnetworks inside that transportation network, hew to determine which nodes
belong to which subnetwork. Some examples of approachesfioedsubnetworks are the
following:

1. Subnetworks can be defined through geographical bordgys,of cities, provinces,
countries, etc., i.e., based on an existing grouping of sode

2. Subnetworks can be defined through clustering of nodesargredefined number
of groups, in such a way that the number of interconnectionergy the resulting
subnetworks is minimized.
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Figure 5.1: lllustration of different types of subnetwarks

3. Subnetworks can be defined based on a radius around naglesiodes reachable
within a certain number of links from a particular main noeeg(, the node with an
actuator) are included in a particular subnetwork.

4. Subnetworks can be defined by including in the subnetwbekemntrol agent only
nodes that can be influenced by the actuators of that comgerita

The first approach can lead to subnetworks that are nonapgrg, touching, or over-
lapping. E.g., if the subnetworks are defined based on citgdye, then the subnetworks
can be non-overlapping; if the subnetworks are defined basexduntry borders, then the
subnetworks can be touching; and, if the subnetworks areeattfhased on country and
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city borders, the subnetworks can be overlapping. In the that subnetworks are de-
fined in this way, each subnetwork is typically already coltéd by a control authority.
The subnetworks resulting from this approach are typidaie-invariant, unless wars, city
restructuring, breakdowns, etc., are taken into account.

The second approach can lead to non-overlapping or touchihgetworks. If not all
nodes of the network are assigned to a subnetwork, then theetmorks can be non-
overlapping. However, if all nodes of the network are assijio a subnetwork, the subnet-
works are touching. Note that using this approach, it mayhkecase that actuators owned
by different control authorities are placed in one subnétwd he subnetworks resulting
from this approach are typically time invariant.

The third approach can lead to non-overlapping, touchimgl @averlapping subnet-
works, depending on the number of nodes that is taken to getoa particular subnetwork.
The underlying idea of considering a radius is that the dyinartmpologically far from an
actuator are not relevant, since these far away dynamic®tbave a significant influence
on the dynamics around the actuator. The resulting submktiwdypically time invariant.

The fourth approach can also lead to non-overlapping, toggtand overlapping sub-
networks. In this approach, first it is determined how muehwdriables of each node can be
influenced by actuators, and then depending on the influemt¢leeonodes it is determined
which nodes should be included in a subnetwork. If the infheevaries over time, then the
resulting subnetwork is time-varying. Otherwise it is not.

In the following sections we consider the fourth approactdffining subnetworks, and
discuss how coordination among control agents that costibhetworks defined in that
way can be achieved, in particular when the resulting swihorés are overlapping.

5.3 Influence-based subnetworks

The idea of influence-based subnetworks is that the subnietvese defined based on the
nodes that a certain actuator and, hence, a control agetrbliimiy that actuator, can in-

fluence. When the nodes that can be influenced have been cahiputsach actuator, the

influence-based subnetwork is defined as the union of thedesnaver all actuators of a
control agent.

5.3.1 Using sensitivities to determine subnetworks

To determine which dynamics an actuator can influence, thatiss can be used [51]. The
sensitivity of a variable?’ associated with a node € {1,...,v} in the network with re-
spect to an inputi* indicates how much the value of varial#e changes when the input
u* changes. Therefore, an inpuit with respect to which variablg’ has a high sensitivity,
i.e., a sensitivity with an absolute value relatively faorfr zero, has a large influence on
the value of variable”, whereas an input* with respect to which the variabl®’ has a
low sensitivity, i.e., a sensitivity with an absolute valklese to zero, has a low influence
on the value of the variablg’. Knowledge of those variables that have a relatively high
sensitivity to the inputs is more important than accuratevledge of variables that have
a relatively low sensitivity. Given the sensitivities, s@ivity thresholding can be used to
determine which variables have to be known and which may gieoted. In general, itis to
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be expected that variables representing dynamics apgegeiographically far from a par-
ticular input, will have relatively low sensitivity with epect to that input, when compared
to variables representing dynamics in the geographicatitycof that input.

5.3.2 Computing the sensitivities

To determine the sensitivity of the steady-state charasties of the network, i.e., the sen-
sitivity of the algebraic variables with respect to a particular input at node:, consider
the constraint functiong,: (z,u*), whereg,. are the constraint functions min which all
elements ofi, except for the element correspondinguto and all elements ad have been
set to fixed values. Since9g(z,u,d), also 0= gy (z,u*). In addition, since depends on
u, it follows by the chain rule that:

_ aguL . 32 . 8gub .
0= 82 (Z’U)8UL(27U)+8UL (Z,U),
and therefore:
0z A _agUL L - 8gUL L
w (Z7U ) - ( 9z (Za u )) out (Z,U ) ) (53)

under the assumption that the inverse term exists. The %frtz, u) is the sensitivity of
z with respect tau*. From this sensitivity we can determine which terms of ttgehtaic
variablesz are significantly influenced by input. If the absolute value of the sensitivity
of a particular element of with respect to inputt* is larger than a sensitivity threshold
~s, then that element af cannot be neglected. The elementz tiat cannot be neglected
can be linked to their corresponding nodes, giving a set derdhat can be significantly
influenced by inputr.

The set of nodes that can be influenced by an actuator deparnhts sensitivity thresh-
old vs used. On the one hand, if a sensitivity threshgjdf 0 is used, all nodes will be
selected. Hence, the subnetwork resulting from this ampredll correspond to the full
network. On the other hand, if a very large sensitivity thiad ~s is used, no nodes will be
selected, and the subnetwork resulting from this approatttbbesempty. In Section 5.6.2
we give an illustration of this.

5.3.3 Control of influence-based subnetworks

The settings of the actuators in the network should be aatjuist such a way that the ob-
jectives associated with the nodes are achieved as wellssbp@ Let each actuator be
controlled by a control agent, and let the task of each cbagrent be to determine new set
points for its actuators. Control ageintonsiders as its subnetwork the union of the nodes
that can be influenced by the actuators that control aigeamt control. The prediction model
M; that control agentconsiders therefore also consists of the union of the caimsrin the
influence-based models for each actuator that it controls.

Remark 5.1 Since in this chapter we consider only steady-state chenatits, it is not
beneficial to formulate the control problem of each contgerat in an MPC setting. If we
would formulate the control problem as an MPC problem, thenMPC problem would
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consist of the combination of static problems for each mtgath step, without having cou-
pling between the static problems. Hence, this would dffelst mean solvingN indepen-
dent static optimization problems without any couplingviestn them each time a control
agent has to determine actions. However, note that if dycedepending on time, or if ob-
jective terms depending on inputs implemented earlierracieided, that then it does make
sense to formulate an MPC control problem. O

When the influence-based approach is used to determine fbrosatrol agent which
subnetwork it should consider, the resulting subnetwoakslie non-overlapping, touching,
or overlapping. In addition, the influence-based approags whe sensitivity (5.3), which
is a function of the operating point, to select which nodesusdh belong to a subnetwork.
Since the operating point can change over time, the nodeésmbiald be assigned to a
subnetwork can differ as well. Hence, the subnetworks caintevarying.

If the subnetworks are non-overlapping, then the valuese¥ariables of the nodes that
control agents can influence significantly do not overlapjy@coordination among control
agents is necessary. Adequate control performance carbthebtained, as illustrated in
[51]. If the subnetworks are touching, then techniques dhasg., on the ideas of Chapter
[2 can be used to obtain coordination. For subnetworks tleadegrlapping, no techniques
have been proposed so far for obtaining coordination. Ferlapping subnetworks, the
control agents will have to find agreement on how the vargiteolved in the dynam-
ics of the common subnetworks will evolve over time. In thiécfeing we first discuss an
approach that can be used for controlling time-invarianttong subnetworks. Then we ex-
tend this approach to be able to deal with time-invariantleyping subnetworks. For sake
of simplicity we assume below that all nodes in the netwoekassigned to a subnetwork.

5.4 Multi-agent control of touching subnetworks

In Chapters 2 and 3 we have discussed two approaches forigating multiple control
agents when subnetworks are touching, based on a decompasitan augmented La-
grange function. Below we discuss a technique for coordigaguch control agents based
on the ideas of the modified Lagrange technique proposedin Tde underlying idea is to
determine subproblems in such a way that the first-ordenaity conditions for the sub-
problems of all control agents together are equivalenteditst-order optimality conditions
of a hypothetical overall control problem [31].

5.4.1 Internal and external nodes

Before explaining how the approach for multi-agent contfabuching subnetworks works,
we first define some concepts that will be frequently usederfalowing:

e We categorize the nodes that control ageotnsiders based on their location. For
touching subnetworks, the nodes that control ageonsiders can bmternal nodes
or externalnodes. The internal nodes of control ageate those nodes that belong
exclusively to its subnetwork. The external nodes of cdragenti are those nodes
that do not belong to its subnetwork.
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type | location | variables involved in constraint

nt | internal | internal
ntrext | internal | internal+external

G2, | external | external

C}i";‘;e” external | internal+external

Table 5.1: Localized constraint types of constraints asged with nodes in a sub-

network that touches other subnetworks. The location atdi&the loca-
tion of the node from the point of view of control agent i. Theables
involved in the constraint indicate which variables aredtwed in the con-
straint, from the point of view of control agent i.

e Based on the distinction between internal and external siofleontrol agent, we

make a distinction between internal and external variabfesontrol ageni. The
internal variables are those variables associated withritegnal nodes of control
agenti. The external variables are those variables associatédthdtexternal nodes
of control agent.

For control agent, thelocalized constraint typef a particular constraint associated
with a node. that control agent considers is formed by the combination of the lo-
cation and the types of variables involved in that constraihe localized constraint
type of a constraint associated with a nadeonsidered by control agemtis de-
noted byG'&s, whereLoc € {int, ext} indicates the location of the node to which the
constraint is associated, an@rs € {int,int+ext} indicates the variables involved in
the constraint. Recall that a constraint associated withréiqular node involves
variables of that particular node and possibly variables&fhboring nodes. The
constraints associated with the nodes considered by d@agtenti can therefore have
the localized constraint types as depicted in Table 5.1ur€i§.2 illustrates for some
nodes the localized constraint types that can be found a¢thedes.

In a similar way as we defined localized constraint tyggggg, we also define lo-
calized objective term type f{f‘gﬁ, referring to the location of the node to which an
objective term is associated and the variables that ardviestan the objective func-

tion term.

5.4.2 Control problem formulation for one agent

The optimization problem of control agenat time stegk consists of minimizing the ob-
jective functionJ;, subject to the steady-state characteristics of subnktinard additional
constraints on inputs and outputs. Below we focus on thecdlffes that arise with re-
spect to the prediction model and the objective functiontdube existence of other control
agents that control subnetworks that are touching the $winle of control agent.
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3
. external nodes

Figure 5.2: lllustration of different localized constrditypes that can be found at nodes
considered by control agent i. The number next to a node ifi¢juee corre-
sponds as follows to the localized constraint types of timstraints that can be
associated to that node: ( 'j‘},t; 2 Ci'fi‘,ﬁt, q'ﬁ?,ﬁ{e“; (3) q"’g;te“, qf’g}(t.

Prediction model

The prediction model of control agentonsists of the constraints associated with all its in-
ternal nodes. The internal nodes that do not have exteringtinering nodes do not require
special attention, since the variables involved in the trairgs of these internal nodes are
of localized constraint type?iifi‘,‘1t and therefore only involve variables that are influenced by
control agent. However, the internal nodes that are connected to extaodds do require
special attention, since the constraints associated ttbet internal nodes can be of local-
ized constraint typfi‘j‘,ﬁ{e“, and therefore involve not only variables of the subnetwafrk
control agent, but also variables of the subnetwork of a neighboring agenf\{. In order

to make predictions over its prediction horizon, controdiag has to know accurate values
for the external variables involved in the constraints elstnnodes. Therefore, control agent
i has to coordinate with the neighboring agents which valueseal variables should have.
To obtain coordination on the values of the external vaeéabive apply an idea that was
first proposed in [31] as follows.

Control agent considers the constraints that are associated with itenat@odes and
that are of localized constraint typ@'+®¥, using fixed values for the external variables.
The values for these external variables have been obtamed the neighboring agerit
that has the node of these external variables as an inteodal rControl agentsolves its
local optimization problem using these values for the exdkvariables. The optimization
yields values for the internal variables of control agergnd for the Lagrange multipliers
that are associated with the constraints of localized camgttype G%®". The Lagrange
multipliers of these constraints and the values of the iretvariables involved in these con-
straints are sent to each neighboring agethiat has a node to which the external variables
of these constraints correspond as an internal node.

Each neighboring ageijitconsiders the constraints of the internal nodes of congyeh&

i that involve external variables of control agémm its decision making by including these
associated constraints as soft constraints in its obgdtinction. Note that internal and
external nodes of control ageintorrespond to external and internal nodes, respectivedy, o
control agenj. In the soft constraints of such a control aggrthe external variables, which
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localized constraint type constraint
int

Ci""t“ t hard
INt+ex
i.int hard
Int+ext

Glext soft

Table 5.2: The constraints that control agent i can have aod it deals with these con-
straints. For the hard and soft constraints, the externalialales are fixed to
values obtained from neighboring agents. For the hard aairgs with external
variables Lagrange multipliers are determined. The softstints are weighted
using the Lagrange multipliers received from neighboriggats.

localized objective term type how deal with the objective term

gt include as is

-7i|ri1l’£?e>(t include as is

Table 5.3: The localized objective term types that contgare i considers and how it deals
with these terms. External variables are fixed to valuesiobtafrom neighbor-
ing agents.

correspond to internal variables of control agergre fixed to the values that control agent
i has sent to control ageit In addition, the soft constraints are weighted by the Lagea
multipliers as given by control agentNeighboring agent solves its optimization problem,
yielding values for its internal variables. It sends theueal of the internal variables that
appear in the soft constraints to control agensuch that control agentcan update its
information about the corresponding external variables.

Based on this idea, Table 5.2 shows how control ageieials with the different con-
straints, when formulating its optimization problem.

Objectives

The objective function for control agentonsists of objective function terms that are as-
sociated with the nodes in its subnetwork. Objective terssdaiated with internal nodes
that are only connected to internal nodes do not give risedoes, since no other control
agents consider these objective terms. However, objetgives associated with internal
nodes that are also connected to external nodes causermpsofdethe same reason as with
the constraints associated with such nodes. Coordinatidghevalues of these variables is
obtained by obtaining the desired values for the externdghbkes from neighboring agents.
Table 5.3 shows the different localized objective term gyfiat control ageritconsid-

ers, and how it deals with these, when formulating its optation problem.

5.4.3 Control scheme for multiple agents

The multi-agent control scheme taking into account theiptith model and objective func-
tion discussed above operates in an iterative way. When titeat@agents have to determine
actions, they perform a series of iterations, in each of whie control agents perform a
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local optimization step and communicate information. Th#ine of the scheme is as fol-
lows:

1. Each control agemtmeasures the current values for the algebraic variablasd the
input variablesy; that are associated with the nodes in its subnetwork. Intiaddi
it obtains predictions of known exogenous inpditsFurthermore, it obtains through
communication from its neighbors values for the externalaldes and Lagrange
multipliers associated with the external nodes that cdagenti considers.

2. The iteration countesis set to 1.

3. Letwl(nI Y andﬂgéi) denote the external variables and Lagrange multipliespee-
tively, of which control agent has received the values from neighboring agents.
Given wf,f,l and Asom), each control agerite {1,...,n} performs the following

steps in parallel:

(a) Control agent solves the optimization problem:

min J; (zi,ui,w-(s_-l>)

Zj,Uj ,Woutj in,i
+ (Xéz_fil)) ! gsofti (Zi, Ui, Wi(r?,_il))

subject to
Ohardi (2i,U;,di) =0
Ohard, exti (Z.,u.,d., in ):O (5.4)
wous = Ki 21 uldf]" (5.5)

Ui min < Ui < Uj max,

wherez; min andzj max are upper and lower bounds @ Uj min anduj max are
upper and lower bounds an, Gsoftj are the constraints of localized constraint
type Ci‘_"g;e“, Ohardi are the constraints of localized constraint tm'ﬁt, Ohard, exti

are the constraints of localized constraint tyj&®X!, andwoy; are the vari-
ables that control agentises in communication to neighboring agents, selected
using selection matriX;. The optimization results in values for the variables

2% andu'®, Lagrange multipliers\>) exi associated with the constraints (5.4)

for current iteratiors, and values fowél}t,

(b) Control ageni sends the values of the Lagrange multipliérgrdvexﬁ of the
hard constraints of localized constraint tyq'gﬁ*{e’“ and the values ofvgt; cor-
responding to internal variables of these nodes to the beighy agents that
consider the involved external variables.

(c) Control ageni receives from the neighboring agenjts A those Lagrange
multipliers related to the localized constraint tyg@”e’“ and those values of
the internal variables of the neighboring agents that ob@tgenti requires to



120 5 Overlapping subnetworks

fix its external variables. Control agentises this received information at the

next iteration asigm andw¥..

4. The next iteration is started by increasgand going back to step 3, unless a stopping
condition is satisfied. The stopping condition is definedtes dondition that the
absolute changes in the Lagrange multipliers from iterediol to s are smaller than
a pre-defined small positive constagierm.

Although the approach discussed above can coordinateatagints that control touch-
ing subnetworks, a shortcoming of this method is that it neguthat the subnetworks are
touching, since it assumes that each node in the networlsigreesi to only one of the sub-
networks. However, in the case of control of overlappingreitvorks, some of the nodes
are included in more than one subnetwork and the identifinadif internal and external
nodes of a control agent is not straightforward any more.rdfoee, the method is not di-
rectly applicable to overlapping subnetworks. In the failog, we consider an extension of
the method discussed above to control of overlapping sulmmks.

5.5 Multi-agent control for overlapping subnetworks

Now, we extend the approach for control of touching subnekts/to control of overlapping
subnetworks. We first propose some new definitions, thendenthe issues appearing due
to the overlap, and then propose a way to deal with thesedssue

5.,5.1 Common nodes

In addition to internal and external nodes as defined beforeontrol of overlapping sub-
networks we make the following definitions:

e Commonnodes are nodes that belong to the subnetwork of controltagem that
also belong to the subnetwork of another control agemk subnetwork defined by
the nodes common to several subnetworks is referred to ammoa subnetwork.

e The variables associated with the common nodes are refer@sithe common vari-
ables.

e Given the definition of a common node, the number of possslifor localized
constraint types increases. Table|5.4 lists the localizettraint types that can be
considered by a control agent when subnetworks can be pgénig. In total there
are 12 different localized constraint types. Figure 5i3siftates some of the possible
localized constraint types.

¢ In addition to the extension of the localized constrainetythe localized objective
term types are extended also accordingly.
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type location | variables involved in constraint
G internal | internal

i‘fi‘,ﬁtwm internal | internal+common
G | internal | internal+external

C,",‘,ﬁ*COm"EX‘ internal | internal+common-+external

C‘,'”“°°m common | internal+common

com
c,'fggrgwext common | internal+common+external
-com common| common
C,ngnnjr ext | common| common+external
c,eg;t external | external
C‘,",‘;;'te’“ external | internal+external

c,cg;‘g+ext external | common+external

cintcomext | external | internal+common+external

Table 5.4: Localized constraint types for overlapping tiarorks.
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Figure 5.3: lllustration of different localized constrditypes that can be found at particu-
lar nodes. The number next to a node in the figure correspoadslws to
the localized constraint types of the constraints that carabsociated to that
node: (1)GT (2) Gl G (3) GBI G (4) Gk, GIRe®™ (5)
Gmt C||nt+com Glnt+ext Clmt+com+ext (6) com - (7) C||nt+com C|com+ext >com

int? int int 1,com com com ' “,comy
int+com-+ext. com com+ext com |nt+com ext ext+com
CI com (8) i,comr I com (9) i,com I com (10) i,ext I ext (11)

|nt+ext com+ext ext II’II+COI’T‘I+eXt
CI ext CI ext CI ext CI ext
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5.5.2 Control problem formulation for one agent

For multi-agent control of overlapping subnetworks an apph has to be found to deal
with the common nodes. Since the common nodes are consibgayeral control agents,

also the constraints associated with these common nodesuaiopthe subnetwork models
of multiple control agents. Even though we assume that tidraloagents have the same
objective with respect to these nodes, combined with theatlg for their internal nodes,

conflicting intentions for the common nodes can be the re®#tiow we discuss how to

extend the scheme of the previous section for control oflapeing subnetworks.

Prediction model

Similar as for control of touching subnetworks, for contobloverlapping subnetworks, in-
ternal nodes of control agenthat are connected to external nodes require special imttent
since the constraints associated to these nodes may inextgeal variables. In addition
to this, also common nodes of control agettat are connected to external nodes require
special attention. The extension of the approach for coofrtmuching subnetworks to the
control of overlapping subnetworks consists of the follogvivith respect to the prediction
model.

Control agent considers as prediction model the constraints of all irkandcommon
nodes. For the constraints of localized constraint tyg8%®, Ghiyextreom ceom+ex! and
Gntreom+extihe control agent takes for the external variables valuasithas received from
neighboring agents. When control agéritas solved its optimization problem, it sends
the values of the interna@nd the common variables of the constraints of these specihlize
constraint types to neighboring agents.

Each neighboring agetjtconsiders the constraints of the internal and common nddes o
control agent that involve external variables of control agéi its optimization problem
as soft constraints by including them in the objective fiorgtweighted by the Lagrange
multipliers provided by control ageintand with fixed values for the externahd common
values in the soft constraints as received from control ageiThe result of solving the
optimization problem of neighboring ageptyields values for the internal, common, and
external variables of control agent The internal variables of control ageptelated to the
soft constraints are sent to control agent

Table/ 5.5 summarizes how control agemteals with the different localized constraint

types.

Objectives

With the nodes that control ageirtias in its subnetwork objective terms are associated. The
objective function terms associated with each node canrdkpe the variables associated
with that node and its neighboring nodes. As before, theabibge terms involving only
internal variables require no special attention. The dbjederms involving both internal
and external variables can be dealt with by fixing the exiaragables, as is also done for
control of touching subnetworks. However, the common \des appearing in control of
overlapping subnetworks do require special attention.

For control of overlapping subnetworks, multiple contrgkats will try to control the
values of the common variables. To allow control agents tatlyp achieve performance
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localized constraint type constraint
G'Trtn . hard

fint hard
Grizeom hard and soft
G comext hard and soft
Gieom hard
Ciogme™ harg
CEL%'[)‘&GXI SOft
qlgt;ext+com soft

Table 5.5: The way in which control agent i considers the traingts of particular localized
constraint types in its optimization problem. For the haohstraints all common
variables are fixed to values obtained from neighboring &erfor the soft
constraints all external and common variables are fixed.tRerhard constraints
with external variables Lagange multipliers are deterntinéhe soft constraints
are weighted with Lagrange multipliers obtained from ndighing agents.

localized objective term type how deal with the objective term
gt include as is
gintiex include as is
gintcom include as is
i com include partially: N,
oom " include partially: ¥N,

Table 5.6: The localized objective term types that contgare i considers and how it deals
with the associated objective terms. External variablesfated. Variable Nis
the number of control agents considering nodeaslcommon node.

comparable to the performance that an overall centralizedral agent can achieve, the
responsibility for the objective terms involving only coromvariables, i.e., of localized
objective term typeq?gg‘m, is shared equally by the control agents. Hence, each dontro
agent that considers a particular common nageakes in its objective function/N, times

the objective function terms of that common node that ingabnly common variables,
whereN, is the number of control agents considering ndjeas common node. Control
agenti in addition includes the objective terms of internal and owon nodes that involve
only internal and common variables, i.e., of localized otije term types;it,, Ghtyeom,

jint
com int+com
CLcom’ andCi,com .

Tablel 5.6 summarizes how control ageémteals with the different localized objective
term types.
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5.5.3 Control scheme for multiple agents

We have discussed how each control agent formulates itsqpiced model and objective
function. The scheme that we propose for multi-agent cofdrooverlapping subnetworks
consists of the scheme proposed in Section 5.4 for touchibigetworks, with the following
changes:

e Control agent receives from the neighboring agents the following infotiora at
initialization and after each iteration:

— Lagrange multipliers with respect to the constraints ofla®ed constraint type

ext+int ~ext+com ~ext+com-+int
Ci,ext vCi.,ext ’Ci,ext :

— Values for the external variablesd the common variables involved in these
constraints.

e The optimization problem that each agent solves is changeatdingly to reflect the
extensions discussed in this section, i.e., to take intowdthe constraints as given
in Table€ 5.5 and the objective terms as given in Table 5.6.

The resultis a control scheme that can be used by higherday¢rol agents that control
subnetworks that are overlapping. In the next section wédyaps scheme on an optimal
flow control problem in power networks.

5.6 Application: Optimal flow control in power networks

In this section we propose to use the scheme discussed S8 for multi-agent con-
trol of overlapping subnetworks to the problem of optimaiveo flow control in power
networks. Optimal power flow control is a well known-methodcbntrol and optimize the
operation of a power network [82]. Optimal power flow contiltypically used to im-
prove steady-state network security by improving the g@tprofile, preventing lines from
overloading, and minimizing active power losses. Usuadlyisgs for generators are deter-
mined by solving an optimization problem that minimizes d&feotive function encoding
the system security objectives, subject to the steadg-stwracteristics of the network.

Typically only steady-state characteristics at on time st considered, not taking into
account future known exogenous inputs. The conventioriiinap power flow control can
be easily generalized to an optimal power flow control takimg account future known
exogenous inputs. In this way, indeed, the optimal power flowtrol can be seen as an
application of model predictive control, in which the pretibn model consists of the steady-
state characteristics defined over a particular predidtmizon.

Flexible alternating current transmission systems (FACAr8 devices that can improve
power network operation. They can be used for dynamic cbofnmltage, impedance, and
phase angle. The usage of FACTS devices has the potentraptove the security of the
network, to increase the dynamic and transient stabibtin¢rease the quality of supply for
sensitive industries, and to enable environmental bepefitsithout changing the topology
of the existing network [62]. Some frequently used typesALFS devices, and the types of
FACTS devices that we consider below, are Static Var Congtens (SVCs) and Thyristor
Controlled Series Compensators (TCSCs) [40].
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Traditional approaches for multi-agent optimal power flamirol assume that a decom-
position of the overall network and control objectives itdaching subnetworks is possible
[80, 116], as shown in Figure 5.1(b). When the optimal power ft@ntrol problem in-
volves multiple subnetworks and each bus in these subnk$vi®iassigned to exactly one
subnetwork, then the assumption of touching subnetworkgsopriate to make. How-
ever, when a bus in a subnetwork is assigned to multiple swlonkes, then this assumption
no longer holds. In our case, we are interested in controlguBACTS devices of subnet-
works that have been determined by sensitivity analysiglis=issed in Section 5.3. As
we discussed in that section, the resulting subnetworkdeamn-overlapping, touching,
or overlapping. Indeed, if FACTS devices are positionealogically far from each other,
their influence-based subnetworks will typically not oegrlwhereas if they are positioned
topologically close to each other, their influence-basdahstworks will typically overlap.
Hence, an approach that can be used by the control agentsliogtthe FACTS devices in
such overlapping subnetworks is required. The approaghgsed in Section 5.5 is suitable
for this.

Simulations are carried out on the IEEE 57-bus power netwaitx additional FACTS
devices installed at various locations [5]. The base pararmef the IEEE 57-bus network
can be obtained from the Power Systems Test Case ArcHiuee limits have been assigned
to the lines in such a way that no lines are overloaded. Inrdménd an interesting and
meaningful situation for FACTS control, the grid was adapby placing an additional
generator at bus 30 leading to increased power flows in thieeicefthe grid. The values of
all parameters of the used power network are available fl@atuthor on request.

Below we formulate the steady-state models used to desitrébeetwork behavior, we
assign the constraints to buses, we set up the objectivestassociated with the buses,
we discuss the way in which the subnetworks can be determisied the influence-based
approach, and we show the workings of the proposed approach.

5.6.1 Steady-state characteristics of power networks

As the focus lies on improving the steady-state network sigcuhe power network is
modeled using equations describing the steady-state athartics of the power network.
As we will see, the aspects of the steady-state securityvigaare interested in can be
determined from the voltage magnitudg, per unit (p.u.) and voltage angtg, (degrees)
associated with each bus the network. In order to determine the values for thesates
under different exogenous inputs and actuator values, lmdoiethe components and their
influence on the voltage magnitude and angle are defined. Wleltiwe transmission lines,
the generators, the loads, and the FACTS devices.

Transmission lines

For the transmission lines the well knownmodel is used [82]. The active powas,,
(p.u.) and the reactive powep ., (p.u.) flowing from bus over the transmission line to

2http://Iwww.ee.washington.edu/research/pstca/pf5&4@h 7bus.htm
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busw are then given by, respectively:

"R, w IR, .w
2P0 = (2v,)° ' ~ 2, A ' cos%,~2.)
((WR,LW)Z-i_(nX,Lw)Z) ((7]R,Lw)2+(nx,u.u)2

X ew .
YAV ' sin(zs,, —29..) (5.6)
<(77R7LW)2+(77X,M)2 )

2 X ew 7B, ww
LQuw = (Z/,L) -
(77R.,w)2+ (nX,Lw)Z 2

+Z\/7Lz\/,w ( "Ry 2 Sin(Z&L _Ze,w)>

(MR uw)* + (1% 1)

)2+ (0 10)

whereng .., (p.u.) is the shunt susceptangg,.., (p.u.) is the resistance, amgd ,., (p.u.) is
the reactance of the line between busasdw.

The constraints for each transmission line going from btsbusw, for w € A(*, are
assigned to bus

~ 2, P cosz,-2.) |, (5.7)
(nR,Lw

Generators

Generators are modeled with constant active power injectiad constant voltage magni-
tude. Hence, if a generator is connected tohtisen the following constraints are assigned
to that bus:

Zpgen. = dpgen.

Z\/,L = dv7genu

wheredpgen, is the given active power that the generator producesgaggh, is the given
voltage magnitude that the generator maintains. At mosgenerator can be connected to
a bus, since a generator directly controls the voltage ntagmiof that bus.

A single generator is used as slack generator, i.e., a genevih infinite active and
reactive power capacity, with fixed voltage magnitude anglafB2]. Hence, if the slack
generator is connected to byghe following constraints are assigned to that bus:

4, = dv.,gem
29, = de,gema

wheredy gen, is the given voltage angle ensured by the generator.

Loads

The loads are modeled with constant active and constanivegower injections. Hence,
if a load is connected to busthen the following constraints are associated to that bus:

Zpload, = dF‘,IoadL
20 Joad, = dg joad:;
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wheredpjoad, @anddgoad, are the given active and reactive power consumption, respec
tively, of the load connected to bus For simplicity, one load can be connected to a hode.
Multiple loads can easily be aggregated to obtain a singld.lo

FACTS devices

SVC An SVC is a FACTS device that is shunt-connected to a.largl that injects or ab-
sorbs reactive powex, sy, to control the voltagey, , at that bus [62]. The SVC connected
to bus: is modeled as a shunt-connected variable susceptanceh wbéepts as control
input the effective susceptanogsyc,,, as shown in Figure 5.4(a). The injected reactive
powerzg svc, of the SVCis:

Zosve, = —(2v.)?Us sve.,.

The control inputig svc, is limited to the domain:

Ug.svc,min,. < Ussvc, < UB.svCmax:,

where the values dfiz svc,min, andussvcmax, are determined by the size of the device
[52].
The constraints of an SVC are assigned to the bus to which\izis§connected.

TCSC A TCSC is a FACTS device that can control the active power fignaver a line
[62]. It can change the line reactarsgine ..., and hence the conductangg,., and suscep-
tanceng ., involved in (5.6)+(5.7). The TCSC is therefore modeled aaréble reactance
Ux Tcscuw connected in series with the line, as shown in Figure 5.48.TCSC is con-
nected in series with a transmission line between buseslw, the total reactancs jine, ..,
of the line including the TCSC is given by:

Zx linew = MX,ww TUX TCSCuw)
wherenx .., is the reactance of the line without the TCSC installed. Baetancelx tcsc.w
is limited to the domain:
Ux, TCSCminw < UX, TCSCuw < UX, TCSCmaxiw»

where the values afx tcscmin .o @aNAUx Tcscmax.ww are determined by the size of the TCSC
device and the characteristics of the line in which it is picsince due to the physics the
allowed compensation rate of the liog Tcsc.w /7w IS limited [52].

The constraints of the TCSC at the line between/aisdw are assigned to bus

Power balance

By Kirchhoff's laws, at each bus the total incoming power #meltotal outgoing power has
to be equal. This yields for bushe following additional constraints:

0= Z (ZP,Lw) *Zpjoad. ~ZPgen.
wWENY

0= Z (ZQ,Lw) +ZQ,IoacLL +ZQ.SVC,L-
weN*
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Figure 5.4: (a) Model of an SVC and (b) of a TCSC.

If no generator is connected to byshendpgen, andzg gen, are zero. If no load is connected
to bust, thenzpjoad, andzqg oad, are zero. If no SVC is connected to byshenzg syc, is
Zero.

5.6.2 Control objectives

The objectives of the control are to improve the system sgairough minimization of de-
viations of bus voltages from given references to improeeubitage profile, minimization
of active power losses, and preventing lines from overlogdby choosing appropriate set-
tings for the FACTS devices. These objectives are trarsiate objective terms associated
with the buses as follows:

e To minimize the deviations of the bus voltage magnitagdge of bus. from a given
referencedy ref,, an objective ternpy (zy, —dv?ref,b)2 is associated with bus where
pv is a weighting coefficient.

e To minimize the active power losses over a line between launsl busv, an objective
term pioseZrioss.w IS associated to bus where pioss is a weighting coefficient, and
Wherezpjossiw = Zpiw + Zpow.-

e To minimize the loading of the line between buseandw, an objective term is

2Sw
ZSmaxtw

2
associated to busas p|oad( ) , Where pjoag is a weighting coefficient, and

wherezs,,, = w/(ZRz,w)2+(ZQ.Lw)2 is the apparent power flowing over the line from
bus. to busw. The relative line loading is penalized in a quadratic waghsthat an
overloaded line is penalized more severely than a line thabt overloaded.

The weighting coefficientpy, pioss andpioag allow to put change the weight given to each
objective. In the following we takpy = 1000, pioss= 100, andpjpag = 1.

5.6.3 Setting up the control problems

Each FACTS device is controlled by a different control agditte influence-based subnet-
works of the control agents controlling the FACTS deviceslwaoverlapping, and therefore
the control problems of the control agents are set up usiegfproach discussed in Sec-
tion[5.5. To solve their subproblems at each iteration tharobagents use the nonlinear
problem solver SNOPT v5.8 [50], as implemented in Tomlaly {65], and accessed from

Matlab v7.3 [98].
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Figure 5.5: IEEE 57-bus network with SVCs installed at bustand 34.

In the following we illustrate how the subnetwork of a cohtrgent changes depending
on the sensitivity thresholgs, and how the approach works for a particular assignment of
buses to subnetworks in two representative scenarios.

5.6.4 lllustration of determination of subnetworks

To illustrate the way in which influence-based subnetwor&s be defined for a power
network, consider the adjusted IEEE 57-bus power netwogkctied in Figure 5.5 with
SVCs installed at buses 14 and 34. We illustrate how the infle®f the SVC at bus 34 on
the buses in the network changes depending on the sernsikivésholdys.

Remark 5.2 Instead of computing the gradients of the constraint fumstiof the network
with respect to the SVC input analytically, we have numéelycapproximated them. The
approximation is made by initializing the network in a pewtar operating poing, U, in-
creasing the value of the SVC input B g o, determining the values af and computing
the sensitivity ofz with respect to the SVC input a%m(z—z), whereyag gc = 10°°.

Since we are interested in the sensitivity of the SVC inpubhwespect to the voltage mag-
nitudes, the sensitivity criterion is checked only for thengents ofz corresponding to the
voltage magnitudes. O

Figure 5.6 shows the subnetworks and Figuré 5.7 shows théauof nodes in the
subnetworks, as the sensitivity thresheldis increased. We observe that, indeed, with a
lower threshold, more buses are included in the subnetvan#,with a higher threshold,
fewer buses are included.

5.6.5 Simulations

Various test scenarios with different FACTS devices andhstilmorks have been examined.
Here we present two representative scenarios. The subretwsed in these scenarios are
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Figure 5.8: IEEE 57-bus system with decomposition into Zetsorks. Scenario 1: SVCs
at buses 14 and 34, scenario 2: TCSCs in lines 22 and 72.

shown in Figuré 5.8. It can be seen that these subnetworlavarkapping, since there are
several buses that are included in both subnetworks.

Scenario 1: Control of SVCs

In the first scenario, SVCs are placed at buses 14 and 34. AS\s are mainly used
to influence the voltage profile, the line limits are chosechsthat no line is at the risk of
being overloaded.

Figure 5.9 shows the convergence of the SVC device settiveystioe iterations. As can
be seen, the settings of the SVC devices converge within aféyv iterations to the final
values, which in this case are equal to the values obtaireed &n overall optimization.
Figure[ 5.10 shows the evolution of the deviations betweenveiues determined by both
subnetworks for the voltage magnitudes and angles at somenoa buses. In the figure
the errorz, err, is defined as the absolute difference between the valuesdh&iol agents
1 and 2 want to give to the voltage magnitugg. Similarly, the errorz, e, is defined as
the absolute difference between the values that contraitageand 2 want to give to the
voltage angles. As can be seen fast convergence is observed.

Scenario 2: Control of TCSCs

In the second scenario, TCSCs are installed in lines 72 andsgfte TCSCs are mainly
used to influence active power flows and to resolve congedti@nline limits are chosen
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Figure 5.9: Convergence of the FACTS device settings oweitéations for the SVCs at
buses 14 and 34 for scenario 1.

004 T T T T T T T T T
003 =19
9 -6 —1=21
2002 v 1=40]
< 0.01 .

ot—= ———————
2 4 6 8 10 12 14 16 18 20
S

— —x— (=19
= i
ﬁ -0 —-1=21
= vV 1 =40]
(2

! ‘@ é @ 1 ‘@ 1 ‘@ 1 @ 1 ‘@ 1
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Figure 5.11: FACTS device settings for the TCSCs in linesi2Zl72, i.e., the lines between
buses 7 and 8, and buses 44 and 45, respectively.

such that lines 7 and 60 are overloaded in the base case whEAGTS devices are set out
of operation.

The results for the TCSC settings and the difference betwleewoltage magnitudes
and angles for some common buses over the iterations are ivéigures 5.111 and 5.12,
respectively. The control agent of subnetwork 1 sets thed @Sts upper limit at the first
few iterations. But after some additional iterations, thkies that the control agents choose
converge to their final values, which are again equal to tteegaobtained from an overall
control agent.

In Figure/ 5.13 the line loadings of lines 7 and 60, i.e., tnedi which are overloaded
without FACTS devices in operation, are shown. Line 7 is irdiately brought below its
limit whereas for line 60, the loading approaches 100% indtwrse of the optimization
process.

5.7 Summary

In this chapter we have focused on higher-layer multi-agentrol using alternative ways
to define subnetworks. While in Chapter 4 the medium contrgéridnas used a model
of the dynamics of the lower control layer and physical nekydere the higher control
layer uses steady-state characteristics only. While in teeigus chapters we have defined
subnetworks based on already existing control regionshisiahapter we have discussed
how subnetworks can be defined based on the influence of axduat the variables of
nodes. When such an approach is used to define subnetworks sstametworks could be
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overlapping. Issues involving how to deal with the emergiagimon subnetwork then have
to be dealt with. We have discussed these issues and propasethod for higher-layer
multi-agent control that can be used by control agents tatrol overlapping subnetworks.
With simulation studies we have illustrated the potentfahe approach. However, further
research is still required, e.g., to determine formally whiee approach converges and what
the quality of the obtained solutions is, in particular witempared to an overall combined
approach.

As application we have considered FACTS control in an adpisersion of the IEEE
57-bus power network. We have illustrated how the subndtwbian actuator varies de-
pending on the sensitivity threshold used, and we haveegbfiie control approach that we
proposed in this chapter for overlapping subnetworks to atin@l flow control problem
using FACTS devices. The simulations illustrate that theppsed approach can in the con-
sidered cases achieve fast convergence to actuator valaieare overall optimal. Future
research should address further comparison with an oveiragle-agent control scheme,
to gain more insight in the quality of the solutions and theetirequired to obtain these
solutions.






Chapter 6

Conclusions and future research

In this thesis we have discussed multi-agent model prediciontrol of transportation net-
works in general, and power networks in particular. We hdseussed how control agents
have to make decisions given different constraints on tpe tf systems they control, the
actuators they can access, the information they can semdeh@ communication and co-
operation they can perform. In this chapter we summarizemain contributions and for-

mulate future research directions.

6.1 Conclusions

Our main contributions with respect to the control apprasctliscussed are:

e Serial versus parallel schemesin Chapter 2 we have formalized the dynamics of
subnetworks as interconnected linear time-invariantesyst and defined their con-
trol using an MPC control agent for each subnetwork. We haseudsed why the
control agent has to communicate with neighboring agentsitalbow the variables
involved in interconnecting constraints evolve. Furthere; we have surveyed sev-
eral ways of how to perform such communication, and have gseg a novel serial
scheme, which converges toward an overall optimal solutistler convexity of the
overall MPC control problem. It has hereby been assumedhtlatubnetworks have
discrete-time linear time-invariant dynamics, involviogly variables taking on con-
tinuous values, and that the control objectives can be fated as affine or convex
functions. We have contrasted the scheme with a relatediglasaheme. Experi-
ments have confirmed that the proposed approach can achéeiegrpance close to
overall performance.

o Networked hybrid systems.In Chapter 3 we have discussed issues related to mod-
eling and control of hybrid systems, i.e., systems inclgdioth discrete and contin-
uous elements. With respect to modeling of hybrid system&ave illustrated how
discrete logic statements can be transformed into linegedainteger equality and in-
equality constraints. We have discussed issues arisingiiti-agent control of inter-
connected hybrid systems and we have proposed an exterigios gerial approach
of Chapter 3 for control of such systems. This extensionxeslahe assumptions

137
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made on the original approach (i.e., discrete-time lingaetinvariant dynamics for
subnetworks with variables taking on continuous valuegoimbination with affine
or convex objective functions) by allowing input variablestake on integer values
instead of continuous values. Experiments using the pexgpapproach have given
an indication that the proposed extension can resolve $russed issues and can
result in actions that give adequate performance.

e Multi-layer control using MPC. In Chapter 4 we have discussed MPC in multi-
layer control. We have discussed the layered control okpartation networks using
higher, medium, and lower-layer control, based on a tinedesdecomposition of
the dynamics. Then, we have focused in particular on isselesed to the predic-
tion model that a medium-layer MPC control agent uses ancudged why object-
oriented modeling is suitable for constructing such a mtéal model. Subsequently,
we have proposed an MPC approach using such an objectexiprédiction model,
or using a linearized approximation of such a model. To coipie tive nonlinear, non-
smooth, and costly-to-evaluate objective function of the®/problem based on the
object-oriented model, we have proposed the use of maiti-gattern search as opti-
mization method. In experiments we have illustrated thattllti-start pattern search
can outperform a state-of-the-art multi-start gradiea$dd approach. In addition, we
have illustrated that using the MPC problem based on thatined approximation of
an object-oriented prediction model can result in signiftafaster control, although
at the price of reduced performance.

e Overlapping subnetworks. In Chapter 5 we have focused on the control by a higher-
layer control agent. It is hereby assumed that at this hitgyar the dynamics of the
underlying control layers and physical network can be asslimstantaneous. We
have discussed various ways of defining subnetworks, anelihgearticular focused
on how subnetworks can be defined based on the influence toatars of a control
agent have. Using such influence-based subnetworks, itl dmppen that several
subnetworks are overlapping. We have discussed issueartbatdue to this overlap,
and have proposed an approach for multi-agent control oflameing subnetworks,
using the nonlinear steady-state characteristics of theetworks as prediction mod-
els. Experiments have illustrated for a given example thafptroposed approach can
choose actions close to overall optimal actions.

We have considered several applications to which the pexposantrol approaches can
be applied. Our main contributions with respect to thesdiegons are:

¢ Load-frequency control. In Chapter 2 we have proposed the application of the serial

MPC control scheme for a load-frequency control problem.rotigh experimen-
tal studies on a network consisting of 13 subnetworks, we ltampared the serial
scheme with the related parallel scheme and an overall sehdine serial scheme
showed to have preferable properties in terms of speed okergance and quality of
solutions. However, the parallel scheme outperformed énalsscheme in terms of
total computation time. For the serial and the parallel seg the performance of
the solutions obtained converged toward the performantieecgolutions obtained by
the overall scheme.
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Furthermore, in Chaptér 3 we have considered how the propestnsion of the
serial scheme for interconnected hybrid systems perforimsvapplied to the load-
frequency control problem of Chapter 2, extended with ditcgeneration switching.
We have illustrated that the approach has the potentiakid gontrol actions that are
overall optimal.

e Household energy control.In Chaptef 3 we have used the transformations for dis-
crete dynamics to derive a model for a household equippduitgibwn power gen-
eration and storage capabilities. As a first step toward arabstructure in which
multiple control agents, each representing a single haldgejointly control the en-
ergy usage in a district, we have then proposed MPC for cbof@single household
using this model. In its decision making, the control agesgsuexpected energy
consumption profiles and electricity export prices. We hidlustrated that the MPC
control agent can adequately take into account the disdsetemics and yield a re-
duction in operational costs.

e Emergency voltage control.In Chaptef 4 we have considered a control agent in a
medium control layer of a power network that provides sat{soto a lower control
layer with the aim of preventing voltage collapses. For the@/formulation of the
higher-layer control agent based on the object-orientedehaising experiments we
have illustrated the that multi-start pattern can outpenfa multi-start state-of-the-
art gradient-based method and we have illustrated thatdhage collapses can be
prevented from occurring. For the MPC problem based on tiealized model, we
have illustrated the performance of the control and reldiési performance to the
quality of the predictions of the linearized model undedtmof varying magnitude.

e FACTS-based optimal flow control. In Chaptef 5, we have considered the problem
of control of overlapping subnetworks using FACTS devicesn adjusted version of
the IEEE 57-bus power network. We have illustrated how thyereof influence of an
actuator varies depending on the sensitivity threshold uged we have applied the
control approach proposed for control of overlapping stlvoeks. Simulations have
illustrated that the proposed approach has the potentaifigeve fast convergence to
actuator values that are overall optimal.

6.2 Future research

In principle, a multi-agent control approach for a transgtion network will have to in-
tegrate solutions to each of the issues discussed in théssthdowever, even then several
issues remain unsolved or can be investigated further. &#pect to the control approaches
addressed in this thesis, some challenging issues thatedqture research are:

e Serial versus parallel schemesWith respect to the serial multi-agent MPC scheme
as discussed in Chapter 2, analytical bounds on the ratervieagence should be
derived to give guarantees on the speed at which decisienmade. In addition,
ways to speed up the decision making should be investigatgd by forming groups
and control agents that cooperate in coalitions.
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o Networked hybrid systems. In Chapter 3, the transformations that have been used

to transform discrete logic into linear constraints yielde large number of binary
variables. Research should address how the number of bisaigbles can be re-
duced. This may be done, e.g., by reformulating the undegldiscrete logic, or by
examining for which discrete dynamics it is strictly ne@aygsto explicitly include
these discrete dynamics; it may be the case that some distypaimics have a neg-
ligible effect on the continuous dynamics (e.g., dynamfgsearing further away on
a prediction horizon) and that these discrete dynamic®tber can be neglected or
approximated with continuous dynamics. For the proposédnsion of the serial
MPC scheme for hybrid systems, it should be investigatemhédly whether and un-
der which assumptions the scheme is guaranteed to convei@e averall optimal
solution. In addition, it should be investigated how exattle penalty coefficient
should be increased, and with what value this should be deumthermore, it should
be investigated what the range of systems is for which thpgeed approach could
work, and if for a larger range of systems combinations betwechniques from
distributed integer and distributed real optimization Iddoe useful.

Multi-layer control using MPC. With respect to Chaptér 4, the performance loss
when using the MPC control problem based on the linearizediption model due
to the approximation of the linearization should be furtimmestigated. In addition,
the solution techniques should be extended to deal with cmmttinuous and discrete
variables, such that hybrid systems can be controlledhEurtore, analysis has to be
done regarding the performance of the proposed approach fieedium-layer con-
trol agent when the model of the medium-layer control agemaini abstraction of the
dynamics of the physical network and lower control layer. ddborder reduction
technigues may be used to determine which dynamics havetakbe into account
by a medium-layer control agent, and which may be removeddttition, topologi-
cal reduction techniques may be used to determine whichrdigsaa medium-layer
control agent can aggregate in order to obtain a simplifiedehd-urthermore, it has
to be determined how control agents using MPC in a lower ocbidyer should be
taken into account by a higher-layer control agent, and hiwately multiple MPC
control agents in a higher layer should control multiple Mé&@trol agents in a lower
layer. Techniques such as those discussed in Chapters|2 mag be extended to
obtain agreement between control agents at different $agleout certain variables.
The techniques of Chapters 2 and 5 for the control agentseitothier control layer
should be mixed with similar techniques to obtain coordorabetween lower and
medium control layers.

Overlapping subnetworks. For Chaptelr 5, the quality of the predictions made with
subnetworks based on the influence of actuators under eliffesensitivity parameter
values should be analyzed formally. In addition, invediazahas to be performed
on the assumptions under which the scheme proposed folotofiverlapping sub-
networks converges, and what the quality of the solutiortainbd is. The scheme
should be extended to include dynamic models, instead gfsiahdy-state models,
and to be able to deal with time-varying subnetworks, irdte#fdixed subnetworks.
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In addition to these topics, more general fundamental &unfilture research directions con-
sist of:

e Scalability. It remains to be addressed how the convergence speed ofpiheaghes
discussed changes when applied to control structures ®aigjfe Inumbers of control
agents. If the approaches do not scale well, then ways to theke scalable should
be investigated, e.g., by clustering control agents in gsdn combination with coor-
dination between the groups.

¢ Robustnesslt should be investigated how robust the discussed appesaie against
modeling errors and noise. In addition the control scherhaswe have discussed
silently assume that the decision making is done instantasig or that at least the
information used to initiate the decision making at a pattc control cycle is valid
also at moment at which actions are actually implementedurEuesearch should
address how the schemes could be made robust to delays.itioadiult-tolerance
against failing control agents is still an unsolved issue.

e Non-cooperative agents.When some of the control agents are not cooperative the
control agents may not be able to reach agreement on whicnadb take. It should
be investigated how the cooperative agents could deal Wwithand if they could,
e.g., manipulate the non-cooperative control agents ierdreach the cooperative
objectives. It would hereby be interesting to related cpteérom multi-agent MPC
to concepts from the field of non-cooperative game theory, [duch as Stackelberg
games [11] and inverse Stackelberg games [64, 134].

e Alternative control methodologies. The techniques that have been discussed in this
thesis should be compared with alternative, non-MPC-béagthiques (both from
the field of control engineering and from the field of compweience), to determine
the advantages and disadvantages of each. In this way jyossil techniques can
be proposed, combining the best of several techniques.

With respect to the applications discussed in this thestsyé research directly related
to these applications consists of:

e Load-frequency control. The models that are used for the load-frequency control
problem in Chapters|2 and 3 could be extended to more adéguamesent the
dynamics of the power networks, e.g., by including more itketamodels of gen-
erators and loads, and by modeling explicitly the presefid¢e-dine power control
devices. In addition, the model representing the physiealark could be replaced
by a continuous-time nonlinear model, instead of the culyemsed discrete-time
linearized model. Furthermore, forecasts about expeatecepflows between sub-
networks could be included, such the MPC strategy can beoigxgilan early time
expected changes in power flows.

e Household energy control. The model of a single household in Chapter 3 could be
extended by including, e.g., disposable loads, i.e., Ibadding within a household.
In addition, the control problem could be reformulated tolinle variable gas and
electricity export prices, and to schedule when consumpdiod generation should
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take place. Furthermore, several households could be ctethéo one another, al-
lowing energy to be exchanged between neighboring houdehdhe control prob-
lem could then be extended such that the control agents diadheeholds cooper-
atively optimize their energy usage. The models of the iiddial households will
then depend on variables of other households. The contesitagvill have to reach
agreement on the values of these variables in order to ssictlgsmplement MPC. It
should be investigated how the proposed scheme in Secidar:ontrol of intercon-
nected hybrid subnetworks performs on such a system otcioterected households.
Moreover, from the practical point of view, steps toward lerpentation in practice
can be made by firstimplementing the household control agena laboratory setup
and then implementing the household control agents in phl/abuseholds.

e Emergency voltage control.With respect to the emergency voltage control scenario
in Chapter 4, it would be interesting to further investigtite range of situations in
which the MPC control agent using the linearized predictiondel performs ade-
guately and would be a good replacement for the control agging the nonlinear
prediction model. In addition, a larger benchmark netwaridld be constructed after
which the extended control approaches proposed for fuagearch could be applied.
In this larger benchmark network, control agents are useidrol parts of the net-
work using MPC, and a higher-layer control agent coordindbese MPC control
agents. Furthermore, it would be interesting to inveséighe potential of the pro-
posed approach for emergency voltage control within langestrial sites.

e FACTS-based optimal flow control. The way in which the subnetworks based on
the influence of the FACTS devices change under varying mé&teanditions should
be investigated. In addition, instead of considering stestdte characteristics of the
power network under consideration in Chapter 5, dynamiegdcbe included, e.g.,
in the generators and loads, to more adequately model thengigs of the network.

In addition, future general application-oriented reshashould investigate the use of the
discussed approaches in other fields besides power netwarktss respect, the following
future research directions should be considered:

e Model development and validation. The control schemes that we have discussed
all require a model that adequately represents the dynaofittee system. For ap-
plication of the approaches discussed on practical exanpiedels will have to be
constructed and validated. It will then also have to be itigated which quantities
can be measured in practice, and which quantities will haxeetestimated.

e Alternative application domains. The application of the control approaches pre-
sented in this thesis is not restricted to the applicatisomfthe domain of power
networks only. Domains in which the control approachesegmted could be applied
include not only transportation networks, such as wateridigion networks, road
traffic networks, railway networks, gas distribution netk® etc., but also the pro-
cess industry (e.g., for multi-agent control of productlimres), supply chains (e.g.,
for multi-agent control of stocks), and autonomous guideflying vehicles. Inves-
tigation of the application of the approaches discusseligthesis to these domains
will give interesting insights into the similarities andsdimilarities between the op-
eration of transportation networks.
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Glossary

Conventions

The following conventions are used in this thesis for notaind symbols:

A lower case character typeset in boldface, exgrepresents a column vector.

The number of elements in a vectors indicated byny.

An upper case character typeset in boldface, A grepresents a matrix.

A character typeset in calligraphics, e .g(, represents a set.

Atilde over a variable, e.gX, indicates a variable specified over a prediction horizon.
A bar over a variable, e.gx, indicates that the value of the variable is known.

A subscripti or j of a variable, e.gx; or x;, refers to a variable of a control agent or
subnetwork or j, respectively.

Subscripts max and min of a variable, eXghax andxmin, represent the maximum and
minimum value of that variable, respectively.

A subscript avg, e.gxavg, indicates that an average is considered.

A superscript or w of a variable, e.gx* or x, refers to a variable beloning to node
L Of w, respectively.

A superscript T, e.gx", indicates that a transpose is taken.

List of symbols and notations

Below follows a list of the most frequently used symbols anthtions in this thesis. Sym-
bols particular to power network applications are expldioaly in the relevant chapters.

A Ac system matrices of linear time-invariant models
B,B1,B>,B3 input matrices of linear time-invariant models
C,Ccy,Cc: output matrices of linear time-invariant models

155



156

Glossary

Vars
i,Loc

d

D> Dla D27 D3a Dcﬁ,y, Dc,z

E1,E2,E3,E4,E5

f
f
F7 FC

g

Qu
Ohardi
Ohard, exti

gsofLi
Gv GC,ya G(.‘.,Z

h

i
J
Jadd, chcle, Jrel, Jsim

Vars
Ji ,Loc

x;g_ztgtx

localized constraint type

exogeneous input
direct-feedthrough matrices of linear time-invariant ratsd

matrices of mixed-logical dynamic models

function
vector with linear cost coefficients
state-offset vectors of linear time-invariant models

equality constraint function

equality constraint function with all variables exceyfixed
equality constraint function of subnetwoirkor an internal node
equality constraint function of subnetwork®r an internal node
that is connected to an external node

equality constraint function of subnetwoirkor an external node
output-offset vectors of linear time-invariant models

inequality constraint function

index of a control agent or a subnetwork
identity matrix

index of a neighboring agent

objective function

additional, cycle, relative, and full simulation cost
localized objective function term type

discrete time step or control cycle counter
control cycle counter

control cycle finishing step

prediction step counter

interconnecting-output selection matrix of agent

a control cycle counter within predictions
an augmented Lagrange function

number of neighbors of control agent
prediction model and linearized prediction model
mesh with candidate solutions

number of subnetworks

number of elements in vectar

length of a prediction horizon

length of a prediction horizon in control cycles
number of initial solutions

number of iterations
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to, t, tault
Te
Tcomp

Topt
To

u

Vi

Win, ji
Woutij
Win,i
Wout,i
Win
Wout

X
Xb
Xc
X

y
Yo
Ye

Ydesiredmax; Ydesiredmin

length of a prediction horizon in discrete time steps
number of iterations between parameter updates

number of control agents that have nade their subnetwork
set of natural numbers

set of positive hatural numbers

set of indexes of neighboring agents of agent

set of indexes of neighboring nodes of nade

parameter
weight matrices for quadratic costs
set of real numbers

iteration number
solution vector and a new solution vector

continuous time instant

initial, finishing, and fault continuous time instant
length of a discrete control cycle in seconds
computation time in seconds

finishing time of an optimization in seconds
length of a discrete time step in seconds

input variable

binary input variable

continuous input variable

vector with input vectors of all agents
domain with integer values

local remaining variable of subnetwork

interconnecting input of subnetwork
interconnecting output of subnetwork

vector with all interconneting inputs of agent

vector with all interconnecting outputs of agént
vector with the interconnecting inputs of all agents
vector with the interconnecting outputs of all agents

state variable

binary state variable
continuous state variable
vector with states of all agents

output variable

binary output

continuous output

desired upper and lower bound
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Glossary

Yerr

1

Yo, Ve
“Yeontr
Yexp
Yms Y™
“Ymesh
Vs

YAc
“Ye,mach
Ve term

)
L

Ain,ji
)\out,ij
)\hard,exﬁ

)\soﬁ,i
Ain
1%

w

maximum of the violation of an upper and lower bound
vector with output variables of all agents

auxiliary continuous variable
auxiliary variable for computing a®-norm
auxiliary variables for computing a 1-norm

positive penalty coefficients

contraction factor

expansion factor

minimum and maximum of a function

mesh size change

sensitivity threshold

multiplication factor for.

small postive constant close to machine precision
small postive constant used for determining termination

binary variable
index of a node

Lagrange multiplier of an interconnecting input consttain
Lagrange multiplier of an interconnecting output constrai
Lagrange multiplier of a constraint of subnetwaror an internal
node that is connected to an external node

Lagrange multiplier of a constraint of subnetwator an external
node

vector with Lagrange multipliers of all agents

number of nodes in a network

index of a neighboring node

List of abbreviations

The following abbreviations are used in this thesis:

AVR
DAE
FACTS
MPC
PSS
svC
TCSC
{ICHP

Automatic Voltage Regulator
Differential-Algebraic Equations
Flexible Alternating-Current Transmission System
Model Predictive Control
Power System Stabilizer
Static Var Compensator
Thyristor Controlled Series Compensators
micro Combined Heat and Power
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Samenvatting

Multi-Agent Modelgebaseerd Voorspellend Regelen
met Toepassingen in Elektriciteitsnetwerken

Transportnetwerken, zoals elektriciteitsnetwerkenkgersnetwerken, spoornetwerken, wa-
ternetwerken, etc., vormen de hoekstenen van onze modamenteving. Een soepele,
efficiénte, betrouwbare en veilige werking van deze neterris van enorm belang voor
de economische groei, het milieu en de leefbaarheid, netmlwanneer deze netwerken
op de grenzen van hun kunnen moeten opereren, maar ook andesle omstandigheden.
Aangezien transportnetwerken dichter en dichter bij hypacéeitslimieten moeten wer-
ken, en aangezien de dynamica van dergelijke netwerkeraalscomplexer wordt, wordt
het steeds moeilijker voor de huidige regelstrategieén degaate prestaties te leveren on-
der alle omstandigheden. De regeling van transportnetmemoet daarom naar een hoger
niveau gebracht worden door gebruik te maken van nieuweageaerde regelstrategieén.

Elektriciteitsnetwerken vormen een specifieke klasse ramsportnetwerken waarvoor
nieuwe regelstrategieén in het bijzonder nodig zijn. Deditrur van elektriciteitsnetwerken
is aan het veranderen op verschillende niveaus. Op Eurapeesu worden de elektrici-
teitsnetwerken van individuele landen meer en meer ga#ed door de aanleg van trans-
portlijnen tussen landen. Op nationaal niveau stroomteddteit niet langer alleen van het
transmissienetwerk via het distributienetwerk in de fingptvan bedrijven en steden, maar
ook in de omgekeerde richting. Daarnaast wordt op lokaaavregelbare belasting ge-
installeerd en kan energie lokaal gegenereerd en opgesiagelen. Om minimumeisen
en -serviceniveaus te kunnen blijven garanderen, mogtter-of-the-artregeltechnieken
ontwikkeld en geimplementeerd worden.

In dit proefschrift stellen wij verschillende regelstrgieén voor die erop gericht zijn om
de opkomende problemen in transportnetwerken in het algerae elektriciteitsnetwerken
in het bijzonder het hoofd te bieden. Om het grootschaliggestistribueerde karakter van
de regelproblemen te beheersen gebruikemuijti-agentaanpakken, waarin verschillen-
de regelagenten elk hun eigen deel van het netwerk regelsaraenwerken om de best
mogelijke netwerkbrede prestaties te behalen. Om allehildsare informatie mee te kun-
nen nemen en om vroegtijdig te kunnen anticiperen op ongevgerlrag maken wij gebruik
van modelgebaseerd voorspellend regelen (MVR). In destrgédgieén die wij in dit proef-
schrift voorstellen, combineren wij multi-agent aanpakkeet MVR. Hieronder volgt een
overzicht van de regelstrategieén die wij voorstellen eredelproblemen uit de specifieke
klasse van elektriciteitsnetwerken, waarop wij de voaiglde regelstrategieén toepassen.
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Multi-agent modelgebaseerd voorspellend regelen

In een multi-agent regeling is de regeling van een systeehsigbueerd over verschillende

regelagenten. De regelagenten kunnen gegroepeerd woathedeahand van de autori-

teitsrelaties die tussen de regelagenten gelden. Eenlijlerggroepering resulteert in een

gelaagde regelstructuur waarin regelagenten in hogeenlageger autoriteit hebben over
regelagenten in lagere lagen en waarin regelagenten irffdezaag dezelfde autoriteits-

relaties met betrekking tot elkaar hebben. Gebaseerd opges#n van MVR bepalen in

multi-agent MVR de regelagenten welke actie zij nemen aahahel van voorspellingen.

Deze voorspellingen maken zij met behulp van voorspellimggellen van die delen van het
algehele systeem die zij regelen. Daar waar de regelagant@mere lagen typisch minder

gedetailleerde modelen en langzamere tijdschalen besehmibeschouwen regelagenten
op lagere regellagen typisch meer gedetailleerde modelesnellere tijdschalen. In dit

proefschrift worden de volgende regelstrategieén vooedgeen bediscussieerd:

e Voor de codrdinatie van regelagenten in een regellaag veamhieuw serieel schema
voor multi-agent MVR voorgesteld en vergeleken met eendaest parallel schema.
In de voorgestelde aanpak wordt aangenomen dat de dynaaricdevdeelnetwerken
alleen uit continue dynamica bestaat en dat de dynamica eaalgehele netwerk
gemodelleerd kan worden met verbonden lineaire tijdsiamé modellen, waarin
alle variabelen continue waarden aannemen.

e In de praktijk komt het regelmatig voor dat deelnetwerkebride dynamica verto-
nen, veroorzaakt door zowel continue als discrete dynanWwkabediscussiéren hoe
discrete dynamica gevat kan worden in modellen bestaantieaaire vergelijkingen
en ongelijkheden en hoe regelagenten dergelijke modellendn gebruiken bij het
bepalen van hun acties. Daarnaast stellen wij een uitimgeidior van de coérdinatie-
schema’s voor continue systemen naar systemen met comtindiscrete variabelen.

¢ Voor een individuele regelagent die richtpunten bepaait vegelagenten in een lage-
re regellaag wordt het opzetten van object-georiénteeodespellingsmodellen be-
discussieerd. Een dergelijk object-georiénteerd vodiisgesmodel wordt dan ge-
bruikt om een MVR-regelprobleem te formuleren. Wij stellor om de optima-
lisatietechniekpattern searctte gebruiken om het resulterende MVR-regelprobleem
op te lossen. Daarnaast stellen wij omwille van de efficggaéin MVR-regelstrategie
voor die gebaseerd is op een gelineariseerde benaderirtgetatject-georiénteerde
voorspellingsmodel.

e Regelmatig worden deelnetwerken gedefinieerd op basis emasrbestaande net-
werkregio’s. Dergelijke deelnetwerken overlappen mdese. Als deelnetwerken
echter gebaseerd worden op bijvoorbeeld invlioedsgebiealemctuatoren, dan kun-
nen de deelnetwerken overlappend zijn. Wij stellen eenls&géegie voor voor het
regelen van overlappende deelnetwerken door regelagamézm hogere regellaag.

Multi-agent regelproblemen in elektriciteitsnetwerken

Elektriciteitsnetwerken vormen een specifieke klasse kamsportnetwerken waarvoor de
ontwikkeling van geavanceerde regeltechnieken noodilakelom adequate prestaties te
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behalen. De regelstrategieén die in dit proefschrift wordeorgesteld worden daarom aan
de hand van toepassing op specifieke regelproblemen utrieletsnetwerken geévalu-
eerd. In het bijzonder worden de volgende regelproblemspro&en:

e We beschouwen een gedistribuedodd-frequencyprobleem, wat het probleem is
van het dicht bij nul houden van frequentie-afwijkingen meastoringen. Regelagen-
ten regelen elk hun eigen deel van het netwerk en moeten seriean om de best
mogelijke netwerkbrede prestaties te behalen. Om dezersaenking te bewekstel-
lingen gebruiken de regelagenten de seriéle of de pardlglR-strategieén. We be-
schouwen zowel samenwerking gebaseerd op voorspellindgien die alleen conti-
nue variabelen bevatten, als met gebruikmaking van vobirsgemodellen die zowel
continue als ook discrete variabelen bevatten. Met behafpsimulaties illustreren
we de prestaties die de schema’s kunnen behalen.

¢ In de nabije toekomst zullen huishoudens de mogelijkhelidbae om hun eigen ener-
gie lokaal te produceren, lokaal op te slaan, te verkopereaarenergie-aanbieder en
mogelijk uit te wisselen met naburige huishoudens. Weestedlen MVR-strategie
voor die gebruikt kan worden door een regelagent die hegégebruik in een huis-
houden regelt. Deze regelagent neemt in zijn regeling velmeeenergieprijzen, voor-
spelde energieconsumptiepatronen en de dynamica van isebbden mee. We il-
lustreren de prestaties die de regelagent kan behalen eoogegeven scenario van
energieprijzen en consumptiepatronen.

e Spanningsinstabiliteiten vormen een belangrijke bronelektriciteitsuitval. Om te
voorkomen dat spanningsinstabiliteiten ontstaan is Ibkgageneratielokaties een
laag van regelagenten geinstalleerd. Een dergelijke éalegleling werkt onder nor-
male omstandigheden goed, maar levert ten tijde van grotstorangen geen ade-
guate prestaties. In dergelijke situaties moeten de aetiesie lokale regelagenten
gecoordineerd worden. Wij stellen een MVR-regelagent \diertot taak heeft de-
ze codrdinatie te realiseren. De voorgestelde MVR-stiategakt gebruik van ofwel
een object-georiénteerd model van het elektriciteitsegtwfwel van een benadering
van dit model verkregen na linearisatie. We illustreren mstaties die behaald kun-
nen worden met behulp van simulaties op een dynamisch Sl&kisieiteitsnetwerk.

e Regeling gebaseerd aptimal power flon(OPF) kan gebruikt worden om in trans-
missienetwerken dsteady-statespanningsprofielen te verbeteren, het overschrijden
van capaciteitslimieten te voorkomen, en vermogenswetige minimaliseren. Een
type apparaat waarvoor met behulp van OPF-regeling actostellingen bepaald
kunnen worden zijrflexible alternating current transmission systefRACTS). Wij
beschouwen een situatie waarin verschillende FACTS-apgananwezig zijn en elk
FACTS-apparaat geregeld wordt door een regelagent. Ejedagent beschouwt als
zijn deelnetwerk dat deel van het netwerk dat zijn FACTSaapat kan beinvioeden.
Aangezien de deelnetwerken gebaseerd zijn op beinvlogwigigp’s kunnen verschil-
lende deelnetwerken overlappend zijn. Wij stellen eendiodtie- en communica-
tieschema voor dat kan omgaan met een dergelijke overlapsiviulatiestudies op
een aangepast elektriciteitsnetwerk met 57 bussen #lgstrwe de prestaties.

Rudy R. Negenborn






Summary

Multi-Agent Model Predictive Control
with Applications to Power Networks

Transportation networks, such as power distribution aadgmission networks, road traf-
fic networks, water distribution networks, railway netwsyletc., are the corner stones of
modern society. A smooth, efficient, reliable, and safe afpen of these systems is of huge
importance for the economic growth, the environment, aedjtimality of life, not only when
the systems are pressed to the limits of their performangealbo under regular operating
conditions. As transportation networks have to operatserland closer to their capacity
limits and as the dynamics of these networks become more ame complex, currently
used control strategies can no longer provide adequaterpefice in all situations. Hence,
control of transportation networks has to be advanced tghdnilevel using novel control
techniques.

A class of transportation networks for which such new cdrteohniques are in partic-
ular required are power networks. The structure of powewagks is changing at several
levels. At a European level the electricity networks of th@ividual countries are becoming
more integrated as high-capacity power lines are congttuictenhance system security. At
a national level power does not any longer only flow from tlasmission network in the
direction of the distribution network and onwards to theustlial sites and cities, but also
in the other direction. Furthermore, at the local level colteable loads are installed, en-
ergy can be generated locally with small-scale generaams.energy can be stored locally
using batteries. To still guarantee basic requirementssandce levels and to meet the de-
mands and requirements of the users while facing the chgmstjincture of power networks,
state-of-the-art control techniques have to be developddraplemented.

In this PhD thesis we propose several new control technidasigned for handling the
emerging problems in transportation networks in generdl@wer networks in particular.
To manage the typically large size and distributed naturhefcontrol problems encoun-
tered, we employ multi-agent approaches, in which severarol agents each control their
own part of the network and cooperate to achieve the besilpess/erall performance.
To be able to incorporate all available information and toabée to anticipate undesired
behavior at an early stage, we use model predictive cortBiX).

Next we give a summary of the control techniques proposedis PhD thesis and
the control problems from a particular class of transp@tanhetworks, viz. the class of
power networks, to which we apply the proposed control tephes in order to assess their
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performance.

Multi-agent model predictive control

In multi-agent control, control is distributed over sevarantrol agents. The control agents
can be grouped according to the authority relationshipsttiey have among each other.
The result is a layered control structure in which contrabrtg at higher layers have au-
thority over control agents in lower layers, and control rgewithin a control layer have
equal authority relationships. In multi-agent MPC, cohtaigents take actions based on
predictions that they make using a prediction model of the @lathe overall system they
control. At higher layers typically less detailed modelsl atower time scales are consid-
ered, whereas at lower layers more detailed models and tasescales are considered.

In this PhD thesis the following control strategies for gohigents at various locations
in a control structure are proposed and discussed:

e For coordination of control agents within a control layer@el serial scheme for
multi-agent MPC is proposed and compared with an existimglighscheme. In the
approach it is assumed that the dynamics of the subnetwiogikgte control agents
control are purely continuous and can be modeled with iotamected linear discrete-
time time-invariant models in which all variables take omtiouous values.

e In practice, the dynamics of the subnetworks may show hytlyidamics, caused
by both continuous and discrete dynamics. We discuss hasvedésdynamics can
be captured by systems of linear equalities and inequalitirel how control agents
can use this in their decision making. In addition, we pr@pas extension of the
coordination schemes for purely continuous systems thalsdeith interconnected
linear time-invariant subnetworks with integer inputs.

e For anindividual control agent that determines set-pdimtsontrol agents in a lower
control layer, creating object-oriented prediction madsldiscussed. Such an object-
oriented prediction model is then used to formulate an MP@trob problem. We
propose to use the optimization technique pattern searstlte the resulting MPC
control problem. In addition, for efficiency reasons, wepgose an MPC control
strategy based on a linearization of the object-orientediption model.

e Commonly, subnetworks are defined based on already existitvgprk regions. Such
subnetworks typically do not overlap. However, when sulyneks are based on,
e.g., regions of influence of actuators, then the subnetvoiky be overlapping. For
multiple control agents in a higher control layer, at whithdn be assumed that the
behavior of the underlying control layers is static, we e an MPC strategy for
control of overlapping subnetworks.

Multi-agent control problems in power networks

Power networks are a particular class of transportatiowords and are subject to a chang-
ing structure. This changing structure requires the dgraknt of advanced control tech-
nigues in order to maintain adequate control performante dontrol strategies proposed
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in this PhD thesis are applied to and assessed on specifia pom&in control problems.
In particular, we discuss the following power network perik and control approaches:

e We consider a distributed load-frequency control problarhich is the problem of
maintaining frequency deviations after load disturbartese to zero. Control agents
each control their own part of the network and have to codpdraorder to achieve
the best possible overall network performance. The cormtgeints achieve this by
obtaining agreement on how much power should flow among theetworks. The
serial and parallel MPC strategies are employed for thigh bdhen the prediction
models involve only continuous variables, and when the iptiech models involve
both continuous and discrete variables. In simulationslstrate the performance
that the schemes can obtain.

¢ Inthe near future households will be able to produce their emergy, store it locally,
sell it to an energy supplier, and perhaps exchange it withhfs®ring households.
We propose an MPC strategy to be used by a control agent dorgrthe energy
usage in a household. This control agent takes into accoyetceed energy prices,
predicted energy consumption patterns, and the dynamitedfousehold, including
dynamics of local energy generation and storage devices.afkgiven scenario of
energy prices and consumption patterns, the performaratetta control agent can
achieve are illustrated.

¢ \ltage instability is a major source of power outages. Tevpnt voltage instability
from emerging, a lower layer of control agents is installeggower networks at gen-
eration sites. These agents locally adjust generation totaia voltage magnitudes.
Such local control works well under normal operating coiodis. However, under
large disturbances such local control does not provide wateperformance. In such
situations, the actions of the local control agents havestodordinated. We propose
an MPC control agent that has the task to coordinate the tmratrol agents. The
MPC strategy that the agent uses is based on either an ajented model of the
power network or on a linearized approximation of this modghe object-oriented
model includes a model of the physical network and the looakrol agents. We
illustrate the performance of the MPC control agent usirgdbject-oriented model
or the linearized approximation via simulations on a dyra®bus power network.

e Optimal power flow control is commonly used to improve steathte power network
security by improving the voltage profile, preventing lifiesn overloading, and min-
imizing active power losses. Using optimal power flow cohtdevice settings for
flexible alternating current transmission systems (FACE&) be determined. We
consider the situation in which there are several FACTSasyieach controlled by a
different control agent. The subnetwork that each congehéconsiders consists of a
region of influence of its FACTS device. Since the subnetwarle based on regions
of influence, the subnetworks of several agents may be @guirig. We propose a
coordination and communication scheme that takes thidagvérto account. In sim-
ulation experiments on an adjusted 57-bus IEEE power né&thar performance of
the scheme is illustrated.

Rudy R. Negenborn
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