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Chapter 1

Introduction

In the near future the amount of traffic on the roads will kespeéasing. The capacity of
the available infrastructure cannot increase at the saroe, gince creating new roads is
expensive, time consuming, and requires free space théfitull to find or not available
at all. As a result the number and length of traffic jams witlrgase during the next years.
Traffic jams result in economical costs due to the large detlagt they cause, and they also
have negative effects on the environment due to, e.g.,aseseof the noise levels and pollu-
tion. A possibility to prevent, or at least reduce, congesis to make more efficient use of
the available roads. This can be reached via traffic contealsures, such as traffic signals,
variable speed limits, ramp metering installations, andagyic route information panels.
The influence of these measures is largely depending on thesvthat they use for, e.g.,
green times or speed limits. These values are determineaitiyot methods, which thereby
are an important part of the total traffic control system fé&#nt control methods result in
different values for the green times and speed limits, and th different performances of
the traffic network. To improve the traffic situation, cotneethods should be developed
that select the values for the control measures in such a atthe performance of the
traffic network is increased, taking into account the irdes®f, e.g., drivers, government,
and the environment.

In this thesis we will develop advanced control methodsithptove the performance of
the traffic network. In particular, controllers for mixedban/freeway networks, controllers
that anticipate on route choice, and route choice contrdhats are developed. The de-
veloped control methods are based on model predictive @ofMPC). MPC is a control
method that uses a prediction model to determine the exghegtdution of the traffic flows.
Furthermore, within MPC an objective function is definedt ttlascribes the goals of the
controller. Then an optimization algorithm is used to datiee the optimal settings for the
traffic control measures based on the model predictions lamaljective function. If ne-
cessary, the method can also handle constraints on thébleriand states in the network.
Finally, the computed settings for the first control timgosaee applied by the control mea-
sures, and the next control time step the whole procedurepsated. In this thesis, the
objective function of most of the developed control methisdsased on the total time the
vehicles spend in the network.

The remainder of this chapter is organized as follows. Bioshe background material
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2 1 Introduction

about traffic networks is presented, including organizetimvolved with traffic networks,

currently available traffic control measures, and traffictonl methods. Next, the objectives
of the research described in this thesis are formulatedn T contributions of the thesis
and the relevance of the research are presented. Finalbtéine of the whole thesis is
given.

1.1 Background

In this section we will describe some aspects of generdidmnétworks, and in particular
of the Dutch road network. We discuss different road typesthe corresponding organi-
zational structure, and describe different processesotttr within traffic flows. Further
on, we describe the control measures that can be used toriodubke traffic, and discuss
available control methods that can be used to determinesttiegs of the control measures.

1.1.1 Road networks

Road networks evolve along with the development of trartgion modes. The first roads
where used by pedestrians, and during history horses, blhdarts, and horse carts were
added. Later bicycles and cars where introduced, and gepailvays where created for
trains. The first roads where unpaved roads, while nowadagdynall roads are hardened.
The main road network is used by cars and trucks, while sep&aaes are available for
bikes and sidewalks for pedestrians.

The layout of the roads depends on the location and funcfitirecroads. Freeways are
used by long-distance traffic and are in principle uni-dite@l roads, without intersections.
The speed on these roads is high, usually from 100 to 200 Kiiw capacity of these roads
is around 2000 veh/h/lane. Highways are bi-directionatispaised for medium distances
or for long routes with a low demand. The speed on this roadsuslly lower than on
freeways. In The Netherlands the maximum allowed speed isrkihd of roads is 100
km/h. The capacity of these roads is about 1800 veh/h/lamestiort-distance traffic there
are local roads, which are mainly located in urban areas.c@pacity of these local roads
is small, varying from 500 to 1500 veh/h/lane depending ertad layout. At these local
roads there are many intersections, and the speed is ar@ud/B.

The historical evolution of the road network implies thas thyout of the current net-
work is not efficient with respect to the current origins aedtthations of the traffic and the
corresponding traffic flows. This results in a large mismdttetween the demand and the
available capacity on different routes. This mismatch igxgvortant cause of congestion in
the current network.

1.1.2 Traffic related organizations

In most countries general roads are the responsibility efgbvernment. But when we
consider, e.g., toll roads, they can also be privately owrdadyeneral, each road type is
managed by a different authority. Freeways are often mahbgehe government, while

other roads are managed by municipalities. As an exampl&yilvexplain the situation as

itis in The Netherlands.
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In The Netherlands a distinction is made between local ropdsvincial roads, and
freeways. The local roads are managed by the municipalitiehe cities. The larger
cities develop and control their own road network, while Benaillages implement control
measures developed by consultancy companies. The pravioeids are managed by the
provincial government. Provincial roads connect villagad small cities with each other.
These roads are bi-directional roads, with intersectiamgrolled by traffic signals. The
Dutch Ministry of Transport is responsible for the freeway3he Netherlands.

The freeway network in The Netherlands is dense, with manyaomps and off-ramps
on each freeway. This means that the different types of raseistrongly connected, which
requires cooperation between the different authoritieswéver, until now the presence of
different management authorities has prevented integaidination and steering of traffic
control measures. This has resulted in a situation where management body solves its
own problems by sending the traffic to the roads that are snemetse’s responsibility. It
is easy to imagine that this leads to inefficient road useeltdbations where the different
road types are connected. Nowadays, most parties stadliper¢hat a solution of the traffic
problems can only be obtained when they cooperate. Intenkdzlarations are written,
procedures are described, and meetings are planned. The Mirtistry of Transportation
has formulated an advice of how the whole process could banargd in a handbook,
see [110]. This handbook provides guidelines to select iapborigins and destinations,
and to define which roads should be used for the major cormmschietween them. Then
advise about possible traffic management measures is givemhandbook also presents
the way in which the political process of developing the colntnanagement strategy can
be organized.

Next to the traffic management bodies, other parties areiasived with the traffic
road network. An important group are the road users. Theyadgtexperience the de-
lay caused by congestion, and they have to adapt their behatien control measures are
applied. In The Netherlands, the drivers are united in theAMB\l the Dutch drivers’ or-
ganization. This organization participates in consudtadiwith the governments, informs
drivers about the traffic network, participates in resegnciups, and has a road guard.

Further, consultancy companies play a large role in theldpueent of traffic control
measures. They use traffic models to predict the effectseofrffic measures, and give
advice to the road managers about the use of the measuresofitpanies also develop
new algorithms that can be used to determine the values afuthiieol measures, see, e.g.,
[6,24, 129].

The economical cost for the delays due to traffic jams is esg@@ in vehicle hours, and
was equal to 49 million hours for 63 billion traveled kiloraet during the year 2007 [113].
Since the costs of traffic jams are this high, reducing thgtleand frequency of the jams is
of high importance for the government. The government toagduce the traffic jams on
the short term by implementing available control measuwaed,it invests in traffic research
to develop long-term solutions. The location of new roadsse a political issue, just as the
taxes for road use. Furthermore, the government also spoteSWOV (Stichting Weten-
schappelijk Onderzoek Verkeersveiligheid), an orgaiopathat investigates the safety of
the road network in general.
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1.1.3 Traffic processes

Road traffic has many different aspects. Each of this aspacatbe captured with different
simulation models.

First of all, the amount of vehicles that want to use the roativork should be de-
termined. This number of vehicles depends on the numbeipsf tihat the drivers would
like to make, and on the transportation mode that the indadidravelers select. Possi-
ble transportation modes are, e.g., train, bus, car, otagiep When the mode choice is
made, the number of vehicles that want to make a trip is knditnis number of vehicles,
combined with the corresponding origins and destinaticas, be used to determine the
origin-destination (OD) matrix. Such a matrix contains tlemand from each origin to
each destination in the network. Models that determine@ismatrix are based on ques-
tionnaires, historical traffic measurements, and on arsiiyation of the surroundings of
the road network to determine the locations of origins argdidations.

The next decision of the drivers that should be modeled islé@parture time. Drivers
select their departure time based on, e.g., the desiredhhtiine, the current time, the
expected travel time, the probability of a delay, and theeetgd length of the delay.

Another aspect is the route choice of the drivers. When thgra, destinations, and de-
parture times of the vehicles are known, the route that thley $hould be determined. This
can be determined in two ways: via a route choice model or avilgnamic traffic assign-
ment model. A route choice model describes how drivers r@aeach location where the
road splits. At these locations the drivers have to make terchoice, which they base on,
e.g., earlier experiences, and on the current situationyrfachic traffic assignment model
assumes that all drivers select their route in such a wayatlhiaer equilibrium assignment
appears. A user equilibrium assignment is the assignmahatipears when all routes with
the same origin and destination have equal travel times.

The next issue that should be considered is the behaviorhiéles on one road. How
many vehicles are on each part of the road, how fast do theg,dsihat are the distances
between the vehicles, do they change lanes, etc. Many mexisisthat describe this be-
havior. Different models consider different levels of dietand describe the process in
different ways. Microscopic models give a detailed degimipof the traffic, modeling the
behavior of individual vehicles. Mesoscopic models coassigrobability distributions of
the variables, while macroscopic models consider averayes for speeds, densities, and
flows. The computational effort for the detailed models ghhiwhile the low-detail models
require shorter computation times. Which model is the moisalsie for a given applica-
tion depends on a trade-off between model accuracy andabl@itomputation time. An
overview of existing traffic models is given in [72, 124].

1.1.4 Control measures

Traffic flows can be influenced via traffic control measureshsas traffic signals, variable
speed limits, ramp metering installations, and dynamideonformation panels, [112].
Most of these measures are originally designed to improsdrtific safety, but they also
have a significant influence on other aspects of the trafficsflowe will now give a short
description of each of these measures.

Traffic signals are used to control the right of way at urbaersections, see Figure
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Figure 1.1: Traffic signal installation.

[1.1. They prevent accidents, and influence the throughpirttefsections. At each link
connected to an intersection a signal is located, with thgids: red, amber, and green.
During the red period, the vehicles are not allowed to pas#ntiersection, during the green
period they have to drive through. The amber period is usedwaarning period between
the green and red, vehicles that are able to stop should wtdfe vehicles arriving with
a high speed, unable to make a safe stop, can still cross t#rséction. The first traffic
signals had to be set manually by police agents,’;e [158r camputers were used, first
to coordinate the lights at individual links at the intets&ts, next to allow the operator
at a traffic control center to monitor and influence the messuand finally for automated
coordinated control. The coupling with available traffitedt#ors has led to the development
of vehicle-actuated control, which is the main control neetlused in The Netherlands.
Vehicle-actuated control uses detectors to determinehenghere is a queue at each link,
and base the green times on these measurements.

Variable speed limits, see Figure 1.2, can be used to cotfiteobpeed on freeways.
They are usually displayed on variable message signs ahengad. The initial purpose of
introducing the speed limits was to improve the safety. Tded limit values were lowered
under bad weather conditions, and the limits were used to di@vers when they approach
a traffic jam. An example of such a warning system is the Dutchdent detection system,
which has been developed to reduce the number of secondadeats in congested areas.
This is obtained by lowering the speed limits to warn the ehsvthat they approach an
accident so they can lower their speed, which reduces thepiiity of head-tail collisions.
Speed limits can further be used to improve the performamdbeofreeway network, as
described in, e.g.L@M45]. Reducing the speed upstréanraffic jam lowers the amount
of traffic that enters the jam, and thus allows the jam to diestaster, which increases the
throughput of the freeway.

At on-ramps, ramp metering installations can be used, speé¢il.3. Ramp metering
installations are traffic signals located on on-ramps, aeg allow one or two vehicles to



6 1 Introduction

Figure 1.2: Variable speed limits.

pass during each green period. The purpose is to controldweoih the on-ramp in order
to minimize the disturbance of the traffic on the freeway, d&2]. The ramp metering
installation limits the flow that can enter the freeway, aradgo reduces the peaks in the flow
by dividing the flow equally over time. This reduction of thistdrbances on the freeway
traffic lowers the amount of congestion that is induced byotimeamp flow. Another effect
of ramp metering is that it can influence the route choice. diinveamp installation causes
a queue on the on-ramp, which generates extra travel timiadodrivers. When this time
becomes too large, drivers change their route in such a watytliey enter the freeway
at another location. A disadvantage of ramp metering ilagiahs is that they can have a
negative impact on the urban traffic. When the queue that appaahe on-ramp spills back
into the urban network, it can block urban intersections asd delay traffic that does not
want to enter the freeway at all. The effect of this disadzgatcan be reduced by applying
gueue management actions, which often consist of adagtsngaimp metering rate when
the queue length exceeds the available space. This howexheces the effect of the ramp
metering on the freeway traffic.

A less direct control method is the use of dynamic route imfation panels (DRIPS).
DRIPs are located at splitting nodes of the network, seerEigud. The original purpose
of the DRIPs is to inform the drivers about the current stédithe traffic. Queue lengths
or travel times on the different routes are presented, twatirivers to take an informed
route choice decision [18, 103]. The use of DRIPs within oargystems are described in
[48, 76]. In this thesis we illustrate how DRIPS can be usepetsuade drivers to change
their route choice in order to obtain a traffic assignment ¢fiees a more optimal traffic
performance from the system point of view.
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Figure 1.4: Dynamic route information panel.

1.1.5 Available control methods

The settings of the control measures are determined viaatanethods. The general idea
of a control method is that it obtains some measurements thentraffic flows of the net-
work, and uses these measurements to determine the sdttirthe control measures, see
Figure 1.5. The number and type of measurements that isdenesi can be used to classify
different control methods.

Fixed-time control methods are the oldest type of contrathmés, and in contrast to
more recent methods, do not use real-time measurements ahalsettings of the control
measures are constant or changing according to the tindeyofften determined using his-
torical measurements. Fixed-time control is still frectlensed. For isolated intersections,
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control measure
70

detectors

control settings
measurements

Control
computer

Figure 1.5: General principle of traffic control.

or intersections with a low demand the performance is gobé. fain disadvantage is that
the method does not react on variations in the traffic flow,thatithe settings can become
out-dated, since the method does not take into account thesise of demand over time.

A second class of traffic control methods consist of vehéddiated systems. These
systems use detectors in the immediate area of the contadune Based on the obtained
measurements, changes are applied to the fixed-time cadhnelme. Examples of such
changes are switching between different schemes, or @rtgiadgreen period [91, 183].
These methods react on variations on the traffic flow, and pamesd to be very effective in
urban areas. Also for ramp metering installations this kihthethods are used frequently.
Based on measurements at the freeway and on the on-rammipewmwatering rate can be
determined, as described in [29, 122]. The Dutch algoritbmirfcident detection using
variable speed limits is also vehicle-actuated.

The last class of control methods contains the traffic-raspe systems, e.g., [48, 129,
190]. These systems use traffic measurements of a large ran@adathe traffic measure.
The control methods optimize the actions of the control messwith respect to the whole
network. These methods also allow for integrated contrsingi several measures. The
coordination between the control actions of the differeeisures can further improve the
performance of the traffic network.

In [173], an extensive overview of different control metkddr traffic signals is given.
A more general overview, also considering other controlsuess, is given in [124].

1.2 Research objectives

In this section we describe the objectives of this thesi® fRlesis project is part of a larger
research project, which will be described first. Next we folate the research problem, and
elaborate the research goals and the research approach.

1.2.1 Research project

The research described in this thesis is funded by the NWmni€d projects AMICI, and
the BSIK-TRANSUMO project ATMA-MODeRN.
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The NWO-Connect research program AMICI considers Advaridetti-agent Infor-
mation and Control for Integrated multi-class traffic netkego The total program focuses
on traffic congestion management in and around large ciigsh as Beijing, Rotterdam,
Amsterdam, and Shanghai. In particular, it aims at devalpgblutions to efficiently re-
duce traffic congestion by means of dynamic traffic managénwithin the program five
research topics have been defined:

Multi-class traffic flow theory for modeling of motorway and ur ban traffic networks
This research focuses on the development of a multi-classaseopic traffic flow model
for freeways as well as urban roads [115, 116].

Impact of travel information and traffic control on travel be havior The effects of provid-
ing travel time information are investigated within thioject. Based on this investigation,
a route choice model is developed that includes the effégowiding travel time informa-
tion [17,18].

Optimal presentation of travel information based on persoral preferences and needs
The way in which information is provided influences the efffetthe information. This
project focuses on the relation between the way of presgiifiormation and the corre-
sponding reactions of the drivers [51].

Market for traveler information Generating traffic information costs money. This project
investigates the amount of money that users are prepargetta ©n different types of in-
formation. Further it investigates the relation betweenpknetration rate (the percentage
of equipped vehicles) and the value of the provided infoiomat

Development of advanced multi-agent control strategies fomulti-class traffic net-
works This project investigates the development of advancedralosttrategies for multi-
class traffic flows, using control measures as well as progidiformation to improve the
performance of existing road networks.

This thesis describes results in the framework of the lagept, in particular the develop-
ment of control strategies to reduce congestion.

BSIK-TRANSUMO is a research program funded by the Dutch gowvent in which
universities, companies, the government, and researtitutes perform research on sus-
tainable mobility. Within BSIK-TRANSUMO there are severahin projects, one of which
is ATMA-MODeRN (Advanced Traffic MAnagement - Multi-Objée¢ Decision aid for
Regional Networks). The objective of the ATMA-MODeRN preijés to develop support
systems for the application of traffic management systemsgional road networks, con-
sisting of freeways as well as local roads. Hereby, reliigtaind sustainability are explicitly
taken into account as measures for the performance of ttfie tratwork.

1.2.2 Problem formulation

Congestion on traffic roads has different causes, e.gdawts, incidents, and bottlenecks.
The major cause of congestion is the difference betweendheadd and the capacity of
the road. An investigation of recurrent congestion showastthis lack of capacity is nearly

always the largest at locations near on-ramps, off-rangrs Hrops, or at intersections
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[111]. This is due to the fact that the different roads meagel that thus the inflow of such
a location is often higher than the outflow capacity. Thesations are called bottlenecks.
Further, congestion can also appear in the middle of a frgstvatch. In this case it often
starts at a bottleneck, but travels upstream over the frgasasing a delay for all vehicles
that travel on the freeway.

Many bottleneck locations are equipped with traffic contr@asures, which can be
used to reduce the amount of congestion. However, the dlyrnesed control methods are
in general not sufficient to solve the congestion. Part oftleasures that are present have
been in use for a long time without changing the settingsciwvhieans that they were de-
signed for demands that were lower than the current demadg, others are only solving
local problems, which usually only results in a re-locatidthe congestion. In dense road
networks, where the number of traffic control measures ib,Hige influence of the mea-
sures on each other is large. This means that in dense netaoiking local problems for
each measure separately often does not lead to a good qenfailmance of the whole net-
work, but only re-locates the congestion. Coordinationhef available measures however
can significantly improve the performance. For urban areaetalready are systems that
coordinate the control actions of traffic signals [49, 128)]1and for freeways coordinated
control systems for variable speed limits are availablé6f), However, for networks that
contain freeways as well as urban roads, coordinated dan#thods are not available yet.

Within larger networks, control measures do not only afteetthroughput of the net-
work, but they also influence the route choice, see [148]s T$due to the fact that they
change the travel times on different routes, which might enalkernative routes more at-
tractive for the drivers. As a result, the flows in the netwdnlange, and thus the demands at
the bottleneck locations change. The change in route clraicalso re-locate the conges-
tion to undesired locations, creating, e.g., large queuasiature reserve (which generates
pollution), large queues in residential areas (which redube safety), or congestion at in-
tersections (blocking crossing traffic). To prevent thisiesired re-location of congestion,
control measures should adapt their settings. Howeveruhently applied control meth-
ods do not take route choice into account. Thus the perfazmai these traffic control
methods can be improved further when the methods do corthiedehange of route choice
they can induce [10].

The last problem that we will consider in this thesis is redgtb the process of applying
model-based control methods in practice. Before a contathod can be implemented, a
number of issues should be considered. The control obgs;taontrol method, and infras-
tructure layout should be determined. Some guidelinegi®selection process and for the
implementation of dynamic traffic management are given #9]10ne of the important is-
sues for the implementation is the selection of an averagietpod for measurements. The
measurements that are obtained from the network shoulddraged over time. This can
be done using different averaging methods. The influenceeo$¢lected averaging method
on the performance of traffic control methods will be invgated in this thesis.

1.2.3 Research goals and approach

The main goal of the research described in this thesis istelde control methods that
can be used to increase the efficiency of road use, and toedtiacnegative effects of
congestion. Within the research, the main goal is dividéd $nib-goals, which correspond
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to the problems formulated above:

Control of mixed networks Mixed networks consist of freeways as well as urban roads.
Bottlenecks that cause congestion often appear at losatibere both road types are
present. Therefore, we aim at developing control methoalsabhordinate the traffic
control measures in such mixed networks. The control metisbduld integrate the
different control measures and coordinate the controbaston freeways and urban
roads, leading to control methods for network-wide intégpgtacontrol. Challenges
with respect to coupling freeway and urban networks are ifferent driver behavior
(which results in different model types), the different¢iscales of the processes that
appear, and the difference in available control measures.

Influencing route choice Control measures take control actions that influence theltra
times on different routes, and thus influence the route ehoithe drivers. We want
to develop control methods that take this effect into actoamd thus can determine
more optimal settings for the control measures in networsre multiple routes are
available. Further, we want to develop control methods ¢hatre-locate congestion
to locations where the impact is less severe, such as rodsid@vesidential areas, or
roads that are not on a main supply route. This implies tleattimtrol method should
actively influence the route choice and change the traffigasgent.

Implementation aspects Before controllers can be applied in practice, many isshesld
be considered. We present an overview of the relevant ingriation issues. With
respect to implementing controllers much information iitable; however, the struc-
ture of the whole implementation process is not clearly @efirf-urther, we focus on
the effect of averaging methods for speed measurements thlegnare used in a
control method. Differences in measurement methods cactaffiost steps in the
controller design and implementation process, and thussanificantly influence
the controller performance.

Each sub-goal is investigated in one or two separate stugdesnost studies we follow
the following approach. First, a literature study is pemed in which an overview of the
current research is obtained. Then the controller desigiaited with the selection of
the model that is used in the controller. When no suitable misdund in literature,
an existing model is adapted, or a new model is developeds Mioidel is used for the
remainder of the controller design process. When the dedigimeocontroller finished, a
simulation study is performed to illustrate the perform@aatthe developed control method.

1.3 Contributions of this thesis

This thesis contributes to the state-of-the-art with resfeadvanced traffic control meth-
ods. The main contribution is the further development ofsaded control methods based
on model predictive control. These control methods can kd ts increase the efficiency
of road use, they can handle varying demands, and expligig hard constraints into
account. The innovative contributions with respect to tladesof-the-art are the modelling
and control of mixed networks, and the integrated contrahods to influence route choice.
The control methods are especially suitable for networkrobrand coordinate the actions
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of the various available control measures. The developaftctrcontrollers react to the
traffic situation on the whole network, and optimize the coln$ettings accordingly. Dif-
ferent controllers are designed, each using a differentetranad thus suitable for different
situations:

e The first control method targets mixed networks, that confegeways as well as
urban roads. The control method reduces the total time thizles spend in these
networks by coordinating the control actions of traffic iy variable speed limits,
and on-ramp metering installations.

e The second type of controllers that is developed influerteewithin-day route choice
of drivers. The controllers use a traffic flow model to desettibe evolution of the
traffic flows, and a route choice or a traffic assignment manldetermine the traffic
assignment in the network. The predictions obtained wigs¢hmodels are used to
select the values for the control measures in such a wayhthadtite choice of drivers
is steered actively.

e The third controller is designed to influence the day-to-daye choice. The traffic
control measures changes the travel times on differenesdntthe network. Due to
these changed travel times that the drivers experienceeatutient day, the drivers
will select another route during the next day. By predictthg changes in route
choice that will result from the control actions, the cohtreethod affects the route
choice in such a way that the drivers select the most optimdkrafter a few days.

The controllers described above are all using predictiodetso For the design of the
controllers we have adapted or developed the following rsode

e A model for mixed networks is created by coupling the maawpsz freeway flow
model Metanet [106] with an urban queue length model deweseldyy Kashani and
Saridis|[82]. The urban model is first extended to includézomtal queues, blocking
effects, and a smaller time step, and next the on-ramps &mdraps are modeled.

¢ A density-dependent route choice model based on Bayesiamig is developed. It
is a combination of a day-to-day learning model based onrexpeed travel times,
and of a fast look-up table containing turning rates basedemsities for the within-
day route process. The possible densities are dividedlinée tgroups, and based on
the current density the model selects a value from the Igotahle.

¢ A basic route choice model is developed that describes theadday route choice.
This model determines the travel times on different rowdad,adapts the turning rate
accordingly. The most basic version of the model allows faalgtical solutions of
the optimization problem within the controller, while tharther developed variants
lead to mixed integer linear optimization problems, for evhefficient solvers are
available.

Note that during the current research the models are dese|dput not validated. Before
the models could be used in practice, the validation mustdspned, and thus this will
be part of our future work.
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Figure 1.6: Overview of the relation between different dieag.

Another contribution of this thesis considers the effecheisurements on the controller
performance. Different averaging methods for speed measemts are considered. Each
of the averaging methods is used in a controller, and theopaeince of the controllers is
compared.

The practical and social relevance of the thesis mainly istssf improving the effi-
ciency of road use. The proposed control methods can rethecarmhount of congestion,
and thus reduce the experienced delays, economical cassg, generated, and pollution
caused by traffic jams. The route choice controller can bd tseeduce the amount of
traffic in urban areas or nature reserves, while the coetrédir mixed networks is a tool
that can be used for integrated control when different roadagement bodies cooperate.

1.4 Thesis outline

In this section we give an outline of the thesis. The subgyohthe research as formulated
in Section 1.2.3 are described in a separate chapters. Baphec is written in such a way
that it can be read separately and independently. This mbanseaders of the whole thesis
will encounter several repetitions, however, this can lséifjed by the large differences in
the considered topics, which will attract many readerg@#ied in only a part of the thesis.
An overview of the relations between the chapters is preseint Figure 1.6. The arrows
represent the relations between the chapters, and indioatéhe chapters are divided over
the three different sub-goals.

Chapter 2 considers the integrated network-wide contrahbigeéd networks containing
freeways as well as urban roads. A model is developed thatilles the traffic flows on
freeways and on urban roads. A model predictive controldbasatroller is developed that
uses this model for the control of mixed networks. The cdigrantegrates the control
actions of traffic signals, variable speed limits, and rangpering installations.
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In Chapter 3 anticipative route choice controllers are tger. Two different predic-
tion models are used to determine the route choice withircdmeroller: a dynamic traffic
assignment algorithm using the method of successive aggramd a route choice model
based on Bayesian learning. The results obtained with ttieiating controllers are en-
couraging, but the computation times are very large. Thésled to the investigation of
a less detailed route choice controller, which is descrimeGhapter 4. Three different
versions of a basic route choice model are developed, whicbn implemented in a con-
troller, result in optimization problems that can respesti be solved analytically, with
mixed integer linear programming, and with non-linear yiation algorithms.

Chapter 5 discusses the issues that should be consideredwblementing the control
strategies in practice. In particular, different averggimethods for speed measurements are
considered, and their influence on the performance of theater is investigated.

Finally, in Chapter 6 conclusions are drawn and topics farriresearch are given.

Parts of this thesis have already been published in jounraienference proceedings:
Chapter 2 in/[45, 152, 156, 158, 159, 164], Chapter 3 in [1%0-162], Chapter 4 in
[163, 165-167, 169, 170], and Chapter 5 in [168].



Chapter 2

Integrated traffic control for
mixed urban and freeway
networks

We develop a control method for networks containing bottannwads and freeways. These
two types of roads are closely connected: congestion onrdevhy often causes spill-
backs leading to urban queues, slowing down the urban trafflsan queues can increase
until they block off-ramps, causing traffic jams on the fragwAs a consequence, control
measures taken in one of the two parts of the network can haigndicant influence on
the other area. We first develop a model that describes tHatevroof the traffic flows in
mixed networks. Next, we propose the control method thatésldor the integrated control.
This approach is based on model predictive control, in wihiehoptimal control inputs are
determined on-line using numerical optimization and a fgtexh model in combination
with a receding horizon approach. We also compare our neexgldped control method
with systems that are similar to existing dynamic traffic tcohsystems like SCOOT and
UTOPIA/SPQOT, in a qualitative as well as in a quantitative/wia a case study. The results
illustrate the potential benefits of the proposed approacdhnaotivate further development
and improvement of the proposed control method.

2.1 Introduction

The need for mobility is increasing, as can be seen from thvigg number of road users as
well as from the increasing number of movements per useij[THis leads to an increase
in the frequency, length, and duration of traffic jams, anthtoeasing queue lengths in the
traffic network. The traffic jams cause large delays, rasglih higher travel costs and they
also have a negative impact on the environment due to, ege and pollution. Due to
these negative effects dealing with traffic jams has becanmmportant issue.

To tackle the above congestion problems there exist differeethods: construction of
new roads, levying tolls, promoting public transport, orking more efficient use of the
existing infrastructure. In this chapter we consider trst &pproach, implemented using

15
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dynamic traffic management or control, because this apprisaffective on the short term,
and inexpensive compared to constructing new infrastractu

Current traffic control approaches usually focus on eithlean traffic or freeway traffic.
In urban areas traffic signals are the most frequently usett@ameasures. Traditionally,
they are controlled locally using fixed-time settings, @tlare vehicle-actuated, meaning
that they react on the prevailing traffic situation. Nowaslagphisticated, dynamic systems
are also making progress. They coordinate different availeontrol measures to improve
the total performance. Systems such as SCOQT [140], SCABS],[Toptrac [6], TUC
[48], Mitrop [59], Motion [24], and UTOPIA/SPOT [129] use aardinated control method
to improve the urban traffic, e.g., by constructing greenegsawr to improve the traffic
circulation. Control on freeways is done using differesiffic control measures. Ramp
metering is applied on on-ramps, using systems like ALINE23]. Overviews of ramp
metering methods and results are given_in [121, 149]. Theofisariable speed limits
on freeways is described in [2, 66, 95, 145], and the use dérguidance in [46, 48, 81].
Several authors have described methods for coordinaterbtéor freeways using different
traffic control measures [10, 64, 86, 89].

Several authors have also investigated corridor conti®| #1, 186], where arterials
are controlled together with freeways. In this chapter wege step further, and we de-
scribe the coordinated and integrated control of netwdnks ¢tontain both freeways and
urban roads, since the traffic flows on freeways are oftenanttad by traffic flows on ur-
ban roads, and vice versa. Freeway control measures like na@tering or speed limits
allow a better flow, higher speeds, and larger throughputantlead to longer queues on
on-ramps. These queues may spill back and block urban r@uishe other hand, urban
traffic management policies often try to get vehicles on teeway network as soon as
possible, displacing the congestion toward neighboriegvitays. The problems due to the
mutual interactions between the two types of roads are dfiereased by the fact that in
many countries urban roads and freeways are managed byediffmanagement bodies,
each with their own policies and objectives.

By considering a coordinated control approach the perfaoaaf the overall network
can be improved significantly. Therefore we develop a compproach for coordinated
control of mixed urban and freeway networks that makes anogpiate trade-off between
the performance of the urban and freeway traffic operatiand, that prevents a shift of
problems between the two. The new contributions of this tdrapith respect to the state-
of-the-art are a macroscopic model that describes netvtbdtscontain both urban roads
and freeways, and an integrated control method that takesdfiic flows on both types of
roads into account. In addition, this chapter contains a sasly in which different control
methods are compared in a qualitative and a quantitative way

As control method we propose a model predictive control (MB@proach [25, 100].
MPC is an on-line model-based predictive control approaelh has already been applied
successfully to coordinated control of freeway network3, [@4, 89]. MPC optimizes the
settings of the control measures over a certain predictivizéin. Using a receding horizon
approach, only the first step of the computed control sighalpplied, and next the opti-
mization is started again with the prediction horizon gdfone time step further.
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As MPC requires a model to predict the behavior of the traffie,will first develop a
traffic model for networks that contain both urban roads amdvays. Traffic flow mod-
els can be distinguished according to the level of detay tise to describe the traffic.
In this chapter we use a macroscopic model. Macroscopic Im@de suited for on-line
control since these models give a balanced trade-off betaeeurate predictions and com-
putational efforts. The computation time for a macroscapéziel does not depend on the
number of vehicles in the network, making the model weltesifor on-line control, where
the prediction should run on-line in an optimization seftiwhich requires that the model
should run several times faster than real-time, and wherestbults should always be avail-
able within a specified amount of time. Examples of macroscomdels are the LWR
model [96, 139], the models of Helbing [68] and Hoogendo@rj,[and METANET [106].
An overview of existing models is given in [72].

In particular, we use an extended version of the METANETfitdfow model to de-
scribe the freeway traffic, and a modified and extended moastd on a queue length
model developed by Kashani and Saridis [82] for the urbdfidrdVe also discuss how the
freeway and the urban model have to be coupled. This resuétsrniacroscopic model for
mixed networks with urban roads and freeways, especiaitgdior the MPC-based traffic
control approach developed in this chapter.

In a case study we illustrate how the developed MPC contrdhaeeperforms with respect
to existing control systems. A simple benchmark networkisiated, and basic implemen-
tations of existing control systems are applied. The perforce of these existing systems
is compared with our theoretical MPC method. The resultisftase study motivate the
further development of the MPC method.

The remainder of the chapter is organized as follows. Wedestribe the model for
mixed urban and freeway networks in Section 2.2. Next we ldpwhie MPC-based traffic
control method in Sectidn 2.3, and in Section 2.4 we comgazaleveloped method with
systems similar to existing methods like SCOOT [140] and BTAISPOT [129].

2.2 Model development

As indicated above the model for mixed networks containiait lirban roads and freeways
that we develop is based on the METANET model [106] for theviray part, and on a

gueue length model based on a model developed by Kasharfio82je urban part. Since

we want to use the model in an on-line control method, we halected deterministic

models, mainly because they require less computationaitefthan probabilistic models.

An overview of important symbols of these models is given ppandix 2.A.

Note that we will explicitly make a difference between thasiation time stefs for the
freeway part of the network, the simulation time sfgdor the urban part of the network,
and the controller sample timg. We will also use three different counterkg for the
freeway partk, for the urban part, ankl. for the controller. For simplicity, we assume that
Ty is an integer divisor oft, and thafl; is an integer divisor of:

Tf = NfuTu7 Tc = chTf = chNfuTU>
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Figure 2.1: A freeway link in the METANET model divided inreegts.

with Ny, andNgs integers. The value fof; must be selected in such a way that no vehicle
can cross a freeway segment in one time step, which resu#tgyipical value of 10s for
freeway segments of 0.5km. The valueTgfis selected small enough to obtain an accu-
rate description of the traffic, typically between 1 and 5epehding on the length of the
roads. In our case study we will seléigtto be 120s, because for an on-line controllgr
should be long enough to determine the new control signatiwttepends on the required
computation time, and short enough to deal with changirffjdreonditions.

2.2.1 Freeway traffic model

In order to model traffic flows in the freeway part of the netkare use the destination-
independent version of the METANET model, developed by Bapagiou and Messmer
[106]. This model is also used in earlier work for the cooad@d control of freeways
[10, 64, 86, 89]. A disadvantage of the model is that the digtson of the transition between
congestion and free flow does not completely correspond &t @dn be observed from real-
life measurements. Since the control method that we wilettgvshould have the largest
influence at this transition moment, the mismatch might cedhe effect of the controller.
This means that using a model that describes this effect ammerate, might improve the
performance of the controller. However, the METANET modestifficiently accurate for
other traffic situations, forms a good trade-off betweenieaxy and computation time, and
there is many knowledge about the model. In this chapter wieaadextension to the model
to obtain a better modeling of the outflow toward off-rampsewliblocking phenomena on
the off-ramp occur. For completeness we will first descriigdriginal METANET model
based on [106], and next present the extension.

Basic METANET model

In the METANET model the freeway network is divided into IsikEach linkm is further
divided in segments, as illustrated in Figure 2.1. All thgmsents in a link have the same
characteristics, e.g., number of lanes, capacity, leregth,

The traffic state in each segmermf link mat timet = k¢ T; is described with the macro-
scopic variables average density; (k;) in veh/km/lane, space mean spegd(ks) in km/h,
and average flowm;(ks) in veh/h.

The outflow of segmeritof link m at time stegk; is given by:

qm,i(kf) = Pm,i(kf)Vm,i(kf)nm (2.1)
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whereny, denotes the number of lanes of link The density in each segment evolves as
follows:

ki +3) = ) + 1 (Gmi-1 (k) =i )

wherelL, denotes the length of the segments in ImkThis equation represents the law of
conservation of vehicles: no vehicles appear or disappihinva link.

The equation for the evolution of the speed contains threiea teams. The relaxation
term expresses that the drivers try to achieve a desiredispge for the current density
p. The convection term expresses that the speed changes theeindlow of vehicles with
a different speed, and the anticipation term expressesitivars change their speed when
the downstream density changes. The updated speed is thgutaad with:

v (ke 1) =i )+ ( (k) ~Vina0)) 1V () (s ) v )

_LTf Pm.i+1(kf) _Pm,i(kf)
TLm Pm,i(kf) TR

wherer, v andx are model parameters. They can be identified from data asildeddn
[88]. The desired spead(pmi(ki)) is given by:

2.2)

. am
V(Pm,i(kf)) = Vfreemexp[_;ﬂ (p;ncln(tk:> ] (2.3)

wherevieem is the free flow speed on link, pcrit m the critical density on this link, anah,
a model parameter.
Mainstream origins are modeled with a queue model:

Wo (ks +1) = Wo(ke) +Tr (do (k) = Amo(kr)) (2.4)

wherew, is the queue length at origmconnected to linkn, d, the demand at origin, and
Om,o the flow leaving origiro toward linkm, which is determined by the number of available
vehicles, the capacity of the freeway and the traffic coadgion the freeway:

Omo(ks) = min (do(kf) + Wo-l(-fkf)vQcanmfmm_fm(kf)> (2.5)

Pmaxm ~ Pcrit,m

whereQcapm is the capacity of linkm and pmaxm is the maximum possible density on the
freeway link.

Freeway links are coupled via nodes, e.g., on-ramps, offpga or intersections. Flows
that enter a nodp are distributed over the leaving nodes. They are first disteid according
to the turning rate's

Qtot,p(kf) = OuNast (k)
HElp

amo(Ks) = Bpm(kr)Quotp(ks) for eachme Op

1The index 0 ingmo (k) corresponds to a virtual segment that is located upstreatedirst segment of link
m. This virtual segment is used to describe the traffic thateviter linkm.




20 2 Integrated traffic control for mixed urban and freewatymoeks
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Figure 2.2: Layout of an off-ramp.

whereQyot p is the total flow entering nodg, |, is the set of all freeway links entering node
P, Nast,. is the index of the last segment of lipk 5y m is the turning rate from nodp to
leaving linkm, andOy, the set of leaving links of nodg.

When a nodep has more than one leaving link, the virtual downstream dgnsi
Prunasy,+1(Ke) Of the link 1 that enters the node is approximated with:

% Pﬁm,l(kf)
_M%
pmnlastu*'l(kf)i ; pm.1(Kr) .
meOp

The virtual downstream density is used in the speed updaiatien (2.2) for the last seg-
mentnjast,, of link 4.

When a nodep has more than one entering link, the virtual entering spagsiki) of
leaving linkmis given by:

Z Vi Mast (kf)QM7n|asm (k)
pElp

qﬂsnlastu (kf)

peElp

Vmo(ks) =

The virtual entering speed is used in the speed update equati2) to compute the speed
of the traffic that enters the first segment of limk

In a link or segment where weaving and/or merging effectsali@g place extra terms
are added to improve the description of these effects, asided in [89, 106].

Extension for off-ramp links

When the urban network is congested, it often happens thabibyeff-ramp is also
blocked. This blockage will spill back onto the freeway. Wepgmnse an extension to the
METANET model that more accurately models the behavior bfafnp flows.

Consider an off-ramp connected to a freeway linkn as shown in Figure 2.2. The
available space on off-ramplimits the maximum flow that can enter it. This maximum
flow q"*(ks) is seen as a boundary condition for the flow that leaves thewfg link
Omnaen (K6) CONNected to the off-ramp:

O (k) = min (o (k). 672k ) (26)
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whereq”m?,ﬁg‘s"’:'m(kf) is the flow that would have exited the freeway if the off-rampuid not

have been blocked. When the flow is indeed Iimite@{t@x(kf), the speed of the last seg-
ment of the freeway must be recalculated as follows in ordleatisfy[(2.1):

Vit () if gore! (k) < (ki)
Vm’nlastm (kf ) = qmax( kf)
| 1 .
M i (KF) W otherwise

wherevgf’,ﬁfg;'rn(kf) denotes the speed in the segment when no spill-back ocaurthe speed
computed with equation (2.2).

Further extensions describing, e.g., dynamic speed lisaitd mainstream metering are
given in [64, 66]. The effects of control measures such apna@tering and variable speed

limits will be described in Sectidn 2.3.2.

The external inputs for a simulation of the freeway modelhednitial state of the links
and the origin queues, and the signals that describe thate&wobver the entire simulation
period of the turning ratés3p m(ks), the demands(k;), the boundary conditiong®(k),
and the control signals such as the ramp metering rates anctiable speed limits.

2.2.2 Urban traffic model

Several authors have developed models to describe traffiban areas [49, 82, 129, 188].
Due to the fact that we want to model and control mixed netwarkder all conditions, the
model we use should satisfy the following requirements:

1. It should be able to describe both light and congestefidraf

2. It should contain horizontal queues because queueshEtame long compared with
buffer capacities, which can lead to blockage of intersaesti When an intersection
is blocked, no vehicles should be able to cross it.

There are many macroscopic urban traffic models that meebonm®re of these require-
ments, such as the Kashani model [82] and the IN-TUC model49B We will base our
model on the Kashani model because it has the first of the dbatares, and because the
model can easily be extended. A disadvantage of this modbhisthe time required to
drive from the end of the queue to the intersection is nouidet. The influence of this ap-
proximation depends on the layout of the network, and caeteaed by selecting a proper
value of the capacity of the intersection downstream ofithie |

Extended urban model

Our model is based on the model developed by Kashani andiSE#], but to fulfill all
the requirements given above we make the following extessio

1. Horizontal, turning-direction-dependent queues,

2These turning rates can be given externally or they can mmdeted using a (dynamic) traffic assignment
model (see, e.g., [33, 42, 143)).
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2. Blocking effects, represented by maximal queue lengtits aaflow constraint on
flows that want to enter the blocked link, so no vehicle willdixe to cross a blocked
intersection,

3. A shorter time steh to get a more accurate description of the traffic flows.

The main variables used in the urban model are shown in Bgau®a) and 2.3(b).
The most important variables are the queue lexgtipressed in number of vehicles, the
number of arriving vehicles, and the number of departing vehiclege, Using these
variables, the model is formulated as follows.

The number of vehicles that intend to leave the ligk, connecting origiro; and inter-
sections, toward destinationl; at timet = k, Ty is given by:

0 if goi,s7dj (ku> = 07
Myepint,0;,s.dj (ky) = ¢ min (Xoi S (ku) *+Marro;,s.d; (Ku),
Ss,dj (ku>7TuQcap0i,s,dj) if Y0;,5,d; (ky) =1,
(2.7)
wheregg, sd; (Ku) a binary signal that is 1 when the specified traffic directiaa green, and
zero otherwise. This means thiats 4, = 0 corresponds to a red traffic signal, apgs ; =1
to a green oné, T, is the urban step witlk, as counterxy, sg; (ku) is the queue length
consisting of vehicles coming from origij and going to destinatiod; at intersectiors,
Marro; 5.d; (ky) is the number of vehicles arriving at the end of this qu&!gj,(ku) is the free
space in the downstream link expressed in number of carsQagd sq; is the saturation
flow®.
The free spacé&, s in a link |, s expresses the maximum number of vehicles that can
enter the link. It can never be larger than the lenigily of the link expressed in number
vehicles, and is computed as follows:

Sskutl) =S s(ku) - mdena,s(ku) + Myepo,sdj (ku)

djE s

wheremyep. s(ku) is the number of vehicles departing from intersecticlowards linkl, s,
andDg is the set of destinations connected to intersection

The number of vehicles departing from intersectaowards linkls ¢; can be computed
as

Mdeps,d; (ky) = Myepois.d; (ku)-
0;€0s

These vehicles drive from the beginning of the llgk; toward the tail of the queue waiting
on the link. This gives a time delayq, (ku) which is approximated as:

Ss,dj (ku> I—av,veh)

Vav,s,d;

dsd; (ky) = cell ( (2.8)

SKashani and Saridis use the cycle time as time step, whichatsstine model to effects that take longer than
the cycle time. For MPC-based traffic control the other effeein also be interesting, and one might also want to
control the cycle times as part of the control measures.

4The computed green time is the effective green time. The exgiakiiming including the amber time can
easily be derived from this effective green time.

5The saturation flow is the maximum flow that can cross the inttisseunder free-flow conditions.
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(b) Variables for an urban link.

Figure 2.3: Overview of urban network variables.

whereLayven is the average length of a vehicle, argqs,dj the average speed on Iill“g@j.

The time instant at which the vehicle enters the link and #tgates’ delay on the link
result in the time instant at which the vehicle will arrivetae end of the queue. It can
happen that vehicles that have entered the link at differestants reach the end of the
gueue during the same time step. To take this into accoumahablerrhms,dj (ky) that
describes the vehicles arriving at the end of the queue iategdiccumulatively every time
step. This results in:

Marrs d; (Ku *0s.d; (Ku) )new = Marrs d; (Ku +Jsd; (Ku) )old + Maeps,d; (Ku)
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wheremgrs g; (ku+5sde (ky)) is the number of vehicles arriving at the end of the queue at
timeku+<5s,dj (ku), andmden&dj (ky) the number of vehicles entering Iirhgdj.

The traffic flow reaching the tail of the queue in lilg; divides itself over the sub-
queues according to the turning ratfss d; (ku):

Marr,0;,5,d; (k) = Bo S.dj (ku) Marr,o; s(ku)

The subqueues are then updated as follows:

Xoi,s.d; (ky+1) = Xoi,s,d; (ko) + Marr,0;,s,d; (ko) = Myepois.d; (ku)-

The total flow entering a destination link consists of seiftosvs from different origins.
The available space in the destination link should be divioleer the entering flows, since
the total number of vehicles entering the link may not exdbedavailable space. We divide
this available space equally over the different enteringgsloWhen one flow does not fill
its part of the space, the remainder is proportionally dididver the rest of the flows. To
illustrate how the effective values Utjep,oi_,&dj (ky) can be computed let us assume that there
are two origins, and so two queues from which vehicles walritee into the same link.
Let Myepint,1 (Ku) @ndmgepint 2(Ku) denote the number of vehicles that intend to enter the link
lsq, from respectively origin 1 and origin 2. If we assume withtasgs of generality that
Myepint,1(Ku) < Myepint,2(Ku), then the effective values fangep: (ky) andmyep2(ky) can be
computed as follows:

o if mdep,int,l(ku) +mdepint,2(ku) < Ss‘dj (ky), then

mdepl(ku) = mdepint,l(ku) and mdepz(ku) = mdepint.,z(ku) )
o if nhepinnl(ku) +mdepint,2(ku) > %ﬂj (ku)a then

mdepl(ku) = mdep,int.l(ku)

i epin i i 3
”HepZ(ku) = Ss,dj(ku) _mdepint,l(ku) " Men t71(kU) = zss.dj (kU)

Maep1(Ku) = Maep2(ky) = %%dj (ku) if Myepint,1(Ku) > %Ssdj (ku)-

The extension to a situation with more upstream queuesagbtforward.

The external inputs for a simulation of the urban model agériftial state of the queues,
the number of arriving vehicles, and the free space, andigimals that describe the evo-
lution over the entire simulation period of the turning st s q; (ku) and of the green/red
indicatorsgg, sd; (k).

2.2.3 Interface between the models

The urban part and the freeway part are coupled via on-ramgpeféramps. In this section
we present the formulas that describe the evolution of @fficrflows on these on-ramps
and off-ramps. The main problems are the different simoetime stepg; andT, and the
boundary conditions that the models create for each othera¥gume that the time steps
are selected such th&sreem < Lm.
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Figure 2.4: Overview of variables on on-ramps and off-ramps

On-ramps

Consider an on-rampthat connects intersectiaof the urban network to nodp of the
freeway network, as shown in Figure 2.4(a). The number oiclehthat enter the on-ramp
from the urban network is given iyl s (ky). These vehicles have a deldy (k) similar
to (2.8). The evolution of the queue length is first descriviti the urban model. At the
end of each freeway time step, the queue length as descnbiba iurban model is then
translated to the queue length for the freeway model as ieguidelow.

Now consider the freeway time st&pcorresponding to the urban time step= N k;.
In order to get a consistent execution of the urban and freemadels the computations
should be done in the following order:

1.

Determine the on-ramp departure flgw (ks) during the periodk Tr, (ks +1)T¢) using
(2.5).

. Assume that these departures spread out evenly over tiraksmt urban simulation

period[kyTy, (ku+Ns) Tu). Compute the departures for each urban time step in this pe-

riod usingMyepsr.p(K) = w fork=ky,...,ky+Ny —1 (note thafly, = Tr/Ne,).

u

. The number of arriving vehicles, the free space, and tieaiglengtixs,  at link

Isy can now be computed using the equations for the urban traffideingiven in
Section 2.2.2.

. When the queue lengig; p(ky+Nr) is computed, we sato (ki +1) = Xsr,p(Ku+Nru).

It is easy to verify that this is equivalent fo (2.4).
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Figure 2.5: Order of computations during a simulation.
Off-ramps

The evolution of the traffic flows on an off-ramgs computed for the same time steps as
for the on-ramp, starting at time st&p= Ni,ki. The variables are shown in Figure 2.4(b).
The following steps are required to simulate the evolutibime traffic flows, in order to get

a consistent execution of the urban and freeway models:

1. Determine the number of departing vehicles from linkat intersectiors during the
period[kyTy, (ky + Ns, ) Tu) using the urban traffic flow model.

2. Compute the maximal allowed flogf’(k¢) that can leave the freeway and enter the
off-ramp in the periodk; Tz, (ks + 1) T;) based on the available storage space in the link
s at the end of the period. We have

max 1 ku+Npy -1 c
a1 (k) = ﬁsr,s(ku)*' k;u ; Mdepr s d; (K)-

i€Ds

The effective outflowgm . (k) of freeway linkm between nodg and off-rampr
is then given byl (2.6).

3. Now the METANET model can be updated for simulation $epl.

4. We assume that the outflow of the off-ramp is distributeednév over the period
[ke T, (ks +1)T¢) such that

Ot (46) T
marr.,r,s(k"'(sr,s) = L for k= ku7 [ERR} ku +Nfu -1
Nry
The corresponding urban queue Iengxh§dj(k) fork=ky+1,...,k,+Ng can be
updated using the urban traffic flow model.

In summary, the model for the off-ramp as well as the modettferon-ramp require a
special order in which the computations are done. For sitimgiahe whole network this
means the computations should be done in the order showgline2.5. At the bottom each
subfigure shows the urban time steps, at the top the freewaydieps. The first subfigure
shows that with the flow at time stépthe number of arriving vehicles in the urban network
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can be computed for time steks+ 1, ...k, +Nq. Next, as shown in the second subfigure,
the urban variables at time stekg. .., ky, + Ny —1 are used to adapt the flows at freeway
time stepk;. Last, the freeway variables at time stgp- 1 are computed with the variables
at time stepk:.

2.3 Coordinated control for mixed networks

In the previous section we have developed a model that deescriaffic networks that con-
tain both urban roads and freeways. This model forms thesfasiour model predictive
control-based method. In this section we first give a gerterstription of model predictive
control (MPC). Next we formulate a traffic controller for mikurban and freeway networks
that is based on MPC.

We have selected MPC because it has the following featuctadwantages:

1. It can easily handle multi-input multi-output systems,
2. Only a few parameters have to be tuned,
3. It can handle constraints on inputs and outputs in a sygtenvay.

One of the first applications of MPC for traffic control is delked in [58]. Other publica-
tions that deal with MPC or MPC-like approaches for traffioicol are [49, 89, 129]. As
described in [10, 64] MPC can be extended to coordinatedaloritfreeway networks.

2.3.1 Model Predictive Control

Model predictive control (MPC) [25, 100] is a control methbdt has its origins in the pro-
cess industry, where it is widely implemented due to itsighib deal effectively with in-
creasing productivity demands, environmental regulatiand tighter product quality spec-
ifications. MPC is also suited for traffic control becauseaih ®asily handle changes in
demands and in external conditions.

MPC approach

The goal of MPC is to minimize a cost function over a given preohn period. This cost
function should give an indication for the performance & slystem.

Figure/ 2.6 gives an overview of the operation of MPC. Assuhat tve are at time
t = keTe = ki Ty = ky Ty whereT; is the controller time step. The current state of the system
is measured, and fed into the controller. Now the currenestad a prediction model are
used to predict the behavior of the traffic during the pefledc, (ke + Np)Tc), whereN, is
called the prediction horizon. Note that in principle argffic model can be used, but in
this chapter we use the model described in Section 2.2 bedguovides a good trade-off
between accuracy and efficiency. With the obtained predidtie valuel(k;) of the cost
function for this period is computed.

The cost function should be minimized by selecting the ogticontrol signal sequence
c*(ke),C*(ke+1),...,c*(ke+Np—1). In order to reduce the number of optimization variables
(and thus the computational complexity) usually a contafizon Ne (with Ne < N,) is
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Figure 2.6: Working principle of MPC.

introduced and the control sequence is only allowed to vasr the periodk:Te, (ke +
Nc)Tc) and is set constant afterwards, i.e. we hei\@ +k) = c* (ke +N:—1) for k= N¢,Ng +
1...,Ny-1.

From the optimal control signal sequence only the first sarfik.) is applied to the
real system. At the next control time step, a new optimizeigperformed with a prediction
window that is shifted one control time step further. Of tesuiting control signal again
only the first sample is applied, and so on. This is called adieg horizon approach.
This approach allows for updating the (estimated) systete Stom measurements every
iteration, which introduces a feedback mechanism. In addiit allows for adaptive control
by regularly updating the model parameters using systentifamtion.

Control signal, constraints, cost function, and prediction model

The MPC method requires defining the control signahe cost functiord, and the con-
straints. Further, a suitable prediction model should lected. Below we describe these
elements for a general setting. In Section 2.3.2 they wilhaele specific for traffic control
for mixed networks.

The control signal contains the settings for the controlsness that are able to influence
the system.

The constraints can contain upper and lower bounds on thteotsignal, but also linear
or non-linear equality and inequality constraints on thetad inputs and the states of the
system. The constraints are used, e.g., to keep the systetmgiavithin safety limits or to
avoid unwanted situations.

The cost function represents the performance of the network. Different perémce
criteria are possible. In practice, cost functions arerofiecombination of the different
performance indicators:

Jootai(Ke) = v1d1(ke) +v2da(ke) +v3da(ke) + ...

where the weights; > 0 of each term can be determined by the user of the controller.

MPC uses a model of the system to make predictions. Note dHad¢ ible to make a
prediction of the traffic flows, the current state of the netnghould be known. This current
state can be obtained via direct measurements or by usirsdeaesttimator, e.g., based on
Kalman filtering [79].
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MPC is an on-line control approach, and thus requires ptiediecnodels that give a
balanced trade-off between accurate predictions and ctatipual efforts. These models
should be able to run several times faster than real-timensure that the optimization
algorithm can have results available within a specified amhot@itime (e.g., the sampling
time of the system).

Optimization algorithms

At each control step MPC computes an optimal control seqgierner a given prediction

horizon. In general, this optimal control sequence is tHat®m of a non-linear, non-

convex optimization problem in which the cost function isimiized subject to the model
equations and the constraints. To solve this optimizatioblem different numerical opti-

mization techniques can be applied, such as multi-startesg@l quadratic programming
(SQP) [126, Chapter 5] or pattern search [133] for realedlproblems, and genetic al-
gorithms [44], tabu search [61], or simulated annealing 68 mixed integer problems

arising when discrete control measures are included.

2.3.2 MPC-based traffic control for mixed urban and freeway néworks

The principle of MPC has been explained above. In this seeti® describe how MPC can
be used to design a traffic controller for mixed urban-freematworks. Note that the ele-
ments of an MPC controller (model, control signal, cost tiorg constraints, optimization
algorithm) can be selected separately, and that the elentigaittwe select here are just an
example of a possible implementation.

The model requirements for MPC lead to the selection of a azaopic traffic flow
model to predict the behavior of the traffic. Macroscopic eledre suited since the com-
putation time is relatively low and does not depend on thelmenof vehicles in the network,
and since they offer a good trade-off between accuracy angbatational efforts. In Sec-
tion[2.2 we have developed such a model, which we now inclugeii controller.

The control signat can contain traffic signals for urban networks, presentieggreen
times and off-sets for each intersection. For freeway netsvit can contain, e.g., ramp
metering rates, variable speed limits, or lane closuréngstt The MPC controller is often
used as a higher-level controller. In this case the conigold contains control profiles and
set-points for the local controllers. The low-level locahtrollers translate these profiles
and set-points in the red/green signals for the real traffitrol measures, as illustrated in
Figure 2.7.

The traffic signals work as given in (2.7). The green timedatbr signals are included
in the global control signal via the cycle tinTgyc, the green offsetsgreeno sq; (Expressed
as a percentage of the cycle time), and the green tifgeeno sq; (also expressed as a
percentage of the cycle time). This is done to prevent miréejer optimization problems,
and to reduce the number of variables in the control signla¢é Jercentages are translated
into the binary red/green signg4, sq; as follows:

Suppose that we have to compute the control signals overtiiedit®, t"9 with t® = kT,
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Figure 2.7: MPC-based control implemented with local cotérs.

andte"d= ke"4T;,. In this period the number of cycles is equaNg = ceil(te;:y‘ct()). For

each cycle =0,1,...,Ncyc— 1 the vehicles coming from origioy and going to destination
d; at intersectiors have green from time instat? + {Teyc + Ogreeno; s (£)Teyc up to time
InStan? to +€Tcyc+Ogreenoi ’Svdj (E)Tcyc'i"ﬂ—greenol&dj (E)Tcyc. SO we have

Neye—1
1 |f kTu S U [to + chyC + 0greenoi ,S,dj (g)Tcyc,
Jo;,s,d; (k) = =1
: to + ZTcyc + Ogreenoi ,s,dj (g)Tcyc + Tgreeno; ,&dj (E)Tcyc]
0 otherwise

fork=k0,k0+1,... kend

This implies that the actual urban control inputs computgdhie MPC controller consist
of the cycle timeslyc, the offset percentag@greeno; s d; and the green time percentages
Tgreena, sd; for each traffic cycle in the given prediction period. The temof green times
and offsets depends on the lengths of the cycles, whichtseisul variable length of the
control signal. However, optimization algorithms that ¢emdle inputs of variable size do
not exist. Several options are available to avoid this pnoblselect a fixed cycle time, first
optimize the cycle times for fixed offsets and green timestared optimize the offsets and
green times with the obtained cycle time, or perform a bel@ptimization of cycle times,
offsets, and green times.

Ramp metering installations limit the flows that leave the@amps. The ramp metering
rates will be computed every controller time siep For ease of notation we define the set
of freeway time stepk that correspond to a given intervi, k2] of controller time steps

as follows: - Tl T
HOGKR) = (K K ke -1

The ramp metering rates in freeway time steps are then giyen b

ramP(ks) = rd™(ke) V ki € (ke ke +Np) (2.9)

6Note that in fact time instants beyotff® do not have to be considered.
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wherer™@MP(k;) is the ramp metering rate in freeway time steps, it (k. ) is the metering
rate in control time steps.
The flow that leaves the on-ramp is then determined by:
qﬁrg)rampmetering(kf) _ min(qﬁgrampno metering{kf)7 rramp(kf)Qcapr)

where gfyamPne Meteringy s the flow on the on-ramp when no metering is applied (cf.

(2.5)), andQcapr is the capacity of the on-ramp.

The last part of the control signal contains the freeway dpieits, which are also
determined via zero order interpolation, as in (2.9). Spieeits influence the speed of the
drivers by changing the speed that they try to approximatg [6

V%ﬁsiredimits(h) _ min(v?ff"emo Iimits(kf)’ (1+0¢m)\)rmit(kf)) (2_10)

whereviesredo Imits i is the desired speed of the drivers when there are no speisl lim

applied (cf. [(2.3))ViMit (k) is the value of the applied speed limits, amd is a parameter
which represents the fact that drivers will freely intetpred adhere to the speed limits.
When enforcement is usegh will typically be around -0.1, but without enforcement ainig
will tend to drive too fast, and, can be around 0.1.

The subsequent values of the ramp metering rates and ttabdlaspeed limits over the
prediction period form the freeway part of the control signa

Furthermore, we can impose constraints for the contrder.traffic control such con-
straints can consist of, e.g., maximum queue lengths atsetéons, at on-ramps or at
off-ramps, minimum and maximum green times, minimum and imar speed limits,
maximum flows on roads, constraints that the traffic signahplshould be conflict-free,
etc. These constraints could be prescribed by regulatmmthiey could express a policy
selected by the traffic management authorities.

The cost function can be determined by the traffic managemehbrities, to represent
their traffic management policies. The cost function cowddtain the total time that the
vehicles spend in the network, the average queue lengthuthéer of stops, the total delay,
the throughput, vehicle loss hours, variation in the tréiveés, the total fuel consumption,
the emission levels, the noise production, etc., or a coatigin of them. The cost functions
for the urban and freeway parts of the network are often caetpseparately, to allow a
trade-off between the two:

Jtotal(kc) = UfJfreewaﬂkc) +Uu~]urban(kc)

whereuvs anduv, are a weight factors to determine the relative influence effiteeway and
urban traffic.

A cost function that is often used in literature (see, e 30, [64, 86, 89]) is the total
time spent (TTS) by all vehicles in the network. We will alsgeuthis objective function
for our case study in Section 2.4. Therefore, we will now expsomewhat on this specific
objective function. To compute the TTS for the urban parthef hetwork the number of
vehicles in each urban linkenicles!,, s IS required:

nvehicleslg.s(ku) = La,s_sa,s(ku)
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whereL, s is the maximum number of vehicles that the link can contasing this equation
the number of vehicles for all urban links, on-ramps, aneraffips can be computed.

The TTS will be computed over the peridkTc, (k2 +Np)Tc) when we are at time=
k3Tc. Now definek? andk? such thatklT, = k0T, = K0Ty and k%€ and kfo’end such that
(KR +Np)Te = (K*"+ )T, = K"+ 1)T;. The total time spent in the urban part of the
network during the periofk3Te, (k2 +N,)Tc) is then given by:

k8,end
TTSurban(kg): Tu z ( Z nvehiclesloits(k)*' z nvehicleslsr(k)+ ; nvehicleso(k)
k=kJ lojs€l Isr€Ron 0€0urban
Z nvehicleslr7s(k))
Iy s€Roff

where TT$,bar(k8) denotes the total time spent in the urban part of the networikg the
period [K3Te, (k8+Np)Tc), | the set of all urban linksDypanthe set of all urban origins,
Ron the set of links urbafy s connected to the on-ramps, aRgk the set of urban linkks,
connected to the off-ramps.

The TTS in the freeway part of the network is computed usirgdénsity on the seg-

ments:
0,end

TTSwnal® = 5 5 (Lmnm_E i+ 5 wolk))

k= kfo 0€Ofreeway

where TT$eewa)(k2) is the total time spent in the freeway part of the network miyithe
period [KTe, (K +Np)Tc), M the set of all freeway linksn, I, the set of all segmentsin
link m, andOrreeway the set of all freeway origins.
The total cost function is given by the weighted sum of theanrnd freeway total time
spent:
TTS(kg) = UfTTSfreewa)(kg) +UuTTSurban(k8) .

2.4 Case study

To illustrate the performance of the MPC method we will presesimple case study. The
case study concentrates on urban control but in a netwotlatha contains a freeway. We
have done this to be able to make a comparison with existimgqmyc control systems,
which have mainly been developed for urban control measures

2.4.1 Set-up of the case study

For the case study a simple network is used, as shown in Fig8ird he network consists of
two freeways (freeway 1 and 2) each with two lanes, two onpsgrand two off-ramps (ramp
1 to 4). Furthermore, there are two urban intersections @@y which are connected to
the freeway and to each other. Between these intersectimhtha freeways there are some
crossing roads (B, D, and E), where there is only crossitifictthat does not turn into other
directions, e.g., pedestrian traffic, bicycles, etc. Weehselected this network because it
contains most of the essential elements from mixed netwoilkeere are freeways with
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Figure 2.8: Network used in the case study.

on-ramps and off-ramps and controlled intersections notfao away from the freeways
resulting in a strong relation between the traffic on the tyges of roads. The network is
small enough to use intuition to analyze and interpret tealtg, but large enough to make
the relevant effects visible.

The performance of the control systems will be shown foredéht traffic scenarios.
Three of them are scenarios with different traffic situagiomwhile the fourth is a control-
related scenario. We have selected these scenarios bebaystearly show the influence
of the urban traffic on the freeway traffic and vice versa, beeathis influence occurs
frequently, and because some properties of the controladstiill become clearly visible.
The ‘basic’ scenario has a demand of 3600 veh/h for freewmynsrand 1000 veh/h for
urban origins, and turning rates as shown in Figure 2.8. Bte scenarios is a variation
on this ‘basic’ scenario, with one variable or parametenglea or a constraint added. The
total simulated time is 30 minutes. These are the four sa&sar

Scenario 1: congestion on the freewayA traffic jam exists at the downstream end of free-
way 1. This congestion grows into the upstream directionldadks the on-ramps,
causing a spill-back leading to urban queues. The congeisticreated by imposing
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a downstream density of 65 veh/km/lane for the last segnfahedreeway.

Scenario 2: blockage of an urban intersectionOn intersection D an incident has occurred,
and the whole intersection is blocked. The queues spill badeighboring intersec-
tions, and also block the off-ramps of the freeways. Thisdiewt is simulated by
setting the saturation flow of all links leaving the intetts& to 0 veh/h.

Scenario 3: rush hour In this scenario the demand at the origins becomes largarglar
short period. We have selected a flow of 500 veh/h with a pe&000 veh/h for the
urban origins, and a flow of 2000 veh/h with a peak of 4000 védv/freeway origins.
The duration of the peak is 10 minutes.

Scenario 4: maximum queue lengthHere, the queue on the link from intersection A to-
ward intersection B may not become longer than 20 vehiclag dan be a manage-
ment policy, e.g., when the link is in a residential area.

2.4.2 Simulation set-up

For all control systems the implementation of the simufaiand the controller is com-
pletely done in the mathematical computation environmeatidh. We use the model de-
scribed in Section 22 both as real-world model and as piedienodel. With this set-up
we can give a proof-of-concept of the developed control westhwithout introducing un-
necessary side-effects.

In our case study the MPC optimization problem is a non-cenmen-linear problem
with real-valued optimization variables. To solve this ldemm we have selected multi-
start SQP [126] as optimization algorithm. This algorittsrimplemented in théni ncon
function of the Matlab optimization toolbox [154].

As cost function we select the total time spent (TTS). Thapeters of the METANET
model are selected according/to [8¥eem = 106 km/h,pocrit m = 33.5 veh/km/lanepmaxm =
180 veh/km/laneQcapm = 4000 veh/h;r = 18 s, = 65 kmé/h, k = 40 veh/km/lane, and
am = 1.867. The parameters of the urban model@¢gyo.s¢ = 1000 veh/hLayyen =6 m,
andvay 4 = 50 km/h.

We have selected the following time steps:= 120 s,T; = 10 s, andly = 1 s. A small
value is selected for the urban time step to obtain detaréatination. The freeway time
step of 10 s forms a trade-off between computational effodtaccuracy.

There are three parameters that can be tuned for the MPQtentiVe have selected
Np = 8 andN. = 3 as horizons, and = 1 as trade-off between urban and freeway perfor-
mance in the cost function.

2.4.3 Alternative control methods

Many dynamic traffic control systems have already been imptged in the real world.
Some of these systems are SCATS [185], Toptrac [6], SCOQT]JUITOPIA/SPOT [129],
MOTION [24], and IN-TUC [48]. Here we will use approximatierof SCOOT and
UTOPIA/SPOT to make a comparison between the developed Mip@at method and
some existing systems. Both SCOOT and UTOPIA/SPOT targatithan traffic, and they
optimize intersections independently of the neighborirgvay. We have selected these
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methods because they are good representatives of this kiohghamic traffic control sys-
tems. Note however that these systems are commercial sy,steganing that real specifica-
tions are not publicly available. This means that we can aplyroximate their functioning
as follows:

System 1: a SCOOT-like systemSCOOQOT [140] has a controller on each intersection. These
controllers estimate the arriving traffic flows using a aydlow profile, that is up-
dated via measurements taken at the beginning of each liveeyEontrol time step
the cycle time is updated. This is done according to the tatoveen the current
gueue length and the maximum allowed queue length. When hare20% of the
maximum queue length is reached, the cycle time is increalee time differences
between the beginning of the green times of different ietetiens are called the off-
sets. At the beginning of each cycle the offsets are optidiizeally by adapting them
to the expected demands. A prediction of the traffic flows liernext cycle is used
to determine the optimal values for each intersection s#plgr using predictions ob-
tained from neighboring intersections during the previtme step. The green times
are updated every time step (1 s). A prediction of the trafficrd) the next cycle is
made to determine whether it is useful to increase or deergmsgreen times with
4 s. The model used for the predictions is a simple queueHengtel. It describes
the number of vehicles arriving at the beginning of the lithie delay due to the travel
time on the link, the length of the queue, and the number oftlehleaving the link.

System 2: an UTOPIA/SPOT-like systemUTOPIA/SPOT [104, 129] has been developed
in Turin, Italy. It is a hierarchical system with a local coiter at each intersection,
and a central controller. The central controller compute®jgtimal control signal
consisting of setpoints for the local controllers, usingediction of the traffic in the
whole urban network over a period of 15 minutes. These setpare sent to the local
controllers. Each of these local controllers communicafésits neighbors to obtain
their measurements and expected control scheme. Withrifasmation the local
controllers compute a locally optimal green times and ¢fagsing predictions of the
traffic on the local intersection during the next cycle, uathg the arriving traffic. In
the cost function used by the local controllers a penaltylged for deviations from
the signal computed by the central controller. In this wag ¢bntral controller can
influence the local controllers. A queue length model is ueaxbtain the predictions
of the traffic state.

In both systems constraints like maximum queue lengthsrdareduced by adding a
penalty term to the cost function. This penalty term musbbee relatively large when the
maximum queue length is reached. This results in a very hadrevof the cost when the
maximum queue length is violated. While the purpose of thearobis to minimize the
cost function, a trade-off will have to be made between miming the original cost and
violating the queue length constraint.

2.4.4 Qualitative comparison

The main difference between the MPC-based system proponsbkisichapter and the exist-
ing systems is that the new system takes the influences aradtions between the urban



36 2 Integrated traffic control for mixed urban and freewatymoeks

and freeway parts of the network into account. By simulatimg effect of one measure
on both kinds of roads, control settings can be found thatigeoa trade-off between im-
proving traffic conditions on the freeway and delaying tcaffn the urban roads and vice
versa.

Furthermore, the MPC-based system we have developed cdtelward constraints on
both the control signals and the states of the system. Alésys can handle constraints that
are directly linked to the control signals, e.g., maximurd amnimum green times and cycle
time constraints. But the MPC-based system can also haratle imdirect constraints such
as maximum queue lengths, maximum delays, etc. These aorstare included as hard
constraints in the MPC optimization problem, which is sujpsstly solved using a con-
strained optimization algorithm (e.g., SQP). In the othlystams such a constraint is imple-
mented by adding a penalty term that penalizes the conttralation to the performance
function. This can lead to either satisfying the constsaimith a degraded performance,
or violating the constraints and obtaining a better perforog. Which of the two occurs
depends on the weight that is given to the penalty term. Eigu(a) shows a queue on the
link from A to B when MPC-based control is applied. Figure(®)%shows the same queue,
but now with MPC-based control with a queue length constmafiri2 vehicles. Whereas
in Figure 2.9(a) the queue repeatedly exceeds 12 vehialésgure 2.9(b) the queue stays
around 10 vehicles. This is due to the fact that the contrgifedicts that the queue will
exceed the limit during the prediction horizon, which caude controller to change the
value of the control signals. When the first step of this cdrsignal is then applied on the
real system, the queue stays lower than the value of thereamtst

The three control methods are also characterized by differ@mmunication require-
ments. System lis based on local controllers, each with their own detecioid control
algorithms. System 2uses different levels: local controllers that communiaaith their
neighbors, and a centralized control computer that comeattes with each local controller,
mainly sending set-points for the local control algorithiike MPC method is in principle
a centralized method in which the control algorithm runs aeitral computer, and only
the results of the optimization are communicated towarddinelevel controllers. In this
way an optimum for the total network is found, possibly at tlst of large computation
times in the case of large networks (in Section 2.4.6 we Witsh some ways to address
this issue).

2.4.5 Quantitative comparison

We have applied the three different control methods to tise study network. The results
are shown in Table 2.1. Each traffic scenario is simulatetl wétch control method. The
table shows the total time spent for the freeway part of thevowk, for the urban part, and
for the whole network. The last column of the table shows thprovement of the MPC
method compared t8ystem 1(first number) and t&ystem 2(second number). This makes
it possible to determine in which part of the network the émtgmprovements are obtained.
For the fourth scenario the largest attained queue lengtlsésshown.

The first two scenarios show that the MPC method can impravednformance for the
urban as well as for the freeway part of the network when alprolarises in one of the two.
The immediate negative effects of such a problem are reduseds the negative influence
on the rest of the network.
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Table 2.1: Results of the case study: total time spent fofrdeavay part of the network,
for the urban part, and for the total network; and also the mgement of the
MPC-based method compared3gstem 1 and System 2 respectively.

Scenario 1: congestion on the freeway

System1l System2 MPC improvement
freeway 595.4 565.1 563.9 5.3/0.3%
urban 313.6 335.7 305.7 3.0/9.0%
total 909.0 900.8 869.6 4.4/3.5%

Scenario 2: blockage of an urban intersection

System1l System2 MPC improvement
freeway 498.0 526.2 495.0 0.7/6.0%
urban 665.9 672.3 620.3 6.9/7.8%
total 1163.9 1198.5 1115.3 4.217.0%

Scenario 3: rush hour

Sytem1l System2 MPC improvement
freeway 244.6 280.1 253.3 -3.5/9.6%
urban 409.0 383.5 386.8 5.5/-1.6%
total 653.6 663.6 640.1 2.1/3.5%

Scenario 4: maximum queue length of 20 vehicles with largigite

System1l System2 MPC improvement
freeway 367.2 510.3 373.9 -1.8/26.8%
urban 309.7 435.4 264.4 15.7/39.3%
max. queue 19 19 21
total 676.9 945.7 638.3 6.8/32.6%

Scenario 4: maximum gueue length of 20 vehicles with smailyjiate

System1l System2 MPC improvement
freeway 367.1 428.1 373.9 -1.8/13.7%
urban 303.0 360.5 264.5 13.8/26.7%
max. queue 93 43 21

total 670.1 788.6 638.3 5.8/19.1%
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Figure 2.9: The effect of a queue length constraint.

The third scenario shows that the MPC method can controlrtféict slightly better
when a large peak in the demand occurs. In this scenarioate-off between the freeway
and urban parts of the network can clearly be seen. A reduofithe performance on the
urban network can lead to an improvement of the performandbhefreeway network, and
vice versa. This can be used to obtain a better performamd¢kddotal network.

The maximum queue length constraint is implemente8yatem land System 2by
adding an extra penalty term in the cost function. This teasdarelative weight that allows
a trade-off between the performance of the network and thp@itance of the maximum
gueue length constraints. When the weight is high the quewgtHeconstraint is satisfied
but the performance is low, as shown in the first simulatiarsedor the fourth scenario. In
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the second set of simulations the weighting term for the queustraint is low, resulting in

a better performance, but now the maximum queue length Eeebedd. The values for MPC
are the same for both simulation sets because the queué gtraint is implemented as
a hard constraint for the optimization algorithm

2.4.6 Discussion

Although the MPC-based method gives good results, some gkitthave to be investigated
more extensively.

The most important problem at the moment is the required coatipnal effort. The
run time for the MPC-based method is larger than for the atiethods. This is due to the
use of one central computer and to the fact that a larger mktiws@ptimized at once. This
can be solved by, e.g., using faster computers, by using #tkad in a distributed setting,
or by using better special, dedicated solvers implememethject codg.

The optimization technique also forms an important fagtgelation to the computation
time and the computed optimal control signal. Differentim@ation algorithms can have
different run times, and yield different solutions. To stléhe best algorithm extensive
simulations should be done for a wide range of set-ups anthsics to compare the various
algorithms.

When hard constraints are implemented, it is possible trebfitimization problem
becomes infeasible. When this occurs, one or more congrhate to be relaxed (see
[25, 100] for more details). This can in reality mean that ¢bastraints are violated for a
short period.

The effects of selecting different cost functions shoukbde investigated, just as the
influence of the weighting parametersanduv,, which determine the trade-off between the
urban and the freeway costs.

2.5 Conclusion

Congestion on urban roads and congestion on freeways ch@setn as separate problems:
the traffic on urban roads influences the traffic on freeways\ace versa. As a result,
control measures taken on one of the two types of roads héluente on both types of
roads. We have developed a control approach that takesthignce into account when
the control signals are determined. The approach is saitfblintegrated control, and
yields a balanced trade-off between the urban and the frepards of the network.

We have first developed a model that describes the evolufitnaffic flows on mixed
urban-freeway networks. For the freeway part the METANETdeiads used, and for the
urban roads a queue length model based on Kashani's modelétoped. We have made
the connection between the urban and freeway parts of thnorleby modeling on-ramps
and off-ramps.

The mixed network model has been used to develop a coordinaterol method using
MPC. In MPC the evolution of the traffic flow is predicted ovecertain period, and this

"The MPC-based method violates the constraint with 1 vehickbe start of the simulation. This is due
to infeasibility problems during the optimization, relatexthe initial state of the network at the start of the
simulation. This issue can be solved by increasing the hisiklg andN.

8The current simulations are programmed in Matlab, which isdadigian interpreted language.
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prediction is then used to optimize the control settingmgiaumerical algorithms. MPC
uses a receding horizon approach: only the first step of thiened control settings is
applied, and then the procedure is started all over agairis mhakes that the controlled
system can also cope with changes in the traffic demand, ahdwaidel mismatches.

We have performed a case study to compare the MPC method wigtting control
methods. In particular, for the comparison we have seleugttiods that are an approxima-
tion of SCOOT and UTOPIA/SPOT. Different traffic scenariesé been simulated and the
result of the three systems have been compared qualitatvel quantitatively. The MPC
method performs between 2% and 7% better than the other tsterag, and can guarantee
bounds on the queue lengths without a large decrease inrpenfce.

The results of the simulation are promising: they can be ssemproof-of-concept for
the proposed approach, they show its potential benefits,eandurage further research.
This research could include the following steps. First,itoithl case studies, with several
different traffic scenarios and set-ups including largdwoeks should be performed. Next,
case studies should be done where different models areassatiel the ‘real-world’ traffic
flows (for the prediction model we would keep on using the msoopic model proposed
in this chapter). Then, the efficiency of the algorithm skido# improved by, e.g., select-
ing/developing other optimization algorithms, or adagtihe model as in [97]. Attention
should be payed to the robustness and sensitivity of thealonethod. Last, a real-life test
should be done. Other topics that should be investigatetharealidation and calibration
of the model. Furthermore, for the simulation of larger rets, it is useful to investigate
MPC for distributed control in which different adjacentwetk regions are defined and op-
timized separately (but with some coordination to avoidatieg influences of the control
actions of one region on the other regions).

2.A List of symbols

Freeway model

T freeway time step (h)

ks freeway time step counter

Vm;i (Kf) space mean speed on segmienitfreeway linkm at freeway time step
ke (km/h)

pmi (k) average density on segmertf freeway linkm at freeway time step
(veh/km/lane)

Om,i (Kr) average outflow of segmenbf freeway linkm at freeway time stepk
(veh/h)

Nm number of lanes of freeway link

Lm length of the segments of freeway link

V(pmi(k)) desired speed corresponding to the density at segnoéfiteeway link
mduring freeway time stek (km/h)
Vireem free flow speed of freeway link (km/h)
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Peritm

Wo(kf)
do(ks)

Qcapm
Pmaxm
Qtot,p(kf)

I P

Niastm

Bpm

Op

rramp ;)
Am.niastm (ks)

Urban model
Tu
ky
IOi,S
Marrsd; (Ku)
Myeps,d; (ku)
Marr,0;,5,d; (k)
Myepois.d; (ku)
Ds
Xo1,s,dj (ka)
Yo, ,S,dj (ku)
&,dj (ku)

Qcapoi ,8,dj

critical density of freeway linkn (veh/km/lane)

gueue length at origio at freeway time stegs (veh)
demand at origim at freeway time stegs (veh/h)
capacity of freeway linkn (veh/h)

maximum density at freeway link (veh/km/lane)

total flow entering nod@ at freeway time stef (veh/h)
set of all freeway links entering noge

index of the last segment of freeway link

turning rate from node to leaving freeway linkn

set of leaving links of node

ramp metering rate at freeway time step

flow that can enter the off-rampconnected to freeway link at free-
way time stegk; (veh/h)

urban time step (h)

urban time step counter

link connecting origiro; with intersectiors

number of vehicles arriving at the end of the queue in Ii{g}f at urban
time stepk, (veh)

number of vehicles departing from intersectistowards linklsq, at
urban time stepy, (veh)

number of vehicles from origin; going to destinatiol; arriving at the
end of the partial queue at intersect®at urban time stef, (veh)
number of vehicles leaving queue at urban time &tefweh)

set of destinations connected to intersecton

gueue length consisting of vehicles coming from origigoing to des-
tinationd; at intersectiors at urban time stefy, (veh)

binary signal that is 1 when the direction from originto destination
d; at intersectiors has green at urban time stip

free space in the link 4, connecting intersectiosand destination; at
urban time stef, (veh)

the saturation flow at intersectiafor traffic from origino; with desti-
nationd;

length of linklg, s from origin o; to intersectiors

delay experienced in the lifkq; by a vehicle that enters at urban time
stepk, (expressed as a multiple @f)

average length of a vehicle (m)

percentage of the traffic on linlg, s with destinationd; at urban time
stepky
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Controller
Te control time step (h)
ke control time step counter
Np prediction horizon
N control horizon
c general control signal
J(ke) generalized total costs for the perifid, ke +Np)
I set of all urban links
n\,ehidesbi‘s(ku) number of vehicles in link, s at urban time stef, (veh)
TTS(ke) total time spent in the network at control time sievehh)
TTSurbar(Ke) total time spent in the urban part of the network at controktistepk.
(vehh)
TTSteewayke)  total time spent in the freeway part of the network at cortirok step
ke (vehh)
Teye global cycle time
Neye number of cycles

Tgreeno; sd; (Ku)

Ogreeno; s,d; (ku)

green time for the direction from origin to destinatiord; at intersec-
tion sat urban time stefy, (percentage of cycle time)

offset of the green for the direction from origoy to destinatiord; at
intersectiors at urban time step (percentage of cycle time)



Chapter 3

Traffic control strategies based on
different assignment models

In this chapter we develop three coordinated control sifesethat take re-routing effects
into account. All strategies use a model-based predictivdgrol approach to determine
optimal settings for traffic control measures. The predittinodel used in the controllers
consists of two parts; a traffic flow model, and a traffic assignt model. For the traffic
flow model the controllers use METANET [106]. The assignmenaidels differ for the
controllers developed in this chapter.

The first strategy that we develop considers the within-daye choice process, and
uses an explicit equilibrium-based dynamic traffic assigntimodel based on the Method
of Successive Averages (MSA) to describe this process.

The second and third strategies use a route-choice-basgdassignment model, which
describes the within-day route choice as well as the dajagoroute choice. The second
strategy considers only the within-day part of the routei@honodel, while the third strat-
egy includes the within-day and day-to-day route choice.

The strategies use the route choice models for differerigagas. The first an second
control strategies only take the effect of the route choigE@ss into account when they
determine the settings for the control variables, whilettiel strategy actively influences
the route choice via information provided on dynamic roaferimation panels.

The performance of the control strategies is illustrateith weveral small case studies,
in which the methods that are developed are compared wistirgicontrol methods.

3.1 Introduction

When there are different routes from origin to destinatioa metwork, the traffic flows di-
vide themselves over these routes. This process is calleghaig traffic assignment. When
a control measure is present in the network, its controbastinfluence the traffic flows,
and thus implicitly influence the traffic assignment [148hisTchange in the traffic assign-
ment may require a change in the control actions. Howevergffect of control actions
on the traffic assignment is usually not included in the aurteaffic control frameworks.

43
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Current traffic situation Selected
"l Within-day route Experience
route choice during trip
Preferences
Day-to-day Cost experienced during trip

route choice[™

Figure 3.1: Overview of the route choice process.

In this chapter we focus on including this dynamic trafficigissient process in the control
method.

A traffic assignment is the result of the route choices of thieeds. The route choice
process has two different time scales, see Figure 3.1. Tihdahe day-to-day change in
route choice, and the within-day route choice. The dayap-tute choice depends on
preferences of the drivers with respect to, e.g., nice sadimgs, absence of traffic signals,
wider lanes, and experiences encountered during the lgssdeh as queue lengths, travel
times, delays, etc. The day-to-day preferences are updatad end of each day.

The within-day route choice is based on the situation in thevark at the moment
the driver has to make this route choice. This situation camimlified using, e.g., the
instantaneous travel time, instantaneous queue lengthes, fdensities, or speeds at the
current moment. When the process converges, the day-torghwithin-day route choice
together lead to a dynamic equilibrium traffic assignment.

The first paper that describes the effects concerning rdwee is [182]. Other early
works are [54, 144], which describe the reasoning of theedsiwhile selecting their route,
and which claim that the route choice will lead to a so callatic user equilibrium traffic
assignment. This is the assignment in which all routes haeesame costs for the drivers.
Several authors have developed methods to compute thisesgailibrium assignment [50,
102]. But with varying demands the equilibrium assignmeititalso vary, and so dynamic
traffic assignment algorithms have been developed, see[XE5g56].

In this chapter we will consider two types of assignment nlgidequilibrium-based
models that assume that the traffic flows are always in an (dig)aequilibrium, and en-
route route-choice-based models that describe the rowieecbehavior of drivers at indi-
vidual intersections. Equilibrium-based models are iedhit easy to validate since real-life
travel time data can be gathered with on-line measurementsequire large computation
times since they lead to bi-level optimization problems wiieey are used within an opti-
mal control setting, as described in [10, 148]. En-routdeathoice-based models require
less computation time than equilibrium-based models,H®yt &re more difficult to validate
due to the lack of route choice data.

All traffic assignment models are using the costs for diffier@utes to determine the

1The actions of the control measures cannot only influenceatiite choice but also the departure times of the
drivers. Including the departure time choice in a control madttan be done in a similar way as including the route
choice: by embedding a departure time model in the controller.
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assignment. The cost that the drivers experience is foge laart based on the travel times
on the routes [18, 42, 142]. These travel times are influebgatie control measures, and
thus the control measures influence the traffic assignmemis fMeans that current traffic
control methods can be improved by taking into account thethange in the route choice
generated by their control actions requires a change indh&d strategy to maintain op-
timal performance. Another reason to include route choafelior in the control strategy
is that some control measures, e.g., DRIPs, are designeglicitty influence the traffic
assignment. The effects of these measures on the routeeobibilrivers are described in,
e.g., [18, 46, 103, 147].

In this chapter we develop three control strategies thdttéecre-routing effects into the
controller. The strategies that we propose are all basedantehpredictive control (MPC)
[25, 100], which has already been applied for differentvr@g networks [10, 22, 65], and
which can handle hard constraints. MPC requires a modelpifeaticts the evolution of
the traffic flows on the network. For the control strategiest the develop we will use
the macroscopic traffic flow model, METANET [106], combinedha traffic assignment
model.

The main differences between the control strategies tHeb&/developed are the timing
of the route choice processes that is considered, the assigralgorithm that is selected,
and the function of the assignment model within the corgrolThe first strategy considers
only within-day route choice, uses an equilibrium-basedayic traffic assignment (DTA)
algorithm [11], and uses the DTA algorithm to anticipate dxamges in the route choice
due to the control actions. The equilibrium-based DTA &tpar determines the traffic
assignment given the present values for the control inpsitiglh a way that an equilibrium
appears in which the costs for all routes between a specifi;yand destination are equal.
This is done according to the following procedure. Firse METANET model is used
to predict the evolution of the traffic flows with these inpuBased on these predictions,
the travel times for the routes in the network are obtaindtenlthe method of successive
averages (MSA) [134] is used to determine the correspondifiic assignment. This new
assignment is used in the optimization process to seletigbiesettings for the coordinated
traffic control measures. We illustrate the first strategthwi case study involving a small
network with two routes and one on-ramp, using ramp metexfgontrol measure.

The second control strategy uses an en-route route-chaised assignment model that
implicitly determines the traffic assignment. The modekbdiees within-day as well as day-
to-day route choice, but the second control strategy uslysttom within-day route choice.
The model does not assume an equilibrium assignment, bdicgsehe route choice of
drivers based on previously experienced travel times. Tmral strategy uses the DTA
algorithm to anticipate on changes in the route choice. Téréopmance of this control
strategy is illustrated with a case study involving antitige on-ramp metering. Also, a
short investigation of off-ramp metering using this cohtoategy is performed.

The third control strategy considers within-day and dagy route choice using the
en-route route-choice-based assignment model. The gyratges the DTA model to to
actively steer the route choice, which is also done in [47,18%]. Further, the third control
method integrates existing control measures, e.g., rantering installations and variable
speed limits with dynamic route information panels (DRIf@d)e able to influence the route
choice. A case study on a network with two routes is perforrteitiustrate the possibilities
of the control method that is developed.
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The remainder of this chapter is organized as follows. Simeeaise ramp metering to
illustrate the different control strategies, we introduamp metering and available control
methods for ramp metering in Section 3.2. This section astgains a short description
of the Metanet model, which is used for all MPC-based corgt@tegies in this paper.
Then, Sectioh 3.3 describes an anticipative ramp metetiategy using equilibrium-based
dynamic traffic assignment, while Section 3.4 introducdicgrative ramp metering based
on route-choice-based DTA. Next, Section 3.5 presentsitiegiiated control method using
DRIPs in combination with variable speed limits. At last,3ection 3.6 conclusions are
drawn.

3.2 Ramp metering

In this section we first describe the general principles efamp metering and off-ramp
metering, and next we present three different control nulioat can be used to determine
the ramp metering rate: fixed-time control, ALINEA, and miggieedictive control (MPC).
The first two methods are the most well known methods thatsed in practice, and MPC-
based control is considered since it is the basis of the albmrtethods developed in the
remainder of this chapter. Later on, we will compare theqrentince of the different control
methods in simulation case studies.

3.2.1 Principles of ramp metering

Ramp metering is a control measure that has two goals: nEimmthe disturbances caused
by the merging behavior near the ramp, and limiting the flowramps connected to a
freeway. Minimizing the disturbances is done by releasiagicles from the ramp with a
constant rate, which allows for a smooth merging into thevitey traffic. Limiting the flow
that leaves an on-ramp leads to a lower flow on the freewaycdnutresult in a queue on
the ramp. Off-ramp metering limits the flow that exits frone thheeway, which results in
lower flows in the urban area, but increases the density ofrdéeavay. Ramp metering is
implemented with traffic signals, that usually allow onlyearehicle to drive through during
each green period.

Remark 3.1 Although the traffic is a continuous process, we will considiscrete time
steps in this chapter. The time step used for the freewaylation, Tz, is counted using the
freeway time step countd¢. The settings of the control measures will be computed every
controller time ste;. Here, the indeXk is used to denote the controller time step index.
We assume thal. is an integer multiple ofl;. For ease of notation we define the set of
simulation step§; that correspond to a given interj&f T, kQTC] of controller time steps as

follows: T Tl T
%(@7@):{@%,@ °_|_f k'g?:—l} .

On-ramp metering

On-ramp metering installations are located at on-rampeeefifays, as illustrated in Figure
[3.2. During the green period, only 1 or 2 vehicles are alloteetbave the on-ramp. In
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Figure 3.2: On-ramp with ramp metering installation.

this way the flow that can enter the freeway is limited, whickvents high densities and
disturbances of the traffic flows on the freeway link dowrestneof the on-ramp. We will
now describe the effects of applying ramp metering at a haylell The resulting ramp
metering rate should be translated into green times andmed by lower level controllers.

The ramp metering rate;(kc) at control time stefi: gives the fraction of the capacity
flow Qcapo Of the on-rampo that is allowed to drive on. Before the sampfgk:) can be
used, it must be translated to the corresponding freewaylatian time steps, e.g., using a
zero-order-hold method:

ro(ki) =r5(ke) for ks € J# (ke ke +1) . (3.1)

The ramp metering rate can vary between a maximum and a mimivalue:r min < ro(kf) <

I'max-
The flow that can enter the freeway via on-ramig then given by:

q(r)eal(kf) =min (min (ro(kf)Qcap,o, Qiim (Pm,l(kf)))> qigt(kf)) (3.2)

wheredM (k) is the flow that intends to enter freeway linkvia on-rampo during time
interval [k Tr, (ke + 1)), ro(ks) is the ramp metering rat@€im (om1(ks)) is the maximum
flow that can enter the freeway taking into account limitifige of the current density at
the freeway, and(?(k;) is the flow that actually enters the freeway.

Originally, on-ramp metering installations were desigtegdrevent congestion on free-
ways, as described in [29, 35, 121, 190]. When the on-rampringt@stallations were ac-
tually implemented, it became clear that they also infludrtbhe route choice of the drivers
[63,149]. The explanation for this phenomenon is that rangpenng changes the travel
times on the routes, and since route choice is mainly basdtiese travel times, some
drivers will select another route when a ramp metering Itadtan is present. These ideas
have led to research on corridor control where on-ramp nmgténstallations are used to
influence route choice, and to prevent rat-running [10, 8¥].1Rat-running describes the
phenomenon that when a freeway is congested, drivers lba/&aeway via an off-ramp,
travel over a local road, and then again enter the freewagivian-ramp.

A disadvantage of on-ramp metering is that it causes quenig¢seoon-ramps. These
gueues can become so long that they block intersectiongmeé&eeway, which decreases
the traffic efficiency, and additionally can lead to noise poliution in the urban network.
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Figure 3.3: Off-ramp with off-ramp metering installation.

To prevent this, the selected control method must be ablek® into account hard con-
straints on the queue lengths.

Off-ramp metering

Figure 3.3 shows the set-up of an off-ramp metering ingtafia Off-ramp metering limits
the flow that can leave the freeway, and creates a visibleegatthe off-ramp, which will
further discourage drivers to exit the freeway. To the adghioest knowledge, off-ramp
metering has not yet been investigated in earlier researthalso not applied in practice.
In this chapter we however shortly investigate the ideabBfarhp metering [69, 162], since
we expect that it might be able to prevent rat-running, amtéeent a gridlock on the local
roads. Since the off-ramp metering keeps the traffic on #gmfay, the long distance traffic
does not form long queues on the urban network. And since uh&ar of vehicles that
leaves the freeway is reduced, the number of vehicles in thanunetwork is decreased,
which improves the traffic condition in the whole urban nativo
Off-ramp metering limits the flow that can leave the freewayalows:

022 (ks) = min (ro(kr)Qeapo » Qim (po(Kr)) , (k) (3:3)

whereq€@(k) is the flow that really leaves freewaytoward off-rampo, ™" (k) the flow
that intends to leave the freeway, a@gh (po(ks)) is the flow limit due to the density on the
urban network, determined by (3.9).

A disadvantage of off-ramp metering is that the queues canrbe too long for the
off-ramp, and spill back on the freeway. This can decreasd¢htoughput on the freeway,
and impair the safety since large speed-differences astettédetween the traffic on the
first lane waiting to enter the off-ramp and on the second tznhe freeway. This can
be solved by creating more space for the queue on the off-ital, and by informing
drivers upstream of the off-ramp about the active off-ramgtaring installation, e.g., via
a dynamic route information panel. In this way drivers caleaeanother route before
entering the queue.
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freeway

Figure 3.4: Location of the measurements and ramp meteristailation for ALINEA.

3.2.2 Methods for ramp metering control

There are different methods to control ramp metering itattahs. A fixed ramp metering

rate can be selected off-line. Other methods determineating metering rate on-line, like
ALINEA [123] and the method described in [149]. Cooperatidlifferent ramp metering

installations is also possible, see [10, 87]. Objectiveshef kind of systems are, e.g.,
maximizing throughput on the freeway, maximizing the mepeesl, reducing the shock
waves to improve safety, minimizing the queue length andimgtime on the ramps, or
minimizing the total time spent in the network.

Below we will describe three different methods: fixed-timentol, ALINEA, and
MPC-based control using the METANET model as prediction ehoBixed-time control is
the most basic method for ramp metering, and ALINEA is a Wwalhwn algorithm which
is applied at many locations. In this chapter we use the MB§&¢ control strategy for the
ramp metering controller.

Fixed-time control

With fixed-time control the ramp metering installations amerating with a fixed ramp
metering rate. This rate is determined off-line, and canddecsed based on historical
measurements. Based on these historical demands, a preditthe future traffic flows can
be made. Then, using, e.g., calculation models, tuningoasthor optimization algorithms,
the ramp metering rate that leads to the most optimal pedoc® of the controller can be
selected. This ramp metering rate can have different vdbredifferent time periods, e.g.,
morning peak, evening peak, or during the rest of the day.optienal ramp metering rate
that is obtained off-line is then applied in practice via tbal ramp metering installation.

ALINEA

ALINEA is a method for on-ramp metering developed in [63, [L2& uses occupancy
measurements on the freeway downstream of the on-ramp,omsish Figure 3.4. The
ramp metering rate is determined based on the occupancysti@am of the on-ramp:

ro(kf) = ro(kf -1)+ Ko<Usetpoint_ Um,l(kf))

The controller tries to keep this density near the set-paihie oserpoins Which is selected
in such a way that the density stays a little lower than thicetidensitypcyit m, to allow as
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Figure 3.5: A link divided in segments.

much flow as possible without creating a traffic jafy, is a positive constant, angh 1 (k;)
is the occupancy on the freeway segment downstream of tharop-

Model Predictive Control using METANET as prediction model

Ramp metering installations can also be controlled usingEN0], which works as fol-
lows [10]. At a given tima = k. T; = k¢ T; the MPC controller uses a prediction model and
numerical optimization (e.g., sequential quadratic pragming (SQP) [19]) to determine
the optimal ramp metering rate sequengek),...,r5(ke. + Ny — 1) that minimizes a given
performance indicatod(k;) over the time periodk:Tc, (ke + Np)Tc) based on the current
state of the traffic network and on the expected demands oisgperiod, wheré, is called
the prediction horizon. Furthermore, within MPC a recedmagizon approach is used in
which at each control step only the first ramp metering inpumgler} (k) is applied to
the system during the peridi; T, (ke + 1) T¢). When the first sample has been applied, the
horizon is shifted, new measurements are made, and thegsrixceepeated all over again.

In this chapter we use the METANET model developed in [106presdiction model
within the MPC-based control method. Here we will shortlggent the model, a more
detailed description is given in Chapter 2 and in [106, 198].METANET the freeway
network is represented as a graph with nodes and links, wtheténks correspond to free-
way stretches with uniform characteristics; the nodes kaeep at on-ramps and off-ramps,
where two or more freeways connect, or where the charatitsrisf the freeway change.
Links are divided into one of more segments with a length aualb00 m, as illustrated
in Figure[3.5. The evolution of the traffic flows is characted by the average density
pmi(ki), flow am;(ks), and space mean speed (ki) for each segmeritof each linkm at
timet = ki Ty:

a0+ 3) = (k) + 1 (a2 (k) = (1) 34
Am,i (k) = pmi (Ke) Vimi (ke )Nim
Vmi (Kt +1) = Vmi (Ke) + E(V(Pmi (ke)) = Vim,i (ke))+ (3.5)
i () oi-10) =i ()~

vTt[pmi+1(Ke) = pmi (Ke)]
TLm[pmi (Ke) + ]
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whereLm, V(pmi(ks)), andny, are respectively the length of the segments of freeway link
m, the desired speed of the drivers on segmeffreeway linkm, and the number of lanes
of freeway linkm, while 7, v andx are model parameters. The desired spégghi(k)) is
computed as follows:

V() = vieexp| - (’);‘E":)%} (3.6)

wherean is a model parametev[fe® is the free flow speed angim is the critical density
in link m, i.e. the density where congestion starts to appear.

Freeway links are coupled via nodes, e.g., on-ramps, afppsa or intersections. Flows
that enter a noda are distributed over the leaving nodes according to thdrtgrrates as
follows:

Quotn(kr) = Z . st (KF) (3.7)
uGLre]nler
amo(Kt) = Bnm(ke)Quotn(ke) for eachme LIeave (3.8)

whereQtn is the total flow entering node, Leneris the set of all freeway links entering
noden, Nist,, is the last segment of link, 3, m is the turning rate from node to leaving
link mwhich is determined with one of the traffic assignment moteds will be described
in Sections 3.3 and 3.4, ahf?"®the set of leaving links of node The virtual downstream
densityp#,nlastu+1(kf) of the links, that enter node is approximated with:

2
mELZﬁavepm,l (k) |
mELZﬁaver,l (k)

The virtual downstream density is used in the speed updaiatien (3.5) for the last seg-
mentnjast, Of link 1. The virtual entering speedno(ks) of leaving link m of noden is
given by:

plhnlastu"'l(kf) =

Vﬂsnlast,u (kf)q/hnlasm (kf)
peLgnter

Vmo (ki) =
m qu.n|asw (kf)
MELre]nter
The virtual entering speed is used in the speed update equ@tb) for the first segment of
link m.

The effect of on-ramp metering is described by (3.2). Theimam flow Qim (pm1(k))
that can enter the freeway taking into account the limitifigot of the density on the free-
way, is computed as follows:

— pm1 (ks
Qiim (pma(ks)) = Pmaxm”PmA1T) _Pm,l.( )Qcapo
Pmaxm ~ Perit,m
wheremis the freeway link to which on-rampis connectedQcapo is the capacity of the

on-ramp, anthmaxm is the maximum density at freeway limk The traffic that is not able
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to enter the freeway forms a queue with lengtftk;) at the on-ramp:

Wo (K +1) = Wo (k) + Tt (qg't(kf) ‘q:)eal(kf)) :
The flow that has the intent to leave the on-ramp, as uséd2j, §8.given by

Wo (k)

() = 0Ee(ky) + 2
f

whereqd®™is the demand at on-ramp

The effect of the off-ramp metering is described by (3.3)thiithe METANET model
an off-ramp can be seen as a splitting node. The fiffik;) that intends to leave the
freeway can be computed with the node equations (3.7) aBji (3.

Quotn(ks) = Qm,n|astm(kf)

A (ke) = Br.o(ke)Quotn(Ke) -

This flow is however limited by the density on the off-ramp,igbhresults in a maximum
flow that can enter the urban network:

Qim(pok)) = Pmexe—polk) 5 (3.9)

Pmaxo ~ Pcrit,0

When the flow that enters the off-ramp is determined, the fl@at ldaves the last segment
of freeway linkm toward the freeway link that leaves node can be computed with:

531 (1) = (ki) + () Quotn ()

Remark 3.2 Due to the properties of the METANET model a part of the veddgdhat
intends to leave the freeway but that is not able to do so Wwdinge its route and continue
to travel on the freeway. As a result the density on the frgesemment upstream of the
off-ramp, as determined with the model, will be lower thapented. This can be solved by
using the destination dependent version of the METANET rhotleis however increases
the required computational effort. O

The reaction on the speed limits is modeled by changing thieetespeed of the drivers
[64]. To include the reaction of the drivefs (3.6) is replkhbgy:

V (pmi(ke)) = min (vﬁfeexp {—atn <p;1c.n(tkn:))am} : (1+Q)Vm,c0ntrol(kf)> (3.10)

wherevm control(Kr) is the applied speed limit, andis a compliance factor that expresses to
which extent the speed limits are obeyed. The value cén change depending on the kind
of drivers on the road or depending on the level of enforcéamen
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3.3 Anticipative control using equilibrium-based dynamic
traffic assignment

The first control strategy that we develop uses dynamic traffsignment to determine the
within-day route choice of the drivers [157, 160]. The coliér uses the DTA model to

anticipate on the change in route choice due to the conttmres In this section we first

describe the equilibrium-based dynamic traffic assignn®m\) algorithm, and then the

application to ramp metering. Next, the control strategillisstrated with a case study,

where we make a comparison with the ALINEA ramp meteringstya

3.3.1 Equilibrium-based dynamic traffic assignment

Dynamic traffic assignment assumes that every driver assigiost to every possible route
r between his origin and intended destination, and seleetsathte with the lowest cost.
This will result in a user equilibrium assignment, where thsts of alternative routes are
equally high|[182]. The cost considered by the drivers camaia many different terms,
such as the length of the road, the number of intersectibiesetvironment, or the travel
time. In this chapter we only use the travel time to desctilgecbst of a route, as suggested
in [42, 142]. We use the instantaneous travel time sincedaisy to compute and since it
provides a relatively good approximation of the real trairak that the drivers will experi-
ence [175]. Note however that in literature many other algors are available, which can
obtain similar or even better approximations of the expeee travel time, but these algo-
rithms often require more measurements or have a larger waiign time, which makes
them less suitable for the use in on-line controllers. Tis¢aintaneous travel time for route
r is computed as follows:
Lm

Vim,i(ke)

7 (k) = (3.11)

(mji)eMmlink

whereM!™ s the set of pairs of indexdsn, i) of all links and segments belonging to route
r.

With the costs the dynamic traffic assignment can be obtaumgdg a DTA algorithm.
In literature several methods exist to compute dynamidit¢rabsignments based on a cost
function (see [15, 33, 177]). A disadvantage of these metheaften that they require
much computation time. For the use in real-time model-basedrollers the assignment
must be computed every controller time step and so theselmodenot be used. The
method that we use in this paper requires less computatiza tivhich also means that it
looses accuracy. The model that we develop consists of tvie.irst the statiperceived
equilibrium assignmenits determined, which is seen as the equilibrium assignnteit t
should appear based on the current demand in the network, td@pproximate a dynamic
traffic assignment, the current assignment is adaptedrramntally in such a way that it
converges toward thigserceived equilibrium assignment

Perceived equilibrium assignment

We determine theerceived equilibrium assignmelsased on the drivers’ perceived knowl-
edge about the current state of the network and the currentudgs. We assume that the
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state of the network is not exactly known by the drivers, hat the drivers have been gath-
ering information about the traffic for some time spaiy,. They use the average of the
information that is gathered during the peritg- 7info, ki) to determine their estimation of
the current state of the network and their estimation of #peeted demands. These esti-
mations are used by the drivers to determine their percedgedibrium assignment. The
larger ninfo, the slower the response of the route choice behavior of tilrerd to varying
traffic demands and metering rates will be. A typical valueg, is 30 min. Further,
we assume that the drivers do not update their perceivediteggquin assignment at every
time stepk;. Therefore we introduce the update time stgpf the perceived equilibrium
assignment, which is counted with indky and which is an integer multiple df.

To compute an equilibrium assignment there exist severéhads, some of them de-
scribed in [142, 176, 179, 184]. In this paper we use the ‘Médthf the Successive Av-
erages’ (MSA) [134] since it is a relatively simple and fakjosithm. MSA is an iter-
ative method that computes the cost (in this case the tramek} of different routes ac-
cording to the fIO\/\qMSA(ka) on each route in iteration j departing during time stek,.
These flows are determmed by making a prediction of the ¢rdélifiws over the period
[KaTa, (KatNusa)Ta) = [k s, (ks +NMSA )Tf) with the METANET model using the turning
rates corresponding to the flows obtalned in iteratieril, whereNysa is the prediction
horizon for the MSA algorithm. Then for iteratign all flows are directed to the route with
the lowest cost, which results in the all-or-nothing (AON3$i@nment roquON(ka). With
these AON-flows, the flows for the next iteration are updated:

k) = (15 )0+ (5 )l

whereq; JSA is the flow towards route during iterationj of the MSA algorithm, ananON
the flow towards route determined by the all-or-noting assignment after iterafio The
stopping criterion is based on a maximum value for the diffiee between two successive
iteration flows: when the difference is below this specifiatlie the algorithm terminates.
To prevent long computation times the algorithm will als@ @hen a maximum number of
iterations is reached.

The resulting flows are used to determine the equilibriuming rates. For a network
with non-overlapping routes (as used in the case study hefosvresults in:

SSTLY
MSA* ce |nk
ka) = ——~—
n,m ( ) Qtot,n(ka)
with gp'>* (ka) the equilibrium flow determined with the MSA algorithm at M$ife step

Ta, BYSP (ka) the corresponding turning rate on naaieward linkm, andRis the set of all
routes that passes through nad®ward linkm.

Dynamic traffic assignment

Now we assume that the stafierceived equilibrium assignmeas formulated above is not
present in the network yet, but that the drivers try to redait assignment dynamically.
We assume that the current traffic assignment will changartheperceived equilibrium
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assignmenin an exponential way, with time constantac This results in an adaptation of
the turning rates according to:

(ki +1) = i (ke (NS (ka) = (ki) (1 € ) (312)
Yk € {ka%,...,(ka+1)%} .

The parametef;eac influences how fast the current assignment converges tothargre-
sumed equilibrium assignment. This swiftness in practeggethds on the time that elapses
before a congestion can be noticed by drivers that still bawveake their route choice. Note
that this time can be shortened by providing travel timerimiation, since then the drivers
can be informed about the congestion before they actuafigréance it.

3.3.2 Ramp metering using equilibrium-based DTA

The control method for the ramp metering controller that eeadbp in this section is based
on MPC, as described in Section 3.2.2.

The controller uses the METANET model as prediction modeltlie evolution of the
traffic flows, and the equilibrium-based DTA model of Sect®8.1 to determine the traffic
assignment. Since the controller has to be able to detertimnehange in route choice that
it induces, the perceived equilibrium should be update@adtionce within the prediction
horizon. This means th&, should be selected such that

NTa < NpTe

with N an integer larger than 1. The most suitable value dependsaeirouting dynamics
in the network, which depend on the topology of the netwoB0]1

As performance indicator we will consider the total timersp@ TS) by all vehicles in
network (but note that the proposed approach also workstf@r performance indicators).
The TTS can be computed as:

TTS(ke) =T¢ Z Lmnmom,i (ke) + %W@(kf)) (3.13)

ks €74 (ke ke +Np) ((msi)GM

whereM is the set of pairs of indexdsn, i) of all links in the network, an® the set of all
origins.

The MPC strategy can handle hard constraints. This makesdilpe to prevent block-
ing of urban intersections or too long waiting times by settconstraints on the queue
length or the metering rates:

Wo(Kr) < wp'™

N < ro(ke) < rmax

3.3.3 Case study

A simple network will be used to illustrate the effects of M@C-based method for antic-
ipative ramp metering control using equilibrium-based DTAe layout of the network is
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Figure 3.6: Schematic representation of the freeway nétwbthe case study described in
Section 3.3.3.

shown in Figuré 3.6, where the arrow gives the direction eftthffic flows. The network
consists of a freeway with four lanes that bifurcates into twanches of two lanes each.
Downstream both branches join in a four-lane freeway. Both-fane freeway links are 3
km long. The lower two-lane branch is the primary branch. phmary branch is 6 km
long and an on-ramp is present in the middle of the branch.s€hendary branch is longer
than the primary branch and is 8 km long. Route 1 follows thmary branch, and route
2 the secondary. The traffic originating from the mainstreaigin distributes over the two
branches using the route choice mechanism described iib8&:8.1. We perform two
different experiments. First we compare the MPC-basedratbert developed in this sec-
tion with ALINEA, and next we investigate the effects of thd°&-based controller when
maintenance works are performed in the network.

Comparison with ALINEA

Simulations have been performed to compare the developetbtetrategy with the exist-
ing ramp metering strategy ALINEA [123].

In this case study the following parameter settings are :usgg = 30 min, 7reac =
45min, T, =5min, T = 10S,Tc = 1 min,Np = 15,rg® =1, rg“” =0.1,Ko= 0.01, antrsetpoint
is selected such that it corresponds to a density of 34 veldkm A period of four hours is
simulated. We simulate a traffic scenario with a constaffficrdemand at the mainstream
origin 01 equal to 4500 veh/h. The traffic demand on the on-ramfs 100 veh/h at the
start of the simulation at 6.00 a.m., increases to 800 vdteh@ne hour, decreases again to
100 veh/h after two hours, and stays constant until the enldeo$imulation at 10.00 a.m.,
see Figure 3.7.

The results of the simulation with ALINEA ramp metering ah@wn in Figure 3.8. At7
a.m. the peak in the on-ramp demands starts. Figure 3.8fajsghe increase in density on
the segment downstream of the on-ramp at that moment. Actae®n this high density
the metering signal becomes active and goes to zero, as c@ehean Figure 3.8(b). This
low metering rate causes a drop in the density below theraigiensity (Figure 3.8(a)).
This drop has two effects: more drivers choose the first reatéhe turning rates change
(Figure 3.8(c)), and the metering rate becomes higher, se traffic can enter the freeway,
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Figure 3.7: Traffic demand on the on-ramp for the case studwhich we compare the
developed DTA-based control method with ALINEA.

as shown in Figure 3.8(d). Then the density increases agathconverges to the critical
density after 7.45 a.m. The controller will try to keep thesigy on this value, in which it
succeeds for the rest of the simulation. In Figure 3.8(e)rdneel times on the two routes
are shown. Since at 7.30 a.m. the travel time on route 1 iselotigan on route 2, more
traffic starts taking route 2. This leads to a slowly decrggsimount of traffic on route
1, resulting in a decreasing travel time on route 1 until aeel times converge to the
equilibrium values. Figurie 3.8(f) shows the queue on theamnp. At 7.10 a.m. the ramp
metering signal becomes active, and the queue starts to dxfter 8.00 a.m. the peak of
the on-ramp demand ends, and the queue starts to clear. tAhértee spent in the network
is 3618.9 velh for the ALINEA method.

The results obtained with the anticipative MPC strategysamvn in Figuré 3.9. As the
peak in the on-ramp demand starts, the density on the segloentstream of the on-ramp
increases (Figure 3.9(a)). When this density becomes tdm thig metering rate decreases,
as shown in Figure 3.9(b). But the control method keeps tmsitjeabove the critical
density, on 40 veh/lane/km. This means that the travel time¢he first route, which is
shown in Figure 3.9(e), stays high, resulting in more dew&glecting route 2 (see Figure
3.9(c)). On the on-ramp a queue starts to grow, until 8 a.nmhistmoment the peak in the
on-ramp demand ends, and now the queue starts to empty. Maiglas enter the freeway
from the on-ramp, as can be seen in Figure 3.9(d), resutimgonger travel time on route
1, and thus more traffic turning toward route 2. But then thesdg becomes lower and
the travel times decrease, leading to more drivers setgotinte 1. After 9 a.m. the flow
from the origin becomes more stable, the queue emptiedtirgsin longer travel times,
and more traffic selecting route 2. The total time spent innitsvork is 3300.5 veh for
the MPC-based control method, which is an improvement of 8¥pared to ALINEA.
The improvement obtained with the MPC-based controllerainty obtained by diverting
more vehicles to route 2, so the queue on the on-ramp staytestand can clear faster.

Remark 3.3 Note that the fluctuations in the control signal, as shownigufe3.9(b), are
due to the many local minima in the cost function. Each cdnimze step the optimization
algorithm can determine a local minimum that differs frone thinimum that has been
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Figure 3.10: Schematic representation of the freeway netwith maintenance works used

in Section 3.3.3.

obtained during the previous control time step, which vahld to different values for the
optimal control signal. The fluctuations in the control sigran be reduced by adding
a penalty on the variations in the control signal to the costfion, or by increasing the
number of runs performed by the optimization algorithm vhigll increase the probability

of obtaining the same optimum at each control time step. O

Maintenance works

As second experiment we simulate the selected network wizémt@emance works are per-
formed on route 1 as shown in Figure 3.10. We simulate théidrbdm 4.00 a.m. until
11.00 a.m. The maintenance works result in a reduction ohtimber of lanes from 2 to
1 in the last segment (i.e., the last 500 m) of the primary d&naThe maintenance works
start at 5.00 a.m. and persist during the remainder of thelation. The traffic demand
on the mainstream is considered constant and equal to 450 wethis simulation. The
traffic demand on the on-ramp is equal to 200 veh/h whichsstarincrease at 7.30 a.m. to
a peak demand of 500 veh/h from 8.00 a.m. until 8.30 a.m., asdedses to 200 veh/h at
8.45 a.m., as given in Figure 3.11. We assume that the dersdmaivn by the controller.
The model and controller parameters are selected as follgygs= 30 min, 7reac= 45 Min,
Ta=5min, T; = 105, Te = 1 min,Np = 15,rM® = 1,y = 0.05,w™® = 100 veh.

To show the effects of ramp metering we have performed twallsitions: one without
ramp metering and one with ramp metering. The first is usetlustriate the functioning
of the dynamic traffic assignment in the absence of contral, the second illustrates the
change in route choice and the improved travel times dueetoaimp metering.

The results for the simulation without ramp metering arenshim Figure 3.12. At the
beginning of the simulation an equilibrium situation egisthe two travel times have the
same value, see Figure 3.12(a). At 5.00 a.m. the mainterveoides start. The travel times
become different, resulting in a change in the turning réfegure 3.12(b)). From 6.00 a.m.
until 7.30 a.m. the exponential convergence to the equilibbturning rates can be seen. At
8 a.m. the traffic on the on-ramp increases, which causesaetia the travel time of route
1, and thus again a change in the turning rates. After 9.00 thanexponential behavior
again can be seen. Figure 3.12(c) shows the density on thees¢glownstream of the on-
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ramp. The density is increasing when the maintenance waaks ue to the re-routing
the density decreases until 6 a.m., when the travel time wte rtbbecomes shorter than the
travel time on route 2. When the travel time of route 2 becoroegdr, the density starts to
increase slowly, until 8 a.m. At 8 a.m. the traffic demand @dh-ramp increases, resulting
in an increase of the density. At 8.30 a.m. the re-routing@se results in a lower density.
After 9.00 a.m. the density slowly increases towards itslégium value. The TTS in this
situation is 6250 veh.

The results for the simulation with ramp metering are shawRigure 3.13. The sim-
ulation with control starts with the same equilibrium traffissignment as the simulation
without control. At 5.00 a.m. the maintenance works stagulting in a difference in travel
times between the two routes, see Figure 3.13(e). The glemsitoute 1 becomes higher
than the critical value (Figure 3.13(a)), which resultshe gctivation of the ramp meter-
ing (Figurel 3.13(b)). When the density on route 1 becomesraive to the re-routing,
the ramp metering rate becomes higher so the queue, showgureR3.13(f), can empty.
At 7.30 a.m. the demand on the on-ramp increases. The ramgringets activated so a
direct increase of the density on the freeway can be prederitkis results in a queue on
the on-ramp. This queue is emptied by increasing the meteaites slowly, resulting in a
slow increase of the density on the freeway. This causesithing rates to change slowly
toward an equilibrium, see Figure 3.13(c).

Figure 3.13(d) shows the traffic demand on the on-ramp antfidheallowed to enter
the freeway in one plot. The difference between the two leéadke queue length on the
on-ramp, shown in Figure 3.13(c). When the maintenance weeg, the ramp metering
limits the flow toward the freeway. At 6 a.m. the travel time rute 1 becomes short
enough to empty the queue, resulting in a high flow leavingptheamp. When the demand
on the on-ramp increases, a queue is formed. This queueadesrafterwards due to the
increasing ramp metering rate. The TTS in this simulatiodb51 vehh. This means that
the use of the MPC-based anticipative control method resules 112 % increase of the
performance.

3.4 Anticipative control using route-choice-based DTA

The second control strategy, which is developed in this@gctises a route-choice-based
DTA model which determines the traffic assignment implhcitlin this section we first
develop the route choice model that is the basis of the DTArdlgmn. This model describes
within-day as well as day-to-day route choice. Howevertliersecond control strategy we
use only the within-day part of this en-route route-chdiesed model. Within the control
strategy, the DTA model is used to anticipate on changesearafisignment. As control
measure, a ramp metering installation is used.

The performance of the controller is illustrated with a cstsely, in which three different
ramp metering control strategies are compared. Finally resgmt the results that can be
obtained when off-ramp metering is applied instead of angranetering.
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Figure 3.14: Overview of the route choice process.

3.4.1 Route choice model

We now develop the route choice model that is used for theerohbice-based DTA algo-
rithm. A general route choice model describes the routecehbehavior of drivers based
on the current state of the network as experienced by thergriand does not have to result
in an equilibrium traffic assignment. When we want to includewate choice model in a
controller, we could select one of the models described8n103]. However, these models
are complex and detailed, and as a result they require tod wmputational effort to be
used as a prediction model in an on-line controller. For tivgroller that we develop in this
section, we formulate a route choice model based on stati$tiarning, which is also done
in [32, 36, 80]. The model that we develop includes the dagietp route choice as well as
within-day route choice, as illustrated in Figure 3.14.

Within-day route choice process

We assume that the within-day route choice process of ardsiiivided in three steps:

1. First the driver analyzes the current traffic situatiorttmroad upstream of the split-
ting node. For the sake of simplicity of the exposition welfvibm now on assume
that the driver makes his decisions based on one importaigil@ only, e.g., the
density. However, the approach can easily be generalizéitetoase where several
variables determine the decision, such as the flow, speeaathes time, or the news
on the radio. We divide all possible densities in, say, tlgreeips: low, medium, and
high density. The driver selects to which group the curremisity belongs.

2. In the second step the driver estimates which route wéllltein the lowest costs,
based on the current density. For sake of simplicity we asstinat the only factor
that influences these costs is the travel time, but note hiea¢xtension to more fac-
tors is straightforward. This means that the driver wilks¢lthe route that according
to his beliefs has the shortest travel time, given the ctidensity.

3. During the last step, the driver decides whether he wiléed take the route with the
lowest cost, or, e.g., when two routes have approximatalalerpsts, which route is
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Figure 3.15: Network with one splitting node and two routes.

the best one to select.

Day-to-day route choice process

The main decisions in the within-day route choice proces$oanulated above, are based
on the knowledge of the driver. This knowledge is describethb day-to-day route choice
model. The model that we will develop is based on Bayesiamieg, and it is suitable for
on-line control due to its simplicity and thus low computatitimes, due to the fact that it
allows for the modeling of drivers habits, and since it cotlgemaintains the turning rates
in equilibrium situations. The model that we develop camaéstimated travel times for
the different routes, and the probabilities that drivetectesach route. After each day the
variables are updated, using the experiences during tlyis Tlae days are counted with
indexky.

We assume that drivers determine the current state of theoriebased on the density
on that they experience while they drive at the segment befar splitting node. We divide
the possible densities in three groups with vald@¥, pmedum and o with boundaries
Mow andnhigh between the groups. For each density group, the estimadeel time of
each route is determined. These estimated travel timesarputed by taking the average
of earlier experienced travel times experienced undeugistances with the same density,
using a forgetting factor because the last experiencesareas more important according
to [18]:

T (kg + 1) = wr PN (k) (1-0) 785 () (3.14)

whereﬂes‘A(kd +1) is the new computed average travel time for density graupn day

kg+1, with A € [plow, pmedium phigh) =eSt2 (¢ ) is the average travel time at d&y, w < [0, 1]
is a multiplication factor, and™P®"*"°*f;) is the last experienced travel time in a situation
with a density in group\.

The probability that a driver selects a specified route gavelensity is based on earlier
experiences. To compute this probability statistical infation of previous trips is used.
Note that we aggregate the knowledge of the drivers assuthatchistorical experiences
can be accumulated. We will illustrate the procedure witlit@agon with one splitting
node, at which two routes are available, see Figure 3.15.fdllmving notation is used:
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S(r) router is selected

R(r) router has the lowest cost

EQ the routes have approximately equal costs

P(S(r)|A)(Kq) probability that router is selected given that the density is in
density groupA at daykyq

P(S(r)|R(r))(kg) probability that route is selected given that routehas the low-
est cost at daly

P(R(r)|A) (k) probability that route has the lowest cost given that the density
is in density groupA at dayky

We compute the probability of selecting route 1 when the itieissin density groupA
at dayky, P(S(1)|A)(kq+1). This probability is computed as:

P(S(1)|A) (ka+1) =P(X1)[R(1))(ka) - P( ( DIA) (ka)
+P(S(1)|R(2))(ky) - P(R(2)|A) (k) (3.15)
+P(S(1)[EQ)(ka) - P(EQIA)(kd)

The first term describes the probability that the travel tongoute 1 is the shortest under
density A times the probability that route 1 is selected when route thésshortest. The
second term describes the probability that route 1 selegtbde route 2 is the shortest
times the probability that route 2 is the shortest given dgnS. The last term expresses
the probability that route 1 is selected when the routes@ually long times the possibility
that the routes are equally long given denglty To determine whether the travel times on
the routes are equally long a tolerance is used. When thewtbstifference between the
two travel times is smaller than the tolerance, the routesaasumed to be equally long.
Because this probability that both routes are equally Iengso included, the model does
not tend to a route choice of fifty-fifty when the travel times aqual, but maintains the
route choice ratio that has resulted in the equal traveldime

The probabilities are updated after each day, based on megasnots during the last
day. The number of t|me$e"pe”encefkd that each combination & andB (with A andB

€ [§(r),R(r),Deltd)), appears during daly. Based on these counters, the number of ap-

pearanceﬁﬁSt (kg+1) during the next day is computed, using a forgetting factaiescribe
the effect that last experiences are more important, e.g.:

o) a (ka+ 1) = wog e hka) + (1-w) o) o (ka)
Wheregbe’(pe”ence‘ekd is the actual number of times that route 1 was the shortesigiday

Based on this estimation the probabilities for the next dayaalapted:
. o5 A (ko)
Oh) o (ko) + 05, A (Ka) + S8 A (k)
S1.e(kd)
0%, £olka) + 05 £olka)

Other probabilities are computed similar.

P(R(1)[A)(kd

P(S(1)|EQ)(ka) =
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We use the probabiliti?(S(1)|A)(kg) computed with (3.15) as the fraction of the traffic
that selects a route. This gives for the turning rates towakdl on node 1 on the network
with two routes (as used in the case study below):

By (k) = P(S(1)|A) (ka) - (3.16)
For a general network the density dependent turning ratedeaomputed according
to:
% P(S(r)|A)(ka)
ink
routechoiceﬂ(kd_'_l) _ reRnm
e P(S(O)[A) (k)
CERHnOde

WhereR',i{}'T‘] is the set of routes that passes through nottevard freeway linkm, andR1°de
is the set of routes that passes through mad€his leads to the following formulation for
the turning rates at day:

hoi low
BT () pmolke) < mhow
i i meaium
ﬂa?n%tech0|c?kf): ﬁ{rﬁ%techom% (kd) Ulowfpm,o(kf)gnhigh ’
hoicepNigh
BromeenOC® N 0G)  high < pmo(ke)

wherepmo(ke) is the virtual upstream density of nodecomputed with:

pl‘anlastu (kf)q/"vmastp (kf)

peLgnter

pmolki) =
" qlhnlastu (kf)

ns Lﬁntel’

3.4.2 Ramp metering with route-choice-based DTA

We will now develop the control method for ramp metering thsgs the within-day part
of the route choice model. We use an MPC-based control snejctee Section 3.2.2. To
obtain the prediction model for the MPC-based controllercambine the within-day part
of the route choice model of Section 3.4 with the METANET micatedescribed in Section

As performance indicator for the freeways we use the tateé tspent (TTS). The TTS
is the total time all vehicles spent in the network, and is poted according tg (3.13).
For local roads, we use the mean density (MD) as performartieator. The MD is an
indicator for the undesired effects of a queue forming orladbal road, e.g., pollution and
noise. The MD is determined as follows:

pmi(K)
(mji)eMlocalke 7t (ke,ke+Np)

MD (ke) =

EMlocal + Eji?(kc,kc*'NP)

whereM'°“@ is the set of pairs of indicgsn, i) of all links and segments in the local road, and
Epiocal @NAE 1, i+ Ve the number of elements of respectivePe® and.#t (ke, ke +
Np)-
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Figure 3.16: Network for the case study with route-choiesdil ramp metering control.

We selected these performance criteria because they aloavgood trade-off between
the traffic situation on the local road and in the freeway ekwSince we compare the sys-

tems based on the TTS and the MD, the total performance itdifax the MPC controller
is selected as a combination of them:

J(ke) = a1 TTS+aMD

whereas andas are weighting factors.

3.4.3 Case study

We now illustrate the route-choice-based within-day rangtering controller with a case
study. The network used for the case study consists of twastaalong two lane freeway
of 9 km, and a short-cut through over a local road with a lergth km, see Figure 3.16.

The beginning and the end of the routes overlap. This meansitiil segment 4 the routes
are equal. After this segment the off-ramp is located. Theaonp is located at segment
13 of the freeway, and segment 10 of the local road. The last$egments of the two

routes overlap again, see Figlre 3.17. The demand star@®@atwh/h, increases to 8000
veh/h after 45 minutes, and then decreases again to 4000 afté/ 60 minutes, see Figure

I3.18. A period of 100 minutes is simulated. We select the iedependent turning rates
i~an,low i~a,medium i~a,high
asﬁrrﬁ%techoma) (kd) _ 0.3361,[3{&%80?10'0@ (kd) — 0.2891, andaroutechmcgo 9 (kd) _

nm

0.2080, which corresponds to an equilibrium traffic assignmdren no control is applied.
For the cost function we select weighting factass= 0.01 anda, = 1. The parameters of
the METANET model are selected according to [87it m = 35 veh/km/lanepmaxm = 180
veh/km/lane; = 18 s, = 65 kn?/h, k = 40 veh/km/lanea, = 1.867, andT; = 10 s. For
the freeway linkmwe useQcapm = 6000 veh/h, andfeem = 120 km/h, while for the local
link 1+ we have selecteQcap,, = 1000 veh/h, andfee,, = 50 km/h.
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for both routes. Note that for both routes the segments arebaued in as-
cending order. This however means that the freeway segrenters 14 to
17 refer to the same segments as the local segment counttrslal
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Figure 3.18: Demand for the case study with route-choiceeldlaramp metering.
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Figure 3.19: Simulation results when no control is applied.

We first simulate the network without control. Then we intiod on-ramp metering,
and we compare three different control methods: fixed-timetrol, ALINEA, and the
MPC-based method. Next, we use off-ramp metering, and alsgpare the three different
control methods.

Simulations without control

The first experiment considers no control at all. The residtsbe seen in Figures 3.19(a)
and 3.19(b). Figure 3.19(a) shows the density on the rowe thee local road, and Figure
3.19(b) shows the density on the freeway route. The timeviergat the x-axis, and the
color represents the density. The y-axis represents thaesgtg; the vehicles travel from
the bottom to the top of the figures. Recall that off-ramp tated after segment 4, and the
on-ramp after freeway segment 13 and local segment 10. Tingestion starts to appear
at the location downstream of the on-ramp, and spills backénlocal as well as in the
freeway network. For the no control case, the TTS in the netig11205 vekh, and the
MD is 33.6 veh/km/lane.

Simulations with on-ramp metering

The second experiment is performed using on-ramp metevilegcompare fixed-time con-
trol, ALINEA, and MPC-based control, which are describe®action 3.2.2.

When fixed-time control is used, the metering rate is set t8,0ahich only limits
the flow during the peak in the demand. This value has beemndigted off-line via an
optimization algorithm that optimized the cost functiom foe given scenario with respect
to the selected ramp metering rate. The results of the stionlaith fixed-time control are
shown in Figures 3.20(g) and 3.20(b). The on-ramp meteriexggnts the congestion on the
freeway, but results in a queue on the local road. The TTS98710ehh, and the MD is
41.1 veh/km/lane.
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Figure 3.20: Simulation results for on-ramp metering, dees in veh/km/lane.
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Figures 3.20(¢) and 3.20(d) show the results obtained \Wwittekisting on-ramp meter-
ing method ALINEA. For the gaiK, 0.015 is selected, after testing different gains between
0.01 and 0.1 for the given scenario. The TTS is 10966hend the MD 35.7 veh/km/lane.
The ALINEA controller performs better than the fixed-timentwller when looking at the
MD. The TTS is nearly the same as with fixed-time control.

The results of MPC on-ramp metering are shown in Figures(8)2thd 3.20(f). The
TTS is 10955 vetlh, and the MD 35.7 veh/km/lane. The MPC based controller avgxal
the TTS in the uncontrolled case with 2.2%, which is slightétter than the results of the
ALINEA controller. With respect to the MD the MPC controllperforms better than the
fixed-time controller, and equal to the ALINEA controller.

An overview of the results is shown in Table 3.1.

Simulations with off-ramp metering

The third experiment uses off-ramp metering, again comgdiked-time control, ALINEA,
and MPC-based control.

The results of the simulation with fixed-time off-ramp métgrare shown in Figures
[3.21(a) and 3.21(b). The metering rate is set on 0.45, wisictetermined by optimizing
the performance of the network for a whole day. During theutdtion, the congestion is
prevented for some time, but appears at the end of the coadigeriod. The TTS is 11065
vehh, and the MD is 13.8 veh/km/lane. This low value is mainly tuthe fact that nearly
all traffic is kept on the freeway during the beginning of timdation, which compensates
for the congestion at the end.

Remark 3.4 In this section we use the ALINEA strategy for off-ramp metgr but note
that this is not the original purpose of the strategy. We dkstito use the density down-
stream of the on-ramp also as measurement input for thewfpr because this is the loca-
tion where the problems start. A disadvantage of this isdhg delay between the control
action at the off-ramp and the measurable effects of thismdiownstream of the on-ramp.
This can lead to oscillations in the control signal. Thesgllasions can be decreased by
selecting a smalle,, but this makes the controller less effective. A second leralwith
the distance between the measurement and the ramp metestafiation is that the mea-
sured density can be influenced by traffic that does not passathp metering installation.
When this effect is large, the influence of the ramp meteristpitation decreases. O

ALINEA for off-ramp metering does not lead to congestion ba tocal road, see Fig-
ures 3.21(c) and 3.21(d). The oscillations due to the detdyden action and measuring
the effect can be seen clearly. The TTS is 10982vealhich almost equals the result that
is obtained with on-ramp metering in the previous experim&he MD however is lower:
11.0 veh/km/lane.

At last, Figures 3.21(e) and 3.21(f) show the results withOviiased off-ramp metering.
The TTS is 10956 veh, and the MD 9.8 veh/km/lane. The TTS for off-ramp meterig i
nearly the same as for on-ramp metering. The off-ramp nmgguerforms better with
respect to the MD. The MD for off-ramp metering is more thaaatdr three lower than the
MD for on-ramp metering.

An overview of all results of the case study is presented biéla.1. The improvements
are specified with respect to the uncontrolled case. Therdifices between the control
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Table 3.1: TTS (veh), MD (veh/km/lane), and improvement with the respect éuh-
controlled case (%) for on-ramp and off-ramp metering usiagious control

methods.
On-ramp Off-ramp
TTS impr. MD impr. TTS impr. MD impr.
no control | 11205 - 33.0 - 11205 - 33.0 -

fixed time | 10987 -20 411 -22.3 11065 12 138 58.9
ALINEA 10966 -2.1 357 -6.2| 10982 20 110 67.2
MPC 10955 -2.2 357 -6.2| 10956 2.2 9.8 70.8

approaches are small, only the MD for fixed-time control feiramp metering differs from
the MDs obtained with the other methods. For all off-ramptodmmethods the MD is a
factor three lower than for on-ramp control. The MPC cotéralesults in the lowest total
time spent, without causing high densities on the local road

3.5 Integrated control of information providing and speed
limits

The third controller that we develop uses the within-day a#l as the day-to-day part of

the route choice model developed in Section 3.4. Furthegreds the previously developed
first and second control strategies only take changes inahie ichoice into account, the
strategy that we develop in this section tries to activedgsthe route choice. This allows for
a more efficient use of the available roads, and can imprasafety by reducing flows on

dangerous roads. The possible effects of steering thecbatee are illustrated in Appendix

A, where we show that influencing the route choice with tradfimtrol measures using

basic control methods already can improve the network padace, which encourages the
development of more advanced control methods for steenmgaute choice.

To influence the route choice, different measures are &lailarhere are ‘hard mea-
sures’ like traffic signals [58], speed limits [2, 64], andwametering signals [123], which
the drivers have to obey. These hard measures however hgvaroimdirect influence on
the route choice, via the travel time. On the other hand} ‘swfasures’ are available, to
which the drivers can comply or not. Providing informatiensuch a ‘soft measure’. Al-
though drivers are not forced to react on the informatiooyigling this information can
nevertheless be an effective measure to improve the nepasfermance. The information
is often provided via dynamic route information panels (BBL The effect of displaying
information on drivers is described in, e.g., [47, 90]. Thi@imation that is displayed on the
DRIPs can consist of, e.g., queue lengths, travel timeguieradvises. Which information
should be presented is a subject of ongoing research anstissdied in, e.g., [18].

Providing the information can have two goals: informing thievers about what they
can expect, and trying to influence the route choice of theedsi We target the second
goal, i.e., we want to influence the route choice of the dsivResearch in which DRIPs are
used to control the traffic is described in [47, 81]. In theapgys methods are described in
which DRIPs are combined with other control measures toenite the route choice of the
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Figure 3.22: Dynamic route information panel displaying\uel times.

drivers, based on predictions made with METANET and a DTAbdatm. In this section,
we develop a control approach that integrates DRIPs andblarspeed limits to influence
the route choice. In this way it is possible to approximatiesired traffic assignment

To determine which desired traffic assignments are useflican be obtained in prac-
tice, traffic management bodies have started to explore dissilpilities of changing the
traffic assignment, and formulated a procedure to selecintb&t desired assignment, as
described by [110]. The procedure goes as follows. Firdemed routes towards special
destinations like, e.g., the city center, a main businegdihg, or recreational areas are se-
lected. Then a traffic assignment with high flows on thesespredl routes and low flows on
other routes is defined. In this way drivers with those sped#stinations are encouraged to
stay out of residential and/or industrial areas. The defireffic assignment is then called
the desired traffic assignment according to the traffic mamegnt bodies.

In the remainder of this section we first model the reactiothefdrivers on the infor-
mation that is provided on DRIPs. Then we describe the iatedrcontrol method, and
illustrate its performance with a case study.

3.5.1 Reaction on information

The controller that we develop influences the route choict@fdrivers by providing in-
formation. The provided information consists of travel ésnfor different routes in the
network, and it is displayed on a DRIP, as shown in Figure.3.22

The provided information influences the within-day routeick of the drivers. How
many drivers change their route based on the provided irgtiam depends on the differ-
ence in the expected travel time of their preferred row@d the displayed travel time on
the other route, and on the number of drivers that can be influenced to chamaieroute.
Below we first formulate the likelihood that drivers will ainge their route, and then we use
this likelihood to compute the resulting turning rates.

The model developed by [50] is used as a model to describékbod that drivers
will change their route based on the difference in traveke8mThe model computes the
likelihood (n,p) that drivers at node, with a preference for route, will change their
preferred route into routp, according to:

Ins (k) = 1_exp(9n7r(kd)(\]p(kf) _Jr(kf))) if Jp(ke) < Jr (ks) (3.17)
nepA 0 otherwise '
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whereJp (ki) is the cost of route andJ; (ks) the cost of route, as displayed on the DRIP,
in this case the travel times as computed with (3.11), &ndky) € [0,1] represents the
fraction of traffic on route that can be influenced by the provided information on noede
at dayky. We assume that this fraction of traffic depends on the coresess,,  (ky) of the
displayed travel times, and on the fraction of the dri\ﬁﬁsthat can be influenced by the
provided information. The fractio6?, is included since not all traffic will be able to react
on the information. This can be caused by the fact that thedrido not want to go to the
specified destination, by a lack of knowledge about the ablglroutes, or by the need for
an intermediate stop at, e.g., a service station, or carlpoation. The final fraction of the
drivers that can be influenced is then given by:

9n,r(kd) = gg,rfn,r(kd)

whereé, ; (Kq) characterizes the correctness of the information as expesd by the drivers.
It is determined by the percentage of trips that the disglayavel times were sufficiently
close to the travel times that were experienced. To deterthia value ofy (kq) the travel
times that were experienced are compared with those disglaly the DRIP, using a margin
Ninfo depending on the length of the routes, which allows for suiffitrences that do not
influence the perception of the drivers. So the travel timesaasumed to be correct if:

Tn,r(kf) ~Tinfo < Tri1r,1rfo(kf) < Tn,r(kf) + Ninfo (3.18)

wherer (ki) is the experienced travel time on noden router for drivers that reach the
splitting node at timé;, Trl{jrfo(kf) is the displayed travel time at nodet this time, andjins

is the margin used. The valg§®"*"*fiy) is computed as follows:
i t t fal
ggPere i) = e/ (g o

where the counters, andofaserespectively count the times that the information is cdrrec
in the sense of (3.18). The value @y (kq) is then updated similar as the estimated travel
time in (3.14):

frika+1) = wERPErenfig) + (1-w)ér(ka) (3.19)

where¢gSi(ky +1) is the estimated correctness value for the next day.

Now we again consider a network with one node and two possibiies, as in Section
3.4.1, and determine the factog,(kg) and 61 2(ky), and the corresponding likelihoods
l112(ks) andli21(ks). The likelihoods are used to adapt the turning rates toweuterl
according to:

ﬂglrjg-ormation(kf) — ﬁfftechoic?kf) _ |171’2(kf)ﬁ£?ftechoic?kf) + |1’2’1(kf)ﬂ£c7)2utechoic?kf) (3_20)

where ginformation k) js the turning rate toward route 1 based on information andero

choice, B ecM0I¢k ) and B[%4eN0%k;) the turning rates toward route 1 and 2 resulting
from (3.16). '

Remark 3.5 For a network where the routes do not overlap upstream ofatsteiriternal
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node, |(3.20) can be rewritten as:
ri1r71rf1<1)rmation(kf) _ B;?r%techoic?kf)_ Z |n7m7¢(kf)ﬁrr]%techoic?kf)
PERIK

S Ingm(k) BTk
$e{¢|meRMK}

For a general network with overlapping routes it is howevet possible to compute
information( k), since when3, m(ks) for the METANET model is determined, the informa-
tion about the route-dependent turning rates gets lostaltieetfact thaidy m(ks) is valid
for all the traffic arriving at nod@, independent of the route To solve this problem the
destination-oriented version of the METANET model shoutdused. O

3.5.2 Integrated route choice controller

We will now describe the route choice controller that intggs information providing on
DRIPs with variable speed limits. The controller uses MP@hwis prediction models the
METANET model, the route choice model of Section 3.4, andhtioelel for the reaction on
information of Sectioh 3.5.1.

As performance indicator we consider the total time spemS|jiby all vehicles in net-
work, but note that the proposed approach also works for gignrgormance indicators. The
TTS is computed according tb (3.13). Since the reliabilitghe provided travel time in-
formation influences the effect of the control actions via larameteé(kq), see((3.17), a
penalty is added to prevent displaying incorrect travee8mThis penalty consists of the
difference between the displayed travel times and the éxped travel times. The penalty
term is included in the performance indicator as follows:

) =TS0+ 3 5 %(%kc . (fn,r(kf)-fé?f"(kf))z
NEN reRke €. (ko ke+Np

whereN is the set of all nodes in the netwoiRis the set of all routes in the network,
the average real experienced travel time on rodtem noden on during control periodc,
andﬂi{‘,fo(kc) the average travel time displayed on the DRIP at rnofte router.

Since the MPC method can handle hard constraints minimunmexémum values the
control signal can be taken into account. Also a maximumtlefay, e.g., the queues at the
origins can be guaranteed.

3.5.3 Case study

We will use a simple case study to illustrate the effects efittiegrated route choice con-
trol method. In the remainder of this section we will first déise the network and traffic
scenario that are used for the case study, and next we deshabsimulation results for
simulations without control, for simulations with the systs that are currently used in The
Netherlands, and for simulations with the MPC-based metiea@loped in this section.
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Figure 3.23: Layout of the network.

Network and traffic scenario

For the case study we have selected a network with two pessibites, see Figure 3.23. A
three-lane freeway of 2 km splits into a one-lane freewaykrh3and a two-lane freeway of
5 km, so the two-lane freeway is longer than the one-laneviigeLater the two freeways
join each other again in a three-lane freeway of 2 km. Thetehbroute with one lane is
route 1, the longest route with two lanes is route 2. Sincerthweled distance on route 1 is
shorter, this route is preferred by the drivers. A disadagatof route 1 is that its capacity is
low due to the fact that there is only one lane. This meansthigatoute will get congested
fast when the demand is increasing. This makes route 2 tatraghen the demand (and
thus the density before the splitting node) is high. The DRIBcated upstream of the
splitting node, and shows travel times for both routes. 8liegts are applied at every 500
m on both routes.

The traffic scenario is chosen such that all three densitygg@ppear, and that the
highest density results in a congestion at the shorteserolite traffic demand varies in
discrete steps starting at 2000 veh/h, increasing to 408thwafter 20 minutes, to 8500
veh/h after 40 minutes, and decreases back to 4000 vehildfiteur, and to 2000 veh/h
after 80 minutes, see Figure 3.24.

The parameters of the METANET model are selected accordifi§al: Vireem = 120
km/h, perit m = 35 veh/km/lane pmaxm = 180 veh/km/laneQcap = 6000 veh/h;r = 18 s,

v =65 kn?/h, k = 40 veh/km/lanea,, = 1.867, andl; = 10 s. We simplify the route choice
algorithm in such a way that it reduces the number of courketsshould be updated, and
thus saves available memory and computation time. We ddothisaking the assumption
that the drivers in our simulation do not become habitualeds that select always the same
route independent of the cost of this route. For the casey shisl can be justified by the
fact that the simulated costs of a route are solely basedenaxiperienced travel time, and
thus not includes the development of other preferenceseofitivers. This means that the
COUNtErssey) g (Ka) and gy, q ;) (Ka) will stay zero during the simulation. Since in this
case the probability that the shortest route is also thesrihatt is selected is very large, we
set this probability to one?(S(1)|R(1)) = 1. In the same way we assume that selecting the
longest route is not very likely, so we selé{S(2)|R(1)) = 0. With the assumed values,
(3.15) can be simplified to:

P(S(1)|A) = P(R(1)[A) +P(S(1)[EQP(EQA)
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Figure 3.24: Demand for the case study on integrated contithi travel time information.

Note however that in reality a significant part of the driviees developed a habit [17], and
thus in reality this simplification is not valid.

The control signal that we use for the case study consisteeof/élues for the speed
limits and the values for the travel times displayed on thé®DRor the MPC controller we
have selectedll, = N; = 10 andT; = 1 minute. The within-day route choice is considered
in the model, but since the day-to-day learning is an immbréspect of the model, we
investigate the day-to-day behavior and repeat each ofithelations for 100 successive
days.

During the case study we will compare three different situest. In the first simula-
tion no control is applied, in the second simulation the eatsituation in The Netherlands
is investigated, and during the last simulation the dewedolplPC-based controller is ap-
plied. The system that is currently used in the Netherladd®t designed to influence the
route choice of the drivers, but to increase the safety omadhé and to inform the drivers.
This means that we do not perform a comparison between toatanéthods, but that we
illustrate improvements that can be obtained by introdyeitontrol method.

No control

The first simulation examines the performance of the netwaitkout control. Figure
3.25(a) shows the evolution of the preferred turning raveatd route 1, for each of the
three density groups, from day 1 to day 100. As starting viduall turning rates we have
selected 0.5. The solid line represents the turning ratelfedensity situations. At low
densities it is logical that the shorter but smaller routiaésfastest, and indeed, the turning
rate toward route 1 increases over the days. The dashece[iesents the turning rate for
medium-density conditions. As the density on the shortaseris a little higher, the travel
time on this route increases. Both routes have nearly the seavel time, resulting in an
equilibrium turning rate of 0.45. Finally, the dash-dottew shows the turning rates for
high-density conditions. Route 1 is congested, and so nrirerd select the second route
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Figure 3.25: Simulation results when no control is applied.

and the turning rate towards route 1 decreases.

Figure 3.25(b) shows the average travel time for each daially, while the drivers
are still learning, the travel times on both routes are higfter 17 days the drivers have
selected the best routes, and the travel times reach a méesstable value. The two
average travel times are not exactly equal; this is becadesdrivers do not change their
route when the difference in travel times is small. The TT&mnetwork is 761.1 veh
on the first, and 546.7 veinon the last day.

Instantaneous travel times and incident detection

The second simulation shows the situation that is currgmtdsent in The Netherlands.
Here, the available measures are not used to control ttie tiait to inform the drivers, and
to prevent head-tail collisions when congestion is pres€his means that the comparison
with the control method developed in this chapter is not allpfair comparison, since the
purposes of the systems differ. However, an indicationefritprovements that are possible
by applying integrated control can be given.

In The Netherlands, the DRIPs display instantaneous ttawek, mainly to inform the
drivers. The variable speed limits are used as incidentctietesystem, which works as
follows. When the speed in a segment drops below 40 km/h theddpmit in this segment
is set to 50 km/h and the speed limit in the upstream segmeft kan/h. When the speed
increases above 50 km/h, the speed limits are deactivated.

In Figure 3.26(b) it can be seen that with this method the temivalues of the travel
times are reached within 12 days, and the peak in the averagsd time stays lower than
in the no control case.

The TTS on the first day is 512.3 véh and on the last day it is 542.1 vah The
increase in the total time spent is caused by the fact thay mhavers react on the provided
information on the first day, but that they do not experiehessame travel time as presented
on the DRIP, which lowers the valygky) for the correctness of the provided information.
As a result more drivers start to neglect the informationrdutater days, which finally
leads to nearly the same traffic assignment as without dontro
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Figure 3.26: Simulation results with instantaneous tratiles and incident detection.
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Figure 3.27: Simulation results when MPC is applied.

Integrated route choice control

The last simulation presents the effect of the MPC methodldeed in this section. Figures

[3.27(b) and 3.27(a) show the results.

The TTS on the last day is 533.5 vahwhich is only an improvement of 3% compared
to the no control case, and of 2% to the current situation i Nlatherlands. A contribution
of the developed MPC based method can be seen in the first B0 ddne high peak in
average travel times is prevented, showing that the driears faster what the best route
is. It can also be seen that during the next days a more sifld¢ion occurs, and that there
are less fluctuations in travel times, making the routes maliable. A side effect is that
more drivers use the first route, which is shorter in distearoe thus leads to less vehicle
kilometers. The performance of the MPC-based controllerstdl be improved by, e.g.,
using a longer prediction horizon, performing more optiatian runs with different initial
values, and selecting a more suitable optimization algrit
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3.6 Conclusions

We have investigated three traffic flow control strategies thke the change in the traffic
assignment caused by the control actions into account. @dtrol strategies are based
on model predictive control (MPC). The model METANET is useddprediction model to
predict the evolution of the traffic flows. The control stgiés use different routing models
and control measures.

The first control strategy considered within-day route chpiand used equilibrium-
based dynamic traffic assignment (DTA) to describe how thesflare divided over the
network. Within the control method, the DTA algorithm hagbeised to anticipate on the
change in route choice induced be the actions of the coetrolthe performance of this
controller has been illustrated with a case study on ramgmimet

The second control strategy used an en-route route-claised assignment model for
within-day route choice to determine the traffic assignmantl also used the DTA algo-
rithm to anticipate on changes in the route choice. In a casly sve considered on-ramp
as well as off-ramp metering. With on-ramp metering theltiitae spent has been reduced
compared to the no control case, while the mean densitydtagarly equal. With off-ramp
metering the mean density has been reduced without inaget total time spent.

Third, we have developed an integrated control method tkas @n en-route route-
choice-based DTA algorithm, and that on purpose influerteesaute choice of the drivers.
The control method considered within-day as well as daglap-route choice. In a case
study we have illustrated the performance of the route ehcamtrol method.

Topics for future research are: investigation of the trafldetween accuracy and com-
putational complexity for the different methods, inveatigg other DTA algorithms, inves-
tigating the use of destination-dependent models, caidsrand validation of the developed
models, and robustness tests of the controller. Furthecdheept of off-ramp metering
should be investigated, and some attention should be paietegal aspects of displaying
not-yet-realized travel times. Finally, more extensiveecatudies should be performed to
further investigate and compare the performance of the alterts.

3.A List of symbols

Timing
ks simulation time step counter
ke control time step counter
kyq day counter
Ka assignment update time step counter
T simulation time step (h)
Te controller time step (h)
Ta assignment update time step for the DTA model (h)

(K3, KD)  set of simulation steps that correspond to the time interyg Te, kST



3.A List of symbols

Sets
(@]

enter
b

eave
Ln

N
R

quode
Rk
M .
Mpnk

M node
r
M urban

Control
ro(ke)

set of all origins in the network

set of all freeway links entering noadfe

set of all freeway links leaving node

set of all nodes in the network

set of all routes in the network

set of routes that pass through nade

set of routes that passes through nodeward freeway linkm

set of pairs of indicesn|,i) of all links of the network

set of pairs of indicesn, i) of all links and segments belonging to route
r

set of pairs of indicesn( m) belonging to route

set of pairs of indicesn{,i) of all links and segments belonging to the
local roads in the network

ramp metering rate at rangpat simulation time stef;

Vmcontrol(kf)  value of the speed limit at freeway link at simulation time stef

MD (k)
Ko
I(ke)

Np
TTS(ke)

Metanet
Om,i (Kr)
pm;i (k)

Vi, (Kf)

(km/h)

mean density on the local road at simulation time $tgweh/km/lane)
gain of ALINEA ramp metering installation on rangp

performance indicator at control time stiepfor the period[k:Te, (ke +
Np)Te)

prediction horizon (control time steps)

total time spent in the network during simulation peridTc, (k; +
Np)Te) (vehh)

outflow of segment of freeway linkm during simulation time stefk
(veh/h)

density on segment of freeway link m at simulation stepk:
(veh/km/lane)

mean speed on segmerf freeway linkm at simulation time steg;
(km/h)

V(pmi(ki)) desired speed at segmeratf freeway linkm at simulation time stef

Wo (ks)
Tr (kf)
/Bn,m(kf)

gueue length at on-rampat simulation time stegs (veh)
travel time on route for a vehicle starting at simulation time stiep(h)
turning rates toward freeway lirk on noden

Equilibrium based model

rJ

qM_SA (kf )

flow on router during iteration step of the MSA algorithm performed
at simulation time stefgs (veh/h)
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84 3 Traffic control strategies based on different assigtimemlels
P (ke) flow on router determined by the AON assignment after iteration step
j of the MSA algorithm performed at simulation time steggveh/h)
ﬁes‘(kd) estimated average travel time at simulation &agh)
Fexperiencedl, y average experienced travel time during éayh)
MSA” (k) turning rates toward freeway link at noden computed with the MSA

algorithm at simulation time stdp

Route-choice-based model

R(r)

EQ

Sr)

P(S(r)|A)(ka)

¢2i<8perience(ekd)
fub(ka)

ﬂrqc’)rlrj]techoichf)

router has the lowest travel time

the travel times on both route is approximately equal

statement: routeis selected

probability that route is selected when the density is in density group
A at simulation dayy

counter of the number of times that the combinatioAaihdB is expe-
rienced during dayy

estimation of the number of times that the combinatioaihdB will
occur during dakgy

turning rates toward freeway link at noden computed with the route
choice model

Reaction to information

e (ke)
|n.r,p(kf)

On,r (Ka)
&nr(ka)

5;}r}£ormat|on(kf)

displayed travel time for routeon noden at simulation time steg (h)
likelihood of traffic on route selecting route at noden at simulation
time stepks

fraction of the vehicles on routeat noden that can be influenced by
the provided information at daky

correctness of the displayed trave times for raube hoden as experi-
enced by the drivers at day

turning rates toward routeat noden including the reaction on infor-
mation at dayy



Chapter 4

Model-based control of
day-to-day route choice In traffic
networks

In this chapter we develop a model-based control approadaefpto-day route choice con-
trol. Therefore we formulate a simplified route choice madtiat can be used to obtain fast
predictions of the route choice behavior and that is sugtédnl obtaining a first impression
of the traffic assignment, for use in on-line optimizatiogalthms, or as initial value for
more complex optimization algorithms. We use this modelnmcalel-based control setting,
which uses prediction and an optimization procedure toiokdptimal values for control
measures. In particular, we investigate speed limit cbaind outflow control. The objec-
tive of the controller is to influence the route choice of thiwets such that a predefined
cost function is optimized. We illustrate the possibiktief the control approach with an
example based on the Braess paradox.

4.1 Introduction

As the number of vehicles and the need for transportatiow,grities around the world face
serious traffic congestion problems: almost every weekdaynmg and evening during
rush hours the saturation point of the main roads is attaifiéns often causes drivers to
divert to minor roads, causing large flows in residentiahar@ear primary schools, or near
shopping centers. These large flows can lead to undesiredsafaisituations. They also
cause pollution and noise, which does not only affect hurtiging near the roads, but can
also have a negative impact on humans living further away,camnature reserves due to
dispersion.

The location of the large traffic flows and the correspondioiggestion is the result of
the route choices of the drivers. Road administrators gatotchange the route choices, in
order to prevent or to relocate unwanted large traffic flow®aeduce the travel times. In
this paper we develop a control method that supports therastmgitors by influencing the
route choices of drivers, using existing traffic control s\@@s, such as variable speed lim-
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its, or mainstream metering. These measures influenceabe times on different routes,
and hence induce a change in route choice of the drivers.

Let us now consider the route choice process of drivers. W&pect to the time scale of
the route choice, there exists within-day route choice aydtd-day route choice. Within-
day route choice [18, 27] describes the route choice of dyigaring their trip. This means
that drivers change their route during their trip based enctirrent state of the traffic net-
work. Day-to-day route choice [28, 101, 179] focuses on tienges in route choice from
one day to the next. This means that the route choice of tiwerdrfor the current day
is based on experiences of the previous days. The drivesidmnthese experiences and
weigh them, leading to a preferred route for the next dayhis ¢hapter we only consider
day-to-day route choice.

Day-to-day route choices of drivers are modeled with (dyicartraffic assignment
(DTA) models [8, 13, 15, 42, 130]. These models describe Hewttaffic flows divide
themselves over the network. An overview of DTA models isspreed in/[131], where
different classes of formulations of the DTA problem areegivand where some directions
of future developments are presented. With respect to theofi®TA models in traffic
controllers, we can divide the models into two main categgorequilibrium-based models
and route-choice-based models, see Figure 4.1. Equilisbhased models assume that an
equilibrium traffic assignmehwill appear in which no driver can change his route without
increasing his costs [182]. The use of this assumption misgor every simulation run
within the controller the equilibrium should be computedhieh leads to large computation
times and thus makes the models less suitable for on-lineArseoute route-choice-based
models|[18, 37, 103] do not explicitly assume an equilibrjtrt use en-route route-choice
models which determine the route choice based on the cistaetof the network and from
the experiences of the drivers during previous days. Usiega models the reasoning of
drivers with respect to the route choice can be captured ataral way, and it is not neces-
sary to determine the expected travel times on the wholearktte® determine the turning
rates at one intersection. Advantages of the en-route+chdize-based modélare the low
computation time, and the applicability for the situatiovisere no equilibrium assignment
might appear. This makes the models suitable for the usesirotlite choice controller that
we will develop in this chapter.

For our controller, we develop a basic model that is suittdblebtain a first impression
of the evolution of the turning rates for planning purposad aspecially for the use within
an on-line traffic control framework where the model can bedus obtain fast predictions
or good initial solutions for non-linear optimization pemtures which use more accurate
models.

We develop the model in three steps with a gradually increasbmplexity:

Case A: constant demand, separate routes, single origin and dgstin

Case B: piecewise constant demand, separate routes, single arigidestination,

INote that for the considered categorization, it is not imguairwhether the considered equilibrium can be
deterministic, stochastic, static, or dynamic.

2In the remainder of this chapter we will use the shorter teoutk-choice-based models’ instead of en-route
route-choice-based models’ for ease of notation.
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DTA models

Figure 4.1: Different types of DTA models.

Case C: piecewise constant demand, overlapping routes, multijidgns and destinations,
and restricted link inflow capacities.

The model of CasA allows for analytical descriptions and for intuitive expédions due
to its simplicity. The model requires only a small amount ofmputation time to simulate
a network and can thus be used to obtain a first impressioreaéublution of the turning
rates. Cas® uses time-varying piecewise constant demands to get a lagipeoximation
of the flows in the network. At last, Caggintroduces overlapping routes, restricted link
inflow capacities, and networks with multiple origins andtiteations, and thus allows for
the modeling of general traffic networks.

Within the route choice model, we assume that the main fanttre route choice of
the drivers is the travel time [18]. Note that in reality tloaite choice of drivers depends
on many factors, such as road type, travel time reliabsityroundings, travel distance, and
personal preferences [18, 28, 147]. Different factors @adsily implemented for Casgy
while for Case#\ andB only factors that can be formulated as linear functions efittodel
variables can be used, e.g., the travel distance or avetsgedength on the route that is
used. In this chapter we will use the travel times, which carcomputed with detailed
models as described in, e.g., [7, 40, 106, 137], or with letailkd models presented in,
e.g., [15, 26, 33, 54]. These models still lead to large caatpn times. Therefore, in this
chapter we will use a somewhat less detailed model, with loguacy, which results in
low computational effort. We use the mean travel times dverthole day to determine the
route choice. We assume that the mean experienced trave tine known by all drivers,
which means that all the drivers are completely informed.(evia travel information ser-
vices), so they know the travel times on both routes, indéeetty of the route they have
selected.

To control the route choice of the drivers existing traffinrol measures can be used.
In [63,/150] it has already been shown that traffic control suees that do not directly in-
fluence route choice but that do have an impact on the trawel (such as traffic signals,
variable speed limits, and ramp metering) can be used fempilnipose. This has led to the
theoretical development of methods to incorporate theceffeexisting traffic control mea-
sures on route choice, see [11, 81, 177]. The control mettiesisribed in these papers use
a prediction model that describes the evolution of the tréiffivs as well as the evolution of
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the turning rates, and then use existing traffic control messsto influence the turning rates.
The methods differ with respect to the control algorithnt ieapplied, and with respect to
the models that are used. A specific control method that taldei for route choice con-
trol is Model Predictive Control (MPC) [25, 100]. This is a de-based control approach
that uses a prediction model in combination with an optitraalgorithm to determine
optimal values for the traffic control measures. The optivadlies are then applied using a
rolling horizon approach. MPC has been used earlier to inflaghe route choiceithin a
dayin [10, 64, 89, 130]. Within this chapter we use MPC flaty-to-dayroute choice.

We develop a high-level controller that can influence theedpend outflow of links.
Lower-level controllers should be used to translate theealfor maximum speeds and
outflows into settings for the traffic control measures. Ttaesof the system includes
the turning rates. With the prediction model we can deteentlire influence of the control
actions on the turning rates, and the control actions thatroprove the performance of the
network.

The MPC-based control approach includes solving an opditisiza problem. We ad-
dress the three different cases using different optinopatiethods. The model of Casge
is a piecewise affine model. When this model is combined widitgwise affine control
objectives and piecewise affine constraints, the optingmgtroblem can be reformulated
as a mixed integer linear programming (MILP) problem. FoiLRlproblems there exist
efficient solvers, that guarantee to find the global optimiimnCaseB the problem is not
completely an MILP problem but it can tapproximatedwith an MILP formulation. The
obtained MILP solution can then be used as initial value fgeeral non-linear non-convex
optimization method. This largely reduces the computatiime. CaseC, which uses the
most general model, allows the control of complicated netaidbut results in a non-linear
non-convex optimization problem.

The remainder of this chapter is organized as follows. IntiGeet.2 we first formu-
late a general control approach including control measpessible control objectives, and
constraints. Then we describe model predictive contrd, @nresent an overview of opti-
mization algorithms that can be used, with a focus on mixéeger linear programming.
Then we consider the three different cagesB, andC in Sections 4.3, 4.4, and 4.5. For
each case we develop the route choice model and a corresgorutitroller. Sectioh 4.6
illustrates the developed control approach with two exasplA simple network is con-
trolled using the approach of Case while the performance of the general approach, Case
C, is illustrated by a more complex network in which the Bragssadox appears. Finally,
conclusions are presented in Section 4.7.

4.2 Control approach

Recall that the objective of this chapter is to develop armbmiethod for model-based day-
to-day route choice control. In this section we first formelthe overall optimal control
problem including control measures, control objectives] aonstraints. Since this opti-
mal control problem is not tractable in an on-line settingcépt when small horizons are
used), we propose an on-line control method based on moeldicpive control (MPC). This
control method uses an optimization algorithm. We will slyodiscuss some global opti-
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mization algorithms, and then focus on mixed integer lipragramming, which is suitable
for some of the controllers that we will develop later in tbiapter.
Note that an overview of the main symbols used in this chaptgiven in Appendik 4.A.

4.2.1 Control signal

In this chapter we consider two control measures to influgémeeoute choice of the drivers:
outflow control and speed limit control. Outflow control candone via, e.g., traffic signals,
off-ramp metering installations, or mainstream meteringtallations. The outflow limit
Qi (d) of link | represents the maximum flow (veh/h) that is allowed to leadell at day

d. Speed limit control uses dynamic speed limit&d) for all links I. Speed limits are
displayed using variable message signs, and show the maxatiowed speed on the links.
In general we represent the values of the control signal e(it). We assume that these
values are constant during a ddy However, for Cas€ the approach can be extended to
piecewise constant control signals.

4.2.2 Control objective

The objective of the controllers is to optimize the perfonteof the network, which can be
formalized by selecting a cost function. Typical examplésast functions in the context
of route choice are the total time the vehicles spend in theorg, the total queue length,
or the norm of the difference between the realized flows aed#sired flows on the routes.
These cost functions serve either to handle as much traffiossible in a short time, or
to keep vehicles away from protected routes (e.g., routesitiin residential areas or nature
reserves).

We will give three examples of possible cost functions. Tdtalttravel time can be
computed as follows:

N

J7T = dz wr B (d)7rOUe(d) (4.1)
=1re

with N the number of considered d&yR the set of all routes (d) the turning rate toward
router at dayd, 77°U¢(d) the average travel time on routat dayd, andw; > 0 the weight
for router. The second possible control objective is to approximagiree travel times
7_Idesirec{d):

N )
JDTT — (; wr |7_rr0ute(d) _Trdeswectd)‘ (4_2)
=1re

with weightsw, > 0.

Remark 4.1 Note that the cost function described in (4.2) correspondbé (weighted)
1-norm of the difference between the experienced and thieeddsavel time vectors. How-
ever, other norms can also be used, e.g., the 2-norm optherm. Which norm should

3Note that when the demand varies between days, it might belusefwltiply the experienced travel times
on each day with the corresponding demand.



90 4 Model-based control of day-to-day route choice in tafétworks

be used depends on the goal and structure of the controler.1Ihorm ando-norm will
result in linear problems, while the 2-norm yields a smoaifction that allows for the use
of efficient, gradient-based or Hessian-based optiminatigorithms. O

Another option is to approximate a desired fIQ{FS™4d, ) on link . Note that for the
cases with piecewise constant demands the periods thagtherdi is constant are counted
with indexi, where each period starts at event timel'he set of all event timeisis only
available at the end of the simulation. The appropriaterddspiecewise constant flow
patternQfesi™edd. i) can be obtained by fitting the continuous patt@ffisreoninueuyy )
on the event times set available at the end of the simulafidre difference between the
realized flow and this desired flow is then given by

N

whereR, denotes the set of all routes using IihHij(d) denotes the set of all time period
indices for the downstream verteft of link | on dayd, Q" (d,i) is the inflow of link| for
router during event time period andQ{®s"qd, i) the desired flow on link during period
i. With respect to the norm, Remark 4.1 is also valid for (4.3).

The state of the network at the end of the simulation for eashddshould also be
considered. Therefore a penalty on, e.g., the final queggHsrtan be added:

) N
Jflnalzdz 2[ Nl\{'rsh(d’nvd) )
=lleLre !

To prevent large variations in the control inguvhich could lead to unstable, or even
dangerous, traffic conditions, a penalty is formulated iese variations:

QI (d, i) —Qfesdd, i) (4.3)

re

N
Jvar = d)-c(d-1)|| , 4.4
leIIC( )—c(d-1)| (4.4)

where also other norms could be used, see Remark 4.1.
The final cost function is usually a weighted combinationtaf tifferent costs, com-
bined with the penalty on variations in the control signal:

3= W™ +WodPF e dPTT 4wy I8 + w0

with weightsw; > 0. In fact, the weights consist of two factors: a scaling aftepartial
cost function by its nominal value (e.g., the historicalrage), and a factor that represents
the importance of the partial cost.

4.2.3 Constraints

Minimizing the cost function can have negative side effeRisducing the flow on one route
could, e.g., lead to an increased flow some on other routéscamgestion and longer travel
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times as results. To solve this problem, maximum or minimaes can be selected for
flows, travel times, and queue lengths:

;R Qff(d,i) < QF™™(d, i) |

T[!‘Oute(d) < TrroutemaX(d) ,

and
NFef(d,i) < NVEMX(d )
where QF™M(d, i), 7O (d), andN"®"™*(d. i) are the maximum allowed values for
the outflow, travel time and queue length on lirknd router at dayd during period.
Technical hardware possibilities and safety restricticarslead to bounds on the values
for the outflow limits and speed limits:

QM"(d) < Q(d) < Q¥(d) ,

and _
v(d) < wi(d) < v™4(d)

with Q{“”‘_(d) andQ"®(d) the minimum and maximum values for the flow on linkt day
d, andv""(d) andv{"®(d) the minimum and maximum values for the speed limits.

4.2.4 Overall optimal control problem

The overall control problem can then be formulated as fattow

s.t. model equations
constraints

wherec is the control signal, and are the total costs.

This optimal control problem is intractable, and the cloleexgh system that will appear
when the controller is applied to the network will not be rebdio be able to handle errors
in the model, changes in the demand, and other disturbaneepropose to perform the
control with a method based on MPC as explained below.

4.2.5 Model predictive control

In MPC [25, 100] the objective is to determine at dbghe control inputs(d)...c(d+Np—

1) that optimize a cost functiod(d) over a given prediction period &f, days ahead, given
the current state of the network, the future demand, and a&hubdhe system, and subject
to operational and other constraints.

An overview of the process is given in Figure 4/2.5. The redfit network is mea-
sured or estimated based on measurements. The measuremestimates are fed into the
MPC controller every time step. Then the controller usespttegliction model in combi-
nation with an optimization algorithm to determine the ol control inputs based on the
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control measurements
e network
inputs

MPC controller

action ) -
objective,

prediction constraints

Figure 4.2: Model predictive control scheme.

selected control objective and constraints. The optimalrobinputs are then applied in the
real network in a receding horizon manner i.e. of the opticeeitrol signal sequence only
the first sample*(d) is applied to the system. Next, at ddy 1, the procedure is repeated
given the new state of the system, and a new optimizationrfsqpeed for daysi+1 up to
d+N,. Of the resulting control signal again only the first samplapplied, and so on.

The cost function that is selected for the optimal controlobem in Section 4.2]2 can
be adapted for the MPC controller. Each day, the model is tespcedict the traffic and to
compute the cost for the prediction period covering dhyg tod +Np4. For the total travel
time this results in:

Np
IT(d) = D> D wibr(d+ Dred+])

j=1re

The MPC cost functions correspondingd®' " andJPF (see((4.2),(4.3)) can be defined in
a similar way.

The prediction horizom, should be selected long enough to capture all the effects of
the control actions. So when considering route choice,dukhat least be equal to the
travel time of the longest route, to incorporate the effddhe travel time on drivers that
take this route.

The optimization results in a sequence of optimal contrputac*(d),c*(d +1),...,
c'(d+Np—1). To reduce the computational complexity a control horidgn(Nc < Np)
is usually introduced and the control sequence is congttlaio vary only for the firsiN.
days, after which the control inputs are set to stay consiant(d+j) = c(d+N;—1) for
j=Ne,...,Np—-1.

Note that the proposed approach is generic and modular. ktaxaels, cost functions,
and optimization algorithms can be used. In this chapter \lledevelop a basic route
choice model, and use speed limit control and outflow comtitilin the MPC controller.
However, if it is required, other, more complex models anaticd measures could be used
instead.

“Note that the controller cannot influence the performanceaticanymore, since this performance depends
on the turning rates, which are the state of the network amd aleady been determined during diy1.
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4.2.6 Optimization

MPC uses an optimization algorithm to determine the optivaslies for the control vari-

ables. In general, the optimal solution of the route chom&rol problem cannot be com-
puted analytically. The given problem is a non-convex rmadr optimization problem with

possibly multiple local minima. This requires the use ofathed optimization algorithms,
which in general cannot guarantee that the optimal solusiéfund, and often reach a local
optimum, which can lead to suboptimal behavior. Hence, bajloptimization method is

required such as genetic algorithms, simulated anneadattgrn search, or multi start local
optimization [19, 44, 53, 61, 126]. This, however, increaee computation time, which
is undesired for on-line computations. The selection of ptinmzation algorithm is thus

based on the trade-off between the accuracy of the solutidribee required computational
effort.

When the control problem can be reformulated as a linear aepiise affine problem,
mixed integer linear programming (MILP) can be used for themization. Within a MILP
problem the optimization of real and integer variables ismbimed, leading to a general
formulation of the problem for a given matricAsA®Y, and vectord, b9, andc:

miny c'x
s.t. Ax<b
AS% — e

where
X= [2] , X €Z,andx, €R .

Several efficient branch-and-bound MILP methods [55] aslable. Moreover, there
exist several commercial and free solvers for MILP probleoth as, e.g., CPLEX, Xpress-
MP, GLPK, or Ip_solve (see [5, 98] for an overview). In priplei, and when the algorithm
is not terminated prematurely, these algorithms guaréaotéed the global optimum of the
MILP problem efficiently. This makes them suitable for oelioptimization.

To reformulate optimization problems as MILP problems wd tave to remove the
nonlinearities of the models. This is done by recasting thdinear equations into linear
ones, and by introducing additional auxiliary variables. perform these transformations
we use the following equivalences [12], wheéreepresents a binary-valued scalar variable,
y a real-valued scalar variable, atfida scalar function defined on a bounded Xetvith
upper and lower bounds; andL; for the function values:

Ui = maxf(x) ,
xex

Li = r)g)rgf(x) .
We have

PL [f <0] « [6 =1]istrue if and only if

f <Us(1-9)
f>e+(Li—¢€)d ,
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wheree is a small positive number (typically the machine precigjpn

P2 y=§f is equivalent to
y<Usd
y>Ltd
y< f-L(1-9)
y>f-Us(1-9) .

P3. § = 102 is equivalent to
-01+6 <0
—0o+0 <0
01+d—-0<1.

4.3 Case A: Constant demand, separate routes

We now develop a route choice control method for a network witonstant demand and
separate routes. First we formulate a basic route choiceeinadd then we develop the
route choice controller based on this model.

4.3.1 Model development

The route choice model describes how the travel time expegi on a given route on a
particular day affects the route choice on the next day. Withis subsection, we will
first present a basic route choice network, then formulagetrdivel time model, and next
describe the resulting route choice model.

Basic route choice network

To explain the modeling approach, we consider a network wiith origin and one desti-
nation that are connected via multiple routes, see Figige 9uch a network contains all
features that are required for route choice, but it is smadlugh to make intuitive under-
standing possible. We assume that drivers enter this nletatdhe origin and make their
route choice immediately. Then they experience a traves tiaring their trip through the
network and leave the network at the destination.

We will look at the day-to-day evolution of the traffic flowsparticular part of the day,
e.g., the morning peak. The considered period is denotelegirhe interval0, T]. For a
given dayd we assume that the traffic demab@d) (veh/h) in the network is constant. The
demand is distributed over the routes according to thengrfriactions, (d), which gives
the fraction of the vehicles that select routen dayd. The turning fraction is computed
with the route choice model that will be described below. Boen of the turning rates

should be equal to 1:
fr(d)=1

5The reason for introducing is that an equation likéx—b > 0 does not fit the MILP framework, in which
only non-strict inequalities are allowed. Therefoka-b > 0 will be replaced by the equatidkx—b > ¢ with ¢ a
small tolerance, typically the machine precision, where veeige that in practice the case<0Ax—b < e cannot
occur due to the finite number of bits used for representingwgabers on a computer.
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Route 1

Origin « Destination

Traffic flow direction

Figure 4.3: Network with three routes.

whereRis the set of all routes in the network.

Since in this case the model considers separate routes, ithao difference between
route parameters and link parameters. In this section weftive indicate both of them
with the index|, so

Br(d):=pGi(d) .

Each route/link € Rin the network can be described by the following parameigns.
length of linkl is denoted by, (km). Recall that the speed lim¥(d) (km/h) gives the
maximum speed that is allowed on lihlon dayd. The outflow limitQ, (d) (veh/h) gives
the number of vehicles per hour that are allowed to leaveiilkd lon dayd.

Travel time model

Since we assume that the route choice of the drivers is basebeoexperienced travel
times, we first formulate a travel time model. In our approdleh queues are assumed to be
verticaP. This means that the vehicles drive the whole route withelsy] experiencing the
free-flow travel time. At the end of the route, the vehicleteethe vertical queue and wait
in this queue until they can leave the route. As a consequé¢hedravel timer/°U*® on a
given linkl consists of two components: the free-flow travel tifﬁée and the average (over
all vehicles) time spent in the queu8"®“®(which is taken to be 0 if no queue is present):

7_lroute(d) _ 7_Ifree(d) +T|0|U9U9(d) ) (4_5)

The free-flow travel time;%(d) on link | is given by:

7_Ifree<d) _ 4

v (4.6)

The time spent in the queue depends on the number of vehiclbe iqueue. Let us
consider linkl. During one peak period, the queue at the end of likows as shown
in Figurel4.4. Recall that the length of the considered geisodenoted byl and that
3 (d)D(d) gives the flow on route LetNV®"(d,t) be the number of vehicles in the queue at
timet on dayd. When the free-flow travel time has passed, the first vehielesirthe end of
the link and the queue starts to build up if the demand exctxedgutflow limit of the link.

6A vertical queue is a queue that has no physical length brestbe vehicles just in front of the bottleneck.
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NYen(d)

(51(d)D(d) = Q (d))(T - 7{"%(d))

7_Ifree(d) T

— =t

Figure 4.4: Queue length on a link during one day.

In Figure 4.4 the queue length is plotted for different dedsarwhen the demand on lirkk
is less than the outflow limit of link, i.e. 5 (d)D(d) < Qi (d), no queue appears. When the
demand is larger than the outflow limit a queue starts to gnatk, rate 3, (d)D(d) — Q; (d).

In order to compute the average time in the queue, we first aterthe are@ (d) under
the queue length curve of Figure 4.4, and divide this by tha& tmumber of vehicles that
have exited the link. We consider two cases:

o If 5(d)D(d) > Q(d) then a queue will be created, and the maximum queue length is
given by vehmax fi
N=H(d) = (4 (d)D(d) = Qi(d))(T =7"°%(d)) .

Moreover, in this case the outflow of a lihks equal toQ; (d). This outflow is present
during the a period with length —7¢(d). Hence, the area below the queue length

graph is

AV(d) = N (T =°5(d) = 251 (e)D(c) - Qi () (T ~7*%(d))? |
and thus

gy A 1AHEDE Q)T ), o

Q(T-7"*(d)) 2 Qi (d)

e If 5(d)D(d) < Q(d) then no queue will arise, and thg¥"*“(d) = 0.

Since we may assume without loss of generality t#f&€(d) < T, we can combine both
situations:

e g :max(o 1(5(d)D(d)-Q <d>)(T—n”ee<d>>> . 4.8)

2 Qi(d)
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Remark 4.2 We can also take into account the vehicles that are still éngihreue at the
end of the simulation period as follows. Note that such a quean only be created if
51(d)D(d) > Q;(d). The outflow rate of the queue is thén(d) and the number of vehicles

vehmax
in the queue at tim@ is equal toNVEhmaX(d) Hence, it takes on the averaée—dw)

time units for the vehicles to leave the queue. This quahtityto be added tb (4. 78 Soin
this casel (4.7) is still valid but the factérdsappears. O

Route choice model

The travel times are used as input for the route choice m&aaled on a difference in travel
time between the routes, the turning rates will change d@Wsl The turning rate toward
route 1 is given by

Aald+1) = min(max(0fa(d)+ 3 mpa(rA) ). 1) . (49)

wherer, 1 expresses the fraction of the drivers on ropitthat change their route toward
route 1 from one day to the next based on the travel time difies.
The turning rateg; ... [jast1 can be determined with

BdrD) =min(max(QA(d)+ 5w (7 =7/ /Zlﬂedﬂ) :
Al
’ (4.10)

wherex,| expresses the fraction of the drivers on roptthat change their route toward
routel from one day to the next based on the travel time differerce] 8 is the turning
rate toward the last route.

Finally, the turning rate toward the last rouf#tis given by

|last-1

Bast(d+1) =1- Z Gi(d+1) (4.12)
=1

The maximum and minimum functions in (4.10) keep the valug, & + 1) between 0
and 1, while[(4.11) guarantees that the sum offallis equal to 1.

4.3.2 Controller development

We will develop the route choice controller based on the rhdédscribed above. As control
method we use MPC, see Section 4.2.5. We consider variab&ldimit control, but note
that for outflow control the same reasoning can be followede assume that the speed
limits can only have two values, andv,.

Since the model is linear we can formulate the optimizatiaibf@m as a MILP problem,
using the PropertieB1 andP2. We first reformulate the route choice model, and next we
define the cost function. Finally we present the overall MigRimization problem.
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Reformulating the route choice model

We now translate the route choice model in such a way thatgtimization problem will
have the form of an MILP.

Since we assume that there are two values for the speed, lthtsorresponding free-
flow travel times can be represented by one binary varighds follows. Define (cf] (4.6))

1 1
7_free: I 7_free: | and A = 7_free_ 7_free .
la =5 Tip = > A ib ~Tia
Va Vb

Then we can seleat, or v, on link | for dayd by introducing a binary variablé | (d) and
setting
7_Ifree(d) free+A|51 | (d) )

Remark 4.3 The implementation of more values for the speed limits @ightforward. As
example, we consider four values for the speed limits thaetespond to four equidistant
free-flow travel times, formulated as follows:

T1°%(d) = i + A1(0121(d) +d1p1(d) +01c1(d))

free free
free _ 41 _free _ T1max_"1,min free imi ;
wherer i, = gk TLmax = v'OW ,andA; = =T=T2 For7,*%(d) a similar construction
can be used. O

Recall that we consider the case of speed control with noawuttbntrol; soQ;(d) =
QM for all d. If we substitute the above expression f{if(d) in (4.5) and (4.8) we get

7°4(d) = max(0,ya (d)) + 775+ A3 (d) (4.12)

with
Y21 (d) = aq) (d) 5 (d) +az, (d)d1, (d) 4 (d) +ag 01, (d) + a4 (4.13)
with a1 (d) = 55-D(d)(T - 7{"8°), &2 (d) = 55 D(d) A, ag) = 34, andag) = -3(T -

f'ee) By introducing an extra variablg | (d) = 1, (d) (d) and using Propert2 with
fi(x) = Bi(d), Ly, =0, andUy, = 1, (4.13) can be transformed into a system of linear in-
equalities.
Now define the auxiliary variableg(d) ande; (d) such that (cf. (4.27)| (4.10))

a(d) = fi(d) +p;f€r,p(7,§°”te(d) —71°"¥(d)) (4.14)
n1(d) = max(0, o (d)) . (4.15)

Then we have
Bi(d+1) = min(y (d),1) . (4.16)

Consider|(4.16) and define the binary variakje(d) such that

da1(d)=1ifand only if (d) <1 .
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Note that this equivalence can be recast into a system @rlinequalities via Property2.
Itis easy to verify that now we have

Bi(d+1) =min(n (d),1) = d4)(d)m (d) +1-54,(d) ,

which after introducing the auxiliary variabtg(d) = d4 (d)n (d) (this equivalence can also
be recast as a system of linear inequalities via Progtyresults in the linear equation

Bi(d+1)=2z(d)+1-d4(d) .
If we now collect all variables for dag in one vector

w(d) = [B1(d) ... B (d) 611(d) ... San Yoi(d) ... Yan (d) () ... 7OU(d)
o1(d) ... on (d) ma(d) ... 7 (d) 22(d) ... zo ()],

we can expresg; (d +1) as an affine function of/(d): 5 (d+1) = aw(d) +b for a properly
defined vectom and scalab, wherew(d) satisfies a system of linear equatiés(d) = e,
Fw(d) < g, which corresponds to the various linear equations andtnts introduced
above.

MILP cost function

To be able to transform the route choice control problem amdvILP problem, the cost
function should be linear or piecewise affine. Possibledhjes of the controller of Section
14.2.2 that allow reformulation into linear or piecewise radfiform are minimizing the flow
on a route, reaching a desired flow on one of the routes, ohirega desired travel time.
The MPC cost function for a minimum flow on route 1 is given by:

Np

Jd)=min§ G (d+j)D(d+]) .
mln;| j J

Let us define

B (d+1)D(d+1) Qrlesiredd +1)
FI (d) _ : , Ifldesirectd) —

B (d+Np)D(d +Np) ijeswec‘td +Np)

)

whereQds®q{d + j) denotes the desired flow on routat dayd + j.
The MPC cost function corresponding to reaching a desir@ddloroutel is then given
by:
J(d) = min||Qf*s"*{d) R (d)|| -

When either the 1-norm or the-norm are used, this cost function will be linear and can
be reformulated for the MILP problem. When a 1-norm is usegl pitoblem can be trans-
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formed into a linear one as follows:

L . Np .
min||RAe"{d) - R (d)[|, = min 5 Qs d +j) =3 (d+])D(d + )| (4.17)

=1
Np

=min d+j
glq( )

s.t.q(d+]) > Qf*"*qd+j) -G (d+])D(d+])

q(d+]) > -Qfes"{d+ )+ (d+j)D(d+])
forj=1,...,Np.

It is easy to verify that for the optimal solution of the latproblem we have

q'(d+j) = max(QUes'eqd + ) - 47 (d+)D(d +j),~Q*S"*¢d + j) + 4 (d+])D(d +j))
= |Qeseqdd + j) - B (d + j)D(d+])|

forall j.
Similarly, for theco-norm we have

min |F4e"*4d) - F (d) | = min. max [Qf*"*{d+])~6i(d+)D(d+])|
1=40 P

=mingq
st.q>Qles'dd+j)~ 4 (d+j)D(d+])
q> _Qldesirectd+j)+5| (d+j)D(d+])
forj=1,...,Np,

which is also a linear problem.

Another possibility is to strive for desired travel times tbie routes. Let{eseq{d + )
andrS$esqd + j) denote the desired travel times on respectively route 1 auie 2 at day
d+j. The problem of reaching desired travel times on each ofdgbtes is then given by

Np . .
min Y’ wa|rPUS(d+ ) =" d + )] +walrE A+ ) -5 d ) (4.18)
=1

with w1,w2 > 0. This cost function is piecewise affine, but it can be reaemitas

Np
min Z wid1(d+ ) +wapoa(d+])
=1

St gr(d+]) = 7OUS(d+]) - oo d + )
Or(d+]) > —7*(d+ )+ d + )
for j=1,...,Npand forr = 1,2.
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which is a linear programming problémFor the optimal solution we have
@7 (d+]) = max(r (d+) =7*"qd + ), 7 (d + ) +77°"*{d + )
= |7 (d+]) -7 d +])|

for all j and forr = 1,2. Hence,|(4.18) also leads to a linear programming problem.

Constraints

It might be useful to add a constraint on the travel time ofréade route (see Section 4.2.3),
because minimizing, e.g., the flow on other routes can réswthigher flow and thus a
longer travel time on this route:

n(d+j) <a"d+j) forj=0,...,Ny—1, (4.19)

wherer"®(d + j) denotes the maximal travel time on roliten dayd + j. Using((4.12) and
(4.13) we can easily eliminate(d + j) from the constraint (4.19). This yields the equivalent
system of constraints

e+ A (d+ ) < 7M(d+])
y21(d+ ) +75e+ Ajoy (d+j) < 7"¥(d+])

for j =0,...,Np—1. Note that these constraints are also linear.
An alternative constraint is to have a minimal or maximal flowa given route. For
routel this would result in

QM™N(d+ ) < (-G (d+]))D(d+]) < QMMX(d+]) |

for j = 1,...,Np, whereQ™™"(d + j) andQ™™@(d + j) denote respectively the minimal
and maximal allowed flow on routeon dayd + j. This constraint is also linear.

Overall MILP problem for constant demand

If we collect the linear objective function and all the limeznstraints introduced above
into one large problem, we get an MILP problem in the variglléd), w(d+1),...,w(d +
Np—1),81(d+Np) andg(d+1),q(d+2),...,q(d+Np) (when the 1-norm is used for the cost
function) org (when theco-norm is used). This means that within the controller a MILP
solver can be used, which reduces the computation time, @@dugtees the detection of the
global optimum. This will improve the performance of the trolier, and due to the lower
computation times it allows for the control of larger netksr

4.4 Case B: Time-varying demand, separate routes

In this section, we extend the previous results to timeingrglemand profiles. We first
formulate the model, and next develop the controller.

"Note that if instead of the absolute value the square of tierdice is minimized, the problem can be formu-
lated as a mixed integer quadratic programming problem (MIQP).
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D(d.l) D(d,n—2)

— D(d,2) —_—

D(d,0)

to(d) =0 ty(d) (d) t3(d) ... taa(d) th-1(d) to(d)=T

Figure 4.5: Time-varying demand profile(@ -) on day d.

4.4.1 Model development

Time-varying demand profiles can be determined using liéstdata since often the same
demand patterns occur every day with some variations dépgod the type of day (week
day or weekend), the weather, and the season (summer omwi8&ce here we allow
a different demand profile for each day, such variations @taken into account in our
approach. In particular, we consider piecewise constamiade profiles, which allows for
a good representation/approximation of reality, whilespreing linearity properties. We
denote the piecewise constant demand function at the ovigidayd asD(d,-). More
specifically, we have

D(d,t) = D(d,i) forte [ti(d),tis1(d))

fori =0,...,n—1 wheretp(d) =0, ty(d) = T, andt;(d) < tj+1(d) fori =0,...,n-1 (see
Figure 4.5).

The introduction of the piecewise constant demand doeshaige the equations for
the free flow travel time/ (4.6) and the turning rates (4.10pwiever, the formula for the
time spent in the queue should be adapted.

Just as before, the average time in the queli8“®on link | depends on the number of
vehicles in the queue. We still assume that the queues arealgueues that build up at the
end of each route. So during the periodT +7{"¢(d)) the queue on link grows as shown
in Figure/ 4.6. Note that the time is divided into peridt&d) +7°%(d), ti+1(d) +7{7&(d))
corresponding to the periodi(d),ti+1(d)) in the demand. Here, the ternt®¢(d) is due
to the fact that vehicles entering likat timet will reach the queue at time+7{™¢(d).
Next, the queue will grow or shrink depending on the valuenefriet growth of the queue,
which for link I is given by, (d)D(d,i) - Qi (d) for t € [ti(d) +7{"&(d), ti+1(d) +7/"(d))
andi =0,...,n-1.

If we denote the number of vehicles in the queue on lidn dayd and during time
period[ti(d) +7™%(d), ti+1(d) +7{"(d)) by N'e"(d, i), we have

NYe"(d,i) =0 -
NP+ 1) = max(O, ™)+
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NFe"(-)

to(d)=0  t(d) Ha(d)  to0d) tad) .. Yao(d) H(d) o

Figure 4.6: Evolution of the queue Iengtlﬁ’eﬂl(d,) on link I and day d during the period
[0, T +7™(d)]. For the sake of simplicity of notation we have usgddy) =
ti(d) +7"€(d) in the figure.

vaeh(df ) vaeh(d'/ ) vaeh(d7 )

\ Ve ‘6|(d).D(d)‘QI(d)

1 : - 1
t;(d) ia(d) ! tl/’i(dt){Ai(d)Fﬁ(d,i)tl/‘i+1(d) t t/;(d) ia(d) !

@ (b) (©

Figure 4.7: Three possible cases for the evolution of theiguength ll\\Ieh(d, -yonlinkland
day d during the time intervat; (d) +7"®%(d), ti+1(d) +77%(d)) with t;(d) =
ti(d) +7"e(d).

(51 (d)D(d, 1) = Qi(d)) ((ti+a(d) +7"°%(d)) = (ti(d) +7{"°(d])))
= max(0,N'*"(d, i) + (4 (d)D(d) - Qi (d)) (ti+a(d) ~ti(d))) -
Note that ifN'e"(d, i)+ (3 (d)D(d)-Q (d))(ti+1(d)—ti(d)) < 0, the queue length already
becomes 0 at some tinigd) +T;(d, i) with
Ne(d, i)
(81 (d)D(d)=Q(d)) -

At this moment the queue on linkbecomes empty (see Figure 4.7).

In order to compute the average time the vehicles spend iqubae on link, we first
compute the total area under tN¥"(d, ) curve. If we denote the area under m@h
curve betweet (d) +7{"¢(d) andt.+1(d)+7free( ) by A (d), there are three possmle cases
(see Figure 4.7(b)):

e If NYé"(d,i+1) > O then we have

Al =

:% (Nl\leh(d, i)+ NIVeh(d, i+ 1)) (tiva(d) —ti(d)).

Tl(dvl):

(NFE(d, )+ NYER( i+ 1) ) (G () +17°8(h)) = (8(d) +7™%(d)))  (4.20)
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We then defing;1°(d, i) = ti+1(d) -t (d).

o If NVeN(d,i+1)=0andN'e"(d,i) > 0, thenQ| (d) # /3 (d)D(d,i) and the queue length
already becomes O at tim¢d) +T;(d,i). Then we have

(NYe"(d,i))?
Qi (d)-4(d)D(d,i)
Now we have to make a distinction whether or not there is affooudf link | after

the timet;(d) +Tj(d,i). If 5,(d)D(d,i) # 0 then there will be an outflow and then we
defineT,™™(d, i) = tis1(d) —ti(d). Otherwise, we seE®%(d,i) = Ti(d,i).

Ai(d) = %vaeh(d,i)ﬂ (d,i) =

e If NVe(d,i+1) = 0 andNe"(d,i) = 0, thenQ (d) = 3 (d)D(d, i) and the total area is
zero: A j(d) = 0, since in this case tH?@l,"eh curve is horizontal. Just as in the previ-
ous case we defifg"®"(d, i) = ti+1(d) -t (d) if 5(d)D(d,i) # 0 andT,"™®(d,i) =0
otherwise.

The total area under thé'®" curve is then equal t (d) = S"{ A j(d). Since there is an
outflow of link I (with value Q(d)) during T°'(d) = 33 T,"°%(d,i) time units, the total
number of vehicles leaving the link is equal@p(d)T,°!(d). So the average time that the
vehicles spend in the queue at the end of rbusegiven by:

A (d)
7_Iqueue(d) .y e} (d)-rltot(d)
0 if T(d) = 0.

if T°(d) >0,

The total travel time for a route can then be computed witB)(4nd the turning rates

with (4.10).

4.4.2 Controller development

In this section we show that for linear or piecewise affinet doactions the previously
formulated MPC route choice optimization problem for CBsgan be approximated by an
MILP problem. In particular, we will consider the case offtaw control only (so there is
no speed control). Further, we will consider the case whegenetwork consists of only
two routes R= {1,2}), which leads ta3,(d) = 1-51(d). Note however that an extension
to a network with more routes is straightforward.

Transformation of the model equations

We assume that the outflow limits can only have two non-zelwes®); , andQ,, and for
simplicity we consider control for route 1 only.

Later on we will see that in the model equations the fa 3 will appear. This factor
can be represented by introducing binary variable as falldiwve define

1 1

Ar= -,
' Qr,b Qrﬁ,a
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then we can sele@; » or Qrj, on router for dayd by introducing a binary variablé (d)
and setting
1 1
—— = —+A5(d) . 4.22
(@) ~ Qa0 (4.22)
Let us now first rewrite the equations for the evolutio\Ngf"(d) (for Nye"(d) a similar
reasoning holds, see Appendix 4.B). If we define
Nveh d.i
my(d,i) = NI D o i,

Qu(d)
then it follows from(4.20) that

£1(d)D(d, i)

my(d,i+1) = max(O, my(d,i)+ ( 0:(d)

1)@ -1@)) @29

with my(d,0) = 0 (cf. (4.20)).
We will now transform (4.23) into mixed-integer linear etjoas. If we substitute (4.22)
into (4.23) we get an expression of the form

ml(d,i + 1) = max(O, ml(d, I) +a1717i (d)ﬂl(d) +a271$i(d)51$1(d)51(d) +83717i (d)) (4.24)

with 2 1i(d) = B (tia(d) =t (d)), az1,i(d) = D(d,1)As(tisa (d) ~ti(d)), andag(d) =
—ti+1(d) +t;(d). By introducing an extra variablg 1(d) = d1.1(d)51(d) and using Property
P2 with f1(x) = 81(d), Ly, =0, andUy, = 1, (4.24) can be transformed into a system of

linear inequalities together with the nonlinear equation
my(d,i+1) = max (0, my(d,i) +ay1i1(d) +az1iyr1(d) +azy,) -

Now we define binary variable& 1(d) such thatdz1;(d) = 1 if and only if my(d,i) +
ar1if1(d)+ax1y11(d)+az1; > 0. Using Property1 this equivalence can be recast as a
system of linear inequalities. Then we get

my(d,i+1) =021;(d)(m(d,i)+ay1f1(d)+az1iyr1(d)+az1;).

By introducing extra variableg, 1;(d) = d2.1i(d)m(d,i), ya1i(d) = d2,1i(d)B1(d), and
Ya1i(d) = d21i(d)y1,1(d), and using Propert2 we obtain again a system of linear in-
equalities together with the equation

my(d,i+1) =yo1i(d)+ay1iy31i(d)+az1iysri(d)+ag1id2i(d) ,

which is a linear equation.

Now we make the following approximation (see Figure 4.8): ANeays take expression
(4.21) forA¢(d,i). Moreover, we always tak® (d,i) = tj+1(d) —ty(d) even if there is no
outflow of the link. It is important to note that for= 1 this will still result in an exact
value for7**“(d) sinceN;*"™(d., i) will first be multiplied by 3Ty (d,i) to get the area,
and next be divided again b4 (d)Ty1(d,i) to obtain the average time spent in the queue.
This implies that fon = 1 we will get the (exact) results of Section 4.3. Howeverfor 1
we will only get an approximation for;“*“d).



106 4 Model-based control of day-to-day route choice iffitrafetworks

Nxeh(ds )

-
-

) G )

Figure 4.8: The area of the hashed triangle will be approxieasby the area of the shaded
triangle.

Since nowT°(d) = ST Ti(d,i) = T, the approximation results in

[y

n-

(lexeh(d’ i)+ N‘1/6h(d, i+ 1)) (t17i+1(d) —t1i(d))
Qu(d)T
n-1

- ;r_Z)(ml(d,i)+m1(d,i+1))(t1,i+1(d)—t17i(d)) .

T]C-]UEUE(d) _

NI

Note that this expression is linear ;. Hence, it follows from/(4.5) that{°""®(d) is
also linear inmy. Similarly (see also Appendix 4.B);°""®(d) can be written as a lin-
ear expression imp by introducing the additional real-valued auxiliary véliesys 2;(d),
yz,zyi(d), y3727i(d), Y42 (d), and binary auxiliary Variab|%72(d), 52‘2‘] (d) and5372,i(d) =
922i(d)d12(d) (cf. PropertyP3) fori =0,...,n-1).

Now the remainder of the procedure corresponds to the pupeesf Case, starting

with (4.14).

Overall MILP problem

The overall control problem is similar to the control prablef caseA described in Section
[4.3.2, and allows for the use of the cost functions formulatethis Section.

However, since the models used to generate the MILP probteninahis case only
an approximation of the non-linear models, it is not recomdesl to directly apply the
obtained optimum. Nevertheless this optimum could be usexital starting point for the
original nonlinear route choice MPC optimization problemnich significantly reduces the
computation time.

4.5 Case C: Overlapping routes, multiple origins, and re-
stricted link inflow capacities

In this section, we extend the approach above to includear&sawith overlapping routes,
multiple origins and destinations, and restricted linkafes. We first develop the ex-
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tended model, and next design a controller for this network.

4.5.1 Model development

First, we introduce the more complicated network with caeping routes, and multiple
origins and destinations. Then we adapt the timing thates irsthe model, and present the
link variables. Further, equations for the travel timesrage queue lengths, and turning
rates are presented, and the origins and destinations ateledo

Network set-up

The network that we consider consists of multiple origins O and destinatiorfse € E,
whereO andE are the sets of all origins and destinations in the netwohe butes in the
network can overlap, meaning that one linkan be used by multiple routess R. The
restricted inflow capacity of the links is denoted(bﬁf‘lp (veh/h).

Travel time model

The total travel time again consists of the sum of the free flamel time and the time spent
in the queue:

7_rroute(d) _ lgr (TIfreE(d) +7—|‘.1:Jeue\(d))

wherelL; is the set of all linkd in router. The free flow travel time can be computed as
before, see (4.6).

The computation of the time spent in the vertical queue iseniorolved. We assume
that the queue on a link is divided into several independariigd queues, one for each route
that uses the link. Let us now compute the time spent in eatesg partial queues.

Timing

To be able to consider overlapping routes, we have to adapirting that is used in the
model. In the previous casésandB the event timings were route based. Now, we change
the timing to be vertex-based as follows. For each vevtéxthe network we introduce

event timegy;(d). Such an event time can correspond to two types of changhke putput
flows of the vertex:

e achange in the input flow of one of the upstream links coniagctéhe vertex, which
is delayed by the free flow travel time on the given link,

e a partial queue becoming empty on one of the upstream linksseftex.

Since these changes are not known beforehand, the traffimigaged from the current
event timety;(d) until the next known event timg&;.1(d). When during the simulation
of this period one of the two changes appears, a new eventiiiagd) is created. The
computations then have to be (re-)done for the pejtig@d), tynew(d)), which leads to re-
definition of the next event time instant with+1(d) := tynew(d).

8Since the indexl is already used for the days, we denote destinationsayibming from the word *endpoint’.
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traffic flow direction

Figure 4.9: A link | with upstream verte} and downstream vertefv

Link variables

Consider linkl, with its upstream vertex' and its downstream verte!, as in Figure
[4.9. The inﬂowQ}’}(d,i’) of each linkl is given in the timing of the upstream vertel
and present during the peridt i (d),tw i+1(d)), which is thei’'th period for vertexy'.
This flow experiences a delay equal to the free flow travel tiamel then becomes the flow
Q" *"d,i) that enters the queue in the link duriftg ;(d).t,1(d)), which is period in
the timing of the downstream vertex: '

Q. i) = Qh(d i)
with
e (A), g g () = s () +77°%(d), b jaa (d) +77°%(l))
Recall that we assume that in each link there can be a pautalegfor each route. The

number of vehicles during time periadn the partial queue at the end of limkelonging
to router is given ble‘{fh(d, i). As indicated above, the inflow of the queue is denoted by

Q:%®U9d,i). The amount of traffic that can leave the queue depends a@neiff factors:

o the outflow limit of the link,

e the number of queues on the link and their length,

the capacity of the downstream links,
o the size of the flows that want to enter the downstream links.

We first introduce factors ((d, i) which divide the outflow limitQ, (d) proportionally
over the different queues (see Figure 4.10):

NYeh(d, i)
Tor

% ( NIY%??? i) +Q:rl;queue(d, I))

pPE

+Q a0

Y (di) = (4.25)

wheren , is a delay factot representing the time that vehicles require to leave thegue
on link | for router. In this equation we assume that the flow that wants to leawdirtk
consists of the vehicles that are in the link, and of the Mekithat enter the link during the
current period.

Note that the delay factat , should be larger thar\}ﬁiﬂ(d) —t\,lj‘i(d) to prevent the model from generating

vehicles. Ifn, < t\/ld,i+l(d>_t\4j.i(d) then an extra time ste!g‘d_i,(d) should be introduced betwee\;la‘i(d) and

t\/Id_i+1(d)'
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route 1
link | ‘
. i desiredout
Q:rjiqueue(d’l) — Nveh(d i) Jl d I
1,1\
in,queue y QFESIredout d,i)
QI 2 P(d"l) veh/dq i
, — N2 route 2
in,queu .
A3 D — N|Y§h(d-, ) deSIredoul
route 3

Figure 4.10: Routes on a link share the available outflow adic to the proportions given
by (4.25).

The flow that wants to leave a queue in the link during the peftia; (d) tvﬁ,u+1(d))
provided that the downstream capacity is large enougheis ¢fiven by

h .
Qdeswedout( . . Nve (d )

i) =min(on (A )Q (d), = ——+Q**1d.i))

Now we introduce the effect of the restricted inflow capadciythe links, see Figure
. Due to this restricted capacity, the desired outf@}{i*"°*"(d, i) is reduced to the
effectlve outflowQeﬁ(d i) as follows. The inflow capacity of a downstream lifkof link |

is divided proportionally over the flows that want to entes timk, using a factoryq(d, i)
This factor should be computed for each downstreamifirk Dy :

aya(d,i) = min( Q" )

4.26
% Qdesuecbut(d I) ( )
&€ 1d pE

whereU,q is the set of upstream links of link andD; the set of all downstream links of
link 1.

The flow that effectively leaves linkon router toward IinkI,dr is then given by:

Qﬁ (d,i) —Oqa (d, I)Qdeswedout(d i)

whereld

' is de link downstream of link on router. This outflow equals the inflow of the
downstream link

Qf, - (dhi) = QFF () -
The number of vehicles in the queue on linéf router can now be computed:

NFEM(d, i+1)) = ma(0,NFE(d, )+ (Q Tl 1) ~ QEN(d, )ty 12 () 4 (@) -
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Figure 4.11: Inflow capacity shared by entering flows.

N|vr6h(d7 )

slope:

/7 graueusy i) -Qefid, i)

Roi(@) Lo (d)+Tir(d)  t,(d) t
Figure 4.12: Evolution of the queue lengtif®(d, -) on link | of route r and day d during

the interval[tvﬂi (d),t\,ﬁiﬂ(d)) when a queue becomes zero during this period.

If NYeh(d, i) Q;” aueuqd,i) - Qeff(d (d.))(tg 41 (d) ~t;(d)) < 0, the queue length al-
ready becomes 0 at some tlmlgi( ) +T|‘,r(d, i) with

veh(d I)
Qff(d, i) - Q" Yd,i)

Tir(d,i) =

At this moment the partial queue for the traffic on lihgoing via router becomes empty
(see Figure 4.12). This means that a new time ins"i]ﬁ,rﬂll,new(d) =tw;(d) + T ((d,i)

|
should be added to the timing of the downstream vevfe>and the computations for the

current period should be re-done.
After the computations for the whole period are performed total number of vehicles
in a link can be plotted as in Figure 4.13.
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Lo g tao taz ... t\/ﬁﬁvld—3 tVT’ﬁVId—Z t‘/?v”v‘d‘l Yng

Figure 4.13: Evolution of the queue Iengtf,‘fﬁild, -)on link 1 and day d during the period
[0, T +7"(d)).

Average time in the queue

In order to compute the average time the vehicles spend iqubae, we first compute the
area under theJ"eh(d -) curve. This is done at the end of the simulation, so that tleatev

timing is completely fixed. If we denote the area underhﬁﬂ1 ) curve betweetl,d (d)
andt\,;j_“l( ) by A (d,i), there are two possible cases:

o If N8"(d,i) > 0 orNYe(d,i+1) > O then we have

A1) = 3 (NP ) + NS, ) (g (0) —t (@)

o If NYeN(d,i) = 0 andNYe"(d,i+1) = O we haveA ;(d,i) = 0 since theNYe"(d, -) curve
is uniformly zero on the interva{t\,.lj,i (d),t\/lj’i_‘_l(d)). '

Now we can compute the average time spent in the partial queliek | for router as

v
'%Al,r (da I)
queue(d =i

%Q d' tvd|+1() tvd7i(d))

wherenvf is the number of periods in the timing of vertvﬁ(

Origin modeling

We model the origins as virtual links with length 0, see Fegdrl4. The demand at origin
o with destinatione during period[ti(d),to+1(d)) is given byDoe(d,i), fori=1,...,ng
This demand is divided over the routes via the turning rates

IC:I’ (d, |) =5 Br (d)Doe(d,') fOI’ a” r G Ro_’e.

where R, is the set of routes connecting origimwith destinatione, and QI (d,i) is

the flow for router that enters the virtual link connected to originduring the period
[to;i (d),to,i+1(d)). This flow enters the partial queues that can be present stirtki Fur-

thermore, the origin is modeled in the same way as the lirgiglénthe network.
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route 1

origin o Qu(d) #_Qz@
ion.l(d-i) _’Nvelh(d,”

route 2

route 3

Figure 4.14: Virtual origin link.

Destination modeling

Just as the origins, we model the destinations as virtuls hmth length 0 and no outflow
limit. Each virtual destination link is assumed to have afinite inflow capacity. This
implies that (cf.[(4.26))

ae(d,i)=1

for each destinatiom.

Turning rates

The route choice model used for the cafeandB is rather simple. We selected it since
linear equations are necessary to form an MILP problem. N@apvesent an improved
route choice model for cagg, in which the differences in experienced travel times igluse
to determine non-normalized turning factors, which arerlabrmalized between 0 and 1.

We still assume that the drivers will change their route wtentravel time on another
route is shortef:

cr(d+1>=max(o,ﬁr<d>+ R; mp,r(rr“’“te(d)—r;°“‘e(d>>). (4.27)
PERROS p#T

Here(, (d) is the non-normalized turning factor of routeandx,, includes the fraction of
drivers on route that change their route toward routérom one day to the next based on
the travel time difference. Since the sum of the turningsateould be 1, they should be
normalized to obtain the final turning rates:

Gr(d+1)

Br(d+1) = -3 (4.28)
Cpld+1)

pPE

Remark 4.4 The formulation of the turning rates can be made even moret éyataking
into account the number of vehicles that is currently usiachdink. This can be included

10Note that excluding the current rouges | is not really necessary because the difference in travelstime
between the current route and the current route will alway8.b
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as follows:

G+ =max(0,5(d)+ 5 FprBy(A) A ()=, B (DAL(A)) . (429)

PER p#T

where the two terms respectively express the number of keshileat will divert from other
routesp toward routa and the number of vehicles that will leave routeward other routes
p-

The differences in travel time&, ; (d) andA, ,(d) are given by

0 if 7_/r)oute(d) < 7_rroute(d)
Ap‘r(d) = TI’OUIE(d) _Troute(d) |f TI‘OUIE(d) > TI’OUIE(d) ’
P r P r

TrI’OUIe(d) _T;OUIE(d) |f 7_;Oute(d) < Trroute(d)

0 if TLOUte(d) > TrrOUte(d)

Ay ,(d) :{

TheA,,(d) andA, ,(d) are formulated in this way to express that drivers only cleahgir
route when the travel time on the other route shorter thamein turrent route.

In the approach that we use for caSave approximate (4.29) by including, , 7 ,,
Br, and 3, in the parameter,, of (4.27). This introduces the property that the computed
turning rates can exceed 1, and thus the resulting turnileg should be normalized, as in
(4.28). For casé andB a linear model is required. Since the normalization (4.88) i
non-linear operation, we cannot use (4.27) and (4.28) fee 8aandB, but we have used
(4.10) instead since that equation ultimately results irechinteger linear model. O

4.5.2 Controller development

When we use the model of Ca€eas prediction model, and when we assume real-valued
control inputs, the optimization problem is a nonlinear fwomvex real-valued problem.
All cost functions described in Section 4.2.2 can be useei &hen 2-norms are applied.
To solve the resulting nonlinear type of problems multistacal search methods (like
SQP) and (semi-)global optimization methods (like genaliorithms, pattern search, or
simulated annealing) can be used, see [126]. The advantabese methods is that they
are suitable for complex optimization problems. Howevikese approaches in principle
only yield a suboptimal solution since — in particular fordar networks or longer control
horizons — it is in practice often not tractable to find thebglboptimum of the optimization
problems that arise in MPC for route choice control. Morepthe approaches lead to large
computation times. Nevertheless, often these methodsderosasonably good solutions in
a not too excessive computation time.

4.6 Worked example

We will illustrate the effects of the developed control aggarh with an example. The set-up
is based on the Braess paradox [21, 114]. The Braess partdeg that adding a new link
to a network could increase the total travel time in the nekwdVe will first look at the
network with two links, and apply control using MILP, as fartated for CaseéA. Next,
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Destination

Route 1

%2

Origin

Figure 4.15: Network with two routes.

we will investigate the effect of adding a new link, using thedel of CaseC, which will
indeed increase the total travel time when no control isiadpiThe controller that we have
developed in Section 4.5.2 will be used to limit the outflowtted links in the network. We
will show that the controller is able to find the well-knowatit optimum of removing the
link. In general, the controller might be able to improve siteation even more by applying
dynamic control. However, within this specific case study dignamic and static optimum
coincide.

4.6.1 Network with two routes

We will investigate a network with two routes, and apply atcolfer developed for cask.
First the network is described, and then the settings foctimtrol approach are given. At
last, the simulation results are presented.

Set-up

We first consider a small network with two links, as in Figur&s} The parameters of the
two links are: Q1 = Qz = 1200 veh/hy™ = v = 120 km/h,v"" = v]'" = 10 km/h,
and/; = ¢, = 70 km. For the route choice model we use- 0.25. We simulate a period
of T = 60 minutes with a demand @ = 3000 veh/h, for 30 days. We will control this
network with speed limit control.

In the uncontrolled case this should lead to an assignmeatenthere is an inflow of
1500 veh/h on each link, due to the fact that the free flow trianees of both routes are
then equal and a demand of 3000 veh/h enters the network. Noapply outflow control,
where we try to obtain a desired flow of 800 veh/h on route 1 tvlwian, e.g., be useful
when the route crosses a residential area.

Control approach

We formulate the control objective using the cost functidreq in (4.3), only using the
1-norm. A penalty on variations is added as formulated id)(4Che prediction and control
horizon of the MPC-based controllers are set to 8 days. Fosdke of simplicity and to
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Table 4.1: Computation time, cost, relative improvementt(Mhe uncontrolled case), and
average turning rates for the entire closed-loop simulasiavith different opti-
mization scenarios.

control method computation| cost (h) % average
timell(s) improvement| turning rate
no control 0 24444 0 0.54
f m ncon, 1 init. point 10 13493 45 0.24
fm ncon, 10 init. points 107 18211 25 0.18
f m ncon, 20 init. points 380 15925 35 0.24
f m ncon, MILP init. point 10 6975 72 0.34
MILP 0.4 14542 41 0.23

eliminate possible influences of model mismatches, we wsedame model for the simula-
tion and for the prediction by the MPC controller. For theegpémits we use a minimum
value ofv®" = 60 km/h, and a maximum of'9" = v"& = 120 km/h.

Simulation results

We simulate the traffic in the network in closed loop with eifnt optimization strategies
for the controller. Table 4.1 gives an overview of the resulthe first simulation is per-
formed without control, i.e. when the outflow is not limiteldeequal to its maximal value.
Note that reducing the flow on route 1 is not in the drivergtiast, which explains the high
cost in the no control case, and thus the relatively high awpments that can be obtained
when control is applied.

Next, we compare three approaches, all of which use the séglguadratic program-
ming (SQP) routinéni ncon of the Matlab Optimization Toolbox [155], but with a differe
number of random initial points. When the number of randorelgated initial points in-
creases, the performance increases, but the computatignatiso becomes larger. The
computation time can be reduced by computing an initial fpwith MILP, which can then
be used as initial point for one run of thi&i ncon algorithm. This reduces the computa-
tion time, and even improves the performance. To show tleaatiditionalf mi ncon run is
really necessary, we also have performed a simulation WwahMILP solution only. This
simulation runs very fast, and gives already a good perfao@gbut it can be improved sig-
nificantly. The performance loss can be explained by theapations that are required
to obtain linear equations. The average turning rates edawith the different controllers
are given in the last column of Table 4.1. When MILP optimizatis used as initial point
for thef mi ncon optimization, the largest improvement is obtained.

Figure 4.16(a) shows the turning rates toward route 1 fontheontrol case, the MILP
case, and the case witlm ncon and an MILP initial point. When no control is applied,
the turning rate converges to 0.5, meaning that the trafficies equally over both routes.
The MILP controller over-corrects this by steering a larget pf the traffic to the second
route. This problem is solved whéni ncon is applied: the flow on the first route is lowered
compared to the no control case, but higher than in the Mlils@ cBigure 4.16(b) shows the

110n a 1 GHz AMD Athlon 64x2 Dual Core processor.
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Figure 4.16: Results for the two route network.

corresponding speed limits that are used to obtain the floote (that in the uncontrolled
case the speed limits are constant and equal to 120 km/h).

The simple example of this section illustrates that with adymitial point, which can
be obtained via MILP, the optimization algorithm shouldyonln once to obtain a good
optimal value. This significantly reduces the computatioret

4.6.2 Network with the Braess paradox

Now we extend the network to a benchmark network in which theeBs paradox occurs.
We consider the model and controller of c&se

Set-up

The network in which the Braess paradox occurs is shown iarEig.17, and is an extention
of the network of Figuré 4.15. The network consists of fivédinand three routes. Route
1 consists of links 1 and 2, route 2 consists of links 3 and d,rante 3 consists of links
1, 5, and 4. We select the link properties as follows. Thewftapacities are 1200 veh/h
for all links. The maximum speeds on the network &fé* = v!® = vi"® = 120 km/h,
Vo1& = v = 60 km/h, and the lengths of the links afe= ¢4 = 30 km, /> = {3 = 40 km,
and/s = 10 km. For the route choice model we use= 0.25. We simulate a period of
T = 100 minutes with a demand &f= 3000 veh/h, for 10 days.

The network of Figure 4.17 illustrates the Braess paradoatee two different equilib-
rium traffic assignments can be considered when investigiiis network.

The first equilibrium appears in the network when all thre¢tes are used. Drivers are
attracted to route 3, which is the shortest route with redpebe number of kilometers. The
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Figure 4.17: Network with overlapping routes.

capacity of this route however is lower than the demand aus litng queues are formed,
resulting in a long travel time on this route. Due to this sairieers divert to the other two
routes, and eventually an equilibrium assignment withtiredly long travel times of 1.43 h
appears.

The second equilibrium uses only route 1 and 2. Assumingrthae 3 is closed, the
vehicles are divided over the two available routes. Thigltesn an equilibrium assignment
with travel times of 1.21 h, which is shorter than for the feqtilibrium.

Control approach

We want to control the route choice in such a way that the ttawe of 1.21 h appears. To
reach this we apply outflow control on the network where akéroutes are available. We
expect that the control algorithm will lower the outflow linfior link 5, which corresponds
to closing this link. In this case the situation with only taeailable routes appears, which
will lead to the desired travel time.

We use the developed control approach with the followingpeaters. Links 1, 4, and
5 are controlled using outflow control. The maximum outflomits areQ"® = Q'™ =
600 veh/h Q' = Q'™ = Q' = 1200 veh/h, and the minimum outflow limits are 0 veh/h
for the controlled links. The prediction horizon is 10 dagsd the control horizon 6 days.
As cost function we select the total travel time in the netygrst as for the network simu-
lated earlier (see Section 4.6.1). As optimization algponitve use SQP as implemented in
fm ncon.

We will perform three different simulations, two simulai®of uncontrolled situations,
and one of a controlled situation. The first simulation isnagation of the network without
link 5, and without control. The second simulation is a siatioih of the whole network,
still without control. These two simulations show that thex@s paradox is present in the
network. The third simulation involves the whole networklirding the controller. For this
specific case, where we consider a constant demand, a higiinigaate, and the selected
network layout, the dynamic and static equilibrium assigntrcoincide, and thus closing
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Figure 4.19: Results of simulation 2: whole network, no calnt

link 5 is the optimal solution. We will illustrate that theddoped controller is able to
obtain this optimal solution.

Simulation results

The two simulations without control show the effect thatnfisrthe Braess paradox, see
Figures 4.18 and 4.19. Figures 4.18(a) and 4.19(a) shovuthing rates for the different
routes for Simulation 1 and 2. Figures 4.18(b) and 4.19(bjwsthe corresponding travel
times. The simulation starts with initial turning ratég0) = 1, 52(0) = 33(0) = 0. This
means that the flows are not in equilibrium, and thus the mgrrites change until an equi-
librium assignment is reached. The total travel tihé for the first simulation is 12960 h,
and for the second simulation 15130 h. The total travel tioretie second simulation is
indeed longer than the total travel time for the first simolatillustrating that the use of the
third route indeed increases the total travel time.

Figures 4.20(a) and 4.20(b) show the turning rates andlttiaves for Simulation 3, in
which the controller is applied.The controller lowers theflow of link 5 so that the flow
toward the third route becomes 0 veh/h. As a result, the ibguin assignment that uses
only 2 routes is obtained, with the total travel time of 12960

The advantage of the setup of this case study is that the absiatic solution of the
control problem is knowtt. This solution is the removal of link 5, as shown with the first

12Note that in a general network the solution is not known, d@ngsto conclusion can be drawn about the
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Figure 4.20: Results of simulation 3: whole network, cohtro

two simulations. The third simulation shows that the cdigras indeed able to find the
optimal solution, illustrating the performance of the colier.

4.7 Conclusions

We have developed a control approach based on model puedazintrol to influence the
route choice of drivers, using control measures like outfiavits or variable speed limits.
We have developed a route choice model for three cases.ACaskided constant demand,
separate routes, and one origin and destination. ®asgtended the model to include
piecewise constant demands, and C@sadded overlapping routes, restricted link inflow
capacities, and multiple origins and destinations.

We have used the developed models in a control approach baseddel predictive
control (MPC). For Cas@& andB we have respectively formulated and approximated the
optimization problem of the MPC strategy as an mixed intéigear programming (MILP),
which significantly reduces the computation time. For Gaseulti-start local optimization
or global optimization methods should be used. We havetiifitesd the control approach
with two examples based on the Braess paradox. We showeththabtained MILP so-
lutions can be computed efficiently and can be used as gotal ipbint for complex non-
linear non-convex optimization algorithms. For the Bragasadox, the optimal static so-
lution is known and we have shown that our control approadeed obtains this optimal
solution.

Future research will include: calibration and validatidrttee model, development of
robust controllers, developing faster optimization aiwns, and investigation of practi-
cal implementation issues, e.g., state estimators, redjuireasurements, communication
issues, and demand estimation.

absolute performance of the controller.
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4.A List of symbols

General
L set of all links in the network
L, set of all links in route
U set of all links immediately upstream of lirkk
D, set of all links immediately downstream of lihk
£ length of linkl
I,Cfr downstream link of link on router
v downstream vertex of link
v upstream vertex of link
R set of all routes in the network
R set of all routes that use lifk
i time period counter
lv(d) set of all time periods (only known after simulation) for teetv on dayd
vi (d) speed limit for linkl on dayd (km/h)
yjmin minimum speed limit for link (km/h)
Ve maximum speed limit for link (km/h)
Qi (d) outflow limit for link | on dayd (veh/h)
Qpmin minimum outflow limit for link | (veh/h)
nax maximum outflow limit for linkl (veh/h)
Gr(d) turning rate for route on dayd
¢ (d) non-normalized turning rate for routeon dayd
Kr) parameter describing the part of drivers on rautieat change their route toward route
Tlfree(d) free flow travel time at link on dayd (h)
7(d) travel time at linkl during dayd (h)
mioute(d)  travel time for route’ on dayd (h)
T length of the simulated period on a day (h)
N total number of time steps in the simulation
Np prediction horizon (days)
N¢ control horizon (days)
c general control signal
Jvar penalty in variations on the cost signal
J total costs
Case Aand B
ti(d) ith time event on dag (s)
[ti(d),ti+1(d)) ith time period on day
Ti(d,i) time aftert;(d) that the queue on linkbecomes 0 on dagt in period
[ti(d), ti+1(d)) ()
T'e(d) total time that the queue on linkis not empty at day (h)

D(d, i)

demand at the origin on dal/during time period (veh/h)
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N,Ve“(d,i) number of vehicles in the queue on lihbn dayd during time period

(veh)
A (d,i) area below the queue length graph of linkn dayd during periodi
(vehh)
7,4®%9d)  travel time in the queue at linkduring dayd (h)
Case C

tyi(d) ith event time for vertex (s) on dayd

[tyi(d),tyi+2(d)) ith time period for vertex on dayd

Roe set of routes connecting origowith destinatiore

Reoe set of routes that connect the same origin destination paiater

Do,e(d,i) demand at origiro with destinatione on dayd during time period
(veh/h)

QP inflow capacity of linkl (veh/h)

Qi’}(d,i) inflow of link | for router at dayd during time period (veh/h)

Q" Hqd, i) inflow of the queue on link for router at dayd during time period
(veh/h)

QUesiredUt g iy desired outflow of link for router on dayd during time period (veh/h)

Qﬁf(d,i) effective outflow of linkl for router on dayd during time periodi
(veh/h)

Nl"fh(d,i) number of vehicles in the queue on lihKor router on dayd during

’ time periodi (veh)

A (d,i) area below the queue length graph of linfor router on dayd during
periodi (vehh)

Y. (d,i) factor that divides the available outflow limit over the qastin link|
used by route on dayd during period

a(d,i) factor that divides the available inflow capacity over thevidhat enter
link | on dayd during period

7 d) travel time in the queue at lirlkon router during dayd (h)

4.B  Reformulation of Nyeh(d) for Case B

In Section 4.4.2 we have shown that the equationWP and forr; can be recast as a
system of mixed integer linear equations and inequalitlasthis appendix we explicitly
derive the system of mixed integer linear equations anduaktes corresponding tNé’eh
andr,.

We first rewrite the equations for the evolutiongf®™

Nyeh(d,0) = 0 (4.30)
N3"(d, i +1) = max(0,N3*"(d, i) +((1~51(d))D(d, i) ~Qa(d)) (ti+a (d) ti(d))) . (4.31)
If we define
Nye"(d. i)

M= T0w
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then it follows from|(4.31) that

(1-/1(d))D(d,i)

mp(d,i+1) :max(O,mz(d,i)+< %)

1) @ -4(@) @32
with my(d,0) = 0 (cf. (4.30)).

Let us now transform (4.32) into mixed-integer linear etpra. If we substitute (4.22)
into (4.32) we get an expression of the form

Mp(d,i+1) = max (0, my(d, i) +ay2i81(d) +a4,2i01,2(d) +az2i61,2(d) A1 (d) +ag2;)
(4.33)

with agoj=- (52 )(t|+1(d)_ti (d)), au2i=D(d,i)Az(tisa(d)-ti(d)), az2i=-a2i=

-D(d,i)Az(ti+1(d) —ti(d)), andaz 2 = (D(ég’ai) —1) (ti+1(d) —ti(d)). By introducing an extra
variableys »(d) = d12(d)31(d) and using Property2, (4.33) can be transformed into a

system of linear inequalities together with the nonlinegration

mp(d,i+1) = max(0,m(d, i) +a12iB1(d) +as42id1,2(d) +az2iy12(d) +az2;) -

Now we define binary variable& »i(d) such thaté,2i(d) = 1 if and only if my(d,i) +
a12if1(d) +as2id12(d) +ax2y12(d) +az2; > 0. Using PropertyP1 this equivalence can
be recast as a system of linear inequalities. Then we get

mp(d,i+1) = d22i(d)(mp(d,i)+ag2iB1(d) +as2id12(d) +az2iy12(d) +ag2;).

By introducing additional real-valued variablesy,i(d) = d22i(d)mp(d,i),
ya2i(d) = d22(d)F1(d), andyaso;i(d) = d22i(d)y12(d), and additional binary variables
d32i(d) = d2.2i(d)d12(d) and using PropertieB2 andP3 we obtain again a system of lin-
ear inequalities together with the linear equation

mp(d,i+1) =y22i(d) +a12iy32i(d) +a42i032i(d) +az2yszi(d) +ag2id22i(d) .
Just as we did foA j(d) we now also always approxima#e i(d). This results in

) = 21Tn§0 (d,i) +mp(d,i+1)) (tira(d) ~ti(d))

which is a linear expression in tm(d,i)’s. Hence, it follows from/(4.5) thati°""®(d) is
also linear inmp.



Chapter 5

Practical issues for model-based
traffic control

Advanced traffic control systems can significantly imprdve traffic flows on traffic net-
works. However, the implementation of such control systemisually not straightforward.
In this chapter we give an overview of practical issues egl& the use of traffic controllers,
and we pay attention to the steps that should be taken bdfeyecn be applied in prac-
tice. We look at issues related to the controller designh siscthe network that should be
controlled, the choice of the objectives and constraintgte controller, the selection of
the model, and the selection of a control method. We alsadgsitnplementation issues, in
particular calibration and validation, state estimatidemand estimation, controller tuning,
and performance evaluation.

In addition, we discuss the influence of the measurementd®performance of the
controller, and we focus on different averaging methodsp@ed measurements.

In a case study we illustrate the steps of the controllerldpweent, and we investigate
the influence of using the different speed averages on tlerpgance of a dynamic speed
limit controller. The results show that for the given casalgtthe use of different averages
results in a difference of a few percents in the controllefgrenance.

5.1 Introduction

Current road networks often suffer from a lack of capacityd/ar an inefficient use of
the available capacity. Advanced traffic control measue& been developed to reduce
the corresponding problems, such as congestion and ndisgnice. The control measures
influence the traffic in such a way that the existing road ciépé used more efficiently,
and in this way the throughput of the network improves. Havethe performance of these
controllers largely depends on the choices made duringebigd process, which preceed
the implementation process.

A specific type of advanced traffic controllers are modelelasontrollers, as used in
many well-known traffic control systems, such as, e.g., URJR29], IN-TUC [49], and
MITROP [59]. These controllers use a model of the traffic systo determine the settings
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for the traffic control measures. In this chapter we invedéghis kind of controllers since
they require the consideration of many practical issueslytue to the inherent differences
between the model and the real world. In this way we obtainraptete overview of all
practical issues related to the implementation of geneaffi¢ controllers. We focus on a
special form of model-based control: model predictive oan@MPC). Traffic controllers
that are based on MPC use a model to predict the future ewnlati the traffic flows.
Based on this prediction, the controller determines ggstfor the traffic control measures.
Advantages of this control approach are that differentrabmbeasures can be integrated
into one control system and that the prediction allows fer itivestigation of the longer-
term effects of the control actions and thus allows for tHed®n of control settings that
are optimal for a longer period.

We divide the practical issues related to the deploymentaffi¢ controllers into two
main classes: design issues and implementation issuegeBign issues that we consider
are often related to the policy of the road authority: whietffic flows should be controlled,
which network is considered, which measurements can benelotawhat is the objective
of the controller, what are the constraints? The policy sleos influence more technical
issues like the model selection, and the selection of thee@lomethod that is used.

When the design of the model-based controller is determinetesmplementation is-
sues should be considered before the controller can besdppla real traffic situation. The
selected model should be calibrated and validated, a stiteation method should be se-
lected, the expected demand must be estimated, and theltemtnust be tuned. After the
implementation in the real network, the performance of tmller must be evaluated.

Many of the issues mentioned above strongly depend on nezasuts that are avail-
able. During the design a measurement structure shoulddignéel, which includes select-
ing, e.g., detectors, communication networks, data piolismethods, and data handling
methods. In this chapter we describe different detectoid tlaen focus on speed measure-
ments obtained with loop detectors. The measured speedfdsh® averaged, for which
six different avaraging methods are available. We invastithe influence of these different
averaging methods on the performance of a model-basecddentr

As a case study we develop a dynamic speed limit controllethfe A12 freeway in
the Netherlands. During the design of this controller wesider the design issues and im-
plementation issues as far as they are usefull for a sironlatiudy. The objective of the
controller that is developed is to minimize the total timerspin the network by reducing
shock waves. We use the developed controller to illustteertfluence of speed measure-
ment averaging methods. We simulate the network with th&alber using the six different
averaging methods that are available, and we compare thiéimgscontroller performances.

The remainder of this chapter is organized as follows. 88&i2 explains model-based
control and describes the general process of controllezldpment. Section 5.3 considers
issues that are related to the controller design, and $ebti considers implementation
related issues. The different methods for speed measuteawerages are discussed in
Section 5.5, and Section 5.6 presents the case study. \Finahclusions are drawn in
Section 5.7.
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Figure 5.1: A general scheme for feedback control methods.

5.2 Model-based traffic control

This section gives a general description of model-basdfictiantrol, and then explains
model predictive control (MPC), which is a specific type ofdabbased control that is
often used for traffic control. Next, an overview of the pradgee of developing a controller
is given.

5.2.1 General scheme for model-based traffic control

We first introduce the general setup of advanced traffic obntethods. A feedback scheme
of an advanced control method is shown in Figure 5.1. Thega®consists of the traffic
network and the traffic flows that should be controlled. Thdfitr flows propagate through
the network depending on the traffic scenario and the coattidns, which leads to a spe-
cific performance of the network. To obtain information thatild be used to determine
the performance, the current state of the network shoulddsesared or estimated based on
measurements. These measurements can be performed ugingadar detectors, loop de-
tectors, and cameras. The measured quantities can bdlavg,, occupancies, and speeds.
These measured values are fed into the controller, whidrmétes the control signal based
on these measurements and on desired performance of therkewvhich is described by
the objectives of the controller. The control actions csnef the settings for the traffic
measures, such as ramp metering rates, speed limit valuésjings for traffic signals.
These measures then influence the process, and thus infienmerformance. In this way,
the controller is used to increase the network performance.

How the controller determines the control signal dependshentype of controller.
Model-based controllers use an internal model of the tradffidetermine the control sig-
nal. For urban areas the settings of the traffic signals catetsmined using queue length
models, which is investigated in Chapter 2 and in, e.q., 149, 140, 185]. For freeways
there are model-based controllers using dynamic speets)imimp metering installations,
and peak lanes, described in, e.g., [64, 89]. Dynamic rouiagice can be used for model-
based route choice control, as in, e.g., [11, 46, 78, 81].
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5.2.2 Model predictive control

In this chapter we consider a specific model-based contrttodecalled model predictive
control (MPC). MPC-based controllers use a model to pretietevolution of the traffic
flows, and use this prediction to determine the optimal argignals. MPC [100] has
been developed for the process industry, and the first atjaics for traffic control are
described in [58]. Traffic controllers that explicitly useP\@ are proposed in [10, 64], and
other controllers that use similar schemes are, e.g., [29, 140, 179]. These controllers
also use models and predictions to obtain the control gattibut they are not explicitly
formulated corresponding to the MPC structure. When MPC @ieg, the controller in
Figure! 5.1 contains a state estimation algorithm, a priedichodel, and an optimization
algorithm. The measurements from the real network are wsalokain the estimated state of
the network. Next, the controller predicts the evolutionhef traffic flows over a prediction
period that has a length &, controller steps. Based on this prediction, the optimirati
algorithm is used to obtain the optimal (according to préreel objectives and constraints)
settings for the control signals up to a control period\gfcontroller steps, withN, <
Np. During the control periodN; the control signals vary, while during the remainder of
the prediction periodN,, the control signals are kept constant. The optimal valoeshie
control signals during the current control time step ardiadfo the real network. At the
next control time step the procedure is started again, Wighhbrizon shifted one time step
into the future. This is called the rolling horizon approaEbr further information on MPC,
we refer the interested reader to [25, 57, 100].

5.2.3 Controller development

The process of developing an advanced controller is a catibmof design issues and
implementation issues. Figure 5.2 presents an overvielWweofaquired steps. The process
starts with the design issues, consisting of policy issustachnical issues. The policy
issues consider the objectives and constraints of thealtars, the selection of the network,
and the design of the measurement structure. Then tectatéga consider the selection of
the control method, and of the model. Guidelines for how tepsof the design process
can be applied to real situations are presented in [110].

When the design issues have been considered, the geneigh @éthe controller is
available. Now some steps have to be made that are moreycte&sted to the implementa-
tion. The model should be calibrated and validated, meathiagvalues for the parameters
in the model should be selected. Further, a procedure sheuttbveloped to estimate the
state of the traffic flows in network, and to estimate the deimakith these issues settled,
the controller can be applied in a simulation environmemtnvestigate the effects of pol-
icy/economical choices, to investigate the effects of chsiregarding, e.g., the number of
measurements, control measures, and objectives. Theagioruenvironment can also be
used to tune the controller. If problems are encounterets phthe design process should
be redone. In general, multiple iterations will be necesbafore all problems are solved.
When the simulation gives good results, the controller islyeda be implemented in the
real network. When the controller is implemented, its penfance can be evaluated by
comparing measurements of the controlled situation withsneements of the uncontrolled
situation, and with the results of the simulation experitaen
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Figure 5.2: Overview of the controller development process

5.3 Design issues

In this section we will further discuss the design issuesitage been shortly introduced in
Section 5.2.3 (see also Figlre 5.2).

5.3.1 Formulation of the objectives and constraints

The objectives of a controller describe the goals that throtder should reach and have
to be determined by the road authorities. Selecting an tigeis often a trade-off between
the desires of different parties (e.qg., drivers, road marggedestrians, environmentalists).
Accordingly, controller objectives can focus on differémpics:

Efficiency: The available road capacity should be used as efficientypasilple. Possible
objectives in this context are: reducing the total time $pesducing the total travel
time, increasing the throughput, and reducing delays.



128 5 Practical issues for model-based traffic control

Safety: Traffic controllers can improve safety by, e.g., reducingests, creating homoge-
neous flows, increasing intersection clearance times,amering flows in residential
areas.

Environment: Traffic generates noise, and air pollution, and it consumes fThe en-
vironment benefits from, e.g., reducing the number of stepmothing the flows,
decreasing the waiting time in the queues, and reducingugdecbnsumption.

Location: When the traffic demand is so large that congestion cannot depted, the
controller can try to put the congestion at a specific locatihere it causes the least
problems, which can improve the situation in, e.g., redidéareas and nature re-
serves.

In general, the overall objective of the controller will barulated as a multi-objective
criterion, composed of several of the objectives menticatzal/e. It is also possible to add
penalties related to the expected behavior of the contrelleich can target, e.g., variations
in the control signal, and the traffic situation at the enchefprediction period. The use of
multiple objectives in a controller results in a multi-ottige optimization problem. Some
methods to handle this kind of problems are: the weighted-sethod, the-constraint
method, and the goal attainment method [108]. The weighted-method constructs a
weighted sum of all the objectives, which is minimized witlstandard constrained opti-
mization method. The-constraint method selects a primary objective that isnoiggd,
while the other objectives are included in the optimizaooblem via constraints on their
values. The goal attainment method selects a target valiabh objective, and minimizes
the weighted deviation from the selected targets.

Another way to implement the requirements resulting froaffic policies, such as ser-
vice levels, protection/safety of traffic participantsfetya around schools, etc., is to for-
mulate them as constraints for the optimization problemis Tasults in, e.g., maximum
or minimum values for travel times, flows, speeds, inteisaatlearance times, or queue
lengths. It is also possible to formulate physical constsgior the controller, that consider
the limitations of the control measures and can result @, minimum or maximum values
of the control signal.

5.3.2 Selection of the network

The decision to develop an advanced traffic controller isrofbiduced by a traffic network
in which a problem appears. However, the extent of the nétwat should be controlled
is not always evident. Some problems can be solved withinall sratwork, while others
require a larger area to be solved efficiently. The exterh@féquired network can depend
on, e.g., the ratio between local traffic and long distarafi¢s the available measurements
and their locations, the available traffic control measuaes the area on which the effects
of the control measures appear. For some guidelines totshkemetwork size available
literature in the area of hierarchical control can be used, 8.g., [77], where large systems
are divided into subsystems based on the influence that piatte system have on each
other.
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5.3.3 Design of the measurement structure

After the network has been selected, the measurementigieustiould be designed. This
includes selecting the measurement technology, the owatf the measurements, the com-
munication structure, the storage database, and the mfghddta polishing.

Often used measurement technologies for traffic networdiadie, e.g., pneumatic sen-
sors, radar detectors, infra-red sensors, video camerasjuctive loops|[84]. The most
commonly used sensors are inductive loop detectors. Theisetdrs consist of inductive
loops in the pavement, and measure the presence of a vefibky typically count the
number of passing vehicles and average this over a time fefwden 1 and 15 minutes).
When double loops are used the speed of each vehicle can bmietéd. Pneumatic sen-
sors located on the road can detect the presence of a velilody. are cheap but they are
wearing fast, and thus they are mainly used for temporarysmreaents. Radar detection
determines the presence and speed of vehicles via radas wHvese detectors are mainly
used to determine the speed of vehicles. Infrared detedatesmine the presence of a ve-
hicle using infrared light. There are passive sensors wtéthrmine the radiations of the
vehicles, and active sensors that send out a pulse and die¢ewhether there is a vehicle
based on the reflection of this pulse. Video images can betoseeasure the traffic flows
as well. The advantages of video imaging are that many diftemeasurements can be
obtained, e.g., space mean speeds, occupameiicle positions, and vehicle types. The
disadvantages are the sensitivity to rain, mist, or snod,tha relatively high costs due to
the image processing that necessary to obtain the desif@uniation (speeds, densities)
from the video images.

Further, the locations of the detectors should be detemhir@n freeways, detectors
are often located every 500 meters, and near bottlenecksasuan-ramps, off-ramps, lane-
drops, and weaving areas. In urban areas, queue lengthatstean be located at controlled
intersections, and at the beginning and end of each linkah&ber of entering and leaving
vehicles respectively can be measured.

Then, the communication structure should be selected. €tectbrs and controllers
can exchange data with their neighbors, or can cummuniciétteaveentral controller. The
obtained data should be stored in a database. The strudttire database and the desired
contents should be determined.

At last, before measured data can be used, it should be pdl[§19]. Methods should
be developed to remove outliers and sensor failures, anddess the uncertainty of the
obtained measurements.

Since measurements form a basis for the controller desigphtlaus significantly in-
fluence the controller performance, we will investigate effect of measurement methods
more extensively in Section 5.5.

5.3.4 Selection of the control method

To determine the settings for the control measures, a dantthod should be selected. In
the area of traffic control there exist methods that use noatsodf which ALINEA [123] is
the most well known. Further, there are methods based og faaming or neural networks,

1The occupancy is the percentage of time that the detectocispied, which is representive for the density at
the location of the detector.
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see e.g., [35, 119, 188]. In this chapter however, we focumodel-based approaches.
Examples of methods that use such an approach are presented.j [24, 49, 64, 76, 89,
129].

When the model-based approaches are used for optimal cdat@lalso for MPC),
an optimization algorithm should be selected to deterntieeoptimal values for the con-
trol measures. Which algorithm should be selected dependbeotype of optimization
problem, which in its turn depends on the selected modelpkjpective function, and the
constraints. For linear or convex problems many algoritlamesavailable that will yield
the global optimum [12, 126, 133]. However, a traffic confpobblem is nearly always
non-convex and nonlinear, and can thus have many local aptitence, a global optimiza-
tion method is required such as genetic algorithms, siradlahnealing, pattern search, or
multi-start local optimization [19, 44, 53, 61, 126]. Thedgorithms cannot guarantee that
the global optimum is obtained, but they usually can obtaireptable values. The use of
these algorithms however increases the computation tirheshws undesired for on-line
computations. The selection of an optimization algoritemhius based on the trade-off
between the accuracy of the solution and the required catipoal effort.

5.3.5 Selection of the model

Many models are available for the use in model-based tradfidrollers. An overview of
traffic flow modeling in general is given in, e.g., [41, 72, 1ZFraffic models can be divided
in categories based on the properties of the models. Figdt thfe modeled application can
be used as criterion, e.g., traffic flow models [40, 68, 106],kiavel time models [26, 175],
and traffic assignment models [15, 56, 130]. Second, the lmoda be stochastic [27, 101],
or deterministic/[15, 106]. Third, the models can be groupased on the level of detail.
Three categories that can be distinguished are:

Microscopic models that describe the behavior of individual vehicleselation to the
other vehicles and the infrastructure. Examples of comiagr@vailable models are
Paramics [137], Vissim [136], and Aimsun [7], while an oviewv of more theoretical
models is given in [72, 124].

Mesoscopic models that describe the traffic in probabilistic termsnggirobability distri-
bution functions, see for example the gas-kinetic modelrd].[ Some mesoscopic
models use a mix between detailed descriptions of impopeogerties and a more
general overall formulation, see, e.g., [31, 78].

Macroscopic models that describe the traffic flows using aggregated sakig., average
speeds, and average densities. Early macroscopic moddtsranulated in [96, 139].
More recent models are METANET [106], INDY [15], and the Cé&iansmission
Model [40]. An overview of macroscopic models is presentef[l25].

When a model should be selected for a model-based contratiiention should be paid
to the features that are modeled. All features that are itapbfor the controller should be
modeled, including, e.qg., traffic flows, influence of controtions, and properties affecting
the objective of the controller. Further, the required catafional effort should be taken
into account. For a controller, a specific time is availablesimulation of the model. The
model should be able to run within this time. The accuracytheddomputation time cannot



5.4 Implementation issues 131

be optimized at the same time, which makes a trade-off betwesetwo criteria necessary.
For on-line traffic controllers often macroscopic models selected because they yield a
reasonable accuracy within an acceptable computation time

5.4 Implementation issues

When the design of the controller has been completed, modigahissues should be
investigated. All these issues require measurement ddta.d&sign of the measurement
structure has already been discussed in Section 5.3.3,na8édtion1 5.5 we will focus
on the influence of speed measurement methods. In this seatipresent implementation
issues that involve the use of measured data sets: catibiatid validation, state estimation,
demand estimation, and performance evaluation.

For the calibration and validation procedure the whole $eh@asurements is divided
into two parts. One part is used for the calibration, and tiveropart for the validation.
These data sets should be gathered under free-flow corgla®mvell as under congested
conditions, in order to increase the persistency of exitatif the dataset, see [99].

State estimation requires real-time measurements of stersy while demand estima-
tion can be done based on real-time measurements, or basedataset with historical
measurements. For performance evaluation a set of date afrithinal situation is neces-
sary, just as a data set obtained after the tuning and impiiatien of the controller.

5.4.1 Calibration and validation

Calibration is the process of selecting values for the patarsf of a model, such as,
e.g., the critical density, the desired speed, or the @atitine. The optimal parameter set
minimizes the difference between the measured ougit?e"s§ and the output predicted

by the model yPredicted:
y Yp (5 mein||ymeasured_ypredictect€)|‘%

Considering traffic flow models, macroscopic models ardivelly easy to calibrate due
to the limited number of variables. However, for large natgahe required computation
time can also increase up to the point where the problem besdmractable. Calibration
of macroscopic traffic models is described in, e.g., [39]e Buthors of [39] consider an
input that consists of the traffic demand, and the outputshereneasurements performed
in the traffic network. For the nonlinear parameter iderdifmn problem the least-squares
output error method is used, combined with the complex dpétion algorithm of Box [20]
for constrained problems. An automated calibration pracedbor macroscopic traffic flow
models is described in [116]. This procedure uses the Néfdad Simplex algorithm to
determine parameter values that optimize the total eritwvdEn model output and measured
data.

The calibration of microscopic models is more elaboratetdube large number of pa-
rameters that (in principle) can differ for each vehiclegyfhe calibration of microscopic
models is considered in, e.g., [23, 38], where differenilalie calibration methods are
compared.

In modern traffic surveillance systems calibration can béopmed on-line (and is also
called parameter estimation), see, e.g., [3, 128, 178]. actwantage of this is that the
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Figure 5.3: The state estimation procedure.

difference between the predictions and the real traffiasita will be as small as possible.
For the on-line calibration the measurements of the realor&tduring the last period (for
example the last 15 minutes) are compared with the valuésitbaredicted by the model.
The difference between the two is minimized by optimizing thodel parameters. These
parameters are then used in the model, until a calibratioth®onext period is completed.
An even more general tool that includes on-line calibratioaffic prediction, travel time
estimation, queue length estimation, and incident detedsi described in [180].

When a model is calibrated, the next step is to validate theshtodietermine the quality
of the obtained parameters. During the validation, therpatars that are obtained during
the calibration are implemented in the model. Then the mizdeted to predict the traffic
variables corresponding to a different data set than theused for the calibration. The
difference between the simulation data and the real dafarsbe considered situation gives
an indication of the correctness of the obtained paramataes, and of the generalizability
of the simulation results obtained with the selected patamalues.

5.4.2 State estimation

In order to be able to make predictions with a model, the cistate of the network should
be known. This state is determined based on the availablsureraents, and is then used as
initial state for the model predictions. In Figure 5.3 thegel state estimation procedure
is shown. The measurements of the real network are compatiedh&# measurements that
are obtained with the simulation. Based on this comparigenstate estimator determines
the estimated state. State estimation is in most cases dwmed obn Kalman filtering or one
of its extensions [79]. For linear models, a Kalman filter@ddhe estimated state in such a
way that the mean of the error between prediction and meas&unts is minimized. For non-
linear models, an extended Kalman filter should be used wiiearizes the model around
the current estimate at every step. For traffic flow modeksniéthod is described in, e.g.,
[60, 178]. A more recent method that can be used for statenastin is based on particle
filtering, see|[67, 109]. Particle filters use probabilistiodels, and start with a distribution
of possible states. For all of these possible states thihigdad that it corresponds to the
current state is computed, based on a measurement funatiboreBayes’ rule. With each
new set of measurements these likelihoods are updated. dsiikely state is selected to
be the estimated state.
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5.4.3 Demand estimation

To make a prediction of future traffic flows, the future demamaist be known. This de-
mand can be obtained based on Origin-Destination (OD) oeegtyior based on upstream
measurements:

OD-matrices OD-matrices contain the demand (in veh/h) from each origieach desti-
nation. OD-matrices can be determined off-line, and caerafirds be adapted in
an on-line setting. Off-line OD-matrices are obtained frang., surveys, historical
measurements, and estimations based on the surroundesigefntial areas, shop-
ping centers, business areas) and the expected amountefsdiinat want to visit
these places [30, 92]. On-line updating of the OD-matrix éeel based on mea-
surements using a method that is similar to methods formn4dalibration. When
the OD-matrix is determined, a traffic assignment algorittan be used to divide
the traffic over the network. This results in the expected $lam each link. This
procedure is described in, e.g., [4, 191].

Upstream measurementsTraffic flows measured upstream of the controlled road sectio
will arrive at the controlled section with a delay approxteig equal to the expected
travel time from the measurement location to the beginnirtg@controlled stretch.
With measurements of the upstream flows estimations of thesfid the controlled
road section can be made, as presented in [120]. The accafdbg estimation
is influenced by the distance between the upstream measotr@me the controlled
location, and by the number of intersections, on-rampsodfachmps on this stretch.

5.4.4 Controller tuning

The controller also has parameters that have to be tunedMP@ controllers important
parameters are the horizons, and the possible weights icogtefunction. In the process
industry methods for tuning MPC controllers have been amped [1, 94, 172]. There are
methods for off-line as well as on-line tuning. However, maisthese methods focus on
linear MPC and thus cannot be used for advanced traffic derso

Controller tuning starts with the selection of initial pareters, which are manually
adapted based on simulation results or real measuremegitgeRto traffic control, the ini-
tial values for the parameters can be selected as followsnifial value for the prediction
horizon is the time that a vehicle needs to drive through #hecsed network. This ensures
that all the effects of the control actions on this vehicle &@ken into account. The length
of the control horizon mainly depends on the computatioffatterequired to optimize the
cost function. A longer control horizon leads to more par@mse which leads to longer
computation times. However, when the control horizon is ghort, the possible impact
of the control actions will decrease. Some more detailethturules for the horizons are
presented in [64]. The weight of each part of the cost fumcsieould be based on the rel-
ative importance of the different parts, which should beedatned by the road authorities.
The weights have to be normalized, which can be obtainedwigidg each part of the cost
function by its nominal value.
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5.45 Performance evaluation

To evaluate the performance of the controller, the cordodlituation should be compared
with the uncontrolled situation. This means that first, befthe deployment of the con-
troller, the initial situation should be measured. Thengwlthe controller is installed a
period should be selected during which the traffic can adafie controller. During this
period the behavior of the drivers can change, and if necgska controller should be
changed too. After this period the performance of the cdletrcan be determined. This
can be done by comparing initial measurements (withoutahéraller) with measurements
in the controlled situation. For this comparison a perfanoeevaluation function has to be
defined. The most logical choice for such a function is basethe cost function that is
selected for the controller. This function can be extendild svpenalty for constraint vio-
lations. For each situation (uncontrolled/controlled tosts are computed, and the relative
difference in the costs between the two situations reptegbe performance of the con-
troller. When more controllers are compared in a case stodwglifcontrollers the resulting
traffic situation should be measured. These measuremanthea be used to compare the
performance of the different controllers.

5.4.6 Otherissues

We will now mention some topics that are also relevant foiitty@ementation of advanced
controllers, but that will not be discussed in detail in ttheapter:

Fault detection and fault tolerant control: The availability and the failure probability of
the equipment used is important for the functioning of thetaler. Missing mea-
surements and wrong representations of the control sigaalsignificantly influence
the performance of the controller [14, 135]. By monitoritige equipment failures
can be noticed (or even predicted) and the controller cam ttad effects of the fail-
ures into account. This allows the controller to reduce mfi@énce of the failure and
to prevent a large decrease in the performance of the network

Robustness: A model is never an exact representation of reality. Theigeitgof the con-
troller for errors in the model structure should be accodifite, as well as the other
uncertainties in the design, such as the error in the demattigtion, the state esti-
mation, and the values of the model parameters. The effestofs and uncertainties
can be reduced by, e.g., including demand prediction, wssmaller controller time
step to decrease the deviation between the real state apretiieted state, by on-line
calibration of the parameters, and by using robust containiques [93, 181].

Stability: The control actions influence the traffic flows. The contrdlacs should lead
to a stable traffic situation, without fast fluctuating cohsignals|[141, 189]. Stable
traffic situations are situations in which the traffic flowdlwgtay around the same
level, even if small disturbances of the flows occur. Fastdiating control signals
can result in a fast changing traffic situation and thus irtabie traffic flows. Fast
changing control signals can be prevented by including alpeon changes in the
control signal in the cost function, or by using larger tihi@ds with respect to the
reactions on changes in the measurements.
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5.5 Investigation of speed measurements

Since a major part of the steps described above is based @ureezents, we now investi-
gate the influence of different measurement averaging rdsthte will first discuss induc-
tive loop detectors, and next describe different averagiethods for speed measurements.
An overview of symbols used in this section is given in AppagridA.

Remark 5.1 Within this section, we consider four different time stefige controller time
stepT; with indexk., the sample (measurement) time stgpvith indexks, the simulation
time stepT with indexk, and the step between two images that are obtained with video
imagingT; with indexk;. These time steps are related as follols= MTs, Ts = MsT, and

Ts = M(T;, whereMc, Ms, andM; are integers. O

5.5.1 Speed measurements

In Section 5.3.3 we have discussed several measuremenbtegles for traffic networks.
In this section we will consider inductive loop detectonsd focus on speed measurements.
When double loop detectors are used the speed of each vehitleecdetermined. Now
consider detectod. The number of vehicles that are observed at this detectanglthe
period ksTs, (ks+1)Ts) is equal taNg (ks), and we index them as 1,2,,Nq(ks). The obtained
individual vehicle speeds measured by the detetttme denoted byg n(ks), wheren is the
vehicle index. With the obtained measurements the flow otrific can be obtained by
dividing the number of observed vehiclbg(ks) by the sampling time intervals. Hence,
the flow passing the detector can be determined using

qzample(ks) _ Nd_l(_:s) ) (5.1)

sampl

The density follows from the flowg5™"{ks), the mean speed?™'{ks), and the number

of lanes)\, as |
psample(k ) o qzamp e(ks)
S —_ T e~ .
d Vzample(ks) A

In the next section we will formulate several methods totetee the mean speaff™ k).

(5.2)

5.5.2 Various speed averaging methods

In the field of freeway traffic flow modeling, two representas of mean speeds are often
used:time mearspeed andpace measpeed [41, 105]. Traffic flow models that are used
in model-based controllers often use the space mean spedel istthe average speed of
all vehicles present in the considered freeway stretch peaific time instant. This space
mean speed is used since most models describe the averfiigectvaditions on such a
stretch. Video images can be used to obtain space mean g@&kd&)nfortunately, the
loop detectors that are often present in the road netwoikailp return time mean speeds.
Time mean speeds are based on measurements at a specifanlevaraged over a certain
time span. When the time mean speeds are measured, it is ilvipdsscalculate the exact
space mean speeds due to the relatively low number of measaotdocations. However,



136 5 Practical issues for model-based traffic control

they can be approximated using various averaging methe@s[44, 138, 175]. In this
chapter we will investigate the influence of different agging methods on the performance
of a model-based speed limit controller.

We discuss six different methods to calculate mean speedbinthe description we
assume that in the sample peridTs, (ks+1)Ts) the subsequent vehicles passing the de-
tectord are numbered,P,...,Nq(ks). For the ease of notation we do not mentibin
the equations, but note that the values can be determinexyéoy detector in the freeway
network.

Time mean speedThe time mean speed is calculated usingahéhmetic mean of the
N(ks) locally measured vehicle speedgks), measured over the sampling time in-
terval [ksTs, (ks +1)Ts) as [41]:

N(ks)

ms _ l
% (ks) = m nZl Un(ks) (5.3)

Estimated space mean speedror estimating the space mean speed h#enonic mean
of the locally measured vehicle speeds is used by Daganiodwén by

k) = [T NI 5.4
= N9 2, o G4

n=1

Geometric mean speedBesides the arithmetic and harmonic mean, there is a thiad-'c
sic’ Pythagorean mean, namely theometric mean[132]. This mean can be calcu-

lated as
N(ks)
Vgeo(ks) = N I_I Uun(Ks) (5.5)
n=1

Estimated space mean speed using the instantaneous speedarce A method to esti-
mate the space mean speed, based on locally measured \sgigeldsi, (ks), is pro-
posed by Van Lint [175]. The method uses the empirical r@tabietween the time
mean speed™S(ks) (defined by|[(5.3)), and the space mean spé&8iiks) (as de-
scribed in[182]), which is given by

_ O'iz(ks)
vems(ks)
whereo?(ks) is the variance of the instantaneously measured vehickedspeSince
the instantaneous speed variam%(eks) cannot be determined exactly by local mea-
surements, the following estimation used:
1 N gsmskg)
2N(ks) & un(ks)

wherev®™ks) is given by (5.4). The estimated space mean speed usingstamta-
neous speed variance then becomes

" () = 2 {v‘mS(ks> + () 2 —4&?<ks>} ®.7)

V™S(ke) V(o) (5.6)

52(ks) (U1 (Ks) = Un(ks))?
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Estimated space mean speed using the local speed varianke[138] an estimate of the
space mean speed is proposed that is based on the time meanesypkvariance of
the locally measured speeds. The space mean speed estsimagahe local speed
variance is determined by

cr|2 (ks)
vims(ks)

I (ks) = V"(ks) - 8

wherevi™S(ks) is computed using (5.3), and

2

2 1 NG Vtms
ot k) = Nl n; (Un(ks) =V™S(ks))

Time average space mean speedsing, e.g., video images [43] it is possible to obtain the
space mean speef™s5(k;) on a freeway segment for every imaging titerecall
thatTs = M(T;). Since the previous mean speed methods are all based oe pdimd
[ksTs, (ks+1)Ts), we will take a time average of the obtained space mean spkeihg
this period:

VMks) = — 7% VPSS (k) (5.9)

5.6 Case study

We now illustrate the effect of different speed averaginghods on the performance of a
speed limit controller. The six variants for calculating tmean speed discussed in Section
[5.5.2 are used to calibrate the model that is used by thedatemtresulting in six different
parameter sets. For each of these parameter sets we detdromirgood the model predicts
future traffic states, and we determine the difference betwviee measured and the predicted
total time spent (TTS).

In the remainder of this section we first introduce the nekwaord traffic scenario, and
then develop a variable speed limit controller accordirthésteps described in Sections 5.3
and 5.4. Next, we use the six different averaging methodsinvihe speed limit controller,
and perform a simulation case study in which we first calibthe prediction model, and
then compare the performance of the corresponding coatsoll

5.6.1 Network and traffic scenario

For the traffic network, a part of the Dutch freeway A12 is stdd, see Figure 5.4. The total
length of the considered stretch is 17422 m. There are twaomps, near Veenendaal and
near Maarsbergen. The major cause of delay on this stregcthack waves. Shock waves
are traffic jams that propagate in the opposite directiohettaffic flows, and often emerge
from on-ramps and other types of bottlenecks. The outflowsbfack wave is usually about
70% of the freeway capacity [83], and resolving shock waaessignificantly improve the
freeway traffic flow.

The selected freeway stretch is modeled with Paramics v6rh Quadstone [137], a
microscopic traffic simulation model. The resulting modél e used as representation of
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Figure 5.4: Network of the case study, part of the Dutch fiaaed12.

the real world. Since Paramics is a stochastic model, eanhlation should be performed
several times to obtain statistically significant resufist our model, we perform 5 runs for
each simulation.

During the simulation of the freeway a shock wave is intraliby simulating an in-
cident downstream of the considered stretch. One vehiciojgped downstream of the
on-ramp near Maarsbergen for a period of 5 minutes, duringiwbne of the two lanes
is blocked. This will create a traffic jam, which expands whihe lane is blocked, and
the shock wave starts to move upstream when both lanes agssiltle again. The traffic
demandg®™(k) on the freeway is set to a constant value of 4400 veh/h, athwdaishock
wave will remain existent in the network when no control iplgd.

We start the simulation with a full network, and simulate siquof one hour. Figure
[5.5 shows the simulated measurements on the network. Orotteohtal axis, the time is
shown, and on the vertical axis, the locations are given fifsiesegment is at the bottom of
the figure, and the last segment at the top. In the top sulibdmeasured mean speeds are
given. Lighter colors represent higher mean speeds. Theksiave is clearly shown as the
thick, dark stripe going upstream as time elapses. Alsoégrd#nsity plot (the middle sub-
plot), the shock wave is clearly visible as the thick, ligtmiee representing high densities.
The bottom subplot shows the flow, where it can be seen frorddhecolor that due to the
shock wave the flow decreases. Note that the thin dark stitig¢sre going downstream as
time elapses, are caused by differences in speed betweitirad vehicles.

5.6.2 Design of a dynamic speed limit controller

The influence of different averaging methods on performari@controller will be illus-
trated with a variable speed limit controller. We will nowléw the design steps for the
controller as described in Sections|5.3 and 5.4. Note hawbe since the case study is
performed in a simulation environment, not all steps aressary.

Formulation of the objectives and constraints

The policy objective of the controller is selected to be #mduction of the travel time on the
freeway stretch. The long travel time in the uncontrollddation is mainly due to shock
waves. Shock waves can be reduced or dissolved by applymanaig speed limits on the
freeway, see [64]. Traffic upstream of the shock wave candveesi down, thereby limiting
the inflow to the shock wave. Since the outflow of the shock walestay constant, this
will reduce the length of the shock wave, and can even dissblThis effect can be reached
by selecting the total time spent (TTS) as cost functioncishould be minimized.

It is also possible to define constraints for the controlempossible policy constraint
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Figure 5.5: Traffic condition without control.

that we can select is a maximum queue at the origins:
Wo(K) <wWg'® Yoe O

wherew, is the queue length at origm andO is the set of all origins in the network. When
we apply speed limit control, physical constraints on,,etge speed limits can be given by:

vmin < vcontrol(kc) < ymax

where v and v are respectively the minimum and maximum allowed speed, and
veontolk ) s the speed limit applied at control time step For the case study we use
minimum and maximum values for the speed limits of 40 km/h 32@ km/h respectively.
The speed limits vary between these bounds. Further, atpemesignal variations is added

to the cost function to reduce speed limit oscillations.

When the speed limits are applied to the Paramics model tleaypanded to steps of 10
km/h to mimic reality more closely. This increases the misind&getween the predicted and
measured states, which decreases the performance of ttrellmsn However, in Paramics
the actual speed of drivers will vary stochastically arothrelpresented speed limit, which
decreases the negative effect of the rounding operationeopearformance of the controller.
Moreover, in [66] it was found that when using the round operathe speeds that are
obtained during a simulation are approximately equal tastheeds that are obtained during
a simulation where no rounding is applied.

Selection of the network

The complete network is shown in Figure 5.6. Measuremeritdwitaken on the whole
stretch, over the length of 17422 m. We will control the patween the on-ramps at
Veenendaal and Maarsbergen, which results in a contrditetth of 9775 m.
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Figure 5.6: Detailed network of the case study.

Obtaining measurements

To obtain the measurements we use loop detectors. The loeqgtois in the micro-simulator
are placed at the locations of the existing loop detectortherireeway. The distances be-
tween subsequent loop detectors is varying between 545 r@Hhoh.

Selection of the control method

As control method we select model predictive control (MREB)explained in Section 5.2.2.
This control method requires a model and an optimizatiooritlym. The model selec-
tion will be described below. As optimization algorithm welext sequential quadratic
programming (SQP) [19] as implemented in the MATLAB funatiari ncon [154], with

a multi-start approach. This algorithm is selected sinaait handle the nonlinear, non-
convex, bounded optimization problem that should be sobwethe MPC controller. At
each controller stek, 16 distinct initial value sets are used.

Model selection

For the speed limit controller we will use the macroscopédfic flow model METANET,
as described in [106]. The METANET model introduces thegirn of a freeway network
into multiple links and segments. Each freeway lmkis divided into several segments
i, see Figure 5.7. For the case study, we consider three likis,in total 26 segments,
see Figuré 5.6. Segments 1 to 5 belong to link 1, segments 6 bel®dng to link 2, and
segments 22 to 26 belong to link 3. The segments are chosaritsicthe loop detectors
are near the downstream boundary, in order to obtain aecoraasurements of the outflow
om,i (ks) of the segments. This means that the segments have ldngjtasd thus that each
segment should have its own values for the model parametéish is not conform the
original formulation of METANET. However, for simplicityin this case study we assume
that within the given link all segments use the same valugHermodel parameters. The
on-ramp near Veenendaal is connected to segment 5, and-tlaenpnnear Maarsbergen to
segment 22. Segments 7 to 20 will be controlled via varigpéeed limits.

Within the METANET model the state of segmeémf link m during the periodkT, (k+
1)T) is given in terms of the densiiym (k), mean speeu;(k), and outflowgm;(k) of the
segment. Herk denotes the simulation step, with simulation time inteifivaEach segment
i of link mhas a lengthLnyj, while the number of laneksy, is equal for all segments in link
m.
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Figure 5.7: In the METANET model, a freeway link is dividegbisegments.

The METANET model equations are given by [106]:
Omi (k) = Pmi (k)Vm,i (K) Am,

pmi(K+1) = pmi (k) + [y (Ami-1(k) —ami (k)),

Vi (4 1) = Vi (K)+ = (V (i (K)) ~imi ()

m

+ LLmiVmJ (K) (Vm,i-1(K) = Vim;i (k)

_ ImT pm,i+1(k)—pm’i(k)

Tmbmi  pmi(K) +fm (5.10)
and
ree 1 m,i k ém
V (omtlo) = viseexp |- (2 ) (5.11)

wherevi®eis the free flow speed in linky, o< is its critical density (i.e. threshold between
free and congested traffic flow), amg, 7m, xm, anda, are model fitting parameters.

At the locations of the on-ramps, the flows arriving at thefvay and at the on-ramp
are added to determine the flow downstream of the on-ramp:

am1(K) = N, (K) +0r (k)

wheregm(K) is the flow entering the freeway link downstream of on-ramp g, n,, (k) the
flow leaving the freeway linle upstream of on-ramp, andgq, (k) the flow leaving on-ramp
r. In order to account for the speed drop caused by merginggohena at the on-ramps,

the following term is added to (5.10) [89, 106]:
_ OmT o (K)Vm1 (k)
Lo gl (5.12)

wheredn, is a model parameter of linkn andvm 1(k) the speed at the first segment of the
freeway link downstream of the on-ramp. The virtual enigspeedim o(k) of leaving link
mdownstream of the on-ramp is given by:

(k)9 (K) +vi (K)o (K)
Qpe.N,, (K) +r () ’

VN
VmAO(k): Sl
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wherev; (k) is the speed of the vehicles that leave on-ramphis virtual entering speed is
used in the speed update equation (5.10) to compute the spéseitraffic that enters the
first segment of linkm.

Origins are modeled using a simple queue model. The numbeela€lesw, in the
gueue at origiro evolves as follows:

wo(k+1) = wo(k)+ T (6°™(k) ~Go(K)) (5.13)

whereqd®™(k) is the demand at simulation stkpandgo (k) is the outflow given by

au(k) = min{ i + 291, Q, 2 om0, (514)

whereQ, is the capacity of origiro under free flow conditions, and"®*is the maximum
density. For on-ramps (5.13) and (5.14) are also valid.

In [64] some extensions are described which, among othersjulate the effect of
variable speed limits by replacing (5.11) by:

V (pmi(k)) = min (vfr;eeexp [—1 <pm=i(.k) )T (1+a)v°°-””°'(kc)> : (5.15)
, am p%m ’ m,i

The parameten expresses the obedience of the drivers with respect to thieedspeed
limit. When the speed limits are enforcadvill be smaller since drivers will not exceed the
speed limits as much as without enforcement. The indecounts the control time steps,
as introduced in Remark 5.1. The interval of simulation tisteps that correspond to the
control time stefk; is given by[k:McMs, (ke +1)McMs) —1].

As cost function we selected the total time spent (TTS), s=#i@1 5.6.2. When using
the METANET model, the TTS can be computed as follows:

(ke+Np)McMs
IS =T Y ((m 5 ko +O;>wo(k)> (5.16)

k=kcMoMs+1

where.# is the set of pairém,i) of link indices and the corresponding segment indices.

Calibration and validation
Calibration is done by off-line numerical optimization mgian objective function given by

| 1 Kc—Np Mc(Ke+Np) Ms(Ks+1) |
Jo(9) = J(0, ks, K) (5.17)
Ke=Np z1 ks=%ckc k=|\%<s+1

whered is the set of model parameters consisting'fﬁl‘e pﬁ{", Tm, Tm, Km, @nday, for each
of the three linksKs is the number of sample steps for which measurement datailable,
and whereJ®@(, ks, k) is given by:

V sample(kS ~Vmi (K 2 psa_mp|9(ks) - pmi (K) 2
cal — = .
Jo(0, ks, k) = (mé%{< K ) + ( p(ks) ) ;
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wherev(ks) andp(ks) are the average speed and density of the measured data finonollew
stepk. to ke+Np. The error in the predictions that are made by the contraflewery control
time step is computed, and then the average of the error$ pfealiction periods is taken.
A lower value of the objective function (5.18) means a befiteof the measured states
{\/fn?{“p"a, psamPlY by the predicted statesigi; im,} reproduced by the traffic flow model.

Another option is to compare the two data sets with respethédovalue of the cost
function. When the cost function is selected to be the TTS{d%.l16)), the difference
between measured and predicted TTS can be determined te fhdgerformance of the
parameter values. The error is given by

1 KMoy JTTS(k) - ITTS(k,
R 519

which gives the average percentage of mismatch betweenTBefdr the measured data
JTTS, and the TTS for the predicted dal&' for the parameter sét and whereK. is the
final control time step in the scenario.

This offline calibration of the METANET model is performedttvthe MATLAB func-
tionf m ncon [154] which implements SQP, which is the same algorithmwhthbe used in
the on-line controller. We use the algorithm in a multi-stanfiguration with 100 different
initial values, which increases the probability of findimg tglobal (or best local) optimum.
To deal with the stochasticity of Paramics (see Sectiorlbwe use 5 different random
seeds. The cost functiord§?®(9) andET™S() are determined at each control time step,
for the prediction that is made at this time step. For thebcation of the total model the
average valug®@(#) andETTS(6) over the results of all control time steps are determined.

The calibration is be performed for each of the six mean spakmlilation methods de-
scribed in Section 5.5.2 separately, which results in dfeidint parameter sets as presented

in Section 5.6.3.

State estimation

The state of the network consists of the average speed,gevdemsity, and average flow.
The speeds are measured by loop detectors, and averagethevitifferent methods de-

scribed in Sectioh 5.5.2. The density and flow can be caledlitbm these measurements
using (5.1) and (5/2), see Section 5.3.5. At every contrtiliee step, a new estimation of

the current state is obtained, based on the last availatdsumements.

Demand estimation

The Paramics model uses a demand of 4400 veh/h, which mearisrimdomly introduces
vehicles, with a mean of 4400 veh/h. To make predictions #ehMETANET model, an
estimation of this stochastic demand should be made. Hawlresimplicity we use the
known average value of 4400 veh/h as estimation of the dermaridg the case study.

Controller tuning

For the controller we have selected the following paransefEhe METANET model (5.11)
uses a simulation time interval =10 s. This period is small enough to ensure that the
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vehicles cannot drive through a whole segment in one simualatep, and large enough
to prevent unnecessary long computation times. The coatriiine interval equal3.=60
s, which prevents fast switching between control values\ahith is a reasonable time
to perform the on-line optimization. The prediction honzequalsN,=20 steps, which is
the time required to drive through the network when a shockevis present. The control
horizon isN.=10 steps, which forms a trade-off between the required coatipn time and
the detectability of the effects of the control actions.

Performance evaluation

Now we will illustrate the selection of the evaluation fuiect, using the speed limit control
example. Since the objective is to minimize the TTS, we deitee the improvement in
traffic conditions by comparing the obtained values for ti&THowever, only comparing
the TTS based on the number of vehicles in the measured anedasyood measure, since
the controller will not only increase the outflow, but alse thflow when the shock wave is
resolved successfully. This is due to the fact that the iringnaehicles will not be blocked
anymore, when the shock wave is dissolved. To take into addbis change in the demand
a different formulation of the TTS is used, based on the dehgdf™(k) and the outflow
q*U (k) [64]:
McMsKc-1
TS = TNoMcMsKc + T2 2 (MMsKe=k) (am0 ~™(k)) (5.19)
k=
whereNy is the initial number of vehicles in the measured area of theviay.

5.6.3 Results

The results of the case study are presented here. Firstseasdithe calibration of the var-
ious mean speeds, and then we simulate the network usingahtbe different averaging
methods within the controller and compare the results nbthwith the different methods.

Comparison of calibration results for the various mean speds

We first perform the calibration as described in Sedof2. The results are shown in
Tablg 5.1. The average calibration errdgg computed with[(5.18) are presented, and next
the average error between the measured and predicte&ESs shown, as obtained using
(5.18).

The lower the values fal.y andEtts, the better the fit between the model predictions
and the measurements. Based on the average calibratios dggjathe estimated space
mean speed using the instantaneous speed vanighte gives the best result, followed by
the time mean speed™ and the geometric mean speé®. Based on the average error
between measured and predicted TTS the geometric mean#l5épdrforms the best, fol-
lowed by the time mean spe&d' and estimated space mean speed using the instantaneous
speed variancé®™s% , which yields the same performance.

Since the time mean speed', the geometric mean spegf® and the estimated space
mean speed using the instantaneous speed varigfiéé& perform better than the other
averaging methods for both criteria, we will implement theseraging methods in the
speed limit controller.
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Table 5.1: Mean speed performance for calibration.

Jeal | ErTs
Time mean speed vims 38.9| 55
Estimated space mean speed ysms 42.0| 5.6
Geometric mean speed Vae0 394 | 5.1
Estimated space mean speed (instantaneows)'s% | 38.3| 5.5
Estimated space mean speed (local) vimsel 1 42.3 | 6.5
Time average space mean speed ysms 425| 6.0

Performance evaluation results

Now the selected mean speed variants are used in the modadtm@speed limit controller,
to investigate which variant will give the largest improvemhin traffic conditions.

For the comparison of improvement in traffic conditions, TA& is used. A lower value
of J7TS as given by/(5.19) represents better traffic conditions;eson average vehicles are
spending less time in a certain area, indicating that the iomigher. In the uncontrolled
situation, as shown in Figure 5.5, the TTS is 1068.0keh

Using the MPC-based traffic controller, the shock waves &sotled for all averag-
ing methods that are used, see for example Figure 5.8 wheitinte mean speed is used.
The speed limits lower the flow that enters the shock wave tgyitey the upstream traf-
fic. In this way the inflow of the shock wave is lower than theflouwt, which reduces the
shock wave. Using time mean speeti¥(ks) as state variables for the controller gives the
largest improvement compared to the uncontrolled sitnatigrrs=901.1 vehh, i.e., 15.6%
improvement), followed by the estimated space mean spéed tie instantaneous speed
variancer’®Ms% (ks) (Jrrs=916.1 vehh, i.e., 14.2% improvement), the geometric mean speed
VI®9(ks) (Ir7s=928.0 vehh, i.e., 13.1% improvement).

The different values fadrts show that the selected averaging method can make a differ-
ence of 2.5% of the controller performance, which illusgsathat it is important to consider
the used averaging technique when designing a controller.

5.7 Conclusions

The use of advanced traffic control systems can significamtprove the performance of
the traffic network. However, implementing such contrdlernot straightforward. There-
fore, we have investigated issues that are important wheanaed traffic control systems
are applied in practice. First, we have presented a thealaiverview of the process of
developing and implementing such a controller, and next awe linvestigated the effect of
different averaging methods for speed limit controllers.

Within the literature overview, we have first discussed éssielated to the design of a
model-based controller. In particular we have considenedelection of the network, mea-
surements, the selection of the objective, the formulatfoconstraints, the selection of the
model, and selection of the control method. Next, we haverdesd issues related to the
implementation of model-based controllers. More spedificave have addressed calibra-
tion and validation, state estimation, demand estimationtroller tuning, and performance
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Figure 5.8: Controlled traffic flow using time mean speedstatesvariable. Note that for
the simulations with the other averaging methods the plotk ksimilar. The
speed limits are only present at segments 7 to 20, and aativegla period of
25 minutes, as shown in the top plot.

evaluation.

Since many of the investigated topics are based on measnteme have investigated
the effect of measurements on the controller performanegatticular, we have focused
on the effect of using different methods for calculating mepeeds. For a specific case
study, namely simulating a part of the A12 freeway in The Md#nds, we have illustrated
the influence of the averaging method for speed measurerinethis performance of a dy-
namic speed limit controller, that applies model predetontrol (MPC) with METANET
as its prediction model. During the calibration of the potidn model, the most accurate
prediction of the TTS has been obtained by using the geotneteian speed. During the
simulation of the traffic with the controller, the time megreed has resulted in the best
controller performance. With the controller, the TTS cobklreduced significantly. Im-
provements up to 15.6% compared to the uncontrolled sitmatie reached, which means
that in this case the geometric mean speed is the most suéigblaging method for the
speed measurements. Reducing the shock waves also hagieepeféect on the flow,
which is increased by 4.8%.
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5.A List of symbols

Metanet model

k simulation period counter, for peridlT, (k+1)T)

T simulation time step (h)

Ms ratio between the sample time stgpand the simulation time step

M set of pairdm,i) freeway linksm and corresponding segments

Am number of lanes of freeway link

pmi(k)  density at segmeni of freeway link m at simulation time k

(veh/km/lane)

ami(k)  outflow of segment of freeway linkmat simulation timek (veh/h)

vmi(K)  mean speed on freeway segmeiot link m at simulation timek (km/h)

L, length of segmentof freeway linkm

Wo(K) gueue length at origin at simulation timek (veh)

qdemk)  traffic demand on origim during simulation period (veh/h)

Measurements

Ks sampling period counter, for periokk[ls, (ks+1)Ts)

Ts sampling time interval

Mc ratio between the control time st@pand the sample time stfp

Ks number of sample steps for which measurement data is alailab

qjamp'e(k ) flow on freeway near detectdrduring the sampling periokk (veh/h)

vi2™%ks) mean speed on freeway near deteafoduring sampling periodks
(km/h)

pSAmPlRYg)  density on the freeway stretch near detectaturing sampling period
ks (veh/km/lane)

Ud,n(Ks) speed of vehiclen measured by detectar during sampling periodts
(veh/h)

Ng (Ks) number of observed vehicles on deteaaturing sampling perioé

ViMS(Ks) time mean speed during the sampling petkgfveh/h)

VMks) estimated space mean speed during the sampling per{@gh/h)

VI€9(ks) geometric mean speed during the sampling pekiddeh/h)

aiz(ks) variance of the instantaneously measured vehicle speetisgdihne
sampling periods (veh/h)

V°Ms%i(ks)  estimated space mean speed using the instantaneous speadeveur-
ing the sampling periols (veh/h)

VMs9l(ks)  estimated space mean speed using local speed variancg theisam-
pling periodks (veh/h)

a|2(ks) variance of the locally measured vehicle speeds during @ngpkng

vks)

periodks (veh/h)
time average space mean speed during the sampling perfeeh/h)
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Calibration and control

Np

Nc

0

ke

Te

M
JTTS(kC)

Jcal(e)
ETTS(G)

prediction horizon (control time steps)

control horizon (control time steps)

set of model parameters that should be calibrated

controller time step counter, for periokk[lc, (Ke+1)Tc)

controller time step (h)

ratio between the control time st@pand the sample time stdp

total time spent in the network and at origin queues at cotitne step
ke (vehh)

calibration cost for parameter gt

difference between measured and predicted TTS for pararseté
(vehh)



Chapter 6

Conclusions and future research

During peak periods the traffic demand exceeds the avaitabbkcapacity on several parts
of the road network. This leads to congestion with negatifects such as delay, increased
fuel consumption, and pollution. This problem can be redumeconstructing new roads,
but this is expensive and time-consuming. Another way tacedhe amount of congestion
is to make more efficient use of the available roads. The tibgeof the research conducted
in this thesis is to develop control methods to increase fi@ency of road use, and thus
to reduce the negative effects of congestion. The focudhe®adside control systems for
networks that contain freeways as well as urban roads. Methoe developed to integrate
available control measures, and to include the effect ofdiiiers’ route choices in the
controllers.

In this chapter we give an overview of the contributions @f tesearch described in this
thesis, and we present recommendations for future respaofgcts.

6.1 Research contributions

The main goal of the research described in this thesis is\teloje control systems that

allow for a more efficient use of the available road capaclty.general, the developed

controllers should provide road authorities with meansrtprove the performance of their
networks, to coordinate control actions of different measpand to incorporate the effects
of information providing. Within this general goal, sevesab-goals have been selected:

e Design of a control method for mixed freeway-urban netwprks

e Development of controllers that influence route choice,

e Presenting an overview of implementation related issues.
Each of these topics is considered in one or two chaptersovBeke will summarize the
research described in the whole thesis. We first describgéetedoped controllers, and then

consider implementation issues.

149
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6.1.1 Controllers developed

In this thesis, controllers for three different proces$es ppear in traffic networks are de-
veloped. All controllers are based on model predictive @ ifMPC), a control method that
uses a prediction model to predict the future evolution efttaffic flows, and an optimiza-
tion algorithm to determine the optimal control signalseTbjective of the controllers is to
reduce the total time that the vehicles spend in the netWorlsome controllers combined
with other factors, such as minimizing the deviation fromesiced flow, or the reduction
of the travel times. Note however that the developed contethods can also be used with
different cost functions, e.g., related to pollution, waittimes, number of stops, etc. As
optimization method for the nonlinear non-convex optirtimaproblems that appear within
the MPC-based controllers, multi-start Sequential QuadPxogramming (SQP) is used as
optimization algorithm. For complex objective functionsltirobjective optimization tech-
nigues are necessary, as described in, e.g., [108].

We will now shortly discuss each of the controllers, congitgthe process that they
focus on, and describe the corresponding prediction mbdgis used.

Controller for mixed networks A controller is developed that controls the traffic flows on
networks that consist of freeways and urban roads. The daakccontroller is to
reduce the total time spent in the network. Since the cdetrobnsiders the whole
network, congestion that appears on on-ramps and off-ramapde reduced by co-
ordinating the control actions of the control measures éutban area and on the
freeway. Also, the performance of the urban and freeway owdsvindividually is
in principle improved, due to the integration of all avallloontrol measures. The
control measures that are considered are ramp meteringl&tgmns at on-ramps,
variable speed limits at freeways, and traffic signals aanibtersections. A predic-
tion model is developed for the controller by adapting aneémating the urban queue
length model developed by Kashani [82], and coupling thislehavith the macro-
scopic traffic flow model Metanet. This has resulted in a makat describes the
traffic flows on mixed networks, and provides a good tradeéseffveen accuracy and
computational effort, and thus is suitable for the use idioa-controllers.

The integrated control of mixed networks has been illusttatith a network
consisting of two freeways and an urban road. The performafiche controller
has been compared with the performance of systems that>apate the existing
control methods SCOQOT and UTOPIA. For different traffic sogos the integrated
controller obtained improvements between 2% and 7%.

Anticipative controllers Three model-based controllers are developed that takenthe i
ence of route choice on freeway networks into account. Adigtien model for the
evolution of the traffic flows all controllers use the Metanetdel.

The first controller uses an equilibrium-based dynamiditraSsignment (DTA)
algorithm to determine the within-day route choice. To abthis equilibrium-based
dynamic assignment model, a static assignment model baste:dMethod of Suc-
cessive Averages is combined with a method that adapts thentuassignment to-
ward the computed static assignment via a learning factos anticipative controller
based on an equilibrium-based DTA model has been appliechtdveork with two
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routes and an on-ramp metering installation. With respec¢hé situations where
no control was applied, and where the ramp metering straddMEA was used,
improvements of respectively 11% and 9% have been obtained.

The second controller used a route-choice-based modetitisatibes the day-
to-day route choice as well as the within-day route choicke @ay-to-day route
choice is based on a Bayesian learning algorithm, using#velttimes experienced
by the drivers as main factor in the route choice processwithén-day route choice
is based on a density-dependent lookup table. This antivigpeontroller that uses
a route choice model has been used for on-ramp as well aamff-metering in a
network with two routes. Compared with the situation withoontrol, the total time
spent has been improved by 3% for on-ramp metering, and tha orban density has
been decreased with 60% in the situation where off-rampnngtbas been applied.

Third, the reaction on provided travel time informationnsluded in the route-
choice-based method, based on the difference between ohi@@d and expected
travel times, and on the correctness of the provided trased.t This anticipative
route-choice-based controller that uses informationiging and variable speed lim-
its for a network with two routes improved the traffic sitwatiwith 3% compared to
the situation without control.

Day-to-day route choice controller A controller is designed that actively influences the
drivers’ route choice. For the controller a basic route chonodel is developed, with
three different versions that differ with respect to thewwek properties they can
model. The first version, for networks with separate routses]s to a mixed integer
linear programming (MILP) problem when it is applied in an ®Bontroller. This is
an advantage, because for this type of problems fast anakeffsolvers are available,
which is a requirement for on-line control. The second ersif the model includes
piecewise constant demands, and when it is used in an MP&tamtroller the
resulting optimization problem can be approximated wittvAbP problem. The last
version of the model includes overlapping routes and piesewonstant demands,
and results in a general non-linear optimization problem.

The day-to-day route choice control for a network with twates resulted in
improvements between 45% and 72% with respect to the noalase, depending
on the selected optimization algorithm and the number ¢ifinralues.

The day-to-day route choice control is further illustrateith a network con-
sisting of three routes where the Braess paradox appeaasjimgethat adding a link
to the network decreases the performance. The contrdlistridtes that closing this
extra link indeed improves the performance with 15%.

6.1.2 Implementation issues considered

Before the developed controllers can be implemented intipeggcmany steps should be
taken. This has led to the following topics:

Implementation issues A short literature overview of issues related to the implataton
of model-based controllers in practice is given. Designéssas well as implementa-
tion issues are discussed.
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Influence of speed averaging methodd he controllers developed in this thesis base their
control actions on measurements obtained from the roadonketwihese measure-
ments are used to determine the state of the network, whids term is used to
predict the evolution of the traffic flows. The measuremergsazeraged over a cer-
tain time period. Different methods can be used to averageitrasurements, which
leads to different average values. To investigate the effethese different values
on the performance of the controllers, we compare diffespeed averaging meth-
ods using a speed limit controller that has the objectiveetiuce shock waves on a
freeway.

The speed limit controller that has been developed to déterthe influence of
measurement averaging methods, resulted in a reductidredbtal time spent on a
freeway stretch of 16% for the time mean speed, 14% for thimattd space mean
speed, and 13% for the geometric mean speed. This illusttige the influence of
the averaging method is small for the selected scenario.

6.2 Future research

During the research performed for this thesis new thealetjuestions were encountered
which form the basis for interesting topics for future resbaln this section we will present
ideas for challenging research projects related to cdatrdésign, model development, and
policy issues.

6.2.1 Controller-related issues

In this thesis we have developed several controllers. [Quhe development of these con-
trollers problems and theoretical questions were encoedhtbat could not be solved within
this research project. This has lead to the formulation efftiowing research topics re-
lated to controller design:

Develop efficient optimization algorithms The applicability of model-based predictive
control methods largely depends on their ability to obtgitiroal control settings
within the available time. The controllers designed in thissis all use multi-start
SQP as optimization method for non-linear non-convex meisl. Other algorithms
might be available, such as, e.g., genetic algorithms [2}},g&ttern search [16, 85],
tabu search [61] and SNOPT [75]. These algorithms are seccalobal’ optimiza-
tion methods that in general obtain good results in a redde@anount of time. These
algorithms do not use gradients or Hessians and thus aes battable for optimiza-
tion problems related to traffic control. Also, the develamnhof new optimization
algorithms can significantly improve the applicability dietdeveloped controllers
and it can also allow coordination of a larger amount of cantreasures, or the con-
trol of larger networks. The tailor-made algorithms shdwddsuitable for the specific
type of traffic-related optimization problems and make useea., the form of the
cost function and the type of the available control sign&pecial attention should
be paid to the speed and scalability of the algorithms. Sihege is only a limited
amount of time available for optimization the intermedisdéutions of the algorithm
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should be feasible. This allows the controller to termirth& optimization process
and return a feasible control signal at the moment that thdadole time has elapsed.

Another possibility to lower the computation time for eagbtimization step is to
develop distributed optimization methods, which divide tptimization problem in
several smaller problems, which can be solved simultarigduashis case algorithms
should be developed that can handle the boundary condi¢ippsaring due to the
connections between the different problems.

Multi-objective control The objective of most controllers developed in this thesisoi
reduce the total time spent. Many other objectives can bsidered, e.g., total
throughput, total delay, fuel consumption, emissions,ugulengths, etc. Some of
these objectives require extensions of the prediction tspdeeven the development
of new models. When a controller is developed, the total abjealmost always has
to be a combination of different goals. The combination ffiedént goals leads to a
multi-objective optimization problem, for which a suitalgdolution method should be
selected, such as, e.g., combining the objectives into wnetibn using a weighted
sum approach, using goal attainment, or coupling the abgby introducing a
common variable, see [108]. Another issue related to theatibg function is that
some goals can better be left out of the function itself, laut be included into the
control problem as constraints. As a result, for each go#h®fcontroller the most
suitable way of handling it should be determined, choosketgvben making it a con-
straint or including it as part of the objective function.

Translate MPC into a faster control method MPC uses a prediction model and an opti-
mization algorithm to determine the optimal settings far tontrol measures. This
can lead to significant improvements with respect to théi¢raétwork performance.
However, the required computational effort will remain ssiie that strongly reduces
the possibilities of MPC controllers in practice. A soluttifor this problem can be
the development of faster control methods that approxirttaeesults that can be
obtained with MPC-based controllers. For example, a ptesailethod is to simulate
and optimize many different traffic scenarios with an MPGdzhcontroller off-line,
approximate the nonlinear results with a large look-upeahhd then develop a con
troller that compares the current scenario with the sceadni the look-up table and
applies the control actions that the MPC controller hasrdgted during the off-line
simulation. When the current situation is not available i libok-up table the con-
troller interpolates between situations in the look-udddbat are relatively close to
the current situation, see [73]. Another option is to depalole-based controllers
that approximate the MPC-based controllers by formulasimgeral rules that express
the relation between the current traffic situation and theyad settings for the traffic
control measures.

Develop hierarchical control methods Controlling large traffic networks with one central
controller will lead to large computation times. The maximallowed computa-
tion time limits the size of the network that can be contwbll€This problem can
be overcome by applying hierarchical control, where smaitgof the network are
optimized by low-level controllers that use detailed msdeind where higher-level
controllers optimize the whole network using a model witlow level of detail, see
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[24, 127, 129]. In this way the processes that have an infeienahe total network,
such as, e.g., the route choice, and changes in the demandbeceonsidered by
the higher-level controller, while the fast traffic flow pesses, e.g., vehicle behavior
on the freeway, and queue length evolution at intersectioas be handled by the
low-level controllers. Challenging research questionthiwithe area of hierarchi-
cal control are, e.g., the selection of the number of laytes,areas that should be
considered by each controller, the required communicatiencoordination between
the controllers, and the influence that the higher-levetrotiers should have on the
lower-level controllers.

Include future control measures In the future, new control measures or new applications
of existing measures will become available. These new mesasiould be included
in the control methods. First of all, the use of traffic infation as control measure
can be investigated. Initially, traffic information was piged to inform drivers about
the current traffic situation. Nowadays, the informaticartst to be used to influence
the drivers, by considering providing information as cohtneasure, see Chapter 3
and [76, 81, 107].

Second, control methods including in-car systems can belolged. The technology
that is located in cars is developing rapidly. The in-catesys can be used for data
gathering, which allows for a more detailed estimation & tlurrent traffic situa-
tion. Algorithms should be developed that can handle alif@mation that can be
obtained by in-car devices, and that combine all this inftiom into an estimated
state of the network. Further, when the possibilities ofithear systems are com-
bined with road-side systems in one control approach, tin®mpeance of the road
network can be increased significantly. Therefore, colatrelthat can handle these
in-car devices as well as the road-side equipment are bewvejaped, as in [9]. This
research can be extended to the development of intelliggrithe highway systems,
in which the road-side equipment steers the in-car coet®ih such a way that the
vehicles drive completely automated without interventiimm the drivers. Techni-
cal problems in this area are the large number of devicesstimild be controlled,
the unknown effects of the control actions, the dependehtieeocontroller on the
penetration rate of the in-car systems, and the requireghatational effort. Another
problem is the introduction of the system. The transitimnfrthe current situation
to a fully automated situation should go smoothly. This nsetrat the automation
should be introduced in phases, and that the developechsysteould be compati-
ble with the current situation. Further, the social acceptashould be considered.
Drivers might not willingly surrender the authority overeth car to an automated
system.

6.2.2 Model-related issues

The controllers developed in this thesis are based on motletsselected models determine
the possibilities of the controller, have a large influenoehe controller performance, and
influence the required computation time. This has lead tddhaulation of the following
model-related research topics.
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Develop model selection methodst is not trivial to decide which model should be used
for a specific application. The goal of the model should becteH first, and next the
effects that should be modeled must be determined. When alisagked within a
model-based traffic controller, the model must at least e tabdescribe the effects
of the traffic control measures. However, the level of ddtailvhich these effects
should be modeled depends on many factors, including theresbaccuracy and the
available computation time. As a result, model selectioarlyealways includes a
trade-off between accuracy and required computationattefFor example, when a
controller uses a fast model the control time step can belesmalhich might make
up for the less accurate results due to the faster feedbagkvidnich increases the
robustness with respect to measurement errors. On the lodinel; a more detailed
model with a longer time step might yield more accurate mtémhs and thus can
result in better control actions. In many cases this dilewillalead to the devel-
opment of new models, or to the adaptation of existing modélgidelines should
be determined that can help to select useful features fomtieel, and to make the
trade-off between the accuracy and the computation time.

Develop and use multi-class traffic modelsTraffic can be divided into different user
classes, like trucks and personal cars, business anddeisuers, male and female,
etc. Each of these classes will react differently on thelalilg traffic control mea-
sures, or can be controlled by special measures like dynanuk lanes. When these
different reactions and special measures are taken intiuatwia including a multi-
class model into the controller, the controller performe@nan be further improved.
Issues that should be considered when designing mults-clastrollers are the selec-
tion of efficient and accurate models, the possibly largenmatation times of these
multi-class models, selecting which properties of the sgasare important for the
control method, and the effect of using ‘binary’ control ree@s such as opening
and closing an HOV lane.

Develop and use multi-modal modelsEach transportation mode (car, train, lightrail, ship)
uses its own network but these networks do often interseat,@, railway passages,
bridges, or urban intersections. Opening a bridge for oifediiring the peak hour
might cause disproportionally large delays for the roaffitraand delaying a train at a
railway passage might lead to a missed connection for manglers. This illustrates
that the performance for all networks can be increased bydawating the control
actions on the different networks. Therefore multi-modaldels that are suitable
for the use within controllers should be developed. Isshasdould be investigated
are the available control methods for the different modeasd, the relation between
the costs for different modes. The different time scaleshatkwthe different modes
operate can also form a problem for the design. Moreoverdiffierent actions of
the available control measures might require the use ajémteonlinear optimization
methods.

Investigate stochastic modelsTraffic flows are inherently stochastic. This means that the
controllers should find an optimal solution for the whole aktraffic situations that
might occur in the near future. Including stochastic modethe controllers can lead
to the development of robust traffic control methods thatteamdle the variations in
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the traffic situation. When stochastic models are investjabne should take into
account the number of runs that should be performed to geéstatally significant
results, and the required computational effort. It sholdd ae considered that robust
controllers are in general conservative, and thus find |pmal solutions.

6.2.3 Policy-related issues

The use of traffic controllers is a policy decision. Poléits determine whether the con-
trollers are used, and what the control objectives are.hEgrthe potential effect of con-
trollers can be used when long-term policies are develofdéds leads to the following
research topics.

Develop desired flow patternsWith the controllers developed in this thesis it is possible

to approximate desired flows, which allows the introductiboptimal flow patterns

in the network. This means however that a method should bela@d to determine
what the optimal flows are for different roads. The netwdnk, nain origins and des-
tinations, and the surroundings of the network should bé/aed to define important
routes and corresponding demands. Then the locations elh\dv flows are desired
should be determined together with the routes that can baadjer flows. Based on
this information it should be possible to define the desiraffit assignment. This
desired assignment can be used in the formulation of thectiigs of a controller,

for example to steer toward the desired flows. Another sanah which the desired

flows are of interest appears when maintenance works arerpexfl. On the one
hand, the level of service should as high as possible duniesetworks, while on the
other hand the decrease in capacity of the available roatisafety considerations
require lower flows. In this case, the order in which the waaks performed and
the control actions that are taken should be optimized veipect to the difference
between the generated flows and the desired flows.

Investigate social and legal aspects of future control meases Future control methods

can only be used when they are accepted by the drivers, and tlikecontrol ac-
tions performed are legal. This is not automatically theecas can be seen when
considering, e.g., information providing or in-car cohtsgstems. When using in-
formation providing on variable message signs, the attitofthe drivers toward the
presented information is important since reacting on tloeeiged information is vol-
untary, and thus the drivers should consider the providémrimation to be correct,
otherwise they will ignore the messages. This also leads tonastigation of the
legal issues with respect to information providing. In pippte, the presented travel
times should correspond to the real travel times, otheriviseseen as false inform-
ing. However, when providing information and other contriasures are combined
into one control method, the other control measures candmbtosnake the provided
information true. Is this considered as false informing @t

When considering in-car systems, the acceptance of the'slplays a large role. The
drivers should partly or completely surrender their carh® ¢ontrol system, which
limits the possibilities of the driver and might cause distiwith respect to the control
system. Also, the legal aspects of automated highway sgstbwuld be considered.
Who will be responsible for, e.g., incidents?



6.2 Future research 157

Influence road layout and spatial schedulingThe layout of the road network has a sig-
nificant influence on the results that can be obtained witlfidraontrol measures.
The number of lanes at urban intersections influences tralplities of traffic signal
control, the number of on-ramps and off-ramps of a freewéiyemces the perfor-
mance of variable speed limits, and the number of alteraatiutes determines the
effect of route choice control. Guidelines should be dgwetbfor improving the road
layout in such a way that the performances of traffic corgreltan be increased, and
a method for simultaneously developing the road layout ardrol measures can
be designed. This will lead to an optimal road layout, whitdo @ffers a trade-off
between control possibilities and, e.g., road area, nummtiemps, number of lanes,
and number of roads. On the long term, not only the road lagantbe influenced,
but also the spatial scheduling can be adapted based onpketed traffic demands
and control possibilities. The traffic demand on the netwargely depends on the
origins and destinations in the network. The traffic demé&d tan be influenced by
changing important origins and destinations. Existingiog and destinations cannot
be changed within a short period, but via granting constvndicenses the location
of buildings and houses can be influenced, e.g., by allowmgpanies at special
locations only, and residential buildings at others only. éWla new residential or
business area is developed, the location of the main oragidsdestinations can be
selected beforehand. This can lead to the integrated desitpe road network and
the location of the main origins and destinations, which paavent a mismatch be-
tween road capacity and demand, and reduce the negatietseffethe traffic on the
surroundings.
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Appendix A

Route guidance during
maintenance works

In this appendix we perform a simulation case study, in whietconsider the road network
around the Dutch city of Eindhoven. During the years 2008tt®maintenance works will
be performed on this network, combined with a reconfiguratibthe freeway part of the
network. It can be expected that this will lead to large tegffioblems. In this appendix we
propose a route guidance method to reduce these trafficqpnsblby re-routing the traffic
flows. With this method, we will illustrate the possibilisi®f influencing the route choice
of drivers on purpose during construction works.

We first give a general overview of maintenance/reconstmatorks and the traffic
management during such works. Next, we describe the netafoBindhoven and focus
on the expected traffic problems during the works. Then weensa#tetailed model of the
network, which is used as a basis for the case study. Then sigrda basic system for
route guidance, which will reduce the travel time influeigdine route choice of the drivers.
Finally, we present some simulation results. The work diesdrin this appendix is based
on [69] and [70].

A.1 Maintenance works

Maintenance or reconstruction works are necessary to keemtd network safe and up-
to-date, but they always come with negative side-effectste traffic operation during

the period that the works are performed. Lanes or completdsrtvave to be narrowed
or closed, the maximum speed has to be reduced, and the peiglooads have to deal
with an increase in demand. All this leads to longer traveles and more delay for the
road users. In The Netherlands the deterioration of théidraperation in a construction
zone has direct consequences for the traffic operation imge lpart of the surrounding
network due to the large number of roads in a relatively sarath. Currently, the difference
between available capacity and traffic demand is small, amchrmore inconvenience due
to maintenance works cannot be tolerated. However, maryg pithe Dutch road network
need maintenance or reconfiguration to be able to cope watledirent and future traffic
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demands. Therefore in The Netherlands the tendency is &t amd more effort is put into
the investigation and analysis of the traffic operation miyiaintenance or reconstruction
projects, see, e.g., [52, 151, 171].

Also in the US the traffic operation during road maintenanoeks is a topic of cur-
rent research. The US Department of Transportation, anecesdly the Federal Highway
Department, has developed a general optimization proogsgimize the impact of recon-
struction projects on the traffic operation, such as extrayestion and an increase in the
number of incidents [117]. Further, a strategy for findingoptimal maintenance plan is
described in [34], and the reaction of road users to dynamiterinformation at freeway
work zones is investigated in [74]. In [74] the estimatedétdime to the end of work zone
was presented to the drivers. Showing these travel timeslctesulted in the selection of
an alternative route by 7 to 10% of the road users.

A.2 The network around Eindhoven

For the case study, we consider the network around EindhoVke city of Eindhoven is
located in the south of The Netherlands. The network arobaecity is selected since the
city attracts a large amount of traffic due to the presencargklcompany areas and a large
shopping center, and since routes for long-distance traffiard Belgium and Germany
pass the city. This combination of local and long-distarredfit forms a challenge for
the road authorities, since the two types of traffic use thmeseoad network, but have
different needs. Furthermore, the capacity of the road odtis not enough to handle
the current demand, and thus a reconstruction is requiretttease the capacity. During
this reconstruction the road capacity will be reduced evemem This will increase the
importance of traffic control measures, which should be usdaep the efficiency of the
road use at an acceptable level.

The selected network has several road administrators. Hire mmad network contain-
ing the freeways is administered by the Dutch Ministry ofiport, Public Works and
Water Management, and the underlying network is admirastéy the provincial govern-
ment, the city of Eindhoven, and the governments of the sading villages, depending on
the location of the different roads. These road administsadre responsible for the main-
tenance, traffic operation, and safety on the roads. Thestsean organization that helps
the different parties with issues concerning the road agination. This organization is the
SRE (‘Samenwerkingsverband regio Eindhoven’, the codigerassociation of the region
Eindhoven). The SRE initiates, stimulates, and coordgtite cooperation between the 21
communities that form the region of Eindhoven.

The current road network is shown in Figure A.1. For this csteely we consider
origins/destinations T1, T2, and T3, junctions P and S, andamps/off-ramps Q and R,
as marked in the figure. The main freeways in the network a&@88 located at the north
side of the city, the A2 connecting T2 and T3, and the A67 coting T1 and T3, with
junctions at Batadorp (T2), De Hogt (P), and Leenderheidel(@ortant on-ramps and
off-ramps are Veldhoven Zuid (U), Waalre (R), and the HighiT€ampus (Q). Major local
roads are the ring road around the center of Eindhoven, theemtions between this ring
road and the freeways, and the roads to the surroundingeglaWe mainly consider the
southern part of the network during the case study. A singplifepresentation of this part
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Figure A.1: The network of Eindhoven.

of the network is presented in Figure A.2, which shows thginsidestinations T1, T2, and
T3, junctions P and S, and on/off-ramps Q, R, and U, and theeaxtiimg freeways.

There are three important routes in the network:

e T1-T2, which is actually the connection from the A67 to the AR traffic traveling
from the south to the north of the Netherlands and vice versa.

e T1-T3, the A67 from west to east and vice versa.

e T2 - T3, the A2 from north to south and vice versa.
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Figure A.2: Schematic representation of the part of the nétwhat is considered during
the case study.

A.2.1 Paramics model of the network of Eindhoven

The network of Eindhoven, as shown in Figure A.1, will be mledewith a detailed micro-
scopic model. The obtained model will be used as a basis éotdke study. To create this
model the microscopic modeling and simulation tool Pararfii87] is used. Paramics is a
suite of software tools used to simulate the movement andvehof individual vehicles
on urban and freeway road networks. It contains three mpdetsir-following model, a
lane-changing model, and a route choice model. Based oa thedels the individual ve-
hicle movements and the interactions between the vehielédsei network are determined.
This results in a detailed simulation of the traffic flows oa Whole network.

Before actually starting to construct the model, the nundfeoads that should be in-
cluded in the model of the network of Eindhoven must be datesth We have decided to
model all freeways. The number of modeled urban roads ighasa trade-off between ac-
curacy and complexity, since including more roads meane&sing the complexity, which
increases the required computational effort. We have walgbe major urban roads that
handle a large part of the local traffic, and the roads thatisee as secondary route by the
long-distance traffic in case of incidents on the freewayeskhare the roads N265, N69,
N270, and connections between Eindhoven and VeldhoveseEé&¥aalre, and Best. Fur-
ther, we model the network south-west of the freeways marotighly, since this part is
used for the simulation study. The final network as modeldehiramics is shown in Figure
IA.3.

Information about links, nodes, and geometric propertigseonetwork of Eindhoven is
obtained form a static Omnitrans model [118, 146], ownedhigySRE. The demand is also
derived from the demands of this Omnitrans model. In the @ams model static demand
information is aggregated over four time periods: morniegly evening peak, rest of the
day, and twenty-four hours. For each origin in the netwadnk, mean demand during the
selected period is given. For the case study we consider traing peak between 6:30
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“eldhoven

Figure A.3: Network that is modeled with Paramics.

a.m. and 9:00 a.m., since during this period the demand isi¢ieest, and thus many traffic
problems can be expected. Within Paramics, the demand aoretiverk is represented with
a static Origin-Destination (OD) matrix, which containsanevalues of the demand for
each origin-destination pair. The demands of the Omnitraodel are used to determine
the entries in this OD-matrix. To obtain a more dynamic deth&aramics multiplies these
static demands with a demand profile, which is equal for adlios. The profile that we

have selected is based on flow measurements on the A67 fremmehghown in Figure Al4.

The Paramics software offers three different methods tgadke traffic flows to the
network: all-or-nothing assignment, stochastic assignrend dynamic feedback assign-
ment. For the case study we select the dynamic feedbacknassig, which assumes that
drivers will adapt their route choice based on the curreaffitr situation on the network.
The feedback time is set to 5 minutes, which is short enoughtain accurate reactions on
changes in the traffic situation, and long enough to preasttdwitching. Factors that in-
fluence the route choice of the drivers are the travel timafoip and the distance traveled,
where the travel time is selected to be twice as importartt@sraveled distance, since ac-
cording to [18] travel time is one of the most important agp@dfluencing the route choice.

Two types of measurement data from the network of Eindhoveawailable to validate
the results obtained with the model. The Dutch Ministry cdfisport, Public Works, and
Water Management gathers measurements with loop detectdng freeway, with a detec-
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Figure A.4: Demand profile during the morning peak. For eaclygio a static demand
is defined, which is multiplied with the factor that is specifin the demand
profile to obtain a dynamic demand.

tor at every stretch of 500 m. These detectors measure, aatbars, the average flows for
every minute. In the urban area manual counts are performégehbSRE on the ring road

around the center, and on the provincial road connectingriillavia Veldhoven. These

counts can be translated into average flows for these rodwsoftained average flows are
compared with the simulated flows of the Paramics model. Tifereince between the flows

was between 2.47% and 13.89%. This is not an excellent resultbefore the model can
be used in practice, a more extensive calibration shoulcebHepned. However, the results
obtained with this study can be used to illustrate the ptessitfects of route guidance, but
the actual improvement will differ from the improvement ttéould have been obtained

with a more accurate model or in reality.

A.3 The network during the maintenance works

During the reconstruction works, the configuration of thémuek of Eindhoven will be
changed such that the current freeway configuration, withlmnes and a peak lane in each
direction of the freeways, will be reconfigured into a confagion with two times two lanes
in each direction. In this new configuration, the capacittheffreeways will be improved by
separating the long-distance and the local traffic. Theetuity existing two-lane freeways
will serve as long-distance freeways and the newly createdlane freeways, parallel to
the existing freeways, will serve as freeways for localfitafThese new freeways will be
connected to the underlying network with many on-ramps dihthmps, to facilitate traffic
entering and leaving the city. The three major junctions, (f,2and S) will facilitate the
transition between the long-distance and the local freeway

The case study focuses on the maintenance works aroundojufctThe link from T1
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Figure A.5: Part of the network that is considered during tase study.

to T2 will not be available for a period of three years, fron02@o 2011. We propose a
dynamic route guidance strategy that can be used to redeakethy that occurs due to this
closure.

Junction P, see Figure A.5, facilitates the traffic from TI'tbas well as from T1 to
T3. When the connection between T1 and T2 will be removed,rdffict on the route T1
— T2 will have to select another route. The most logical aliéiue route follows the urban
road through Veldhoven. The capacity of this road howevaptshigh enough to facilitate
the resulting large demands, and the queues that will appélae residential areas around
this road will cause discomfort and extra pollution. For tlase study, we assume that the
use of this road will be prevented by closing it for long-diste traffic. Then three different
routes remain available for the traffic from T1 to T2. For thegutes, the drivers should
travel from T1 in the direction of T3, and then make a U-turext Q, R, or S, and then
continue toward T2, as shown in Figlre A.6.

Due to the layout of the network, a problem will appear whéid@ers from T1 to T2
use exit Q to make their U-turn, see Figlre A.7. The resultiaffic flows will lead to a
large flow from T1 to Q, which will have to cross the alreadyséixig large flow of drivers
that travel from T2 to T3. The available space for the weabietyveen the two traffic flows
is very limited, and thus the weaving will strongly influenites traffic flows and create
congestion. This congestion will spill back into the upatredirections, toward T1 and T2.

The other two exits that are available to make a U-turn do agelhis negative effect.
Re-routing the traffic along these routes will reduce theylé¢hat is experienced during
the maintenance works. However, the travel distance oretlmges is longer, so a control
strategy has to be developed to incite drivers to use theses.o
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(a) Route 1, via exit Q. (b) Route 2, via exit R.
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(c) Route 3, via exit S.

Figure A.6: Alternative routes that are available when theck connection from T1 to T2
via P is under construction.

/4
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Figure A.7: Road stretch between P and Q where the traffic ffano Q crosses the traffic
from T2 to T3.
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A.4 Proposed route guidance system

To incite drivers that travel from T1 to T2 to use exits R and $e freeway to make their
U-turn, we propose a route guidance system that is a conitrnaf two measures, off-
ramp metering and providing information on dynamic rout®imation panels (DRIPS).
The measures are located in the network as shown in FRigureTAgfirst DRIP is located
at T1 before junction P, the second DRIP is located betweis ®and R, and the off-ramp
metering installation is located at exit Q.

A basic vehicle-actuated control method is used. With tlistol method, we will
show the possibilities of dynamic route guidance, andfjstie development of advanced
route choice controllers, as done in Chapters 3 and 4. The guail of the control strategy
is to reduce the congestion in the network. A large part af tloingestion is caused by the
weaving behavior on the stretch-P Q. Improving the flow passing this stretch will reduce
the congestion significantly, and is thus a goal of the cdntethods.

We will now describe the control strategies that are usedhfercontrol measures that
have been selected. The methods are basic switched-camttbbds, which are used in
practice for, e.g., on-ramp metering installations [150].

The off-ramp metering installation uses measurementseoddtection looul, located
between P and Q. The control strategy that is applied is slio®igure A.9. If there is no
congestion, the off-ramp metering installation is off. Whka measured speet); at the
detector location drops below 30 km/h the ramp meteringaltagton starts metering with
a fixed metering rate. This static metering rate is seleate that a queue appears at the
off-ramp, which will discourage drivers to make a U-turn zit €. When fewer vehicles
take the exit, the congestion due to the weaving will de@geasd finally the measured
speed will be above 60 km/h, and the off-ramp metering itagtah will be turned off.

For the DRIPs we consider two different control strategiése first strategy uses only
DRIP 1. This strategy is presented in Figure A.10. The tridfimeasured with detectoR
at exit Q and with detectas3 at exit R. If there is no congestion, the DRIP gives the aglvic
to take exit Q. If the speed at detectdt drops below 30 km/h, the DRIP advises to take
exit R. If the speed at detectaB also drops below 30 km/h, the advice switches to exit S.
If the speed at detecta3 becomes higher than 60 km/h, the advice is to take exit R, and
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Figure A.9: State diagram for the ramp metering installatio
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Figure A.10: State diagram for the DRIP when only 1 DRIP igwact

if the speed at detecta2 becomes higher than 60 km/h, the advice is to take exit Un Wit
this algorithm a queue appears at exit Q, and when this queashes the detector, traffic
is encouraged to take exit R. When the queue at this exit reahkaletector before exit R,
traffic is guided toward exit S.

The second control strategy for the DRIPs uses both DRIPs.fif$t DRIP switches
between two advises: ‘take exit Q' and ‘take exit R or S’, ségufe A.11(a). Which
advice is selected depends on the measurements obtainedietéctoru2. The second
DRIP specifies this advice. When the first DRIP advises to take® the second DRIP
is off, see Figure A.11(b). If the first DRIP advises to také& &or S, the second DRIP
advises to take exit R if the speed at detector locatidis above 60 km/h, while it advises
to take exit S if this speed is below 30 km/h. The differencnhe first control strategy is
that the delay between the moment that the choice betweemgnakJ-turn at exit R or at
junction S is made and the moment that the drivers have rdabkeselected exit is smaller
for the second strategy, which means that the controllersyaare effectively react on the
measurements.

The values that are selected for the thresholds have a langgct on the performance
of the controllers. The values that are used for this casly stte shown in the figures. The
value of the lower threshold is selected lower than the sgeeesponding to the critical
density. This to prevent that the density will exceed théicai density, since when the
critical density is reached congestion will appear. Theaugpreshold is selected in such
a way that it is approximately equal to the speed at which fl@e appears. To improve
the performance of the controllers the values for the trolelshshould be optimized with
respect to the performance of the controllers. HowevertHercurrent case study we used
these initially selected values.

It might be expected that the strategy with 2 DRIPs will alei@grform better than the
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Figure A.11: State diagram for the DRIPs when both DRIPs atéva.

strategy that uses only 1 DRIP. However, the purchase anatemaince costs of DRIPs are
high, and the costs of the second DRIP might not even out sigtia obtained improve-
ments in the travel time. This makes it useful to considehsitategies, and to compare
them with respect to their costs and benefits.

A.5 Simulation study

With a simulation study we illustrate the effect of the rogtedance system. For this study,
the control measures have been implemented in the Pararoisl wf Eindhoven by means
of agents, using the test bed for multi agent systems formnaaffic management, which

is described in [174]. We first describe the set-up of the &tan study, and then we

present the obtained simulation results.

A.5.1 Set-up of the simulation study

The designed control system has been tested for the traffianie of the morning peak
between 07:00 a.m.and 09:00 a.m. During this period the ddrfram T1 to T2 is the
largest, and thus the congestion is the most severe. In therethere are already control
measures present, e.g., speed limits for incident detediud traffic signals at local roads
near the exits. These control measures are implementece imdidel, and perform their
control actions simultaneously with the newly developedaiyic route guidance strategy.

The percentage of the vehicles that comply to the route adwuicthe DRIPs should be
selected. In literature, values between 7% and 14% aremiessgs1, 74, 90]. Since we
expect that during maintenance works drivers are morengilido comply, we select a value
of 25% for our case study.
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We will perform three different simulations. During the fisimulation no control will
be applied. During the second simulation the off-ramp niregeinstallation is active, and
the first strategy for the DRIPS, with only DRIP 1, is appli€&dlring the third simulation,
the off-ramp metering installation and both DRIPs are actising the second strategy for
the DRIPs.

The performance of the control strategies will be evaluatitdl respect to different cri-
teria. First of all, the outflow of the freeway stretch betw@&sand Q will be considered. The
controller should increase this flow. Second, the delays#spced due to the maintenance
works on the stretches between P and S, S and P, and T1 anddhaigeted, since at these
stretches the most traffic problems appear. Third, thelttemes on important routes in the
network will be considered. The controllers should deadhe travel time from T1 to T2
and T3, without increasing the travel times in other ditsitoo much.

A.5.2 Simulation results

We will now describe the results of the three different siations. First, we give an
overview of each simulation, and next we compare the results

In the first simulation, where no control is applied, the extpd congestion due to the
weaving behavior appears at the stretch-IS. The conflicting streams T+ T2 and T2—

T3 cause this congestion, which spills back for severahkdters into the freeway sections
upstream of the weaving section, blocking the traffic flovgiorating from T1 as well as the
traffic flow originating from T2.

The second simulation uses off-ramp metering and only ond°PDR the start of this
simulation DRIP 1, located upstream of the junction givesdtlvice taake exit Q When
the demand increases, the weaving behavior between thiojunand the first exit causes
the traffic to slow down, which announces upcoming congesti@hen the speed at this
weaving section drops below the threshold of 30 km/h theraffip metering installation
is activated. At the off-ramp of exit Q, the flow leaving thedway is metered such that a
traffic jam is created on the off-ramp. When this jam reachesetid of the off-ramp, but
does not block the slip-lane of the freeway, the DRIP nottbescongestion on exit Q and
gives the advise ttake exit RWhen due to the extra traffic making use of exit R, this exit
becomes also fully loaded, the DRIP advisesaie exit SWhen an exit queue becomes
empty, the advice switches back to the previously displahdce.

In the third simulation in general the same scenario as is¢ieend simulation occurs,
the only difference being that vehicles that have alreadg@dthe first DRIP can be timely
informed to change their route. This means that for theséleshthe time between the
moment that the advise is given and the moment of the actut# ahoice is reduced. This
results in a decrease of the number vehicles entering theequeen the off-ramp of the
exits R is already full and therefore decreases the cormgesti

The flows that are present in the network during the simulatare presented in Table
IA.1. In the first column of the table the outflow of the weavingabetween P and Q is
listed. The other columns present the flows using exits Qn&,S The first row gives the
results without control, while the second and third row preighe results with control using
off-ramp metering and respectively one and two DRIPs. Tha gbthe control strategies
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P—Q Q R S

No control 9221 2177 1551 440
RM + 1 DRIP 9852 2021 1646 918
RM+2DRIPs| 9703 2047 1448 1036

Table A.1: Vehicle counts (number of vehicles per two haoairglifferent locations for the
no control case and the two control methods, where RM is theestation for
ramp metering installation.
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Figure A.12: Delays per vehicle on the stretchessPS and S— P.

was to increase the outflow of the stretch-PQ, which both of them do. They reach this
by leading more traffic to the other exits, which indeed reditbe influence of the weaving
behavior and thus increases the outflow. The strategy withitRiPs incites more drivers to
take exit S compared to the strategy with one DRIP, and thtarsbthe best performance.

The flow at the stretch P> Q increases when the controllers are used. However, the
delay on the stretch P> S is not reduced, as shown in Figure A.12, where the firstoagrti
bar presents the delay for the simulation where no contrappied, the second bar shows
the situation where off-ramp metering and 1 DRIP are useadiffamlast bar gives the delay
for the simulation with off-ramp metering and two DRIPs. Tdeday at the stretch P»

S is equal or even higher in the situations where control @ieg. This is due to the fact
that more drivers make a U-turn at exits R and S, and thus stegel at the stretch P S
increasing the delay. Also, the delay into the directior ® is higher than without control.
This is due to the fact that the drivers that make a U-turntatréections R and S also use
the stretch S— Q longer, causing a larger delay in this direction. Thisaiffe the largest
for the controller with two DRIPs, since with this contrallde largest number of drivers
takes exit S. This illustrates that for the stretch-PS itself the controllers are not able to
prevent the congestion. However, the controllers can the spill-back of the traffic jam
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Figure A.13: Delays on the stretch T2 P.

into the upstream direction by increasing the number ofalehithat passes the stretch-P
Q. This increases the outflow of the upstream stretches harsdr¢duces the delay on these
stretches, as shown for the stretch-F1P in Figure A.13.

The actions of the controllers influence the traffic flows indidections. Figuré A.14
shows the travel times for important routes in the netwottke Travel time on the route T1
— T2 is the highest, since the drivers on this route have to rttaké&)-turn. The presented
travel time is the weighted average over the different éRaisare used for the U-turn. Other
routes that have high travel times are T3 and T2— T3. The traffic flows on these
routes encounter the congestion that spills back from ttetcét P— Q, which increases
the travel times on these routes. The first controller withRlIDis not able to significantly
reduce the travel times on these routes, mostly due to tlasy deht is caused by the extra
vehicles that cause a queue on the stretch»@. The second controller with 2 DRIPs is
able to divert more vehicles from this queue toward exit Sctvheduces the travel times on
these routes. The routes F3 T1 and T3— T2 overlap with the routes T2 T2 only after
the U-turns. The travel time on route T3 T2 is only influenced by the extra traffic that
uses the stretch S: P, and thus increases when the controllers are used. The fiak on
route T3— T1 has to cross the traffic flow that originates from on-rampa@dling to T2.
This means that the travel time in the uncontrolled situsigohigh, and that the use of the
controllers can reduce the weaving behavior and decreadeatfel time significantly. The
second controller slightly increases the travel time dubedact that more vehicles use the
route.

In general, both control methods are able to improve the atéif the freeway link
between P and Q, and thus reduce the delay on the route fromTZ {This however leads
to an increase in delay and travel times on other routes. Whidies experience the largest
delay depends on the use of one or two DRIPs.
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Figure A.14: Travel times on important routes in the network

A.6 Cost-benefit trade-off

Installing DRIPs in the network is expensive. This meanslefore installing a DRIP, the
costs should be compared to the benefits of the DRIP.

The costs of a DRIP consist of purchase and installatiorscastd maintenance costs.
The purchase and installation costs of a DRIP are ar&ir90000, and the maintenance
of a DRIP costs€ 5000 each year according to the Dutch Ministry of Transp@utlic
Works, and Water Management. Assuming that the DRIPs ackdigéng the three years
that junction P will be closed, this results in a total costB05000 for the duration of
the reconstruction works at junction P (3 years). The lodpaters and the ramp metering
installation are already present in the current networkhowuld be used in the network after
the reconstruction. So to determine the costs of the contethods, only the costs of the
DRIPs should be considered. This means that the first castategy, which uses only one
DRIP, costs€ 305000, and that the second control strategy with two DRéB&sE 610000.

The benefits of a traffic control method are expressed in tihgcteon of the delay that
they obtain. Each vehicle delay hour costs 20 Euro. The thkly in the uncontrolled
situation is 672 h per moring peak, which igt66310 h for all morning peaks during the
considered period of three years, which amounts to 14.7amiéuro. The total delay for
the situation where the first route guidance method withrarffip metering and one DRIP
are used is 633 h per morning peak, which 874 10° h, amounting to 13.8 million euro.
The daily delay for the second controller with off-ramp rmiztg@ and two DRIPs is 527.4 h
per day, which costs in total 11.5 million euro for the coeset! period.

An overview of all costs and benefits is presented in Table AL first column presents
the costs of the DRIPs, the second the costs of the vehichy dhelurs. The third column
presents the benefits that are obtained with respect to tkkemtool case. The last column
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equipment costs delay costs| benefits| factor
no control - 14.7 - -
RM + 1 DRIP 0.305 13.8 0.81 2.7
RM + 2 DRIPs 0.610 11.5 3.1 51

Table A.2: Costs and benefits of the dynamic route guidanteats (n€).

gives the ratio between the benefits and the costs. Nornaathgasure is implemented by
the Dutch Ministry of Transport, Public Works, and Water Mgament when its benefits
are four times as much as that it costs. This means that tHeochetith one DRIP provides

not enough benefits to justify the installation, while thetimogl with two DRIPs does. But

note that in other countries other factors can be used, atdtk possibilities to use the
DRIPs after the reconstruction period can have an impadi®choice to install one or two

DRIPs.

A.7 Conclusions

We have performed a case study on the network of Eindhoveichw¥ill undergo a major
reconstruction in the coming years. The situation during tbconstruction has been used
to illustrate the potential benefits of dynamic route gumanFirst, a microscopic model
of the network has been made using the modeling softwarerfi@gaThen, a basic route
guidance method has been developed, which gives an irmticatithe effects that could be
reached with route guidance. Also, a cost-benefit tradésqférformed to compare differ-
ent variants of the developed route guidance method. Thereat results are encouraging,
and form a basis for the development of advanced route clooitiollers.
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Samenvatting

Motivatie

De capaciteit van het huidige wegennetwerk is niet groobggrom de verkeersvraag aan
te kunnen. Dit zorgt ervoor dat files op het wegennet een dlegetrugkerend verschijnsel
zijn geworden. Hoewel het een illusie is dat het fileproblé®nmen een paar jaar volledig
opgelost kan worden, kan de huidige situatie wel verbetestdan. Dit is noodzakelijk
omdat files nadelige gevolgen hebben voor weggebruikeeds #angere en onbetrouwba-
re reistijden en hogere kosten. Ook hebben files een nadglifyeed op de omgeving en
de omwonenden: ze veroorzaken vervuiling en geluidsosteda zorgen voor onveilige
situaties in bijvoorbeeld woonwijken en winkelcentra. ldetl van het onderzoek dat be-
schreven is in dit proefschrift is het ontwikkelen van metk® om het verkeer te regelen
waarmee de situatie verbeterd kan worden voor zowel de \ibegilyers als voor de omge-
ving.

Gecombineerde regeling van snelwegen en locale wegen

Doordat er steeds meer wegen komen op een klein opperviakit e invioed die de
verschillende soorten wegen op elkaar hebben steeds.gierhet verkeer op plaatsen
waar snelwegen en lokale wegen sterk met elkaar verbongtereffiectief te kunnen blij-
ven regelen, moeten de maatregelen op beide soorten wekeppgdd worden. Hiervoor
ontwikkelen we een model dat zowel het snelwegverkeer alsthdsverkeer kan beschrij-
ven. Voor het snelwegverkeer gebruiken we met het bestaandel METANET. Voor het
stadsverkeer gebruiken we een wachtrijmodel ontwikkelor dashani en Saridis, uitge-
breid met horizontale rijen, het blokkeren van kruispurgereen kleinere simulatietijdsstap.
De twee modellen worden met elkaar verbonden door het neydallvan toe- en afritten.
Het resultaat is een efficiént model dat geschikt is voorg&lin modelgebaseerde on-line
verkeersregelmethoden. We ontwikkelen een regelmetheloiesgerd op ‘model predictive
control’ (modelgebaseerd voorspellend regelen), waasdij voorspelling gemaakt wordt
van de verkeersstromen, en aan de hand van deze voorspldlimeste instellingen voor de
maatregelen bepaald worden. Voor het maken van de vodrepgkbruiken we het hier-
boven beschreven model voor snelwegen en locale wegen.

Regelen van routekeuze

Verkeersmaatregelen beinvioeden indirect de routekearz@veggebruikers. Dit effect kan
gebruikt worden om de efficiéntie van de maatregelen te gtrgr Het routekeuze-proces
bestaat uit twee delen: de routekeuze binnen een dag en tkeare van dag tot dag.
De routekeuze binnen een dag beschrijft de keuzes die waggets maken terwijl ze
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onderweqg zijn, terwijl de dag tot dag routekeuze bescHhri# de voorkeur voor een route
verandert over verschillende dagen.

Eerst bekijken we de keuze binnen een dag, met als voorbealdoeritdoseringsin-
stallatie. Deze installatie zorgt voor een rij op de toeigtde reistijd via deze toerit langer
maakt. Als gevolg van deze langere reistijd zullen sommigggebruikers een andere route
kiezen. We ontwikkelen twee verschillende modellen diefiéct beschrijven, en gebruikt
kunnen worden in de regeling van de toeritdoseringsiraiall een dynamisch toedelings-
model en een routekeuzemodel gebaseerd op een look-up @pelleze manier kan de
regelmethode voor de toeritdosering verbeterd worden.

De routekeuze van dag tot dag beschrijven we met behulp vatwbede model, ge-
baseerd op de look-up tabel. Hierbij worden de waardes irabdel taangepast met be-
hulp van ‘Bayesian learning’. Het model veronderstelt datrautekeuze gebaseerd is op
een combinatie van de huidige voertuigdichtheid en deijagst op eerdere dagen. Met
dit model bekijken we behalve toeritdosering ook de effectan afritdosering en de re-
sultaten die bereikt kunnen worden met het tonen van wdiisijrmatie op dynamische
route-informatiepanelen. Hierbij nemen we aan dat als idéjokop deze panelen duidelijk
verschilt van de reistijd die de weggebruikers verwacheéem, deel van de weggebruikers
een andere route zal kiezen. We ontwikkelen een modelgetuiseegelmethode die de
reistijdinformatie op dynamische route-informatiep@metombineert met variabele snel-
heidslimieten, om zo de routekeuze van weggebruikersfaetieinnen beinvioeden.

De routekeuzemodellen zoals hiervoor beschreven zijnnietensief. Daarom heb-
ben we ook een eenvoudig routekeuzemodel ontwikkeld dadutekeuze van dag tot dag
beschrijft. Op basis van dit model kunnen relatief snel gofgen van het routekeuzege-
drag gemaakt worden, waardoor het model geschikt is om estedrdruk te krijgen van
de verkeersverdeling, om gebruikt te worden in on-lineroptisatie-algoritmes of om als
startpunt te gebruiken voor complexere optimalisatiexatignes. In dit proefschrift gebrui-
ken we het model in een regelmethode voor variabele snettedmtensiteitsbeperkingen.
Het doel van deze methode is het beinvloeden van de routekedat de prestatie van het
verkeersnetwerk verbeterd kan worden.

Het installeren van maatregelen in de praktijk

Voordat verkeersmaatregelen in de praktijk toegepast é&morden, moet aandacht be-
steed worden aan verschillende praktische zaken. We gevekogt overzicht van onder-
werpen die van belang zijn, en onderzoeken specifiek degdwan het bepalen van het
gemiddelde van de snelheidsmetingen. Hiervoor vergelijke verschillende methoden
om het gemiddelde te bepalen, namelijk het tijdsgemiddéldemonisch gemiddelde, ge-
ometrisch gemiddelde, plaatsgemiddelde en het gescHatitssgemiddelde gebaseerd op
de variatie van de instantaan gemeten snelheden van \gmrtin een segment en op de
variantie van de snelheden van voertuigen op het momenedwtaneetpunt passeren. Elk
van deze methoden is toegepast in een snelheidsregeling spetlveg, om de prestaties
van de regelaar te kunnen vergelijken.

Conclusies

Het verkeersnetwerk kan efficiénter benut worden als gemeade regelmethodes worden
gebruikt. Deze methodes kunnen bestaande en nieuwe neatregebruiken om de kosten
voor de weggebruikers te verlagen en om de routekeuze vagebagkers te beinvioe-
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den, waardoor files en wachtrijen verminderd of verplaatsinen worden. Dit leidt tot
economische winst door de lagere reistijden, verbeteredfioharheid door het reduceren
van vervuiling en geluidsoverlast, en verbetert de vedighdoor het realiseren van lagere
voertuig-intensiteiten in woonwijken en stadscentra.
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Summary

Motivation

The growth of our road infrastructure cannot keep up withgtmving mobility of people,
and the corresponding increase in traffic demand. ThistseBubaily congestion on the
freeways. It is an illusion that the problem of congestion ba solved completely within
a few years, but it is possible to improve the current siamatiThis is necessary since the
congestion on the roads has disadvantages for the drivetading long travel times and
high economic costs. It has also disadvantages for thewsatogs of the roads, where
the increased traffic load results in e.g., pollution, nogs®l unsafety in residential areas.
The goal of this thesis is to develop model-based trafficrobmethods that improve the
situation for the drivers as well as for the environment.

Mixed urban and freeway control

Due to the growing density of the road networks, freeways aén networks become
tightly coupled. This requires that the control on the twpey of roads should also be
coupled. Therefore we develop a mixed urban-freeway mbd@éldombines a macroscopic
freeway model with an urban queue length model. For the nsaopic model we use the
traffic flow model METANET. The urban queue length model isdabhsn a model developed
by Kashani and Saridis, extended with horizontal queuaskiolg effects, and a shorter
time step. The two models are coupled via the modeling ofaonps and off-ramps. The
obtained macroscopic model can simulate traffic flows effityeand thus is suitable for the
use in a model-based control setting. We develop such a albadeld control method that
uses model predictive control, with the mixed urban-freewadel as prediction model.

Route choice control
Control measures can also be used to influence route chaitee Rhoice is a complicated
process that can be divided into two main processes witHerelift time scale. The within-
day route choice focuses on the choices that drivers makegdtireir trip, while the day-
to-day route choice describes the change in route choice dree day to the next.

We first discuss the effect of ramp metering on within-dayteozthoice. By installing
a ramp metering installation at an on-ramp, the density —thnsl the travel time — on the
freeway as well as on the on-ramp itself is changed, whicluénites the route choice.
We develop two different methods to include route choice wdet-based controllers: a
dynamic traffic assignment model, and a model based on aupdiable determined via
Bayesian learning. Second, we investigate day-to-dayerohbice using the Bayesian
learning model. We assume that drivers base their routecetmm a combination of the
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density and the corresponding travel times experienced@riqus days. With the model
based on Bayesian learning, in addition to the on-ramp ngtere also briefly explore the
effects that can be obtained with the use of off-ramp megerfinother measure that can
be used to influence the route choice is displaying traved tmformation on dynamic route
information panels. Displaying travel times with a larg@egh difference can encourage
drivers to change their route choice. We model the drivezattion on the route informa-
tion, and develop a controller that actively influences thae choice of the drivers using
information on dynamic route information panels in comhiorawith variable speed limits.

Since route choice models as described above in generaledage computational ef-
forts, we also formulate a simplified route choice model fay-ti-day route choice that can
be used to obtain fast predictions of the route choice behaamd that is suitable to obtain
a first impression of the traffic assignment, for use in oe-lyptimization algorithms, or
as initial value for more complex optimization algorithmle use this model in a model-
based control setting where the objective of the contradléo influence the route choice,
and investigate in particular speed limit control and outftmntrol.

Practical control issues

To apply model based controllers in practice, several fpadssues have to be considered.
We present a short overview of interesting issues, and nexaxplicitly investigate the ef-
fect of averaging method that is used for the speed measatem¥/e compare the time
mean speed, harmonic mean speed, geometric mean speedydirage space mean speed,
and the estimated space mean speed based on instantaneedsapance and based on
local speed variance. All averaging methods are appliedfieeavay speed limit control
method, to investigate the influence of the averaging metinditie controller performance.

Conclusions

The current traffic infrastructure can be used more effelstiwhen advanced control
algorithms are used. Existing traffic control measures eanded to decrease the costs for
the drivers, and to relocate the traffic flows via influencing toute choice. This results in
economical benefits due to shorter travel times, environah&enefits due to the reduction
of pollution and noise, and safety benefits due to the lowarsfio urban areas.
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