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Chapter 1

Introduction

1.1 Scope and Motivation

Railway transportation has been an important means of public transportation since their
birth in the sixteenth century [45]. Compared with other means of transportation, railway
transportation is advantageous because of its high capacity, high reliability, high safety, high
degree of automation, and low environmental impact [45].
Maintenance is crucial to guarantee the reliability, availability, and safety of a railway infras-
tructure network. This thesis focuses on track maintenance, which takes more than 40% of
the 1 billion EURO annual maintenance budget in the Dutch railway network [175]. One
important track maintenance intervention is grinding, which is applied to treat squats (see
Figure 1.1), a type of rolling contact fatigue, that first appear on the rail surface and can lead
to rail breakage if not treated properly. Another important track maintenance intervention
is tamping, which is intended for ballast degradation (see Figure 1.2) and which repairs track
irregularities by correcting track geometry parameters [69, 95].
How to plan costly track maintenance interventions without sacrificing the safety and relia-
bility of the whole network has become the primary concern of railway infrastructure man-
agers. In practice, railway infrastructure managers face several challenges in track mainte-
nance planning:

• High setup costs: track maintenance interventions usually engage heavy track main-

Figure 1.1: A severe squat on the rail surface.
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2 Maintenance Optimization for Railway Infrastructure Networks

Figure 1.2: Severely worn ballast stones under an old sleeper. Compared with the new ballast

stones nearby with sharp edges, the worn ballast stones have become rounded in

shape and covered by dust. This problem is called the "foul" of the ballast, meaning

that the ballast stones have been crushed, provide less drainage, move less, and

have less elasticity, leading to a reduction in their friction dissipation.

tenance machines, which are expensive to use. For example, it takes more than 10 000
EURO to rent a grinding machine for 10 hours in the Netherlands.

• Limited resources, in terms of track possession time and machinery: for a busy net-
work like the Dutch railway network, the time slot for track maintenance is usually less
than 6 hours. The number of heavy track maintenance machines is also small (e.g.
there is only one grinding machine for rails in the Netherlands).

• Negative effects on the railway infrastructure brought by track maintenance: for in-
stance, the metal dust left after a grinding operation can cause short circuits in insu-
lated joints.

The high setup costs, limited resources, and negative effects of maintenance interventions
motivate railway infrastructure managers and maintenance contractors to search for more
cost-efficient maintenance strategies, other than the traditional time-based maintenance
strategies, which perform maintenance at an optimal interval of time/usage. Efficient track
maintenance is especially important under limited resources. For example, due to the short
maintenance time slots in the Dutch railway network, approximately 10% of the cyclic rail
grinding operations cannot cover the planned range, and the uncovered part of the rail has
to wait for the next maintenance cycle (at least six months) to be ground, resulting in re-
duced riding comfort of passengers. If the uncovered part contains many severe squats, an
unplanned grinding must be performed before the next maintenance cycle in the worst case.
In this thesis, the inefficiency of time-based maintenance strategies is also the motivation to
adopt a condition-based maintenance strategy [1, 79], where maintenance interventions are
suggested based on the information obtained from real-time condition monitoring.
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1.2 Problem Statement

The main topic of this thesis is a model-based methodology for railway track maintenance
optimization, with the following contributions:

• A multi-level approach that covers both long-term condition-based maintenance plan-
ning and short-term maintenance crew scheduling for railway track maintenance.

• A chance-constrained formulation to achieve a robust but non-conservative mainte-
nance plan, in the presence of model uncertainties.

• Tractable solution methods to address the computational complexities of the opti-
mization problems; distributed optimization schemes to improve the scalability of the
proposed approach.

The second contribution is a novel 2-indexed Mixed Integer Linear Programming formu-
lation for the Fixed-destination Multi-Depot Multiple Traveling Salesmen Problem, which
serves as the basis for the railway track maintenance crew scheduling problem. The last
contribution is a systematic numerical solution method to obtain the optimal nonlinear
leader function for reverse Stackelberg games with incomplete information, and general,
non-concave utility functions.

1.3 Structure of the Thesis

The outline of this thesis is given in Figure 1.3. The background and preliminaries of all
the topics discussed in this thesis are summarized in Chapter 2. Chapter 3 and 4 deal with
the main research topic, i.e. maintenance optimization of railway infrastructure networks.
Both adopt a multi-level scheme that considers the long-term condition-based maintenance
planning and short-term maintenance crew scheduling. The difference is that the approach
developed in Chapter 3 is most suitable for small-scale railway networks, as it solves the op-
timal maintenance intervention planning problem in a centralized fashion, while Chapter 4
proposes a distributed optimization solution approach for the sake of scalability, in the case
of large-scale railway networks. Chapter 5 presents an exact 2-indexed formulation for the
Fixed-Destination Multi-depot Multiple Traveling Salesman Problem, which forms the ba-
sis of the maintenance crew scheduling problem in the multi-level maintenance optimiza-
tion approach in Chapter 4. A numerical solution approach to obtain the optimal nonlin-
ear leader function for reverse Stackelberg games with incomplete information is presented
in Chapter 6. Finally, the conclusions and future work on the whole thesis are provided in
Chapter 7.
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Chapter 2

Background and Preliminaries

2.1 Track Defects and Maintenance Interventions

Maintenance is crucial for the proper functioning and lifetime extension of a railway net-
work, which is composed of various infrastructures with different functions. In particular,
the Dutch railway network, one of the most intensively used railway networks in Europe,
consists of tracks (6830 km), tunnels (5100), overhead wiring (4500 km), switches (7508),
signaling systems, stations (388), and safety control systems. The degradation of an infras-
tructure can severely impair the performance of the whole railway network. In this thesis
we focus on the optimal treatment of track defects. One example is a squat, a typical type of
Rolling Contact Fatigue (RCF), that accelerates rail degradation, which can potentially lead to
derailment if not treated properly [140]. Grinding is effective for the treatment of early-stage
squats, while rail replacement would be the only solution for severe-stage squats. Another
example is ballast degradation, which can affect track geometries, causing unreliable sup-
port for sleepers and potential rail buckling and derailment [69, 95]. In this case, tamping is
applied to correct the track geometry.
In this section, we briefly explain generic defects for railway infrastructures and the corre-
sponding maintenance interventions. Note that full renewal is also considered as a main-
tenance intervention. Figure 2.1 shows the deterioration process of a generic track defect
[45], e.g. a ballast defect, for one component of a railway asset, e.g. a section of ballast. The
condition of the component is represented by one single measurable factor. The natural
degradation1 is shown by the green dashed line, which will eventually hit the operational
limit, potentially triggering a great hazard like derailment, if no adequate intervention is
performed. An intervention is performed to improve the condition, when the predicted con-
dition is close to the maintenance limit, which is usually much smaller than the operational
limit to allow for sufficient safety margin. An intervention brings an abrupt improvement of
the condition, quantified by the vertical drop of the degradation level after the intervention.
Full renewal can always restore a component to an “as good as new" condition. In compari-
son, corrective maintenance, like tamping and grinding, is different in the sense that the level
of improvement that can be achieved by a corrective maintenance becomes less the more it
is applied. This is also shown in the monotonically increasing dashed red line connecting
the conditions immediately after each maintenance intervention. Moreover, the deteriora-
tion also becomes faster after each maintenance intervention, demonstrated by the more

1The natural degradation is only assumed to be exponential in this example for demonstration purposes.
In general, it can be described by any monotonically increasing function.
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Time
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Figure 2.1: Deterioration process of a generic defect with an exponential deterioration. A

higher value indicates a worse condition. The initial condition is denoted by σ0,

while σr and σmax represent the maintenance and operational limit, respectively.

steep natural degradation between two consecutive maintenance interventions. Finally, re-
newal becomes the only option when a maintenance intervention becomes so inefficient
that it can no longer improve the condition.

2.2 Condition-Based Maintenance Planning of Railway Infras-

tructure Networks

Maintenance can be either reactive or proactive. A shift from reactive maintenance to proac-
tive solutions can be identified in several European countries in recent years [2, 174]. Proac-
tive maintenance policies are especially popular for multi-component systems, i.e. systems
consist of multiple dependent or independent components. This is because under a proac-
tive maintenance strategy, techniques like grouping and balancing can be utilized to re-
duce maintenance costs in a multi-component system without compromising system per-
formance [121]. Condition-based maintenance [13, 84], a proactive maintenance strategy
where decision making is based on the observed “condition" of an asset, has received grow-
ing attention in various industrial fields [49, 79]. Unlike time-based maintenance strate-
gies(e.g. the current cyclic track maintenance strategy in the Netherlands), condition-based
maintenance is efficient as it can avoid unnecessary maintenance, reducing the mainte-
nance costs. The resources saved from unnecessary maintenance (e.g. available mainte-
nance time) can then be allocated to perform necessary maintenance for severely dete-
riorated parts, improving the safety of the whole asset [55]. The cost-saving potential of
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condition-based maintenance on multi-component systems is demonstrated in [173] by a
comparison with failure based policy and time-based policy. Condition-based maintenance
is considered as the most promising maintenance strategy, as most system failures are pre-
ceded by one or more indicative signals [1]. A recent review on condition-based mainte-
nance policies for general multi-component systems is provided in [83].
In this thesis we consider condition-based maintenance optimization based on a mathemat-
ical model describing the deterioration process of the condition of the asset. The model can
be either deterministic, e.g. [47, 166], or stochastic, e.g. [102, 160]. A linear model is used in
[166] for the natural degradation of track quality, and a Mixed Integer Linear Programming
(MILP) problem is formulated in [166] to optimize tamping for a railway line over a finite
planning horizon. An exponential model for track geometry deterioration is developed in
[47] to minimize total track possession time caused by tamping over a finite planning hori-
zon, while keeping the track geometry quality within safe limits. Optimal condition-based
tamping is formulated as an MILP problem in [66], including the setup costs of tamping op-
erations. Note that the deterioration models used in [47, 66, 166] are all deterministic mod-
els considering only nominal deterioration behavior. The resulting maintenance strategies
might not be robust enough in the presence of various randomness like model uncertain-
ties, measurement errors, and missing data. In this case stochastic models, which describe
the deterioration dynamics either by a stochastic process, or by a random-variable model
[53], are preferred because of the robustness of the resulting maintenance strategy. A bi-
nary Mixed Integer Nonlinear Programming (MILNP) problem is developed in [160] for opti-
mal condition-based maintenance planning based on a stochastic deterioration model char-
acterized by the Dagum probabilistic distributions. Other notable examples of condition-
based track maintenance optimization approaches based on stochastic deterioration mod-
els include [102], where a bi-variate Gamma process describing the evolution of both the
longitudinal and transverse levels is developed for the optimal planning of tamping opera-
tions for a French high-speed line, and [128], where a grey-box model is proposed to describe
the ageing process of track geometry. A fuzzy Takagi-Sugeno internal model is used in [77] to
capture the most important dynamics of squats evolution over time, and the effects of grind-
ing and rail replacement are also modelled considering different representative scenarios.

2.2.1 Deterioration Model

In this section, we explain the deterioration model used in both Chapter 3 and 4. This
discrete-time state space model describes the deterioration process of a generic defect of
a railway infrastructure, e.g. ballast defect or squat growth in a certain length of track in the
railway network. The infrastructure is composed of n components, e.g. n segments of track,
with independent condition deterioration dynamics. Let the vector

x j (k) =
[

xcon
j

(k)

xaux
j

(k)

]

∈X j

denote the state of the j -th component of the infrastructure at time step k. The state of the j -
th component includes its condition xcon

j
, as well as other auxiliary variables collected in the

vector xaux
j

. These auxiliary variables, e.g. the condition after the last maintenance interven-
tion, are necessary to model the inefficiency of corrective maintenance. Let U = {a0, . . . , aN }
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denote the set of all possible actions2 (including no maintenance) that can be applied to
a component, where N is the number of possible interventions. The first action a0 repre-
sents no maintenance, and the last action aN represents full renewal. Let u j (k) ∈ U denote
the maintenance action applied to the j -th component at time step k. Furthermore, we
define u(k) = [u1(k)T . . .un(k)T]T ∈ U

n as the maintenance action performed on the multi-
component infrastructure at time step k.
The deterioration process is also affected by various uncertainties like measurement errors
and model inaccuracies. We denote θ j (k) ∈Θ j as the realization of the uncertainties related
to the deterioration of component j . Similarly, we define θ(k) = [θT

1 (k) . . .θT
n(k)]T ∈Θ as the

realization of the uncertainties for the whole asset. The following generic model is proposed
to describe the stochastic deterioration process of the j -th component of the asset:

x j (k +1) = f j (x j (k), u j (k), θ j (k))

=







f 0
j

(x j (k), θ j (k)) if u j (k) = a0 (no maintenance)

f
q

j
(x j (k), θ j (k)) if u j (k) = aq with q ∈ {1, . . . , N −1}

f N
j

(θ j (k)) if u j (k) = aN (full renewal)

(2.1)

∀ j ∈ {1, . . . ,n}.

The natural degradation f 0
j

only depends on the current condition and uncertainties. Full re-

newal f N
j

restores the component to an “as good as new" condition, regardless of the current
condition or the history of maintenance interventions. However, renewal is also stochastic,
and the exact condition after a renewal is uncertain. The effect of other interventions on a
component depends both on the current condition and the history of maintenance.
The deterioration dynamics of the whole asset can then be written as:

x(k +1) = f (x(k), u(k), θ(k)) (2.2)

where f = [ f T
1 . . . f T

n ]T is a vector-valued function.
In practice, constraints must be considered for each individual component. We call these
constraints local constraints, as they are only dependent on the condition, action, and un-
certainties of the individual component. One crucial local constraint is that the condition of
each component should not exceed the maintenance limit. In addition to local constraints
for individual components, we also consider global constraints on the whole asset. Such
global constraints usually arise from limited resources available for maintenance and re-
newal of the asset, e.g. budget and working time limits. To summarize, we define the con-
straints that need to be considered at time step k for the whole system as:

g (x(k), u(k), θ(k)) ≤ 0 (2.3)

In summary, the deterioration process of the infrastructure can then be described by the
whole-system dynamics (2.2) subject to the constraint (2.3).

2For the sake of simplicity we consider the same set of available actions for each component of the infras-
tructure.
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2.2.2 Model Predictive Control for a Class of Hybrid Systems

We use Model Predictive Control (MPC) [26, 132] as the basic scheme for the long-term op-
timal planning of maintenance interventions over a finite planning horizon. Based on a dy-
namic model for the process and the current state, an MPC controller determines the opti-
mal sequence of control actions that optimizes an objective function subject to constraints
for a given prediction horizon. According to the receding horizon principle, only the first
entry of the sequence of control actions is applied to the system, and the controller moves
to the next time step, solving a new optimization problem using an updated state, which is
obtained either from measurements, estimation, or simulation.
MPC has been widely applied to several real-world problems including supply chain man-
agement [108, 144], risk management of irrigation canals [169], and drinking water network
management [62]. Some of these problems involve a system with both continuous and dis-
crete dynamics, which we call hybrid systems. The generic deterioration of a railway infras-
tructure is one example of a hybrid system because the choice of maintenance activities can
only take discrete values.
Such hybrid systems are usually modeled using the Mixed Logical Dynamical (MLD) frame-
work [12], and a sequence of discrete control actions is determined by solving an Mixed
Integer Programming (MIP) problem at each time step. An alternative is the Time-Instant
Optimization (TIO) scheme, where a sequence of continuous time instants indicating the
occurrence of each discrete control action is optimized, resulting in a continuous, albeit
non-smooth, optimization problem at each time step. For some real-world applications, like
water level control for irrigation canals [139, 161], the number of admissible control actions,
e.g. opening and closing of barriers, is relatively small even for a long prediction horizon.
In this case, only a small number of time instants are needed to indicate when each control
action occurs. This usually results in an optimization problem that is easier to solve than the
large MIP problem of MLD-MPC. A comparison between the MLD and the TIO framework
is given in Figure 2.2, where u(k) denotes the action performed at time step k, while tmaint

and trenewal are vectors containing all the time instants of the maintenance and renewal ac-
tions3. In this example, at most two maintenance actions and one renewal action can be
performed within the 12-month prediction horizon. The MLD-MPC controller needs to op-
timize a discrete sequence of length 12 specifying which action (maintenance, renewal, or
doing nothing) to be applied at each time step. However, the TIO-MPC controller only needs
to optimize a continuous sequence of length 3, containing the time instants at which the two
maintenance actions and one renewal action are performed, respectively. In this example,
the TIO framework is a better choice than the MLD framework as it only needs a small num-
ber of continuous decision variables.

2.2.3 Distributed Optimization

Because an NP-hard problem (an MILP or non-smooth optimization problem) must be solved
at each time step, hybrid MPC is in general very computationally demanding for large-scale
systems. For the sake of scalability, a distributed optimization scheme is then usually adopted.
However, there is a lack of distributed implementations of hybrid MPC in literature [99]. A
distributed MPC method based on primal decomposition is developed in [97] for a class

3We use the notation (v)i to indicate the i -th element of the vector v .
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Figure 2.2: Comparisons between MLD and TIO framework illustrated by a small example, in

which at most two maintenance actions and one renewal actions can be performed

to an infrastructure within the one-year prediction window.

of hybrid systems with discrete control inputs, global constraints, and limited information
sharing between local controllers. Recently, a practical approach for a class of networked
hybrid MPC problems has been proposed in [101] where first the value of the binary de-
cision variables in the local problem is determined, and then the Mixed Integer Quadratic
Programming (MIQP) MPC optimization problem is transformed into a set of Quadratic Pro-
gramming (QP) problems through distributed coordination. Although the solutions of both
approaches are suboptimal, numerical experiments show that the loss of optimality is small
for the corresponding application.
When distributed optimization scheme is adopted purely out of computational concerns,
decomposition methods for large-scale Linear Programming (LP) and MIP problems can
be used to divide the computational burden of the centralized MPC optimization problem
among subproblems that are easier to solve. Benders decomposition [16], and Dantzig-
Wolfe decomposition [38] are the most widely-used decomposition methods. The choice of
decomposition method depends on the structure of the original problem. Benders decom-
position is more suitable for problems coupled through common variables (complicating
variables), while Dantzig-Wolfe decomposition is designed for problems coupled through
common constraints (complicating constraints).

Benders Decomposition

Benders decomposition is initially designed for MILP problems in which the integer vari-
ables are the complicating variables, which, when temporarily fixed, yield an LP problem
that allows for the use of strong duality to generate feasibility cuts and optimality cuts [109].
Interested readers are referred to [130] for an up-to-date review. Benders decomposition
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has already been applied to distributed MPC in [107] for temperature regulation in build-
ings. However, the MPC optimization problem in [107] is an LP problem. Because of the
use of strong duality in classical Benders decomposition, the non-complicating variables,
which appear in the subproblems, cannot be integers. Extensions have been made to apply
Benders decomposition to address problems with MILP subproblems. The classical Ben-
ders decomposition framework has been extended to problems with a purely binary mas-
ter problem and mixed binary subproblems in [150, 151] using reformulation linearization
techniques and lift-and-project cutting plane scheme, to obtain a convex hull representa-
tion of the feasible region. Disjunctive programming is applied in [112, 146] to extend stan-
dard Benders decomposition to problems with mixed-binary subproblems using disjunctive
decomposition. Reformulation linearization and disjunctive programming techniques are
combined in [147] for problems with mixed binary master problems and subproblems. Re-
cently, a branch-and-cut algorithm with local cuts has been developed in [46] for Benders
decomposition with discrete subproblems. However, computational experiments show that
the branch-and-cut algorithm cannot outperform state-of-the-art MILP solvers like Cplex.

Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is most suitable for large-scale problems with subproblems
coupled through a small number of complicating constraints [18, 152]. Column genera-
tion technique [162] is usually used to increase tractability. Dantzig-Wolfe decomposition
can be viewed as the dual of Benders decomposition, in the sense that applying Dantzig-
Wolfe decomposition to an LP problem is equivalent to applying Benders decomposition to
its dual. However, for MILP problems, Dantzig-Wolfe decomposition only solves an LP re-
laxation of the original problem. Exact solutions to the original problem can be found by
combining branch-and-bound with column generation, known as the branch-and-price [7]
algorithm. One typical application of Dantzig-Wolfe decomposition is the vehicle routing
problem and its variants [50]. The maintenance scheduling and routing problem of offshore
wind farms has been formulated as a Vehicle Routing Problem (VRP) with side constraints in
[75] and solved efficiently using Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposi-
tion has been used in [43] and [152] for distributed implementation of an LP- MPC optimiza-
tion problem. Applications of Dantzig-Wolfe decomposition to MILP-MPC are relatively few.
One example is [65], where a suboptimal solution of the MILP problem is obtained through
column generation.

2.2.4 Chance-Constrained Optimization

Maintenance decision making can be influenced by different random factors like model un-
certainties, missing data, measurement errors, etc. [98] Robust control [106], which guaran-
tees good control performance and constraint satisfaction within a specific range of uncer-
tainties, should then be considered. Popular robust control approaches, like the min-max
approach [29, 63], are often conservative, as the worst-case scenario does not always occur.
To avoid conservatism, chance constraints [127] can be considered, which guarantee that
the constraints are satisfied with a probability no less than a given confidence level. Chance-
constrained MPC, which replaces all constraints with uncertainties by chance constraints,
and optimizes the expectation of the objective function, has been successfully applied to the
management of drinking water networks [62] and stock management in hospital pharmacy
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[81].
Let (Θ, B(Θ), Pθ) denote a probability space where Θ is a metric space with Borel σ-algebra
B(Θ) and probability distributionPθ. We consider the following generic chance-constrained
optimization problem

min
v∈V

Eθ[J (v, θ)] (2.4)

Subject to: Pθ[g (v, θ) ≤ 0] ≥ 1−ǫ, (2.5)

where θ ∈ Θ ⊆ R
nθ is a random vector containing all the uncertainties, and the parameter

ǫ ∈ [0, 1] is the allowed violation level of the chance constraint. Moreover, we call a solution
v∗ ∈ V an ǫ-level solution if it is feasible for the chance constraint (2.5).
Depending on a priori knowledge on the probability distribution Pθ, we have the following
classification of chance-constrained optimization problems:

• chance-constrained optimization problems with perfect information, where a given
probability distribution, e.g. Gaussian, is assumed for the random vector θ;

• chance-constrained optimization problems with no information, where no assump-
tion is made on Pθ.

An exact analytical deterministic representation of the chance constraint is in general un-
available for chance-constrained optimization problems with no information on the distri-
bution of the uncertainty. Even with perfect information, an exact analytic representation
is only available for very specific problems, e.g. linear chance constraints with Gaussian-
distributed uncertainties [145]. This is why approximation methods, especially those with
a probabilistic feasibility guarantees, have become the most prevailing solution approaches
for chance-constrained optimization problem. The most notable approximation methods
for chance-constrained optimization problems include analytical approximation approaches,
sample averaging approaches, and scenario-based approaches4.

Analytical Approximation

Analytical approximation methods, first proposed in [126], are most suitable for chance-
constrained optimization problems with a known probability distribution. A review on safe5

tractable approximation of chance constraints in provided in [110]. Notable analytical ap-
proximation methods for convex chance constraints include the quadratic approximation[14],
the conditional value-at-risk approximation [135], and the Bernstein approximation [111].
These analytical approximation methods usually impose very strong assumptions. For in-
stance, in [111] it is assumed that the convex chance constraint must be affine with respect
to the uncertainty. A sequential convex approximation approach is developed in [74], which
is applicable to general nonlinear convex chance-constrained problems. Another sequential
analytical approximation based on the parametric function is developed in [56] for smooth
non-convex chance constraints with general probability distributions.

4Also called scenario generation or scenario approximation approaches in literature.
5An approximation of the chance constraint is safe if the feasible region defined by the approximation is

contained int the feasible region defined by the chance constraint.
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Sample Average Approximation

Sample average approximation methods [148] replace the chance constraint (2.5) by the fol-
lowing relative-frequency count of constraint satisfaction on a randomized sample set H :

1

|H |
∑

h∈H

Ig (v,θ(h))≤0 ≥ 1−ǫ, (2.6)

where the indicator function IX takes the value 1 if statement X is true, and 0 otherwise. The
basic idea behind sample average approximation is Monte-Carlo simulation. The advantage
of sample average approximation over a scenario-based approach is that it is valid without
restrictive assumptions on the convexity of the chance-constrained problem. However, it
requires an even larger sample size than the already computationally expensive scenario-
based approach to obtain the same probabilistic feasibility bounds [19, 119]. The solution
obtained by sample average approximation is also more conservative than the one obtained
by a scenario-based approach because of the larger sample size.

Scenario-based Approach

The standard scenario-based approach [25] approximates the chance constraint with a finite
number of randomized scenarios, i.e. replacing the chance constraint (2.5) by the following
set of deterministic hard constraints:

g (v, θ(h)) ≤ 0 ∀h ∈H , (2.7)

where θ(h) denotes the realization of uncertainties of the h-th scenario in the scenario set H .
The optimal solution of the scenario-based optimization problem (2.4),(2.7) is also a random
variable as the scenarios are generated randomly. A confidence level β is associated with the
scenario-based optimization problem to provide probability bounds on its optimal solution.
For a given β, the size of the scenario set H must be large enough to ensure that the optimal
solution of (2.4),(2.7) is also a ǫ-level solution of the chance-constrained optimization prob-
lem (2.4)-(2.5) with a probability at least 1−β.
The focus of scenario-based approaches is to find a lower bound on the size of the sce-
nario set for a given violation and confidence level. Various scenario reduction techniques
[28, 30, 72, 90, 91] have been applied to the standard scenario-based approach. A sampling-
and-discarding approach is developed in [28] that quantifies the trade-off between perfor-
mance and feasibility. An MIP problem is formulated in [90] for the optimal scenario reduc-
tion problem to minimize the probabilistic distance and performance difference between
the original and the reduced scenario distributions. Recently, some sequential scenario re-
duction techniques [30, 91] have been developed for convex uncertain problems. The idea
behind these sequential approaches is to verify the “temporary" scenario set at each time
step against the given violation and confidence levels, and to increase the size of scenario
set until it is validated.
Most proposed bounds on the size of the scenario set are only applicable to convex chance-
constrained problems. For instance, it is assumed in [24, 25, 27, 172] that the chance con-
straint must be convex in the decision variable for any possible realization of the uncertain-
ties. Even the scenario-based approach proposed in [59] for non-convex control design also
requires the chance constraints to be convex. Performance and feasibility bounds for a class
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of non-convex chance-constrained problems, including MIP problems with integer decision
variables in the chance constraints, are provided in [44]. However, the feasibility bound is
very conservative and not applicable to large-scale non-convex chance-constrained prob-
lems.

Robust Scenario-based Approach

A two-phase approach, which lies between a scenario-based method and a robust optimiza-
tion approach, and can be applied to non-convex chance-constrained optimization prob-
lems,is proposed in [100] . This two-phase approach first solves a scenario-based optimiza-
tion problem to obtain a set B

∗ covering a given fraction (determined by the violation level)
of the probability mass of the uncertainty with a certain confidence, and then solves a robust
version of the original chance-constrained optimization problem, where the uncertainty lies
in the intersection of B

∗ and the uncertainty space Θ. As in our case B
∗ is a strict subset

of Θ in most situations, the result of this two-phase approach is less conservative than the
direct robust approach, where the whole uncertainty space Θ is considered.
Here we briefly summarize this two-phase approach, which will be used in Chapter 4 to ap-
proximate the chance-constrained MPC problem by a deterministic optimization problem.
First we solve the following standard scenario-based problem (as described in Section 2.2.4)
for a given violation level ǫ and confidence level β:

min
{(τi ,τi )}

nθ
i=1

nθ∑

i=1

τi −τi (2.8)

subject to: (θ)(h)
i

∈ [τi , τi ] ∀h ∈H , ∀i ∈ {1, . . . ,nθ}, (2.9)

where (θ)i represents the i-th entry of the random vector θ, and H is the set of random
scenarios. The size of H is chosen according to the following condition [3]:

|H | ≥
⌈

1

ǫ
·

e

e −1

(

2nθ−1+ ln
1

β

)⌉

, (2.10)

which ensures that the chance constraint Pθ

[

(θ)i ∈ [τi , τi ]
]

≥ 1− ǫ is satisfied with a confi-
dence β for each i ∈ {1, . . . ,nθ}.
Let {(τ∗

i
, τ∗i )}nθ

i=1 denote the optimal solution of the scenario-based problem (2.8)-(2.9). We
can then construct a hyperbox B

∗ =×nθ

i=1[τ∗
i

, τ∗i ] ⊂ Θ, and solve the following robust opti-
mization problem:

min
v∈V

1

|H |

|H |∑

h=1

J (v, θ(h)) (2.11)

subject to: max
θ∈B∗

g (v, θ) ≤ 0. (2.12)

The optimal solution of this robust optimization problem is an ǫ-feasible solution of the
chance-constrained problem (2.4)-(2.5) with probability at least 1−β.
As discussed in [100], although this multi-level approach does not require convexity in the
decision variable or in the uncertainty to be valid, it is tractable only when the associated
robust optimization problem (2.11)-(2.12) is tractable.
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2.3 Optimal Scheduling of Maintenance Crews

Condition-based maintenance focuses on the time planning of maintenance interventions.
How to optimally schedule the corresponding maintenance crews, including all necessary
equipments and personnel, to perform the planned maintenance interventions on a railway
network, taking into account the limited track possession time, is also of great concern for a
maintenance contractor.
An integer linear programming problem is formulated in [39] to find the optimal railway
track maitnenance schedule that minimizes the total maintenance cost in the planning hori-
zon. An integer programming problem is formulated in [73] to schedule different types of
routine maintenance activities for a single railway line, minimizing disruption to and from
train traffic, and the weighted completion time of all maintenance activities. A mixed integer
programming problem is formulated in [20] to minimize track possession cost and mainte-
nance costs for a single railway line, considering both routine activities and projects like
grinding or tamping. A metaheuristic using simulated annealing is developed in [141] to de-
termine the optimal length of track to be treated by a tamping machine.
The maintenance crew scheduling problem over a railway network is usually formulated
as a variant of vehicle routing problems. For example, in [70] the optimal scheduling of
different maintenance tasks with various priorities over a railway network is formulated
as a VRP with customer costs. In [125], the optimal clustering of small maintenance jobs
into major projects is also recast as a VRP to minimize the total duration of all mainte-
nance projects. Another popular approach for optimal scheduling of maintenance activ-
ities is the time-space network [124]. A comparison between the VRP approach and the
time-space network model for the scheduling of maintenance activities can be found in [58].
Other approaches for scheduling maintenance activities over a railway network include the
network-flow model proposed in [17], and the MINLP formulation developed in [171]. The
maintenance schedule and the train timetable should be as compatible as possible to mini-
mize the cost of traffic disruption. In most papers on maintenance scheduling, e.g. [20, 73],
a timetable is already available, and the aim is to minimize disruption cost or timetable
changes. On the other hand, [17] and [142] start with a given maintenance plan, and adjust
the train schedule accordingly to maximize the traffic throughput. Recently, an integrated
approach has been developed in [93] for the joint optimization of train timetabling and
maintenance scheduling. Its focus is to optimally schedule the traffic-free maintenance time
windows that are sufficient for the regular maintenance activities and the desired amount of
train traffic. However, the maintenance time windows can only be chosen from a set of avail-
able options, limiting the flexibility of the proposed approach.

2.4 Multiple Traveling Salesman Problem

Although the travelling salesman problem (TSP) can be stated simply as “Find the short-

est route that connects all cities on a map”, solving this problem has kept people busy for
decades. The ongoing quest for faster algorithms for finding (an approximation of) the opti-
mal solution of the TSP has led to a large amount of literature on the subject. Heuristic meth-
ods [71, 94] can be used to find solutions of large TSP instances quickly, but no guarantees
can be given for finding the optimal solution. In this thesis we consider exact formulations
that guarantee finding the globally optimal solution. A comprehensive discussion of the his-
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tory and state-of-the-art of solving the TSP can be found in [4, 35].
The power of the TSP [37, 103, 116] does not only lie in finding tours of minimal distance
along cities, but also in the fact that it forms the mathematical basis of many scheduling and
routing problems. Extensions such as the vehicle routing problem [85, 120] and the pick-up
and delivery problem [122, 123, 136, 143] are important problems in the fields of logistics
and economics. Recent applications include optimal maintenance routing and scheduling
for offshore wind farms [75], and optimal delivery or pickup of goods using hybrid electric
vehicles [42]. In those problems one usually tries to minimize some “cost” (e.g. distance,
time, money, or a combination) using multiple “salesmen” (e.g. people, trucks, air planes,
vessels) that can visit the “cities” (e.g. shops, harbors, airports, or actual cities). The use of
multiple salesmen to visit the cities makes the problems harder to solve due to the increase
in the number of possible solutions. The multiple traveling salesmen problem (mTSP) is at
the basis of the vehicle routing problem and the pick-up and delivery problem.

The essence of mTSP is to find the shortest total travel distance for multiple salesmen
starting from and returning to a single depot/home city. Since certain problems require more
than one depot (e.g. for delivering goods to shops that can be supplied from multiple storage
facilities), an extension to the multi-depot multiple-salesmen TSP (MmTSP) has been made
[9]. In this case the problem consists of finding the shortest distance such that several sales-
men will start at a depot, they visit all the cities once (and only once), and return to a depot
again. When it is not important at what depot the salesmen end their route, we talk about
a nonfixed-destination problem; when the salesmen are supposed to return to their original
depot we talk about a fixed-destination problem [82]. The work of [15] is also concerned with
multi-depot TSPs, where the number of salesmen per depot is not limited and the travel dis-
tances are symmetric. In this thesis we will focus on problems with a fixed number of sales-
men per depot, and asymmetric costs. The fixed-destination Multi-depot multiple-salesmen
TSP (FMmTSP) is a restricted case of the nonfixed-destination problem, with the additional
constraint that all salesmen should return to their original location. Therefore, the former
is more difficult to solve than the latter; the solutions to the FMmTSP are a subset of the
solutions to the MmTSP. In [82] an MILP description for the fixed-destination problem has
been proposed using 3-index decision variables, resulting in a large increase in the number
of binary variables for each added depot. Cycle (or subtour) elimination constraints (CECs)
are used to ensure that no cycles exist within the set of city nodes. They have been a topic
of active research over many decennia, starting with the use of loop constraints in [37] in
1954, the node potentials developed in [103] in 1960, and (multi)-commodity flow-based
constraints in [54] starting from 1978. Loop conditions give strong LP relaxations, but the
number of constraints grows exponentially with the problem size. The number of node-
potential-based constraints only grows quadratically with the problem size, but they result
in much weaker relaxations. Using multi-commodity flow formulations it is possible to ob-
tain strong relaxations, but with a number of constraints growing cubically in the problem
size. Cycle imposement constraints (CICs) can be used to ensure a (minimum) number of
cycles in a set of nodes. Fixed-destination solutions for TSP-like problems can be created by
enforcing that there should be at least D cycles in the combined set of depot and city nodes,
while using CECs to ensure that no subtours exist in the set of city nodes; when D equals
the number of depots this will result in exactly D cycles in the network; one for each of the
depots. CICs have only recently been discussed in the literature, starting with the path elim-
ination constraints in [11] in 2011, the multi-commodity flow-based constraints in [10] in
2012, and the node currents in [22] in 2014. Table 2.1 shows the order of the number of the



Chapter 2 - Background and Preliminaries 17

Table 2.1: Overview of CECs and CICs and the order of their numbers

Order Cycle elimination Cycle imposement

O(2N ) loop conditions [37] path elimination [11]
O(N 3) commodity flow [54] commodity flow [10]
O(N 2) node potentials [103] node currents [22]

discussed CECs and CICs. This thesis will introduce the node current-based CICs, which can
be seen as the equivalent of the node potentials for cycle imposement.

2.5 Reverse Stackelberg Games with Incomplete Information

The Stackelberg game, a hierarchical leader-follower game first introduced in the 1930s in an
economic context [165], has received growing recognition in the systems and control field
since the 1970s [8, 80]. In a Stackelberg game, first the leader makes her decision; then
the followers, informed of the leader’s decision, make their decisions accordingly. The re-
verse Stackelberg game, in which the leader proposes a function mapping from the follow-
ers’ decision spaces to the leader’s decision space, instead of making a direct decision, can be
viewed as a more general case of the original Stackelberg game. Reverse Stackelberg games
have successfully been applied to many hierarchical decision making problems like nonlin-
ear network pricing [149], optimal routing [60], and toll design [154].
We follow the “type” notation proposed in [68] for games with incomplete information, where
at least one player possesses certain important attributes, the actual value of which is only
known to himself. These attributes can be, e.g., the production cost or the risk attitude of the
player. The type of a player is then characterized by a vector of these attributes. The actual
type of a player is only known to himself, and his opponents only know the type space and
the type distribution, i.e. all possible alternatives of each attribute and the probability of each
possible combination. Moreover, we consider information asymmetry in reverse Stackelberg
games with incomplete information, where the leader has no private information, thus no
type. Compared with the situation of complete information, the leader’s lack of information
regarding the followers produces a less desirable result for her [149].
Solving the Stackelberg game is equivalent to solving a bilevel programming problem [33],
and even the simplest linear bilevel programming problem has been proved to be NP-hard
[67]. The more general reverse Stackelberg games are even more difficult to solve, especially
when a wide class of leader functions are considered and the players have general, noncon-
cave utility functions. Most papers that discuss nonlinear leader functions often focus on
deriving analytic solutions for problem-specific utility functions [115, 149, 170]. A system-
atic approach to compute optimal nonlinear leader functions for reverse Stackelberg games
with general utility functions is proposed in [61], but under the restrictive assumption of
complete information. Therefore, in this thesis, we focus on numerical solution approaches
for the more realistic Stackelberg game with incomplete information, considering nonlinear
leader functions and general utility functions.
Our key contribution is a systematic solution approach based on basis functions and semi-
infinite programming for reverse Stackelberg games with incomplete information, consider-
ing nonlinear leader functions and general, nonconcave utility functions.
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2.6 Summary

In this chapter we have first introduced typical railway track defects and the correspond-
ing maintenance interventions. We then provided the preliminaries of the two aspects of
maintenance optimization of railway infrastructures, namely, long-term condition-based
maintenance planning and short-term maintenance crew scheduling. For long-term main-
tenance intervention planning, the generic formulation of the deterioration model is pre-
sented, as well as a brief introduction on model predictive control, distributed optimiza-
tion, and chance-constrained optimization. We have then provided a brief survey on rail-
way maintenance crew scheduling and the multiple-traveling salesman problem. Finally,
we have briefly explained reverse Stackelberg games with incomplete information.



Chapter 3

Centralized Maintenance Optimization of

Small-Scale Railway Networks

3.1 Problem Description

An optimization-based, multi-level approach is developed in this chapter for the optimal
planning of maintenance interventions for railway infrastructures like rail and ballast. A
schematic plot for the multi-level approach is provided in Figure 3.1. Three optimization
problems, namely the intervention planning problem, the slot allocation problem, and the
clustering problem, are solved at the high, middle, and low level, respectively. Based on the
component-wise discrete-time prediction model of the condition of the infrastructure, at
each time step the high-level intervention planning problem determines the optimal main-
tenance intervention for each component over a given prediction horizon. The sampling
time, i.e. the length of each time step, is usually larger than one month because of the slow
deterioration dynamics of a railway infrastructure. If a maintenance intervention is sug-
gested at any time step at the high level, it should be performed within a traffic-free time slot
(4-8 hours at night) to avoid any disruption to the train service. However, it is not always
possible to complete an intervention within such a short time slot, and a new operation
must then be scheduled into a new time slot to finish the required intervention, resulting
in an additional setup cost including machinery, logistics, personnel, etc. This gives rise
to the middle-level slot allocation problem, which determines the time slots that optimize
the trade-off between traffic disruption and the total setup cost associated with each mainte-
nance slot, while guaranteeing that the total duration of the resulting maintenance slots is no
less than the estimated maintenance time. According to the intervention plan, the low-level
clustering problem then groups the basic units into clusters that can be treated within the
allocated time slots. If the resulting clusters cannot cover all the basic units that need to be
treated according to the high-level intervention plan because of insufficient time slots, then
the slot allocation problem is solved again with a longer estimated maintenance time. This
iterative procedure between the slot allocation problem and the clustering problem repeats
until all the basic units that need to be treated are covered by a cluster. This cluster-wise
work plan is then applied to the infrastructure, and the condition of each component is then
regularly measured or updated by estimation.
The motivation to adopt a multi-level scheme includes different time scales of the deterio-
ration process and traffic schedule, and computational tractability. A flow chart is presented
in Figure 3.2 to illustrate the proposed multi-level scheme. The condition of the railway in-
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Figure 3.1: Schematic plot of the proposed multi-level approach for optimal condition-based

maintenance planning.

frastructure is monitored at every time step. The measurements for each basic unit are col-
lected and processed, then aggregated to represent the condition of each component. Based
on the current condition of each component, the high-level MPC controller determines the
maintenance plan for the current time step that optimizes the trade-off between condition
deterioration and maintenance cost. If no intervention is suggested for any component for
the current time step, the MPC controller moves to the next time step. The condition of the
infrastructure is updated by new measurements, or estimates if no new measurements are
available. The iterative procedure between the middle-level and low-level problems is trig-
gered when an intervention, e.g. grinding or tamping, is suggested at the high level for at
least one component for the current time step. Let T̂Maint denote the estimated time to com-
plete the suggested intervention. The optimal maintenance slots are allocated at the mid-
dle level, minimizing the trade-off between the total setup cost for the maintenance slots
and the cost of disruption to the railway traffic, guaranteeing that the resulting maintenance
time is no less than the estimated maintenance time T̂Maint. The resulting maintenance slots
are then fed to the low level. Depending on their location and condition, the basic units in-
side the components that require the corresponding intervention are grouped into clusters
that must be treated within the time slots determined at the middle level. If the resulting
clusters at the low level cannot cover all the basic units, depending on the number and con-
ditions of the remaining basic units, an evaluation is made to determine whether to solve the
middle-level problem again with a larger estimated maintenance time in order to cover the
remaining basic units. A value νrem is calculated for the remaining basic units, which is the
ratio of the accumulated condition of the remaining basic units and the accumulated con-
dition of all the basic units that needed to be treated. An additional maintenance time ∆T̂ is
also estimated, depending on the number of the remaining basic units. A factor µ is assigned
to ∆T̂ to convert the additional maintenance time into a “cost". The detailed explanation on
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how to compute νrem and ∆T̂ is given in Section 3.4. If νrem −µ∆T̂ ≤ 0, indicating that the
benefit of covering the remaining basic units does not justify the cost of the required addi-
tional maintenance time, the iterative procedure terminates and the uncovered basic units
remain uncovered. If νrem −µ∆T̂ > 0, indicating that it is worthwhile to cover the remaining
basic units with additional maintenance time, the middle-level problem is solved again with
a longer estimated maintenance time T̂Maint +∆T̂ .
The multi-level framework can be demonstrated by the pseudocode in Algorithm 3.1. Here,
the vector ξ contains the positions of all basic units, e.g. kilometer positions of all the squats
on a piece of rail. The conditions of all basic units at time step k are collected in the vector
w(k). In particular, w(0) denotes the initial conditions of the basic units. Moreover, tsl(k)
and φ(k) denote the solutions of the middle-level and the low-level problem, i.e. the result-
ing time slots and clusters, at time step k, respectively.

3.2 High-Level MPC Problem

In this section a scenario-based chance-constrained MPC controller is developed for the de-
terioration process described by (2.2),(2.3) to determine the optimal maintenance and re-
newal interventions for each component of the asset. A TIO approach is applied to trans-
form the MPC optimization problem with both continuous and discrete decision variables
into a continuous non-smooth optimization problem. To that aim we first recast the hybrid
dynamic model (2.2),(2.3) into a TIO prediction model. Then we select a set of representative
scenarios from the entire set of realizations of the uncertainties within the prediction period.
Chance-constrained MPC is then applied to the scenario-based TIO prediction model.

3.2.1 TIO Prediction Model

A TIO prediction model is developed based on the original hybrid deterioration model (2.2)-
(2.3), which contains both continuous and discrete dynamics. Let Ts denote the sampling
time (usually in months for the deterioration process of railway infrastructures). Further-
more, let NP and NC denote the prediction and control horizons, respectively. Denote x̂(k +
l |k) as the estimated state at time step k + l based on the information available at time step
k. The sequence of estimated states, control inputs, and uncertainties within the prediction
period can be defined as:

x̃(k) = [x̂T(k +1|k) . . . x̂T(k +NP|k)]T

ũ(k) = [uT(k) . . .uT(k +NP −1)]T

θ̃(k) = [θT(k) . . .θT(k +NP −1)]T

The NP-step prediction model can then be formulated as:

x̃(k) = f̃ (x(k), ũ(k), θ̃(k)) (3.1)

g̃ (x(k), ũ(k), θ̃(k)) ≤ 0 (3.2)

where the function f̃ can be derived from recursive substitution of (2.2), as in standard MPC.
The function g̃ can be derived similarly.
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Algorithm 3.1 Procedure of the multi-level approach.

Function HighLevel_MPC(w(0), ξ)
// Initialize the condition of the components

k ← 1
w(k) ← w(0)
x(k) ←Aggregate(w(k), ξ)
while k ≤ kend do

// Solve the MPC optimization problem at time step k

u(k) ←MPC_Optimize(x(k)) /* Middle- and low-level problems are triggered whenever

an intervention is suggested */

for each intervention al do

if any u j (k) = al then

/* Solve the middle-level problem to determine the time slots for

intervention al */

tsl(k) ←MiddleLevel(u(k), al , T̂Maint) /* Solve the low-level problem to determine

the clusters for intervention al */

φ(k) ←LowLevel(w(k), ξ, tsl(k), al )
while a basic unit outside φ(k) do

Compute νrem and ∆T̂ using (3.35) and (3.36)
if vrem −µ∆T̂ > 0 then

T̂Maint ← T̂Maint +∆T̂

tsl(k) ←MiddleLevel(u(k), al , T̂Maint)
φ(k) ←LowLevel(w(k), ξ, tsl(k), al )

else
break

end

// Apply intervention l to the infrastructure

Intervention(φ(k), al )
// Update conditions of basic units

if New measurements available then
w(k +1) ←New measurements

else
w(k +1) ←Simulate(w(k), ξ, φ(k))

end

x(k +1) ←Aggregate(w(k +1), ξ)
k ← k +1

end

end
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Recall that u(k) ∈ U = {a0, . . . , aN }, where the option a0 indicates “no intervention" and the
last intervention aN is full renewal. TIO-MPC first fixes the maximum number of times that
each of the N interventions can be performed within the prediction period, and optimizes
the continuous time instants to perform the interventions. Formally, let v j ,q denote the max-
imum number of occurrences of intervention q for component j with the prediction period.
All the relative time instants at which intervention q occurs in the prediction horizon for
component j at time step k are collected in the vector t j ,q,k of length v j ,q . The sequence of
time instants to be optimized at time step k can then be written as:

t̃ (k) = [t T
1,1,k . . . t T

1,N ,k
︸ ︷︷ ︸

tT
1 (k)

. . . t T
n,1,k . . . t T

n,N ,k
︸ ︷︷ ︸

tT
n (k)

]T (3.3)

The sequence of time instants t̃ (k) can be converted into the sequence of control inputs
ũ(k) by rounding to the nearest discrete time steps. The rounding function is always non-
smooth, so TIO-MPC must solve a non-smooth optimization problem at each time step even
for systems with linear dynamics.
For the situation of NC < NP, we have

u j (k + l ) = a0 ∀l ∈ {NC . . . NP −1}, ∀ j ∈ {1, . . . ,n}

This means no intervention is applied beyond the control horizon.
An example to explain the sequence of continuous time instants t̃ (k) and how it is converted
to the sequence of discrete control inputs ũ(k) is given in Figure 3.3. In this example, the
resulting sequence of time instants for component j at time step k is t T

j
(k) = [t T

j ,1,k t T
j ,2,k ]T.

Among the two time instants for intervention a1, only (t j ,1,k )1, which is located within the
control period (indicated by the dashed vertical line), is rounded to the nearest relative time
step l , indicating u j (k + l ) = a1. The second time instant (t j ,1,k )2, is neglected as it is outside
the control period NC Ts . Similarly, the first and only time instant for a2 is within the control
period, thus we have u j (k +m) = a2 as m is the time step closest to (t j ,2,k )1.
The following linear constraints should be considered for the time instants:

(t j ,q,k )1 ≥ t min
j ,q (3.4)

(t j ,q,k )v j ,q ≤ t max
j ,q (3.5)

(t j ,q,k )i+1 − (t j ,q,k )i ≥∆t min
j ,q ∀i ∈ {1, . . . , v j ,q −1} (3.6)

t max
j ,q = NCTs +v j ,q∆t min

j ,q (3.7)

∀ j ∈ {1, . . . ,n} ∀q ∈ {1, . . . , N }.

Constraints (3.4) and (3.5) specify the lower and upper bound of the time instants for inter-
vention q on component j . The lower bound t min

j ,q is especially useful to address the issue of
early planning. For example, if every maintenance intervention must be planned six months
ahead, then we can simply set t min

j ,q to be equal to six months. The upper bound t max
j ,q is cal-

culated in (3.7) to allow the situation of no intervention planned within the control period,
where ∆t min

j ,q is the minimal interval between two consecutive intervention of the same type,
as specified in constraint (3.6).
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The constraints (3.4)-(3.7) must be included in the optimization problem at each time step.
Note that there is no stochasticity associated with these constraints, and they can be treated
as normal linear constraints.

3.2.2 Representative Scenario-Based MPC

Now a representative scenario-based MPC controller is developed based on the TIO predic-
tion model of Section 3.2.1. The optimization problem at each time step is illustrated by the
schematic plot in Figure 3.4.
In practice, the set Θ containing all possible realizations of the uncertainties for a railway
infrastructure might be very large. The set of all possible realizations of uncertainties over
the whole prediction period, Θ̃ = Θ

NP , might be huge for a long prediction horizon. For
tractability, a relatively small number of representative scenarios is selected from the set Θ̃.
Let H̃ ⊂ Θ̃ denote the set of representative scenarios. The following scenario-based TIO
prediction model can then be derived for any h̃ ∈ H̃ :

x̃(k) = f̃TIO(x(k), t̃ (k), h̃) (3.8)

g̃TIO(x(k), t̃ (k), h̃) ≤ 0. (3.9)

Define

J (k) = JDeg(k)+λµJMaint(k) (3.10)

as the objective function that needs to be minimized at each time step k. The parameter µ
is a scaling factor, and the parameter λ captures the trade-off between the condition of the
infrastructure and the maintenance cost.
The first part

JDeg(k) =
n∑

j=1

NP∑

l=1

|xcon
j (k + l )−xcon

j |q (3.11)

minimizes the magnitude of condition degradation, where the norm | · |q can be the 1-norm,
2-norm, or infinity norm, for q = 1, 2, ∞, respectively.
The second part in the objective function is the accumulated maintenance cost, which can
be formulated as:

JMaint(k) =
n∑

j=1

NP∑

l=1

p∑

q=1
γ j ,q Iu j (k+l−1)=aq

(3.12)

where the binary indicator function IX takes the value 1 if the statement X is true, otherwise
it takes the value 0, and the parameter γ j ,q represents the required cost if intervention aq is
applied to component j .
As shown in (3.10)-(3.12), the objective function J (k) is a function of x̃(k) and ũ(k). Using the
TIO converting rule, the value of the objective function at time step k can be rewritten as:

J (k) = fopt(x(k), t̃ (k), h̃) (3.13)



26 Maintenance Optimization for Railway Infrastructure Networks

0 lT
s

mT
s

N
C

 T
s t

max

j,q

Time

a
0

a
1

a
2

A
c
ti
o
n (t

j,1,k
)
1

u
j
(k+l)

(t
j,2,k

)
1

u
j
(k+m)

(t
j,1,k

)
2

Figure 3.3: Example illustrating the time instants in TIO-MPC. In this example, we have u j ∈
{a0, a1, a2}. Interventions a1 and a2 can be applied to component j at most twice

and once, respectively.

Scenar io-based chance-

const r ained opt im izat ion problem

Scenari������d

T�� model
��j��	ive function

Stochastic constraints

�O	imi
�	ion

algorithm

x(k)

t̃(k)

h̃

x̃(k)

EH̃ [J ]

PrH̃ [g̃ � 0]

Figure 3.4: Optimization scheme for scenario-based chance-constrained TIO-MPC. Unlike

nominal MPC, chance-constrained MPC optimizes the expectation of the objec-

tive function, while guaranteeing a confidence level of the probability of constraint

satisfaction.



Chapter 3 - Centralized Maintenance Optimization of Small-Scale Railway Networks 27

Finally, the continuous, nonlinear optimization problem to be solved at each time step k by
the scenario-based chance-constrained TIO-MPC controller can be formulated as:

min
t̃ (k)

E
H̃

[ fopt(x(k), t̃ (k), h̃)] (3.14)

Subject to: P
H̃

[g̃TIO(x(k), t̃ (k), h̃) ≤ 0] ≥ η (3.15)

g t̃ (t̃ (k)) ≤ 0 (3.16)

where constraint (3.16) is the compact expression of constraints (3.4)-(3.7), and η ∈ (0, 1) is
the confidence level of the chance constraints.
The goal is to minimize the expected value of the objective function fopt over the set of all
representative scenarios H̃ . Note that the expected value of the objective function fopt can
be computed as

E
H̃

[ fopt(x(k), t̃ (k), h̃)] =
∑

h̃∈H̃

p(h̃) fopt(x(k), t̃ (k), h̃), (3.17)

where p(h̃) is the probability of scenario h̃. In a similar way, the chance constraint (3.15) can
be reformulated as

∑

h̃∈H̃

p(h̃)I g̃TIO(x(k), t̃ (k), h̃)≤0 ≥ η. (3.18)

Because of the rounding procedure in the TIO prediction model, (3.14)-(3.16) is a non-smooth
optimization problem. Hence, derivative-free or direct search algorithms [89] like genetic al-
gorithms or pattern search should be considered. Pattern search with multi-start is used in
the case study in Section 3.5.

3.3 Middle-Level Slot Allocation Problem

The middle-level slot allocation problem is triggered at any time step at which an interven-
tion is recommended at the high level. This problem is solved to determine the maintenance
time slots for the corresponding intervention, optimizing the trade-off between traffic dis-
ruption and the total setup costs to complete the corresponding intervention, as stated in
Section 3.1. The planning horizon of the slot allocation problem is from the current time
step to the next time step (e.g. from October to November), as each intervention suggested
at the high level should be completed within the sampling time (e.g. one month).
Let Nsl denote the number of time slots available at the current time step of the high-level
controller. Based on the corresponding train schedule, we can evaluate the cost of traffic
disruption as a piecewise-constant function of track possession time. Traffic-free time inter-
vals are assigned a zero-cost, while other non-traffic-free intervals are associated with dif-
ferent costs of disruption. Let Nτ denote the number of intervals of this piecewise-constant
function, and let c j denote the cost of disruption of the j -th interval. An illustration of this
piecewise-constant function is given in Figure 3.5.

Similar to the TIO technique used in the high-level MPC controller, we define t start
i

and t end
i

as the start and end time instants of the i-th maintenance slot at the current time step, re-
spectively. Let the positive parameter ∆τmin denote the minimal length of a time slot. Recall
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cost of disruption is c j if the j -th interval [τ j , τ j+1] is occupied for maintenance.

that T̂Maint is the estimated maintenance time, and let csl denote the setup cost associated
with a maintenance slot. Moreover, a fixed setup time, denoted by Tset, is also associated
with a maintenance operation. This setup time includes the time to prepare and finish a
maintenance operation in a time slot. The middle-level optimization problem can then be
formulated as:

min
{(tstart

i
, tend

i
)}

Nsl
i=1

Nsl∑

i=1

Nτ∑

j=1

c j

(

max(min(τ j+1, t end
i ), τ j )−min(max(τ j , t start

i ), τ j+1)
)

+λsl

Nsl∑

i=1

cslItend
i

≤τNτ+1
(3.19)

subject to

t start
1 ≥ τ1 (3.20)

t end
Nsl

≤ τmax (3.21)

t end
i − t start

i ≥∆τmin ∀i ∈ {1, . . . , Nsl} (3.22)

t end
i +ǫ≤ t start

i+1 ∀i ∈ {1, . . . , Nsl −1} (3.23)

τmax = τNτ+1 +2Nsl∆τmin (3.24)

t start
i ≤ τNτ+1 =⇒ t end

i ≤ τNτ+1 ∀i ∈ {1, . . . , Nsl} (3.25)

Nsl∑

i=1

Itend
i

≤τNτ+1
·
(

t end
i − t start

i −Tset

)

≥ T̂Maint. (3.26)

The first term in the objective function (3.19) is the total cost of disruption, while the sec-
ond term represents the number of active time slots, i.e. those located within the planning
period. Constraints (3.20) and (3.21) correspond to the lower and upper bounds of the time
slots, respectively. Similar to TIO, the upper bound τmax is given in (3.24) to allow for the
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situation with no active time slots. Constraint (3.22) guarantees that each time slot is larger
than the minimum length ∆τmin, while constraint (3.23) ensures that there is no overlap be-
tween the time slots. Constraint (3.25) excludes the situation of fractional time slots, where
the starting instant is inside the planning period while the end instant is outside the plan-
ning period. Finally, constraint (3.26) guarantees that the resulting time slots are sufficient
to perform all the maintenance interventions suggested at the high level.
The optimization problem (3.19)-(3.26) is a nonsmooth nonlinear programming problem.
However, it can be converted into to an MILP problem by introducing new binary and aux-
iliary variables and linear constraints, following the procedure described in [12] for MLD
systems. The number of binary variables in the transformed MILP problem is 2Nsl(Nτ+1).
As the maximum number of time slots is in general small (say, less than 5) in practice, the
resulting MILP problem can be solved exactly on a desktop PC when the number of inter-
vals in the piecewise-constant function of disruption cost is not too large (say, less than 500,
based on our computational experiments).

3.4 Low-Level Clustering Problem

The low-level problem is triggered whenever an intervention is suggested for any component
by the high-level controller. A nonsmooth nonlinear programming problem is solved to de-
termine the optimal execution plan for each active time slot determined at the middle level.
The resulting execution plan groups various basic units into different clusters depending on
their location and condition. Only the basic units located inside a cluster will be treated.
The low-level problem determines the optimal start and end position of each cluster, trying
to cover as many severely deteriorated basic units as possible inside a cluster, subject to the
maintenance time slot. Similar to the middle-level problem, different low-level problems
must be solved if different interventions are suggested at the high level. Moreover, for each
intervention, we only consider the basic units inside the components where the correspond-
ing intervention is prescribed. This further reduces the size of the optimization problem.
Let N Sq denote the total number of basic units where the corresponding intervention is sug-
gested by the high-level controller, while the vectors ξ and w contain the positions and con-
ditions of these basic units respectively. Furthermore, let ξk and w j denote the position and
condition of the j -th basic unit. The basic units are all located inside the planning range
[ξ, ξ]. Let T sl

s denote the duration of the s-th resulting active time slot from the middle-level

problem. Define I1 = {1, . . . , N Sq} as the set of indices that need to be treated at the first time
slot. If the middle-level problem results in more than one time slot, let Is denote the set
of indices of the basic units still remained to be treated at time slot s for any s > 1. At each
time slot s, the basic units are grouped into N cl clusters to be treated by the given consid-
ered maintenance intervention, where φstart

i ,s and φend
i ,s denote the start and end position of

the i-th cluster. Let ∆φmin and ∆φmax denote the minimum and maximum size of a clus-
ter, respectively. Only the basic units inside a cluster are processed by a specific machine.
Let von and voff represent the speed of the machine in working mode (e.g. tamping or grind-
ing) and non-working mode (driving), respectively. Let Ton and Toff denote the switch-on and
switch-off time of the machine. The following nonlinear optimization problem is formulated
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to determine the clusters within the s-th time slot:

max
{φstart

i ,s
,φend

i ,s
}N cl
i=1

Ncl
∑

i=1

∑

j∈Is

w j Iφstart
i ,s ≤ξ j≤φend

i ,s
+λ

Ncl
∑

i=1

I
φend

i ,s >ξ (3.27)

subject to

φstart
1,s ≥ ξ (3.28)

φend
Ncl,s

≤ ξmax (3.29)

∆φmin ≤φend
i ,s −φstart

i ,s ≤∆φmax ∀i ∈ {1, . . . , Ncl} (3.30)

φstart
i+1,s −φend

i ,s ≥ ǫ ∀i ∈ {1, . . . , Ncl −1} (3.31)

ξmax = ξ+2Ncl(∆φmin +ǫ) (3.32)

φstart
i ,s ≤ ξ ⇐⇒ φend

i ,s ≤ ξ ∀i ∈ {1, . . . , Ncl} (3.33)

Ncl
∑

i=1

I
φend

i ,s ≤ξ ·
(
φend

i ,s −φstart
i ,s

von
+Ton +Toff

)

(3.34)

+
Ncl−1∑

i=1

I
φend

i ,s ≤ξ ·
φstart

i+1,s −φend
i ,s

voff

+Tset ≤ T sl
s

The first term in the objective function (3.27) strives to assign the most severely deteriorated
basic units to a cluster, while the second term minimizes the total number of active clus-
ters that are located within the planning range. Similar to constraints (3.20)-(3.25) of the
middle-level problem, a TIO-like approach is used again to constraints (3.28)-(3.33). The
only difference is that instead of time instants in a standard TIP approach, we consider spa-
tial positions. The first term in constraint (3.34) calculates the time needed for the machine
to treat the basic units inside all active clusters, including the switching on/off time. The sec-
ond time computes the time need for the machine to drive between clusters. The summation
of the two parts gives the total maintenance time, which should be less than the duration T sl

s .
The low-level problem (3.27)-(3.34) can be transformed into an MILP problem following the
procedure described in [12]. The number of binary variables of the transformed MILP can
be as large as 2NclN

Sq +2Ncl, which can be huge for a long track line with a large number of
basic units. However, based on the computational experiments in the case study, for a short
track line (e.g. 25 km) with a moderate number of basic units (e.g. less than 500 squats) and
a small number of available clusters (e.g. less than 5), the resulting MILP is still tractable.
The resulting optimal clusters might not cover all the required basic units due to lack of
maintenance time. Let R denote the set of the indices of all the remaining squats not cov-
ered by any cluster in any active time slot. Define

νrem =
∑

j∈R w j

∑NSq

j=1 w j

(3.35)

∆T̂ =
|R|
N Sq

·
ξ−ξ

von
, (3.36)

where νrem measures the ratio of the accumulated condition of the remaining basic units
over the total condition of all the basic units, while ∆T̂ is an estimate of the additional
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Table 3.1: Evolution of squats of different categories and with different uncertain growth rate.

The length that a squat has evolved into after one month is calculated from its cur-

rent length L (in mm).

Realization of
uncertainties

Light squat
(L < 30)

Medium squat
(30≤ L ≤ 50)

Severe squat
(L > 50)

Fast growth 1.016 ·L+1.2809 1.1029 ·L−1.6725 L+4.5
Average growth 1.0017 ·L+0.9959 1.0699 ·L−1.2165 1.0008 ·L+2.6694

Slow growth 0.9915 ·L+0.681 1.016 ·L−0.0801 0.9949 ·L+1.0127

maintenance time to cover the remaining basic units. The values of νrem and ∆T̂ deter-
mine whether to leave the remaining basic units uncovered, or treat them with additional
maintenance time, as stated in Section 3.1.

3.5 Case Study

3.5.1 Setup

A case study on the optimal treatment of squats is performed for the Eindhoven-Weert line
in the Dutch railway network. This line is approximately 25 km long, and we divide it into
five sections of equal length, as shown in Figure 3.6. The rail of the Eindhoven-Weert line
is considered as the infrastructure in this case study, and the five sections of rail are treated
as components with independent deterioration dynamics. The basic units are the 454 indi-
vidual squats located on the entire rail from historical data. A squat is a typical rail contact
fatigue, and its evolution depends on the dynamic contact between wheels and rails. Squats
are classified into different categories depending on their visual length1, which can be de-
tected automatically using techniques like axle box acceleration (ABA) systems [92, 105],
eddy current testing [153], and ultrasonic surface waves [48]. In this thesis, squats with a
visual length below 30 mm are considered as light squats, in which cracks have not appeared
yet. Squats with a visual length ranging from 30 to 50 mm are considered to be at the medium
stage of growth. The medium squats evolve into severe squats when the network of cracks
spreads further. Squats with a visual length over 50 mm are considered as severe squats. They
should be treated as early as possible because they might lead to hazards like derailment.

Simulation Model

We call the deterioration model of one individual squat the simulation model, which is a
piecewise-affine function fitted using historical data of the Eindhoven-Weert line. The length
of each individual squat is updated by the simulation model at each time step. Three real-
izations of the uncertainties are considered. They are fast, average, and slow growth, with
a probability of occurrence of 0.3, 0.4, and 0.3, respectively. Let L denote the length of an
individual squat; the natural evolution (without any maintenance interventions), which de-
scribes the length of the squat after one month, is given in Table 3.1.
A squat can be treated effectively by grinding only when its length is less than the effective

1The length noticeable at the surface of the rail.
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Figure 3.6: Eindhoven-Weert divided into five sections.

(a) Light squat. (b) Medium squat. (c) Severe squat.

Figure 3.7: Squats with different severities.
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Table 3.2: Effect of grinding for squats of different categories and with different uncertain

growth rates. The length of a squat after grindng can be calculted from its current

length L (in mm).

Realization of
uncertainties

L ≤ 16 L > 16

Fast 0 1.0028 · (L−16)
Average 0 1.0009 · (L−16)

Slow 0 0.9985 · (L−16)

grinding length (16 mm). The length a squat can be reduced to by grinding is calculated us-
ing the formulas of Table 3.2.
We also consider the occurrence of new squats. At each time step (month), the number of
new squats in the entire track is the rounded value of a random variable normally distributed
with mean 3 and variance 1. The probability distribution of the location of a new squat is also
a normal distribution with mean 12.5 km and standard deviation 4 km. New squats should
always be early-stage squats when they first appear on the rail, and the initial length of a new
squat follows a normal distribution with mean 15 mm and standard deviation 5 mm.

Prediction Model

The condition of one section is defined as the average length of all the squats within the sec-
tion. The condition of each section is updated by aggregating the simulated squat lengths
using the simulation model for each individual squat. The dynamics of the condition of
one section is described by the prediction model, which can be obtained by piecewise-affine
identification using simulated data obtained from the simulation model. The prediction
model is used for long-term maintenance planning at the high level. The set U = {0, 1, 2}
contains all possible maintenance actions that can be applied to one section, with 0, 1, 2 rep-
resenting “performing no maintenance", “grinding", and “replacing", respectively. Note that
these maintenance actions are applied to each squat in the section. The condition xcon, j is
defined as the average length of squats in section j , while the auxiliary variable xaux, j records
the number of previous grinding operations on section j since the last replacement. Grind-
ing cannot be applied an unlimited number of times, as it tries to remove a squat by reduc-
ing the thickness of the rail. We define N Gr

max as the maximal number of grindings that can
be applied to a section of rail. Three realizations of uncertainties are considered, which are
collected in the set Θ j = {1, 2, 3}, with 1, 2, 3 representing fast, average, and slow deteriora-
tion. Following the notation of the generic deterioration model described in Section 2.2.1,
the dynamics of the condition of section j can be described by the following scenario-based
model:

xcon
j (k +1) = f con(xcon

j (k), u j (k), θ j (k))

=







fDeg(xcon
j

(k), θ j (k)) if u j (k) = 0 (no maintenance)

fGr(xcon
j

(k), θ j (k)) if u j (k) = 1 (grinding)

0 if u j (k) = 2 (replacing)

(3.37)

∀ j ∈ {1, . . . ,n}.



34 Maintenance Optimization for Railway Infrastructure Networks

The natural degradation of one section is described by the function fDeg, which is a piecewise-
affine function in the form

fDeg(xcon
j , θ j ) = aq,θ j

xcon
j +bq,θ j

if xcon
j ∈X

con
j ,q ⊂X

con
j , (3.38)

where the condition space of section j is partitioned as {X j ,q }3
q=1. As discussed in [77], light

(early-stage), medium (middle-stage), and severe (late-stage) squats exhibit different dete-
rioration dynamics, and a piecewise-affine function is able to capture the deterioration dy-
namics of the squats.
The function fGr captures the effect of grinding, which becomes less effective when the con-
dition deteriorates more severely. It is also a piecewise-affine function of the form

fGr(x j ,θ j ) =







0 if x j ≤ xeff
θ j

ψθ j
(x j −xeff

θ j
) if x j > xeff

θ j

(3.39)

where xeff
θ j

represents the effective condition for grinding if θ j is realized.

The sampling time T in this case study is one month. The prediction horizon NP and control
horizon NC are both 6 months. The predicted condition of each section must be kept below a
maintenance limit within the prediction window at every time step, which can be expressed
by the following constraint:

xcon
j (k + l ) ≤ xmax ∀ j ∈ {1, . . . ,n}, ∀l ∈ {1, . . . , NP}. (3.40)

The dynamics of the auxiliary variable xaux
j

, which is a counter for grinding, can be formally
expressed as:

xaux
j (k +1) = f aux(xaux

j (k), u j (k))

=







xaux
j

if u j (k) = 0 (no maintenance)

xaux
j

+1 if u j (k) = 1 (grinding)

0 if u j (k) = 2 (replacing)

(3.41)

∀ j ∈ {1, . . . ,n}.

The number of grinding operations cannot exceed a maximum number N Gr
max within the pre-

diction window, thus we have:

xaux
j (k + l ) ≤ N Gr

max ∀ j ∈ {1, . . . ,n}, ∀l ∈ {1, . . . , NP}. (3.42)

In summary, equations (3.37),(3.41), together with constraints (3.40),(3.42) form the stochas-
tic deterioration model for this case study. A scenario-based approach is applied to this
stochastic model. Three representative scenarios are selected from the set Θ̃ containing all
possible realizations of uncertainties within the prediction period. They correspond to fast,
average, slow deterioration for all sections at every time step within the prediction period.
The same prediction model with the same parameters is used for each section. The condi-
tion space X

con
j

= [0, 70] for section j is partitioned into the following three intervals:

X
con
j ,1 = [0, 30), X

con
j ,2 = [30, 50), X

con
j ,3 = [50, 70].
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The parameters for the piecewise-affine degradation function (3.38) are collected in the fol-
lowing two matrices:

A j = (aq,θ j
) =





1.0037 1.0073 1.0120
1.0017 1.0053 1.0075
0.9992 1.0007 1.0008



 ,B j = (bq,θ j
) =





0.1954 0.1484 0
0.1438 0.0732 0
0.1041 0.0701 0.0743





∀ j ∈ {1, . . . ,n}.

The parameters for the grinding model (3.39) are collected in the two matrices

Ψ j = (ψθ j
) =





0.9996
0.9996
0.9995



 , X eff
j = (xeff

θ j
) =





11.8275
11.9586
11.9336





∀ j ∈ {1, . . . ,n}.

The initial condition x(0) = [(xcon(0))T (xaux(0))T]T is given by

xcon(0) =









23.8757
24.356

27.7457
26.0526
26.0487









, xaux(0) =









7
8
7
7
8









.

The operational limit xmax is 40 mm, and a maximum of 10 grinding operations since the last
replacement is allowed for each section, i.e. N Gr

max = 10.
The trade-off between the condition and the cost is λ = 10 in the high-level objective func-
tion (3.14), and the scaling factor µ is 70. The 1-norm is taken for JDeg in (3.11), and replace-
ment is 30 times as expensive as grinding, i.e. γ j ,1 = 1 and γ j ,2 = 30 in (3.12). The mainte-
nance limit is xcon

max = 40 mm.

Parameters for Middle-Level and Low-Level Problems

The hourly cost of traffic disruption is determined by the number of passenger trains2 from
Eindhoven to Weert per hour. Only regular schedules (excluding special schedules for holi-
days) are considered. The train schedule is periodic with a period of one week. Moreover, all
workdays (Monday-Fridy) have the same schedule, while Saturdays and Sundays have dif-
ferent schedules.
Three levels of hourly disruption cost, high cost (cH = 10), medium cost (cM = 3), and low cost
(cL = 1) are considered, while a zero cost is assigned to traffic-free intervals. The disruption
function, which specifies the hourly disruption cost for any intervals in the planning hori-
zon, can then be described by the lookup-table presented in Table 3.3. The planning horizon
is the sampling time of the high-level controller (one month), and the parameters for the
middle-level problem (3.19)-(3.26) are given in Table 3.4. The estimated time for mainte-

2Freight trains are not considered, as there is at most one freight train from Eindhoven to Weert every
workday.
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Table 3.3: Hourly disruption cost for a week. Interval with no trains passing are assigned a

zero cost. Intervals with less than 2 trains per hour are assigned a low hourly cost cL.

Intervals with 2-3 trains per hour are assigned a medium hourly cost cM. Intervals

with 4-6 trains per hour are assigned a high hourly cost cH.

Workday Saturday Sunday

Interval
Number
of trains

disruption
cost

Number
of trains

Disruption
cost

Number
of trains

Disruption
cost

0:00 -1:00 1 cL 2 cL 2 cL
1:00 -6:00 0 0 0 0 0 0
6:00 -7:00 3 cM 0 0 0 0
7:00 -8:00 6 cH 4 cH 1 cL

8:00 -13:00 6 cH 6 cH 5 cH

13:00 - 14:00 5 cH 6 cH 5 cH
14:00 - 19:00 6 cH 6 cH 5 cH
19:00 - 20:00 5 cH 5 cH 4 cH

20:00 - 24:00 3 cM 3 cM 3 cM

Table 3.4: Parameters for the middle-level optimization problem

Parameter Explanation Value
Nsl Maximum number of time slots 2
csl Setup cost of one time slot 1

λsl Trade-off between disruption and setup cost
10 (representative run)
1 (supplementary run)

Tset Setup time for one time slot 1 h
∆τmin Minimum size of a time slot 5 h

nance T̂Maint is calculated from the interventions suggested by the high-level controller, i.e.

T̂Maint = TSec

n∑

j=1

Iu j=1 (3.43)

where TSec = 2.5 is the estimated time (in hours) to grind one section.

As only squats located in the section where grinding is suggested by the high-level controller
are considered in the low-level optimization problem, the number (NSq) and the locations
(ξ) of the squats are not fixed. However, we have NSq ≤ 454 as there are 454 existing squats on
the whole track. The vector w containing the lengths of the considered squats also changes
at each time step. The parameters for the low-level problem (3.27)-(3.34) are given in Table
3.5. Only one slot is used in the middle-level problem, thus s = 1. The setup time Tset in
constraint (3.34) is the same as in the middle-level problem, and the actual length of the
time slot T sl

s is the one obtained from the results of the middle-level problem (3.19)-(3.26).
The multi-level approach is implemented in Matlab R2016b, on a desktop computer with
an Intel Xeon E5-1620 eight-core CPU and 64 GB of RAM, running a 64-bit version of SUSE
Linux Enterprise Desktop 12. The nonlinear optimization problem at each time step of the
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Table 3.5: Parameters for the low-level optimization problem

Parameter Explanation Value
Ncl Maximum number of clusters 3
λcl Penalty on the number of active clusters 1

∆φmin Minimum cluster size 1 km
∆φmax Maximum cluster size 25 km

Ton Switch-on time of grinding machine 15 min
Toff Switch-off time of grinding machine 15 min

von Grinding speed
2.2 km/h (representative run)
1.6 km/h (supplementary run)

voff Driving speed of grinding machine 80 km/h

high-level MPC controller is solved using the function patternsearch of the Matlab Global
Optimization Toolbox, with 100 random starting points. CPLEX 12.5 (called via Tomlab 8.0)
is used as the MILP solver for the middle-level and the low-level problems.

3.5.2 Results & Discussion

The multi-level, scenario-based, chance-constrained approach is illustrated by a represen-
tative run with a five-year planning horizon. The optimal maintenance interventions sug-
gested by the high-level MPC controller are shown in Figure 4.3b, and the simulated condi-
tion of each section is shown in Figure 4.3a. Note that the state at each time step is com-
puted from the individual squat lengths simulated by the simulation model, and only the
cluster-wise grinding plan from the low level is applied to the simulation model. Grinding
is suggested when the condition is near its maintenance limit (40 mm), and the interval be-
tween two consecutive grinding turns out to be between 10 to 18 months for a section. It
is interesting to note that the interval between two consecutive grindings becomes shorter
over time, as shown in the resulting intervention plan of section 1, 3, and 4 in Figure 4.3b.
This is because grinding becomes less effective the more it is applied to the same section
of rail. When the maximum number of grindings (10 in the case study) is reached for any
section, replacing is suggested. The mean and maximum CPU time to solve the MPC opti-
mization problem at each time step is 47 s and 68 s, respectively, which is much faster than
the sampling time (one month). Moreover, both the middle-level and the low-level problem
can be solved to global optimality within 10 s. Thus we can claim that the proposed multi-
level MPC approach is implementable in real-time.
The results of the middle-level and low-level problem are shown in Figure 3.9. The middle-
level and low-level problems are triggered whenever grinding is suggested for any of the five
sections. As shown in Table 3.3 in Appendix B, a 5-hour traffic free time slot (1:00-6:00) is
available for workdays, and a 6-hour traffic free time slot (1:00-7:00) is available for week-
ends. As shown in Figure 3.9, only one section is to be ground at time step 9, 11, 12, 21, 25,
27, 28, 30, 35, 37, 42, according to the high-level MPC controller, and all the squats inside
the single section can be covered in one cluster, using a 5-hour short time slot on a week-
day (e.g. Monday). Two non-consecutive sections are suggested at time step 10 at the high
level, and even with a 6-hour long time slot on weekends (e.g. Sunday), there is still one squat
not covered by the resulting two clusters. This is because the benefit of covering this single
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medium-stage squat is less than the cost associated with the additional maintenance time
to cover it.

3.5.3 Comparison with Alternative Approaches

Three alternative approaches for maintenance planning: nominal MPC, the cyclic approach,
and the approach currently used in practice, are implemented for comparison with the pro-
posed approach. The nominal MPC approach can be viewed as the deterministic coun-
terpart of the scenario-based chance-constrained MPC approach, as it considers only the
average deterioration dynamics in the optimization problem at each time step. The cyclic
approach is a preventive maintenance strategy that performs grinding and replacement at
regular intervals. Here we briefly explain the formulation of the offline optimization prob-
lem to obtain the optimal intervals for grinding and replacement for the cyclic approach.
Let t0, j denote the time instant at which the first grinding is applied to the j -th section. Let
TGr, j denote the period of grinding for section j . Replacing is usually performed after a mul-
tiple of consecutive grindings, e.g. a section of rail is replaced after 5 grindings. We denote
this multiple by a scalar r , which is the same for all sections. Define t0 = [t0,1 . . . t1,n]T and
TGr = [TGr,1 . . .TGr,n]T. Then the cyclic maintenance optimization problem can be formu-
lated as:

min
t0 ,TGr,r

kend∑

k=1

n∑

j=1

xcon
j (k)+λ(γ j ,1Iu j (k)=1 +γ j ,2Iu j (k)=2) (3.44)

subject to

xcon
j (k +1) = f con(xcon

j (k), u j (k), 2) (3.45)

xcon
j (k) ≤ xmax (3.46)

u j (k) =







1, if k = t0, j or (k − t0, j )mod round(TGr, j ) = 0

2, if (k − t0, j )mod round(r TGr, j ) = 0

0, otherwise

(3.47)

t min
0 ≤ t0 ≤ t max

0 (3.48)

T min
Gr ≤ TGr ≤ T max

Gr (3.49)

2 ≤ r ≤ rmax (3.50)

for all j ∈ {1, . . . ,n} and k ∈ {1, . . . ,kend}.
The objective (3.44) corresponds to minimizing the accumulated condition degradation and
intervention cost for the entire track over the five-year planning horizon. Only the average
(nominal) deterioration rate (θ(k) = 2 for all k) is considered, as shown in (3.45). Constraint
(3.46) guarantees that the nominal condition will not exceed the maintenance limit for the
whole planning horizon. Equation (3.47) converts the grinding and replacing periods into
interventions. Constraints (3.48) and (3.50) are upper and lower bounds for the decision
variables. The offline cyclic maintenance optimization problem (3.44)-(3.50) is a nonsmooth
optimization problem, which is solved using multi-start pattern search in the case study.
We also implement the approach currently used in the Netherlands. We refer to this ap-
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Figure 3.8: Simulated average squat length and interventions suggested by the high-level MPC

controller for each of the five sections of the entire track for a representative run.
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Figure 3.9: Results of the middle-level problem and the low-level problem at time step 9, 10,

11, and 12 of the high level. A squat (represented by a dot) is in a cluster if it is

covered by a circle (first cluster) or square (second cluster).
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Figure 3.9: Results of the middle-level problem and the low-level problem at time step 21, 25,

27, and 28 of the high level. A squat (represented by a dot) is in a cluster if it is

covered by a circle (first cluster) or square (second cluster).
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Figure 3.9: Results of the middle-level problem and the low-level problem at time step 30, 35,

and 37 of the high level. A squat (represented by a dot) is in a cluster if it is covered

by a circle (first cluster) and square (second cluster).
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Figure 3.9: Results of the middle-level problem and the low-level problem at time step 42 of

the high level. A squat (represented by a dot) is in a cluster if it is covered by a circle

(first cluster) and square (second cluster).

Table 3.6: Sequences of the realizations of uncertainties, where 1, 2, 3 stands for fast, average,

slow growth for every squat, respectively. For easy implementation only the first 10

entries of each sequence are given; the complete sequence for the entire five-year

planning horizon can be obtained by repeating the 10 entires 6 times.

Run Sequence of the realizations of uncertainties
1 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, . . .
2 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, . . .
3 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, . . .
4 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, . . .
5 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, . . .
6 3, 1, 1, 3, 2, 3, 2, 1, 2, 2, . . .
7 2, 1, 3, 3, 2, 2, 1, 3, 2, 1, . . .
8 1, 2, 3, 1, 3, 2, 2, 1, 3, 2, . . .
9 1, 3, 2, 3, 2, 1, 2, 2, 3, 1, . . .

10 1, 3, 2, 1, 3, 1, 2, 2, 1, 3, . . .

proach as “current approach", which is a cyclic preventive maintenance approach that grinds
the entire line every six months.
The four maintenance approaches are applied to ten test runs of a five-year planning hori-
zon with different pre-defined sequences of realizations of uncertainties in the simulation
model. Each sequence specifies the realization of uncertainties for each individual squat at
each time step, i.e. each month, in the five-year planning period. For easy reproduction of
our results, we set the realization of uncertainties to be the same for all the squats in the en-
tire track at each time step. In this way, only one entry is needed at each time step to specify
the realization of uncertainties for all the squats. We consider a total of ten runs, where for
each run the 60 entries of the realization of the uncertainty are obtained by repeating the
first 10 entries listed in Table 3.6.
We compare the constraint violation, the value of the closed-loop objective function for the
three approaches, and CPU time of the two MPC controllers. The constraint violation is
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measured by:

v = max
j=1,...,n

k=1,...,kend

{
xcon

j
(k)−xcon

max

xcon

}

(3.51)

where xcon
max = 40 mm is the maintenance limit, and xcon = 70 mm is the range of the con-

dition. Let vNom, vCC, vCyc, and vCur denote the maximum constraint violation of the nom-
inal MPC controller, the scenario-based chance-constrained MPC controller, the cyclic ap-
proach, and the current approach, respectively. The maximum constraint violation mea-
sures the robustness of each approach. Similarly, let JNom, JCC, JCyc, and JCur denote the
closed-loop objective function value3 for the nominal MPC controller, the scenario-based
chance-constrained MPC controller, the cyclic approach, and the current approach, respec-
tively. The closed-loop objective function value measures the cost-efficiency of each ap-
proach. A lower value indicates higher cost-efficiency. Moreover, let TNom and TCC denote
the total CPU time4 for the nominal and chance-constrained MPC controller, respectively.
As our goal is a safe but non-conservative maintenance strategy that is tractable, robustness
and cost-efficiency are more important evaluation criteria than CPU time. The performance
and computational effort of the four maintenance approaches are compared in Table 3.7.
The current approach, i.e. grinding every six months, is the most conservative approach. Al-
though it has no constraint violation for the ten test runs, the closed-loop objective function
value is almost three time as much as that of the nominal MPC approach. The cyclic ap-
proach, which can be viewed as an improvement on the over-conservative current approach
by optimizing the intervals for grinding and replacing, is more cost-efficient than the current
approach, as its closed-loop objective function value is only slightly higher than that of the
two MPC approaches, except in Run 4. The cyclic approach is not robust, as it results in con-
straint violations in seven out of the ten test runs. The advantage of the cyclic approach is
that it is less computationally demanding than the MPC approaches, as only one optimiza-
tion problem needs to be solved offline.
Theoretically, both MPC controllers can have constraint violations in the whole planning
period. Although more robust than nominal MPC, scenario-based chance-constrained MPC
only guarantees that the constraints are satisfied with a possibility higher than a given con-
fidence level (90% in this case study). But there is no constraint violation for the scenario-
based chance-constrained MPC in the ten runs of simulation, as shown in Table 3.7, while
the constraints are violated for nominal MPC in seven out of the ten runs. The largest con-
straint violation for the nominal MPC approach is 0.78% for Run 3, which might lead to haz-
ards like derailment. The closed-loop objective function values of the two MPC approaches
are almost equal in every test run, and the two MPC approaches are the most cost-efficient
among the four approaches. It is interesting to note that the closed-loop objective function
values of the two MPC approaches in Run 4 are only half of those of the other runs, show-
ing a significant advantage over the cyclic approach and the current approach in terms of
cost-efficiency. This is because MPC is a flexible real-time decision making scheme that can
adapt the intervention plan to the actual (or estimated) condition of the infrastructure, while
the cyclic and the current approaches are both offline schemes that do not take the actual
(or estimated) condition into consideration.

3This is obtained by evaluating (3.14) over the entire planning horizon.
4We measure only the CPU time to solve all the optimization problems within the planning horizon.
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Table 3.7: Comparison between nominal MPC controller, the scenario-based chance-

constrained MPC controller, the cyclic approach, and the current strategy for ten

runs with a pre-defined sequence of uncertainties. The CPU time to solve the offline

optimization problem for the cyclic approach is 7.5 mininutes.

Run Constraint violation
Closed-loop
performance

CPU time (h)

vNom vCC vCyc vCur
JNom

JCur

JCC

JCur

JCyc

JCur
JCur TNom TCC

1 0.62% 0 0.26% 0 35.37% 35.33% 36.12% 344400 0.39 0.87
2 0 0 0 0 35.53% 35.45% 36.00% 344320 0.40 0.89
3 0.78% 0 0.08% 0 35.39% 35.10% 36.12% 344420 0.38 0.89
4 0.27% 0 0 0 17.46% 23.17% 35.86% 344260 0.37 0.85
5 0.51% 0 0 0 35.48% 35.39% 36.05% 344380 0.38 0.88
6 0 0 0.61% 0 35.38% 35.33% 36.11% 344370 0.40 0.90
7 0.69% 0 0.69% 0 35.37% 35.33% 36.107% 344370 0.40 0.88
8 0 0 0.55% 0 35.12% 35.08% 36.10% 344390 0.38 0.89
9 0.68% 0 0.68% 0 35.17% 35.33% 36.11% 344360 0.39 0.88

10 0.51% 0 1.47% 0 35.34% 35.07% 36.19% 344390 0.42 0.89

The greatest advantage of the nominal MPC approach over the chance-constrained MPC ap-
proach is that it requires less than half of the CPU time of the chance-constrained approach.
Despite being the most computationally demanding approach, from Table 3.7 we can still
conclude that the chance-constrained MPC approach is the most promising one among the
four alternative approaches, as robustness and cost-efficiency are more important evalu-
ation criteria than the computational effort, since the time to compute an optimal mainte-
nance plan is abundant for infrastructures with a slow deterioration process. Indeed, despite
being the slowest one among the four approaches, the chance-constrained MPC approach is
not only tractable but also real-time implementable, as the sampling time in the case study
is one month, and the optimization problem at each time step of the chance-constrained
MPC approach takes approximately one minute to solve.

3.6 Conclusions

In this chapter a multi-level approach for the optimal planning of maintenance interven-
tions for railway infrastructures has been developed . A scenario-based, chance-constrained
TIO-MPC controller is implemented at the high level for long-term, component-wise, condition-
based planning of maintenance interventions. Both the middle-level and low-level problems
are triggered whenever an intervention is suggested for any component by the high-level
controller. When triggered, the middle-level problem allocates the time slots for the sug-
gested interventions by optimizing the trade-off between total setup costs of maintenance
operations and the disruption to the train traffic. The low-level problem then groups the ba-
sic units into clusters to execute the maintenance interventions suggested at the high level.
This cluster-wise work plan must be performed within the time slot determined at the mid-
dle level. A case study on the optimal treatment of squats in the Eindhoven-Weert line in the
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Dutch railway network is performed. The simulation results of a representative run with a
five-year planning horizon show that the proposed multi-level approach is real-time imple-
mentable and provides a suitable maintenance plan. A comparison with the nominal ap-
proach further demonstrates the advantage of the proposed chance-constrained approach
in keeping the condition below the maintenance limit.



Chapter 4

Distributed Maintenance Optimization of

Large-Scale Railway Networks

4.1 Problem Description

We consider the optimal long-term condition-based maintenance planning and short-term
maintenance crew scheduling of a railway network composed of multiple stations and lines,
where a line is defined as the part of track between two stations. Each line is further divided
into multiple sections. The degradation level of each section is represented by its condition,
which is aggregated from measurements of individual defects, e.g. visual lengths and crack
depths of a squat. Different types of maintenance interventions, with different effects and
costs, can be applied to improve the condition of a section. In this chapter, for each section,
a discrete-time deterioration model is developed to describe the deterioration process of its
condition. The sampling time is usually long (at least one month), due to the slow deteri-
oration dynamics of railway infrastructures. Various parameter uncertainties (e.g. random
degradation rate) are taken into account in the stochastic deterioration model.
Each type of maintenance intervention is performed by a specific maintenance crew. We de-
fine a maintenance operation as a round tour of the maintenance crew departing from and
returning to a maintenance base, where the heavy machineries, like a grinding machine, can
be stored. We also consider a fixed setup cost, including the cost of machinery and person-
nel, for each maintenance operation. Furthermore, we define a time period, which usually
ranges from one week to one month, as the smallest time unit a maintenance operation can
be performed. Each type of maintenance intervention has also a time budget, which spec-
ifies the maximal track possession time allocated to this specific maintenance intervention
per time period. We consider flexible time budgets, i.e. in addition to the given time bud-
gets, the maintenance contractor can request extra maintenance time with additional costs
from the infrastructure manager. We develop an integrated multi-level approach that covers
both the long-term condition-based maintenance planning, and the short-term scheduling
of maintenance crews, for a large-scale railway network. A maintenance intervention plan-
ning problem, and maintenance crew scheduling problems, are solved at the high level and
low level, respectively. Based on the stochastic deterioration model, a Model Predictive Con-
trol (MPC) [26, 132] approach is developed at the high level to determine the optimal main-
tenance intervention plan for the whole network, minimizing condition deterioration and
maintenance costs over a prediction horizon. The MPC optimization problem is formulated
as a chance-constrained optimization problem to keep the condition deterioration under

47
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a given threshold with a probabilistic guarantee. To improve the scalability of the proposed
approach, a distributed optimization scheme is applied to solve the MPC optimization prob-
lem containing both continuous and discrete decision variables. The low-level maintenance
crew scheduling problem is triggered whenever the corresponding intervention is suggested
by the high-level controller, and its planning horizon is equal to the high-level sampling time.
The objective of the low-level problem is to minimize the total setup costs of maintenance
operations, the total travel costs of the maintenance crew, and the penalty costs associated
with additional maintenance time (if there is any), over the whole network, while ensuring
the planned intervention is completed before the next sampling time step.

4.2 High-level Maintenance Intervention Planning

We consider the optimal maintenance intervention planning for a network of railway track
divided into n sections over a given planning horizon. Each section is viewed as a subsys-
tem. The subsystems are coupled by global resource constraints, e.g. limited track posses-
sion hours. We use the deterioration model of Section 2.2.1 to describe the deterioration
dynamics of each section j .

4.2.1 Chance-Constrained MPC

In this section we present the chance-constrained MPC optimization problem for each sub-
system, and apply the scenario-based robust approach developed in [100] to approximate
each local chance-constrained MPC problem with a deterministic problem. Let NP denote
the prediction horizon, and define:

x̃ j ,k = [x̂T
j ,k+1|k . . . x̂T

j ,k+N
P
|k ]T

ũ j ,k = [u j ,k . . . u j ,k+N
P
−1]T

θ̃ j ,k = [θT
j ,k . . . θT

j ,k+N
P
−1]T,

where x̂ j ,k+l |k = [x̂con
j ,k+l |k x̂aux

j ,k+l |k ]T denotes the estimated state of subsystem j at time step

k + l , based on information available at time step k. The vectors x̃con
j ,k and x̃aux

j ,k are defined
similarly as x̃ j ,k . The estimated state x̂ j ,k+l |k can be calculated recursively using (2.1), and
x̃ j ,k can be viewed as a function that depends on ũ j ,k , θ̃ j ,k and that is parametrized by the
current state x j ,k , i.e.

x̃ j ,k = f̃ j (ũ j ,k , θ̃ j ,k ; x j ,k ). (4.1)

The objective of each local MPC controller is to minimize the trade-off between condition
deterioration and maintenance costs within the prediction window, i.e.

J j (x̃ j ,k , ũ j ,k ) = J
Deg
j

(x̃ j ,k )+φ j J Maint
j (ũ j ,k ), (4.2)

in which

J
Deg
j

(x̃ j ,k ) = ‖P x̃ j ,k‖1, (4.3)
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and

J Maint
j (ũ j ,k ) =

N
P
−1

∑

l=0

N∑

q=1
cMaint

q, j Iu j ,k+l=q . (4.4)

The parameter φ j captures the trade-off between condition deterioration and maintenance
cost in subsystem j . The notation ‖·‖1 represents the 1-norm. The parameter cMaint

q, j
is the

cost of the q-th maintenance intervention in subsystem j . The chance-constrained opti-
mization problem for subsystem j at time step k can then be formulated as:

min
ũ j ,k

Eθ̃ j ,k
[J j (x̃ j ,k , ũ j ,k )] (4.5)

subject to: Pθ̃ j ,k

[

max
l=1,...,N

P

x̂con
j ,k+l |k (ũ j ,k , θ̃ j ,k ; x j ,k ) ≤ xcon

max

]

≥ 1−ǫ j (4.6)

x̃ j ,k = f̃ j (ũ j ,k , θ̃ j ,k ; x j ,k ), (4.7)

where ǫ j is the violation level of the chance constraint of subsystem j , and the function f̃ j

can be obtained by successive substitution of (2.1). The chance constraint (4.6) states that
the probability that the worst estimated condition within the planning horizon does not ex-
ceed the maintenance threshold xcon

max is at least 1−ǫ j .
We approximate the local chance-constrained problem (4.5)-(4.6) with a confidence level
β j using the two-phase scenario-based robust approach of [100] (see Section 2.2.4 for more
details). Let B

∗
j

denote the hyperbox obtained by solving the scenario-based problem (2.8)-

(2.9) for each dimension of θ̃ j ,k . Let H j denote the set of random scenarios of subsystem j ,
and define:

x̃(h)
j ,k = f̃ j (ũ j ,k , θ̃(h)

j ,k ; x j ,k ) (4.8)

for any h ∈H j . The resulting robust optimization problem can then be written as:

min
ũ j ,k , x̃(h)

j ,k

1

|H j |
∑

h∈H j

J j (x̃(h)
j ,k

, ũ j ,k ) (4.9)

subject to: max
θ̃ j ,k∈B

∗
j
∩Θ̃ j

max
l=1,...,N

P

x̂con
j ,k+l |k (ũ j ,k , θ̃ j ,k ; x j ,k ) ≤ xcon

max (4.10)

x̃(h)
j ,k

= f̃ j (ũ j ,k , θ̃(h)
j ,k

; x j ,k ) ∀h ∈H j , (4.11)

where (4.9) approximates the expectation of J j . As proved by [100], any feasible solution of
the robust optimization problem (4.9)-(4.10) is also an ǫ j-solution of the chance-constrained
MPC problem (4.5)-(4.7) with a probability of at least β j .
We define the following worst-case scenario:

θ̃(w)
j ,k ∈ arg max

θ̃ j ,k∈B
∗
j
∩Θ̃ j

max
l=1,...,NP

x̂con
j ,k+l |k (ũ j ,k , θ̃ j ,k ; x j ,k ). (4.12)

The robust constraint (4.10) can then be replaced by:

P j x̃(w)
j ,k

(ũ j ,k , θ̃(w)
j ,k

; x j ,k ) ≤ xcon
max, (4.13)
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where P j is a selection matrix satisfying P j x̃ j ,k = x̃con
j ,k . We then define S j =H j ∪ {w} as the

set containing all scenarios that need to be considered to approximate the chance-constrained
MPC optimization problem (4.5)-(4.7) by the deterministic optimization problem (4.9),(4.11),
(4.13).
As the convexity of the estimated condition x̂con

j ,k+l |k is crucial in computing the worst-case

scenario θ̃(w)
j ,k

, and x̂con
j ,k+l |k is obtained recursively using the system dynamics (2.1), we now

provide a theorem to check the convexity of each x̂con
j ,k+l |k for a given deterioration model. For

convenience, we rewrite the vector-valued multi-variable function f j in the following form:

f j (x j ,k , u j ,k ,θ j ,k ) =
[

f con
j

(xcon
j ,k , xaux

j ,k , u j ,k ,θ j ,k )

f aux
j

(xcon
j ,k , xaux

j ,k , u j ,k ,θ j ,k )

]

. (4.14)

We have the following theorem on the convexity of x̂con
j ,k+l |k and x̂aux

j ,k+l |k :

Theorem 4.1 If f con
j

and f aux
j

are convex in θ j ,k and convex and non-decreasing in xcon
j ,k and

xaux
j ,k , then the functions x̂con

j ,k+l |k and x̂aux
j ,k+l |k are both convex in θ̃ j ,k , for any l ∈ {2, . . . , NP }.

Proof : We prove Theorem 1 by induction. First we prove that xcon
j ,k+1|k and x̂aux

j ,k+1|k are convex

in θ̃ j ,k . By definition we have

xcon
j ,k+1|k (ũ j ,k , θ̃ j ,k ) = f con

j (xcon
j ,k , xaux

j ,k , u j ,k ,θ j ,k )

x̂aux
j ,k+1|k (ũ j ,k , θ̃ j ,k ) = f aux

j (xcon
j ,k , xaux

j ,k , u j ,k ,θ j ,k ).

Because f con
j

and f aux
j

are both convex in θ j ,k , x̂con
j ,k+1|k and x̂aux

j ,k+1|k are also convex in θ j ,k .

Moreover, as x̂con
j ,k+1|k and x̂aux

j ,k+1|k have no dependence on θ j ,k+2, . . . ,θ j ,k+NP
, both x̂con

j ,k+1|k
and x̂aux

j ,k+1|k are convex in θ̃ j ,k .

Now we prove that for any p ≤ l − 1, if x̂con
j ,k+p|k and x̂aux

j ,k+p|k are both convex on θ̃ j ,k , then

x̂con
j ,k+p+1|k and x̂aux

j ,k+p+1|k are also convex on θ̃ j ,k .

Since x̂con
j ,k+p|k and x̂aux

j ,k+p|k are both convex on θ̃ j ,k , for any w1, w2 ∈ Θ
N

P and α ∈ [0, 1], we
have:

x̂con
j ,k+p|k (ũ j ,k , αw1 + (1−α)w2) ≤αx̂con

j ,k+p|k (ũ j ,k , w1)+ (1−α)x̂con
j ,k+p|k (ũ j ,k , w2)

x̂aux
j ,k+p|k (ũ j ,k , αw1 + (1−α)w2) ≤αx̂aux

j ,k+p|k (ũ j ,k , w1)+ (1−α)x̂con
j ,k+p|k (ũ j ,k , w2).

Let (v)i denote the i-th entry of vector v . Because f con
j

is non-decreasing in xcon
j ,k and xaux

j ,k ,
we have:

x̂con
j ,k+p+1|k (ũ j ,k ,αw1 + (1−α)w2)

= f con
j (x̂con

j ,k+p|k (ũ j ,k , αw1 + (1−α)w2), x̂aux
j ,k+p|k (ũ j ,k , αw1 + (1−α)w2), u j ,k+p+1, (αw1 + (1−α)w2)p+1)

≤ f con
j

(

αx̂con
j ,k+p|k (ũ j ,k , w1)+ (1−α)x̂con

j ,k+p|k (ũ j ,k , w2), αx̂aux
j ,k+p|k (ũ j ,k , w1)+ (1−α)x̂con

j ,k+p|k (ũ j ,k , w2),

ũ j ,k , (αw1 + (1−α)w2)p+1

)

Moreover, because f con
j

(·, ·, ũ j ,k , ·) is convex for any ũ j ,k , and

(αw1 + (1−α)w2)p+1 =α(w1)p+1 + (1−α)(w2)p+1,
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we have

f con
j

(

αx̂con
j ,k+p|k (ũ j ,k , w1)+ (1−α)x̂con

j ,k+p|k (ũ j ,k , w2), αx̂aux
j ,k+p|k (ũ j ,k , w1)+ (1−α)x̂con

j ,k+p|k (ũ j ,k , w2),

ũ j ,k , (αw1 + (1−α)w2)p+1

)

≤α f con
j (x̂con

j ,k+p|k (ũ j ,k , w1), x̂aux
j ,k+p|k (ũ j ,k , w1), ũ j ,k , (w1)p+1)

(1−α) f con
j (x̂con

j ,k+p|k (ũ j ,k , w2), x̂aux
j ,k+p|k (ũ j ,k , w2), ũ j ,k , (w2)p+1)

=αx̂con
j ,k+p+1|k (ũ j ,k , w1)+ (1−α)x̂con

j ,k+p+1|k (ũ j ,k , w2) (4.15)

Thus, x̂con
j ,k+p+1|k is convex in θ̃ j ,k . Similarly, we can prove that x̂aux

j ,k+p+1|k is also convex in θ̃ j ,k .
✷

4.2.2 Mixed Logical Dynamical Systems

We consider the following state dynamics for each scenario s ∈S j =H j ∪ {w}:

x(s)
j ,k+1

= f j (x(s)
j ,k

, u j ,k , θ(s)
j ,k

). (4.16)

As stated in Section 2.2.1, for each maintenance option q ∈ {1, . . . , N }, the function f
q

j
(·, θ(s)

j ,k
)

is in general nonlinear with respect to x(s)
j ,k

. This nonlinear function can be approximated by

a function f
q,PWA
j

that is piecewise-affine with respect to xs
j ,k . In this way a piecewise-affine

model f PWA
j

can be obtained to approximate (4.16). This approximate model can then be
transformed into the following standard Mixed Logical Dynamical (MLD) model [12]:

x(s)
j ,k+1

= A(s)
j

x(s)
j ,k

+B (s)
j ,2δ

(s)
j ,k

+B (s)
j ,3z(s)

j ,k
(4.17)

E (s)
j ,2δ

(s)
j ,k

+E (s)
j ,3z(s)

j ,k
≤ E (s)

j ,4x(s)
j ,k

+E (s)
j ,5, (4.18)

where the vector δ(s)
j ,k

contains all binary variables, and the vector z(s)
j ,k

contains all continuous
auxiliary variables.

4.2.3 Centralized MLD-MPC Problem

Define δ̃(s)
j ,k

= [(δ(s)
j ,k

)T . . . (δ(s)
j ,k+NP−1

)T]T and δ̃ j ,k = [(δ̃(1)
j ,k

)T . . . (δ̃
(|S j |)
j ,k

)T]T. The vectors z̃(s)
j ,k

and
z̃ j ,k are defined in the same way. The local robust scenario-based MPC optimization prob-
lem (4.9),(4.13),(4.11) for subsystem j can then be formulated as an MILP problem:

min
δ̃ j ,k ,z̃ j ,k

(

1

|H j |
∑

h∈H j

‖x̃(h)
j ,k‖1

)

+w j‖Q j δ̃ j ,k‖1 (4.19)

subject to: x̃(s)
j ,k = Ã(s)

j
x j ,k + B̃ (s)

j ,2δ̃ j ,k + B̃ (s)
j ,3z j ,k ∀s ∈S j (4.20)

Ẽ (s)
j ,2δ̃ j ,k + Ẽ (s)

j ,3 z̃ j ,k ≤ Ẽ (s)
j ,4x j ,k + Ẽ (s)

j ,5 ∀s ∈S j (4.21)

δ̃ j ,k ∈ {0, 1}
NP ·nδ j (4.22)

z̃ j ,k ∈R
N

P
·nz j , (4.23)

and constraint (4.13),
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where Q j is a matrix with nonnegative entries. The first term in the objective function (4.19)
corresponds to the mean of the accumulated condition deterioration within the prediction
window, while the second term corresponds to the total maintenance cost. Constraints (4.20)
and (4.21) are the NP-step-ahead prediction model derived from the MLD dynamics (4.17)-
(4.18).
If we define δ̃k = [δ̃1,k . . . δ̃n,k ]T and z̃k = [z̃1,k . . . z̃n,k ]T, then the centralized MPC optimization
problem can be formulated as:

min
δ̃k ,z̃k

n∑

j=1

c j ,1δ̃ j ,k +c j ,2 z̃ j ,k (4.24)

subject to:
n∑

j=1

R j δ̃ j ,k ≤ r (4.25)

F j ,1δ̃ j ,k +F j ,2 z̃ j ,k ≤ l j ∀ j ∈ {1, . . . ,n} (4.26)

δ̃k ∈
n×

j=1
{0, 1}

NP nδ j (4.27)

z̃k ∈
n×

j=1
R

N
P
·nz j . (4.28)

Each cost vector in the objective function (4.24) can be obtained by substituting (4.20) into
(4.19). Constraint (4.25) is the global constraint on the available resources, e.g. limited track
possession time for maintenance, and constraints (4.26) summarize the local constraints
(4.13),(4.20)-(4.21) for each subsystem.

4.2.4 Dantzig-Wolfe Decomposition

The centralized MPC problem (4.24)-(4.28) is intractable for large-scale railway network with
many sections. Notice that without the global constraint (4.25), the centralized MPC prob-
lem can be solved by solving the n independent problems (4.19)-(4.23) for each subsystem
j ∈ {1, . . . , n}. We apply Dantzig-Wolfe decomposition to improve the scalability of the pro-
posed MPC approach. First we define

P j ,k =
{

(δ̃ j ,k , z̃ j ,k ) ∈ {0, 1}
NP nδ j ×R

N
P

nz j : F j ,1δ̃ j ,k +F j ,2 z̃ j ,k ≤ l j

}

, (4.29)

which is the feasible region of the local MPC optimization problem for subsystem j . Let
G j ,k denote the extreme points of the convex hull of P j ,k . We call G j ,k the generating set of

subsystem j at time step k. Let δ̃
[g ]
j ,k

and z̃
[g ]
j ,k

denote the values of δ̃ j ,k and z̃ j ,k of the extreme
point g ∈ G j ,k , respectively. According to Minkowski’s theorem, each point in a compact
polyhedron can be represented by a convex combination of its extreme points, which are
called columns. Let µ j ,g denote the weight of the column g ∈ G j ,k , and let µ j denote the
vector containing all the weights for columns in the generating set G j ,k . Furthermore, define
µ = [µT

1 . . .µT
n]T. The Dantzig-Wolfe reformulation of the centralized MPC problem (4.24)-

(4.28) can then be written as:

min
µ

n∑

j=1

∑

g∈G j ,k

(c j ,1δ̃
[g ]
j ,k

+c j ,2 z̃
[g ]
j ,k

)µ j ,g (4.30)



Chapter 4 - Distributed Maintenance Optimization of Large-Scale Railway Networks 53

subject to:
n∑

j=1

∑

g∈G j

(R j δ̃
[g ]
j ,k

)µ j ,g ≤ r (4.31)

∑

g∈G j

µ j ,g = 1 ∀ j ∈ {1, . . . ,n} (4.32)

µ j ,g ≥ 0 ∀g ∈G j ,k , ∀ j ∈ {1, . . . ,n} (4.33)

δ̃ j ,k =
∑

g∈G j ,k

δ̃
[g ]
j ,kµ j ,g ∈

n×
j=1

{0, 1}
N

P
nδ j , ∀ j ∈ {1, . . . ,n}. (4.34)

Problem (4.30)-(4.34) is called the Dantzig-Wolfe reformulation by convexification. The dis-
advantage of this formulation is that the binary condition is imposed on the old decision
variable δ̃ j ,k , as shown in (4.34). However, as proved in [78], if the global constraint in the
original binary MILP problem involves only binary variables, then the binary condition on
the original variables can be directly transferred to the new variable µ. As the global con-
straint (4.25) contains only binary decision variables, we can then replace constraints (4.33)-
(4.34) by

µ j ,g ∈ {0,1} ∀g ∈G j ,k , ∀ j ∈ {1, . . . ,n}. (4.35)

The reformulated problem (4.30)-(4.32),(4.35) is still intractable, as the dimension of each
generating set G j ,k grows exponentially with the dimension of the old variable δ̃ j ,k . We use
column generation to tackle this difficulty.

Column generation

Column generation [162] solves the linear relaxation of the Dantzig-Wolfe reformulation
(4.30)-(4.32), (4.35). We call the relaxed problem (4.30)-(4.33) the master problem. First we
start with an initial partial generating set G

s
j ,k ⊂G j ,k for each subsystem j and solve the fol-

lowing restricted master problem:

min
µ

n∑

j=1

∑

g∈G
s
j ,k

(c j ,1δ̃
[g ]
j ,k

+c j ,2 z̃
[g ]
j ,k

)µ j ,g (4.36)

subject to:
n∑

j=1

∑

g∈G
s
j ,k

(R j δ̃
[g ]
j ,k )µ j ,g ≤ r (4.37)

∑

g∈G
s
j ,k

µ j ,q = 1 ∀ j ∈ {1, . . . ,n} (4.38)

µ j ,g ≥ 0 ∀g ∈G
s
j ,k , ∀ j ∈ {1, . . . ,n}. (4.39)

Each initial generating set G
s
j ,k should be chosen to ensure the feasibility of the restricted

master problem. Let µ∗ denote the optimal solution of this restricted master problem. The
dual of problem (4.36)-(4.39) can be written as:

max
λ,π

−rλ+
n∑

j=1

π j (4.40)

subject to: λ(−R j δ̃
[g ]
j ,k

)+π j ≤ c j ,1δ̃
[g ]
j ,k

+c j ,2 z̃
[g ]
j ,k

(4.41)

∀g ∈G
s
j ,k , ∀ j ∈ {1, . . . ,n}
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λ≥ 0 (4.42)

π ∈R
n . (4.43)

Let (λ∗, π∗) denote the optimal solution of the dual problem (4.40)-(4.43). We then define
the following pricing subproblem for each subsystem j :

ρ j = min
g∈G j ,k

c j ,1δ̃
[g ]
j ,k +c j ,2 z̃

[g ]
j ,k +λ∗(R j δ̃

[g ]
j ,k )−π∗

j

= min
(δ̃ j ,k , z̃ j ,k )∈P j ,k

c j ,1δ̃ j ,k +c j ,2 z̃ j ,k +λ∗(R j δ̃ j ,k )−π∗
j , (4.44)

where ρ j is called the reduced cost of subproblem j . We add the new column, which is the
optimal solution of (4.44), to the partial generating set G

s
j ,k only if the corresponding reduced

cost is negative. The restricted master problem (4.36)-(4.39) and its dual (4.40)-(4.43) are
solved again including the new columns, and the new optimal dual solution (λ∗, π∗) is sent
to each pricing subproblem. The iteration terminates when all reduced costs are 0, and the
optimal solution of the restricted master problem corresponds to the optimal solution of the
master problem.

Upper and lower bounds

Upper and lower bounds of the objective function value of the Dantzig-Wolfe reformula-
tion can be implemented to the basic column generation algorithm to achieve faster conver-
gence. Any binary solution of the restricted master problem encountered in the column gen-
eration procedure provides an upper bound of the objective function value of the Dantzig-
Wolfe reformulation and the centralized MPC optimization problem. A lower bound can be
obtained by the Lagrangian dual function of the centralized MPC problem [162]:

q(λ∗) = inf
(δ̃k , z̃k )∈×n

j=1
P j ,k

n∑

j=1

(c j ,1δ̃ j ,k +c j ,2 z̃ j ,k )+λ∗
(

n∑

j=1

R j δ̃ j ,k − r

)

=−λ∗r +
n∑

j=1

(ρ j +π∗
j ). (4.45)

In addition to checking whether all reduced costs are 0, the upper and lower bounds provides
another convergence criterion, i.e. whether the two bounds meet. The primal upper bounds
are in general very weak, especially in the beginning of the column generation procedure,
when the sets of columns are small. The dual bounds might oscillate, as the optimal solution
of the dual of the restricted master problem might change drastically when a new column is
added. Typical remedies for the erratic behaviour of the dual bounds include warm start e.g.
[152], which provides a good dual bound at the beginning of the iteration, and stabilization
techniques [64, 138], which add penalizing terms to (4.45) to avoid drastic change in the La-
grangian dual bounds. Another improvement of the standard column generation algorithm
is the primal-dual column generation technique developed in [57], which uses suboptimal
primal and dual solutions of the restricted master problem to improve the stability of the
iteration.
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Inexact method

If the optimal solution of the master problem (4.30)-(4.33) obtained by column generation is
also binary, then we have found the optimal solution of the Dantzig-Wolfe reformulation and
the original MILP problem. However, the solution obtained through column generation is in
general fractional. As stated in [65], a feasible1 suboptimal solution of the Dantzig-Wolfe
reformulation can be obtained by solving the restricted master problem (4.36)-(4.39) as a
binary MILP problem, using the sets of columns obtained at the end of column generation.
Furthermore, a lower bound, and possibly an upper bound (depending on whether a binary
solution is encountered during the iteration) are also provided by the column generation
procedure. Exact solutions to the Dantzig-Wolfe formulation can be found by combining
branch-and-bound with column generation, known as the branch-and-price [7] algorithm.

4.3 Low-Level Maintenance Crew Scheduling

The low-level problem is triggered whenever a maintenance intervention is suggested for at
least one section of the whole network by the high-level MPC controller. Each type of main-
tenance intervention, e.g. grinding, is associated with a distinct low-level problem. Its goal is
to find the optimal schedule to perform the planned maintenance activities, and the optimal
route for the maintenance crew, minimizing the total setup costs of maintenance operations,
the travelling costs of the maintenance crew, and the penalty cost on extra maintenance time
(if any).

4.3.1 Arc Routing Problem

First we define the Capacitated Arc Routing Problem with Flexible Capacity (CARPFC), which
is composed of:

• a connected undirected graph G = (V , E );

• a depot node 0 ∈ V ;

• a cost matrix C defining the travel cost associated with each edge;

• a set of required edges R ⊆ E that must be serviced by a vehicle;

• a demand qi j for each required edge {i , j } ∈R;

• a set T (fleet) containing all available vehicles;

• a fixed setup cost cSetup associated with each vehicle;

• a flexible capacity Qt ∈ [Q, Q] associated with each vehicle t ∈T ;

• a capacity-related cost QExtra,t = ν(Qt −Q) for any vehicle t ∈ T , where ν is a positive
parameter.

1Feasibility can be guaranteed, as long as the restricted master problem is binary feasible with initial sets
of columns, or a binary solution is encountered during the iteration.
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The CARPFC can then be defined as finding an optimal set of routes of the fleet starting and
ending at the same depot, and the optimal capacities of the vehicles, that minimizes the
total setup costs and travel costs of vehicles, and the costs related to the extra capacity, while
ensuring that each required edge is serviced exactly once by a vehicle, and the edge demand
is satisfied without exceeding the vehicle capacity.
To recast the low-level maintenance crew scheduling problem into a CARPFC, we map the
physical network into a virtual graph G = (V , E ). The stations are mapped into nodes in V ,
and the lines are mapped into edges in E . In particular, the maintenance base is mapped
into the depot node 0. The travel cost of each edge is proportional to the length of the line.
Furthermore, the lines in which at least one section is to be maintained before the next time
step, are mapped into the required edges in R. The demand of a required edge is interpreted
as the estimated time to complete the maintenance activity on the corresponding line. Each
time period in the low-level planning horizon corresponds to a vehicle in the CARPF, and
the maintenance time budget per time period is translated as the capacity of the vehicle.
The maintenance time budget is considered to be flexible within a given range, e.g. typically
Q = 6 hours and Q = 10 hours per time period for the Dutch railway network.

4.3.2 Node Routing Problem

We transform the arc routing problem described in Section 4.3.1 into an equivalent node
routing problem using the approach developed in [6]. The transformed complete undirected
graph is denoted by Ĝ = (V̂ , Ê ), with a new cost matrix Ĉ . Each endpoint of a required edge
in R of the original graph becomes a customer node in V̂ of the transformed graph, resulting
in a node routing problem instance of 2|R| customer nodes. We refer the readers to [6] for
the detailed transformation procedure. Furthermore, we partition V̂ into the set of virtual
depots T , and the set of customer nodes Ĉ . Each virtual depot is a duplicate of the depot in
the original graph, and corresponds to a vehicle t ∈T . We introduce these virtual depots to
ensure that each tour is performed by one vehicle with a specific capacity. The demand of a
customer node i ∈ Ĉ in the transformed graph is denoted by q̂i . In this section we provide
the MILP formulation of the Capacitated Vehicle Routing Problem with Flexible Capacity
(CVRPFC), which is a node routing counterpart of the CARPFC described in Section 4.3.1.
We define the binary decision variables:

xi j =
{

1 if node j is visited directly after node i ;

0 otherwise
(4.46)

for any i , j ∈ V̂ , and

zi t =
{

1 if customer i is visited by a vehicle from depot t

0 otherwise
(4.47)

for any node i ∈ Ĉ and t ∈T .
We use the Miller-Tucker-Zemlin (MTZ) subtour elimination constraints [104], and define a
continuous node potential variable ui for each customer node i ∈ Ĉ . Because of the multiple
virtual depots corresponding to heterogeneous vehicles, cycle imposement constraints are
needed to ensure that each resulting route starts and ends at the same virtual depot, i.e. each
round tour is made by the same vehicle. For this purpose, we choose the node-current based
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cycle imposement constraints [23], and define the continuous node current variable ki for
each node i ∈ V̂ .
The CVRPFC can then be expressed as:

min
∑

{i , j }∈Ẽ

c̃i j xi j +
∑

t∈T

∑

j∈Ṽ

(

cSetup +ν(Qt −Q)
)

xt j , (4.48)

where the first term corresponds to the travel costs, and the second term computes the total
setup costs of the vehicles, including the costs related to the extra capacity, subject to the
following:

• assignment constraints:

∑

j∈Ṽ

xi j =
∑

j∈Ṽ

x j i = 1 ∀i ∈ Ĉ (4.49)

∑

i∈Ṽ

xi t =
∑

j∈Ṽ

xt j ≤ 1 ∀t ∈T ; (4.50)

• path continuity constraints:

zi t − z j t ≤ 1−xi j −x j i ∀t ∈T , i , j ∈ Ĉ , i 6= j (4.51)

z j t − zi t ≤ 1−xi j −x j i ∀t ∈T , i , j ∈ Ĉ , i 6= j (4.52)

that ensure any two consecutive customers on a resulting tour are visited by the same
vehicle;

• labeling constraints:

xt j +x j t − z j t ≤ 0 ∀t ∈T , j ∈ Ĉ (4.53)

that ensure the first and last visited customer by a vehicle is associated with the corre-
sponding virtual depot;

• the MTZ subtour elimination constraints:

ui −u j +Qxi j + (Q − q̂i − q̂ j )x j i ≤Q − q̂i ∀i , j ∈ Ĉ , i 6= j ; (4.54)

• the node-current based cycle imposement constraints:

kt = t ∀t ∈T (4.55)

ki −k j ≤ (|T |−1)(1−xi j ) ∀i , j ∈ Ṽ , i 6= j (4.56)

k j −ki ≤ (|T |−1)(1−xi j ) ∀i , j ∈ Ṽ , i 6= j ; (4.57)

• the bounds for the continuous decision variables:

q̂i ≤ ui ≤
∑

t∈T

Qt zi t ∀i ∈ Ĉ (4.58)

1 ≤ ki ≤ |T | ∀i ∈ Ṽ ; (4.59)
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• the integrality constraints on the binary decision variables:

xi j ∈ {0, 1} ∀i , j ∈ V̂ (4.60)

zi t ∈ {0, 1} ∀i ∈ Ĉ , ∀t ∈T . (4.61)

Note that the problem (4.48)-(4.61) is an MINLP, as the flexible capacity Qt is also a decision
variable, leading to the nonlinear terms Qt xt , j in the objective (4.48) and Qt zi t in constraints
(4.58). Following the procedure developed in [12, 167], we introduce the following continu-
ous auxiliary decision variables:

yi t = zi tQt , φt j = xt j Qt (4.62)

for t ∈T , i ∈ Ĉ , j ∈ Ṽ , to eliminate the nonlinear terms. This results in the following equiva-
lent linear constraints [12]:

yi t ≤Qzi t , φt j ≤Qxt j (4.63)

yi t ≥Qzi t , φt j ≥Qxt j (4.64)

yi t ≤Qt −Q(1− zi t ), φt j ≤Qt −Q(1−xt j ) (4.65)

yi t ≥Qt −Q(1− zi t ), φt j ≥Qt −Q(1−xt j ) (4.66)

that are equivalent to (4.62).
The MILP formulation of the CVRPFC can then be written as:

min
∑

{i , j }∈Ẽ

c̃i j xi j +
∑

t∈T

∑

j∈Ṽ

ν ft j + (cSetup −νQ)xt j (4.67)

subject to: q̂i ≤ ui ≤
∑

t∈T

yi t ∀i ∈ Ĉ (4.68)

and constraints (4.49)-(4.57), (4.59)-(4.61), (4.63)-(4.66).

4.4 Case Study

4.4.1 Setup

A numerical case study on the optimal treatment of squats is performed on a part of the
Dutch railway network containing Randstad Zuid and the middle-south region. This net-
work contains 10 stations2 and 13 lines, which are divided into 53 sections of 5 km, as shown
in the schematic plot in Figure 4.1. A squat is a type of rail contact fatigue, the evolution of
which depends on the dynamic wheel-rail contact [45]. It first appears on the rail surface,
and evolves into a network of cracks underneath the rail surface over time. If not treated
properly, it can lead to hazards like rail breakage. According to field observation, grinding,
which removes the irregularities on the rail surface, is effective for early-stage squats with
visual length less than 20 mm, but for late-stage squat with visual length more than 50 mm
[77] , replacement is the only option. Effectiveness is also related to the grinding depth to

2Intermediate stations are not included this case study.
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Roosendaal (9)

Breda (10)

Lage Zwaluwe (8)

Dordrecht (7)

Rotterdam Centraal (6)

Den Haag Centraal (3)

Leiden Centraal (1)

Alphen a/d Rijn (2)

Woerden (5)

Gouda (4)

18 km
(section 7-10)

19 km
(section 11-14)

16 km
(section 15-17)

15 km
(section 1-3)15 km

(section 4-6)

28 km
(section 18-23)

23 km
(section 24-28) 24 km

(section 29-33)

20 km
(section 34-37)

15 km
(section 38-40)

23 km
(section 41-45)

24 km
(section 49-53)

15 km
(section 46-48)

Maintenance base (0)

Figure 4.1: The part of the Dutch railway network including Randstad Zuid and the middle-

south region considered in the case study. The number next to a station is its index,

while the maintenance base indexed as “0". The sections of each track line is in-

dexed starting from the the station with the smaller index.
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reduce residual damages.
We adopt the big data analysis approach developed in [76] to calculate the failure probabil-
ity of each squat. The failure probability, which is initially calculated from the visual length,
estimates the probability that a given squat might lead to rail failure within the next million
gross tons (MGT) step, which is 3 months in this case study. For this reason, the time step is
also 3 months in the high-level MPC controller. The prediction horizon NP = 3, i.e. 9 months,
and the planning horizon is 20, i.e. 5 years.
A simulation model is developed to describe the evolution of failure probability of each in-
dividual squat. This simulation model is based on the big data analysis approach developed
in [76]. The probability that squat i at time step k might lead to rail failure can be calculated
by:

ξi ,k = ( fProb ◦ fCr ◦ fM)(Li ,k−1, Li ,k ), (4.69)

where Li ,k−1 and Li ,k are two consecutive measurements on the visual length of squat i . The
function fM computes the estimated Mega Gross Tonage (MGT) from two consecutive mea-
surements/simulated data on visual lengths, and the function fCr estimates the crack length
growth from the estimated MGT. Finally, the function fProb calculates the failure probability
from the crack growth length. We use the same functions as in the case study of [76].
The risk level, i.e. the condition, of a section of rail can then be calculated from the failure
probabilities of all squats within the section3. By definition, the condition of each section is
within the range [0, 1]. A prediction model, which describes the dynamics of the condition
of a section, can be obtained by piecewise-affine identification based on the simulated data
produced by the simulation model. Let U = {1,2,3} denote the set of all possible mainte-
nance actions that can be applied to a section of rail, with 1, 2, 3 representing “no mainte-
nance”, “grinding”, and “replacing", respectively. Replacing a section is 30 times as expensive
as grinding. The parameter λ, which captures the trade-off between condition degradation
and maintenance cost, takes a value of 100. Finally, we define the number of grinding oper-
ations on section j since the last replacement as the auxiliary variable xaux

j ,k in the prediction
model.
The prediction model of section j , in accordance with the generic model (2.1), can then be
expressed as:

xcon
j ,k+1 = f con

j (xcon
j ,k , u j ,k , θ j ,k )

=







f
Deg
j

(xcon
j ,k , θ j ,k ) if u j ,k = 1 (no maintenance)

f Gr
j

(xcon
j ,k , θ j ,k ) if u j ,k = 2 (grinding)

0 if u j ,k = 3 (replacing)

(4.70)

and

xaux
j ,k+1 = f aux

j (xaux
j ,k , u j ,k )

=







xaux
j ,k if u j ,k = 1 (no maintenance)

xaux
j ,k +1 if u j ,k = 2 (grinding)

0 if u j ,k = 3 (replacing).

(4.71)

3We assume the failure of each squat is independent from that of other squats.
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The threshold value xcon
max in the chance constraint (4.6) is 0.95. As each grinding operation

removes a certain depth of rail (e.g. 2 mm), grinding can only be applied consecutively to
the same section for a limited number of times. So we have the following deterministic con-
straints on the auxiliary variable:

xaux
j ,k+l ≤ xaux

max ∀ j ∈ {1, . . . ,n}, ∀l ∈ {1, . . . , NP}, (4.72)

where xaux
max = 10 in this case study.

The following global constraint is imposed on the maximal number of sections that can be
ground at one time step:

n∑

j=1

Iu j ,k=1 ≤ nGr
max ∀l ∈ {1, . . . , NP}, (4.73)

where nGr
max = 20 in this case study.

The function f
Deg
j

, which describes the natural degradation of the condition, and the func-

tion f Gr
j

, which describes the effect of grinding on section j , are both piecewise-affine func-
tions, as shown in the example in Figure 4.2. To determine a piecewise-affine approximation
of f

Deg
j

, we partition the condition space of section j , i.e. X
con
j

= [0, 1], into three intervals
X

con
j ,1 , X

con
j ,2 , and X

con
j ,3 . The natural degradation of the condition can then be expressed by

the following piecewise-affine function:

f
Deg
j

(xcon
j ,k ) =







y int
j ,1 +

y int
j ,2 − y int

j ,1

xswi
j ,1

xcon
j ,k if xcon

j ,k ∈X
con
j ,1 = [0, xswi

j ,1 )

y int
j ,2 +

y int
j ,3 − y int

j ,2

xswi
j ,2 −xswi

j ,1

(

xcon
j ,k −xswi

j ,1

)

if xcon
j ,k ∈X

con
j ,2 = [xswi

j ,1 , xswi
j ,2 )

y int
j ,3 +

y int
j ,4 − y int

j ,3

1−xswi
j ,2

(

xcon
j ,k −xswi

j ,2

)

if xcon
j ,k ∈X

con
j ,3 = [xswi

j ,2 , 1],

(4.74)

where xswi
j ,1 and xswi

j ,2 are the two switching points, and y int
j ,1, y int

j ,2, y int
j ,3, and y int

j ,4 are the four
interpolation points.
The function f Gr

j
can also be represented by the following piecewise-affine function with

three intervals:

f Gr
j (xcon

j ,k ) =







0 if xcon
j ,k ≤ x

eff

j

ysev
j

xsev
j

−x
eff

j

(

xcon
j ,k −x

eff

j

)

if x
eff

j
< xcon

j ,k ≤ xsev
j

ysev
j

+
ymax

j
− ysev

j

1−xsev
j

(

xcon
j ,k −xsev

j

)

if xcon
j ,k > xsev

j
.

(4.75)

For identification of the functions f
Deg
j

and f Gr
j

, we create 200 fictional sections, where the
number of squats within a section is a random number with a mean value of 10 and stan-
dard deviation of 2. Let NSq denote the number of squats in a section of rail. The failure
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Figure 4.2: Piecewise-affine identification of one prediction model with 95% nonsimultaneous

observation confidence bound (indicated by the blue and red dashed lines). The

data points for the identification are generated by aggregating the simulated failure

probabilities of individual squats using the simulation model.
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Table 4.1: Parameters of the functions f
Deg

j
and f Gr

j
for five different models. Both the nom-

inal values and the 95% nonsimultaneous confidence bounds (given in the squar

brackets) are provided for all uncertain parameters.

Parameter Model
1 2 3 4 5

xswi
j ,1 0.512 0.526 0.543 0.363 0.563

xswi
j ,2 0.683 0.784 0.781 0.621 0.798

y int
j ,1 0.107 [0.086, 0.128] 0 [0,0] 0.051 [0.040, 0.063] 0.076 [0.036, 0.115] 0.058 [0.049,0.068]

y int
j ,2 0.783 [0.776, 0.790] 0.849 [0.845, 0.853] 0.815 [0.809. 0.821] 0.624 [0.615, 0.633] 0.805 [0.900, 0.809]

y int
j ,3 0.929 [0.924, 0.934] 0.975 [0.967, 0.983] 0.972 [0.966, 0.977] 0.859 [0.853, 0.865] 0.963 [0.958, 0.968]

y int
j ,4 1 [0.997, 1.003] 1 [0.997, 1.004] 1 [0.998, 1.002] 1 [0.994, 1.006] 1 [0.998, 1.002]

x
eff

j
0.156 0.177 0.172 0.141 0.106

xsev
j

0.899 0.810 0.880 0.938 0.882

ysev
j

0.506 [0.494, 0.518] 0.516 [0.505, 0.527] 0.502 [0.490, 0.514] 0.506 [0.490, 0.521] 0.443 [0.432, 0.455]

ymax
j

0.957 [0.944, 0.970] 0.991 [0.981, 1] 0.977 [0.965, 0.990] 0.922 [0.905, 0.939] 0.944 [0.931, 0.956]

probability of one section of rail can then be calculated by:

xcon
k = 1−

NSq∏

i=1

(1−ξi ,k ). (4.76)

The following squat evolution model is used to simulate the dynamics of the visual length of
an individual squat i :

Li ,k+1 =
{

aLi ,k +b if not treated

max(φ(Li ,k −Leff ), 0) if ground
, (4.77)

where a, b, and φ are all parameters generated from a normal distribution. For each squat i

within a section, we can simulate three consecutive measurements of the visual length, i.e.
Li ,k−1, Li ,k , and Li ,k+1, and calculate the squat’s failure probability at time step k and k +1,
namely, ξi ,k and ξi ,k+1, respectively. The condition of the section at time step k and k+1 can
then be calculated using (4.76). Five sets of squat evolution models are used, resulting in five
different condition deterioration models, the parameters of which are presented in Table 4.1.
These five prediction models are then randomly assigned to the 53 sections following a uni-
form discrete distribution in the case study. The uncertain parameters of the deterioration
model (4.70)-(4.71) of section j are collected in the vector θ j ,k = [y int

j ,1 . . . y int
j ,4 ysev

j
ymax

j
]T. The

confidence level β j and violation level ǫ j are both 0.1 for any section j = 1, . . . ,n, resulting in
591 random scenarios per section.
For illustration purpose we only trigger the low-level maintenance crew scheduling problem
for grinding. The travel cost between any two station is 100AC per kilometer. Two 6-hour
maintenance time slots are available for grinding within one time step (3 months). A fixed
setup cost of 100kAC is associated with each maintenance time slot. Furthermore, extra time
for grinding in addition to the given 6-hour time slot can be requested with an hourly cost
of 10kAC. However, a maximum length of 10 hours is imposed on each maintenance time
slot. The minimum amount of maintenance time spent on a railway line corresponds to the
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Figure 4.3: High-level simulation results for the line between Den Haag and Rotterdam.

number of sections to be ground before the next time step.

4.4.2 Discussion of Results

A representative run is conducted to demonstrate how the proposed multi-level approach
works. The partial results of the high-level MPC controller from the line between Den Haag
and Rotterdam are shown in Figure 4.3.
As the deterioration dynamics and initial risk level of each section is different, the resulting
intervention plan is also very different for different sections. For example, replacing is sug-
gested at the first time step for section 27, because its initial risk level is already very high
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at time step 6 for the whole railway network.

Figure 4.4: High-level simulation results for the whole railway network at time step 6.

(almost 0.6). On the contrary, grinding is firstly suggested at time step 8, i.e. 24th month
within the 5-year planning horizon for section 26, as its initial risk level is almost 0. The next
grinding operation is suggested at least 18 months after a replacement, as the growth of the
risk level is very slow for a newly replaced section of rail. A maintenance intervention is usu-
ally suggested when the risk level is sufficiently high, i.e. over 0.8, to justify the high cost of
track maintenance operations. Unlike for the time-based cyclic maintenance approach, the
interval between two consecutive interventions is flexible and ranges from 6 to 9 months.

The simulation results of the whole case study network at a representative time step (k = 7)
are shown in Figure 4.4. From Figure 4.4a we can clearly see that no section in the whole net-
work has a risk level exceeding the critical threshold at time step 7, indicating the network is
safe at the current time step. Furthermore, the simulated risk levels of all the sections in the
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next time step are also below the threshold, ensuring the safety of the whole network three
months later.
The risk level at time step 7 is the outcome of the intervention at time step 6. As shown in
Figure 4.4b, 11 sections are to be ground and 2 sections are to be replaced within the three
months between time step 6 and 7. The results of the low-level crew scheduling problem
to execute these planned grindings over the railway network are shown in Figure 4.5. The
planned grindings are performed in two different operations. In the first grinding operation,
the maintenance crew starts from the maintenance base and drives to Dordrecht. The main-
tenance crew then spends 2 hours grinding section 38 and 40 between Dordrecht and Lage
Zwaluwe. It then traverses the “triangle" formed by Lage Zwaluwe, Roosendaal, and Breda,
spending one hour grinding one section at each edge of the triangle. Finally, the mainte-
nance crew drives the same way back from Lage Zwaluwe to the maintenance base. The
total maintenance time in this grinding operation is 5 hours, which is less than the allocated
6-hour maintenance slot. No additional cost for extra maintenance time is incurred for this
operation. Similarly, a second tour is made by the maintenance crew to grind the remaining
6 sections in the other part of the network, as shown by the dotted line in Figure 4.5. No
additional cost for extra maintenance time is incurred for this operation neither.

4.4.3 Comparison with Centralized MPC

A computational comparison is performed between the centralized MPC approach and the
distributed MPC approach. We generate 14 MPC optimization problems for 14 fictional rail-
way networks with a number of sections ranging from 10 to 140. The current states and val-
ues of uncertain parameters are randomly generated following a normal distribution. The
trend of the CPU time with an increasing number of sections is plotted in Figure 4.6. For
the first 13 test instances, the distributed approach always takes a much shorter CPU time
than the centralized approach. Moreover, the centralized approach fails when the number
of sections becomes 140, due to memory related issues, while the distributed approach can
still find a solution within 40 minutes.
As the distributed approach based on Dantzig-Wolfe decomposition is inexact, for each test
instance we also check its relative loss of optimality, compared to the global optimum pro-
vided by the centralized approach. For the first 13 test instances, the distributed approach
is able to achieve global optimality. As the centralized approach becomes intractable when
the number of sections reaches 140, we cannot conclude whether the distributed approach
finds the global optimum for the largest test instance.

4.4.4 Comparison with Alternative Approaches

In this section we compare the results of the proposed chance-constrained MPC approach
to two alternative approaches, namely, the nominal MPC approach and the cyclic approach.
The only difference between the nominal MPC approach and the chance-constrained MPC
approach is that the nominal approach considers only the mean values of the uncertain pa-
rameters in the deterioration model. So it can be viewed as a deterministic counterpart of the
chance-constrained MPC approach. The cyclic approach uses a time-based maintenance
strategy, and performs grinding and replacing at a fixed optimal interval. Unlike the two
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Table 4.2: A comparison between the proposed chance-constrained MPC approach (with sub-

script “CC"), the nominal approach (with subscript “Nom"), and the cyclic approach

(with subscript “Cyc").

Run Constraint violation
Closed-loop
performance CPU time (h)

vCC (%) vNom(%) vCyc (%)
JCC

JCyc
(%)

JNom

JCyc
(%) JCyc TCC TNom

1 0 0.063 0 39.335 34.148 670502 5.671 0.003
2 0 0.006 0 38.127 36.577 670504 5.075 0.003
3 0 0.353 0 37.635 35.043 670503 5.062 0.003
4 0 0.129 0 37.606 33.344 670502 5.703 0.003
5 0 0 0 36.354 34.536 670502 5.141 0.003
6 0 0.082 0 36.413 35.803 670502 5.802 0.003
7 0 0.021 0 39.425 36.250 670503 5.134 0.003
8 0 0.053 0 38.440 35.028 670500 5.126 0.003
9 0 0.0344 0 40.244 33.359 670503 5.088 0.003

10 0 0.172 0 38.902 34.656 670503 5.082 0.003

MPC approaches, the cyclic approach is an offline approach, i.e. an optimal maintenance
intervention plan for the whole planning horizon is computed beforehand and applied to
the infrastructure network without updating it using real-time measurements or simulation.
The formulation and solution approach of the cyclic approach is presented in Appendix ??.
We created ten test instances in which the values of the uncertain parameters are randomly
generated following a Gaussian distribution. Three criteria, safety, cost-effectiveness, and
computational efficiency, are applied to evaluate the three approaches. Safety is measured
by constraint violation v , which is calculated as following:

v = max

(
xcon

worst −xcon
max

xcon
max

, 0

)

, (4.78)

where xcon
worst is the highest risk level for all sections within the entire planning horizon. Cost-

effectiveness is measured by closed-loop performance, which can be calculated by the sum-
mation of all the n local objectives (4.2) evaluated over the entire 5-year planning horizon.
Finally, computational efficiency is measured by the CPU time required to solve all the high-
level4 optimization problems at all time steps. We only compare the CPU time of the two
MPC approaches, since the cyclic approach is an offline approach in which only one op-
timization problem must be solved for the entire planning horizon. The summary of the
comparison between the three approaches is presented in Table 4.2.

According to Table 4.2, the proposed chance-constrained approach is safe, as it has no
constraint violation for the 10 test runs. It is also cost-effective, as the closed-loop perfor-
mance is less than 40% of the reference cyclic approach in almost every test run. However,
the chance-constrained MPC approach is also the slowest in terms of CPU time. It is almost
1700 times slower than the nominal MPC approach. This is because a much larger MILP
problem (571 times as large as that of the nominal MPC approach) must be solved at each
time step due to the consideration of high-dimensional parameter uncertainty. However,

4This is because the same formulation for the low-level problems is used for all three approaches.
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the long computation time does not impair its real-time implementability, as track degra-
dation is a very slow process (3-month sampling time in the case study). The nominal MPC
approach is fast and scores the best in closed-loop performance. However, as it does not take
into account any uncertainty, the resulting intervention plan is unsafe, as shown by the con-
straint violations in the test runs. On the contrary, the cyclic maintenance approach results
in very conservative intervention plans which tend to “over-maintain" the asset. The result-
ing intervention plans are safe (i.e. there is no constraint violation), but not cost-effective
(i.e. they gave the worst closed-loop performance).
From the comparison with two alternative approaches, we can conclude that the proposed
chance-constrained MPC approach is the most suitable one for track maintenance planning,
as it is safe, cost-effective, and real-time implementable.

4.5 Conclusions

In this chapter we have developed an integrated approach for both long-term condition-
based maintenance planning and short-term maintenance crew scheduling of a railway in-
frastructure network. Uncertainties in the deterioration dynamics are taken into account in
condition-based maintenance planning, and distributed optimization scheme is adopted to
improved the scalability of the proposed approach. An exact MILP formulation is proposed
for the optimal scheduling and routing of maintenance crews with flexible maintenance time
slot. This integrated approach can be applied to the optimal treatment of typical track de-
fects like squats and ballast defects. The proposed approach has been illustrated by a nu-
merical case study of the optimal treatment of squats for a regional Dutch railway network.
Comparison with the centralized approach shows that the adopted distributed optimization
scheme based on Dantzig-Wolfe decomposition is scalable. Comparison with two alterna-
tive approach shows that the proposed approach yields an excellent trade-off between safety
and cost-effectiveness.





Chapter 5

Fixed-Destination Multi-Depot Multiple

Traveling Salesman Problem

5.1 Problem Description

The Traveling Salesman Problem (TSP) forms a basis for many optimization problems in lo-
gistics, finance, and engineering. Several variants exist to accommodate for different prob-
lem types. In this chapter we discuss the Fixed-Destination Multi-Depot Multiple Traveling
Salesman Problem (FmMTSP), where several salesmen will start from different depots, and
they are required to return to the depot they originated from.
We propose a novel formulation for this problem using 2-index binary variables and node
currents, and compare it to other 2-index formulations from the literature. This novel for-
mulation requires less binary variables and continuous variables to formulate a problem,
resulting in lower computation times. Using a large benchmark the effectiveness of the new
formulation is demonstrated. Moreover, the node-current cycle imposement constraints can
be applied to other node routing problems like vehicle routing problem, which is the frame-
work for the maintenance crew scheduling problem in Chapter 4.
For multiple traveling salesman problem with one depot (and multiple salesmen) it is obvi-
ous that all salesmen should return to this single depot. However, when considering multi-
ple depots, two situations can occur: either the salesmen may end their tour at any depot, or
they are required to return to their original depot. The latter is a restricted case of the former
and can be obtained by using additional constraints, as will be discussed next.

5.1.1 Description of Multi-depot Multiple Traveling Salesman Problem

We consider Multi-depot Multiple Traveling Salesman Problem (MmTSP), where there are D

depots available from where C cities should be visited. Each depot d has a certain number
of salesmen available, indicated by md . Each city should be visited by one and only one

salesman. The cost to travel from city i to j is denoted by the constant ci j . The costs can be
asymmetric, i.e., ci j and c j i might be different. The decision variable xi j indicates whether
(xi j = 1) or not (xi j = 0) city j is visited directly after city i by a salesman.
The locations of both the cities and the salesmen can be taken into account in the modeling
by denoting both the D locations of the depots (where the salesmen are) and the C locations
of the cities as one set of L = C +D locations. The sets D, C , and L —associated with the

71
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depots, the cities, and the locations respectively— are defined as

D = {1, . . . ,D}, C = {D +1, . . . ,L}, L =D∪C . (5.1)

5.1.2 Description of Fixed-Destination Multi-Depot Multiple Traveling Sales-

man Problem

For the fixed-destination problems, the additional restriction that all salesmen should return
to their original depots makes the Fixed-Destination Multi-Depot Multiple Traveling Sales-
man Problem (FMmTSP) more difficult to solve. The reason is that compared with the non-
fixed destination MmTSP, new auxiliary variables or decision variables of a higher index are
required for the fixed-destination setting to impose the additional restriction that each sales-
man must return to his departing depot. In the literature often the (fixed-destination) multi-
depot problems (or multi-vehicle problems when considering vehicle routing) are solved us-
ing a 3-index variant of the decision variables [9, 32, 120, 131], thereby drastically increasing
the number of binary variables (computational complexity) with each depot added to the
problem. The three indices represent 1) the origin, 2) the destination, and 3) the depot (ve-
hicle) number. An example of an MILP description of both nonfixed- and fixed-destination
MmTSP formulations using 3-index formulations is given in [82].
Recently, formulations of the MmTSP [114] and FMmTSP [10] using 2-index binary variables
have been presented in the literature. Both methods make use of a copy D

′ of the set of depot
nodes D, where one depot serves as a starting point and the other depot serves as the end
point of a tour for a salesman. For D depot nodes and C city nodes in the original problem,
there will be 2D depot nodes and C city nodes in the extended problem. The resulting set of
nodes in the graph is

L
′ =D∪C ∪D

′, (5.2)

where the copied set of the D depots in D is defined as

D
′ = {1′, . . . ,D ′} = {L+1, . . . ,L+D}, (5.3)

such that node i and node i ′ = L + i represent the starting and end depot of depot i ∈ D,
respectively. This formulation results in L′ = 2D +C nodes in the graph1.
A transformation of the MmTSP problem into an asymmetric TSP has been proposed by
Oberlin et al. [113, 114] by using a copy of the depot nodes as in (5.3). More recently, Bektaş
[10] has proposed a method to solve the FMmTSP using D

′ based on commodity flows. In
Section 5.3 we will introduce a formulation that only requires L = D +C nodes to represent
the same problem.

1With an efficient implementation, where the starting node only has outgoing arcs and the end node only
has incoming arcs, the number of arcs (and thereby the number of binary variables) remains the same.
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Figure 5.1: A solution to the FmMTSP. Cycles should be eliminated in the set C , whereas they
should be imposed in the set L =D∪C .

5.2 Mathematical Formulation

The FMmTSP can be described as a mathematical program consisting of the following com-
ponents2:

minimize costs (5.4a)

subject to assignment constraints (5.4b)

cycle elimination constraints (5.4c)

cycle imposement constraints (5.4d)

In this section we provide a brief overview of the currently available types of constraints for
each of the components. For a more thorough discussion on the available cycle (subtour)
elimination constraints (including the relations of their linear relaxation strengths) we refer
to [134] and the references therein.

For ease of notation we will use the index d ′ and the sets D
′ and L

′ in this section, where
their definition will depend on the type of formulation that is used, as specified in Table 5.1.

Table 5.1: The definition of prime symbols for formulations with and without depot-node

copies.

with copies of depots without copies of depots

d ′ d +L d

D
′ {L+1, . . . ,L+D} D

L
′ {1, . . . ,L+D} L

2Constraints (5.4c) are commonly known as subtour elimination constraints (SECs). Since the term ‘sub-
tour’ has the implicit property of being undesired, we will present the counterpart of the SECs as cycle impose-
ment constraints, thereby using the modern term ‘cycle’ instead of ‘subtour’. For consistency, we therefore also
use the term cycle elimination constraints.
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5.2.1 Costs

The cost in (FMm)TSPs is the distance the salesmen travel, resulting in minimising the total

travel distance

Jtd =
∑

i∈L ′

∑

j∈L ′
ci j xi j , (5.5)

where ci j ≥ 0 is the travel distance between cities i and j , and xi j ∈ {0,1} is a decision
variable satisfying

xi j =
{

1 if city j is visited directly after city i ,

0 otherwise.
(5.6)

When using 3-index decision variables xi j k the total travel distance is given by

Jtd =
∑

i∈L

∑

j∈L

∑

k∈D

ci j xi j k , (5.7)

where ci j ≥ 0 is the travel distance between cities i and j , and xi j k ∈ {0,1} is a decision vari-
able satisfying

xi j k =







1 if city j is visited directly after city i by a

salesman originating from depot k,

0 otherwise.

(5.8)

5.2.2 Assignment Constraints

The assignment constraints ensure that each node has exactly one incoming arc and one
outgoing arc (see 5.1), thereby satisfying a necessary condition for visiting the cities once

and only once.

Description of the Assignment Constraints

The assignment constraints for the (F)MmTSP are given by [9, 87]:

∑

j∈L ′
xd j = md ∀ d ∈D (5.9a)

∑

j∈L ′
xi j = 1 ∀ i ∈C (5.9b)

∑

i∈L ′
xi j = 1 ∀ j ∈C (5.9c)

∑

i∈L ′
xi d ′ = md ∀ d ′ ∈D

′ (5.9d)

xi j ∈ {0,1} ∀ i , j ∈L
′ (5.9e)

Due to (5.9a) all of the md salesmen will leave their depot d , and by (5.9b) each city i

is succeeded by exactly one location (a salesman leaves the city). Furthermore, equations
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(5.9c) ensure that each city j is preceded by exactly one location (a salesman enters the
city), whereas (5.9d) ensures that md salesmen will return to depot d ′. The set D

′ denotes
—depending on the problem formulation— either a copy of the depot nodes, or the original
set D of depot nodes, as defined in Table 5.1. Finally, (5.9e) ensures that the decision variable
xi j is treated as a binary variable.

Variants for the Assignment Constraints

The assignment constraints in (5.9) force all md salesmen to leave their depot, and also re-
quire md salesmen to return to depot d . The former is restrictive for both fixed-destination
and nonfixed-destination problems, whereas the latter only restricts the solutions for the
FMmTSP. Both restrictions can be loosened as shown next.

Idle salesmen: To allow salesmen to stay at the depot without visiting a city (hence some
salesmen may be ‘idle’), the equality constraints (5.9a) and (5.9d) can be substituted by (see
[159])

∑

j∈L ′
xd j ≤ md ∀ d ∈D (5.9a∗)

∑

i∈L ′
xi d ′ =

∑

j∈L

xd j ∀ d ′ ∈D
′ (5.9d∗)

where (5.9a∗) limits the number of salesmen that can leave depot d to md (which equals the
number of salesmen present at depot d), whereas (5.9d∗) ensures that the same number of
salesmen that have left the depot, will also return to the depot.

Fixed-capacity depots: For nonfixed-destination problems the number of salesmen at a
depot will in general be different before and after the salesmen traveled. To avoid solutions
where certain depots will receive more salesmen than they can facilitate, an upper bound on
the number of salesmen that are allowed to return to each specific depot should be set. To
accomplish this we propose the following.
If the capacity of depot d (with d ′ the associated end depot) is qd ′ salesmen one could sub-
stitute (5.9d∗) with

md +
∑

i∈L ′
xi d ′ ≤ qd +

∑

j∈L ′
xd j ∀ d ′ ∈D

′ (5.9d⋆

1 )

∑

d ′∈D′

∑

j∈L ′
xd ′ j =

∑

d∈D

∑

i∈L ′
xi d (5.9d⋆

2 )

Inequalities (5.9d⋆

1 ) ensure that no more than qd ′ salesmen end up in depot d ′,3 whereas
(5.9d⋆

2 ) ensures that all the salesmen that leave a depot will also return to a depot.

5.2.3 Cycle Elimination Constraints

Note that the constraints (5.9) do not avoid

(1) the existence of cycles (subtours) in C , resulting in routes along cities that do not have
a salesman associated with them,

3The number of salesman returning to depot d ′ is less or equal to the capacity qd minus the number of
salesmen md present at the start plus the number of salesmen that leave depot d .
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(2) the existence of cycles in L
′ containing more than one node from D, resulting in a

schedule where salesmen end their tour at an arbitrary depot.

The former situation would result in a schedule where some cities will not be visited by a
salesman (since no-one is assigned to do so), whereas the latter situation would result in a
schedule where the salesmen do not have the guarantee that they return to their original
depot. To assure that each city is visited by a salesman, solutions using cycle elimination

constraints have been proposed in the literature [37, 52, 54, 103]. These constraints are based
on different concepts, for which a brief description will be provided next; a more detailed
description can be found in [117].

Loop Conditions

The loop conditions were introduced in the seminal work [37], which can be stated as

∑

i , j∈S

xi j ≤ |S |−1 ∀ S ⊂L
′, 2 ≤ |S | ≤ L′−1, (5.10)

where |S | represents the cardinality of set S . These constraints provide strong linear pro-
gramming relaxations, but the number of constraints grows exponentially with the number
of nodes.

Node Potentials

An approach for eliminating cycles was proposed in [103] by using additional variables ui

that represent node potentials. Using the strengthened formulation in [40], the C continuous
variables ui should satisfy

ui −u j +C xi j + (C −2)x j i ≤C −1 ∀ i , j ∈C , (5.11)

resulting in C 2 inequality constraints.
The node potential representation has been extended by Kara and Bektaş [10, 82] to set work-

load bounds4 on the number of cities a salesman should visit. Denoting u and u as the mini-
mum and maximum number of cities the salesmen may visit respectively, the cycle impose-
ment constraints

ui −u j +uxi j + (u −2)xi j ≤ u−1 ∀ i , j ∈C (5.12a)

ui + (u −2)
∑

d∈D

xdi −
∑

d ′∈D′
xi d ′ ≤ u −1 ∀ i ∈C (5.12b)

ui +
∑

d∈D

xdi + (2−u)
∑

d ′∈D′
xi d ′ ≥ 2 ∀ i ∈C (5.12c)

ensure that each salesman will be assigned between u and u cities to visit, and city i will be
the ui -th city a salesman visits5. Inequalities (5.12a) provide cycle elimination constraints.
In both (5.12b) and (5.12c) the first summation is 1 if and only if node i represents the first

4Loop conditions representation with workload bound were first proposed in [82] for the mTSP (single
depot), and were extended in [10] for the MmTSP (multidepot)

5In [10, 82] it is stated that these inequality constraints are only valid for u ≥ 4; this is only under the
restriction that salesmen should at least visit two cities, and hence xdi = xid ′ = 1 is not allowed. Lifting this
restriction by allowing salesmen to visit zero or one city these inequality constraints are valid for all u ≥ 0.
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city of a tour (and it is 0 otherwise), and the second summation is 1 if and only if node i

represents the last city of a tour (and is 0 otherwise). Therefore, (5.12b) and (5.12c) ensure
that ui ≤ u and ui ≥ u for the last cities in a tour, thereby setting the desired upper and lower
bound respectively on the number of visited cities per salesman.
For the TSP with time windows [5] the constraints

ti − t j +τi j +T xi j ≤ T (5.13)

can be seen as a variant of the node potential approach, where ti is the time instant city
i is visited, τi j is the potential difference between the nodes, and T is a sufficiently large
constant.

Commodity Flows

Commodity flows are introduced in [54] as a means for eliminating undesired cycles. The L′2

continuous variables fi j should satisfy the constraints

∑

j∈L ′
fi j −

∑

j∈L ′
f j i = 1 ∀ i ∈C (5.14a)

fi j ≤C xi j ∀ i ∈C , j ∈L
′ (5.14b)

fi j ≥ 0 ∀ i , j ∈L
′ (5.14c)

Extensions to two-commodity flows [51] and multi-commodity flows [31, 168] have been
proposed, resulting in stronger linear programming relaxations [86, 118].

Time Periods

For a graph with L′ nodes, a cycle elimination formulation was presented in [52], using a
3-index binary variable representation xi j t , where

xi j t =
{

1 if i precedes j as the t-th node in the tour,

0 otherwise.
(5.15)

The index t ∈T represents the time period in which the salesman travels from city i to city
j . To ensure that all cities are visited in some time period, and that in each time period only
one city is visited, the O(L′3) binary variables xi j t should satisfy

∑

i∈L ′

∑

j∈L ′

∑

t∈T

xi j t = L′ (5.16a)

∑

j∈L ′

∑

t∈T \{1}

t xi j t −
∑

j∈L ′

∑

t∈T

t x j i t = 1 ∀ i ∈L
′ (5.16b)

xi j t ∈ {0,1} ∀ i , j ∈L
′ ∀t ∈T (5.16c)

Constraints (5.16a) and (5.16c) replace the assignment constraints (5.9). Equality constraints
(5.16b) ensure that in each time period t exactly one city i is visited.
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5.2.4 Cycle Imposement Constraints

To ensure that each salesman returns to the original depot, additional constraints are needed
to enforce cycles that start and end in the same depot (or paths leading from one start depot
towards the associated end depot). Opposite to the cycle elimination constraints, the con-
straints that enforce the existence of a certain amount of cycles in a graph can be seen as cy-

cle imposement constraints. To the author’s best knowledge, currently only three approaches
exist for obtaining fixed-destination solutions: using 3-index binary variables, using 2-index
binary variables plus commodity flow variables [10, 82], or using the path elimination con-
straints [11], which introduces no new variables, but modifies the definition of the 2-index
binary variable associated with each arc. We will introduce a fourth approach in Section 5.3
that is based on node currents, which can be seen as the dual of the node potentials intro-
duced in [103] presented in (5.11).

3-Index Formulation

Using decision variables xi j d that satisfy

xi j d =
{

1 if i precedes j directly in the tour of depot d ,

0 otherwise,
(5.17)

the existence of D cycles can be enforced [82] using

∑

j∈C

xd j d = md ∀ d ∈D (5.18a)

∑

d∈D

{

xd j d +
∑

i∈C

xi j d

}

= 1 ∀ j ∈C (5.18b)

xd j d +
∑

i∈C

xi j d = x j dd +
∑

i∈C

x j i d ∀ d ∈D, j ∈C (5.18c)

∑

j∈C

xd j d =
∑

j∈C

x j dd ∀ d ∈D (5.18d)

Constraints (5.18a) and (5.18d) ensure that exactly md salesmen depart and return to depot
d . Constraints (5.18b) guarantee that each city are visited exactly once. Constraints (5.18c)
ensure the path continuity. Together with the degree constraints (5.18b), constraints (5.18c)
ensure that a salesman starts at depot d and visits city j first will either continue to another
city i or return to the same depot. Note that this formulation uses O(L2D) binary variables,
and the number of binary variables increases cubically with the number of depots (as op-
posed to the quadratic increase for 2-index formulations).

Multi-Commodity Flow Formulation

A multi-commodity flow problem is a network flow problem with multiple flows [129]. Be-
sides applications for cycle elimination (as discussed in Section 5.2.3) it was shown by Bektaş
[10] that this concept can also be used for enforcing fixed-destination solutions to the mTSP.
In this context a commodity f d represents the number of salesmen originating from depot
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d . The constraints based on commodity flows [10] are given by

∑

j∈C∪D′
f d

d j −
∑

j∈D∪C

f d
j d = md ∀d ∈D (5.19a)

∑

j∈C∪D′
f d

i j −
∑

j∈D∪C

f d
j i = 0 ∀ i ∈C , d ∈D (5.19b)

∑

j∈D∪C

f d
j d ′ −

∑

j∈C∪D′
f d

d ′ j = md ∀d ′ ∈D
′ (5.19c)

0≤ f d
i j ≤ xi j ∀ i , j ∈L

′,d ∈D (5.19d)

In this formulation each depot d in D acts as a source of commodity f d , while each depot
d ′ in D

′ acts as a sink where only commodity d = d ′−L is accepted. By (5.19a) exactly md

units of commodity f d will leave depot d (meaning that md salesmen will leave the depot).
Constraints (5.19b) are flow-conservation constraints that guarantee that the same amount
of commodity f d entering a node i will also leave node i (meaning that each salesman that
enters a city will also leave the city). By (5.19c) exactly md units of commodity f d will reach
depot d ′ (meaning that md salesmen will arrive at the duplicate depot node d ′). Combined
with the assignment constraints (5.9), the inequality constraints (5.19d) restrict the com-
modities to only flow along arcs that are part of the selected routes; if xi j = 0 no commodity
can flow from city i to city j . This formulation uses L′2D commodity flow variables f d

i j
, where

L′ = 2D +C is the number of nodes in the graph.

Path Elimination Constraints

The path elimination constraints, first proposed in [11], fix the destination of each sales-
man by eliminating paths that start and end in two different depots. The idea is inspired
by the chain-baring constraints introduced in [88]. Although originally designed for location
routing problems, path elimination constraints have been applied to many fixed-destination
mTSP variants [15, 34, 157]. The decision variables are defined as follows:

xi j =
{

1 if (i , j ) is traversed exactly once,

0 otherwise,
(5.20)

for i , j ∈L and

wi j =
{

1 if (i , j ) is in a return trip,

0 otherwise,
(5.21)

for all i ∈D, j ∈C .
The path elimination constraints given in [11] are

∑

p,q∈S ∪{i , j }

xpq +
∑

d∈D◦
x j d +

∑

d∈D\D◦
xi d ≤ |S |+2 (5.22)

∀i , j ∈C ,∀S ⊆C \{i , j },∀D
◦ ⊂D

If all cities in S ∪ {i , j } are in a consecutive path, then the loop conditions (5.10) are satisfied
with equality, i.e.,

∑

p,q∈S ∪{i , j } = |S| + 1. Because of constraints (5.22) we have
∑

d∈D◦ x j d +
∑

d∈D\D◦ xi d ≤ 1. This indicates that a path connected to a depot in D
◦ cannot be connected

to another depot in D\D◦. Constraints (5.22) can eliminate all unwanted paths that visit at
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least two cities and start and end in different depots. The constraints

∑

d∈D

xd j +wd j ≤ 1 ∀ j ∈C (5.23)

are needed to also eliminate undesired paths that visit only one city (and start and end in
different depots). This formulation requires O(L2 +DC ) binary variables, and the number
of constraints (O(2CC 22D ) grows exponentially with the number of cities and depots. Just as
for the loop conditions (5.10) these constraints are suitable for branch-and-cut implemen-
tations, but not to formulate the complete problem and use a MILP solver to obtain optimal
solutions.

5.3 Novel Formulation of Fixed-Destination Multi-Depot Mul-

tiple Traveling Salesman Problem

In the previous section it has been discussed that the FMmTSP can be formulated using
four components (as given in (5.4)). The cost that needs to be minimised is the total travel
distance of the salesmen, for which a standard formulation is given in (5.5). For the assign-

ment constraints the conventional constraints are given in (5.9), but variations can be used
to e.g. allow some salesmen to be idle or to limit the number of salesmen that may end at a
depot, as discussed in Section 5.2.2. The component that has the most variants in literature
introduces the cycle elimination constraints (or subtour elimination constraints), discussed
in Section 5.2.3.
The component that has received the least attention introduces the cycle imposement con-

straints. Until recently, fixed-destination solutions for mTSPs and its variants have been en-
sured by using 3-index formulations of the decision variables as discussed in Section 5.2.4.
The formulation of Bektaş proposed in [10] is the first formulation that ensures fixed-destination
solutions using 2-index binary variables and the multi-commodity flow constraints presented
in Section 5.2.4. In the current section we will introduce a novel approach for cycle impose-
ment. This approach is also based on 2-index binary variables, where one continuous vari-
able per node is added to the formulation to ensure a fixed-destination solution. The new
formulation needs a few less binary variables than the formulation of [10]; more importantly,
it uses DL times less continuous variables than the multi-commodity flow approach.

5.3.1 Cycle Imposement Through Node Currents

Inspired by the node potentials of Miller, Tucker, and Zemlin [103] we propose an alternative
formulation of the FMmTSP using node currents [22]. Similar to the commodity flow trans-
ported between cities over the arcs, the current in an electric circuit can also be considered
as a flow in a directed graph. With the depots representing current sources, a proper electric
circuit contains only cycles (if not, there would be an open circuit or short circuit), which
corresponds to the cycle imposement constraint stating that every salesman must return to
his departing depot. A flow conservation law combined with assignment constraints forces
the current flowing into a node to be equal to the current flowing out of the node, so that
nodes in the same cycle must have the same current. Thus, we can view the current ki as a
property of node i (instead of a property of the arc xi j ).
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Node Current Formulation

For the newly proposed node current formulation there is no need to use copies of the depot
nodes. Therefore, this formulation will use less binary variables as for the copy-based for-
mulation, since there are D less nodes to represent the graph. Fixed-destination solutions
can be obtained by using L = D +C continuous variables ki satisfying the cycle imposement
constraints

kd = d ∀ d ∈D (5.24a)

ki −k j ≤ (D−1)(1−xi j ) ∀ i , j ∈L (5.24b)

resulting in ki ≤ k j if xi j = 1 using (D +C )2 −C constraints. Additionally, one can obtain the
tighter constraint ki = k j if xi j = 1 by adding

k j −ki ≤ (D−1)(1−xi j ) ∀ i , j ∈L . (5.24c)

to the constraints (5.24a)-(5.24b), resulting in stronger linear relaxations at the cost of using
more constraints. If the minimum number of cities to visit is set to be at least two, one can
replace (5.24b)-(5.24c) with

ki −k j ≤ (D−1)(1−xi j −x j i ) ∀ i , j ∈L . (5.24d)

This enforces the equality ki = k j using half the amount of inequality constraints. Note that
constraints (5.24d) exclude solutions where a salesman visits only one node, since xi j +x j i =
2 is infeasible by (5.24d).
Figure 5.2 shows an example of a feasible solution for D = 3 depots and C = 6 cities. Note
that within the set L =D∪C the existence of three cycles has been imposed, whereas in the
set C no cycles exist due to the cycle elimination constraints.

Theorem 5.3.1 (Cycle imposement) The MILP consisting of (5.5), (5.9), any of the cycle elim-

ination constraints, and the cycle imposement constraints (5.24) will result in a graph with

exactly
∑

d∈D

md cycles, where each node d ∈D is contained in exactly md cycles.

Proof : Let the directed graph G = (L ,A ) be the graph associated with a feasible solution of
the given MILP. The node set of G coincides with the set of locations of the FMmTSP, and the
arc set A is defined as

∀i , j ∈L , (i , j ) ∈A if and only if xi j = 1

Define a cut (D,C ) on G , and denote the subset of forward and backward arcs in the cut set
as

δ+ = {(i , j ) ∈A |i ∈D, j ∈C }

δ− = {(i , j ) ∈A |i ∈C , j ∈D}

which represents all salesmen leaving the depots and all salesmen returning from the cities,
respectively. By assignment constraints on the city nodes (5.9b)–(5.9c), the in-degree and
out-degree of each node in C is one, and the cycle elimination constraints ensure that no
cycles exist in C , so no path can start or end in C . Therefore |δ+| = |δ−|, indicating that any
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salesman leaving a depot must also return to a depot (see Figure 5.2).
The above arguments actually show that the graph associated with a solution of the non-
fixed destination MmTSP contains exactly

∑

d∈D

md distinct paths starting and ending in D.

Now we need to prove that by the additional cycle imposement constraints for the fixed-
destination setting, the

∑

d∈D

md distinct paths are all cycles, and each node d ∈D is contained

in exactly md cycles, i.e., each path starting in a depot node d ∈D must also end in the same
depot d . We prove this statement by induction.
For any path P = {d , ci 1 ci 2 . . . d∗}, where d , d∗ ∈ D and ci 1, ci 2 · · · ∈ C , by constraint (5.24b)
that the node current ki is non-decreasing along a path, one has

kd ≤ kci 1 ≤ kci 2 ≤ ·· · ≤ kd∗

In addition, by (5.24a) each depot node is assigned a unique node current, and hence

1 ≤ kd ≤ D ∀d ∈D.

We use the following inductive steps to prove that any path starting in depot d must also end
in the same depot.

(1) By (5.9a) there will be mD paths leaving depot D . For any path P starting in depot
d = D, one has D = kd ≤ kd∗ ≤ D , where the upper limit follows from the fact that a
path must return to a depot, for which D is the highest value. Thus kd∗ = D, indicating
d∗ = D = d . Therefore, a path starting in node D can only end in node D. By (5.9a)-(5.9d)
exactly mD cycles start and end in depot D, i.e., depot D is contained in exactly mD

cycles, and can accept no more incoming arcs because the constraint (5.9d) on its in-
degree is already satisfied.

(2) For any path P starting in depot d = D −1, similarly one has D −1= kd ≤ kd∗ ≤ D. So
kd∗ can only take the value D or D −1, i.e., path P can only end in depot D or D −1. By
the previous argument P cannot end in D because (5.9d) is already satisfied for d = D,
so the mD−1 paths starting at depot D − 1 can only end in depot D − 1. Similarly, by
the assignment constraints, depot D −1 is contained in exactly mD−1 cycles, and can
accept no more incoming arcs.

(3) Continuing this argumentation for any path P starting in depot d , P can only end in
the same depot d since the constraint (5.9d) is already satisfied for depots d +1 to D,
and by the assignment constraints depot d is contained in exactly md cycles.

(4) Finally, it follows that any path P starting in depot 1 must end in depot 1.

✷

By assigning a unique value to the node currents of the depots through (5.24a) and adding
constraints (5.24b)–(5.24c) or (5.24d)—such that ki = k j if there is a connection between
nodes i and j — it is guaranteed that a tour starting at depot d will return to depot d without
visiting another depot by Theorem 5.3.1.
Remark: For the optimal solution the node current variables will implicitly satisfy

1≤ ki ≤ D ∀i ∈L , (5.25)
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Figure 5.2: A solution without a copy of the set D, using node currents to ensure a fixed-
destination solution. Each of the three cycles has a unique ‘current’: the depot
nodes act as current sources of 1, 2 and 3 Ampère respectively, and this current is
flowing through the arcs and nodes. Since each node has exactly one incoming
arc and one outgoing arc (due to the assignment constraints) this ‘node current’
uniquely defines to which depot a city is assigned.

and these bounds can be set explicitly in the MILP formulation without affecting the result.

MILP Formulation Using Node Currents

As an alternative to the FMmTSP formulation presented in [10] we propose a novel formu-
lation of the problem based on node currents as cycle imposement constraints. It is based
on 2-index decision variables using the cost function given by (5.5). The formulation will
be presented using the standard assignment constraint given in (5.9), but the variant with
idle salesmen may also be used. For a comparison with the formulation in [10] (which ex-
cludes the possibility of idle salesmen) it should be possible to set workload bounds for the
salesmen, and therefore the cycle elimination constraints (5.12) are chosen. For the compu-
tational comparison in the next section the minimum number of cities to visit per salesman
will be u = 1, and therefore we use constraints (5.24a–5.24c) to impose

∑

d∈D

md cycles in the

set L ; if u ≥ 2 it would be more efficient to use (5.24a) and (5.24d). The maximum number
of cities per salesman can be set to

u =C +u(1−
∑

d∈D

md ) (5.26)

where
∑

d∈D md gives the total number of salesmen, such that u(1−
∑

d∈D md ) becomes the
minimum number of cities that need to be visited by other salesmen; a single salesman can
visit at most all cities minus the minimum number of cities visited by the others.
The MILP formulation of the FMmTSP using workload bounds and node currents then be-
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comes

min
∑

i∈L

∑

j∈L

ci j xi j (5.27)

s.t.
∑

i∈L

xi c =
∑

j∈L

xc j = 1 ∀c ∈C

∑

i∈L

xi d =
∑

j∈L

xd j = md ∀d ∈D

ui −u j +uxi j + (u−2)x j i ≤ u−1 ∀ i , j ∈C

ui + (u−2)
∑

d∈D

xdi −
∑

d∈D

xi d ≤ u−1 ∀ i ∈C

ui +
∑

d∈D

xdi + (2−u)
∑

d∈D

xi d ≥ 2 ∀i ∈C

kd = d ∀d ∈D

ki −k j ≤ (D−1)(1−xi j ) ∀ i , j ∈L

k j −ki ≤ (D−1)(1−xi j ) ∀ i , j ∈L

xi j ∈ {0,1}, 1≤ui ≤C , 1≤ki ≤D ∀ i , j ∈L

Remark: As opposed to the two alternative FMmTSP formulations [10, 113], this novel for-
mulation does not use copies of the depot nodes; therefore, only L = D+C nodes are needed
for this formulation instead of 2D +C . Furthermore, unlike the other two formulations, the
costs of traveling between the nodes remain the same as for the nonfixed-destination prob-
lem; hence there is no need to build a new cost matrix; the original cost matrix C can be used
without any modification.

5.3.2 Properties of Fixed-Destination Formulations

Adding more variables to an optimization problem in general results in larger computation
times and a higher memory usage. Compared to continuous variables the number of bi-
nary variables used in a programming problem can significantly influence the computation
times. Therefore, reducing the number of binary variables to represent a problem can result
in a noticeable performance gain. Although in general the addition of a few continuous vari-
ables has little influence on the computation times, using many continuous variables can
cause problems due to the larger memory use, and it can also result in larger computation
times.
Table 5.2 shows the number of nodes, binary variables, continuous variables, equality con-
straints, and inequality constraints that are needed to represent the FMmTSP per formula-
tion. In the following ‘I’ denotes the novel MILP formulation (5.27), ‘II’ denotes the extended
formulation based on [114], and ‘III’ denotes the formulation from [10].

Note that besides less binary variables, the newly proposed formulation also uses less
continuous variables compared to the formulation of [10]; there are D +C node currents
necessary to solve the fixed-destination problem, compared to D(2D +C )2 commodity flow
parameters needed to represent the D different commodities that could move along the
(2D +C )2 arcs in the extended network.
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Table 5.2: Properties of the three formulation types, divided into the number of nodes (N),

binary variables (BV), continuous variables (CV), equality constraints (EC), and

inequality constraints (IC).

I II III

N L=C +D L′=C +2D L′=C +2D

BV (C +D)2 (C +D)2 (C +D)2

CV 2C +2D 2C +4D (DL′+1)L′

EC 2C +3D 2C +4D 2C + (4+L′)D

IC C 2+2C +2L2 C 2+2C +2L′2 C 2+2C +DL′2

5.4 Computational Comparison

In this section we compare three MILP formulations for solving FMmTSPs by a large number
of test cases. Formulation I is the proposed formulation (5.27). Formulation II is composed
of the MILP formulation originally designed for non-fixed destination MmTSP in [? ], and
the node-current cycle imposement constraint. Formulation III is the multi-commodity flow
formulation in [? ]. First we describe the benchmark that we use, followed by a discussion of
the results. The formulations provide optimal solutions for the FMmTSP, and all computa-
tion times give the time it took to reach this optimum. When the optimum was not reached
within 3 hours wall-clock time the test was marked as failed.

5.4.1 Description of Test Instances

To compare the three formulations of the FMmTSP we have chosen 32 symmetric and asym-
metric TSP test cases with size ranging from 14 to 170 nodes from the library TSPLIB [133],
where the numbers in the name of the test instance (e.g. dantzig42) represent the number
of locations L in the problem. The first 16 test cases (burma14 up to ry48p) are considered
small problems, while the last 16 test cases (hk48 up to ftv170) are included in the large
problems. For each test case we have selected D cities to represent depots. Since e.g. the
cities in dantzig42 are given in the order of the optimal tour (and hence subsequent cities
are close to each other), the depot nodes are selected as the i-th cities satisfying

i = 1+ (d −1)

⌊
C

D

⌋

∀d ∈D, (5.28)

where ⌊a⌋ represents the operator that returns the largest integer smaller than or equal to a.
This approach is used to reduce the chance that the depots are close to each other. The num-
ber of depots D varies from 2 to 6 for each test case. We consider two scenarios, namely, one-
salesman-at-each-depot and multiple-salesmen-at-each-depot. For the multiple-salesmen-
at-each-depot scenario, the following three-step procedure is used to allocate the number of
salesmen for each depot.
Step 1: Compute the number of cities C = L −D, and generate the total number of salesmen
to be assigned to the D depots as

S = min

(

max

(

D +1,

⌊
L

3

⌋)

,C −1

)
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Note that we choose
⌊

L
3

⌋

for the total number of salesmen (as long as it lies in the interval
[D +1, C −1]), since too few salesmen are insufficient to consider the multiple-salesmen-at-
each-depot scenario, and too many salesmen can lead to idle salesmen in the solution.

Step 2: Assign x =
⌊

S

D

⌋

salesmen to each depot, and calculate the number of the unassigned

salesmen

r = S −x ·D

Step 3: Assign one salesman to the depots with indices

i = 1+ (k −1)

⌊
D

r

⌋

∀k ∈ {1,2, · · ·r }

Since the number of remaining salesmen calculated at Step 2 is always less than D, all sales-
men have been assigned to a depot after performing the three-step procedure. Moreover,
the last step also ensures a fair allocation of the remaining salesmen.
In this way we create a benchmark of 32× 5× 2 = 320 FMmTSP test instances, which are
solved using three different formulations, and three MILP solvers.
Since the formulation using the commodity flows according to (5.19) requires that each
salesman visits at least one city (due to (5.19a)), we set u = 1 and u = C to obtain the same
problem for each formulation. All computations are performed on a desktop computer with
an Intel Xeon E5-1620 Quad Core CPU and 64 GB of RAM, running 64-bit versions of SUSE
Linux Enterprise Desktop 11, and Matlab R2014b. Three state-of-the-art commercial and
free MILP solvers are used, namely, CPLEX 12.5 (called via Tomlab 8.0), Gurobi Optimizer
5.6, and CBC 2.9.4 from COIN-OR (called via the OPTI-Toolbox).

5.4.2 Results of Computational Experiments

A time limit of 3 hours is imposed on each test run. The optimal values for all the test in-
stances are provided in Table 5.3. These values are obtained by summarizing all instances
successfully solved by three MILP solvers (CPLEX, Gurobi, and CBC) and three formulations
within a 3-hour time limit.
The CPU times for the one-salesman-at-each-depot problem are reported in Tables 5.4–5.6,
followed by the CPU times for the multiple-salesmen-at-each-depot problem in Tables 5.7–
5.9. To reduce the chance that the outcome is affected by random events, we chose to run
each test case a few times and take the average value of the computation times. Tables 5.4–
5.9 contain the average CPU time to find the optimal solution over 10 runs for each small
test case, and over 5 runs for each large test case, for each number of depots D. All reported
times are in seconds. The fastest instances are indicated by the bold-faced numbers, and the
symbol “-" is used to denote the failed test instances.

5.4.3 Comparison of Problem Formulations

When a test case is solved to optimality within 3 hours wall-clock time, we register this time.
Otherwise, we mark the test case as failed. A comparison is made between the three formu-
lations on both the average CPU times and the number of failed cases.
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Table 5.3: Summary of optimal values obtained using three solvers and three formulations.

one-salesman-at-each-depot multiple-salesmen-at-each-depot
test case D=2 D=3 D=4 D=5 D=6 D=2 D=3 D=4 D=5 D=6
burma14 3098 3033 2993 3480 3728 3253 3079 3039 3696 3944
ulysses16 6986 6326 6097 5809 8862 8324 6873 6101 5816 9774

gr17 2054 1819 1945 1684 1815 2374 2056 2182 1818 1953
br17 36 23 16 6 34 39 23 16 6 34
gr21 2716 2662 2674 2684 3228 3623 3454 3932 3004 3360

ulysses22 6445 6282 6435 6147 6855 12520 6769 7701 6386 6888
fri26 930 939 940 932 903 1442 1385 1143 1093 1061

bayg29 1596 1598 1641 1583 1608 1955 1972 1962 1867 1851
bays29 1988 1993 2018 1972 1966 2471 2469 2476 2369 2351
ftv33 1302 1291 1292 1237 1214 1831 1732 1536 1402 1490
ftv35 1457 1453 1429 1396 1421 2157 1999 1801 1918 1735
ftv38 1521 1510 1518 1455 1512 2297 2158 1962 1941 1966

dantzig42 661 633 645 611 631 1202 1016 977 795 813
swiss42 1272 1262 1274 1277 1257 2054 1982 1640 1583 1604

ftv44 1611 1602 1608 1569 1582 2744 2232 2546 2205 2171
ry48p 14097 14318 14366 14306 14146 23925 22637 19560 18506 19378
hk48 11439 11358 11222 11285 11310 18259 19258 14989 14697 13717
eil51 426.358 423.013 424.452 431.966 423.28 712.039 624.878 554.267 549.326 558.837

berlin52 7464.36 7591.94 7528.97 7501.83 7733.97 11896.5 14113.6 9754.51 9460.11 9444.27
ft53 6926 7029 6880 6842 6896 12211 12012 9376 8857 8943

ftv55 1590 1585 1594 1623 1584 2905 2715 2865 2666 2279
ftv64 1782 1835 1798 1770 1846 3052 3067 2722 2935 2601
st70 671.792 667.264 659.917 654.026 655.046 1423.55 1166.02 1023.21 1029.61 884.627
eil76 542.325 541.004 540.436 555.114 551.761 941.31 898.858 866.489 864.664 795.141
gr96 54795 55076 54047 54653 54999 130169 126797 101320 88968 92425

kroB100 21954.8 21698.8 21695.2 21680.6 21415.8 47224.9 40190.7 38024.8 32726.8 33430.7
kroC100 20504.7 20400.2 20308.2 20321.8 20434 49947.6 39621.9 40213.4 35719.9 32695.2
kroD100 21493 - - 20792.4 - 60888.7 47247.5 36873.3 36597.8 37458.2
kroE100 21896.9 21932.2 21700.5 21865 21386.3 46588.1 42585.9 35477.3 33493 37063.9

eil101 641.711 637.213 636.541 641.933 640.554 1353.47 1414.26 1098.31 973.447 973.366
kro124p 36316 36244 36252 36041 36427 69844 67146 - 58912 53206

ftv170 2755 2740 - 2744 - - - - - -
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Table 5.4: Mean CPU time (in seconds) obtained from the CPLEX solver, for scenario one-salesman-at-each-depot.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.50 0.19 0.19 0.31 0.40 4.30 32.14 1.34 0.45 1.97
II burma14 0.21 0.25 0.16 0.23 0.15 hk48 8.06 33.00 2.26 0.79 1.54
III 0.34 0.18 0.34 0.26 0.24 114.81 25.21 10.05 4.00 36.04
I 1.16 0.30 0.17 0.23 392.31 1.86 2.25 1.88 13.28 2.18
II ulysses16 0.57 0.31 0.23 0.23 0.32 eil51 2.48 1.69 2.49 9.05 1.54
III 21.30 0.37 0.35 0.37 0.43 70.44 29.06 15.39 152.15 26.55
I 0.36 0.36 0.33 0.20 0.25 1.71 5.58 1.22 1.65 28.17
II gr17 0.32 0.27 0.29 0.29 0.21 berlin52 1.58 5.98 1.85 2.68 9.55
III 1.39 0.35 0.32 0.26 0.34 264.08 27.24 14.69 12.67 110.63
I 0.39 0.35 0.25 0.30 0.30 2.31 67.92 2.04 2.17 1.36
II br17 0.43 0.39 0.26 0.24 0.28 ft53 4.54 20.50 3.84 2.72 1.67
III 1.09 0.61 0.25 0.34 0.31 866.05 1024.84 52.29 46.70 18.25
I 0.23 0.25 0.24 0.25 1.79 1.19 1.08 1.51 5.87 12.48
II gr21 0.23 0.20 0.19 0.21 0.22 ftv55 1.93 1.37 2.34 2.37 0.85
III 0.41 0.28 0.27 0.34 0.38 4.13 9.30 17.74 7.31 28.34
I 0.44 0.28 0.51 0.30 3.62 1.68 7.01 2.51 1.30 14.36
II ulysses22 0.55 0.37 0.59 0.41 0.38 ftv64 1.56 13.07 1.67 3.09 3.09
III 1.86 0.40 0.92 0.64 0.73 21.04 59.80 22.06 9.54 1107.09
I 0.54 0.45 0.41 0.51 0.33 107.87 45.59 146.17 106.91 25.82
II fri26 0.63 0.77 0.55 0.48 0.52 st70 253.25 82.69 171.05 122.70 35.93
III 4.68 0.92 1.17 1.34 1.35 527.36 92.28 698.98 448.71 131.62
I 0.38 0.57 3.01 0.36 1.15 10.83 11.52 5.57 3034.21 1060.30
II bayg29 0.45 0.67 2.72 0.33 0.86 eil76 14.81 15.08 8.32 25.54 6.06
III 2.62 1.18 9.71 0.85 2.98 71.22 126.64 120.74 444.12 98.20
I 0.45 0.39 1.30 0.30 0.46 52.71 232.55 23.88 158.68 405.34
II bays29 0.40 0.53 1.46 0.30 0.75 gr96 126.06 129.70 51.32 97.39 181.88
III 1.87 0.73 9.85 0.75 1.77 366.28 2506.87 342.34 - -
I 0.71 2.76 0.53 0.38 0.32 715.08 253.79 10249.36 159.69 418.96
II ftv33 0.91 1.04 0.73 0.40 0.32 kroB100 1100.80 223.31 - 265.20 915.75
III 73.28 1.52 1.43 1.77 1.33 - 2192.25 - - -
I 0.49 0.54 0.37 0.34 0.31 1079.32 198.89 175.56 759.76 2653.58
II ftv35 0.57 0.51 0.44 0.29 0.37 kroC100 2032.30 299.03 199.45 632.67 1007.79
III 2.18 1.24 1.61 1.68 1.70 6054.43 7025.49 - - -
I 0.77 0.60 0.47 0.48 0.62 - - - 8739.53 -
II ftv38 0.62 0.59 0.70 0.34 0.67 kroD100 2995.81 - - - -
III 3.86 1.63 1.70 1.83 3.15 6718.39 - - - -
I 3.25 0.75 1.80 0.87 0.61 440.11 222.39 254.65 676.93 44.51
II dantzig42 3.96 1.40 2.25 1.55 0.66 kroE100 798.82 238.56 163.79 946.49 -
III 36.54 2.06 6.93 6.10 5.23 - - - - -
I 1.50 1.13 1.42 1.75 1.27 78.90 26.07 133.80 71.34 71.21
II swiss42 1.84 1.65 2.41 1.92 1.87 eil101 338.65 33.88 143.56 117.90 58.03
III 33.78 6.40 6.61 16.46 9.48 6377.94 - - - -
I 1.17 0.67 1.27 0.58 0.95 25.41 34.76 22.02 11.13 33.28
II ftv44 0.99 0.96 0.82 0.58 0.62 kro124p 1154.00 2196.56 - - -
III 3.26 1.99 6.16 4.47 3.79 1151.96 2195.11 - - -
I 1.52 7.30 8.02 5.60 6.46 - - - - -
II ry48p 2.32 13.40 11.75 9.48 1.23 ftv170 - - - - -
III 37.00 32.92 36.70 44.33 11.96 - - - - -
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Table 5.5: Mean CPU time (in seconds) obtained from the Gurobi Optimizer, for the scenario one-salesman-at-each-depot.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.07 0.07 0.04 0.22 0.68 7.17 86.31 2.55 0.23 3.10
II burma14 0.13 0.06 0.09 0.10 0.04 hk48 3.66 107.00 2.22 0.41 5.32
III 0.14 0.08 0.08 0.14 0.09 4.27 105.61 5.51 0.59 4.86
I 2.05 0.15 0.05 0.07 461.46 2.69 3.97 0.99 32.10 4.03
II ulysses16 1.02 0.26 0.04 0.08 0.27 eil51 1.86 2.89 1.53 38.29 2.56
III 1.59 0.27 0.11 0.24 0.26 3.86 2.78 4.56 21.79 3.32
I 0.19 0.14 0.18 0.03 0.11 2.06 10.88 1.94 1.84 49.24
II gr17 0.35 0.17 0.28 0.05 0.10 berlin52 1.10 8.64 2.86 3.90 21.73
III 1.08 0.27 0.40 0.08 0.18 3.50 29.66 6.74 5.95 29.06
I 1.14 0.78 0.21 0.11 0.33 28.29 56.11 22.43 19.16 36.85
II br17 2.71 0.43 0.24 0.22 0.32 ft53 7.13 46.61 43.77 11.04 6.97
III 2.52 0.70 0.32 0.19 0.43 28.82 39.73 35.95 111.07 11.81
I 0.13 0.06 0.16 0.07 3.04 1.84 1.69 3.10 10.94 18.37
II gr21 0.21 0.09 0.23 0.10 0.07 ftv55 1.60 2.28 2.12 2.32 1.59
III 0.20 0.20 0.29 0.45 0.11 4.15 3.98 4.17 4.12 4.33
I 0.46 0.18 0.42 0.23 3.19 1.84 4.22 2.56 1.46 21.49
II ulysses22 0.67 0.22 0.47 0.55 0.46 ftv64 1.62 4.96 1.68 3.17 5.62
III 0.70 0.31 1.26 0.47 0.48 1.95 12.61 4.02 2.82 8.09
I 0.40 0.72 0.97 0.51 0.38 636.50 241.88 1133.48 379.68 29.23
II fri26 0.76 0.98 1.01 0.67 0.48 st70 - 261.64 1506.71 475.47 84.12
III 0.87 1.24 1.30 1.36 0.80 1595.30 307.17 4683.77 1098.81 189.27
I 0.73 0.55 4.45 0.47 2.27 9.48 11.43 4.68 10547.85 2205.36
II bayg29 0.88 0.99 3.41 1.23 1.03 eil76 6.85 10.49 2.50 14.06 2.51
III 0.95 1.13 5.70 1.18 2.07 13.21 27.92 4.30 48.19 8.06
I 0.38 0.57 2.81 0.42 1.32 349.41 957.70 97.39 362.25 329.48
II bays29 0.54 1.09 2.92 0.40 1.00 gr96 209.83 376.86 128.38 443.95 666.62
III 0.69 0.96 3.84 0.30 1.26 259.31 1196.67 124.34 439.49 -
I 0.55 0.85 0.91 0.37 0.17 6013.72 420.09 - 1580.18 2098.60
II ftv33 2.12 1.17 1.18 0.87 0.27 kroB100 5341.60 1115.09 - 1071.68 4772.04
III 1.85 1.24 3.19 0.65 0.46 - 1648.63 - - -
I 0.64 0.63 0.31 0.23 0.18 - - 319.52 2720.50 -
II ftv35 1.17 0.97 0.26 0.37 0.24 kroC100 - 2370.29 308.45 5469.71 -
III 1.27 0.71 0.54 0.63 0.49 5304.34 - 2094.30 - -
I 0.94 0.79 0.62 0.27 0.71 - - - - -
II ftv38 1.31 1.22 0.61 0.26 1.55 kroD100 8377.61 - - - -
III 1.00 0.64 1.09 0.51 0.98 10581.25 - - - -
I 4.67 0.77 2.39 1.84 0.56 - 1189.62 800.29 6460.41 303.35
II dantzig42 4.98 2.17 1.27 1.55 0.63 kroE100 10475.87 1143.61 675.25 8845.54 525.64
III 4.77 2.44 1.52 1.59 0.98 - 3482.50 1186.41 - -
I 2.37 1.45 1.70 2.80 1.49 229.58 317.55 242.76 140.20 189.96
II swiss42 2.33 1.77 3.20 3.63 2.89 eil101 125.33 26.50 126.40 157.08 47.72
III 5.27 5.63 4.97 5.00 5.09 421.55 17.71 356.45 - -
I 0.61 0.81 1.51 0.32 0.83 30.17 254.38 24.80 16.82 269.64
II ftv44 1.23 0.97 0.81 0.85 0.62 kro124p 74.38 336.59 77.14 - -
III 0.76 1.25 1.48 1.02 1.02 74.46 337.20 77.08 - -
I 3.35 8.76 14.18 6.82 7.52 32.24 26.90 - 24.86 -
II ry48p 2.84 14.54 77.48 14.98 2.16 ftv170 - - - - -
III 3.89 18.89 17.72 29.67 3.86 - - - - -
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Table 5.6: Mean CPU time (in seconds) obtained from the CBC solver, for scenario one-salesman-at-each-depot. As the largest test case that

CBC can solve for this scenario is eil76, we have truncated the table to make it more concise.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.79 0.41 0.39 1.55 49.48 133.87 19.19 30.06 23.48 4.92
II burma14 0.78 0.44 0.57 0.70 0.75 dantzig42 356.50 15.07 89.85 128.51 5.17
III 2.55 0.72 0.99 0.55 0.60 - 75.43 339.87 126.71 70.08
I 33.17 1.97 0.32 0.51 6772.37 27.77 79.93 21.82 41.73 16.61
II ulysses16 11.18 0.86 0.42 0.72 1.35 swiss42 45.40 25.81 60.22 48.75 27.37
III 28.21 1.67 0.35 1.78 2.42 598.24 68.51 72.12 132.23 102.62
I 1.19 0.65 0.52 0.32 0.45 23.38 5.13 237.46 8.41 20.77
II gr17 1.68 1.04 1.05 0.50 0.92 ftv44 9.08 9.95 24.70 13.49 11.77
III 3.56 1.36 0.82 1.31 1.04 65.52 38.73 30.67 106.26 104.84
I 599.43 46.45 0.54 0.58 33.90 20.75 1775.21 729.87 222.86 1302.83
II br17 618.82 23.23 0.83 0.89 1.00 ry48p 216.58 321.03 4956.45 348.75 17.26
III 1995.82 31.05 2.50 1.91 1.10 577.59 875.94 1188.08 1306.19 220.15
I 0.64 0.54 0.99 1.05 25.46 333.89 - 75.05 6.73 43.39
II gr21 0.77 0.65 1.89 1.00 0.84 hk48 406.06 7452.41 152.95 11.88 11.87
III 1.32 4.39 0.96 3.52 0.79 2509.90 7621.84 51.88 33.55 174.17
I 5.87 0.93 5.31 1.64 70.65 51.23 34.59 44.43 935.99 247.47
II ulysses22 6.23 1.34 2.27 2.25 5.73 eil51 47.27 21.94 36.56 853.15 14.74
III 31.50 4.18 16.83 7.09 6.54 2116.50 70.25 76.43 490.93 101.66
I 1.99 6.20 7.97 9.51 3.93 13.95 129.52 27.39 106.86 3666.44
II fri26 7.10 8.37 14.70 7.04 7.99 berlin52 11.10 362.80 53.40 86.09 548.08
III 140.05 11.24 11.38 12.23 16.64 9137.46 1977.97 135.74 355.46 423.07
I 5.31 8.11 67.46 3.75 15.35 159.03 - 9468.16 121.40 85.57
II bayg29 8.51 15.64 67.00 2.06 23.53 ft53 152.91 527.96 - 130.30 24.68
III 29.43 13.70 104.49 8.47 24.26 - 1926.62 1004.57 439.18 85.58
I 4.46 11.88 42.83 3.24 78.02 16.37 14.44 36.75 259.52 614.58
II bays29 7.22 16.14 22.97 2.20 11.73 ftv55 116.94 27.70 22.57 31.31 15.38
III 24.90 10.34 37.78 12.36 9.43 2539.82 86.93 86.52 337.31 314.63
I 12.61 10.90 7.60 2.83 1.52 36.75 192.80 627.11 27.18 879.96
II ftv33 14.44 15.71 17.40 9.78 3.04 ftv64 93.52 225.63 104.97 34.65 98.39
III 319.31 15.58 22.57 59.12 64.11 2311.47 211.36 318.15 650.50 770.92
I 6.44 3.34 4.68 2.33 3.18 - - - - -
II ftv35 21.41 5.17 5.55 3.45 3.83 st70 - - - - -
III 177.13 13.57 17.46 17.31 30.32 - - - - -
I 7.81 4.58 6.90 3.13 9.90 1246.47 402.44 69.14 - -
II ftv38 15.28 8.56 8.37 4.55 6.24 eil76 - - - - -
III 39.18 39.36 8.82 40.58 12.55 - - - - -
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Table 5.7: Mean CPU time (in seconds) obtained from the CPLEX solver, for the scenario multiple-salesmen-at-each-depot.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.26 0.16 0.21 0.48 0.54 1.92 - 0.66 1.28 1.97
II burma14 0.22 0.29 0.23 0.22 0.16 hk48 2.06 3.36 1.10 1.16 1.85
III 0.29 0.27 0.26 0.28 0.21 4.26 9.11 5.00 11.19 19.29
I 6.91 0.23 0.14 0.33 1037.06 1.01 0.82 0.49 7.12 83.13
II ulysses16 0.20 0.27 0.17 0.24 0.25 eil51 2.22 2.01 0.43 3.84 1.45
III 0.26 0.33 0.23 0.32 0.39 4.44 11.14 2.04 27.18 14.75
I 0.36 0.33 0.33 0.18 0.23 1.15 3.85 2.05 1.63 588.83
II gr17 0.42 0.29 0.35 0.23 0.23 berlin52 0.83 1.69 2.57 1.65 2.68
III 0.44 0.56 0.40 0.37 0.31 6.12 16.82 13.62 11.57 37.65
I 0.35 0.28 0.27 0.20 0.28 - 2305.90 2.07 96.97 2.40
II br17 0.32 0.29 0.21 0.24 0.25 ft53 1.93 336.30 4.82 5.75 2.66
III 0.45 0.33 0.27 0.37 0.39 44.95 31.36 49.45 16.60 10.19
I 0.40 0.45 91.74 0.29 1.30 4.16 - 2627.80 - 1158.37
II gr21 0.22 0.27 0.21 0.20 0.17 ftv55 0.98 2.57 5.96 19.94 1.93
III 0.35 0.27 0.25 0.28 0.28 10.74 23.80 7.58 21.99 9.09
I 0.31 0.25 0.42 0.49 2.12 1.20 1.10 91.39 2.79 -
II ulysses22 0.29 0.31 0.44 0.36 0.31 ftv64 0.56 1.69 1.14 0.78 4.01
III 0.43 0.31 0.82 0.64 0.63 1.70 5.86 4.56 5.50 38.52
I 0.38 0.73 0.42 0.45 0.44 - - 27.42 - 120.53
II fri26 0.40 0.34 0.44 0.59 0.42 st70 22.42 10.68 27.66 8.85 49.54
III 0.59 0.69 1.06 0.89 1.04 50.52 101.39 159.51 144.87 343.32
I 0.28 0.27 0.38 0.66 0.49 3.66 51.39 2.50 - -
II bayg29 0.40 0.37 0.64 0.31 0.65 eil76 4.72 1.38 2.74 2.37 2.96
III 0.42 0.41 1.28 0.82 1.45 32.96 7.01 67.98 45.81 43.07
I 0.25 0.33 0.55 1.04 0.55 136.12 - - - -
II bays29 0.21 0.32 0.61 0.46 0.41 gr96 70.37 32.37 5271.15 216.89 400.03
III 0.33 0.62 1.36 0.74 1.54 430.93 739.18 3902.65 - -
I 5.32 0.55 0.39 0.19 0.67 11.80 42.46 - 154.68 -
II ftv33 0.38 0.74 0.44 0.27 0.42 kroB100 19.18 29.77 324.27 232.42 1647.09
III 0.88 1.19 0.98 0.53 2.17 85.15 477.31 - - -
I 0.34 0.69 0.43 1.38 0.28 35.14 - 5360.70 - -
II ftv35 0.43 0.48 0.41 0.34 0.26 kroC100 32.06 575.64 178.00 70.52 253.15
III 0.51 0.88 1.03 1.11 0.79 340.68 1199.03 - - -
I 88.85 0.64 5.76 0.55 3.32 - - 33.37 - -
II ftv38 0.28 0.73 0.47 0.54 0.55 kroD100 62.94 226.68 18.18 6993.22 157.58
III 0.59 1.95 2.90 1.27 3.07 312.03 923.29 - - -
I 0.47 0.43 1.23 0.86 0.72 271.89 - 6675.83 - -
II dantzig42 0.41 0.34 2.64 1.26 0.57 kroE100 143.93 138.07 242.76 8398.49 58.45
III 1.13 1.21 11.39 2.73 11.66 479.70 858.16 - - -
I 1.41 554.87 1.73 10.63 13.95 - - 23.64 - -
II swiss42 0.49 2.11 1.61 1.05 1.49 eil101 45.14 19.24 16.01 52.81 18.28
III 1.20 11.93 10.22 2.41 21.49 350.63 357.35 - - -
I 1233.89 1.32 1968.36 0.54 1.11 4.03 5.51 - 2768.97 39.11
II ftv44 0.35 0.51 1.06 0.64 0.40 kro124p 185.08 1410.72 - - -
III 1.29 1.21 4.36 2.84 1.44 184.42 1412.88 - - -
I 1.25 3691.25 16.56 52.54 - - - - - -
II ry48p 2.06 3.36 4.29 1.34 1.21 ftv170 - - - - -
III 7.43 12.42 28.10 8.19 11.64 - - - - -
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s Table 5.8: Mean CPU time (in seconds) obtained from Gurobi Optimizer, for the scenario multiple-salesmen-at-each-depot.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.04 0.04 0.04 0.52 0.61 2.21 - 0.48 0.99 2.71
II burma14 0.04 0.05 0.05 0.05 0.04 hk48 1.23 1.52 0.68 2.05 2.84
III 0.05 0.07 0.09 0.09 0.08 3.14 5.46 1.74 2.10 3.04
I 6.14 0.14 0.02 0.11 1054.08 0.83 2.58 0.50 17.94 164.84
II ulysses16 0.08 0.09 0.04 0.17 0.24 eil51 0.79 0.95 0.30 2.86 1.70
III 0.06 0.23 0.07 0.27 0.30 2.27 2.03 0.63 6.36 2.04
I 0.16 0.13 0.21 0.03 0.12 1.70 3.96 3.41 2.09 1013.67
II gr17 0.25 0.25 0.30 0.05 0.07 berlin52 1.48 1.61 3.19 2.79 4.77
III 0.79 0.39 0.37 0.12 0.16 13.82 2.04 8.20 3.48 14.19
I 0.30 0.07 0.11 0.03 0.27 6739.40 - 20.23 133.20 16.10
II br17 0.52 0.07 0.13 0.04 0.11 ft53 6.66 65.09 55.45 9.69 21.73
III 1.20 0.11 0.17 0.10 0.26 3.40 33.89 106.06 64.09 16.45
I 0.12 0.36 105.00 0.18 1.38 6.28 - 3558.18 - 5136.91
II gr21 0.22 0.31 0.17 0.11 0.07 ftv55 1.04 3.00 6.88 32.69 5.11
III 0.35 0.36 0.14 0.22 0.17 1.88 3.56 2.48 6.14 2.65
I 0.26 0.13 0.33 0.34 3.75 0.31 1.59 67.29 3.23 -
II ulysses22 0.14 0.08 0.65 0.35 0.29 ftv64 0.26 0.68 1.10 2.24 5.07
III 0.20 0.12 0.83 0.55 0.51 0.79 1.35 1.89 1.27 6.26
I 0.31 1.55 0.72 0.48 0.35 - - 97.57 - 878.29
II fri26 0.43 0.63 0.56 0.78 0.91 st70 56.77 16.84 223.73 29.98 2060.49
III 0.41 1.00 0.68 0.65 0.51 54.24 45.69 161.56 135.73 1274.02
I 0.07 0.21 0.45 0.57 0.77 1.82 50.45 7.30 - -
II bayg29 0.11 0.22 0.90 0.49 1.23 eil76 2.82 1.30 1.68 2.06 1.40
III 0.21 0.39 1.45 0.81 0.91 5.60 0.79 6.57 5.28 2.98
I 0.14 0.24 0.60 1.67 1.35 266.89 - - - -
II bays29 0.13 0.35 1.01 0.71 1.01 gr96 560.08 32.93 - 1685.22 344.50
III 0.29 0.43 1.15 0.68 0.92 277.99 50.03 658.95 1055.28 -
I 3.85 0.57 0.57 0.11 0.99 40.80 68.72 - 546.46 -
II ftv33 0.65 0.87 0.46 0.19 1.08 kroB100 17.19 147.15 805.84 1425.71 -
III 1.51 1.37 0.75 0.29 0.69 39.94 256.84 - - -
I 0.52 0.74 0.68 1.86 0.30 141.21 - - - -
II ftv35 0.65 0.49 0.47 0.25 0.23 kroC100 46.60 675.18 697.69 245.39 2182.16
III 0.39 0.58 0.83 0.50 0.33 103.36 933.91 848.71 - -
I 89.25 1.20 11.33 0.57 3.15 - - 57.62 - -
II ftv38 0.59 0.66 1.43 0.26 1.01 kroD100 125.71 1042.29 33.18 - 262.00
III 0.66 0.81 1.14 0.46 0.66 388.16 903.60 67.51 - -
I 0.33 0.25 1.03 1.62 1.38 810.50 - - - -
II dantzig42 0.39 0.68 1.68 0.90 1.94 kroE100 322.32 373.75 732.20 - 84.27
III 0.64 0.89 1.06 1.44 1.40 526.81 421.44 387.38 - -
I 1.00 750.93 2.02 17.79 15.17 - - 19.28 - -
II swiss42 0.40 3.11 2.93 0.78 3.01 eil101 31.80 13.56 3.77 48.96 11.67
III 1.15 9.78 4.58 2.55 4.63 41.80 66.04 5.72 - -
I 2981.10 3.50 2019.71 1.48 3.72 10.60 11.34 - - 192.54
II ftv44 0.34 0.84 1.86 1.21 0.47 kro124p 9.69 10.08 81.48 - -
III 0.91 0.61 1.05 0.93 0.55 9.73 10.02 81.07 - -
I 1.85 3081.24 22.57 112.09 - - - - - -
II ry48p 3.87 2.89 3.07 1.71 1.08 ftv170 - - - - -
III 2.57 3.14 4.28 2.26 1.80 - - - - -
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Table 5.9: Mean CPU time (in seconds) obtained from the CBC solver, for the scenario multiple-salesmen-at-each-depot. As the largest test

case that CBC can solve for this scenario is swiss42, we have truncated the table to make it more concise.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.40 0.42 0.40 2.45 15.72 0.60 1.03 5.67 76.38 26.24
II burma14 0.37 0.45 0.53 0.52 0.43 bayg29 0.70 1.29 7.53 2.39 10.80
III 0.80 0.48 0.95 0.54 0.71 5.24 8.82 8.73 19.08 22.07
I 96.08 0.64 0.32 0.46 - 0.64 1.89 3.03 66.69 12.45
II ulysses16 0.71 0.80 0.44 0.60 1.62 bays29 1.58 1.42 6.97 1.70 3.29
III 0.92 1.38 0.48 0.74 0.93 4.26 2.09 10.62 11.07 17.07
I 1.63 0.82 6.61 0.33 0.50 121.84 3.58 8.75 1.61 39.19
II gr17 2.60 0.93 2.42 0.54 0.86 ftv33 2.57 5.49 3.86 2.17 7.21
III 13.86 2.66 1.29 1.28 1.30 17.29 16.61 9.76 1.39 29.50
I 4.84 0.79 0.53 0.33 6.96 1.97 67.43 8.85 86.78 1.45
II br17 5.41 0.68 1.31 0.50 0.75 ftv35 3.51 4.45 6.10 4.80 2.28
III 39.25 1.35 1.62 0.50 1.83 3.03 20.41 26.28 52.22 1.21
I 0.87 2.79 2147.21 1.95 50.15 2896.58 15.63 277.51 3.42 439.83
II gr21 1.07 1.35 1.30 0.92 0.76 ftv38 5.05 18.83 12.75 4.86 6.74
III 3.46 1.18 1.19 2.35 0.49 9.85 25.90 62.36 2.68 25.37
I 1.26 1.18 4.80 1.47 96.28 3.84 6.43 20.49 44.62 15.31
II ulysses22 1.00 1.71 3.96 1.51 6.83 dantzig42 7.19 5.12 24.19 13.97 18.96
III 6.85 3.00 6.94 2.65 12.51 17.89 5.83 54.73 120.24 82.66
I 3.18 17.85 11.20 5.32 5.82 35.59 - 73.03 765.07 305.13
II fri26 1.88 5.37 11.99 6.44 2.94 swiss42 6.65 78.95 37.61 8.37 239.81
III 37.25 18.56 8.25 8.83 11.83 30.72 96.86 85.50 10.98 98.13
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Table 5.10: The average relative difference for the mean CPU times compared with formula-

tion I. The average is taken over all test instances that are successfully computed

by the corresponding formulation and solver. A positive result means a longer

computation time, indicating worse performance.

Small Large Small Large
Solver & single & single & multi & multi

CPLEX 7% 192% −27% 455%
II Gurobi 51% 7% −13% −9%

CBC 46% 33% −18% -
CPLEX 535% 1880% 104% 720%

III Gurobi 113% 78% 37% 24%
CBC 621% 1676% 130% -

Comparison of Average CPU Times

To compare the three problem formulations, we have split the benchmark into four sets:

• Small problems with a single salesman per depot

• Large problems with a single salesman per depot

• Small problems with multiple salesmen per depot

• Large problems with multiple salesmen per depot

Table 5.10 shows the relative increase in CPU time needed to compute the solution com-
pared to formulation I. For the FMmTSP with a single salesman per depot, formulation I
was the fastest on average; for the variant with multiple salesmen per depot formulation II
outperformed the other two. Although formulation II uses a few more binary values than
formulation I, it cannot be concluded from our results that the use of more binary variables

results in larger computation times.

Note that the difference between formulation I and II is small (I is less than 1.5 times
faster than II for all averages), but formulation III is significantly slower on average when
using CPLEX or CBC, even for the small instances (where memory use is not yet expected to
be a problem); for Gurobi the differences are smaller. Nevertheless, we conclude that node

current formulations are expected to result in faster computations than multi-commodity-

based formulations for fixed-destination problems.

Comparison of Failed Test Cases

Next, we compare how often a test case did not reach an optimal solution in time. We dis-
tinguish between the results for a single salesman per depot and for multiple salesmen per
depot. For each formulation we provide the number of failed cases (per solver) in Table 5.11.
From Table 5.11, it is clear that formulation II demonstrates stronger ability to solve large
test cases. Formulation III also performs rather well in solving large test cases when there
are multiple salesmen at each depot, but it has problems for cases with a single salesman
per depot. CPLEX and Gurobi seem to perform equally well, but also here it becomes clear
that CBC cannot match the other two solvers.
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Table 5.11: The number of failed test instances (‘failed’) and the size (i.e., the number of

nodes) of the largest instance successfully solved (‘largest’) for each formula-

tion (I, II, and III) solved per solver type. ‘Single’ means one-salesman-at-each-

depot, and ‘multiple’ means multiple-salesmen-at-each-depot. The number be-

fore ‘/’ is the number of failed test instances out of the 160 that were performed.

Solver Single Multiple
Failed Largest Failed Largest

CPLEX 9/160 124 37/160 124
I Gurobi 12/160 170 40/160 124

CBC 49/160 76 92/160 42
CPLEX 14/160 124 8/160 124

II Gurobi 15/160 124 11/160 124
CBC 51/160 64 90/160 42

CPLEX 30/160 124 25/160 124
III Gurobi 24/160 124 19/160 124

CBC 52/160 64 90/160 42

5.5 Conclusions

In this chapter we have provided a brief overview of cycle elimination and imposement con-
straints, and 2-index formulations for the fixed-destination multi-depot travelling salesman
problem. A novel cycle imposement constraint formulation has been proposed based on
node currents, which can be seen as the dual of the node potentials of Miller, Tucker, and
Zemlin [103]. The main advantage of the novel formulation over the existing formulations is
the reduced number of binary and continuous variables needed to formulate the problem.
Computational experiments on a large benchmark show that the proposed formulation per-
forms well with respect to average CPU times and ability to solve large instances. Further-
more, the novel formulation can be used to find solutions where several salesmen can be
idle.





Chapter 6

Optimal Nonlinear Solutions for Reverse

Stackelberg Games with Incomplete

Information

6.1 Game Formulation

The reverse Stackelberg game provides a suitable decision-making framework for hierarchi-
cal decision making problems like network pricing and maintenance contract design. We
propose a novel numerical solution approach for systematic computation of optimal non-
linear leader functions, also known as incentives, for reverse Stackelberg games with incom-
plete information and general, nonconcave utility functions. In particular, we apply basis
function approximation to the class of nonlinear leader functions, and treat the incentive
design problem as a standard semi-infinite programming problem. A worked example is
provided to illustrate the proposed solution approach and to demonstrate its efficiency.
We consider a two-person reverse Stackelberg game with player set {L, F}, where L denotes
the leader and F denotes the follower. The leader’s decision is dL ∈ DL ⊂ R

nL and the fol-
lower’s decision is dF ∈ DF ⊂R

nF , where the decision spaces DL and DF are both continuous
and compact. The follower’s type, which contains all his private information like prefer-
ence, is denoted by t ∈ T , with the type space T a discrete and compact set. The follower’s
type is only known to himself, but the type distribution P : T → [0, 1] is known to both play-
ers. The leader’s utility function is UL : DL ×DF → R, and the follower’s utility function is
UF : DL ×DF ×T →R. Let U F,t be the reservation utility of the follower of type t , which spec-
ifies the minimum utility the follower requires to participate in the game.
In a reverse Stackelberg game, the leader moves first by announcing a leader function γL :
DF →DL. The set of admissible leader functions is denoted by ΓL. The follower then decides
his best response d BR

F to the announced leader function. If the best response gives a utility
strictly lower than his reservation utility, the follower will quit and the game terminates. Oth-
erwise, the follower executes d BR

F and the game ends by the leader executing the promised
decision γL(d BR

F ).
In a reverse Stackelberg game with incomplete information, the leader knows only the prob-
ability distribution of the follower’s type. The leader’s objective is to maximizes her expected
utility over all possible follower’s types, which is achieved by announcing a leader function
that maximizes her expected utility, considering all possible responses from the follower. As
proposed in [62, 149], we decompose the problem of designing the optimal leader function
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into two sequential optimization problems: the leader’s global optimization problem, which
yields the global optimum (if it exists), and the incentive design problem, which induces the
follower to adopt the global optimum, under the assumption of full rationality1.
Let t ∈ T denote the follower’s type. Define dL,t as the leader’s decision when the follower
reports type t , and define dF,t as the decision of the follower of type t . Let U F,t denote the
reservation utility of a follower of type t . The optimization problem to find the global op-
timum, which is called the desired point (also called team solution in literature [149]), that
maximize the leader’s expected utility can be formulated as:

find {(d∗
L,t , d∗

F,t )}t∈T ∈ arg max
{(dL,t ,dF,t )∈DL×DF}t∈T

∑

t∈T

P (t )UL(dL,t , dF,t ) (6.1)

subject to: UF(d∗
L,t , d∗

F,t , t ) ≥U F,t ∀t ∈ T (6.2)

UF(d∗
L,t , d∗

F,t , t ) ≥UF(d∗
L,t̂

, d∗
F,t̂

, t ) ∀t , t̂ ∈ T. (6.3)

Constraint (6.2) is the participation constraint, which garantees the participation of the fol-
lower, and constraint (6.3) is the incentive compatibility constraint, which ensures that the
follower has no incentive to pretend to be of any type other than his true type.
Assume that the leader’s global optimum {(d∗

L,t , d∗
F,t )}t∈T , which is also her desired point, ex-

ists, then the incentive design problem is to find a leader function γL ∈ ΓL that induces the
follower to adopt the team solution, i.e.

find γL ∈ΓL (6.4)

subject to: d∗
F,t ∈ arg max

dF∈DF

UF(γL(dF), dF, t ) ∀t ∈ T (6.5)

γL(d∗
F,t ) = d∗

L,t ∀t ∈T. (6.6)

Constraint (6.5) ensures that the follower has no incentive to deviate from the leader’s global
optimum, regardless of his type. Constraint (6.6) ensures that the optimal leader function
passes through the desired point for any type of follower. The desired point {(d∗

L,t , d∗
F,t )}t∈T

is called incentive controllable, if the feasibility program (6.4)-(6.6) has a solution. A leader
function is called game-optimal, if it is a solution to (6.4)-(6.6) for the leader’s global opti-
mum2.
In summary, an optimal leader function should pass through the desired point for any type.
Moreover, it should not intersect with the 0-level curve of the function

g inf(dL, dF, t ) :=UF(dL, dF, t )−UF(d∗
L,t , d∗

F,t , t ) (6.7)

and it should remain inside the sublevel set

Λ := {(dL, dF) ∈DL ×DF|g inf(dL, dF, t ) ≤ 0} (6.8)

for any t ∈T .

1In game theory, a player is said to have full rationality if he always acts in a way to maximize his utility.
2When the leader has multiple global optima, a leader function is called game-optimal if it is the solution

to (6.4)-(6.6) for at least one global optimum.
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6.2 Two-Step Solution Approach

Assume the leader’s global optimum {(d∗
L,t , d∗

F,t )}t∈T exists and is unique3. An analytic so-
lution for a general nonlinear leader function to the incentive design problem (6.4)-(6.6) is
difficult to obtain, especially for general, nonconcave utility functions. The difficulties in
solving the incentive design problem (6.4)-(6.6) lie in the fact that the decision space ΓL is a
function space of infinite dimensions, and that the equilibrium constraint (6.5) is also nu-
merically challenging for general nonconvex utility functions, as it involves solving a global
optimization problem. To solve this challenge problem, we develop a two-step solution ap-
proach involving basis function approximation and semi-infinite programming.

6.2.1 Basis Function Approximation

Basis functions are universal approximators that can approximate any given function with
arbitrary accuracy when the set of selected basis functions is rich enough [158]. A finite set of
basis functions B = {bi : RnF →R

nL }n
i=1 is used to approximate the leader functionγL. Each of

these basis functions is further denoted by bi (·; ξi ), i = 1, . . . ,n, to emphasize its dependence
on the parameter vector ξi, which contains information regarding the location and the shape
of each basis function (e.g. the center and the width of a radial basis function). The leader
function γL is represented by a linear combination of the selected basis functions4

γL(·) =
n∑

i=1

αi ⊙bi (·;ξi ) (6.9)

with weights αi ∈ R
nL and parameter vectors ξi ∈ Ξ. We denote the leader function repre-

sented by basis function approximation (6.9) as γL(·; α, ξ), to highlight its dependence on
the parameters and weight of each basis function, with α = [αT

1 · · ·α
T
n]T and ξ = [ξT

1 · · ·ξ
T
n]T.

Then we can approximate the incentive design problem (6.4)-(6.6) by the following feasibil-
ity program:

find: (α, ξ) ∈R
nL×n ×Ξ

n (6.10)

subject to: g inf(γL(dF), dF, t ) =UF

(
n∑

i=1

αi ⊙bi (dF;ξi ), dF, t

)

−UF
(

d∗
L,t , d∗

F,t , t
)

≤ 0 (6.11)

∀dF ∈DF, ∀t ∈ T

n∑

i=1

αi ⊙bi (d∗
F,t ;ξi ) = d∗

L,t ∀t ∈T (6.12)

n∑

i=1

αi ⊙bi (dF;ξi ) ∈DL ∀dF ∈DF. (6.13)

Constraints (6.11) and (6.12) correspond to constraints (6.5) and (6.6), respectively. Con-
straint (6.13) guarantees that the resulting leader function indeed maps the follower’s deci-
sion space to the leader’s decision space.

3If there are multiple global optima, we can repeat (6.4)-(6.6) for each global optimum, and choose the
leader function γL that gives the highest expected follower utility over his type space.

4The operator ⊙ represents the elementwise (Schur) product.



100 Maintenance Optimization for Railway Infrastructure Networks

Constraint (6.11) and (6.13) are difficult to address, as they must be satisfied on a continuous
domain DF. Constraint (6.13) can be replaced by a finite linear constraint if a stricter rule is
applied to the selection of basis functions. Instead of B = {bi : RnF →R

nL }n
i=1, we can choose

B̃ = {bi : DF → DL}n
i=1 as the set of selected basis functions. Note that a convex combination

of the basis functions in B̃ also maps DF to DL. Then constraint (6.13) can be replaced by
the following two linear constraints:

α ∈ [0,1]nL (6.14)
n∑

i=1

αi = 1 (6.15)

In this way constraint (6.13) is satisfied by construction. The feasibility program for the in-
centive design problem thus becomes (6.10)-(6.12),(6.14),(6.15), with the new set B̃ of se-
lected basis functions.

6.2.2 Semi-Infinite Programming

The incentive design problem (6.10)-(6.12),(6.14),(6.15) still cannot be solved directly, as
constraint (6.11) must be satisfied on a continuous domain DF. Mathematical programming
problems with a finite number of decision variables but an infinite number of constraints
are called Semi-Infinite Programming (SIP) problems [96]. Standard SIP problems can be
represented by the following general form5:

min
x∈X

f (x) (6.16)

subject to:

gi (x, y) ≤ 0 ∀y ∈ Yi , ∀i ∈ {1, . . . , p} (6.17)

where X and Yi are continuous, compact subsets of Rnx and R
ny , respectively, and the func-

tions f : Rnx → R and gi : Rnx ×R
ny → R are real-valued and continuous on their respective

domains, for all i . For clarity we call x the decision variable and y the index variable. Fur-
thermore, we call the continuous set Yi the index set of each infinite constraint gi . The in-
tractable feasibility program (6.10)-(6.12),(6.14),(6.15) can then be transformed into a stan-
dard SIP problem (6.16),(6.17) with |T | infinite constraints, by treating the parameters of the
basis function (α, ξ) as the decision variable x, and dF as the index variable y of the infinite
constraints.
A comprehensive survey on numerical methods for semi-infinite programming problems is
given in [96]. The major challenge in solving a semi-infinite programming problem lies in
the fact that to check the feasibility of a point x̄ ∈ X , the following lower-level optimization
problem

max
y∈Yi

gi (x̄, y) (6.18)

5For clarity we omit all finite constraints in Section 6.2.2, as they can be easily added to the resulting finite
programming problem.
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must be solved to global optimality for each i ∈ {1, . . . , p} [155]. Let y∗
i

denote the global
optimum for the i-th lower-level problem (6.18); then x̄ is feasible as long as:

max
i∈{1,...,p}

gi (x̄, y∗
i ) ≤ 0.

The difficulty of solving a semi-infinite programming problem depends on whether the lower-
level problems are convex. As the convexity of the lower-level problem is so crucial in solving
a semi-infinite programming problem, we now provide several sufficient conditions to check
the convexity of the lower-level problem for the feasibility program (6.10)-(6.12),(6.14),(6.15).

Theorem 6.1 Let UF and γL (in the form of (6.9)) be continuous and twice differentiable on

their respective domains; then the lower-level problem of the feasibility program (6.10)-(6.12),(6.14),(6.15)

is convex if any of the following conditions is satisfied:

(1) UF(·, ·, t ) is linear in dL and dF, and non-decreasing in dL for all t ∈T and γL is concave;

(2) UF(·, ·, t ) is linear in dL and dF, and non-increasing in dL for all t ∈ T and γL is convex;

(3) UF(·, ·, t ) is concave in dL and dF, and non-decreasing in dL for all t ∈ T , and γL is non-

decreasing and concave;

(4) UF(·, ·, t ) is concave in dL and dF, and non-increasing in dL for all t ∈ T , and γL is non-

decreasing and convex;

Proof : The key to determine the convexity of the lower-level problem is to determine the
concavity of the functions g inf(γL(·), ·, t ) for all t ∈ T . The second-order derivative of g inf

w.r.t. dF is given by:

∂2g inf

∂d 2
F

=
∂2UF

∂d 2
L

(
dγL

ddF

)2

︸ ︷︷ ︸

term 1

+
∂UF

∂dL

d2γL

dd 2
F

︸ ︷︷ ︸

term 2

+2
∂2UF

∂dLdF

dγL

ddF
︸ ︷︷ ︸

term 3

+
∂2UF

∂d 2
F

︸ ︷︷ ︸

term 4

. (6.19)

First we prove the theorem for conditions (1) and (2). When UF(·, ·, t ) is linear, all its second-
order derivatives become 0, so only term 2 remains in (6.19). If UF is non-decreasing in dL

andγL is concave, then
∂UF

∂dL
≥ 0 and

d2γL

dd 2
F

≤ 0; thus
∂2g inf

∂d 2
F

≤ 0, and therefore g inf is concave in

dF. So now condition (1) is proved; condition (2) can be proved following similar arguments.
Now we prove the theorem for conditions (3) and (4). When UF(·, ·, t ) is concave, then its
Hessian is negative semi-definite, so term 1 and term 4 are both less than or equal to 0. Since

γL is non-decreasing,
dγL

ddL
≥ 0, so term 3 is also less than or equal to 0. Moreover, term 2 is

non-positive if UF is non-decreasing and γL is concave, so condition (3) is proved; or UF is
non-increasing and γL is convex, so condition (4) is proved. ✷

Remark: Theorem 6.1 can also be applied to select proper basis functions when UF is con-
cave. As both convexity and monotonicity are preserved by convex combination, Theorem
6.1 also holds if we replace γL by “each basis function" in condition (1)-(4).
The importance of the convexity of the lower-level problems is that it allows for the use
of equivalent reformulation methods to transform the semi-infinite programming problem
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into a finite programming problem. When the lower-level problems are convex, the semi-
infinite programming problem (6.16)-(6.17) can be equivalently transformed into a finite
programming problem through bilevel reformulations [155], like the Mathematical Program
with Complementary Constraints (MPCC) reformulation [156], and the reformulation based
on lower-level Wolfe duality [41]. However, such equivalent reformulation methods cannot
be directly applied when at least one lower-level problem is nonconvex. Some numerical
methods have been developed for semi-infinite programming problems with general, non-
convex lower-level problems. We refer the interested readers to [96, 155] for a comprehensive
survey. Moreover, some numerical solvers have also been developed for semi-infinite pro-
gramming problems, like fseminf in the Matlab Optimization Toolbox, and the AMPL-coded
NSIPS solver [163, 164] available in the NEOS server [36].

6.3 Numerical Example

In this section we present a numerical example to illustrate the procedure of a systematic
computation of the optimal non-linear leader function for reverse Stackelberg games with
incomplete information and general, nonconcave utility functions.

6.3.1 Setup

Let the leader and the follower’s decision spaces be DL = [−5, 5] and DF = [−2, 2], respec-
tively. We denote by d k and d k the lower and upper bounds of Dk for k ∈ {L, F}, respectively.
The follower’s type space is given by T = {t1, t2} where t1 = 1 and t2 = 5, and the type distribu-
tion is P (t1) = 0.75 and P (t2) = 0.25. The Rosenbrock function [137], a popular valley-shaped
non-convex testing function for optimization algorithms, is selected as the utility functions6

for both players. In particular, we let the utility functions of the leader and the follower to be:

UL =−(1+dF)2 −100(dL+d 2
F)2 (6.20)

UF =−(1−dF)2 −100(tdL−d 2
F)2. (6.21)

The type t can be viewed as a parameter that influences the shape of the follower’s utility uF.
Two radial basis function [21] families, the Gaussian radial basis functions and the inverse
multiquadric functions, are selected to approximate the leader function. The Gaussian radial
basis functions are defined by:

φ(r ) = exp(−
r 2

∆2
) (6.22)

and the inverse multiquadric functions are defined by:

φ(r ) =
1

p
r 2 +∆2

(6.23)

6The signs are reversed as the Rosenbrock function is designed for minimization problems.
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Then each basis function can be represented by:

bi (dF) =
d L −d L

φ−φ
φ(r )+d L (6.24)

where r = ‖dF −ci‖2 is the Euclidean distance to the center of the i−th radial basis function,
and φ and φ are the upper and lower bounds of the selected radial basis function. The cen-

ters {ci }n
i=1 are equidistantly placed on DF, and the width is fixed to ∆=

d F −d F

n −1
.

Since both the centers and widths are fixed for the radial basis functions, the parameter vec-
tor ξ is empty as we only optimize the weights α. Since we have the freedom to choose a
well-behaved objective function to the feasibility program (6.10)-(6.12),(6.14),(6.15), we add
the following quadratic objective:

min
n∑

i=1

α2
i . (6.25)

The leader’s global optimization problem (6.1)-(6.3) is now solved by the nonlinear pro-
gramming solver SNOPT from Tomlab 8.0 with multi-start, and the standard semi-infinite
programming problem (6.25)(6.10)-(6.12),(6.14),(6.15) for the incentive design problem is
solved by fseminf from the Matlab Optimization Toolbox. All simulations are performed on
a desktop computer with an Intel i5-3470 Quad core and 16 GB of RAM, running Matlab
R2015b on a 64-bit version of SUSE Linux Enterprise Desktop 11.
As the semi-infinite programming solver fseminf uses a discretization method, which does
not guarantee feasibility of each iteration, we will measure the violation of the infinite con-
straint (6.11) after a leader function is obtained. A fine uniform grid D̃L × D̃F (with 101×101
grid points) is generated for DL×DF for post-evaluation of the infinite constraint (6.12). The
following measure, which is a non-negative value and should be kept as small as possible, is
used to evaluate the constraint violation:

vt =
max

d̃F∈D̃F

g inf(γL(d̃F), d̃F, t )

max
(d̃L, d̃F)∈D̃L×D̃F

g inf(d̃L, d̃F, t )
∀t ∈T. (6.26)

The denominator represents the maximal violation of a given constraint on the whole evalu-
ation grid, and the numerator calculates the maximal constraint violation when the resulting
γL is implemented. In this way we can have a quantitative measure on the performance of
each leader function.

6.3.2 Discussion of Results

The team solution computed by SNOPT is (−0.7450, −0.8634) for t1 and (−0.7445, −0.8637)
for t2. The leader functions obtained from different numbers of Gaussian radial basis func-
tions and inverse multiquadric functions are shown in Figure 6.1. An optimal leader func-
tion should pass through the leader’s desired points and should not intersect with the 0-level
curves of g inf, so that the follower cannot obtain a strictly higher utility if he deviates from
the leader’s desired points, regardless of his type. As we can see, all the leader functions are
continuous and lie in the leader’s decision space DL, and all of them pass through the de-
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sired points7. Thus constraint (6.12) is satisfied for all of them. However, not all resulting
leader functions satisfy the infinite constraint (6.11). For example, as shown in Figure 6.1b,
the leader functions obtained using 10 and 15 inverse multiquadric basis functions both in-
tersect with the 0-level curve of g inf for t2. Gaussian radial basis functions yield a better per-
formance in comparison, as shown in Figure 6.1a, as even the leader function resulting from
only 10 basis functions has no obvious intersection with either 0-level curve.

The performance of the two basis function families, quantified by the constraint violation
(6.26), is visualized in Figure 6.2. Both basis function families show an improvement of per-
formance as the number of basis functions increases. Gaussian radial basis functions obvi-
ously perform better than inverse multiquadric functions, as the infinite constraint for t1 is
never violated (vt1 remains 0 in Figure 6.2a), and the maximum violation of g inf for t1 is only
0.14, compared to 1 for the inverse multiquadric case. Moreover, the performance using
10 Gaussian basis functions is better than the performance using 25 inverse multiquadratic
functions, and with 30 Gaussian radial basis functions we can already find a “perfect" leader
function with no constraint violations. From Figure 6.2 we can conclude that a selection of
30 basis functions is already sufficient to obtain a well-performing leader function, as the
maximal constraint violation is no more than 0.1 for both Gaussian radial basis functions
and inverse multiquadric basis functions.

The mean CPU time to solve the incentive design problem using fseminf with different num-
bers of Gaussian and inverse multiquadric radial basis functions is shown in Figure 6.3. We
can see that neither choice of basis functions is computationally very demanding, as the
largest problems (n = 40) can be computed within 1.6 seconds, and within 1 second we can
already obtain a satisfactory leader function (for n = 30).

6.4 Conclusions

A structured numerical solution approach has been developed for the class of nonlinear
leader functions for reverse Stackelberg games with incomplete information and general
utility functions. Basis functions are used to approximate the nonlinear leader function,
transforming the incentive design problem into a standard semi-infinite programming prob-
lem, which has been extensively studied in literature. The worked example shows that the
proposed solution approach provides satisfactory results in a relatively short CPU time us-
ing typical basis functions like Gaussian radial basis functions, and standard semi-infinite
programming solvers.

7Note that the global optimum in general includes two different points for different types, but they are very
close to each other in this example.
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Figure 6.1: Leader functions obtained from the indirect approach based on basis function ap-

proximation and semi-infinite programming. The solid and dashed contour lines

are the 0-level curves of ginf for t1 and t2, respectively.
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Figure 6.2: Measure of constraint violation of the infinite constraint ginf for both types of the

follower.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis we have developed robust and tractable model-based approaches for main-
tenance optimization of railway infrastructure networks. In addition, we have developed a
compact formulation for a variant of the multiple traveling salesman problem, and a system-
atic solution method for reverse Stackelberg games with incomplete information.

7.1.1 Multi-Level Maintenance Optimization

In the first part of the thesis, we have developed a multi-level model-based, optimization-
based approach covering both the long-term and short-term perspectives in maintenance
decision making for railway infrastructure networks.
First, we have developed a centralized multi-level approach for maintenance planning of a
single line of track divided into a small number of sections. Representative scenario-based
Model Predictive Control (MPC) is used at the high level to determine an optimal long-term
component-wise intervention plan for the entire line, and the Time Instant Optimization
(TIO) approach is applied to transform the MPC optimization problem with both continu-
ous and integer decision variables into a nonlinear continuous optimization problem. The
middle-level problem considers the optimal allocation of time slots for the maintenance in-
terventions suggested at the high level to optimize the trade-off between traffic disruption
and the setup cost of maintenance slots. Based on the high-level intervention plan, the low-
level problem optimizes the clustering of individual defects to be treated by a maintenance
agent, subject to the time limit imposed by the maintenance time slots. A case study with
historical data on the optimal treatment of squats in the Eindhoven-Weert line in the Dutch
railway network has been performed. Simulation results show that the developed approach
is real-time implementable and provides suitable maintenance plans.
Subsequently, we have develop a distributed multi-level approach for maintenance plan-
ning of large-scale networks, i.e. a large complex network of tracks with a huge number of
sections. The Mixed Logical Dynamical (MLD) framework has been adopted to model the
hybrid deterioration dynamics, and a robust scenario-based MLD-MPC controller has been
developed at the high level to determine the section-wise intervention at each time step,
considering various sources of uncertainties. Dantzig-Wolfe decomposition is used to di-
vide the computational burden of the centralized MPC optimization problem among sub-
problems that are easier to solve. The optimal schedule of the suggested maintenance in-
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terventions that aims to minimize the total setup costs, disruption costs, and travel costs
of maintenance crews over the whole network, has then been formulated as a capacitated
arc routing problem and transformed into a node routing problem. The approach has been
demonstrated by a numerical case study of the optimal treatment of squats in a regional
Dutch railway network. Computational experiments show that the proposed approach is
scalable. Comparison with alternative approaches shows that the proposed approach yields
an excellent trade-off between safety and cost-effectiveness.

7.1.2 Fixed-Destination Multi-Depot Traveling Salesman Problem

In the second part of the thesis, we have considered the fixed-destination, multi-depot trav-
eling salesman problem, where several salesmen will start from different depots, and they are
required to return to the depot they originated from. We have proposed a novel formulation
for this problem using 2-index binary variables and node currents. Compared to other 2-
index formulations from the literature, this novel formulation requires less binary variables
and continuous variables to formulate the problem, resulting in lower computation times.
Using a large benchmark the effectiveness of the new formulation has been demonstrated.

7.1.3 Reverse Stackelberg Games

In the third part of the thesis, we have proposed a novel numerical solution approach for
systematic computation of optimal nonlinear leader functions, also known as incentives,
for reverse Stackelberg games with incomplete information and general, nonconcave utility
functions. We have applied basis function approximation to the class of nonlinear leader
functions, and have treated the incentive design problem as a standard semi-infinite pro-
gramming problem. A numerical example has been provided to illustrate the proposed so-
lution approach and to demonstrate its efficiency.

7.2 Future Research

From a practical perspective, there are several directions to extend this thesis:

• Instead of a simulation-based case study, a business case study can be performed,
where the actual maintenance costs and degradation levels of the railway infrastruc-
ture are compared to the maintenance costs and degradation levels resulting from the
multi-level maintenance optimization approach developed in this dissertation.

• Several practical aspects, e.g. the seasonal changes in the deterioration model of the
railway infrastructure, and the interruption of planned maintenance operations caused
by misty or rainy weather, can be included in the deterioration model.

• Condition-based maintenance planning and train timetabling for a railway network
can be formulated as a joint optimization problem. In this thesis the length of the
maintenance time slot, which corresponds to the traffic-free slot in the timetable, is
optimized based on an existing timetable. However, a more optimal maintenance plan
and timetable can be obtained by formulating the two optimization problem as a joint
problem.



Chapter 7 - Conclusions and Future Research 111

• Heterogeneous components, e.g. rail and switches, can be considered in the mainte-
nance optimization problem.

• The model-based maintenance optimization approach in this thesis is specifically de-
veloped for railway infrastructure networks. It is interesting to investigate whether the
developed approach can be adapted to other infrastructure networks like water and
gas pipeline networks.

The following extensions can be made from a theoretical perspective:

• As a railway infrastructure is directly exposed to the environment, its deterioration dy-
namics demonstrates significantly difference in different seasons because of the differ-
ence in temperature, humidity, etc. Such seasonal changes in deterioration dynamics
can be incorporated by a time-varying model.

• Most distributed optimization methods in literature are designed for continuous op-
timization problems. As most of the optimization problems in this thesis are mixed
integer programming problems, it is worthwhile to develop distributed optimization
methods that offer an optimality guarantee, or heuristics/metaheuristics with a per-
formance guarantee.

• Typical track defects, like squats and ballast degradation, are caused by wear and tear.
In this case, first-principles modeling of the degradation dynamics of railway track in-
frastructure is promising as it provides more insight into the failure mechanism with
less data. However, the resulting first-principles model might be too complex to be
used for efficient control and optimization algorithms. How to model the degradation
dynamics that covers the important physical characteristics without adding too much
complexity is a challenge. Regression techniques like piecewise-affine approximation
can be used for complex nonlinear degradation dynamics to obtain a tractable prob-
lem.

• The node-current cycle imposement constraints developed for FmMTSP can be ex-
tended to other scheduling and routing problems like the multiple Vehicle Routing
Problem (mVRP). However, the MILP formulation for mVRP using node-current cycle
imposement constraints is only capable of solving relatively small test instances (less
than 50 nodes). In the future, decomposition methods like Benders decomposition
can be applied to the proposed MILP formulation to solve larger mVRP instances.
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[8] T. Başar and H. Selbuz. Closed-loop Stackelberg strategies with applications in the
optimal control of multilevel systems. IEEE Transactions on Automatic Control,
24(2):166–179, 1979.
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Summary

Maintenance Optimization for Railway Infrastructure Networks

Maintenance is crucial for the proper functioning and lifetime extension of a railway infras-
tructure network, which is composed of various infrastructures with different functions. In
this thesis we develop robust and tractable model-based approaches for maintenance opti-
mization of railway infrastructure networks. In addition, we develop a compact formulation
for a variant of the multiple Traveling Salesman Problem (TSP), that can be applied to op-
timal scheduling of maintenance crews for a railway network, and a systematic numerical
solution method for reverse Stackelberg game with incomplete information, which can be
viewed as the framework for optimal maintenance contract design.
In the first part of the thesis, we consider condition-based maintenance planning for rail-
way infrastructure networks. We focus on railway track defects, e.g. squats or ballast defects,
and our aim is to develop a model-based, optimization-based approach that is tractable,
scalable, robust, and non-conservative. First, we develop a centralized multi-level approach
for maintenance planning of a single line of track divided into a small number of sections.
Representative-scenario-based Model Predictive Control (MPC) is used at the high level to
determine an optimal long-term component-wise intervention plan for the entire track line,
and the Time Instant Optimization (TIO) approach is applied to transform the MPC opti-
mization problem with both continuous and integer decision variables into a nonlinear con-
tinuous optimization problem. The middle-level problem considers the optimal allocation
of time slots for the maintenance interventions determined at the high level to optimize the
trade-off between traffic disruption and the setup cost of maintenance slots. Based on the
high-level intervention plan, the low-level problem optimally groups individual defects to be
treated by a maintenance agent, subject to the time limit imposed by the maintenance time
slots.
Subsequently we develop a distributed multi-level approach for maintenance planning of
large-scale railway networks. The Mixed Logical Dynamical (MLD) framework is adopted to
model the hybrid deterioration dynamics, and a robust scenario-based MLD-MPC approach
is developed at the high level to determine the section-wise interventions at each time step,
considering various sources of uncertainty. Decomposition methods like Dantzig-Wolfe de-
composition are used to divide the computational burden of the centralized MPC optimiza-
tion problem among subproblems that are easier to solve. The optimal scheduling of the
planned maintenance interventions to minimize the total setup costs, disruption costs, and
travel costs of maintenance crews over the whole network is then formulated as a capac-
itated arc routing problem with flexible capacity at the low level and transformed into an
equivalent node routing problem.
In the second part of the thesis, we consider the fixed-destination, multi-depot traveling
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salesman problem, where several salesmen will start from different depots, and they are re-
quired to return to the depot they originated from. We propose a novel formulation for this
problem using 2-index binary variables and node currents, and compare it to other 2-index
formulations from the literature. This novel formulation requires less binary variables and
continuous variables to formulate a problem, resulting in lower computation times. Using a
large benchmark the effectiveness of the new formulation is demonstrated.
In the third part of the thesis, we propose a novel numerical solution approach for system-
atic computation of optimal nonlinear leader functions, also known as incentives, for reverse
Stackelberg games with incomplete information and general, nonconcave utility functions.
We apply basis function approximation to the class of nonlinear leader functions, and treat
the incentive design problem as a standard semi-infinite programming problem. A numeri-
cal example is provided to illustrate the proposed solution approach and to demonstrate its
efficiency.

Zhou Su



Samenvatting

Onderhoudsoptimalisatie voor spoorwegnetwerken

Onderhoud is cruciaal voor het correct functioneren en het verlengen van de levensduur
van een spoorwegnetwerk. Een spoorwerknetwerk bestaat uit verschillende onderdelen met
verschillende functies. In deze dissertatie ontwikkelen wij een robuste en handelbare mo-
delgebaseerde aanpak voor het optimaliseren van het onderhoud aan het spoorwegnetwerk.
Tevens ontwikkelen wij een compacte formulering voor een variant op het handelsreizi-
gersprobleem. Dit kan worden toegepast in het optimaal roosteren van onderhoudsteams
voor spoorwegnetwerken. Verder ontwikkelen wij een systematische numerieke oplossings-
methode voor het omgekeerde Stackelberg spel met onvolledige informatie. Dit kan wor-
den gezien als een raamwerk voor optimaal onderhoudscontractontwerp. In het eerste ge-
deelte van deze dissertatie bestuderen wij onderhoudsplanning voor spoorwegnetwerken.
Wij richten ons op spoorwegdefecten zoals bijvoorbeeld druk of ballastdefecten. Ons doel is
het ontwikkelen van een model- en optimalisatie-gebaseerde aanpak die handelbaar, schaal-
baar, robuust en niet conservatief is. Eerst ontwikkelen wij een gecentraliseerde meerlaags-
aanpak voor onderhoudsplanning van een enkele spoorweglijn die opgedeeld is in verschei-
dene kleinere sectoren. Representatieve-scenario-gebaseerde Model Predictive Control (MPC)

wordt gebruikt op een hoger niveau om het lange termijn componentsgewijze interventie-
plan voor een gehele spoorlijn te optimaliseren. De tijdinstantie-optimalisatie aanpak wordt
toegepast om MCP met continue en gehele beslissingsvariabelen te transformeren naar een
niet-lineair continu optimalisatieprobleem. Het middennieveau probleem neemt de opti-
male allocatie van tijdsloten voor de onderhoudsinterventies in acht die op het hogere ni-
veau worden bepaald om een afweging tussen verstoring in het verkeer en de onderhouds-
kosten te optimaliseren.
Vervolgens hebben wij een gedistribueerde meer-laags aanpak voor onderhoudsplanning
voor grootschalige spoorwegnetwerken ontwikkelt. Het Mixed Logical Dynamical (MLD)

raamwerk is aangepast om de hybriede verslechteringdynamica te modelleren en een ro-
buuste scenario-gebaseerde MLD-MPC aanpak is ontwikkeld om, op een hoog niveau, de
sectiegewijze interventie op elk tijdstap te bepalen terwijl verschillende soorten onzeker-
heid in acht worden genomen. Decompositiemethoden zoals de Dantzig-Wolfe decomposi-
tie zijn gebruikt om de berekeningskosten van het centrale MPC probleem te verdelen over
sub problemen die gemakkelijker op te lossen zijn. De optimale roostering van de geplande
onderhoudsinterventies die 1) de totale opstellingskosten 2) de verstoringskosten en 3) de
reiskosten van het onderhoudsteam minimaliseren is daarna geformuleerd als een capaci-
tated arc routing probleem met flexibele capaciteit op het lagere niveau. Daarna is deze
formulering getransformeerd naar een gelijkwaardig node routing probleem.
In het tweede gedeelte van het proefschrift bestuderen wij het fixed-destination, multi-depot
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traveling salesman probleem. In dit probleem starten meerdere handelsreizigers vanuit ver-
schillende depots en zijn de handelsreizigers verplicht om terug te keren naar hun vertrek-
depot. Hiervoor stellen wij een probleem formulering voor. Hierin maken wij gebruik van
2-index binaire variabelen en knoopstromen en wij vergelijken onze methode met andere
2-index formuleringen uit de literatuur. De voorgestelde formulering gebruikt minder bi-
naire en continue variabelen om het probleem te formuleren. Dit resulteert in lagere bere-
keningstijden. De effectiviteit van de nieuwe aanpak is aangetoond op een groot benchmark

probleem.
In het derde gedeelte van dit proefschrift stellen wij een nieuwe numerieke oplossingsme-
thode voor om systematisch de optimale niet-lineaire leider functies (ook bekend als insenti-

ves) te berekenen voor Reverse Stackelberg Games met incomplete informatie en in zijn alge-
meenheid niet concave gebruiksfuncties. Wij hebben basisfuncties benaderingen toegepast
voor een klasse van niet-lineaire leiders functies en hebben het insentive design probleem
als een standaard semi-oneindig programmeringsprobleem behandeld. Middels een nume-
riek voorbeeld is de voorgestelde aanpak aangetoond en is de efficiëntie van de methode
aangetoond.
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