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Chapter 1

Introduction

In this chapter we first present the motivation for the redfeaddressed in this thesis. Next,
we introduce the framework that we focus on together withsit@pe of this research. Fi-
nally, we give a short overview of the applications congdein this thesis and the main
contributions.

1.1 Motivation

Transportation systems such as conveyor systems [S55]¢ctsgtbtems|[15, 44], distribution
systemsl[9, 49, 59], and others have always had and will moatio have a major impact
on both our personal lives and society as a whole. From tHestatimes we have relied
on transportation systems to carry bulk resources, to gt ashool or work, or to travel
around the world. We have gone from horse-drawn carts anglsihicycles to high speed
trains and space shuttles. What used to be considered aI(exgt, owning a car) is now
a necessity. Also, there is an increasing need in develogafe, efficient, and reliable
automated systems for transporting and sorting any kind aterials (see, e.gl, [64] for
systems that transport and sort fruits and vegetables).

We live in a time of continually increasing dependency on eradransportation sys-
tems. Also, due to the increasing need to transport and nasverf farther, and cheaper, we
have become major users of transportation systems. Hdreepmbination of the contin-
uously increasing need for reduction of cost of the transipadiustry and rise of low-cost
carriers requires a cost effective operation of these aatedsystems.

Let us now consider the applications that we focus on in theésis, namely the postal
automation in mail sorting centers and baggage handlingpois. One can notice during
the last decades a considerable increase in the volume cizimag, catalogs, and plastic
wrapped mail items that have to be handled by mail sortingecsn In the earliest times
the process of sorting the mail involved a series of opematigith human hands at work
every step of the way. This manual process consumes a lomef aind human energy.
Therefore, nowadays, state-of-the-art mail sorting asrdee equipped with dedicated mail
sorting machines in order to be able to handle the large vedunfimail. A similar need for
automatization occurred also in airports where the coitingrowth of the airport traffic
made the manual operations of handling the baggage too sixperMoreover, even the
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2 1 Introduction

conventional sorters based on conveyor belts [10] are bigptoo slow in large and busy
airports. Note that for large and busy airports, the bagdegelling system is one of the
most important factors that determines the airport’s efficiy and reliability. Therefore,
high speed transportation is required. To this aim, stétheart baggage handling systems
handle the baggage in an automated way using fast indivicklatles. These vehicles
transport the bags at high speeds on a network of tracks [91].

We conclude the motivation for this research with the follogvremark. When the
transportation demand continues to grow and the operafitnammsportation systems gets
closer to its limits, one can invest in additional infrasture, carriers, or sorting systems.
As an alternative to solve this problem, in this researchrwestigate, develop, and design
a more efficient operation of the considered transportaystems by employing state-of-
the-art control methods![8] and optimization techniquel [Bat also use domain specific
knowledge.

1.2 Framework and scope of the thesis

In this thesis we focus on a specific class of transportatistems, characterized by materi-
als! being processed while they are transported by conveyagmgsbr other transportation
mean$ such as sorting machines, baggage handling, and distibsyistems. These trans-
portation systems have a common modeling framework sireyeate dynamic systems that
exhibit both continuous and discrete dynamics. Hence clhiss of transportation systems
can be modeled as hybrid systems [58, 90]. Let us take as de#neparts of these systems
that consist of conveyor belts. Then the transport of malteadn the conveyors can be mod-
eled as a continuous process, characterized by, e.g.,d¢led s the conveyor, which can in
principle be adjusted continuously. Actions like feedimgitem on the belt, removing the
item, rerouting it, etc. provide discrete actions on theeys

Next we present the scope of this study. Due to increasingdds) the focus of indus-
try is shifting from ensuring safe and automated operatioartsuring quality, reliability,
and performance maximization. But, typically, the perfamoe of automated transportation
systems is limited by mechanical capabilities (such as mai speed of the transportation
means), by the performance of the process devices (ad@ading devices, bar code read-
ing devices, scanners, etc.), and also by the sorting artthgoschemes. In this research
we consider the mechanical capabilities and the performahthe process devices to be
given.

Typical control problems of the specific class of transpatesystems that we consider
in this thesis — transportation systems handling materiaése the following: coordination
and synchronization of the processing units, preventigam® and deadlocks, prevention
of buffer overflow, avoiding damage of the goods, maximmatf performance, and cost
minimization.

In this thesis we investigate methods that can be used taeettfiz control the consid-
ered class of transportation systems so that their oveealbpnance is maximized when
taking into account the issues we have just enumerated —} teaathe mechanical capa-

1We will not consider transportation systems for people dnmly for materials.
2E.g. in large airports baggage is transported not only usimyeyor systems, but also using fast individual
vehicles.



1.3 Research overview 3

bilities and the performance of the process devices areidenesl to be given; moreover,
in this thesis we do not consider the problem of minimizing ttosts. Currently, most
higher-level control methods for these systems are baseeiotnalized control and/or on
ad-hoc techniques. But centralized control of large-ssg#ems is often not feasible in
practice due to computational complexity, communicatieerbead, and lack of scalability,
while using ad-hoc techniques, typically, does not yiele liest possible performance of
the system.

Note that in this thesis we consider only two applicationthef class of transportation
systems that handle materials, namely sorting machinesilrsorting centres and baggage
handling in airports. However, the control approaches tatdevelop in this thesis are
not restricted to the considered applications only, buy ttan similarly be applied to other
transportation systems, e.g., power distribution syst@maswater management, automated
guided vehicles in warehouses, or traffic systems.

1.3 Research overview

This section gives an overview of this research, emphasia@pplications that we focus
on.

Postal automation

First we discuss the postal automation application. Theszetwo types of mail sorting
machines, the first designed to process postcards and sttatk| the second designed to
handle large mail items such as newspapers, catalogs, ay@l&ters. In this thesis we
focus on the latter. These large mail items are shortly ddflats”. Briefly, a state-of-the-
art flat sorting machine, operates as follows. First, the fi@é fed into the machine via a
feeding device. Then conveyor systems transport the fldtsandonstant speed towards the
sorting part of the machine. Meanwhile, the stamp used fetgge is voided, the address
and the postal code are located, and the necessary infomigéxtracted and printed on the
flat in form of a bar code. This ensures a transport delay lirseeral seconds allowing the
system to achieve sorting information on-line before thd iteam reaches the code printing
phase. Next, the flats (which have been previously identifiadbar codes) are inserted
into transport boxes by inserting devices; the boxes cémeypieces with constant speed
and sort them into their destination bins, see, e.g., Fifiuteand Figuré1]2, according to
the selected sorting scheme. Figlrd 1.1 illustrates thienggpart of a state-of-the-art flat
sorting machine developed by Siemens. This flat sortingesysbnsists of transport boxes
at the top, one level of intermediate pockets that can haldraéflats in order to sort the
items into delivery sequence, and destination bins (thgtiplains of Figuré 1]2).

The throughput of a basic system sketched above can be atepiney designing a
system where the bottom part consisting of destination bamssmove bidirectional with
variable speed.

Then for the new system (where the bottom part can move) weuga simulation to
determine a fast event-driven model. This model of the flgtrapsystem will then be used
for model-based control. The goal of the model-based cetsds to compute the speed
profile of the bin system that maximizes the throughput ofsii¢ing machine.
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Figure 1.1: Sorting part of a flat sorting machine. Picturauste: Siemens AG, Infrastruc-
ture Logistics, 2009.

Figure 1.2: Dropping a flatinto a bin. Picture source: Sierm&G, Infrastructure Logistics,
2009.



1.3 Research overview 5

Problem statement One can state the control problem that we want to solve as#sll
Given a buffer of flats known in advance due to the delay lindeflats’ preparation phase,
the optimal speed profile of the bin system has to be compuwtéubs the throughput of the
sorting machine is maximized.

Control approaches In order to compute the optimal speed profile of the bin systeen
will implement and compare different variants of optimahtol with various degrees of
complexity, namely: (1) optimal control with a piecewisenstant speed on time intervals
of variable length, (2) optimal control with a piecewise stant speed on time intervals of
constant length, (3) optimal control with a constant speed, (4) model-based predictive
control with a piecewise constant speed on time intervat®ngtant length. The considered
control methods will be compared for several scenarios.

Influence of the structural changes In this thesis we will also discuss the influence of
the structural changes on the throughput. In particulamwileconsider structural changes
such as increasing the number of feeding devices, chanig@gdorresponding inserting
point around the transport boxes, and increasing the \glotthe transport boxes.

Baggage handling

Regarding the baggage handling process in large and bysyrisir we consider the most
challenging part of the automation, namely the part of trgglhge handling system where
the bags are transported at high speeds by destination eetiédes (DCVSs) running on
a network of tracks, see e.g. Figlirel1.3. As illustrated guFe[1.8, a DCV is a metal
cart with a plastic tub on top, being propelled by linear iciiibn motors similar to roller
coasters.

Currently, the track networks on which the DCVs transpoet laggage have a sim-
ple structure, the DCVs being routed through the systemgusiating schemes based on
preferred routes. These routing schemes adapt to respotie @ecurrence of predefined
events as follows. Each junction has a logic controller atab&up table storing preferred
routes from that junction to all unloading stations. Herit#&e currently preferred route
is blocked due to e.g. jams or buffer overflows, then the netta-preferred-route of the
lookup table is chosen and the switch out of that junctionggted accordingly. However,
the load patterns of the system are highly variable, depenain, e.g., the season, time of
the day, type of aircraft at each gate, or the number of passeror each flight [17]. So,
predefined routes are far from optimal. Therefore, in thisihwe will not consider prede-
fined preferred routes, but instead we will develop and comefiicient control methods to
determine the optimal routing in case of dynamic demand.

Problem statement One can state the route choice control problem as followserGa
demand of bags (identified by their unique code) enterin@ti®-based baggage handling
system, and the network of tracks, the route of each DCV (faogiven loading station to
the corresponding unloading station) has to be compute@cuio operational and safety
constraints, such that all the bags to be handled arriveeiteéhd points within given time
windows.
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Figure 1.3: DCVs running on a network of tracks. Photo cosytef Vanderlande Indus-
tries.

Control approaches and control frameworks In order to efficiently determine the route
choice of each DCV, we will first consider predictive and hstiz control approaches.
These control methods will be implemented in a centralidedentralized, and distributed
manner. Furthermore, we will also propose a hierarchicatrobframework that consists
of a 2-level control structure with local switch controieat the lowest level and one higher-
level supervisory network controller. In this control frawork, switch controllers provide
position instructions for each switch in the network. Théeztion of switch controllers is
then supervised by a network controller that mainly takee céthe flow instructions for
the switch controllers.

Computing the optimal route choice yields a nonlinear, morex, mixed integer opti-
mization problem. The computational efforts required ttedmine the optimal route choice
are high, and therefore, solving this optimization probleay become intractable in prac-
tice. Consequently, we will also present an alternativeaggh for reducing the complexity
of the computations by writing the nonlinear optimizatioolgem as a mixed integer lin-
ear programming (MILP) problem. The advantage is that fot Rbptimization problems
solvers are available that allow us to efficiently computeglobal optimal solution. The
solution of the MILP problem can then be used directly or asnitial starting point for
the original optimization problem. To assess the perforcearf the proposed control ap-
proaches and control frameworks, we will consider a benckmase study, for which the
methods will be compared over several scenarios.
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1.4 Main contributions

The main contributions of this research with respect togl@ttomation and baggage han-
dling are the following:

Postal automation

e We will propose an event-driven model for the continuousetiflat sorting system
which has been designed such that the destination bins cea Inndirectionally with
variable speed.

o We will develop and compare efficient model-based contrahods to compute the
speed profile of the destination bins that maximizes theunput of the flat sorting
machine. In particular, we will consider variants of optlroantrol with gradually
decreasing complexity and model predictive control.

Baggage handling

e We will propose an event-driven model for the continuonsetDCV-based baggage
handling system that will be used for model-based control.

o We will develop and compare efficient model-based contrahods to compute the
optimal routing of DCVs transporting bags from a given arigp a given destination
such that the performance of a DCV-based baggage handlgtgrsyis maximized.
In particular, we consider centralized, decentralized] distributed model predic-
tive control, and heuristic approaches. We will also prepasierarchical control
framework for determining the route choice control of a DBased baggage han-
dling system.

1.5 Thesis outline

The objective of this thesis is to develop efficient contrethods that can be used in order to
increase the efficiency of the considered transportatistesys (sorting machines for large
mail items in post sorting centers, and baggage handlingpors). Figuré_ 1K presents a
graphical road map depicting the organization of this thesi

According to this graphical road map, the persons intedeist¢he postal applications
only should read the thesis using the following order: Chapt Section 2.1 and 2.2.1
of Chapter 2, Chapter 3, and Chapter 5. The persons intdresteaggage handling only
should read the thesis using the following order: ChapteCHapter 2, Chapter 4, and
Chapter 5.

The thesis is structured as follows. In Chapter 2 we brietipiiuce the concepts of op-
timal control and centralized, decentralized, distribytnd hierarchical model predictive
control that will be later on used in this thesis in order tdimally transport (sort or route)
the to be handled items (flats or bags respectively). Foethentrol methods we present
the theoretical framework, the algorithms that can be usedder to solve the optimization
problems, together with their advantages and issues.
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Chapter 1.
Introduction

Chapter 2.

Optimal and mode
predictive control

[ ]
| l

Chapter 3. Chapter 4.
Postal automation Baggage handling

|

\ Y
Chapter 5.

Conclusions and
future research directions

Figure 1.4: A road map of the thesis.

Next, in Chapter 3, we present the postal automation agjaita First, we describe
the automated sorting process and the current issues ofa afdlat sorting machines in
general. Then, we propose a new design for a flat sortingray$tarthermore, we elaborate
the simplifying assumptions made in order to obtain a fastiation model, the continuous-
time event-driven model to be used, the operational consstaand the control objective
that has to be achieved. Next, we propose several controbagipes for determining the
velocity of the system transporting the bins, and compageptioposed control methods
based on simulations. Finally, we also discuss the influefhtiee structural changes on the
throughput.

In Chapter 4 we present the baggage handling applicationst, ke describe the au-
tomated baggage handling process and the current contdollepns of a baggage handling
system. Afterwards, we present the simplifying assumgtimade in order to obtain a fast
simulation model, the nonlinear event-driven model of tHe\MEbased baggage handling
system, the operational constraints, and the desired aootbjective. Furthermore, we
propose several control approaches for determining themaptouting of bags through the
baggage handling system and then we compared them (basidudat®ns) on benchmark
case studies, over a set of scenarios.

Finally, in Chapter 5 we present the conclusions of thisithasd possible directions
for future research.



Chapter 2

Optimal and model predictive
control

In this chapter we briefly introduce the concepts of optinaitool and model predictive
control that will be later on used in this thesis. The chajgestructured as follows. In
Sectior 2.1l we present the theoretical framework, the aviglnumerical optimization al-
gorithms, the advantages, and the issues of optimal corfisoit will be noted in Section

2.3, the optimal control method becomes intractable intprador any systems with large
control horizon as the ones that we consider in this theskerdfore, in Sectioh 2.2 we
also introduce the concept of model predictive control wh&maller optimization prob-
lems have to be solved. However, since centralized modéigirnee control may still re-

quire high computational efforts, in Sectibnl2.2 we alsocdes the working principle of
decentralized and distributed predictive control apphesc Finally, we will also introduce
the concept of hierarchical control which will be then cormda with the concept of model
predictive control.

2.1 Optimal control

Several methods for solving dynamic optimization probldrage been developed. In this
section we present the general concept of optimal contnel,algorithms that could be
used to solve the resulting complex optimization probleansl, also the advantages and the
disadvantages of this approach.

2.1.1 Theoretical framework

Optimal control is a standard method for solving dynamidrojziation problems, when
those problems are expressed in continuous time. The dptoné&ol problem consists of
finding the time-varying control law(-) for a given system such that an objective function
J is optimized while satisfying the operational constraintposed by the model, see, e.g.,
[37,146,/53]. Hence, this is an open-loop approach (the obitputs of the system are
computed using only the current state of the system and tlkehod the system). So, the

9



10 2 Optimal and model predictive control

open-loop approach does not use any feedback to determieghertithe desired goal has
been achieved.

:

. !

. optimal controller !
linitial |
' measurements

,,,,,,,,,,,,,,, - optimization control inputs
control

——=| actions
objective,
constraints

real system

Figure 2.1: Optimal control — working principle. The contaztions that the optimal con-
troller obtains as result of solving the optimization prefsl over the entire simu-
lation period, become control inputs for the real systemféealback involved).

As illustrated in Figur€2]1, the formulation of an optimahtrol problem requires the
following information:

e a model of the system to be controlled,
e an objective function to be optimized,

e boundary conditions and other operational constraintdherstates, the inputs, and
the outputs of the system, and consequently of its modelifih&s and the outputs
of the system correspond to the control actions and the me@asumts of the optimal
controller, respectively).

Then the standard formulation of an optimal control probéem be written as follows:
nLin J(X(to),u)
subject to

where

e X(to) is the staté of the system at time instati with to the initial simulation time,

e u represents the continuous control actions for all the dmTigariable$ over the
simulation periodto,to +75'™) with 75'™ the length of the simulation period,

e O(x(tp),u) = 0 is the system of equality constraints,

e U(X(tp),u) < 0is the system of inequality constraints.

The system of equality and inequality constraints of theddad formulation above de-
scribes the continuous-time model of the real system arapisational constraints.

Note that for some problems the exact model of the systembearmitten analytically,
and then optimal control methods can give the global optguokition only if the problem is

1Consider a traffic light controlled intersection with 4 ararl 4 traffic signals. Then the state of the system
at a given time instant consists of the length of queues of/éiicles in front of each traffic light at that time
instant. Then the decision variables can be for exampleirte instants when the color changes for each traffic
light.



2.1 Optimal control 11

convex or if the solution can be computed analytically, seg., [23| 29, 62]. However, for
systems with models that cannot be written analytically,, @ontinuous-time event-driven
systems as those we refer to in this thesis, one can use roaneptimization algorithms
to compute the optimal solution, see Secfion 2.1.2. Howewehis case the continuous
adjustment of the control sighal so as to optimize the objedtinctionJ is not possible
using digital control. Hence, in practice one has to disoeathe model and to compute a
piecewise constant control tup# = (u(0),u(1),...,u(kS™)) wherek®Mr represents the
length of the simulation period withs the sampling timek$™rs = 7™ and where, for
k=0,...,k%™ u(k) is the vector of control inputs to be used for the time peftpdi+1)
with t, given byty = tg+krs.

Then the standard formulation of a discrete-time optimata problem becomes:

rr;/in J4(x(to), %)
subject to
q)d(X(IO)a 02/) =0
Vd(x(tg), %) <0

where the system of equality and inequality constraints/atitescribes the discrete-time
model of the real system and its operational constraintanges of such formulation can
be found in Chapter 3 and Chapter 4.

2.1.2 Numerical optimization algorithms

The solutions to most optimal control problems cannot benébly analytical means. As
a result, it is necessary to employ numerical methods toesoptimal control problems.
Over the years, many numerical procedures have been dedelofsolve optimal control
problems as will be detailed next.

In order to solve nonlinear, nonsmooth optimization protdeone may use specialized
search algorithms [31] such asquential quadratic programmiragorithms|[23], ompat-
tern search4], genetic algorithm¢67], andsimulated annealinfLg]. Furthermore, if the
optimization problem is also a mixed integer problem, thea ocan solve it using the pre-
vious algorithms adapted to compute control inputs thatesgicted to integer values, or
other specializethixed-integer nonlinear programmiragdgorithms|[35, 54], otabu search
[32].

Note that all these algorithms performagal search starting from initial search points
which are either fixed, given by the user, or randomly chosethb optimization algo-
rithms. As a consequence, they filmdal optimal solutions. Hence, these algorithms do not
guarantee the global optimal solution. Therefore, for atgms that start the search from
fixed or random points given by the user one should use maliiptial points while for
algorithms that start the search from random initial fel@sfiolutions (randomly chosen by
the optimization algorithm), one has to start the optim@ateveral times, and hence, use
multi-run optimization.

2.1.3 Advantages and issues

One advantage of optimal control is its ability to contro$t®ms with multiple inputs and
multiple outputs, and also its explicit way of handling ctvamts on control actions, states,
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and outputs. Another advantage is that optimal control oggltan give the optimal so-
lution when the exact model of the real system can be writteatyéically. However, in
practice many of the systems to be controlled are highlyineat, and their exact and ac-
curate model cannot be written analytically.

In theory this control method gives the global optimal siolut and consequently the
best performance of the real system if the model expressesahsystem accurately. More-
over, in practice determining an accurate model of a reaésyss not always possible. And
since the optimal control method is open-loop, the modetmaish typically yields loss in
the system’s performance. Furthermore, in order to uselgfoeithms above one may have
to first discretize the system. Then, depending on the dycsafithe system one may need
a small sampling time, and consequently, one has to complarg@ sequence of control
signals since we determine the optimal control sequencthéoentire simulation period.
This will result in a large computation time when solving thyaimization problem. Also,
for systems where the optimal control method has to comgaeaslution of a nonlinear,
nonconvex, nonsmooth, (mixed integer) optimization peahlthis control method requires
very large computational effort to determine the optimdugon. This occurs since the
state-of-the-art numerical optimization algorithms desd to solve these complex prob-
lems can only determine local solutions (see, e.g., Se@id@®). In order to get closer
to the global solution, one has to use multiple initial psintherefore, for those systems,
optimal control, usually, becomes intractable in practidaother issue of optimal control
is its robustness [53, chapter 9], since due to eventualrtiiahces, when applying the opti-
mal control actions to the real system, the states of thesystay not satisfy the imposed
bounds.

2.2 Model predictive control

Since using optimal control yields high computational iegments to determine the opti-
mal control inputs for event-driven systems as the ones Weavisider in the next chapters,
in this section we introduce the concept of model prediativetrol (MPC).

2.2.1 Centralized MPC

MPC is an on-line control design method for discrete time etedhat uses the receding
horizon principle, see, e.g., [11,/57/ 65]. Therefore, tioistrol method is also referred to as
receding horizon control or moving horizon control. Sintsedievelopmentin 1980 [14,168],
MPC has become the preferred control strategy for a largebeuf industrial processes.
Currently, MPC is viewed as one of the most promissing conteihods that can deal with
nonlinear systems that are subject to operational constrai

MPC is a control strategy that is typically used in a discttetee context. Next we
present the working principle of basic MPC. As sketched iguF¢[2.2, at some time in-
stant, the MPC controller measures or estimates the cistatetof the real system. Let this
time instant be denoted hy = tg + krs with tg the time instant when we start the simula-
tion, 75 the sampling time, ankl > 0 an integer. Then, given a prediction model of the real
system, the MPC controller computes control actions byisglan optimization problem
subject to the prediction model's dynamics and its openafioonstraints as follows. Given
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Figure 2.2: Basic MPC — working principle.
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Figure 2.3: Conventional MPC when we deal with one decisiarable during a sample
period. At time step k the future control sequen@@u..,u(k+N;—1) is opti-
mized such that the objective function J is minimized stibgetbe dynamics of
the system and their operational constraints.

a prediction horizomN, and a control horizohl; with Ne < Np, at time stegk (correspond-
ing to time instanty), the future control vectors(k),...,u(k+N:;—1) — whereu(k) the
vector of decision variables during the time peritdty.;) — are computed (see Figure
[2.3) by solving a discrete-time optimization problem oveyigen periodty, ty + Np7s), SO
that the cost criteriod is optimized subject to the operational constraints. Tipetsignal
is typically assumed to become constant beyond the coraraddn, i.e.,

u(k+j)=u(k+Nc—-1)for j =Ne,...,Np—1. (2.1)

After computing the optimal control vectors, only the firentrol vector (corresponding to
the time periodty,tk+1)) is implemented on the real system, and subsequently thzamor
is shifted. Next, the new state of the system is measuredionaed, and a new optimiza-
tion problem at stefx+1 is solved using this new information. In this way, a feedbac
mechanism is introduced. Recurrently, we apply this pracedntilk = kS'™.

The standard formulation of an MPC optimization problem g@mn be written as fol-
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lows:
inJ t k
Q/‘l(llg N Np (X(t), 7 (K))
subject to
B(x(t), % () = 0
U(x(tk), % (k)) <0
where

X(tx) is the vector of state variables at time instint
% (k) is theN¢-tuple that consists of all the decision variables to beiegpver the

prediction horizon and is defined as follow#s(k) = (u(k),...,u(k+Nc—1)),

d(x(ty), % (K)) = 0 is the system of equalityconstraints,
U (x(tk), % (K)) < 0 is the system of inequalityconstraints.

The main advantage of MPC over the optimal control methodhéd we now solve
smaller optimization problems. However, this comes at & of loosing performance
whenN; andN, are small relative t&5™. Note that in order to solve the MPC optimization
problems one can use the numerical optimization algorifhrasented in Sectidn 2.1.2.

Furthermore, one may notice that depending on the contmblpsediction horizons,
computing the solution of the optimization problem over &mire simulation period may
still require high computational effort. In order to reduke computational complexity, one
can use variants of MPC that involve:

larger horizon shifting: Instead of applying to the real system only one control saropt

blocking:

of the computed control sequence, one can apply more sammpteshift
the horizon accordingly. This means that if at skepe have computed the
control tuple7 (k) = (u(k),u(k+1),...,u(k+Nc—-1)) with u(k+j) = u(k+
Nc-1) for j = Ng,...,Ny—1, then one can appimn < N, control samples
u(k),...,u(k+m=1) to the real system. Accordingly, we next compute
the future control tuple at stelp+m. In this way the total computation
time required to compute the control over the pefiad,sim) is reduced by
100(™1) %.

Instead of considering the control horizon constraint oetpressed by
(2.1), one can force the input to remain constant during spredefined
intervals. So, one can defin@°° intervals of lengths?'ock, ..., §biock

ock

so thaty 3™ sblock — 7N, with §Plock an integer multiple ofrs for i =
1,2,...,nPlock see, e.g., Figule2.4. Then we compute the future control
inputsv(k),v(k+1),...,v(k+nP°%k—1) that optimize the objective function

J subject to the dynamics of the system and their operaticoradteaints,
wherev(k+i) fori = 1,2,...,nP'°* js the control input corresponding to
the time intervality + 374 6P°%K to + 1 _, 6P1°%K) with 59 ; 6Pk = 0 by
definition.

2The system of equality and inequality constraints of the M®dard formulation, describes the prediction
model of the real system over the given prediction horizahitsoperational constraints.
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Figure 2.4: MPC with blocking (we consider one decision ahté only during a sample
period). For this example, at time step k, we compute theratiuture control
variables \k),...,v(k+n°%-1)). The control variables (K),...,u(k+Np—
1)) are then computed according {0 (2.2).

Then, as illustrated in Figufe 2.4, the control inputk), ...,u(k+Np—-1)
can be derived as follows:

u(k+j)=v(i) fori=1,2,... nP°*and for allj € N satisfying:

i-1 sblock i block
Z|=15| < J < Z|=15| ) (22)

Ts o Ts

Another advantage of MPC is that it can handle structuraigha— such as sensor and
actuator failure changes in system parameters and systectuse — by regularly updating
or adapting the prediction model in combination with itsdieack mechanism.

2.2.2 Decentralized MPC

When dealing with large-scale systems, centralized MP® ienger tractable. Therefore,
for such applications one can divide the system into subgsystwhich are then indepen-
dently controlled by local controllers [43,194]. Then we be#h a decentralized control
architecture, see, e.g., Figlrel2.5, where given the laealigtion models, each local con-
troller solves a local optimization problem based on lon&dimation over the state of the
real system. This results in sequences of local contrabastihat can be applied to the real
system. For different applications of decentralized MPCr&fer to [1) 19| 69].

So, the advantage of decentralized MPC over the centradipptbach is that we now
independently solve simpler and smaller optimization peois resulting in lower compu-
tational requirements and faster control. However, thigaathge will be typically at the
price of decreased overall performance.
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Figure 2.5: Decentralized MPC —working principle.

2.2.3 Distributed MPC

In order to increase the performance of decentralized MRCconcept of distributed MPC
has been introduced. Distributed MPC is an extension of teglized MPC, where the
local MPC controllers also exchange information regardimgr future control actions
while solving local optimization problems, see e.g., Fejdré. Typically, the objective
of this communication is to achieve some degree of cooridinamong the local con-
trollers without solving a centralized MPC problem. Thipitohas been addressed in
[12,113,/20, 60, €6, 93] where, e.g., serial versus parafidl &ynchronous versus asyn-
chronous coordination schemes are tackled. In serial ctatipn schemes, only one local
controller at a time performs computations, while in paadichemes, multiple local con-
trollers perform computations simultaneously. When thmpgotations are performed in
parallel, the local controllers have to wait or not for on@tler when it comes to send-
ing and receiving information and determining which acsido take; also they can send
and receive information and determine their actions at eng br at specific time instants.
The asynchronous coordination schemes have a big advaovagehe synchronous co-
ordination schemes, namely that the local controllers ddhawe to wait for other agents
to perform their computations — they just have to includerteely received information
from neighboring local controllers at any time while solyitmeir optimization problems.

In this work we will not focus on developing new coordinatechemes for distributed
MPC, but we will analyze the trade-off between performanmm@mputation time needed
for solving nonlinear, nonconvex, mixed integer optimiaatproblems with multiple lo-
cal minima, when applying efficient centralized, deceitesl, and distributed MPC ap-

proaches.
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Figure 2.6: Distributed MPC —waorking principle.

2.2.4 Hierarchical MPC

In a hierarchical control set-up, see, e.q., [26, 72], thetrad tasks are distributed over
time and space. Such a set-up consists of several levelsnifot,owhere controllers of
supervisory and strategic functionality reside at higbeels, while at lower levels the local
controllers must guarantee specific operational objestidany level, the local controllers
must communicate their outcomes and requirements to therlmvels (sometimes these
controllers even negotiate their outcomes and requiresneitih the lower and higher lev-
els).

Using MPC in a hierarchical framework involves multiple tah levels with author-
ity relationships between the local MPC controllers on thiecknt levels as illustrated in
Figure2.7.

This framework can be characterized as follows:

e It consists of multiple control levels with authority ratatships between the local
controllers on the different levels (local controllers &gher levels — also called
supervisory controllers — have authority over the contrsliat lower levels, whereas
the local controllers within a control level have equal awity relationships).

e In general, the local controllers on different levels haifeedent objectives.

e At higher levels typically less detailed models are congdewhereas at lower levels
more detailed models will be used.

e The different levels of control deal with different time &&= Typically the lower
levels in this hierarchy update their actions with a fastegfiency than the higher
levels.
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Figure 2.7: Hierarchical MPC with 3 levels of control. Thecll controllers on each level
communicate their outcomes and requirements to the lowet,land negotiate
their requirements with the higher levels.

The use of MPC in a hierarchical framework![42, 70, 71] hasady proven its useful-
ness in controlling transportation systems, see e.d. 1[(6242).

2.3 Summary

In this chapter we have introduced the concepts of optimaroband model predictive con-
trol which will be later on used in this thesis for solving fiaear, nonconvex, mixed integer
optimization problems with multiple local minima. For etafriven systems (as the ones
that we will deal with in the next chapters) where we have teeine the optimal solution
of nonlinear and nonconvex optimization problems, optiomaitrol becomes intractable in
practice for large horizon due to the high computationareffequired. For these systems
model predictive control (MPC) offers a reduction in the @lecomputation time by solv-
ing smaller optimization problems (over a relatively snpa#diction horizon only, instread
of computing the optimal solution over the entire simulatjgeriod). However, central-
ized MPC may still become intractable in practice for lasgade systems. Therefore, one
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can decompose the large-scale systems into subsystemaceodingly solve local MPC

optimization problems. The advantage of decentralized MPLlower computation time

since we now independently solve local optimization protd¢hat are smaller and simpler.
However, this comes at the cost of suboptimality. But, byudimg communication and

coordination between local controllers, one obtains ithsted MPC which can improve

the efficiency of the system. Finally, we have also preseathigrarchical control frame-

work consisting of multiple control levels with authoritglationships between the local
controllers on the different levels. This control frametvavill then later on be used in

combination with the MPC concept.






Chapter 3

Postal automation

In this chapter we consider state-of-the-art flat sortinghmirees. The chapter is structured
as follows. In Sectioh 3]1 we describe the automated soptingess and the current issues
of a flat sorting machine. Afterwards, in Sectlon]3.2, we psEpa new design for the flat

sorting machine. The simplifying assumptions and the ootiis-time event-driven model

to be used are presented in Secfion 3.3. Furthermore, ilp8Ecl we detail the operational

constraints together with the control objective. In Setfid8, we propose several control
approaches for determining the velocity of the system partag the bins. The analysis of

the simulation results and the comparison of the proposatt@anethods are elaborated
in Sectio3.6. In Sectidn 3.6 we also discuss the influentleeo$tructural changes on the
throughput. Finally, in Sectidn 3.7, we draw the conclusiofithis chapter and we present
possible directions for future research.

Parts of this chapter have been published.in [75], [79], 844l [

3.1 State-of-the-art solutions

In this section we briefly describe the process performed btate-of-the-art flat sorting
machine and its current issues.

3.1.1 Process description

The procedure performed by a flat sorting machine considtsmprocesses: preparing the
flats and sorting them. During the preparation phase, tmepstessed for postage is voided.
Next, the address and the postal code are located and thesaegeformation is extracted
and printed on the flat in the form of a bar code. Conveyor systeansport the flats during
the preparation phase with a constant speed. This ensurassport delay line of several
seconds allowing the system to collect sorting informatorline before the mail item

reaches the code printing phase. The performance of thingedevice, the length of these
conveyor belts, and their speed determine the maximal ahwdtime available to prepare
the mail for sorting. If the delivery information is not maeh-readable, an image of the
flat will be transmitted automatically to the video codingt®m. An operator views the
address image on a monitor, reads the delivery informatiod enters it via a keyboard. If

21
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Figure 3.1: Sorting part of a flat sorting machine. A full bmimmediately replaced with
an empty one.

the delivery information is not obtained during the preiaraphase, then an identification
code is assigned to the item and the flat is inserted into apahbox. This flat will be
then dropped into a special bin where the non machine-réadad collected. However, if
the delivery information is acquired when the flat is alreadthe transport box, then this
mail item will be reassigned to the correct destination bithen the mail item leaves the
preparation phase, it is inserted into a transport box oftitéing process by the inserting
device, as sketched in Figure B.1. The transport boxes ataised at the top part of a
flat sorting machine and move counterclockwise (top viewhwi constant speed. At the
bottom part of this machine destination bins are alignedettmat this bottom part does not
move in any direction (this part is static). Then the tramsbox carries the flat and deposits
it by dropping it into a destination bin according to the destion or postal code of the flat.
This is how currently most of the flat sorting machines arekiviy.

Note that for the sake of simplicity of explanation, in thenander of the paper we will
also use the termsoxandbin when referring to dransport boxand adestination birof a
flat sorting machine.

3.1.2 Current issues

The low-level control problems of this system consist ofdetining the feeding rate of the
sorting machine [56], positioning of the transport box wireserting the flat, and synchro-
nizing transport boxes and bins when dropping a flat in itsesponding destination bin.
At a higher level of control important problems are how tmedte the destinations to the
bins and how to sort the mail items in delivery sequence order

Other issues related to the state-of-the-art mail sorijstesns in general, and applicable
also to the considered flat sorting machine are: locatingléstination address and extract-
ing the necessary information, and also designing opticatacter recognition machines.
These topics have been treated to a very large extent in[404,. [52], [97]. However, to
the author’s best knowledge there is no public work anatyZiow the efficiency of this
system can be increased.
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Figure 3.2: Throughput versu€°™ when P = 1m/s and W°"™ varies between, e.g.,
-0.5m/s and 0.5m/s (V°"°Mis negative when the bottom system has the op-
posite direction of movement with respect to the top systfing flat sorting
machine has 1, 2, and 3 feeders respectively.

3.2 New design

In this section we investigate approaches to increase tbeghput of the flat sorting ma-
chine. This can be achieved first by making design changdsasiaugmenting the system
with additional feeders and also by moving the bin systenmédeft or to the right with a
given speed.

Motivation

The sorting system sketched in Figlirel 3.1 can be augmentadtiiyg feeders. However, by
increasing the number of feeders only, which can increas¢httoughput of the machine,
one does not necessarily obtain the maximal possible tiwmutg As example we have
illustrated in Figuré_3]2 the throughput versus the vejooftthe bin system for a typical
scenario of 10000 flats. These results have been derived tigérevent-driven model that
will be presented in Sectidn 3.3 and which has been impleedentMatlab. However, since
the purpose of these plots is only to motivate the need foermatepth analysis of means
to increase the throughput of a flats sorting machine, wenwetildetail here how we derived
these results (the details are presented in Selction 3.3).

The general trend of the throughput of a flat sorting machiitie W 2, or 3 feedersis to
decrease when the bottom part of the machine moves in the diaeation as the top part
and when using a constant speed in the rang¢¥tmQ5 m/s. Moreover, the throughput of
such a machine can decrease to O fletghen the bottom part of the machine moves in the
same direction as the top part and with the same speedg)L mhis happens since in this
case we can drop only the flats that are inserted in boxesquesiton top of the destination
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bin with the same identification code as the flat. Furtherbigire[3.2 shows that when
the sorting machine has one feeder only, and the bottom p#areanachine moves with a
constant speed, but in opposite direction than the top therthroughputis about 10 flas
This happens since the inserting rate is 10 fla{én the considered scenario the width of a
box is Q1 m and the velocity of the top part is 1/8y and as a consequence 10 erhpiyxes
pass under the inserting device within 1 second). The vepllstifferences in throughput
in this case are only influenced by the time instant when thteriserted flat is dropped. So,
the larger the stream of flats to be sorted, the larger thedotting time, and consequently,
the smaller the differences in throughput for this case. m@seilts illustrated in Figure
[32 also indicate that augmenting the flat sorting machirike miore feeders increases the
throughput, and that typically increasing the relativeespbetween the top and the bottom
system also increases the throughput. However, the ewplofithe throughput versus the
velocity of the bottom part of the sorting machine is nordinand nonsmooth. However,
the peaks that appear cannot be predicted, but are dependég stream of codes and on
the velocity used for the bottom system.

According to the results illustrated in Figlre13.2 (see, ¢t throughput of a flat sorting
machine with 2 or 3 feeders) one concludes that the througtigained with a static bin
system is not always optimal.

Therefore, in the new set-up, the bottom system transgptiimbins is also able to move
clockwise or counterclockwise (top view) with varying sgeévoving the bottom part of
the flat sorting machine, but with a constant speed, is ctiyralready being implemented
and operational.

Description

In order to increase the throughput of the flat sorting maghime propose the new set-
up illustrated in Figur€3]3. The preparation of the flatgisntical to the one described
in Section[3.11l. But now we want to simplify the previoustske Therefore, instead
of the feeding device and the preparation phase, we now aenai buffer of flats with
known identification codes. Note that in this work we consttiat the delivery information
is always acquired on-line. The top system transportingothiees moves as usual, with
a constant speed. The bottom system transporting the bms@a move clockwise or
counterclockwise with varying speed. The reason for thioisncrease the number of
empty transport boxes and, hence, increase their avitjabil

New control problems

With this new set up, a new control problem arises: how tostdhe speed of the bottom
system, so that the throughput is maximized. In order to refie optimal movements we
will implement advanced model-based control methods, haoptimal control and model
predictive control (MPC). A detailed presentation of thesethods can be found in Section
B.5.

1The boxes that pass under the inserting device of a flat gartachine with 1 feeder are always empty when
the bottom part moves in opposite direction than the topgiace the flat in a box will always be dropped before
that box passes again under the inserting device.
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Figure 3.3: New set-up for the flat sorting machine: more &edmoving destination bins

3.3 Event-based model

Later on we will use the model of a flat sorting system for mduksed control. There-
fore, in order to have a trade-off between a detailed modcglrgquires large computation
time and a fast simulation, in this section we present thekiging assumptions and the
continuous-time event-driven model to be used to deterthia®ptimal speed of the desti-
nation bins.

3.3.1 Assumptions

Consider the simplified process depicted in Figuré 3.3 oftatieting system with feed-
ers. Accordingly, we considé¥ FIFO (First In First Out) buffers of flats. Note that the
sequences and the streams defined throughout this chapiteewépresented by (column)
vectors.

Let NPoxesandNPIns he respectively the number of boxes and the number of déistina
bins of the sorting machine. The width of a box will be dendigd°* and the width of a
bin will be denoted by™".

To model the flat sorting system we make the following assionpt

A1: The width of the gaps between the boxes is assumed to be ibégligVe assume the
following relation satisfiedwPOXNPoXes— wpPinNbins — |total \yith |01l the total length of
the sorting part of the flat sorting machine.

A, The top system moves with a constant spe&d
As: The speed of the bottom system is piecewise constant.

A4: The flat sorting machine has inserting devices that are positioned equidistantly.
These inserting devices correspond tofhkeeders and are denoted hy.I.. , Ig.

As: Each inserting device has a finite buffer of flats, with codhes &re known in advance.
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Ag:

When using a sorting machine withfeeders, the stream of codes [s1 S . .. sNﬂats]T
— whereN" @S js the number of flats to be sorted during a sorting round —glisiato

F newstreams; = [s1 5 ... St] ", 2= [St+1 -+ S21) 0oty SF = [SE-1)f41 -+ Sylats]
with f = [@J where| x| denotes the largest integer less than or equal to

: The correct dropping (and consequently the correct stggldf a flat into a bin is

controlled by a low-level controller. In the model that wetetenine, a flat can be
dropped when the box carrying it is positioned on top of itstihation bin, see e.g.,
Figure[3.4. Moreover, the dropping of a flat into a bin is assdo be performed in a
negligible time span.

I Wboxl viop IWbOX I VioP

Figure 3.4: Positioning when the box transports the flat talbpped in the bin below and

Ag:

the dropping is still allowed.

A full bin is replaced with a new one in a negligible time span.

Next we will discuss each of the assumptions above, stating thhe assumption is

required and whether or not it is (very) restrictive:

Aq:

Ao
As:

As:

Ag:

This assumption has been made without loss of generalgyputpose is to simplify
the explanation of the event-based model.

This assumption corresponds to state-of-the-art flatregprtiachines.

Recall from Chapter 2 that the continuous adjustment of #ecity of the bottom
system so as to maximize the throughpatf a flat sorting machine is not possible using
digital control. Hence, the assumption tiv8®"™ is piecewise constant is necessary.
Note thatA3 is not a very restrictive assumption since one can alwaysoappate an
arbitrary speed profile arbitrarily well by a piecewise dans$ speed profile.

. The assumption that tHe inserting devices are positioned equidistantly is notriest

tive, in the sense that other positions for the insertinga#esvare also allowed. How-
ever, this positioning will influence the throughput of tretég system. In practice
flat sorting machines witk = 2 orF = 4 already exist and are commercially available.

This assumption corresponds to state-of-the-art flatreprtiachines due to the follow-
ing reason. During the preparation phase, after extraétimg each flat its destination
address and postal code, an identification code will be aedi¢o it. Hence, at any
time instant there will be a buffer of flats transported bywayor systems, the codes
of which are known.

This assumption is necessary in order to later on understame of the simulation
results. The assumption is not very restrictive in the séimseother ways of splitting
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the initial stream of codes can also be allowed, but then ptienal speed profile would
be different.

A7: Taking into account the purpose of this work (i.e. to devedop compare control
approaches for increasing the throughput of the sortindghimag, the correct dropping
of a flat into a bin is considered to be performed by a low-lea@itroller already
present in the system.

Ag: In practice, a full bin cannot be replaced with a new one ingligible time span. But,
one can design an intermediary pocket on top of each bin wtachstore a limited
number of items when that specific bin is full. This yieldsrtteesmall delay in drop-
ping, and then the full bin can be replaced with an empty orste khat automated bin
replacement has already been developed and is currentigtapeal.

3.3.2 Model

There are three types of events that can occur:

e inserting a new flat into the sorting section of the system,
e dropping the flats that meet the corresponding bin,
e updating the speed of the bottom system.

We model the flat sorting system as an event-driven modelistorgs of a continuous
part, viz. the movement of the transport boxes and bins, drnldeodiscrete events listed
above. The following situation has been assumed: given acitglsequence/etom —
[vgettom bottom - \bottom T and a sequence of time interval lengths= [0 71... 7], on
each time intervalty,t+1), k=0,1,...,N, with tx.; =t +7¢ andtp the time instant when
we start sorting, the velocity of the bottom system equ@%"m as illustrated in Figurie 3/.5.

The model of the flat sorting system is capturedAgorithm 1 wherersotmax > o
is the maximum time period that we allow for sorting. Moregwecording to the model,
for each flat, fori = 1,2,...,Nf@S that has to be sorted, the time instant when thei flst
inserted into a boxt{*®") and the time instant when the flas droppedt"") are computed.
Consequently, the model of the flat sorting machine is dehloye = . (x(tg), vt 7),
wheret = [t .t}\’l}ﬁﬁgtf“’p tg:ggr and x(tp) is the initial state of the flat sorting
system. Note that if during the time peridid, to + 75°"™M&) not all the flats have been

ypottom

A

ottom
V? vbottom
vgottom} 2 vt’zlottom
i I i | t
to 1 to t3 e oo N tN+1
70 T1 T2 ™

Figure 3.5: Speed evolution of the bin system.
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|total_2Wbin__
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Figure 3.6: Position of bins relative to the position of thstfinserting device.

sorted, thent consists of the time instants when we insert and drop eadhedfiats up to
the time instanty + 7S°rtmax,

For the sake of simplicity and without loss of generalitgane that the destination bins
have assigned the following identification codes2,1..,NPi"S, Note that from now on we
refer to the bin with identification codgwith d € {1,...,N”"S} as bind. Then we assign
the identification codes as follows: the bin positioned at léft-hand side of bird with
d > 2is bind+1 and the bin positioned at the right-hand side ofdis bind—1 — the bin
positioned at the right-hand side of bin 1 is INA™S. Then in order to identify the position
of a bin or of a box we only refer to its right-hand side relatio the right-hand side of the
first inserting devic& The position of the first inserting device is denotedg§je®". Let
us setp'se"e'= 0 as reference. As an example, Figurg 3.6 illustrates thitigrosf bin d
withd € {1,...,NP"S} and the positions of the bins in front and after HirThen we denote
the position of the bin with identification codkby pgi”. Similarly, we denote the position
of boxmwith me {1,...,NPo%esl by pboX  Note that the positions of boxes and bins are
determined using modular arithmetic since these posittmasxpressed as variables that
are larger than or equal to 0 and smaller t¥ai' with 1@ the total length of the sorting
part of the flat sorting machin€q®@ = wPoXNbPoxes— wPInNbINs gccording to assumptiohy).

The state of the sorting system consists of the positions of all thedsoand bins, the
state of the box (loaded or empty), the time instant when vweketha last dropping event
for each box, the number of flats dropped till now for eachidatibn, and the streams of
codess;,s,..., S that still have to be inserted into the machine. Note thaptstions of
the transport boxes and bins are determined relative to figeds (e.g. position of the first

2The inserting devices have fixed positions with respectédrdime of the machine.
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inserting device). Furthermore, thigout of the system consists of the streams of codes to be
sorteds; ..., S¢, the piecewise constant velocity profile for the destimabimsvPet™ with
ybottom— [ybottomyjbottom __ ybottom T ' and the time interval lengthison which the velocity of

the destination bins is constant with= [ro 71 . ... TN]T. Thecontrol variable is the velocity

of the bottom part of the flat sorting machine and is part ofitipait. Finally, theoutput t
consists of the time instants when we insert and drop eadtedfdts to be handled.

The variabler}”se”with j€{1,...,F} of Algorithm 1 presented below is the time that
will pass until the first empty transport box will be positemhunder the inserting devicg |
The variablery°P with me {1,..., NP3} is the time that will pass until the next mail item
will be dropped from the bor into its destination bin.

Algorithm 1. Model of the flat sorting system

Input: streams of codes to be sorted.. ., s¢, piecewise constant velocity profile for the
destination bing®°t™™ time interval lengths, and the initial state of the system
1. k—0
2: toM—tg
3: while t°" < tg +7Sontmax dg
4. for j=1toF do

5: r}"se“<— time that will pass until the next flat inserting eventat |
6: end for
7. for m=1toNP%®sdo
8: 73 time that will pass until the next dropping event for the mox
9: end for _
10. Min min( min_7"*% min 7 {P, rk)
j=1...F m=1,...,Nboxes

11: tert tcrt+7_min o

12 for m= 1 toNP°*€sSdo

13: pbmox<_ (pbmox_vtomein) mod|total

14:  end for{update the position of the box system}

15.  fori=1toNP"Sdo

16: pibin P (pibin_vklgottony_min) mod|total

17:  end for{update the position of the bin system}

18: I« set of flats to be inserted in the boxes next

19: A < set of flats to be dropped next

20:  update the streansgfor j =1,2,...,F{remove from each stream the codes that have
been inserted in transport boxes}

21: foralljeTl do

22: ti_nsert(_ tort
: j
23: end for
24: forallme Ado
25: gdrop _ ort
26: end for

270 T T — 7N
28: if x=0then
29: k—k+1
30: endif
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31: end while
Output: t

Next we present how we compute the variabig&"with j € {1,...,F} andr2°P with

me{l,..., Nboxes_} involved in determining the event-based modeftgforithm 1.
The variabler|"*"with j € {1,2,...,F} is determined as follows.

e If the streans; is empty then we set!™®" = oo (note that if7]"5*" = e thenri1ser
will never be selected at step 10).

e Otherwise, we search for the next empty box transportedrtisithe inserting device
I and so that its position is larger than or equab}'éfe“erand smaller tharp'j'lflerter

(note that ifj = F then we considep!sE"e'= '),
Note that a box can be either empty or loaded. Then we digshdwo cases:

all boxes are loaded: If all the boxes are loaded, then no feeding event can occur,
and therefore we sef"*" = oo,
there is an empty box: If such an empty box exists, then let this box be indexed
by m. Furthermore, according to the operational constr@mnthat will
be presented on pafel32, in order to avoid executing thenadtisert,
drop, insert at the same time instant for the same box, a mimiperiod
of wPo*/\°P time instants has to pass between two consecutive inserting
events for boxmwith me {1,...,N°®®S,_ Then the time that will pass
until the first flat inserting event from the buffer corresging to stream
sj is determined as follows:
feeding allowed for boxm: If the last time when we had dropping from
box mis larger than or equal t&" —wP®\°P (so operational con-
straintC3 on pagé_3R is satisfied), then
Tinsen: ptrJnox_ pljnsener
J yiop

where pi* is the position of boxm, pi's®"®"is the position of the
inserting devicej, andts °is the time instant when we had the last
dropping from boxm.

feeding not allowed for boxm: If we are not allowed to feed bardue
to constraintCs, then we se’r}”se”: 00,

The variablera® with m e {1,2,...,N*®®S, s determined as follows. Assume that
boxm carries the flat that has to be dropped in destination.blihen we computerﬁrj,rOp as
follows.

o If the boxmis positioned on top of the bin— i.e. 0< pio*~ pP™ < wP" —wP or
pRoX 4 |total _ pbin < oI —wPOX (see Figur€ 3]7 ) — then the flat can be immediately
dropped. So, in this case we s&f°® = 0.

e Otherwise, we distinguish three cases as presented nexé thit we can drop as
soon as boxnis on top of bini.
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Woox \iop I Whox I viop

0 p%ox pit:uin pbmox .0 pibin
(a) 0< ppnox_ pibin < \/\Pi” _V\}Jox (b) pﬁqox_”total — pibin < Wbin _Wbox

Figure 3.7: Positioning when the box transports the flat talbspped in the bin below and
the dropping is still allowed. We consider the positionsiattand the positions
of boxes relative to the position of the first inserting devis illustrated in
Figure[3.6.

case 1:vpottom >, ytop

; drop __ d . .
In this caserm © = Vitop_VEOttOm whered is the shortest distance that

the bini and box: have to travel at constant speed until they meet and
dropping is allowed. Sd is the distance between the right-hand side of
boxmand the right-hand side of bin

The distancel is defined as follows (see also Figlre]3.8):
pibin _ pbmox if pgqox < pibin

|total — pbox 4 pbin  gtherwise.

| \}Qottom |(_ da._... ')3 | V::()ottom r_q _____ *i
o0 PR pP" M 0
(@ d= |total _ p%ox+ pibln (b) d= pibln — ppnox

Figure 3.8: Distance to be traveled between the positionif bnd the position of box m
when {oom > /0P,

case 2: vpottom < o

. drop d
Inthiscaseq, "= ———
op —y/oottom

Viop—\2

tom system at the current time instant ahid the shortest distance that
bin i and box: have to travel at speed until they meet and dropping is
allowed. Sod is the distance between the left-hand side of boand

the left-hand side of bihand is defined as follows (for a more intuitive

wherev°"°Mis the velocity of the bot-
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i( ..... q -3 VEottom =I (_____(31____1 onttom
cee | whin ce o cee | ce o
phoX —yox 0 pbin —ypin pROX_ hox ppin —ypin 0
(@ d= |total _ ( pibin _Wbin) + ( pbmox _\NbOX) (b) d= (pbmox_WbOX) — ( pibin _Wbin)

Figure 3.9: Distance to be traveled between the positioniof nd the position of box m
when \zottom < VOP,

explanation see also FigureB.9):
|t0tal —_ (p_bin _Wbin) + (p%ox_v\/sz) if ppnox_mpox < p_bin _V\/oin
| — Fl
(PBOX —WPOX) — (pPin —Pim) otherwise
wherepl®™-wP% s the position of the left-hand side of baxandpP™ -

WP is the position of the left-hand side of hiin

case 3: Potom — yiop

Since the boxm is not positioned on top of bih(otherwise we would
not have reached this case) we 588° = oo

3.4 Constraints and control objective

The operational constraints derived from the mechanicaldasign limitations of the ma-
chine are the following:

Ci: the velocity of the bottom system is bounded betwef°mmax (the bottom part
moves in opposite direction than the top system at sp&EEMMa) gndypotommax

Co: 7k > 1% fork=0,1,...,N with 7 the minimum time period for which the velocity of
the bottom system has to stay constant,

Cs: the three actions insert, drop, insert cannot happen aéthe §me instant for the same
box. Therefore, if at the same time instant we inserted arftat i.g., boxn and we
could immediately drop that flat, then baxcan be fed again only after a minimum
time period ofwP*/V°P time instants.

These constraints are denoted#°tm r) < 0.

Recall that our goal is to increase the throughput of the @etreg machine. Hence, let
the control objective functiod be defined as the throughput of the flat sorting system. For
a given scenario and for the current state of the sysiatepends on?°™™andr.
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3.5 Control methods

In order to determine the speed of the bottom system thatmizas the throughput of the
flat sorting system, we propose two model-based controbagmbies namely optimal control
and model predictive control.

3.5.1 Optimal control

We now propose different variants of optimal control witladually decreasing complexity
such as optimal control with a piecewise constant speedvmititervals of variable length,
optimal control with a piecewise constant speed on timenate of constant length, and
optimal control with a constant speed.

Optimal control with a piecewise constant speed on time int@als of variable length

One may first divide the perioith, to +75°"*™M&) into N + 1 time intervals of variable length
70, T1, .., TN SUCh thaty }_, 7 = 75°M&X Define the time instantg.; = ty + 7 with k > 0.
Then the piecewise constant control [af§!om= [votomypotom _ yottom T ‘g the inter-
vals o, 1, ... , TN ON WhichyBotom, yhotom - /yBattom are constant have to be computed
such that the throughpudtis maximized. As a consequence, the optimal control proldem
defined as follows:

Pi: max J(x(tp),vPotom 7)

Vbottomﬂ.

subject to
t = . (X(to), vPOtOM, 7)
%(Vbottom, T) <0

Optimal control with a piecewise constant speed on time int&als of constant length

One may further simplify the problem By consideringy fork=0,1,...,N—-1 equal to a
fixed sampling times, andry = 750MMX-g N1 - So 7 = [rg7s ... o rSOtMAX_gNA T
Accordingly, we define the optimal control problem with aqaeise constant speed on time
intervals of constant length as follows:

Po:  max J(x(tp),vPotem 7)
ybottom

subject to
t = . (X(to), vPOtOM, 7)
%(Vbottomﬂ_) <0

In both R and B, the throughput increases monotonically with a smatlesr with an
increasingN until the best achievable throughput is reached. Howeliex,domes at the
cost of a higher computation time.
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Optimal control with a constant speed

Now consider the simplest case of &d B. For the entire stream of flats entering the sys-
tem in one sorting round, the constant spe&dhat maximizes the throughput is computed.
This optimal control problem can be defined as follows:

Ps: mngJ(X(to), uct, psortmax)
u

subject to
t = ///(X(to), uct7 7_sortmax>
%(uct’Tsort;maX) <0

The throughput obtained when solving B in general smaller than the one obtained
when using optimal control with piecewise constant speedddbed by lPand B), but the
total computation time also decreases significantly.

3.5.2 Centralized MPC

In order to obtain a trade-off between the optimality of thetghput and the time required
to compute the optimal velocity sequence of the bottom systeodel predictive control
(MPC) is introduced.

The MPC optimization problem can be solved by using a modifeadion of optimal
control with a piecewise constant speed where atlstdye control sequence to be computed
is ypottom, yRotom  vRotom | and wheren; is constant i = 75) for j = 0,1...,Ny~ 1.
Then forry = [« Tke1 --- Tk+Np_l]T, the MPC optimization problem can be written as fol-
lows:

Py max J X(ty ), [vRottomybottom - ybottom T
4 Jpottom  bottom _ bottom kNe.Np(X(t), [V k+1 k+Np—1] Tk)
ko Vil VierNg =1
subject to

t= o (X(t), MO VRRIOM. Ve T )
%([vﬁoﬁomvﬁﬂtom' ) ~VE-?£SE?L]T;Tk) < 0

WM poeT for | > N,

whereJi n np is the throughput of the flat sorting system computed at titeplsover the
prediction horizorkrs, (k+Np)7s), and for a control horizohl.

The prediction horizon is determined using the followinggeduré. Assume that one
wants to determine in advance the optimal speed profile fidingh flats — the variabld
is defined ab = 37_; bj whereb is the number of flats that are actually in the buffer at the
inserting device index for j = 1,2,...,F, 0 < bj < b"®with b"® the maximum number
of flats that can be in the buffer corresponding to the insgrdievice |. Then forNc7s time
units the velocity sequenag®"o™ vPor°™, ..., vpoton is used. Each velocity?f®™, with
j=0,1,...,N:—1, is applied during a sampling period of length All this results inb; <b

3In this variant of MPC the prediction horizon depends on theber of flats to be sorted in advance.
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flats being sorted in the peridd, to + Nc7s). For sorting the rest df—b; flats, the velocity
of the bottom system is kept constant, equalitef. Consequently, the time"°rizon
needed to sort thieflats divided byrs determines the prediction horizon as follow8qizon
is determined via simulation), = [ =] where[x] denotes the smallest integer larger
than or equal to.

One of the advantages of MPC over optimal control with vdeapeed is given by a
smaller computation time sindé,rs < 75°"™M& However, this happens at the cost of a
suboptimal throughput.

Optimization methods

In order to solve the optimization problems presented aliotieis subsection, and hence,
to determine the optimal speed of the bottom system of a fléingomachine, one may
use the following Matlab functiong:ni ncon incorporated in the Optimization Toolbox, or
patt ernsear ch andga, incorporated in the Genetic Algorithm and Direct Searcblfox.

Thef m ncon function finds a local minimum of a smooth function based cedgant
methods, whilepat t er nsear ch andga determine a local minimum of a non-smooth ob-
jective function.

3.6 Case study

In this section we compare the proposed control methodsllmassimulation examples. We
will first detail the scenarios to be used for this compariddaxt we analyze the obtained
results.

3.6.1 Scenarios

Recall that the velocity'°P of the top system is constant. Assurf® to be equal to 1n's,
while the velocityv?°t™ of the bottom system is allowed to vary betweeéh5m/s and
0.5m/s. Itis also assumed that the width of the bin is four timesatith of the box. The
examples in the following sections involi’'™s = 100 bins andNP®*¢S= 400 boxes, while
the lengthNfa's of the stream of flats that enter the sorting system equal8®40

Furthermore, we assume that each destination bin has aauitigntification code. Let
these identification codes be:21...,NP"S, At time instanty we assign the identification
codes to the destination bins so " = Om, p§" = 0.4m, ..., pfi, = I"4-0.4m.
Also, the initial state of all the boxes is “empty” and theéinvhen we had the last dropping
event is initialized with—co for all boxes (this initialization allows the system to instne
first flat into a box as soon as the box arrives in front of anriiveg device).

Finally, we consider several scenarios for the same irstate of the system described
above. According to these scenarios, the streams of codegstoof:

scenario 1: ordered codes (i.e., with the same order as the order of abested to the
bins). Since the width of the bin is four times the width of thex, a per-
fectly ordered stream of flats is a stream of the form e, §,101,2,2,2,2,.. .,
NPins \bins ‘Nbins \bins 1 1 1 1. ... The order of theNP"S bins passing under
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the first inserting device when the bottom system moves taigfe is in this
case 12,3,...,Nbins,

scenario 2: alternating sequences of random, and respectively ordedek, e.gg,.. .,
om Where ifg is a sequence of random codesg ] < m, thenoj.q is a se-
quence of ordered codes and vice versa. The length of eaclersesy; for
j=1,2,...,mis also chosen randomly. This scenario has been chosen due to
the fact that the mail may be partially presorted;

scenario 3: completely random codes.

3.6.2 Results

For the scenarios above, the throughput of the flat sortinghina with a static bottom
system (i.e.y*°"™M= 0m/s) has been listed in Takle B.1.

Table 3.1: The throughpuPPt(flats/s) for the scenarios considered, when the bottom sys-
tem of the sorting machine is stati®®°™ = 0m/s).

Scenario 1 feeder 2 feeders

1 9.90 1319
2 9.85 1314
3 9.85 1307

According to these results, one can notice that adding tbensefeeding device in-
creases with about 33% the throughput of the flat sorting machith a feeder only. Next
we will determine whether using the proposed new designedfi#tt sorting machine and the
proposed optimal control and model predictive control apphes increase the throughput
even more.

Optimal control with a constant speed

In this section we compute the constant speed of the bott@tersythat optimizes the
throughput for all the flats that enter the system in one sgntound. So, we solve the
optimization problem .

Figure 3.2 shows the throughput versus the velocity of thebosystem by discretizing
the velocity with the sampling step of, e.g.0@m/s. One may notice many variations of the
throughput's amplitude. Hence, in order to optimize thetighput, a global or multi-start

Table 3.2: Comparison of throughput and computation timeioled by using the Matlab
functions mi ncon, pat t er nsear ch, andga for the set-up with two feeders.

JPt(flats/s) computation time (s)
Scenario fmincon patternsearch ga fmncon patternsearch ga
1 1568 1568 1568 239-1C° 6.32-10° 1.74.10°
2 1581 1584 1584 463-10° 1.20-10° 4.01-1¢°

3 1579 1588 1577 527-1C¢° 1.22-10° 4.20-10°
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local optimization method is required. Therefore, whewisg) the optimization problems
P1, P2, P3, P4 corresponding to (1) optimal control with a piecewise cansspeed on time
intervals of variable length, (2) optimal control with a péwise constant speed on time
intervals of constant length, (3) optimal control with a stant speed, and (4) MPC with a
piecewise constant speed on time intervals of constantHeegpectively, we have used as
optimization algorithms:

¢ the pattern searchalgorithm incorporated in the Matlab optimization toolb&e-
netic Algorithm and Direct Searchmplemented via the functiopat t er nsear ch
with multiple initial points,

o thesequential quadratic programmingethod, incorporated in the Matl&ptimiza-
tion toolbox implemented via the functidmi ncon with multiple initial points.

¢ thegeneticalgorithm, incorporated in the Matlab optimization toott®enetic Algo-
rithm and Direct Searcimplemented via the functioga with multiple runs.

In Table[3.2 we have listed the throughput and the correspgrmbmputatiofitime ob-
tained when solving £by using the Matlab functionfsni ncon andpatt er nsear ch with
three random initial points and when running the Matlab fiomoga three times. Note that
we have used for this comparison only three initial pointsrider to keep the computation
time low. Then, by comparing the throughput attained fortheaicthe three optimization
routines and the corresponding computation time, one még that thepat t er nsear ch
function gives the best results, i.e., the maximal througlgmd the lowest computation
time. Consequently, this optimization technique will betlier used for solving the opti-
mization problems.

The results listed in Tab[e 3.2 also indicate that for thesamsere the flats are ordered
(scenario 1), the obtained throughput is smaller than thautshput corresponding to sce-
nario 2 and 3, where the flats have also random codes. Thiieituappears since both
feeders feed the transport boxes with flats that have theviolg order of codes 1, 1,1, 1,
2,2,2,2,..,100, 100,100, 100 repeated 30 times (due to our initialinatee page_35).
Furthermore, due to assumptifn and due to our initialization, see pdgé 35, the inserting
devices corresponding to these two feeders are positionerdbomxes aligned (ap) with
the destination bins that have identification codes 1 andeSgpectively. Hence, the order
that we use in scenario 1 does not help the sortation, butritray, it yields more loaded
boxes passing under the inserting devices. Then the ingedte will be lower than when
considering random codes, and consequently, the throaghalso lower.

The improvement of the throughput obtained when using agtimntrol with a constant
speed is defined with respect to the throughput obtained wWteehottom system of the flat
sorting machine is static. Simulations indicate that foetaup with one and two feeders the
improvement is about 1% and 20%, respectively. Hence, sheeénprovement obtained
by using the proposed set-up with only one feeder is not anhat, only the system with
two feeders is further considered. The results obtainechwiseng optimal control with a
constant speed are shown in Tdbld 3.3.
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Optimal control with a piecewise constant speed

Table[3.38 also lists the throughput obtained when solvingdPresponding to optimal con-
trol with a piecewise constant speed on time intervals ostamt lengthrs = 3s. Simula-
tions show that using a smaller sampling interval does ntéu increase the throughput.
Also, if one solves Pfor N > 4 control variables, and;Rcorresponding to optimal con-
trol with a piecewise constant speed on time intervals ofatde length, for & control
variables, the resulted throughput is the same within aaracy of 10%. However, the
computation time when solving;Rs much larger than the one required when solviag P
So, optimal control with a piecewise constant speed on tirtevals of constant length out-
performs the optimal control with a piecewise constant dpmetime intervals of variable
length.

Model predictive control

When applying MPC, the smallet is chosen the biggé¥. has to be set in order to max-
imize the performance. If one does not want to incrddgeblocking® can be also used.
First we consider improving the performance and afterwaxgsalso take into account the
computational effort.

To this aim we consider three cases:

o First, we try to obtain the best throughput. Therefore, wecte maximal prediction
horizon —b’j“ax for j =1,2,...,F equals the length of the streasnthat will be fed
to the system using inserting devige+- while N; is set equal tdN,. To this aim,
we compute the period lengtt°"™aX needed to sort the entire stream of flats using
optimal control with a constant speed. Accordingly, thedprton horizon is set to
[Tsonsmax], while N; = N,. We have considered various lengthsof the sampling
time period. Based on simulation results, it has been nbtibat for7s << 5s the
resulting values of the throughput remain the same within@mracy of 1%, This
choice gives high performance, but is not feasible due tbigfecomputational effort
required.

e Secondly, we consider a prediction horizon determined hyffebof b;“ax: 120flats
for j=1,2,...,F, No = Np, and7s = 5s. Simulations indicate that applying MPC

Table 3.3: Comparison of throughput (expressedflats/s)) obtained by using the pro-
posed control methods for a set-up with two feeders.

Scenario Optimal Optimal MPC MPC
control with piece- controlwith  #,=5s (s=10s
wise constant speed constant spedd = N;)  Nc=1)

1 1578 1568 1873 1571
2 1589 1584 1587 1563
3 1591 1588 1583 1573

4The simulations were performed on a 3.0 GHawth 1 GB RAM.
SInstead of making the input to be constant beyond the cohtngton only, one can force the input to remain
constant during some predefined intervals.
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Figure 3.10: Speed evolution for the bottom part of the flatisg machine ($°™°™is neg-
ative when the bottom system has the opposite direction gément with
respect to the top system). The profile has been determined applying
MPC with N, = N¢, Np determined by a buffer df20flats, andrs = 5s

with these characteristics gives already the throughpthimil% deviation of the
throughput achieved when applying optimal control with @cewise constant speed
(see Tabl€_3]3). Nevertheless, the computation time Ishgih.

e Finally, we consider a prediction horizon determined by feof b"® = 120 flats
forj=1,2,...,F, N; =1, andrs = 10s. This choice produces real-time, but subop-
timal results.

For the second case that we have considered when assesspeytbrmance of MPC,
we have also plotted the velocity profile of the bottom paradfat sorting machine with
two feeders, see Figuke 3]10. This profile has been detedmihen applying MPC with
Np = N¢, N, determined by a buffer of 120flats, amd= 5s, for scenario 2 (with alter-
nating sequences of random and ordered codes) and for ec@@andom codes only)
respectively. According to the profile illustrated in FiglB.10, during the entire sorting
period S°"MaX — 1535 for scenario 2 and®tMX = 1525 s for scenario 3) the velocity
of the bottom part varies between §'s/and 05 m/s when the bottom part has the opposite
direction of movement with respect to the top part and betw@ey/s and 04 m/s when
the bottom system has the same direction of movement as phgatt. These results also
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Table 3.4: Comparison of the average throughput and theageecomputation time of the
proposed control methods for a flat sorting machine with teexdrs.

Control method total CPU time relative performance
(s) (%)
optimal control with piecewise constant
speed on time intervals of variable length ANCP 100
optimal control with piecewise constant
speed on time intervals of constant length 6480 100
optimal control with constant speed 01103 99.60
MPC withN; = N, and7s =5 13-10* 99.68
MPC withN; = 1 andrs = 10s 15-10° 98.93
static bottom system 0 830

confirm that the flat sorting machine with a static bottom Ent optimal, but neither the
one where®°t°m — —0.5m/s is (in Sectiol3.6]4 we will also show that only increasing
the relative speed between the top and the bottom part of adttihg machine does not
maximize the throughput).

3.6.3 Discussion

Table[3.4 summarizes the results obtained when using theopea optimal control ap-
proaches and model predictive control.

We have assumed that the maximal achievable throughputasebl by using the op-
timal control with piecewise constant speed on time intisre& variable length. The per-
formance of the other approaches was computed relativéstogximum. But, for each of
the control methods to be compared, the throughput corneipg to the chosen scenarios
varies. Therefore, in order to summarize the results ofel@8, the average throughput,
zlj\licf”a“os scenario

J= Nscena’rios , isused in calculating the relative performance. The cdatmn time

is also averaged over all the considered scenarios.

The simulation results show that applying MPC gives a goadieroff between the com-
putation time and the maximal achievable throughput. Atlse,optimal control approach
is not feasible, in the sense that in reality the entire streéflats that enter the system
in one sorting round is not known in advance. Only a finite &uiff of codes is known
beforehand, wittb depending on the maximal time allowed to prepare the flatsdot-
ing. Therefore, in practice, MPC is the most suitable foedw®ining the optimal velocity
sequence of the bottom system. Moreover, note that thedottihg time satisfies the rela-
tion 1500s< 7S°tmax < 1550 s for all proposed methods and for all considered simenar
Hence, out of the MPC variants that we consider, only the omereN. = 1 andrs = 10s
offers real-time results. However, also note that one cailyegain several orders of mag-
nitude in the total computation time of MPC by using parat@iputation when solving an
optimization problem, better implementation, object abgeogramming languages instead
of Matlab, or dedicated optimization algorithms. In futwverk also other control meth-
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ods will be considered such as fast rule-based approachealmetworks, see, e.g., [36],
and fuzzy-based approaches, see, e.g., [63]. These appsoadl then use the receding
horizon principle (for more details see Secfion 5.3).

3.6.4 Influence of structural changes

In this subsection we analyze how the number of feeders, plosition, and the velocity of
the top system influence the throughput of a flat sorting nmechi

Number of feeding devices

Consider a flat sorting machine with inserting devices positioned symmetricalfy,<
NPoxes Assume that both the transport boxes and the destinatisnrbove with constant
speed.

First we determine analytically the maximum throughput whensidering two cases:
the flats that enter the sorting part of the flat sorting mazhave (1) perfectly ordered codes
and (2) perfectly random codes. For both cases we computedakiEnum throughput when
the sorting system is in stealtistate. Moreover, note that we want to compute the maximum
throughput for a system where the velocity of the top systefixéd,v°?, while the velocity
of the bottom system is boundegfotommax < oottom  \oottommax \yjth \Pottommax tha
maximum speed that the bottom part can use).

Next we compute (via simulation) the throughput of a flatisgrimachine where the
top part moves with a constant speed and the bottom part magtlesin optimal constant
speed that is determined using optimal control with a canispeed.

Finally, we illustrate the maximum throughput determingdlgtically or via simulation
for the case study of Sectibn 3.5.1.

Perfectly ordered codes We now consider the case where the flats that enter the sorting
part of the flat sorting machine have perfectly ordered codlass means that the flats are
ordered in such a way that once they enter the system, thahaméhey spend in the box is
negligible.

Note that since the flats are dropped as soon as they enteydtems the maximum
throughput is in fact bounded by the maximum feeding ratehefftat sorting machine.
Let ¢feedmax denote the maximum feeding rate. Note th%€9MaX js bounded due to the
operational constrair@3 on pagé 3R — in order to avoid executing the actions insesp dr
insert at the same time instant for the same box, a minimuiaghefw?®*/\v°P time instants
has to pass between two consecutive inserting events fadrampwith me {1,... NPoes},

As a consequence®edmaX js hounded by the speed that the top system can use and by the
width of the box. Assume that the transport boxes move wighctinstant speed®P, then
(feedmax %.

Let Jmaxorderedpa the maximal throughput when dealing with perfectly oederodes to

be fed into the machine. Then

viop
Wwhox”

6n this thesis we say that a system is in its steady state #ythtem is at its equilibrium (the system is working
in a regular and constant mode).

Jmaxordered: Fgfeeqmax —F
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Example As example, consider a flat sorting machine where the top mpaxes with
1m/s, and where the width of a box isldm. Suppose that there aFe= 4 inserting
devices, then the maximal throughput is

1
Jmaxordered__ 4 . o1 flats/s= 40flaty/s.

Perfectly random codes Next we determine a tighter upper bound for the case in which
each of thé= inserting devices feeds the system with perfectly randajueeces of codes
with respect to the destination bins. Assume the systenesdgtstate. This computation
goes as follows. In order to make the explanation more clearjrst assume that each of
theF inserting devices feeds the system at a constantréfiats/s) withi € {1,2,...,F}.
Then, since we consider perfectly random sequences of egtlesespect to the identifica-
tion codes of the destination bins, the flats are droppe@umiy along the bins. Let the part
of the sorting system between two inserting points be calltskgment”. Then% flats per
second are dropped along each segment of the sorting mdohine 1,...,F. As example
we have illustrated in Figute 3.111 the feeding rate and tbpping rate along each segment
of the sorting machine (solid arrows going in and out of thipse illustrate the feeding and
dropping rates that correspond to inserting devicelashed arrows for inserting devige |
and so on).

Consider a poinP fixed to the bottom system. For the simplicity of the explarat
assume that this point is situated on the segment betweand L. However, note that

inserting deviced [
F Ce
\ ¢2 A F
% \ % A’—'... ;4 , G
7 \ L. : inserting
S \\ G\ s device k

inserting device4

- - .
i ) v,
eV g
E & 14 I...'/: 1 F &
“CF ] Q‘ ARG F
inserting F & inserting
device k device k-1

Figure 3.11: Top part of a flat sorting machine. Each of the Eders feeds the system at
rate ¢; with i € {1,...,F}. The flats are dropped uniformly. Thgriilé flats
per second are dropped between each two consecutive img@uaints.
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inserting device4 inserting deviced
| ; inserting devices

transport boxes

//,r ; 4 - - ; destination bins
1, P g / -
Cdrop ; o 1 Cdrop . -
° 3 / L2 -
y A
Cdrop ‘ Cz Cdrop CF Cdrop
Cdrop

Figure 3.12: The point P is posmoned between the insertiagicel ; and inserting device
Ir. ThenyF_, ¢! flats per second are dropped between P &nd

a similar reasoning holds for any positioning®falong the destination bins. Moreover,
assume that the bottom system moves in opposite directim tte top system. Note,

however, that the reasoning that we make below is similatifercase where the bottom
system moves in the same direction as the top system. Bt wi@gvant to have a maximum

relative speed between the top and the bottom system, seédgaghe second case is not
relevant.

The boxes that pass a poitare either loaded or empty. These boxes are either trans-
porting flats inserted into the system by feeder 1 up to fe€éder have been emptied
somewhere between the inserting devicandP, see Figur€3.12. Then, one can make the
following remarks:

e Theinserting dewcellfeeds the system in steady state wittilats per second. Then,
assuming thazflmp flats per second are dropped between the inserting devined!

P, (1— gdmp loaded boxes per second will pass pdtransporting flats inserted by
the insertlng devicel

e The inserting device;lfeeds the system witly, flats per second. Bu% flats per
second have been dropped along the segment bounded bygh@igslevicesd and
l;. Assume thaa;drOp flats per second are dropped betwegardP. Then,( -

drop ( >C2

op = gdmp loaded boxes per second will pass pdirtransporting flats
inserted by the inserting devicg |

e The inserting device- feeds the system witx flats per second. BYF - 1) = G flats

per second have been dropped along the segment bounded imgéhting devices
I and k. Assume that;“,: Pp flats per second are dropped betweegandP. Then

CF (dmp loaded boxes per second will pass pdiritansporting flats inserted by the
msertmg deviced.
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Hence one can write:

<1+(|: 1)94_ +2ﬂ+_ Z\Cdmp box,loaded

wheregE®™°2%dis the number of loaded boxes that pass pBiper second.

Now assumé; = ( fori=1,2,...,F. And since

F(F+1)
2 ?

1+42+...+F =

we can derive the relation:

9l
F

Zlcdrop*_ box,loaded

But
drop boxloaded box
ZLC +o op

wheregbox the number of boxes (loaded or empty) that pass gdjmr second. Then

2
F+1

box
L9 -

(=
Note that, in steady staté€,is not only the feeding rate per inserting device, but also
the actual throughput corresponding to that feeder. Hetheeactual throughpuE() of
a flat sorting machine obtained fér streams of flats, the codes of which are uniformly
distributed, is given by:
2F
F _ bOX'
C=Fr%
Next we determine the maximum feeding rate (and as a consegubhe maximum
throughput) that we can obtain, in steady state, for strezfragiformly distributed codes.
We have two bottlenecks:

1. the feeding rate is bounded due to the operational cons@a,

2. the dropping rate depends on the relative speed betwednglrand the bottom part
of the flat sorting system.

As explained on pade #1, the maximum feeding rate is

Viop
W

Next we maximize the dropping rate. Note that the speed ofbtittom system is
bounded. As a consequence, in order to maximize the dropgiegwe have to seP°tom—
—ybottommax (the phottom part moves with constant spa88o™max in opposite direction

than the top system). Then the dropping rate will depend erehative speed™ma —
VioP + Vbottommax_

Cfeedmax —
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The maximum dropping rate is in fact the maximum number ofeisoa"*™®) that

pass a poinP fixed on the bottom part of the machine per second, and is diyen
Vrel,max
- whox °
Let Jmaxrand denote the maximum throughput that we can obtain in this.ca$en
Jmaxrandjs given by

dropmax box,max
¢ R = 0p

2k
"F+1

Jmaxrand — min (F Cfeedmax

tt
Cdropmax) — min <F V0P 2F  \foP 4o 0m,max>'

WPOUF A1 whox

Example As an example, according to our case study the bottom syséemmove in

both directions (clockwise and counterclockwise with maxin speed of & m/s). The
velocity of the top part of the machinew§? = 1 m/s. The width of a box i$*°* = 0.1 m.

So, ¢feedmax — 10flatg’'s. The maximum number of boxes that pass per second a point
associated to the bottom part of the machine is obtainedéorelative speed® ™ =15

m/s. Then¢dropmax — pboxmax — 15 flatg/s. Accordingly, when dealing witF inserting
devices, we have

2F
maxrand __ . .
J =min <F 10flaty's, Er1 15f|ats/s).

8
AssumeF = 1 thenJ™rand — 10flatg/'s. AssumeF = 4 thenJmaxrand — o 15flaty/'s =
24flaty's.

Simulation results Next we compute via simulation the maximum throughput of & fla
sorting machine where the top part of the flat sorting machioees withv'°? = 1 m/s
and the bottom part of the machine moves with the constargdsgetermined by using
optimal control with a constant speed. We consider optiratrol with a constant speed
to determine the optimal velocity of the bottom system duthéofollowing reasons:

e We can now solve the optimization problem off-line.

e We are mainly interested in obtaining a high throughput, aatlanymore in the
tractability of the control method.

e Optimal control with a constant speed gives better resblis MPC, but still with
relatively low computation time (see Talble3.4).

Figure[3.13 illustrates the throughput achieved by usirtgragl control with a constant
speed to determine the optimal velocity of the bottom parmvtiealing with the scenarios
presented in Sectign 3.6.1. This throughput s plottedusttse number of feeders of the flat
sorting machinel = 1,2,...,50. The maximum throughput obtained for scenario 1 (that
consists of ordered codes) has been denotdd®§#'™!, the maximum throughput obtained
for scenario 2 (that consists of alternating sequencesofora and ordered codes) has been
denoted byd™axsim2 and the maximum throughput obtained for scenario 3 (thasists
of random codes) has been denotedIB$*s™3, Note that the throughput first increases
with the number of feeders, but levels off around twenty &edAlso, adding more feeders
makes the system more complex and more expensive.
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Figure 3.13: Throughput versus number of feeders.

Position of inserting devices

Next we analyze how the position of the inserting devicesiarfites the throughput of a
flat sorting machine. To this aim, we consider a flat sortingmirae withF feeders. Then
we have to determine the optimal positions of Ehe 1 inserting devices corresponding to
theF —1 feeders when the position of the inserting device of theé figrsder is fixed. This
is then the problem of optimizing the sequence of distadicesd; d ... dr—1]", where
dj, j =1,...,F -1, is the distance between tfih and the(j + 1)st inserting device. This
optimization problem can be formulated as follows:

Ps: mdaxJ”e""(x(to),uCt’*,d)
subject to

t= <//(X(to), uct,*,Tsorl;maX)
%(uct,*’Tsort;maX) <0

whereJ"" is the throughput of the flat sorting machine obtained whenguhe optimal
constant velocity of the bottom systauft* for configurationd and for the given scenario,
andd is the sequence of distances between the feeders definee. abov

We consider a flat sorting machine with 3 feeders since thishina offers a good
trade-off between the performance and the costs of themystecordingly, we consider
three layouts for positioning the inserting devices of flassorting machine, described as

follows (see also Figuie 3.114):

case 1:the three existing feeders of the flat sorting machine hag® thserting devices
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Case 1 Case 2 Case 3
3inserting devices in a row equidistant positioning optipwsitioning

I I 13 I1 Iy

Figure 3.14: Layouts.

positioned one next to the other,
case 2:the inserting devices are positioned in an equidistant way,

case 3:the inserting devices are positioned at distarthesndd, computed by solving £
for the optimal constant speed of the bottom system for fetific scenario.

The throughput obtained for each of these configurationBustriated in Tablé_3]5.
One may notice that the throughput obtained in Tablé 3.5Heffirst case (where the flat
sorting machine has 3 feeders in a row) is very close to tlwutitrput obtained by a sorting
machine with only one feeder (see, e.g., Tablé 3.1 or Figdle 3Hence, the simulation
results indicate that, e.g., 3 feeders in a row perform fikiedre is only one feeder, whereas
by positioning them in an equidistant way one obtains theughput within 1 % of the one
obtained when solvings?

To conclude the analysis regarding the influence of the iposif the inserting devices
over the throughput of the flat sorting machine, we can gédimerthese results and note
that positioning the inserting devices along the transpoxes equidistantly is a balanced
arrangement. To support this conclusion we note that tleitiirput obtained for this con-
figuration is typically very close to the one obtained whelwisg the optimization problem
Ps.

Relative velocity between the transport boxes and the destation bins

In this section we analyze how an increase in the velocityheftop system, and conse-
quently the increase of the relative velocity between thegport boxes and the destination
bins, influences the throughput of a flat sorting machine. Besicler a flat sorting machine
with 1, 2, and 3 feeders respectively. The inserting devarespositioned at equidistant
distances along the transport boxes. Assuming that theepsoaf inserting a flat into a
transport box can be performed also when the top system mgtresigher speed, in this

Table 3.5:F°P(flats/s) obtained when positioning the feeders according to the idensd
layouts.

Scenario Casel Case2 Case3
1 9.98 2049 2049
2 9.97 1987 1994
3 9.94 1971 1985
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Figure 3.15: Throughput versu§3°™when \°P = 5m/sfor a flat sorting machine with 1,
2, and 3 feeders respectively. The inserting devices argigoad at equidis-
tant distances along the transport boxes.

section we consides®? = 5m/s. In Figuré3.15, the throughput of the flat sorting machine
is plotted versus the velocity of the bottom system, for @eiy range betweer0.5 and
0.5m/s and a discretization sampling step ddDm/s. We have plotted only the curves for
the second scenario, since the plots for the first and thedasto are similar.

The plots illustrated in Figufe 3.1L5 are nonlinear and naim with many variations
of the throughput's amplitude. Also, the simulation resuttdicate that the amplitude of
the variation of the throughput's amplitude increases withnumber of feeders of the flat
sorting machine.

Hence, one can conclude with the following remark: only éasing the relative speed
between the top and the bottom system does not maximizedhghiput. As a consequence,
implementing advanced control methods to compute the @ptimlocity of the bottom
system is still required.

3.7 Summary

In this chapter we have considered sorting machines in rodilng centers designed to
handle large mail items such as newspapers, catalogs, ayell¢dters. We have given a
brief description of how flat sorting machines currently lwoAfterwards, a new set-up
has been proposed by making minor design changes, i.engéduira feeders and moving
the bottom bin system. An event-driven model of the processlieen determined, and
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advanced control methods have been implemented so as teeg¢hswptimal speed of the
bin movements.

We have also analyzed how the number of feeders, their ppséind the velocity of the
top system influence the throughput of the automated flaingpmiachine. The simulation
results show that just increasing the speed of the top systechhence, the relative speed
between the top and bottom system, does not have as immedigequence an increase
in the throughput. Hence, determining the optimal bottooaity is still required so as
to maximize the efficiency of the flat sorting machine. Thailtssndicate that model pre-
dictive control is the most suitable control method to deiee the velocity of the bottom
system for the proposed flat sorting machine. To supportcthiglusion we make two re-
marks: (1) the simulation results show that applying MPGgiga good trade-off between
the computation time and the maximal achievable through@lithe optimal control ap-
proach is not feasible in the sense that in reality the estirmam of flats that enter the
system in one sorting round is not known in advance (only &efimiffer of codes is known
beforehand, the length of this buffer depends on the maxiima allowed to prepare the
flats for sorting).

In future work also other control methods will be considesadh as fast heuristic ap-
proaches, fuzzy control, case-based control, etc. Induark we will also include more
complex dynamics of the system than those considered inchi@pter (acceleration and
deceleration of the speed at which the destination bins jnove






Chapter 4

Baggage handling

In this chapter we consider state-of-the-art baggage ransiystems in large airports. The
chapter is structured as follows. In Section 4.1 we desthib@automated baggage handling
process and the current problems of a baggage handlingrsyAfeerwards, in Section 4.2
we present the simplifying assumptions made in order toiolatdast simulation, and the
resulting nonlinear event-driven model of the DCV-basegdgage handling system. This
model will be later on used for model-based control. NexGéctior[ 4.8, we describe the
operational constraints together with the control objectFurthermore, in Sectién 4.4, we
propose several control approaches for determining thee rchioice of bags through the
baggage handling system. First we develop and compareatieatt, decentralized, and
distributed predictive methods that could be used to optntiie performance of the sys-
tem. This results in a nonlinear, nonconvex, mixed integéin@zation problem that is very
expensive to solve in terms of computational effort. Therefwe also propose an alterna-
tive approach for reducing the complexity of the computaiby simplifying the nonlinear
optimization problem and writing it as a mixed integer linpaogramming (MILP) opti-
mization problem for which solvers are available that allesvto efficiently compute the
global optimal solution. Finally, in order to reduce the gartational requirements, we also
propose two heuristic methods and a hierarchical contemhéwork. The analysis of the
simulation results and the comparison of the proposed abmiethods and control frame-
works are elaborated in Sectionl4.5. Finally, in Sedfioh we&draw the conclusions of this
chapter and we present possible directions for future rekea

Parts of this chapter have been published.in[76-78, 80-538%9.

4.1 State-of-the-art solutions

In this section we briefly present the state-of-the-art ipdzae handling systems and their
control problems.

4.1.1 Process description
The main tasks of a baggage handling system are the following

51
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Figure 4.1: Loading a DCV.

e to transport baggage from the check-in area to the apptepeiad point and from
there to the plane or between two different cargo termimatsse of transfer luggage,

e to transport baggage from a check-in desk or from a certamdyaring transfers and
to store them in the temporarily storage area (if the perbecked in too early or the
different flights have more than two hours waiting period),

e to transport baggage from the arrival gate to the baggage elea.

The state-of-the-art technology used by baggage handyistgrss at airports to trans-
port the bags in an automated way incorporates:

1. scanners that scan the (electronic) baggage tags on iegehob luggage,

2. baggage screening equipment for security scanning,

3. networks of conveyors equipped with junctions that relueebags through the system,
4

. destination coded vehicles (DCVs). These vehicles agd uslarge airports only,
where the distances between the check-in desks and the &gl fowvards which the
baggage has to be transported are too large (for these tsitherconveyor systems
are too slow, and therefore, a faster carrier is requireééch bag).

As illustrated in Figuré 4]1, a DCV is a metal cart with a plastb on top. These carts
are propelled by linear induction motors mounted on theksadhe DCVs transport the
bags at high speed on a network of tracks. The nodes via wh&eBDCVs enter the track
network are called loading stations, the nodes via whichid®/s exit the network are
called unloading stations, while all the other nodes in tevork are called junctions. The
section of track between two nodes is called link.

In this thesis we consider the general DCV-based baggag#ihgsystem sketched in
Figure[4.2. This baggage handling system operates as fallgiven a demand of bags
(identified by their unique code) together with their arfittmes at the loading stations,
and the network of single-direction tracks, the route oheRCV in the network has to be
computed subject to the operational and safety constrpietsented in Sectidn 4.3, such
that all the bags to be handled arrive at their end pointsimvigiven time windows. The

1An end point of the baggage handling system is the final path@fsystem where the bags are lined up,
waiting to be loaded into containers and from there to theela



4.1 State-of-the-art solutions 53

[ L I
ags
. L U . tobe
on l: 2 network 2 I:| loaded
conveyor of tracks . ¢
. onto
belts
M Uu .~ planes

conveyors end points

Figure 4.2: Baggage handling system using DCVs.

bags unloaded outside their end points’ time window are f@malized as presented in
Sectiol4.B.

We consider a system withloading stations L, Lo, ..., L, U unloading stations
Uy, ..., Uy, andSjunctions 9, $,..., S Let us index the bags loaded onto DCVs
at station L. with « € {1,...,L} ash°2d .. bl°ad  with N/°a the number of bags that

L,Nlboa

will be loaded at station Lduring the entire simulation period. Then téﬁ“"a' denote

s

the time instant when balg®®? actually arrives at loading station, 2! < 3! for
j=1,...,N°@-1) Then we define the-tuple 7 = (t2"al tamval __ tamval) that com-
prises the vectors of bag arrival timg&"2 — [t2a! . .tggg,gg]T with . € {1,2,...,L}.

4.1.2 Control problems

One can describe the control problems of a DCV-based badgag#ing system in a hier-
archical framework. At the lowest level the control probeane coordination and synchro-
nization when loading a bag onto a DCV and when unloadingiisagnd point (in order
to avoid damaging the bags or blocking the system). We asseniew-level controllers
already present in the system. These low-level contradlergypically PID controllers and
logic controllers that can stop the DCV when necessary. Ehecity control of each DCV
can be seen as a medium-level control problem. In this thesesssume that each DCV has
a medium-level speed controller on board. This controliesuges a minimum safety dis-
tance between DCVs and also holds DCVs at switching pointsguired. So, we assume
that the velocity of each DCV is always at its maximwf?* = 20 m/s, unless overruled by
the local on-board collision avoidance controller. Finathe higher-level control problems
are route assignment for each DCV transporting a bag (andcithpthe switch control
of each junction), line balancing (i.e., assignment of lngdtations for each empty DCV
such that all the loading stations have enough empty DCVayatime instant), empty cart
management (route assignment for each empty DCV), and ienenf buffer overflows.

In this chapter we focus on the higher-level control probt#hdetermining the route
choice for each DCV transporting a bag. Currently, the DC\sauted through the system
using routing schemes based on preferred routes. Thesagaahemes respond to the
occurrence of predefined events as follows. Each junctis@t@gic controller and alookup
table storing preferred routes from that junction to allaading stations. If the currently
preferred route is blocked due to e.g. jams or buffer oved]|dlen the next to-be-preferred-
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route of the lookup table is chosen and the switch out of tirattjon is toggled accordingly.
In the research we conduct we do not consider such predefieéshed routes. Instead we
develop advanced control methods to determine the optimaing in case of dynamic
demand.

In the literature, the route assignment problem has beeressied to a large extent for
automated guided vehicles (AGVs). The algorithms develdpe routing AGVs can be
classified in three categories: algorithms for general patblogy [22, 383, 39, 45, 47, 50,
73], algorithms for optimizing the path layout [30, 34| 4&]4and algorithms for specific
path topologies [5, 16]. Since we consider general DCV-thésgygage handling systems,
where the network of tracks is represented as a directedhgvapwill look in more detail
only to the first category where the path topology is genefalese methods can also be
classified into three categories:

1. static methods, where an entire path is considered todwe@d until a vehicle com-
pletes the tour [22, 33],

2. time-window-based methods, where a path segment caredéoyslifferent vehicles
during different time windows [39, 45],

3. dynamic methods, where the utilization of any segmengdt s dynamically deter-
mined using, e.g.,

e incremental route planning — the next node to travel to (fchevehicle) is
selected so that the distance from the vehicle’s curreritipogo its destination
is minimal — [2, 73] 74],

e enumeration of transportation plans — dispatching andyasgj conflict-free
routes— by means of dynamic programming [50].

Traditionally, the AGVs that execute the transportati@ksaare controlled by a central
server via wireless communication. Hence, the computatimmmplexity of the centralized
route choice controller increases with the number of velitb be routed. Therefore, [96]
presents a decentralized architecture for routing AGM®thh a warehouse. However, even
for a small number of AGVs to be used for transportation (12/&}; the communication
requirements are high. But in baggage handling systemsuheer of DCVs used for
transportation is large (typically airports with DCV-bddeaggage handling systems have
more than 700 DCVs). Hence, in practice, designing an ondoaarte choice controller
for each DCV is not yet tractable. Also, we do not deal with artdst-path or shortest-time
problem, since, due to the airport’s logistics, we need thgshat their end points within
given time windows.

The route choice problem for a DCV-based baggage handlstgisyhas been presented
in [25] where an analogy to data transmission via interngr@posed, and in [38] where
a multi-agent hierarchy has been developed. However, thlogyn between routing DCVs
through a track network and transmitting data over intehastlimitations, see [25], while
the latter reference, [38], does not focus on control apgres for computing the optimal
route of DCVs, but on designing a multi-agent hierarchy fagdpage handling systems and
analyzing the communication requirements. Moreover, thdtiragent system o1 [38] is
faced with major challenges due to the extensive commuaitatquired. Therefore, the
goal of our work is to develop and compare efficient contrgirapches (viz., predictive
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control methods and heuristic approaches) for route chemo&ol of each DCV transport-
ing bags to their end points in case of dynamic demand atrigastations. These control
approached are developed in a centralized, a decentradindda distributed manner. Note
that the control approach is said todecentralizedf the local control actions are computed
without any communication or coordination between thellooatrollers, while the control
approach is said to bdistributedif additional communication and coordination between
neighboring controllers is involved, see el.g.l[94]/)[95].

4.2 Event-based model

In this section we present the simplifying assumptions aeatbntinuous-time event-driven
model to be used in order to determine the optimal route ehftic DCVs in a baggage
handling system.

4.2.1 Assumptions

Later on we will use the model for on-line model-based cdnt8o, in order to obtain a
balanced trade-off between a detailed model that requirgs computation time and a fast
simulation we make the following assumptions:

Ai: A sufficient number of DCVs are present in the system so thanwdnbag is at the
loading station there is a DCV ready for transporting it.

Ay: Each junction $with s€ {1,2,...,S} has maximum 2 incoming links and 2 outgoing
links, both indexed by € {0,1} as sketched in Figufe4.3. I 8as 2 incoming links
then it also has a switch going into the junction (called shviin hereafter). If Shas
2 outgoing links then it has also a switch going out of the fiomc(called switch-out
hereafter). Note that a junction can have only a switchirty @ switch-out, or both a
switch-in and a switch-out.

Asz: We assume each loading station to have only one outgoingalitkeach unloading
station to have only one incoming link.

A4: A route switch at a junction can be performed in a negligilsieetspan.

As: The speed of a DCV is piecewise constant.

incoming incoming
link 0 link 1

outgoing outgoing
link 0 link 1

(a) switch-in (b) switch-out

Figure 4.3: Incoming and outgoing links at a junction.
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Ag: The capacity of the end points is large enough that no bufferflow can occur.

A7: The flight numbers of the planes to which the bags have to bepated, are allocated
to the end points when the process starts.

Next we will discuss for each of the assumptions above whdotid they do not hold:

A1: AssumptionA; was made in order to simplify the route choice problem. Irctice,
the DCV-based baggage handling system does not have antedlinmumber of DCVs
in the system. Hence, in practice, one has also to efficiesuilye the line balancing
problem and to optimally assign routes to empty DCVs.

A,: If one junction would have more than two incoming links or edhan two outgo-
ing links, in order to keep using the proposed model and obntethods, one could
virtually expand such a junction to junctions with maximunm2oming links and 2
outgoing links connected via links of length 0, or one cowddgat the control methods
themself.

Ajz: If a loading station would have more than one outgoing liflent one can virtually
expand a loading station into a loading station connectadink of length 0 to a
junction with a switch-out. Similarly, one can virtually gand an unloading station
with more than one outgoing link.

A4 AssumptionA4 was made in order to simplify the explanation of the modelA jf
would not be valid, then one has to take into account the tieeslad to perform the
switch when computing the control actions and the time phuiatil the next event (see
Sectior 4.2.P).

As: AssumptionAs is a fair approximation of the real speed of DCVs on the lindgsents
between any 2 induction motors positioned consecutively.

Ag: The number of bags for each flight is known in advance (duevarack flight booking
and historical data). So, one can assume without loss ofrgigethat a sufficient
number of end points is associated with a flight, or, if momntbne end point is not
available, then at the end point assigned to that specifictfliiere is human force or
there are robots to load the bags into containers and frore tbehe plane.

A7: During one day several flights are typically assigned to ahpsint. However, the time
window when an end point is available for each of those flightanown beforehand
(it is also known from historical data). Hence, this assuampis not restrictive.

So, these approximations are reasonable and give a gooaxapption of the real baggage
handling system.

4.2.2 Model

In order to obtain a fast simulation, we write the model asvamedriven system consisting
of a continuous part describing the movement of the ind@idehicles transporting bags
through the network, and of the following discrete events:
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e loading a new bag into the system,

¢ unloading a bag that arrives at its end point,

e Crossing a junction,

e updating the position of the switch-in at a junction,
e updating the position of a switch-out at a junction,
e updating the velocity of a DCV.

Let NPa9Spe the number of bags that the baggage handling system hasttehand
let NPa9scrt pe the total number of bags that entered the track networlo upet current
time instant® < to+7M_SiMjith t, the initial simulation time and™@-SMthe maximum
simulation period. Also, let DC\denote the DCV that transports ttie bag that entered
the track network up to the current time instang, NP29¢t, Note that if two or more bags
are loaded onto DCVs at the same time instante order the DCVs according to the index
of the loading stations (DGMWvill then denote the DCV transporting the bag loaded at the
loading station with the smallest index, D&Y will denote the DCV transporting the bag
loaded at the loading station with the next smallest inded,s0 on).

The state of the DCV-based baggage handling system consists of tkeolinwhich
each of the DCVs travel, their speed and their position onlihia, and the position of the
switch-in and switch-out at each junction. Furthermore,itiput of the system consists
of the demand of bags together with their arrival times atltilagling stations and of the
control variables. Note that, depending on the control webtlthecontrol variables can
be the switch positions or the time periods after which wegledhe position of the switch
as presented later on. Finally, tbatput consists of the time instants when we load and
unload each of the bags to be handled (these time instartbevidollected into a vector
denoted byt, they will be derived via simulation and will be used laternimen measuring
the performance of the system).

Algorithm 2. Model of the baggage handling system
Input: the demand of bags together with their arrival times at ttaelilog stations, and
the initial state of the system
1t —tg
2: while to < tg+7MaX_simdg
3. foru.=1toLdo

4: 710ad _ time that will pass until the next loading event qf L

5. end for

6: forv=1toU do

7: runioad_ time that will pass until the next unloading event of U
8: end for

9: fors=1toSdo
10: 71055 time that will pass until the next DCV-crossegevent
11: Tg‘”—‘“ «— time that will pass until the next switch-in event at S
12: TSWout . time that will pass until the next switch-out event @t S
13: end for

14:  for i = 1 toNPagscrt dg

15: 7/-UPdat_ time that will pass until the next velocity-update event @\B)
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16:  end for
7MiN . min rlnzm L 7_Lload7 rlnzm N 7_bmload Enzm STscross, mm STgw |n’
L= v= S= s=12,...
17: 12 ) yeres 2,..,
min Tgw out7 min 7_iv updati
s=12,...,S =1,...,Nbagscrt

18: tcrt - tcrt+7_m|n

19: take action (i.e. load, unload, cross junction, switchqidate, switch-out update,
velocity update)

20:  update the state of the system

21: end while

Output: t

Note that if multiple events occur at the same time, then We &l these events into
account when updating the state of the system at step 20.

Next we describe the variables involved in determining thené-based model dflgo-
rithm 2. This goes as follows, wheres {1,2,...,L},v e {1,2,....U},se {1,2,...,S},
andi € {1,2,...,Nbagsert}:

710ad:|f there is no bag coming towards loading station then/°29 = . Otherwise,
a conveyor transports bags towards loading statiorRecall that we assume that
there are sufficient DCVs present in the system so that wheg éskat the loading
station there is a DCV ready for transporting it. Then, fa& turrent state of the
system at time instan", the time period-°2% is equal to maxt2Val —tcr, tsafe)
whereta”"’a' denotes the time instant when bagad actually arrives at loading
station L j —1is the number of bags that have been already loaded frofsd.,

the next bag to be loaded at has local indexj), andrSafe expresses the time

period that has to pass until it is safe for U}i‘g’d to be Ioaded onto a DCV. This
duration is given by:

i Atravel min
0 if dravel > d
safe __ min travel
wl ‘ a: ijloa_d otherwise
max(vem, Vo2

whered™" is the minimum safe distance between DCW&$'is the position of

the DCV transporting balg®®%; on the outgoing link of loading station, Lv\°2) is
the velocity of that DCV, and*am < 1m/s is the speed to be used in case of jam.
The speed!™ is determined based on empirical data.

runioad - The time period that will pass until the next unloading evertturs at unloading
station U, is given by:

link _ Atravelclosest
7_unloadf dv dv

v V%Iosest

whered!™ is the length of the incoming link of unloading statior glravelclosest
is the position of the DCV closest tobn the incoming link of Y, andvP®V is
the current speed of this DCV. If there is no DCV on the incagink of U,,, then
runload _ o py definition.
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Consider the switch into junctions$o be positioned at the current time on the

incoming link| € {0,1} of Ss. Then the time that will pass until the next DCV

crosses $is given by:

dlink — gfRVelelosest it vhere is a DCV

7088 = max(viam,ngOSES) on link| into S
o otherwise

whered!"k is the length of the incoming link of junction S, d2*#¢°*¢tis the

position of the DCV closest tos®n the incoming link of S, andvgl"se“is the
velocity of that DCV.

, TSW.OUt - Once the toggle command of switch-in and switch-out is gitiea position

7/-UPdae \ve calculate the duration’-

of the switch-in and switch-out is toggled aftei'-" andr$"-°!time units respec-
tively. Assume that the toggle commands are givefiat” > t° andts"-°4t> t°",
Thenr$W-" andr$W-°Utare given by:

7_gw_ln -m aX(tSW—m, tgw_m_prev + 7_swnch) _tort
Tssw_out: maX(tSW—OUt, tssw_out_prev+ Tswnch) —gert

whererS"®" is the minimum time period after which the switch at a juneti@an
be toggled, and whet§"-"-""* andt"-""“Pare respectively the time instants
when the switch-in and the switch-out at junctioyhave been toggled last.

V-updatesccording to the cases enumerated below —
d™" is the minimum safe distance between DCVs aff@¢! is the position of
DCV; on the incoming link of &

e Assume DCVYto be traveling towards junctions®n link | € {0, 1}, with no
other DCV traveling in front of DCYon the same link. Then we distinguish
two situations:

1. Vpey, < V™ andd{* - diae! > dmn,
2. Vpcy, > 0, d!k —dg%‘(’ii' < d™in and the switch-in atJs not positioned

on the incoming link that DCV travels.

In both cases the velocity of DGWas to be updated immediatei}‘f,—“pdate:
0. Hence, the velocity of DCMvill be updated as followsipcy; «— v for
the first case andscy, < O for the latter.

e Let DCVP™ denote the DCV traveling on the same incoming lirdf Ss as

DCVi, in front of DCV;, with no other DCV between them. Also, /%,

denote the position of DGV on link . We distinguish two situations:

ax travel _ qtravel min
1. Vpey; < ym anddDCViprev dDCVi >d

travel _ Atravel min
2. Vpey,; > VDCViprev anddDCViprev dDCVi <d
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Then the velocity of DCVhas to be updated immediately for the first case

and after
travelrev _ dtravel _ dmin
Al pdate DCVY DCVi
I - jam y/max—
max (\/j R ym VDCViprev)

for the latter one. The velocity of DGWill be updated as followsipcy; «—
v"®&for the first case andbcy; < Vpe\rrev for the latter.

For any other case, we sgt"P%°= o,

According to the model, for each bag that has to be handledcomgpute the time
instants when each bag enters and exits the track netwotk/°?®denote the time instant
when theth bag that entered the track network is loaded onto a DCMligois DCV) and
let tU"'°ad denote the time instant when the same bag is unloaded atitsa@nt. Then we
denote two models of the baggage handling system which wilided for (1) route control
— we determine a route for each DCV, and consequently, thielswiill be positioned so
that each DCV travels on the assigned route — and (2) switoralo— we determine
switch positions over the simulation period — respectively

t = ///route_ctrl(yvx(to)v I‘)
or
t = ///SWitCh—Ctrl(y,X(to), %)
where:
o t=tload . t'h?;gstg”'oad... t,‘jl[};%f;‘ T
o 7 =(t3mval gamval  amval)y defined in Section 4.11.1.
X(to) is the initial state of the system with the initial simulation time.

e 1 is the route control sequence defined as follows: assuméhiivatis a fixed number
R of possible routes from a loading station to an unloadingjcsteand that theR
routes are numberedd,...,R. Letr(i) € {1,2,...,R} denote the route of DGV
Then the route sequence is represented Byfr (1) r(2) --- r(NPag9] T,

% is the switch control input for the entire network definedZas= (u, us,...,Us)
with ug = [US"-"(1) ... uSW-N(NPags) ySw_oul 1) uSWOUYNbags)| T s {1,2,...,S},
if junction Ss has both a switch-in and a switch-oug,= [U$*-"(1) ... uS"-"(NPags)) ™
if junction S; has only a switch-inys = [u$"-°U(1) ... u$"-°U{NPa99] T if junction S
has only a switch-out.

4.3 Constraints and control objective
In this section we present the safety and operational caingtrof a DCV-based baggage

handling system, together with the control objective to beduwhen comparing the pro-
posed control methods.
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Operational constraints The operational constraints are derived from the mechbarch
design limitations of the system. Such constraints are:

C1: ADCV can transport only one bag at the time.

C,: A bag can be loaded onto a DCV only if there is an empty DCV uriderioading
station. This means that if there is a traffic jam at a loadiagjan, then no loading
event can occur at that loading station.

These constraint€; andC,) have been already included when modeling the system.
Next we write the set of inequalities describing the operatl constraints of a DCV-
based baggage handling system as follows:

() <0 (4.2)
Examples of operational constraints described byl (4.1) are

Cs: A switch at a junction has to wait at least*®" time units after a switch has occurred
(before a new switch can take place), in order to avoid thekcuid repeated movement
back and forth of the switch which may lead to mechanical dgema

C4: The speed of each DCV is bounded between O\dHKd

Control objective Since the baggage handling system performs successfudly ihe
bags are transported to their end point before a given tistam, from a central point of
view, the primary objective is the minimization of the oveedime. A secondary objective
is the minimization of the additional storage time at the paoitht. This objective is required
due to the intense utilization of the end points in a busyairfHence, one way to construct
the objective functiord”" corresponding to the bag with indéxi € {1,2,...,NP39%, s
to penalize the overdue time and the additional storage. tikeeordingly, we define the
following penalty for bag indek see Figurg4]4:

Jipen(tiunload) =i ma)(ovtiunload_ticlose) +)p ma)<(07ticlose_ 7_i0|3en_ tiunload) (4.2)

pen
‘]i

RN

open
ticlose_Ti p ticlose tiunload

Figure 4.4: Objective function™5".
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pen
J

Al

open
ticlose_Ti p ticlose tiunload

Figure 4.5: Objective functiong’d"and J.

wheretiCIose is the time instant when the end point closes and the bagsaded onto the
plane,o; is the static priority of bag indei(the flight priority), andr""*"is the maximum
possible length of the time window for which the end pointresponding to bag indexs
open for that specific flight. The weighting parameter> 0 expresses the penalty for the
additionally stored bags.

However, the above performance function has some flat pahish yield difficulties
for many optimization algorithms. Therefore, in order t¢ geme additional gradient and
also minimize the energy consumption, we also include tine that a bag spends in the
system. This results in see Figlrel4.5:

J (tiunload) _ Jipen(tiunload) +)\2(tiunload_tiload> (4_3)

where); is a small weight factor (& \» < 1).
The final objective function to be used when comparing thegsed control approaches
is given by:
Nbagssim
Jtot(t) _ Zl Jipen(tiunload) (4_4)
i=

whereNPagssim js the number of bags that reached their end point duringithalation
period[ty,to+75'™), wherers'™ is either the time instant when all the bags have been handled
(and therPagssim — Nbaga or 7Sim — max_sim

4.4 Control methods

In this section we develop and compare centralized, desléreid, and distributed predictive
methods that could be used to optimize the performance o$yhtem. The centralized
control method results in a nonlinear, nonconvex, mixeegat optimization problem that
is very expensive to solve in terms of computational effétierefore, we also propose an
alternative approach for reducing the complexity of the patations by approximating the
nonlinear optimization problem by a mixed integer lineamgramming (MILP) problem.
Finally, in order to reduce the computational requiremewts also develop two heuristic
methods and a hierarchical control framework.
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4.4.1 Optimal control

Assume that there is a fixed numiRof possible routes from a loading station to an un-

loading station and that tieroutes are numberedd, ... |R. Letr(i) € {1,2,...,R} denote

the route of DCV. Then the route sequence is representedyjr (1)r(2) --- r(NPa99] T,
The optimal control problem is defined as follows:

min Jiot(t)
subject to

t= (/lroute_ctrl(y,x(to), r)
€(t)<0

But computing the optimal route of each DCV transportingstigough the network
so as to minimize the performance ind&¥ requires extremely high computational effort
as we have shown in Sectibn 4J5.1. In practice, this problecoimes intractable when the
number of possible routes and the number of bags to be tretesiare large.

4.42 Centralized MPC

We define now a variant of MPC, whekés not a time index, but a bag index. In this context
bag stegk corresponds to the time insta#lad when thekth bag has just entered the track
network — ifk = 0 bag stefk corresponds to the time instagt For this variant of MPC, the
horizonN corresponds to the number of bags for which we look aheadewbimputing the
control inputs (k+1), r(k+2), ...,r(k+N) wherer (k+ j) with j € {1,2,...,N} represents
the route of DCV; (from a given loading station to the corresponding unlogditation).
Next, we implement all the computed control samples, andraiagly we shift the horizon
with N steps. So, once we have assigned a route to a DCV, the routat@€CV cannot be
later on changed.

The total objective function of centralized MPC is then defiras:

k+N
Jgﬁntr_MP(?(t(k)) _ Z J (fiunload)

wheref"°adjs the predicted unloading time of DG\depending on the routes of the first
k+N bags that entered the network, aifil) = [ti°ad ... tloadunioad _ ¢unioadT,

Now letr (k) denote the future route sequence for the meklags entering the network
at bag stegk, r(k) = [r(k+1) r(k+2) ... r(k+N)]". Accordingly, the MPC optimization
problem at bag stebis defined as follows:

min 3R )
S
subject to

t(k) — ///route_ctrl( 97 X(tll(oad)7 r (k))
% (t(k)) <0

When using centralized MPC, at each bag dtephe future route sequencék) is
computed over an horizon &f bags so that the objective function is minimized subject to
the dynamics of the system and the operational constraints.
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Next we show how we compute for this control method the dansti$“-" and7$"W-out
withse {1,2,...,S}. Assume that the switch-in at & positioned on link € {0,1}. Then
let zs denote the bag closest tg &d traveling at time instan® on the incoming link 1
of Ss. Also Ietrg”“’a' be the time period that the DCV transporting tragneeds to travel
(at maximum speed) the distance between the current posifibagzs and S. Then the
durationr$"-""is given by:

- i < if at t°* there is a DCV on the
max( 7.SW|tch _ TSSW_In_DYE\: 7_amval)

oW — s incoming link 1-1 of Sg
00 otherwise
wherer$"-"-""®is the time period for which the switch-in at junctiog Bas been in its

current position. Hence, the bag closest to junctigis&llowed to pass first if the switch
is positioned on the appropriate incoming link, or if a tagid possible (due to constraint
Cj).

The durationr$"-°Uis given by:

max(o, Tswitch_T§W_0ut_pre\) if at tcrt there is a DCV at Sand
its route asks for toggle
*© otherwise

Sw_out__
Tg - =

whererd"-°""P®is the time period for which the switch-out at junctiogl®s been in its

current position.

Centralized MPC can compute on-line the route of each DC\hértetwork, but it
requires large computational efforts as will be illustchite Sectiod 4.5. Therefore, we also
propose decentralized and distributed control approaetigsh offer a trade-off between
the optimality of the performance for the controlled systerd the time required to compute
the solution.

4.4.3 Decentralized MPC

In decentralized model predictive route choice control mesider each junction separately,
as a local system. For all junctions we will then define simlitecal MPC problems. No
communication and no coordination is involved between dicallcontrollers.

Local system

Each local system consists of a junction, its incoming ljrdegd its outgoing links. Let us
now consider the most complex case, where junctigwigh s € {1,2,...,S} has both a
switch-in and a switch-out. Moreovers 8 not directly connected to an unloading station.
Then we first indekthe bags that successively cross junctigd®ing the entire simulation

period[to, to+ 7™M asbs 1, bs o, .. ., by poess: whereN?2%is the number of bags that cross
'S
Ss during the simulation period.

2This order depends on the evolution of the position of thearin at junction S
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Local control measures

In decentralized route choice control we compute for eanhtjan S the positions of the
switch-in and switch-out of junctionsSor each bag that crosses the junctian S

Now consider junction § Recall from Sectioh 4.41.2 that we use a variant of MPC with
a bag index. So, in this approach, the local control is ugHatesvery time instant when
some bag has just entered an incoming link of junctignl®tt$" be such a time instant.
Then we determine bag indéosuch thatg}?ss< et < toienr Wheretg?Sis defined as the
time instant when babsy has just crossed the junction. If no bag has crossed theigunct
yet, we sek = 0.

Let N™® be the maximum prediction horizon for a local MPC problem ai‘ﬁ‘]zon the
number of DCVs traveling at time instatfft on link | € {0,1} going into §. Then, the
local optimization is performed over the neéd = min (N3, n9izon+ pharizon) pags that
will cross junction § after bag indexk. By solving this local optimization problem we
compute the control sequence

Us(k) [USW |n(k+1) sw m(k+N sw Ouik+1 SW—Outk+NS)]T

corresponding to the neils bagsbs k1, bs 2, - - -, bsk+ng that will cross the junction. The
control variableu$*-"(k + j) with j € {1,...,Ns} represents the position of the switch into
Ss for thek + jth bag to cross S— u$"-""(k+ j) = | with | the index of the incoming link
on which the switch-in at Sis positioned] € {0,1}. The control variablae$"-°U{k + j)
with j € {1,...,Ns} represents the position of the switch out @ff8r the k+ jth bag to
cross §— usW-°U(k+j) = | with | the index of the outgoing link on which the switch-out
at S is positioned] € {0,1}. So, the control decisiong"-"(k+1), ..., u3"-"(k+Ns) of
the switch into $ determine the ordérin which the bags cross the junction and the time
instants at which the bad®y+1,...,bsk+n €nter 8. The control decisiongg"-°{k + 1),

, USW-%Utk+Ns) determine the next junction towards which the bbags1, . . ., bskeng Will
travel.

Local objective function

When solving the local MPC optimization problem for juncti&s, we will use a local
objective functionIge RS The local objective function is computed via a simulatidn o
the local system for the nekl bags that will cross the junction, and is defined as follows:

min(Ns,NS"0S9)

| *
Js?l??xj Mpc(ts( Z \]k+J f'SJEfJad +>\pen(Ns—Ngr°S%

where

e NS™SSis the number of DCVs that actually cross junctiondsiring the prediction

period,
° funload*

sk+j Is the predicted unloading time instant of tag. ;,

3The order of DCVs is given by setting their speed in accordamith the control variables of the switch-in.
For example itg"-"(k+1) = 0 andu$"-"(k+2) = 1, but on the incoming link 0 there are more DCVs in a queue,
then after allowing the first DCV traveling on incoming link® enter §, the velocity of the other DCVs in the
queue is set to 0 until the DCV coming from the incoming linkntees G and the switch-in is set back on link 0.
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e \P®is a nonnegative weighting parameter,

o to(k) = [t ... 93, fgﬂf’lad* f;ﬂﬁ\,ad*] with ti523 the loading time for bags

bs,k+j-
The second term of the local objective function is includadlifie following reasoning. As-
sume that, at stey there are no DCVs traveling on the incoming link {0, 1} ofjunction
Ss, while N DCVs travel on link 1. If this term would not be considered, thﬂzgfc MPC
would be minimum when the switch-in is positioned on lindkuring the prediction perlod
However, this is obviously not a good solution when the eimgaare open. Also note
thatNgmssandf;ELOjad* are determined by simulating at time inst#fftthe prediction model
presented next for a given control sequeng).

Local prediction model

The local prediction model at bag indé&dis an event-driven model for the local system
over an horizon oNs bags. So, according #lgorithm 2, for the nextNs bags to crossS
given the current state of the local system, we compute thiegbe!™" until the next event
will occur in the local system (loading ifs$s connected to loading stations, unloadingdf S
is connected to unloading stations, switching gtudating the speed of a DCV running
through the local system), we shift the current titfé of the local prediction model at
junction S with 7"", take the appropriate action, and update the state of tiaédgstem.

First we show how we compute the duratio§4-" andS"-°Utfor the local prediction
model at time instantS™. Note that we now computeS*-" and 7$"-°Utfor each of the
nextNs bags to cross3luring the prediction period. Assume that the switch-iruattion
Sqis positioned on linky.j = ug"- n(k+ j). Letzs.j denote the bag to crosg Bext, for
j=12,...,Ns. Also let73* be the time period that the DCV transporting lzag.; needs
to travel (at maX|mum speed) the distance between the dyrosition of bagzsk.j and Q.

Note that if at time instart§" with tg}33%; <t5" < (5235 there is no bag on incoming link

1-u$"I"(k+ ) of S, thenr, aLr_'Qja' o0,

Then the duration$"-""is given by:

. i i i crt i i
_ max (TSWi‘Ch—TSSW—'”—pre" arri\,_a|) if at. time mstentS the swnch—m_ at
o= T skt Ssis not on linkly:j = u3"-"(k+j)
) otherwise

Hence, now the order in which the DCVs cross junctigrisSgiven by the control inputs
ug-"(k+1), ..., ug"-""(k+Ns).
The durationr$"-°Uis given by:

; if bag bsk+j is at § and the switch-out at

max (0, Switch_ _Sw_out_pre : Skt] 19 € ; }
Sw_out_ ( S ) Ss is not positioned on linkiSV-°U{k + j)
) otherwise

The durations$"-" and r$"-°Utfor the model ofAlgorithm 2 at time instant®" are
computed similarly. But in this case, we do not compute anyentibese durations fdxs
bags, but only for one bag, according to the control inpits™(k+ 1) andu$*-°U{k+1).

Next, we present how we predict the unloading time instanéézh of the next bags to
cross $ during the prediction period. To this aim, we consider a fixegldase rate during
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the prediction period for each outgoing lihke {0,1} of Ss. Let (5| be the fixed release
rate at time instant®®. We now present how we calculagg given the state of the local
system at®". Let 7@€ be the length of the time window over which we compute the link
release rate. The variabté®® can be derived using empirical data.tt < to +7"* we
considergs; = (M with (M the maximum number of DCVs per time unit that can cross
a junction using maximum speed. ti* > to + 7€, |et nrate denote the number of DCVs
that left the outgoing link within the time wmdovv[t"”—rrate t°"). Then, ifnd®> 0 the

fixed release rate of linkout of S to be used during the entire prediction perlod is given
rate

by () = f—a'te while if n;altef 0 we set(s) = with 0 < ¢ < 1. We do not sefs) =0 when

nrate 0 because later on this release rate will be used as denamiaatl we want to avoid
the division by zero, while obtaining consistent results.

Recall that we want to predict the arrival time of b&ag.; with j € {1,...,Ns} atits end
point. Let @eXt denote the junction that bigy. ; will cross next wherég j = u$"-°"{(k+j),

and let §§3, be the end point of balgs ;. Then, for each possible routes 2§}, where

23, is the set of routes fromg? to (S, we predict the time when bag; will

arrive at %ekitj via router as follows:

(A= (P LR e (45)
where
° t;{gj%s the time instant (computed by the local prediction modeiyhich bads i+
crosses $

~link

® Toks] is the time we prediétthat bagbsk+j spends on linky.; out of §. For this

pred|ct|on we take:

link
Sheej 1+ Ngk

max , if link lg+j is not jammed
Flink vlm":X Gl )
Tsk+j = dlin
hei 1+N - .
max S”a"mj sk if link I} is jammed
vi Cs-,lk+j
wheredgﬁ‘i‘ﬂ_ is the length of linkly:j out of S, Ny is the number of DCVs on
link | at time instantscf(‘ff, andv@™ is the speed to be used in case of jam, typically

viaMm — 0.02m/s. We consider the outgoing link.; of Ss to be jammed only if
Qs > anaX whereQg),.; is the capacity linky.; at time instanté{fﬁ Qg}if is
its maximum capacity, and is a weighting parameter determined based on emplrlcal

data (typicallya. = 0.8).

o 7OUjs the predicted travel time on route ﬁgﬁﬁtj for an average speed determined
based on empirical data.

4 next i i i t o est ~link FMaX i max H
If Sslk+; is an unloading station an(g‘%j is not %kﬂ then 7, Tokej = with 7M& a large nonnegative
scalar.



68 4 Baggage handling

Then the optimal predicted unloading time instant is defmebllows:

funload*
S,k+j

i unloa
= argmin Jej(tFi
(erytrecages

Local optimization problem

So, the MPC optimization problem at junctiop&hd bag index is defined as follows:

Dec_MP
s,k,Ns (\(t

subject to
t( ) ///Iocalswnch ctrl(g X (tCTOSS) Us( ))
%(t(k) <0

where, 77'0calsWich_ctil( 7 (11059, us(k)) describes the local dynamics of junctiogv@ith

its incoming and outgoing links, witks (51> the state of the local system at time instant
tCI’OSS

m|n J

After computing the optimal control, only2"-"(k+ 1) andu$*-°"{k+ 1) are applied.
Next the state of the system is updated. At bag ktefh, a new optimization will be then
solved over the nextls bags.

The main advantage of decentralized MPC consists in a sntalfeputation time than
the one needed when using centralized control due to theHatiwe now compute for
each junction, independently, the solution of a smaller sintplified optimization prob-
lem. However, using decentralized MPC to compute the DCW¥ste choice also yields a
decrease in the overall performance of the DCV-based baguaugling system.

4.4.4 Distributed MPC

One can increase the performance ofdbeentralizedontrol approach proposed above by
implementing adistributedapproach that uses additional communication between neigh
boring junctions.

Levels of influence

In distributed model predictive route choice control we sider local subsystems, each
consisting of a junctionSwith s {1,2,...,S}, its incoming and its outgoing links. But in
contrast to decentralized MPC, data will be now communathttween neighboring junc-
tions which are characterized by the concept of level of erfke. The levels of influence
are defined as follows.

Let us first assign one or more levelsadwnstreamnfluence to each junction in the
network. We assign downstream influence level 1 to eachipmit the network connected
via a link to a loading station. Next, we consider all juno8aconnected to some junction
with influence level 1 via an outgoing link, and we assign iefiae level 2 to them. In
this way we recursively assign an influence level to eachtjonaevith the constraint that at
mostxj'® downstream influence levels are assigned to a given jurfctieor example see

5The constraint that at mosf'®™ downstream influence levels are assigned to a junctiondithi computa-
tional complexity and keeps all levels of influence finite.
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__ levelrg+1

level kq+2 level kq+2

Figure 4.6: Levels of downstream influence for parallel catagion.

Figurd4.6 where we define maximum 2 levels of downstreaméntte for each junction in
the network. For this example we have considered the jumet®and $ to have assigned
downstream influence level—1. Then § and S have been assigned levg] (since these
junctions are connected tq @nd $ via outgoing links). Next, we assign influence level
kg+t11t0 S, S5, S3, and § (since they are connected tg &d S). Note that now $and
S4 have 2 levels of downstream influenceg andxq+1. Therefore, Sand § are also
assigned influence level + 2 (since they are connected tg &d S with influence level
kg+1).

Similarly we can also assign levels opstreaminfluence to each junction in the net-
work. We assign upstream influence level 1 to each junctighémetwork connected via a
link to an unloading station. Next, we assign upstream imitadevel 2 to all the junctions
connected to some junction on upstream influence level ltyism¢oming links. Recur-
sively, we then assign levels of upstream influence to eauttipn with the constraint that
at most«'® levels of upstream influence are assigned to a given junction

Distributed MPC with a single round of downstream communicaion

Let us now consider distributed MPC with a single round of dstkeam communication.
This means that first the local controller of each junctiothvirfluence leveky = 1 solves
the local optimal control problem of Sectibn 4.4.3.

After computing the optimal switch control sequence, eadiefion with influence level
kg = 1 communicates to its neighboring junctions at leygl 1 = 2 which bags (out of all
the bags over which we make the prediction for the corresipgrjdnction with influence
level kq) will enter the incoming link of the junction at levely+1 and at which time
instant. Next, we iteratively consider the junctions aelewq = 2,3, ..., Kdownstream yara
K downstreamjg the |argest level of downstream influence assigned in éteark. Then, for
each junction with influence levely > 1, we compute a local solution to the local MPC
problem as presented next.

Assume $with s€ {1,...,S} hasinfluence levetq > 1. Let §|* denote the neighbor-

ing junction of § connected via the incoming lirlke {0, 1} of S (so, ' has influence



70 4 Baggage handling

level kg —1). Then, we compute a local solution fog 6 the local MPC problem defined
below over an horizon of

1

horizon pred_cross, pred_cros
Z}(ns’I +Ng1o *+n ) (4.6)

i max
Ns_mln(N 7| i1

bags wherdN™® is the maximum prediction horizon for the local MPC problmgﬁ”zon
is the number of DCVs traveling at time instafft on link | € {0,1} going into §, and
ngfr?q—crossis the number of DCVs traveling toward$; on its incoming linkm that we
predict (while solving the local optimization problem &%) to cross §' and continue
their journey towards S

The MPC optimization problem at junctior 8nd bag indek is defined as follows:

min I (k)
subject to

t(k) _ ///Iocal,switch_ctrl(37Xs(tsc,rkoss% us(k))
7 (t(k) <0

with Ns given by [Z5). Note that in this approack'°calswitch_cti( 7 x (61059 ug(k)) de-
scribes the local dynamics of junctiogBith its incoming and outgoing links and additional
data from neighboring junctions (if any).

After computing the optimal control, onlyg"-"(k+ 1) andu$*-°“{k + 1) are applied.
Next the state of the system is updated. At bag ktef, a new optimization will be then
solved over the nextls bags.

The computation of the local control is performed accordithe following algorithm.

Algorithm 3. Distributed computation of local control with a single iteration of down-
stream communication

1: for kg = 1 to Kdownstreamyg

2:  compute independently local switching sequences for infladevelxq taking into
account the control on influence levg|-1

3: end for

Every time some bag has crossed some junction we updatectilectantrol of junctions
in the network as follows. Assume that some bag has just edossction § which has
assigned levety. Then, we update the control as follows. We consider a sebteted at
Ss and consisting of nodes of subsequent levels of influendeatieaconnected via a link.
So, only the control of the switch-in and switch-out of thagtions in this subtree have to
be updated.

Note that the controllers of the junctions on lexglhave to wait for the completion of
the computation of the switching sequences of the contsotla the previous level before
they can start to compute their future control action. Tfeeee when comparing with de-
centralized MPC, such distributed MPC may improve the perémce of the system, but at
the cost of higher computation time due to the required syordhation in computing the
control actions.
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Distributed MPC with a single round of downstream and upstream communication

In order to further improve the performance of the distslitontrol approach presented
above, we now add an extra round of communication and congdiggibuted MPC with

a round of downstream and upstream communication. Thisadétivolves the following
steps:

e Every time a bag has crossed a junction we compute the locatatcsequences

according to the downstream levels of influence as explaahede.

Next, for the junctions on level 1 of upstream influence weaipdhe release rate of
their incoming links as follows. We take as example junctigmvith x, = 1. For all
other junctions we will apply the same procedure. We vitiuabply at S the optimal
control sequence; that we have computed when optimizing downstream.tlf’l@f
be the time instant at which the last bag crossg¢o8t of all the bags over which
we make the prediction forss If & < to+ 7" we set(s; = (™ for | = 0,1.

Otherwise, ifn® > 0 with n3' the number of DCVs that left the outgoing lihlof
' ’ rate

Ss within the time windowt&'" -7/ 125", we set(s = —_. Finally, if nae =0

we set(s) = ¢ with 0 < ¢ < 1. Now we solve the local MPC problem presented
on paged_7D using the updated release rates and we compute#hedntrol of all
junctions at upstream level, +1. Recursively, we compute the local control until
level KUpstreamyhereK UPstreamis the largest level of upstream influence assigned in
the network.

These steps are summarizediigorithm 4.

Algorithm 4. Distributed computation of local control with a single round of down-
stream and upstream coordination

1

a kR w

- for kg = 1 to Kdownstreanyq
2:

compute independently local switching sequences for infladevelxy taking into
account the local control on downstream influence leyel 1

end for
. for Kk, = 1 toKupstreamgq

compute independently local switching sequences for infladevelx,, taking into
account the local control on upstream influence leyet 1 and the updated release
rate

6: end for

By also performing the upstream round of communication,emieformation about the

future congestion is provided via the updated release fidtes information might change
the initial intended control actions of each junction. Bgily (if one allows sufficient time
to compute the solution of each local optimization problgims new variant of distributed
MPC increases the performance of the system, but also thpwtational effort increases
since we deal with one more round of optimizations.

In future work we will farther improve the performance of thystem by considering

multiple up and down rounds of optimizations and by extegdie range of communication
exchange to more than one level. Moreover, we will also ektée local control area to
more than one node and assess the efficiency of such distliapproaches.
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4.4.5 MPC with mixed-integer linear programming

We now present an alternative approach for reducing the =ity of the computations.
In this approach we simplify and approximate the nonlineate choice optimization prob-
lem by a mixed integer linear programming (MILP) problem. eTédvantage is that for
MILP optimization problems solvers are available, see[21j. that allow us to efficiently
compute the global optimal solution. The solution of the Klhroblem can then be used as
a good initial starting point for the original nonlinear opization problem of centralized
MPC. In future work we will also consider this approach to gane a good initial starting
point for the nonlinear optimization problem of decenttedl and distributed MPC.

Mixed integer linear programming

Mixed integer linear programming (MILP) problems are opzation problems with a lin-
ear objective function, subject to linear equality and uredy constraints. The general
formulation for a mixed-integer linear programming problis the following:

min CTXMILP

xMILP

subject to
ACUMILP _ peq
AXMILP <b
Xlow < XHILP < xup

wherec, xMILP xlow xup hedq andb are vectors, with!°V the lower bound okM'-P and
xYP its upper bound, and whe/€% andA are matrices (all these vectors and matrices have
appropriate size). Note that MILP solvers compute solstidfiP for the problem above,
where some of the elementsxf''" are restricted to integer values.

In order to transform the original nonlinear route choicedelomf a DCV-based baggage
handling system into an MILP model we will use two equivaksicsee, e.gl,[[7], whelfe
is a function defined on a bounded ¥etith upper and lower bounds® andb'¥ for the
function valuesyg is a binary variabley is a real-valued scalar variable, ands a small
tolerancé (typically the machine precision):

Pl [f(X) <0] <= [0 =1]istrueifand only if

f(x) < bUP(1-4)
{ f(X) > e+ (0=¢)d ,

P2 y=4§f(x) is equivalent to

y < bUP§
y> b|0W6
y < f(x)-bo%(1-46)
y > f(x)-b"P(1-4) .

6The tolerance is needed to transform a constraint of the form 0 intoy > 0, since in MILP problems only
nonstrict inequalities are allowed.
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Figure 4.7: Three cases with a gradually increasing comipyexietwork with one unload-
ing station, more unloading stations close together, mateading station far
apart.

Simplified route choice models

Now we present simplified route choice models that can beemrias MILP models. We
consider three cases with a gradually increasing complestiere the DCV-based baggage
handling system has only one unloading station, more uimgastations close together,
and more unloading stations far apart, as illustrated infeigl. 7. We consider these cases
since they grow in complexity and, for each of these casefitiadal assumptions have to
be made in order to obtain a simplified route choice model¢hatbe recast as an MILP
model. Note that these route choice models will not be ebastd models, but a discrete-
time models.

Common assumptions for all three cases

In order to transform the route choice problem into an MILBlgem, we first simplify it
by assuming the following:

Ag: The DCVs run with maximum speed along the track segment &nécessary, they
wait at the end of the link in a vertical queue. In principlee ueue lengths should
be integers as their unit is “number of DCVs”, but we will appimate them using
reals.

Ag: The dynamic demanB; of loading station L, i € {1,...,L}, whereL is the number
of loading stations, is approximated with a piecewise amslemand. The piecewise
constant demand; has level changes occurring only at integer multiples;ofith 75
the sampling time. This is necessary in order to easily camtiie time when a bag
reaches a queue at a junction with the time when the demamtjebalet the time
instantty be defined at = tg+k7s with tg the initial simulation time which is assumed
to be integer multiple ofs, andk € N with N the set of natural numbers. Then, during
the time intervalt, tc+1), the demand at loading stationis D; (k).

A1o: For each link a free-flow travel time is assigned. This fregflravel time represents
the time period that a DCV requires to travel on a link in cafsgoocongestion, using,
hence, maximum speed. The free-flow travel time of a linkvgagk a multiple ofrs.

Note that the assumptiors;-A; that we have considered when writing the event-based
model of the baggage handling systems (see SeLfion] 4.2ld )Yfd¢wall the cases to be
considered next.
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Figure 4.8: Network elements.

Case 1: one unloading station

We now consider the case of a DCV-based baggage handlirensygth only one unload-
ing station.

Model The control time step for each junction in the networkds Then at time stefx
with k € N and for each junctionSwith s {1,2,...,S}, we compute the control actions
uSv-(k) andug"-°Utk), whereu$"-"(k) expresses the position of the switch-in at junction
S during the time periodty,tc+1) (if Ss has two incoming links) and$"-°!(k) that ex-
presses the position of the switch-out at junctiqrd8ring the time periodty, tcc1) (if Ss
has two outgoing links).

In order to illustrate the derivation of the route choice mloét us now consider the
most complex cell a network can contain, as depicted in Ieigu8 where junction Shas
2 neighboring junctionssand S connected to it via its incoming links, and both junctions
S, and S have 2 outgoing links.

Next we present how the evolution of the queue length at tdeoérach incoming link
of Sy is determined. At time steky up"-°“{k) andu$"-°“{k) are computed for junctiong,S
and S, anduj""—i“(k) for junction . Let/s; denote the link between a junctiog &d its
upstream neighbor connected to it via the incoming lials illustrated in Figurie 4.8. Also,
let g5 (k) denote the length of the queue at the end of ligkat time instant,. Recall that
each link in the network has been assigned a given free-flnveltime (assumptioAq).
Then, letry o denote the free-flow travel time of link o and letry 1 denote the free-flow
travel time of link/q 1. Hence, the control signaig"-°"{k) andu$"-°"{k) influenceqq o

andqq 1 after 740 and 79 time step$é respectively.
T

-
The evolutién of theslength of the queue at the end of ligk is given by:

Gy (k+1) = max(O, a1 () + (1 (k- %‘) ~opP(K)) Ts) (4.7)

where

"Recall that, according to assumpting, 7s; is an integer multiple ofs.
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e 0q)(k+1)is the length of the queue at the end of lify at time instanty..

e lq(k) represents the inflotvof link g, during the periodty,tx+1). Note that if a
junction § with s€ {1,2,...,S} is directly connected to a loading statiof With
ie{1,2,...,L} viatheincominglink € {0,1} of Ss, then

Isi (k) = Di(K).
e Of'™(k) is the maximum number of DCVs per time unit that crogsi8ring [ty, ti+1)
after traveling on linkg .

Note that we also have the constraint that the length of tieeigat the end of linKy)
has an upper bound:

dz 0o, (k+1) < qg'f™ (4.8)

€7

whereqy'* expresses the maximum number of DCVs that ligk can accommodate. The
: i

variableq?™ is defined ag|ji* = [dminj where|x| denotes the largest integer less than or

equal tox, ds) is the length of the links; with | € {0,1}, andd™" consists of the minimum
safe distance between DCVs and the length of a DCV.

Furthermore, the maximum number of DCVs per time unit that wathe queue or
arrive at the end of linky, and that crossSduring [ty, tk+1) is defined as follows:

OF&(k) = (1-u§"-"(k))0™ma (4.9)
OF%X(k) = ug"-"(k)omax (4.10)
whereO™ s the maximum outflodof a junction. Note that we have used the operator

max in [4.T) since the length of the queue is always larger thaqual to 0.
The inflowsly (k) andlq 1(k) are given by:

la.0(K) = Up"-*"{k)Op(k) (4.11)
lg.1(K) = (1-u$"-""{k))Oc(K) (4.12)
with Op(k) andO¢(k) respectively the outflow of junction,®nd S during the time interval

[tk thr) -
The outflowOs(k) of a junction g with s€ {1,2,... S} can be defined as follows (we
consider two cases):

e S has one incoming link. Then

Os(k) = min <omaX, (qsﬁ(k) +|s,0(k_%))> (4.13)

e S has two incoming links. Then

0.k = min 07 (181 (B2 21 k- 2)) s

Ts Ts

ugw_in(k)(wﬂsl(k_ﬁ))) (4.14)

Ts Ts

8The inflow of a link equals the number of DCVs that entered linitper time unit.
9The outflow of a junction is defined as the number of DCVs thessithat junction per time unit.
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Next, assume junctions3vith e € {1,2,... S} to be directly connected to the unloading
station Y. Then the outflowOe(K) of junction S during the periodty,tx+1) is derived as
presented above. Furthermore,Ug{k) denote the outflow of unloading station during
[tk,tke1), @and letr; be the free-flow travel time betweer &nd U;. In order to derive the
outflowU; (k) we distinguish two cases:

e S¢ has only one outgoing link. Then

U (K) = Oe(k-22).

Ts

e S has two outgoing links. Without loss of generality we asstuinat the unloading
station is link 0 out of & Then

Us(k) = (1- 08" (k=2 ) O k- 22)

Ts

Ts

whereu$"-°U{k) expresses the position of the switch out gbiring the time interval
[t thr) -

MILP model We now use the MILP propertig®1 and P2 presented in this section in
order to obtain an MILP model for the route choice model givgrequationd(417)E(4.14).
Note that depending on the order in which properBdsandP2 are applied and in which
additional auxiliary variables are introduced, we may epdvith more or less binary and
real-valued variables in the final MILP problem. The numbfdsinary variables — and to
a lesser extent the number of real variables — should be kephall as possible since this
number has a direct impact on the computational complexitiyefinal MILP problem.
We start by transforming(4.14) using PropePty. Let the real-valued variabEU'(k)
be equal to
FOU(K) = (1-u2*"(k)) (_qs,:ik) +|370(k—%°)) +URIN(k) (—qs’;(k) +|371(k—%)) (4.15)
Now, we introduce the binary variabig“!(k) that equals 1 if and only DM < foUY(k).
Then we rewrite[(4.14) as follows:

Os(k) = 03(K) O™+ (1-62"(k)) fg“(K) (4.16)

where the condition?"(k) = 1 if and only if O™~ f2Ul(k) < 0 is equivalentto (cf. Property
P1):

Qmax_ fsout(k) < bUp(l—(SgUt(k))

omax_ fS?Ut(k) > e+ (blow —e)5gm(k)

with bUP = OMaX andbloV = - L gmaxywhereq™® = Ao +ag
Ts )
However, [4.1B) is not yet linear. So, we use Prop@@yand introduce the real-valued
scalar variableg“'(k) such that:

Y2(K) = 52 194(K)
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or equivalently:

Y2U(K) < P32 (k)

¥2(K) > 0

Y2 < 94 (k)

Y2(K) > F9(K) ~bPP(1-52%(K))

Hence, one obtains:
Os(k) = O™52U (k) + £ (k) —ye"'(K)

which is linear. Note tha{(4.15) can be written as a linegression by introducing the
additional variablegy, (k) = ug*"(k)as (k) andyj'y; (k) = ug"-"(K)ls) (k= =') and the

s,

corresponding system of linear inequalities correspamnttirPropertyP2 for f(x) = g (k)
with b"P = g™, and b = 0, and f(x) = Isj (k- =) with b"P = O™ andb® = 0
respectively.

Similarly we can write the MILP equivalent fdr (4113). Fiyalwe transform[(4.]7) into

its MILP equivalent. Let the real-valued variatfig (k) be equal tayg (k) + (Id,| (k= %‘) -

ngﬁx(k)) 7s. Additionally we also introduce the binary varialdlg (k) that equals 1 if and
only if fq;(k) <0 and we rewrite[(4]7) as:

O, (k+1) = (=64, (k) fa1 (K)) (4.17)

together with the system of linear inequalities corresjogndo PropertyP1 with b'P =
qmax+ omaxy. andblow — —Qmaxy

But (4.17) is not yet linear. Therefore, we introduce theataleyq | (k) = dq, (K) fq, (K)
and the system of linear inequalities corresponding to étygP2 for f(x) = fq;(k), with
b'P andb®" as defined above, and we obtain:

0a, (k+1) = g (K) =y, (k)

which is linear. Next we collect all the variables for the t®ehoice model (i.e., inputs,
control variables, and extra variables introduced by themMtiransformations) in a vector
denoted bxMP (k) and all the partial queue lengths, (k) in a vector denoted by(k+1).
Then the expressions derived above allow us to expyéss 1) as an affine function of
XMILP(k):

a(k+1) = AxXMP (k) +

with a properly defined matriA and vectory, wherexM''P (k) satisfies a system of linear
equations and inequalities

AeqXMILP(k) _ beq
AXMILP(k) < b,

which corresponds to the linear equations and constraitrisduced above by the MILP
transformations.
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Up Uy Uy

Figure 4.9: Unloading stations close together.

Case 2: more unloading stations close together

We now determine the route choice model for a network of sagkh more unloading
stations close together as illustrated in Fidure 4.9 wheitbput loss of generality, we con-
sider that a junction can directly serve all unloading stagi(this can be done by lumping
together a sequence of junctions that are located closgéftier and connected to unloading
stations). Let swith e€ {1,2,...,S} denote this junction. Also, léd denote the number
of unloading stations in the system. Then the free-flow tréisee from S to unloading
station U, with v € {1,...,U}, is expressed by, which is an integer multiple ofs.

Assumptions In this case we make an additional assumption:

Ai1: Out of the total demand of bags, a certain fractigrnof bags have to be transported
to unloading station Yforv =1,...,U such thatz‘j:lpv = 1. So, at junction $the
stream of bags is split into substreams according to the fractigns

Model Note that one can virtually expand junctiog ® two junctions $ and S con-
nected via a link of length 0 €t has only one incoming link). Then the flow model for
all junctions in the network excep®d can be derived as in Case 1 above. Next we will
determine the flow model corresponding to the junctif.S

The stream of DCVs waiting at the end of the link going inf"$an be now divided
into substreams (each substream corresponding to an imdgstdtion). Leg®"(k) denote
the queue length (located at the end of the link going ift8)®f the substream correspond-
ing to unloading station L at time instant,. The evolution ofg®(k) is then defined as
follows:

Q2 (k+1) =g (K) + (p, Oe(K) — U, (k+ :_“))Ts
S
with Og(k) the outflow of § andU,, (k) the outflow of unloading station Uduringty, tk«1)-
Note that the “max” operator is not needed here due to theitlefirof U, (k) (U, (k) > 0
always by definition).
We consider two patterns that the low-level switch-out oaligr could follow:

Pattern 1: During the time intervalty,t+1) the low-level switch-out controller ategt
serves only one unloading station. To determine which uhfgastation to
serve, we introduce the integer control variabf¥'(k) that indicates the index
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of the unloading station to be served during the time inteftyay.1). Then the
outflow of unloading station Yduring [tk, tk+1) is given by:

; max quit(k_ TT_Z) Toy : exit
min (O ,——— +p,UOe(k——)) if v=u""k-
Ts Ts

0 otherwise.

Tu

U (k) = ) (419

Pattern 2: During the time intervalty,tx+1) all unloading stations are served (we consider
fast switching). Then each partial queue is emptied acangrth the fractions
p, forv=1,...,U. Note that we now assume a different type of switch for
St (since $¥ has more than two outgoing links). This switch can be more
expensive so as to allow fast switching. However, we onlydregee, so, we can
spend more money on it. The outflow of unloading statiqrduring [t, tk+1) iS
then given by:

@ (k-2)

Ts

Tu

U, (k) = min (omaX, +p,uoe(k—7)). (4.19)

MILP model The MILP equivalents for the additional equations desnglthe outflow
of an unloading station excepi(4]18) can be derived usiegsoming similar to that above.
We now briefly explain how we write the MILP equivalents forXg). One can intro-
duceU binary variableg$*(k), ..., 6&(k) wheres®"(k) = 1 means that unloading station
U, is served during the time intervélk,t+1). Additionally, we introduce the constraint

that:
U

Y 07k =1

v=1
which means that there can only be one unloading statioredeat/the time. Then, for
v=1,...,U, we have:

Tv

exit k- Tu
)min (Oma", M +p,O0e(k— T—“))

Ts Ts

Uy (K) = 65" (k=

Ts

So, one can now write the complete MILP model for the case atevark with more
unloading stations close together.

Case 3: more unloading stations far apart

Finally, we analyze the case where the track network has mmdoading stations far apart.

Assumptions If for the previous case (of a network with more unloadindistes close
together), we made the additional assump#ian, for this case we make different additional
assumptions:

A12: We now define partial demand patterns at loading stationse&th loading station
has a demand pattern corresponding to each end point. Tdrezgdh loading station
Li, withi € {1,2,...,L} and for each unloading station,Uwith v € {1,2,...,U},
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tk-1 tk

Figure 4.10: Demand profile at loading statianfor a network with two unloading stations.

The solid line corresponds to unloading statldnand the dashed line demand
corresponds tadJs.

there is a dynamic, piecewise constant demand paitgr(t) as shown in Figurle 4.10
whereD; ,,(K) is the demand of bags at loading stationalith destination |} in the
time intervallty,tx«1) fork=0,... K -1 with K the demand horizon (we assume that
beyond the demand is 0).

As example we illustrate in Figute 4]10 the dynamic demartig:paat loading station

Li, with i € {1,2,...,L} for a network with two unloading stations. In this figure
the piecewise constant demand represented as a solid liresponds to unloading
station U, and is denoted b; 1(t), while the dashed piecewise constant demand
corresponds to &) and is denoted b; »(t). Then for a network wittJ unloading
stations, the total demand of Huring the time intervalty, ty.1) is given byD;(k) =

Zgzl Di,v(k)-

Ai13: Since we deal with partial demands at each loading statierassume that the DCVs

wait before the junctions in partial vertical queues acoado the unloading station
towards which the DCVs travel.

A14: Recall fromA; that we assume enough DCVs present at loading stationstsstiba

abagis at a loading station, there is a DCV ready to tran#pdrtiditionally, we now
assume that no buffer overflow can occur on the link conndotéte loading station,
and than the demand at a loading station is smaller than #dirlg capacity. As a
consequence, no queues can appear at the loading stations.

Model The control time step for each junction in the networksisSo, at each time stép
for each junction $with 2 incoming links, we compute the position of the swifarduring
the time intervalty, t+1) that has been denoted b§-"(k). The position of the switch-out
is controlled as presented next.

We consider two patterns that the switch-out controller jpietion S with 2 outgoing

links could follow. The first pattern is a realistic one, whigas been already used for the
first two cases presented above, while the second patterbemasconsidered in order to
decrease the computational complexity.

Pattern 1: During the time intervalty, tc.1) the switch-out controller serves only one outgo-

ing link of Ss. To determine which outgoing link to serve, we compuf®é-°U{k)
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Figure 4.11: Network elements when the switch-out is cdietiaccording toPattern 1.

Pattern 2:

which will then be a variable of the optimization problemgeated at the end of
this subsection.

During the time intervalty,tc+1) a low-level switch-out controller serves both
outgoing links. This pattern gives a fair distribution oadirthe outflows while
considering fixed turning rates for each junctionas presented below. Note
that when using this pattern, no extra variables are inttedu Therefore, we
will solve simpler optimization problems, and this will gifaster results. In
future work we will define a similar pattern for the controltbg switch-in and
then compare the performance and the computation timer@atavhen using
Pattern2 for the control of both the switch-in and switch-out.

According to these patterns, we derive the route choice hinydeferring to the network
cellillustrated in Figure4.31.

Pattern 1:

In this case we consider partial queuestet end of each linkhat correspond
to each unloading station. Leg, . (k) denote the length of the partial queue
during the time intervalty, ty+1) at the end of the incoming linkof junction §
that consists of DCVs going towards unloading statignvith v € {1,...,U}.
Then the evolution of length of the partial queue is given by:

Qa0 (K+1) = dq)(K) + (ld,l,v (k= M) - Od,l,'u(k)) Ts
Ts
wherelq) ., (k) is the partial inflow corresponding to \bf link /4 andOg ,, (k)
is the partial outflow corresponding to,Wf link ¢4 during the time interval
[tv,t+1). The partial inflowdq) ., (k) are defined at the beginning of a link, while
the partial outflowyq ,, (k) are defined at the end of a link as pointed in Figure

4.11.

If junction S, has 2 incoming links, the inflowy o ,, (k) is defined as:

lg.0.0(K) = up"-°"k) ((1 —U""(K)) Op, 0.0, (K) + US""(K)Op 1.,, (k)) ,
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Figure 4.12: Junctiors; is directly connected tdJ,,. The unloading station is connected

Pattern 2:

via link O out of S,.

while if S, has only one incoming link the inflow o ,, (k) is defined as:

Id,O,v (k) = UEW—om(k)ob,O,v (k> .

Similarly, one can defink 1 ,(k). Note thatif a junction Swithse {1,2,...,S}
is directly connected to a loading stationile {1,2,...,L} via the incoming link
I € {0,1} of S, then

st »(K) = Dio(K).

The partial outflowsOs ,, (k) at the end of linkls; with | = u$"-"(k) are de-
termined such that we have maximal exhaustion of the availesypacity as
described inAlgorithm 5 for Og; (k) = 0%9(k) andgs, , (K) = g29(k) where
029(k) andg?¥(k) are variables that characteriklgorithm 5 . Note that if junc-
tion Ss has 2 incoming links, the®s 1 ,, (k) = 0 since only the partial queues at
the end of the incoming link indexed by= u$"-""(k) are emptied durinfi, t+1).

Without loss of generality we assume that for any junctigdigctly connected
to U, the unloading station is connected via link 0 out gfs¢e Figure4.12.

Then, the outflow of unloading station,Wluring the periodty, tx+1) is given by:

09 = min ( (1= 7)) Oz, (k- T2). 0"

with 7, the free-flow travel time of the link directly connected tdaading sta-
tion U, with v € {1,...,U}, 7, is considered to be an integer multiplergf

In this case we consider partial queueath junctionSs with se {1,...,S}
corresponding to each unloading statiop. OUhe length of the partial queue at
junction S that consists of DCVs going towards unloading statigriddenoted
by ds... Then we determine the partial outflos, (k) for a junction g such
thatzh’:1 Os., (k) < O™ To this aim we consider again a fair distribution over
all flows as described iAlgorithm 5 for Os,, (k) = 0%%(k) andgs.,, (k) = 629(k),
andés., (k) = 139(k) with &, (k) the number of DCVs going towards unloading
station U, that enter the partial queue at junctiog d&iring the time interval
[te,tk+1). The partial inflowsts,, (k) and the partial outflow®s) ,, (k) are defined
at for each junction Sas pointed in Figure 4.13.

Based on off-line optimization, for each junctiog 8e can determin& fixed
turning rates)s,, with v =1,...,U. These fixed turning rates represent the frac-
tion of the partial queues ,, (K) that will be sentto link 0 out of Sduring|ty, tk+1)-
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Figure 4.13: Network elements when the switch-out is cdietidy a low level controller

according toPattern 2.

Then’Tszlj:l’/]SUoSU(k) DCVs will be sent towards the outgoing link 0 of,S
andrsS>_;(1-1s,)0s. (k) DCVs will be sent towards its outgoing link 1.

Then the evolution of the length of the partial queue is givgn
qd,v(k+ 1) = qd,v(k) + (fd,v(k> _Od,v(k))TS

where{y ,, (k) expresses the number of DCVs going towards unloading statio
U, that enter the partial queue at junctiondiring the time intervalty, tc.1):

. - _ -
€ (k) = (1= U""(K)) (1=16.,) O, (k= 2) +UF™"(K)rpe., O (k= ).
S S
Note that if a junction Swith s {1,2,..., S} is directly connected to a loading
station i € {1,2,...,L} then

&su(K) = Di o (K).

Accordingly,U,, (k) = min (omaX, (1— uSW-ouk - T—“))nz,uoz,v(k— T—“)) .

Ts Ts

Algorithm 5 describes the procedure that we consider in order to datertiné distribu-

tion of the partial outflows such that we have maximal exhiansif the available capacity.
We use this algorithm since it results in a fair distributawer all the outflows.

Algorithm 1°5. Outflow distribution at the end of link /g
1: Q={12,...,U}
2: while Q £ 0do

3:

4.

a

A = argmin (q?,'g(k) + I,i'g(k)rs)

veQ

for allv e A do

max &
O9(k) = min (9, E2K 1 139(k))

101n Algorithm 5, |2 represents the cardinality of the $et
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6 omax Omax_oglg(k)
7:  end for
8 Q< 0Q\A
9: end while

Let us now considePattern1 and derive (as example) the outputAd§orithm 5 for
link ¢4, of the cell illustrated in Figurg_4.8 and fot = 2. According toAlgorithm 5, if

Qa,1.1(K) +1q1.1(K)7s > dq, 2(K) + 14, 2(K)7s then the outflowOy) ,,(k), for v = 1,2 is given
by:

Oq,1,1(k) =min <¥X,qd’|%71(k)+|d,|,1(k)> (4.20)
Og1.2(K) =min <omaX— q‘“f“k) (K, qd'f“k) + ld,|,2<k>> (4.21)

and otherwise (i.e., iflq; 1(K) +14,,1(K)7s < Q.1 2(K) + 14 2(k)7s) the outflowOyq) ., (K) is
given by:

Oq,,1(k) =min <Omax— L"fs(k) —lg;2(k), Ld’z(k) +Id,|,1(k)> (4.22)
Og, 2(k) =min (@,%J’Tii(k)ﬂd’hz(k)). (4.23)

Similarly, one can derive the outflo) ,,(k) with sc {1,2,...,S}, | € {0,1}, andv €
{1,2,...,U}, for networks of tracks withy > 2. Then (ifU > 2), one gets more complex
formulas, but these new formulas can still be written usiifighen-else” statements and
“min” operators.

MILP model We now transform[{4.20)E(4.23) into their MILP equivalenthe rest of
the MILP route choice model for the case with more unloaditagjens far apart, can be
derived using a reasoning similar to that above (see pag&&ifescribing the MILP route
choice model for a network with one unloading station).

To transform[(4.20)£(4.23), we introduce the binary vagaby | 1(k), dq, 2(K), dd1.3(K),
anddg | 4(k) such that:

e 0q11(k) =1ifandonly ifgq 1 (K) + g, 1(K)7s > dq 2(K) + 14, 2(K)7s,

omax

e 0g)2(k)=1ifand only ifgq; 1(K) + g, 1(kK)7s < —5 s
max

° 5d7|73(k) = 1ifand only ifqd7|72(k) +|d7|72(k)7'5 < Ts,

° 5d’|,4(k) =1ifand onIy ifqd,|’2(k) +|d,|,2(k)7's < OmaXTs—qu,l(k) —|d’|,1(k)7's,

together with the system of linear inequalities corresfiogmdo PropertyPl. Then the
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outflowsQyq 1(k) andOg »(k) can be written as follows:

Oq,1.1(K) =0d, 1(K) (5d,|,2(k) (Qd%(k) +|d,|,1(k)) + (1—5d,|,2(k)) Zax) + (1—6d,|,1(k))

(5d,|,4(k) (q‘“fi(k) +lara(k)) + (1-dasa0 ) (O™ q%(k) - Id’|,2(k)))
(4.24)

Od, 2(K) =0q,,1(K) (5d,|,4(k) (Qd%i(k) + |d,|,2(k)) +

(1—6d,|’4(k)) (OmaX_ M - |d,|’1(k)) ) +

Ts

(1—5d,|,1(k)) <5d,|,3(k) (M + |d,|,2(k)) + (1‘5d,|,3(k)) Ozax>. (4.25)

S

To transform[(4.24)E(4.25) into MILP equations one has tthier introduce real-valued
scalar variables and the corresponding systems of lineguilities corresponding to Prop-
erty P2 using a reasoning similar to that above (see pagHs T6—77).

Model predictive route choice control

Next we define the general MILP model that will be used in MP&fework, the MPC
objective function, and the MPC optimization problem fotlbthe nonlinear and the MILP
case.

MPC MILP model For each MPC stek corresponding to time instaty we now derive
the overall MILP model. Let)1n be a vector that consists of all the partial queue lengths
at MPC stepk, over an horizon oN steps. Then the general MPC MILP model can be

written as follows:

MILP
OkriN = AkNXigNT +HYKN

with a properly defined matriAyy and vectoryyn, Wherex{z','\,'-P consists of all the vari-

ables for the MILP route choice model (i.e., inputs, contradiables, and extra variables
introduced by the MILP transformations) and satisfies aesygif linear equations and in-
equalities
eq yMILP _ €9

ANKN = by

ANXINT < D
which corresponds to the linear equations and constraitrsduced above by the MILP
transformations.

MPC objective function Recall that the baggage handling system performs optinifally
each of the bags to be handled arrives at its given end poinin specific time window

n order to simplify the explanation, we now consider thatteanloading station is assigned to one flight
only. However, this case can be easily extended to the dereem, where more flights are assigned to an unloading
station.
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Figure 4.14: Desired outflow profile at unloading statiop.
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Figure 4.15: Desired piecewise constant outflow profile dbading stationU,,.

[tolose— 70PN close) \yheret€0Seis the time instant when the end poing Bloses and the last
bags are loaded onto the plane, adtf"is the time period for which the end point,dtays
open for a specific flight. We have assum@eféandr, " to be integer multiple ofs. We
consider the objective of reaching a desired outflow for eadbading station.

Note that the desired outflow at each unloading station issimegal a dynamic signal.
Letydesiredeont genote the desired flow profile at unloading statiqnds sketched in Figure
where the area under the cudfgse®ont equals the total number of bags out of
the total demand to be sent ta,lUNote that outside the time windoft)"®",t5°5¢) with
toPe" = tclose— 7PN ng pags should enter the incoming link of unloading statiqn &hd
consequently, desiredeontty — g fort outside the given time window. Since we want to use
this profile for our control, we first have to sample it and apimate it with a piecewise
constant one.

The most straightforward way to perform this approximai®to define the piecewise
constant flowu JeSTePWe() — ydesiredeonty, ) for t, <t < t,4; andk € N, as illustrated in
Figure[4.14(H). However, one can perform an even betteroappation by computing the
piecewise constant outflow profile that minimizes the ardevden the desired continuous
outflow profileUdesiredcontt) and the piecewise constant outflow proBIE="®"e(t) This
can be obtained by solving off-line, for each unloadingstatthe optimization problem de-
fined below. For the sake of simplicity of notations let ussider unloading station Jand
omit the subscript for the variables that clearly refer to,UFurthermore, we defingy as
follows, see, e.g., Figufe Z15:

fort € [t2P"t91058), U P(t) = . if 6] <t < Bjuq With 6} = tOP"+ .
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Then one can approximatel®s"®®"e(t) for t e [tOP°" t€1°5¢) with the solution of the
following optimization problem:

Ky=1 .., .
min / " (U desiregeonty )2t (4.26)
0]

X XKy -1 |=

0

whereK,, = ”T—Zen Letxg, X1, ---» X,-1 denote the solution of {4.26).
Then, the optimal piecewise constant flow at unloadingastdll, is given by:

Ugesired(j) _ XT_kODen for k?,peng i< ki:}lose_l

udesied iy =0 otherwise

. . . open X close_
with j € N, kP*"defined ag;"*"= “—2, andkC°s® defined akC°se= w:—0,

Ts

The first objective of the MILP controller is to reach a degdioaitflow for each unload-
ing station during the simulation period. Ldt (i) denote the actual outflow of unloading
station U, during the periodt;,tj+1) with i € N. Then, one could define the following ob-
jective function during the periof, tj+1):

UYL (i),..., Uy (i) = % W,
v=1

Uv(i) _Ugesirecti)‘

wherew,, is a honnegative weighting parameter that expresses tradtpen the unloading
stations (in this way we can penalize differently the unlogdtations depending on, e.g.,
the priority of the assigned flight).

However, to add some additional gradient to this objectivefion and make sure that
all the bags will be handled, we also consider the weightegtleof queues at each junction
in the network, but only for time steps bigger than or equai®se with v € {1,...,U}.
Then we define the additional penalty:

if i < kgose

0

add i ) =

FYau(i),....as(i)) = i%/\qus(i) otherwise
1=

wheregs(i) is the summation of the lengths of the partial queues at tirsiant; consisting
of DCVs that wait before junctionsswhile \s,, is a nonnegative weighting parameter that
expresses the penalon junction S.

Finally, at MPC stefi which corresponds to time instai the MPC performance index
is defined as follows:

k+N-1 k+N
N (N ) = Z{ oUWy (i),...,.Uu () + S F*9au(i),...,as(i)) (4.27)
i=

i=k+1

125ince a baggage handling system has to transport all th&ehé@cor transfer bags to the corresponding end
points before the planes have to be loaded, the weightinanpeter)s ., is set to be proportional to the shortest
distance from junction o unloading station |J.
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Next, we want to write the MILP optimization problem at MP@& stefk. Let us first
consider the simplest case whéreN < kS°%¢ case for which

MILP (MILP k-l U
JNT (RN Ok+1N) zk

sincey N1 J2dd(qy (i),...,qs(i)) = 0.
Then one can write the MPC optimization problem for an MILPd®@iaas follows:

k+N-1 U dff
w,US'
Uy (K ,....uv (k+N-1) Zk Z
subject to
MILP model

MILP constraints
Udif (i) > U, (i)-udesrediy fori=k,...,.k+N-1
udit (i) > -U, (i) +udesreqi) fori = k..., k+N—-1.

Then the MPC optimization problem above is a linear progréammroblem that has as
optimal solution

Ugiff’*(i) _ max(U;j( ) Udeswect ) Udeswect

(i) _Ugesirecti)} )

For the case wherle+ N > kC°S€we will still obtain an MILP optimization problem by
applying a similar procedure because the pen&ﬁ?is linear.

Optimization problems Next, we formulate the optimization problem for both the fnion
linear and the MILP model formulations at time step
The nonlinear MPC optimization problem is defined as:

min Jnonllnear(t (k))

U N
subject to
t(k) = 5" "N T X (), Zn) (4.28)
?(t(k) <0

where

o Joonineait(k)) penalizes the absolute difference between the actual wudital the
desired outflow at each unloading station, and the queudseimétwork, as{4.27)
does,

e 7 isthelL-tuple that comprises the vectors of bag arrival timfes- (t3™a .. tamval)
defined in Section 4.7].1,

e X(t) is the state of the system at time instant

o theN-tuple Zn = (u(k),u(k+1),...,u(k+N-1)) represents the route choice con-
trol, with u(k+j) for j = 0,1,...,N -1 consisting of the positions of the switch-in
and switch-out of all junctions in the network at time ingteg;.
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The outflows of the unloading stations are determined vialkitiron when using the event-
driven model presented in Section 4]2.2.
Similarly, the MILP MPC optimization problem is defined as:

P MILP (, MILP
m|n Jk,N (XK,N 7qk+:|_7N)

subject to

Q1N = ANXENT + VKN (4.29)

eq JMILP _ .€q
AN = by

Ak,NXmLP <bgn

To solve the MILP optimization problem one could use solggich as CPLEX, Xpress-
MP, GLPK, see, e.g.,[3].

In general, computing the route for each DCV in the networlemBolving nonlinear
MPC optimization problems will give a better performancarttwhen solving the MILP
optimization problems (due to the simplifying assumptiaesd to write the MILP model),
but at the cost of higher computational efforts. So, onead¢agke MILP to compute a good
initial point for the nonlinear optimization problem andstwill reduce the computation
time. One could also use directly the MILP solution, but & tiost of suboptimality. The
results obtained when using MPC with nonlinear and MILP falation respectively, for its
optimization problems will be presented in Secfion 4.5.3.

4.4.6 Decentralized heuristic approach

In this subsection and the next one we propose heuristimappes that could be used to
efficiently control the route of each DCV, for the model detared in Section 4]2. Each
switch is now locally controlled based on heuristic rulegpessented next. Note that the
local switch control of the decentralized heuristic applo& determined based only on
local information regarding the flow of DCVs on the incomingdaoutgoing links of a
junction. Consider junctiongwith se {1,2, ..., S}.

4.4.6.1 Control of the switch-in

If Sg has a switch-in, as the junctions illustrated in Figure 4 évery time when a bag
enters one of the incoming links of 8/e update the local control of the switch-in af S
Lett$PMPUeSWIhe sych a time instant. Then we compute (as presented bélewphtrol
variabler$"-"", which represents the time period until the position of thigch-in has to be
changed next.

For a junction §, we define the following variables:

e I's is the set of bags transported by DCVs that travel on the imogiink | € {0,1}

of junction S at time instant$°mPUte-sw.n

o pJ s the total static priority of the bags transported on theoiing link | of

junction S at time instantg°™mPH"e->"-I1 jstatic > i, Whereo; is the static priority

ielg)
of bag index,
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incoming incoming incoming incoming
link 0 link 1 link 0 link 1

Figure 4.16: Junctions with a switch-in. The time when thetteggle will take place is
determined by a local rule-based controller.

. pgj’” is the total dynamic priority of the bags transported on timining link| of

—— Wwith 4 the estimate of the
ielg) i

actual time bag indekrequires to get from its cusrrent position to its final dediiom
in case of no congestion and maximum speed @idthe maximum time left to bag
indexi to spend in the system while still arriving at the plane oretirf bag index
misses the flight, then the bag has to wait for a new plane wélsame destination.
Hence, a new departure time is assigned to bag indend consequenth?®"-"or
bag index is considered. Then the variali@®* is defined as follows:

smax _ ticlose_tgompute_sw_m if tidose— tgompute_sw_|n> 0
t_new_end_tscompute_sw_ln if tidose— ts?ompute_sw_lnS 0

junction § at time instants

compute_sw_| |n dyn
sl — z

In order to determine the next position of the switch-in atcion & we compute a
performance measungg|- N for | = 0,1 at time instants°™P""**-"-"" This performance
measure takes into account the static and dynamic prieritiehe bags transported by
DCVs on the incoming link, and the current position of the switch-in at junctign(@ue to
the operational constraifts according to which the position of a switch at a junction can
only change after minimurms"i" time units):

psw in Wst_pr static +Wdyn_pr dyn_Wsw_in switchlcrt (4 30)
S0 .
pgvi/ in Wst pr stat|c+Wdyn pr dyn weW in swnch(l_lscrt) (4.31)

wherel$™" denotes the current position of the switch-in at junctien(i®. IS" = 0 if the
switch-in is positioned on the incoming link 0, at# = 1 if the switch-in is positioned on
the incoming link 1). The weighting parametev&-P", w"-P" andws"-" can be tuned as
explained in Sectionh 4.4.6.3.

Letz;) € I's) denote the bag traveling on the incoming linéf Sg and which is closest
to S and letr*™2-?-% pe the time period that the DCV transporting liagneeds to travel
(at maximum speed) to reach.S

The position of the switch-in atsSs toggled only ifpJg- n> Pei- M andISt = 1, or if

Pei- UES P N andIS™ = 0. If this is the case, then the current position of the switcls
toggled after

sw_in __ switch_ _sw_in_prev _arrival_at_$g
7" = max(T TP Tijgrt )

time units where="-"-""®is the time for which the switch-in at junction 8as been in its

current position. Otherwise, we set*-" = o,
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/bag index bag index

outgoing
link 0

outgoing outgoing
link 1 link 0

outgoing
link 1

Figure 4.17: Junctions with a switch-out. The time when taet moggle will take place is
determined by a local rule-based controller.

4.4.6.2 Control of the switch-out

If Ss has a switch-out, as the junctions illustrated in FiJurél4eery time when a bag
is positioned just before junctions &nd the switch-in at Sallows its crossing, we update
the local control of the switch-out atSLet bag index be the bag positioned just before
junction S when the switch-in at Sallows bag index to cross §, and lettg? -1
be the time instant when this happens. Then we compute (asriesl below) the control
variabler$"-°Ut which represents the time period until the position of tiéch-out has to
be changed next. This goes as follows.

Assume that bag indebis at junction §. Let S denote the junction that is connected
to S via the outgoing link € {0,1} of S;, and let gest be the end point of bag index
Then, we can predict the unloading tirff'%%9 of bag indexi at ! when traveling on
link I € {0,1} out of S and next along routee Zer whereZ gt is the set of routes from
Snext to %est

We estimate the time that bag indereeds to reach its end point similar to how we
proceeded in Sectidn 4.4.3. Hence, we can dégﬂ%adas follows:

fgln,lrcjad ;:?mpute SW. 0U_$_ Ilnk +4 Aroute

where

e 741 is the time we predict that bag indespends on link with | € {0,1} out of S
For this prediction we take:

max Vmax’ig ) if link | out of § is not jammed
. s
%Q?II( - dink 140 (4.32)
max<w.‘2m , Tﬁ“) if link | out of S is jammed

where

— ditk is the length of link out of S,

— ng is the number of DCVs on linkat time instanty ™ e-5"-0

— (s is the release rate at time |nsta§ﬂmp“te—s""—°“&0mputed over the time win-
dow [t ;?mp“te SW_OUL _ rate tcompute SW_oUt (recall from Sectiof Z.4]3 that when
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gSOMPUIESWOUL ¢ 4 Tate e consider(s; = (M@, while if no DCV left link

S,
| within the time window]tSy™PH1e-S"-OUL rrate (COMPUIE_SW.OYl \ye getc) = ¢

with 0 < & < 1),

— V@M s the speed to be used in case of jam, typicaflf = 0.02m/s. We con-
sider the outgoing link of Ss to be jammed only Qg > aQ’S“fX whereQg) is

the capacity linK at time instantg(°%5 Q[ is its maximum capacity, and is

a weighting parameter determined based on empirical dgtcély o = 0.8).

o 7/°®is the predicted travel time on route= {7 for an average speed determined
based on empirical data.

Next we define the cost criteriai}?=""for | = 0,1 that takes into accout(f.| %),
where ' '
6% = argmin  J(N%,

unload  ~ gpnext
e rrre g

and the positiorDZ™ of the outgoing switch at time instatff™"e->"-4"

C::/éljout — wPeny; (fggfioad* )+ Wsw_oucrswitchogrt (4.33)
OO = wPeg, (17920 + wew-out-switeh 1 — ot (4.34)

The last term of2-°""for | = 0,1 is necessary due to the operational consti@itThe
weighting paraméfempe” andws"-°Utcan be tuned as explained in Secfion 4.4.6.3.

The position of the switch-out at junctions & toggled only ifcgf;*" < ¢g7°" and
0" = 1, or if c27% < 4 and O = 0. If this is the case, then the switch-out is
toggled after

Sw_out__ switch _ __sw_out_pre
7o -""'=max0, roW-out_prey

wherers$"-2"“P®is the time for which the switch-out at junctior Bas been in its current

position. Otherwise, we sef"-°U'= o,
The results obtained for this control approach will be iitated in Sectioh 4.512.

4.4.6.3 Tuning the weighting parameters for the heuristic pproach

The switch control sequence of each junction depends navwalthe weighting parameters
WSLPT wayn_pr ypen ysw_in \\sw_outintroduced above. Consequently, the total performance
indexJ®©t given by [4.4) depends on the weighting parameters.

In Figure[4.18 we have plotted — for the case sfifgyesented in [78] and for a typical
loading profilé* — the total performance indeX° as follows. The curve corresponding
to e.g.J¥",is obtained whem®'-P"varies between 18 and 1 for a discretization step of
0.01 and between.1 and 4 for a discretization step of1) while all the other weighting

parameters are kept constant, equal & Gimilarly, we have plottedy . Jo in Jpan
andJi!

'SW_out

13In this case study we consider a network of tracks with ondifmpstation, one unloading station, and four
junctions.

14we consider 200 bags to be handled, their arrival at the hggstiation being dynamically assigned according
to a uniform distribution.
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Figure 4.18: Influence of weighting parameters ov&f.JThe curve corresponding to e.g.
Ji'; is obtained when #P" varies betweerd0™> and 1 for a discretization
step 0f0.01 and betweerl.1 and 4 for a discretization step di.1, while all

the other weighting parameters are kept constant.

As illustrated in Figuré_4.18 there are many variations ie &mplitude of the total
performance index. Therefore, the weighting parameters tmbe first calibrated.

In order to calibrate the weighting parameters, we use thatdvased model of a DCV-
based baggage handling system describedlggrithm 2 of Sectiori4.Z.P that can be recast
ast = .SV 7 x(to), u"euristic) whereuh®uisic s the heuristic control sequence for
the entire network consisting of all the time intervals aft@ich the position of a switch-in
and the position of a switch-out at each junction is toggled.

The tuning of the control weighting parameters will be thene by solving off-line the
following optimization problem:

Nscenario
; tot
min Zl ‘]j?w (t)
J:
subjectto o
t = ///swnch_ctrl(g,x(to)’ uheunsnc) depending o
¢t) <0
whereNscen0js the number of scenarios over which the tuning is perfor,rﬂﬁf; is the
total objective function corresponding to scenaiavith j € {1,2,...,NSena1a gndw =
[\Nst_prwdyn_prvvsw_in wren VVs,w_ouﬂ T
The above optimization problem is nonlinear, nonconvextaasicontinuous variables.
So, in order to solve this problem, one can use multi-staetlloptimization algorithms such
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as sequential quadratic programmingr multi-start global optimization algorithms such
aspattern searchsimulated annealinglgorithms, orgeneticalgorithms, see e.g. Section
2.1.2.

4.4.7 Distributed heuristic approach

In this subsection we develop an approach where the switetralas performed based on
both local information and additional data regarding the/ftd DCV on the incoming and
outgoing links of the neighboring junctions. This is an @sien of the previous decentral-
ized heuristic approach.

4.4.7.1 Control of the switch-in

As in Sectior 4.4.6]1, we compute based on heuristic rulestmtrol of a switch-in for
each junction in the network that has two incoming links (Begure[4.19). Let Swith
s€ {1,2,...,S} be such a junction. The control of the switch-in is updateergtime
(tsOMPUeSY_ some bag enters the incoming links af S

When applying the distributed heuristic approach we compgain the objective func-
tions pgg- n of @.30) andpg}-" of (4.37) defined in the previous subsection. However, we
now also take into account the bags that will come towagdso® its neighboring junctions
in the nextrP®dtime units. The period?®dis determined based on empirical data.

Let |’ be the junction connected tq Sia the incoming linkl € {0,1} of Ss. We

predict which bags will crossg§" and continue traveling towardsg 8s follows. At time

instanttS°™PU-SY-_"ye compute the control sequence for the switch-in and swvdtdhat
Sl and €7 using the decentralized heuristic rules for switch-in preed above, and the
heuristic rules for switch-out presented in the paragr@phtrol of the switch-oubf this
subsection respectively. As prediction model we use theilsition model ofAlgorithm

2 for the time periodtsemPute—sw-incompute_sw_in, _pred) - A5 result of this simulation we
determine which bags will cros§r5 with | € {0,1}, and continue traveling towards &nd
at which time they will enter the incoming linkof Ss.

Let s, be the set of bags that will cros§ S when traveling towardss3n the nextrPred
time units. Then, the time when junctiogt®ggles its position is computed as@ontrol of
the switch-inof Sectiorf4.46. The difference is that here we use thevatig performance
measures:

pgw in_ st pr( statlc + @Statl() Fydynd pr( dyn+godyn) wSWin_switch| Scrt (4.35)

|ncom|ng |ncom|ng |ncom|ng m(l:orkning
n

voX

Figure 4.19: Junctions with a switch-in. The time when thetteggle will take place is
determined by a local rule-based controller.
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sw in_\\ st pr( tauc + @Stat'() Fydynd pr( pdyn+gadyn) Wsw_inTswitch(l_l Scrt) (4.36)

where

o ZP"is total static priority of the bags ifis), pJP"° = oi,

ie sl

di
max"
|

. 992{" is the total dynamic priority of the bags 2, (pdyn = ;
i€

4.4.7.2 Control of the switch-out

For each junction which has a switch-out, as the junctidostilated in Figuré 4.20, we
update the control of the switch-out as presented next. L efitB s€ {1,2,...,S} be such
ajunction. Then, every time when a bag is positioned jusitegfinction $and the switch-
in at S allows its crossing, we compute (as presented below) theaorariablerS"W-°4t
which represents the time period until the position of théadwout has to be changed next.
Assume that bag indexs just before junction $§ Then we update the control of the switch-
out at time instantS?™P"**-**-°"" The control of the switch-out at junction, & computed
using a reasoning S|m|Iar to that in Section 4.4.6.2. Howerehis case, when computing
the predicted objective function for the outgoing lihk= 0,1 and bag index, we do not
look only at the congestion on the outgoing links of junct®&nbut also at the congestion
farther (downstream) in the network.

So, we will predict the time that bag indéxeeds to travel on the néxt/"®X!MaX |inks
when trying to reach its destination wher@*Ma denotes the maximum number of links
we look ahead.

Let us consider next the case whefé* = 2. As sketched in Figufe 2178 for
m= 0,1 denotes the neighboring junction (geg connected via linkm out of Sge’“ Then
the time period that bag indéxheeds to travel linkn out of sgext considering the release
rateds) m of link mout of Sge” is defined as:

dllnk 1+NDCV
max( shim = slmi if link mout of L!is not jammed

ax’
slink v Gstm
S,I,m,l
dllnk 1+NDCV
max| —Stm = shmi if link mout of L$*'is jammed
VM Csim

Vv,,»bag index [ bag index

outgoing

outgoing outgoing ooin
in

outgoin
0" link 1 link 0

link 0

Figure 4.20: Junctions with a switch-out. The time when taet moggle will take place is
determined by a local rule-based controller.

15We look only at the next"®™aX |inks in order to get some extra information on the networkgestion
state, while keeping the communication requirements low.
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ext
S21‘1

Figure 4.21: Subtree of neighboring junctions for junctign

where

o difk is the length of the linkn out of ¥,

o NJSv; represents the number of DCV that we estimate to have omiinkt of

at the time instant when bag indewill cross f

Cross
NsI mi — =Ny m|+ns| ,mii nsI m,i

with

— s mi the number of DCVs on linkn out of L at time mstantcOmpUte sw_out

— Ng| mi the estimated number of DCVs on linkout of S that choose linkm
out of S’Qe’“ In order to estimat@s| m;, we assume that for awnctm@% a

fractionss) of the DCVs crossmg§’“take linkm= 0 out of @e"‘ The fraction
ns) IS determined based on historical data.

— A% the estimated number of DCVs that crog§ B after traveling on linkm
out of P We definen%:> as follows:

AR N
ﬁ;ﬁ?ﬁi =min (nsl m,i +Ns1 mi, (s, stl?If)
where?{ is the time we predict that bag indespends on link out of  (see
(@.332).

Let ﬁgf”r‘f], with | € {0,1} andm € {0, 1} denote the set of routes from junctio@fﬁ
to S the end point of bag indeix In this case, for each routes Z{f%,; we predict the
time {939 when bag index will reach §$°!if the bag takes link out of , link m out of

st“f’“, and routa. This time is given by:

unload compute sw_ouf -link , ~link Aroute
fslmrl_ s,i 7 Tsii tTslmi t 7

where

o 7urk i is the time we predict that bag indewill spend on linkm out of L,



4.4 Control methods 97

o 7°is the average travel time on route Zgy,;, determined based on historical
data.

Finally, in computing the cost cntenou:z"" OUtfor | = 0,1 defined in Section 4.4.6 we

used; (5'1°°") wheref([\°*" is the predicted unloading time that optimizes the objectiv

function of bag index when choosing linkn € {0,1} out of £, and route € 2Py

funload*

; unload
sl = argmin (fslmrl)

(M Iregr me{0.1}}
The analysis of the results obtained for this control apghnoaill be illustrated in Sec-
tion[4.5.2.

4.4.8 Hierarchical control

In this subsection we propose a hierarchical control fraotkvior DCV-based baggage
handling systems. In this control framework switch conénd provide position instructions
for each switch in the network. A collection of switch corieos is then supervised by a so-
called network controller that mainly takes care of the eazhoice instructions for DCVs.
We will first focus on the route choice control problem for tietwork controller. Next we
will also present the independent, but supervised, swibctrol.

Control Framework

In order to efficiently compute the route choice of each DCV prepose a hierarchical
control framework that consists of a multi-level contralsture as shown in Figufe 4122.
The layers of the framework can be characterized as follows:

e Thenetwork controllemprovides the route choice for DCVs by determining reference
flow trajectories over time for each link in the network. Tadlew trajectories are
computed so that the performance of the DCV-based baggag#img system is
optimized. Then the optimal reference flow trajectoriescar@municated to switch
controllers.

| Network controller |

Switch controller | e Switch controller |

X /\

DCV controller DCV controller| | DCV controlle see

DCV controHe|

Figure 4.22: Hierarchical control for DCV-based baggageniing systems.
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e The switch controllerpresent in each junction receives the information sent by th
network controller and determines the sequence of optimsitipns for its ingoing
and outgoing switches at each time step so that the trackiog leetween the refer-
ence flow trajectory and the actual flow trajectory is minimal

e TheDCV controllerpresent in each vehicle detects the speed and position eéhie
cleinfront of it, if any, and the position of the switch inteetjunction the DCV travels
towards to. This information is then used to determine tleedpo be used next such
that no collision will occur and such that the DCV stops imtfrof a junction when
its ingoing switch is not positioned on the link that the DC¥viels on.

The lower levels in this hierarchy deal with faster time ssdltypically in the millisec-
onds range for the DCV controllers up to the seconds rang¢hfoiswitch controllers),
whereas for the higher-level layer (network controlleg thequency of updating is up to
the minutes range.

In the remainder of this subsection we will focus on the higlbeel controllers of the
proposed hierarchy and in particular on how the optimalesuan be determined for the
DCVs transporting bags through the network.

Approach

In general, the predictive switch control problem in DC\ébd baggage handling systems
results in a huge nonlinear integer optimization problettwigh computational complex-
ity and requirements, making the problem in fact intractablpractice as will be illustrated
in Section4.b. So, since considering each individual swig¢oo computationally intensive
we will consider streams of DCVs instead (characterizedely-valued demands and flows
expressed in vehicles per second). The routing problentigh be recast as the problem
of determining the flows on each link. Once these flows areraéted, they can be im-
plemented by switch controllers at the junctions. So, thevokk controller provides flow
targets to the switch controllers, which then have to cotitre position of the switch into
and out of each junction in such a way that these targets arasweell as possible.

Set-up

We consider the following set-up. We have a transportatiemvark with a set of origin
nodes& consisting of the loading stations, a set of destinationesdd consisting of the
unloading stations, and a set of internal nodésonsisting of all the junctions in the net-
work, see Figure4.23. We define the set of all node¥'as ¢ U.# U%. The nodes are
connected by unidirectional links. Le&¥ denote the set of all links.

Let the time instant be defined a = k"¢ with 7"¢ the sampling time for the network
controller. Then, for each pafo,d) € ¢ x 2, there is a dynamic, piecewise constant
demand patter®, 4(-) as shown in Figure 4.24 witB, 4 (k) the demand of bags at origin
o with destinationd in the time intervalty,tx+1) for k=0,...,K -1 with K the demand
horizon (we assume that beyodthe demand is 0).

Next, let. %y be the set of links that belong to some route going to destimat %y C
. We denote the set of incoming links for node ¥ by .Z", and the set of outgoing
links of v by .Z°". Note that for origin® € ¢ we haveZ!" = 0 and for destinationd € 2
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Figure 4.23: Set-up for the DCV-based baggage handlingesystThe transportation net-
work has a set of origin node® = {L,L»,...,L}, a set of destination nodes
2 ={U1,U,,...,Uy}, and a set of internal nodeg = {S,,S,,...,Ss}.

we have "' = 0. Also, recall from Section 4.2.1 that we have assumed eegh node
to have only one outgoing link and each destination node e baly one incoming link
(assumptiorAz). Then|.Z9" = 1 and|.Z}"| = 1.

Next, for each destinatiothe 2 and for each link € %, in the network we will define
a real-valued flowu, g(k). The flow u,4(k) denotes the number of DCVs per time unit
traveling towards destinatiahthat enter linkf during the time intervalty, ty+1).

The aim is now to compute using MPC, for each time seflows u, 4(k) for every
destinatiord € 2 and for every link/ € %4 in such a way that the capacity of the links is
not exceeded and such that the performance criterion ismwigad over a given prediction
period|ty, tcen). Later on we will write a model of the baggage handling systeine used
by the network controller, and show that this model can beitmm as an MILP model.
Therefore, in order to obtain an MILP optimization problemedas to define a linear or
piecewise affine performance criterion. Possible goalthlemetwork controller that allow
linear or piecewise affine performance criteria are reaghidesired outflow at destination
d or minimizing the lengths of the queue in the network.

Doﬁd

Dog(l
o Dod(K-2)

Doa(0)

0 ty t2 s tk-2 tk-1 tk

Figure 4.24: Piecewise constant time-varying demand @rdfy.
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Model

We now determine the model for the DCV flows through the nektwaret 7, denote the
free-flow travel time on link. Recall that the free-flow travel time of linkrepresents the
time period that a DCV requires to travel on lidkvhen using maximum speed. In this
subsection we assume the travel timéo be an integer multiple of"°, say

Te = ke"®  With K, an integer. (4.37)

In case the capacity of a loading station is less than the ddntueues might appear
at the origin of the network. Led,q(k) denote the length at time instattof the partial
queue of DCVs at origim going to destinatiod. In principle, the queue lengths should be
integers as their unit is “number of vehicles”, but we wilpbapximate them using reals.

For every origin node € ¢ and for every destinatioth € 2 we now have:

Go,d (k)

rhc

Upa(K) < Do (k) + for £ € £oU'N %y (4.38)

with Dg (k) = 0 for k > K. Moreover,

o+ 1) = max( 0, Goa(K) + (Dol - wall)) ™) @39

Zefgzmﬂfd

But queues can form also inside the network. We assume th&@Vs run with maxi-
mum speed along the track segments and, if necessary, tlitdyef@e crossing the junction
in vertical queues. Letyq(k) denote the length at time instagtof the vertical queue at
junctionv € .#, for DCVs going to destinatiod € 2. In this subsection we do not con-
sider outflow restrictions on queues to destinatidor a junctionv connected via a link to
destinatiord, and hence,4(k) = 0 for all k.

Taking into account that a flow on linkhas a delay of, time steps before it reaches
the end of the link, for every internal nogec .# and for everyd € 2 we have:

Fosi(l) < R (k) + Buak) (4.40)

TI’IC

whereF\jy'(‘j(k) is the flow into the queue at junctian being defined as:

Fak =Y  Ulk—r) (4.41)
te Ly

and Wherd:\fgt(k) is the flow out of the queue at junctiondefined as:

Fog (k) = Ura(k) - (4.42)

Zefvozu‘ﬁfd

The evolution of the length of the queue for every internadewoc .# and for every
d € Zis given by:

Gua(k+1) = max(0,ava(k) + (R (k) - R2g'(k)) 7™) (4.43)
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Moreover, for each origim € ¢ and for each junctiow € .# we have the following
constraints:

dz Qod(k+1) < gg® (4.44)

€9

dz Ova(k+1) < qi® (4.45)
<

whereq'® and g'® express (respectively) the maximum number of DCVs the cgmve
belt transporting bags towards loading stations can acamate and the maximum number
of DCVs the track segments of the incoming links of that jimrttan accommodate.

We also have the following condition for every lirik

dz Ugg(k) <UT (4.46)
€7

whereU M s the maximum flow of DCVs that can enter a link.

Then, at time steg, the model of the DCV flows through the network of tracks diescr
ing (£.38)-4.4b) can be written as a system of equalitiesaamystem of inequalities as
follows:

Qe = 2%k, Uk)
AM"(Gs1,UK) <O

where

e gy is the vector consisting of all the queue lengtigg (k), for all o € ¢ and for all
d € 2, and of all the queue lengtlyg 4(k), for all v e .# and for alld € 2

e Uy is the vector consisting of all the flows 4(k), for alld € 2 and for all¢ € .

Performance index

Next we define the performance index to be used for computi@@ptimal routing at step
k for a prediction period oN time steps.

The objective is to have each bag arriving at its end pointiwit given time interval
[tglose— 72PEN tlose) wheret$oSeis the time instant when the end poihtloses and;""is
the time period for which the end poidtstays open for a specific flight. We assutﬁ%se
andr3*"to be integer multiples ofs.

Hence, one MPC obijective that allows a piecewise affine pmdoce criterion is to
achieve a desired flow at destinatidriuring the prediction period. Leges"™ddenote the
desired piecewise constant flow profile at destinatiaas sketched in Figuie 45, where
the area undend®s®dequals the total number of bags out of the total demand the toa
be sent to destinatiod. Note thatuges™{k) = 0 for all k < ki**" and allk > k&'°se with

close__open close
kgpen: tFose-roP andkglose: I
+nc P

Letke, = % Hence, one can define the following penalty for flow profilesespond-
ing to destinatiorl € 2:

Jgen(k) _ ugesirectk) _ uéd,d(k"' de)
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Figure 4.25: Desired arrival profile at destination d.

wherely is the incoming link of destinatiod.
k+N- 1—K4d

Later on we will include the penalty term Z{ JEi) into the MPC performance

criterion for each destinatiothand for each time stefp Note that we make the summation
of these penalization indices only upke N-1-k,, since fori > k+N-1-x,, the variable
Ugyd(K+kygy) is not defined at MPC step

Moreover, note that using as MPC performance criter‘icﬁq "a J%(i) for each
destinatiord and for each time stely could have adverse effects for small prediction hori-
zons. Therefore, to counteract these effects, we alsoaenas additional controller goal
maximizing the flows of all links that are not directly context to unloading stations. To
this aim, Ietrl!"(‘j"k be the typical® time required for a DCV that entered litkin [ty,tcs1) to

link
reach destinatiod, with rtl"t‘,"k an integer multiple ofs. Also, letx) g = “rﬂ‘c" Then one can

define the following penalty

Ugyd(k) if kgpen_ Kld < k< kglose— Kl d

0 otherwise

-]

This penalty will be later on used in the MPC performancescidn.

Next, in order to make sure thatl the bags will be handled in finite time, we also
include in the MPC performance criterion the weighted langjtqueues at each junction
in the network as presented next. héﬁ‘c be the typicai® time required for a DCV in the

queue at junctiow to reach destinatiod, with 71""(k) an integer multiple of". Also, let
Tjunc K )
Kyd = V;‘—nc() Then we define the new penalty:

min ; close_
J\%erdue(k> _ v,d qu( ) ifk> kd Ky,d
7 0 otherwise

Wheredm'n represents the length of the shortest route from junctida destinationd.
Note thatJ\‘,féerdue(k) is nonzero only for steps that are Iarger than or equag'f’ée— Kyd-
Moreover, for these step¥'e'@U9k) is proportional tod™". The reason for this is that

16These durations are determined based on historical data.
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we want to penalize more the queues at junctions that arediuaway from destinatiod
because the DCVs in those queues will need longer time teltravdestinatiord.

Finally, let.Z9%stdenote the set of links directly connected to unloadindgsiat Then
the MPC performance index is defined as follows:

k+N—l—Hgd K+N=1

JeN (Qk, Uk) = (Ad I+ Jogerauqi)—
deZ@ i; d iZk vezﬂ <
k+N-1
o JQ%W(i)) (4.47)
2 e B

with Ay > 0 a weight that expresses the importance of the flight assigmdestinatiord,
a < 1 andf < 1 nonnegative weighting parameters.
Then the nonlinear MPC optimization problem is defined agv:

min Jk N (T Uk)

subject to
Ok+1 = -2 ®%(q, Uk)

kN = 4 *H(Ok+N-1, UkN-1)
A" k+1,Uk) <O

AN, Ukan-1) < O

MILP optimization problem for the network controller

Hence, we deal with a nonlinear, nonconvex, and nonsmodimization problem. How-
ever, using the propertigal and P2 presented in Sectidn 4.4.5, this problem can also be
written as an MILP problem.

In principle, — i.e., when an MILP optimization algorithm et terminated prema-
turely due to time or memory limitations, — the MILP optimiiza algorithm guarantees
to find the global optimum. This global optimization featiseot present in the other op-
timization methods that can be used to solve the originalimear, nonconvex, nonsmooth
route choice optimization problem. Moreover, if the congtiain time is limited (as is often
the case in on-line real-time control), then it might occuattthe MILP solution can be
found within the allotted time whereas the global and mstiéirt local optimization algo-
rithm still did not converge to a good solution. As a resuig MILP solution may even
give a better system performance than the solution retusgete prematurely terminated
global and multi-start local optimization method.

Switch control

We now focus on the switch controller for the proposed harmarand on how optimal
switch positions can be determined.
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Recall that at each control st&pthe network controller provides optimal flows for each
link in the network and for each destination. Let these flowsdenoted bw‘l?fjt(k), ey

ugR(k+N—-1) with d € 2, £ € £ 1% andN the prediction horizon of the network con-
troller. Then the switch controller of each junction has tonpute optimal switch-in and

switch-out positions such that the tracking error betwéerréference optimal flow trajec-
tory and the flow trajectory obtained by the switch controkeminimal for each network

controller time stefx = 0, ..., KS™,

Recall that the optimal flows;%(K), ..., u%{(k+N~1) are determined for the time win-
dow [ty, tken ) With ty =to+kr"°. Moreover, note that in order to determine the switch cdntro
action during the time windowty, ty+n) we will use again MPC. Next we will refer to one
junctionv € .# only. For all other junctions, the switch control actiong aetermined
similarly.

Let 7S¢ be the switch controller sampliftime. Also, letks¢ be an integer that expresses
the number of switch control actions determined until now.tAkSC is defined asS¢ =
:—Zﬁk. Then lettlY denote the time instant corresponding to the time ktépf the switch
controllert3 = to + k3¢ with to the time instant when we start the simulation.

Furthermore, les (k%) denote the position of the switch-in at junctigrduring the
time interval [t3¥, t, , ) and lets)"(k*%) denote the position of the switch-out at junction
during [t t%,,).

We want to determine the switch control sequence duringithe tvindow [ty, txsn )
while using MPC with prediction period dfiS® steps. Hence, at each MPC sief, the
switch controller solves the following optimization prebt:

Svr‘lgcl I"ISC J\i \ll(\{e,c7 NSC (Xv, ks, Sy, kSC,NSC) (4 . 48)
,kSC,N

with Xykse the current local state at junction s,scnse = [S'(K) ... d(KSC+NSC-1) ...
SOU(KS®) ... sQUt(kSe+NSC—1)] T if junction v has 2 incoming and 2 outgoing links, sc sc
contains only switch-in or only switch-out positions if gtionv has only 1 outgoing or only
1 incoming link respectively) and with . \sc the local MPC performance index defined
as:

S opt opt
‘]\/’\II(VSC’NSC(XV,ksc; S\/,ksc,Nsc> = XZ,E,kSC,NSC(uﬁp ) - X47ksc7Nsc (X\,yksc7 &7ksc7Nsc)

LeLPut
Sw_in SW_ou
+y (nkschsc(xw Kksc, S\ﬂksc7Nsc) + nksc,—NSCt(vaksc, &7ksc7Nsc))

where

o X Rysense(Ug”) denotes the optimal number of DCVs to enter the outgoing fink

of junctionv during the periodt&¥, t%, sc_; ). whereu®™ is the vector consisting
of all the flowsuf®(k),...,ud%(k+N) with d € 2 and¢ € £ N.Zy. The variable

XPP\ s nso(USP) is derived later on (seE(4149)).

o Xy ke nse(Xykse, Sykse nse) IS the actual number of DCVs entering lidkiuring the pre-
diction period. Given the current state of local system dreddequence of switch

1Wwe select the sampling time® of the network controller and the sampling tim® of the switch controller
such that"¢ is an integer multiple of-5C.
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control, the variableX, yscnsc is determined via simulation for a nonlinear (event-
based) model similar to the one of daret al. [8[)] (the difference is that now the
switch positionss,ysc nse are given for each periotfe, tes, ;). - - - [testinsc1» tescsnsc)
instead of for each of the neki’® DCVs to cross a junction).

o nﬁ!vc—,\i,r;c(x\,yksc,s\,ykscyNsc) and nﬁ;"c’ Pat(Xykse, Suksense) represent the number of toggles

of the switch-in and of the switch-out respectively durig tprediction window
[teW,tW,\sc) . These variables are obtained from simulation (for the e cur-
rent state of local system and the sequence of switch control

e v is a nonnegative weighting parameter.

Next we derive the variabl;} s ysc(u;™). To this aim, we first determine how many
stepspysc of the network controller will be involved in solving (448} follows: pysc =
N2> where[x] denotes the smallest integer larger than or equal (®0, pyc > 1).
Furthermore, note that the indé&of the time instant, for which t, <t < ti41 can be
computed as followsk = ["SC SCJ where| x| denotes the largest integer less than or equal to
x. Figure[4.26 illustrates the prediction windQtg, t2¥t,\sc_, ) with respect to the window
[ti, tier psc) -

The varlablexomksc(u;fpt) is given by:

" " t k+pysc—2 t
op op left Op nc OP
Xy jejeense(Ug ) leSCdZ Upg(K) +7 Z dZ
+1 9
t
5 fdz Ug (K + Prse=1) (4.49)
€7

wheres ] x(i) = 0 by definition forj < 1 and where

Till_?lztsc =min(ti1, t%&N“—l) —'[E%I(\;’,

T|Eftsc tiggq.Nsc_l _tk+pk5c—1 if Prse > 1
2K 0 otherwise.

The results obtained when using the hierarchical conteshf&work are presented in
Sectiori4.54.

4.5 Experimental results

In this section we present the experimental results obdaivteen determining the optimal
DCYV route choice of a baggage handling system by using th&@amethods proposed

ty 1 k2 tk+pksc—l tk+pksc
i L L — L i

| - ) |
1 eft 1

Tl?ksc ( p- 2) Tt Tfksc
oW tscinse1

Figure 4.26: Prediction windowts¥, t&¥, \s..;) over which we solve the MPC optimization
problem [(4.48) illustrated with respect to the wind{iwty:p,s.) for pyse > 2.
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in Section[4.#. Hence, we now assess the efficiency of thevioly approaches: opti-

mal control, centralized, decentralized, and distriblNHRIC, decentralized and distributed
heuristics — these approaches are developed for a 1-lewtd ofoice control framework

—, and MPC in a 2-level route choice control framework. Inertb reduce the com-

putational complexity of MPC, we have also compared theltgsibtained when solving

nonlinear optimization problems, and when solving MILPimyizations.

4.5.1 Optimal control versus model predictive control

In this subsection we compare the results (the system peaioce and the total computation
time required to determine the route choice control) ol@imhen using the optimal control
method presented in Sectign 4]4.1 and when using the moddicgive control (MPC)
approach presented in Section 414.2. The comparison withbge based on simulation
results.

Set-up

We consider the network of tracks depicted in Figure 4.2% wito loading stations {.and
L, two unloading stations Jand U, and two junctions §and $. We have considered
this simple network since the computational complexityh#se methods increases with
the number of junctions in the network. Note that the cordpgroaches considered in this
section allow the choice of routes containing loops.

We assume that the velocity of each DCV varies betweepifand 20 nis. The lengths
of the track segments are indicated in Figure 4.27.

Scenarios

We have defined fifteen scenarios where the stream of bagwithahter the network of
tracks afterty has the lengtiNPa9s= 10,20,30,...,150, the destination of each bag be-
ing randomly assigned using a uniform distribution. Ref@ Sectionl 4.1]1 that the
2-tuple 7 = (t3™al t3mval) comprises the vectors of bag arrival times definetP4¥! =

taival _ gamval I T with N!°2d the number of bags to be loaded onto DCVs at loading station
) 1,N t

L.. According to these scenarid§°®® = 5,10,15,...,75 for . = 1,2. The arrival times
taval ., tara, at loading station Lwith . € {1,2}, are allocated randomly during the

time intervalltp,tp + 1009, using a uniform distribution.

Lq St Ui

500m 700m

100m

500 700
L m m U,

S
Figure 4.27: Case study for a DCV-based baggage handlingsysf Section 4.5.1.
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For this case study we assume that both end pointsrid U, are open during the time
window(tp+100stp+2009. Also, we assume that at time inst&tno DCV is transporting
bags through the network, while all the considered scesatart from the same initial state
of the system.

Results

To solve the route choice optimization problems of optimahtcol and MPC, we have
chosen thgeneticalgorithm with multiple runs and “bitstring” populatiomplemented via
the functionga of the Matlab optimization toolboGenetic Algorithm and Direct Search
We made this choice since simulations show that this opétitim technique gives good
performance, with a short computation time.

Regarding the optimal control optimization, we s&{" = 6+ andN9e" = Nbags. 40
whereN™" is the number of times that we run the genetic algorithm whd&ving the
optimization problem, andl9®"is the maximum number of generations of population that
we allow when computing a solution. All the other options ae¢ by using the default
options of the functioma. Note that we have chosen these large valuedifgt and N9e"
since this should increase the chance of finding a solutianhishclose to the global one,
see, e.g., Sectidn 2.1.2.

For the MPC approach we set the horizor\te= 10 bags. Recall from Sectign 4.4.2
that, at each MPC step, we implement all the computed cos#émoiples, and accordingly
we shift the horizon wittN steps. When solving the MPC optimization problem wgjth
we setN™" = 3 andN9"= 70. Note that for MPQN™" andN9%" have smaller values than
the ones we have considered for optimal control. This chbaebeen made since MPC
solves smaller optimization problems than optimal control

Based on simulations we now compare, for the given scenatiesproposed control
methods. Let)i°taPpProachgenote the total performance index expressed by (4.4) tivat ¢
responds to the control methods that we compare in this stibsgoptimal control and
MPC). In Figurd 4.28 we have plotted the performance intlghgPProachyersus the num-
ber of bags that we handle in each scenario, and the total wiatigm timé® needed for
the total closed-loop simulation. Note that the lower thefgrenance indexjtotapproachis,
the better the performance of the baggage handling systesrgi$f the baggage handling
system has transported all the bags to their end pointsmiiig given time window, then

no penalization is needed. Hence, the best performance af/gtem would correspond to
Jtot,approach: 0.

Nbags

The results indicate that optimal control gives a bettetesysperformance than MPC
or as good as MPC only fd4P29s< 60, while forNP29s> 60 MPC performs better than
optimal control. This happens because the values set fanuhwer of rundN™" and for
the number of population generatidN8®" are too low. This means that in order to obtain
better results when using optimal control, one has to irsgreven mord™" and N9&".
The results also indicate, that even for the computatiasdtictions mentioned above, the
total computation time obtained when computing the rout@aehsolution using optimal
control, is always larger than the one obtained when usin@ MWoreover, the difference
in computational effort required by the considered appneadncreases with the number
of bags to be handled by the DCV-based baggage handlinghsysteparticular, the total

18The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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Figure 4.28: Comparison of the results obtained using opticontrol (OC) and model pre-
dictive control (MPC) for the total closed-loop simulatiolm order to assess
the efficiency of these approaches, we progressively iserdae number of
bags to be handled.

computation time of MPC is about2hours, while the total computation time of optimal
control is about 40 hours fd4°a9s= 150.

In practice, optimal control is not suitable for computihg troute choice control of a
DCV-based baggage handling system. The first reason to gui® remark is that, in
practice, the arrival time at loading stations of all the &mbe handled is not known at
time instanty. The second reason, is the huge amount of computationat effguired to
compute the optimal route choice control. However, even#@/tould be used to compute
on-line the DCV route choice control because this methog mdks ahead at a buffer of
bags to be handled, the total computation time is still uiigéa for real-time optimizations.

4.5.2 Centralized, decentralized, and distributed contrbapproaches

In this subsection we compare the performance of the cé&gdaldecentralized, and dis-
tributed MPC, and the decentralized and distributed hécsibased on simulation exam-
ples. These control approaches have been presented ini$égfi2, Section 4.4.3, Section
442, Sectiof 4.416, and Sectlon 414.7 respectively.

Set-up

We consider the network of tracks depicted in Figure ¥4.2& four loading stations, two
unloading station, nine junctions, and twenty unidiretéidinks. Note that this network al-
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lows more than four possible routes to each destination &nayrorigin point (e.g., Ycan be
reached from k. viajunctions 3, S, Sg; S1,S4, S, So, Sg; S1,S2, S5, 4, S85 S1, 2, S5, 56, s
Sy, S8; S1, S, S6, S7, So, Sg, and so on). We consider this network because on the one hand
it is simple, allowing an intuitive understanding of andigi in the operation of the sys-
tem and the results of the contt§land because on the other hand, it also contains all the
relevant elements of a real set-up.

We assume that the velocity of each DCV varies betweepidandv™® = 20 m/s, and
that the minimum time period after we allow a switch toggleS¥™" = 2 s. The lengths of
the track segments are indicated in Figure 1.29.

In order to faster assess the efficiency of our control meth®dssume that we do not
start with an empty network but with a network already pofadaby DCVs transporting
bags.

Scenarios

For the tuning of the weighting parametersve define eighteen scenarios where 120 bags
will be loaded into the baggage handling system (30 bagschitleading station). We con-
sider three classes of demand profiles calidg, ", “ dp,”, and “dp3” hereafter. According

to these classes, the bags arrive at each loading statibe fime intervaltg, to + 1009 with

tp the time instant when we start the simulation. The arrivaks at a loading station are
allocated randomly, using a uniform distribution accogdia the following cases:

Ly Lo L3 La
50m 50 50m 50m

300m

S

Figure 4.29: Case study for a DCV-based baggage handlingsysf Section 4.5.2.

19The proposed control approaches allow the choice of routetaiming loops.
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Table 4.1: Considered Scenarios

Scenariotype| End time X0 Demand Scenario ID

same dp, 1

end time Init 1 dp, 2

Relaxed dps 3
t§lose— 200 dp; 4
t5§oe=200s | Init, |  dp, 5

dps 6

different dp; 7

end time Init 1 dp, 8

Relaxed dps 9
t§lose—=100s dp; 10
t50e=200s | Init, |  dp, 11

dps 12

different dp, 13
endtime | Inity dp, 14
Tight dps 15
tflose=100s dp, 16
t§0se=144s| Init, |  dp, 17
dps 18

dp;: the bags arrive at the loading station with a constant rale2obags/s;

dp,: 5 bags arrive at a loading station during each of the timenmte[ty,tp +40s and
[to+60stp+1009, and the rest of 110 bags arrives durjiygr40Sto+609);

dps: 10 bags arrive during the time intervg,tp + 809 and the rest of the bags, i.e., 110
bags, arrives aftdr=1ty+80s, i.e., durindto + 805ty +1005.

Note that for the demand profilesl),” and “dp3” the bags arrival time is uniformly
distributed over the mentioned time intervals.

More specifically, we consider two different initial statefsthe system calledlIfit 1”
and ‘“Init 2", where 60, and respectively 120 DCVs are already transpgpliags in the
network, running from loading stationgL...,L4 to junctions $ and S, from § to S, and
from S3to S,. Their positions aty and their static priorities are assigned randomly.

The bags to be handled can be organized in two groups of bagsgtoup 1" consist
of the bags that populate the DCV network beftgrand “group 2” consist of the bags that
enter the network afteg. For a maximum storage period of 100 s at unloading statiwes,
examine both situations where the transportation of tha Imgery tight (the last bag that
enters the system can only arrive in time at its end poin&IECV travels the shortest route
with maximum speed), and respectively more relaxed tg-er0 s we denote the scenarios
according to Table4l1 whetg°s¢andt$'°*¢indicate the time when the end point closes for
“group 1" and “group 2" respectively.

We first calibrate the weighting parametargver all the scenarios we have considered.
Next, for the same scenarios we compare the control methatispw we consider different
samples of the demand profiles than those used for calibratio
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Results

To solve the MPC optimization problems we have chosen afaigeneticalgorithm with
multiple runs and “bitstring” population of the Matlab apization toolboxGenetic Algo-
rithm and Direct Search

Based on simulations we now compare, for the given scenatiesproposed control
methods. For all the proposed predictive control methodset¢he horizon thl = 5 bags.
We make this choice since for a larger horizon, the compurtatme required to obtain a
good solution of the local optimization problem increasdsssantially. Hence, using larger
horizons for the considered MPC optimization problemsldgie considerable larger total
computation time.

Let J}Ot’appma"hdenote the performance index of the baggage handling systera-
sponding to scenario indexand the considered control approach. In Figurel4.30 we plot
the total performance inde}°taPProachand the total computation tiféobtained when us-
ing the proposed control approaches — centralized, desleetd, and distributed MPC,
decentralized and distributed heuristics — versus theidered scenarios. In this figure
we plot the performance indeltaPrroachcorresponding to centralized MPC, but only for
the scenarios where the initial population of the networkacks is small (60 DCVs). We
do this since the computation time for the case where thearktis populated with 120
DCVs is larger than 10s. Recall that the lower the performance ind&%2PProachis  the
better the performance of the baggage handling system.

Let Japproactavg genote the average performance index obtained when usiryéilic-
tive control methods and the heuristic approaches. Thimpeance index is defined over
the scenarios for which we have plotted the results of Fig.88:

Japproacmvg _ 1 Jtlot,approach

- approac|
|A PP W jeAapproach )

with A@PProachihe set of scenarios for which we have illustrated the petéorce index
Jrotapproachin Figure[4.30, e.g.APPach— 11 2 3 7 8 9 13 14,15} for centralized MPC
and A@pproach— 1 2 18} for all the other approaches. Then in Tablel 4.2 we list the
average result3*PProactevo of Figure[4.3D.

One expects that the best performance of the system is eltaihen usingentralized
predictive switch control. This would have happened if we hHowed more runs and if
we had allowed a larger computation time to calculate thetswl of an MPC optimization
problem (in these simulations, in order to reduce the coatjrtal effort of the route choice
control using centralized MPC, we ran theneticalgorithm 4 times for each optimization
problem, while limiting the time allowed to compute a sabutito 400s). Moreover, note
that centralized control becomes intractable in practiberwthe number of junctions is
large due to the high computation time required.

The simulation results indicate that usidgcentralized MPQowers the computation
time. Furthermore, the results indicate thatributed MPCgives better performance than
decentralized MPC (in many cas#8taPrroachis mych lower than the rest), but at the cost
of higher computational effort. Note that when using dedizied and distributed MPC
we ran thegeneticalgorithm 4 times for each local optimization problem, wehallowing a

20The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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Figure 4.30: Comparison of the results obtained using ttappsed centralized, decentral-
ized, and distributed control approaches (MPC and hewstifor the total
closed-loop simulation. In order to visualize on the logfamic scale results
such as PLarproach— g for some scenario, we selP#Prroach— 1074 for that
scenario. The scenarios over which we make this compariaga heen de-
fined in Sectioh 4.5 2.

maximum of 20 generations of population. We have choseretbetons in order to have a
balance between the overall performance and the total ctatiqiuoitime.

Finally, thedecentralizecanddistributed heuristic approachegve typically worse re-
sults than distributed MPC with a single round of downstreard upstream communica-
tion, but with very low computation time.

Let r"andlegenote the length of the time period in which we handle albikgs. Accord-
ing to simulations 110s. 7""de< 240 s for all scenarios and all proposed methods. Hence,
according to the present implementation, only the deckrdhand distributed heuristic ap-
proaches would give real-time results. However, note thataan easily gain several orders
of magnitude in the total computation time of the proposeutiad approaches by using
parallel computation when solving an optimization probl&eiter implementation, object



4.5 Experimental results 113

Table 4.2: Comparison of average performance of the systaint@al computation time
for the proposed control methods.

Control Japproaclavg — totg] CPU time
approach (s) (s)
Centralized MPC 16- 107 22-10°
Decentralized MPC 10-10° 3.2-10°
Distributed MPC

downstream communication 13-10% 5.8.10°
Distributed MPC

communication back & forth 4.10° 2.0.10*
Decentralized heuristics 24108 0.06
Distributed heuristicsP®4=5s)  301-10° 13148

coded programming languages instead of Matlab, or dedicgigmization algorithms.

4.5.3 Switch control using mixed integer linear programmirg

In this subsection we compare the results obtained wherguki nonlinear and MILP
formulation for the optimization problem of centralized MPThese formulations have
been presented in Section 414.5.

Set-up

We are interested in analyzing the trade-off between perdoce and computation time
when using the two formulations of the MPC optimization pgeob. To this aim we consider
as benchmark case study the network depicted in Figuré #84 network consists of four
loading stations, five junctions, and three unloading ataticlose together connected via
single-direction track segments, where the free-flow trane is indicated for each link.

We consider the second case where the networkr@e unloading stations close to-
gether Hence, we will compute the control for the switch-in and ¢hdtch-out of each
junction in the network except the control of the switch-ofithe junction directly con-
nected to the unloading stations. The low-level contrditerthis special switch-out is
computed according tBattern2. So, during the time intervitl, ty+1) with ty =to +krs with
k € N, all unloading stations are served.

Then the evolution of each queue at the end of a link in the ot fors=1,2,3,4
andl = 0,1 is given by:

Gs) (k+1) = max(0, s (k))

with fs) (k) defined as follows:
fl,o(k) :quo(k) + (Dl(k— 2)- (1_ uiw_in(k))omax) s
f1.a(K) =a12(K) + ((1-08"-k~4)) Op(k~4) ~u5"-"() O™ 7

f20(K) =Gao(K)+ (D (k=2) - (1-18"-"(K)) O™ 7
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f21(K) =g21(k) + (D (k-2) - U™ In Omax)TS
fa0(K) oK) + (13" *(k=3)0z(k~3) - (1-15""(k)) O
f31(K) =03 1(K) + (Da(k—2) —u3"- in O™ 7,

fa,0(K) =0a,0(K) + (Ol(k—4) (1- uSW 'n(k))omax)

f21(K) =da1(k) + (O3(k—3) —u3"- in (K)O™) g

whereOs(k) with s € {1,2,3} is given by [4.14).
The evolution of the partial queues corresponding to untapstation U, form=1,2,3
at the end of the link leading 8" is given by:

@M (k+1) = G®(K) + (puOe(K) ~Up (k+ ) 75

Ts
with U,,(k) given by [4.19), and

k-1),

Oe(K) = min (omaX, (q‘“’ . Ol(k—S)) (1- "k -1))+

<q4,1(k_1) 0 (k 4)) usW. |n(k_1)).

Ts

Scenarios

We assume that the velocity of each DCV varies betweerf©amd 20 nis. In order to
faster assess the efficiency of our control method we asshateve do not start with an
empty network but with a network already populated by DC¥s$porting bags.

To compare the results we consider six scenarios where &Haae to be handled for
different initial states of the system, where DCVs are wgitio cross different junctions
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Figure 4.32: Demand profile.

in queues of different length, and wherg = 25 % form= 1,2, andpz = 50 %. For this
particular case study we considey, = 1 for m= 1,2,3. We simulate a period of 600
s, for a network where the capacity of each junction is 5 DG\(#lis is a realistic value
for the junction capacity when no switching occurs). Theudation time steprs is set to
20s. We consider the bag arrival pattern for each loadingpstaccording to the three
different classes of demand profiles sketched in Figure, 4vB2reT'°2d= 100 is the total
loading time. The demand of each loading station equals 0¥of'°ad, These scenarios
will involve very tight transportation since the time winddor each unloading station is
[to+ 1505ty + 3509 — the last bag that enters the system can only arrive in tintheat
corresponding end point if the DCV travels the shortesteauith maximum speed.

Results

Let us now compare the results obtained when using the pedgaedictive control method
with different formulations of the optimization problem.

In order to solve the MILP optimization problem{4129) we based the CPLEX solver
implemented through thepl ex interface function of the MatlaBomlabtoolbox, while to
solve the original mixed integer nonlinear MPC optimizatfwoblem [4.2B) we have cho-
sen again thgeneticalgorithm with multiple runs and “bitstring” population tfe Matlab
optimization toolboxGenetic Algorithm and Direct SearcNote that typically thga Mat-
lab function starts the search from random initial pointsolthave been set by the algo-
rithm. However, this function has also the option to allow tiser to set the initial search
point. Then we can apply directly the results of the MILP pptation to the original non-
linear route choice problem, we can solve the nonlineanapétion problem starting from
random initial points only, or we can use the solution of thi.Rloptimization problem
as a good initial guess when solving the nonlinear optirfonatAs prediction horizon we
have considerel = 8 for all MPC optimization problems.

Based on simulations we now compare, for the given scendhiesesults obtained for
the proposed formulations of the optimization problem. Téwults of the simulations are
reported in Figur&4.33. Note that the MPC performance immnalizes the absolute dif-
ference between the actual outflow profile and the desirdtbauprofile at each unloading
station, and the queues in the network (as describdd in)4\@file the total performance
of the system used to compare the proposed formulationdipesaoth, the overdue time
and the additional storage time at the end point (as destiib@L2)).
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Figure 4.33: Comparison of the results obtained using ttappsed MPC formulations for
the total closed-loop simulation. At each MPC step we candlitee possible
approaches: (1) we solve the MILP optimization only, (2) we the MILP
solution as good initial guess to solve the original MPC optiation problem,
and (3) we solve the MPC original optimization starting froamdom initial
points. The nonlinear MPC optimization problem is solvethgis genetic
algorithm (GA) with “bitstring” population.

These results confirm that computing the route choice usiagtiginal nonlinear for-
mulation for the MPC optimization problem gives better pemfance than using only the
MILP formulation. However, this happens at the cost of higt@mputational effort. Fi-
nally, we also compute the DCVs route choice using as infdakible solution for the
original nonlinear MPC problem the control sequence deitezthby solving the MILP op-
timization problem. As illustrated in Figute 4133, the ésindicate that this last method
offers a good trade-off between performance and computateffort.

4.5.4 Route choice control using a hierarchical control franework

In this subsection we want to assess the efficiency of thatdkical route choice control
framework presented in Sectibn 414.8. Recall that in Se@fi&.2 we have compared the
results obtained when using a 1-layer route choice contaohéwork. Therefore, in order
to compare the efficiency of the proposed control framewonkes will now select three
representative methods of the 1-layer route choice coftimiework, namely:

1. centralized MPC presented in Secfion4.4.2,

2. distributed MPC with a single round of downstream and nggsh communication
presented in Sectidn 4.4.4,

3. distributed heuristics presented in Seclion 4.4.7.

These methods have been chosen since they are the first tetkeds (in Tablé 4]2) that
give good performance for a DCV-based baggage handlingmsyathen the computation
time is not an issue.
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Figure 4.34: Case study for a DCV-based baggage handlingsysf Sectioh 4.5.4.

Set-up

We consider the network of tracks depicted in Figurel4.34 faitr loading stations, two un-
loading stations, nine junctions, and twenty unidirectidimks, where the free-flow travel
time is provided for each link. Note that the proposed hirimal control allows the choice
of routes containing loops.

We again assumé" = 20 m/s andrS"'®" = 2s. As for the previous case studies, we
assume that we do not start with an empty network but with wartalready populated by
DCVs transporting bags, as presented next.

Scenarios

In order to assess the performance of the proposed hiecatclointrol framework we define
six scenarios where 2400 bags will be loaded into the baglagédling system (600 bags
at each loading station). We consider three classes of déprafiles called tip,”, “ dp,”,
and ‘dp3” hereafter. According to these classes, the bags arrivechtleading station in the
time intervallto,to + 1809, the arrival times at a loading station being allocated oanlg,
using a uniform distribution according to the following eas

dp;: the bags arrive at the loading station with a constant raBe33 bags/s;

dp,: 50 bags arrive at a loading station during each of the timeniats|[ty,to+ 609 and
[to+120stp+1809, and the rest of 500 the bags arrives dufigag-60stp+1209;

dps: 100 bags arrive during the time interV, to+ 1209 and the rest of the bags, i.e., 500
bags, arrives aftdr=1ty+120s, i.e., durindto+120stp+1803.
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We also consider two different initial states of the systeinere 60, and respectively 120
DCVs are already transporting bags in the network, runmmgnfioading stations4,...,L4
to junctions $ and S, from S, to S, and from S to S,. Their positions aty are assigned
such that between each 2 consecutive DCVs we have a minimiendistance of 2m, and
between the DCV closest to the next to be passed junctiontenginction we again have
2m. The static priorities of these DCVs are assigned rangamthe set{1,2} using a
uniform distribution.

We assume that we have only two flights assigned to the umigadations Y and U,
(one flight assigned to one unloading station). Also, assgrtfiat we start the simulation
at time instanty = 0s, we consider that the time windows within which we needatgs
at their end points arfgy +8005tg+14009 for U; and[to +1000sty+ 16009 for U,.

We simulate a period of 40 minutes. The control time step Herrietwork controller
is set to 60 s, while the control time step for the switch coligr is set to 2s. Note that in
these scenarios we also consider the occurrence of queorgiat

Results

In this section we compare the results obtained when usagritposed hierarchical control
framework and the approaches of a 1-layer control framewakhave proved to give good
performance in Sectidn 4.5.2: centralized MPC, distridlPC with a single round of
downstream and upstream communication, and distributedsties.

In order to solve the MILP optimization of the network coriieo we have used the
CPLEX solver of the Matlab optimization toolbdbomlah while to solve the nonlinear
optimization problem of the switch controller we have chodegeneticalgorithm imple-
mented in Matlab via the functioga with multiple runs (for these simulations we run the
genetic algorithm three times for each optimization). Niia in order to keep the total
computation time low, for both approaches — hierarchicaldvdhd centralized MPC —
we shift the horizon withN, respective\NS¢M® samples at each MPC step. Also, due to the
same reason (computational requirements), we allow adah@tmount of time for solving an
optimization problem corresponding to the centralizedeahoice control and distributed
MPC with a single round of downstream and upstream commtiaité&he computation
time allowed for each optimization is of 1 hour and 80 secoreipectively).

As prediction horizon we considé&t = 6 for the network controller anbIS¢Ma* = 15
for the switch controller of the hierarchical contrbl,= 40 for the centralized MPC switch
control, andN = 5 for the distributed MPC. We have chosen these values simgagions
indicate that they give a good trade-off between the totadmatation time and performance.

Based on simulations we now compare, for the given scendhiesesults obtained for
the proposed control frameworks. The results of the sirmrlatare reported in Figure 4135.
For this comparison we consider the total performance ofylséem defined in Sectign 4.3
that penalizes both the overdue time and the additionagéotime for each of the bags to
be handled:

Nbags

Jtot(t) — Z Jipen(tiunload)

with NPa9Sthe number of bags to be handled.
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Figure 4.35: Comparison of the results obtained for the totased-loop simulation when
using (1) the hierarchical control framework, (2) the cetized route choice
control approach presented in Section 414.2, (3) the disted MPC with a
single round of downstream and upstream communicatiotrigised MPC2)
presented in Sectién4.4.4, and (4) the distributed heargtproach presented
in Sectio 4.4]7.

Recall that the lower the performance ind&¥ is, the better the performance of the
baggage handling system is. The simulation results inglitett using the hierarchical con-
trol framework typically yields a better system performanican using centralized MPC
or distributed MPC with a single round of downstream and ngash communication, the
solutions of which were returned by the prematurely tert@id@lobal and multi-start local
optimization method. However, even with the computatioeatrictions mentioned above
(we allow a limited amount of time for solving an optimizatiproblem), the total computa-
tion time?! of centralized MPC and of distributed MPC with a single romfidownstream
and upstream communication (over 17 hours) is much larger the one of the hierarchi-
cal control (an average of 100s per junction, plus 5s forieglthe MILP optimization
problems).

Moreover, these results indicate that the performanceidieobtained when using the
distributed heuristics (forPd= 5 s) is close to the one obtained when using the hierarchical
control framework, and sometimes even lower (e.g., forader?2 and scenario 6), but the

21The simulations were performed on a 3.0 GHz P4 with 4 GB RAM.
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total computation time required to determine the solut®also much larger when using
the distributed heuristics.

Hence, the hierarchical control with MILP flow solutions erf§ a balanced trade-off
between the performance of the system and the total coniutahe required to determine
the route choice solution.

4.6 Summary

In this chapter we have considered the baggage handlinggsdn large airports using
destination coded vehicles (DCVs) running at high speeda natwork of tracks. Then,
for a DCV-based baggage handling system, a fast eventrdmweadel of the continuous-
time bag handling process has been determined. Next, wedtatverated the performance
criterion for this system. This performance criterion ierthused to compare the control
methods that we have proposed to use in order to optimallierthe DCVs through the
baggage handling system. In particular, we have developeéad¢ampared optimal control
and centralized, decentralized, and distributed predictiethods for route choice control.

In practice, optimal control (OC) and centralized modetiztve control (MPC) are not
suitable for determining the optimal DCV route choice cohtiue to the high computation
time required to solve the route choice optimization problelowever, usinglecentralized
MPC lowers the computation time. Furthermore, the resultscagi thadistributed MPC
may give better performance than decentralized MPC, buteatost of higher computa-
tional effort.

Since the MPC methods based on the event-driven route chnmidel involve solving a
nonlinear, nonconvex, mixed integer optimization probthat is very expensive in terms of
computational effort, we have also proposed an alternagypeoach for reducing the com-
plexity of the computations by simplifying the nonlineattiopization problem and writing
it as a mixed integer linear programming (MILP) optimizatjoroblem. The advantage is
that for MILP problems solvers are available that allow usff@iently compute the global
optimal solution. The solution of the MILP problem can thenused as a good initial start-
ing point for the original nonlinear optimization problerfinally, in order to reduce the
computational requirements, we have also proposed twagtieunethods and a hierarchi-
cal control framework. Simulations confirm that the decalized and distributed heuristic
approaches give typically very fast results, but the penorce of the system when using
the heuristic approaches is worse than when using the predinethods. Finally, the re-
sults show that the hierarchical control with MILP flow saduis offers a balanced trade-off
between the performance of the system and the total coniput#ne required to deter-
mine the route choice solution when a limited amount of timallowed for solving the
optimization problems.

In future work we will also develop efficient control methddssolve the line balancing
problem, and accordingly compute the optimal route choareafl (empty and loaded)
DCVs in the network. We will also consider the early baggageage area and analyze
whether presorting the bags going out of the early baggagag area can improve the
performance of the system. Finally, we will apply these rodthto more complex case
studies.



Chapter 5

Conclusions and future research
directions

In this chapter we will first present the summary and the agiohs of this thesis. Next, we
will summarize the main contributions of the thesis. FipalNe will discuss the remaining
open problems and we will give some recommendations foréutesearch.

5.1 Summary and conclusions

In this thesis we have considered two specific applicatibtransportation systems for ma-
terial handling, namely mail sorting machines in mail saytcenters and baggage handling
systems in airports. Accordingly, this section presenéssimmary and the conclusions
regarding each of the considered applications.

Postal automation We have considered mail sorting machines for large maildtench
as newspapers, catalogs, and large letters, which havesheetty called “flats”. These
sorting systems are then called “flat sorting machines”.

Regarding this application, we have first given a brief desion of how flat sorting
machines currently work. Afterwards, we have proposed a setwip by making minor
design changes, i.e., adding extra feeders and moving thenbbin system. For the new
set-up we have determined an event-driven model of the raomtis-time process that has
later on been used for model-based control. In order to ertheroptimal speed of the bin
movements we have implemented and compared advanced lometitwods. In particular
we have considered the following control approaches:

o different variants of optimal control with gradually deasing complexity, namely:

1. optimal control with a piecewise constant speed on tinkerials of variable
length,

2. optimal control with a piecewise constant speed on tinkervals of constant
length,

3. optimal control with a constant speed,

121
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e model-based predictive control (MPC) with a piecewise tamsspeed on time inter-
vals of constant length.

According to the obtained results we have concluded that l4RKe most appropriate
control method to determine the velocity of the bottom syster the proposed flat sorting
machine. To support this conclusion we have noted that MREs@ throughput within 1%
deviation of the throughput achieved when applying the ntostplex variant of optimal
control that we have considered (optimal control with a gigise constant speed on time
intervals of variable length). Moreover, we have noted M&C can compute real-time
control actions, while optimal control requires an extrgni@ge computation time.

We have also analyzed how the structural changes — the senlaaumber of feeders,
the variable position of inserting devices — and paramétanges — the increased max-
imal bound for the velocity of the top system of the flat saytimachine — influence the
throughput of the automated flat sorting machine. Basedroulation results we draw the
following conclusion: increasing the speed of the top systaly, does not have as imme-
diate consequence an increase in the throughput. Hene¥ndeing the optimal bottom
velocity is still needed in order to maximize the efficiendytee flat sorting machine.

Baggage handling We have considered the part of the baggage handling systéoh wh
transports the bags in an automated way using destinatidadceehicles (shortly called
DCVs). These DCVs run at high speed on a network of trackssparting one bag at the
time.

We have first given a brief description of how DCV-based bagdaandling systems
currently work. Next, we have determined a fast event-drivedel of the continuous-time
baggage handling process that has been later on used fol-trebsl control. In order
to maximize the efficiency of this system we have developetliamplemented advanced
control methods that could be used to optimally route the B&Wough the system. In par-
ticular, we have developed and compared efficient cené@dlidecentralized, and distributed
predictive methods, and efficient decentralized and 8isteid heuristic approaches.

Based on the obtained simulation results we draw the foligwionclusions:

1. Optimal controlbecomes intractable in practice even for a network with & sarall
number of junctions due to the high computation time reglicedetermine the opti-
mal routing.

2. Centralized MPGstill requires high computational effort to determine tleaizol of
DCV routes . The simulation results indicate that for a nekweith nine junctions
centralized MPC requires more than one hour to compute ttimalprouting for an
horizon of 40 bags, while in practice, at rush hours, a largelver of bags (over 2000
bags/hour) have to be handled within an hour.

3. Decentralized MPQowers the computation time due to the parallel computation
the local control actions. However, this comes at the cosedfiction in the total
performance.

4. Distributed MPCtypically gives better performance than decentralized MRE at
the cost of higher computational effort than decentrali. This happens due to
the required communication and coordination in computivggdontrol actions.
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5. Decentralizedhnddistributed heuristic approacheketermine the DCV routing while
requiring much lower computational effort. However, thapproaches give typically
worse results than the predictive methods.

Since model-based predictive control methods involveisgha nonlinear, nonconvex,
mixed integer optimization problem that is very expensiveerms of computational effort,
we have also proposed an alternative approach for redubagdamputational complex-
ity. This alternative approach consists of simplifying th@nlinear optimization problem
and then writing it as a mixed integer linear programmingl(P) optimization problem.
The advantage is that for MILP problems solvers are aval#idt allow us to efficiently
compute the global optimal solution. This approach invelagain a trade-off between the
efficiency of the system and the total computation time some can directly apply to the
real system the solution obtained using the MILP formulatibthe optimization problem,
or use it as a feasible initial guess for the original (nozéir) optimization problem.

Finally, we have also proposed a hierarchical control fraork for computing the op-
timal routes. In this control framework switch controllgn®vide position instructions for
each switch in the network. A collection of switch controdiés then supervised by a so-
called network controller that mainly takes care of the eathoice instructions for DCVs.
Based on the obtained results we conclude that computingpitiraal routes using the hier-
archical control framework outperforms the centralizegteachoice control when a limited
amount of time is allowed for solving the optimization preiuis of centralized route choice
control.

5.2 Main contributions

In this section we present the main contributions of thigaesh regarding the two appli-

cations that we have considered. Note that the control @gpes that we have developed
for these systems can also be applied to other transpartatgiems, e.g., distribution sys-
tems, automated guided vehicles in warehouses, port centi@rminals, or manufacturing

systems.

The main contributions of this research with respect togl@sttomation are the follow-
ing:
e We have proposed an event-driven model for the continuiousftat sorting system

which has been designed such that the destination bins cem Inidirectionally with
variable speed.

¢ We have developed and compared efficient model-based tamtbods to compute
the speed profile of the destination bins that maximizes liheughput of the flat
sorting machine. In particular, we have proposed variahtgptimal control with
gradually decreasing complexity and model predictive imnt

The main contributions of this research with respect to bggdandling systems are
the following:

e We have proposed an event-driven model for the continuviousCV-based bag-
gage handling system.
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¢ We have developed and compared efficient model-based tamtbods to compute
the optimal routing of DCVs transporting bags from a giveigiorto a given desti-
nation such that the performance of a DCV-based baggagdihgsgistem is max-
imized. In particular we have considered centralized, ngaézed, and distributed
model predictive control, and heuristic approaches. We ladso proposed a hierar-
chical route choice control framework for the DCV-baseddsge handling system.

5.3 Open problems and recommendations for future re-
search

In this section we briefly present some of the open problemsdtill have to be tackled
with respect to the applications considered in this the&dditionally, we give some rec-
ommendations for future research.

Postal automation

Regarding this application one could further develop aadmtrethods to compute the speed
profile of the bottom part for a flat sorting system. Next, wdl dévelop efficient control
methods for higher-level control problems — such as oplynassigning identification
codes to the destination bins, sorting the flats in end-épflisequence — that are currently
not optimized. Finally, we will present other design chanfp a flat sorting system, and
other means to increase the efficiency of the postal setvices

New control methods to set the speed of the bottom systenin this thesis we have com-
pared several model-based control methods that could lik tosgetermine the optimal
velocity of the bottom system of an augmented design for asfiettng machine. In future
work also other control methods will be considered such sty fde-based approaches, neu-
ral networks, see, e.gl, [36], and fuzzy-based approaskesg.g./[63]. These approaches
can use the receding horizon principle. Then, at each tiey, she following steps are
involved:

e automatic feature extraction: Recall that before entering the sorting phase, we
know, for a buffer of flats, the identification codes which eatso printed on each
item in form of a bar code. Then, given the buffer of identifica codes, we will
compute one or more feature measures for the stream offidatitn codes (such as
entropy).

e automatic speed calculation:in order to determine the speed of the destination bins
we will use neural networks and fuzzy-based approaches)ebased approaches.

e use of speedThen we will apply the computed speed to the system for a gives
period.

Also note that one can use the solution of these approacthieitialfeasible solution when
solving the MPC optimization problem described in Sediidn2

In future work we will also determine an approximation foe thninimum number of
scenarios that we have to use when comparing control methwatisthat the relative error
is smaller than a given bourdO0 < e < 1) with a given probabilityy (0 < § < 1), seel[51].
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Control methods for higher-level control problems A higher-level control problem for
a flat sorting system is to assign destinations to the birtsctilect the sorted mail so that
the overall performance is optimized when considering amgset of scenarios. Currently,
this is done by assigning destinations to the bins befor@tbeess starts (several destina-
tion addresses and postal codes can be assigned to ondlgicdfiresponding addresses are
close on the route that a post man takes for the mail delivetgyvever, one can increase the
performance of the flat sorting machine by optimally assigndentification codes to the
destination bins. This can be done beforehand, by solvifalijnaf a mixed integer optimiza-
tion problem over a given set of scenarios. This optimizapicoblem will have multiple
objectives (to determine the optimal speed of the bins fowargdestination assignment,
and to determine the optimal destination assignment). &fbeg, one can solve, in an in-
ner loop, the optimization problem that has the goal to deitez the optimal speed using
optimal control or model predictive control. Then, this spavill be used when solving, in
an outer loop, the optimization problem that will determihe optimal destination assign-
ment. Both optimizations will be solved with respect to thedal of the flat sorting system
and so that the operational constraints are satisfied.

Another open problem for a flat sorting system is to ensuredhneect order of the mail
not only with respect to postal codes and street names, soitvéth respect to the street
and house number. Then this would save time when actuallyedielg the mail items. The
sequence of mail sorted with respect to the street and hawmbaer is called “end-delivery
sequence” of the sorted mail. Currently, to obtain this grtiee mail is sorted several
times. Therefore, designing a sorting machine that wouklienthe fast mail sorting in
end-delivery sequence is a big challenge. To this aim, onaleaelop intelligent control
methods to dynamically allocate destinations to the dastin bins and to the intermediary
pockets collecting the mail, so that the number of sortinghds necessary to ensure the
end-delivery sequence of the sorted mail is minimized.

In the future all the big companies that use the postal seadeliver their catalogs
or advertisement brochures should also print the addresgastal code according to the
end-delivery sequence that mail sorting centers use. Thikladditionally decrease the
time needed for sorting the flats in end-delivery sequence.

Changes and optimizations In order to further increase the efficiency the flat sorting
system one can also make other design changes such as:

e Augment the flat sorting system with more intermediate kwéltransport pockets
between the top part of the system and the bottom part. Themilveot have only
transport boxes and destination bins, but also severatdayfeintermediate trans-
portation. Then for this new set-up one can develop efficgamirol methods to
dynamically allocate destinations for each intermediatekpt so that the items are
sorted in end-delivery sequence as fast as possible.

e Augment the flat sorting system with smaller sorting systatreach destination bin.
Then these smaller secondary systems would sort the iteersliglelivery sequence.

e Augment the system with a weight sensor. Then, knowing thiglwef each flat, we
can determine more accurately the time instant for cornegiping and stacking. As
a consequence, we can increase the maximum relative welmtiveen the top and
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the bottom system, and this, combined with determining titeral speed profile for
the bottom system, will increase the throughput of a flatisgrnachine.

Furthermore, the scope of the research can be broadened.iffoeder to increase the
efficiency of the postal services, while minimizing the epsine can:

e Remove more human work from the postal services by using,aigpmated guided
vehicles or conveyor systems to transport the bins witteslartail to the postal vehi-
cles.

e Optimize the number and the position of mail sorting cerdaic post offices.

e Optimize also the routes and the number of postal vehicldgastal trucks needed
when delivering the mail, or when transporting mail from eonail sorting center to
another.

Baggage handling

Regarding this applications we will further improve the tohmethods already developed
in this thesis. Next, we will continue developing other éffit control methods for the
DCV route choice problem. We will also develop advanced mymhethods for other con-
trol problems — such as presorting the bags that leave tl lB@ggage storage area, line
balancing, and empty cart management— which are currentlpptimized. Finally, we
will present other means to increase the efficiency of a D@sel baggage handling sys-
tem.

Improving the developed control methods Regarding the DCV-based baggage handling
systems, one can further develop and analyze control mettnad could be used to effi-
ciently route the DCVs on the network of tracks. Therefonefuture work we will also
consider several extensions of the current approaches:

o We will improve the heuristic approaches (e.g., we will téki® account more fea-
tures (such as density of DCVs on the links of the network) wbemputing the
control action for the switch out of a junction, and also optie the number of links
that one will look farther when estimating the time that a aéfspend in the system.

e We will combine the model-based predictive control with figlics (e.g., one can
use the solution of the heuristic approach as good initialsgfor the optimization
algorithm).

e Regarding the distributed control we will:

— use multiple up and down rounds of optimizations,
— extend the range of communication exchange to more thareong |
— extend the local control area to more than one node.

New route choice control methods We can develop new efficient control approaches to
determine the DCV route choice. These approaches invodsagh of neural networks and
fuzzy control.

Furthermore, one can introduce the conceptlatooning [92]. In this framework the
groups of DCVs will travel closely spaced together with shotervehicle distances and
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larger distances between platoons. So, we can develop rbadetl methods for optimally
creating, routing, and splitting platoons of DCVs. The ld@ggadvantage of routing pla-
toons of DCVs instead of individual DCVs will be a much loweneputation time than the
one obtained when using the distributed approaches dexeiopthis thesis. This happens
because we will then compute routes for platoons insteadrapaiting routes for individual
DCVs.

Finally, we will compare the efficiency of these methods witik performance of the
control methods already developed in this thesis.

New control problems Note that state-of-the-art baggage handling systems alg® 4én
early baggage storage area where the bags that have bed&edtietoo early can be ad-
ditionally stored. In this thesis we have not consideredeiidy baggage storage area, but
in order to emulate its presence, one or more loops weredadlin which the bags that
entered the network of tracks too early were kept. In bugyoais, the order in which the
bags leave the early baggage storage area also has hightamgmr Therefore, in future
work we will considempresortingthe bags that leave the early baggage storage area so that
the overall performance of the DCV-based baggage handjistgsis is maximized. In or-
der to optimally presort the bags leaving the early baggémage area one can design a
local MPC controller to solve on-line an integer optimipatiproblem. Hence, for a given
prediction period, we will compute the vector of bag idengfion codes that leave the early
baggage storage area during the prediction period so thatttiormance of the DCV-based
baggage handling system is optimized with respect to thamyes of the system and its
safety and operational constraints.

Next, one can also use the concepplaftooningfor the bags leaving the early baggage
storage area, and develop efficient control methods fonaily creating the platoons.

Also, recall that in this thesis we have assumed a sufficienttrer of DCVs to be
present in the system so that when a bag is at the loadingrstéere is a DCV ready to
transport it. In practice, we also have to efficiently mandugeempty DCVs in order to en-
sure a balanced service to all loading stations. Hence, wetbalevelop intelligent control
methods that will dynamically assign loading stations toheempty DCV and efficiently
route the DCV through the network so that all loading statibave sufficient DCVs in their
buffer. Note that the problem of dynamically assigning iogdtations to each empty DCV
is also called the “line balancing” problem, while the prfl of routing the empty DCVs
through the network is also called “empty cart managemeéntrder to solve these prob-
lems, one can develop control methods similar to the onea@yrdeveloped in this thesis
or the ones proposed as recommendations for future research

Changes and optimizations Finally, one can optimize the number of DCVs required for
an efficient baggage handling system, and minimize the greengsumption. Also, one can
investigate whether the layout of the network can be optichiwhile minimizing the costs
of the infrastructure and maximizing the overall performaof the DCV-based baggage
handling system. Moreover, one could investigate how thevor& of tracks should be
equipped with sensors so that events such as congestiomsicgn be determined in time
and, as a consequence, how to maximize the efficiency ofykism while minimizing the
number of sensors in the network (and, consequently, mamgihe costs).
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Other recommendations

For both applications (postal automation and baggage lay)dine can also include more
complex dynamics of the system than those that have beeideoed in this thesis (e.g.,
one can include the acceleration and deceleration of thratystem of a flat sorting
machine and of the DCVs respectively, instead of considegipiecewise constant speed
of their movements), friction, characteristics of motamsd the effects and the limitations
of distributed actuation.

The control approaches developed in this thesis can be ssfatlg used also in control-
ling and optimizing other applications of transportatigatems such as:

¢ Roller belts for people. These systems are often used inrsrpr in buildings where
people have to travel (on foot and in a short time) large wajldistanced between
important points of the building. These systems are veraétite due to their con-
tinuously transport capacity during operation. An impotfaroblem of such systems
is to determine the optimal speed of a roller belt that mimgsithe energy consump-
tion, while maximizing the people’s satisfaction, and ehguaranteeing some level
of safety and passenger comfort. To this aim optimizatiablams can be solved
similar to how we proceed for determining the optimal speedHe bottom part of a
flat sorting system.

e Automated guided vehicles (AGVs). The AGVs are completeipmated vehicles
that can load, unload, and transport goods in warehouses;grdainer terminals, or
manufacturing systems. Typically, they navigate from anpt another along fixed
pathways by following some markers. Hence, an efficient fige3)/s can increase
the performance of transportation in the production, tratel service sector, while
minimizing the energy consumption. The systems consistidgsVs deal with plan-
ning, routing, and scheduling problems just as the DCV-th@sggage handling sys-
tem. In particular, for large-scale AGV-based systemseffieient planning, routing,
and scheduling is difficult. Then, one can apply the contrelirads presented in this
thesis.

o Traffic systems. Advanced technologies from the field of mrtheory, communi-
cation, and information technology are currently being borad with the existing
road transportation infrastructure and equipment. Hesaen, intelligent vehicles
will be driving on roads in an automated way. The routing apelesl problems of
these intelligent vehicles can also be controlled usingrkéhods presented in this
thesis. Similar approaches can be used for unmanned aehales (UAVS). The
UAVs could fly freely on optimal routes between an origin andeatination. Then
distributed controllers could compute the routes and speétAVs flying on a 3-D
network such that a smooth, efficient, reliable, and saferaated flight control is
ensured.

e Power distribution and water management. The networksirsature of the systems
dealing with power distribution and water management camdrg complex. The
control problem of these systems can be stated as followspuate the optimal power
flow or water level, respectively, such that the overall perfance of the system is
maximized. Then lower level controllers could try to aclei¢ie optimal power flow
or water level. Therefore, one can use decentralized amdbdited control methods
similar to the ones presented in this thesis.
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Glossary

Terminology
Below we present the specific terminology used in this thesis

Flats: Large mail items such as large letters, journals anags, and newspapers.

DCV: Metal cart with a plastic tub on top, used to transpothigh speed one bag at the
time on a network of tracks. These carts are propelled byatiireduction motors
similar to roller coasters.

List of abbreviations

The following abbreviations are used in this thesis:

DCV Destination coded vehicle

AGV Automated guided vehicles

ocC Optimal Control

MPC Model Predictive Control

MILP Mixed Integer Linear Programming
HR Heuristics

GA Genetic Algorithm
Conventions

The following conventions are used in this thesis for notatind symbols:

e A lower case character typeset in boldface, exgrepresents a column vector. The
transpose of a vector is denoted by the supersgrigtor instance, the transposexof
ey T
isx'.

e The number of elements of a sktis indicated byjA|.

e The absolute value of a scalar variaklis denoted byx|.
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Samenvatting

In dit proefschrift wordt gefocused op twee specifieke tpamsystemen, namelijk geau-
tomatiseerde postsorteermachines en bagage-afharsisigigmen.

Geautomatiseerde postsorteermachines

In de laatste decennia is de hoeveelheid tijdschrifte@agiten andere in plastic verpakte
poststukken die worden verwerkt in geautomatiseerde exatatra aanzienlijk toegeno-
men. Om deze grote stroom aan post te kunnen verwerkenaigrat-the-art sorteercentra
uitgerust met geautomatiseerde sorteermachines. De giivitkit van een sorteermachi-
ne is gedefinieerd als het aantal gesorteerde poststukkkmeigedoor de tijd die nodig is

om deze te sorteren. In dit proefschrift beperken we ons dststukken in A4 formaat

enveloppen. Poststukken van deze afmetingen worden flateged.

Kort samengevat werkt een geautomatiseerde flat sortebmeeals volgt: de flats wor-
den door een invoegmachine in transportbakken geplaatstadsportbakken bewegen met
een constante snelheid en leveren poststukken af op stmddrestemmingen volgens een
vooraf bepaalde sorteerstrategie. De doorlooptijd varhieboven geschetste basissys-
teem kan nog worden verkort door het systeem zo te ontwergtethedontvangstbakken in
twee richtingen kunnen meebewegen met de transportbakken.

Voor een continu sorteerproces wordt een event-driven hogdgesteld met behulp van
simulatie. Om de optimale snelheid van het ontvangstsyste®erekenen wordt een aantal
geavanceerde regelsystemen geimplementeerd en vemgelekeverschillende varianten
vanoptimal controldie worden vergeleken zijn, in volgorde van afnemende cerifgit:
optimal control voor constante snelheden over tijdsirgkben met variabele lengte, optimal
control met een constante snelheid over tijdsintervallen constante lengte en optimal
control met een constante snelheid. Vervolgens wordenmetigoden vergeleken met een
regelsysteem gebaseerd mwdel predictive contro(MPC) voor een constante snelheid
over tijdsintervallen van gelijke lengte. De voorgestetdethoden worden vergeleken in
verschillende scenario’s.

Vervolgens wordt geanalyseerd hoe structurele verangieminoals een toename in het
aantal feeders, een variabele positie van het aantal isystemen en parametrische veran-
deringen zoals een verhoogde maximumsnelheid van het bgsteem van de sorteerma-
chine de doorlooptijd van de sorteermachine beinvioeden.
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Bagage-afhandelingssystemen

De continue vraag naar kostenbesparing in de luchttratsgmor en de toename van goed-
kope viuchten vereist een effectievere werking van luckgha. Deze doelstelling kan mede
bereikt worden door het intelligenter afhandelen van deabagloor middel van automa-
tisering en het gebruik van geintegreerde sensoren, aotma¢n intelligente regeleenhe-
den. Moderne bagage-afhandelingssystemen op grote awih transporteren de bagage
door middel van bestemmingsgecodeerde transportmiddBIEN’s), dit zijn onbeman-
de eenheden die met grote snelheden bagage via een netwer&ilgavervoeren. Zo'n
bagage-afhandelingssysteem bestaat uit laadplekkgriekb®n, een eenrichtingsnetwerk
van transportsmiddelen met verschillende (lokale) lussen het laden, lossen en de opslag
van DCV’s, en de vroegtijdige bagage-opslag waar de bagege akgtijdig gearriveerd is
enkele uren kan worden opgeslagen. Dit resulteert in eepleosinfrastructuur met vele
interacties tussen de verschillende componenten en ptaatsar regelbeslissingen moeten
worden genomen, waardoor een adaptieve, on-line managemesgelstructuur vereist is.

Typische zaken in een geautomatiseerd bagage-afthansglstgem zijn de cooérdina-
tie van de “processing units”, tijdsplanning, planning \ale middelen, routekeuze, het
aansturen van het transport tussen verschillende vemadslen (bijvoorbeeld DCV'’s en
lopende band) en het voorkomen van deadlocks en het volkgebuffers. Tegelijkertijd
moet er worden gestreefd naar een optimale doorstroom-rerexdngstijd zodanig dat an-
dere eisen en condities gerespecteerd worden (bijvoarbethiet beschadigen van bagage
en de bagage af te leveren binnen de gegeven tijd). Het lediem een DCV’s-gebaseerd
bagage-afhandelingssysteem vraagt daarom om het opleasezenvoudige bedienings-
problemen bijvoorbeeld de codérdinatie en synchronisaie lvet laden en lossen van de
bagage op een DCV, de snelheidscontrole van elke DCV alsetebiossen van hogere
orde problemen bijvoorbeeld de route van alle DCV'’s doomtativerk. In deze studie leg-
gen we de nadruk op de hogere orde problemen en verondenstedl dat de lagere orde
regelsystemen aanwezig zijn om hun problemen effectiefsggin. Met name concentreren
we ons op het vraagstuk van het effectief transporteren gdd@V'’s door het netwerk. De
vroegtijdig bagage-opslag is nog niet meegenomen, ecat@adwezigheid van zo’'n opslag
is wel gesimuleerd door het introduceren van enkele lussariwde vroegtijdig aan het
netwerk aangeboden bagage opgeslagen kan worden.

Het op DCV gebaseerde bagage-afhandelingssysteem werkblgt: voor een gege-
ven dynamische vraag naar bagage en lege DCV's voor elk dypled, samen met een
eenrichtingsnetwerk van rails, wordt de route voor elk D@danig berekend onder de van
toepassing zijnde veiligheids-en operationele conditiaselk bagagestuk binnen een voor-
af bepaalde tijd op het eindpunt arriveert. Op dit momenbleealtle netwerken een simpele
structuur, de DCV’s worden door het netwerk vervoerd doadduai van route schema’s
gebaseerd op “geprefereerde” routes. De schema’s kunndjzige worden indien een
vooraf gedefinieerde gebeurtenis optreedt. Echter, decletfesid bagage verschilt van mo-
ment tot moment afhankelijk van externe factoren bijvoetéet jaargetijde, tijdstip van
de dag, het vliegtuigtype aan de gate en het aantal passagiele viucht. In dit onderzoek
wordt niet uitgegaan van vooraf gespecificeerde routes oraaikkelen en vergelijken we
efficiénte regelmethodes die de optimale route tijdensngeeende omstandigheden recht-
streeks bepalen. We bestuderen met nameodespellenden heuristischenethodes die
geimplementeerd zijn in eagecentraliseerdegedecentraliseerden gedistributeerdene-
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thode.

Men spreekt van eegecentraliseerdaanpak als er één oplossing wordt bepaald voor
het hele systeem, bij egyedecentraliseerd@anpak worden de oplossingen lokaal bepaald
zonder onderlinge communicatie en coérdinatie. De aarggédistribueerdndien de be-
slissingen lokaal worden genomen maar er ook sprake is vamemicatie en codrdinatie
tussen aangrenzende regelaars. Verder wordt de suggedBargom de route van elke
DCV te bepalen aan de hand van ééerarchischeegelstructuur bestaande uit twee lagen
bestaande uit lokale schakelaars op het lagere niveau esueazillerende regelaar op een
hoger niveau. In dit raamwerk voorzien de schakelregela@siie-instructies aan de scha-
kelaars in het netwerk. De verzameling van schakelregektaat onder toezicht van een
netwerkregelaar die als hoofdtaak de verschillende sttegjedaars van stroom instructies
voorziet.

Het bepalen van een optimale route resulteert in een mie&dj niet-convex, “mixed-
integer” optimalisatie probleem. De rekentijd om deze getiakken op te lossen is dermate
hoog dat het onoplosbaar is, “intractable”. Derhalve presen we een alternatieve me-
thode om de complexiteit van het probleem te reduceren detaribt-lineare probleem als
een lineair programmerings probleem met reéle en integahealen (nixed integer linear
programming— MILP) te definiéren. Het voordeel van deze MILP-problemeat de
globale, optimale oplossing gevonden kan worden door éffteisoftware algorithmen. De
oplossing van het MILP-probleem kan dan direct dienen atgrisenditie voor het oor-
spronkelijke optimalisatie probleem.

De prestaties van deze aanpak worden getoetst aan de haeérvdbenchmark case
study” waar de verschillende methodes toegepast en véageleorden.






Summary

In this thesis we focus on two specific transportation systamamely postal automation
and baggage handling.

Postal automation

During the last decades the volume of magazines, catalagsther plastic wrapped mail

items that have to be processed by mail sorting centers hesaised considerably. In order
to be able to handle the large volumes of malil, state-ofatttenail sorting centers are
equipped with dedicated mail sorting machines. The thrpugbf a mail sorting machine

is defined as the number of sorted mail items divided by the timeded to sort them. In
this thesis we consider large letters of A4 size envelopesh $ail items are called flats.

Briefly, a state-of-the-art automated flat sorting machjperates as follows: the flats are
inserted into transport boxes by feeding devices; the boaay the pieces with constant
speed and sort them into static destination bins accordirtbe selected sorting scheme.
The throughput of a basic system sketched above can be atephigndesigning a system
where the bottom part consisting of destination bins canenmdirectional with piecewise
constant speed.

For the continuous sorting process we determine an evérdgrdmodel using simula-
tion. In order to compute the speed of the bottom system tlaaimizes the throughput of
this machine, we implement and compare several advanceacbtorethods. In particular
we first consider different variants optimal controlwith gradually decreasing complex-
ity, namely: optimal control with a piecewise constant gper time intervals of variable
length, optimal control with a piecewise constant speedroa intervals of constant length,
optimal control with a constant speed. Next we also consitetel-based predictive control
(MPC) with a piecewise constant speed on time intervals n§tamt length. The proposed
control methods are then compared for several scenarios.

Furthermore, we also analyze how the structural changese-intltteased number of
feeders, the variable position of inserting devices — amdipater changes — the increased
maximal bound for the velocity of the top system of the flatisgrmachine — influence
the throughput of the automated flat sorting system.
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Baggage handling

The continuous need for reduction of costs in the air trartspdustry and the rise of low-
cost carriers require a cost effective operation of theaatsp To this aim major efforts are
now being invested in making the baggage handling systeaispatrts more intelligent by
increasing automation and by including embedded senstitstars, and intelligent control
units. As a result, modern baggage handling systems at éngerts transport luggage in
an automated way using destination coded vehicles (DCVBjchware unmanned carts
that transport the bags at high speeds on a network of tracksaggage handling system
consists of several parts: loading stations, unloadintpsis, a network of conveyors of
single-direction tracks with several (local) loops (foatting, unloading, and temporary
storage of DCVs), and the early baggage storing area, wheredgs that enter the system
too early can be stored for longer time periods (e.g., houk8)this results in a complex
infrastructure with many interacting components and o@ivhich control decisions have
to be taken, requiring an adaptive, on-line managementantlal structure.

Typical issues in automated baggage handling systems ardination of the process-
ing units, time scheduling, scheduling of resources, rohtgce, controlling the transfers
between different modes of transportation (e.g., convbgtis and DCVs), and prevention
of deadlocks and buffer overflows. At the same time, the obistnould aim at optimal
throughput and processing times subject to various oper@tand other constraints (e.g.,
the bags should not be damaged, bags should arrive at untpstditions within prescribed
time windows). Therefore, the operation of a DCV-based bggdnandling system involves
solving both low-level control problems e.g., coordinatand synchronization when load-
ing a bag onto a DCV and when unloading it to its end point, doaity control of each
DCV and higher-level control problems e.g., routing DCVsotigh the network. In this
thesis, we focus on the higher-level control problems foEased systems where we
assume that the low-level controllers are present and edftigi solve the low-level control
problems. In particular, we only focus on routing DCVs tyamging bags through the net-
work such that the performance of the system is maximized.€Bnly baggage storage area
is not yet considered, but in order to emulate its presermepomore loops were included
in which the bags that entered the network of tracks too eeghe kept.

The DCV-based baggage handling operates as follows: gidgnamic demand of bags
and a buffer of empty DCVs for each loading station, togettigr the network of single-
direction tracks, the route of each DCV has to be computejgstin operational and safety
constraints such that each of the bags to be handled artivissgiven end point within a
specific time window.

Currently, the networks have a simple structure, the DC\tsgh@uted through the sys-
tem use routing schemes based on preferred routes. Thasggrechemes can be adapted
to respond to the occurrence of predefined events. Howéwetpad patterns of the sys-
tem are highly variable, depending on, e.g., the seasom, dinthe day, type of aircraft at
each gate, or the number of passengers for each flight. Treréf this thesis, we do not
consider predefined preferred routes, but instead we deaeld compare efficient control
methods to determine the optimal routing in case of dynaraioahd. In particular, we
considermredictiveandheuristicapproaches implemented incantralized decentralized
anddistributedmanner — the control approach is said todamtralizedif the overall so-
lution is determined by a single controller, the controleggeh is said to bdecentralized
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if local control actions are computed by local controllerighewut any communication or
coordination between these controllers, the control aggras said to bdistributedif the
local control actions are computed while considering atsoamunication and coordination
between neighboring controllers. Furthermore, in ordezffiziently determine the route
choice of each DCV we also proposéiararchicalcontrol framework that consists of a 2-
level control structure with local switch controllers a¢tlowest level and one higher super-
visory controller. In this control framework, switch coollers provide position instructions
for each switch in the network. The collection of switch aofiers is then supervised by
a so-called network controller that mainly takes care offihv instructions for the switch
controllers.

Computing the optimal route choice yields a nonlinear, morex, mixed integer opti-
mization problem. The computational efforts required ttedmine the optimal route choice
are high, and therefore, solving this optimization problemsomes intractable in practice.
Consequently, we also present an alternative approacleducing the complexity of the
computations by writing the nonlinear optimization prohlas amixed integer linear pro-
gramming(MILP) problem. The advantage is that for MILP optimizatiproblems solvers
are available that allow to efficiently compute the globaimpl solution. The solution of
the MILP problem can then be used directly or as an initiatistg point for the original
optimization problem.

To assess the performance of the proposed control app®ankecontrol frameworks,
we consider a benchmark case study, in which the methodsarpared for several sce-
narios.






Curriculum vitae

Alina N. Tarau was born on 28 of June 1981, in Tecuci, Romania. She finished her
pre-university education in 2000, at the National Colle@®ddan Petriceicu Hasdeu”,

in Buzau, Romania, Computer Science specialization. Afts; Alina N. Taau studied
Control Engineering and Automatic Control at the Technldalversity of Bucharest, in
Romania, where she obtained the 5-year Engineer Diplom@0s.2Her graduation thesis
was entitled “Methods of Controlling the Congestion in TC&tMorks” and was carried out
during the final semester of her studies, under the supenvigiDr.ir. Radu Stefan. During
the last year of her studies Alina N. Bar also assisted in teaching the courses “Systems
Theory” and “Optimization Techniques” at the faculty of “@eool and Computer Science”

of the Technical University of Bucharest.

Since 2006, Alina N. Tatu has been working on the Ph.D. project “Multi-Agent Cohtro
for Large-Scale Transportation Systems” at the Centeryste®ns and Control of the Delft
University of Technology, in Delft, the Netherlands. Theearch of her Ph.D. project fo-
cused on two applications of transportation systems, napastal automation and baggage
handling. For both applications, after determining fagtrgxdriven models, model-based
control methods have been analyzed such that the overdtirpeance of the mentioned
systems is increased. This research has been performedthadripervision of Prof.dr.ir.
Hans Hellendoorn and Prof.dr.ir. Bart De Schutter.

During her Ph.D. research, Alina N. Bar obtained the DISC certificate for fulfilling
the course program requirements of the Dutch Institute f@te3ns and Control. Since
2006, Alina N. Tadu has been a member of the Netherlands Research Schochfmpbrt,
Infrastructure, and Logistics (TRAIL).

The research interests of Alina N. &arinclude hybrid systems, distributed control,
predictive and model-based control, and optimizationnépines.

147






TRAIL Thesis Series

The TRAIL Thesis Series is a series of the Netherlands TRAésdarch School on trans-
port, infrastructure and logistics.

Tarau, A.N.,Model-based Control for Postal Automation and Baggage HiagdT2010/1,
January 2010, TRAIL Thesis Series, the Netherlands

Knoop, V.L., Road Incidents and Network Dynamics: Effects on drivingabvedur and
traffic congestionT2009/13, December 2009, TRAIL Thesis Series, the Nethed

Baskar, L.D.,Traffic Control and Management with Intelligent Vehicle kligay Systems,
T2009/12, November 2009, TRAIL Thesis Series, the Nethelda

Konings, J.W.]Intermodal Barge Transport: Network Design, Nodes and Getitipeness,
T2009/11, November 2009, TRAIL Thesis Series, the Nethelda

Kusumaningtyas, IMind Your Step: Exploring aspects in the application of l@augeler-
ating moving walkways[2009/10, October 2009, TRAIL Thesis Series, the Netheldan

Gong, Y., Stochastic Modelling and Analysis of Warehouse Operatid2809/9, Septem-
ber 2009, TRAIL Thesis Series, the Netherlands

Eddia, S.,Transport Policy Implementation and Outcomébe Case of Yaounde in the
1990s T2009/8, September 2009, TRAIL Thesis Series, the Nethdd

Platz, T.E.,The Efficient Integration of Inland Shipping into Contir@rnihtermodal Trans-
port Chains. Measures and decisive factdr&009/7, August 2009, TRAIL Thesis Series,
the Netherlands

Tahmasseby, SReliability in Urban Public Transport Network Assessmentl &esign
T2009/6, June 2009, TRAIL Thesis Series, the Netherlands

Bogers, E.A.l., Traffic Information and Learning in Day-to-day Route Chgig@009/5,
June 2009, TRAIL Thesis Series, the Netherlands

Amelsfort, D.H. van,Behavioural Responses and Network Effects of Time-vaiRwad
Pricing, T2009/4, May 2009, TRAIL Thesis Series, the Netherlands

Li, H., Reliability-based Dynamic Network Design with Stochasgtworks,12009/3, May
2009, TRAIL Thesis Series, the Netherlands

Stankova, K.On Stackelberg and Inverse Stackelberg Games & their Agidics in the
Optimal Toll Design Problem, the Energy Markets Liberdliaa Problem, and in the The-

149



150 TRAIL Thesis Series

ory of IncentivesT2009/2, February 2009, TRAIL Thesis Series, the Nethelda

Li, T., Informedness and Customer-Centric Revedia®09/1, January 2009, TRAIL The-
sis Series, the Netherlands

Agusdinata, D.B.Exploratory Modeling and Analysis. A promising method taldeith
deep uncertaintyl2008/17, December 2008, TRAIL Thesis Series, the Nethdda

Kreutzberger, E.The Innovation of Intermodal Rail Freight Bundling Netwsit Europe.
Concepts, Developments, Performandex)08/16, December 2008, TRAIL Thesis Series,
the Netherlands

Taale, H. Integrated Anticipatory Control of Road Networks. A gamestietical approach
T2008/15, December 2008, TRAIL Thesis Series, the Nethdda

Li, M., Robustness Analysis for Road Networks. A framework wittbitwd DTA models,
T2008/14, December 2008, TRAIL Thesis Series, the Nethdda

Yu, M., Enhancing Warehouse Performance by Efficient Order Picki2§08/13, October
2008, TRAIL Thesis Series, the Netherlands

Liu, H., Travel Time Prediction for Urban Network$2008/12, October 2008, TRAIL The-
sis Series, the Netherlands

Kaa, E.J. van deExtended Prospect Theory. Findings on Choice Behavioun fizo-
nomics and the Behavioural Sciences and their Relevanckdwel BehaviourT2008/11,
October 2008, TRAIL Thesis Series, the Netherlands

Nijland, H., Theory and Practice of the Assessment and Valuation of NimiseRoads and
Railroads in EuropeT2008/10, September 2008, TRAIL Thesis Series, the Nethdd

Annema, J.A.The Practice of Forward-Looking Transport Policy AssessitudiesT2008/9,
September 2008, TRAIL Thesis Series, the Netherlands

Ossen, S.J.LTheory and Empirics of Longitudinal Driving Behavi®d2008/8, September
2008, TRAIL Thesis Series, the Netherlands

Tu, H.,Monitoring Travel Time Reliability on FreewayE2008/7, April 2008, TRAIL The-
sis Series, the Netherlands

D’Ariano, A., Improving Real-Time Train Dispatching: Models, Algorithmand Applica-
tions, T2008/6, April 2008, TRAIL Thesis Series, the Netherlands

Quak, H.J.Sustainability of Urban Freight Transport. Retail Distition and Local Regu-
lations in Cities T2008/5, March 2008, TRAIL Thesis Series, the Netherlands

Hegeman, G.Assisted Overtaking. An assessment of overtaking on ta@+laral roads,
T2008/4, February 2008, TRAIL Thesis Series, the Netheldan

Katwijk, R.T. van, Multi-Agent Look-ahead Traffic Adaptive Contrdi2008/3, January
2008, TRAIL Thesis Series, the Netherlands



	Introduction
	Motivation
	Framework and scope of the thesis
	Research overview
	Main contributions
	Thesis outline

	Optimal and model predictive control
	Optimal control
	Theoretical framework
	Numerical optimization algorithms
	Advantages and issues

	Model predictive control
	Centralized MPC
	Decentralized MPC
	Distributed MPC
	Hierarchical MPC

	Summary

	Postal automation
	State-of-the-art solutions
	Process description
	Current issues

	New design
	Event-based model
	Assumptions
	Model

	Constraints and control objective
	Control methods
	Optimal control
	Centralized MPC

	Case study
	Scenarios
	Results
	Discussion
	Influence of structural changes

	Summary

	Baggage handling
	State-of-the-art solutions
	Process description
	Control problems

	Event-based model
	Assumptions
	Model

	Constraints and control objective
	Control methods
	Optimal control
	Centralized MPC
	Decentralized MPC
	Distributed MPC
	MPC with mixed-integer linear programming
	Decentralized heuristic approach
	Distributed heuristic approach
	Hierarchical control

	Experimental results
	Optimal control versus model predictive control
	Centralized, decentralized, and distributed control approaches
	Switch control using mixed integer linear programming
	Route choice control using a hierarchical control framework

	Summary

	Conclusions and future research directions
	Summary and conclusions
	Main contributions
	Open problems and recommendations for future research

	Bibliography
	Glossary
	Samenvatting
	Summary
	Curriculum vitae
	TRAIL Thesis Series

