
Ant Colony Optimization
for Control

Jelmer van Ast

Cover illustration: Alex Wild
Cover design: Kim van Wijk & Jelmer van Ast

Ant Colony Optimization
for Control

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 14 september 2010 om 15:00 uur
door

Jelmer Marinus VAN AST

elektrotechnisch ingenieur,
geboren te Oud-Beijerland.

Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr. R. Babuška, M.Sc.
Prof.dr.ir. B. De Schutter

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr. R. Babuška, M.Sc. Technische Universiteit Delft, promotor
Prof.dr.ir. B. De Schutter Technische Universiteit Delft, promotor
Prof.dr.ir. F.C.A. Groen Universiteit van Amsterdam
Prof.dr.drs. L.J.M. Rothkrantz Nederlandse Defensie Academie &

Technische Universiteit Delft
Prof.dr.ir. H. Bersini Université Libre de Bruxelles
Prof.dr.ir. A. van Keulen Technische Universiteit Delft
Prof.dr.ir. G. van Straten Wageningen University
Prof.dr.ir. J. Hellendoorn Technische Universiteit Delft (reservelid)

This thesis has been completed in partial fulfillment of the requirements of the Dutch Institute
for Systems and Control (DISC) for graduate studies. The research described in this thesis
was financially supported by Senter, Ministry of Economic Affairs of the Netherlands within
the BSIK-ICIS project “Self-Organizing Moving Agents” (grant no. BSIK03024).

Published and distributed by: Jelmer van Ast
E-mail: jelmer@vanast.info
Web: http://www.vanast.info

ISBN 978-90-9025609-2

Copyright © 2010 by Jelmer van Ast

All rights reserved. No part of the material protected by this copyright notice may be re-
produced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording or by any information storage and retrieval system, without written
permission of the author.

Printed in the Netherlands

Acknowledgments

During the last four to five years, I have enjoyed advising M.Sc. students, assisting in lectur-
ing courses, but first and foremost doing research with a great deal of independence. There
are quite a few people to whom I owe a great deal of gratitude.

I would first and foremost like to thank Robert and Bart for their tireless support and
guidance. Robert, it has been an honor and a pleasure working with you. Since the first
lecture of yours that I attended in my third year, I knew that you would be the ideal mentor for
me. Your enthusiasm, constructive criticism, and willingness to make time for me whenever
I needed it, has been a great inspiration to me. You have been an example to me and helped
define the way I try to interact with other people. Thank you for the trust you put in me when
assisting you in your lectures. Bart, thank you so much for your very detailed feedback on
almost anything I wrote. It is because of you that I have always tried to do the very same with
the students I advised and papers I reviewed. Your great mathematical insight has helped me
a lot in the theoretical part of my work and you have been a very kind and supportive listener
during the tough moments of the last years.

Mom and Dad, thanks for your unconditional support and belief in me. Your constant faith
that I will do well has backed me up a lot. Manja, being with you is always great fun. You
have constantly supported me and I could not have wished for a nicer sister. Duncan, my dear
friend, thank you for keeping me sane and creative. Discussing theatrical plots and writing
plays has always been joyful and stress-relieving. Mathieu, thank you for the inspirational
discussions we so frequently have. I look forward to working towards our shared vision.

I would like to thank my many colleagues, with whom it was a great pleasure to chat
and have fun during lunch, coffee breaks, and after-work hours. I especially like to thank
Diederick for the many moments we shared our thoughts and experiences, Kamana for the
great meals we had together, Justin for the many insights you gave me on the most widespread
issues, and Eric for the great fun it is with you around. Lucian and Zsófia, it was nice working
in the same project. You always made time for me and helped me a lot with your experience.

I am grateful to my colleagues at the Interactive Collaborative Information Systems project
who provided me with good feedback on my work. I also thank my committee members,
Frans Groen, Léon Rothkrantz, Hugues Bersini, Fred van Keulen, Gerrit van Straten, Hans
Hellendoorn, and of course Robert and Bart for the valuable feedback on my thesis and the
good discussions we had about it.

To all my friends, family, and colleagues that I did not explicitly mention, thank you for
the many ways in which I enjoyed your company and your support.

Jelmer van Ast
July 2010, Delft

v

vi

Contents

1 Introduction 1
1.1 Swarm Intelligence and Ant Colony Optimization 1
1.2 Ant Colony Learning . 2
1.3 Research Focus and Contributions . 3

1.3.1 Ant Colony Learning Framework 3
1.3.2 ACL in Continuous State Spaces . 4
1.3.3 Generalization of the ACL Framework 5

1.4 Thesis Outline . 5

2 Ant Colony Optimization 7
2.1 Introduction . 7
2.2 Swarm Intelligence . 7

2.2.1 Collective Behavior in Nature . 8
2.2.2 Principles of Swarm Intelligence in Engineering 10

2.3 Ant Colonies . 12
2.3.1 Ants in Nature . 12
2.3.2 Double Bridge Experiment . 14

2.4 ACO Metaheuristic . 17
2.4.1 Combinatorial Optimization Problems 17
2.4.2 Framework for ACO Algorithms . 18
2.4.3 Relation to Real Ants . 19

2.5 ACO Algorithms . 19
2.5.1 Ant System . 20
2.5.2 Ant Colony System . 21

2.6 Convergence Results . 22
2.7 Applications of ACO . 25
2.8 Concluding Remarks . 25

3 Ant Colony Learning Framework 27
3.1 Introduction . 27
3.2 Optimal Control Setting . 28

3.2.1 Optimal Policy Learning Problem 28
3.2.2 Markov Decision Processes . 29

3.3 Ant Colony Learning for Optimal Control 30
3.3.1 Action Selection . 31

vii

3.3.2 Local Pheromone Update . 32
3.3.3 Global Pheromone Update . 33
3.3.4 Control Policy . 33
3.3.5 ACL Algorithm . 34

3.4 Convergence Analysis . 35
3.4.1 Definition of Convergence . 35
3.4.2 Assumptions . 37
3.4.3 Total Pheromone Update . 37
3.4.4 Lower Bound on the State-Action Selection Probability 39
3.4.5 Bounds on the Pheromone Levels 40
3.4.6 Bounds on the Expected Value of the Pheromone Levels 42
3.4.7 Convergence of the Expected Value of the Pheromone Levels 47
3.4.8 Convergence of the Policy . 50
3.4.9 Convergence of the Policy for the Complete State Space 54
3.4.10 Remarks . 54

3.5 Related Methods . 55
3.5.1 Dynamic Programming . 56
3.5.2 Q-Learning . 57
3.5.3 Relation to ACL . 58

3.6 Experiments: Grid Search . 60
3.6.1 Performance Measures . 60
3.6.2 1-D Grid Search . 61
3.6.3 Varying Global Pheromone Decay Rate 62
3.6.4 Varying Local Pheromone Decay Rate 63
3.6.5 Varying Number of Ants . 64
3.6.6 2-D Grid Search . 64
3.6.7 Varying State-Transition Probability 64
3.6.8 2-D Grid Search: Varying State Space Size 66

3.7 Concluding Remarks . 68

4 Ant Colony Learning in Continuous State Spaces 69
4.1 Introduction . 69
4.2 ACL with Crisp State Space Partitioning . 70

4.2.1 State Space Partitioning . 70
4.2.2 Crisp ACL Algorithm . 72

4.3 ACL with Fuzzy State Space Partitioning 75
4.3.1 State Space Partitioning . 75
4.3.2 Fuzzy ACL Algorithm . 77

4.4 Analysis of the Generalized Pheromone Update 81
4.4.1 Serial Execution of the Pheromone Update Rules 81
4.4.2 Total Pheromone Update . 82
4.4.3 Lower Bound on the Pheromone Levels 82

4.5 Experiments: 2D Navigation with Variable Damping 83
4.5.1 Problem Formulation . 83
4.5.2 Regular Partitioning and Quadratic Cost Function 84
4.5.3 Non-Regular Partitioning and Time-Spent Cost Function 89

viii

4.6 Concluding Remarks . 93

5 Simulation Experiments 95
5.1 Introduction . 95
5.2 Pendulum Swing-Up and Stabilization . 95

5.2.1 Problem Formulation . 96
5.2.2 Set-Up of the Experiments . 97

5.3 Results . 99
5.3.1 Global Pheromone Decay Rate . 99
5.3.2 Local Pheromone Decay Rate . 103
5.3.3 Number of Ants . 107
5.3.4 State Space Partitioning . 110

5.4 Concluding Remarks . 112

6 Generalization of the ACL Framework 115
6.1 Introduction . 115
6.2 Modeling Framework for Swarms of Moving Agents 115

6.2.1 Particles . 117
6.2.2 Dynamic Agents . 117
6.2.3 Moving Agents . 119
6.2.4 Process . 119
6.2.5 Environment . 119
6.2.6 Communication and Interaction . 120
6.2.7 Swarms . 121

6.3 Relation to the State of the Art . 121
6.3.1 Ant Colony Learning . 121
6.3.2 Particle Swarm Optimization . 122
6.3.3 Swarm Aggregation by Potential Functions 124

6.4 Concluding Remarks . 124

7 Conclusions and Recommendations 127
7.1 Summary of Contributions . 127
7.2 Main Conclusions . 129
7.3 Open Issues and Directions for Future Research 130

Bibliography 135

Glossary 141

Summary 145

Samenvatting 147

Curriculum Vitae 149

ix

x

Chapter 1

Introduction

This chapter introduces swarm intelligence, ant colony optimization, and the subject of this
thesis: ant colony optimization for control. This thesis in particular focuses on control policy
learning and the main achievement is the development of the ant colony learning algorithm.
This chapter describes the contributions and also presents the outline of this thesis.

1.1 Swarm Intelligence and Ant Colony Optimization

Nature harbors a wide variety of intelligent species. Humans tend to believe that they embody
the ultimate form of intelligence, but generally speaking they also agree that more creatures
can be labeled intelligent to some extent. In their habitat, animals and humans share the
ability to respond to inputs from their surroundings, explore their environment, memorize
information, and learn from events. These abilities constitute what we will call intelligent
behavior.

Scientists have long been trying to mimic this intelligent behavior, leading to the estab-
lishment of Artificial Intelligence (AI). This field has given rise to a variety of algorithms
and hardware capable of behaving intelligently. In analogy to natural intelligence, this in-
cludes responding to sensory inputs, exploring different behaviors, storing information in
memory, and even learning from the outcome of actions. The field of AI has become very
broad, including research in symbolic reasoning, pattern recognition, and computer vision.
Other research aims at mimicking processes fundamental to human intelligence, like neural
networks (simulating brain functions), genetic algorithms (simulating evolution by natural se-
lection), (fuzzy) expert systems (reasoning with linguistic terms), and reinforcement learning
(simulating learning from experience).

There exists another form of natural intelligence, which is even much more present in our
world. This form is called swarm intelligence and entails the intelligent behavior of groups
of individuals that may in themselves have only a very limited intellectual capacity. A good
example is the behavior of ant colonies. While individual ants have only very limited capabil-
ities of sensing their environment, making decisions, and storing information, the colony as
a whole is very capable in these respects. Seen from a distance, the colony almost acts as one
organism searching its environment for food with its many sensors, storing information in its
structure and in the chemical patterns inside and surrounding it. Changes in the environment

1

CHAPTER 1. INTRODUCTION

are observed by the colony and its behavior even adapts to such changes.
Like other forms of natural intelligence, swarm intelligence has also been subject to in-

tense study by the AI community. Initially, biologists and computer scientists have teamed up
to model the behavior of ants and other species known to demonstrate swarm intelligence. In
the case of ants, most famous is the double bridge experiment (Deneubourg et al., 1990), in
which ants forage for food and must choose between two branches of a bridge. This experi-
ment has demonstrated that ants find shortest paths in a distributed manner by communicating
through chemical trails, called pheromone trails. A shorter path results in a faster accumu-
lation of pheromones, which biases other ants to choose that same path as well. This very
simple form of positive feedback is the very basis of their success as a species.

After the publication of the results of the double bridge experiments, it did not take long
before Dorigo (1992) realized that the problem of finding shortest paths, which ants had so
elegantly solved, was related to many very difficult problems in computer science, namely
those known as combinatorial optimization problems. Perhaps the most well known example
of such a problem is the traveling salesman problem, for which the goal is to find the shortest
tour in a graph, visiting all nodes exactly once and finishing in the starting node. The time
and resources required to find the solution to such a problem are generally believed to grow
exponentially for a linearly increasing number of nodes in the graph. The class of algorithms
that Dorigo introduced is called Ant Colony Optimization (ACO) and has proven to be very
successful in solving a wide variety of combinatorial optimization problems.

1.2 Ant Colony Learning
The basis of this thesis is the idea that the principles behind ACO can be applied to another
class of problems, namely that of automatic control. We consider automatic control systems
that control the state of a dynamic system to a certain reference value. The speed, accuracy,
and robustness of a controller usually determine its performance. It can be very difficult
to design a good controller, especially in the case that the dynamics of the system to be
controlled are unknown, or uncertain. An established method to learn control policies in
such cases is Reinforcement Learning (RL). In RL, the controller is usually called the agent
and the system to be controlled is usually called the environment. By interacting with the
environment and receiving rewards for its actions, the agent learns to effectively operate in the
environment and to maximize the (discounted) sum of rewards. As an example, consider an
agent that must find the shortest path to the exit in a maze. If the agent receives, for instance,
a reward of minus one for each action that does not bring it to the exit directly and a reward of
plus one for an action that does, maximizing the cumulated reward corresponds to mapping
the states of the maze to the actions that take the agent to the exit as fast as possible. The
mapping from states to actions is called the control policy. In this thesis, we develop novel
algorithms for control policy learning based on the collective behavior of multiple agents.
In the example of the maze, one can now imagine a collection of agents (called ants) that
act in the maze at the same time, communicating their experiences by means of modifying
pheromone levels. We call these algorithms Ant Colony Learning (ACL).

The main challenge in ACL is the representation of the state space. In the example of the
maze, we implicitly assume that it consists of a finite number of discrete states, like squares
on a chessboard. However, in most control problems, the state space is continuous. Still, in
a computer program, the states must be represented in a discrete manner. In this thesis, we

2

1.3. RESEARCH FOCUS AND CONTRIBUTIONS

develop two versions of ACL. In the first version, the continuous state space is simply parti-
tioned with a finite number of bins, and a continuous-valued state can only be discretized to
one bin. This version of ACL is called crisp ACL. It is a relatively straightforward extension
of the ACL framework, but comes with the disadvantage that the crisp way of discretization
introduces non-determinism in the learning problem, limiting the performance of the algo-
rithm. Moreover, increasing the number of bins (to reduce the non-determinism) quickly
increases the number of state-action pairs that must be sampled by the ants, and thus also in-
creases the time and memory required to find the optimal control policy. The second version
is called fuzzy ACL, which is a more elaborate extension of the ACL framework. Here, the
state space is represented by membership functions, thereby preserving the continuity of the
state values. This thesis introduces the ACL framework and both algorithms and investigates
their performance both analytically and through computer experiments.

1.3 Research Focus and Contributions
The main purpose of the research presented in this thesis is to develop efficient algorithms
for control policy learning, based on the swarm intelligence properties of ACO algorithms.
Accordingly, we develop the ACL framework, in which the state-action space of a control
system is sampled by a collection of ants. ACL allows for a parallel implementation of the
ants, which has the potential to speed up the learning considerably.

The ACL framework requires the state-action space of the control system to be repre-
sented by a set of discrete values. However, most real-world control problems have state
variables that are continuous-valued. Therefore, an important focus of this thesis is to de-
velop ACL algorithms that effectively represent the state space of the control system with
discrete variables, while sampling from the continuous state space of the system that must
be controlled. In this thesis, we analyze the properties of the framework and the algorithms
both theoretically and through a number of experimental studies. This thesis also presents a
generalization of the ACL framework in order to put ACL in the context of other swarm in-
telligence techniques, such as Particle Swarm Optimization (PSO) and the control of swarms
of moving agents.

The main contributions of this thesis are:

• The development and theoretical analysis of the ACL framework for control problems
characterized by discrete state spaces.

• The extension of the ACL framework to control problems with continuous state spaces
by the development of two algorithms, which are called crisp ACL and fuzzy ACL.

• The generalization of the ACL framework in order to relate it to other swarm intelli-
gence techniques.

These contributions are further specified in the remainder of this section.

1.3.1 Ant Colony Learning Framework
The major contribution of Chapter 3 is the introduction of the ACL framework. It is based
on the collective learning of control policies by a set of ants. We consider control policies as

3

CHAPTER 1. INTRODUCTION

mappings from states to actions, and thus as state-feedback controllers. The optimal policy
controls the system from any initial state to a desired goal state, thereby minimizing a given
cost function. The framework, as presented here, requires the control problem to have a dis-
crete state space. A pheromone matrix is associated with all possible state-action pairs in the
system, and at the start of the algorithm, its elements are initialized to a small positive value.
In short, each ant is initialized in a certain state, chooses an action based on the pheromone
matrix, and uses the action as an input to the system. The system then responds by changing
its state, which is observed by the ant. This process continues until the ant either reaches the
goal state, or is timed out. The state-action pairs visited form the solution, which is evalu-
ated with respect to a cost function, based on which the pheromone matrix is updated. As
better solutions lead to higher pheromone levels associated with the respective state-action
pairs, these become more likely to be chosen by the ants again. Other contributions of this
chapter involve a theoretical study of the behavior of the ACL algorithm, as well as an exper-
imental study of the effect of various learning parameters on the performance of ACL. The
ACL framework has first been published in (van Ast et al., 2008a) and has been subsequently
refined in (van Ast et al., 2009b) and (van Ast et al., 2010a).

1.3.2 ACL in Continuous State Spaces

The main contribution of Chapter 4 is the development of two ACL algorithms for the control
policy learning of continuous-state dynamic systems. The partitioning of the state space is a
crucial aspect for ACL and the two ACL versions are presented with respect to this. In crisp
ACL, the state space is partitioned using bins, such that each value of the state maps to exactly
one bin. Fuzzy ACL, on the other hand, uses a partitioning of the state space with membership
functions. In this case, each value of the state maps to the membership functions to a certain
membership degree. Both ACL algorithms are extensions of the ACL framework, presented
in Chapter 3. The other contribution of this chapter involves an experimental analysis of
both crisp and fuzzy ACL by their application to the non-linear control problem of two-
dimensional navigation with variable damping. Both algorithms are compared with respect
to the learning speed, the quality of the learned policies, and the repetitiveness of the results
over various runs of the algorithms. Crisp ACL has first appeared in (van Ast et al., 2008a)
and has been refined in (van Ast et al., 2009b). Fuzzy ACL has been originally published in
(van Ast et al., 2009a). The generalized pheromone update unifying crisp and fuzzy ACL has
been introduced in (van Ast et al., 2010a) and has been refined in (van Ast et al., 2010b).

The contribution of Chapter 5 is the thorough experimental analysis of both ACL algo-
rithms. We perform a number of experiments in which we study the behavior of ACL in
various scenarios. The system used in all experiments is the inverted pendulum with limited
input, for which the control goal is to swing it up from any initial state and to stabilize it in
its unstable equilibrium. With the experiments, we study the influence of the global and local
pheromone decay rates, the number of ants, and the density of the state space partitioning
grid on the learning performance. Parts of this chapter have been published in (van Ast et al.,
2009b) and in (van Ast et al., 2010b).

4

1.4. THESIS OUTLINE

1.3.3 Generalization of the ACL Framework

ACL can be seen as being part of a much larger class of moving agent optimization and
control algorithms. The contribution of Chapter 6 is the introduction of a general modeling
framework for swarms of moving agents. It provides a better insight into the structure of
swarm systems. The framework separately models the physical behavior of the swarm mem-
bers and their decision making capabilities. This facilitates the integration of current swarm
intelligence research, which focuses mainly on the physical behavior of the swarm members,
with research on more sophisticated decision making in dynamic agent systems and AI. The
proposed framework aims to integrate both fields to enable the development and analysis of
more sophisticated swarm systems. It has been originally published in (van Ast et al., 2008b).

We relate ACL as well as two of the most established methods from the swarm commu-
nity, namely Particle Swarm Optimization (PSO) and artificial potential functions for swarm
aggregation to the proposed framework. Although ACL is a cooperative learning method,
PSO is an optimization method, and swarm aggregation is a control problem, it is demon-
strated how these methods can all be decomposed into similar elements and captured within
one common framework. We have published a survey about particle swarms in optimization
and control in (van Ast et al., 2008c). A general introduction to swarm intelligence has been
published in (van Ast, 2010).

1.4 Thesis Outline

A graphical roadmap depicting the organization of this thesis is presented in Figure 1.1. The
recommended order of reading is indicated with arrows. Chapter 6, presenting the gener-
alization of the ACL framework, can be read separately from the chapters dealing with the
implementation and experimental analysis of ACL.

Chapter 1.
Introduction

Chapter 2.
Ant Colony Optimization

Chapter 3.
Ant Colony Learning

Framework

Chapter 4.
Ant Colony Learning in
Continuous State Spaces

Chapter 6.
Generalization of the

ACL Framework

Chapter 5.
Experimental Analysis

Chapter 7.
Conclusions

Figure 1.1: A roadmap of the thesis. The arrows indicate the recommended order of reading.

5

CHAPTER 1. INTRODUCTION

The main concepts of swarm intelligence and ant colony optimization are presented in
Chapter 2. The first part of this chapter is a general introduction to swarm intelligence in
an engineering setting. The second part focuses entirely on ACO. First, the behavior of
real ants is discussed, as well as the modeling of this behavior by means of the double bridge
experiments. Then, the ACO framework and the implementation of two important algorithms,
the Ant System and the Ant Colony System are presented. This chapter provides the required
background for understanding the remainder of the thesis. In Chapter 3, the ACL framework
is presented. It defines the optimal control setting and discusses in what way the elements
that constitute ACO algorithms need to be modified in order to be used in the state-action
framework. A theoretical analysis of its convergence properties is presented and various
experiments are carried out in order to study its performance. Chapter 4 presents ACL in
the continuous domain by introducing the crisp and fuzzy ACL algorithms and studying their
performance on a non-linear control problem with a continuous-valued state. In Chapter 5, a
more thorough experimental analysis is carried out, comparing both algorithms for a variety
of scenarios. The generalization of ACL to the moving agents framework is the subject of
Chapter 6. Chapter 7 concludes this thesis and presents an overview of recommendations for
future research.

6

Chapter 2

Ant Colony Optimization

This chapter provides the necessary background for the remaining chapters of this thesis. It
presents a discussion about swarm intelligence, its occurrence in nature, and its application
in engineering and computer science. The current chapter also presents an introduction to ant
colony optimization and discusses its convergence properties and its applications.

2.1 Introduction

Since its introduction, in the PhD thesis of Dorigo (1992), the field of Ant Colony Opti-
mization (ACO) has grown enormously. Especially with the publication of the Ant System
(AS) by Dorigo et al. (1996) and the Ant Colony System (ACS) by Dorigo and Gambardella
(1997), ACO has developed into one of the two most studied and applied swarm intelligence
methods, alongside Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995). The
ACO metaheuristic forms a class of nature-inspired optimization algorithms, particularly in-
spired by the mechanism for finding shortest paths between sources of food and the nest in
colonies of ants. This mechanism is entirely based on the self-organization of relatively sim-
ple individuals. In this chapter, we introduce the basic concepts of swarm intelligence and
self-organization in both a biological context and in an engineering context. In particular, we
present a more detailed description of the behavior of ants in a colony, the famous double
bridge experiment that has resulted in the first local model of ant decision making being able
to reproduce global ant colony behavior, and finally ACO itself. The ACO framework, in-
cluding the details on the AS, the ACS, and a convergence proof for a special class of ACO
algorithms are especially important for the understanding of the subsequent chapters.

2.2 Swarm Intelligence

Swarm intelligence is an exciting and relatively new field within artificial intelligence and
specifically studies intelligent behavior emerging from the collective behavior of a set of in-
dividuals. More specifically, researchers in the field of swarm intelligence study and develop
algorithms and hardware (robots) based on the principles of this collective behavior. The
emergent behavior is often regarded as intelligent, as it appears not to be directly encoded

7

CHAPTER 2. ANT COLONY OPTIMIZATION

by the developer. It is however a property of the swarm resulting from the interaction of its
individual members. This section first discusses in more detail the original inspiration for
swarm intelligence: natural swarms. We then informally define what constitutes a swarm and
in which ways the principles behind it can be applied to engineering sciences. This is impor-
tant in order to place the whole concept of ant-based algorithms, which will be discussed in
the subsequent sections of this chapter, in the right perspective.

2.2.1 Collective Behavior in Nature

The main mechanism for swarm intelligence is that the collective behavior of the individuals
in a swarm benefits the survival or reproduction of these individuals. Examples of swarms
in nature are numerous and include flocks of birds, schools of fish, clouds of insects, herds
of antelopes, groups of humans, and some say even the cells in a body. This latter example
is not as strange as it might seem when we realize how on a larger scale, swarms seem to
behave like a single organism.

It is important to realize that what constitutes a swarm is a subjective issue. Amongst
several reasons, this is caused by the question of how many individuals it takes to get a
swarm? For sure it takes more than one, but do two constitute swarm? Even with two
individuals, some emergent global behavior may occur from the interactions of the two. But
we tend to call something a swarm only if there are “a lot” of members. Like hundreds of
birds, or thousands of flies. Furthermore, we tend to think of a swarm as containing “small”
individuals. A cloud of mosquitoes clearly is a swarm. But how about humans? Walking
from the train to the bus, one may not feel like being part of a swarm, but from the top of a
tall building next to the station, one is likely to compare all these people on their way to their
jobs to a swarm of ants. And how about stars in the sky? From some telescope images one
may indeed look at them circling around the center of the milky-way in a swarm-like manner.
But is this really a swarm?

Let us aim for an informal definition, or classification of a swarm:

• There must be “enough” of them, but at least two or more.

• Size does not matter. A swarm of tiny individuals is just as much of a swarm, as a
swarm of huge individuals.

• The individuals must be able to communicate, or at least influence each other, when
being within a certain range of each other.

• There must be a certain level of cohesiveness: the communication topology of the in-
dividuals must be connected, such that information in principle can propagate through
the swarm. If a portion of the swarm gets disconnected from the rest, we would rather
regard it as two swarms.

• There must be some kind of movement: birds in tree tops are just a group of birds.
Once they all fly up, triggered by a few that noticed some potential threat, we speak of
them as a swarm.

• Each individual must be able to receive input in whatever form from the environment
(including the others of its kind), and must be able to act. The mapping between the

8

2.2. SWARM INTELLIGENCE

input and the action may be of any kind, but it is highly responsible for the characteris-
tics (the behavior) of the swarm. For example, if it causes all individuals to spread out
far away from each other, the swarm would not satisfy the cohesiveness requirement:
it will dissolve. As an other example, if this mapping causes all individuals to stall
and become unresponsive, there is not much of a swarm left either, as it violates the
movement criterion.

Only if a set of individuals comply with all these requirements, we can call it a swarm.

Swarms emerge from the interactions of their members, so to speak. The behavior of the
individuals is encoded in their DNA and possibly also in their memory, dictating the (possibly
probabilistic) mapping of their inputs and current state to their actions. The behavior of the
swarm is encoded in its members and in the interaction between them. On a micro scale,
the swarm behaves chaotically: although the response of the individuals to inputs and their
interactions might be deterministic, their exact motion in the swarm may be very different for
tiny variations in their initial states. This chaotic behavior occurs even though the behavior of
the individuals is very simple. Fortunately, studying the swarm on a micro scale is of limited
interest to us, as will be argued below. What is much more interesting, and fascinating, to
most people is that a swarm may often look like a single organism. The individuals seem to
act as one. A flock of birds that fly up from the trees seems to steer through the sky, sometimes
expanding in size, and sometimes shrinking to a small and condensed unity. Figure 2.1(a)
shows this fascinating phenomenon.

(a) A large number of birds that collectively fly up from
trees behave as a flock. © Alastair Rae. Reprinted un-
der the Creative Commons license.

(b) A school of fish forms a cohesive swarm. © Tammy
Peluso. Reprinted with permission.

Figure 2.1: Two examples of swarming in nature: a flock of birds and a school of fish.

These global characteristics of the swarm seem to exhibit much more order than the be-
havior on the scale of the individuals. While it would be nearly impossible to describe and
predict the motion of the individuals in the swarm, doing the same on the macro scale is much
more feasible. The magic of swarms lies in the simple set of rules dictating the behavior of
each swarm member, inducing complex and seemingly disordered behavior from the interac-
tion of the members on a micro scale, but producing understandable and ordered behavior of
the swarm on a macro scale.

The level of the chaotic behavior on a micro scale differs for different types of swarms.
For example, in a school of fish, the individual fish may move through the school, but from a

9

CHAPTER 2. ANT COLONY OPTIMIZATION

global perspective the swarm may be like a ball-shaped single organism moving through the
water1. A v-shaped flock of birds, however, is ordered on a micro scale as well. The point is
also that we are not overly interested in the exact behavior of the individuals in the swarm.
Whether it is one particular member that make a sudden move, inducing a movement of the
whole swarm to the left, or it is another one does not really matter. The global behavior is the
same.

From the previous discussion it becomes clear that the key concepts in swarm intelligence
are emergent behavior and self-organization. The apparent mismatch between the vagueness
of these concepts and the exact areas like control engineering, computer science, and algo-
rithm design to which the principles of swarm intelligence are applied causes a lot of dispute
amongst researchers. These terms seem to imply that there is something literally magical
about the process of achieving ordered behavior on a global level, from apparent disordered
behavior on a local level. The word “seemingly” is important here, and pinpoints the exact
reason for the dispute over the two mentioned terms. As the global behavior follows logically
and deterministically from a well-defined set of local rules, there is nothing magical about
this. However, understanding, describing, or predicting the exact behavior of the individuals
is often very difficult, or at least computationally intensive. The resulting behavior is there-
fore often regarded as something magical. To call the behavior emergent just means that it
resulted from a seemingly disordered process: it facilitates discussion.

We have so far implicitly assumed that all individuals are the same, being in fact all
copies of each other, only initialized differently. We call such swarms homogeneous. On
the other hand, if one or more individuals are different from the rest, the swarm is called
heterogeneous. Most swarms in nature are more or less homogeneous. However, with some
types of insects, for instance with ants, the individuals may be different from each other in
both physical characteristics, as well as in their function within the swarm. The soldier ants
are much stronger than the workers (all female), and they are both different from the males,
whose only task is to inseminate the queen. The workers may have different tasks, and also
switch between these tasks; some are occupied with building the nest, some with nurturing
the larvae, and some with foraging food. If a substantial source of food is found, other worker
ants are recruited to switch to foraging. If the nest has been damaged, other workers may be
recruited to help repair the nest. A colony of ants is thus a heterogeneous swarm, while a
school of fish is generally a homogeneous swarm.

2.2.2 Principles of Swarm Intelligence in Engineering

Why is all of this of interest to us? The reason is that exactly the same principles of swarm
intelligence in nature can be used in engineering swarms that can be of use to humans. The
principles of natural swarms may be translated to engineered swarms in that a swarm consists
of a set of cooperating autonomous individuals, called agents. These agents try to satisfy their
own objectives. Through communication and coordination, cooperation with other agents
leads to a better satisfaction of their individual objectives. Communication and interaction
are often limited to a certain range, so that cooperation between agents only takes place
locally. There is no supervisor or central controller and typically no hierarchical structure.

1With this behavior, the fish drive predators crazy, as a shark, for instance, does not know on which fish to focus
for it is incapable of seeing the big picture. This behavior is however not effective as a defense to all predators:
humans make good use of the swarming behavior of fish, catching whole schools at once with their nets.

10

2.2. SWARM INTELLIGENCE

Such engineered swarms will have certain advantages comparable to natural swarms, but in
the engineering domain. These advantages relate to scalability, robustness, flexibility, and
production costs. Scalability in this sense means that individuals may be added without
requiring more computational power in the others. The key factor here is that individuals
typically have a limited range of interaction, so that the introduction of a new individual only
directly influences the behavior of a few others and not that of the whole swarm. Indirectly
though, through the communication topology of the complete swarm, the new individual may
influence all the others, but this can only be achieved through a series of interactions between
others in the swarm. With respect to robustness, this limited range of interaction prevents
the malfunctioning or removal of a single individual from influencing the complete swarm
instantly. If well designed, the individuals within the range of the faulty one may compensate
for its malfunctioning behavior, or replace it completely by taking over its functionality. The
rest of the swarm will only be influenced in a much-reduced manner. Flexibility in the context
of swarms means that the swarm may adapt to different circumstances. A well-designed
robot swarm may in one situation spread out in order to explore an unknown territory, while
in another situation when they face a wide gap that a single individual would not be able to
cross, they may physically connect, helping each other to the other side of the gap (see also
Figure 2.2(b)). The fourth main advantage of engineered swarms is that when such a swarm
typically consists of many similar individuals, these may be produced in series, reducing the
cost per unit. These costs may already be quite low, as individuals in a swarm are typically
relatively simple and can sometimes even be built using cheap components, because of the
robustness property described earlier. Figure 2.2 shows two examples of engineered swarms
that are the state of the art in 2010.

(a) Artist impression of a swarm of Micro Air Vehi-
cles (SMAVs) capable of autonomously establishing
emergency wireless networks (SMAVNETs) between
multiple ground-users in a disaster area. From: the
SMAVNET project at EPFL, Lausanne, Switzerland.
© LIS, EPFL. Reprinted with permission.

(b) Swarm-bots forming a chain to bridge a gap,
which is too large for an individual to cross alone.
The SWARM-BOT project develops hardware for test-
ing and using the capability of self-assembling, self-
organizing, and metamorphosis of robotic systems at
ULB, Brussels, Belgium and EPFL, Lausanne, Switzer-
land. © LIS, EPFL. Reprinted with permission.

Figure 2.2: Two examples of projects aiming at engineering swarms: the SMAVNET project
at EPFL, Switzerland and the SWARMBOT project at ULB, Belgium.

The main difficulty in engineering swarms is, of course, that we must design the individu-
als and the specifics of their interaction in such a way that the resulting behavior on the global

11

CHAPTER 2. ANT COLONY OPTIMIZATION

level is as desired. This is a challenging difficulty and it is the central question in all research
on engineering swarm intelligence. It is however not the only difficulty. An important ques-
tion is how to mathematically guarantee performance. How to test a swarm and measure its
performance? How do delays in communication and errors propagate through a swarm, and
how does this influence the behavior? If the swarm is to converge in some sense, how to make
sure that it converges correctly and fast enough? And in case the swarm must not converge,
how to find the right balance between not converging and staying cohesive? How do external
influences (disturbances) affect the swarm? Some of these questions are also relevant to the
subfield of swarm intelligence to which we have contributed, namely that of optimization and
the learning of control policies.

There are a lot of opportunities for engineering swarms. One may think of a swarm
of satellites, dynamically optimizing their coverage for observing the earth, for providing
communication, or for global positioning. Other swarms of space vehicles could be deployed
to explore unknown regions of space, or planets. On Earth, a swarm of rescue robots could
be developed to rescue people in inaccessible places, such as in a tunnel filled with smoke.
In traffic, cars might be understood as swarm members and the overall performance of the
traffic network might be improved by self-organization of the vehicles. The engineering
of swarms, however, does not have to be limited to the physical world. Various classes of
swarm intelligence algorithms have been developed for solving various types of optimization
problems. In these problems, the swarms operate in a virtual world, called the optimization
or parameter space, in which their objective is to find the parameter values that optimize
a certain cost function. The most prevalent swarm intelligence optimization methods are
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). The latter is the
basis of our work and is introduced in the subsequent sections. The former is discussed in
more detail in Section 6.3.2.

2.3 Ant Colonies
The kinds of swarms we are most interested in for our research are ant colonies. The self-
organizing mechanisms at the foundation of the organization of each ant colony have enabled
them to be such evolutionary successful species. They have been present on the earth for
hundreds of millions of years and have covered most of the earth, except for Antarctica2. In
this section, we briefly outline the main characteristics of ant colonies and the experiments
that have resulted in the first models of ant behavior, with the purpose of showing the source
of inspiration that has led to ACO algorithms. The facts outlined in Section 2.3.1 can be
found in (Gordon, 1999) and the excellent web resource (Gordon, 2003).

2.3.1 Ants in Nature

An ant colony consists of a queen, male ants, and sterile female workers. A colony is founded
when a virgin queen and a couple of males, all with wings, leave the nest in search for a new
place to start a colony. The queen mates with the males, after which the males die and the
queen digs herself into the soil where she will start laying eggs for the rest of her life, which
may last for as long as 15 years. After the first eggs have turned into larvae, they will develop

2Despite its name ;-)

12

2.3. ANT COLONIES

into pupae and finally into adult female workers. These workers will perform all tasks in and
around the nest. For most of the 10 000 ant species in the world, these tasks can be subdivided
into foraging, patrolling, nest maintenance, and midden work. Foraging is the most important
task in the colony and consists of walking around in search for food and returning it to the
nest entrance. Other ants will then take this food and bring it inside the nest, mostly for
feeding the larvae. Patrolling ants are the first to leave the nest in the morning and determine
the trails along which the foragers will start searching for food. They do this by walking
away from the nest and leaving a trail of a chemical substance, called pheromones, on their
way back. The sole making it back of these ants is the indication that it is safe to explore
around that trail for food. Nest maintenance is the task of taking pieces of dirt from the nest
to the nest entrance and piling it into what is known as a midden, and to maintain the internal
structure of the nest. Midden workers take the midden from the nest entrance, mark it with
some chemical characteristic for this colony, and lay it down somewhere else. These heaps
of chemically marked refuse are marking the colonies territory and guiding ants belonging to
the colony back to the nest entrance. Furthermore, some specialized foraging ants may act as
soldier ants, attacking intruding ants from other colonies in order to protect the territory.

(a) Oecophylla longinoda workers encounter each
other on a tree branch and by quickly touching each
other with their antennae are informed about each oth-
ers task. © Alex Wild. Reprinted with permission.

(b) Argentine ants, introduced by human commerce
to California, attack a native Pogonomyrmex harvester
ant. Native ants in many places around the world have
disappeared in areas invaded by Argentine ants. © Alex
Wild. Reprinted with permission.

Figure 2.3: Two images of ants illustrating some of their behavior described in this section.

About 25% of the workers is working outside the nest, while another 25% is taking care
of the larvae inside the nest, and the remaining 50% is inside the nest and doing nothing.
They seem to wait for something to do and act as a buffer between the ants working outside
the nest and those feeding the larvae deep inside the nest. The buffer ants may be recruited
to work outside once the need for that arises. Ants performing a certain task carry a certain
task-specific odor from spending a lot of time close to each other. Ants touch each other when
they meet, sensing each others odor, and by the rate of these encounters they are believed to
be able to infer whether they should keep on doing the task they were doing, or change their
task. In this way, ants are capable of switching tasks on the basis of a dynamic need for
it. For instance, if a lot of food is found and being brought back to the nest, foraging ants
will focus on that trail leaving a lower density of foraging ants at other locations, thereby
inducing the tension in other ants to switch to foraging. It has turned out that not all switches
are possible. All types of workers may switch to foraging, while foraging ants will never

13

CHAPTER 2. ANT COLONY OPTIMIZATION

switch to doing other jobs. Nest maintenance workers may switch to patrolling as well, while
new nest maintenance ants can only be recruited from the buffer ants in the nest. In this way,
foraging ants are the sink in this network of switching tasks and the buffer ants inside the nest
act as a source of workers. As long as the queen is alive, she will keep on laying eggs from
the first insemination, and the colony will keep on growing in size. The size of the colony is
thereby a function of the age of the colony and reveals certain properties of the colony. For
instance, younger colonies are more adaptive to sudden changes around their nest, but tend
to focus on known good sources of food and will not explore much. On the other hand, older
colonies seem to adapt less to changes in their immediate surroundings and appear to be more
willing to take the risk of exploring more and further away from the nest.

The central aspect in ant colonies, which is especially interesting for the inspiration to
develop ant-based algorithms, is that the interaction between ants is taking place in large
numbers and that there is randomness involved in the interactions. The behavior of the indi-
vidual ants as a result of this seems to be very chaotic and not very effective. Gordon (2003)
mentions that she often feels the urge of helping the ants as they do not seem to be doing
a good job of doing something useful. However, the resulting behavior on a global level is
highly successful and predictable to a large extent. The behavior may not be perfect, but at
least very good, and with the additional benefits of flexibility, scalability, and robustness.

2.3.2 Double Bridge Experiment

Deneubourg et al. (1990) and Goss et al. (1989) have been the first to perform the famous
double bridge experiments in order to model the self-organizing behavior of foraging ants.
This model has later become the basis for the first ACO algorithms. We explain the double
bridge experiments, the fitted model, and the most important results such that the foundations
of ACO can be understood and the amazing self-organization principles in ant colonies can
be appreciated even better.

The first double bridge experiment was carried out by Deneubourg et al. (1990) and in-
volved the Argentine ant Iridomyrmex humilis, which was reclassified in the early 1990s to
the genus Linepithema, thereby changing its scientific name to Linepithema humile. The
workers of the Argentine ant are about 3 millimeters long with their queen being two to four
times this length. Although being native to Northern Argentine, Uruguay, Paraguay, and
Southern Brazil, they have spread over large parts of the world, mainly with Mediterranean
climates, including the United States, Europe, and Japan, with the aid of humans. This makes
them one of the most widespread invasive ant species (Tsutsui et al., 2001), often displacing
most, or all native ants. As such, they are widely considered to be a pest. Unlike most other
ant species, Argentine ants from distant locations still act non-aggressively when placed to-
gether. Amongst other findings, this has led to the belief that all Argentine ants in fact form
one single mega-colony. According to Walker (2009): “Whenever ants from the main Eu-
ropean and Californian super-colonies and those from the largest colony in Japan came into
contact, they acted as if they were old friends. These ants rubbed antennae with one another
and never became aggressive or tried to avoid one another. In short, they acted as if they all
belonged to the same colony, despite living on different continents separated by vast oceans.”.

What made the Argentine ant interesting for the double bridge experiments is that, unlike
most other ant species, they deposit pheromones not only when returning with food, but also
while advancing from the nest exploring new regions for finding food. In the setup discussed

14

2.3. ANT COLONIES

in (Deneubourg et al., 1990), there are two contained arenas, separated from each other, but
connected by a bridge. In one arena is the nest of Argentine ants, which can leave the arena
only by the bridge, leading them to the only entrance to the other arena, in which food is
located. The bridge, however has two branches, hence the name double bridge. A schematic
of this double bridge setup is shown in Figure 2.4(a). Both branches are at an angle of 60◦,
such that ants reaching the arena are likely to move on forwards, rather than returning directly
back on the other branch. The distance covered by the bridge was 15 cm. The width of each
branch is 1 cm. The bridge is covered with white sand, such that restarting the experiment
involves only replacing the sand with new (chemically unmarked) sand, and putting all ants
back in the nest. During the experiment, the number of ants on each bridge was counted in
3-minute intervals.

(a) Double bridge with branches of equal size. (b) Double bridge with branches of unequal size.

Figure 2.4: Schematic view of the setups used in the double bridge experiments from
(Deneubourg et al., 1989, 1990; Goss et al., 1989).

It was observed that initially, both branches were chosen by an equal number of ants.
However, as each ant leaves a pheromone trail continuously, and the level of pheromone in-
tensity influences the other ants in their decision of choosing the right, or the left branch, a
small difference between the pheromone intensities on the branches may result in the break-
ing of this symmetry. This positive feedback mechanism stimulates the ants to favor one of
the branches over the other, such that rapidly the vast majority of the ants will choose the
same branch. The hypothesis was that the decision making of the ants could be described by
the following probability function:

PA =
(C +NA)α

(C +NA)α + (C +NB)α
= 1− PB , (2.1)

where PA and PB are the probabilities that an ant will choose branch A and B respectively,
and where NA and NB represent the number of ants that have passed branch A and B re-
spectively after in total N = NA +NB ants have crossed the bridge. The parameters C and

15

CHAPTER 2. ANT COLONY OPTIMIZATION

α must be chosen such that the model matches the observed behavior. Note that this prob-
ability function does not directly include the pheromone values, but depends on the number
of crossings of a branch, which is assumed to be reflected by the pheromones. The evapora-
tion of pheromones is not modeled. In the case of the Argentine ants, the mean lifetime of a
pheromone is 30 minutes: much longer than it takes an ant to cross the bridge. The effect of
pheromone evaporation was thus neglected in the experiments. Through Monte Carlo simu-
lations on this model, the parameters α and C were fitted to the data, resulting in α ≈ 2 and
C ≈ 20. This was the first empirical proof that a simple probability rule, including only lo-
cal measures, was the underlying mechanism behind the self-organizing behavior of foraging
ants.

The second double bridge experiment, important for the eventual development of the first
ACO algorithms, was published by Goss et al. (1989) and involved branches of different
length. The setup was similar to the one from Deneubourg et al. (1989). The two branches
were connected to either end of the gap under an angle of 60◦ such that there would be no
preference of the ants for one of the branches by their initial angle. However, after a few
centimeters, one of the branches proceeded at a larger angle, resulting in that branch being
longer than the other. The setup is depicted in Figure 2.4(b). In fact, in the middle of the
bridge, the ants choose again between two branches, and now the longer and shorter branch
are swapped, such that possible preference of an ant of choosing left or right is canceled
out. Initially, the ants were equally likely to choose the longer, or the shorted branches.
However, the ants that had chosen the shorter branch reached the food sooner and on their
way back, the pheromone concentration on the shorter branches was somewhat stronger than
that on the longer branches. They were thus more likely to choose a shorter branch, further
adding to the pheromone concentration on that branch. Quickly, the pheromone difference
became considerable and effectively all ants kept choosing the shorter branches. Monte Carlo
simulations using the same probability function as in (2.1) were capable of reproducing these
results in silico. The self-organizing principles thus demonstrated that the global decision
problem of finding the shortest path can be solved on the basis of local information and a
large number of individuals. An additional observation was made when the shorter branches
were absent from the start of the experiment and introduced only later, when the ants had
already created a strong pheromone trail on the longer branches. The ants were found to be
incapable of switching to the shorter bridges. The Monte Carlo simulations confirmed this
behavior: with only depositing pheromones and without a significant evaporation, a resulting
strong trail is practically irreversible.

In (Deneubourg et al., 1990) the same researchers went one step further by modeling the
exploring and foraging behavior of ants in a two-dimensional arena by a sequence of binary
decision problems similar to choosing one of two branches in the double bridge experiments.
They found that with Argentine ants, the front of the exploring ants proceeds slowly, carefully
moving forward and branching out through the arena. The trails that they leave behind enable
other ants to make decisions more quickly, forming some sort of highways for ants. Once an
ant has found some food, it returns to the nest over these same trails, thereby reinforcing the
trails even more. The result is a pattern of branches, where successful exploration results in
strong trails leading to these food-rich regions, and in further exploration around these re-
gions. A second mechanism contributing to the increase in exploration and the reinforcement
of pheromone trails is the recruitment of new workers from the nest by the ants returning to
the nest and carrying food.

16

2.4. ACO METAHEURISTIC

In most ant species, foraging ants do not deposit pheromones on their way out of the
nest, or deposit much less pheromones. Also, the amount of pheromones deposited on the
way back may depend on the quality, or amount of food that has been found, thereby rein-
forcing the trails leading to better food sources even more. Note that with only depositing
pheromones on the way back to the nest, the self-organizing mechanism of finding shortest
paths still works. This forms the basis for ACO.

2.4 ACO Metaheuristic
The ACO metaheuristic has been developed to solve combinatorial optimization problems
(Dorigo and Blum, 2005). A metaheuristic is a set of algorithmic concepts that can be used to
define heuristic methods that can be applied to a wide set of different problems. The formal
definition of ACO is thus a very general one. In this section we will define the ACO meta-
heuristic (or framework) in a somewhat less general way, already tailored in some sense to
match the definition of our Ant Colony Learning (ACL) algorithm, which will be introduced
in Chapter 3. First, however, we will define what constitutes a combinatorial optimization
problem.

2.4.1 Combinatorial Optimization Problems
A combinatorial optimization problem can be represented as a tuple P = 〈S, F 〉, where S
is the solution space with s ∈ S a specific candidate solution and where F : S → (0,∞) is
a fitness function assigning strictly positive real values to candidate solutions, where higher
values correspond to better solutions. When we need to indicate a specific solution, we index
it with a subscript: si. The optimization problem is to find the solution s∗ ∈ S that globally
maximizes F . If there are more solutions that all maximize the fitness function, these are
denoted by the set S∗ ⊆ S . The solution s∗ is called an optimal solution and S∗ is called
the set of optimal solutions. A solution is an ordered set of solution components, of which
the optimal combination needs to be found, hence the name combinatorial optimization. If
we need to indicate a specific solution component, of a certain solution, we index it with a
superscript within parentheses: s(j)

i is the jth solution component of solution i.
Note that this definition is somewhat different from the definition in for instance (Dorigo

and Blum, 2005; Dorigo et al., 2006). It is simplified in order to avoid unnecessarily com-
plex notation and to avoid conflicts with the notation we will use in ACL. In the definition
used by Dorigo and Blum (2005), there is an additional set of constraints, constraining the
so called feasible set of solutions to those solutions from the solution space that satisfy these
constraints. Whenever we talk about a solution, we will imply that this is a feasible solu-
tion and that the solution space is defined for the specific problem at hand such that it only
contains feasible solutions. Furthermore, Dorigo and Blum (2005) make an explicit distinc-
tion between a decision variable and its value. For the sake of simplicity, we do not make
this distinction and it will be made clear from the context whether a solution si indicates the
variable, or its value.

There are many combinatorial optimization problems, but the most well known is the
Traveling Salesman Problem (TSP), which is also known as the Hamiltonian Path Problem.
In this problem, there is a set of cities connected by roads of different lengths and the problem
is to find the sequence of cities that takes the salesman to all cities, visiting each city exactly

17

CHAPTER 2. ANT COLONY OPTIMIZATION

once and bringing him back to the initial city with a minimum length of the tour. This problem
is known to belong to the NP-complete complexity class, essentially meaning that probably
there does not exist an efficient algorithm that can solve the TSP. In other words, the worst-
case time to find the optimal solution to the problem probably increases exponentially with
the number of cities in the TSP. The word “probably” is used here, because this is only the
case if P 6= NP , which is widely believed to be the case, but is still an open question in
mathematics. A more precise explanation of NP-completeness and the types of problems
that have been proven to belong to this class can be found in the classic work of Garey and
Johnson (1979). An example of a TSP is shown in Figure 2.5. The vertices in this example
represent 48 capital cities of the USA and the optimal tour has a length of 10 628 km (Reinelt,
1991).

0 2000 4000 6000 80000

1000

2000

3000

4000

5000

6000

x−coordinate [−]

y−
co

or
di

na
te

 [−
]

(a) The cities are the vertices of the construction graph.

0 2000 4000 6000 8000
0

1000

2000

3000

4000

5000

6000

x−coordinate [−]

y−
co

or
di

na
te

 [−
]

(b) The optimal tour has a total length of 10 628 km.

Figure 2.5: Traveling salesman problem for 48 capital cities of the USA. The construction
graph is the fully connected graph of cities.

The TSP is a benchmark for many optimization methods and is the central application for
ACO, because of the widely available performance results of other (heuristic) algorithms for
this problem, the strong resemblance to the shortest path finding behavior of ants, and because
of the clear link to the construction graph, which is the main element of the ACO framework.
An overview of papers presenting a comparison between ACO and other algorithms on the
TSP and other problems is given in (Blum, 2005).

2.4.2 Framework for ACO Algorithms

In ACO, the combinatorial optimization problem is represented by a graph, called the con-
struction graph, which consists of a set of vertices and a set of arcs connecting the vertices.
For instance, in the case of the TSP the vertices denote the cities and the arcs represent the
roads linking the cities. In the case of the control of dynamic systems, which will be further
discussed in Chapter 3, the vertices represent the discrete states of the system and the arcs
correspond to the system responding to an input in a particular state.

A particular solution found by an ant c is an ordered set of solution components, sc =
(s(1)
c , s

(2)
c , . . .) and each solution component consists of a pair of vertices, say i and j, which

are connected by the arc ij. The solution represents a path over the construction graph, where

18

2.5. ACO ALGORITHMS

“construction” refers to the ants constructing the solution incrementally by moving over the
graph. An ant on the construction graph starts on an initial vertex and moves from vertex
to vertex and adds the corresponding solution components to its partial solution sp,c until it
reaches the terminal vertex and the partial solution becomes the (candidate) solution found
by this ant. The way the terminal vertices are defined depends on the problem considered.
For instance, in the TSP, the terminal vertex is equal to the ant’s initial vertex, after having
visited all other vertices exactly once. For the application to control problems, as considered
in this thesis, the terminal vertex corresponds to the desired state of the system and is the
same for all the ants. In order to make sure that the ants visit all vertices only once in the
case of the TSP, an ant also adds the solution components to its private tabu list. When an
ant must decide to which vertex it will move next, it can choose any vertex that is not in its
tabu list.

Two variables are associated with an arc ij: a pheromone variable τij and a heuristic vari-
able ηij . The pheromone variables (also simply called pheromones) represent the acquired
knowledge about the optimal solutions over time and the heuristic variables (which will not
be simply called heuristics in order to avoid confusion with the fact that ACO algorithms are
heuristic algorithms) provide a priori information about the quality of the solution compo-
nent, i.e., the quality of moving from vertex i to vertex j. In the case of the TSP, the heuristic
variables typically represent the inverse of the distance between the respective pair of cities.
In general, a heuristic variable represents a short-term quality measure of the solution com-
ponent, while the task of the optimization problem is to acquire a concatenation of solution
components that together form an optimal solution. A pheromone, on the other hand, encodes
the measure of the long-term quality of concatenating the respective solution components.

2.4.3 Relation to Real Ants
The metaphorical ants in the ACO algorithm are simply called ants. Obviously being phys-
ically quite different from real ants, they show important similarities and differences in the
following ways:

• ACO ants use a similar probability rule for their decision making (2.2) as the model
(2.1) for decision making by real ants.

• Unlike real ants, ACO ants have a memory for the places (vertices) they have visited.

• Like most real ant species, ACO ants only drop pheromones after reaching the terminal
vertex (food source), simulating walking back to the nest (initial vertex).

• Like in some ant species, the amount of pheromones dropped by the ACO ants is
proportional to the quality of the solution (food source).

With these similarities and differences in mind, the ACO algorithms described in the next
section can be related to the behavior of real ants.

2.5 ACO Algorithms
Many ACO algorithms have been developed, most of them only differing from the rest in a
few minor points to make them perform better on a specific type of problems. This section

19

CHAPTER 2. ANT COLONY OPTIMIZATION

reviews the two most well known and most widely applied ACO algorithms, the ant system
and the ant colony system. These algorithms stand at the basis for most of the algorithms
later developed, as well as the ACL algorithm that is the main subject of this thesis. In order
to understand the mechanisms of ACL, these algorithms must be well understood.

2.5.1 Ant System
The most basic ACO algorithm is called the Ant System (AS) (Dorigo et al., 1996) and works
as follows: M ants are randomly distributed over the vertices of the construction graph. The
heuristic variables ηij may be set to encode prior knowledge of the problem by favoring
the choice of some vertices over others. For each ant c, the partial solution sp,c is initially
empty and all pheromone variables are set to a small initial value τ0 > 0. We will call
each move of the ants over the graph a step. In every step, each ant decides based on some
probability distribution, which solution component (i, j) to add to its partial solution sp,c.
The probability pc{j|i} for an ant c on a vertex i to move to a vertex j within its feasible
neighborhood Ni,c is defined as:

pc{j|i} =
ταijη

β
ij∑

l∈Ni,c τ
α
ilη

β
il

, ∀j ∈ Ni,c, (2.2)

with α ≥ 1 and β ≥ 1 determining the relative importance of ηij and τij respectively. The
feasible neighborhood Ni,c of an ant c on a vertex i is the set of vertices not yet visited (by
ant c) that are connected to i and is dictated by the problem structure. By moving from vertex
i to vertex j, ant c concatenates the associated solution component (i, j) to its partial solution
sp,c until it reaches the terminal vertex and completes its candidate solution by storing sp,c

as sc. The ant is now said to have completed a trial.
After all ants have completed their trial, in the AS the candidate solutions of all ants

are evaluated using the fitness function F (s) and the resulting value is used to update the
pheromone levels as follows:

τij ← (1− ρ)τij +
∑

s∈Supd

∆τij(s), ∀(i, j), (2.3)

with ρ ∈ (0, 1) the evaporation rate and Supd the set of solutions that are eligible to be used
for the pheromone update, which will be explained further on in this section. This update
step is called the global pheromone update step, in contrast to the local pheromone update
step that will be introduced in the ACS later on. The global pheromone update refers to the
return of the ants to their nest, while leaving a pheromone trail. Different from real ants, in
ACO all ants “wait” for each other before “walking back” together. The pheromone deposit
∆τij(s) is computed as:

∆τij(s) =
{
F (s) , if (i, j) ∈ s
0 , otherwise. (2.4)

The pheromone levels are a measure of how desirable it is to add the associated solution
component to the partial solution. By pheromone evaporation, it can be avoided that the algo-
rithm prematurely converges to suboptimal solutions. Note that in (2.3) the pheromone levels

20

2.5. ACO ALGORITHMS

on all vertices are evaporated and only those vertices that are associated with the solutions in
the update set receive a pheromone deposit.

In the next trial, each ant repeats the previous steps, but now the pheromone levels have
been updated and can be used to make better decisions about which vertex to move to. After
a stopping criterion has been satisfied, for instance when a certain number of trials have
passed, the values of τij and ηij on the graph encode the solution for all (i, j)-pairs. This
final solution, in terms of the optimal vertex j to choose from a vertex i, can be extracted
from the graph as follows:

j = arg max
l

(ταilη
β
il),

where ties are broken randomly in case the product ταijη
β
ij has the same maximum value for a

given i and different values of j.
There exist various rules to construct Supd, of which the most standard one is to use all

the candidate solutions found in the trial. This update set is then called: Strial
3. This update

rule is typical for the AS. However, other update rules have shown to outperform the AS up-
date rule in various combinatorial optimization problems. Rather than using the complete set
of candidate solutions from the last trial, either the best solution from the last trial, or the best
solution since the initialization of the algorithm can be used. The former update rule is called
iteration-best in the literature (which could be called trial-best in our terminology), and the
latter is called best-so-far, or global-best in the literature (Dorigo and Blum, 2005). These
methods result in a strong bias of the pheromone trail reinforcement towards solutions that
have been proven to perform well. Additionally, they reduce the computational requirements
of the algorithm. As the risk exists that the algorithm prematurely converges to suboptimal
solutions, these methods are only superior to AS if extra measures are taken to prevent this,
such as the local pheromone update rule, explained in Section 2.5.2. Two of the most suc-
cessful ACO variants that implement the update rules mentioned above, are the Ant Colony
System (ACS) (Dorigo and Gambardella, 1997) and the Max-Min Ant System (Stützle and
Hoos, 2000). Because of its relation to ACL, we will explain the ACS next.

2.5.2 Ant Colony System

The ACS (Dorigo and Gambardella, 1997) is an extension to the AS and is one of the most
successful and widely used ACO algorithms. There are some important differences between
the AS and the ACS. First of all the ACS uses the global-best update rule in the global
pheromone update step. This means that only the one solution that has been found since the
start of the algorithm that has the highest fitness (i.e., that has a strictly higher fitness than
the previous best solution), called sgb, is used to update the pheromone variables at the end
of the trial. This is a form of elitism in ACO algorithms that has shown to significantly speed
up the convergence to the optimal solution. A second important difference is that the global
pheromone update is only performed for the (i, j)-pairs that are an element of the global-best
solution. This means that not all pheromone levels are evaporated, as with the AS, but only
those that also receive a pheromone deposit. Furthermore, the pheromone deposit is weighted

3In ACO literature, this is usually called Siter, where an iteration has the same meaning as what we call a trial.
We prefer to use the word trial in order to stress the similarity between our ACO algorithm for optimal control and
reinforcement learning (Sutton and Barto, 1998).

21

CHAPTER 2. ANT COLONY OPTIMIZATION

by ρ. As a result of this and the previous two differences, the global pheromone update rule
is:

τij ←
{

(1− ρ)τij + ρ∆τij(sgb) , if (i, j) ∈ sgb

τij , otherwise. (2.5)

An important element from the ACS algorithm that acts as a measure to avoid premature
convergence to suboptimal solutions is the local pheromone update step, which occurs for
each ant after each step within a trial and is defined as follows:

τij ← (1− γ)τij + γτ0, (2.6)

where γ ∈ (0, 1) is the local pheromone update rate, similar to ρ (the global pheromone
update rule), ij is the index corresponding to the (i, j)-pair just added to the partial solution,
and τ0 is the initial value of the pheromone trail. The effect of (2.6) is that during the trial,
the visited solution components are made less attractive for other ants to visit, in that way
promoting the exploration of other, less frequently visited, solution components. The final
important difference compared to the AS is that there is an explicit exploration-exploitation
step with the selection of the next vertex j, where with a probability of ε, j is chosen as being
the vertex with the highest value of ταijη

β
ij (exploitation) and with the probability 1 − ε, a

random action is chosen according to (2.2) (exploration).

2.6 Convergence Results
The main results on proving convergence of certain ACO algorithms are published by Stützle
and Dorigo (2002). In this work, the convergence of the ACOgb,τminclass of problems
is proven. The ACOgb,τminclass consists of the ACO algorithms in which the global-best
pheromone update rule is used and in which there is a lower bound on the pheromone levels
τmin. The algorithms ACS and Max-Min Ant System both belong to this class and as such
the convergence of these algorithms has been proven. We present this proof quite extensively
in this section, such that our convergence analysis of ACL in Section 3.4 can be compared to
it.

The proof starts with Proposition 2.2 that says that in the ACOgb,τminclass of ACO algo-
rithms the pheromone levels are bounded. By definition of the class, the lower bound is τmin,
which is usually equal to the initial value of the pheromone levels τ0. This lower bound can
always be enforced by replacing pheromone levels smaller than τ0 by τ0. In the following, we
assume as AS-like algorithm, in which the lower bound on τ0 is enforced in this way and the
global-best update rule is used. It can be shown that the ACS and the Max-Min Ant System
are special cases of this algorithm. Proposition 2.2 shows that these algorithms have a finite
upper bound τmax.

Assumption 2.1 The initial pheromone level must be smaller than the fitness of any possible
solution:

τ0 < F (s), ∀s

When using the global-best update rule, the value of τ0 that satisfies this assumption
can be determined by first generating the solutions by the ants (in the first trial) and then

22

2.6. CONVERGENCE RESULTS

determining the best solution and its corresponding fitness. In the future trials, the solution
used in the update is never worse than this solution and τ0 can be safely chosen just a little
smaller than this fitness.

Proposition 2.2 In ACOgb,τmin , the following holds for any (i, j):

τij(k) ≤ τmax, ∀k, with τmax =
1
ρ
F (s∗),

where k is the trial counter and F (s∗) is the fitness of the optimal solution s∗.

Proof According to the global pheromone update rule in the AS algorithm (2.3)-(2.4), the
update for the pheromone level on an edge (i, j) ∈ s(κ), with s(κ) the only solution used in
the update and κ counting the number of trials in which (i, j) has been visited, is:

τij(κ+ 1) = (1− ρ)τij(κ) + F (s(κ)).

The solution of this linear difference equation can directly be written as:

τij(κ) = (1− ρ)κτ0 +
κ−1∑
l=0

(1− ρ)lF (s(κ)). (2.7)

Since (1 − ρ)κτ0 ≤ (1 − ρ)κF (s), for all s, and ρ ∈ (0, 1), we can derive that τij(κ) ≤
κ∑
l=0

(1− ρ)lF (s). Furthermore, since (1− ρ)l ≥ 0, ∀l, and F (s) > 0, ∀s, we know that τij is

non-decreasing with an upper bound of:

τij(κ) ≤
κ∑
l=0

(1− ρ)lF (s) ≤
∞∑
l=0

(1− ρ)lF (s∗) =
1
ρ
F (s∗) = τmax.

Since (i, j) pairs that are not visited in a particular trial k either are annealed or left un-
changed, we have:

τij(k) ≤ τmax, ∀k, with τmax =
1
ρ
F (s∗).

�

Now we know there exists a finite τmax, Stützle and Dorigo (2002) show that the values
of τ∗ij , with (i, j) ∈ s∗, which are the pheromone levels that are part of the optimal solution
for the ACOgb,τminclass of algorithms converge to τmax:

Proposition 2.3 In ACOgb,τmin , the pheromone levels along the optimal solution converge
to τmax:

lim
k→∞

τ∗ij(k) = τmax =
1
ρ
F (s∗), ∀(i, j) ∈ s∗,

where s∗ is the optimal solution and τ∗ij are the pheromone levels associated with the com-
ponents in s∗.

23

CHAPTER 2. ANT COLONY OPTIMIZATION

Proof The proof is in analogy to Proposition 2.2, with the reasoning that because of using the
global-best update rule, the (i, j) pairs belonging to the optimal solution keep on receiving
the maximal amount of pheromone deposit F (s∗), thereby converging to τmax. �

It must be noted that with the global pheromone update rule of the ACS from (2.4)-
(2.5), the pheromone update is weighted by ρ. Therefore, with the ACS, the upper bound is
τmax = F (s∗).

The convergence of the optimal pheromone levels to τmax does not prove the convergence
of the algorithm, as the optimal solution must be found first. The following theorem from
(Stützle and Dorigo, 2002) states that this will eventually happen.

Theorem 2.4 Let P ∗(k) be the probability that the algorithm finds an optimal solution at
least once within the first k trials. Then, for an arbitrary choice of ε ∈ (0, 1], there exist an
integer K such that:

P ∗(k) ≥ 1− ε, ∀k ≥ K

and asymptotically

lim
k→∞

P ∗(k) = 1.

Proof Due to the pheromone trail limits τmin and τmax, we can guarantee that any feasible
choice for the next vertex on the construction graph is done with a probability pmin > 0. A
trivial bound for pmin can be given by considering the situation where the optimal transition
has an associated pheromone level of τmin, where all the other (non-optimal) transitions have
an associated pheromone level of τmax. This bound can be given as:

pmin ≥ p̂min =
ταmin

(NC − 1)ταmax + ταmin

,

where NC is the maximum number of vertices that a vertex can be connected to. Then,
any generic solution s′, including any optimal solution s∗ ∈ S∗, can be generated with a
probability p̂ ≥ p̂nmin > 0, where n is the finite maximum length of a sequence. Because it is
enough that one ant finds an optimal solution, a lower bound for P ∗(k) is given by:

P ∗(k) ≥ 1− (1− p̂)k.

For a given value of ε, we have:

1− (1− p̂)K ≥ 1− ε
⇒(1− p̂)K ≤ ε
⇒K ≥ log(1−p̂) ε,

which means that K is a finite integer and that an optimal solution will be found in a finite
number of trials. We now know that:

1− (1− p̂)k ≤ P ∗(k) ≤ 1, ∀k.

Hence, since lim
k→∞

(1− (1− p̂)k) = 1, we can conclude that lim
k→∞

P ∗(k) exists and equals 1.

�

24

2.7. APPLICATIONS OF ACO

Now the actual convergence of ACOgb,τmincan be proven as follows (Stützle and Dorigo,
2002):

Theorem 2.5 Let k∗ be the trial when the first optimal solution has been found. Then the
following holds:

τij(k) > τmn(k), ∀(i, j) ∈ s∗, ∀(m,n) ∈ A \ s∗,

for all k > k∗+k0 = k∗+ d(1−ρ)/ρe, where dxe denotes rounding x to the nearest integer
larger than or equal to x and where A is the set of all arcs of the construction graph, i.e., all
possible pairs of two vertices. The backslash \ denotes the set difference operator.

Proof After k0 trials since the trial in which the first optimal solution was found (i.e., for k >
k∗ + k0), the pheromone trail on the connections used in the optimal solution is larger than
that on any feasible connection. In fact, due to the use of the global-best pheromone update
rule, only connections belonging to s∗ increase their pheromone trails, while the pheromone
trails of all other connections remain the same. The value k0 = d(1 − ρ)/ρe is derived in
(Stützle and Dorigo, 2002) and this derivation will not be repeated here. �

2.7 Applications of ACO
The Ant System, which is the basic ACO algorithm, and its variants, have successfully been
applied to various optimization problems, such as the traveling salesman problem (Dorigo
and Stützle, 2004), load balancing (Sim and Sun, 2003), job shop scheduling (Huang and
Yang, 2008; Alaykran et al., 2007), optimal path planning for mobile robots (Fan et al., 2003),
and routing in telecommunication networks (Wang et al., 2009). An implementation of the
ACO concept of pheromone trails for real robotic systems is described by Purnamadjaja and
Russell (2005). A survey of industrial applications of ACO is presented by Fox et al. (2007).
An early publication of ant-based control is (Schoonderwoerd et al., 1996). In this paper,
the authors present a method for achieving load balancing in telecommunication networks,
where calls are routed according to the pheromone distribution on the nodes. An overview
of ACO and other metaheuristics to stochastic combinatorial optimization problems can be
found in (Bianchi et al., 2006).

One of the first real applications of the ACO framework to optimization problems in
continuous search spaces is described in (Socha and Blum, 2007) and (Socha and Dorigo,
2008). In (Socha and Blum, 2007), the application is the training of feed-forward neural
networks for pattern classification, and their continuous version of ACO shows a performance
comparable to gradient-based neural network training algorithms. An earlier application of
the ant metaphor to continuous optimization appears in (Bilchev and Parmee, 1995) and more
recent work like the Aggregation Pheromones System and the Differential Ant-Stigmergy
Algorithm can be found in respectively (Tsutsui et al., 2005) and (Korosec et al., 2007).

2.8 Concluding Remarks
In this chapter, we have presented an introduction to swarm intelligence and in particular to
ACO. We have discussed the principles of collective behavior that can lead to the emergence

25

CHAPTER 2. ANT COLONY OPTIMIZATION

of swarms. The individuals in the swarm locally sense the environment and make decisions
that are aimed at optimizing their personal objectives. The collective behavior of all these
individuals however provides benefits for the individuals, such that they seem to act as if
they are aware of the global behavior. These principles of self-organization can be applied
in engineering sciences, where the decentralized control of autonomous agents can result,
if designed well, in collective behavior to complete tasks that could never have been com-
pleted by an individual alone. Furthermore, properties inherent to engineered swarms, such
as robustness to the failure or removal of individuals, scalability, flexibility, and cost benefits
associated to manufacturing large quantities of similar units, provide additional benefits of
designing a swarm of small robots as opposed to one large robot. Within the field of opti-
mization, the swarm intelligence algorithms of Particle Swarm Optimization and ACO have
become very successful since their introduction in the early nineties of the twentieth century.

The development of ACO has been inspired by the foraging behavior of some species
of ants. It is known that ants communicate the quality of found paths to sources of food by
depositing a special chemical, called pheromones. The double bridge experiment has resulted
in a mathematical model of the decision process of the ants. This model was the basis for
the ACO framework that has become very popular for solving combinatorial optimization
problems. In this chapter, we have presented the ACO framework, its application domain,
and a convergence proof for a certain class of ACO algorithms.

The inspiration from natural ants, as well as the definition of the ACO framework, the de-
scription of the AS and the ACS algorithms, and the convergence proof provide the necessary
background for the introduction of ACL in the next chapter.

26

Chapter 3

Ant Colony Learning Framework

This chapter introduces the ant colony learning framework. Ant colony learning is a multi-
agent approach for learning control policies. The optimal control setting in which the frame-
work is situated is presented as well as a theoretical analysis of its behavior. This chapter
furthermore compares ant colony learning to reinforcement learning and presents an experi-
mental study of its behavior using computer simulations.

3.1 Introduction

In the previous chapter, we have seen that the foraging behavior of ants in a colony has in-
spired researchers to develop algorithms for solving combinatorial optimization problems.
The metaphorical ants turned out to be able to find shortest paths in the construction graph
in which the problems are represented. The length of a path in this sense must be understood
as a general performance function, that can represent anything and not only shortest routes
in the physical meaning. In this chapter, we go one step further in expanding the ant colony
metaphor to the field of control policies. We see a control policy as a mapping from observa-
tions to actions with the aim of controlling the state of a certain system to a reference. More
specifically, we will consider state-feedback control policies, meaning that the observations
represent the state of the system, possibly distorted by noise or some other form of uncer-
tainty. Simply put, we will aim to develop a way in which the ants derive the control policy
automatically by interacting with the system, i.e., they will learn the control policy. We call
the resulting framework Ant Colony Learning (ACL). This name reflects its main purpose,
namely that of learning using the ant colony metaphor.

In (Birattari et al., 2002), ACO is linked to optimal control for the first time. Although
presenting a formal framework, called ant programming, no application, nor study of its per-
formance is presented. After this paper, no more work has been published on the subject.
Our method shows similarities with the most notable other learning paradigm: reinforcement
learning, with in particular the Q-learning algorithm (Watkins and Dayan, 1992). However,
the key difference is that the power of our ant colony-inspired method lies in the coopera-
tion of the agents. By jointly sampling the state space and exchanging information through
pheromones, they form a powerful swarm, capable of efficiently deriving the optimal control
policy of the system at hand. Earlier work (Gambardella and Dorigo, 1995) introduced the

27

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

Ant-Q algorithm, which is the most notable other work relating ACO with Q-learning. How-
ever, Ant-Q has been developed for combinatorial optimization problems and not for optimal
control problems. Moreover, this algorithm has not been used after the ACS has been shown
to be superior.

In this chapter, we present the optimal control context in Section 3.2 and the ACL frame-
work in Section 3.3. We will limit ourselves first to the control of dynamic systems with
discrete state spaces, such that we can discuss and study the basics of the framework first,
before continuing with more complex systems. This chapter is devoted to laying down a
comprehensive foundation of ACL, by analytically studying the behavior of our method in
Section 3.4. We also present a comparison of ACL with reinforcement learning methods in
Section 3.5. In Section 3.6, we study the behavior of ACL and the effect of its parameters on
the learning performance through experiments.

3.2 Optimal Control Setting
Before we can present the ACL algorithm, we must describe the context in which the algo-
rithm is situated. As said in the introduction, ACL aims at automatically deriving optimal
control policies from the interaction with the system to be controlled. This section discusses
the notions of optimality, control policy, and system. We will limit the discussion to sys-
tems with a discrete state space. In Chapter 4, systems with continuous state spaces will be
considered.

3.2.1 Optimal Policy Learning Problem
Assume that we have a nonlinear dynamic system, characterized by a discrete-valued state
vector q =

[
q1 q2 . . . qn

]T ∈ Q, with Q having a finite number of elements. Also
assume that the state can be controlled by an input, or action u ∈ U that can only take a finite
number of values and that the state can be measured at discrete time steps, with a sampling
time Ts with t the discrete time index. The sampled system is denoted as:

q(t+ 1) ∼ p(q(t),u(t)), (3.1)

with p a probability distribution function over the state-action space. The optimal control
problem we consider is to control the state of the system from any given initial state q(0) =
q0 to a desired goal state q(t) = qg in at most t ≤ T steps and in an optimal way, where
optimality is defined by minimizing a certain cost function. As an example, take the following
quadratic cost function:

J(s) = J(q̃, ũ) =
T−1∑
t=0

eT(t+ 1)Qe(t+ 1) + uT(t)Ru(t), (3.2)

with s the solution found by a given ant, q̃ = q(1), . . . ,q(T) and ũ = u(0), . . . ,u(T − 1)
respectively the sequences of states and actions in that solution, e(t + 1) = q(t + 1) − qg

the error at time t + 1, and Q and R positive definite matrices of appropriate dimensions.
The problem is to find a nonlinear mapping from the state to the input that, when applied to
the system in q0, results in a sequence of state-action pairs (u(0),q(1)), (u(1),q(2)), . . .,

28

3.2. OPTIMAL CONTROL SETTING

(u(T−1),q(T)) that minimizes this cost function. The resulting nonlinear mapping function
h is called the control policy:

u(t) = h(q(t)) (3.3)

We make the assumption that Q and R are selected in such a way that qg can be reached
in at most T time steps. Conversely, we can also assume that we can select a T that satisfies
this requirement on the basis of predefined matrices Q and R. The matrices Q and R balance
the importance of speed versus the aggressiveness of the controller. This kind of cost function
is frequently used in optimal control of linear systems, where the optimal controller minimiz-
ing the quadratic cost can be derived as a closed expression after solving the corresponding
Riccati equation using the Q and R matrices and the matrices of the linear state space de-
scription (Åström and Wittenmark, 1990). In our case, we aim at finding control policies for
non-linear systems, which in general cannot be derived analytically from the system descrip-
tion and the Q and R matrices, or which cannot be analytically derived because the system
description is unknown and all we have is a black-box representing the input-output mapping
of (3.1). Note that our method is not limited to the use of quadratic cost functions. The cost
function must however satisfy the following requirement for any possible solution s:

0 <
τ0
ρ
≤ J−1

max ≤ J−1(s) ≤ J−1
min,

with Jmax = max
s
J(s) and Jmin = min

s
J(s) respectively the largest and smallest possible

value of the cost function, τ0 the initial value of the pheromone levels, and ρ the global
pheromone decay rate, as will be explained in Section 3.3. Note that this requirement is
not at all restrictive, since adding a constant τ0ρ to the cost function renders this requirement
satisfied. Likewise, for a given cost function and ρ, τ0 can always be chosen such that this
requirement is satisfied. Also note that we can trivially extend the optimal control problem
that we consider here to include a set of goal states, denoted by Qg. In that case, we can
include a virtual goal state to which all goal states qg ∈ Qg lead with probability one and
a cost of zero. The virtual goal state is then considered the single goal state in the ACL
algorithm.

We will use the inverse of the cost function, since J−1(s) will be used to represent the
pheromone deposit of an ant for a solution s. Lower costs will thus correspond to larger
pheromone deposits and maximizing the pheromone levels along optimal solutions will cor-
respond to minimizing the cost function.

3.2.2 Markov Decision Processes
The control policy we aim to find with ACL will be a state feedback controller (3.3). This
is a reactive policy, meaning that it will define a mapping from states to actions without the
need of storing the states (and actions) of previous time steps. This poses the requirement on
the system that it can be described by a state-transition mapping for a discrete state q and an
action (or input) u in discrete time like (3.1). In this case, the system is said to be a Markov
Decision Process (MDP) and the probability distribution function p is said to be the Markov
model of the system. Note that finding an optimal control policy for a deterministic MDP is
equivalent to finding the optimal sequence of state-action pairs from any given initial state to
a certain goal state. The problem of finding optimal combinations of states and actions is a

29

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

combinatorial optimization problem. When the state transitions are stochastic, like in (3.1), it
is a stochastic combinatorial optimization problem. We define optimality of a control policy
with stochastic state transitions as the mapping from states to actions that minimizes the
expected value of the cost of the resulting sequence of state-action pairs. As ACO algorithms
are especially applicable to (stochastic) combinatorial optimization problems, the application
of ACO to deriving control policies is evident.

3.3 Ant Colony Learning for Optimal Control
In ACL, multiple ants operate in parallel in order to find the optimal control policy. In order
to model this parallelism, we assume that each ant interacts with its own copy of the system,
as depicted in Figure 3.1.

System

Ant 1

System

Ant 2

System

Ant M

Pheromone Levels

Figure 3.1: The general layout of Ant Colony Learning. Here, there areM ants, each of which
interacts with its own copy of the system. The ants also read from and write to pheromone
levels, which act as a common memory.

The general outline of ACL is then as follows. Let C denote the set of ants that have not
yet found the goal. Initially, all M ants belong to C and are distributed randomly over the
state space of the system. The pheromone levels associated with each state-action pair (q,u)
are set to an initial value τqu(0) = τ0, with 0 < τ0 ≤ ρJ−1

max. In what is called a trial, all
ants c ∈ C make interaction steps with their copy of the system. First, in its initial state,
each ant decides based on the current pheromone levels associated with the available actions
which action to perform, after which it applies this action to its own copy of the system. Each
ant stores the state-action pair to its personal record, called the partial solution sp,c and the
pheromone level at that state-action pair τqu is annealed through the local pheromone update.
Each copy of the system responds to the input by changing its state, which takes each ant to its
new state. If this state is equal to the goal state qg, the ant is removed from C. The remaining
ants repeat the process by choosing new actions until either all have reach the goal state, or
the trial exceeds a predefined number of time steps T . All partial solutions are then added to
the multiset Strial, which is used in the global pheromone update step. It is a multiset, since
it may contain the same solution multiple times. In this step, all solutions in the multiset
are evaluated with respect to the cost function, and the state-action pairs contained in the
solutions receive a pheromone update accordingly.

30

3.3. ANT COLONY LEARNING FOR OPTIMAL CONTROL

The following sections describe the main steps of the algorithm, i.e., the action selection,
the local pheromone update, the global pheromone update, and the derivation of the control
policy from the pheromone levels. It is important to understand that there is an inner loop
and an outer loop in the algorithm, as can be clearly seen in Algorithm 3.1 on page 36. The
inner loop contains the action selection and the local pheromone update, and the iterations
are indexed by t. After at most T iterations, the outer loop takes over, in which the global
pheromone update takes place. The iterations in the outer loop are indexed by k. In order to
clearly distinguish the pheromone updates in the inner loop from the pheromone updates in
the outer loop, the pheromone levels in the inner loop are labeled with the superscript “local”:
τ local
qu . Before entering the inner loop, the current pheromone levels thus have to be copied to

the local pheromone levels: τ local
qu (0) = τqu(k),∀(q,u) ∈ Q × U . After the inner loop has

been completed and the algorithm enters the outer loop again, the resulting local pheromone
levels τ local(T) are used for the global pheromone update. Note that although we make this
distinction notationally, there is in fact just one set of pheromone levels from which the ants
read and to which they write.

3.3.1 Action Selection

The action selection step takes place in the inner loop of the algorithm. In this step, each ant
c ∈ C determines which action uc ∈ Uqc to apply to the system in a given state qc. With
the AS, see (2.2), this is done based on both the pheromone levels and the heuristic variables.
In this thesis, we will disregard the heuristic variables, assuming that no information about
the quality of solution components is available a priori. This is implemented by setting all
heuristic variables equal to one. It can be seen that ηij disappears from (2.2) in this case.
Without the heuristic variables, only the value of α remains as a tuning parameter, now in
fact only determining the amount of exploration as higher values of α make the probability
higher of choosing the action associated with the largest pheromone level. In fact, the balance
between exploration and exploitation of the knowledge acquired is very important for the
performance of any model-free learning algorithm. Various elaborate ways exist to effectively
explore the state-action space of a system, such as directed exploration (Thrun and Möller,
1992) and dynamic exploration (van Ast and Babuška, 2006). In this thesis, however, we
limit ourselves to the more straightforward and classical undirected exploration methods.

Note that since the action selection takes place within the inner loop of the algorithm, it
is based on τ local

qu (t), with t the discrete time index of the current interaction step.

Boltzmann action selection

The AS action selection rule from (2.2) can be ported to the ACL framework as follows:

uc ∼ pc{u|qc} =

(
τ local
qcu (t)

)α∑
`∈Uqc

(
τ local
qc`

(t)
)α , u ∈ Uqc (3.4)

where pc{u|qc} is the probability for an ant c to choose action u in state qc and Uqc is
the action set available to ant c in state qc. This action selection rule is called the random
proportional, or Boltzmann action selection rule and the amount of exploration is implicit in
the choice of α and the pheromone levels. From our experience, good values for α are 2− 3.

31

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

Typically, as the pheromone levels converge with the progress of the algorithm, the difference
between the pheromone level associated with one particular action and those associated with
the other actions increases, and the amount of exploration anneals accordingly.

ε-greedy action selection

In the ACS, the amount of exploration is kept constant, due to the inclusion of an explicit
exploration probability ε. In the ACL framework, this is denoted as follows:

uc =

arg max
`∈Uqc

(
τ local
qc`

(t)
)

with probability 1− ε

random(Uqc) with probability ε,
(3.5)

where random(Uqc) denotes the random selection of an action from the action set in state qc
from a uniform distribution. This action selection rule is called ε-greedy.

Max-Boltzmann action selection

A combination of the two mentioned rules also exists:

uc

∼ pc{u|qc} = (τ local
qcu

(t))αP
`∈Uqc (τ local

qc` (t))α , u ∈ Uqc with probability 1− ε

= random(Uqc) with probability ε,
(3.6)

which is called the Max-Boltzmann action selection rule.

3.3.2 Local Pheromone Update
The pheromones are initialized equally for all (q,u)-pairs and set to a small positive value
τ0. During each trial, all ants construct their solutions in parallel by interacting with the
system until they either have reached the goal state, or the trial exceeds a certain pre-specified
number of steps T . After every step, each ant c ∈ C performs a local pheromone update for
the (qc,uc)-pair just visited, equal to (2.6), but in the setting of ACL:

τ local
qcuc(t+ 1) = (1− γ)τ local

qcuc(t) + γτ0, (3.7)

with γ ∈ [0, 1) the local pheromone decay rate and typically chosen to be very small. The
range of γ is derived in Section 3.4.10. The effect of the local pheromone update is that
pheromone levels along visited state-action pairs are decreased towards τ0. The value of γ
should not be chosen too large, as this would mean that the information stored in a pheromone
level is lost whenever an ant visits the respective state-action pair. The purpose of the local
pheromone update is to stimulate exploration of the state-action space, by making it less
attractive for an ant to choose the same action in a certain state as its predecessor. In particular,
when the pheromone levels for multiple actions in a given state are all equally large, and larger
than other pheromone levels associated with that state, the local pheromone update makes it
more likely for several ants visiting that state, to choose different actions. It is a standard step
in most modern ACO algorithms (Dorigo and Stützle, 2004).

32

3.3. ANT COLONY LEARNING FOR OPTIMAL CONTROL

After the local pheromone update, it is determined if the ants have reached the goal, or if
they have timed-out. The ants that have reached the goal are removed from C. When the set
C is empty, or when t = T (whichever happens first), the algorithm continues with the outer
loop. All (partial) solutions found are added to the multiset Strial and the global pheromone
update is performed.

3.3.3 Global Pheromone Update

Let us assume that the trial is completed after T time steps. The pheromone levels are then
updated according to the following global pheromone update step:

τqu(k + 1) =(1− ρ)τ local
qu (T) + ρ

∑
s∈Strial(k):

(q,u)∈s

J−1(s), (3.8)

∀(q,u) : ∃s ∈ Strial(k) : (q,u) ∈ s, (3.9)

with Strial the multiset of all candidate solutions found in the trial, k the trial counter, and
ρ ∈ (0, 1] the global pheromone decay rate. The range of ρ is derived in Section 3.4.10. With
the best performing ACO algorithms, as discussed in Section 2.5.1, the global pheromone
update is performed for only the solution that is currently the best one found. This solution
is called the global-best solution. However, for an optimal control problem, it is not possible
to only use the global-best solution in the pheromone update. All ants would have to be
initialized to the same state, as starting from states that require less time and less effort to
reach the goal would always result in a better global-best solution. Ultimately, initializing
an ant exactly in the goal state would be the best possible solution and no other solution,
starting from more interesting states would get the opportunity to update the pheromones in
the global pheromone update phase. In order to find a control policy from any initial state
to the goal state, the global-best update rule cannot be used. By using all solutions of all
ants in (3.9), the resulting algorithm does allow for random initialization of the ants over
the state space and is therefore used in ACL. This type of update rule is comparable to the
AS update rule (2.3)-(2.4), with the important difference that only the pheromone levels are
evaporated that are associated with the elements in Strial. The pheromone deposit is equal to
J−1(s) = J−1(q̃, ũ), the inverse of the cost function over the sequence of quantized state-
action pairs in s according to (3.2). Note that minimizing the cost, corresponds to maximizing
the pheromone levels marking the optimal solution.

3.3.4 Control Policy

The control policy can be extracted from the pheromone levels as follows:

u = h(q) = arg max
`∈Uq

(τq`), (3.10)

in which ties are broken randomly. This equations states that the control policy assigns the
action to a given state that maximizes the associated pheromone levels.

33

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

3.3.5 ACL Algorithm
In Table 3.1, the three most important ACO algorithms and our ACL algorithm are compared
based on how they define which solutions are used in the global pheromone update rule, and
which global and which local pheromone update rule they use.

Table 3.1: An overview of the characteristics of popular ACO algorithms and ACL.

AS ACS Max-Min AS ACL
Update (multi)set Supd Strial {sgb} (also {sib}) {sib} (also {sgb}) Strial

Local pheromone upd. no (2.6) no (3.7)
Global pheromone upd. (2.3) - (2.4) (2.4) - (2.5) (2.4) - (2.5) (3.9)

This table shows that ACL uses the same update set as the AS. Elitism introduced in
ACS and the Max-Min AS has resulted in outperforming the AS in most combinatorial op-
timization problems. While these ACO variants are now the methods of choice for current
applications of ACO to combinatorial optimization problems, the application of ACL to con-
trol policy learning prevents their forms of elitism from being used. Like ACS, the local
pheromone update rule is used in ACL, but formulated within in the state-action framework.
The effect of the local pheromone update rule will be studied in Section 3.6 and the sections
on simulation experiments in the subsequent chapters of this thesis. The global pheromone
update rule of ACL is comparable to the ones used in ACS and the Max-Min AS.

The complete algorithm is given in Algorithm 3.1. For the ease of notation, the time
indices of q and u when used in the subscripts of the pheromone levels are omitted. Also,
the distinction between τ local and τ is not made, since no confusion about the order of the
updates can arise here. The assignment qc ← random(Q) in Step 7 selects for ant c a random
initial state qc from the state space Q with a uniform probability distribution. In Table 3.2,
the ACL parameters are presented.

It is interesting to note that exploration of the state-action space is induced by several
elements of the algorithm. First and foremost, the action selection rule contains either an
explicit exploration probability (ε, in the case of ε-greedy action selection), an implicit ex-
ploration probability (for larger values of α, state-action pairs with a larger pheromone level
are more likely to be selected, in the case of Boltzmann action selection), or a combination
of both (in the case of Max-Boltzmann action selection). The local pheromone update rule
furthermore decays the pheromone levels of recently selected state-action pairs, stimulating
ants to visit other state-action pairs. This can be called a secondary form of exploration,
as the actual exploration is still stemming from the action selection rule. This holds true
even more for the choice of the initial value of the pheromone levels, τ0. When chosen
very close to zero, a small pheromone deposit in the global pheromone update rule already
causes a large difference between pheromone levels, thereby favoring these state-action pairs
relatively strongly when using a Boltzmann action selection rule. For larger values of τ0,
the pheromone deposits will cause relatively smaller differences between pheromone levels,
thereby maintaining a higher exploration rate when using a Boltzmann action selection rule.
The interplay between these parameters and their effect on the exploration behavior has never
been studied well. In most application of ACO, standard values for τ0 and γ are chosen, while
tuning the value of ε and α to get satisfying performance.

34

3.4. CONVERGENCE ANALYSIS

Table 3.2: Overview of the parameters of the ACL algorithm.
Parameter Domain Meaning

Inputs Q - discrete state space
U - discrete action space
p - generative model

Parameters M ≥ 1 number of ants
τ0 > 0 initial pheromone level
γ [0, 1) local pheromone decay rate
ρ (0, 1] global pheromone decay rate
α > 0 exponent of action selection rule
T ≥ 1 maximal number of discrete time steps
K ≥ 1 maximal number of trials

Variables t, k ≤ T,≤ K time index of the system, trial counter
c 1, 2, . . . ,M an ant
C - set of ants that have not found the goal yet
q,qc Q discrete state (observed by ant c)
u,uc U discrete action (chosen by ant c)
sp,c - partial solution of ant c
Strial - multiset of solutions

Output τqu - pheromone levels for a given (q,u)-pair

3.4 Convergence Analysis

In this section we present a theoretical study on the convergence of ACL. Convergence anal-
ysis of ACL is different from the convergence analysis of the ACOgb,τminclass of ACO algo-
rithms, as reviewed in Section 2.6. That convergence proof mainly relied on the global-best
update rule, with which the pheromones are only updated if they belong to the best solution
found so far. With ACL, all solutions found in a trial are used to update the pheromone levels
at the end of that trial. We will see that this severely complicates the convergence analysis.
Convergence is a property required for any algorithm in the sense that it must at least the-
oretically be guaranteed that the algorithm will produce the desired solution. Practically, it
may be different. The theoretical analysis may require certain assumptions on the implemen-
tation of the algorithm that cannot be met in practice. Or the actual convergence for a real
problem may require a huge number of iterations. In Section 3.6, we present an experimental
evaluation of the performance of ACL. We also study the behavior of the important ACL
parameters, relating them to the theoretical findings in this section.

3.4.1 Definition of Convergence

With ACL we aim to automatically derive a control policy that will bring the system from any
initial state to a predetermined desired (goal) state in an optimal fashion. The control policy
is a mapping from the state space to the action space. In discrete time, the control policy will
lead to a sequence of state-action pairs starting in a given initial state and terminating with
the action that brings the state of the system to the desired value. A sequence of state-action

35

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

Algorithm 3.1 The Ant Colony Learning algorithm.
Input: Q,U ,p,M, τ0, γ, ρ, α, T,K

1: Initialize the algorithm:
k ← 0; τqu(0)← τ0, ∀(q,u) ∈ Q× U

2: repeat
3: Initialize the trial:

t← 0; Strial ← ∅; C ← {1, 2, . . . ,M}
4: for all ants c ∈ C in parallel do
5: Initialize the partial solution:

sp,c ← ∅
6: Initialize the state of the system:

qc(0)← random(Q)
7: repeat
8: Select action:

uc(t) ∼ pc{u|qc(t)} =
ταqcu∑

`∈Uqc τ
α
qc`

, u ∈ Uqc

9: Update partial solution:
sp,c ← sp,c ∪ {(qc(t),uc(t))}

10: Apply action to system:
qc(t+ 1) ∼ p(qc(t),uc(t))

11: Perform the local pheromone update:
τqcuc ← (1− γ)τqcuc + γτ0

12: if qc(t+ 1) = qg then
13: If an ant reaches the goal, its trial terminates:

C ← C \ {c}
14: end if
15: t← t+ 1
16: until t = T or C = ∅
17: Add the solutions found to the solution multiset:

Strial ← Strial ∪ {sp,c}, ∀c ∈ {1, 2, . . . ,M}
18: end for
19: Perform the global pheromone update:

τqu ← (1− ρ)τqu + ρ
∑

s∈Strial:
(q,u)∈s

J−1(s), ∀(q,u) : ∃s ∈ Strial : (q,u) ∈ s

20: k ← k + 1
21: until k = K
Output: τqu, ∀(q,u) ∈ Q× U

pairs is called a solution. A predefined cost function evaluates solutions and a solution is then
called optimal if it has the lowest cost compared to the cost of all possible solution trajectories
from the initial state to the goal state. A policy is called optimal if for all states in the state
space the solutions are optimal.

We will say that ACL converges, if in the limit, when the number of trials in the algo-
rithm approaches infinity, the resulting control policy becomes and stays equal to the optimal
control policy for the considered system, state and action space partitioning, goal state, and

36

3.4. CONVERGENCE ANALYSIS

cost function. Note that for the convergence analysis in this section we consider the ACL
algorithm as presented in this chapter, i.e., in the setting of discrete state spaces.

3.4.2 Assumptions
For the convergence analysis in this chapter, we require the following assumptions on the
ACL algorithm:

1. For any initial state q0 there is exactly one optimal solution to the goal state qg.

2. No loops are allowed in the solutions generated by the ants.

3. The state space is discrete and all state transitions are deterministic.

For some control problems, it may be that for certain initial states there are multiple
solutions leading to the goal state that are all optimal. In such cases the first assumption can
be satisfied by adding a small gradient to the objective function. With respect to the second
assumption, as ACL contains a local pheromone update step, it is not sufficient to remove
possible loops after the ants have converged. In that case, the local pheromone update would
already have been performed twice or more for the pheromone variables associated with
the state-action pairs on the crossings of the loops. Also the pheromone levels on the state-
action pairs of the removed loop would have received a local pheromone update once or more
incorrectly. The correct way of ensuring that the second assumption is satisfied, is by only
allowing an ant to choose an action from a given state if it has not chosen this action from
this state before in the current trial, thus by maintaining a tabu-list per state and per ant. The
last assumption is merely a repetition of the context in which we consider the algorithm in
this chapter. It requires the state space to be originally discrete (such as with grid search
problems) without noise in the state transitions and state measurements.

3.4.3 Total Pheromone Update
There are two types of pheromone update in the algorithm: the local pheromone update
and the global pheromone update. Summarizing Section 3.3, the local pheromone update is
applied within the inner loop of the algorithm to τ local

qu directly after an ant visits (q,u) and
is defined as:

τ local
qu (t+ 1) = (1− γ)τ local

qu (t) + γτ0, (3.11)

with γ ∈ [0, 1) the local pheromone decay rate and τ0 the initial value of the pheromone
levels. At the start of a trial k, the current pheromone levels are copied to the local pheromone
levels, τ local

qu (0) = τqu(k) for all (q,u)-pairs. In the first trial, when τ local
qu (0) = τqu(0) = τ0

for all (q,u)-pairs, the local pheromone update has no effect. Only after some pheromone
variables have received a pheromone deposit from the global pheromone update, these phero-
mone levels can become larger than τ0. Let us assume that the trial is ended when t = T
and that in that trial Mqu(k) ants have visited the (q,u)-pair. With (4.17) it is shown that the
pheromone levels have then been updated according to:

τ local
qu (T) = (1− γ)Mqu(k)(τ local

qu (0)− τ0) + τ0 (3.12)

= (1− γ)Mqu(k)(τqu(k)− τ0) + τ0. (3.13)

37

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

The global pheromone update is applied to τ local
qu (T) at the end of a trial, if (q,u) is an

element of the solution of one or more ants. The global pheromone update is then defined as
follows:

τqu(k + 1) =(1− ρ)τ local
qu (T) + ρ

∑
s∈Strial(k):

(q,u)∈s

J−1(s), (3.14)

∀(q,u) : ∃s ∈ Strial(k) : (q,u) ∈ s, (3.15)

with k the trial counter, ρ ∈ (0, 1] the global pheromone decay rate, Strial(k) the multiset of
solutions found in the current trial, and J−1(s) the inverse of the cost of the solution s. We
also call J−1(s) the pheromone deposit based on s.

We can aggregate (3.13) and (3.15) to get an expression from the pheromone update at
the end of a trial as follows:

τqu(k + 1) = (1− ρ)
{

(1− γ)Mqu(k)(τqu(k)− τ0) + τ0

}
+ ρ

∑
s∈Strial(k):

(q,u)∈s

J−1(s), Mqu(k) > 0, (3.16)

τqu(k + 1) = τqu(k), otherwise, (3.17)

with Mqu(k) the number of ants that have visited (q,u) during trial k. From (3.16)-(3.17)
we can derive two important conclusions:

1. If a (q,u) is not visited by any of the ants in a given trial, the pheromone level τqu

will not be updated in that trial.

2. If a (q,u) is visited by one or more ants in a given trial, the pheromone level τqu

will be updated in that trial, and may increase or decrease in value depending on the
pheromone deposits of the ants and the values of γ and ρ.

By introducing κ as the counter of the number of trials in which the pheromone level of
a particular state-action pair (q,u) receives a global pheromone update, we can write (3.16)
and (3.17) as follows:

τupd
qu (κ+ 1) = (1− ρ)

{
(1− γ)Mqu(κ)(τupd

qu (κ)− τ0) + τ0

}
+ ρ

∑
s∈Strial(κ);

(q,u)∈s

J−1(s), (3.18)

in which the superscript “upd” is used to avoid confusion between pheromone updates in-
dexed with k and those with κ. With this expression, we have effectively got rid of (3.17).
Next, we show that since the probability of any state-action pair being visited by at least one
ant in any given trial is bounded from below by a non-zero probability, we are allowed to
use (3.18), instead of the joint equations (3.16)-(3.17) in the remainder of the convergence
analysis in this section.

38

3.4. CONVERGENCE ANALYSIS

3.4.4 Lower Bound on the State-Action Selection Probability

The analysis in this section focuses on the pheromone levels associated with a general state
q. In q the possible actions are the elements of the set Uq = {u1,u2, . . . ,uN}. An action
will be selected according to the ε-greedy action selection rule (3.5), where the currently
optimal action is chosen with a probability 1 − ε, while with a probability ε the action is
randomly drawn from a uniform distribution over the action set Uq. The parameter ε is called
the exploration probability and its value determines the trade-off known as the exploration-
exploitation dilemma. From this, we can state the following proposition:

Proposition 3.1 (Lower bound on the probability of choosing an action) The probability
of a given action ui being selected in any state q in any trial using the ε-greedy action
selection rule is at least ε

N provided that q is visited by at least one ant.

Proof In the worst case, an action ui is only chosen through exploration and only by one ant.
With ε the exploration probability and N number of possible actions, the probability that any
given action is chosen is thus at least ε

N . �

In other words, ui will be chosen on average at least every N
ε trials. It is important to note

that this average is independent of the number of trials, unlike for instance the random propor-
tional action selection rule from (3.4), where the probability of choosing an action depends
on the pheromone levels, which may change from trial to trial. However, in Section 3.4.10,
we will show that also with that action selection rule, each action in any given state will be
chosen at least once every finite number of trials.

It is important, though, that each state is visited frequently enough. Since the ants are
randomly initialized over the state space with a uniform distribution at the start of each trial,
we can state the following proposition:

Proposition 3.2 (Lower bound on the probability of visiting a state) The probability of a
given state q being visited in a given trial is at least 1

|Q| , with |Q| the number of states in the
state space Q.

Proof In the worst case, a state q is only selected during the initialization of a trial and only
by one ant. With |Q| the number of states in the state space Q, the probability that any given
state is selected is thus at least 1

|Q| . �

From these two propositions, the following directly follows:

Corollary 3.3 (Lower bound on the probability of a given state-action pair being selected)
Each state-action pair is selected in a given trial with a probability of at least ε

N |Q| .

Proof Since the probability of choosing an action and visiting a state are independent from
each other, the probability of selecting a state-action pair in any given trial is at least ε

N |Q| .

Because of this corollary, each state-action pair will be visited on average at least every
N |Q|
ε trials, which is constant during the execution of the algorithm. When k → ∞, the

results that will be derived for (3.18) will thus also apply to (3.16) - (3.17).

39

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

3.4.5 Bounds on the Pheromone Levels
We will proceed our analysis by deriving lower and upper bounds for the pheromone levels.
Starting with the lower bound, we prove the following proposition:

Proposition 3.4 (Lower bound on pheromone levels) If τ0 is chosen such that 0 < τ0 ≤
J−1

maxρ, with Jmax the largest possible value of the performance function, the lower bound on
the pheromone levels is τ0.

Proof By induction, we can show that a pheromone level can never become smaller than τ0
when using the pheromone update expression from (3.18):

τupd
qu (0) = τ0

τupd
qu (κ+ 1) = (1− ρ)

{
(1− γ)Mqu(κ)(τupd

qu (κ)− τ0) + τ0

}
+ ρ

∑
s∈Strial(κ):

(q,u)∈s

J−1(s)

≥ (1− ρ)

(1− γ)Mqu(κ)(τupd
qu (κ)− τ0)︸ ︷︷ ︸

≥0 by induction

+τ0

+ ρMqu(κ)J−1
max

≥ (1− ρ)τ0 + ρJ−1
max

≥ (1− ρ)τ0 + τ0 ≥ τ0, (3.19)

which corresponds to the case when only one ant visits this state-action pair and finds the
worst possible solution when the associated pheromone level was already at its lowest pos-
sible value. Here we have used that J(s) ≤ Jmax and thus that J−1(s) ≥ J−1

max, for all s.
�

This means that ACL belongs to the class of ACO algorithms that have a lower bound on
the pheromone levels, ACOτmin , with τmin = τ0. In order to derive the upper bound on the
pheromone levels, we use the following two lemmas:

Lemma 3.5 Given the following first-order scalar difference equation:

y(k + 1) = ay(k) + b, (3.20)

with a ∈ (−1, 1), b ∈ R, and an arbitrary initial point y(0), the final value of the sequence
y(k) is:

lim
k→∞

y(k) =
b

1− a
. (3.21)

Proof This follows trivially from the final value theorem of the z-transform (Åström and
Wittenmark, 1990). �

Lemma 3.6 Given the following first-order scalar difference equation:

y(k + 1) = ay(k) + b, (3.22)

with a ∈ [0, 1), b ∈ R, and an initial point y(0). If y(0) ≤ b
1−a , then y(k) is non-decreasing.

40

3.4. CONVERGENCE ANALYSIS

Proof Using:

y(k) = aky(0) + (ak−1 + . . .+ a+ 1)b

y(k + 1) = ak+1y(0) + (ak + ak−1 + . . .+ a+ 1)b

we can derive the following expression for the difference between two consecutive time steps
of this difference equation:

y(k + 1)− y(k) = (ak+1 − ak)y(0) + akb = ak(b+ ay(0)− y(0)).

Since a ∈ [0, 1), we have ak ≥ 0. So, in order to make y(k) non-decreasing, we need that:
(b+ ay(0)− y(0)) ≥ 0, which is equal to requiring that y(0) ≤ b

1−a . �

Using these two lemmas, we can prove the following proposition:

Proposition 3.7 (Upper bound on pheromone levels) For any (q,u)-pair, the pheromone
levels are bounded from above:

τupd
qu (κ) ≤ βupper + ρMJ−1

min

1− αupper
, (3.23)

with

αupper = (1− ρ)(1− γ)

βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
and with Jmin = min

s
J(s) the smallest possible value of the performance function.

Proof Considering a given (q,u)-pair, let us rewrite (3.18) as follows:

τupd
qu (κ+ 1) = (1− ρ)(1− γ)Mqu(κ)τupd

qu (κ) + (1− ρ)
[
(1− γ)Mqu(κ)(−τ0) + τ0

]
+ ρ

∑
s∈Strial(κ):

(q,u)∈s

J−1(s). (3.24)

This equation is of the form:

τupd
qu (κ+ 1) = α(κ)τupd

qu (κ) + β(κ) + δ(κ). (3.25)

Let us now introduce θqu(κ), which satisfies the following difference equation:

θqu(κ+ 1) = αupperθqu(κ) + βupper + δupper, (3.26)

in which αupper, βupper, and δupper are upper bounds of α(κ), β(κ), and δ(κ) respectively:

α(κ) ≤ αupper = (1− ρ)(1− γ)

β(κ) ≤ βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
δ(κ) ≤ δupper = ρMJ−1

min,

41

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

The upper bound for α(κ) is obtained by taking Mqu(κ) = 1 for all κ, while the upper
bounds for β(κ) and δ(κ) are obtained for Mqu(κ) = M for all κ. We take the same initial
values for τupd

qu and θqu, so θqu(0) = τ0. Using Lemma 3.6, we can now show that θqu(κ) is
a non-decreasing function of κ. We immediately see that αupper ≥ 0 and we must show that:

βupper + δupper

1− αupper
=

(1− ρ)
[
(1− γ)M (−τ0) + τ0

]
+ ρMJ−1

min

1− (1− ρ)(1− γ)
≥ τ0 = θqu(0)

⇒ (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
+ ρMJ−1

min − τ0 + (1− ρ)(1− γ)τ0 ≥ 0.

Recalling the ranges for ρ, viz. (0, 1] and for γ, viz. [0, 1), we can show this as follows:

(1− ρ)

(1− γ)M (−τ0) + τ0︸ ︷︷ ︸
≥0

︸ ︷︷ ︸

≥0

+ ρMJ−1
min︸ ︷︷ ︸

≥τ0

−τ0

︸ ︷︷ ︸
≥0

+ (1− ρ)(1− γ)τ0︸ ︷︷ ︸
≥0

≥ 0.

Moreover, by induction it follows that τupd
qu (κ) ≤ θqu(κ):

τupd
qu (0) = θqu(0)

τupd
qu (κ+ 1) = α(κ)τupd

qu (κ) + β(κ) + δ(κ)

≤ αupperθqu(κ) + βupper + δupper = θqu(κ+ 1).

We can use Lemma 3.5 to get to lim
κ→∞

θqu(κ) =
βupper + δupper

1− αupper
. Since we have shown that

θqu(κ) is non-decreasing, we have now arrived at the conclusion that:

τupd
qu (κ) ≤ θqu(κ) ≤ βupper + ρMJ−1

min

1− αupper
.

�

Note that the upper bound that we have derived is only tight for M = 1.

3.4.6 Bounds on the Expected Value of the Pheromone Levels

At this point in the analysis of the behavior of the pheromone levels, we have found an
expression for the total pheromone update, viz. (3.18), and we have found a lower and an
upper bound for the pheromone levels. These bounds are useful as they give us information
about the range in which the pheromone levels reside. Moreover, the bounds give the relations
between the global and local pheromone decay rates ρ and γ, the number of ants M , and the
initial value of the pheromone levels τ0. However, two shortcomings of these bounds prevent
us from drawing conclusions about convergence of the algorithm:

1. Our upper bound is not tight for M > 1.

2. Our upper bound is the same for all pheromone levels.

42

3.4. CONVERGENCE ANALYSIS

Especially the second issue prevents us from analyzing whether and when the pheromone
levels associated with the optimal state-action pairs become larger than the pheromone levels
associated with suboptimal state-action pairs. In this section, our aim is to find expressions
for the behavior of individual pheromone levels. However, two factors in the algorithm in
particular complicate such an analysis:

1. The total pheromone update from (3.18) contains Mqu(κ), the number of ants that
have visited the (q,u)-pair in trial κ, which is dependent on many uncertain factors,
such as the other pheromone levels and the exploration probability.

2. The total pheromone update of τupd
qu (κ) depends on the pheromone deposits J−1(s)

from all solutions found in trial κ. The update of a particular pheromone level thus
depends on all state-action pairs prior to (q,u) and all state-action pairs following
(q,u), which also depends on many uncertain factors, such as the other pheromone
levels and the exploration probability.

There are too many uncertainties involved in the algorithm in order to find a closed ex-
pression of the final pheromone levels. This is inherent to learning algorithms that contain
random variables, such as exploration, and in which the credit assignment, such as the distri-
bution of rewards in reinforcement learning, or the distribution of the pheromone deposits in
ACL, depends on a series of decision variables.

In the following, we eliminate the uncertainty arising from exploration by looking at the
expected value of the pheromone levels. We eliminate the uncertainty arising from the state-
action pairs prior to (q,u) and the state-action pairs following (q,u) by considering the
situation depicted in Figure 3.2.

q′ qg

u1 = u∗

u2 = ū

u3

uN

q u

Figure 3.2: From a state q, the action u will take the system to another state q′, from which
there are N possible actions. The action u∗ in this state will bring the system to the goal
state optimally. The action ū does so sub optimally, but still with a lower cost than the other
actions. The other actions do so with decreasing optimality.

Here, we regard the Mqu(κ) ants to start in state q and all choose the action u. All ants
are taken to q′ after which they can choose between N possible actions. The action u1 = u∗

takes the ants to the goal state immediately and with the lowest cost compared to the other
available actions. It is thus considered to be the optimal action. The action u2 = ū is the
second-best action. It takes the ants to the goal state with a higher cost compared to u1, but
with a lower cost compared to all the other possible actions. Let us also assume that the
inverse of the cost (i.e., the pheromone deposit) resulting from all possible actions is ranked

43

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

as follows:

J−1
min,q′ = J−1(q′,u1 = u∗) > J−1(q′,u2 = ū) = J−1

second,q′

> J−1(q′,u3) = J−1
third,q′ > . . . > J−1(q′,uN) = J−1

max,q′

Here J−1
q′ is a short-hand expression for the cost to result from an action chosen in q′

and possible other state-action pairs following q′. The subscripts “min”, “second”, etc. then
denote respectively the lowest, or next to lowest possible cost to resulting in this manner. By
definition, we thus have J−1(q′,u1 = u∗) = J−1

min,q′ and J−1(q′,uN) = J−1
max,q′ .

We will analyze the behavior of the expected value of τupd
qu (κ). Since the cost resulting

from the state-action pair (q,u) is independent from the action chosen in q′, any constant
cost for J−1(q,u) will do for our analysis. Without the loss of generality and for the sake of
simplicity, we take J−1(q,u) = 0, although formally this is impossible, since J−1(q,u) ≥
J−1

max > 0 for any (q,u)-pair. Note that it thus also holds that J−1
min,q = J−1

min,q′ , J
−1
second,q =

J−1
second,q′ , etc. We assume in this section that the optimal action u∗ from q′ is currently also

associated with the highest pheromone level and is thus also designated to be optimal. During
learning, this does not have to be the case, since other actions may be associated with higher
pheromone levels and u∗ is thus not yet known to be the optimal action. This situation will
be further discussed in Section 3.4.9.

Computing the expected value of τupd
qu (κ) involves taking the expected value of the num-

ber of ants Mqu(κ) in the exponent, which severely complicates deriving an analytical ex-
pression for the expected value of τupd

qu (κ). We must thus shift our aim once again by choos-
ing to derive upper and lower bounds on the expected value of τupd

qu (κ) instead. At this point,
it is the best we can achieve.

Proposition 3.8 (Upper bound on the expected value of pheromone levels) For any state-
action pair (q,u), the expected value of the pheromone levels is bounded from above:

E[τupd
qu (κ)] ≤

βupper + ρMJ−1
exp,q

1− αupper
, (3.27)

with

αupper = (1− ρ)(1− γ),

βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
,

J−1
exp,q = (1− ε)J−1

min,q + εJ−1
avg,q,

and J−1
avg,q the inverse of the average cost expected to result when moving from q to the goal.

Proof When choosing u∗, the pheromone level τupd
qu is increased the most when:

τupd
qu (κ+ 1) = (1− ρ)(1− γ)︸ ︷︷ ︸

αupper

τupd
qu (κ) + (1− ρ)

[
(1− γ)M (−τ0) + τ0

]︸ ︷︷ ︸
βupper

+ρMJ−1
min,q.

When choosing ū, the pheromone level τupd
qu is increased the most when:

τupd
qu (κ+ 1) = (1− ρ)(1− γ)︸ ︷︷ ︸

αupper

τupd
qu (κ) + (1− ρ)

[
(1− γ)M (−τ0) + τ0

]︸ ︷︷ ︸
βupper

+ρMJ−1
second,q.

44

3.4. CONVERGENCE ANALYSIS

The values for αupper and βupper have been derived in the proof of Proposition 3.7. Also
recall the ranges for ρ, viz. (0, 1] and for γ, viz. [0, 1). The largest increase of τupd

qu for
the other actions follows in a similar manner. The probability that the optimal action u∗ is
chosen is:

p(u∗) = 1− ε+
ε

N
= 1−

(
N − 1
N

)
ε,

namely the probability of not exploring plus the probability of selecting that action while
exploring (which is uniformly distributed). The probability of choosing any of the other
actions is:

p(ui) =
ε

N
,

for ui 6= u∗. The expected value of τupd
qu when increasing the most can now be computed as

follows:

Eupper[τupd
qu (κ+ 1)] =

[
1−

(
N − 1
N

)
ε

]
(αupperτ

upd
qu (κ) + βupper + ρMJ−1

min,q)

+
[ε
N

]
(αupperτ

upd
qu (κ) + βupper + ρMJ−1

second,q)

...

+
[ε
N

]
(αupperτ

upd
qu (κ) + βupper + ρMJ−1

max,q)

=αupperτ
upd
qu (κ) + βupper +

[
1−

(
N − 1
N

)
ε

]
ρMJ−1

min,q

+
[ε
N

]
ρMJ−1

second,q + . . .+
[ε
N

]
ρMJ−1

max,q︸ ︷︷ ︸
N−1 terms

=αupperτ
upd
qu (κ) + βupper + [1− ε]ρMJ−1

min,q

+
[ε
N

]
ρM(J−1

min,q + J−1
second,q + . . .+ J−1

max,q)

=αupperτ
upd
qu (κ) + βupper + ρM [(1− ε)J−1

min,q + εJ−1
avg,q]

=αupperτ
upd
qu (κ) + βupper + ρMJ−1

exp,q,

where J−1
exp,q = (1 − ε)J−1

min,q + εJ−1
avg,q is the expected pheromone deposit on τupd

qu . Since
Eupper[τupd

qu (κ)] ≥ E[τupd
qu (κ)], for all κ, the following difference equation describes the

evolution of the upper bound of the expected value of τupd
qu (κ):

Eupper[τupd
qu (κ+ 1)] = αupperEupper[τupd

qu (κ)] + βupper + ρMJ−1
exp,q.

Since we can show thatEupper[τupd
qu (0)] = τ0 ≤

βupper+ρMJ−1
exp,q

1−αupper
, we know from Lemma 3.6

that Eupper[τupd
qu (κ)] is non-decreasing. Using Lemma 3.5, we can now conclude that:

E[τupd
qu (κ)] ≤ Eupper[τupd

qu (κ)] ≤
βupper + ρMJ−1

exp,q

1− αupper
.

�

45

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

Note that J−1
avg,q is generally not known, although it might be possible to estimate it. For

the convergence analysis in Section 3.4.7 and in Section 3.4.8, it is not necessary to know
the exact value of J−1

avg,q. Similar to the upper bound, we can derive a lower bound on the
expected value of pheromone levels.

Proposition 3.9 (Lower bound on the limit of the expected value of pheromone levels) for
For any state-action pair (q,u), in the limit for κ→∞, the expected value of the pheromone
levels is bounded from below:

lim
κ→∞

E[τupd
qu (κ)] ≥

βlower + ρJ−1
exp,q

1− αlower
, (3.28)

with

αlower = (1− ρ)(1− γ)M ,

βlower = (1− ρ) [(1− γ)(−τ0) + τ0] ,

J−1
exp,q = (1− ε)J−1

min,q + εJ−1
avg,q.

Proof When choosing u∗, τupd
qu is increased the least when:

τupd
qu (κ+ 1) = (1− ρ)(1− γ)M︸ ︷︷ ︸

αlower

τupd
qu (κ) + (1− ρ) [(1− γ)(−τ0) + τ0]︸ ︷︷ ︸

βlower

+ρJ−1
min,q,

since α(κ) = (1 − ρ)(1 − γ)Mqu(κ) is the smallest for Mqu(κ) = M for all κ and β(κ) =
(1 − ρ)

[
(1− γ)Mqu(κ)(−τ0) + τ0

]
is the smallest for Mqu(κ) = 1 for all κ, recalling the

ranges for ρ, viz. (0, 1] and for γ, viz. [0, 1). The smallest increase of τupd
qu for the other

actions follows in a similar manner. Following similar steps as in the proof of Proposition 3.8,
we can derive the following difference equation describing the evolution of the lower bound
of the expected value of τupd

qu (κ):

Elower[τupd
qu (κ+ 1)] = αlowerElower[τupd

qu (κ)] + βlower + ρJ−1
exp,q,

with Elower[τupd
qu (κ)] ≤ E[τupd

qu (κ)], for all κ. Since we can show that Elower[τupd
qu (0)] =

τ0 ≤
βlower+ρJ

−1
exp,q

1−αlower
, we know from Lemma 3.6 thatElower[τupd

qu (κ)] is non-decreasing. Using
Lemma 3.5, we can now conclude that:

Elower[τupd
qu (κ)] ≤

βlower + ρJ−1
exp,q

1− αlower

and that in the limit for κ→∞:

lim
κ→∞

E[τupd
qu (κ)] ≥

βlower + ρJ−1
exp,q

1− αlower
.

�

The expected value of the pheromone levels lies between these bounds,Elower[τupd
qu (κ)] ≤

E[τupd
qu (κ)] ≤ Eupper[τupd

qu (κ)], for all κ. In the limit for κ → ∞, the expected value of the
pheromone levels lies between the derived upper and lower bounds:

βlower + ρJ−1
exp,q

1− αlower
≤ lim
κ→∞

E[τupd
qu (κ)] ≤

βupper + ρMJ−1
exp,q

1− αupper
.

46

3.4. CONVERGENCE ANALYSIS

The expressions for α(κ), αupper, αlower, β(κ), βupper, and βlower are presented in Ta-
ble 3.3. This can be a useful reference when reading the discussion in the subsequent sections.

Table 3.3: The expressions for α(κ) and β(κ) and their upper and lower bounds.

α(κ) and its upper and lower bound β(κ) and its upper and lower bound

α(κ) = (1− ρ)(1− γ)Mqu(κ) β(κ) = (1− ρ)
[
(1− γ)Mqu(κ)(−τ0) + τ0

]
αupper = (1− ρ)(1− γ) βupper = (1− ρ)

[
(1− γ)M (−τ0) + τ0

]
αlower = (1− ρ)(1− γ)M βlower = (1−ρ) [(1− γ)(−τ0) + τ0] = τ0γ(1−ρ)

3.4.7 Convergence of the Expected Value of the Pheromone Levels
In the previous section, we have derived upper and lower bounds of the expected value of
pheromone levels. The difference between the upper and lower bound for κ → ∞ is a
measure of the certainty we have about the expected value of the pheromone levels; it tells
us to what extent the expected value of the pheromone levels converges. We will call this
difference ∆(E[τupd

qu]):

∆(E[τupd
qu]) =

βupper + ρMJ−1
exp,q

1− αupper
−
βlower + ρJ−1

exp,q

1− αlower
. (3.29)

Figure 3.3 illustrates the evolution of E[τupd
qu (κ)] and its upper and lower bound. The

expected value of the pheromone level may vary between these bounds, depending on the
number of ants visiting (q,u) and the exploration. The bounds are however non-decreasing
and converge to the limits as derived in Proposition 3.8 and Proposition 3.9. The difference
between the upper and lower bound converges to ∆(E[τupd

qu]).
From (3.29) and Table 3.3 we know that ∆(E[τupd

qu]) depends on the ACL parameters ρ,
γ,M , τ0, ε, and the cost function J . In this section, we will study the value of ∆(E[τupd

qu]) for
various settings of these parameters. This enables us to analyze the behavior of the expected
value of the pheromone levels in relation to the ACL parameters.

Only one ant: M = 1

In this case, βupper = βlower and αupper = αlower and thus:

∆(E[τupd
qu]) = 0.

This means that when there is only one ant, the expected value of a pheromone level is
equal to its upper and lower bound. For the case of only one ant, the expected values of the
pheromone levels thus converge. The value to which E[τupd

qu] converges is:

lim
κ→∞

E[τupd
qu (κ)] =

τ0γ(1− ρ) + ρJ−1
exp,q

1− (1− ρ)(1− γ)
.

47

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

τ0
κ

∆E[τupd
qu]

E[τupd
qu]

0

Figure 3.3: Illustration of a possible evolution of the expected value of the pheromone level
E[τupd

qu (κ)]. The upper and lower bound of this expected value converge. The difference
between the converged upper and lower bound, ∆(E[τupd

qu]) is a measure of the amount of
certainty about the expected value of τupd

qu (κ) for κ→∞. Note that although κ is a discrete
time index, this plot shows a continuous evolution of the expected value of the pheromone
levels for the sake of clarity.

When the exploration rate ε is decayed after τq′u∗ has become larger than any other
pheromone level associated with q′ and any possible action in that state, E[τupd

qu] even con-
verges to the true optimum:

lim
κ→∞

E[τupd
qu (κ)] =

τ0γ(1− ρ) + ρJ−1
min,q

1− (1− ρ)(1− γ)
.

Recalling the upper bound from (3.23) that we have derived in Proposition 3.7, we can
see that E[τupd

qu] thus converges to the true upper bound on the pheromone levels associated
with q. We thus conclude that not only E[τupd

qu] , but also τupd
qu itself converges to the true

optimum.

Annealed exploration: ε→ 0

Like just mentioned in the previous paragraph, if the exploration rate is annealed after τq′u∗
has become larger than the pheromone levels associated with the other actions and state q′, it
holds that J−1

exp,q = J−1
min,q and thus:

∆(E[τupd
qu]) =

βupper + ρMJ−1
min,q

1− αupper
−
βlower + ρJ−1

min,q

1− αlower
.

With an annealed exploration rate an M > 1, it thus still holds that ∆(E[τupd
qu]) ≥ 0 and

thus that the expected value of the pheromone levels does not necessarily converge.

No local pheromone update: γ = 0

With the local pheromone decay rate set to zero, we have βupper = βlower = 0 and αupper =
αlower = 1− ρ and thus:

∆(E[τupd
qu]) = (M − 1)J−1

exp,q.

48

3.4. CONVERGENCE ANALYSIS

The difference between the upper and lower bound of the expected value of the pheromone
levels thus increases proportional to the number of ants and is independent of the global
pheromone decay rate. With γ = 0, the local pheromone update rule is effectively disabled,
and the pheromone levels are completely determined by the global pheromone update rule.
We will later see that the effect on ∆(E[τupd

qu]) is the same as when ρ = 1. Even when the
exploration is annealed and J−1

exp,q = J−1
min,q, E[τupd

qu] does not necessarily converge.

Maximal local pheromone update: γ → 1

When the local pheromone decay rate is increased to 1, it follows that βupper = βlower =
(1− ρ)τ0 and αupper = αlower = 0 and thus:

∆(E[τupd
qu]) = ρ(M − 1)J−1

exp,q.

This differs by a factor ρ from the case of γ = 0. With a local pheromone decay rate of
one, the pheromone levels of visited state-action pairs are effectively reset to τ0, meaning that
with the global pheromone update rule, the pheromone deposit almost completely determines
the pheromone levels. Aside from the factor ρ, this has the same effect on the difference
between the upper and lower bounds on the expected value of the pheromone levels as with
γ = 0 and as with ρ = 1. Likewise, even when the exploration will be annealed, E[τupd

qu]
does not necessarily converge.

No global pheromone update: ρ→ 0

When the global pheromone decay rate is decreased to 0, we find that βupper = τ0(1− (1−
γ)M), βlower = τ0γ, αupper = 1− γ, αlower = (1− γ)M , and thus:

∆(E[τupd
qu]) =

τ0
γ

(
(1− (1− γ)M)2 − γ2

1− (1− γ)M

)
.

ForM = 1, this reduces to ∆(E[τupd
qu]) = 0, as we have already seen above. ForM > 1,

we can show that ∆(E[τupd
qu]) > 0 as follows:

(1− γ)M < 1− γ
⇒1− (1− γ)M > γ

⇒(1− (1− γ)M)2 > γ2

⇒(1− (1− γ)M)2 − γ2 > 0

⇒∆(E[τupd
qu]) > 0.

For M → ∞, the expression reduces to ∆(E[τupd
qu]) = τ0

γ (1 − γ2), which for small
values of γ means that the difference between the upper and lower bounds of the expected
value of pheromone levels scales almost inversely proportional with γ. A global pheromone
decay rate of zero means that the pheromone levels hardly receive any pheromone deposit,
regardless of the cost of the solutions found. For a given γ and annealed ρ, E[τupd

qu] thus does
not necessarily converge, but at least ∆(E[τupd

qu]) is bounded independently of M . When γ
would approach 1, then ∆(E[τupd

qu])→ 0 andE[τupd
qu] converges. However, since in that case

49

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

βupper = βlower = τ0 and αupper = αlower = 0, it can be seen that E[τupd
qu] converges to τ0.

Since this means that the expected value of the pheromone levels as well as the pheromone
levels themselves all stay at their initial value, convergence in this sense is of course useless.

Maximal global pheromone update: ρ = 1

When the global pheromone decay rate is set to one, which means that the pheromone levels
at the end of each trial are completely determined by the pheromone deposit in that trial, we
have βupper = βlower = 0, αupper = αlower = 0, and thus:

∆(E[τupd
qu]) = (M − 1)J−1

exp,q,

which is equal to the case when γ = 0. This is logical as in this case, the effect of the
local pheromone update rule is completely nullified at the end of the trial, when the global
pheromone update takes place. Likewise, even when the exploration is annealed, E[τupd

qu]
does not necessarily converge.

These observations characterize the influence of M , ε, γ, and ρ on the expected value of
the pheromone levels. Most importantly, they tell us that for M = 1, the expected value of
the pheromone levels as well as the pheromone levels themselves converge. Moreover, for
larger values ofM , the expected value of the pheromone levels is increasingly less predictable
and thus does not necessarily converge. It is important however to realize that convergence
of E[τupd

qu] does not necessarily imply convergence to the optimal policy. Moreover, non-
convergence of E[τupd

qu] does not rule out convergence of the policy. However, using the
expressions for the upper and lower bounds on the expected value of the pheromone levels,
we can analyze the behavior of the policy.

3.4.8 Convergence of the Policy

In Section 3.4.6, it has been assumed that the state-action pair with the highest pheromone
level indeed corresponds to the optimal action u∗, leading to an inverse cost J−1(q′,u∗) =
J−1

min,q′ . However, during learning, it may very well be the case that any other action is
associated with the highest pheromone level. Let us assume that in fact the (second-best)
action ū that leads to a pheromone deposit J−1(q′, ū) = J−1

second,q′ < J−1
min,q′ currently has

the highest pheromone level and is thus designated to be optimal, while in fact it is not. In
order to study what will happen in that case, we need the lower bound on the expected value
of the pheromone level from (3.28) in Proposition 3.9, in which it was assumed that u∗ was
already associated with the highest pheromone level. We also need the upper bound on the
expected value of the pheromone level from (3.27) in Proposition 3.8, but now for the case
when ū is assigned the highest pheromone level. This will be denoted by a bar above Eupper:

Ēupper[τupd
qu (κ)] ≤ βupper + ρMJ−1

exp,q

1− αupper
, (3.30)

with J−1
exp,q = (1−ε)J−1

second,q+εJ−1
avg,q < J−1

exp,q. Note that since we have taken J−1(q,u) =

0, it holds that J−1
exp,q = J−1

exp,q′ and J−1
exp,q = J−1

exp,q′ .

50

3.4. CONVERGENCE ANALYSIS

We will now look at the difference between this upper and the lower bound from (3.28).
This difference will be called ∆u∗ū(q′):

∆u∗ū(q′) =
βlower + ρJ−1

exp,q′

1− αlower
−
βupper + ρMJ−1

exp,q′

1− αupper
. (3.31)

Figure 3.4 illustrates a possible evolution of ∆u∗ū. When this value is negative, the region
of E[τupd

qu (κ)] when τq′u∗ > τq′ū and the region of E[τupd
qu (κ)] when τq′u∗ < τq′ū overlap.

This means that it may not be visible in the value of τupd
qu that the action u∗ has become the

optimal action in the state q′. Even more importantly, it means that the policy in state q′ does
not necessarily converge.

τ0
κ

∆u∗ū(q′)

E[τupd
qu]

0

when τq′u∗ > τq′ū

when τq′u∗ < τq′ū

Figure 3.4: Illustration of a possible evolution of the expected value of the pheromone level
E[τupd

qu (κ)] for the case when τq′u∗ > τq′ū and for the case when τq′u∗ < τq′ū. The
difference between the upper bound of E[τupd

qu (κ)] when τq′u∗ < τq′ū and the lower bound
of E[τupd

qu (κ)] when τq′u∗ > τq′ū converges to ∆u∗ū(q′). This value is an indicator for the
convergence of the policy in the state q′. When it is positive, the policy in q′ converges. When
it is negative, the policy in q′ does not necessarily converge, but may still do so. Note that
although κ is a discrete time index, this plot shows a continuous evolution of the pheromone
levels in relation to the ACL parameters.

Like with ∆(E[τupd
qu]) in (3.29), the expression of ∆u∗ū(q′) in (3.31) depends on the

ACL parameters ρ, γ, M , τ0, ε, and the cost function J . In this section, we will study the
value of ∆u∗ū(q′) for various settings of these parameters. With this, we can analyze the
behavior of the policy in q′ in relation to the ACL parameters. Note that we discuss the
behavior of the policy in q′ and not the behavior of the policy in q. Since there is only one
possible action in q, the policy in that state is trivial and does not change during the course
of the algorithm.

Only one ant: M = 1

In this case, βupper = βlower and αupper = αlower and thus:

∆u∗ū(q′) =
ρ

1− (1− ρ)(1− γ)
(J−1

exp,q′ − J
−1
exp,q′)

=
ρ(1− ε)

1− (1− ρ)(1− γ)
(J−1

min,q′ − J
−1
second,q′) ≥ 0.

51

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

This means that when there is only one ant, the difference between the expected value
of the pheromone levels associated with the optimal action and the first suboptimal action is
larger than zero, when ε 6= 1. The expected policy in q′ will thus converge to the optimal
policy, even when the exploration is not annealed. As seen in Section 3.4.7, when considering
the scenario of having only 1 ant, the policy in q′ is only guaranteed to converged when the
exploration rate is annealed “properly”.

Annealed exploration: ε→ 0

When the exploration rate is annealed “properly”, i.e., after τq′u∗ has outgrown the pheromone
levels associated with the other actions and state q′, it holds that J−1

exp,q′ = J−1
min,q′ and

J−1
exp,q′ = J−1

second,q′ thus:

∆u∗ū(q′) =
βlower + ρJ−1

min,q′

1− αlower
−
βupper + ρMJ−1

second,q′

1− αupper
.

For some M > 1, depending on the difference between J−1
min,q′ and J−1

second,q′ , ∆u∗ū(q′)
becomes smaller than zero. The policy in q′ thus does not necessarily converge.

No local pheromone update: γ = 0

With the local pheromone decay rate set to zero, we have βupper = βlower = 0 and αupper =
αlower = 1− ρ and thus:

∆u∗ū(q′) = J−1
exp,q′ −MJ−1

exp,q′ .

We have ∆u∗ū(q′) < 0 for

M >
(1− ε)J−1

min,q′ + εJ−1
avg,q′

(1− ε)J−1
second,q′ + εJ−1

avg,q′
. (3.32)

Like the previous considered scenario, with annealed exploration, this means that de-
pending on the difference between J−1

min,q′ and J−1
second,q′ there exists an M > 1 for which

the policy in q′ does not necessarily converge.

Maximal local pheromone update: γ → 1

When the local pheromone decay rate is increased to 1, it follows that βupper = βlower =
(1− ρ)τ0 and αupper = αlower = 0 and thus:

∆u∗ū(q′) = ρJ−1
exp,q′ − ρMJ−1

exp,q′ .

Like with γ = 0, we have forM >
(1− ε)J−1

min,q′ + εJ−1
avg,q′

(1− ε)J−1
second,q′ + εJ−1

avg,q′
, it holds that ∆u∗ū(q′) <

0. As explained in Section 3.4.6, with a local pheromone decay rate of almost one, the
pheromone levels of visited state-action pairs are almost completely reset to τ0, meaning that
with the global pheromone update rule, the pheromone deposit almost completely determines

52

3.4. CONVERGENCE ANALYSIS

the pheromone levels. This has the same effect on ∆u∗ū(q′) as with γ = 0 and as with ρ = 1.
Likewise, even when the exploration will be annealed and depending on the difference be-
tween J−1

min,q′ and J−1
second,q′ , there exists an M > 1 for which the policy in q′ does not

necessarily converge.

No global pheromone update: ρ→ 0

When the global pheromone decay rate is decreased to approach 0, we find that βupper =
τ0(1− (1− γ)M), βlower = τ0γ, αupper = 1− γ, αlower = (1− γ)M , and thus:

∆u∗ū(q′) =
τ0
γ

(
γ2 − (1− (1− γ)M)2

1− (1− γ)M

)
.

For M = 1, this reduces to ∆u∗ū(q′) = 0 and for M > 1 we can see that ∆u∗ū(q′) < 0.
For M →∞, the expression reduces to ∆u∗ū(q′) = − τ0γ (1−γ2), which for small values of
γ means that −∆u∗ū(q′) scales almost inversely proportional with γ. A global pheromone
decay rate of almost zero means that the pheromone levels hardly receive any pheromone
deposit, regardless of the cost of the solutions found. For a given γ and annealed ρ, ∆u∗ū(q′)
is bounded independent of M . When γ would approach 1, then ∆u∗ū(q′)→ 0, meaning that
all pheromone levels will converge to the same value, namely to τ0. Since this means that the
expected value of the pheromone levels as well as the pheromone levels themselves all stay
at their initial value, convergence in this sense is of course useless.

Maximal global pheromone update: ρ = 1

When the global pheromone decay rate is set to one, which means that the pheromone levels
at the end of each trial are completely determined by the pheromone deposit in that trial, we
have βupper = βlower = 0, αupper = αlower = 0, and thus:

∆u∗ū(q′) = J−1
exp,q′ −MJ−1

exp,q′ ,

so for M >
(1− ε)J−1

min,q′ + εJ−1
avg,q′

(1− ε)J−1
second,q′ + εJ−1

avg,q′
, we have ∆u∗ū(q′) < 0, which is equal to the

case when γ = 0. This is logical as in this case, the effect of the local pheromone update
rule is completely nullified at the end of the trial, when the global pheromone update takes
place. Likewise, even when the exploration will be annealed and depending on the difference
between J−1

min,q′ and J−1
second,q′ , there exists an M > 1 for which the policy in q′ does not

necessarily converge.

In this section, we have learned about the convergence of the policy in a state q′, as
depicted in Figure 3.2. We have shown that the expected policy converges to the optimal
policy for M = 1. For an increased number of ants, convergence of the expected policy is
only guaranteed for the scenarios when γ = 0, γ → 1, or ρ = 1 when the difference between
the inverse of the cost associated with the optimal action and the inverse of the cost associated
with the other possible actions is larger than some quantity, as expressed in (3.32). For other
cases, the policy in q′ is not formally guaranteed to converge.

53

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

3.4.9 Convergence of the Policy for the Complete State Space

With the analysis in the previous subsections, we have characterized to some extent the be-
havior of the pheromone levels. Because of the unpredictability of the number of ants that
visit a particular state, the best we could do was to derive upper and lower bounds on the
expected value of pheromone levels. For M = 1 the expected value of a pheromone level
τqu converges as the number of visits of (q,u) increases. For M > 1, the expected value
of a pheromone level is less predictable, but the size of the range in which it can vary does
converge to a constant value larger than zero. In particular, we have studied the situation
from Figure 3.2. There, the pheromone level τqu was dependent on the action chosen in the
state q′ further “downstream” towards the goal. The goal would be reached after choosing
the optimal action u∗ in q′. We have drawn similar conclusions on the convergence of the
policy in q′. For M = 1 convergence of the expected policy to the optimal policy has been
proven. However, for M > 1, it was shown that depending on the cost function, the expected
policy in q′ does not necessarily converge. Although we have not been able to prove nor
disprove convergence for M > 1, we will show with the experiments in Section 3.6 and in
both Chapter 4 and Chapter 5 that multiple ants speed up the learning of control policies and
that ACL converges to good control policies in most cases.

In order to draw conclusions about the possible convergence of the policy over the com-
plete state space, we reason as follows. Consider that all ants are initialized in q′, but that
the number of ants may vary from trial to trial. This state is just prior to the goal state when
choosing the optimal action u∗. Any ant that chooses u∗ thus contributes the maximal pos-
sible pheromone update J−1

min,q′ to the pheromone update. As, according to Proposition 3.1,
the probability of choosing any possible action ui is non-zero, there will be a time at which
τupd
q′u∗ is larger than any other pheromone level associated with q′. Then, τupd

qu will behave
according to the discussion in Section 3.4.7 and as illustrated in Figure 3.3. Now, consider
that there are in fact multiple actions to choose from in q, but that the action that leads to q′ is
the optimal action. If we now look at what happens to the policy in q, the same reasoning will
apply to that state as to q′. In this way, we can propagate back the reasoning to all states in
the state space: the pheromone levels will rise and fall depending on the number of ants vis-
iting these states, the amount of exploration, the parameter values, and the optimality of the
pheromone levels at states closer to the goal. On average, these pheromone levels will only
converge if M = 1, but also for M > 1 there will be a tendency towards higher pheromone
levels associated with the optimal actions. Likewise, the expected policy over the complete
state space will converge to the optimal policy when M = 1, but we have not been able to
prove that for M > 1 the expected policy will converge to the optimal policy. Neither have
we been able to prove the opposite, namely that the expected policy will not converge to the
optimal policy.

Note that also the state-action pairs visited before coming to a state q affect the amount
of pheromones deposited on τqu, but that its effect is only an offset to the behavior of
E[τupd

qu (κ)]. It does therefore not affect the reasoning above.

3.4.10 Remarks

Based on the convergence analysis, we are able to give some extra remarks about the ACL
algorithm.

54

3.5. RELATED METHODS

Action selection rule

The convergence analysis still holds when using a different action-selection rule, like (3.4).
The reason is that because of the existence of an upper bound as well as a lower bound on the

pheromone levels τ0 ≤ τupd
qu (κ) ≤ βupper + ρMJ−1

min

1− αupper
,∀κ, with αupper = (1 − ρ)(1 − γ)

and βupper = (1− ρ)[(1− γ)M (−τ0) + τ0], the probability of choosing any action is always
nonzero and bounded from below with a fixed lower bound. The average number of trials
after which any action has been chosen is thus bounded, which is an essential requirement
for the convergence analysis for τupd

qu (κ) to apply to τqu(k).

The effect of ε

The value of the exploration rate ε in (3.5) is important for the speed of convergence. If ε is
small (meaning low exploration) and u∗ becomes designated to be the optimal action, τqu∗ is
likely to be quickly reinforced. However, before u∗ becomes the best action, it takes longer
before it is selected frequently enough to make τqu∗ the largest. For large values of ε, the
opposite is true. For the value of the exponent α in (3.4) a similar reasoning for its influence
on the convergence speed applies.

3.5 Related Methods

ACL is an algorithm for the learning of optimal control policies by interacting with the system
at hand, much like Reinforcement Learning (RL) methods do. In RL, there is typically a
single agent that receives a reward after each interaction step with the system and its task is
to find the optimal control policy that leads to a maximal cumulative reward. Formally, the
RL agent aims at maximizing the discounted return, which is defined as the discounted sum
of immediate rewards:

R(t) =
T∑
i=0

γirlr(t+ i+ 1), (3.33)

with γrl the discount factor. The return at time t consists of future immediate rewards, which
are of course unknown to the agent. During the course of the learning, the agent therefore
aims at maximizing its expected return by following a certain policy. This is called the value
function:

V h(q) = Eh{R(t) | q(t) = q}, (3.34)

which means that the value function in a state q by following a policy h, is the value of the
(discounted) return that is expected to be obtained when starting in that state and following
that policy. In a similar way, the state-action value function, or Q-function, is defined as the
expected return of taking an action u in a state q and following the policy h:

Qh(q,u) = Eh{R(t) | q(t) = q,u(t) = u}. (3.35)

55

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

The optimal policy h∗ now is defined as the policy that maximizes these value functions:

V ∗(q) = max
h

V h(q), (3.36)

Q∗(q,u) = max
h

Qh(q,u). (3.37)

RL requires the system to be controlled to be an MDP and techniques for finding the
optimal control policy can be divided into the classes model-free and model-based. In the
following two subsections, the most important algorithms from both classes will be described
after which in Section 3.5.3, ACL is compared to both methods.

3.5.1 Dynamic Programming
Solution techniques for an MDP that use an exact model of the environment are known as
dynamic programming. Dynamic programming is based on the Bellman equations, which
give recursive relations of the value functions. For state-values this corresponds to

V h(q) = Eh

{ ∞∑
i=0

γirlr(t+ i+ 1) | q(t) = q

}

= Eh

{
r(t+ 1) + γrl

∞∑
i=0

γirlr(t+ i+ 2) | q(t) = q′
}

=
∑
u∈Uq

ph(u | q)
∑
q′∈Q

Pu
qq′

[
Ru

qq′ + γrlE
h

{ ∞∑
i=0

γirlr(t+ i+ 2) | q(t) = q′
}]

=
∑
u∈Uq

ph(u | q)
∑
q′∈Q

Pu
qq′
[
Ru

qq′ + γrlV
h(q′)

]
, (3.38)

with ph(u | q) the probability of performing action u in state q while following policy h,
and Pu

qq′ andRu
qq′ the state-transition probability function and the expected value of the next

immediate reward, respectively.
With (3.38) substituted in (3.36) an expression called the Bellman optimality equation

can be derived (Sutton and Barto, 1998) for state values as:

V ∗(q) = max
u

∑
q′∈Q

Pu
qq′
[
Ru

qq′ + γrlV
∗(q′)

]
, (3.39)

where q′ denotes the next state and for state-action values as:

Q∗(q,u) =
∑
q′∈Q

Pu
qq′

[
Ru

qq′ + γrl max
u′∈Uq

Q∗(q′,u′)
]
. (3.40)

One can solve these equations when the dynamics of the environment (Pu
qq′ and Ru

qq′) are
known. This corresponds to knowing the world model a priori. When either V ∗(q) or
Q∗(q,u) has been found, the optimal policy simply consists in taking the action u in each
state q encountered for which Q∗(q,u) is the highest or results in the highest expected direct
reward plus discounted state value V ∗(q). The beauty is that a one-step-ahead search yields

56

3.5. RELATED METHODS

the long-term optimal actions, since V ∗(q′) incorporates the expected long-term reward in a
local and immediate quantity.

Value Iteration (Sutton and Barto, 1998) uses the Bellman optimality equation from (3.39)
as an update rule:

Vi+1(q) = max
u

E {r(t+ 1) + γrlVi(q(t+ 1)) | q(t) = q,u(t) = u} (3.41)

= max
u

∑
q′∈Q

Pu
qq′
[
Ru

qq′ + γVi(q′)
]
. (3.42)

These iterations must be performed over all states and the algorithm is stopped when the
change in value function is smaller than some specific small positive value.

3.5.2 Q-Learning
In temporal difference learning methods (Sutton and Barto, 1998), the agent processes the
immediate rewards it receives at each time step, thereby learning from each action without
the need of a model of the system. A learning rate (αrl) determines the importance of the new
estimate of the value function over the old estimate. The simplest temporal difference update
rule is as follows:

V (q(t))← V (q(t)) + αrl [r(t+ 1) + γrlV (q(t+ 1))− V (q(t))] , (3.43)

where the term between the square brackets is called the temporal difference error. An algo-
rithm that learnsQ-values is Watkins’Q-learning (Watkins and Dayan, 1992). This algorithm
is a so called off-policy temporal difference control algorithm as it learns the action-values
that are not necessarily on the policy that it is following. In its simplest form, 1-step Q-
learning is as follows:

Q(q(t),u(t))← Q(q(t),u(t))

+ αrl

[
r(t+ 1) + γrl max

u∈Uq
Q(q(t+ 1),u)−Q(q(t),u(t))

]
. (3.44)

Under certain conditions on the state space sampling and the learning rate, V and Q will
converge in the limit to the state value function and state-action value function belonging to
the optimal policy respectively. With (3.44), Q(q(t),u(t)) is only updated after receiving
the new reward r(t + 1). At the next time step, the agent is in the state q(t + 1) and when
it performs an action for which it receives an immediate reward r(t + 2), this reward in
turn is only used to update Q(q(t + 1),u(t + 1)). It would be reasonable to also update
Q(q(t),u(t)), since this state-action pair was also responsible for receiving the reward two
time steps later. Wisely, states further away in the past should be credited less than states that
occurred more recently. How the credit for a reward should best be distributed is called the
credit assignment problem. A well known method in RL is to use eligibility traces (Sutton
and Barto, 1998). In Q-learning, such eligibility traces are associated with each state-action
pair and indicate for the state-action pairs how eligible they are to be updated with a particular
reward. For the off-policy nature of Q-learning, incorporating eligibility traces in Q-learning
needs special attention. State-action pairs are only eligible for change when they are followed
by greedy actions. Eligibility traces, thus only work up to the moment when an explorative

57

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

action is taken. Whenever this happens, the eligibility trace is reset to zero. The algorithm,
known as Q(λ)-learning, is given as:

Q(q,u)← Q(q,u) + αrlδe(q,u), ∀(q,u), (3.45)

where

δ = r(t+ 1) + γrl max
u′∈Uq

Q(q(t+ 1),u′)−Q(q(t),u(t)), (3.46)

and where e(q,u) is the eligibility trace for the respective state-action pair. According to Sut-
ton and Barto (1998), the development of Q(λ)-learning has been one of the most important
breakthroughs in RL.

3.5.3 Relation to ACL
The reinforcement learning algorithms presented above show strong similarities with the pro-
cedure of ACL. Both RL and ACL are capable of learning optimal control policies. The
temporal-difference update in RL involves the immediate reward obtained after performing
an interaction step with the system. In the case of Q-learning, the reward is used to update
the state-action value function, which reflects the expected long-term reward (or return) for
choosing a particular action in a particular state. The pheromone levels in ACL have a similar
function, as they also reflect the long-term quality of choosing a certain action in a certain
state. Without eligibility traces, the main difference between the updating in Q-learning and
ACL is that in Q-learning, the Q-value for a state-action pair is updated using the immediate
reward and the Q-values in the next state, meaning that immediate rewards need to propa-
gate through the state-action space. In ACL, the pheromones are updated with pheromone
deposits, which are functions of the solutions found. In that way, the quality of a solution
immediately affects all state-action pairs that contributed to it. With eligibility traces, this
difference becomes smaller, as an eligibility trace distributes the immediate rewards (to some
extent) to the other state-action pairs leading to that immediate reward. In RL, the control
objective needs to be translated in a reward function, defining the immediate reward for each
state-action pair. This makes it difficult, or even impossible, to define objective functions that
take into account performance criteria concerning the behavior of the controlled system, such
as rise-time, settling-time, and overshoot. Since in ACL the pheromone deposits are based on
complete solutions found, taken into account such performance criteria is possible and much
more straightforward.

Aside from the updating, the main difference between RL and ACL is, of course, that
instead of a single agent, in ACL there are multiple agents (ants), all interacting with the sys-
tem in parallel and all contributing to the update of the value function (the set of pheromone
levels). Because of the parallelism of the ants, ACL could be called a multi-agent learning al-
gorithm. However, this must not be confused with multi-agent reinforcement learning, which
stands for the setting in which multiple reinforcement learning agents all act in a single envi-
ronment according to their own objective and in order for each of them to behave optimally,
they need to take into account the behavior of the other agents in the environment. Note that
in ACL, the ants do not need to consider, or even notice, the existence of the other ants. All
they do is benefit from each other’s findings.

There exist parallel implementations of reinforcement learning. In (Laurent and Piat,
2001), an application of RL to a block-pushing problem is considered. With multiple blocks

58

3.5. RELATED METHODS

the complexity of the problem is large. In order to deal with this complexity, an architecture is
used which realizes several learning processes at the same time. Based on an camera image
of the state, several RL processes run in parallel, all using the same action-value function
for all the objects. A global Q-value function is composed by taking the maximum over
the value functions resulting from the parallel processes and this Q-value function is used to
control the system and generate new samples. This implementation results in a speed-up of
the learning and can be used in on-line learning. It is different from ACL in that there is only
one agent that interacts with the system, using the global Q-value function. In (Grounds and
Kudenko, 2007), a parallel implementation of SARSA(λ) is presented, with value functions
represented using linear function approximators. SARSA(λ) is very similar to Q(λ)-learning
and the reader is referred to Sutton and Barto (1998) for more information about this RL
technique. Each agent learns independently based on a separate simulation of the single-
agent problem. The agents periodically exchange information extracted from the weights of
their function approximators. This accelerates convergence towards the optimal policy. The
architecture is implemented on real hardware with real resource constraints, in which the
main limitation is in the communication cost. It is comparable to ACL, in the sense that the
agents do not share an environment in which they must coordinate their actions, or compete
for rewards. The agents learn the value function for the whole state space. The difference
between this architecture and ACL lies in the fact that all agents maintain their own, private
value function, and only once in a while communicate the weights of the value functions.
The weights are merged distributively based on all weights and visit counts of all agents.
Kushida et al. (2007) present a comparative study of parallel RL implemented on a cluster of
personal computers. With the state division learning method, the Q-value function is split into
subsets and each personal computer in the cluster works on a separate subset. The prioritized
field learning method is similar to this technique, but here the fields (subsets) have a priority
rating, which depends dynamically on the amount of changes in the Q-values. If there are
more changes, the field is considered to be more important and thus receives a higher priority.
The third parallel RL method compared in this study is parallel fuzzy Q-learning, in which
the environment is also divided in subsets and each personal computer in the cluster learns
the fuzzy rules of each subset. The reader is referred to (Kushida et al., 2007) for details on
the comparative study. The parallel RL methods compared in this study are very different
from ACL, because of the splitting of the environment in subsets. In ACL, all agents learn by
using the complete environment (state-space).

Both RL and ACL require the dynamical system to be an MDP, but neither requires the
model to be known. As such, both RL and ACL can be categorized as model-free learning
algorithms, since the agent does (the ants do) not have direct access to the model of the
system and must learn the control policy just by interacting with it. Note that as the ants
interact with the system in parallel, the implementation of this algorithm to a real system
requires multiple copies of this system, one for each ant. However, when a (black-box)
model of the physical system is available, the parallelism can take place in software. In that
case, the learning happens off-line and after convergence, the resulting control policy can be
applied to the real system. In principle, the ants could also interact with one physical system,
but this would require either a serial implementation in which each ant performs a trial and
the global pheromone update takes place after the last ant has completed its trial, or a serial
implementation in which each ant only performs a single interaction step, after which the
state of the system must be reinitialized for the next ant. In the first case, the local pheromone

59

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

update will lose most of its use, while in the second case, the repetitive reinitializations will
cause a strong increase of learning time and heavy load on the system. In either case, the
usefulness of ACL will be strongly compromised in that case.

3.6 Experiments: Grid Search
In Section 3.4 we have analytically studied the behavior of ACL and, in particular, discussed
the effect of two of its key parameters, namely the local and global pheromone decay rates.
An theoretical study on the convergence of ACL does, however, not say much about the
performance of the algorithm. Therefore, we present an experimental evaluation of ACL
on two problems that have by nature a discrete state space: grid search in single dimension
and in two dimensions. In these problems, the optimal control policy can easily be seen by
visual inspection and the focus can be on the effect of a single parameter on the behavior
of the algorithm. In all experiments, the performance is recorded over the trials and each
experiment is carried out 30 times, such that we can present plots with an average and max-
min performance. This gives us information about the repeatability of the experiments and
the representativeness of the results. Before we will present the results, the following section
first discusses the various performance measures that we use.

3.6.1 Performance Measures
The most important performance measure, which will be presented for all experiments, is the
cost of the policy. It is a measure for the current quality of the learned policy. After each trial
in an experiment (i.e. after all ants having completed their tours, or having been terminated
prematurely, and the pheromone levels have been updated), the system is simulated using the
current policy for a set of initial states and a certain simulation time. Simulating the system
using the current policy can be implemented using the ACL algorithm, but without updating
the pheromone levels (γ = ρ = 0) and with instead of the action selection rule, the current
policy (no exploration). The cost of the resulting solutions are logged and averaged over the
number of solutions. The resulting value is a measure of the cost of the policy:

Jh =
1
|Ssim|

∑
s∈Ssim

J(s), (3.47)

with Ssim containing the solutions resulting from the simulation of the policy h using a fixed
set of initial states. The value of Jh is determined after each trial and is plotted. The plot thus
shows the evolution of the policy cost over the trials.

There are several other performance measures that we will use only for some of the ex-
periments, in order to study and discuss specific aspects of the algorithm. One such other
performance measure is the cost of the ants. This cost is different from Jh, because ants
continually explore the state space, which may or may not lead to a lower cost of the found
solutions. At the end of each trial, the cost of the tour of each ant is logged and averaged over
the number of ants. The resulting value is a measure of the cost of the ants in that respective
trial. The plot will show the evolution of this measure over the trials and comparing it with
the plot showing the evolution of Jh gives an idea of the amount of exploration.

60

3.6. EXPERIMENTS: GRID SEARCH

The policy variation is a measure from trial to trial, indicating the fraction of states for
which the policy has changed. This number, by itself does not tell anything about the quality
of the policy, as a policy variation of zero may still correspond with a low-performance policy.
However, if Jh does not converge, the policy variation can be used to see the fraction of the
state space for which it is seemingly hard for the policy to converge. At the same time, if Jh

has converged while there is still some policy variation, this indicates that there are several
policies with an equally optimal performance.

For each state, there is a certain number of actions to choose from. If the current policy
indicates that a certain action is the best, it does not say how much better it is compared to
the second-best action. If it is only a little better, a small update of the pheromone level for
that other action in this state, may switch the policy for this state. In that case, the policy is
considered to be very sensitive. The sensitivity of the policy in a certain state is defined as
follows:

h1(q) = arg max
u∈Uq

(τqu),

h2(q) = arg max
u∈Uq\{h1(q)}

(τqu),

ϕ(q) =
(
τqh2(q)

τqh1(q)

)α
, (3.48)

where α is the same as the α from the Boltzmann action selection rule (3.4). The sensitivity
of the policy is the average sensitivity over all states and is a measure in the range of [0, 1].
Please note that this performance measure should be interpreted with care, because if the
difference between the largest and the second-largest pheromone level increases, while at
the same time all pheromone levels increase by approximately the same amount, the relative
difference between these two pheromone levels may decrease, which is thus observed as an
increased sensitivity. Nevertheless, when all pheromone levels increase and the sensitivity
decreases, this does mean that the susceptibility to changes in the policy due to small changes
in pheromone levels decreases.

3.6.2 1-D Grid Search

The 1-dimensional grid search problem is a very simple problem, in which there are 10 dis-
crete states in a row. The only possible actions for an ant are to move west, or to move east
and the goal state is at the far east. The system is deterministic.

1 2 3 4 5 6 7 8 9 10

1

c
1
 [m]

Figure 3.5: Optimal control policy for the 1-dimensional grid search problem.

Figure 3.5 shows the layout and the optimal control policy. The number of steps needed
to reach the goal is taken as the cost. The cost of the optimal control policy averaged over all
initial states, Jh∗ , is thus 5.

61

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

3.6.3 Varying Global Pheromone Decay Rate
In these experiments, the local pheromone decay rate is set to γ = 0, effectively eliminating
the local pheromone update rule. This is done in order to study the influence of the global
pheromone decay rate, ρ, in the absence of γ. The number of ants is M = 9. We experiment
with different values of ρ from the set ρ ∈ {0, 0.1, 0.2, 0.5, 0.9, 1}. The results are presented
in Figure 3.6.

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(a) ρ = 0

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(b) ρ = 0.1

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(c) ρ = 0.2

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(d) ρ = 0.5

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(e) ρ = 0.9

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(f) ρ = 1

Figure 3.6: Cost of the policy (Jh) for γ = 0 and varying ρ. The black line in each plot is the
average policy performance over 30 experiments and the gray area represents the max-min
range of the policy performance for these experiments.

It can be seen that taking ρ = 0 will not lead to convergence. This is obvious, as
ρ = 0 means that the pheromone update does not change the pheromone levels at all, and the
pheromone levels will retain their initial value. The slight increase of Jh possibly indicates
that on average a pheromone matrix with all pheromone levels equal to τ0 performs better
than with random pheromone levels. On the other hand, for large ρ, the policy, although con-
verging at first, will eventually not settle at one specific (optimal) policy. This is because for
larger ρ, the policy is increasingly influenced by the pheromone update in a trial, which may
be not optimal due to exploration. Clearly, the best choice for ρ is a small value larger than
zero, e.g. 0.1. This result also confirms the allowed range for ρ as derived in Section 3.4.10,
namely ρ ∈ (0, 1].

Figure 3.7 shows plots of the other performance measures for the setting ρ = 0.1, γ = 0.
It indeed shows that the exploration of the ants on average results in a slightly higher cost than
optimal and that exploration continues, even while the policy has converged. It can also be
seen from the policy variation and sensitivity that the optimal policy quickly becomes clearly
dominant over other possible policies.

62

3.6. EXPERIMENTS: GRID SEARCH

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(a) Performance of the ants

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(b) Policy variation

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Trial number [−]

S
en

si
tiv

ity
 [−

]

(c) Sensitivity of the policy

Figure 3.7: Other performance measures for ρ = 0.1 and γ = 0. The black line is the average
over the 30 experiments and the gray area represents the max-min range.

3.6.4 Varying Local Pheromone Decay Rate
The value ρ = 0.1 is now used to study the influence of γ. We experiment with different
values of γ from the set γ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.9}. Figure 3.8 show the results.

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(a) γ = 0.01

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(b) γ = 0.05

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(c) γ = 0.1

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(d) γ = 0.2

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(e) γ = 0.5

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(f) γ = 0.9

Figure 3.8: Cost of the policy (Jh) for ρ = 0.1 and varying γ. The black line is the average
over the 30 experiments and the gray area represents the max-min range.

For larger γ, the pheromone levels of visited (q,u)-pairs are decayed more, until for
γ = 1, these pheromone levels are reset to their initial value at each visit. This effect on the
convergence of the policy can clearly be seen in Figure 3.8. Again, M = 9 ants are used
and each experiment is carried out 30 times. It turns out that, for this problem, it is best to
take γ = 0 (i.e. Figure 3.6(b)), corresponding to not use the local pheromone update step at

63

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

all. The local pheromone update step may serve a better purpose for larger state spaces, or in
problems with noise, as it stimulates exploration (see Section 3.3.2).

3.6.5 Varying Number of Ants

The last experiments on the 1-dimensional grid search illustrate the effect of the number of
ants on the learning performance. The results are depicted in Figure 3.9 and show Jh over
the course of the trials for 1, 5, and 9 ants.

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(a) M = 1

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]

(b) M = 5

0 20 40 60 80
0

5

10

15

20

Trial number [−]

C
os

t [
−

]
(c) M = 9

Figure 3.9: Cost of the policy for ρ = 0.1, γ = 0, and a varying number of ants. The black
line is the average over the 30 experiments and the gray area represents the max-min range.

The results show that for an increasing number of ants, the learning time decreases indi-
cating that the ants cooperate and jointly speed-up the learning. It also shows that it is not
necessary to have a 100% coverage of the states with ants, which in this case of only 9 states
corresponds to 9 ants, in order to obtain the optimal policy. Increasing the number of ants
reduces the learning time in terms of number of trials.

3.6.6 2-D Grid Search

This problem is similar to the 1-D grid search problem, but consists of a two-dimensional
discrete world and a set of obstacles (see Figure 3.10).

The obstacles reduce the problem of having multiple equally optimal control policies,
which would be the case in multi-dimensional state spaces without any obstacles. There are
four actions available to the ants: north, south, east, and west. The goal is the state in the
center of the state space. Just as with the 1-D grid search the number of steps to the goal
serves as the cost.

3.6.7 Varying State-Transition Probability

In the first experiments we vary the state-transition probability. A state-transition probability
of, e.g., p = 0.9 means that there is a probability of 0.1 that the state transition is not carried
out and that the ant thus observes that its action lead to staying in the same state. We want to
know how well ACL can deal with stochasticity, because this will be a key issue in Chapter 4,
when dealing with the quantization of continuous state spaces.

64

3.6. EXPERIMENTS: GRID SEARCH

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

c1 [m]

c 2 [
m

]

Figure 3.10: Illustration of the discrete world from these experiments. There are 11 by 11
states, of which some are blocked by obstacles (black). The goal state is in the center (gray).

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(a) p = 0.1

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(b) p = 0.3

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(c) p = 0.5

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(d) p = 0.7

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(e) p = 0.9

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(f) p = 1

Figure 3.11: Cost of the policy (Jh) for ρ = 0.1, γ = 0, M = 86 (= 100% coverage), and
varying transition probability p. The black line is the average over the 30 experiments and
the gray area represents the max-min range.

The results from Figure 3.11 show that although the convergence becomes stronger and
more certain for higher state-transition probabilities, the average cost of the policy (Jh) for
this problem will converge to about 1

p times the average number of steps to the goal from
any given initial state, which is about 10 for this 11 × 11 size problem with obstacles. In

65

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

Figure 3.12, the other performance measures are considered for the cases of p = 0.5 and
p = 0.9. Interestingly, these cases demonstrate comparable performance indicating that ACL
is quite robust to state-transition stochasticity. Finally Figure 3.13 shows the control policies
in the cases of these two state-transition probabilities. Clearly, these control policies are very
similar and are near optimal.

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(a) Performance of the ants, p = 0.5

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(b) Policy variation, p = 0.5

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Trial number [−]

S
en

si
tiv

ity
 [−

]

(c) Sensitivity of the policy, p = 0.5

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(d) Performance of the ants, p = 0.9

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(e) Policy variation, p = 0.9

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Trial number [−]

S
en

si
tiv

ity
 [−

]

(f) Sensitivity of the policy, p = 0.9

Figure 3.12: Other performance measures, for ρ = 0.1, γ = 0, M = 86 (= 100% cover-
age), and varying state transition probability p. The black line is the average over the 30
experiments and the gray area represents the max-min range.

3.6.8 2-D Grid Search: Varying State Space Size
The final experiments on the 2-D grid search problem involves varying the size of the state
space and the number of ants covering it. We consider grids of sizes 11 × 11, 21 × 21, and
31 × 31, including the obstacles, corresponding to respectively 86, 278, and 640 states. We
evaluate the cases where there is a 20% and 100% coverage by ants. The state transition
probability is again 1 and the pheromone decay rates are as before, namely ρ = 0.1 and
γ = 0.

The results in Figure 3.14 show that the convergence speed increases with the number of
ants, but that even with only 20% coverage, the convergence is reasonably fast. The speed of
convergence in the number of trials is not too much related to the problem size, but rather to
the number of ants.

66

3.6. EXPERIMENTS: GRID SEARCH

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

c
1
 [m]

c 2 [
m

]

(a) p = 0.5

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

c
1
 [m]

c 2 [
m

]

(b) p = 0.9

Figure 3.13: Control policy, for ρ = 0.1, γ = 0, M = 86 (= 100% coverage), and varying
state transition probability p.

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(a) 11 × 11 maze with 20% state
space coverage by ants

0 20 40 60 80
0

100

200

300

400

Trial number [−]

C
os

t [
−

]

(b) 21 × 21 maze with 20% state
space coverage by ants

0 20 40 60 80
0

200

400

600

800

Trial number [−]

C
os

t [
−

]

(c) 31 × 31 maze with 20% state
space coverage by ants

0 20 40 60 80
0

20

40

60

80

100

120

Trial number [−]

C
os

t [
−

]

(d) 11 × 11 maze with 100% state
space coverage by ants

0 20 40 60 80
0

100

200

300

400

Trial number [−]

C
os

t [
−

]

(e) 21 × 21 maze with 100% state
space coverage by ants

0 20 40 60 80
0

200

400

600

800

Trial number [−]

C
os

t [
−

]

(f) 31 × 31 maze with 20% state
space coverage by ants

Figure 3.14: Cost of the policy (Jh) for various sizes of the problem and the percentage of
the state space covered by the ants for ρ = 0.1, γ = 0, and a state transition probability
of 1. The black line is the average over the 30 experiments and the gray area represents the
max-min range.

67

CHAPTER 3. ANT COLONY LEARNING FRAMEWORK

3.7 Concluding Remarks
In this chapter, we have introduced the ACL framework in the setting of discrete state spaces.
ACL is a multi-agent approach for learning control policies. The control policy is a state-
feedback controller and optimality is defined by a cost function that must be designed before
applying the algorithm. The interaction of the ants with the system consists for each ant in
choosing an action in the current state of the system and applying this action to the system,
after which the system moves to a new state and the ant observes this state. After a sequence
of state-action pairs, the ant may arrive in the goal state. After all ants have either reached
this state, or have timed out, their obtained solutions are evaluated over the cost function and
according to these costs, the amount of pheromone deposit is determined for all state-action
pairs visited by the ants. After this procedure, the ants are reinitialized over the state space,
but the pheromone levels now contain more information about which actions have a better
chance of leading to the goal state in an optimal fashion.

We have theoretically analyzed the convergence properties of ACL for the case of a dis-
crete state space with noiseless state transitions. We have derived upper and lower bounds for
the pheromone levels and for the expected value of the pheromone levels. We have related
these bounds to the convergence of the policy. We have shown that the expected policy con-
verges to the optimal policy for M = 1. For an increased number of ants, convergence of the
expected policy is only guaranteed for the scenarios when γ = 0, γ → 1, or ρ = 1 when the
difference between the inverse of the cost associated with the optimal action and the inverse
of the cost associated with the other possible actions is larger than some quantity, derived in
this chapter. For other cases, the policy is not formally guaranteed to converge.

We have also performed experiments with ACL on one- and two-dimensional grid search
problem in various situations. For these particular problems, we have derived good values
for the global and local pheromone decay rates and validated the theoretical statements that
we have made about these values. Furthermore, we have studied the effect of the number of
ants and the size of the state space on the performance of ACL. We concluded that in these
experiments, the speed of convergence is proportional to the number of ants used, but that
taking the number of ants equal to approximately 20% of the number of states in the system
results already in quite fast convergence. The size of the problem turned out not to effect
the learning speed much in the sense of the number of trials. Another experiment studied
the effect of state-transition stochasticity on the learning performance. The results for these
experiments showed that ACL was capable of finding optimal control policies even in the
presence of strong noise levels. This result is important as in the next chapter, we will present
ACL in the case of continuous state spaces, for which the quantization of the state space
introduces state-transition non-determinism.

68

Chapter 4

Ant Colony Learning in
Continuous State Spaces

This chapter presents the generalization of the ACL framework for continuous state spaces. It
discusses the partitioning of the state space with crisp bins and fuzzy membership functions
and compares their effect on the performance of ACL.

4.1 Introduction
In the previous chapter, we have introduced the ACL framework. It is a novel control policy
learning methodology, in which a collection of agents, called ants, jointly interacts with the
system at hand in order to find the optimal mapping between states and actions. Through
the interaction by pheromones, the ants are guided by each other’s experience towards better
control policies. We have analyzed the convergence properties for the case of a discrete state
space and noiseless observations and deterministic state transitions. We have also performed
a series of experiments demonstrating the quick convergence and good performance of ACL,
even for the case of non-deterministic state-transitions. These experiments indicate that ACL
is much more widely applicable than to only discrete, noiseless dynamical systems.

In this chapter, we will therefore move an important step forward by presenting and dis-
cussing ACL in the context of control policy learning for non-linear systems with a continu-
ous state space. In order to represent the continuous state space as a discrete set of variables,
we present two methodologies. The first one is presented in Section 4.2 and involves the
partitioning of the state space into a set of bins, enabling direct application of the ACL al-
gorithm presented in Section 3.3, but introducing non-deterministic state transitions. The
second methodology is more elegant as it involves the partitioning of the state space using
fuzzy membership functions, thereby retaining the continuity of the state space, while still
having only a finite set of variables for the algorithm. This methodology is presented in
Section 4.3 and establishes a generalization of the concept of pheromones and the local and
global pheromone update rules in order to integrate fuzzy interpolation in the ACL frame-
work. In Section 4.4 we present a theoretical analysis of the generalized ACL framework and
Section 4.5 presents an example application of both ACL methodologies to a continuous-state
dynamic system. We compare the performance of the algorithms to the baseline performance

69

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

of fuzzy Q-iteration, a well known model-based reinforcement learning method for continu-
ous domains.

4.2 ACL with Crisp State Space Partitioning
For a system with a continuous state space, learning algorithms like ACL can only be applied
if the state space is discretized. The most straightforward way to do this is to partition the
state space into a finite number of bins, such that each state value is assigned to exactly one
bin. These bins can be enumerated and used as the discrete states. This section discusses first
the non-determinism that is introduced by discretizing the state space in this way and then
the resulting ACL algorithm.

4.2.1 State Space Partitioning
Assume a general discrete-time, continuous-state system represented by the following dy-
namic model:

x(t+ 1) = f(x(t),u(t)), (4.1)

where x =
[
x1 x2 . . . xn

]T ∈ X ⊆ Rn is the continuous state vector with X the state
space and n the order of the system. Furthermore, u ∈ U is the discrete input and t is the
discrete time index. For a continuous-time dynamic system, we assume that it can be sampled
with a sufficiently short sampling time Ts to get the discrete-time representation (4.1).

In order to apply ACL, the state x must be discretized into a finite number of bins to get
the discrete state q. We assume that the complete state space X is partitioned with such bins,
and that each continuous-valued state x in this space falls in exactly one bin. For each di-
mension, the discrete state spaceQ represents the centers of these bins and when discretizing
x, the nearest element of Q in a Euclidean sense counts as its discrete representation. This
discretization function will be denoted as:

q← discretize(x,Q). (4.2)

Like in Section 3.2.1, q =
[
q1 q2 . . . qn

]T ∈ Q is denoted as a vector, with Q a
finite and countable set of discrete states. Since q contains discrete values only, all possible
states can be enumerated and considered to be elements of the set Q. The number of dis-
cretization bins, or possible values of the discrete state, is denoted by |Q|. More bins means
that x can be represented with a greater accuracy, but also that storing its discrete represen-
tation requires more memory. Likewise, more bins also means that the CPU time needed to
search for the nearest bin of a state x increases.

Non-determinism introduced by discretization

Depending on the number of the partitioning bins and their distribution over the state space,
portions of the state space will be represented by the same discrete state. As a result of this,
although the system in the continuous state space is deterministic, its discrete representation
is non-deterministic. The reason why is illustrated in Figure 4.1. Both Figure 4.1(a) and
Figure 4.1(b) show the same system, but with different continuous-valued states that are

70

4.2. ACL WITH CRISP STATE SPACE PARTITIONING

represented by the same discrete state. When the same action is applied to both systems,
their continuous-valued states change in a similar way, but the effect in the discrete domain
is different. With the first system, the discrete state has not changed, while the discrete state
of the second system has.

(a) A system with a continuous-valued state makes a
transition to a new state, as a result of a certain action.
However, in the discretized domain, no state transition
has occurred.

(b) The same system from (a) with a different
continuous-valued state responding to the same action
results in a similar continuous state transition. In the dis-
cretized domain, the effect is a transition from the same
discrete state as in (a) to another state.

Figure 4.1: An illustration of non-determinism introduced to the discrete state transitions if
the underlying system is continuous. In both cases, the initial state is discretized to the same
bin, the same action is applied, but the resulting discrete state is different.

One could say that applying an input to the system that is in a particular discrete state
results in the system to move to a next discrete state with some probability. We can model the
non-deterministic discrete state transitions by considering the continuous model to be cast as
a discrete stochastic automaton. An automaton is defined by the triple Σ = (Q,U , φ), with
Q a finite or countable set of discrete states, U a finite or countable set of discrete inputs, and
φ : Q× U ×Q → [0, 1] a state transition function. Given a discrete state vector q ∈ Q and
a discrete input u ∈ U , the (Markovian) state transition function φ defines the probability of
this state transition, φ(q,u,q′), making the automaton stochastic. The probabilities over all
states q′ must sum up to one for each state-action pair (q,u). An example of a stochastic
automaton is given in Figure 4.2. In this figure, it is clear that, e.g., applying an action u = 1
to the system in q = 1 can move the system to a next state that is either q′ = 1 with a
probability of 0.2, or q′ = 2 with a probability of 0.8.

φ(2, 1, 2) = 1

q = 2q = 1

φ(1, 1, 1) = 0.2

φ(2, 2, 2) = 0.1φ(1, 2, 1) = 1

φ(1, 1, 2) = 0.8

φ(2, 2, 1) = 0.9

Figure 4.2: An example of a stochastic automaton, where φ(q,u,q′) represents the transition
probability from a state q to a state q′ given an action u.

The probability distribution function determining the transition probabilities reflects the
system dynamics and the set of possible control actions is reflected in the structure of the

71

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

automaton. The probability distribution function could be estimated from simulations of the
system over a fine grid of pairs of initial states and inputs, but for the application of ACL this
is not necessary. The algorithm can directly interact with the continuous state dynamics of
the system, as will be described in Section 4.2.2. It is important to realize that the ants only
see the effects of their actions in the discrete domain and that they are blind to the underlying
continuous system. To them, the system behaves as a stochastic automaton, without being
aware of the actual state transition probabilities.

The effect of |Q| and Ts on the non-determinism

When we have a continuous-time dynamic system on which we wish to apply ACL, we need
to sample it with a sampling time Ts in order to get the discrete-time dynamics of (4.1). This
sampling time needs to be short enough in order to capture well the dynamics of the system.
For a given state partitioning, represented by the set Q, faster sampling means that it is less
likely for a discrete state transition to occur. In other words, from t to t+1, it is less likely that
the ants notice the effect in terms of the discrete state. Likewise, for a given sampling time, a
finer partitioning results in a larger probability that a transition from a different continuous-
valued state also results in a change of the discrete-valued state. We have seen though, that a
finer partitioning means a higher load on the memory and CPU. For these reasons, there is a
trade-off to be made between more states on one hand to capture the state dynamics and limit
the non-determinism introduced, and fewer states on the other hand to keep the algorithm
reasonably fast. A finer partitioning is thus never desirable, but sometimes necessary.

4.2.2 Crisp ACL Algorithm

We call the algorithm crisp ACL, in order to stress the nature of the state space partitioning.
Its outline is very similar to the algorithm introduced in Section 3.3. Before running the algo-
rithm, the number of discretization levels and their distribution over the state space must be
chosen, i.e., Q. At the start of every trial, each ant is initialized with a random continuous-
valued state of the system. This state is then discretized using the set of bins defined by Q.
Each ant chooses its action according to one of the action selection rules from Section 3.3.1,
applies this action to its copy of the system, and adds the state-action pair to its partial solu-
tion. The ant also performs a local pheromone update step in order to stimulate exploration
by other ants. According to the system dynamics, the ant observes at the next step the next
state to which it has moved and repeats the process by choosing a new action, until it reaches
the discrete state marked as the goal and terminates its trial. After all ants have terminated
the trial, all found solutions are added to the multiset Strial. These solutions are evaluated
over the cost function and a global pheromone update step updates the pheromone levels
accordingly.

Like in Section 3.3, we explicitly distinguish between the steps in the inner loop and the
steps in the outer loop of the algorithm. In the inner loop, the iterations are indexed by t,
while in the outer loop, the iterations are indexed by k. In order to understand the timing of
the pheromone updates unambiguously, the pheromone variables in the inner loop receive the
superscript “local”: τ local

qu . Before starting the inner loop, the current pheromone levels are
copied to the local pheromone levels: τ local

qu (0) = τqu(k) for all state-action pairs. The first
step in the inner loop is the selection of the action.

72

4.2. ACL WITH CRISP STATE SPACE PARTITIONING

Action Selection

In the action selection step, all ants that have not yet reached the goal, or have not yet timed-
out, belong to the set C and select an action to apply to the system. The action selection may
be each one of the three types discussed in Section 3.3.1. The default choice is the random
proportional action selection rule, which is repeated here for the sake of clarity:

uc ∼ pc{u|qc} =

(
τ local
qcu (t)

)α∑
`∈Uqc

(
τ local
qc`

(t)
)α , u ∈ Uqc , (4.3)

where pc{u|qc} is the probability for an ant c to choose action u in state qc and Uqc is the
action set available to ant c in state qc. The amount of exploration is implicit in the choice of
α and the pheromone levels τqcu, u ∈ Uqc . As the pheromone levels converge, the amount
of exploration is automatically reduced. The amount of exploration can be further reduced
by annealing the value of α with the progress of the algorithm.

Local Pheromone Update

The local pheromone update is done in the same way as in Section 3.3.2:

τ local
qcuc(t+ 1) = (1− γ)τ local

qcuc(t) + γτ0, (4.4)

with γ ∈ [0, 1) the local pheromone decay rate and τ0 the initial value of the pheromone
levels. After the local pheromone update, all ants that have reached the goal are removed
from the set C. When this set is empty, or when the inner loop has timed-out (i.e., when
t = T), the algorithm continues with the global pheromone step in the outer loop.

Global Pheromone Update

After having completed the trial, all found solutions are added to the multiset Strial and the
pheromone levels are updated according to the same global pheromone update step as in
Section 3.3.3. Let us assume that this happens when t = T :

τqu(k + 1) =(1− ρ)τ local
qu (T) + ρ

∑
s∈Strial(k):

(q,u)∈s

J−1(s), (4.5)

∀(q,u) : ∃s ∈ Strial(k) : (q,u) ∈ s,

with ρ ∈ (0, 1] the global pheromone decay rate. The algorithm then continues for an incre-
mented k at the start of the outer loop until the maximal number of trials have taken place
(i.e., when k = K).

Control Policy

The control policy can be extracted from the pheromone levels as follows:

u = h(q) = arg max
`∈Uq

(τq`), (4.6)

73

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

Algorithm 4.1 The crisp ACL algorithm.
Input: Q,U ,X , f ,M, τ0, γ, ρ, α, T,K

1: Initialize the algorithm:
k ← 0; τqu ← τ0, ∀(q,u) ∈ Q× U

2: repeat
3: Initialize the trial:

t← 0; Strial ← ∅; C ← {1, 2, . . . ,M}
4: for all ants c ∈ C in parallel do
5: Initialize the partial solution:

sp,c ← ∅
6: Initialize the state of the system:

xc(0)← random(X)
7: repeat
8: Discretize the state:

qc(t)← discretize(xc(t),Q)
9: Select action:

uc(t) ∼ pc{u|qc(t)} =
ταqcu∑

`∈Uqc τ
α
qc`

, u ∈ Uqc

10: Update partial solution:
sp,c ← sp,c ∪ {(qc(t),uc(t))}

11: Apply action to system:
xc(t+ 1)← f(xc(t),uc(t))

12: Perform the local pheromone update:
τqcuc ← (1− γ)τqcuc + γτ0

13: if discretize(xc(t+ 1),Q) = qg then
14: If an ant reaches the goal, its trial terminates:

C ← C \ {c}
15: end if
16: t← t+ 1
17: until t = T or C = ∅
18: Add the solutions found to the solution multiset:

Strial ← Strial ∪ {sp,c}, ∀c ∈ {1, 2, . . . ,M}
19: end for
20: Perform the global pheromone update:

τqu ← (1− ρ)τqu + ρ
∑

s∈Strial:
(q,u)∈s

J−1(s), ∀(q,u) : ∃s ∈ Strial : (q,u) ∈ s

21: k ← k + 1
22: until k = K
Output: τqu, ∀(q,u) ∈ Q× U

in which ties are broken randomly. This equation means that the control policy assigns the
action to a given state that maximizes the associated pheromone levels.

The complete algorithm is given in Algorithm 4.1. In this algorithm, the assignment
xc ← random(X) in Step 6 selects for ant c a random state xc from the state space X with
a uniform probability distribution. Although the domain X is listed as an input, in fact the

74

4.3. ACL WITH FUZZY STATE SPACE PARTITIONING

input is any discrete representation of this domain compatible with the random(X) function.
The remaining parameters of the algorithm are the same as in Table 3.2.

4.3 ACL with Fuzzy State Space Partitioning
A problem with crisp ACL is that the number of bins required to accurately capture the
dynamics of the original system may become very large even for simple systems with only
a few state variables. Moreover, the time complexity of ACL grows exponentially with the
number of bins, making the algorithm infeasible for realistic systems. In particular, note that
for systems with fast dynamics in certain regions of the state space, the sampling time needs
to be chosen smaller in order to capture the dynamics in these regions accurately. In other
regions of the state space where the dynamics of the system are slower, the faster sampling
requires a denser discretization, increasing the number of bins. All together, without much
prior knowledge of the system dynamics, both the sampling time and the bin size need to be
small enough, resulting in a rapid explosion of the number of bins.

A better alternative may be to approximate the state space by a parameterized function ap-
proximator, or more specifically, by a set of basis functions. In that case, there is still a finite
number of parameters, but this number can typically be chosen to be much smaller compared
to using crisp discretization. Furthermore, the mapping between the original continuous state
space and the function used in the approximation is bijective, preventing the artificial intro-
duction of noise, like it is the case in crisp ACL. There are various kinds of basis functions,
such as radial or fuzzy basis functions. In this chapter, we have chosen to use fuzzy basis
functions because it is the most straightforward way of interpolating between discrete states.
For this reason, the ACL algorithm utilizing the fuzzy partitioning of the state space is called
fuzzy ACL. In Section 7.3 it is explained that other types of basis functions may be used as
well.

4.3.1 State Space Partitioning
With fuzzy approximation, the domain of each state variable is partitioned using membership
functions. We define the membership functions for the state variables to be triangular-shaped,
such that the membership degrees for any value of the state on the domain always sum up to
one. Only the centers of the membership functions then have to be stored, as they completely
define the fuzzy partitioning. An example of such a fuzzy partitioning is given in Figure 4.3.

A1 A2 A3 A4 A5

a1 a2 a3 a4 a5 x1

µ

1

0

Figure 4.3: Membership functionsA1, . . . , A5, with centers a1, . . . , a5 on an infinite domain.

Let Ai denote the membership functions for the state variable x1, with ai their centers
for i = 1, . . . , NA, with NA the number of membership functions for x1. Similarly for x2,

75

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

denote the membership functions byBi, with bi their centers for i = 1, . . . , NB , withNB the
number of membership functions for x2. Likewise, the membership functions can be defined
for the other state variables in x, but for the sake of notation, the discussion in this chapter
limits the number to two, without loss of generality. Note that, e.g., in the application in
Section 4.5, the number of state variables is four. At a discrete time step t, the membership
degrees of a specific value of the state toAi andBi are denoted by µAi(x1(t)) and µBi(x2(t))
respectively. The membership degree of x1 to Ai can be computed as follows:

µAi(x1) =

max

(
0,min

(
1, a2−x1

a2−a1

))
if i = 1

max
(

0,min
(
x1−ai−1
ai−ai−1

, ai+1−x1
ai+1−ai

))
if i = 2, . . . , NA − 1

max
(

0,min
(

x1−aNA−1

aNA−aNA−1
, 1
))

if i = NA

(4.7)

The degree of fulfillment is computed by multiplying the two membership degrees:

βij(x(t)) = µAi(x1(t)) · µBj (x2(t)).

Let the vector of all degrees of fulfillment for a certain state at time t be denoted by:

β(x(t)) =[β11(x(t)) β12(x(t)) . . . β1NB (x(t))

β21(x(t)) β22(x(t)) . . . β2NB (x(t))

. . . βNANB (x(t))]T, (4.8)

which is a vector containing the elements 0 ≤ βij ≤ 1 for all combinations of i and j, and
which elements sum up to one. In order to illustrate what this vector looks like, consider the
example from Figure 4.4. In this example, a one-dimensional state x = 3.2 is partitioned
with crisp bins and fuzzy membership functions of which the centers are the same.

Each element of this vector will be associated to a vertex in the construction graph of
fuzzy ACL and thus also to an element from the set Q, now representing the centers of
the membership functions. The operator to partition a state x using the fuzzy membership
functions defined by Q will be denoted as:

β(x)← fuzzify(x,Q). (4.9)

Note that the discretization operator from (4.2) is in fact a special case of (4.9), as also
illustrated in Figure 4.4. With respect to memory requirements, the crisp representation using
β(x) always has exactly one non-zero element, which is then by definition equal to one. With
pair-wise overlapping normalized membership functions, like the ones shown in Figure 4.3,
the fuzzy representation using β(x) has at most 2d non-zero elements, with d the dimen-
sion of the state space. When β(x) is stored as a sparse data structure, this means that the
memory requirements when using fuzzy partitioning scales exponentially with the number of
dimensions. It also means that the memory requirements are independent of the number of
membership functions used to represent the state space.

Most of the steps from Algorithm 4.1 need to be reconsidered in the light of the general-
ization using fuzzy membership functions. This is the subject of the following section. Note
that for the sake of notation, we will denote β(x(t)) as β(t), knowing that it is the fuzzy
representation of a state x.

76

4.3. ACL WITH FUZZY STATE SPACE PARTITIONING

A1 A2 A3 A4 A5

0.5 1.5 2.5 3.5 4.5 x

µ

1

0

(a) The crisp representation of x = 3.2 is: β(x) = [0, 0, 0, 1, 0]T.

A1 A2 A3 A4 A5

0.5 1.5 2.5 3.5 4.5 x

µ

1

0

(b) The fuzzy representation of x = 3.2 is: β(x) = [0, 0, 0.3, 0.7, 0]T.

Figure 4.4: A simple example of a one-dimensional state x that is partitioned with crisp
bins and fuzzy membership functions of which the centers are the same. This illustrates the
meaning of β(x).

4.3.2 Fuzzy ACL Algorithm

In fuzzy ACL, an ant is not assigned to one certain discrete state at a time, but to all discrete
states at the same time according to the corresponding degree of fulfillment. Similar to the
definition of β(t) in (4.8), the vector of all pheromones for a certain action u at a discrete
time index t is denoted as:

τu(t) =
[
τ1u(t) τ2u(t) . . . τNABu(t)

]T
, (4.10)

where NAB = NA · NB . Using β(t) and τu(t), we can reformulate the steps from Algo-
rithm 4.1 which used the discrete representation of the state, i.e., the action selection, the
local and global pheromone update rules, and the derivation of the control policy.

Action Selection

The action is chosen randomly according to the following probability distribution:

uc ∼ pc{u|βc} =
NAB∑
i=1

βc,i

(
τ local
i,u (t)

)α∑
`∈U

(
τ local
i,` (t)

)α , u ∈ U . (4.11)

This expression involves the weighted sum of the pheromone levels according to the re-
spective membership degrees for the state xc after being fuzzified using (4.9). Note that when
βc contains exactly one 1 and for the rest only zeros, this would correspond to the crisp case,
where the state is discretized to a set of bins and (4.11) then reduces to (4.3).

77

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

Local Pheromone Update

When an ant visits a state with the fuzzy representation βc and chooses an action uc it per-
forms a local pheromone update. The local pheromone update from (4.4) can be modified to
the fuzzy case as follows:

τ local
uc (t+ 1) = (1− βc)τ local

uc (t) + βc((1− γ)τ local
uc (t) + γτ01)

= (1− γβc)τ local
uc (t) + (γβc)τ0, (4.12)

where all operations are performed element-wise and 1 =
[
1 1 . . . 1

]T
is a unity vector

of appropriate size. The pheromone levels associated with the chosen action uc are thus
decayed according to the membership degree of the visited state with the fuzzy representation
βc. Note that in the crisp case, (4.12) reduces to (4.4).

Global Pheromone Update

In order to derive a fuzzy representation of the global pheromone update step, we introduce
the following indicator vectors. The elements of indicator vectors can take a value from
the domain [0, 1]. The most basic indicator vector that we need is I

u,s
(j)
i

, which, in the
case of crisp state space partitioning has only one element equal to 1, namely the one for
(q,u) = s

(j)
i . Since a solution si = (s(1)

i , s
(2)
i , . . . , s

(Nsi)

i) is an ordered set of solution
components s(j)

i = (qj ,uj), another indicator vector, Iu,si , can be created by taking the
union of all I

u,s
(j)
i

:

Iu,si =
Nsi⋃
j=1

I
u,s

(j)
i
. (4.13)

Recall that Strial = {s1, s2, . . . , sNStrial} is the multiset of solutions. We can then create
Iu,Strial by taking the union of all Iu,s:

Iu,Strial =
NStrial⋃
i=1

Iu,si . (4.14)

In fact, Iu,si can be regarded as a representation of the state-action pair (qi,ui). In order
to generalize the global pheromone update step to the fuzzy case, realize that β(x(t)) from
(4.8) can be seen as an indicator vector I

u,s
(j)
i

, if combined with an action u. For the union
operator, we can take a fuzzy union set operator, such as:

(A ∪B)(x) = max[µA(x), µB(x)],

which for a vector operates on its elements. In this operator, A and B are membership
functions, x a variable, and µA(x) is the degree to which x belongs to A. Note that when A
maps x to a crisp domain {0, 1}, the union operator is still valid. Using these notations, we

78

4.3. ACL WITH FUZZY STATE SPACE PARTITIONING

can write the generalized global pheromone update rule as:

τu(k + 1) =

{
(1− ρ)τ local

u (T) + ρ
∑

s∈Strial
J−1(s)Iu,s

}
Iu,Strial

+ (1− Iu,Strial)τ local
u (T)

=(1− ρIu,Strial)τ local
u (T) + ρ

∑
s∈Strial

J−1(s)Iu,s, (4.15)

where all multiplications are performed element-wise. Here, we have used that from the
definitions of Iu,s and Iu,Strial it follows that Iu,sIu,Strial = Iu,s, when the multiplications
are performed element-wise. Note that in the crisp case, (4.15) reduces to (4.5).

Control Policy

Regarding the terminal condition for the ants, with the fuzzy implementation, none of the
vertices can be identified as being the terminal vertex. We define a set of membership func-
tions that is used to express the linguistic fuzzy term of the state being close to the goal.
Here specifically, this is satisfied when the membership degree of the state to the membership
function with its core equal to the goal state is larger than 0.5, as in that case, it belongs more
to the goal membership function than to any other membership function. If for an ant this has
been satisfied, that ant is considered to have terminated its trial.

In order to obtain the control policy for a given state, this state must first be represented by
a β vector. For each action, the pheromone level is a linear combination of all elements in the
pheromone vector and β. The policy then assigns the action that has the highest pheromone
level as follows:

u = h(β) = arg max
`∈U

(
NAB∑
i=1

βiτi`

)
, (4.16)

in which ties are broken randomly. Note that this equation indeed shows that the control pol-
icy is a mapping from continuous-valued states to discrete actions.

The complete algorithm is given in Algorithm 4.2. The parameters of the algorithm are
the same as in Table 3.2.

79

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

Algorithm 4.2 The fuzzy ACL algorithm.
Input: Q,U ,X , f ,M, τ0, γ, ρ, α, T,K

1: Initialize the algorithm:
k ← 0; τu ← τ01, ∀u ∈ U

2: repeat
3: Initialize the trial:

t← 0; Strial ← ∅; C ← {1, 2, . . . ,M}
4: for all ants c ∈ C in parallel do
5: Initialize the partial solution:

sp,c ← ∅
6: Initialize the state of the system:

xc(0)← random(X)
7: repeat
8: Fuzzify the state:

βc(t)← fuzzify(xc(t),Q)
9: Select action:

uc(t) ∼ pc{u|βc} =
NAB∑
i=1

βc,i
ταi,u∑

`∈U τ
α
i,`

, u ∈ U

10: Update partial solution:
sp,c ← sp,c ∪ {(qc(t),uc(t))}

11: Apply action to system:
xc(t+ 1)← f(xc(t),uc(t))

12: Perform the local pheromone update:
τuc ← (1− γβc)τuc + (γβc)τ0

13: if xc(t+ 1) is close to the goal state xg then
14: If an ant reaches the goal, its trial terminates:

C ← C \ {c}
15: end if
16: t← t+ 1
17: until t = T or C = ∅
18: Add the solutions found to the solution multiset:

Strial ← Strial ∪ {sp,c}, ∀c ∈ {1, 2, . . . ,M}
19: end for
20: Perform the global pheromone update:

τu ← (1− ρIu,Strial)τu + ρ
∑

s∈Strial
J−1(s)Iu,s,

with Iu,si =
Nsi⋃
j=1

I
u,s

(j)
i

and Iu,Strial =
NStrial⋃
i=1

Iu,si
21: k ← k + 1
22: until k = K
Output: τu, ∀u ∈ U

80

4.4. ANALYSIS OF THE GENERALIZED PHEROMONE UPDATE

4.4 Analysis of the Generalized Pheromone Update
In this section, we analyze the generalized pheromone update rules from Section 4.3.2 and
Section 4.3.2.

4.4.1 Serial Execution of the Pheromone Update Rules
In the ACL framework, all ants perform the local pheromone update in parallel. However,
when executed on a single core CPU, these operations must be performed in series. The
following theorem states that the effect of the local pheromone update is the same for a
parallel, or serial implementation.

Theorem 4.1 The local pheromone update for multiple ants is invariant with respect to the
order in which the updates by the individual ants are performed.

Proof In the crisp case, the local pheromone update from (4.4) may be rewritten as follows:

τ local
qu (t+ 1) = (1− γ)τ local

qu (t) + γτ0

= (1− γ)(τ local
qu (t)− τ0) + τ0,

in which t is the discrete time index, counting the interaction steps with the system in a given
trial.

Now, when a second ant updates the same pheromone level τ local
qu , the pheromone level

becomes:

τ local
qu (t+ 2) = (1− γ)(τ local

qu (t+ 1)− τ0) + τ0

= (1− γ)2(τ local
qu (t)− τ0) + τ0.

After n updates, the pheromone level is:

τ local
qu (t+ n) = (1− γ)n(τ local

qu (t)− τ0) + τ0, (4.17)

which shows that the order of the update is of no influence to the final value of the pheromone
level. For the fuzzy case a similar derivation can be made. In general, after n ants have
performed the update, the pheromone vector is:

τ local
u (t+ n) =

(
n∏
c=1

(1− γβc)

)
(τ local

u (t)− τ01) + τ01, (4.18)

where again all operations are performed element-wise. The order in which the multiplica-
tions are performed has no influence on the final value of the pheromone levels after the local
pheromone updates. Note that when βc contains exactly one 1 and for the rest only zeros,
corresponding to the crisp case, the total fuzzy local pheromone update from (4.18) reduces
to the crisp case from (4.17). �

Similarly, we must also be sure that the order in which the pheromone deposits are pro-
cessed does not affect the final result of the global pheromone update. We can easily prove
the following theorem:

81

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

Theorem 4.2 The global pheromone update for multiple ants is invariant with respect to the
order of the pheromone deposits by the individual ants.

Proof In the generalized global pheromone update rule from (4.15), the operations involving
the solutions from Strial are all either unions, or sums, which are invariant to the order of
their operands. Since crisp ACL is a special case of fuzzy ACL, this automatically holds for
crisp ACL as well. �

4.4.2 Total Pheromone Update

We will derive the generalized total pheromone update from both generalized local and global
pheromone update rules. Using the indicator vector from (4.13), the pheromone levels at the
end of a trial k, but before the global pheromone update, have been updated by the local
pheromone updates of all ants as follows:

τ local
u (T) =

 ∏
s∈Strial(k)

(1− γIu,s)

 (τu(k)− τ01) + τ01. (4.19)

Then, the global pheromone update is performed as follows:

τu(k + 1) = (1− ρIu,Strial)τ local
u (T) + ρ

∑
s∈Strial

J−1(s)Iu,s. (4.20)

The generalized total pheromone update can now be derived as:

τu(k + 1) = (1− ρIu,Strial)

 ∏
s∈Strial(k)

(1− γIu,s)

 (τu(k)− τ01) + τ01

+ ρ

∑
s∈Strial

J−1(s)Iu,s, (4.21)

in which k counts the number of trials since the initialization of the algorithm.
Recall that we are considering the update of all pheromone levels for a certain action u at

the same time. Also keep in mind that all operations are performed element-wise.

4.4.3 Lower Bound on the Pheromone Levels

We can derive the same lower bound on the pheromone levels in the generalized case as in
Proposition 3.4:

Proposition 4.3 If τ0 is chosen such that 0 < τ0 ≤ J−1
maxρ, with J−1

max the inverse of the
highest possible cost, the lower bound on the pheromone levels is τu(k) ≥ τ01,∀k.

Proof Following the same reasoning as in (3.19), we can show by induction that a pheromone

82

4.5. EXPERIMENTS: 2D NAVIGATION WITH VARIABLE DAMPING

vector can never have elements that are smaller than τ0:

τu(0) = τ01

τu(k + 1) = (1− ρIu,Strial)

 ∏
s∈Strial(k)

(1− γIu,s)

 (τu(k)− τ01) + τ01

︸ ︷︷ ︸
≥τ01 by induction

+ ρ
∑

s∈Strial
J−1(s)Iu,s

≥ (1− ρIu,Strial)τ0 + ρ
∑

s∈Strial
J−1

maxIu,s

= τ01 + ρ

{
J−1

max

∑
s∈Strial

Iu,s − τ0Iu,Strial

}
≥ τ01,

in which we have used that J−1
max ≥ τ0 and that

∑
s∈Strial

Iu,s ≥
⋃

s∈Strial
Iu,s = Iu,Strial . �

4.5 Experiments: 2D Navigation with Variable Damping
This section presents an example application of both crisp and fuzzy ACL to a continuous-
state dynamic system. The dynamic system under consideration is a two-dimensional (2D)
simulated navigation problem and it is similar to the one described in (Buşoniu et al., 2008).
Note that it is not our purpose to demonstrate the superiority of ACL over any other method
for this specific problem. Rather we want to demonstrate the functioning of the algorithm
and compare the results for both its versions.

4.5.1 Problem Formulation
A vehicle, modeled as a point-mass of 1 kg, has to be steered to the origin of a two-dimensional
flat surface from any given initial position in an optimal manner. The vehicle experiences a
damping that varies non-linearly over the surface. The state of the vehicle is defined as
x =

[
c1 v1 c2 v2

]T
, with c1, c2 ∈ [−5, 5][m] and v1, v2 ∈ [−2, 2][m/s] the position

and velocity in the direction of each of the two principal axes respectively. The control input
to the system u =

[
u1 u2

]T
is a two-dimensional force. The dynamics of the vehicle in

continuous-time are:

ẋ(t) =

0 1 0 0
0 −b(c1, c2) 0 0
0 0 0 1
0 0 0 −b(c1, c2)

x(t) +

0 0
1 0
0 0
0 1

u(t),

where the damping b(c1, c2) is modeled by an affine sum of two Gaussian functions:

b(c1, c2) = b0 +
2∑
i=1

bi exp

− 2∑
j=1

(cj −mj,i)2

σ2
j,i

 ,
83

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

for which the values of the parameters are b0 = 0.5, b1 = b2 = 8, and m1,1 = 0, m2,1 =
−2.3, σ1,1 = 2.5, σ2,1 = 1.5 for the first Gaussian, and m1,2 = 4.7, m2,2 = 1, σ1,2 = 1.5,
σ2,2 = 2 for the second Gaussian. The damping profile can be seen in Figure 4.5, where
darker shading means more damping. The system is sampled with a sampling time Ts = 0.2s.
The parameters used in the ACL algorithm and their values for the experiments in this section
are listed in Table 4.1. The values for γ and ρ have been chosen on the basis of the results
of Section 3.6. The number of ants M has been chosen to be relatively low compared to
the number of state-action pairs in the problems (i.e., respectively 6 561 and 13 608 for the
experiments in Section 4.5.2 and Section 4.5.3). The values for τ0 and α are very standard, T
is chosen to be sufficiently large for the ants to find the goal while learning the control policy,
and K is chosen large enough for the algorithm to converge. In Chapter 5, the influence of γ,
ρ, and M on the learning performance will be studied further.

Table 4.1: The ACL parameters and their values for the experiments in this section.
Parameter Value Meaning
M 200 number of ants
τ0 0.001 initial pheromone level
γ 0.01 local pheromone decay rate
ρ 0.1 global pheromone decay rate
α 3 exponent of pheromone level in action selection rule
T 150 maximal number of interaction steps with the system
K 200 maximal number of trials

The ants are randomly initialized over the complete state space at the start of each trial.
An ant terminates its trial when its position and velocity in both dimensions are within a
bound of ±0.25m and ±0.05m/s from the goal xg =

[
0 0 0 0

]T
respectively. Each

experiment is carried out 30 times and the performance measures from Section 3.6.1 are
recorded for every trial.

4.5.2 Regular Partitioning and Quadratic Cost Function

In the first experiments, we consider using a symmetrical partitioning of the state space. The
partitioning is as follows:

• For the position in both dimensions c1, c2: {−5,−2,−0.3,−0.1, 0, 0.1, 0.3, 2, 5}.

• For the velocity in both dimensions v1, v2: {−2, 0, 2}.

The action set contains 9 actions, namely the Cartesian product of the sets {−1, 0, 1}
for both dimensions. The quadratic cost function from (3.2) is used with the matrices Q =
diag(0.2, 0.1, 0.2, 0.1) and R = 0. The cost function thus only takes into account the devi-
ation of the state from the goal. We will run the fuzzy Q-iteration algorithm from (Buşoniu
et al., 2008) for this problem with the same state space partitioning in order to derive the
optimal policy to which we can compare the policies derived by both versions of the ACL
algorithm.

84

4.5. EXPERIMENTS: 2D NAVIGATION WITH VARIABLE DAMPING

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

Figure 4.5: Illustration of the two dimensional space from these experiments. There are two
Gaussian-shaped regions of stronger damping. Here, darker shades mean more damping.

Cost of the Policy

The first performance measure considered represents the cost of the control policy as a func-
tion of the number of trials, as was introduced by (3.47). The cost of the control policy is
measured as the average cost of a set of trajectories resulting from simulating the system
controlled by the policy and starting from a set of 100 predefined initial states, uniformly
distributed over the state space. Figure 4.6 shows these plots.

Each experiment is carried out 30 times in order to study the repeatability of the results.
The black line in the plots is the average cost over these 30 experiments and the gray area
represents max-min range. From Figure 4.6 it can be concluded that for these experiments,
the converging trend for the results with the crisp ACL algorithm is not as fast and smoothly
compared to that of fuzzy ACL. The average cost for crisp ACL more or less converges to
a larger value than the average cost resulting from fuzzy ACL. Furthermore, the gray region
for crisp ACL is larger than that for fuzzy ACL. This means that there is a larger variety of
policies found at the end of the 30 experiments for crisp ACL than for fuzzy ACL.

Policy Variation

The performance of the algorithm can also be measured by the fraction of discrete bins
(crisp version), or cores of the membership functions (fuzzy version) for which the policy
has changed at the end of a trial compared to the start of the trial. This measure was called

85

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

500

Trial number [−]

C
os

t [
−

]

(a) Crisp ACL

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

500

Trial number [−]

C
os

t [
−

]

(b) Fuzzy ACL

Figure 4.6: The cost of the control policy as a function of the number of trials passed since
the start of the experiment. The black line is the average over the 30 experiments and the gray
area represents the max-min range.

the policy variation in Section 3.6.1. The policy variation as a function of the trials for both
crisp and fuzzy ACL is depicted in Figure 4.7.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(a) Crisp ACL

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(b) Fuzzy ACL

Figure 4.7: Performance of the algorithm in terms of policy variation. The black line is the
average over the 30 experiments and the gray area represents the max-min range.

It shows that for both ACL versions, the policy variation never really becomes completely
zero and confirms that crisp ACL converges slower compared to fuzzy ACL for these exper-
iments. The observation that the policy variation never becomes completely zero indicates
that there are some states for which one or more actions result in nearly the same cost.

Sensitivity of the Policy

Figure 4.8 shows the evolution of the sensitivity of the policy, as defined by (3.48).

86

4.5. EXPERIMENTS: 2D NAVIGATION WITH VARIABLE DAMPING

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number [−]

S
en

si
tiv

ity
 [−

]

(a) Crisp ACL

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number [−]

S
en

si
tiv

ity
 [−

]

(b) Fuzzy ACL

Figure 4.8: Evolution of the sensitivity of the control policy as a function of the number of
trials. The black line is the average over the 30 experiments and the gray area represents the
max-min range.

The figure shows that the sensitivity decreases with the number of trials, explaining the
decrease in the policy variation from Figure 4.7. The fact that it does not converge to zero
explains that there remains a probability larger than zero for the policy to change. This
seems to confirm the hypothesis that ACL algorithms are potentially capable of adapting the
policy to changes in the cost function, due to changing system dynamics. The observation
that crisp ACL results in a lower sensitivity than fuzzy ACL may have to do with the fact
that in crisp ACL, the pheromone update for a given continuous state-action pair results in a
pheromone deposit at one discrete bin only, while in fuzzy ACL such a pheromone deposit
is distributed over several fuzzy membership functions. In crisp ACL, this may result in a
strong difference between two pheromone levels associated with the same discrete state, but
different action. In fuzzy ACL, the difference between two pheromone levels associated with
the same membership function and different actions may be less strong because of this.

The Final Policy and Simulation of the System

Finally, in Figure 4.9, we present the best policies resulting from the experiments and the
behavior of a simulated vehicle controlled by these policies for both crisp and fuzzy ACL.

In the case of crisp ACL, Figure 4.9(a) depicts a slice of the policy for zero velocity. It
shows the mapping of the positions in both dimensions to the input. Figure 4.9(b) presents the
trajectories of the vehicle for various initial positions and zero initial velocity. The mapping is
shown for a grid three times finer than the partitioning grid used in these experiments. For the
crisp case, the states in between the centers of the partition bins are discretized to the nearest
center. Figure 4.9(c) and Figure 4.9(d) present the results for fuzzy ACL. Comparing these
results with those from the crisp ACL algorithm, it shows that for crisp ACL, the trajectories
of the vehicle go almost direct to the goal state, but not as direct as with fuzzy ACL. Especially
the top-left trajectory seems to sub-optimal. For fuzzy ACL, the trajectories are very smooth
and seem to be more optimal; however, for both crisp and fuzzy ACL, the vehicle does not
avoid the regions of stronger damping at all. The policy of fuzzy ACL is much more regular

87

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

h(c
1
,0,c

2
,0) [Nm]

(a) Crisp ACL: policy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

(b) Crisp ACL: simulation

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

h(c
1
,0,c

2
,0) [Nm]

(c) Fuzzy ACL: policy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

(d) Fuzzy ACL: simulation

Figure 4.9: The figures on the left present a slice of the best resulting policy for zero velocity
obtained by crisp ACL (top) and fuzzy ACL (bottom) in one of the 30 runs. The figures show
the control input for a grid of positions, three times finer than the partitioning grid in these
experiments. The multi-Gaussian damping profile is shown, where darker shades represent
regions of more damping. The figures on the right show the trajectories of the vehicle under
these policies for various initial positions and zero initial velocity. The markers indicate the
positions at twice the sampling time.

compared to the one obtained by crisp ACL.
In order to verify the optimality of the resulting policies, we also present the optimal pol-

icy and trajectories obtained by the fuzzy Q-iteration algorithm from (Buşoniu et al., 2008).

88

4.5. EXPERIMENTS: 2D NAVIGATION WITH VARIABLE DAMPING

This algorithm is a model-based reinforcement learning method developed for continuous
state spaces and is guaranteed to converge to the optimal policy on the partitioning grid.
Figure 4.10 present the results for fuzzy Q-iteration.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

h(c
1
,0,c

2
,0) [Nm]

(a) Fuzzy Q-iteration: Policy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

(b) Fuzzy Q-iteration: simulation

Figure 4.10: The baseline optimal policy derived by the fuzzy Q-iteration algorithm. The
left figure presents a slice of the policy for zero velocity. The figure on the right shows
the trajectories of the vehicle under this policy for various initial positions and zero initial
velocity. The markers indicate the positions at twice the sampling time.

It can be seen that the optimal policy from fuzzy Q-iteration is more similar to the one
obtained by fuzzy ACL, but that it manages to avoid the regions of stronger damping some-
what better, though still not perfectly. The term “perfectly”, must however be understood in
the light of the cost function that has been used. An optimal control policy behaves perfectly
by definition. If we feel that it should behave even better, according to some other notion of
the actual control objective, we should adapt the cost function to better match our intended
objective.

Even with the optimal policy, the regions of stronger damping are not completely avoided.
The reason for this may be that the cost function is ill defined and does not completely relate
to our intended control objective. Another reason may be that our particular choice of the
cost function in these experiments is not capable of clearly discriminating between the real
optimal policy and several sub-optimal policies. In the next section, we will use a different
cost function, as well as a finer state space partitioning in order to see if we can improve the
learning performance like this.

4.5.3 Non-Regular Partitioning and Time-Spent Cost Function

In these experiments, we consider using a non-regular partitioning of the state space. This
partitioning of the position space is composed of a baseline grid {−5,−0.3, 0, 0.3, 5} and
adding to it, extra grid lines around each Gaussian damping region. This partitioning is

89

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

identical to what is used in (Buşoniu et al., 2008) and is as follows:

• For the position c1: {−5,−3.75,−2,−0.3, 0, 0.3, 2, 2.45, 3.5, 3.75, 4.7, 5}.

• For the position c2: {−5,−4.55,−3.5,−2.3,−2,−1.1,−0.6,−0.3, 0, 0.3, 1, 2.6, 4, 5}.

• For the velocity in both dimensions v1, v2: {−2, 0, 2}.

The action set is the same as in the Section 4.5.2 and contains 9 actions, namely the
Cartesian product of the sets {−1, 0, 1} for both dimensions. As the cost function, the number
of time steps to the goal is used. We will run the fuzzy Q-iteration algorithm from (Buşoniu
et al., 2008) for this problem with the same state space partitioning in order to derive the
optimal policy to which we can compare the policies derived by both versions of the ACL
algorithm.

Cost of the Policy

Again, the first performance measure considered is the cost of the policy from (3.47). Fig-
ure 4.11 shows these plots.

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

Trial number [−]

C
os

t [
−

]

(a) Crisp ACL

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

Trial number [−]

C
os

t [
−

]

(b) Fuzzy ACL

Figure 4.11: The cost of the control policy as a function of the number of trials passed since
the start of the experiment. The black line is the average over the 30 experiments and the gray
area represents the max-min range.

It can be seen that the difference between the initial cost (of a random policy) and the
final policy is much smaller compared to what we have seen in Figure 4.6. For both crisp
and fuzzy ACL, the trend of the average cost converges in about the same number of trials,
but the average final cost using fuzzy ACL is smaller. With both algorithms, there is a lot of
variation between the 30 runs of the experiment.

Policy Variation

The policy variation as a function of the trials for both crisp and fuzzy ACL is depicted in
Figure 4.12.

90

4.5. EXPERIMENTS: 2D NAVIGATION WITH VARIABLE DAMPING

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(a) Crisp ACL

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial number [−]

P
ol

ic
y

va
ria

tio
n

[−
]

(b) Fuzzy ACL

Figure 4.12: Performance of the algorithm in terms of policy variation. The black line is the
average over the 30 experiments and the gray area represents the max-min range.

Here it is seen that the policy obtained by fuzzy ACL more rapidly takes on its final
form, compared to crisp ACL. These results vary only slightly over the 30 runs of the experi-
ments, indicating that considering the results from Figure 4.11, although the cost of the policy
may vary a lot from experiment to experiment, the cost of the policy itself always converges
quickly. This also indicates that in these experiments, the algorithm seems to get easily stuck
in a local optimum. The reason may be found in the random proportional action selection
rule that is used, because the exploration depends on the difference between the pheromone
levels for the various actions. If the cost function that is used results in a rapid increase of the
pheromone levels associated with sub-optimal actions, it immediately becomes unlikely for
the ants to choose different actions.

The Final Policy and Simulation of the System

The best policy resulting from the experiments and the behavior of a simulated vehicle con-
trolled by these policies are shown in Figure 4.13 for both crisp and fuzzy ACL.

There is a clear difference in the policy and the behavior of the vehicle controlled by this
policy between the crisp and the fuzzy case. With crisp ACL, in some regions of the state
space, the policy seems to steer the vehicle around the regions of stronger damping. However,
in other regions, the policy appears to be quite random. When looking at the trajectories of the
vehicle, the policy controls the vehicle to the goal state in a very sub-optimal way. Especially
when the vehicle starts in the lower-right corner, the control policy is incapable of controlling
the vehicle to the goal. For fuzzy ACL, however, the policy looks very smooth and also
appears to be able to steer the vehicle around the regions of stronger damping much more
optimally. In order to verify the optimality of the resulting policies, we show the results
obtained by the fuzzy Q-iteration algorithm in Figure 4.14.

Indeed, the control policy and the trajectories of the vehicle are very similar to those
obtained by fuzzy ACL. The cost function that is used appears to represent more closely the
objective of avoiding the regions of stronger damping, while driving as quickly as possible to
the center of the field before coming to a standstill. Also the state space partitioning, which

91

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

h(c
1
,0,c

2
,0) [Nm]

(a) Crisp ACL: policy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

(b) Crisp ACL: simulation

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

h(c
1
,0,c

2
,0) [Nm]

(c) Fuzzy ACL: policy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

(d) Fuzzy ACL: simulation

Figure 4.13: The figures on the left present a slice of the best resulting policy for zero velocity
obtained by crisp ACL (top) and fuzzy ACL (bottom) in one of the 30 runs. The figures show
the control input for a grid of positions, three times finer than the partitioning grid in these
experiments. The multi-Gaussian damping profile is shown, where darker shades represent
regions of more damping. The figures on the right show the trajectories of the vehicle under
these policies for various initial positions and zero initial velocity. The markers indicate the
positions at twice the sampling time.

was denser around the regions of stronger damping, helped to make the policy more accurate
in these regions. The slice of the policy for zero velocity clearly shows the action vectors
“curving” around these Gaussian regions. Of course, it can still be questioned if this is the

92

4.6. CONCLUDING REMARKS

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

h(c
1
,0,c

2
,0) [Nm]

(a) Fuzzy Q-iteration: Policy

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

c
1
 [m]

c 2 [
m

]

(b) Fuzzy Q-iteration: simulation

Figure 4.14: The baseline optimal policy derived by the fuzzy Q-iteration algorithm. The
left figure presents a slice of the policy for zero velocity. The figure on the right shows
the trajectories of the vehicle under this policy for various initial positions and zero initial
velocity. The markers indicate the positions at twice the sampling time.

desired behavior. If the answer to this question is negative, the cost function and possibly
also the state space partitioning should be tuned even further.

For these experiments, fuzzy ACL has turned out to be much more capable of finding
the optimal control policy compared to crisp ACL. Also, these experiments illustrate the
importance of choosing an appropriate cost function and state space partitioning. In general,
the more information is available about the problem structure and the dynamics of the system,
the better it is possible to find a suitable state space partitioning and cost function.

4.6 Concluding Remarks
In this chapter, we have discussed ACL in continuous state domains. The partitioning of the
state space is a crucial aspect for ACL and two versions have been presented. In crisp ACL,
the state space is partitioned using bins, such that each value of the state maps to exactly
one bin. Fuzzy ACL, on the other hand, uses a partitioning of the state space with fuzzy
membership functions. In this chapter, the fuzzy membership functions have been chosen to
be triangular shaped, but the algorithm allows for differently shaped membership functions
as well, as long as they are normalized. In the case of fuzzy ACL, each value of the state
maps to the membership functions to a certain membership degree. Both ACL algorithms are
extensions of the ACL framework, presented in Chapter 3.

The applicability of ACL to optimal control problems with continuous-valued states has
been outlined and demonstrated on the non-linear control problem of two-dimensional nav-
igation with variable damping. We have studied two sets of experiments that differed in the
choice of state space partitioning and the cost function. For both sets of experiments, fuzzy

93

CHAPTER 4. ANT COLONY LEARNING IN CONTINUOUS STATE SPACES

Q-iteration was used to compute the optimal policy to which the results for crisp and fuzzy
ACL could be compared. The first set of experiments used a regular state space partition-
ing grid and a quadratic cost function. The results showed a converging trend of both the
crisp and fuzzy version of the algorithm to suboptimal policies. However, with fuzzy ACL
this converging trend was much steeper and the cost of its resulting policy did not change as
much over repetitive runs of the algorithm as it did for crisp ACL. Its resulting policy was
also better compared to crisp ACL. We have studied the convergence of the pheromone levels
in relation to the policy using the performance measures of policy variation and sensitivity.
These measures showed that ACL progresses as a function of the number of trials to a de-
creasingly sensitive control policy meaning that a small change in the pheromone levels will
not result in a large change in the policy. In all cases, even with the optimal policy from fuzzy
Q-iteration, however, the control policy could not avoid the regions of stronger damping well.
Therefore, in the second set of experiments, the cost function was changed to reflect the num-
ber of time steps needed to arrive at the goal, and the partitioning was made denser around
the regions of stronger damping. As a result, the optimal policy derived by fuzzy Q-iteration
turned out to be well capable of steering the vehicle around the Gaussian regions. The crisp
ACL algorithm was incapable of finding a close to optimal policy, while fuzzy ACL did de-
rive a near-optimal policy. In the next chapter, we will perform a more extensive computer
simulation study of the effect of the ACL learning parameters on the behavior of both crisp
and fuzzy ACL.

94

Chapter 5

Simulation Experiments

This chapter presents a series of simulation experiments of crisp and fuzzy ACL on the pen-
dulum swing-up and stabilization problem. The performance of both algorithms is evaluated
and compared for various parameter settings.

5.1 Introduction

The ACL framework has been presented in the previous chapters as a multi-agent control
policy learning methodology. The updating of the pheromone levels act as a reinforcing
mechanism and stimulates the ants to choose actions that are likely to lead to the goal state
in an optimal way. The pheromone update rules have been generalized to the continuous
domain using fuzzy membership functions that partition the continuous state space. So far,
we have analyzed the convergence properties of the algorithm and studied some properties
of the local and global pheromone update rules. We have also discussed the behavior of
ACL when applied to grid search problems and to the problem involving two-dimensional
navigation with variable damping.

In this chapter, we will perform a number of simulation experiments in order to analyze
the behavior of ACL on a non-linear control system with a continuous state space. The
non-linear control problem that is used in all these simulation experiments is the inverted
pendulum swing-up and stabilization problem, which will be introduced in Section 5.2. Using
the same control problem in all the experiments allows us to properly compare the results.
We analyze the influence of several important parameters in Section 5.3: the local and global
pheromone decay rates, the number of ants, and the partitioning of the state space.

5.2 Pendulum Swing-Up and Stabilization

The pendulum swing-up and stabilizing problem is a nice abstraction of more complex robot
control problems, like the stabilization of a walking humanoid robot. The behavior can be
easily analyzed, while the learning problem is challenging. This problem is used in all the
following simulation experiments with ACL. We analyze how the behavior and the learn-
ing performance relate to some of the parameters in the algorithm, such as the global and

95

CHAPTER 5. SIMULATION EXPERIMENTS

local pheromone decay rate, the number of ants, and the number of quantization levels (for
crisp ACL) or membership functions (for fuzzy ACL). The performance of crisp and fuzzy
ACL is compared. This section first formulates the problem and describes the set-up of the
experiments.

5.2.1 Problem Formulation

The pendulum is modeled as a pole, attached to a pivot point at which a motor exerts a torque.
The objective is to get the pendulum from a certain initial position to its unstable upright
position, and to keep it stabilized within a certain band around that unstable position. The
torque is, however, limited such that it is not possible to move the pendulum to its upright
position in one movement. The pendulum must thus swing back and forth to accumulate
enough energy for swinging up. The pendulum must also stop in time in order to be able
to balance in the unstable equilibrium. This makes the solution non-trivial and suitable for
learning algorithms. The non-linear state equations of the pendulum are given by:

θ̇(t) = ω(t)

Jω̇(t) = Kmu(t)−mgL sin(θ(t))−Dω(t), (5.1)

with θ(t) = x1(t) and ω(t) = x2(t) the state variables, representing the angle and angu-
lar velocity of the pole in continuous time respectively. The positive direction of the state
variables is indicated in Figure 5.1. Furthermore, u(t) is the applied torque and the other
parameters with their values as used in the simulations are listed in Table 5.1.

ω

θ

Kmu(t)

Figure 5.1: Positive direction of θ and ω for the pendulum.

96

5.2. PENDULUM SWING-UP AND STABILIZATION

Table 5.1: The parameters of the pendulum model and their values used in the experiments.
Parameter Value Unit Meaning
J 0.005 kg ·m2 pendulum inertia
Km 0.1 - motor gain
D 0.01 kg · s−1 damping
m 0.1 kg mass
L 0.1 m pendulum length
g 9.81 m · s−2 gravitational acceleration

5.2.2 Set-Up of the Experiments
The system is sampled with a sampling time Ts = 0.1s and the states are discretized using
bins or fuzzy membership functions, the centers of which define the discrete state space:

Qθ =
{

0,
2π
Nθ

, . . . ,
2π(Nθ − 1)

Nθ

}
(5.2)

Qω =
{
−ωmax,−ωmax +

2ωmax

Nω − 1
, . . . , ωmax,

}
, (5.3)

whereNθ andNω ≥ 3 are the number of discretization bins for θ and ω respectively and ωmax

is the maximum (absolute) angular velocity expected to occur. Note that Nθ must be even for
crisp partitioning to make sure that both equilibria coincide with centers of the partitioning
bins rather than fall exactly in between two elements, which would result in chattering of
the discretized state when the pendulum is near one of the equilibria. For similar reasons,
Nω must be odd. The angle will be observed as θmod 2π. Unless stated otherwise, we take
Nθ = 40 and Nω = 41.

In all experiments, the action selection method is the Max-Boltzmann rule (3.6), or its
fuzzy version (4.11). The ACL parameters that have the same value for all experiments in
this chapter are listed in Table 5.2. These parameters are fixed in order to fairly compare
the algorithm for the scenarios in Section 5.3. The initial pheromone level τ0 is set to a
sufficiently small value. The amount of exploration is constant during all experiments and
the values of ε and α have been shown to work well. The maximal number of interaction
steps with the system, T , is sufficiently long for the ants to find the goal from any initial
state. The maximal number of trials, K, is sufficiently long for the algorithm to converge, or
to be able to say that the algorithm will not be able to improve the policy any further. The
results of the experiments in Section 5.3 are not expected to be much different for slightly
different values of these parameters. Basically, smaller values for τ0 and ε and larger values
for α will result in less exploration, which may cause ACL to prematurely settle at a local
optimum. Likewise, larger values for τ0 and ε and smaller values for α will result in more
exploration, possibly preventing ACL from settling at any optimum at all. However, as said
before, slightly different values for these parameters are not expected to change much the
behavior of ACL. The values of T and K should be taken large enough in order to have
sufficient interaction with the system. Taking these values too large, however, unnecessarily
increases the learning time.

At the start of each trial, the ants are randomly initialized over the state-space with a

97

CHAPTER 5. SIMULATION EXPERIMENTS

Table 5.2: The ACL parameter values that are the same for all experiments in this chapter.
Parameter Value Meaning
τ0 0.0001 initial pheromone level
ε 0.1 exploration probability
α 3 exponent of action selection rule
T 300 maximal number of interaction steps with the system
K 100 maximal number of trials

uniform probability. The goal state is xg =
[
π 0

]T
and an ant is said to be in the goal state

if its state satisfies |π − θ| ≤ 0.1 rad and |ω| ≤ 0.1 rad/s. A quadratic cost function (3.2) is
used to measure the performance:

J(s) = J(x̃, ũ) =
T−1∑
t=0

eT(t+ 1)Qe(t+ 1) + Ru2(t), (5.4)

Q =
[
1 0
0 0.1

]
, R = 0.05,

which has been explained in Section 3.2.1. The action set U = {−0.8, 0, 0.8}[Nm] contains 3
actions, which will be referred to as full negative torque, zero torque, and full positive torque
respectively. All experiments are carried out 30 times. The plots will show the average
performance and the min-max area of worst-case and best-case performance.

98

5.3. RESULTS

5.3 Results
In the following simulation experiments, we study the effect of the global and local pheromone
decay rates, the number of ants, and the number of state space partitioning levels on the per-
formance of crisp and fuzzy ACL. The application that is used is the pendulum swing-up and
stabilization problem.

5.3.1 Global Pheromone Decay Rate
In these experiments, we study the effect of the global pheromone decay rate, ρ, on the learn-
ing performance, in a similar way as we did in Section 3.6.3 for the case of a 1-dimensional
grid search problem. The values of ρ are from the set ρ ∈ {0, 0.001, 0.01, 0.1, 0.5, 1}. We
keep the other parameters constant over the experiments. The local pheromone decay rate is
γ = 0.01, the number of ants is 250, and the other parameters are listed in Table 5.2. We
study the behavior of both crisp and fuzzy ACL.

Crisp ACL

Figure 5.2 shows the simulation results obtained with the crisp ACL algorithm for varying
values of the global pheromone decay rate, ρ.

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) ρ = 0

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(b) ρ = 0.001

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) ρ = 0.01

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(d) ρ = 0.1

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(e) ρ = 0.5

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(f) ρ = 1

Figure 5.2: Policy performance of crisp ACL for γ = 0.01 and varying ρ. The black line is
the average over the 30 experiments and the gray area represents the max-min range.

The results do not show a very good convergence behavior of crisp ACL. For ρ = 0,
which is actually a value that is not within the allowed range for ρ, viz. (0, 1], the algorithm
does not converge to any meaningful policy. This is obvious, as ρ = 0 means that there is no

99

CHAPTER 5. SIMULATION EXPERIMENTS

global pheromone update, so that the quality of the policies found by the ants are not taken
into account at all. The very slow trend downwards is due to the local pheromone update
that stimulates ants to choose actions that have not been chosen before. This results in some
convergence of the pheromone levels that is not related to the performance of the policies.
The policy performance is also not expected to become much better with this mechanism. For
large values of ρ, the pheromone deposits contribute significantly to the pheromone update
and it can indeed be seen that this does not lead to convergence within 100 trials. For small
values of ρ, the convergence is better. The best behavior can be seen for ρ = 0.001, where
there is a continuing trend downwards, which would have continued if the experiment would
not have stopped at 100 trials. The typical value of ρ = 0.1, as used in most papers on ACO,
results here in fast convergence of the average performance for the 30 experiments, but to a
higher cost than for ρ = 0.001. A simulation of the inverted pendulum controlled by the best
final policy obtained with ρ = 0.001 from x0 = [0 0]T is shown in Figure 5.3.

−2

0

2

θ
[r

ad
]

−5

0

5

ω
 [r

ad
/s

]

−1

0

1

u
[N

m
]

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

C
os

t [
−

]

Figure 5.3: The inverted pendulum controlled from an initial state x0 = [0 0]T by the final
policy obtained by crisp ACL with ρ = 0.001 and γ = 0.01. The top two graphs show the
trajectories of the states, while the third shows the input and the bottom graph shows the cost.

In this figure, from the top to the bottom plot, we see respectively the trajectory of the
angle and the angular velocity over time, the control input, and the corresponding cost. It
shows that the control policy manages to swing up and stabilize the inverted pendulum in the
unstable equilibrium and that it does so by swinging the pole a couple of times back and forth
before it accumulates enough energy to be swung up completely.

100

5.3. RESULTS

Fuzzy ACL

Figure 5.4 shows the simulation results obtained with the fuzzy ACL algorithm for varying
values of the global pheromone decay rate, ρ.

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) ρ = 0

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(b) ρ = 0.001

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) ρ = 0.01

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(d) ρ = 0.1

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(e) ρ = 0.5

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(f) ρ = 1

Figure 5.4: Policy performance of fuzzy ACL for γ = 0.01 and varying ρ. The black line is
the average over the 30 experiments and the gray area represents the max-min range.

Compared to the results with crisp ACL, the convergence of the control policy is much
better with fuzzy ACL. For ρ = 0, we see a similar behavior, which is obvious, as it means
that there is essentially no global pheromone update. For the other values of ρ, the conver-
gence behavior is more or less similar to each other. Higher values of ρ mean faster adaption
of the pheromone levels to newly obtained pheromone deposits, which can slightly be seen
in the slightly slower convergence for ρ = 0.001 and the greater variation for ρ = 0.5. The
clean convergence for ρ = 1 is difficult to explain, as we would have expected even more
variation in the cost over the different experiments than with ρ = 0.5. The reason could be
that because there is no noise in the system, a value of ρ = 1 is allowed and leads to the
fastest possible convergence. We expect that if the state measurement of system would be
corrupted by noise, the complete and immediate adaptation of the pheromone levels to an
update with ρ = 1 would not result in convergence as is the case with crisp ACL, which
suffers from state-discretization noise. From these experiments, it is not possible to conclude
which value for the global pheromone decay rate is the best. The differences between the
simulation results for γ = 0.001, 0.1, and 1 are small. The simulation experiments do show
that the usual ρ = 0.1 leads to good results. The big improvement of the learning behavior
with fuzzy ACL over crisp ACL can be explained by the absence of artificially introduced
discretization noise. A simulation of the inverted pendulum controlled by the control policy
learned by fuzzy ACL, ρ = 0.1, and for x0 = [0 0]T is shown in Figure 5.5. This policy

101

CHAPTER 5. SIMULATION EXPERIMENTS

swings up the pendulum much faster compared to the results in Figure 5.3.

−2

0

2
θ

[r
ad

]

−5

0

5

ω
 [r

ad
/s

]

−1

0

1

u
[N

m
]

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

C
os

t [
−

]

Figure 5.5: The inverted pendulum controlled from an initial state x0 = [0 0]T by the final
policy obtained by fuzzy ACL with ρ = 0.1 and γ = 0.01. The top two graphs show the
trajectories of the states, while the third shows the input and the bottom graph shows the cost.

The control policies for both crisp and fuzzy ACL are shown in Figure 5.6. These figures
show the mapping from the state of the system to the control action, where white denotes
maximal positive torque, gray is zero torque, and black is maximal negative torque. The
mapping is plotted for a state grid four times finer than the state space partitioning used by
the algorithms. It shows that for the crisp policy, evaluating the policy for more states does not
result in a finer mapping. This is because the policy is not interpolated between the centers
of the crisp partitioning bins. For fuzzy ACL, however, the finer grid reveals a meaningful
interpolation between the centers of the membership functions and illustrates that this policy
is really a continuous mapping. The other main observation from these plots is that the policy
in Figure 5.6(b) is much more structured compared to the policy in Figure 5.6(a). From
Figure 5.6(b) the control policy can be understood as follows. For angles near θ = 0, or θ =
2π, corresponding to the pendulum in its stable equilibrium, the control policy destabilizes
the pendulum by providing maximum torque in the direction where the pendulum is moving.
There is a curved transition plane where the control action changes from maximum negative
torque (black) to maximum positive torque (white), or vice versa and results in the pendulum
to slow down. For states near the unstable equilibrium θ = π, the control policy is stabilizing
and in a small area around θ = π and ω = 0, the control action is zero torque. A similar
structure can only very vaguely be identified in Figure 5.6(a). The policy appears to be
heavily corrupted by noise. The reason why such a policy is still capable of controlling the
pendulum, though sub-optimally, is that the momentum in motion systems makes the system
somewhat robust to small variations in the control action.

102

5.3. RESULTS

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(a) Crisp control policy.

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(b) Fuzzy control policy.

Figure 5.6: The final control policy obtained for the inverted pendulum problem with both
crisp and fuzzy ACL with ρ = 0.1 and γ = 0.01. The colors black, white, and gray represent
the inputs −0.8, 0.8, and 0 Nm respectively. For angles near θ = 0, 2π, the policy represents
a destabilizing controller, while near θ = π, the policy represents a stabilizing controller.

5.3.2 Local Pheromone Decay Rate
Similarly to Section 3.6.4, the effect of the local pheromone decay rate on the learning per-
formance is studied. We keep the other parameters constant over the experiments. The
global pheromone decay rate is equal to ρ = 0.1, the number of ants is 250, and the
other parameters are listed in Table 5.2. The values of γ that we use are from the set
γ ∈ {0, 0.001, 0.01, 0.1, 0.5, 1}. We study the behavior of both crisp and fuzzy ACL.

Crisp ACL

Figure 5.7 shows the simulation results obtained with the crisp ACL algorithm for varying
values of the local pheromone decay rate, γ.

The first observation of the results is that the local pheromone update can really improve
the learning performance, but only when it is chosen carefully. For low values of γ, the
effect is minimal. For γ = 1, which is outside the allowed range for γ, viz. [0, 1), there
is no convergence at all, because the pheromone levels are reset to τ0 after each step of an
ant. For γ = 0.5, there is also no convergence. For γ = 0.1, however, the local pheromone
update really improves the learning performance, as the average cost of the resulting control
policy is much lower than that of the algorithm for smaller values of γ and the variation over
the experiments also reduces considerably. The policy for this case is shown in Figure 5.11.
A simulation of the inverted pendulum controlled by this control policy for x0 = [0 0]T

is shown in Figure 5.8. The control policy has indeed been improved as it swings up and
stabilizes the pendulum faster than the policy that was learned with crisp ACL and γ = 0,
as shown in Figure 5.3. It is however still much less optimal than the policy learned by
fuzzy ACL for γ = 0 that could swing up and stabilize the pendulum within three seconds
(Figure 5.5).

103

CHAPTER 5. SIMULATION EXPERIMENTS

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) γ = 0

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]
(b) γ = 0.001

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) γ = 0.01

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(d) γ = 0.1

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(e) γ = 0.5

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]
(f) γ = 1

Figure 5.7: Policy performance of crisp ACL for ρ = 0.1 and varying γ. The black line is the
average over the 30 experiments and the gray area represents the max-min range.

−2

0

2

θ
[r

ad
]

−5

0

5

ω
 [r

ad
/s

]

−1

0

1

u
[N

m
]

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

C
os

t [
−

]

Figure 5.8: The inverted pendulum controlled from an initial state x0 = [0 0]T by the final
policy obtained by crisp ACL with ρ = 0.1 and γ = 0.1. The top two graphs show the
trajectories of the states, while the third shows the input and the bottom graph shows the cost.

104

5.3. RESULTS

Fuzzy ACL

Figure 5.9 shows the simulation results obtained with the fuzzy ACL algorithm for varying
values of the local pheromone decay rate, γ.

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) γ = 0

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(b) γ = 0.001

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) γ = 0.01

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(d) γ = 0.1

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(e) γ = 0.5

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(f) γ = 1

Figure 5.9: Policy performance of fuzzy ACL for ρ = 0.1 and varying γ. The black line is
the average over the 30 experiments and the gray area represents the max-min range.

The effect of the local pheromone update rule on the learning performance of fuzzy ACL
seems to be much smaller than it has on crisp ACL. For crisp ACL, choosing an appropriate
value of γ clearly improved the performance of the algorithm. For fuzzy ACL, the value of
γ = 0.1 results in the best performance, but smaller values are almost equally good. The
hypothesis that can be derived from these results is that for control problems with noisy state
transitions, the local pheromone update can greatly improve the results. If there is, however,
no such noise in the system, the local pheromone update has only a minor effect. A simulation
of the inverted pendulum controlled by the control policy for γ = 0.1 and for x0 = [0 0]T is
shown in Figure 5.10. The control policy is indeed even more optimal than the one obtained
by fuzzy ACL and γ = 0.01 as shown in Figure 5.5, as the time to swing up and stabilize
the pendulum is now only two seconds. Another difference can be seen in the amount of
chattering around the unstable equilibrium. With only three discrete actions, stabilizing the
pendulum is quite difficult. Comparing the graphs of the input in Figure 5.8 and Figure 5.10,
it can be seen that there is less chattering with fuzzy ACL. This is understandable as with
a continuous policy it is possible to define the exact state for which the discrete stabilizing
action should be carried out. For a discrete policy, this is most likely not possible, and a
stabilizing action would almost always result in some overshoot.

The control policies of both crisp and fuzzy ACL with ρ = 0.1 and γ = 0.1 are shown
in Figure 5.11. It is difficult to see the differences of these policies with the ones obtained

105

CHAPTER 5. SIMULATION EXPERIMENTS

−2

0

2

θ
[r

ad
]

−5

0

5

ω
 [r

ad
/s

]

−1

0

1

u
[N

m
]

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

C
os

t [
−

]

Figure 5.10: The inverted pendulum controlled from an initial state x0 = [0 0]T by the
final policy obtained by fuzzy ACL with ρ = 0.1 and γ = 0.1. The top two graphs show the
trajectories of the states, while the third shows the input and the bottom graph shows the cost.

for γ = 0.01 as shown in Figure 5.6. Both seem to show a bit less variation of the policy in
neighboring states. There appears to be a bit more structure in the stabilizing and destabilizing
regions of the policy, but especially for the crisp control policy this is difficult to say.

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(a) Crisp control policy.

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(b) Fuzzy control policy.

Figure 5.11: The final control policy obtained for the inverted pendulum problem with both
crisp and fuzzy ACL with ρ = 0.1 and γ = 0.1. The colors black, white, and gray represent
the inputs −0.8, 0.8, and 0 Nm respectively. For angles near θ = 0, 2π, the policy represents
a destabilizing controller, while near θ = π, the policy represents a stabilizing controller.

106

5.3. RESULTS

5.3.3 Number of Ants

In the previous experiments, the number of ants has always been taken equal to M = 250.
The power of a multi-agent approach to control policy learning lies in the fact that multiple
agents can jointly sample the state space contributing to the learning of one control policy
for the complete state space. For ACL, we expect that with an increasing number of ants,
the control policy converges faster. With the state space partitioning of 40 × 41 quantiza-
tion levels, or membership functions, and 3 actions, there are 1640 states and 4920 possi-
ble state-action pairs. In these experiments, we study the effect of the number of ants on
the learning performance, much in a similar way as for the case of a 1-dimensional grid
search problem in Section 3.6.5. The values of M that we use are from the set M ∈
{100, 250, 500, 1000, 1500, 2000}. We keep the other parameters constant over the exper-
iments. The global and local pheromone decay rates are ρ = 0.1 and γ = 0.01 respectively,
and the other parameters are listed in Table 5.2. We study the behavior of both crisp and
fuzzy ACL.

Crisp ACL

Figure 5.12 shows the simulation results obtained with the crisp ACL algorithm for varying
numbers of ants, M .

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) M = 100

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(b) M = 250

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) M = 500

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(d) M = 1000

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(e) M = 1500

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(f) M = 2000

Figure 5.12: Policy performance of crisp ACL for varying number of ants. The black line is
the average over the 30 experiments and the gray area represents the max-min range.

It can clearly be seen that for an increasing number of ants, on average over 30 experi-
ments, the policy converges faster and to a better value with a smaller variation. The max-
imum number of ants used in these experiments M = 2000 turned out to result in the best

107

CHAPTER 5. SIMULATION EXPERIMENTS

learning performance. In this case, Figure 5.12(f) shows a little increase of the cost of the
policy near the end of the experiments. Why this happens is not very clear. It could result
from the larger amount of exploration that this many ants exhibit. Exploration always comes
with the risk of a decrease of performance, especially when the exploration probability ε is
not annealed, as is the case for all experiments in this chapter. The final policy is shown
in Figure 5.15. A simulation of the inverted pendulum controlled by this control policy for
x0 = [0 0]T is shown in Figure 5.13.

−2

0

2

θ
[r

ad
]

−5

0

5

ω
 [r

ad
/s

]

−1

0

1

u
[N

m
]

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time [s]

C
os

t [
−

]

Figure 5.13: The inverted pendulum controlled from an initial state x0 = [0 0]T by the final
policy obtained by crisp ACL with ρ = 0.1, γ = 0.01 and the number of ants M = 2000.
The top two graphs show the trajectories of the states, while the third shows the input and the
bottom graph shows the cost.

The simulation behavior of the pendulum controlled by the final policy obtained by crisp
ACL and 2000 ants is very similar to the policy learned by using 250 ants, as shown in
Figure 5.3. Likewise, it is worse than that in Figure 5.8, where a larger local pheromone
decay rate, viz. γ = 0.1 was used. This indicates that although the policy has a lower cost,
the simulation from an initial state x0 =

[
0 0

]T
is not much better.

108

5.3. RESULTS

Fuzzy ACL

Figure 5.14 shows the simulation results obtained with the fuzzy ACL algorithm for varying
numbers of ants, M .

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) M = 100

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(b) M = 250

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) M = 500

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(d) M = 1000

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(e) M = 1500

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(f) M = 2000

Figure 5.14: Policy performance of fuzzy ACL for varying number of ants. The black line is
the average over the 30 experiments and the gray area represents the max-min range.

Like with crisp ACL, an increasing number of ants results in a better learning perfor-
mance. However, for 250 ants and more, the policy already converges very rapidly to a low
cost, with almost no variations over the various experiments. Apparently, much fewer ants are
required in fuzzy ACL compared to crisp ACL. Moreover, the final policy is better and barely
varies for repetitive runs of the algorithm. The best value for the number of ants with fuzzy
ACL in these experiments is thus 250, also considering that more ants require more compu-
tational resources. As the parameters for this case are the same as the ones resulting in the
best performance for fuzzy ACL in Section 5.3.1, a simulation of the inverted pendulum con-
trolled by the final policy for these parameters and for x0 = [0 0]T is shown in Figure 5.5.
The final policy of crisp ACL with M = 2000 is shown in Figure 5.15 next to the final policy
of fuzzy ACL with M = 250 that has already been shown before in Figure 5.6(b). The main
result is that the crisp control policy in Figure 5.15(a) shows much more structure compared
to the earlier plots of crisp control policies for the inverted pendulum problem. The several
regions that can clearly be seen in Figure 5.15(b) now also become visible in Figure 5.15(a).
Still, as observed earlier, this did not result in a much faster swinging up and stabilization of
the pendulum from x0 = [0 0]T.

109

CHAPTER 5. SIMULATION EXPERIMENTS

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(a) Crisp control policy, M = 2000.

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(b) Fuzzy control policy, M = 250.

Figure 5.15: The final control policy obtained for the inverted pendulum problem with both
crisp and fuzzy ACL with ρ = 0.1 and γ = 0.01. The colors black, white, and gray represent
the inputs −0.8, 0.8, and 0 Nm respectively. For angles near θ = 0, 2π, the policy represents
a destabilizing controller, while near θ = π, the policy represents a stabilizing controller.

5.3.4 State Space Partitioning
Another issue in the successful learning of control policies is the partitioning of the state
space. Some regions of the state space may require a denser quantization than other regions,
but the process of determining these regions is far from trivial and requires prior knowledge
of the system to be controlled and possibly also of the optimal controller. In the experiments
in this section, we look at different quantization densities, but with a homogeneous grid that
does not require any prior knowledge of the system. A finer homogeneous partitioning grid
may result in a better description of the policy in certain regions, but may not have this effect
in other regions, only leading to an increase of computation time and memory requirements.
The purpose of these experiments is therefore not to derive the most optimal partitioning
grid for this particular control problem, but to study the scalability of ACL. The state space
is partitioned using (5.2)-(5.3) and the density is characterized by only one parameter N =
Nθ = Nω − 1. A finer quantization results in a larger state space that must be sampled by
the ants. Therefore, keeping the number of ants constant for various quantization densities
would not result in a fair comparison. Also, we have observed before that for fuzzy ACL the
number of ants can be much smaller than the number of ants in crisp ACL. We have chosen
for crisp ACL a number of ants approximately equal to 60% of the number of states and for
fuzzy ACL 15%. The values of N that are tested are 16, 32, and 64. We keep the other
parameters constant over the experiments. The global and local pheromone decay rates are
ρ = 0.1 and γ = 0.01 respectively, and the other parameters are listed in Table 5.2. We study
the behavior of both crisp and fuzzy ACL.

Crisp ACL

Figure 5.16 shows the simulation results obtained with the crisp ACL algorithm for varying
numbers of state space partitioning levels, N , and the corresponding numbers of ants, M .

110

5.3. RESULTS

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) N = 16,M = 160

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]
(b) N = 32,M = 640

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) N = 64,M = 2560

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(d) N = 16,M = 160

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(e) N = 32,M = 640 (f) N = 64,M = 2560

Figure 5.16: Policy performance and the policies for crisp ACL and varying number of quan-
tization levels and ants. In the top three figures, the black line is the average over the 30
experiments and the gray area represents the max-min range. In the bottom three figures,
the colors black, white, and gray represent the inputs −0.8, 0.8, and 0 Nm respectively. For
angles near θ = 0, 2π, the policy represents a destabilizing controller, while near θ = π, the
policy represents a stabilizing controller.

The performance plots show that N = 16 results in a cost of the control policy that is
on average larger than for N = 32 and N = 64, while for N = 64 the performance is only
slightly improved compared to N = 32. This leads to the conclusion that for this problem
and crisp ACL, N = 16 is probably not a sufficient quantization density, or that the number
of ants used in this case is too small. The convergence speed in terms of numbers of trials
does not change much for increasing quantization density. The policy plots basically show
similar control policies, but with increasing level of detail.

Fuzzy ACL

Figure 5.17 shows the simulation results obtained with the fuzzy ACL algorithm for varying
numbers of state space partitioning levels, N , and the corresponding numbers of ants, M .

Contrary to the results for crisp ACL in Figure 5.17, these plots do show an improving
learning behavior for increasing state space partitioning density. It may indicate that the
partitioning density for N = 16 and N = 32 is not large enough for obtaining good control
policies, or that the number of ants used for these densities is too low. The number of ants
used forN = 64 is large enough and results in very fast convergence with almost no variation
over repetitive runs of the experiment.

111

CHAPTER 5. SIMULATION EXPERIMENTS

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(a) N = 16,M = 40

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]
(b) N = 32,M = 160

0 20 40 60 80
0

500

1000

1500

2000

2500

Trial number [−]

C
os

t [
−

]

(c) N = 64,M = 640

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(d) N = 16,M = 40

0 2 4 6

−5

0

5

θ [rad]

ω
 [

ra
d/

s]

h(θ,ω) [Nm]

(e) N = 32,M = 160 (f) N = 64,M = 640

Figure 5.17: Policy performance and the policies for fuzzy ACL and varying number of
membership functions and ants. In the top three figures, the black line is the average over the
30 experiments and the gray area represents the max-min range. In the bottom three figures,
the colors black, white, and gray represent the inputs −0.8, 0.8, and 0 Nm respectively. For
angles near θ = 0, 2π, the policy represents a destabilizing controller, while near θ = π, the
policy represents a stabilizing controller.

5.4 Concluding Remarks

In this chapter we have performed a number of experiments and studied the behavior of
ACL for various parameter settings. The system used in all experiments was the inverted
pendulum with limited input, for which the control goal was to swing it up from any initial
state and to stabilize it in its unstable equilibrium. We have studied the influence of the
global and local pheromone decay rates, the number of ants, and the density of the state
space partitioning grid on the learning performance. The learning performance was evaluated
in terms of convergence, convergence speed, the performance of the resulting control policy,
and the variation of the results over several runs of the experiment. Simulation plots of the
system controlled by the learned policy were presented as well.

With respect to the global and local pheromone decay rates, the main result is that the
performance of crisp ACL is much more sensitive to the choice of ρ compared to fuzzy ACL.
Too large a value for ρ does not lead to convergence. State transition noise in the system
causes fluctuations in the cost of the trajectories found by the ants, which are amplified for
large values of ρ in the pheromone update. State transition noise is introduced in crisp ACL
due to the discretization of the state space. In fuzzy ACL, the continuity of the state space
is retained by the state space partitioning with fuzzy membership functions. Therefore, no

112

5.4. CONCLUDING REMARKS

artificial non-determinism is introduced with fuzzy ACL and even a choice of ρ = 1 leads to
convergence of the algorithm. The local pheromone decay rate appeared to have a far greater
(and positive) influence on the convergence behavior of crisp ACL than it has on fuzzy ACL.
The convergence properties of crisp ACL greatly improved for a value of γ = 0.1. It can be
hypothesized that the local pheromone update helps in finding optimal control policies in the
presence of state transition noise.

The experiments with varying numbers of ants showed that more ants lead to a faster con-
vergence to better policies, with less variation over several runs of the experiment. However,
the number of ants does not have to be extremely large. Especially with fuzzy ACL for a
certain number of ants, adding more ants does not further improve much the performance
of the algorithm. The main result is that crisp ACL requires many more ants for satisfying
performance compared to fuzzy ACL. The required number of ants for fuzzy ACL was about
ten times lower than the number required for crisp ACL for the considered application.

The scaling of ACL with increasing state space partitioning density was studied as well.
The convergence speed and the quality of the resulting policy turned out to be related to the
density of the state space partitioning as well as to the number of ants. That is, a finer parti-
tioning results in a larger state space that must be sampled by the ants and therefore requires
more of them. For crisp ACL, there is a slow, but gradual improvement of the learning for
increasing state space partitioning density. For fuzzy ACL, the learning performance is im-
proved more rapidly for increasing state space partitioning density and requires fewer ants.
More research is required to make these claims more exact.

At this point, ACL has been introduced and studied both analytically and experimentally.
In the next chapter of this thesis, we will broaden the ACL framework and see how it fits
within the more general scope of swarm intelligence.

113

114

Chapter 6

Generalization of the ACL
Framework

This chapter relates ACL to other swarm intelligence methodologies. It presents a general
modeling framework for swarms of moving agents and we argue that optimization as well as
control methodologies from the realm of swarm intelligence can be modeled in this way. It
particularly serves to put ACL in a broader context.

6.1 Introduction
In Section 2.2, we have addressed the principles of self-organization and swarm intelligence
from both a biological and engineering point of view. It was stated that optimization methods
such as ACO and Particle Swarm Optimization as well as swarms of mobile agents, such
as robots and UAVs all belong to the class of swarm intelligence. In Chapters 2 - 5 of this
thesis, however, the focus has been on ACO and more particularly on ACL. In this chapter, we
present a general modeling framework for swarms of moving agents that we have originally
published in (van Ast et al., 2008b). This framework formally links the various forms of
swarm intelligence and can be used for the integration of analysis and design methodologies
that have been developed for the individual algorithms and controllers. The development of
such a framework is an essential first step before any analysis can be made of the behavior of
more intelligent moving agents in a swarm.

The rest of this chapter is structured as follows. The proposed framework is introduced
and discussed in detail in Section 6.2. Examples of how the framework relates to the state
of the art are discussed in Section 6.3, and Section 6.4 indicates which opportunities the
framework brings for future research and development and concludes this chapter.

6.2 Modeling Framework for Swarms of Moving Agents
A swarm is a system of multiple cooperating autonomous agents. Generally, in multi-agent
systems, the coordination of the agents is achieved by complex strategies, often in a fixed
topology. In case a central controller is used to determine the optimal action for each of the

115

CHAPTER 6. GENERALIZATION OF THE ACL FRAMEWORK

agents, such methods scale poorly with the number of agents. Swarm intelligence aims at
controlling a large number of cooperative autonomous agents, in a varying topology, with
simple, local rules. The analysis of a swarm intelligence system typically focuses on the
dynamics of the swarm as a whole, rather than on the dynamics of the individual agents.
A particular control problem considered in swarm literature is that of swarm aggregation,
which deals with controlling the moving agents to form a cohesive swarm and which is briefly
described in Section 6.3.3. The results for swarm aggregation are too limited to be generally
applicable to a wide class of control problems. This demonstrates the difficulty of applying
swarm intelligence to practically relevant control problems.

This section presents a new framework that enables a more structured approach to the
development of swarm intelligence for distributed sensing and control and that provides better
insight in the structure of swarm systems. The framework separates the physical parts and
behavior of the swarm members from their decision making capabilities. It serves to integrate
research fields focusing on the physical behavior of the swarm member with research studying
dynamic agent system and enables the development and analysis of more sophisticated swarm
systems.

In the considered framework, the members of the swarm are called moving agents. The
two key features of a moving agent are that:

1. it can move through its environment and

2. it is capable of decision making based on its input and recollection of the past.

These features are represented by two strictly distinct classes, called particles and dy-
namic agents. A diagram of the framework is given in Figure 6.1.

Process

Communication
channel

Environment

P1

P2

PN

A1

A2

AN

w1

w2

wN

y1

y2

yN

v1

v2

vN

u1

u2

uN

x1

x2

xN

Figure 6.1: Block diagram of the framework.

The diagram shows N dynamic agents A1, . . . , AN interacting with a common envi-
ronment. The dynamic agents represent the intelligence of the moving agents. The particles
P1, . . . , PN represent the physical part of the moving agents, such as their position and speed.
Each dynamic agent, indexed by i, senses the environment by observations represented by
a vector yi and produces an input ui to the environment. The environment contains the

116

6.2. MODELING FRAMEWORK FOR SWARMS OF MOVING AGENTS

particles, a process, and a communication channel. The process may represent the system
with which the moving agents need to interact in order to achieve a mission, or a control
task. Furthermore, each dynamic agent Ai may send and receive messages vi and wi to
and from the environment, respectively. Within the communication channel, it is determined
which messages are received by which dynamic agents, based on the state of all the parti-
cles xs =

[
xT

1 . . . xT
N

]T
. Each dynamic agent Ai is associated with a particle Pi. The

state of each particle changes based on the input from its associated dynamic agent and the
restrictions posed on it by the environment. The process state may be influenced by the in-
puts us =

[
uT

1 . . . uT
N

]T
from the dynamic agents and the state xs of the particles. The

rest of this section discusses the elements of the framework in more detail. Without loss of
generality, it is assumed that the dynamics are modeled in discrete time.

Example 6.1 In order to exemplify the discussion throughout this section, a swarm of iden-
tical robots is considered, the task of which is to guard a building. This is clearly a task that
may benefit from the advantages of a swarm over a single agent. As it is assumed that the
robots are frequently cut off from radio communication, a certain level of autonomy is re-
quired. It is also desired for such a system to be scalable and robust to malfunctioning of the
robots. The robots are assumed to be able to drive over the terrain surrounding the building
and they have some short-range communication capabilities, some processing power, and
sensors for sensing some properties of their immediate environment.

6.2.1 Particles
In research on swarm intelligence, the members of the swarm are usually modeled as particles
(Gazi and Passino, 2005; Kennedy and Eberhart, 1995), though the exact definition of a
particle is not always given. In this section, a particle is defined as follows:

Definition 6.1 A particle Pi is an entity having a state xi ∈ X , containing the physical states
of the moving agent.

Particles at the least represent the position of the moving agent in the environment, but
may include many other states, ranging from velocity and orientation to shape and color.
The particle is in fact the physical body of the moving agent and it is not responsible for the
decision making. The states of the particles influence the neighborhood for all the agents, the
local values of the sensor inputs, and the distances between the agents.

Example 6.2 The physical position and speed of each robot in our previous example belong
to the state of its associated particle. The state changes as a result of the actions chosen by the
robots, according to the dynamics of the robots and the environment. The particle may also
represent other physical properties of the robot, such as size, shape, color, etc., depending on
what is useful for the control problem.

6.2.2 Dynamic Agents
The decision making power of a moving agent is taken care of by a dynamic agent. Dynamic
agents are the basis of modern artificial intelligence (Russell and Norvig, 1994). A dynamic
agent is defined as an entity that observes the environment, possesses an internal state that

117

CHAPTER 6. GENERALIZATION OF THE ACL FRAMEWORK

changes as a function of the observations, and acts on the environment based on this inter-
nal state and the observations. Moreover, it is able to send and receive messages, which is
discussed further in Section 6.2.6.

Definition 6.2 A dynamic agent Ai, is a tuple (Zi,Yi,Ui,Wi, hi, πi, φi), with:

• Zi the internal state space of agent Ai,

• Yi its observation space,

• Ui its input space,

• Wi a set of tuples (messages), representing its message space,

• hi : Zi × Yi × Wi → Zi its internal state transition function, describing how the
internal state evolves as a result of observations and the messages received,

• πi : Zi×Yi×Ui → [0, 1] its decision probability distribution, which maps its internal
state and observations probabilistically to an input to the environment, and

• φi : Zi →Wi its message generating function.

In particular, the internal state of agentAi is denoted by zi, its observation of the environment
is denoted by yi, its input to the environment is denoted by ui, and wi and vi denote its
incoming and outgoing message respectively.

In this definition, the behavior of a dynamic agent is thus defined as a probabilistic map-
ping of states and observations to actions. This allows for making decisions that are aimed
at exploring different regions of the environment. This is essential to decision making in an
environment of which there is no model available to the dynamic agents. This stochasticity
in πi is explicitly separated from the dynamic agent’s deterministic internal state transition
function hi, stressing the algorithmic nature of hi.

Example 6.3 The dynamic agent of each robot is the software routine that receives input
from sensors and communication links, processes this input based on its current state, and
produces an output. This output generally drives the actuators of the robot and usually results
in a change of the position or orientation, thus a change of the particle state. According to this
state and the environment, the dynamic agent is presented with other pieces of information
based on which it has to make a new decision.

According to the principle that the physical state of the robot is not a part of the dynamic
agent, the position of the robot is not known to the dynamic agent right away. Everything the
dynamic agent needs to know, it has to draw from its observations of the environment.

The framework also stipulates that the decision making part does not necessarily need to
be present at the same location as the rest of the robot. Remote controlled robots are in this
sense identical to robots with an on-board controller.

For the application to swarms, dynamic agents are assumed to be cooperative. Coopera-
tiveness is usually defined in the way that all the agents aim at achieving the same objective
(Panait and Luke, 2005; Vlassis, 2007). Within the swarm framework, this needs a little more
explanation, as the agents are all autonomous and thus act based on their own local objective
function, or strategy. The control objective is generally defined for the whole swarm, so the

118

6.2. MODELING FRAMEWORK FOR SWARMS OF MOVING AGENTS

cooperativeness must hold for a global objective that is not necessarily known to the agents.
As this is a contradictio in terminis, dynamic agents in a swarm are usually said to be co-
operative if the agents do not aim at preventing other agents from achieving their individual
goals.1

6.2.3 Moving Agents
Using Definitions 6.1 and 6.2 a moving agent can be defined.

Definition 6.3 A moving agent Mi = (Ai, Pi) is a pair of a dynamic agent and a particle.

In this way, the dynamic agent can operate without directly taking into account its motion
through the environment, and the motion of the particle can be considered without directly
taking into account the decision making of the dynamic agent. Existing results on either part
can be more easily combined to form more sophisticated swarms than those representing the
current state of the art. When discussing the behavior of the swarm, one can now refer to its
members by the clearly defined moving agents. Regarding stability and performance of the
swarm, conditions can be determined for the signals ui and yi and the messages wi and vi

that couple the dynamic agents and the environment.

Example 6.4 The physical robots (particles) including their software for the decision making
(dynamic agents) together form the moving agents.

6.2.4 Process
Everything that must be sensed or controlled by the moving agent is called the process. It
may include a real process, e.g., a chemical reactor, but also a virtual process, such as an
artificial potential field (see Section 6.3.3).

Definition 6.4 A process is characterized by its state ψ ∈ Ψ, which contains the variables
that must be sensed and/or controlled by the dynamic agents.

The process state may change based on the output of the dynamic agents us and the state
of the particles xs. Typically, the state of the process is distributed in space when a swarm
approach is chosen to sense or control it. The observations of the dynamic agent may vary
for varying positions as a result of this.

Example 6.5 The task of the robots is to detect and respond to threats in the environment.
These threats can be seen as the process, which state must be observed by the robots. If the
interaction between the robots and the threats is modeled by an artificial potential field, this
field can be interpreted as a virtual process.

6.2.5 Environment
As illustrated in Figure 6.1, the environment encompasses everything that is outside of the
dynamic agent. It consists of everything that is physically present within the problem setting.
It holds the physical state of the moving agents xs (the particles), the process, and the com-
munication channel. It also defines the state space of the particles, i.e., the world state with

1A better term would be indifferent rather than cooperative.

119

CHAPTER 6. GENERALIZATION OF THE ACL FRAMEWORK

boundaries and obstacles. As the particles move through the environment and potentially are
obstacles to each other, this state space is dynamic. The environment also includes the state
transition functions of the particles.

The term environment, as used in this definition, comes from the dynamic agent commu-
nity (Sutton and Barto, 1998). It is different from what is standard in the systems and control
community, where the environment denotes everything that is outside of the controller and
the process, and is usually just held responsible for the disturbances of the signals in the
system. Disturbances can also easily be added to the framework, as well as communication
delays and errors, although these are left out from the discussion in this section.

Definition 6.5 The environment is a tuple (X ,U , g,Ψ, f, C), where

• X =×N

i=1
Xi is the joint state space of the particles,

• U =×N

i=1
Ui is the joint action space of the dynamic agents,

• g : X × U × X → [0, 1], is the particles’ state transition function, describing how the
states of the particles evolve as a result of the action taken by all dynamic agents,

• Ψ is the state space of the process,

• f : Ψ × U × Ψ → [0, 1], is the process transition probability distribution, describing
how the process evolves as a result of the dynamic agents’ actions, and

• C is the communication channel.

Example 6.6 The world outside the software of the robots is the environment. It contains the
physical robots, the building, its surroundings, possible threats, the communication signals,
and other signals that may be received by the sensors of the robots.

6.2.6 Communication and Interaction
A key characteristic of a swarm is that the dynamic agents within the swarm interact strongly
in order to enhance the performance of the swarm as a whole. One important aspect of
interaction constitutes the observations by the dynamic agents of the states of the particles.
This is closely related to a second form of interaction, namely communication. Agents may
communicate in order to share information about, e.g., the observations and strategies. The
moving agents can communicate in various ways. One way is through their particle state,
e.g., by making meaningful movements. This is observed in nature with honey bees. Another
way is by changing the environment in a meaningful way through its state. This is called
stigmergy and is observed in nature with ants, which deposit pheromones to communicate.
A third way is by sending and receiving messages through the communication channel C. In
our framework, this is incorporated by the message signals v and w, the message spaceWi,
and the message generating function φi, defined in Definition 6.2.

As the moving agents in a swarm are typically low powered, with short-range sensors,
they are only capable of communicating with other agents within a certain neighborhood.
The neighborhood of a moving agent is defined as the set of moving agents that the given
agent can receive messages from and is a function of the positions of the moving agents and
their communication parameters, such as their broadcasting power, signal bandwidth, and
constraints on the number of simultaneous connections.

120

6.3. RELATION TO THE STATE OF THE ART

Definition 6.6 The neighborhood of a moving agentMi is denoted by the setNi(xs,σ), with
xs the vector stacking the particle states and σ the vector of communication parameters of
all the moving agents respectively.

The neighborhoods of the dynamic agents are dynamic, as they are dependent on the par-
ticle states xs. The framework allows for any method to model the communication channel.
With limited broadcast power, the neighborhood of a moving agent consists only of the other
moving agents that are within a certain radius. The communication parameter σ then consists
of these radii. The notion of neighborhood is defined in our framework to be part of the envi-
ronment, as it depends on the physical properties of the moving agents and acts as a filter on
the communication. Also properties like the bandwidth of the communication channel and
the delay and attenuation of the signals traveling through the communication channel play a
role here.

It must be noted that in order to retain flexibility and scalability of the swarm, the dynamic
agents are not able to directly address other agents. The agents thus broadcast their messages
and the neighborhood defines which agents receive them.

Example 6.7 The robots broadcast the messages that are constructed by their software.
Their position, broadcast power, and the properties of the environment determine their neigh-
borhoods, which dictate which of the other robots receive their messages. The messages can
be used to improve the internal world model of the dynamic agents and their decision making.

6.2.7 Swarms
Finally the notion of a swarm can be formalized.

Definition 6.7 A swarm is a subset of the set of moving agents, S, with the dynamic agents
being cooperative.

In Definition 6.2, the index i to the spaces and transition functions has been added to
stress that the framework allows for all the moving agents to have different properties. This
gives rise to the notions of homogeneous and heterogeneous swarms.

Definition 6.8 If all the moving agents in the swarm have the same state transition functions,
the swarm is said to be homogeneous. If at least one of the state transition functions is
different, the swarm is said to be heterogeneous.

6.3 Relation to the State of the Art
This section relates the proposed framework to ACL, as well as to two important swarm
intelligence methods in optimization and control, namely Particle Swarm Optimization and
artificial potential fields for swarm aggregation.

6.3.1 Ant Colony Learning
ACL is the main focus of this thesis and has been introduced as a multi-agent model-free
learning methodology. We can regard the algorithm in the light of the moving agent modeling
framework as follows. Each ant c is considered to be a moving agent, Mc in a set of M ants.

121

CHAPTER 6. GENERALIZATION OF THE ACL FRAMEWORK

They can be thought of moving through the state space of the system, for which they need
to learn the control policy. The state x of the particle is equal to the “position” xc of the
ant. Since we regard a moving agent to be composed of a particle and dynamic agent, xc is
thus the state of the particle Pc. As seen in Figure 6.1, a particle is part of the environment.
In ACL, particles do not directly influence each other by their state, like they would if they
would represent moving hardware in a physical world. The environment also consists of a
process and a communication channel. As discussed before, communication in ant-based
systems is done through stigmergy, i.e., through modifying the process state. In ACL, this
state is determined by the pheromone levels. The dynamic agent Ac of an ant c determines
the input uc to the process. The process contains the state transition function f of the system
to be controlled, which dictates the response of the system for a certain state-action pair. The
process can therefore determine the new state xc ← f(xc,uc), which in turn is observed by
the dynamic agentAc and stored in its internal state zc. The observation vector of the dynamic
agent thus contains the new state, but also the pheromone levels associated with this state and
all possible inputs. Let U(xc) = {u1, . . . ,uNc} be the set of actions available to the ant c
in its current state xc. The observation vector is then defined as yc =

[
xT
c τu(xc) . . .

]T
,

with u ∈ U(xc) and is used by the dynamic agent to determine the action, using one of the
action selection rules from Section 3.3.1 as its decision probability distribution. Note that the
actual action selection rule depends on the method of representing xc by the dynamic agent,
which may be by crisp partitioning bins, by fuzzy membership functions, or by other means
not discussed in this thesis. The selected action and the state are stored in the internal state
of the dynamic agent representing the solution found so far (c.f. sp,c, the partial solution
of an ant c). The selected action is fed to the process, which in turn responds again by
changing the system state. In addition to that, the local pheromone update is carried out by the
process by slightly decaying the pheromone level associated with the particular state-action
pair. The previous steps are repeated until the dynamic agent realizes it has reached the goal,
either because the observed state matches with an internal representation of the goal state,
or because the observation vector is augmented by a binary signal from the process telling
whether or not the moving agent has reached the goal. In the usual case of synchronized
global pheromone updates, each dynamic agents sends this binary signal as a communication
signal vc to all other dynamic agents through the communication channel. Once all moving
agents have reached the goal, or a synchronized internal clock in each dynamic agent has
triggered a time-out, all dynamic agents proceed with the global pheromone update. As the
state-action pairs visited by an ant c are stored in its internal state zc, each ant can request the
cost of its final solution (trajectory of state-action pairs) from the process. All ants then have
the process update the pheromone levels accordingly by “walking back” from the goal state
along their found trajectories to their initial states.

6.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is an optimization heuris-
tic, in which the goal is to find the parameter vector associated with the global optimum in a
problem space according to a certain objective, or fitness function. It is different from most
other optimization heuristics as it uses a swarm of agents instead of only one agent. In this
way, it is closely related to evolutionary computation, which is also population-based. For
information about similarities and differences between these two population-based optimiza-

122

6.3. RELATION TO THE STATE OF THE ART

tion methods, the reader is referred to (Kennedy and Eberhart, 2001). The agents in PSO are
called particles and partly conform with the particles from the framework introduced in this
section. A particle i is defined by a state xi =

[
θT
i νT

i

]T
denoting its position and velocity

in the problem space Θ. A fitness function F (θ) : X → R maps the parameter space to a
fitness landscape, which as a result associates each particle to a fitness value.

In PSO, the particles evolve in discrete time, because of the algorithmic nature of the
optimization problem. In the basic setting, at each iteration of the algorithm, the particles
update their state with the following rule:

θi(k + 1) =θi(k) + νi(k), (6.1)

νi(k + 1) =w(k)νi(k) + c1r1(k)[θi,pbest(k)− θi(k)]

+ c2r2(k)[θi,lbest(k)− θi(k)] (6.2)

where k is the current time step, θi,pbest is the personal-best position, θi,lbest is the local-
best position, w(k) is the inertia weight, r1,2(k) are random variables, and c1,2 are positive
acceleration constants. The personal- and local-best positions are the values of θi(k) that are
associated with the highest fitness value attained since k = 0 for particle i and any particle
in the neighborhood of that particle respectively.2 Each particle in the swarm is attracted
towards its personal-best solution and the local-best solution. In this way, it learns to find
the optimum of the fitness function, not only by its own experience, but from other members
of the swarm as well. The values of the inertia weight w(k) and the range of the random
variables r1,2(k) influence the convergence properties of the particle swarm. The positive
acceleration constants c1,2 trade off exploration and exploitation. More information can be
found in (Kennedy and Eberhart, 1995) and (Clerc and Kennedy, 2002).

The equations (6.1) and (6.2) can be written in a state space form that separates the particle
from the dynamic agent according to the framework proposed in this section:

xi(k + 1) =
[
1 1
0 w(k)

]
xi(k) +

[
0 0

c1r1(k) c2r2(k)

] [
θi,pbest − θi
θi,lbest − θi

]
(k).

From this form, the particle Pi can be identified by the relation:

xi(k + 1) =
[
1 1
0 w(k)

]
xi(k) + ui(k),

with

ui(k) =
[

0 0
c1r1(k) c2r2(k)

]
zi(k) (6.3)

the input from the dynamic agent Ai and zi =
[
(θi,pbest − θi)T (θi,lbest − θi)T

]T
its

internal state.
The process represents the fitness function F (θ) and the observation signal is defined as

yi =
[
F (θi) θT

i

]T
. Each dynamic agent determines its personal-best position as:

θi,pbest(k) = arg max (F (θi(k)), F (θi(k − 1)))

2Sometimes, the neighborhood is considered to cover the complete swarm. In that case, the local-best position is
called the global-best position of a particle, θi,gbest.

123

CHAPTER 6. GENERALIZATION OF THE ACL FRAMEWORK

and broadcasts it as the message vi(k) = (F (θi),θi,pbest(k)).
The communication channel determines the neighborhood of each moving agent and pro-

duces the message wi. Let {j1, . . . , jN} = {j | Mj ∈ Ni(xs, σ)} be the set of indices
belonging to the moving agents within the neighborhood of a moving agent i with σ the size
of the neighborhood, which is equal for all the moving agents. Then, the message wi is de-
fined as wi = (F (θj1),θj1,pbest, F (θj2),θj2,pbest, . . .). Dynamic agent Ai processes this
message by taking the maximum over the fitness values in this set to determine the local-best
position θi,lbest. This provides the dynamic agent with enough information to update the
internal state zi and produce its input to the environment ui according to (6.3). Here, the
stochastic nature of the decision making is expressed by the random variables r1,2(k).

6.3.3 Swarm Aggregation by Potential Functions
One of the multi-robot control problems studied in literature is swarm aggregation, in which
the agents have to aggregate to form a cohesive swarm (Gazi and Passino, 2005). For analyz-
ing the swarm behavior, most of the research has focused on a simple model of the particle
dynamics and their interaction. In continuous time, the particles are modeled by the following
kinematic model:

ẋi(t) = ui(t), (6.4)

where the position of a particle i at time t is denoted by xi(t) and its corresponding input by
ui(t). This model allows proof-of-concept design of swarm systems, where at a later stage
(6.4) can be replaced by a more realistic, more complex model, like a point mass model or
full actuator model (Gazi and Passino, 2005; Gazi and Fidan, 2007). The input to the particle
dynamics is the local value of an artificial potential field. In the environment, all the objects,
such as the particles and obstacles are assigned a potential function that defines a virtual force
acting upon a particle at a certain distance. The value of the artificial potential field is the sum
of the values of all the potential functions. The general class of attraction/repulsion functions
studied in (Gazi and Passino, 2004) is of the type:

g(y) =− y[ga(||y||)− gr(||y||)], (6.5)

where ga, gr : R+ → R+ represent the magnitude of the attraction and repulsion term re-
spectively, the vector y = xi − xj represents the distance between two particles i, j ∈
{1, . . . ,M}, and ||y|| =

√
yTy is the Euclidean norm. The input ui is generated by the

dynamic agent Ai based on measurement of the distance between its own particle and other
particles in the environment, yi = {xi−xj | j : Mj ∈ Ni(xs, σi)}. The neighborhood is de-
fined by the set Ni(xs, σi) = {Mj | ||xi − xj || < σi}, with σi the sensing radius of Pi. The
function g is typically predefined and identical for all the moving agents. Dynamic agents
may also infer g from observed physical properties of other moving agents. For example,
the color of a moving agent may be associated with a certain g according to a prespecified
database. Parameters that define g may also be communicated by the signals v and w.

6.4 Concluding Remarks
This chapter has proposed a general modeling framework for swarm systems of moving
agents. The framework separates the physical parts and behavior of the swarm members

124

6.4. CONCLUDING REMARKS

from their decision making capabilities. This facilitates the integration of current swarm in-
telligence research, which focuses mainly on the physical behavior of the swarm members,
with research on more sophisticated decision making in dynamic agent systems and artifi-
cial intelligence. The framework enables a more structured approach to the development of
new applications of swarm intelligence, particularly for distributed sensing and control. It
provides a better insight in the structure of swarm systems and theoretical results as well as
results based on simulation experiments can be more directly mapped to the application do-
main. The proposed framework aims to integrate both fields to enable the development and
analysis of more sophisticated swarm systems.

We have related ACL as well as two of the most established methods from the swarm
community, namely Particle Swarm Optimization (PSO) and artificial potential functions for
swarm aggregation to the proposed framework. Although ACL is a cooperative learning
method, PSO is an optimization method, and swarm aggregation is a control problem, it
has been demonstrated how these methods can all be decomposed into similar elements.
Future research will focus on the development and analysis of swarms of moving agents for
distributed sensing and control, based on the proposed framework.

125

126

Chapter 7

Conclusions and
Recommendations

In this thesis, we have presented the ant colony learning framework and studied its behavior
both analytically and through computer simulations. Ant colony learning is a methodol-
ogy for control policy learning using a set of cooperating agents, based on the principles
of ant colony optimization. We have presented an algorithm for discrete state spaces and
two algorithms for continuous state spaces. This chapter summarizes the main topics and
contributions, lists the main conclusions, and gives an overview of the open issues and rec-
ommendations for future research.

7.1 Summary of Contributions
Chapter 2 has provided the necessary background for this thesis. The main concepts of swarm
intelligence have been introduced in relation to natural and engineered swarms. In nature,
swarming provides benefits to the individuals, which is one of the driving forces behind the
local behavior of the individuals. Particularly, we have discussed the behavior of ants. Com-
munication between ants is done through pheromones. When an ant forages for food, it
is biased to search along trails of stronger pheromone concentrations. When it then finds
food, it will walk back to the nest while depositing pheromones and thereby contributing to
the reinforcement of a successful trail. The shortest path finding capability of ants and their
method of depositing pheromones has been used as an inspiration by Marco Dorigo and other
researchers to develop the Ant Colony Optimization (ACO) metaheuristic for combinatorial
optimization problems. In ACO, the optimization problem is formalized using the concept of
the construction graph, in which the nodes represent the elements that need to be combined
optimally, and the edges represent all the possible combination of these elements. In Chap-
ter 2, we have presented the ACO framework, two of its most important algorithms, namely
the Ant System and the Any Colony System, and a proof of convergence from literature.

In Chapter 3, we have introduced the general framework of Ant Colony Learning (ACL).
This cooperative control policy learning approach is based on the ACO framework, and shares
the ant and pheromone metaphors. When the states are discrete, as is the assumption in
Chapter 3, the nodes of the construction graph represent the states. In each state, there is

127

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

a set of possible actions that can be chosen and each action will bring the system to a new
state. The actions can thus be represented by the edges, connecting the nodes. If the state
transitions are deterministic, there is a one-to-one relation between the current state and action
and the next state. We have theoretically analyzed the convergence properties of ACL and
have derived upper and lower bounds for the pheromone levels and for the expected value
of the pheromone levels. We have shown that the expected policy converges to the optimal
policy in the case of using only one ant. For an increased number of ants, convergence
of the expected policy is only guaranteed in some specific scenarios and is otherwise not
formally guaranteed. In experiments on control problems that have a discrete state space
and deterministic state transitions, we have found that ACL converges quickly to the optimal
solution. More specifically, we have found for these experiments, that the values of the local
and global pheromone decay rates, γ and ρ respectively, should be chosen in the range of
(0.01, 0.1) so to obtain the best performance. We have also seen that increasing the number
of ants in the algorithm results in a decrease of the number of trials needed for convergence
to the optimal policy. The effect of state transition noise on the behavior of the algorithm has
also been studied. Although noise makes the learning problem much more challenging, we
have found that our ACL algorithm performs very well in these cases.

Chapter 4 has introduced two ACL algorithms for control policy learning in continuous
state spaces. The key issue here is that the state measurements need to be represented in a
discrete way. We have studied two ways of doing this. In the first one, called crisp ACL, the
state space is partitioned using crisp partitioning bins. In that case, the state measurement is
assigned to exactly one bin. A problem here is that crisp partitioning introduces discretiza-
tion noise, which turns an originally deterministic system into a non-deterministic system.
The second way of representing a continuous-valued state by a finite number of elements is
by partitioning the state space by means of fuzzy triangular membership functions. In this
algorithm, which is called fuzzy ACL, the continuous state measurement is said to belong
to multiple membership functions, each to a certain degree. With fuzzy partitioning, the
continuity of the state variables is preserved. No non-determinism is introduced in this case
either. We have performed an experimental analysis of both crisp and fuzzy ACL by applying
them to the non-linear control problem of two-dimensional navigation with variable damp-
ing. The control goal here was to steer a vehicle to the center of the area avoiding the regions
of stronger damping, before coming to a standstill. The results show convergence of both
versions to suboptimal policies. However, fuzzy ACL converged much faster and the cost of
its resulting policy did not change as much over repetitive runs of the algorithm compared
to crisp ACL. Fuzzy ACL also converged to a more optimal policy than crisp ACL. We have
also showed the importance of choosing a good cost function and state space partitioning.
Especially fuzzy ACL showed to be capable of learning control policies that are close to the
optimal policies derived by fuzzy Q-iteration.

In Chapter 5, we have presented a series of experiments to demonstrate the performance
of both crisp and fuzzy ACL. The system used in all experiments was the under-actuated
inverted pendulum. The control goal was to swing up the pendulum from any initial state
and to stabilize it in its unstable equilibrium. We have studied the influence of the global
and local pheromone decay rates, the number of ants, and the density of the state space
partitioning grid on the learning performance. The learning performance was evaluated in
terms of convergence, convergence speed, the performance of the resulting control policy, and
the variation of the results over several runs of the experiment. We have found that the best

128

7.2. MAIN CONCLUSIONS

values for ρ and γ are in the order of 0.1 and 0.01 respectively, confirming the results from
Chapter 3. Especially, the performance of crisp ACL improved for a small local pheromone
decay rate, while fuzzy ACL outperformed crisp ACL over the whole line. In general crisp
ACL is much more sensitive to choices of ρ and γ than fuzzy ACL. We found that more ants
lead to faster convergence, but that the number of ants does not need to be extremely large to
have satisfying performance. Furthermore, the required number of ants for fuzzy ACL was
about ten times lower than the number of ants required for crisp ACL. With regard to the
scaling of ACL with increasing state space partitioning density, crisp ACL revealed a slow,
but gradual improvement of the learning for increasing state space partitioning density. Fuzzy
ACL, on the other hand, improved more rapidly and required fewer ants to learn a better and
more regular control policy.

Chapter 6 has presented a general modeling framework for swarms of moving agents. We
have shown how ACL fits in this framework and as such can be unified with other swarm
intelligence techniques, such as particle swarm optimization and swarm aggregation using
artificial potential functions. This may result in beneficial integration of elements from other
swarm intelligence techniques into ACL, or the other way around.

7.2 Main Conclusions
The main conclusions of the research presented in this thesis are the following:

• We have developed the ACL framework. The convergence properties of ACL have
been theoretically analyzed for the case of a discrete state space with noiseless state
transitions. We conclude that the expected policy converges to the optimal policy in
the case of one ant. For an increased number of ants, convergence of the expected
policy is only guaranteed for specific parameter values. For other cases, the policy is
not formally guaranteed to converge.

• We conclude that crisp and fuzzy ACL can be unified using the generalized pheromone
update developed in this thesis. Non-determinism is introduced in crisp ACL due to
the discretization of the state space. In fuzzy ACL, the continuity of the state space is
retained by the state space partitioning with fuzzy membership functions. Fuzzy ACL
outperforms crisp ACL in all experiments and fuzzy ACL is capable of learning control
policies that are close to optimal.

• Based on all experiments with ACL in this thesis, we conclude that the best values of
the global and local pheromone decay rates are in the order of 0.1 and 0.01 respectively.
The performance of crisp ACL is much more sensitive to the choice of the global
pheromone decay rate, ρ, compared to fuzzy ACL. State transition non-determinism
causes fluctuations in the cost of the trajectories found by the ants, which are amplified
for large values of ρ in the pheromone update. Since no artificial non-determinism
is introduced with fuzzy ACL, even a choice of ρ = 1 leads to convergence of the
algorithm, contrary to crisp ACL. We conclude that in a noise-free setting, the local
pheromone decay rate has a far greater (and positive) influence on the convergence
behavior of crisp ACL than it has on fuzzy ACL.

• More ants lead to a faster convergence to better policies, with less variation over several
runs of the experiment. However, the number of ants does not have to be extremely

129

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

large. Crisp ACL requires many more ants for satisfying performance compared to
fuzzy ACL. For the applications considered in this thesis, the required number of ants
for fuzzy ACL is about ten times lower than the number required for crisp ACL.

• The convergence speed and the quality of the resulting policy is related to the density
of the state space partitioning as well as to the number of ants. That is, a finer parti-
tioning results in a larger state space that must be sampled by the ants and therefore
requires more of them. For crisp ACL, there is a slow, but gradual improvement of the
learning for increasing state space partitioning density. For fuzzy ACL, the learning
performance is improved more rapidly for increasing state space partitioning density
and requires fewer ants.

• ACL can be integrated with other swarm intelligence techniques in a common gener-
alized modeling framework of swarms of moving agents, as presented in this thesis.

7.3 Open Issues and Directions for Future Research
From the research presented in this thesis, some open issues have surfaced. This section
presents a list of these issues, as well as directions for future research.

Extensions

• In this thesis, we have used quite standard cost functions. For instance, in Chapter 3 the
cost was simply represented by the number of steps to the goal and in Chapter 4, the
cost was represented by a quadratic cost function. The latter one is already somewhat
more involved, as it reflects the error of the state trajectory as well as the error of the
input used on this trajectory. In fact, the ACL framework allows for any kind of cost
that can be computed on the basis of the solutions found by the ants. Remember that
the solutions consist of state-action pairs from the initial state of the particular ant to
the goal state. The cost may thus reflect any characteristic of the solutions found, like
overshoot, rise time, settling time, etc. We recommend future research to investigate
the performance of ACL for cases where the cost is measured in such terms.

• One way of improving the learning time may be the inclusion of prior knowledge.
Prior knowledge may be incorporated in ACL in a number of ways. One way is to
translate the prior knowledge into heuristic variables, like in conventional ACO. The
heuristic variables introduce a bias for the decision making of the ants, which may
speed up the learning process. However, without decaying its exponent, the heuristic
information will stay equally important during the course of the learning, which may
in fact hamper the learning after some number of trials. Another way of including prior
knowledge in ACL is by encoding the knowledge in the initial value of the pheromone
levels themselves. In this way, the prior knowledge similarly biases the decision of
the ants towards more promising solutions, but these values are immediately adapted
after the first trial, potentially preventing a negative effect in the long run. Regarding
the learning performance, it is expected that prior knowledge may be of great help, but
only if applied with care. Future research must study the effects of the various ways of
incorporating prior knowledge on the learning performance.

130

7.3. OPEN ISSUES AND DIRECTIONS FOR FUTURE RESEARCH

• When the dynamics of a controlled system change, the performance of the controller
usually degrades. With some (non-adaptive) automatic control approaches, the con-
troller must be re-tuned, or the optimization algorithm restarted, in such a case. The
ACL framework is however potentially very useful for tracking time-varying dynamic
systems, as the ants continuously explore the state-action space. Future research must
study to which extent such changes can be tracked. Namely, if the changes are too big,
adapting the current pheromone levels to the new situation may be more time consum-
ing than simply restarting the learning completely.

On-line Application

• With respect to the on-line application of ACL, it is useful to develop an implementa-
tion of ACL that does not rely on off-line learning on the basis of a model of the system.
As we have discussed before, ACL is in principle a model-free learning methodology,
but the practical implementation so far required off-line learning based on a model. It
would be of great practical importance to study ways of circumventing this current lim-
itation. For instance, given the current control policy and some exploration probability,
the real-world system may be sampled along the trajectories it travels. These samples
may be stored in a database with the ants continuously exploring the data for better
trajectories. The ants then optimize the policy on the basis of this evolving database.
Snapshots of the evolving control policy may then be applied to the system, resulting
in an indirect interplay between the ants and the physical system.

• For an on-line application of ACL, it may be required that a sufficient performance
of the evolving control policy is guaranteed. Especially with respect to exploration,
certain random actions can cause the system to behave in a way that is dangerous to
anything in the vicinity of the set-up, or in a way that is harmful to the set-up itself.
Guaranteeing performance could involve having an inner control loop that at least gives
a baseline performance to the system. The learning may then take place on a higher
level, e.g., tuning the parameters of the inner control loop within certain safety limits.
Clearly, guaranteeing performance requires prior knowledge about the system to be
available.

• When, in an on-line setting, ACL is applied to many physical copies of the same sys-
tem, it is especially undesirable that the ants have to wait for each other to complete
the trial before the global pheromone update takes place. For this reason, an asyn-
chronous implementation of ACL is recommended. Also for ACL interacting with a
software model of the physical system, the learning speed may be greatly improved if
ants are allowed to perform the global pheromone update directly after reaching the
goal, or after timing out. The result is that ants currently working on their solution
experience changing pheromone levels. Asynchronous implementations of ACO have
not been published yet. The reason for this is that in the conventional ACO setting
and for most combinatorial optimization problems, all ants will terminate their trial at
the same time, as each ant travels across the same number of nodes in the construction
graph. Since this is not the case in the state-action framework in which ACL operates,
an asynchronous implementation makes sense for ACL. This would also more closely
follow the way natural ants work, since obviously, the foraging behavior of real ants is
not synchronized at all.

131

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

State-Action Space Partitioning

• The optimal choice of state space partitioning is also an important subject for future
research. In this thesis, we have either used a regular partitioning, or in the case of
the two-dimensional navigation with variable damping problem, one with a denser par-
titioning around the regions of stronger damping. These choices are however quite
arbitrary and may very well not be optimal. Future research is needed to study ways to
automatically derive the optimal number of partitioning bins or membership functions
and their optimal distribution across the state space. In absence of prior knowledge
of the system or the controller, it may be necessary to make the partitioning adaptive
during the learning, e.g., by refining the partitioning in regions of the state space where
the pheromone levels show a stronger variation of the policy. Also for changing pro-
cesses, adapting the partitioning density along with adapting the pheromone levels may
improve the learning performance.

• We have shown that fuzzy partitioning leads to much better results than crisp parti-
tioning. However, the problem with fuzzy partitioning using triangular membership
functions is that the number of membership functions required grows exponentially
with the number of dimensions of the state space. For state spaces with a dimension
larger than 6, this may already become a serious problem, both in terms of memory re-
quired to store these membership functions, as well as the computational time needed
to evaluate the many state-action pairs. Amongst others, Gaussian basis functions have
the potential to solve this problem, as the number required does not have to grow expo-
nentially with the state space dimension. Still, their optimal positioning across the state
space, as well as the choice of their variance is an open issue. Future research must
study the inclusion of various basis functions in the ACL framework, their optimal
distribution in the state space, and their effect on the learning performance.

• In addition to continuous state spaces, we may also consider continuous action spaces.
The current implementation of ACL relies on choosing an action from a set of dis-
crete actions. This step must be reconsidered when allowing for the action to be
continuous-valued. Also the storage of pheromone levels for state-action pairs must
be re-examined. The action space may be partitioned similarly as the state space and
the optimal action may then be defined as the average action weighted by the associ-
ated pheromone levels. Future research must explore the implication of these changes
as well as the performance and convergence properties of the resulting algorithms.

Other recommendations for future research

• In this thesis, we have briefly discussed the similarities and differences between ACL
and reinforcement learning. An important direction for future research is to quantita-
tively compare these two control policy learning techniques. In particular, the more
recent development of parallel implementations of Q-learning may prove to be strong
competitors to ACL. A thorough numerical and qualitative study should be performed
to reveal the strong and weak points of both techniques, also in terms of the learn-
ing cost. Furthermore, it can be fruitful to study a hybrid of ACL and Q-learning, for
instance by applying ACL off-line to learn a good control policy fast, and applying

132

7.3. OPEN ISSUES AND DIRECTIONS FOR FUTURE RESEARCH

Q-learning on-line for fine-tuning the control policy and adapting it to changes in the
environment.

• With respect to the practical application of ACO algorithms we recommend to de-
velop implementations for processors capable of massive parallel computations, such
as Graphics Processing Units (GPUs). In this way, the massive parallelism that is at the
foundation of the ACO framework, can be exploited to its full extend. Such processors
can bring the full power of on-line optimization by ACO to practical systems and still
be very cheap. For genetic programming, implementations on GPUs have already been
published (Harding and Banzhaf, 2007; Langdon and Banzhaf, 2008).

• Other directions for future research on ACO algorithms for optimal control involve
more general issues seen in, e.g., the reinforcement learning community. Such issues
include performance guarantees in on-line learning, learning in environments where
not all state variables are measured (in the RL community, such environments are
known as Partially Observable MDPs), the control policy learning for distributed sys-
tems, the exploration-exploitation dilemma, and the need for standardized benchmark
problems allowing for better comparison of the many different learning algorithms.

• The modeling framework for moving agents that we have presented in Chapter 6 is
a first step towards the integration of theoretical results and more realistic moving-
agent models. Our expectation is that future research in this direction will be of great
importance to ant colony optimization for control as well as to the whole field of swarm
intelligence.

133

134

Bibliography

Alaykran, K., Engin, O., and Dyen, A. (2007). Using ant colony optimization to solve hy-
brid flow shop scheduling problems. International Journal of Advanced Manufacturing
Technology, 35(5-6):541–550.

Åström, K. J. and Wittenmark, B. (1990). Computer Controlled Systems – Theory and De-
sign. Prentice-Hall, Englewood Cliffs, New Jersey.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2006). Metaheuristics
in stochastic combinatorial optimization: a survey. Technical Report 08, IDSIA, Manno,
Switzerland.

Bilchev, G. and Parmee, I. C. (1995). The ant colony metaphor for searching continuous
design spaces. In Fogarty, T., editor, Selected Papers from AISB Workshop on Evolution-
ary Computing, volume 993 of Lecture Notes in Computer Science, pages 25–39, London,
UK. Springer-Verlag.

Birattari, M., Caro, G. D., and Dorigo, M. (2002). Toward the formal foundation of Ant
Programming. In Proceedings of the International Workshop on Ant Algorithms (ANTS
2002), pages 188–201, Brussels, Belgium. Springer-Verlag.

Blum, C. (2005). Ant colony optimization: introduction and recent trends. Physics of Life
Reviews, 2(4):353–373.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008). Continuous-state rein-
forcement learning with fuzzy approximation. In Tuyls, K., Nowé, A., Guessoum, Z.,
and Kudenko, D., editors, Adaptive Agents and Multi-Agent Systems III, volume 4865 of
Lecture Notes in Computer Science, pages 27–43. Springer.

Clerc, M. and Kennedy, J. (2002). The particle swarm – explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Computation,
6(1):58–73.

Deneubourg, J.-L., Aron, S., Goss, S., and Pasteels, J.-M. (1990). The self-organizing ex-
ploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2):159–168.

Deneubourg, J. L., Gross, S., Franks, N., and Pasteels, J. M. (1989). The blind leading the
blind: Modeling chemically mediated army ant raid patterns. Journal of Insect Behavior,
2:719–725.

135

BIBLIOGRAPHY

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: a survey. Theoretical
Computer Science, 344(2-3):243–278.

Dorigo, M. and Gambardella, L. (1997). Ant Colony System: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion, 1(1):53–66.

Dorigo, M., M. Birattari, M., and Stützle, T. (2006). Ant colony optimization – artificial ants
as a computational intelligence technique. IEEE Computational Intelligence Magazine,
1(4):28–39.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
26(1):29–41.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. The MIT Press, Cambridge,
MA, USA.

Fan, X., Luo, X., Yi, S., Yang, S., and Zhang, H. (2003). Optimal path planning for mobile
robots based on intensified ant colony optimization algorithm. In Proceedings of the IEEE
International Conference on Robotics, Intelligent Systems and Signal Processing (RISSP
2003), pages 131–136, Changsha, Hunan, China.

Fox, B., Xiang, W., and Lee, H. P. (2007). Industrial applications of the ant colony opti-
mization algorithm. International Journal of Advanced Manufacturing Technology, 31(7-
8):805–814.

Gambardella, L. M. and Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the
traveling salesman problem. In Prieditis, A. and Russell, S., editors, Machine Learning:
Proceedings of the Twelfth International Conference on Machine Learning, pages 252–
260, San Francisco, CA. Morgan Kaufmann Publishers.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability : A Guide to the Theory
of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman.

Gazi, V. and Fidan, B. (2007). Coordination and control of multi-agent dynamic systems:
Models and approaches, volume 4433 of Lecture Notes in Computer Science, chapter
Swarm Robotics: SAB 2006, pages 71–102. Springer-Verlag.

Gazi, V. and Passino, K. M. (2004). A class of attractions/ repulsion functions for stable
swarm aggregations. International Journal of Control, 77(18):1567–1579.

Gazi, V. and Passino, K. M. (2005). Stability of a one-dimensional discrete-time asyn-
chronous swarm. IEEE Transactions on Systems, Man and Cybernetics, Part B, 35(4):834–
841.

Gordon, D. M. (1999). Ants at Work: how an insect society is organized. Free Press, Simon
and Schuster.

136

BIBLIOGRAPHY

Gordon, D. M. (2003). Deborah gordon digs ants. URL: http://www.ted.com/
talks/deborah_gordon_digs_ants.html.

Goss, S., Aron, S., Deneubourg, J.-L., and Pasteels, J.-M. (1989). Self-organized shortcuts in
the Argentine ant. Naturwissenschaften, 76(12):579–581.

Grounds, M. and Kudenko, D. (2007). Parallel reinforcement learning with linear function
approximation. In Proceedings of the International Conference on Autonomous Agents,
pages 213–215.

Harding, S. and Banzhaf, W. (2007). Fast genetic programming on GPUs. In Ebner, M.,
O’Neill, M., Ekárt, A., Vanneschi, L., and Esparcia-Alcázar, A., editors, Proceedings of
the 10th European Conference on Genetic Programming, volume 4445 of Lecture Notes in
Computer Science, pages 90–101, Valencia, Spain. Springer.

Huang, R. H. and Yang, C. L. (2008). Ant colony system for job shop scheduling with time
windows. International Journal of Advanced Manufacturing Technology, 39(1-2):151–
157.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
the IEEE International Conference on Neural Networks, pages 1942–1948, Perth, Western
Australia.

Kennedy, J. and Eberhart, R. C. (2001). Swarm Intelligence. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

Korosec, P., Silc, J., Oblak, K., and Kosel, F. (2007). The differential ant-stigmergy algo-
rithm: an experimental evaluation and a real-world application. In Proceedings of the 2007
Congress on Evolutionary Computation (CEC 2007), pages 157–164, Singapore.

Kushida, M., Takahashi, K., Ueda, H., and Miyahara, T. (2007). A comparative study
of parallel reinforcement learning methods with a pc cluster system. In Proceedings
of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT
2006), pages 416–419.

Langdon, W. and Banzhaf, W. (2008). A SIMD interpreter for genetic programming on GPU
graphics cards. In O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcazar, A. I., De
Falco, I., Della Cioppa, A., and Tarantino, E., editors, Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008, volume 4971 of Lecture Notes in
Computer Science, pages 73–85, Naples. Springer.

Laurent, G. and Piat, E. (2001). Parallel q-learning for a block-pushing problem. In Proceed-
ings of the IEEE International Conference on Intelligent Robots and Systems, volume 1,
pages 286–291.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems, 11(3):387–434.

Purnamadjaja, A. H. and Russell, R. A. (2005). Pheromone communication in a robot swarm:
necrophoric bee behaviour and its replication. Robotica, 23(6):731–742.

137

http://www.ted.com/talks/deborah_gordon_digs_ants.html
http://www.ted.com/talks/deborah_gordon_digs_ants.html

BIBLIOGRAPHY

Reinelt, G. (1991). TSPLIB–A Traveling Salesman Problem Library. ORSA Journal on
Computing, 3(4):376–384.

Russell, S. and Norvig, P. (1994). Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ.

Schoonderwoerd, R., Holl, O., Bruten, J., and Rothkrantz, L. (1996). Ant-based load balanc-
ing in telecommunications networks. Adaptive Behavior, 5:169–207.

Sim, K. M. and Sun, W. H. (2003). Ant colony optimization for routing and load-balancing:
survey and new directions. IEEE Transactions on Systems, Man and Cybernetics, Part A,
33(5):560–572.

Socha, K. and Blum, C. (2007). An ant colony optimization algorithm for continuous op-
timization: application to feed-forward neural network training. Neural Computing &
Applications, 16(3):235–247.

Socha, K. and Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3):1155–1173.

Stützle, T. and Dorigo, M. (2002). A short convergence proof for a class of ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358–365.

Stützle, T. and Hoos, U. (2000). MAX-MIN Ant Systems. Journal of Future Generation
Computer Systems, 16:889–914.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Thrun, S. and Möller, K. (1992). Active exploration in dynamic environments. In Moody,
J. E., Hanson, S. J., and Lippmann, R., editors, Advances in Neural Information Processing
Systems, pages 531–538. Morgan Kaufmann, Denver, Colorado, USA.

Tsutsui, N. D., Suarez, A. V., Holway, D. A., and Case, T. J. (2001). Relationships among
native and introduced populations of the argentine ant (linepithema humile) and the source
of introduced populations. Molecular Ecology, 10(9):2151–2161.

Tsutsui, S., Pelikan, M., and Ghosh, A. (2005). Performance of aggregation pheromone
system on unimodal and multimodal problems. In Proceedings of the 2005 Congress on
Evolutionary Computation (CEC 2005), volume 1, pages 880–887, Edinburgh, Scotland.

van Ast, J. M. (2010). Swarm intelligence. URL: http://ziedaar.nl/article.
php?id=385.

van Ast, J. M. and Babuška, R. (2006). Dynamic exploration in Q-learning. In Proceedings of
the 2006 International Joint Conference on Neural Networks (IJCNN 2006), pages 41–46.

van Ast, J. M., Babuška, R., and De Schutter, B. (2008a). Ant colony optimization for optimal
control. In Proceedings of the 2008 Congress on Evolutionary Computation (CEC 2008),
pages 2040–2046, Hong Kong, China.

138

http://ziedaar.nl/article.php?id=385
http://ziedaar.nl/article.php?id=385

BIBLIOGRAPHY

van Ast, J. M., Babuška, R., and De Schutter, B. (2008b). A general modeling framework for
swarms. In Proceedings of the 2008 Congress on Evolutionary Computation (CEC 2008),
pages 3796–3801, Hong Kong, China.

van Ast, J. M., Babuška, R., and De Schutter, B. (2008c). Particle swarms in optimization
and control. In Proceedings of the 17th IFAC World Congress, Seoul, South Korea. Delft
University of Technology, Delft Center for Systems and Control.

van Ast, J. M., Babuška, R., and De Schutter, B. (2009a). Fuzzy ant colony optimization for
optimal control. In Proceedings of the American Control Conference (ACC 2009), pages
1003–1008, Saint Louis, MO, USA.

van Ast, J. M., Babuška, R., and De Schutter, B. (2009b). Novel ant colony optimization ap-
proach to optimal control. International Journal of Intelligent Computing and Cybernetics,
2(3):414 – 434.

van Ast, J. M., Babuška, R., and De Schutter, B. (2010a). Ant colony learning algorithm
for optimal control. In Babuška, R. and Groen, F. C. A., editors, Interactive Collaborative
Information Systems, volume 281 of Studies in Computational Intelligence, pages 155 –
182. Springer Berlin / Heidelberg.

van Ast, J. M., Babuška, R., and De Schutter, B. (2010b). Generalized pheromone update for
ant colony learning in continuous state spaces. In Proceedings of the 2010 Congress on
Evolutionary Computation (CEC 2010), pages 2617–2624, Barcelona, Spain.

Vlassis, N. (2007). A Concise Introduction to Multiagent Systems and Distributed Artificial
Intelligence. Synthesis Lectures in Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers.

Walker, M. (2009). Ant mega-colony takes over world. URL: http://news.bbc.co.
uk/earth/hi/earth_news/newsid_8127000/8127519.stm.

Wang, J., Osagie, E., Thulasiraman, P., and Thulasiram, R. K. (2009). HOPNET: A hybrid
ant colony optimization routing algorithm formobile ad hoc network. Ad Hoc Networks,
7(4):690–705.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4):279–292.

139

http://news.bbc.co.uk/earth/hi/earth_news/newsid_8127000/8127519.stm
http://news.bbc.co.uk/earth/hi/earth_news/newsid_8127000/8127519.stm

BIBLIOGRAPHY

140

Glossary

This glossary presents a summary of the mathematical conventions used throughout this the-
sis, as well as the list of abbreviations and mathematical symbols most frequently used in this
thesis.

Conventions
The following mathematical conventions are used throughout this thesis.

• Boldfaced non-capital characters represent vectors. All vectors are considered to be
column vectors and the transpose of a vector is denoted by the superscript T. For in-
stance, a continuous state vector is denoted by x, with its transpose being xT. The
vector of ones is denoted by 1, with its size depending on the context.

• Boldfaced capital characters represent matrices. For instance, R represents a matrix
with RT its transpose.

• Functions operating on matrices or vectors are also displayed in boldface. For instance,
the action (vector) defined by the deterministic policy in a given continuous state (vec-
tor) is denoted as: u = h(x).

• The ∼ operator is used to denote drawing a sample from a probability distribution. For
instance, when the policy is probabilistic, drawing an action from the policy in a given
continuous state is denoted as: u ∼ h(x).

• The probability of i given j is denoted by p{i|j}.

• Sets are denoted using the calligraphic font. The empty set is denoted by ∅ and \
denotes the set difference operator. The neighborhood set is always denoted by N .

141

GLOSSARY

List of symbols
The following lists contain the mathematical symbols most frequently used in this thesis.

States and actions
X continuous state space
x continuous state vector
Q discrete state space
q discrete state vector
U discrete input, or action space
u discrete input, or action

Time and iterations
t time index, used for counting the iteration within a trial
k trial index, used for τqu

κ trial index, used for τupd
qu

K maximal number of trials
T maximal number of steps in a trial
Ts sampling time

Ant colony optimization
c an ant
C set of ants that are not in the goal
M number of ants
h control policy
τ pheromone variable
α exponent of the pheromone variable in action selection
η heuristic variable
β exponent of the heuristic variable in action selection
ε exploration probability in action selection
∆τ pheromone deposit
ρ global pheromone decay rate
γ local pheromone decay rate

Solutions and performance
s a solution
s

(j)
i the jth solution component of a solution i
sp a partial solution
sgb the global best solution
sib the iteration best solution
S set of solutions, solution space
Supd multiset of solutions used in the global pheromone update
Strial multiset of solutions found in a given trial
J cost function
F fitness function

142

GLOSSARY

Reinforcement learning

R return
r reward
V (state) value function
Q (state-action) value function
Pu

qq′ state transition probability function
Ru

qq′ expected immediate reward following the state transition
e eligibility trace
γrl discount factor in reinforcement learning
αrl learning rate in reinforcement learning

Particle swarm optimization

θi position of a particle i
νi velocity of a particle i
θi,pbest personal best position of a particle i
θi,lbest local best position of a particle i
θi,gbest global best position of a particle i

General modeling framework for swarms of moving agents

S swarm
M moving agent
A dynamic agent
z, Z internal state (state space) of a dynamic agent
h internal state transition function of a dynamic agent
y, Y observation vector (observation space) of a dynamic agent
π decision probability function of a dynamic agent
u, U action (action space) of a dynamic agent
v,w,W messages (message space) of a dynamic agent
φ message generating function of a dynamic agent
P particle
x, X state (state space) of a particle
g state transition function of a particle
ψ, Ψ process state (state space)
f process function
C communication channel

Miscellaneous

I an indicator vector
ϕ sensitivity
µi(x) membership degree of x to the membership function i
βij(x) degree of fulfillment of x to the membership functions i and j

143

GLOSSARY

Subscripts and superscripts

max maximum
min minimum
avg average
exp expected
upd update
upper upper bound
lower lower bound
0 initial value
g goal
∗ optimal

List of abbreviations
Below, a list is given collecting the abbreviations used in this thesis.

ACL Ant Colony Learning
ACO Ant Colony Optimization
ACS Ant Colony System
AI Artificial Intelligence
AS Ant System
MDP Markov Decision Process
PSO Particle Swarm Optimization
RL Reinforcement Learning
TSP Traveling Salesman Problem

144

Summary

The very basis of this thesis is the collective behavior of ants in colonies. Ants are an excel-
lent example of how rather simple behavior on a local level can lead to complex behavior on
a global level that is beneficial for the individuals. The key in the self-organization of ants
is communication through pheromones. When an ant forages for food, it is biased to search
along trails of stronger pheromone concentrations. The moment it finds food, it will walk
back to the nest while depositing pheromones and thereby contributing to the reinforcement
of a successful trail. Inspired by this mechanism, research within an engineering context has
led to the development of the field of Ant Colony Optimization (ACO). Specifically devel-
oped for efficiently solving combinatorial optimization problems, ACO has been successfully
applied to routing in road traffic and Internet networks.

In this thesis, we take the principles behind ACO to the domain of control policy learning.
A control policy is a mapping from states to actions and our objective is to develop methods
to learn the optimal control policy for a given dynamic system by interacting with it. We call
our methods Ant Colony Learning (ACL) and their power lies in the fact that there is a set
of ants, from which each ant interacts with the system and influences the other ants through
updating pheromone levels associated with the visited state-action pairs. In experiments in-
volving control problems that have a discrete state space and deterministic state transitions,
it turns out that ACL converges quickly to the optimal solution. We also observe that increas-
ing the number of ants in the algorithm results in a decrease of the number of trials required
for convergence to the optimal policy. An analytical study of the convergence behavior of
ACL reveals that for systems with discrete and noiseless state transitions, the expected policy
converges to the optimal policy in the case of using only one ant.

Another major part of this thesis deals with the application of ACL to control problems
with continuous state spaces. In order to capture a continuous space with a finite number
of elements, we study two ways of partitioning the state space and their incorporation in the
ACL framework. In crisp ACL, the state space is partitioned using bins. Each state mea-
surement is assigned to exactly one bin, which leads to the introduction of discretization
noise, rendering an originally deterministic system non-deterministic and restricting the per-
formance of the algorithm. We find that a better way of partitioning the state space is by using
fuzzy triangular membership functions. The continuous state measurement then belongs to
multiple membership functions to a certain degree. With fuzzy partitioning, the continuity of
the state variables is preserved and no non-determinism is introduced. We call this method
fuzzy ACL. The developed generalized ACL algorithm unifies both crisp and fuzzy ACL.

145

SUMMARY

The behavior and performance of crisp and fuzzy ACL are further studied using simu-
lation experiments. We study the influence of the local and global pheromone decay rates,
the number of ants, and the density of the state space partitioning grid on the learning per-
formance. Especially, the performance of crisp ACL improves for a small local pheromone
decay rate, while fuzzy ACL outperforms crisp ACL over the whole line. In general, crisp
ACL is much more sensitive to the choice of the pheromone decay parameters than fuzzy
ACL. We find that using more ants leads to faster convergence, but that the number of ants
does not need to be extremely large to obtain a satisfactory performance. With regard to the
scaling of ACL, crisp ACL reveals a slow, but gradual improvement of the learning for an
increasing state space partitioning density. Fuzzy ACL, on the other hand, improves more
rapidly and requires fewer ants to learn a better control policy.

Finally, we present a general modeling framework for swarms of moving agents. It turns
out that ACL fits within this framework and as such can be unified with other swarm intel-
ligence techniques. In the future, this could result in beneficial integration of elements from
other swarm intelligence techniques into ACL, or the other way around.

146

Samenvatting

De basis voor dit proefschrift wordt gevormd door het collectieve gedrag van mieren in ko-
lonies. Mieren zijn een uitstekend voorbeeld van hoe vrij eenvoudig gedrag op een lokaal
niveau kan leiden tot complex gedrag op een globaal niveau waarvan de individuen weer
profiteren. Een sleutelrol in het zelforganiserend gedrag van mieren ligt in de communicatie
door feromonen. Wanneer een mier op zoek gaat naar voedsel, wordt zij gestuurd in haar
zoektocht door sporen met een sterkere feromoonconcentratie. Op het moment dat de mier
voedsel vindt loopt zij terug naar het nest terwijl zij een feromoonspoor achterlaat. Hiermee
draagt de mier bij aan het versterken van succesvolle paden. Geı̈nspireerd door dit mecha-
nisme heeft onderzoek binnen een technische context geleid tot de ontwikkeling van het veld
van Ant Colony Optimization (ACO). Specifiek ontwikkeld voor het efficiënt oplossen van
combinatorische optimalisatie problemen is ACO succesvol toegepast op het routeren van
verkeer en in Internet netwerken.

In dit proefschrift brengen we de principes die ten grondslag liggen aan ACO over naar
het domein van het leren van regelaars. We zien een regelaar als een afbeelding van een toe-
standsruimte naar een actieruimte en ons doel is methodes te ontwikkelen voor het leren van
optimale regelaars voor een gegeven dynamisch systeem door hiermee te interageren. We
noemen onze methodes Ant Colony Learning (ACL) en hun kracht zit hem in het feit dat er
een verzameling van mieren is, waarvan elke mier interageert met het systeem en de andere
mieren beı̈nvloedt door het aanpassen van de feromoonwaarden die zijn geassocieerd met de
bezochte toestand-actie paren. In experimenten met regelproblemen met een discrete toe-
standsruimte en deterministische toestandsovergangen blijkt dat ACL snel naar de optimale
oplossing convergeert. We zien ook dat een toenemend aantal mieren in het algoritme leidt
tot een afname van het aantal iteraties dat vereist is voor het convergeren naar de optimale
regelaar. Een analytische studie naar het convergentiegedrag van ACL toont aan dat voor
systemen met discrete en ruisvrije toestandsovergangen, de verwachte regelaar convergeert
naar de optimale regelaar bij het gebruik van slechts één mier.

Een ander belangrijk gedeelte van dit proefschrift behandelt de toepassing van ACL op re-
gelproblemen met een continue toestandsruimte. Om een continue ruimte te kunnen beschrij-
ven met een eindig aantal elementen, bestuderen we twee manieren om de toestandsruimte te
kunnen partitioneren en in te bedden in het ACL raamwerk. In crisp ACL wordt de toestands-
ruimte gepartitioneerd met discrete cellen. Hierbij wordt er discretisatieruis geı̈ntroduceerd
wat er voor zorgt dat een anderszins deterministisch systeem niet-deterministisch wordt en
dat de prestatie van het algoritme afneemt. We zien dat een betere manier van het partitio-
neren van de toestandsruimte kan worden bereikt door het gebruik van fuzzy driehoekige

147

SAMENVATTING

lidmaatschapsfuncties. De continue toestandsmetingen behoren nu tot een zekere graad toe
aan verscheidene lidmaatschapsfuncties. Met fuzzy partitionering blijft het continue karakter
van de toestandsvariabelen behouden en wordt er geen niet-determinisme geı̈ntroduceerd. We
noemen deze methode fuzzy ACL. Het ontwikkelde gegeneraliseerde ACL algoritme vere-
nigt crisp en fuzzy ACL.

Het gedrag en de prestatie van crisp en fuzzy ACL is verder bestudeerd door middel
van simulatie-experimenten. We bestuderen de invloed op de leerprestaties van de lokale en
globale feromoonparameters, het aantal mieren en de dichtheid van de partitionering. In het
bijzonder verbetert de prestatie van crisp ACL wanneer een lage lokale feromoonafname-
snelheid wordt gebruikt, terwijl fuzzy ACL het beter doet dan crisp ACL over de gehele lijn.
In het algemeen kan worden gesteld dat, vergeleken met fuzzy ACL, crisp ACL veel gevoe-
liger is voor de keuze van de feromoonparameters. We zien dat het gebruik van meer mieren
leidt tot een snellere convergentie, maar dat het aantal mieren niet extreem groot hoeft te zijn
voor een voldoende prestatie. Met betrekking tot de schaalbaarheid van ACL bij toenemende
dichtheid van de partitionering van de toestandsruimte laat crisp ACL een langzame, maar
zekere verbetering van de geleerde regelaar zien voor een fijnere partitionering. Fuzzy ACL
daarentegen verbetert aanzienlijk sneller en vereist minder mieren voor het leren van een zelfs
nog betere regelaar.

Uiteindelijk presenteren we ook een algemeen modelleringsraamwerk voor zwermen van
bewegende agenten. Het blijkt dat ACL in dit raamwerk past en daarmee kan worden ver-
enigd met andere zwermintelligentie-technieken. In de toekomst zou dit kunnen resulteren
in een goede integratie van elementen uit andere zwermintelligentie-technieken in ACL, of
omgekeerd.

148

Curriculum Vitae

Jelmer Marinus van Ast was born in 1981 in Oud-Beijerland, the Netherlands. In 1999, he
graduated from the secondary school R.S.G. Hoeksche Waard of the same town. He then
studied Electrical Engineering at Delft University of Technology, the Netherlands, where he
obtained his Bachelor of Science degree in 2003 and his Master of Science degree in 2005.
During his M.Sc. research work, his research topic was Reinforcement Learning and he was
advised by Prof.dr. Robert Babuška, M.Sc. For half a year, he worked at the European Patent
Office in order to be able to spend four months in Kathmandu, Nepal, to teach elementary
English and science to children in the age ranging from 6 to 16.

Since 2006, Jelmer van Ast has been working on his PhD project at Delft Center for
Systems and Control, Delft University of Technology. His PhD research has dealt mainly with
Ant Colony Optimization algorithms for optimal control purposes, and has been performed
under the supervision of Prof.dr. Robert Babuška, M.Sc. and Prof.dr.ir. Bart De Schutter.
During his PhD project, Jelmer van Ast obtained the DISC certificate for fulfilling the course
program requirements of the Dutch Institute for Systems and Control, and advised a number
of M.Sc. and B.Sc. students.

Jelmer van Ast’s research interests include swarm intelligence and reinforcement learn-
ing.

149

150

	Introduction
	Swarm Intelligence and Ant Colony Optimization
	Ant Colony Learning
	Research Focus and Contributions
	Ant Colony Learning Framework
	ACL in Continuous State Spaces
	Generalization of the ACL Framework

	Thesis Outline

	Ant Colony Optimization
	Introduction
	Swarm Intelligence
	Collective Behavior in Nature
	Principles of Swarm Intelligence in Engineering

	Ant Colonies
	Ants in Nature
	Double Bridge Experiment

	ACO Metaheuristic
	Combinatorial Optimization Problems
	Framework for ACO Algorithms
	Relation to Real Ants

	ACO Algorithms
	Ant System
	Ant Colony System

	Convergence Results
	Applications of ACO
	Concluding Remarks

	Ant Colony Learning Framework
	Introduction
	Optimal Control Setting
	Optimal Policy Learning Problem
	Markov Decision Processes

	Ant Colony Learning for Optimal Control
	Action Selection
	Local Pheromone Update
	Global Pheromone Update
	Control Policy
	ACL Algorithm

	Convergence Analysis
	Definition of Convergence
	Assumptions
	Total Pheromone Update
	Lower Bound on the State-Action Selection Probability
	Bounds on the Pheromone Levels
	Bounds on the Expected Value of the Pheromone Levels
	Convergence of the Expected Value of the Pheromone Levels
	Convergence of the Policy
	Convergence of the Policy for the Complete State Space
	Remarks

	Related Methods
	Dynamic Programming
	Q-Learning
	Relation to ACL

	Experiments: Grid Search
	Performance Measures
	1-D Grid Search
	Varying Global Pheromone Decay Rate
	Varying Local Pheromone Decay Rate
	Varying Number of Ants
	2-D Grid Search
	Varying State-Transition Probability
	2-D Grid Search: Varying State Space Size

	Concluding Remarks

	Ant Colony Learning in Continuous State Spaces
	Introduction
	ACL with Crisp State Space Partitioning
	State Space Partitioning
	Crisp ACL Algorithm

	ACL with Fuzzy State Space Partitioning
	State Space Partitioning
	Fuzzy ACL Algorithm

	Analysis of the Generalized Pheromone Update
	Serial Execution of the Pheromone Update Rules
	Total Pheromone Update
	Lower Bound on the Pheromone Levels

	Experiments: 2D Navigation with Variable Damping
	Problem Formulation
	Regular Partitioning and Quadratic Cost Function
	Non-Regular Partitioning and Time-Spent Cost Function

	Concluding Remarks

	Simulation Experiments
	Introduction
	Pendulum Swing-Up and Stabilization
	Problem Formulation
	Set-Up of the Experiments

	Results
	Global Pheromone Decay Rate
	Local Pheromone Decay Rate
	Number of Ants
	State Space Partitioning

	Concluding Remarks

	Generalization of the ACL Framework
	Introduction
	Modeling Framework for Swarms of Moving Agents
	Particles
	Dynamic Agents
	Moving Agents
	Process
	Environment
	Communication and Interaction
	Swarms

	Relation to the State of the Art
	Ant Colony Learning
	Particle Swarm Optimization
	Swarm Aggregation by Potential Functions

	Concluding Remarks

	Conclusions and Recommendations
	Summary of Contributions
	Main Conclusions
	Open Issues and Directions for Future Research

	Bibliography
	Glossary
	Summary
	Samenvatting
	Curriculum Vitae

