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Chapter 1

Introduction

In the near future the amount of traffic on the roads will keep increasing. The capacity of
the available infrastructure cannot increase at the same pace, since creating new roads is
expensive, time consuming, and requires free space that is difficult to find or not available
at all. As a result the number and length of traffic jams will increase during the next years.
Traffic jams result in economical costs due to the large delays that they cause, and they also
have negative effects on the environment due to, e.g., increases of the noise levels and pollu-
tion. A possibility to prevent, or at least reduce, congestion is to make more efficient use of
the available roads. This can be reached via traffic control measures, such as traffic signals,
variable speed limits, ramp metering installations, and dynamic route information panels.
The influence of these measures is largely depending on the values that they use for, e.g.,
green times or speed limits. These values are determined by control methods, which thereby
are an important part of the total traffic control system. Different control methods result in
different values for the green times and speed limits, and thus in different performances of
the traffic network. To improve the traffic situation, control methods should be developed
that select the values for the control measures in such a way that the performance of the
traffic network is increased, taking into account the interests of, e.g., drivers, government,
and the environment.

In this thesis we will develop advanced control methods thatimprove the performance of
the traffic network. In particular, controllers for mixed urban/freeway networks, controllers
that anticipate on route choice, and route choice control methods are developed. The de-
veloped control methods are based on model predictive control (MPC). MPC is a control
method that uses a prediction model to determine the expected evolution of the traffic flows.
Furthermore, within MPC an objective function is defined that describes the goals of the
controller. Then an optimization algorithm is used to determine the optimal settings for the
traffic control measures based on the model predictions and the objective function. If ne-
cessary, the method can also handle constraints on the variables and states in the network.
Finally, the computed settings for the first control time step are applied by the control mea-
sures, and the next control time step the whole procedure is repeated. In this thesis, the
objective function of most of the developed control methodsis based on the total time the
vehicles spend in the network.

The remainder of this chapter is organized as follows. Firstsome background material
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2 1 Introduction

about traffic networks is presented, including organizations involved with traffic networks,
currently available traffic control measures, and traffic control methods. Next, the objectives
of the research described in this thesis are formulated. Then the contributions of the thesis
and the relevance of the research are presented. Finally, anoutline of the whole thesis is
given.

1.1 Background

In this section we will describe some aspects of general traffic networks, and in particular
of the Dutch road network. We discuss different road types and the corresponding organi-
zational structure, and describe different processes thatoccur within traffic flows. Further
on, we describe the control measures that can be used to influence the traffic, and discuss
available control methods that can be used to determine the settings of the control measures.

1.1.1 Road networks

Road networks evolve along with the development of transportation modes. The first roads
where used by pedestrians, and during history horses, handhold carts, and horse carts were
added. Later bicycles and cars where introduced, and separate railways where created for
trains. The first roads where unpaved roads, while nowadays nearly all roads are hardened.
The main road network is used by cars and trucks, while separate lanes are available for
bikes and sidewalks for pedestrians.

The layout of the roads depends on the location and function of the roads. Freeways are
used by long-distance traffic and are in principle uni-directional roads, without intersections.
The speed on these roads is high, usually from 100 to 200 km/h.The capacity of these roads
is around 2000 veh/h/lane. Highways are bi-directional roads, used for medium distances
or for long routes with a low demand. The speed on this roads isusually lower than on
freeways. In The Netherlands the maximum allowed speed on this kind of roads is 100
km/h. The capacity of these roads is about 1800 veh/h/lane. For short-distance traffic there
are local roads, which are mainly located in urban areas. Thecapacity of these local roads
is small, varying from 500 to 1500 veh/h/lane depending on the road layout. At these local
roads there are many intersections, and the speed is around 50 km/h.

The historical evolution of the road network implies that the layout of the current net-
work is not efficient with respect to the current origins and destinations of the traffic and the
corresponding traffic flows. This results in a large mismatchbetween the demand and the
available capacity on different routes. This mismatch is animportant cause of congestion in
the current network.

1.1.2 Traffic related organizations

In most countries general roads are the responsibility of the government. But when we
consider, e.g., toll roads, they can also be privately owned. In general, each road type is
managed by a different authority. Freeways are often managed by the government, while
other roads are managed by municipalities. As an example, wewill explain the situation as
it is in The Netherlands.
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In The Netherlands a distinction is made between local roads, provincial roads, and
freeways. The local roads are managed by the municipalitiesor the cities. The larger
cities develop and control their own road network, while smaller villages implement control
measures developed by consultancy companies. The provincial roads are managed by the
provincial government. Provincial roads connect villagesand small cities with each other.
These roads are bi-directional roads, with intersections controlled by traffic signals. The
Dutch Ministry of Transport is responsible for the freewaysin The Netherlands.

The freeway network in The Netherlands is dense, with many on-ramps and off-ramps
on each freeway. This means that the different types of roadsare strongly connected, which
requires cooperation between the different authorities. However, until now the presence of
different management authorities has prevented integral coordination and steering of traffic
control measures. This has resulted in a situation where each management body solves its
own problems by sending the traffic to the roads that are someone else’s responsibility. It
is easy to imagine that this leads to inefficient road use at the locations where the different
road types are connected. Nowadays, most parties start to realize that a solution of the traffic
problems can only be obtained when they cooperate. Intention declarations are written,
procedures are described, and meetings are planned. The Dutch Ministry of Transportation
has formulated an advice of how the whole process could be organized in a handbook,
see [110]. This handbook provides guidelines to select important origins and destinations,
and to define which roads should be used for the major connections between them. Then
advise about possible traffic management measures is given.The handbook also presents
the way in which the political process of developing the control management strategy can
be organized.

Next to the traffic management bodies, other parties are alsoinvolved with the traffic
road network. An important group are the road users. They actually experience the de-
lay caused by congestion, and they have to adapt their behavior when control measures are
applied. In The Netherlands, the drivers are united in the ANWB, the Dutch drivers’ or-
ganization. This organization participates in consultations with the governments, informs
drivers about the traffic network, participates in researchgroups, and has a road guard.

Further, consultancy companies play a large role in the development of traffic control
measures. They use traffic models to predict the effects of the traffic measures, and give
advice to the road managers about the use of the measures. Thecompanies also develop
new algorithms that can be used to determine the values of thecontrol measures, see, e.g.,
[6, 24, 129].

The economical cost for the delays due to traffic jams is expressed in vehicle hours, and
was equal to 49 million hours for 63 billion traveled kilometers during the year 2007 [113].
Since the costs of traffic jams are this high, reducing the length and frequency of the jams is
of high importance for the government. The government triesto reduce the traffic jams on
the short term by implementing available control measures,and it invests in traffic research
to develop long-term solutions. The location of new roads isalso a political issue, just as the
taxes for road use. Furthermore, the government also sponsors the SWOV (Stichting Weten-
schappelijk Onderzoek Verkeersveiligheid), an organization that investigates the safety of
the road network in general.
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1.1.3 Traffic processes

Road traffic has many different aspects. Each of this aspectscan be captured with different
simulation models.

First of all, the amount of vehicles that want to use the road network should be de-
termined. This number of vehicles depends on the number of trips that the drivers would
like to make, and on the transportation mode that the individual travelers select. Possi-
ble transportation modes are, e.g., train, bus, car, or airplane. When the mode choice is
made, the number of vehicles that want to make a trip is known.This number of vehicles,
combined with the corresponding origins and destinations,can be used to determine the
origin-destination (OD) matrix. Such a matrix contains thedemand from each origin to
each destination in the network. Models that determine thisOD matrix are based on ques-
tionnaires, historical traffic measurements, and on an investigation of the surroundings of
the road network to determine the locations of origins and destinations.

The next decision of the drivers that should be modeled is thedeparture time. Drivers
select their departure time based on, e.g., the desired arrival time, the current time, the
expected travel time, the probability of a delay, and the expected length of the delay.

Another aspect is the route choice of the drivers. When the origins, destinations, and de-
parture times of the vehicles are known, the route that they take should be determined. This
can be determined in two ways: via a route choice model or witha dynamic traffic assign-
ment model. A route choice model describes how drivers reactat each location where the
road splits. At these locations the drivers have to make a route choice, which they base on,
e.g., earlier experiences, and on the current situation. A dynamic traffic assignment model
assumes that all drivers select their route in such a way thata user equilibrium assignment
appears. A user equilibrium assignment is the assignment that appears when all routes with
the same origin and destination have equal travel times.

The next issue that should be considered is the behavior of vehicles on one road. How
many vehicles are on each part of the road, how fast do they drive, what are the distances
between the vehicles, do they change lanes, etc. Many modelsexist that describe this be-
havior. Different models consider different levels of detail, and describe the process in
different ways. Microscopic models give a detailed description of the traffic, modeling the
behavior of individual vehicles. Mesoscopic models consider probability distributions of
the variables, while macroscopic models consider average values for speeds, densities, and
flows. The computational effort for the detailed models is high, while the low-detail models
require shorter computation times. Which model is the most suitable for a given applica-
tion depends on a trade-off between model accuracy and available computation time. An
overview of existing traffic models is given in [72, 124].

1.1.4 Control measures

Traffic flows can be influenced via traffic control measures, such as traffic signals, variable
speed limits, ramp metering installations, and dynamic route information panels, [112].
Most of these measures are originally designed to improve the traffic safety, but they also
have a significant influence on other aspects of the traffic flows. We will now give a short
description of each of these measures.

Traffic signals are used to control the right of way at urban intersections, see Figure
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Figure 1.1: Traffic signal installation.

1.1. They prevent accidents, and influence the throughput ofintersections. At each link
connected to an intersection a signal is located, with threelights: red, amber, and green.
During the red period, the vehicles are not allowed to pass the intersection, during the green
period they have to drive through. The amber period is used asa warning period between
the green and red, vehicles that are able to stop should stop,while vehicles arriving with
a high speed, unable to make a safe stop, can still cross the intersection. The first traffic
signals had to be set manually by police agents, see [152]. Later computers were used, first
to coordinate the lights at individual links at the intersections, next to allow the operator
at a traffic control center to monitor and influence the measures, and finally for automated
coordinated control. The coupling with available traffic detectors has led to the development
of vehicle-actuated control, which is the main control method used in The Netherlands.
Vehicle-actuated control uses detectors to determine whether there is a queue at each link,
and base the green times on these measurements.

Variable speed limits, see Figure 1.2, can be used to controlthe speed on freeways.
They are usually displayed on variable message signs along the road. The initial purpose of
introducing the speed limits was to improve the safety. The speed limit values were lowered
under bad weather conditions, and the limits were used to warn drivers when they approach
a traffic jam. An example of such a warning system is the Dutch incident detection system,
which has been developed to reduce the number of secondary accidents in congested areas.
This is obtained by lowering the speed limits to warn the drivers that they approach an
accident so they can lower their speed, which reduces the probability of head-tail collisions.
Speed limits can further be used to improve the performance of the freeway network, as
described in, e.g., [66, 145]. Reducing the speed upstream of a traffic jam lowers the amount
of traffic that enters the jam, and thus allows the jam to dissolve faster, which increases the
throughput of the freeway.

At on-ramps, ramp metering installations can be used, see Figure 1.3. Ramp metering
installations are traffic signals located on on-ramps, and they allow one or two vehicles to
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Figure 1.2: Variable speed limits.

pass during each green period. The purpose is to control the flow on the on-ramp in order
to minimize the disturbance of the traffic on the freeway, see[122]. The ramp metering
installation limits the flow that can enter the freeway, and it also reduces the peaks in the flow
by dividing the flow equally over time. This reduction of the disturbances on the freeway
traffic lowers the amount of congestion that is induced by theon-ramp flow. Another effect
of ramp metering is that it can influence the route choice. Theon-ramp installation causes
a queue on the on-ramp, which generates extra travel time forthe drivers. When this time
becomes too large, drivers change their route in such a way that they enter the freeway
at another location. A disadvantage of ramp metering installations is that they can have a
negative impact on the urban traffic. When the queue that appears on the on-ramp spills back
into the urban network, it can block urban intersections andalso delay traffic that does not
want to enter the freeway at all. The effect of this disadvantage can be reduced by applying
queue management actions, which often consist of adapting the ramp metering rate when
the queue length exceeds the available space. This however reduces the effect of the ramp
metering on the freeway traffic.

A less direct control method is the use of dynamic route information panels (DRIPs).
DRIPs are located at splitting nodes of the network, see Figure 1.4. The original purpose
of the DRIPs is to inform the drivers about the current state of the traffic. Queue lengths
or travel times on the different routes are presented, to allow drivers to take an informed
route choice decision [18, 103]. The use of DRIPs within control systems are described in
[48, 76]. In this thesis we illustrate how DRIPS can be used topersuade drivers to change
their route choice in order to obtain a traffic assignment that gives a more optimal traffic
performance from the system point of view.
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Figure 1.3: On-ramp metering installation.

Figure 1.4: Dynamic route information panel.

1.1.5 Available control methods

The settings of the control measures are determined via control methods. The general idea
of a control method is that it obtains some measurements fromthe traffic flows of the net-
work, and uses these measurements to determine the settingsfor the control measures, see
Figure 1.5. The number and type of measurements that is considered can be used to classify
different control methods.

Fixed-time control methods are the oldest type of control methods, and in contrast to
more recent methods, do not use real-time measurements at all. The settings of the control
measures are constant or changing according to the time-of-day, often determined using his-
torical measurements. Fixed-time control is still frequently used. For isolated intersections,
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Figure 1.5: General principle of traffic control.

or intersections with a low demand the performance is good. The main disadvantage is that
the method does not react on variations in the traffic flow, andthat the settings can become
out-dated, since the method does not take into account the increase of demand over time.

A second class of traffic control methods consist of vehicle-actuated systems. These
systems use detectors in the immediate area of the control measure. Based on the obtained
measurements, changes are applied to the fixed-time controlscheme. Examples of such
changes are switching between different schemes, or extending a green period [91, 183].
These methods react on variations on the traffic flow, and haveproved to be very effective in
urban areas. Also for ramp metering installations this kindof methods are used frequently.
Based on measurements at the freeway and on the on-ramp the ramp metering rate can be
determined, as described in [29, 122]. The Dutch algorithm for incident detection using
variable speed limits is also vehicle-actuated.

The last class of control methods contains the traffic-responsive systems, e.g., [48, 129,
190]. These systems use traffic measurements of a large area around the traffic measure.
The control methods optimize the actions of the control measures with respect to the whole
network. These methods also allow for integrated control, using several measures. The
coordination between the control actions of the different measures can further improve the
performance of the traffic network.

In [173], an extensive overview of different control methods for traffic signals is given.
A more general overview, also considering other control measures, is given in [124].

1.2 Research objectives

In this section we describe the objectives of this thesis. The thesis project is part of a larger
research project, which will be described first. Next we formulate the research problem, and
elaborate the research goals and the research approach.

1.2.1 Research project

The research described in this thesis is funded by the NWO-Connect projects AMICI, and
the BSIK-TRANSUMO project ATMA-MODeRN.
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The NWO-Connect research program AMICI considers AdvancedMulti-agent Infor-
mation and Control for Integrated multi-class traffic networks. The total program focuses
on traffic congestion management in and around large cities,such as Beijing, Rotterdam,
Amsterdam, and Shanghai. In particular, it aims at developing solutions to efficiently re-
duce traffic congestion by means of dynamic traffic management. Within the program five
research topics have been defined:

Multi-class traffic flow theory for modeling of motorway and ur ban traffic networks
This research focuses on the development of a multi-class macroscopic traffic flow model
for freeways as well as urban roads [115, 116].

Impact of travel information and traffic control on travel be havior The effects of provid-
ing travel time information are investigated within this project. Based on this investigation,
a route choice model is developed that includes the effects of providing travel time informa-
tion [17, 18].

Optimal presentation of travel information based on personal preferences and needs
The way in which information is provided influences the effect of the information. This
project focuses on the relation between the way of presenting information and the corre-
sponding reactions of the drivers [51].

Market for traveler information Generating traffic information costs money. This project
investigates the amount of money that users are prepared to spend on different types of in-
formation. Further it investigates the relation between the penetration rate (the percentage
of equipped vehicles) and the value of the provided information.

Development of advanced multi-agent control strategies for multi-class traffic net-
works This project investigates the development of advanced control strategies for multi-
class traffic flows, using control measures as well as providing information to improve the
performance of existing road networks.

This thesis describes results in the framework of the last project, in particular the develop-
ment of control strategies to reduce congestion.

BSIK-TRANSUMO is a research program funded by the Dutch government in which
universities, companies, the government, and research institutes perform research on sus-
tainable mobility. Within BSIK-TRANSUMO there are severalmain projects, one of which
is ATMA-MODeRN (Advanced Traffic MAnagement - Multi-Objective Decision aid for
Regional Networks). The objective of the ATMA-MODeRN project is to develop support
systems for the application of traffic management systems inregional road networks, con-
sisting of freeways as well as local roads. Hereby, reliability and sustainability are explicitly
taken into account as measures for the performance of the traffic network.

1.2.2 Problem formulation

Congestion on traffic roads has different causes, e.g., accidents, incidents, and bottlenecks.
The major cause of congestion is the difference between the demand and the capacity of
the road. An investigation of recurrent congestion shows that this lack of capacity is nearly
always the largest at locations near on-ramps, off-ramps, lane drops, or at intersections
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[111]. This is due to the fact that the different roads merge,and that thus the inflow of such
a location is often higher than the outflow capacity. These locations are called bottlenecks.
Further, congestion can also appear in the middle of a freeway stretch. In this case it often
starts at a bottleneck, but travels upstream over the freeway, causing a delay for all vehicles
that travel on the freeway.

Many bottleneck locations are equipped with traffic controlmeasures, which can be
used to reduce the amount of congestion. However, the currently used control methods are
in general not sufficient to solve the congestion. Part of themeasures that are present have
been in use for a long time without changing the settings, which means that they were de-
signed for demands that were lower than the current demands,while others are only solving
local problems, which usually only results in a re-locationof the congestion. In dense road
networks, where the number of traffic control measures is high, the influence of the mea-
sures on each other is large. This means that in dense networks solving local problems for
each measure separately often does not lead to a good overallperformance of the whole net-
work, but only re-locates the congestion. Coordination of the available measures however
can significantly improve the performance. For urban areas there already are systems that
coordinate the control actions of traffic signals [49, 129, 140], and for freeways coordinated
control systems for variable speed limits are available [2,66]. However, for networks that
contain freeways as well as urban roads, coordinated control methods are not available yet.

Within larger networks, control measures do not only affectthe throughput of the net-
work, but they also influence the route choice, see [148]. This is due to the fact that they
change the travel times on different routes, which might make alternative routes more at-
tractive for the drivers. As a result, the flows in the networkchange, and thus the demands at
the bottleneck locations change. The change in route choicecan also re-locate the conges-
tion to undesired locations, creating, e.g., large queues in a nature reserve (which generates
pollution), large queues in residential areas (which reduces the safety), or congestion at in-
tersections (blocking crossing traffic). To prevent this undesired re-location of congestion,
control measures should adapt their settings. However, thecurrently applied control meth-
ods do not take route choice into account. Thus the performance of these traffic control
methods can be improved further when the methods do considerthe change of route choice
they can induce [10].

The last problem that we will consider in this thesis is related to the process of applying
model-based control methods in practice. Before a control method can be implemented, a
number of issues should be considered. The control objectives, control method, and infras-
tructure layout should be determined. Some guidelines for the selection process and for the
implementation of dynamic traffic management are given in [110]. One of the important is-
sues for the implementation is the selection of an averagingmethod for measurements. The
measurements that are obtained from the network should be averaged over time. This can
be done using different averaging methods. The influence of the selected averaging method
on the performance of traffic control methods will be investigated in this thesis.

1.2.3 Research goals and approach

The main goal of the research described in this thesis is to develop control methods that
can be used to increase the efficiency of road use, and to reduce the negative effects of
congestion. Within the research, the main goal is divided into sub-goals, which correspond
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to the problems formulated above:

Control of mixed networks Mixed networks consist of freeways as well as urban roads.
Bottlenecks that cause congestion often appear at locations where both road types are
present. Therefore, we aim at developing control methods that coordinate the traffic
control measures in such mixed networks. The control methods should integrate the
different control measures and coordinate the control actions on freeways and urban
roads, leading to control methods for network-wide integrated control. Challenges
with respect to coupling freeway and urban networks are the different driver behavior
(which results in different model types), the different time scales of the processes that
appear, and the difference in available control measures.

Influencing route choice Control measures take control actions that influence the travel
times on different routes, and thus influence the route choice of the drivers. We want
to develop control methods that take this effect into account, and thus can determine
more optimal settings for the control measures in networks where multiple routes are
available. Further, we want to develop control methods thatcan re-locate congestion
to locations where the impact is less severe, such as roads outside residential areas, or
roads that are not on a main supply route. This implies that the control method should
actively influence the route choice and change the traffic assignment.

Implementation aspectsBefore controllers can be applied in practice, many issues should
be considered. We present an overview of the relevant implementation issues. With
respect to implementing controllers much information is available; however, the struc-
ture of the whole implementation process is not clearly defined. Further, we focus on
the effect of averaging methods for speed measurements whenthey are used in a
control method. Differences in measurement methods can affect most steps in the
controller design and implementation process, and thus cansignificantly influence
the controller performance.

Each sub-goal is investigated in one or two separate studies. For most studies we follow
the following approach. First, a literature study is performed in which an overview of the
current research is obtained. Then the controller design isstarted with the selection of
the model that is used in the controller. When no suitable model is found in literature,
an existing model is adapted, or a new model is developed. This model is used for the
remainder of the controller design process. When the design of the controller finished, a
simulation study is performed to illustrate the performance of the developed control method.

1.3 Contributions of this thesis

This thesis contributes to the state-of-the-art with respect to advanced traffic control meth-
ods. The main contribution is the further development of advanced control methods based
on model predictive control. These control methods can be used to increase the efficiency
of road use, they can handle varying demands, and explicitlytake hard constraints into
account. The innovative contributions with respect to the state-of-the-art are the modelling
and control of mixed networks, and the integrated control methods to influence route choice.
The control methods are especially suitable for network control, and coordinate the actions
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of the various available control measures. The developed traffic controllers react to the
traffic situation on the whole network, and optimize the control settings accordingly. Dif-
ferent controllers are designed, each using a different model and thus suitable for different
situations:

• The first control method targets mixed networks, that contain freeways as well as
urban roads. The control method reduces the total time the vehicles spend in these
networks by coordinating the control actions of traffic signals, variable speed limits,
and on-ramp metering installations.

• The second type of controllers that is developed influences the within-day route choice
of drivers. The controllers use a traffic flow model to describe the evolution of the
traffic flows, and a route choice or a traffic assignment model to determine the traffic
assignment in the network. The predictions obtained with these models are used to
select the values for the control measures in such a way that the route choice of drivers
is steered actively.

• The third controller is designed to influence the day-to-dayroute choice. The traffic
control measures changes the travel times on different routes in the network. Due to
these changed travel times that the drivers experience at the current day, the drivers
will select another route during the next day. By predictingthe changes in route
choice that will result from the control actions, the control method affects the route
choice in such a way that the drivers select the most optimal route after a few days.

The controllers described above are all using prediction models. For the design of the
controllers we have adapted or developed the following models:

• A model for mixed networks is created by coupling the macroscopic freeway flow
model Metanet [106] with an urban queue length model developed by Kashani and
Saridis [82]. The urban model is first extended to include horizontal queues, blocking
effects, and a smaller time step, and next the on-ramps and off-ramps are modeled.

• A density-dependent route choice model based on Bayesian learning is developed. It
is a combination of a day-to-day learning model based on experienced travel times,
and of a fast look-up table containing turning rates based ondensities for the within-
day route process. The possible densities are divided into three groups, and based on
the current density the model selects a value from the look-up table.

• A basic route choice model is developed that describes the day-to-day route choice.
This model determines the travel times on different routes,and adapts the turning rate
accordingly. The most basic version of the model allows for analytical solutions of
the optimization problem within the controller, while the further developed variants
lead to mixed integer linear optimization problems, for which efficient solvers are
available.

Note that during the current research the models are developed, but not validated. Before
the models could be used in practice, the validation must be performed, and thus this will
be part of our future work.
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Figure 1.6: Overview of the relation between different chapters.

Another contribution of this thesis considers the effect ofmeasurements on the controller
performance. Different averaging methods for speed measurements are considered. Each
of the averaging methods is used in a controller, and the performance of the controllers is
compared.

The practical and social relevance of the thesis mainly consists of improving the effi-
ciency of road use. The proposed control methods can reduce the amount of congestion,
and thus reduce the experienced delays, economical costs, noise generated, and pollution
caused by traffic jams. The route choice controller can be used to reduce the amount of
traffic in urban areas or nature reserves, while the controller for mixed networks is a tool
that can be used for integrated control when different road management bodies cooperate.

1.4 Thesis outline

In this section we give an outline of the thesis. The sub-goals of the research as formulated
in Section 1.2.3 are described in a separate chapters. Each chapter is written in such a way
that it can be read separately and independently. This meansthat readers of the whole thesis
will encounter several repetitions, however, this can be justified by the large differences in
the considered topics, which will attract many readers interested in only a part of the thesis.
An overview of the relations between the chapters is presented in Figure 1.6. The arrows
represent the relations between the chapters, and indicatehow the chapters are divided over
the three different sub-goals.

Chapter 2 considers the integrated network-wide control ofmixed networks containing
freeways as well as urban roads. A model is developed that describes the traffic flows on
freeways and on urban roads. A model predictive control based controller is developed that
uses this model for the control of mixed networks. The controller integrates the control
actions of traffic signals, variable speed limits, and ramp metering installations.
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In Chapter 3 anticipative route choice controllers are developed. Two different predic-
tion models are used to determine the route choice within thecontroller: a dynamic traffic
assignment algorithm using the method of successive averages, and a route choice model
based on Bayesian learning. The results obtained with the anticipating controllers are en-
couraging, but the computation times are very large. This has led to the investigation of
a less detailed route choice controller, which is describedin Chapter 4. Three different
versions of a basic route choice model are developed, which,when implemented in a con-
troller, result in optimization problems that can respectively be solved analytically, with
mixed integer linear programming, and with non-linear optimization algorithms.

Chapter 5 discusses the issues that should be considered when implementing the control
strategies in practice. In particular, different averaging methods for speed measurements are
considered, and their influence on the performance of the controller is investigated.

Finally, in Chapter 6 conclusions are drawn and topics for future research are given.
Parts of this thesis have already been published in journalsor conference proceedings:

Chapter 2 in [45, 152, 156, 158, 159, 164], Chapter 3 in [157, 160–162], Chapter 4 in
[163, 165–167, 169, 170], and Chapter 5 in [168].



Chapter 2

Integrated traffic control for
mixed urban and freeway
networks

We develop a control method for networks containing both urban roads and freeways. These
two types of roads are closely connected: congestion on the freeway often causes spill-
backs leading to urban queues, slowing down the urban traffic. Urban queues can increase
until they block off-ramps, causing traffic jams on the freeway. As a consequence, control
measures taken in one of the two parts of the network can have asignificant influence on
the other area. We first develop a model that describes the evolution of the traffic flows in
mixed networks. Next, we propose the control method that is used for the integrated control.
This approach is based on model predictive control, in whichthe optimal control inputs are
determined on-line using numerical optimization and a prediction model in combination
with a receding horizon approach. We also compare our newly developed control method
with systems that are similar to existing dynamic traffic control systems like SCOOT and
UTOPIA/SPOT, in a qualitative as well as in a quantitative way via a case study. The results
illustrate the potential benefits of the proposed approach and motivate further development
and improvement of the proposed control method.

2.1 Introduction

The need for mobility is increasing, as can be seen from the growing number of road users as
well as from the increasing number of movements per user [111]. This leads to an increase
in the frequency, length, and duration of traffic jams, and toincreasing queue lengths in the
traffic network. The traffic jams cause large delays, resulting in higher travel costs and they
also have a negative impact on the environment due to, e.g., noise and pollution. Due to
these negative effects dealing with traffic jams has become an important issue.

To tackle the above congestion problems there exist different methods: construction of
new roads, levying tolls, promoting public transport, or making more efficient use of the
existing infrastructure. In this chapter we consider the last approach, implemented using

15
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dynamic traffic management or control, because this approach is effective on the short term,
and inexpensive compared to constructing new infrastructure.

Current traffic control approaches usually focus on either urban traffic or freeway traffic.
In urban areas traffic signals are the most frequently used control measures. Traditionally,
they are controlled locally using fixed-time settings, or they are vehicle-actuated, meaning
that they react on the prevailing traffic situation. Nowadays sophisticated, dynamic systems
are also making progress. They coordinate different available control measures to improve
the total performance. Systems such as SCOOT [140], SCATS [185], Toptrac [6], TUC
[48], Mitrop [59], Motion [24], and UTOPIA/SPOT [129] use a coordinated control method
to improve the urban traffic, e.g., by constructing green waves, or to improve the traffic
circulation. Control on freeways is done using different traffic control measures. Ramp
metering is applied on on-ramps, using systems like ALINEA [123]. Overviews of ramp
metering methods and results are given in [121, 149]. The useof variable speed limits
on freeways is described in [2, 66, 95, 145], and the use of route guidance in [46, 48, 81].
Several authors have described methods for coordinated control for freeways using different
traffic control measures [10, 64, 86, 89].

Several authors have also investigated corridor control [48, 81, 186], where arterials
are controlled together with freeways. In this chapter we goone step further, and we de-
scribe the coordinated and integrated control of networks that contain both freeways and
urban roads, since the traffic flows on freeways are often influenced by traffic flows on ur-
ban roads, and vice versa. Freeway control measures like ramp metering or speed limits
allow a better flow, higher speeds, and larger throughput butcan lead to longer queues on
on-ramps. These queues may spill back and block urban roads.On the other hand, urban
traffic management policies often try to get vehicles on the freeway network as soon as
possible, displacing the congestion toward neighboring freeways. The problems due to the
mutual interactions between the two types of roads are oftenincreased by the fact that in
many countries urban roads and freeways are managed by different management bodies,
each with their own policies and objectives.

By considering a coordinated control approach the performance of the overall network
can be improved significantly. Therefore we develop a control approach for coordinated
control of mixed urban and freeway networks that makes an appropriate trade-off between
the performance of the urban and freeway traffic operations,and that prevents a shift of
problems between the two. The new contributions of this chapter with respect to the state-
of-the-art are a macroscopic model that describes networksthat contain both urban roads
and freeways, and an integrated control method that takes the traffic flows on both types of
roads into account. In addition, this chapter contains a case study in which different control
methods are compared in a qualitative and a quantitative way.

As control method we propose a model predictive control (MPC) approach [25, 100].
MPC is an on-line model-based predictive control approach that has already been applied
successfully to coordinated control of freeway networks [10, 64, 89]. MPC optimizes the
settings of the control measures over a certain prediction horizon. Using a receding horizon
approach, only the first step of the computed control signal is applied, and next the opti-
mization is started again with the prediction horizon shifted one time step further.
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As MPC requires a model to predict the behavior of the traffic,we will first develop a
traffic model for networks that contain both urban roads and freeways. Traffic flow mod-
els can be distinguished according to the level of detail they use to describe the traffic.
In this chapter we use a macroscopic model. Macroscopic models are suited for on-line
control since these models give a balanced trade-off between accurate predictions and com-
putational efforts. The computation time for a macroscopicmodel does not depend on the
number of vehicles in the network, making the model well-suited for on-line control, where
the prediction should run on-line in an optimization setting, which requires that the model
should run several times faster than real-time, and where the results should always be avail-
able within a specified amount of time. Examples of macroscopic models are the LWR
model [96, 139], the models of Helbing [68] and Hoogendoorn [71], and METANET [106].
An overview of existing models is given in [72].

In particular, we use an extended version of the METANET traffic flow model to de-
scribe the freeway traffic, and a modified and extended model based on a queue length
model developed by Kashani and Saridis [82] for the urban traffic. We also discuss how the
freeway and the urban model have to be coupled. This results in a macroscopic model for
mixed networks with urban roads and freeways, especially suited for the MPC-based traffic
control approach developed in this chapter.
In a case study we illustrate how the developed MPC control method performs with respect
to existing control systems. A simple benchmark network is simulated, and basic implemen-
tations of existing control systems are applied. The performance of these existing systems
is compared with our theoretical MPC method. The results of this case study motivate the
further development of the MPC method.

The remainder of the chapter is organized as follows. We firstdescribe the model for
mixed urban and freeway networks in Section 2.2. Next we develop the MPC-based traffic
control method in Section 2.3, and in Section 2.4 we compare the developed method with
systems similar to existing methods like SCOOT [140] and UTOPIA/SPOT [129].

2.2 Model development

As indicated above the model for mixed networks containing both urban roads and freeways
that we develop is based on the METANET model [106] for the freeway part, and on a
queue length model based on a model developed by Kashani [82]for the urban part. Since
we want to use the model in an on-line control method, we have selected deterministic
models, mainly because they require less computational efforts than probabilistic models.
An overview of important symbols of these models is given in Appendix 2.A.

Note that we will explicitly make a difference between the simulation time stepTf for the
freeway part of the network, the simulation time stepTu for the urban part of the network,
and the controller sample timeTc. We will also use three different counters:kf for the
freeway part,ku for the urban part, andkc for the controller. For simplicity, we assume that
Tu is an integer divisor ofTf , and thatTf is an integer divisor ofTc:

Tf = NfuTu, Tc = NcfTf = NcfNfuTu,
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Figure 2.1: A freeway link in the METANET model divided in segments.

with Nfu andNcf integers. The value forTf must be selected in such a way that no vehicle
can cross a freeway segment in one time step, which results ina typical value of 10 s for
freeway segments of 0.5 km. The value ofTu is selected small enough to obtain an accu-
rate description of the traffic, typically between 1 and 5 s, depending on the length of the
roads. In our case study we will selectTc to be 120 s, because for an on-line controllerTc

should be long enough to determine the new control signal, which depends on the required
computation time, and short enough to deal with changing traffic conditions.

2.2.1 Freeway traffic model

In order to model traffic flows in the freeway part of the network we use the destination-
independent version of the METANET model, developed by Papageorgiou and Messmer
[106]. This model is also used in earlier work for the coordinated control of freeways
[10, 64, 86, 89]. A disadvantage of the model is that the description of the transition between
congestion and free flow does not completely correspond to what can be observed from real-
life measurements. Since the control method that we will develop should have the largest
influence at this transition moment, the mismatch might reduce the effect of the controller.
This means that using a model that describes this effect moreaccurate, might improve the
performance of the controller. However, the METANET model is sufficiently accurate for
other traffic situations, forms a good trade-off between accuracy and computation time, and
there is many knowledge about the model. In this chapter we add an extension to the model
to obtain a better modeling of the outflow toward off-ramps when blocking phenomena on
the off-ramp occur. For completeness we will first describe the original METANET model
based on [106], and next present the extension.

Basic METANET model

In the METANET model the freeway network is divided into links. Each linkm is further
divided in segments, as illustrated in Figure 2.1. All the segments in a link have the same
characteristics, e.g., number of lanes, capacity, length,etc.

The traffic state in each segmenti of link mat timet = kfTf is described with the macro-
scopic variables average densityρm,i(kf) in veh/km/lane, space mean speedvm,i(kf) in km/h,
and average flowqm,i(kf) in veh/h.

The outflow of segmenti of link m at time stepkf is given by:

qm,i(kf) = ρm,i(kf)vm,i(kf)nm (2.1)
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wherenm denotes the number of lanes of linkm. The density in each segment evolves as
follows:

ρm,i(kf + 1) = ρm,i(kf)+
Tf

Lmnm

(
qm,i−1(kf)− qm,i(kf)

)

whereLm denotes the length of the segments in linkm. This equation represents the law of
conservation of vehicles: no vehicles appear or disappear within a link.

The equation for the evolution of the speed contains three main terms. The relaxation
term expresses that the drivers try to achieve a desired speed V(ρ) for the current density
ρ. The convection term expresses that the speed changes due tothe inflow of vehicles with
a different speed, and the anticipation term expresses thatdrivers change their speed when
the downstream density changes. The updated speed is then computed with:

vm,i(kf + 1) = vm,i(kf)+
Tf

τ

(

V
(
ρm,i(kf)

)
− vm,i(kf)

)

+
Tf

Lm
vm,i(kf)

(
vm,i−1(kf)− vm,i(kf)

)

−
νTf

τLm

ρm,i+1(kf)−ρm,i(kf)

ρm,i(kf)+κ
(2.2)

whereτ , ν andκ are model parameters. They can be identified from data as described in
[88]. The desired speedV(ρm,i(kf)) is given by:

V
(
ρm,i(kf)

)
= vfree,mexp

[

−
1

am

(
ρm,i(kf)

ρcrit,m

)am
]

(2.3)

wherevfree,m is the free flow speed on linkm, ρcrit,m the critical density on this link, andam

a model parameter.
Mainstream origins are modeled with a queue model:

wo(kf + 1) = wo(kf)+ Tf
(
do(kf)− qm,o(kf)

)
(2.4)

wherewo is the queue length at origino connected to linkm, do the demand at origino, and
qm,o the flow leaving origino toward linkm, which is determined by the number of available
vehicles, the capacity of the freeway and the traffic conditions on the freeway:

qm,o(kf) = min

(

do(kf)+
wo(kf)

Tf
,Qcap,m

ρmax,m−ρm,1(kf)

ρmax,m−ρcrit,m

)

(2.5)

whereQcap,m is the capacity of linkm andρmax,m is the maximum possible density on the
freeway link.

Freeway links are coupled via nodes, e.g., on-ramps, off-ramps, or intersections. Flows
that enter a nodepare distributed over the leaving nodes. They are first distributed according
to the turning rates1:

Qtot,p(kf) = ∑
µ∈Ip

qµ,nlast,µ(kf)

qm,0(kf) = βp,m(kf)Qtot,p(kf) for eachm∈ Op

1The index 0 inqm,0(kf) corresponds to a virtual segment that is located upstream of the first segment of link
m. This virtual segment is used to describe the traffic that willenter linkm.
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Figure 2.2: Layout of an off-ramp.

whereQtot,p is the total flow entering nodep, Ip is the set of all freeway links entering node
p, nlast,µ is the index of the last segment of linkµ, βp,m is the turning rate from nodep to
leaving linkm, andOp the set of leaving links of nodep.

When a nodep has more than one leaving link, the virtual downstream density
ρµ,nlast,µ+1(kf) of the linkµ that enters the node is approximated with:

ρµ,nlast,µ+1(kf) =

∑
m∈Op

ρ2
m,1(kf)

∑
m∈Op

ρm,1(kf)
.

The virtual downstream density is used in the speed update equation (2.2) for the last seg-
mentnlast,µ of link µ.

When a nodep has more than one entering link, the virtual entering speedvm,0(kf) of
leaving linkm is given by:

vm,0(kf) =

∑
µ∈Ip

vµ,nlast,µ(kf)qµ,nlast,µ(kf)

∑
µ∈Ip

qµ,nlast,µ(kf)
.

The virtual entering speed is used in the speed update equation (2.2) to compute the speed
of the traffic that enters the first segment of linkm.

In a link or segment where weaving and/or merging effects aretaking place extra terms
are added to improve the description of these effects, as described in [89, 106].

Extension for off-ramp links

When the urban network is congested, it often happens that a nearby off-ramp is also
blocked. This blockage will spill back onto the freeway. We propose an extension to the
METANET model that more accurately models the behavior of off-ramp flows.

Consider an off-rampr connected to a freeway linkm as shown in Figure 2.2. The
available space on off-rampr limits the maximum flow that can enter it. This maximum
flow qmax

r,1 (kf) is seen as a boundary condition for the flow that leaves the freeway link
qm,nlast,m(kf) connected to the off-ramp:

qm,nlast,m(kf) = min
(

qnormal
m,nlast,m

(kf),q
max
r,1 (kf)

)

(2.6)
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whereqnormal
m,nlast,m

(kf) is the flow that would have exited the freeway if the off-ramp would not
have been blocked. When the flow is indeed limited toqmax

r,1 (kf), the speed of the last seg-
ment of the freeway must be recalculated as follows in order to satisfy (2.1):

vm,nlast,m(kf) =







vnormal
m,nlast,m

(kf) if qnormal
m,nlast,m

(kf) < qmax
r,1 (kf)

vnormal
m,nlast,m

(kf)
qmax

r,1 (kf)

qnormal
m,nlast,m

(kf)
otherwise

wherevnormal
m,nlast,m

(kf) denotes the speed in the segment when no spill-back occurs, i.e. the speed
computed with equation (2.2).

Further extensions describing, e.g., dynamic speed limits, and mainstream metering are
given in [64, 66]. The effects of control measures such as ramp metering and variable speed
limits will be described in Section 2.3.2.

The external inputs for a simulation of the freeway model arethe initial state of the links
and the origin queues, and the signals that describe the evolution over the entire simulation
period of the turning rates2 βp,m(kf), the demandsdo(kf), the boundary conditionsqmax

r,1 (kf),
and the control signals such as the ramp metering rates and the variable speed limits.

2.2.2 Urban traffic model

Several authors have developed models to describe traffic inurban areas [49, 82, 129, 188].
Due to the fact that we want to model and control mixed networks under all conditions, the
model we use should satisfy the following requirements:

1. It should be able to describe both light and congested traffic;

2. It should contain horizontal queues because queues oftenbecome long compared with
buffer capacities, which can lead to blockage of intersections. When an intersection
is blocked, no vehicles should be able to cross it.

There are many macroscopic urban traffic models that meet oneor more of these require-
ments, such as the Kashani model [82] and the IN-TUC model [48, 49]. We will base our
model on the Kashani model because it has the first of the abovefeatures, and because the
model can easily be extended. A disadvantage of this model isthat the time required to
drive from the end of the queue to the intersection is not included. The influence of this ap-
proximation depends on the layout of the network, and can be reduced by selecting a proper
value of the capacity of the intersection downstream of the link.

Extended urban model

Our model is based on the model developed by Kashani and Saridis [82], but to fulfill all
the requirements given above we make the following extensions:

1. Horizontal, turning-direction-dependent queues,

2These turning rates can be given externally or they can be determined using a (dynamic) traffic assignment
model (see, e.g., [33, 42, 143]).
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2. Blocking effects, represented by maximal queue lengths and a flow constraint on
flows that want to enter the blocked link, so no vehicle will beable to cross a blocked
intersection,

3. A shorter time step3, to get a more accurate description of the traffic flows.

The main variables used in the urban model are shown in Figures 2.3(a) and 2.3(b).
The most important variables are the queue lengthx expressed in number of vehicles, the
number of arriving vehiclesmarr, and the number of departing vehiclesmdep. Using these
variables, the model is formulated as follows.

The number of vehicles that intend to leave the linkloi ,s, connecting originoi and inter-
sections, toward destinationd j at timet = kuTu is given by:

mdep,int,oi ,s,d j (ku) =







0 if goi ,s,d j (ku) = 0,

min
(
xoi ,s,d j (ku)+ marr,oi ,s,d j (ku),

Ss,d j (ku),TuQcap,oi ,s,d j

)
if goi ,s,d j (ku) = 1,

(2.7)
wheregoi ,s,d j (ku) a binary signal that is 1 when the specified traffic direction has green, and
zero otherwise. This means thatgoi ,s,d j = 0 corresponds to a red traffic signal, andgoi ,s,d j = 1
to a green one,4 Tu is the urban step withku as counter,xoi ,s,d j (ku) is the queue length
consisting of vehicles coming from originoi and going to destinationd j at intersections,
marr,oi ,s,d j (ku) is the number of vehicles arriving at the end of this queue,Ss,d j (ku) is the free
space in the downstream link expressed in number of cars, andQcap,oi ,s,d j is the saturation
flow5.

The free spaceSσ,s in a link lσ,s expresses the maximum number of vehicles that can
enter the link. It can never be larger than the lengthLσ,s of the link expressed in number
vehicles, and is computed as follows:

Sσ,s(ku + 1) = Sσ,s(ku)− mdep,σ,s(ku)+ ∑
d j∈Ds

mdep,σ,s,d j (ku)

wheremdep,σ,s(ku) is the number of vehicles departing from intersectionσ towards linklσ,s,
andDs is the set of destinations connected to intersections.

The number of vehicles departing from intersections towards linkls,d j can be computed
as

mdep,s,d j (ku) = ∑
oi∈Os

mdep,oi ,s,d j (ku).

These vehicles drive from the beginning of the linkls,d j toward the tail of the queue waiting
on the link. This gives a time delayδs,d j (ku) which is approximated as:

δs,d j (ku) = ceil

(

Ss,d j (ku)Lav,veh

vav,s,d j

)

(2.8)

3Kashani and Saridis use the cycle time as time step, which restricts the model to effects that take longer than
the cycle time. For MPC-based traffic control the other effects can also be interesting, and one might also want to
control the cycle times as part of the control measures.

4The computed green time is the effective green time. The exact signal timing including the amber time can
easily be derived from this effective green time.

5The saturation flow is the maximum flow that can cross the intersection under free-flow conditions.
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Figure 2.3: Overview of urban network variables.

whereLav,veh is the average length of a vehicle, andvav,s,d j the average speed on linkls,d j .

The time instant at which the vehicle enters the link and the vehicles’ delay on the link
result in the time instant at which the vehicle will arrive atthe end of the queue. It can
happen that vehicles that have entered the link at differentinstants reach the end of the
queue during the same time step. To take this into account thevariablemarr,s,d j (ku) that
describes the vehicles arriving at the end of the queue is updated accumulatively every time
step. This results in:

marr,s,d j (ku + δs,d j (ku))new = marr,s,d j (ku + δs,d j (ku))old + mdep,s,d j (ku)



24 2 Integrated traffic control for mixed urban and freeway networks

wheremarr,s,d j (ku + δs,d j (ku)) is the number of vehicles arriving at the end of the queue at
timeku + δs,d j (ku), andmdep,s,d j (ku) the number of vehicles entering linkls,d j .

The traffic flow reaching the tail of the queue in linkls,d j divides itself over the sub-
queues according to the turning ratesβoi ,s,d j (ku):

marr,oi ,s,d j (ku) = βoi ,s,d j (ku)marr,oi ,s(ku).

The subqueues are then updated as follows:

xoi ,s,d j (ku + 1) = xoi ,s,d j (ku)+ marr,oi ,s,d j (ku)− mdep,oi ,s,d j (ku).

The total flow entering a destination link consists of several flows from different origins.
The available space in the destination link should be divided over the entering flows, since
the total number of vehicles entering the link may not exceedthe available space. We divide
this available space equally over the different entering flows. When one flow does not fill
its part of the space, the remainder is proportionally divided over the rest of the flows. To
illustrate how the effective values ofmdep,oi ,s,d j (ku) can be computed let us assume that there
are two origins, and so two queues from which vehicles want todrive into the same link.
Let mdep,int,1(ku) andmdep,int,2(ku) denote the number of vehicles that intend to enter the link
ls,d j from respectively origin 1 and origin 2. If we assume withoutloss of generality that
mdep,int,1(ku) ≤ mdep,int,2(ku), then the effective values formdep,1(ku) andmdep,2(ku) can be
computed as follows:

• if mdep,int,1(ku)+ mdep,int,2(ku) ≤ Ss,d j (ku), then

mdep,1(ku) = mdep,int,1(ku) and mdep,2(ku) = mdep,int,2(ku) ,

• if mdep,int,1(ku)+ mdep,int,2(ku) ≥ Ss,d j (ku), then







mdep,1(ku) = mdep,int,1(ku)

mdep,2(ku) = Ss,d j (ku)− mdep,int,1(ku)
if mdep,int,1(ku) < 1

2Ss,d j (ku),

mdep,1(ku) = mdep,2(ku) = 1
2Ss,d j (ku) if mdep,int,1(ku) ≥

1
2Ss,d j (ku).

The extension to a situation with more upstream queues is straightforward.

The external inputs for a simulation of the urban model are the initial state of the queues,
the number of arriving vehicles, and the free space, and the signals that describe the evo-
lution over the entire simulation period of the turning rates βoi ,s,d j (ku) and of the green/red
indicatorsgoi ,s,d j (ku).

2.2.3 Interface between the models

The urban part and the freeway part are coupled via on-ramps and off-ramps. In this section
we present the formulas that describe the evolution of the traffic flows on these on-ramps
and off-ramps. The main problems are the different simulation time stepsTf andTu and the
boundary conditions that the models create for each other. We assume that the time steps
are selected such thatTfvfree,m < Lm.



2.2 Model development 25

s

ls,r xs,r,p

marr,s,r

mdep,s,r,p

qr,p

on-rampr

freeway

urban road

(a) Variables for an on-ramp.

p

freewaym

off-rampr

urban road

lr,s

s
mdep,r,s,di

qm,nlast,m

marr,r,s xr,s,dj

r

(b) Variables for an off-ramp.

Figure 2.4: Overview of variables on on-ramps and off-ramps.

On-ramps

Consider an on-rampr that connects intersections of the urban network to nodep of the
freeway network, as shown in Figure 2.4(a). The number of vehicles that enter the on-ramp
from the urban network is given bymarr,s,r(ku). These vehicles have a delayδs,r(ku) similar
to (2.8). The evolution of the queue length is first describedwith the urban model. At the
end of each freeway time step, the queue length as described in the urban model is then
translated to the queue length for the freeway model as explained below.

Now consider the freeway time stepkf corresponding to the urban time stepku = Nfukf .
In order to get a consistent execution of the urban and freeway models the computations
should be done in the following order:

1. Determine the on-ramp departure flowqr,p(kf) during the period[kfTf ,(kf +1)Tf) using
(2.5).

2. Assume that these departures spread out evenly over the equivalent urban simulation
period[kuTu,(ku+Nfu)Tu). Compute the departures for each urban time step in this pe-

riod usingmdep,s,r,p(k) =
qr,p(kf)Tf

Nfu
for k = ku, . . . ,ku +Nfu −1 (note thatTu = Tf/Nfu).

3. The number of arriving vehicles, the free space, and the queue lengthxs,r,p at link
ls,r can now be computed using the equations for the urban traffic model given in
Section 2.2.2.

4. When the queue lengthxs,r,p(ku+Nfu) is computed, we setwo(kf +1) = xs,r,p(ku+Nfu).
It is easy to verify that this is equivalent to (2.4).
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Figure 2.5: Order of computations during a simulation.

Off-ramps

The evolution of the traffic flows on an off-rampr is computed for the same time steps as
for the on-ramp, starting at time stepku = Nfukf . The variables are shown in Figure 2.4(b).
The following steps are required to simulate the evolution of the traffic flows, in order to get
a consistent execution of the urban and freeway models:

1. Determine the number of departing vehicles from linklr,s at intersections during the
period[kuTu,(ku + Nfu)Tu) using the urban traffic flow model.

2. Compute the maximal allowed flowqmax
r,1 (kf) that can leave the freeway and enter the

off-ramp in the period[kfTf ,(kf +1)Tf) based on the available storage space in the link
lr,s at the end of the period. We have

qmax
r,1 (kf) =

1
Tf

Sr,s(ku)+
ku+Nfu−1

∑
k=ku

∑
d j∈Ds

mdep,r,s,d j (k).

The effective outflowqm,nlast,m(kf) of freeway linkm between nodep and off-rampr
is then given by (2.6).

3. Now the METANET model can be updated for simulation stepkf + 1.

4. We assume that the outflow of the off-ramp is distributed evenly over the period
[kfTf ,(kf + 1)Tf) such that

marr,r,s(k+ δr,s) =
qm,nlast,m(kf)Tf

Nfu
for k = ku, . . . ,ku + Nfu − 1.

The corresponding urban queue lengthsxr,s,d j (k) for k = ku + 1, . . . ,ku + Nfu can be
updated using the urban traffic flow model.

In summary, the model for the off-ramp as well as the model forthe on-ramp require a
special order in which the computations are done. For simulating the whole network this
means the computations should be done in the order shown in Figure 2.5. At the bottom each
subfigure shows the urban time steps, at the top the freeway time steps. The first subfigure
shows that with the flow at time stepkf the number of arriving vehicles in the urban network



2.3 Coordinated control for mixed networks 27

can be computed for time stepsku + 1, . . . ,ku + Nfu. Next, as shown in the second subfigure,
the urban variables at time stepsku, . . . ,ku + Nfu − 1 are used to adapt the flows at freeway
time stepkf . Last, the freeway variables at time stepkf + 1 are computed with the variables
at time stepkf .

2.3 Coordinated control for mixed networks

In the previous section we have developed a model that describes traffic networks that con-
tain both urban roads and freeways. This model forms the basis for our model predictive
control-based method. In this section we first give a generaldescription of model predictive
control (MPC). Next we formulate a traffic controller for mixed urban and freeway networks
that is based on MPC.

We have selected MPC because it has the following features and advantages:

1. It can easily handle multi-input multi-output systems,

2. Only a few parameters have to be tuned,

3. It can handle constraints on inputs and outputs in a systematic way.

One of the first applications of MPC for traffic control is described in [58]. Other publica-
tions that deal with MPC or MPC-like approaches for traffic control are [49, 89, 129]. As
described in [10, 64] MPC can be extended to coordinated control of freeway networks.

2.3.1 Model Predictive Control

Model predictive control (MPC) [25, 100] is a control methodthat has its origins in the pro-
cess industry, where it is widely implemented due to its ability to deal effectively with in-
creasing productivity demands, environmental regulations, and tighter product quality spec-
ifications. MPC is also suited for traffic control because it can easily handle changes in
demands and in external conditions.

MPC approach

The goal of MPC is to minimize a cost function over a given prediction period. This cost
function should give an indication for the performance of the system.

Figure 2.6 gives an overview of the operation of MPC. Assume that we are at time
t = kcTc = kfTf = kuTu whereTc is the controller time step. The current state of the system
is measured, and fed into the controller. Now the current state and a prediction model are
used to predict the behavior of the traffic during the period[kcTc,(kc + Np)Tc), whereNp is
called the prediction horizon. Note that in principle any traffic model can be used, but in
this chapter we use the model described in Section 2.2 because it provides a good trade-off
between accuracy and efficiency. With the obtained prediction the valueJ(kc) of the cost
function for this period is computed.

The cost function should be minimized by selecting the optimal control signal sequence
c∗(kc),c∗(kc+1), . . . ,c∗(kc+Np−1). In order to reduce the number of optimization variables
(and thus the computational complexity) usually a control horizon Nc (with Nc ≤ Np) is
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Figure 2.6: Working principle of MPC.

introduced and the control sequence is only allowed to vary over the period[kcTc,(kc +
Nc)Tc) and is set constant afterwards, i.e. we havec∗(kc+k) = c∗(kc+Nc−1) for k= Nc,Nc+
1, . . . ,Np − 1.

From the optimal control signal sequence only the first sample c∗(kc) is applied to the
real system. At the next control time step, a new optimization is performed with a prediction
window that is shifted one control time step further. Of the resulting control signal again
only the first sample is applied, and so on. This is called a receding horizon approach.
This approach allows for updating the (estimated) system state from measurements every
iteration, which introduces a feedback mechanism. In addition, it allows for adaptive control
by regularly updating the model parameters using system identification.

Control signal, constraints, cost function, and prediction model

The MPC method requires defining the control signalc, the cost functionJ, and the con-
straints. Further, a suitable prediction model should be selected. Below we describe these
elements for a general setting. In Section 2.3.2 they will bemade specific for traffic control
for mixed networks.

The control signal contains the settings for the control measures that are able to influence
the system.

The constraints can contain upper and lower bounds on the control signal, but also linear
or non-linear equality and inequality constraints on the control inputs and the states of the
system. The constraints are used, e.g., to keep the system working within safety limits or to
avoid unwanted situations.

The cost functionJ represents the performance of the network. Different performance
criteria are possible. In practice, cost functions are often a combination of the different
performance indicators:

Jtotal(kc) = υ1J1(kc)+υ2J2(kc)+υ3J3(kc)+ . . .

where the weightsυi ≥ 0 of each term can be determined by the user of the controller.
MPC uses a model of the system to make predictions. Note that to be able to make a

prediction of the traffic flows, the current state of the network should be known. This current
state can be obtained via direct measurements or by using a state estimator, e.g., based on
Kalman filtering [79].
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MPC is an on-line control approach, and thus requires prediction models that give a
balanced trade-off between accurate predictions and computational efforts. These models
should be able to run several times faster than real-time, toensure that the optimization
algorithm can have results available within a specified amount of time (e.g., the sampling
time of the system).

Optimization algorithms

At each control step MPC computes an optimal control sequence over a given prediction
horizon. In general, this optimal control sequence is the solution of a non-linear, non-
convex optimization problem in which the cost function is minimized subject to the model
equations and the constraints. To solve this optimization problem different numerical opti-
mization techniques can be applied, such as multi-start sequential quadratic programming
(SQP) [126, Chapter 5] or pattern search [133] for real-valued problems, and genetic al-
gorithms [44], tabu search [61], or simulated annealing [53] for mixed integer problems
arising when discrete control measures are included.

2.3.2 MPC-based traffic control for mixed urban and freeway networks

The principle of MPC has been explained above. In this section we describe how MPC can
be used to design a traffic controller for mixed urban-freeway networks. Note that the ele-
ments of an MPC controller (model, control signal, cost function, constraints, optimization
algorithm) can be selected separately, and that the elements that we select here are just an
example of a possible implementation.

The model requirements for MPC lead to the selection of a macroscopic traffic flow
model to predict the behavior of the traffic. Macroscopic models are suited since the com-
putation time is relatively low and does not depend on the number of vehicles in the network,
and since they offer a good trade-off between accuracy and computational efforts. In Sec-
tion 2.2 we have developed such a model, which we now include in our controller.

The control signalc can contain traffic signals for urban networks, presenting the green
times and off-sets for each intersection. For freeway networks it can contain, e.g., ramp
metering rates, variable speed limits, or lane closure settings. The MPC controller is often
used as a higher-level controller. In this case the control signal contains control profiles and
set-points for the local controllers. The low-level local controllers translate these profiles
and set-points in the red/green signals for the real traffic control measures, as illustrated in
Figure 2.7.

The traffic signals work as given in (2.7). The green time indicator signals are included
in the global control signal via the cycle timeTcyc, the green offsetsogreen,oi ,s,d j (expressed
as a percentage of the cycle time), and the green timesπgreen,oi ,s,d j (also expressed as a
percentage of the cycle time). This is done to prevent mixed-integer optimization problems,
and to reduce the number of variables in the control signal. The percentages are translated
into the binary red/green signalgoi ,s,d j as follows:
Suppose that we have to compute the control signals over the period[t0, tend] with t0 = k0Tu
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Figure 2.7: MPC-based control implemented with local controllers.

andtend= kendTu. In this period the number of cycles is equal toNcyc = ceil
(

tend−t0
Tcyc

)

. For

each cycleℓ = 0,1, . . . ,Ncyc− 1 the vehicles coming from originoi and going to destination
d j at intersections have green from time instantt0 + ℓTcyc + ogreen,oi ,s,d j (ℓ)Tcyc up to time
instant6 t0 + ℓTcyc+ ogreen,oi ,s,d j (ℓ)Tcyc+πgreen,oi ,s,d j (ℓ)Tcyc. So we have

goi ,s,d j (k) =







1 if kTu ∈

Ncyc−1
⋃

ℓ=1

[t0 + ℓTcyc+ ogreen,oi ,s,d j (ℓ)Tcyc,

t0 + ℓTcyc+ ogreen,oi ,s,d j (ℓ)Tcyc+πgreen,oi ,s,d j (ℓ)Tcyc]

0 otherwise

for k = k0,k0 + 1, . . . ,kend.
This implies that the actual urban control inputs computed by the MPC controller consist
of the cycle timesTcyc, the offset percentagesogreen,oi ,s,d j , and the green time percentages
πgreen,oi ,s,d j for each traffic cycle in the given prediction period. The number of green times
and offsets depends on the lengths of the cycles, which results in a variable length of the
control signal. However, optimization algorithms that canhandle inputs of variable size do
not exist. Several options are available to avoid this problem: select a fixed cycle time, first
optimize the cycle times for fixed offsets and green times andthen optimize the offsets and
green times with the obtained cycle time, or perform a bi-level optimization of cycle times,
offsets, and green times.

Ramp metering installations limit the flows that leave the on-ramps. The ramp metering
rates will be computed every controller time stepTc. For ease of notation we define the set
of freeway time stepskf that correspond to a given interval[ka

c,k
b
c] of controller time steps

as follows:

Kf(k
a
c,k

b
c) =

[

ka
c

Tc

Tf
,ka

c
Tc + 1

Tf
, ...,kb

c
Tc

Tf
− 1
]

.

The ramp metering rates in freeway time steps are then given by:

r ramp(kf) = r ramp
c (kc) ∀ kf ∈ Kf(kc,kc + Np) (2.9)

6Note that in fact time instants beyondtend do not have to be considered.
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wherer ramp(kf) is the ramp metering rate in freeway time steps, andr ramp
c (kc) is the metering

rate in control time steps.
The flow that leaves the on-ramp is then determined by:

qonramp,metering
r,p (kf) = min(qonramp,no metering

r,p (kf), r
ramp(kf)Qcap,r)

whereqonramp,no metering
r,p (kf) is the flow on the on-ramp when no metering is applied (cf.

(2.5)), andQcap,r is the capacity of the on-ramp.
The last part of the control signal contains the freeway speed limits, which are also

determined via zero order interpolation, as in (2.9). Speedlimits influence the speed of the
drivers by changing the speed that they try to approximate [64]:

vdesired,limits
m,i (kf) = min(vdesired,no limits

m,i (kf),(1+αm)vlimit
m,i (kf)) (2.10)

wherevdesired,no limits
m,i (kf) is the desired speed of the drivers when there are no speed limits

applied (cf. (2.3)),vlimit
m,i (kf) is the value of the applied speed limits, andαm is a parameter

which represents the fact that drivers will freely interpret and adhere to the speed limits.
When enforcement is usedαm will typically be around -0.1, but without enforcement drivers
will tend to drive too fast, andαm can be around 0.1.

The subsequent values of the ramp metering rates and the variable speed limits over the
prediction period form the freeway part of the control signal.

Furthermore, we can impose constraints for the controller.For traffic control such con-
straints can consist of, e.g., maximum queue lengths at intersections, at on-ramps or at
off-ramps, minimum and maximum green times, minimum and maximum speed limits,
maximum flows on roads, constraints that the traffic signal plans should be conflict-free,
etc. These constraints could be prescribed by regulations,or they could express a policy
selected by the traffic management authorities.

The cost function can be determined by the traffic managementauthorities, to represent
their traffic management policies. The cost function could contain the total time that the
vehicles spend in the network, the average queue length, thenumber of stops, the total delay,
the throughput, vehicle loss hours, variation in the traveltimes, the total fuel consumption,
the emission levels, the noise production, etc., or a combination of them. The cost functions
for the urban and freeway parts of the network are often computed separately, to allow a
trade-off between the two:

Jtotal(kc) = υfJfreeway(kc)+υuJurban(kc)

whereυf andυu are a weight factors to determine the relative influence of the freeway and
urban traffic.

A cost function that is often used in literature (see, e.g., [10, 64, 86, 89]) is the total
time spent (TTS) by all vehicles in the network. We will also use this objective function
for our case study in Section 2.4. Therefore, we will now expand somewhat on this specific
objective function. To compute the TTS for the urban part of the network the number of
vehicles in each urban linknvehicles,lσ,s is required:

nvehicles,lσ,s(ku) = Lσ,s− Sσ,s(ku)
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whereLσ,s is the maximum number of vehicles that the link can contain. Using this equation
the number of vehicles for all urban links, on-ramps, and off-ramps can be computed.

The TTS will be computed over the period[k0
cTc,(k0

c + Np)Tc) when we are at timet =

k0
cTc. Now definek0

u andk0
f such thatk0

cTc = k0
uTu = k0

f Tf andk0,end
u andk0,end

f such that

(k0
c + Np)Tc = (k0,end

u + 1)Tu = (k0,end
f + 1)Tf . The total time spent in the urban part of the

network during the period[k0
cTc,(k0

c + Np)Tc) is then given by:

TTSurban(k
0
c) = Tu

k0,end
u

∑
k=k0

u

(

∑
loi ,s∈I

nvehicles,loi ,s
(k)+ ∑

ls,r∈Ron

nvehicles,ls,r (k)+ ∑
o∈Ourban

nvehicles,o(k)

∑
lr,s∈Roff

nvehicles,lr,s(k)
)

where TTSurban(k0
c) denotes the total time spent in the urban part of the network during the

period[k0
cTc,(k0

c + Np)Tc), I the set of all urban links,Ourban the set of all urban originso,
Ron the set of links urbanlr,s connected to the on-ramps, andRoff the set of urban linksls,r
connected to the off-ramps.

The TTS in the freeway part of the network is computed using the density on the seg-
ments:

TTSfreeway(k
0
c) =

k0,end
f

∑
k=k0

f

∑
m∈M

(

Lmnm ∑
i∈Im

ρm,i(k)+ ∑
o∈Ofreeway

wo(k)
)

where TTSfreeway(k0
c) is the total time spent in the freeway part of the network during the

period [k0
cTc,(k0

c + Np)Tc), M the set of all freeway linksm, Im the set of all segmentsi in
link m, andOfreeway the set of all freeway origins.

The total cost function is given by the weighted sum of the urban and freeway total time
spent:

TTS(k0
c) = υfTTSfreeway(k

0
c)+υuTTSurban(k

0
c) .

2.4 Case study

To illustrate the performance of the MPC method we will present a simple case study. The
case study concentrates on urban control but in a network that also contains a freeway. We
have done this to be able to make a comparison with existing dynamic control systems,
which have mainly been developed for urban control measures.

2.4.1 Set-up of the case study

For the case study a simple network is used, as shown in Figure2.8. The network consists of
two freeways (freeway 1 and 2) each with two lanes, two on-ramps, and two off-ramps (ramp
1 to 4). Furthermore, there are two urban intersections (A and C), which are connected to
the freeway and to each other. Between these intersections and the freeways there are some
crossing roads (B, D, and E), where there is only crossing traffic that does not turn into other
directions, e.g., pedestrian traffic, bicycles, etc. We have selected this network because it
contains most of the essential elements from mixed networks. There are freeways with
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Figure 2.8: Network used in the case study.

on-ramps and off-ramps and controlled intersections not too far away from the freeways
resulting in a strong relation between the traffic on the two types of roads. The network is
small enough to use intuition to analyze and interpret the results, but large enough to make
the relevant effects visible.

The performance of the control systems will be shown for different traffic scenarios.
Three of them are scenarios with different traffic situations, while the fourth is a control-
related scenario. We have selected these scenarios becausethey clearly show the influence
of the urban traffic on the freeway traffic and vice versa, because this influence occurs
frequently, and because some properties of the control methods will become clearly visible.
The ‘basic’ scenario has a demand of 3600 veh/h for freeway origins and 1000 veh/h for
urban origins, and turning rates as shown in Figure 2.8. Eachof the scenarios is a variation
on this ‘basic’ scenario, with one variable or parameter changed or a constraint added. The
total simulated time is 30 minutes. These are the four scenarios:

Scenario 1: congestion on the freewayA traffic jam exists at the downstream end of free-
way 1. This congestion grows into the upstream direction andblocks the on-ramps,
causing a spill-back leading to urban queues. The congestion is created by imposing
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a downstream density of 65 veh/km/lane for the last segment of the freeway.

Scenario 2: blockage of an urban intersectionOn intersection D an incident has occurred,
and the whole intersection is blocked. The queues spill backto neighboring intersec-
tions, and also block the off-ramps of the freeways. This incident is simulated by
setting the saturation flow of all links leaving the intersection to 0 veh/h.

Scenario 3: rush hour In this scenario the demand at the origins becomes larger during a
short period. We have selected a flow of 500 veh/h with a peak of2000 veh/h for the
urban origins, and a flow of 2000 veh/h with a peak of 4000 veh/hfor freeway origins.
The duration of the peak is 10 minutes.

Scenario 4: maximum queue lengthHere, the queue on the link from intersection A to-
ward intersection B may not become longer than 20 vehicles. This can be a manage-
ment policy, e.g., when the link is in a residential area.

2.4.2 Simulation set-up

For all control systems the implementation of the simulations and the controller is com-
pletely done in the mathematical computation environment Matlab. We use the model de-
scribed in Section 2.2 both as real-world model and as prediction model. With this set-up
we can give a proof-of-concept of the developed control method, without introducing un-
necessary side-effects.

In our case study the MPC optimization problem is a non-convex, non-linear problem
with real-valued optimization variables. To solve this problem we have selected multi-
start SQP [126] as optimization algorithm. This algorithm is implemented in thefmincon
function of the Matlab optimization toolbox [154].

As cost function we select the total time spent (TTS). The parameters of the METANET
model are selected according to [87]:vfree,m= 106 km/h,ρcrit,m= 33.5 veh/km/lane,ρmax,m=
180 veh/km/lane,Qcap,m = 4000 veh/h,τ = 18 s,ν = 65 km2/h, κ = 40 veh/km/lane, and
am = 1.867. The parameters of the urban model areQcap,o,s,d = 1000 veh/h,Lav,veh = 6 m,
andvav,ls,d = 50 km/h.

We have selected the following time steps:Tc = 120 s,Tf = 10 s, andTu = 1 s. A small
value is selected for the urban time step to obtain detailed information. The freeway time
step of 10 s forms a trade-off between computational effort and accuracy.

There are three parameters that can be tuned for the MPC controller. We have selected
Np = 8 andNc = 3 as horizons, andα = 1 as trade-off between urban and freeway perfor-
mance in the cost function.

2.4.3 Alternative control methods

Many dynamic traffic control systems have already been implemented in the real world.
Some of these systems are SCATS [185], Toptrac [6], SCOOT [140], UTOPIA/SPOT [129],
MOTION [24], and IN-TUC [48]. Here we will use approximations of SCOOT and
UTOPIA/SPOT to make a comparison between the developed MPC control method and
some existing systems. Both SCOOT and UTOPIA/SPOT target the urban traffic, and they
optimize intersections independently of the neighboring freeway. We have selected these
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methods because they are good representatives of this kind of dynamic traffic control sys-
tems. Note however that these systems are commercial systems, meaning that real specifica-
tions are not publicly available. This means that we can onlyapproximate their functioning
as follows:

System 1: a SCOOT-like systemSCOOT [140] has a controller on each intersection. These
controllers estimate the arriving traffic flows using a cyclic flow profile, that is up-
dated via measurements taken at the beginning of each link. Every control time step
the cycle time is updated. This is done according to the ratiobetween the current
queue length and the maximum allowed queue length. When more than 90% of the
maximum queue length is reached, the cycle time is increased. The time differences
between the beginning of the green times of different intersections are called the off-
sets. At the beginning of each cycle the offsets are optimized locally by adapting them
to the expected demands. A prediction of the traffic flows for the next cycle is used
to determine the optimal values for each intersection separately, using predictions ob-
tained from neighboring intersections during the previoustime step. The green times
are updated every time step (1 s). A prediction of the traffic during the next cycle is
made to determine whether it is useful to increase or decrease the green times with
4 s. The model used for the predictions is a simple queue length model. It describes
the number of vehicles arriving at the beginning of the link,the delay due to the travel
time on the link, the length of the queue, and the number of vehicles leaving the link.

System 2: an UTOPIA/SPOT-like systemUTOPIA/SPOT [104, 129] has been developed
in Turin, Italy. It is a hierarchical system with a local controller at each intersection,
and a central controller. The central controller computes an optimal control signal
consisting of setpoints for the local controllers, using a prediction of the traffic in the
whole urban network over a period of 15 minutes. These setpoints are sent to the local
controllers. Each of these local controllers communicateswith its neighbors to obtain
their measurements and expected control scheme. With this information the local
controllers compute a locally optimal green times and offsets, using predictions of the
traffic on the local intersection during the next cycle, including the arriving traffic. In
the cost function used by the local controllers a penalty is added for deviations from
the signal computed by the central controller. In this way the central controller can
influence the local controllers. A queue length model is usedto obtain the predictions
of the traffic state.

In both systems constraints like maximum queue lengths are introduced by adding a
penalty term to the cost function. This penalty term must become relatively large when the
maximum queue length is reached. This results in a very high value of the cost when the
maximum queue length is violated. While the purpose of the control is to minimize the
cost function, a trade-off will have to be made between minimizing the original cost and
violating the queue length constraint.

2.4.4 Qualitative comparison

The main difference between the MPC-based system proposed in this chapter and the exist-
ing systems is that the new system takes the influences and interactions between the urban
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and freeway parts of the network into account. By simulatingthe effect of one measure
on both kinds of roads, control settings can be found that provide a trade-off between im-
proving traffic conditions on the freeway and delaying traffic on the urban roads and vice
versa.

Furthermore, the MPC-based system we have developed can handle hard constraints on
both the control signals and the states of the system. All systems can handle constraints that
are directly linked to the control signals, e.g., maximum and minimum green times and cycle
time constraints. But the MPC-based system can also handle more indirect constraints such
as maximum queue lengths, maximum delays, etc. These constraints are included as hard
constraints in the MPC optimization problem, which is subsequently solved using a con-
strained optimization algorithm (e.g., SQP). In the other systems such a constraint is imple-
mented by adding a penalty term that penalizes the constraint violation to the performance
function. This can lead to either satisfying the constraints with a degraded performance,
or violating the constraints and obtaining a better performance. Which of the two occurs
depends on the weight that is given to the penalty term. Figure 2.9(a) shows a queue on the
link from A to B when MPC-based control is applied. Figure 2.9(b) shows the same queue,
but now with MPC-based control with a queue length constraint of 12 vehicles. Whereas
in Figure 2.9(a) the queue repeatedly exceeds 12 vehicles, in Figure 2.9(b) the queue stays
around 10 vehicles. This is due to the fact that the controller predicts that the queue will
exceed the limit during the prediction horizon, which causes the controller to change the
value of the control signals. When the first step of this control signal is then applied on the
real system, the queue stays lower than the value of the constraint.

The three control methods are also characterized by different communication require-
ments. System 1is based on local controllers, each with their own detectorsand control
algorithms. System 2uses different levels: local controllers that communicatewith their
neighbors, and a centralized control computer that communicates with each local controller,
mainly sending set-points for the local control algorithms. The MPC method is in principle
a centralized method in which the control algorithm runs on acentral computer, and only
the results of the optimization are communicated toward thelow-level controllers. In this
way an optimum for the total network is found, possibly at thecost of large computation
times in the case of large networks (in Section 2.4.6 we will sketch some ways to address
this issue).

2.4.5 Quantitative comparison

We have applied the three different control methods to the case study network. The results
are shown in Table 2.1. Each traffic scenario is simulated with each control method. The
table shows the total time spent for the freeway part of the network, for the urban part, and
for the whole network. The last column of the table shows the improvement of the MPC
method compared toSystem 1(first number) and toSystem 2(second number). This makes
it possible to determine in which part of the network the largest improvements are obtained.
For the fourth scenario the largest attained queue length isalso shown.

The first two scenarios show that the MPC method can improve the performance for the
urban as well as for the freeway part of the network when a problem arises in one of the two.
The immediate negative effects of such a problem are reducedjust as the negative influence
on the rest of the network.



2.4 Case study 37

Table 2.1: Results of the case study: total time spent for thefreeway part of the network,
for the urban part, and for the total network; and also the improvement of the
MPC-based method compared toSystem 1 andSystem 2 respectively.

Scenario 1: congestion on the freeway

System 1 System 2 MPC improvement
freeway 595.4 565.1 563.9 5.3 / 0.3%
urban 313.6 335.7 305.7 3.0 / 9.0%

total 909.0 900.8 869.6 4.4 / 3.5%

Scenario 2: blockage of an urban intersection

System 1 System 2 MPC improvement
freeway 498.0 526.2 495.0 0.7 / 6.0%
urban 665.9 672.3 620.3 6.9 / 7.8%

total 1163.9 1198.5 1115.3 4.2 / 7.0%

Scenario 3: rush hour
Sytem 1 System 2 MPC improvement

freeway 244.6 280.1 253.3 -3.5 / 9.6%
urban 409.0 383.5 386.8 5.5 / -1.6%

total 653.6 663.6 640.1 2.1 / 3.5%

Scenario 4: maximum queue length of 20 vehicles with large weight

System 1 System 2 MPC improvement
freeway 367.2 510.3 373.9 -1.8 / 26.8%
urban 309.7 435.4 264.4 15.7 / 39.3%
max. queue 19 19 21

total 676.9 945.7 638.3 6.8 / 32.6%

Scenario 4: maximum queue length of 20 vehicles with small weight

System 1 System 2 MPC improvement
freeway 367.1 428.1 373.9 -1.8 / 13.7%
urban 303.0 360.5 264.5 13.8 / 26.7%
max. queue 93 43 21

total 670.1 788.6 638.3 5.8 / 19.1%
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(a) Queue length at the link from A to B, for MPC without queue
length constraint.
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(b) Queue length at the link from A to B, for MPC with a queue length
constraint of 12 vehicles.

Figure 2.9: The effect of a queue length constraint.

The third scenario shows that the MPC method can control the traffic slightly better
when a large peak in the demand occurs. In this scenario the trade-off between the freeway
and urban parts of the network can clearly be seen. A reduction of the performance on the
urban network can lead to an improvement of the performance on the freeway network, and
vice versa. This can be used to obtain a better performance for the total network.

The maximum queue length constraint is implemented inSystem 1andSystem 2by
adding an extra penalty term in the cost function. This term has a relative weight that allows
a trade-off between the performance of the network and the importance of the maximum
queue length constraints. When the weight is high the queue length constraint is satisfied
but the performance is low, as shown in the first simulations done for the fourth scenario. In
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the second set of simulations the weighting term for the queue constraint is low, resulting in
a better performance, but now the maximum queue length is exceeded. The values for MPC
are the same for both simulation sets because the queue length constraint is implemented as
a hard constraint for the optimization algorithm7.

2.4.6 Discussion

Although the MPC-based method gives good results, some parts of it have to be investigated
more extensively.

The most important problem at the moment is the required computational effort. The
run time for the MPC-based method is larger than for the othermethods. This is due to the
use of one central computer and to the fact that a larger network is optimized at once. This
can be solved by, e.g., using faster computers, by using the method in a distributed setting,
or by using better special, dedicated solvers implemented in object code8.

The optimization technique also forms an important factor in relation to the computation
time and the computed optimal control signal. Different optimization algorithms can have
different run times, and yield different solutions. To select the best algorithm extensive
simulations should be done for a wide range of set-ups and scenarios to compare the various
algorithms.

When hard constraints are implemented, it is possible that the optimization problem
becomes infeasible. When this occurs, one or more constraints have to be relaxed (see
[25, 100] for more details). This can in reality mean that theconstraints are violated for a
short period.

The effects of selecting different cost functions should also be investigated, just as the
influence of the weighting parametersυf andυu, which determine the trade-off between the
urban and the freeway costs.

2.5 Conclusion

Congestion on urban roads and congestion on freeways cannotbe seen as separate problems:
the traffic on urban roads influences the traffic on freeways and vice versa. As a result,
control measures taken on one of the two types of roads have influence on both types of
roads. We have developed a control approach that takes this influence into account when
the control signals are determined. The approach is suitable for integrated control, and
yields a balanced trade-off between the urban and the freeway parts of the network.

We have first developed a model that describes the evolution of traffic flows on mixed
urban-freeway networks. For the freeway part the METANET model is used, and for the
urban roads a queue length model based on Kashani’s model is developed. We have made
the connection between the urban and freeway parts of the network by modeling on-ramps
and off-ramps.

The mixed network model has been used to develop a coordinated control method using
MPC. In MPC the evolution of the traffic flow is predicted over acertain period, and this

7The MPC-based method violates the constraint with 1 vehicle at the start of the simulation. This is due
to infeasibility problems during the optimization, related to the initial state of the network at the start of the
simulation. This issue can be solved by increasing the horizonsNp andNc.

8The current simulations are programmed in Matlab, which is basically an interpreted language.
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prediction is then used to optimize the control settings, using numerical algorithms. MPC
uses a receding horizon approach: only the first step of the optimized control settings is
applied, and then the procedure is started all over again. This makes that the controlled
system can also cope with changes in the traffic demand, and with model mismatches.

We have performed a case study to compare the MPC method with existing control
methods. In particular, for the comparison we have selectedmethods that are an approxima-
tion of SCOOT and UTOPIA/SPOT. Different traffic scenarios have been simulated and the
result of the three systems have been compared qualitatively and quantitatively. The MPC
method performs between 2% and 7% better than the other two systems, and can guarantee
bounds on the queue lengths without a large decrease in performance.

The results of the simulation are promising: they can be seenas a proof-of-concept for
the proposed approach, they show its potential benefits, andencourage further research.
This research could include the following steps. First, additional case studies, with several
different traffic scenarios and set-ups including larger networks should be performed. Next,
case studies should be done where different models are used to model the ‘real-world’ traffic
flows (for the prediction model we would keep on using the macroscopic model proposed
in this chapter). Then, the efficiency of the algorithm should be improved by, e.g., select-
ing/developing other optimization algorithms, or adapting the model as in [97]. Attention
should be payed to the robustness and sensitivity of the control method. Last, a real-life test
should be done. Other topics that should be investigated arethe validation and calibration
of the model. Furthermore, for the simulation of larger networks, it is useful to investigate
MPC for distributed control in which different adjacent network regions are defined and op-
timized separately (but with some coordination to avoid negative influences of the control
actions of one region on the other regions).

2.A List of symbols

Freeway model

Tf freeway time step (h)
kf freeway time step counter
vm,i(kf) space mean speed on segmenti of freeway linkm at freeway time step

kf (km/h)
ρm,i(kf) average density on segmenti of freeway linkm at freeway time stepkf

(veh/km/lane)
qm,i(kf) average outflow of segmenti of freeway linkm at freeway time stepkf

(veh/h)
nm number of lanes of freeway linkm
Lm length of the segments of freeway linkm
V(ρm,i(kf)) desired speed corresponding to the density at segmenti of freeway link

m during freeway time stepkf (km/h)
vfree,m free flow speed of freeway linkm (km/h)
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ρcrit,m critical density of freeway linkm (veh/km/lane)
wo(kf) queue length at origino at freeway time stepkf (veh)
do(kf) demand at origino at freeway time stepkf (veh/h)
Qcap,m capacity of freeway linkm (veh/h)
ρmax,m maximum density at freeway linkm (veh/km/lane)
Qtot,p(kf) total flow entering nodep at freeway time stepkf (veh/h)
Ip set of all freeway links entering nodep
nlast,m index of the last segment of freeway linkm
βp,m turning rate from nodep to leaving freeway linkm
Op set of leaving links of nodep
r ramp(kf) ramp metering rate at freeway time stepkf

qm,nlast,m(kf) flow that can enter the off-rampr connected to freeway linkm at free-
way time stepkf (veh/h)

Urban model

Tu urban time step (h)
ku urban time step counter
loi ,s link connecting originoi with intersections
marr,s,d j (ku) number of vehicles arriving at the end of the queue in linkls,d j at urban

time stepku (veh)
mdep,s,d j (ku) number of vehicles departing from intersections towards link ls,d j at

urban time stepku (veh)
marr,oi ,s,d j (ku) number of vehicles from originoi going to destinationd j arriving at the

end of the partial queue at intersectionsat urban time stepku (veh)
mdep,oi ,s,d j (ku) number of vehicles leaving queue at urban time stepku (veh)
Ds set of destinations connected to intersections
xoi ,s,d j (ku) queue length consisting of vehicles coming from originoi going to des-

tinationd j at intersections at urban time stepku (veh)
goi ,s,d j (ku) binary signal that is 1 when the direction from originoi to destination

d j at intersectionshas green at urban time stepku

Ss,d j (ku) free space in the linkls,d j connecting intersectionsand destinationd j at
urban time stepku (veh)

Qcap,oi ,s,d j the saturation flow at intersections for traffic from originoi with desti-
nationd j

Lloi ,s
length of link loi ,s from originoi to intersections

δs,d j (ku) delay experienced in the linkls,d j by a vehicle that enters at urban time
stepku (expressed as a multiple ofTu)

Lav,veh average length of a vehicle (m)
βoi ,s,d j (ku) percentage of the traffic on linkloi ,s with destinationd j at urban time

stepku
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Controller

Tc control time step (h)
kc control time step counter
Np prediction horizon
Nc control horizon
c general control signal
J(kc) generalized total costs for the period[kc,kc + Np)
I set of all urban links
nvehicles,loi ,s

(ku) number of vehicles in linkloi ,s at urban time stepku (veh)
TTS(kc) total time spent in the network at control time stepkc (veh·h)
TTSurban(kc) total time spent in the urban part of the network at control time stepkc

(veh·h)
TTSfreeway(kc) total time spent in the freeway part of the network at controltime step

kc (veh·h)
Tcyc global cycle time
Ncyc number of cycles
πgreen,oi ,s,d j (ku) green time for the direction from originoi to destinationd j at intersec-

tion sat urban time stepku (percentage of cycle time)
ogreen,oi ,s,d j (ku) offset of the green for the direction from originoi to destinationd j at

intersections at urban time step (percentage of cycle time)



Chapter 3

Traffic control strategies based on
different assignment models

In this chapter we develop three coordinated control strategies that take re-routing effects
into account. All strategies use a model-based predictive control approach to determine
optimal settings for traffic control measures. The prediction model used in the controllers
consists of two parts; a traffic flow model, and a traffic assignment model. For the traffic
flow model the controllers use METANET [106]. The assignmentmodels differ for the
controllers developed in this chapter.

The first strategy that we develop considers the within-day route choice process, and
uses an explicit equilibrium-based dynamic traffic assignment model based on the Method
of Successive Averages (MSA) to describe this process.

The second and third strategies use a route-choice-based traffic assignment model, which
describes the within-day route choice as well as the day-to-day route choice. The second
strategy considers only the within-day part of the route choice model, while the third strat-
egy includes the within-day and day-to-day route choice.

The strategies use the route choice models for different purposes. The first an second
control strategies only take the effect of the route choice process into account when they
determine the settings for the control variables, while thethird strategy actively influences
the route choice via information provided on dynamic route information panels.

The performance of the control strategies is illustrated with several small case studies,
in which the methods that are developed are compared with existing control methods.

3.1 Introduction

When there are different routes from origin to destination ina network, the traffic flows di-
vide themselves over these routes. This process is called dynamic traffic assignment. When
a control measure is present in the network, its control actions influence the traffic flows,
and thus implicitly influence the traffic assignment [148]. This change in the traffic assign-
ment may require a change in the control actions. However, the effect of control actions
on the traffic assignment is usually not included in the current traffic control frameworks.

43
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Current traffic situation
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route choice
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Day−to−day
route choice

Selected
route

Cost experienced during trip

Figure 3.1: Overview of the route choice process.

In this chapter we focus on including this dynamic traffic assignment process in the control
method1.

A traffic assignment is the result of the route choices of the drivers. The route choice
process has two different time scales, see Figure 3.1. Thereis the day-to-day change in
route choice, and the within-day route choice. The day-to-day route choice depends on
preferences of the drivers with respect to, e.g., nice surroundings, absence of traffic signals,
wider lanes, and experiences encountered during the last day, such as queue lengths, travel
times, delays, etc. The day-to-day preferences are updatedat the end of each day.

The within-day route choice is based on the situation in the network at the moment
the driver has to make this route choice. This situation can be qualified using, e.g., the
instantaneous travel time, instantaneous queue lengths, flows, densities, or speeds at the
current moment. When the process converges, the day-to-day and within-day route choice
together lead to a dynamic equilibrium traffic assignment.

The first paper that describes the effects concerning route choice is [182]. Other early
works are [54, 144], which describe the reasoning of the drivers while selecting their route,
and which claim that the route choice will lead to a so called static user equilibrium traffic
assignment. This is the assignment in which all routes have the same costs for the drivers.
Several authors have developed methods to compute this static equilibrium assignment [50,
102]. But with varying demands the equilibrium assignment will also vary, and so dynamic
traffic assignment algorithms have been developed, see, e.g., [15, 56].

In this chapter we will consider two types of assignment models: equilibrium-based
models that assume that the traffic flows are always in an (dynamic) equilibrium, and en-
route route-choice-based models that describe the route choice behavior of drivers at indi-
vidual intersections. Equilibrium-based models are relatively easy to validate since real-life
travel time data can be gathered with on-line measurements,but require large computation
times since they lead to bi-level optimization problems when they are used within an opti-
mal control setting, as described in [10, 148]. En-route route-choice-based models require
less computation time than equilibrium-based models, but they are more difficult to validate
due to the lack of route choice data.

All traffic assignment models are using the costs for different routes to determine the

1The actions of the control measures cannot only influence the route choice but also the departure times of the
drivers. Including the departure time choice in a control method can be done in a similar way as including the route
choice: by embedding a departure time model in the controller.
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assignment. The cost that the drivers experience is for a large part based on the travel times
on the routes [18, 42, 142]. These travel times are influencedby the control measures, and
thus the control measures influence the traffic assignment. This means that current traffic
control methods can be improved by taking into account that the change in the route choice
generated by their control actions requires a change in the control strategy to maintain op-
timal performance. Another reason to include route choice behavior in the control strategy
is that some control measures, e.g., DRIPs, are designed to explicitly influence the traffic
assignment. The effects of these measures on the route choice of drivers are described in,
e.g., [18, 46, 103, 147].

In this chapter we develop three control strategies that include re-routing effects into the
controller. The strategies that we propose are all based on model predictive control (MPC)
[25, 100], which has already been applied for different freeway networks [10, 22, 65], and
which can handle hard constraints. MPC requires a model thatpredicts the evolution of
the traffic flows on the network. For the control strategies that we develop we will use
the macroscopic traffic flow model, METANET [106], combined with a traffic assignment
model.

The main differences between the control strategies that will be developed are the timing
of the route choice processes that is considered, the assignment algorithm that is selected,
and the function of the assignment model within the controller. The first strategy considers
only within-day route choice, uses an equilibrium-based dynamic traffic assignment (DTA)
algorithm [11], and uses the DTA algorithm to anticipate on changes in the route choice
due to the control actions. The equilibrium-based DTA algorithm determines the traffic
assignment given the present values for the control input insuch a way that an equilibrium
appears in which the costs for all routes between a specific origin and destination are equal.
This is done according to the following procedure. First, the METANET model is used
to predict the evolution of the traffic flows with these inputs. Based on these predictions,
the travel times for the routes in the network are obtained. Then the method of successive
averages (MSA) [134] is used to determine the correspondingtraffic assignment. This new
assignment is used in the optimization process to select thebest settings for the coordinated
traffic control measures. We illustrate the first strategy with a case study involving a small
network with two routes and one on-ramp, using ramp meteringas control measure.

The second control strategy uses an en-route route-choice-based assignment model that
implicitly determines the traffic assignment. The model describes within-day as well as day-
to-day route choice, but the second control strategy uses only the within-day route choice.
The model does not assume an equilibrium assignment, but predicts the route choice of
drivers based on previously experienced travel times. The control strategy uses the DTA
algorithm to anticipate on changes in the route choice. The performance of this control
strategy is illustrated with a case study involving anticipative on-ramp metering. Also, a
short investigation of off-ramp metering using this control strategy is performed.

The third control strategy considers within-day and day-to-day route choice using the
en-route route-choice-based assignment model. The strategy uses the DTA model to to
actively steer the route choice, which is also done in [47, 81, 147]. Further, the third control
method integrates existing control measures, e.g., ramp metering installations and variable
speed limits with dynamic route information panels (DRIPs)to be able to influence the route
choice. A case study on a network with two routes is performed, to illustrate the possibilities
of the control method that is developed.
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The remainder of this chapter is organized as follows. Sincewe use ramp metering to
illustrate the different control strategies, we introduceramp metering and available control
methods for ramp metering in Section 3.2. This section also contains a short description
of the Metanet model, which is used for all MPC-based controlstrategies in this paper.
Then, Section 3.3 describes an anticipative ramp metering strategy using equilibrium-based
dynamic traffic assignment, while Section 3.4 introduces anticipative ramp metering based
on route-choice-based DTA. Next, Section 3.5 presents the integrated control method using
DRIPs in combination with variable speed limits. At last, inSection 3.6 conclusions are
drawn.

3.2 Ramp metering

In this section we first describe the general principles of on-ramp metering and off-ramp
metering, and next we present three different control methods that can be used to determine
the ramp metering rate: fixed-time control, ALINEA, and model predictive control (MPC).
The first two methods are the most well known methods that are used in practice, and MPC-
based control is considered since it is the basis of the control methods developed in the
remainder of this chapter. Later on, we will compare the performance of the different control
methods in simulation case studies.

3.2.1 Principles of ramp metering

Ramp metering is a control measure that has two goals: minimizing the disturbances caused
by the merging behavior near the ramp, and limiting the flow onramps connected to a
freeway. Minimizing the disturbances is done by releasing vehicles from the ramp with a
constant rate, which allows for a smooth merging into the freeway traffic. Limiting the flow
that leaves an on-ramp leads to a lower flow on the freeway, butcan result in a queue on
the ramp. Off-ramp metering limits the flow that exits from the freeway, which results in
lower flows in the urban area, but increases the density on thefreeway. Ramp metering is
implemented with traffic signals, that usually allow only one vehicle to drive through during
each green period.

Remark 3.1 Although the traffic is a continuous process, we will consider discrete time
steps in this chapter. The time step used for the freeway simulation,Tf , is counted using the
freeway time step counterkf . The settings of the control measures will be computed every
controller time stepTc. Here, the indexkc is used to denote the controller time step index.
We assume thatTc is an integer multiple ofTf . For ease of notation we define the set of
simulation stepskf that correspond to a given interval[ka

cTc,kb
cTc] of controller time steps as

follows:

Kf(k
a
c,k

b
c) =

{

ka
c

Tc

Tf
,ka

c
Tc + 1

Tf
, ...,kb

c
Tc

Tf
− 1
}

.

2

On-ramp metering

On-ramp metering installations are located at on-ramps of freeways, as illustrated in Figure
3.2. During the green period, only 1 or 2 vehicles are allowedto leave the on-ramp. In
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Figure 3.2: On-ramp with ramp metering installation.

this way the flow that can enter the freeway is limited, which prevents high densities and
disturbances of the traffic flows on the freeway link downstream of the on-ramp. We will
now describe the effects of applying ramp metering at a high level. The resulting ramp
metering rate should be translated into green times and red times by lower level controllers.

The ramp metering rater∗o(kc) at control time stepkc gives the fraction of the capacity
flow Qcap,o of the on-rampo that is allowed to drive on. Before the sampler∗o(kc) can be
used, it must be translated to the corresponding freeway simulation time steps, e.g., using a
zero-order-hold method:

ro(kf) = r∗o(kc) for kf ∈ Kf(kc,kc + 1) . (3.1)

The ramp metering rate can vary between a maximum and a minimum value:rmin ≤ ro(kf)≤
rmax.

The flow that can enter the freeway via on-rampo is then given by:

qreal
o (kf) = min

(

min
(
ro(kf)Qcap,o, Qlim(ρm,1(kf))

)
, qint

o (kf)
)

(3.2)

whereqint
o (kf) is the flow that intends to enter freeway linkm via on-rampo during time

interval [kfTf ,(kf + 1)Tf), ro(kf) is the ramp metering rate,Qlim(ρm,1(kf)) is the maximum
flow that can enter the freeway taking into account limiting effect of the current density at
the freeway, andqreal

o (kf) is the flow that actually enters the freeway.
Originally, on-ramp metering installations were designedto prevent congestion on free-

ways, as described in [29, 35, 121, 190]. When the on-ramp metering installations were ac-
tually implemented, it became clear that they also influenced the route choice of the drivers
[63, 149]. The explanation for this phenomenon is that ramp metering changes the travel
times on the routes, and since route choice is mainly based onthese travel times, some
drivers will select another route when a ramp metering installation is present. These ideas
have led to research on corridor control where on-ramp metering installations are used to
influence route choice, and to prevent rat-running [10, 81, 187]. Rat-running describes the
phenomenon that when a freeway is congested, drivers leave this freeway via an off-ramp,
travel over a local road, and then again enter the freeway viaan on-ramp.

A disadvantage of on-ramp metering is that it causes queues on the on-ramps. These
queues can become so long that they block intersections nearthe freeway, which decreases
the traffic efficiency, and additionally can lead to noise andpollution in the urban network.
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Figure 3.3: Off-ramp with off-ramp metering installation.

To prevent this, the selected control method must be able to take into account hard con-
straints on the queue lengths.

Off-ramp metering

Figure 3.3 shows the set-up of an off-ramp metering installation. Off-ramp metering limits
the flow that can leave the freeway, and creates a visible queue at the off-ramp, which will
further discourage drivers to exit the freeway. To the author’s best knowledge, off-ramp
metering has not yet been investigated in earlier research,and also not applied in practice.
In this chapter we however shortly investigate the idea of off-ramp metering [69, 162], since
we expect that it might be able to prevent rat-running, and toprevent a gridlock on the local
roads. Since the off-ramp metering keeps the traffic on the freeway, the long distance traffic
does not form long queues on the urban network. And since the number of vehicles that
leaves the freeway is reduced, the number of vehicles in the urban network is decreased,
which improves the traffic condition in the whole urban network.

Off-ramp metering limits the flow that can leave the freeway as follows:

qreal
o (kf) = min

(
ro(kf)Qcap,o , Qlim(ρo(kf)) , qint

o (kf)
)

(3.3)

whereqreal
o (kf) is the flow that really leaves freewaym toward off-rampo, qint

o (kf) the flow
that intends to leave the freeway, andQlim(ρo(kf)) is the flow limit due to the density on the
urban network, determined by (3.9).

A disadvantage of off-ramp metering is that the queues can become too long for the
off-ramp, and spill back on the freeway. This can decrease the throughput on the freeway,
and impair the safety since large speed-differences are created between the traffic on the
first lane waiting to enter the off-ramp and on the second laneof the freeway. This can
be solved by creating more space for the queue on the off-rampitself, and by informing
drivers upstream of the off-ramp about the active off-ramp metering installation, e.g., via
a dynamic route information panel. In this way drivers can select another route before
entering the queue.
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Figure 3.4: Location of the measurements and ramp metering installation for ALINEA.

3.2.2 Methods for ramp metering control

There are different methods to control ramp metering installations. A fixed ramp metering
rate can be selected off-line. Other methods determine the ramp metering rate on-line, like
ALINEA [123] and the method described in [149]. Cooperationof different ramp metering
installations is also possible, see [10, 87]. Objectives ofthis kind of systems are, e.g.,
maximizing throughput on the freeway, maximizing the mean speed, reducing the shock
waves to improve safety, minimizing the queue length and waiting time on the ramps, or
minimizing the total time spent in the network.

Below we will describe three different methods: fixed-time control, ALINEA, and
MPC-based control using the METANET model as prediction model. Fixed-time control is
the most basic method for ramp metering, and ALINEA is a well-known algorithm which
is applied at many locations. In this chapter we use the MPC-based control strategy for the
ramp metering controller.

Fixed-time control

With fixed-time control the ramp metering installations areoperating with a fixed ramp
metering rate. This rate is determined off-line, and can be selected based on historical
measurements. Based on these historical demands, a prediction of the future traffic flows can
be made. Then, using, e.g., calculation models, tuning methods, or optimization algorithms,
the ramp metering rate that leads to the most optimal performance of the controller can be
selected. This ramp metering rate can have different valuesfor different time periods, e.g.,
morning peak, evening peak, or during the rest of the day. Theoptimal ramp metering rate
that is obtained off-line is then applied in practice via thereal ramp metering installation.

ALINEA

ALINEA is a method for on-ramp metering developed in [63, 123]. It uses occupancy
measurements on the freeway downstream of the on-ramp, as shown in Figure 3.4. The
ramp metering rate is determined based on the occupancy downstream of the on-ramp:

ro(kf) = ro(kf − 1)+ Ko(σsetpoint−σm,1(kf))

The controller tries to keep this density near the set-pointvalueσsetpoint, which is selected
in such a way that the density stays a little lower than the critical densityρcrit,m, to allow as
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Figure 3.5: A link divided in segments.

much flow as possible without creating a traffic jam.Kro is a positive constant, andσm,1(kf)
is the occupancy on the freeway segment downstream of the on-ramp.

Model Predictive Control using METANET as prediction model

Ramp metering installations can also be controlled using MPC [100], which works as fol-
lows [10]. At a given timet = kcTc = kfTf the MPC controller uses a prediction model and
numerical optimization (e.g., sequential quadratic programming (SQP) [19]) to determine
the optimal ramp metering rate sequencer∗o(kc), . . . , r∗o(kc + Np − 1) that minimizes a given
performance indicatorJ(kc) over the time period[kcTc,(kc + Np)Tc) based on the current
state of the traffic network and on the expected demands over this period, whereNp is called
the prediction horizon. Furthermore, within MPC a recedinghorizon approach is used in
which at each control step only the first ramp metering input sampler∗o(kc) is applied to
the system during the period[kcTc,(kc + 1)Tc). When the first sample has been applied, the
horizon is shifted, new measurements are made, and the process is repeated all over again.

In this chapter we use the METANET model developed in [106] asprediction model
within the MPC-based control method. Here we will shortly present the model, a more
detailed description is given in Chapter 2 and in [106, 153].In METANET the freeway
network is represented as a graph with nodes and links, wherethe links correspond to free-
way stretches with uniform characteristics; the nodes are placed at on-ramps and off-ramps,
where two or more freeways connect, or where the characteristics of the freeway change.
Links are divided into one of more segments with a length of about 500 m, as illustrated
in Figure 3.5. The evolution of the traffic flows is characterized by the average density
ρm,i(kf), flow qm,i(kf), and space mean speedvm,i(kf) for each segmenti of each linkm at
time t = kfTf :

ρm,i(kf + 1) = ρm,i(kf)+
Tf

Lmnm
[qm,i−1(kf)− qm,i(kf)] (3.4)

qm,i(kf) = ρm,i(kf)vm,i(kf)nm

vm,i(kf + 1) = vm,i(kf)+
Tf

τ
(V(ρm,i(kf))− vm,i(kf))+ (3.5)

Tf

Lm
vm,i(kf) [vm,i−1(kf)− vm,i(kf)]−

νTf [ρm,i+1(kf)−ρm,i(kf)]

τLm[ρm,i(kf)+κ]
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whereLm, V(ρm,i(kf)), andnm are respectively the length of the segments of freeway link
m, the desired speed of the drivers on segmenti of freeway linkm, and the number of lanes
of freeway linkm, while τ , ν andκ are model parameters. The desired speedV(ρm,i(kf)) is
computed as follows:

V(ρm,i(kf)) = vfree
m exp

[

−
1

am

(
ρm,i(kf)

ρcrit,m

)am
]

(3.6)

wheream is a model parameter,vfree
m is the free flow speed andρcrit,m is the critical density

in link m, i.e. the density where congestion starts to appear.
Freeway links are coupled via nodes, e.g., on-ramps, off-ramps, or intersections. Flows

that enter a noden are distributed over the leaving nodes according to the turning rates as
follows:

Qtot,n(kf) = ∑
µ∈Lenter

n

qµ,nlast,µ(kf) (3.7)

qm,0(kf) = βn,m(kf)Qtot,n(kf) for eachm∈ Lleave
n (3.8)

whereQtot,n is the total flow entering noden, Lenter
n is the set of all freeway links entering

noden, nlast,µ is the last segment of linkµ, βn,m is the turning rate from noden to leaving
link mwhich is determined with one of the traffic assignment modelsthat will be described
in Sections 3.3 and 3.4, andLleave

n the set of leaving links of noden. The virtual downstream
densityρµ,nlast,µ+1(kf) of the linksµ that enter noden is approximated with:

ρµ,nlast,µ+1(kf) =

∑
m∈Lleave

n

ρ2
m,1(kf)

∑
m∈Lleave

n

ρm,1(kf)
.

The virtual downstream density is used in the speed update equation (3.5) for the last seg-
mentnlast,µ of link µ. The virtual entering speedvm,0(kf) of leaving link m of noden is
given by:

vm,0(kf) =

∑
µ∈Lenter

n

vµ,nlast,µ(kf)qµ,nlast,µ(kf)

∑
µ∈Lenter

n

qµ,nlast,µ(kf)
.

The virtual entering speed is used in the speed update equation (3.5) for the first segment of
link m.

The effect of on-ramp metering is described by (3.2). The maximum flowQlim(ρm,1(kf))
that can enter the freeway taking into account the limiting effect of the density on the free-
way, is computed as follows:

Qlim(ρm,1(kf)) =
ρmax,m−ρm,1(kf)

ρmax,m−ρcrit,m
Qcap,o

wherem is the freeway link to which on-rampo is connected,Qcap,o is the capacity of the
on-ramp, andρmax,m is the maximum density at freeway linkm. The traffic that is not able
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to enter the freeway forms a queue with lengthwo(kf) at the on-ramp:

wo(kf + 1) = wo(kf)+ Tf

(

qint
o (kf)− qreal

o (kf)
)

.

The flow that has the intent to leave the on-ramp, as used in (3.2), is given by

qint
o (kf) = qdem

o (kf)+
wo(kf)

Tf

whereqdem
o is the demand at on-rampo.

The effect of the off-ramp metering is described by (3.3). Within the METANET model
an off-ramp can be seen as a splitting node. The flowqint

o (kf) that intends to leave the
freeway can be computed with the node equations (3.7) and (3.8):

Qtot,n(kf) = qm,nlast,m(kf)

qint
o (kf) = βn,o(kf)Qtot,n(kf) .

This flow is however limited by the density on the off-ramp, which results in a maximum
flow that can enter the urban network:

Qlim(ρo(kf)) =
ρmax,o −ρo(kf)

ρmax,o −ρcrit,o
Qcap,o . (3.9)

When the flow that enters the off-ramp is determined, the flow that leaves the last segment
of freeway linkm toward the freeway linkµ that leaves noden can be computed with:

qreal
m,nlast,m

(kf) = qreal
o (kf)+βn,µ(kf)Qtot,n(kf)

Remark 3.2 Due to the properties of the METANET model a part of the vehicles that
intends to leave the freeway but that is not able to do so will change its route and continue
to travel on the freeway. As a result the density on the freeway segment upstream of the
off-ramp, as determined with the model, will be lower than expected. This can be solved by
using the destination dependent version of the METANET model. This however increases
the required computational effort. 2

The reaction on the speed limits is modeled by changing the desired speed of the drivers
[64]. To include the reaction of the drivers (3.6) is replaced by:

V(ρm,i(kf)) = min

(

vfree
m exp

[

−
1

am

(
ρm,i(kf)

ρcrit,m

)am
]

, (1+α)vm,control(kf)

)

(3.10)

wherevm,control(kf) is the applied speed limit, andα is a compliance factor that expresses to
which extent the speed limits are obeyed. The value ofα can change depending on the kind
of drivers on the road or depending on the level of enforcement.
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3.3 Anticipative control using equilibrium-based dynamic
traffic assignment

The first control strategy that we develop uses dynamic traffic assignment to determine the
within-day route choice of the drivers [157, 160]. The controller uses the DTA model to
anticipate on the change in route choice due to the control actions. In this section we first
describe the equilibrium-based dynamic traffic assignment(DTA) algorithm, and then the
application to ramp metering. Next, the control strategy isillustrated with a case study,
where we make a comparison with the ALINEA ramp metering strategy.

3.3.1 Equilibrium-based dynamic traffic assignment

Dynamic traffic assignment assumes that every driver assigns a cost to every possible route
r between his origin and intended destination, and selects the route with the lowest cost.
This will result in a user equilibrium assignment, where thecosts of alternative routes are
equally high [182]. The cost considered by the drivers can contain many different terms,
such as the length of the road, the number of intersections, the environment, or the travel
time. In this chapter we only use the travel time to describe the cost of a route, as suggested
in [42, 142]. We use the instantaneous travel time since it iseasy to compute and since it
provides a relatively good approximation of the real traveltime that the drivers will experi-
ence [175]. Note however that in literature many other algorithms are available, which can
obtain similar or even better approximations of the experienced travel time, but these algo-
rithms often require more measurements or have a larger computation time, which makes
them less suitable for the use in on-line controllers. The instantaneous travel time for route
r is computed as follows:

τr(kf) = ∑
(m,i)∈Mlink

r

Lm

vm,i(kf)
, (3.11)

whereMlink
r is the set of pairs of indexes(m, i) of all links and segments belonging to route

r.
With the costs the dynamic traffic assignment can be obtained, using a DTA algorithm.

In literature several methods exist to compute dynamic traffic assignments based on a cost
function (see [15, 33, 177]). A disadvantage of these methods is often that they require
much computation time. For the use in real-time model-basedcontrollers the assignment
must be computed every controller time step and so these models cannot be used. The
method that we use in this paper requires less computation time, which also means that it
looses accuracy. The model that we develop consists of two parts. First the staticperceived
equilibrium assignmentis determined, which is seen as the equilibrium assignment that
should appear based on the current demand in the network. Next, to approximate a dynamic
traffic assignment, the current assignment is adapted incrementally in such a way that it
converges toward thisperceived equilibrium assignment.

Perceived equilibrium assignment

We determine theperceived equilibrium assignmentbased on the drivers’ perceived knowl-
edge about the current state of the network and the current demands. We assume that the



54 3 Traffic control strategies based on different assignment models

state of the network is not exactly known by the drivers, but that the drivers have been gath-
ering information about the traffic for some time spanτinfo. They use the average of the
information that is gathered during the period[kf − τinfo,kf) to determine their estimation of
the current state of the network and their estimation of the expected demands. These esti-
mations are used by the drivers to determine their perceivedequilibrium assignment. The
largerτinfo, the slower the response of the route choice behavior of the drivers to varying
traffic demands and metering rates will be. A typical value for τinfo is 30 min. Further,
we assume that the drivers do not update their perceived equilibrium assignment at every
time stepkf . Therefore we introduce the update time stepTa of the perceived equilibrium
assignment, which is counted with indexka, and which is an integer multiple ofTf .

To compute an equilibrium assignment there exist several methods, some of them de-
scribed in [142, 176, 179, 184]. In this paper we use the ‘Method of the Successive Av-
erages’ (MSA) [134] since it is a relatively simple and fast algorithm. MSA is an iter-
ative method that computes the cost (in this case the travel times) of different routes ac-
cording to the flowqMSA

r, j (ka) on each router in iteration j departing during time stepka.
These flows are determined by making a prediction of the traffic flows over the period
[kaTa,(ka+NMSA)Ta) = [kfTf ,(kf +NMSA

Ta
Tf

)Tf) with the METANET model using the turning
rates corresponding to the flows obtained in iterationj − 1, whereNMSA is the prediction
horizon for the MSA algorithm. Then for iterationj, all flows are directed to the route with
the lowest cost, which results in the all-or-nothing (AON) assignment flowsqAON

r, j (ka). With
these AON-flows, the flows for the next iteration are updated:

qMSA
r, j+1(ka) =

(

1−
1
j

)

qMSA
r, j (ka)+

(1
j

)

qAON
r, j (ka)

whereqMSA
r, j is the flow towards router during iterationj of the MSA algorithm, andqAON

r, j
the flow towards router determined by the all-or-noting assignment after iteration j. The
stopping criterion is based on a maximum value for the difference between two successive
iteration flows: when the difference is below this specified value the algorithm terminates.
To prevent long computation times the algorithm will also exit when a maximum number of
iterations is reached.

The resulting flows are used to determine the equilibrium turning rates. For a network
with non-overlapping routes (as used in the case study below) this results in:

βMSA∗

n,m (ka) =

∑
ζ∈Rlink

n,m

qMSA
ζ, jfinal

(ka)

Qtot,n(ka)

with qMSA
r, jfinal

(ka) the equilibrium flow determined with the MSA algorithm at MSAtime step

Ta, βMSA
n,m (ka) the corresponding turning rate on noden toward linkm, andRlink

n,m the set of all
routes that passes through noden toward linkm.

Dynamic traffic assignment

Now we assume that the staticperceived equilibrium assignmentas formulated above is not
present in the network yet, but that the drivers try to reach this assignment dynamically.
We assume that the current traffic assignment will change toward theperceived equilibrium
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assignmentin an exponential way, with time constantτreac. This results in an adaptation of
the turning rates according to:

βn,m(kf + 1) = βn,m(kf)+(βMSA
n,m (ka)−βn,m(kf))(1− e− Tf

τreac) (3.12)

∀kf ∈ {ka
Ta

Tf
, . . . ,(ka+ 1)

Ta

Tf
} .

The parameterτreac influences how fast the current assignment converges towardthe pre-
sumed equilibrium assignment. This swiftness in practice depends on the time that elapses
before a congestion can be noticed by drivers that still haveto make their route choice. Note
that this time can be shortened by providing travel time information, since then the drivers
can be informed about the congestion before they actually experience it.

3.3.2 Ramp metering using equilibrium-based DTA

The control method for the ramp metering controller that we develop in this section is based
on MPC, as described in Section 3.2.2.

The controller uses the METANET model as prediction model for the evolution of the
traffic flows, and the equilibrium-based DTA model of Section3.3.1 to determine the traffic
assignment. Since the controller has to be able to determinethe change in route choice that
it induces, the perceived equilibrium should be updated at least once within the prediction
horizon. This means thatNp should be selected such that

NTa ≤ NpTc

with N an integer larger than 1. The most suitable value depends on the re-routing dynamics
in the network, which depend on the topology of the network [150].

As performance indicator we will consider the total time spent (TTS) by all vehicles in
network (but note that the proposed approach also works for other performance indicators).
The TTS can be computed as:

TTS(kc) =Tf ∑
kf∈Kf(kc,kc+Np)

(

∑
(m,i)∈M

Lmnmρm,i(kf)+ ∑
o∈O

wo(kf)

)

(3.13)

whereM is the set of pairs of indexes(m, i) of all links in the network, andO the set of all
origins.

The MPC strategy can handle hard constraints. This makes it possible to prevent block-
ing of urban intersections or too long waiting times by setting constraints on the queue
length or the metering rates:

wo(kf) ≤ wmax
o

rmin
o ≤ ro(kf) ≤ rmax

o .

3.3.3 Case study

A simple network will be used to illustrate the effects of theMPC-based method for antic-
ipative ramp metering control using equilibrium-based DTA. The layout of the network is
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Figure 3.6: Schematic representation of the freeway network of the case study described in
Section 3.3.3.

shown in Figure 3.6, where the arrow gives the direction of the traffic flows. The network
consists of a freeway with four lanes that bifurcates into two branches of two lanes each.
Downstream both branches join in a four-lane freeway. Both four-lane freeway links are 3
km long. The lower two-lane branch is the primary branch. Theprimary branch is 6 km
long and an on-ramp is present in the middle of the branch. Thesecondary branch is longer
than the primary branch and is 8 km long. Route 1 follows the primary branch, and route
2 the secondary. The traffic originating from the mainstreamorigin distributes over the two
branches using the route choice mechanism described in Section 3.3.1. We perform two
different experiments. First we compare the MPC-based controller developed in this sec-
tion with ALINEA, and next we investigate the effects of the MPC-based controller when
maintenance works are performed in the network.

Comparison with ALINEA

Simulations have been performed to compare the developed control strategy with the exist-
ing ramp metering strategy ALINEA [123].

In this case study the following parameter settings are used: τinfo = 30 min, τreac =
45 min,Ta = 5 min,Tf = 10 s,Tc = 1 min,Np = 15,rmax

o = 1, rmin
o = 0.1,Ko= 0.01, andσsetpoint

is selected such that it corresponds to a density of 34 veh/km/lane. A period of four hours is
simulated. We simulate a traffic scenario with a constant traffic demand at the mainstream
origin o1 equal to 4500 veh/h. The traffic demand on the on-rampo2 is 100 veh/h at the
start of the simulation at 6.00 a.m., increases to 800 veh/h after one hour, decreases again to
100 veh/h after two hours, and stays constant until the end ofthe simulation at 10.00 a.m.,
see Figure 3.7.

The results of the simulation with ALINEA ramp metering are shown in Figure 3.8. At 7
a.m. the peak in the on-ramp demands starts. Figure 3.8(a) shows the increase in density on
the segment downstream of the on-ramp at that moment. As a reaction on this high density
the metering signal becomes active and goes to zero, as can beseen in Figure 3.8(b). This
low metering rate causes a drop in the density below the original density (Figure 3.8(a)).
This drop has two effects: more drivers choose the first routeso the turning rates change
(Figure 3.8(c)), and the metering rate becomes higher, so more traffic can enter the freeway,
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Figure 3.7: Traffic demand on the on-ramp for the case study inwhich we compare the
developed DTA-based control method with ALINEA.

as shown in Figure 3.8(d). Then the density increases again,and converges to the critical
density after 7.45 a.m. The controller will try to keep the density on this value, in which it
succeeds for the rest of the simulation. In Figure 3.8(e) thetravel times on the two routes
are shown. Since at 7.30 a.m. the travel time on route 1 is longer than on route 2, more
traffic starts taking route 2. This leads to a slowly decreasing amount of traffic on route
1, resulting in a decreasing travel time on route 1 until the travel times converge to the
equilibrium values. Figure 3.8(f) shows the queue on the on-ramp. At 7.10 a.m. the ramp
metering signal becomes active, and the queue starts to grow. After 8.00 a.m. the peak of
the on-ramp demand ends, and the queue starts to clear. The total time spent in the network
is 3618.9 veh·h for the ALINEA method.

The results obtained with the anticipative MPC strategy areshown in Figure 3.9. As the
peak in the on-ramp demand starts, the density on the segmentdownstream of the on-ramp
increases (Figure 3.9(a)). When this density becomes too high, the metering rate decreases,
as shown in Figure 3.9(b). But the control method keeps the density above the critical
density, on 40 veh/lane/km. This means that the travel time on the first route, which is
shown in Figure 3.9(e), stays high, resulting in more drivers selecting route 2 (see Figure
3.9(c)). On the on-ramp a queue starts to grow, until 8 a.m. Atthis moment the peak in the
on-ramp demand ends, and now the queue starts to empty. Many vehicles enter the freeway
from the on-ramp, as can be seen in Figure 3.9(d), resulting in a longer travel time on route
1, and thus more traffic turning toward route 2. But then the density becomes lower and
the travel times decrease, leading to more drivers selecting route 1. After 9 a.m. the flow
from the origin becomes more stable, the queue empties, resulting in longer travel times,
and more traffic selecting route 2. The total time spent in thenetwork is 3300.5 veh·h for
the MPC-based control method, which is an improvement of 9% compared to ALINEA.
The improvement obtained with the MPC-based controller is mainly obtained by diverting
more vehicles to route 2, so the queue on the on-ramp stays shorter, and can clear faster.

Remark 3.3 Note that the fluctuations in the control signal, as shown in Figure3.9(b), are
due to the many local minima in the cost function. Each control time step the optimization
algorithm can determine a local minimum that differs from the minimum that has been
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(a) Density on the segment downstream the on-ramp.
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(b) Metering rates.
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(c) Turning rate toward route 1.
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(d) Flow on the on-ramp.
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(f) Queue length on the on-ramp.

Figure 3.8: Simulation results with ALINEA ramp metering.
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(a) Density on the segment downstream the on-ramp.
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(b) Metering rates.
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(c) Turning rate toward route 1.
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(d) Flow on the on-ramp.
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(e) Travel times on the two routes.
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(f) Queue length on the on-ramp.

Figure 3.9: Simulation results with MPC-based ramp metering.
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Figure 3.10: Schematic representation of the freeway network with maintenance works used
in Section 3.3.3.

obtained during the previous control time step, which will lead to different values for the
optimal control signal. The fluctuations in the control signal can be reduced by adding
a penalty on the variations in the control signal to the cost function, or by increasing the
number of runs performed by the optimization algorithm which will increase the probability
of obtaining the same optimum at each control time step. 2

Maintenance works

As second experiment we simulate the selected network when maintenance works are per-
formed on route 1 as shown in Figure 3.10. We simulate the traffic from 4.00 a.m. until
11.00 a.m. The maintenance works result in a reduction of thenumber of lanes from 2 to
1 in the last segment (i.e., the last 500 m) of the primary branch. The maintenance works
start at 5.00 a.m. and persist during the remainder of the simulation. The traffic demand
on the mainstream is considered constant and equal to 4500 veh/h in this simulation. The
traffic demand on the on-ramp is equal to 200 veh/h which starts to increase at 7.30 a.m. to
a peak demand of 500 veh/h from 8.00 a.m. until 8.30 a.m., and decreases to 200 veh/h at
8.45 a.m., as given in Figure 3.11. We assume that the demand is known by the controller.
The model and controller parameters are selected as follows: τinfo = 30 min,τreac= 45 min,
Ta = 5 min,Tf = 10 s,Tc = 1 min,Np = 15,rmax

o = 1, rmin
o = 0.05,wmax

o = 100 veh.
To show the effects of ramp metering we have performed two simulations: one without

ramp metering and one with ramp metering. The first is used to illustrate the functioning
of the dynamic traffic assignment in the absence of control, and the second illustrates the
change in route choice and the improved travel times due to the ramp metering.

The results for the simulation without ramp metering are shown in Figure 3.12. At the
beginning of the simulation an equilibrium situation exists: the two travel times have the
same value, see Figure 3.12(a). At 5.00 a.m. the maintenanceworks start. The travel times
become different, resulting in a change in the turning rates(Figure 3.12(b)). From 6.00 a.m.
until 7.30 a.m. the exponential convergence to the equilibrium turning rates can be seen. At
8 a.m. the traffic on the on-ramp increases, which causes a change in the travel time of route
1, and thus again a change in the turning rates. After 9.00 a.m. the exponential behavior
again can be seen. Figure 3.12(c) shows the density on the segment downstream of the on-
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Figure 3.11: Traffic demand on the on-ramp.

(a) Travel time on the routes. (b) Turning rate toward route 2.

..
(c) Density on segment downstream of the on-ramp

Figure 3.12: Simulation results without ramp metering.
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ramp. The density is increasing when the maintenance works start. Due to the re-routing
the density decreases until 6 a.m., when the travel time on route 1 becomes shorter than the
travel time on route 2. When the travel time of route 2 becomes longer, the density starts to
increase slowly, until 8 a.m. At 8 a.m. the traffic demand on the on-ramp increases, resulting
in an increase of the density. At 8.30 a.m. the re-routing process results in a lower density.
After 9.00 a.m. the density slowly increases towards its equilibrium value. The TTS in this
situation is 6250 veh·h.

The results for the simulation with ramp metering are shown in Figure 3.13. The sim-
ulation with control starts with the same equilibrium traffic assignment as the simulation
without control. At 5.00 a.m. the maintenance works start, resulting in a difference in travel
times between the two routes, see Figure 3.13(e). The density on route 1 becomes higher
than the critical value (Figure 3.13(a)), which results in the activation of the ramp meter-
ing (Figure 3.13(b)). When the density on route 1 becomes lower due to the re-routing,
the ramp metering rate becomes higher so the queue, shown in Figure 3.13(f), can empty.
At 7.30 a.m. the demand on the on-ramp increases. The ramp metering is activated so a
direct increase of the density on the freeway can be prevented. This results in a queue on
the on-ramp. This queue is emptied by increasing the metering rates slowly, resulting in a
slow increase of the density on the freeway. This causes the turning rates to change slowly
toward an equilibrium, see Figure 3.13(c).

Figure 3.13(d) shows the traffic demand on the on-ramp and theflow allowed to enter
the freeway in one plot. The difference between the two leadsto the queue length on the
on-ramp, shown in Figure 3.13(c). When the maintenance worksbegin, the ramp metering
limits the flow toward the freeway. At 6 a.m. the travel time onroute 1 becomes short
enough to empty the queue, resulting in a high flow leaving theon-ramp. When the demand
on the on-ramp increases, a queue is formed. This queue decreases afterwards due to the
increasing ramp metering rate. The TTS in this simulation is5551 veh·h. This means that
the use of the MPC-based anticipative control method results in a 11.2 % increase of the
performance.

3.4 Anticipative control using route-choice-based DTA

The second control strategy, which is developed in this section, uses a route-choice-based
DTA model which determines the traffic assignment implicitly. In this section we first
develop the route choice model that is the basis of the DTA algorithm. This model describes
within-day as well as day-to-day route choice. However, forthe second control strategy we
use only the within-day part of this en-route route-choice-based model. Within the control
strategy, the DTA model is used to anticipate on changes in the assignment. As control
measure, a ramp metering installation is used.

The performance of the controller is illustrated with a casestudy, in which three different
ramp metering control strategies are compared. Finally we present the results that can be
obtained when off-ramp metering is applied instead of on-ramp metering.
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(a) Density on the segment downstream of the on-
ramp.

(b) Metering rate.

(c) Turning rate toward route 2. (d) Traffic demand on the on-ramp, and flow allowed
to enter the freeway.

(e) Travel time on the routes. (f) Queue on the on-ramp.

Figure 3.13: Simulation results with MPC-based ramp metering.
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Figure 3.14: Overview of the route choice process.

3.4.1 Route choice model

We now develop the route choice model that is used for the route-choice-based DTA algo-
rithm. A general route choice model describes the route choice behavior of drivers based
on the current state of the network as experienced by the drivers, and does not have to result
in an equilibrium traffic assignment. When we want to include aroute choice model in a
controller, we could select one of the models described in [18, 103]. However, these models
are complex and detailed, and as a result they require too much computational effort to be
used as a prediction model in an on-line controller. For the controller that we develop in this
section, we formulate a route choice model based on statistical learning, which is also done
in [32, 36, 80]. The model that we develop includes the day-to-day route choice as well as
within-day route choice, as illustrated in Figure 3.14.

Within-day route choice process

We assume that the within-day route choice process of a driver is divided in three steps:

1. First the driver analyzes the current traffic situation onthe road upstream of the split-
ting node. For the sake of simplicity of the exposition we will from now on assume
that the driver makes his decisions based on one important variable only, e.g., the
density. However, the approach can easily be generalized tothe case where several
variables determine the decision, such as the flow, speed, weather, time, or the news
on the radio. We divide all possible densities in, say, threegroups: low, medium, and
high density. The driver selects to which group the current density belongs.

2. In the second step the driver estimates which route will result in the lowest costs,
based on the current density. For sake of simplicity we assume that the only factor
that influences these costs is the travel time, but note that the extension to more fac-
tors is straightforward. This means that the driver will select the route that according
to his beliefs has the shortest travel time, given the current density.

3. During the last step, the driver decides whether he will indeed take the route with the
lowest cost, or, e.g., when two routes have approximately equal costs, which route is
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Figure 3.15: Network with one splitting node and two routes.

the best one to select.

Day-to-day route choice process

The main decisions in the within-day route choice process, as formulated above, are based
on the knowledge of the driver. This knowledge is described by the day-to-day route choice
model. The model that we will develop is based on Bayesian learning, and it is suitable for
on-line control due to its simplicity and thus low computation times, due to the fact that it
allows for the modeling of drivers habits, and since it correctly maintains the turning rates
in equilibrium situations. The model that we develop contains estimated travel times for
the different routes, and the probabilities that drivers select each route. After each day the
variables are updated, using the experiences during this day. The days are counted with
indexkd.

We assume that drivers determine the current state of the network based on the density
on that they experience while they drive at the segment before the splitting node. We divide
the possible densities in three groups with valuesρlow, ρmedium, andρhigh, with boundaries
ηlow andηhigh between the groups. For each density group, the estimated travel time of
each route is determined. These estimated travel times are computed by taking the average
of earlier experienced travel times experienced under circumstances with the same density,
using a forgetting factor because the last experiences are seen as more important according
to [18]:

τ̄est,∆
r (kd + 1) = ωτ̄experienced,∆

r (kd)+ (1−ω)τ̄est,∆
r (kd) (3.14)

whereτ̄est,∆
r (kd + 1) is the new computed average travel time for density group∆ on day

kd+1, with∆∈ [ρlow,ρmedium,ρhigh], τ̄est,∆
r (kd) is the average travel time at daykd, ω ∈ [0,1]

is a multiplication factor, and̄τexperienced
r (kd) is the last experienced travel time in a situation

with a density in group∆.

The probability that a driver selects a specified route givena density is based on earlier
experiences. To compute this probability statistical information of previous trips is used.
Note that we aggregate the knowledge of the drivers assumingthat historical experiences
can be accumulated. We will illustrate the procedure with a situation with one splitting
node, at which two routes are available, see Figure 3.15. Thefollowing notation is used:
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S(r) router is selected
R(r) router has the lowest cost
EQ the routes have approximately equal costs
P(S(r)|∆)(kd) probability that router is selected given that the density is in

density group∆ at daykd

P(S(r)|R(r))(kd) probability that router is selected given that router has the low-
est cost at daykd

P(R(r)|∆)(kd) probability that router has the lowest cost given that the density
is in density group∆ at daykd

We compute the probability of selecting route 1 when the density is in density group∆
at daykd, P(S(1)|∆)(kd + 1). This probability is computed as:

P(S(1)|∆)(kd + 1) =P(S(1)|R(1))(kd) · P(R(1)|∆)(kd)

+ P(S(1)|R(2))(kd) · P(R(2)|∆)(kd) (3.15)

+ P(S(1)|EQ)(kd) · P(EQ|∆)(kd)

The first term describes the probability that the travel timeon route 1 is the shortest under
density∆ times the probability that route 1 is selected when route 1 isthe shortest. The
second term describes the probability that route 1 selected, while route 2 is the shortest
times the probability that route 2 is the shortest given density ∆. The last term expresses
the probability that route 1 is selected when the routes are equally long times the possibility
that the routes are equally long given density∆. To determine whether the travel times on
the routes are equally long a tolerance is used. When the absolute difference between the
two travel times is smaller than the tolerance, the routes are assumed to be equally long.
Because this probability that both routes are equally long is also included, the model does
not tend to a route choice of fifty-fifty when the travel times are equal, but maintains the
route choice ratio that has resulted in the equal travel times.

The probabilities are updated after each day, based on measurements during the last
day. The number of timesφexperienced

A,B (kd) that each combination ofA andB (with A andB
∈ [S(r),R(r),Delta]), appears during daykd. Based on these counters, the number of ap-
pearancesφest

A,B(kd +1) during the next day is computed, using a forgetting factor todescribe
the effect that last experiences are more important, e.g.:

φest
R(1),∆(kd + 1) = ωφ

experienced
R(1),∆

(kd)+ (1−ω)φest
R(1),∆(kd)

whereφ
experienced
R(1),∆

(kd) is the actual number of times that route 1 was the shortest during day
kd.

Based on this estimation the probabilities for the next day are adapted:

P(R(1)|∆)(kd) =
φest

R(1),∆(kd)

φest
R(1),∆

(kd)+φest
R(2),∆

(kd)+φest
EQ,∆(kd)

P(S(1)|EQ)(kd) =
φest

S(1),EQ(kd)

φest
S(1),EQ(kd)+φest

S(2),EQ(kd)

Other probabilities are computed similar.
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We use the probabilityP(S(1)|∆)(kd) computed with (3.15) as the fraction of the traffic
that selects a route. This gives for the turning rates towardlink 1 on node 1 on the network
with two routes (as used in the case study below):

βroutechoice,∆
1,1 (kd) = P(S(1)|∆)(kd) . (3.16)

For a general network the density dependent turning rates can be computed according
to:

βroutechoice,∆
n,m (kd + 1) =

∑
r∈Rlink

n,m

P(S(r)|∆)(kd)

∑
ζ∈Rnode

n

P(S(ζ)|∆)(kd)

whereRlink
n,m is the set of routes that passes through noden toward freeway linkm, andRnode

n
is the set of routes that passes through noden. This leads to the following formulation for
the turning rates at daykd:

βroutechoice
n,m (kf) =







βroutechoice,ρlow

n,m (kd) ρm,0(kf) ≤ ηlow

βroutechoice,ρmedium

n,m (kd) ηlow ≤ ρm,0(kf) ≤ ηhigh

βroutechoice,ρhigh

n,m (kd) ηhigh ≤ ρm,0(kf)

,

whereρm,0(kf) is the virtual upstream density of noden, computed with:

ρm,0(kf) =

∑
µ∈Lenter

n

ρµ,nlast,µ(kf)qµ,nlast,µ(kf)

∑
µ∈Lenter

n

qµ,nlast,µ(kf)
.

3.4.2 Ramp metering with route-choice-based DTA

We will now develop the control method for ramp metering thatuses the within-day part
of the route choice model. We use an MPC-based control structure, see Section 3.2.2. To
obtain the prediction model for the MPC-based controller wecombine the within-day part
of the route choice model of Section 3.4 with the METANET model as described in Section
3.2.2.

As performance indicator for the freeways we use the total time spent (TTS). The TTS
is the total time all vehicles spent in the network, and is computed according to (3.13).
For local roads, we use the mean density (MD) as performance indicator. The MD is an
indicator for the undesired effects of a queue forming on thelocal road, e.g., pollution and
noise. The MD is determined as follows:

MD(kc) =

∑
(m,i)∈Mlocal

∑
k∈Kf(kc,kc+Np)

ρm,i(k)

EMlocal + EKf(kc,kc+Np)

whereMlocal is the set of pairs of indices(m, i) of all links and segments in the local road, and
EMlocal andEKf(kc,kc+Np) give the number of elements of respectivelyMlocal andKf(kc,kc +
Np).
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on-ramp
metering

metering
off-ramp

Figure 3.16: Network for the case study with route-choice-based ramp metering control.

We selected these performance criteria because they allow for a good trade-off between
the traffic situation on the local road and in the freeway network. Since we compare the sys-
tems based on the TTS and the MD, the total performance indicator for the MPC controller
is selected as a combination of them:

J(kc) = α1TTS+α2MD

whereα1 andα2 are weighting factors.

3.4.3 Case study

We now illustrate the route-choice-based within-day ramp metering controller with a case
study. The network used for the case study consists of two roads: a long two lane freeway
of 9 km, and a short-cut through over a local road with a lengthof 7 km, see Figure 3.16.
The beginning and the end of the routes overlap. This means that until segment 4 the routes
are equal. After this segment the off-ramp is located. The on-ramp is located at segment
13 of the freeway, and segment 10 of the local road. The last four segments of the two
routes overlap again, see Figure 3.17. The demand starts at 4000 veh/h, increases to 8000
veh/h after 45 minutes, and then decreases again to 4000 veh/h after 60 minutes, see Figure
3.18. A period of 100 minutes is simulated. We select the density dependent turning rates

asβroutechoice,ρlow

n,m (kd) = 0.3361,βroutechoice,ρmedium

n,m (kd) = 0.2891, andβroutechoice,ρhigh

n,m (kd) =
0.2080, which corresponds to an equilibrium traffic assignment when no control is applied.
For the cost function we select weighting factorsα1 = 0.01 andα2 = 1. The parameters of
the METANET model are selected according to [87]:ρcrit,m = 35 veh/km/lane,ρmax,m = 180
veh/km/lane,τ = 18 s,ν = 65 km2/h, κ = 40 veh/km/lane,am = 1.867, andTf = 10 s. For
the freeway linkm we useQcap,m = 6000 veh/h, andvfree,m = 120 km/h, while for the local
link µ we have selectedQcap,µ = 1000 veh/h, andvfree,µ = 50 km/h.
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Figure 3.18: Demand for the case study with route-choice-based ramp metering.
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(a) Density on the local route (veh/km/lane).
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(b) Density on the freeway route (veh/km/lane).

Figure 3.19: Simulation results when no control is applied.

We first simulate the network without control. Then we introduce on-ramp metering,
and we compare three different control methods: fixed-time control, ALINEA, and the
MPC-based method. Next, we use off-ramp metering, and also compare the three different
control methods.

Simulations without control

The first experiment considers no control at all. The resultscan be seen in Figures 3.19(a)
and 3.19(b). Figure 3.19(a) shows the density on the route over the local road, and Figure
3.19(b) shows the density on the freeway route. The time is given at the x-axis, and the
color represents the density. The y-axis represents the segments; the vehicles travel from
the bottom to the top of the figures. Recall that off-ramp is located after segment 4, and the
on-ramp after freeway segment 13 and local segment 10. The congestion starts to appear
at the location downstream of the on-ramp, and spills back inthe local as well as in the
freeway network. For the no control case, the TTS in the network is 11205 veh·h, and the
MD is 33.6 veh/km/lane.

Simulations with on-ramp metering

The second experiment is performed using on-ramp metering.We compare fixed-time con-
trol, ALINEA, and MPC-based control, which are described inSection 3.2.2.

When fixed-time control is used, the metering rate is set to 0.78, which only limits
the flow during the peak in the demand. This value has been determined off-line via an
optimization algorithm that optimized the cost function for the given scenario with respect
to the selected ramp metering rate. The results of the simulation with fixed-time control are
shown in Figures 3.20(a) and 3.20(b). The on-ramp metering prevents the congestion on the
freeway, but results in a queue on the local road. The TTS is 10987 veh·h, and the MD is
41.1 veh/km/lane.
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(a) Density on local route with fixed-time control.
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(b) Density on freeway route with fixed-time control.
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(c) Density on local route with ALINEA. (d) Density on freeway route with ALINEA.
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(e) Density on local route with MPC.
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(f) Density on freeway route with MPC.

Figure 3.20: Simulation results for on-ramp metering, densities in veh/km/lane.
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Figures 3.20(c) and 3.20(d) show the results obtained with the existing on-ramp meter-
ing method ALINEA. For the gainKo 0.015 is selected, after testing different gains between
0.01 and 0.1 for the given scenario. The TTS is 10966 veh·h, and the MD 35.7 veh/km/lane.
The ALINEA controller performs better than the fixed-time controller when looking at the
MD. The TTS is nearly the same as with fixed-time control.

The results of MPC on-ramp metering are shown in Figures 3.20(e) and 3.20(f). The
TTS is 10955 veh·h, and the MD 35.7 veh/km/lane. The MPC based controller improved
the TTS in the uncontrolled case with 2.2%, which is slightlybetter than the results of the
ALINEA controller. With respect to the MD the MPC controllerperforms better than the
fixed-time controller, and equal to the ALINEA controller.

An overview of the results is shown in Table 3.1.

Simulations with off-ramp metering

The third experiment uses off-ramp metering, again comparing fixed-time control, ALINEA,
and MPC-based control.

The results of the simulation with fixed-time off-ramp metering are shown in Figures
3.21(a) and 3.21(b). The metering rate is set on 0.45, which is determined by optimizing
the performance of the network for a whole day. During the simulation, the congestion is
prevented for some time, but appears at the end of the considered period. The TTS is 11065
veh·h, and the MD is 13.8 veh/km/lane. This low value is mainly dueto the fact that nearly
all traffic is kept on the freeway during the beginning of the simulation, which compensates
for the congestion at the end.

Remark 3.4 In this section we use the ALINEA strategy for off-ramp metering, but note
that this is not the original purpose of the strategy. We decided to use the density down-
stream of the on-ramp also as measurement input for the off-ramp, because this is the loca-
tion where the problems start. A disadvantage of this is the long delay between the control
action at the off-ramp and the measurable effects of this action downstream of the on-ramp.
This can lead to oscillations in the control signal. These oscillations can be decreased by
selecting a smallerKo, but this makes the controller less effective. A second problem with
the distance between the measurement and the ramp metering installation is that the mea-
sured density can be influenced by traffic that does not pass the ramp metering installation.
When this effect is large, the influence of the ramp metering installation decreases. 2

ALINEA for off-ramp metering does not lead to congestion on the local road, see Fig-
ures 3.21(c) and 3.21(d). The oscillations due to the delay between action and measuring
the effect can be seen clearly. The TTS is 10982 veh·h, which almost equals the result that
is obtained with on-ramp metering in the previous experiment. The MD however is lower:
11.0 veh/km/lane.

At last, Figures 3.21(e) and 3.21(f) show the results with MPC-based off-ramp metering.
The TTS is 10956 veh·h, and the MD 9.8 veh/km/lane. The TTS for off-ramp metering is
nearly the same as for on-ramp metering. The off-ramp metering performs better with
respect to the MD. The MD for off-ramp metering is more than a factor three lower than the
MD for on-ramp metering.

An overview of all results of the case study is presented in Table 3.1. The improvements
are specified with respect to the uncontrolled case. The differences between the control
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(a) Density on local route with fixed-time control.
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(b) Density on freeway route with fixed-time control.
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(c) Density on local route with ALINEA.
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(d) Density on freeway route with ALINEA.
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(e) Density on the local route with MPC.
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(f) Density on the freeway route with MPC (veh/km/lane).

Figure 3.21: Simulation results for off-ramp metering, densities in veh/km/lane.
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Table 3.1: TTS (veh·h), MD (veh/km/lane), and improvement with the respect to the un-
controlled case (%) for on-ramp and off-ramp metering usingvarious control
methods.

On-ramp Off-ramp
TTS impr. MD impr. TTS impr. MD impr.

no control 11205 - 33.0 - 11205 - 33.0 -
fixed time 10987 -2.0 41.1 -22.3 11065 1.2 13.8 58.9
ALINEA 10966 -2.1 35.7 -6.2 10982 2.0 11.0 67.2
MPC 10955 -2.2 35.7 -6.2 10956 2.2 9.8 70.8

approaches are small, only the MD for fixed-time control for on-ramp metering differs from
the MDs obtained with the other methods. For all off-ramp control methods the MD is a
factor three lower than for on-ramp control. The MPC controller results in the lowest total
time spent, without causing high densities on the local road.

3.5 Integrated control of information providing and speed
limits

The third controller that we develop uses the within-day as well as the day-to-day part of
the route choice model developed in Section 3.4. Further, whereas the previously developed
first and second control strategies only take changes in the route choice into account, the
strategy that we develop in this section tries to actively steer the route choice. This allows for
a more efficient use of the available roads, and can improve the safety by reducing flows on
dangerous roads. The possible effects of steering the routechoice are illustrated in Appendix
A, where we show that influencing the route choice with trafficcontrol measures using
basic control methods already can improve the network performance, which encourages the
development of more advanced control methods for steering the route choice.

To influence the route choice, different measures are available. There are ‘hard mea-
sures’ like traffic signals [58], speed limits [2, 64], and ramp metering signals [123], which
the drivers have to obey. These hard measures however have only an indirect influence on
the route choice, via the travel time. On the other hand, ‘soft measures’ are available, to
which the drivers can comply or not. Providing information is such a ‘soft measure’. Al-
though drivers are not forced to react on the information, providing this information can
nevertheless be an effective measure to improve the networkperformance. The information
is often provided via dynamic route information panels (DRIPs). The effect of displaying
information on drivers is described in, e.g., [47, 90]. The information that is displayed on the
DRIPs can consist of, e.g., queue lengths, travel times, or route advises. Which information
should be presented is a subject of ongoing research and is discussed in, e.g., [18].

Providing the information can have two goals: informing thedrivers about what they
can expect, and trying to influence the route choice of the drivers. We target the second
goal, i.e., we want to influence the route choice of the drivers. Research in which DRIPs are
used to control the traffic is described in [47, 81]. In these papers methods are described in
which DRIPs are combined with other control measures to influence the route choice of the
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Figure 3.22: Dynamic route information panel displaying travel times.

drivers, based on predictions made with METANET and a DTA algorithm. In this section,
we develop a control approach that integrates DRIPs and variable speed limits to influence
the route choice. In this way it is possible to approximate adesired traffic assignment.

To determine which desired traffic assignments are useful and can be obtained in prac-
tice, traffic management bodies have started to explore the possibilities of changing the
traffic assignment, and formulated a procedure to select themost desired assignment, as
described by [110]. The procedure goes as follows. First preferred routes towards special
destinations like, e.g., the city center, a main business building, or recreational areas are se-
lected. Then a traffic assignment with high flows on these preferred routes and low flows on
other routes is defined. In this way drivers with those specific destinations are encouraged to
stay out of residential and/or industrial areas. The definedtraffic assignment is then called
the desired traffic assignment according to the traffic management bodies.

In the remainder of this section we first model the reaction ofthe drivers on the infor-
mation that is provided on DRIPs. Then we describe the integrated control method, and
illustrate its performance with a case study.

3.5.1 Reaction on information

The controller that we develop influences the route choice ofthe drivers by providing in-
formation. The provided information consists of travel times for different routes in the
network, and it is displayed on a DRIP, as shown in Figure 3.22.

The provided information influences the within-day route choice of the drivers. How
many drivers change their route based on the provided information depends on the differ-
ence in the expected travel time of their preferred router and the displayed travel time on
the other routep, and on the number of drivers that can be influenced to change their route.
Below we first formulate the likelihood that drivers will change their route, and then we use
this likelihood to compute the resulting turning rates.

The model developed by [50] is used as a model to describe the likelihood that drivers
will change their route based on the difference in travel times. The model computes the
likelihood (ln,r,p) that drivers at noden, with a preference for router, will change their
preferred route into routep, according to:

ln,r,p(kf) =

{

1− exp
(
θn,r(kd)(Jp(kf)− Jr(kf))

)
if Jp(kf) < Jr(kf)

0 otherwise
(3.17)
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whereJp(kf) is the cost of routep andJr(kf) the cost of router, as displayed on the DRIP,
in this case the travel times as computed with (3.11), andθn,r(kd) ∈ [0,1] represents the
fraction of traffic on router that can be influenced by the provided information on noden
at daykd. We assume that this fraction of traffic depends on the correctnessξn,r(kd) of the
displayed travel times, and on the fraction of the driversθ0

n,r that can be influenced by the
provided information. The fractionθ0

n,r is included since not all traffic will be able to react
on the information. This can be caused by the fact that the drivers do not want to go to the
specified destination, by a lack of knowledge about the available routes, or by the need for
an intermediate stop at, e.g., a service station, or car poollocation. The final fraction of the
drivers that can be influenced is then given by:

θn,r(kd) = θ0
n,rξn,r(kd)

whereξn,r(kd) characterizes the correctness of the information as experienced by the drivers.
It is determined by the percentage of trips that the displayed travel times were sufficiently
close to the travel times that were experienced. To determine the value ofξn,r(kd) the travel
times that were experienced are compared with those displayed on the DRIP, using a margin
ηinfo depending on the length of the routes, which allows for smalldifferences that do not
influence the perception of the drivers. So the travel times are assumed to be correct if:

τn,r(kf)−ηinfo < τ info
n,r (kf) < τn,r(kf)+ηinfo (3.18)

whereτn,r(kf) is the experienced travel time on noden on router for drivers that reach the
splitting node at timekf , τ info

n,r (kf) is the displayed travel time at noden at this time, andηinfo

is the margin used. The valueξexperienced
n,r (kd) is computed as follows:

ξexperienced
n,r (kd) = φtrue

n,r /(φtrue
n,r +φfalse

n,r )

where the countersφtrue
n,r andφfalse

n,r respectively count the times that the information is correct
in the sense of (3.18). The value forξn,r(kd) is then updated similar as the estimated travel
time in (3.14):

ξest
n,r(kd + 1) = ωξexperienced

n,r (kd)+ (1−ω)ξest
n,r(kd) (3.19)

whereξest
n,r(kd + 1) is the estimated correctness value for the next day.

Now we again consider a network with one node and two possibleroutes, as in Section
3.4.1, and determine the factorsθ1,1(kd) and θ1,2(kd), and the corresponding likelihoods
l1,1,2(kf) and l1,2,1(kf). The likelihoods are used to adapt the turning rates toward route 1
according to:

β information
1,1 (kf) = βroutechoice

1,1 (kf)− l1,1,2(kf)β
routechoice
1,1 (kf)+ l1,2,1(kf)β

routechoice
1,2 (kf) (3.20)

whereβ information
1,1 (kf) is the turning rate toward route 1 based on information and route

choice,βroutechoice
1,1 (kf) andβroutechoice

1,2 (kf) the turning rates toward route 1 and 2 resulting
from (3.16).

Remark 3.5 For a network where the routes do not overlap upstream of the last internal
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node, (3.20) can be rewritten as:

β information
n,m (kf) = βroutechoice

n,m (kf)− ∑
ψ∈Rlink

n,m

ln,m,ψ(kf)β
routechoice
n,m (kf)

+ ∑
ψ∈{ψ|m∈Rlink

n,ψ}

ln,ψ,m(kf)β
routechoice
n,ψ (kf)

For a general network with overlapping routes it is however not possible to compute
β information

n,m (kf), since whenβn,m(kf) for the METANET model is determined, the informa-
tion about the route-dependent turning rates gets lost due to the fact thatβn,m(kf) is valid
for all the traffic arriving at noden, independent of the router. To solve this problem the
destination-oriented version of the METANET model should be used. 2

3.5.2 Integrated route choice controller

We will now describe the route choice controller that integrates information providing on
DRIPs with variable speed limits. The controller uses MPC with as prediction models the
METANET model, the route choice model of Section 3.4, and themodel for the reaction on
information of Section 3.5.1.

As performance indicator we consider the total time spent (TTS) by all vehicles in net-
work, but note that the proposed approach also works for other performance indicators. The
TTS is computed according to (3.13). Since the reliability of the provided travel time in-
formation influences the effect of the control actions via the parameterθ(kd), see (3.17), a
penalty is added to prevent displaying incorrect travel times. This penalty consists of the
difference between the displayed travel times and the experienced travel times. The penalty
term is included in the performance indicator as follows:

J(kc) = TTS(kc)+χ1 ∑
n∈N

∑
r∈R

∑
kf∈Kf(kc,kc+Np)

(

τ̄n,r(kf)− τ̄ info
n,r (kf)

)2

2

whereN is the set of all nodes in the network,R is the set of all routes in the network,τ̄n,r

the average real experienced travel time on router from noden on during control periodkc,
andτ̄ info

n,r (kc) the average travel time displayed on the DRIP at noden for router.
Since the MPC method can handle hard constraints minimum andmaximum values the

control signal can be taken into account. Also a maximum length for, e.g., the queues at the
origins can be guaranteed.

3.5.3 Case study

We will use a simple case study to illustrate the effects of the integrated route choice con-
trol method. In the remainder of this section we will first describe the network and traffic
scenario that are used for the case study, and next we describe the simulation results for
simulations without control, for simulations with the systems that are currently used in The
Netherlands, and for simulations with the MPC-based methoddeveloped in this section.
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Figure 3.23: Layout of the network.

Network and traffic scenario

For the case study we have selected a network with two possible routes, see Figure 3.23. A
three-lane freeway of 2 km splits into a one-lane freeway of 3km and a two-lane freeway of
5 km, so the two-lane freeway is longer than the one-lane freeway. Later the two freeways
join each other again in a three-lane freeway of 2 km. The shortest route with one lane is
route 1, the longest route with two lanes is route 2. Since thetraveled distance on route 1 is
shorter, this route is preferred by the drivers. A disadvantage of route 1 is that its capacity is
low due to the fact that there is only one lane. This means thatthe route will get congested
fast when the demand is increasing. This makes route 2 attractive when the demand (and
thus the density before the splitting node) is high. The DRIPis located upstream of the
splitting node, and shows travel times for both routes. Speed limits are applied at every 500
m on both routes.

The traffic scenario is chosen such that all three density groups appear, and that the
highest density results in a congestion at the shortest route. The traffic demand varies in
discrete steps starting at 2000 veh/h, increasing to 4000 veh/h after 20 minutes, to 8500
veh/h after 40 minutes, and decreases back to 4000 veh/h after 1 hour, and to 2000 veh/h
after 80 minutes, see Figure 3.24.

The parameters of the METANET model are selected according to [87]: vfree,m = 120
km/h, ρcrit,m = 35 veh/km/lane,ρmax,m = 180 veh/km/lane,Qcap, = 6000 veh/h,τ = 18 s,
ν = 65 km2/h,κ = 40 veh/km/lane,am = 1.867, andTf = 10 s. We simplify the route choice
algorithm in such a way that it reduces the number of countersthat should be updated, and
thus saves available memory and computation time. We do thisby making the assumption
that the drivers in our simulation do not become habitual drivers that select always the same
route independent of the cost of this route. For the case study this can be justified by the
fact that the simulated costs of a route are solely based on the experienced travel time, and
thus not includes the development of other preferences of the drivers. This means that the
countersφest

S(1),R(2)(kd) andφest
S(2),R(1)(kd) will stay zero during the simulation. Since in this

case the probability that the shortest route is also the route that is selected is very large, we
set this probability to one:P(S(1)|R(1)) = 1. In the same way we assume that selecting the
longest route is not very likely, so we selectP(S(2)|R(1)) = 0. With the assumed values,
(3.15) can be simplified to:

P(S(1)|∆) = P(R(1)|∆)+ P(S(1)|EQ)P(EQ|∆)
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Figure 3.24: Demand for the case study on integrated controlwith travel time information.

Note however that in reality a significant part of the drivershas developed a habit [17], and
thus in reality this simplification is not valid.

The control signal that we use for the case study consists of the values for the speed
limits and the values for the travel times displayed on the DRIP. For the MPC controller we
have selectedNp = Nc = 10 andTc = 1 minute. The within-day route choice is considered
in the model, but since the day-to-day learning is an important aspect of the model, we
investigate the day-to-day behavior and repeat each of the simulations for 100 successive
days.

During the case study we will compare three different situations. In the first simula-
tion no control is applied, in the second simulation the current situation in The Netherlands
is investigated, and during the last simulation the developed MPC-based controller is ap-
plied. The system that is currently used in the Netherlands id not designed to influence the
route choice of the drivers, but to increase the safety on theroad and to inform the drivers.
This means that we do not perform a comparison between to control methods, but that we
illustrate improvements that can be obtained by introducing a control method.

No control

The first simulation examines the performance of the networkwithout control. Figure
3.25(a) shows the evolution of the preferred turning rate toward route 1, for each of the
three density groups, from day 1 to day 100. As starting valuefor all turning rates we have
selected 0.5. The solid line represents the turning rates for low-density situations. At low
densities it is logical that the shorter but smaller route isthe fastest, and indeed, the turning
rate toward route 1 increases over the days. The dashed line represents the turning rate for
medium-density conditions. As the density on the shortest route is a little higher, the travel
time on this route increases. Both routes have nearly the same travel time, resulting in an
equilibrium turning rate of 0.45. Finally, the dash-dottedline shows the turning rates for
high-density conditions. Route 1 is congested, and so more drivers select the second route
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(b) Evolution of the average travel times.

Figure 3.25: Simulation results when no control is applied.

and the turning rate towards route 1 decreases.
Figure 3.25(b) shows the average travel time for each day. Initially, while the drivers

are still learning, the travel times on both routes are high.After 17 days the drivers have
selected the best routes, and the travel times reach a more orless stable value. The two
average travel times are not exactly equal; this is because the drivers do not change their
route when the difference in travel times is small. The TTS inthe network is 761.1 veh·h
on the first, and 546.7 veh·h on the last day.

Instantaneous travel times and incident detection

The second simulation shows the situation that is currentlypresent in The Netherlands.
Here, the available measures are not used to control the traffic, but to inform the drivers, and
to prevent head-tail collisions when congestion is present. This means that the comparison
with the control method developed in this chapter is not a totally fair comparison, since the
purposes of the systems differ. However, an indication of the improvements that are possible
by applying integrated control can be given.

In The Netherlands, the DRIPs display instantaneous traveltimes, mainly to inform the
drivers. The variable speed limits are used as incident detection system, which works as
follows. When the speed in a segment drops below 40 km/h the speed limit in this segment
is set to 50 km/h and the speed limit in the upstream segment to70 km/h. When the speed
increases above 50 km/h, the speed limits are deactivated.

In Figure 3.26(b) it can be seen that with this method the constant values of the travel
times are reached within 12 days, and the peak in the average travel time stays lower than
in the no control case.

The TTS on the first day is 512.3 veh·h, and on the last day it is 542.1 veh·h. The
increase in the total time spent is caused by the fact that many drivers react on the provided
information on the first day, but that they do not experience the same travel time as presented
on the DRIP, which lowers the valueξ(kd) for the correctness of the provided information.
As a result more drivers start to neglect the information during later days, which finally
leads to nearly the same traffic assignment as without control.
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Figure 3.26: Simulation results with instantaneous traveltimes and incident detection.
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(b) Average travel times using MPC.

Figure 3.27: Simulation results when MPC is applied.

Integrated route choice control

The last simulation presents the effect of the MPC method developed in this section. Figures
3.27(b) and 3.27(a) show the results.

The TTS on the last day is 533.5 veh·h, which is only an improvement of 3% compared
to the no control case, and of 2% to the current situation in The Netherlands. A contribution
of the developed MPC based method can be seen in the first 10 days. The high peak in
average travel times is prevented, showing that the driverslearn faster what the best route
is. It can also be seen that during the next days a more stable situation occurs, and that there
are less fluctuations in travel times, making the routes morereliable. A side effect is that
more drivers use the first route, which is shorter in distanceand thus leads to less vehicle
kilometers. The performance of the MPC-based controller can still be improved by, e.g.,
using a longer prediction horizon, performing more optimization runs with different initial
values, and selecting a more suitable optimization algorithm.
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3.6 Conclusions

We have investigated three traffic flow control strategies that take the change in the traffic
assignment caused by the control actions into account. All control strategies are based
on model predictive control (MPC). The model METANET is usedas prediction model to
predict the evolution of the traffic flows. The control strategies use different routing models
and control measures.

The first control strategy considered within-day route choice, and used equilibrium-
based dynamic traffic assignment (DTA) to describe how the flows are divided over the
network. Within the control method, the DTA algorithm has been used to anticipate on the
change in route choice induced be the actions of the controller. The performance of this
controller has been illustrated with a case study on ramp metering.

The second control strategy used an en-route route-choice-based assignment model for
within-day route choice to determine the traffic assignment, and also used the DTA algo-
rithm to anticipate on changes in the route choice. In a case study we considered on-ramp
as well as off-ramp metering. With on-ramp metering the total time spent has been reduced
compared to the no control case, while the mean density stayed nearly equal. With off-ramp
metering the mean density has been reduced without increasing the total time spent.

Third, we have developed an integrated control method that uses an en-route route-
choice-based DTA algorithm, and that on purpose influences the route choice of the drivers.
The control method considered within-day as well as day-to-day route choice. In a case
study we have illustrated the performance of the route choice control method.

Topics for future research are: investigation of the trade-off between accuracy and com-
putational complexity for the different methods, investigating other DTA algorithms, inves-
tigating the use of destination-dependent models, calibration and validation of the developed
models, and robustness tests of the controller. Further theconcept of off-ramp metering
should be investigated, and some attention should be paid tothe legal aspects of displaying
not-yet-realized travel times. Finally, more extensive case studies should be performed to
further investigate and compare the performance of the controllers.

3.A List of symbols

Timing

kf simulation time step counter
kc control time step counter
kd day counter
ka assignment update time step counter
Tf simulation time step (h)
Tc controller time step (h)
Ta assignment update time step for the DTA model (h)
Kf(ka

c,k
b
c) set of simulation stepskf that correspond to the time interval[ka

cTc,kb
cTc]
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Sets

O set of all origins in the network
Lenter

n set of all freeway links entering noden
Lleave

n set of all freeway links leaving noden
N set of all nodes in the network
R set of all routes in the network
Rnode

n set of routes that pass through noden
Rlink

n,m set of routes that passes through noden toward freeway linkm
M set of pairs of indices (m, i) of all links of the network
Mlink

r set of pairs of indices (m, i) of all links and segments belonging to route
r

Mnode
r set of pairs of indices (n,m) belonging to router

Murban set of pairs of indices (m, i) of all links and segments belonging to the
local roads in the network

Control

ro(kf) ramp metering rate at rampo at simulation time stepkf

vm,control(kf) value of the speed limit at freeway linkm at simulation time stepkf

(km/h)
MD(kf) mean density on the local road at simulation time stepkf (veh/km/lane)
Ko gain of ALINEA ramp metering installation on rampo
J(kc) performance indicator at control time stepkc for the period[kcTc,(kc +

Np)Tc)
Np prediction horizon (control time steps)
TTS(kc) total time spent in the network during simulation period[kcTc,(kc +

Np)Tc) (veh·h)

Metanet

qm,i(kf) outflow of segmenti of freeway linkm during simulation time stepkf

(veh/h)
ρm,i(kf) density on segmenti of freeway link m at simulation stepkf

(veh/km/lane)
vm,i(kf) mean speed on segmenti of freeway linkm at simulation time stepkf

(km/h)
V(ρm,i(kf)) desired speed at segmenti of freeway linkm at simulation time stepkf

wo(kf) queue length at on-rampo at simulation time stepkf (veh)
τr(kf) travel time on router for a vehicle starting at simulation time stepkf (h)
βn,m(kf) turning rates toward freeway linkm on noden

Equilibrium based model

qMSA
r, j (kf) flow on router during iteration stepj of the MSA algorithm performed

at simulation time stepkf (veh/h)
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qAON
r, j (kf) flow on router determined by the AON assignment after iteration step

j of the MSA algorithm performed at simulation time stepkf (veh/h)
τ̄est

r (kd) estimated average travel time at simulation daykd (h)
τ̄

experienced
r (kd) average experienced travel time during daykd (h)

βMSA∗

n,m (kf) turning rates toward freeway linkm at noden computed with the MSA
algorithm at simulation time stepkf

Route-choice-based model

R(r) router has the lowest travel time
EQ the travel times on both route is approximately equal
S(r) statement: router is selected
P(S(r)|∆)(kd) probability that router is selected when the density is in density group

∆ at simulation daykd

φ
experienced
A,B (kd) counter of the number of times that the combination ofA andB is expe-

rienced during daykd

φest
A,B(kd) estimation of the number of times that the combination ofA andB will

occur during daykd

βroutechoice
n,m (kf) turning rates toward freeway linkm at noden computed with the route

choice model

Reaction to information

τ info
n,r (kf) displayed travel time for router on noden at simulation time stepkf (h)

ln,r,p(kf) likelihood of traffic on router selecting routep at noden at simulation
time stepkf

θn,r(kd) fraction of the vehicles on router at noden that can be influenced by
the provided information at daykd

ξn,r(kd) correctness of the displayed trave times for router on noden as experi-
enced by the drivers at daykd

β information
n,r (kf) turning rates toward router at noden including the reaction on infor-

mation at daykd



Chapter 4

Model-based control of
day-to-day route choice in traffic
networks

In this chapter we develop a model-based control approach for day-to-day route choice con-
trol. Therefore we formulate a simplified route choice modelthat can be used to obtain fast
predictions of the route choice behavior and that is suitable for obtaining a first impression
of the traffic assignment, for use in on-line optimization algorithms, or as initial value for
more complex optimization algorithms. We use this model in amodel-based control setting,
which uses prediction and an optimization procedure to obtain optimal values for control
measures. In particular, we investigate speed limit control and outflow control. The objec-
tive of the controller is to influence the route choice of the drivers such that a predefined
cost function is optimized. We illustrate the possibilities of the control approach with an
example based on the Braess paradox.

4.1 Introduction

As the number of vehicles and the need for transportation grow, cities around the world face
serious traffic congestion problems: almost every weekday morning and evening during
rush hours the saturation point of the main roads is attained. This often causes drivers to
divert to minor roads, causing large flows in residential areas, near primary schools, or near
shopping centers. These large flows can lead to undesired or unsafe situations. They also
cause pollution and noise, which does not only affect humansliving near the roads, but can
also have a negative impact on humans living further away, and on nature reserves due to
dispersion.

The location of the large traffic flows and the corresponding congestion is the result of
the route choices of the drivers. Road administrators can try to change the route choices, in
order to prevent or to relocate unwanted large traffic flows orto reduce the travel times. In
this paper we develop a control method that supports the administrators by influencing the
route choices of drivers, using existing traffic control measures, such as variable speed lim-

85
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its, or mainstream metering. These measures influence the travel times on different routes,
and hence induce a change in route choice of the drivers.

Let us now consider the route choice process of drivers. Withrespect to the time scale of
the route choice, there exists within-day route choice and day-to-day route choice. Within-
day route choice [18, 27] describes the route choice of drivers during their trip. This means
that drivers change their route during their trip based on the current state of the traffic net-
work. Day-to-day route choice [28, 101, 179] focuses on the changes in route choice from
one day to the next. This means that the route choice of the drivers for the current day
is based on experiences of the previous days. The drivers consider these experiences and
weigh them, leading to a preferred route for the next day. In this chapter we only consider
day-to-day route choice.

Day-to-day route choices of drivers are modeled with (dynamic) traffic assignment
(DTA) models [8, 13, 15, 42, 130]. These models describe how the traffic flows divide
themselves over the network. An overview of DTA models is presented in [131], where
different classes of formulations of the DTA problem are given, and where some directions
of future developments are presented. With respect to the use of DTA models in traffic
controllers, we can divide the models into two main categories: equilibrium-based models
and route-choice-based models, see Figure 4.1. Equilibrium-based models assume that an
equilibrium traffic assignment1 will appear in which no driver can change his route without
increasing his costs [182]. The use of this assumption meansthat for every simulation run
within the controller the equilibrium should be computed, which leads to large computation
times and thus makes the models less suitable for on-line use. En-route route-choice-based
models [18, 37, 103] do not explicitly assume an equilibrium, but use en-route route-choice
models which determine the route choice based on the currentstate of the network and from
the experiences of the drivers during previous days. Using these models the reasoning of
drivers with respect to the route choice can be captured in a natural way, and it is not neces-
sary to determine the expected travel times on the whole network to determine the turning
rates at one intersection. Advantages of the en-route route-choice-based models2 are the low
computation time, and the applicability for the situationswhere no equilibrium assignment
might appear. This makes the models suitable for the use in the route choice controller that
we will develop in this chapter.

For our controller, we develop a basic model that is suitableto obtain a first impression
of the evolution of the turning rates for planning purposes and especially for the use within
an on-line traffic control framework where the model can be used to obtain fast predictions
or good initial solutions for non-linear optimization procedures which use more accurate
models.

We develop the model in three steps with a gradually increasing complexity:

Case A: constant demand, separate routes, single origin and destination,

Case B: piecewise constant demand, separate routes, single originand destination,

1Note that for the considered categorization, it is not important whether the considered equilibrium can be
deterministic, stochastic, static, or dynamic.

2In the remainder of this chapter we will use the shorter term ’route-choice-based models’ instead of ’en-route
route-choice-based models’ for ease of notation.
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Figure 4.1: Different types of DTA models.

Case C: piecewise constant demand, overlapping routes, multiple origins and destinations,
and restricted link inflow capacities.

The model of CaseA allows for analytical descriptions and for intuitive explanations due
to its simplicity. The model requires only a small amount of computation time to simulate
a network and can thus be used to obtain a first impression of the evolution of the turning
rates. CaseB uses time-varying piecewise constant demands to get a better approximation
of the flows in the network. At last, CaseC introduces overlapping routes, restricted link
inflow capacities, and networks with multiple origins and destinations, and thus allows for
the modeling of general traffic networks.

Within the route choice model, we assume that the main factorin the route choice of
the drivers is the travel time [18]. Note that in reality the route choice of drivers depends
on many factors, such as road type, travel time reliability,surroundings, travel distance, and
personal preferences [18, 28, 147]. Different factors can be easily implemented for CaseC,
while for CasesA andB only factors that can be formulated as linear functions of the model
variables can be used, e.g., the travel distance or average queue length on the route that is
used. In this chapter we will use the travel times, which can be computed with detailed
models as described in, e.g., [7, 40, 106, 137], or with less detailed models presented in,
e.g., [15, 26, 33, 54]. These models still lead to large computation times. Therefore, in this
chapter we will use a somewhat less detailed model, with low accuracy, which results in
low computational effort. We use the mean travel times over the whole day to determine the
route choice. We assume that the mean experienced travel times are known by all drivers,
which means that all the drivers are completely informed (e.g., via travel information ser-
vices), so they know the travel times on both routes, independently of the route they have
selected.

To control the route choice of the drivers existing traffic control measures can be used.
In [63, 150] it has already been shown that traffic control measures that do not directly in-
fluence route choice but that do have an impact on the travel time (such as traffic signals,
variable speed limits, and ramp metering) can be used for this purpose. This has led to the
theoretical development of methods to incorporate the effect of existing traffic control mea-
sures on route choice, see [11, 81, 177]. The control methodsdescribed in these papers use
a prediction model that describes the evolution of the traffic flows as well as the evolution of



88 4 Model-based control of day-to-day route choice in traffic networks

the turning rates, and then use existing traffic control measures to influence the turning rates.
The methods differ with respect to the control algorithm that is applied, and with respect to
the models that are used. A specific control method that is suitable for route choice con-
trol is Model Predictive Control (MPC) [25, 100]. This is a model-based control approach
that uses a prediction model in combination with an optimization algorithm to determine
optimal values for the traffic control measures. The optimalvalues are then applied using a
rolling horizon approach. MPC has been used earlier to influence the route choicewithin a
day in [10, 64, 89, 130]. Within this chapter we use MPC forday-to-dayroute choice.

We develop a high-level controller that can influence the speed and outflow of links.
Lower-level controllers should be used to translate the values for maximum speeds and
outflows into settings for the traffic control measures. The state of the system includes
the turning rates. With the prediction model we can determine the influence of the control
actions on the turning rates, and the control actions that can improve the performance of the
network.

The MPC-based control approach includes solving an optimization problem. We ad-
dress the three different cases using different optimization methods. The model of CaseA
is a piecewise affine model. When this model is combined with piecewise affine control
objectives and piecewise affine constraints, the optimization problem can be reformulated
as a mixed integer linear programming (MILP) problem. For MILP problems there exist
efficient solvers, that guarantee to find the global optimum.In CaseB the problem is not
completely an MILP problem but it can beapproximatedwith an MILP formulation. The
obtained MILP solution can then be used as initial value for ageneral non-linear non-convex
optimization method. This largely reduces the computationtime. CaseC, which uses the
most general model, allows the control of complicated networks, but results in a non-linear
non-convex optimization problem.

The remainder of this chapter is organized as follows. In Section 4.2 we first formu-
late a general control approach including control measures, possible control objectives, and
constraints. Then we describe model predictive control, and present an overview of opti-
mization algorithms that can be used, with a focus on mixed integer linear programming.
Then we consider the three different casesA, B, andC in Sections 4.3, 4.4, and 4.5. For
each case we develop the route choice model and a corresponding controller. Section 4.6
illustrates the developed control approach with two examples. A simple network is con-
trolled using the approach of CaseA, while the performance of the general approach, Case
C, is illustrated by a more complex network in which the Braessparadox appears. Finally,
conclusions are presented in Section 4.7.

4.2 Control approach

Recall that the objective of this chapter is to develop a control method for model-based day-
to-day route choice control. In this section we first formulate the overall optimal control
problem including control measures, control objectives, and constraints. Since this opti-
mal control problem is not tractable in an on-line setting (except when small horizons are
used), we propose an on-line control method based on model predictive control (MPC). This
control method uses an optimization algorithm. We will shortly discuss some global opti-
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mization algorithms, and then focus on mixed integer linearprogramming, which is suitable
for some of the controllers that we will develop later in thischapter.

Note that an overview of the main symbols used in this chapteris given in Appendix 4.A.

4.2.1 Control signal

In this chapter we consider two control measures to influencethe route choice of the drivers:
outflow control and speed limit control. Outflow control can be done via, e.g., traffic signals,
off-ramp metering installations, or mainstream metering installations. The outflow limit
Ql (d) of link l represents the maximum flow (veh/h) that is allowed to leave link l at day
d. Speed limit control uses dynamic speed limitsvl (d) for all links l . Speed limits are
displayed using variable message signs, and show the maximum allowed speed on the links.
In general we represent the values of the control signal withc(d). We assume that these
values are constant during a dayd. However, for CaseC the approach can be extended to
piecewise constant control signals.

4.2.2 Control objective

The objective of the controllers is to optimize the performance of the network, which can be
formalized by selecting a cost function. Typical examples of cost functions in the context
of route choice are the total time the vehicles spend in the network, the total queue length,
or the norm of the difference between the realized flows and the desired flows on the routes.
These cost functions serve either to handle as much traffic aspossible in a short time, or
to keep vehicles away from protected routes (e.g., routes through residential areas or nature
reserves).

We will give three examples of possible cost functions. The total travel time can be
computed as follows:

JTT =
N

∑
d=1

∑
r∈R

ωrβr(d)τ route
r (d) (4.1)

with N the number of considered days3, R the set of all routes,βr(d) the turning rate toward
router at dayd, τ route

r (d) the average travel time on router at dayd, andωr > 0 the weight
for route r. The second possible control objective is to approximate desired travel times
τdesired

l (d):

JDTT =
N

∑
d=1

∑
r∈R

ωr |τ
route
r (d)− τdesired

r (d)| (4.2)

with weightsωr > 0.

Remark 4.1 Note that the cost function described in (4.2) corresponds to the (weighted)
1-norm of the difference between the experienced and the desired travel time vectors. How-
ever, other norms can also be used, e.g., the 2-norm or the∞-norm. Which norm should

3Note that when the demand varies between days, it might be useful to multiply the experienced travel times
on each day with the corresponding demand.
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be used depends on the goal and structure of the controller. The 1-norm and∞-norm will
result in linear problems, while the 2-norm yields a smooth function that allows for the use
of efficient, gradient-based or Hessian-based optimization algorithms. 2

Another option is to approximate a desired flowQdesired
l (d, ·) on link l . Note that for the

cases with piecewise constant demands the periods that the demand is constant are counted
with index i, where each period starts at event timei. The set of all event timesi is only
available at the end of the simulation. The appropriate desired piecewise constant flow
patternQdesired

l (d, i) can be obtained by fitting the continuous patternQdesired,continuous
l (d, ·)

on the event times set available at the end of the simulation.The difference between the
realized flow and this desired flow is then given by

JDF =
N

∑
d=1

∑
l∈L

∑
i∈I

vd
l

∣
∣
∣
∣
∣
∑

r∈Rl

Qin
l ,r(d, i)− Qdesired

l (d, i)

∣
∣
∣
∣
∣

(4.3)

whereRl denotes the set of all routes using linkl , Ivd
l
(d) denotes the set of all time period

indices for the downstream vertexvd
l of link l on dayd, Qin

l ,r(d, i) is the inflow of link l for

router during event time periodi, andQdesired
l (d, i) the desired flow on linkl during period

i. With respect to the norm, Remark 4.1 is also valid for (4.3).
The state of the network at the end of the simulation for each day d should also be

considered. Therefore a penalty on, e.g., the final queue lengths can be added:

Jfinal =
N

∑
d=1

∑
l∈L

∑
r∈Rl

Nveh
l ,r (d,nvd

l
) .

To prevent large variations in the control inputc which could lead to unstable, or even
dangerous, traffic conditions, a penalty is formulated for these variations:

Jvar =
N

∑
d=1

||c(d)− c(d − 1)|| , (4.4)

where also other norms could be used, see Remark 4.1.
The final cost function is usually a weighted combination of the different costs, com-

bined with the penalty on variations in the control signal:

J = w1JTT + w2JDF + w3JDTT + ...+ wm−1Jvar+ wmJfinal

with weightsw j > 0. In fact, the weights consist of two factors: a scaling of each partial
cost function by its nominal value (e.g., the historical average), and a factor that represents
the importance of the partial cost.

4.2.3 Constraints

Minimizing the cost function can have negative side effects. Reducing the flow on one route
could, e.g., lead to an increased flow some on other routes, with congestion and longer travel
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times as results. To solve this problem, maximum or minimum values can be selected for
flows, travel times, and queue lengths:

∑
r∈Rl

Qeff
l ,r (d, i) ≤ Qeff,max

l (d, i) ,

τ route
r (d) ≤ τ route,max

r (d) ,

and
Nveh

l ,r (d, i) ≤ Nveh,max
l ,r (d, i)

whereQeff,max
l (d, i), τ route,max

r (d), andNveh,max
l ,r (d, i) are the maximum allowed values for

the outflow, travel time and queue length on linkl and router at dayd during periodi.
Technical hardware possibilities and safety restrictionscan lead to bounds on the values

for the outflow limits and speed limits:

Qmin
l (d) ≤ Ql (d) ≤ Qmax

l (d) ,

and
vmin

l (d) ≤ vl (d) ≤ vmax
l (d)

with Qmin
l (d) andQmax

l (d) the minimum and maximum values for the flow on linkl at day
d, andvmin

l (d) andvmax
l (d) the minimum and maximum values for the speed limits.

4.2.4 Overall optimal control problem

The overall control problem can then be formulated as follows:

min
(c(1),...,c(N))

J(c(1), ...,c(N))

s.t. model equations

constraints

wherec is the control signal, andJ are the total costs.
This optimal control problem is intractable, and the closedloop system that will appear

when the controller is applied to the network will not be robust. To be able to handle errors
in the model, changes in the demand, and other disturbances,we propose to perform the
control with a method based on MPC as explained below.

4.2.5 Model predictive control

In MPC [25, 100] the objective is to determine at dayd the control inputsc(d) . . .c(d+Np −
1) that optimize a cost functionJ(d) over a given prediction period ofNp days ahead, given
the current state of the network, the future demand, and a model of the system, and subject
to operational and other constraints.

An overview of the process is given in Figure 4.2.5. The real traffic network is mea-
sured or estimated based on measurements. The measurementsor estimates are fed into the
MPC controller every time step. Then the controller uses theprediction model in combi-
nation with an optimization algorithm to determine the optimal control inputs based on the
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Figure 4.2: Model predictive control scheme.

selected control objective and constraints. The optimal control inputs are then applied in the
real network in a receding horizon manner i.e. of the optimalcontrol signal sequence only
the first samplec∗(d) is applied to the system. Next, at dayd + 1, the procedure is repeated
given the new state of the system, and a new optimization is performed for daysd + 1 up to
d + Np. Of the resulting control signal again only the first sample is applied, and so on.

The cost function that is selected for the optimal control problem in Section 4.2.2 can
be adapted for the MPC controller. Each day, the model is usedto predict the traffic and to
compute the cost for the prediction period covering daysd up tod+Np

4. For the total travel
time this results in:

JTT(d) =
Np

∑
j=1

∑
r∈R

ωrβr(d + j)τ route
r (d + j) .

The MPC cost functions corresponding toJDTT andJDF (see (4.2), (4.3)) can be defined in
a similar way.

The prediction horizonNp should be selected long enough to capture all the effects of
the control actions. So when considering route choice, it should at least be equal to the
travel time of the longest route, to incorporate the effect of the travel time on drivers that
take this route.

The optimization results in a sequence of optimal control inputs c∗(d),c∗(d + 1), . . . ,
c∗(d + Np − 1). To reduce the computational complexity a control horizonNc (Nc < Np)
is usually introduced and the control sequence is constrained to vary only for the firstNc

days, after which the control inputs are set to stay constant, i.e.c(d + j) = c(d + Nc − 1) for
j = Nc, . . . ,Np − 1.

Note that the proposed approach is generic and modular. Manymodels, cost functions,
and optimization algorithms can be used. In this chapter we will develop a basic route
choice model, and use speed limit control and outflow controlwithin the MPC controller.
However, if it is required, other, more complex models and control measures could be used
instead.

4Note that the controller cannot influence the performance at day d anymore, since this performance depends
on the turning rates, which are the state of the network and have already been determined during dayd − 1.
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4.2.6 Optimization

MPC uses an optimization algorithm to determine the optimalvalues for the control vari-
ables. In general, the optimal solution of the route choice control problem cannot be com-
puted analytically. The given problem is a non-convex nonlinear optimization problem with
possibly multiple local minima. This requires the use of advanced optimization algorithms,
which in general cannot guarantee that the optimal solutionis found, and often reach a local
optimum, which can lead to suboptimal behavior. Hence, a global optimization method is
required such as genetic algorithms, simulated annealing,pattern search, or multi start local
optimization [19, 44, 53, 61, 126]. This, however, increases the computation time, which
is undesired for on-line computations. The selection of an optimization algorithm is thus
based on the trade-off between the accuracy of the solution and the required computational
effort.

When the control problem can be reformulated as a linear or piecewise affine problem,
mixed integer linear programming (MILP) can be used for the optimization. Within a MILP
problem the optimization of real and integer variables is combined, leading to a general
formulation of the problem for a given matricesA, Aeq, and vectorsb, beq, andc:

minx cTx

s.t. Ax≤ b

Aeqx = beq

where

x =

[
xi

xr

]

, xi ∈ Z, andxr ∈ R .

Several efficient branch-and-bound MILP methods [55] are available. Moreover, there
exist several commercial and free solvers for MILP problemssuch as, e.g., CPLEX, Xpress-
MP, GLPK, or lp_solve (see [5, 98] for an overview). In principle, and when the algorithm
is not terminated prematurely, these algorithms guaranteeto find the global optimum of the
MILP problem efficiently. This makes them suitable for online optimization.

To reformulate optimization problems as MILP problems we will have to remove the
nonlinearities of the models. This is done by recasting the nonlinear equations into linear
ones, and by introducing additional auxiliary variables. To perform these transformations
we use the following equivalences [12], whereδ represents a binary-valued scalar variable,
y a real-valued scalar variable, andf a scalar function defined on a bounded setX with
upper and lower boundsU f andL f for the function values:

U f = max
x∈X

f (x) ,

L f = min
x∈X

f (x) .

We have

P1: [ f 6 0] ↔ [δ = 1] is true if and only if
{

f 6 U f (1− δ)
f > ǫ+ (L f − ǫ)δ ,
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whereǫ is a small positive number (typically the machine precision5),

P2: y = δ f is equivalent to






y 6 U f δ
y > L f δ
y 6 f − L f (1− δ)
y > f −U f (1− δ) .

P3: δ = δ1δ2 is equivalent to






−δ1 + δ 6 0
−δ2 + δ 6 0
δ1 + δ2 − δ 6 1 .

4.3 Case A: Constant demand, separate routes

We now develop a route choice control method for a network with a constant demand and
separate routes. First we formulate a basic route choice model, and then we develop the
route choice controller based on this model.

4.3.1 Model development

The route choice model describes how the travel time experienced on a given route on a
particular day affects the route choice on the next day. Within this subsection, we will
first present a basic route choice network, then formulate the travel time model, and next
describe the resulting route choice model.

Basic route choice network

To explain the modeling approach, we consider a network withone origin and one desti-
nation that are connected via multiple routes, see Figure 4.3. Such a network contains all
features that are required for route choice, but it is small enough to make intuitive under-
standing possible. We assume that drivers enter this network at the origin and make their
route choice immediately. Then they experience a travel time during their trip through the
network and leave the network at the destination.

We will look at the day-to-day evolution of the traffic flows inparticular part of the day,
e.g., the morning peak. The considered period is denoted by the time interval[0,T]. For a
given dayd we assume that the traffic demandD(d) (veh/h) in the network is constant. The
demand is distributed over the routes according to the turning fractionβr(d), which gives
the fraction of the vehicles that select router on dayd. The turning fraction is computed
with the route choice model that will be described below. Thesum of the turning rates
should be equal to 1:

∑
r∈R

βr(d) = 1

5The reason for introducingε is that an equation likeAx− b > 0 does not fit the MILP framework, in which
only non-strict inequalities are allowed. Therefore,Ax− b > 0 will be replaced by the equationAx− b≥ ε with ε a
small tolerance, typically the machine precision, where we assume that in practice the case 0< Ax− b < ε cannot
occur due to the finite number of bits used for representing real numbers on a computer.
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Origin Destination

Route 2

Route 1

Route 3

Traffic flow direction

Figure 4.3: Network with three routes.

whereR is the set of all routes in the network.
Since in this case the model considers separate routes, there is no difference between

route parameters and link parameters. In this section we therefore indicate both of them
with the indexl , so

βr(d) := βl (d) .

Each route/linkl ∈ R in the network can be described by the following parameters.The
length of link l is denoted byℓl (km). Recall that the speed limitvl (d) (km/h) gives the
maximum speed that is allowed on linkl on dayd. The outflow limitQl (d) (veh/h) gives
the number of vehicles per hour that are allowed to leave the link l on dayd.

Travel time model

Since we assume that the route choice of the drivers is based on the experienced travel
times, we first formulate a travel time model. In our approach, the queues are assumed to be
vertical6. This means that the vehicles drive the whole route without delay, experiencing the
free-flow travel time. At the end of the route, the vehicles enter the vertical queue and wait
in this queue until they can leave the route. As a consequence, the travel timeτ route

l on a
given link l consists of two components: the free-flow travel timeτ free

l and the average (over
all vehicles) time spent in the queueτ

queue
l (which is taken to be 0 if no queue is present):

τ route
l (d) = τ free

l (d)+ τ
queue
l (d) . (4.5)

The free-flow travel timeτ free
l (d) on link l is given by:

τ free
l (d) =

ℓl

vl (d)
. (4.6)

The time spent in the queue depends on the number of vehicles in the queue. Let us
consider linkl . During one peak period, the queue at the end of linkl grows as shown
in Figure 4.4. Recall that the length of the considered period is denoted byT and that
βl (d)D(d) gives the flow on routel . LetNveh

l (d, t) be the number of vehicles in the queue at
timet on dayd. When the free-flow travel time has passed, the first vehicles reach the end of
the link and the queue starts to build up if the demand exceedsthe outflow limit of the link.

6A vertical queue is a queue that has no physical length but stores the vehicles just in front of the bottleneck.
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Figure 4.4: Queue length on a link during one day.

In Figure 4.4 the queue length is plotted for different demands. When the demand on linkl
is less than the outflow limit of linkl , i.e.βl (d)D(d) ≤ Ql (d), no queue appears. When the
demand is larger than the outflow limit a queue starts to grow,with rateβl (d)D(d)− Ql (d).

In order to compute the average time in the queue, we first compute the areaAl (d) under
the queue length curve of Figure 4.4, and divide this by the total number of vehicles that
have exited the link. We consider two cases:

• If βl (d)D(d)≥ Ql (d) then a queue will be created, and the maximum queue length is
given by

Nveh,max
l (d) = (βl (d)D(d)− Ql (d))(T − τ free

l (d)) .

Moreover, in this case the outflow of a linkl is equal toQl (d). This outflow is present
during the a period with lengthT − τ free

l (d). Hence, the area below the queue length
graph is

Al (d) =
1
2

Nveh,max
l (d)(T − τ free

l (d)) =
1
2
(βl (d)D(d)− Ql (d))(T − τ free

l (d))2 ,

and thus

τ
queue
l (d) =

Al (d)

Ql (T − τ free
l (d))

=
1
2

(βl (d)D(d)− Ql (d))(T − τ free
l (d))

Ql (d)
. (4.7)

• If βl (d)D(d) < Ql (d) then no queue will arise, and thusτ
queue
l (d) = 0.

Since we may assume without loss of generality thatτ free
l (d) < T, we can combine both

situations:

τ
queue
l (d) = max

(

0,
1
2

(βl (d)D(d)− Ql (d))(T − τ free
l (d))

Ql (d)

)

. (4.8)
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Remark 4.2 We can also take into account the vehicles that are still in the queue at the
end of the simulation period as follows. Note that such a queue can only be created if
βl (d)D(d)≥ Ql (d). The outflow rate of the queue is thenQl (d) and the number of vehicles

in the queue at timeT is equal toNveh,max
l (d). Hence, it takes on the average1

2
Nveh,max

l (d)

Ql (d)
time units for the vehicles to leave the queue. This quantityhas to be added to (4.7). So in
this case (4.7) is still valid but the factor1

2 disappears. 2

Route choice model

The travel times are used as input for the route choice model.Based on a difference in travel
time between the routes, the turning rates will change as follows. The turning rate toward
route 1 is given by

β1(d + 1) = min
(

max
(
0,β1(d)+ ∑

ρ∈R,ρ6=1

κρ,1(τ
route
ρ (d)− τ route

1 (d))
)
,1
)

, (4.9)

whereκρ,1 expresses the fraction of the drivers on routeρ that change their route toward
route 1 from one day to the next based on the travel time difference.

The turning ratesβ2 . . . βl last−1 can be determined with

βl (d + 1) = min
(

max
(
0,βl (d)+ ∑

ρ∈R,ρ6=l

κρ,l (τ
route
ρ (d)− τ route

l (d))
)
,1−

l−1

∑
ℓ=1

βℓ(d + 1)
)

,

(4.10)

whereκρ,l expresses the fraction of the drivers on routeρ that change their route toward
routel from one day to the next based on the travel time difference, and l last is the turning
rate toward the last route.

Finally, the turning rate toward the last routel last is given by

βl last(d + 1) = 1−
l last−1

∑
l=1

βl (d + 1) (4.11)

The maximum and minimum functions in (4.10) keep the value ofβl (d + 1) between 0
and 1, while (4.11) guarantees that the sum of allβ’s is equal to 1.

4.3.2 Controller development

We will develop the route choice controller based on the model described above. As control
method we use MPC, see Section 4.2.5. We consider variable speed limit control, but note
that for outflow control the same reasoning can be followed. We assume that the speed
limits can only have two valuesva andvb.

Since the model is linear we can formulate the optimization problem as a MILP problem,
using the PropertiesP1 andP2. We first reformulate the route choice model, and next we
define the cost function. Finally we present the overall MILPoptimization problem.
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Reformulating the route choice model

We now translate the route choice model in such a way that the optimization problem will
have the form of an MILP.

Since we assume that there are two values for the speed limits, the corresponding free-
flow travel times can be represented by one binary variableδl as follows. Define (cf. (4.6))

τ free
l ,a =

ℓl

va
, τ free

l ,b =
ℓl

vb
, and∆l = τ free

l ,b − τ free
l ,a .

Then we can selectva or vb on link l for dayd by introducing a binary variableδ1,l (d) and
setting

τ free
l (d) = τ free

l ,a +∆lδ1,l (d) .

Remark 4.3 The implementation of more values for the speed limits is straightforward. As
example, we consider four values for the speed limits that correspond to four equidistant
free-flow travel times, formulated as follows:

τ free
1 (d) = τ free

1,min +∆1(δ1a,1(d)+ δ1b,1(d)+ δ1c,1(d)) ,

whereτ free
1,min = ℓ1

vhigh , τ free
1,max = ℓ1

vlow , and∆1 =
τ free

1,max−τ
free
1,min

3 . Forτ free
2 (d) a similar construction

can be used. 2

Recall that we consider the case of speed control with no outflow control; soQl (d) =
Qmax

l for all d. If we substitute the above expression forτ free
l (d) in (4.5) and (4.8) we get

τ route
l (d) = max(0,y2,l (d))+ τ free

l ,a +∆lδ1,l (d) (4.12)

with

y2,l (d) = a1,l (d)βl (d)+ a2,l (d)δ1,l (d)βl (d)+ a3,lδ1,l (d)+ a4,l (4.13)

with a1,l (d) = 1
2Ql

D(d)(T − τ free
l ,a ), a2,l (d) = − 1

2Ql
D(d)∆l , a3,l = 1

2∆l , anda4,l = − 1
2(T −

τ free
l ,a ). By introducing an extra variabley1,l (d) = δ1,l (d)βl (d) and using PropertyP2 with

fl (x) = βl (d), L fl = 0, andU fl = 1, (4.13) can be transformed into a system of linear in-
equalities.

Now define the auxiliary variablesηl (d) andσl (d) such that (cf. (4.27), (4.10))

σl (d) = βl (d)+ ∑
ρ∈R

κr,ρ(τ
route
ρ (d)− τ route

l (d)) (4.14)

ηl (d) = max(0,σl (d)) . (4.15)

Then we have

βl (d + 1) = min(ηl (d),1) . (4.16)

Consider (4.16) and define the binary variableδ4,l (d) such that

δ4,l (d) = 1 if and only if ηl (d) ≤ 1 .
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Note that this equivalence can be recast into a system of linear inequalities via PropertyP2.
It is easy to verify that now we have

βl (d + 1) = min(ηl (d),1) = δ4,l (d)ηl (d)+ 1− δ4,l (d) ,

which after introducing the auxiliary variablezl (d) = δ4,l (d)ηl (d) (this equivalence can also
be recast as a system of linear inequalities via PropertyP1), results in the linear equation

βl (d + 1) = zl (d)+ 1− δ4,l (d) .

If we now collect all variables for dayd in one vector

w(d) =
[
β1(d) . . . βnl (d) δ1,l (d) . . . δ4,nl y1,l (d) . . . y3,nl (d) τ route

1 (d) . . . τ route
nl

(d)

σ1(d) . . . σnl (d) η1(d) . . . ηnl (d) z1(d) . . . znl (d)
]T

,

we can expressβl (d + 1) as an affine function ofw(d): βl (d + 1) = aw(d)+ b for a properly
defined vectora and scalarb, wherew(d) satisfies a system of linear equationsCw(d) = e,
Fw(d) 6 g, which corresponds to the various linear equations and constraints introduced
above.

MILP cost function

To be able to transform the route choice control problem intoan MILP problem, the cost
function should be linear or piecewise affine. Possible objectives of the controller of Section
4.2.2 that allow reformulation into linear or piecewise affine form are minimizing the flow
on a route, reaching a desired flow on one of the routes, or reaching a desired travel time.
The MPC cost function for a minimum flow on route 1 is given by:

J(d) = min
Np

∑
j=1

βl (d + j)D(d + j) .

Let us define

F̃l (d) =






βl (d + 1)D(d + 1)
...

βl (d + Np)D(d + Np)




 , F̃desired

l (d) =






Qdesired
l (d + 1)

...
Qdesired

l (d + Np)




 ,

whereQdesired
l (d + j) denotes the desired flow on routel at dayd + j.

The MPC cost function corresponding to reaching a desired flow on routel is then given
by:

J(d) = min‖Qdesired
l (d)− Fl (d)‖ .

When either the 1-norm or the∞-norm are used, this cost function will be linear and can
be reformulated for the MILP problem. When a 1-norm is used, the problem can be trans-
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formed into a linear one as follows:

min‖F̃desired
l (d)− F̃l (d)‖1 = min

Np

∑
j=1

|Qdesired
l (d + j)−βl (d + j)D(d + j)| (4.17)

= min
Np

∑
j=1

q(d + j)

s.t. q(d + j) > Qdesired
l (d + j)−βl (d + j)D(d + j)

q(d + j) > −Qdesired
l (d + j)+βl (d + j)D(d + j)

for j = 1, . . . ,Np.

It is easy to verify that for the optimal solution of the latter problem we have

q∗(d + j) = max
(
Qdesired

l (d + j)−β∗
l (d + j)D(d + j),−Qdesired

l (d + j)+β∗
l (d + j)D(d + j)

)

= |Qdesired
l (d + j)−β∗

l (d + j)D(d + j)|

for all j.
Similarly, for the∞-norm we have

min‖F̃desired(d)− F̃(d)‖∞ = min max
j=1,...,Np

|Qdesired
l (d + j)−βl (d + j)D(d + j)|

= min q

s.t. q > Qdesired
l (d + j)−βl (d + j)D(d + j)

q > −Qdesired
l (d + j)+βl (d + j)D(d + j)

for j = 1, . . . ,Np,

which is also a linear problem.

Another possibility is to strive for desired travel times onthe routes. Letτdesired
1 (d + j)

andτdesired
2 (d + j) denote the desired travel times on respectively route 1 and route 2 at day

d + j. The problem of reaching desired travel times on each of the routes is then given by

min
Np

∑
j=1

ω1|τ
route
1 (d + j)− τdesired

1 (d + j)|+ω2|τ
route
2 (d + j)− τdesired

2 (d + j)| (4.18)

with ω1,ω2 > 0. This cost function is piecewise affine, but it can be rewritten as

min
Np

∑
j=1

ω1φ1(d + j)+ω2φ2(d + j)

s.t. φr(d + j) > τ route
r (d + j)− τdesired

r (d + j)

φr(d + j) > −τ route
r (d + j)+ τdesired

r (d + j)

for j = 1, . . . ,Np and forr = 1,2.
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which is a linear programming problem7. For the optimal solution we have

φ∗
r (d + j) = max

(
τ ∗

r (d + j)− τdesired
r (d + j),−τ ∗

r (d + j)+ τdesired
r (d + j)

)

= |τ ∗
r (d + j)− τdesired

r (d + j)|

for all j and forr = 1,2. Hence, (4.18) also leads to a linear programming problem.

Constraints

It might be useful to add a constraint on the travel time of a certain route (see Section 4.2.3),
because minimizing, e.g., the flow on other routes can resultin a higher flow and thus a
longer travel time on this route:

τl (d + j) 6 τmax
l (d + j) for j = 0, . . . ,Np − 1 , (4.19)

whereτmax
l (d+ j) denotes the maximal travel time on routel on dayd+ j. Using (4.12) and

(4.13) we can easily eliminateτl (d+ j) from the constraint (4.19). This yields the equivalent
system of constraints

τ free
l ,a +∆lδl (d + j) 6 τmax

l (d + j)

y2,l (d + j)+ τ free
l ,a +∆lδ1,l (d + j) ≤ τmax

l (d + j)

for j = 0, . . . ,Np − 1. Note that these constraints are also linear.
An alternative constraint is to have a minimal or maximal flowon a given route. For

routel this would result in

Qin,min
l (d + j) 6 (1−βl (d + j))D(d + j) 6 Qin,max

l (d + j) ,

for j = 1, . . . ,Np, whereQin,min
l (d + j) andQin,max

l (d + j) denote respectively the minimal
and maximal allowed flow on routel on dayd + j. This constraint is also linear.

Overall MILP problem for constant demand

If we collect the linear objective function and all the linear constraints introduced above
into one large problem, we get an MILP problem in the variables w(d),w(d + 1), . . . ,w(d +
Np −1),β1(d+Np) andq(d+1),q(d+2), . . . ,q(d+Np) (when the 1-norm is used for the cost
function) orq (when the∞-norm is used). This means that within the controller a MILP
solver can be used, which reduces the computation time, and guarantees the detection of the
global optimum. This will improve the performance of the controller, and due to the lower
computation times it allows for the control of larger networks.

4.4 Case B: Time-varying demand, separate routes

In this section, we extend the previous results to time-varying demand profiles. We first
formulate the model, and next develop the controller.

7Note that if instead of the absolute value the square of the difference is minimized, the problem can be formu-
lated as a mixed integer quadratic programming problem (MIQP).
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...

...

D(d, ·)

tt0(d) = 0 tn(d) = Tt1(d) t2(d) t3(d) tn−2(d) tn−1(d)

D(d,0)

D(d,1)

D(d,2)

D(d,n− 2)

D(d,n− 1)

Figure 4.5: Time-varying demand profile D(d, ·) on day d.

4.4.1 Model development

Time-varying demand profiles can be determined using historical data since often the same
demand patterns occur every day with some variations depending on the type of day (week
day or weekend), the weather, and the season (summer or winter). Since here we allow
a different demand profile for each day, such variations can be taken into account in our
approach. In particular, we consider piecewise constant demand profiles, which allows for
a good representation/approximation of reality, while preserving linearity properties. We
denote the piecewise constant demand function at the originon dayd as D(d, ·). More
specifically, we have

D(d, t) = D(d, i) for t ∈ [ti(d), ti+1(d))

for i = 0, . . . ,n− 1 wheret0(d) = 0, tn(d) = T, andti(d) < ti+1(d) for i = 0, . . . ,n− 1 (see
Figure 4.5).

The introduction of the piecewise constant demand does not change the equations for
the free flow travel time (4.6) and the turning rates (4.10). However, the formula for the
time spent in the queue should be adapted.

Just as before, the average time in the queueτ
queue
l on link l depends on the number of

vehicles in the queue. We still assume that the queues are vertical queues that build up at the
end of each route. So during the period[0,T + τ free

l (d)) the queue on linkl grows as shown
in Figure 4.6. Note that the time is divided into periods[ti(d) + τ free

l (d), ti+1(d) + τ free
l (d))

corresponding to the periods[ti(d), ti+1(d)) in the demand. Here, the termτ free
l (d) is due

to the fact that vehicles entering linkl at time t will reach the queue at timet + τ free
l (d).

Next, the queue will grow or shrink depending on the value of the net growth of the queue,
which for link l is given byβl (d)D(d, i) − Ql (d) for t ∈ [ti(d) + τ free

l (d), ti+1(d) + τ free
l (d))

andi = 0, . . . ,n− 1.
If we denote the number of vehicles in the queue on linkl on dayd and during time

period[ti(d)+ τ free
l (d), ti+1(d)+ τ free

l (d)) by Nveh
l (d, i), we have

Nveh
l (d, i) = 0 (4.20)

Nveh
l (d, i + 1) = max

(
0,Nveh

l (d, i)+
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...

...

Nveh
l (·)

ttl ,0(d) = 0 t ′l ,0(d) t ′l ,n(d)t ′l ,1(d) t ′l ,2(d) t ′l ,3(d) t ′l ,n−2(d) t ′l ,n−1(d)

Figure 4.6: Evolution of the queue length Nveh
l (d, ·) on link l and day d during the period

[0,T + τ free
l (d)]. For the sake of simplicity of notation we have used t′

l ,i(d) =

ti(d)+ τ free
l (d) in the figure.

Nveh
l (d, ·)Nveh

l (d, ·)Nveh
l (d, ·)

t tt t ′l ,i(d) t ′l ,i(d)t ′l ,i(d) t ′l ,i+1(d) t ′l ,i+1(d)t ′l ,i+1(d)
t ′l ,i(d)+ Tl (d, i)

(a) (b) (c)

slope:
βl (d)D(d)− Ql (d)

Figure 4.7: Three possible cases for the evolution of the queue length Nveh
l (d, ·) on link l and

day d during the time interval[ti(d) + τ free
l (d), ti+1(d) + τ free

l (d)) with t′l ,i(d) =

ti(d)+ τ free
l (d).

(βl (d)D(d, i)− Ql (d))((ti+1(d)+ τ free
l (d))− (ti(d)+ τ free

l (d))
)

= max
(
0,Nveh

l (d, i)+ (βl (d)D(d)− Ql (d))(ti+1(d)− ti(d))
)

.

Note that ifNveh
l (d, i)+(βl (d)D(d)−Ql (d))(ti+1(d)−ti(d)) < 0, the queue length already

becomes 0 at some timeti(d)+ Tl (d, i) with

Tl (d, i) =
Nveh

l (d, i)

(βl (d)D(d)− Ql (d))
.

At this moment the queue on linkl becomes empty (see Figure 4.7).
In order to compute the average time the vehicles spend in thequeue on linkl , we first

compute the total area under theNveh
l (d, ·) curve. If we denote the area under theNveh

l (d, ·)
curve betweenti(d)+ τ free

l (d) andti+1(d)+ τ free
l (d) by Al ,i(d), there are three possible cases

(see Figure 4.7(b)):

• If Nveh
l (d, i + 1) > 0 then we have

Al ,i(d) =
1
2

(

Nveh
l (d, i)+ Nveh

l (d, i + 1)
)(

(ti+1(d)+ τ free
l (d))− (ti(d)+ τ free

l (d))
)

(4.21)

=
1
2

(

Nveh
l (d, i)+ Nveh

l (d, i + 1)
)

(ti+1(d)− ti(d)) .
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We then defineTflow
l (d, i) = ti+1(d)− ti(d).

• If Nveh
l (d, i +1) = 0 andNveh

l (d, i) > 0, thenQl (d) 6= βl (d)D(d, i) and the queue length
already becomes 0 at timeti(d)+ Tl (d, i). Then we have

Al ,i(d) =
1
2

Nveh
l (d, i)Tl (d, i) =

(Nveh
l (d, i))2

Ql (d)−βl (d)D(d, i)
.

Now we have to make a distinction whether or not there is an outflow of link l after
the timeti(d)+ Tl (d, i). If βl (d)D(d, i) 6= 0 then there will be an outflow and then we
defineTflow

l (d, i) = ti+1(d)− ti(d). Otherwise, we setTflow
l (d, i) = Tl (d, i).

• If Nveh
l (d, i +1) = 0 andNveh

l (d, i) = 0, thenQl (d) = βl (d)D(d, i) and the total area is
zero:Al ,i(d) = 0, since in this case theNveh

l curve is horizontal. Just as in the previ-
ous case we defineTflow

l (d, i) = ti+1(d) − ti(d) if βl (d)D(d, i) 6= 0 andTflow
l (d, i) = 0

otherwise.

The total area under theNveh
l curve is then equal toAl (d) = ∑n−1

i=0Al ,i(d). Since there is an
outflow of link l (with valueQl (d)) during T tot

l (d) = ∑n−1
i=0Tflow

l (d, i) time units, the total
number of vehicles leaving the link is equal toQl (d)T tot

l (d). So the average time that the
vehicles spend in the queue at the end of routel is given by:

τ
queue
l (d) =







Al (d)

Ql (d)T tot
l (d)

if T tot
l (d) > 0,

0 if T tot
l (d) = 0.

The total travel time for a route can then be computed with (4.5), and the turning rates
with (4.10).

4.4.2 Controller development

In this section we show that for linear or piecewise affine cost functions the previously
formulated MPC route choice optimization problem for CaseB can be approximated by an
MILP problem. In particular, we will consider the case of outflow control only (so there is
no speed control). Further, we will consider the case where the network consists of only
two routes (R= {1,2}), which leads toβ2(d) = 1−β1(d). Note however that an extension
to a network with more routes is straightforward.

Transformation of the model equations

We assume that the outflow limits can only have two non-zero valuesQr,a andQr,b and for
simplicity we consider control for route 1 only.

Later on we will see that in the model equations the factor1
Qr (d) will appear. This factor

can be represented by introducing binary variable as follows. If we define

∆r =
1

Qr,b
−

1
Qr,a

,
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then we can selectQr,a or Qr,b on router for dayd by introducing a binary variableδr(d)
and setting

1
Qr(d)

=
1

Qr,a
+∆rδr(d) . (4.22)

Let us now first rewrite the equations for the evolution ofNveh
1 (d) (for Nveh

2 (d) a similar
reasoning holds, see Appendix 4.B). If we define

m1(d, i) =
Nveh

1 (d, i)

Q1(d)
for all i,

then it follows from (4.20) that

m1(d, i + 1) = max

(

0,m1(d, i)+
(

β1(d)D(d, i)
Q1(d)

− 1

)

(ti+1(d)− ti(d))

)

(4.23)

with m1(d,0) = 0 (cf. (4.20)).
We will now transform (4.23) into mixed-integer linear equations. If we substitute (4.22)

into (4.23) we get an expression of the form

m1(d, i + 1) = max
(
0,m1(d, i)+ a1,1,i(d)β1(d)+ a2,1,i(d)δ1,1(d)β1(d)+ a3,1,i(d)

)
(4.24)

with a1,1,i(d) = D(d,i)
Q1,a

(ti+1(d) − ti(d)), a2,1,i(d) = D(d, i)∆1(ti+1(d) − ti(d)), anda3,1,i(d) =

−ti+1(d)+ ti(d). By introducing an extra variabley1,1(d) = δ1,1(d)β1(d) and using Property
P2 with f1(x) = β1(d), L f1 = 0, andU f1 = 1, (4.24) can be transformed into a system of
linear inequalities together with the nonlinear equation

m1(d, i + 1) = max
(
0,m1(d, i)+ a1,1,iβ1(d)+ a2,1,iy1,1(d)+ a3,1,i

)
.

Now we define binary variablesδ2,1,i(d) such thatδ2,1,i(d) = 1 if and only if m1(d, i) +
a1,1,iβ1(d) + a2,1,iy1,1(d) + a3,1,i > 0. Using PropertyP1 this equivalence can be recast as a
system of linear inequalities. Then we get

m1(d, i + 1) = δ2,1,i(d)(m1(d, i)+ a1,1,iβ1(d)+ a2,1,iy1,1(d)+ a3,1,i) .

By introducing extra variablesy2,1,i(d) = δ2,1,i(d)m1(d, i), y3,1,i(d) = δ2,1,i(d)β1(d), and
y4,1,i(d) = δ2,1,i(d)y1,1(d), and using PropertyP2 we obtain again a system of linear in-
equalities together with the equation

m1(d, i + 1) = y2,1,i(d)+ a1,1,iy3,1,i(d)+ a2,1,iy4,1,i(d)+ a3,1,iδ2,1,i(d) ,

which is a linear equation.
Now we make the following approximation (see Figure 4.8): Wealways take expression

(4.21) forA1(d, i). Moreover, we always takeT1(d, i) = t1,i+1(d)− t1,i(d) even if there is no
outflow of the link. It is important to note that forn = 1 this will still result in an exact
value forτqueue

1 (d) sinceNveh,max
1 (d, i) will first be multiplied by 1

2T1(d, i) to get the area,
and next be divided again byQ1(d)T1(d, i) to obtain the average time spent in the queue.
This implies that forn= 1 we will get the (exact) results of Section 4.3. However, forn> 1
we will only get an approximation forτqueue

1 (d).
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Nveh
1 (d, ·)

t
t ′i (d) t ′i+1(d)t ′i (d)+ T1(d, i)

Figure 4.8: The area of the hashed triangle will be approximated by the area of the shaded
triangle.

Since nowT tot
1 (d) = ∑n−1

i=0T1(d, i) = T, the approximation results in

τ
queue
1 (d) =

1
2

n−1

∑
i=0

(
Nveh

1 (d, i)+ Nveh
1 (d, i + 1)

)
(t1,i+1(d)− t1,i(d))

Q1(d)T

=
1

2T

n−1

∑
i=0

(
m1(d, i)+ m1(d, i + 1)

)
(t1,i+1(d)− t1,i(d)) .

Note that this expression is linear inm1. Hence, it follows from (4.5) thatτ route
1 (d) is

also linear inm1. Similarly (see also Appendix 4.B),τ route
2 (d) can be written as a lin-

ear expression inm2 by introducing the additional real-valued auxiliary variablesy1,2,i(d),
y2,2,i(d), y3,2,i(d), y4,2,i(d), and binary auxiliary variablesδ1,2(d), δ2,2,i(d) andδ3,2,i(d) =
δ2,2,i(d)δ1,2(d) (cf. PropertyP3) for i = 0, . . . ,n− 1).

Now the remainder of the procedure corresponds to the procedure of CaseA, starting
with (4.14).

Overall MILP problem

The overall control problem is similar to the control problem of caseA described in Section
4.3.2, and allows for the use of the cost functions formulated in this Section.

However, since the models used to generate the MILP problem are in this case only
an approximation of the non-linear models, it is not recommended to directly apply the
obtained optimum. Nevertheless this optimum could be used as initial starting point for the
original nonlinear route choice MPC optimization problem,which significantly reduces the
computation time.

4.5 Case C: Overlapping routes, multiple origins, and re-
stricted link inflow capacities

In this section, we extend the approach above to include networks with overlapping routes,
multiple origins and destinations, and restricted link capacities. We first develop the ex-
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tended model, and next design a controller for this network.

4.5.1 Model development

First, we introduce the more complicated network with overlapping routes, and multiple
origins and destinations. Then we adapt the timing that is used in the model, and present the
link variables. Further, equations for the travel times, average queue lengths, and turning
rates are presented, and the origins and destinations are modeled.

Network set-up

The network that we consider consists of multiple originso ∈ O and destinations8 e∈ E,
whereO andE are the sets of all origins and destinations in the network. The routes in the
network can overlap, meaning that one linkl can be used by multiple routesr ∈ R. The
restricted inflow capacity of the links is denoted byQcap

l (veh/h).

Travel time model

The total travel time again consists of the sum of the free flowtravel time and the time spent
in the queue:

τ route
r (d) = ∑

l∈Lr

(

τ free
l (d)+ τ

queue
l ,r (d)

)

whereLr is the set of all linksl in router. The free flow travel time can be computed as
before, see (4.6).

The computation of the time spent in the vertical queue is more involved. We assume
that the queue on a link is divided into several independent partial queues, one for each route
that uses the link. Let us now compute the time spent in each ofthese partial queues.

Timing

To be able to consider overlapping routes, we have to adapt the timing that is used in the
model. In the previous casesA andB the event timings were route based. Now, we change
the timing to be vertex-based as follows. For each vertexv in the network we introduce
event timestv,i(d). Such an event time can correspond to two types of changes in the output
flows of the vertex:

• a change in the input flow of one of the upstream links connected to the vertex, which
is delayed by the free flow travel time on the given link,

• a partial queue becoming empty on one of the upstream links ofa vertex.

Since these changes are not known beforehand, the traffic is simulated from the current
event timetv,i(d) until the next known event timetv,i+1(d). When during the simulation
of this period one of the two changes appears, a new event timetv,new(d) is created. The
computations then have to be (re-)done for the period[tv,i(d), tv,new(d)), which leads to re-
definition of the next event time instant withtv,i+1(d) := tv,new(d).

8Since the indexd is already used for the days, we denote destinations withe, coming from the word ’endpoint’.
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l
vu

l vd
l

traffic flow direction

Figure 4.9: A link l with upstream vertex vu
l and downstream vertex vd

l .

Link variables

Consider linkl , with its upstream vertexvu
l and its downstream vertexvd

l , as in Figure
4.9. The inflowQin

l ,r(d, i′) of each linkl is given in the timing of the upstream vertexvu
l ,

and present during the period[tvu
l ,i

′(d), tvu
l ,i

′+1(d)), which is thei′th period for vertexvu
l .

This flow experiences a delay equal to the free flow travel time, and then becomes the flow
Qin,queue

l ,r (d, i) that enters the queue in the link during[tvd
l ,i

(d), tvd
l ,i+1(d)), which is periodi in

the timing of the downstream vertex:

Qin,queue
l ,r (d, i) = Qin

l ,r(d, i′)

with
[tvd

l ,i
′(d), tvd

l ,i
′+1(d)) = [tvu

l ,i
(d)+ τ free

l (d), tvu
l ,i+1(d)+ τ free

l (d))

Recall that we assume that in each link there can be a partial queue for each route. The
number of vehicles during time periodi in the partial queue at the end of linkl belonging
to router is given byNveh

l ,r (d, i). As indicated above, the inflow of the queue is denoted by

Qin,queue
l ,r (d, i). The amount of traffic that can leave the queue depends on different factors:

• the outflow limit of the link,

• the number of queues on the link and their length,

• the capacity of the downstream links,

• the size of the flows that want to enter the downstream links.

We first introduce factorsγl ,r(d, i) which divide the outflow limitQl (d) proportionally
over the different queues (see Figure 4.10):

γl ,r(d, i) =

Nveh
l ,r (d, i)

τl ,r
+ Qin,queue

l ,r (d, i)

∑
ρ∈Rl

(Nveh
l ,ρ (d, i)

τl ,ρ
+ Qin,queue

l ,ρ (d, i)
)

(4.25)

whereτl ,r is a delay factor9 representing the time that vehicles require to leave the queue
on link l for router. In this equation we assume that the flow that wants to leave the link
consists of the vehicles that are in the link, and of the vehicles that enter the link during the
current period.

9Note that the delay factorτl ,r should be larger thantvd
l ,i+1(d) − tvd

l ,i(d) to prevent the model from generating

vehicles. Ifτl ,r ≤ tvd
l ,i+1(d) − tvd

l ,i(d) then an extra time steptvd
l ,i′ (d) should be introduced betweentvd

l ,i(d) and

tvd
l ,i+1(d).
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Ql (d)

Qdesired,out
l ,1 (d, i)

Qdesired,out
l ,2 (d, i)

Qdesired,out
l ,3 (d, i)

Nveh
l ,1 (d, i)

Nveh
l ,2 (d, i)

Nveh
l ,3 (d, i)

Qin,queue
l ,1 (d, i)

Qin,queue
l ,2 (d, i)

Qin,queue
l ,3 (d, i)

link l

route 1

route 2

route 3

Figure 4.10: Routes on a link share the available outflow according to the proportions given
by (4.25).

The flow that wants to leave a queue in the link during the period [tvd
l ,i

(d), tvd
l ,i+1(d))

provided that the downstream capacity is large enough, is then given by

Qdesired,out
l ,r (d, i) =min(γl ,r(d, i)Ql (d),

Nveh
l ,r (d, i)

τ
+ Qin,queue

l ,r (d, i)) .

Now we introduce the effect of the restricted inflow capacityof the links, see Figure
4.11. Due to this restricted capacity, the desired outflowQdesired,out

l ,r (d, i) is reduced to the

effective outflowQeff
l ,r (d, i) as follows. The inflow capacity of a downstream linkld of link l

is divided proportionally over the flows that want to enter the link, using a factorαld(d, i).
This factor should be computed for each downstream linkld ∈ Dl :

αld(d, i) = min
(

1,
Qcap

ld

∑
ξ∈Uld

∑
ρ∈Rld

Qdesired,out
ξ,ρ (d, i)

)

(4.26)

whereUld is the set of upstream links of linkld andDl the set of all downstream links of
link l .

The flow that effectively leaves linkl on router toward link ld
l ,r is then given by:

Qeff
l ,r (d, i) = αldl ,r

(d, i)Qdesired,out
l ,r (d, i)

whereld
l ,r is de link downstream of linkl on router. This outflow equals the inflow of the

downstream link
Qin

ldl ,r ,r
(d, i) = Qeff

l ,r (d, i) .

The number of vehicles in the queue on linkl of router can now be computed:

Nveh
l ,r (d, i + 1)) = max

(

0,Nveh
l ,r (d, i)+ (Qin,queue

l ,r (d, i)− Qeff
l ,r (d, i))(tvd

l ,i+1(d)− tvd
l ,i

(d))
)

.
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Qcap
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Qdesired,out
1,1 (d, i)

Qdesired,out
2,2 (d, i)

Qdesired,out
3,3 (d, i)

Qin
ld,1(d, i)

Qin
ld,2(d, i)

Qin
ld,3(d, i)

link ld

Figure 4.11: Inflow capacity shared by entering flows.

Nveh
l ,r (d, ·)

tt ′
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(d) t ′

vd
l ,i+1

(d)t ′
vd

l ,i
(d)+ Tl ,r(d)

slope:

Qin,queue
l ,r (d, i)− Qeff

l ,r (d, i)

Figure 4.12: Evolution of the queue length Nveh
l ,r (d, ·) on link l of route r and day d during

the interval[tvd
l ,i

(d), tvd
l ,i+1(d)) when a queue becomes zero during this period.

If Nveh
l ,r (d, i) + (Qin,queue

l ,r (d, i) − Qeff
l ,r (d, i))(tvd

l ,i+1(d) − tvd
l ,i

(d)) < 0, the queue length al-

ready becomes 0 at some timetvd
l ,i

(d)+ Tl ,r(d, i) with

Tl ,r(d, i) =
Nveh

l ,r (d, i)

Qeff
l ,r (d, i)− Qin,queue

l ,r (d, i)
.

At this moment the partial queue for the traffic on linkl going via router becomes empty
(see Figure 4.12). This means that a new time instanttvd

l ,i+1,new(d) = tvd
l ,i

(d) + Tl ,r(d, i)

should be added to the timing of the downstream vertexvd
l , and the computations for the

current period should be re-done.

After the computations for the whole period are performed, the total number of vehicles
in a link can be plotted as in Figure 4.13.
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Figure 4.13: Evolution of the queue length Nveh
l ,r (d, ·) on link 1 and day d during the period

[0,T + τ free
l (d)].

Average time in the queue

In order to compute the average time the vehicles spend in thequeue, we first compute the
area under theNveh

l ,r (d, ·) curve. This is done at the end of the simulation, so that the event

timing is completely fixed. If we denote the area under theNveh
l ,r (d, ·) curve betweentvd

l ,i
(d)

andtvd
l ,i+1(d) by Al ,r(d, i), there are two possible cases:

• If Nveh
l ,r (d, i) > 0 orNveh

l ,r (d, i + 1) > 0 then we have

Al ,r(d, i) =
1
2

(

Nveh
l ,r (d, i)+ Nveh

l ,r (d, i + 1)
)

(tvd
l ,i+1(d)− tvd

l ,i
(d)) .

• If Nveh
l ,r (d, i) = 0 andNveh

l ,r (d, i +1) = 0 we haveAl ,r(d, i) = 0 since theNveh
l ,r (d, ·) curve

is uniformly zero on the interval[tvd
l ,i

(d), tvd
l ,i+1(d)).

Now we can compute the average time spent in the partial queueon link l for router as

τ
queue
l ,r (d) =

n
vd
l

∑
i=0

Al ,r(d, i)

n
vd
l

∑
i=0

Qeff
l ,r (d, i)

(
tvd

l ,i+1(d)− tvd
l ,i

(d)
)

wherenvd
l

is the number of periods in the timing of vertexvd
l .

Origin modeling

We model the origins as virtual links with length 0, see Figure 4.14. The demand at origin
o with destinatione during period[to,i(d), to,i+1(d)) is given byDo,e(d, i), for i = 1, ...,no.
This demand is divided over the routes via the turning rates

Qin
o,r(d, i) = βr(d)Do,e(d, i) for all r ∈ Ro,e.

whereRo,e is the set of routes connecting origino with destinatione, and Qin
o,r(d, i) is

the flow for router that enters the virtual link connected to origino during the period
[to,i(d), to,i+1(d)). This flow enters the partial queues that can be present on this link. Fur-
thermore, the origin is modeled in the same way as the links inside the network.
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Figure 4.14: Virtual origin link.

Destination modeling

Just as the origins, we model the destinations as virtual links with length 0 and no outflow
limit. Each virtual destination link is assumed to have an infinite inflow capacity. This
implies that (cf. (4.26))

αe(d, i) = 1

for each destinatione.

Turning rates

The route choice model used for the casesA andB is rather simple. We selected it since
linear equations are necessary to form an MILP problem. Now we present an improved
route choice model for caseC, in which the differences in experienced travel times is used
to determine non-normalized turning factors, which are later normalized between 0 and 1.

We still assume that the drivers will change their route whenthe travel time on another
route is shorter10:

ζr(d + 1) = max
(

0,βr(d)+ ∑
ρ∈Rsoe

r ,ρ6=r

κρ,r(τ
route
r (d)− τ route

ρ (d))
)

. (4.27)

Hereζr(d) is the non-normalized turning factor of router, andκρ,r includes the fraction of
drivers on routeρ that change their route toward router from one day to the next based on
the travel time difference. Since the sum of the turning rates should be 1, they should be
normalized to obtain the final turning rates:

βr(d + 1) =
ζr(d + 1)

oe

∑
ρ∈Rr

ζρ(d + 1)

. (4.28)

Remark 4.4 The formulation of the turning rates can be made even more exact by taking
into account the number of vehicles that is currently using each link. This can be included

10Note that excluding the current routeρ 6= l is not really necessary because the difference in travel times
between the current route and the current route will always be 0.
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as follows:

ζr(d + 1) = max
(

0,βr(d)+ ∑
ρ∈R,ρ6=r

κ̃ρ,rβρ(d)∆ρ,r(d)− κ̃r,ρβr(d)∆r,ρ(d)
)

, (4.29)

where the two terms respectively express the number of vehicles that will divert from other
routesρ toward router and the number of vehicles that will leave router toward other routes
ρ.

The differences in travel times∆ρ,r(d) and∆r,ρ(d) are given by

∆ρ,r(d) =

{

0 if τ route
ρ (d) ≤ τ route

r (d)

τ route
ρ (d)− τ route

r (d) if τ route
ρ (d) > τ route

r (d)
,

∆r,ρ(d) =

{

τ route
r (d)− τ route

ρ (d) if τ route
ρ (d) < τ route

r (d)

0 if τ route
ρ (d) ≥ τ route

r (d)
.

The∆ρ,r(d) and∆r,ρ(d) are formulated in this way to express that drivers only change their
route when the travel time on the other route shorter than on their current route.

In the approach that we use for caseC we approximate (4.29) by including̃κρ,r , κ̃r,ρ,
βr , andβρ in the parameterκρ,r of (4.27). This introduces the property that the computed
turning rates can exceed 1, and thus the resulting turning rates should be normalized, as in
(4.28). For caseA andB a linear model is required. Since the normalization (4.28) is a
non-linear operation, we cannot use (4.27) and (4.28) for caseA andB, but we have used
(4.10) instead since that equation ultimately results in a mixed integer linear model. 2

4.5.2 Controller development

When we use the model of CaseC as prediction model, and when we assume real-valued
control inputs, the optimization problem is a nonlinear non-convex real-valued problem.
All cost functions described in Section 4.2.2 can be used, even when 2-norms are applied.
To solve the resulting nonlinear type of problems multi-start local search methods (like
SQP) and (semi-)global optimization methods (like geneticalgorithms, pattern search, or
simulated annealing) can be used, see [126]. The advantage of these methods is that they
are suitable for complex optimization problems. However, these approaches in principle
only yield a suboptimal solution since — in particular for larger networks or longer control
horizons — it is in practice often not tractable to find the global optimum of the optimization
problems that arise in MPC for route choice control. Moreover, the approaches lead to large
computation times. Nevertheless, often these methods provide reasonably good solutions in
a not too excessive computation time.

4.6 Worked example

We will illustrate the effects of the developed control approach with an example. The set-up
is based on the Braess paradox [21, 114]. The Braess paradox states that adding a new link
to a network could increase the total travel time in the network. We will first look at the
network with two links, and apply control using MILP, as formulated for CaseA. Next,
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Figure 4.15: Network with two routes.

we will investigate the effect of adding a new link, using themodel of CaseC, which will
indeed increase the total travel time when no control is applied. The controller that we have
developed in Section 4.5.2 will be used to limit the outflow ofthe links in the network. We
will show that the controller is able to find the well-known static optimum of removing the
link. In general, the controller might be able to improve thesituation even more by applying
dynamic control. However, within this specific case study the dynamic and static optimum
coincide.

4.6.1 Network with two routes

We will investigate a network with two routes, and apply a controller developed for caseA.
First the network is described, and then the settings for thecontrol approach are given. At
last, the simulation results are presented.

Set-up

We first consider a small network with two links, as in Figure 4.15. The parameters of the
two links are: Q1 = Q2 = 1200 veh/h,vmax

1 = vmax
2 = 120 km/h,vmin

1 = vmin
2 = 10 km/h,

andℓ1 = ℓ2 = 70 km. For the route choice model we useκ = 0.25. We simulate a period
of T = 60 minutes with a demand ofD = 3000 veh/h, for 30 days. We will control this
network with speed limit control.

In the uncontrolled case this should lead to an assignment where there is an inflow of
1500 veh/h on each link, due to the fact that the free flow travel times of both routes are
then equal and a demand of 3000 veh/h enters the network. Now we apply outflow control,
where we try to obtain a desired flow of 800 veh/h on route 1 which can, e.g., be useful
when the route crosses a residential area.

Control approach

We formulate the control objective using the cost function given in (4.3), only using the
1-norm. A penalty on variations is added as formulated in (4.4). The prediction and control
horizon of the MPC-based controllers are set to 8 days. For the sake of simplicity and to
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Table 4.1: Computation time, cost, relative improvement (w.r.t. the uncontrolled case), and
average turning rates for the entire closed-loop simulations with different opti-
mization scenarios.

control method computation cost (h) % average
time11(s) improvement turning rate

no control 0 24444 0 0.54
fmincon, 1 init. point 10 13493 45 0.24
fmincon, 10 init. points 107 18211 25 0.18
fmincon, 20 init. points 380 15925 35 0.24
fmincon, MILP init. point 10 6975 72 0.34
MILP 0.4 14542 41 0.23

eliminate possible influences of model mismatches, we use the same model for the simula-
tion and for the prediction by the MPC controller. For the speed limits we use a minimum
value ofvlow = 60 km/h, and a maximum ofvhigh = vmax

1 = 120 km/h.

Simulation results

We simulate the traffic in the network in closed loop with different optimization strategies
for the controller. Table 4.1 gives an overview of the results. The first simulation is per-
formed without control, i.e. when the outflow is not limited and equal to its maximal value.
Note that reducing the flow on route 1 is not in the drivers’ interest, which explains the high
cost in the no control case, and thus the relatively high improvements that can be obtained
when control is applied.

Next, we compare three approaches, all of which use the sequential quadratic program-
ming (SQP) routinefmincon of the Matlab Optimization Toolbox [155], but with a different
number of random initial points. When the number of randomly selected initial points in-
creases, the performance increases, but the computation time also becomes larger. The
computation time can be reduced by computing an initial point with MILP, which can then
be used as initial point for one run of thefmincon algorithm. This reduces the computa-
tion time, and even improves the performance. To show that the additionalfmincon run is
really necessary, we also have performed a simulation with the MILP solution only. This
simulation runs very fast, and gives already a good performance, but it can be improved sig-
nificantly. The performance loss can be explained by the approximations that are required
to obtain linear equations. The average turning rates obtained with the different controllers
are given in the last column of Table 4.1. When MILP optimization is used as initial point
for thefmincon optimization, the largest improvement is obtained.

Figure 4.16(a) shows the turning rates toward route 1 for theno control case, the MILP
case, and the case withfmincon and an MILP initial point. When no control is applied,
the turning rate converges to 0.5, meaning that the traffic divides equally over both routes.
The MILP controller over-corrects this by steering a large part of the traffic to the second
route. This problem is solved whenfmincon is applied: the flow on the first route is lowered
compared to the no control case, but higher than in the MILP case. Figure 4.16(b) shows the

11On a 1 GHz AMD Athlon 64x2 Dual Core processor.
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Figure 4.16: Results for the two route network.

corresponding speed limits that are used to obtain the flows (note that in the uncontrolled
case the speed limits are constant and equal to 120 km/h).

The simple example of this section illustrates that with a good initial point, which can
be obtained via MILP, the optimization algorithm should only run once to obtain a good
optimal value. This significantly reduces the computation time.

4.6.2 Network with the Braess paradox

Now we extend the network to a benchmark network in which the Braess paradox occurs.
We consider the model and controller of caseC.

Set-up

The network in which the Braess paradox occurs is shown in Figure 4.17, and is an extention
of the network of Figure 4.15. The network consists of five links, and three routes. Route
1 consists of links 1 and 2, route 2 consists of links 3 and 4, and route 3 consists of links
1, 5, and 4. We select the link properties as follows. The inflow capacities are 1200 veh/h
for all links. The maximum speeds on the network arevmax

1 = vmax
4 = vmax

5 = 120 km/h,
vmax

2 = vmax
3 = 60 km/h, and the lengths of the links areℓ1 = ℓ4 = 30 km,ℓ2 = ℓ3 = 40 km,

andℓ5 = 10 km. For the route choice model we useκ = 0.25. We simulate a period of
T = 100 minutes with a demand ofD = 3000 veh/h, for 10 days.

The network of Figure 4.17 illustrates the Braess paradox because two different equilib-
rium traffic assignments can be considered when investigating this network.

The first equilibrium appears in the network when all three routes are used. Drivers are
attracted to route 3, which is the shortest route with respect to the number of kilometers. The
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Figure 4.17: Network with overlapping routes.

capacity of this route however is lower than the demand and thus long queues are formed,
resulting in a long travel time on this route. Due to this somedrivers divert to the other two
routes, and eventually an equilibrium assignment with relatively long travel times of 1.43 h
appears.

The second equilibrium uses only route 1 and 2. Assuming thatroute 3 is closed, the
vehicles are divided over the two available routes. This results in an equilibrium assignment
with travel times of 1.21 h, which is shorter than for the firstequilibrium.

Control approach

We want to control the route choice in such a way that the travel time of 1.21 h appears. To
reach this we apply outflow control on the network where all three routes are available. We
expect that the control algorithm will lower the outflow limit for link 5, which corresponds
to closing this link. In this case the situation with only twoavailable routes appears, which
will lead to the desired travel time.

We use the developed control approach with the following parameters. Links 1, 4, and
5 are controlled using outflow control. The maximum outflow limits areQmax

1 = Qmax
4 =

600 veh/h,Qmax
2 = Qmax

3 = Qmax
5 = 1200 veh/h, and the minimum outflow limits are 0 veh/h

for the controlled links. The prediction horizon is 10 days,and the control horizon 6 days.
As cost function we select the total travel time in the network, just as for the network simu-
lated earlier (see Section 4.6.1). As optimization algorithm we use SQP as implemented in
fmincon.

We will perform three different simulations, two simulations of uncontrolled situations,
and one of a controlled situation. The first simulation is a simulation of the network without
link 5, and without control. The second simulation is a simulation of the whole network,
still without control. These two simulations show that the Braess paradox is present in the
network. The third simulation involves the whole network including the controller. For this
specific case, where we consider a constant demand, a high learning rate, and the selected
network layout, the dynamic and static equilibrium assignment coincide, and thus closing
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Figure 4.18: Results of simulation 1: network without link 5, no control.
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Figure 4.19: Results of simulation 2: whole network, no control.

link 5 is the optimal solution. We will illustrate that the developed controller is able to
obtain this optimal solution.

Simulation results

The two simulations without control show the effect that forms the Braess paradox, see
Figures 4.18 and 4.19. Figures 4.18(a) and 4.19(a) show the turning rates for the different
routes for Simulation 1 and 2. Figures 4.18(b) and 4.19(b) show the corresponding travel
times. The simulation starts with initial turning ratesβ1(0) = 1, β2(0) = β3(0) = 0. This
means that the flows are not in equilibrium, and thus the turning rates change until an equi-
librium assignment is reached. The total travel timeJTT for the first simulation is 12960 h,
and for the second simulation 15130 h. The total travel time for the second simulation is
indeed longer than the total travel time for the first simulation, illustrating that the use of the
third route indeed increases the total travel time.

Figures 4.20(a) and 4.20(b) show the turning rates and travel times for Simulation 3, in
which the controller is applied.The controller lowers the outflow of link 5 so that the flow
toward the third route becomes 0 veh/h. As a result, the equilibrium assignment that uses
only 2 routes is obtained, with the total travel time of 12960h.

The advantage of the setup of this case study is that the optimal static solution of the
control problem is known12. This solution is the removal of link 5, as shown with the first

12Note that in a general network the solution is not known, and thus no conclusion can be drawn about the
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Figure 4.20: Results of simulation 3: whole network, control.

two simulations. The third simulation shows that the controller is indeed able to find the
optimal solution, illustrating the performance of the controller.

4.7 Conclusions

We have developed a control approach based on model predictive control to influence the
route choice of drivers, using control measures like outflowlimits or variable speed limits.
We have developed a route choice model for three cases. CaseA included constant demand,
separate routes, and one origin and destination. CaseB extended the model to include
piecewise constant demands, and CaseC added overlapping routes, restricted link inflow
capacities, and multiple origins and destinations.

We have used the developed models in a control approach basedon model predictive
control (MPC). For CaseA andB we have respectively formulated and approximated the
optimization problem of the MPC strategy as an mixed integerlinear programming (MILP),
which significantly reduces the computation time. For CaseC multi-start local optimization
or global optimization methods should be used. We have illustrated the control approach
with two examples based on the Braess paradox. We showed thatthe obtained MILP so-
lutions can be computed efficiently and can be used as good initial point for complex non-
linear non-convex optimization algorithms. For the Braessparadox, the optimal static so-
lution is known and we have shown that our control approach indeed obtains this optimal
solution.

Future research will include: calibration and validation of the model, development of
robust controllers, developing faster optimization algorithms, and investigation of practi-
cal implementation issues, e.g., state estimators, required measurements, communication
issues, and demand estimation.

absolute performance of the controller.
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4.A List of symbols

General

L set of all links in the network
Lr set of all links in router
Ul set of all links immediately upstream of linkl
Dl set of all links immediately downstream of linkl
ℓl length of link l
ld
l ,r downstream link of linkl on router

vd
l downstream vertex of linkl

vu
l upstream vertex of linkl

R set of all routes in the network
Rl set of all routes that use linkl
i time period counter
Iv(d) set of all time periods (only known after simulation) for vertex v on dayd
vl (d) speed limit for linkl on dayd (km/h)
vmin

l minimum speed limit for linkl (km/h)
vmax

l maximum speed limit for linkl (km/h)
Ql (d) outflow limit for link l on dayd (veh/h)
Qmin

l minimum outflow limit for link l (veh/h)
Qmax

l maximum outflow limit for linkl (veh/h)
βr(d) turning rate for router on dayd
ζr(d) non-normalized turning rate for router on dayd
κr,l parameter describing the part of drivers on router that change their route toward routel
τ free

l (d) free flow travel time at linkl on dayd (h)
τl (d) travel time at linkl during dayd (h)
τ route

r (d) travel time for router on dayd (h)
T length of the simulated period on a day (h)
N total number of time steps in the simulation
Np prediction horizon (days)
Nc control horizon (days)
c general control signal
Jvar penalty in variations on the cost signal
J total costs

Case A and B

ti(d) ith time event on dayd (s)
[ti(d), ti+1(d)) ith time period on dayd
Tl (d, i) time afterti(d) that the queue on linkl becomes 0 on dayd in period

[ti(d), ti+1(d)) (s)
T tot

l (d) total time that the queue on linkl is not empty at dayd (h)
D(d, i) demand at the origin on dayd during time periodi (veh/h)
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Nveh
l (d, i) number of vehicles in the queue on linkl on dayd during time periodi

(veh)
Al (d, i) area below the queue length graph of linkl on dayd during periodi

(veh·h)
τ

queue
l (d) travel time in the queue at linkl during dayd (h)

Case C

tv,i(d) ith event time for vertexv (s) on dayd
[tv,i(d), tv,i+1(d)) ith time period for vertexv on dayd
Ro,e set of routes connecting origino with destinatione
Rsoe

r set of routes that connect the same origin destination pair as router
Do,e(d, i) demand at origino with destinatione on dayd during time periodi

(veh/h)
Qcap

l inflow capacity of linkl (veh/h)
Qin

l ,r(d, i) inflow of link l for router at dayd during time periodi (veh/h)

Qin,queue
l ,r (d, i) inflow of the queue on linkl for router at dayd during time periodi

(veh/h)
Qdesired,out

l ,r (d, i) desired outflow of linkl for router on dayd during time periodi (veh/h)
Qeff

l ,r (d, i) effective outflow of link l for route r on dayd during time periodi
(veh/h)

Nveh
l ,r (d, i) number of vehicles in the queue on linkl for router on dayd during

time periodi (veh)
Al ,r(d, i) area below the queue length graph of linkl for router on dayd during

periodi (veh·h)
γl ,r(d, i) factor that divides the available outflow limit over the queues in link l

used by router on dayd during periodi
αl (d, i) factor that divides the available inflow capacity over the flows that enter

link l on dayd during periodi
τ

queue
l ,r (d) travel time in the queue at linkl on router during dayd (h)

4.B Reformulation of Nveh
2 (d) for Case B

In Section 4.4.2 we have shown that the equations forNveh
1 and forτ1 can be recast as a

system of mixed integer linear equations and inequalities.In this appendix we explicitly
derive the system of mixed integer linear equations and inequalities corresponding toNveh

2
andτ2.

We first rewrite the equations for the evolution ofNveh
2 :

Nveh
2 (d,0) = 0 (4.30)

Nveh
2 (d, i + 1) = max

(
0,Nveh

2 (d, i)+ ((1−β1(d))D(d, i)− Q2(d))(ti+1(d)− ti(d))
)

. (4.31)

If we define

m2(d, i) =
Nveh

2 (d, i)

Q2(d)
,
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then it follows from (4.31) that

m2(d, i + 1) = max

(

0,m2(d, i)+
(

(1−β1(d))D(d, i)
Q2(d)

− 1

)

(ti+1(d)− ti(d))

)

(4.32)

with m2(d,0) = 0 (cf. (4.30)).
Let us now transform (4.32) into mixed-integer linear equations. If we substitute (4.22)

into (4.32) we get an expression of the form

m2(d, i + 1) = max
(
0,m2(d, i)+ a1,2,iβ1(d)+ a4,2,iδ1,2(d)+ a2,2,iδ1,2(d)β1(d)+ a3,2,i

)

(4.33)

with a1,2,i = − D(d,i)
Q2,a

(ti+1(d)−ti(d)), a4,2,i = D(d, i)∆2(ti+1(d)−ti(d)), a2,2,i = −a4,2,i =

−D(d, i)∆2(ti+1(d)− ti(d)), anda3,2,i =
(

D(d,i)
Q2,a

−1
)

(ti+1(d)− ti(d)). By introducing an extra

variabley1,2(d) = δ1,2(d)β1(d) and using PropertyP2, (4.33) can be transformed into a
system of linear inequalities together with the nonlinear equation

m2(d, i + 1) = max
(
0,m2(d, i)+ a1,2,iβ1(d)+ a4,2,iδ1,2(d)+ a2,2,iy1,2(d)+ a3,2,i

)
.

Now we define binary variablesδ2,2,i(d) such thatδ2,2,i(d) = 1 if and only if m2(d, i) +
a1,2,iβ1(d) + a4,2,iδ1,2(d) + a2,2,iy1,2(d) + a3,2,i > 0. Using PropertyP1 this equivalence can
be recast as a system of linear inequalities. Then we get

m2(d, i + 1) = δ2,2,i(d)(m2(d, i)+ a1,2,iβ1(d)+ a4,2,iδ1,2(d)+ a2,2,iy1,2(d)+ a3,2,i) .

By introducing additional real-valued variablesy2,2,i(d) = δ2,2,i(d)m2(d, i),
y3,2,i(d) = δ2,2,i(d)β1(d), andy4,2,i(d) = δ2,2,i(d)y1,2(d), and additional binary variables
δ3,2,i(d) = δ2,2,i(d)δ1,2(d) and using PropertiesP2 andP3 we obtain again a system of lin-
ear inequalities together with the linear equation

m2(d, i + 1) = y2,2,i(d)+ a1,2,iy3,2,i(d)+ a4,2,iδ3,2,i(d)+ a2,2,iy4,2,i(d)+ a3,2,iδ2,2,i(d) .

Just as we did forA1,i(d) we now also always approximateA2,i(d). This results in

τ
queue
2 (d) =

1
2T

n−1

∑
i=0

(
m2(d, i)+ m2(d, i + 1)

)
(ti+1(d)− ti(d))

which is a linear expression in them2(d, i)’s. Hence, it follows from (4.5) thatτ route
2 (d) is

also linear inm2.



Chapter 5

Practical issues for model-based
traffic control

Advanced traffic control systems can significantly improve the traffic flows on traffic net-
works. However, the implementation of such control systemsis usually not straightforward.
In this chapter we give an overview of practical issues related to the use of traffic controllers,
and we pay attention to the steps that should be taken before they can be applied in prac-
tice. We look at issues related to the controller design, such as the network that should be
controlled, the choice of the objectives and constraints for the controller, the selection of
the model, and the selection of a control method. We also discuss implementation issues, in
particular calibration and validation, state estimation,demand estimation, controller tuning,
and performance evaluation.

In addition, we discuss the influence of the measurements on the performance of the
controller, and we focus on different averaging methods forspeed measurements.

In a case study we illustrate the steps of the controller development, and we investigate
the influence of using the different speed averages on the performance of a dynamic speed
limit controller. The results show that for the given case study the use of different averages
results in a difference of a few percents in the controller performance.

5.1 Introduction

Current road networks often suffer from a lack of capacity, and/or an inefficient use of
the available capacity. Advanced traffic control measures have been developed to reduce
the corresponding problems, such as congestion and noise nuisance. The control measures
influence the traffic in such a way that the existing road capacity is used more efficiently,
and in this way the throughput of the network improves. However, the performance of these
controllers largely depends on the choices made during the design process, which preceed
the implementation process.

A specific type of advanced traffic controllers are model-based controllers, as used in
many well-known traffic control systems, such as, e.g., UTOPIA [129], IN-TUC [49], and
MITROP [59]. These controllers use a model of the traffic system to determine the settings
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for the traffic control measures. In this chapter we investigate this kind of controllers since
they require the consideration of many practical issues, partly due to the inherent differences
between the model and the real world. In this way we obtain a complete overview of all
practical issues related to the implementation of general traffic controllers. We focus on a
special form of model-based control: model predictive control (MPC). Traffic controllers
that are based on MPC use a model to predict the future evolution of the traffic flows.
Based on this prediction, the controller determines settings for the traffic control measures.
Advantages of this control approach are that different control measures can be integrated
into one control system and that the prediction allows for the investigation of the longer-
term effects of the control actions and thus allows for the selection of control settings that
are optimal for a longer period.

We divide the practical issues related to the deployment of traffic controllers into two
main classes: design issues and implementation issues. Thedesign issues that we consider
are often related to the policy of the road authority: which traffic flows should be controlled,
which network is considered, which measurements can be obtained, what is the objective
of the controller, what are the constraints? The policy decisions influence more technical
issues like the model selection, and the selection of the control method that is used.

When the design of the model-based controller is determined some implementation is-
sues should be considered before the controller can be applied to a real traffic situation. The
selected model should be calibrated and validated, a state estimation method should be se-
lected, the expected demand must be estimated, and the controller must be tuned. After the
implementation in the real network, the performance of the controller must be evaluated.

Many of the issues mentioned above strongly depend on measurements that are avail-
able. During the design a measurement structure should be designed, which includes select-
ing, e.g., detectors, communication networks, data polishing methods, and data handling
methods. In this chapter we describe different detectors, and then focus on speed measure-
ments obtained with loop detectors. The measured speeds should be averaged, for which
six different avaraging methods are available. We investigate the influence of these different
averaging methods on the performance of a model-based controller.

As a case study we develop a dynamic speed limit controller for the A12 freeway in
the Netherlands. During the design of this controller we consider the design issues and im-
plementation issues as far as they are usefull for a simulation study. The objective of the
controller that is developed is to minimize the total time spent in the network by reducing
shock waves. We use the developed controller to illustrate the influence of speed measure-
ment averaging methods. We simulate the network with the controller using the six different
averaging methods that are available, and we compare the resulting controller performances.

The remainder of this chapter is organized as follows. Section 5.2 explains model-based
control and describes the general process of controller development. Section 5.3 considers
issues that are related to the controller design, and Section 5.4 considers implementation
related issues. The different methods for speed measurement averages are discussed in
Section 5.5, and Section 5.6 presents the case study. Finally, conclusions are drawn in
Section 5.7.
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Figure 5.1: A general scheme for feedback control methods.

5.2 Model-based traffic control

This section gives a general description of model-based traffic control, and then explains
model predictive control (MPC), which is a specific type of model-based control that is
often used for traffic control. Next, an overview of the procedure of developing a controller
is given.

5.2.1 General scheme for model-based traffic control

We first introduce the general setup of advanced traffic control methods. A feedback scheme
of an advanced control method is shown in Figure 5.1. The process consists of the traffic
network and the traffic flows that should be controlled. The traffic flows propagate through
the network depending on the traffic scenario and the controlactions, which leads to a spe-
cific performance of the network. To obtain information thatcould be used to determine
the performance, the current state of the network should be measured or estimated based on
measurements. These measurements can be performed using, e.g., radar detectors, loop de-
tectors, and cameras. The measured quantities can be, e.g.,flows, occupancies, and speeds.
These measured values are fed into the controller, which determines the control signal based
on these measurements and on desired performance of the network, which is described by
the objectives of the controller. The control actions consist of the settings for the traffic
measures, such as ramp metering rates, speed limit values, or timings for traffic signals.
These measures then influence the process, and thus influencethe performance. In this way,
the controller is used to increase the network performance.

How the controller determines the control signal depends onthe type of controller.
Model-based controllers use an internal model of the trafficto determine the control sig-
nal. For urban areas the settings of the traffic signals can bedetermined using queue length
models, which is investigated in Chapter 2 and in, e.g., [49,129, 140, 185]. For freeways
there are model-based controllers using dynamic speed limits, ramp metering installations,
and peak lanes, described in, e.g., [64, 89]. Dynamic route guidance can be used for model-
based route choice control, as in, e.g., [11, 46, 78, 81].
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5.2.2 Model predictive control

In this chapter we consider a specific model-based control method called model predictive
control (MPC). MPC-based controllers use a model to predictthe evolution of the traffic
flows, and use this prediction to determine the optimal control signals. MPC [100] has
been developed for the process industry, and the first applications for traffic control are
described in [58]. Traffic controllers that explicitly use MPC are proposed in [10, 64], and
other controllers that use similar schemes are, e.g., [49, 129, 140, 179]. These controllers
also use models and predictions to obtain the control settings, but they are not explicitly
formulated corresponding to the MPC structure. When MPC is applied, the controller in
Figure 5.1 contains a state estimation algorithm, a prediction model, and an optimization
algorithm. The measurements from the real network are used to obtain the estimated state of
the network. Next, the controller predicts the evolution ofthe traffic flows over a prediction
period that has a length ofNp controller steps. Based on this prediction, the optimization
algorithm is used to obtain the optimal (according to pre-defined objectives and constraints)
settings for the control signals up to a control period ofNc controller steps, withNc ≤
Np. During the control periodNc the control signals vary, while during the remainder of
the prediction periodNp, the control signals are kept constant. The optimal values for the
control signals during the current control time step are applied to the real network. At the
next control time step the procedure is started again, with the horizon shifted one time step
into the future. This is called the rolling horizon approach. For further information on MPC,
we refer the interested reader to [25, 57, 100].

5.2.3 Controller development

The process of developing an advanced controller is a combination of design issues and
implementation issues. Figure 5.2 presents an overview of the required steps. The process
starts with the design issues, consisting of policy issues and technical issues. The policy
issues consider the objectives and constraints of the controllers, the selection of the network,
and the design of the measurement structure. Then technicalsteps consider the selection of
the control method, and of the model. Guidelines for how the steps of the design process
can be applied to real situations are presented in [110].

When the design issues have been considered, the general design of the controller is
available. Now some steps have to be made that are more closely related to the implementa-
tion. The model should be calibrated and validated, meaningthat values for the parameters
in the model should be selected. Further, a procedure shouldbe developed to estimate the
state of the traffic flows in network, and to estimate the demand. With these issues settled,
the controller can be applied in a simulation environment, to investigate the effects of pol-
icy/economical choices, to investigate the effects of choices regarding, e.g., the number of
measurements, control measures, and objectives. The simulation environment can also be
used to tune the controller. If problems are encountered, parts of the design process should
be redone. In general, multiple iterations will be necessary before all problems are solved.
When the simulation gives good results, the controller is ready to be implemented in the
real network. When the controller is implemented, its performance can be evaluated by
comparing measurements of the controlled situation with measurements of the uncontrolled
situation, and with the results of the simulation experiments..
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Figure 5.2: Overview of the controller development process.

5.3 Design issues

In this section we will further discuss the design issues that have been shortly introduced in
Section 5.2.3 (see also Figure 5.2).

5.3.1 Formulation of the objectives and constraints

The objectives of a controller describe the goals that the controller should reach and have
to be determined by the road authorities. Selecting an objective is often a trade-off between
the desires of different parties (e.g., drivers, road managers, pedestrians, environmentalists).
Accordingly, controller objectives can focus on differenttopics:

Efficiency: The available road capacity should be used as efficiently as possible. Possible
objectives in this context are: reducing the total time spent, reducing the total travel
time, increasing the throughput, and reducing delays.
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Safety: Traffic controllers can improve safety by, e.g., reducing speeds, creating homoge-
neous flows, increasing intersection clearance times, and lowering flows in residential
areas.

Environment: Traffic generates noise, and air pollution, and it consumes fuel. The en-
vironment benefits from, e.g., reducing the number of stops,smoothing the flows,
decreasing the waiting time in the queues, and reducing the fuel consumption.

Location: When the traffic demand is so large that congestion cannot be prevented, the
controller can try to put the congestion at a specific location where it causes the least
problems, which can improve the situation in, e.g., residential areas and nature re-
serves.

In general, the overall objective of the controller will be formulated as a multi-objective
criterion, composed of several of the objectives mentionedabove. It is also possible to add
penalties related to the expected behavior of the controller, which can target, e.g., variations
in the control signal, and the traffic situation at the end of the prediction period. The use of
multiple objectives in a controller results in a multi-objective optimization problem. Some
methods to handle this kind of problems are: the weighted-sum method, theǫ-constraint
method, and the goal attainment method [108]. The weighted-sum method constructs a
weighted sum of all the objectives, which is minimized with astandard constrained opti-
mization method. Theǫ-constraint method selects a primary objective that is optimized,
while the other objectives are included in the optimizationproblem via constraints on their
values. The goal attainment method selects a target value for each objective, and minimizes
the weighted deviation from the selected targets.

Another way to implement the requirements resulting from traffic policies, such as ser-
vice levels, protection/safety of traffic participants, safety around schools, etc., is to for-
mulate them as constraints for the optimization problem. This results in, e.g., maximum
or minimum values for travel times, flows, speeds, intersection clearance times, or queue
lengths. It is also possible to formulate physical constraints for the controller, that consider
the limitations of the control measures and can result in, e.g., minimum or maximum values
of the control signal.

5.3.2 Selection of the network

The decision to develop an advanced traffic controller is often induced by a traffic network
in which a problem appears. However, the extent of the network that should be controlled
is not always evident. Some problems can be solved within a small network, while others
require a larger area to be solved efficiently. The extent of the required network can depend
on, e.g., the ratio between local traffic and long distance traffic, the available measurements
and their locations, the available traffic control measures, and the area on which the effects
of the control measures appear. For some guidelines to select the network size available
literature in the area of hierarchical control can be used, see, e.g., [77], where large systems
are divided into subsystems based on the influence that partsof the system have on each
other.
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5.3.3 Design of the measurement structure

After the network has been selected, the measurement structure should be designed. This
includes selecting the measurement technology, the locations of the measurements, the com-
munication structure, the storage database, and the methodfor data polishing.

Often used measurement technologies for traffic networks include, e.g., pneumatic sen-
sors, radar detectors, infra-red sensors, video cameras, or inductive loops [84]. The most
commonly used sensors are inductive loop detectors. These detectors consist of inductive
loops in the pavement, and measure the presence of a vehicle.They typically count the
number of passing vehicles and average this over a time span (between 1 and 15 minutes).
When double loops are used the speed of each vehicle can be determined. Pneumatic sen-
sors located on the road can detect the presence of a vehicle.They are cheap but they are
wearing fast, and thus they are mainly used for temporary measurements. Radar detection
determines the presence and speed of vehicles via radar waves. These detectors are mainly
used to determine the speed of vehicles. Infrared detectorsdetermine the presence of a ve-
hicle using infrared light. There are passive sensors whichdetermine the radiations of the
vehicles, and active sensors that send out a pulse and determine whether there is a vehicle
based on the reflection of this pulse. Video images can be usedto measure the traffic flows
as well. The advantages of video imaging are that many different measurements can be
obtained, e.g., space mean speeds, occupancy1, vehicle positions, and vehicle types. The
disadvantages are the sensitivity to rain, mist, or snow, and the relatively high costs due to
the image processing that necessary to obtain the desired information (speeds, densities)
from the video images.

Further, the locations of the detectors should be determined. On freeways, detectors
are often located every 500 meters, and near bottlenecks such as on-ramps, off-ramps, lane-
drops, and weaving areas. In urban areas, queue length detectors can be located at controlled
intersections, and at the beginning and end of each link the number of entering and leaving
vehicles respectively can be measured.

Then, the communication structure should be selected. The detectors and controllers
can exchange data with their neighbors, or can cummunicate with a central controller. The
obtained data should be stored in a database. The structure of the database and the desired
contents should be determined.

At last, before measured data can be used, it should be polished [99]. Methods should
be developed to remove outliers and sensor failures, and to address the uncertainty of the
obtained measurements.

Since measurements form a basis for the controller design, and thus significantly in-
fluence the controller performance, we will investigate theeffect of measurement methods
more extensively in Section 5.5.

5.3.4 Selection of the control method

To determine the settings for the control measures, a control method should be selected. In
the area of traffic control there exist methods that use no models, of which ALINEA [123] is
the most well known. Further, there are methods based on fuzzy learning or neural networks,

1The occupancy is the percentage of time that the detector is occupied, which is representive for the density at
the location of the detector.
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see e.g., [35, 119, 188]. In this chapter however, we focus onmodel-based approaches.
Examples of methods that use such an approach are presented in, e.g., [24, 49, 64, 76, 89,
129].

When the model-based approaches are used for optimal control(and also for MPC),
an optimization algorithm should be selected to determine the optimal values for the con-
trol measures. Which algorithm should be selected depends onthe type of optimization
problem, which in its turn depends on the selected model, theobjective function, and the
constraints. For linear or convex problems many algorithmsare available that will yield
the global optimum [12, 126, 133]. However, a traffic controlproblem is nearly always
non-convex and nonlinear, and can thus have many local optima. Hence, a global optimiza-
tion method is required such as genetic algorithms, simulated annealing, pattern search, or
multi-start local optimization [19, 44, 53, 61, 126]. Thesealgorithms cannot guarantee that
the global optimum is obtained, but they usually can obtain acceptable values. The use of
these algorithms however increases the computation time, which is undesired for on-line
computations. The selection of an optimization algorithm is thus based on the trade-off
between the accuracy of the solution and the required computational effort.

5.3.5 Selection of the model

Many models are available for the use in model-based traffic controllers. An overview of
traffic flow modeling in general is given in, e.g., [41, 72, 124]. Traffic models can be divided
in categories based on the properties of the models. First ofall the modeled application can
be used as criterion, e.g., traffic flow models [40, 68, 106, 115], travel time models [26, 175],
and traffic assignment models [15, 56, 130]. Second, the models can be stochastic [27, 101],
or deterministic [15, 106]. Third, the models can be groupedbased on the level of detail.
Three categories that can be distinguished are:

Microscopic models that describe the behavior of individual vehicles inrelation to the
other vehicles and the infrastructure. Examples of commercially available models are
Paramics [137], Vissim [136], and Aimsun [7], while an overview of more theoretical
models is given in [72, 124].

Mesoscopicmodels that describe the traffic in probabilistic terms, using probability distri-
bution functions, see for example the gas-kinetic model of [71]. Some mesoscopic
models use a mix between detailed descriptions of importantproperties and a more
general overall formulation, see, e.g., [31, 78].

Macroscopic models that describe the traffic flows using aggregated values, e.g., average
speeds, and average densities. Early macroscopic models are formulated in [96, 139].
More recent models are METANET [106], INDY [15], and the CellTransmission
Model [40]. An overview of macroscopic models is presented in [125].

When a model should be selected for a model-based controller,attention should be paid
to the features that are modeled. All features that are important for the controller should be
modeled, including, e.g., traffic flows, influence of controlactions, and properties affecting
the objective of the controller. Further, the required computational effort should be taken
into account. For a controller, a specific time is available for simulation of the model. The
model should be able to run within this time. The accuracy andthe computation time cannot
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be optimized at the same time, which makes a trade-off between the two criteria necessary.
For on-line traffic controllers often macroscopic models are selected because they yield a
reasonable accuracy within an acceptable computation time.

5.4 Implementation issues

When the design of the controller has been completed, more practical issues should be
investigated. All these issues require measurement data. The design of the measurement
structure has already been discussed in Section 5.3.3, and in Section 5.5 we will focus
on the influence of speed measurement methods. In this section we present implementation
issues that involve the use of measured data sets: calibration and validation, state estimation,
demand estimation, and performance evaluation.

For the calibration and validation procedure the whole set of measurements is divided
into two parts. One part is used for the calibration, and the other part for the validation.
These data sets should be gathered under free-flow conditions as well as under congested
conditions, in order to increase the persistency of exitation of the dataset, see [99].

State estimation requires real-time measurements of the system, while demand estima-
tion can be done based on real-time measurements, or based ona dataset with historical
measurements. For performance evaluation a set of data of the original situation is neces-
sary, just as a data set obtained after the tuning and implementation of the controller.

5.4.1 Calibration and validation

Calibration is the process of selecting values for the parametersθ of a model, such as,
e.g., the critical density, the desired speed, or the reaction time. The optimal parameter set
minimizes the difference between the measured output (ymeasured) and the output predicted
by the model (ypredicted):

min
θ

||ymeasured− ypredicted(θ)||22

Considering traffic flow models, macroscopic models are relatively easy to calibrate due
to the limited number of variables. However, for large networks the required computation
time can also increase up to the point where the problem becomes intractable. Calibration
of macroscopic traffic models is described in, e.g., [39]. The authors of [39] consider an
input that consists of the traffic demand, and the outputs arethe measurements performed
in the traffic network. For the nonlinear parameter identification problem the least-squares
output error method is used, combined with the complex optimization algorithm of Box [20]
for constrained problems. An automated calibration procedure for macroscopic traffic flow
models is described in [116]. This procedure uses the Nelder-Mead Simplex algorithm to
determine parameter values that optimize the total error between model output and measured
data.

The calibration of microscopic models is more elaborate dueto the large number of pa-
rameters that (in principle) can differ for each vehicle type. The calibration of microscopic
models is considered in, e.g., [23, 38], where different available calibration methods are
compared.

In modern traffic surveillance systems calibration can be performed on-line (and is also
called parameter estimation), see, e.g., [3, 128, 178]. Theadvantage of this is that the
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Figure 5.3: The state estimation procedure.

difference between the predictions and the real traffic situation will be as small as possible.
For the on-line calibration the measurements of the real network during the last period (for
example the last 15 minutes) are compared with the values that are predicted by the model.
The difference between the two is minimized by optimizing the model parameters. These
parameters are then used in the model, until a calibration for the next period is completed.
An even more general tool that includes on-line calibration, traffic prediction, travel time
estimation, queue length estimation, and incident detection is described in [180].

When a model is calibrated, the next step is to validate the model to determine the quality
of the obtained parameters. During the validation, the parameters that are obtained during
the calibration are implemented in the model. Then the modelis used to predict the traffic
variables corresponding to a different data set than the oneused for the calibration. The
difference between the simulation data and the real data setfor the considered situation gives
an indication of the correctness of the obtained parameter values, and of the generalizability
of the simulation results obtained with the selected parameter values.

5.4.2 State estimation

In order to be able to make predictions with a model, the current state of the network should
be known. This state is determined based on the available measurements, and is then used as
initial state for the model predictions. In Figure 5.3 the general state estimation procedure
is shown. The measurements of the real network are compared with the measurements that
are obtained with the simulation. Based on this comparison,the state estimator determines
the estimated state. State estimation is in most cases done based on Kalman filtering or one
of its extensions [79]. For linear models, a Kalman filter adapts the estimated state in such a
way that the mean of the error between prediction and measurements is minimized. For non-
linear models, an extended Kalman filter should be used, which linearizes the model around
the current estimate at every step. For traffic flow models this method is described in, e.g.,
[60, 178]. A more recent method that can be used for state estimation is based on particle
filtering, see [67, 109]. Particle filters use probabilisticmodels, and start with a distribution
of possible states. For all of these possible states the likelihood that it corresponds to the
current state is computed, based on a measurement function and on Bayes’ rule. With each
new set of measurements these likelihoods are updated. The most likely state is selected to
be the estimated state.
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5.4.3 Demand estimation

To make a prediction of future traffic flows, the future demandmust be known. This de-
mand can be obtained based on Origin-Destination (OD) matrices, or based on upstream
measurements:

OD-matrices OD-matrices contain the demand (in veh/h) from each origin to each desti-
nation. OD-matrices can be determined off-line, and can afterwards be adapted in
an on-line setting. Off-line OD-matrices are obtained from, e.g., surveys, historical
measurements, and estimations based on the surroundings (residential areas, shop-
ping centers, business areas) and the expected amount of drivers that want to visit
these places [30, 92]. On-line updating of the OD-matrix is done based on mea-
surements using a method that is similar to methods for on-line calibration. When
the OD-matrix is determined, a traffic assignment algorithmcan be used to divide
the traffic over the network. This results in the expected flows on each link. This
procedure is described in, e.g., [4, 191].

Upstream measurementsTraffic flows measured upstream of the controlled road section
will arrive at the controlled section with a delay approximately equal to the expected
travel time from the measurement location to the beginning of the controlled stretch.
With measurements of the upstream flows estimations of the flows at the controlled
road section can be made, as presented in [120]. The accuracyof the estimation
is influenced by the distance between the upstream measurement and the controlled
location, and by the number of intersections, on-ramps, andoff-ramps on this stretch.

5.4.4 Controller tuning

The controller also has parameters that have to be tuned. ForMPC controllers important
parameters are the horizons, and the possible weights in thecost function. In the process
industry methods for tuning MPC controllers have been developed [1, 94, 172]. There are
methods for off-line as well as on-line tuning. However, most of these methods focus on
linear MPC and thus cannot be used for advanced traffic controllers.

Controller tuning starts with the selection of initial parameters, which are manually
adapted based on simulation results or real measurements. Related to traffic control, the ini-
tial values for the parameters can be selected as follows. Aninitial value for the prediction
horizon is the time that a vehicle needs to drive through the selected network. This ensures
that all the effects of the control actions on this vehicle are taken into account. The length
of the control horizon mainly depends on the computational effort required to optimize the
cost function. A longer control horizon leads to more parameters, which leads to longer
computation times. However, when the control horizon is tooshort, the possible impact
of the control actions will decrease. Some more detailed tuning rules for the horizons are
presented in [64]. The weight of each part of the cost function should be based on the rel-
ative importance of the different parts, which should be determined by the road authorities.
The weights have to be normalized, which can be obtained by dividing each part of the cost
function by its nominal value.



134 5 Practical issues for model-based traffic control

5.4.5 Performance evaluation

To evaluate the performance of the controller, the controlled situation should be compared
with the uncontrolled situation. This means that first, before the deployment of the con-
troller, the initial situation should be measured. Then, when the controller is installed a
period should be selected during which the traffic can adapt to the controller. During this
period the behavior of the drivers can change, and if necessary the controller should be
changed too. After this period the performance of the controller can be determined. This
can be done by comparing initial measurements (without the controller) with measurements
in the controlled situation. For this comparison a performance evaluation function has to be
defined. The most logical choice for such a function is based on the cost function that is
selected for the controller. This function can be extended with a penalty for constraint vio-
lations. For each situation (uncontrolled/controlled) the costs are computed, and the relative
difference in the costs between the two situations represents the performance of the con-
troller. When more controllers are compared in a case study, for all controllers the resulting
traffic situation should be measured. These measurements can then be used to compare the
performance of the different controllers.

5.4.6 Other issues

We will now mention some topics that are also relevant for theimplementation of advanced
controllers, but that will not be discussed in detail in thischapter:

Fault detection and fault tolerant control: The availability and the failure probability of
the equipment used is important for the functioning of the controller. Missing mea-
surements and wrong representations of the control signalscan significantly influence
the performance of the controller [14, 135]. By monitoring,the equipment failures
can be noticed (or even predicted) and the controller can take the effects of the fail-
ures into account. This allows the controller to reduce the influence of the failure and
to prevent a large decrease in the performance of the network.

Robustness:A model is never an exact representation of reality. The sensitivity of the con-
troller for errors in the model structure should be accounted for, as well as the other
uncertainties in the design, such as the error in the demand prediction, the state esti-
mation, and the values of the model parameters. The effect oferrors and uncertainties
can be reduced by, e.g., including demand prediction, usinga smaller controller time
step to decrease the deviation between the real state and thepredicted state, by on-line
calibration of the parameters, and by using robust control techniques [93, 181].

Stability: The control actions influence the traffic flows. The control actions should lead
to a stable traffic situation, without fast fluctuating control signals [141, 189]. Stable
traffic situations are situations in which the traffic flows will stay around the same
level, even if small disturbances of the flows occur. Fast fluctuating control signals
can result in a fast changing traffic situation and thus in unstable traffic flows. Fast
changing control signals can be prevented by including a penalty on changes in the
control signal in the cost function, or by using larger thresholds with respect to the
reactions on changes in the measurements.
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5.5 Investigation of speed measurements

Since a major part of the steps described above is based on measurements, we now investi-
gate the influence of different measurement averaging methods. We will first discuss induc-
tive loop detectors, and next describe different averagingmethods for speed measurements.
An overview of symbols used in this section is given in Appendix 5.A.

Remark 5.1 Within this section, we consider four different time steps:the controller time
stepTc with indexkc, the sample (measurement) time stepTs with indexks, the simulation
time stepT with index k, and the step between two images that are obtained with video
imagingTt with indexkt. These time steps are related as follows:Tc = McTs, Ts = MsT, and
Ts = MtTt, whereMc, Ms, andMt are integers. 2

5.5.1 Speed measurements

In Section 5.3.3 we have discussed several measurement technologies for traffic networks.
In this section we will consider inductive loop detectors, and focus on speed measurements.
When double loop detectors are used the speed of each vehicle can be determined. Now
consider detectord. The number of vehicles that are observed at this detector during the
period [ksTs, (ks+1)Ts) is equal toNd(ks), and we index them as 1,2,. . . ,Nd(ks). The obtained
individual vehicle speeds measured by the detectord are denoted byud,n(ks), wheren is the
vehicle index. With the obtained measurements the flow of thetraffic can be obtained by
dividing the number of observed vehiclesNd(ks) by the sampling time intervalTs. Hence,
the flow passing the detector can be determined using

qsample
d (ks) =

Nd(ks)

Ts
. (5.1)

The density follows from the flowqsample
d (ks), the mean speedvsample

d (ks), and the number
of lanesλ, as

ρ
sample
d (ks) =

qsample
d (ks)

vsample
d (ks)λ

. (5.2)

In the next section we will formulate several methods to determine the mean speedvsample
d (ks).

5.5.2 Various speed averaging methods

In the field of freeway traffic flow modeling, two representations of mean speeds are often
used:time meanspeed andspace meanspeed [41, 105]. Traffic flow models that are used
in model-based controllers often use the space mean speed which is the average speed of
all vehicles present in the considered freeway stretch at a specific time instant. This space
mean speed is used since most models describe the average traffic conditions on such a
stretch. Video images can be used to obtain space mean speeds[43]. Unfortunately, the
loop detectors that are often present in the road network typically return time mean speeds.
Time mean speeds are based on measurements at a specific location averaged over a certain
time span. When the time mean speeds are measured, it is impossible to calculate the exact
space mean speeds due to the relatively low number of measurement locations. However,
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they can be approximated using various averaging methods, see [41, 138, 175]. In this
chapter we will investigate the influence of different averaging methods on the performance
of a model-based speed limit controller.

We discuss six different methods to calculate mean speeds. Within the description we
assume that in the sample period[ksTs,(ks + 1)Ts) the subsequent vehicles passing the de-
tectord are numbered 1,2, . . . ,Nd(ks). For the ease of notation we do not mentiond in
the equations, but note that the values can be determined forevery detector in the freeway
network.

Time mean speedThe time mean speed is calculated using thearithmetic mean of the
N(ks) locally measured vehicle speedsun(ks), measured over the sampling time in-
terval[ksTs,(ks+ 1)Ts) as [41]:

vtms(ks) =
1

N(ks)

N(ks)

∑
n=1

un(ks) (5.3)

Estimated space mean speedFor estimating the space mean speed, theharmonic mean
of the locally measured vehicle speeds is used by Daganzo [41], given by

v̂sms(ks) =

(

1
N(ks)

N(ks)

∑
n=1

1
un(ks)

)−1

(5.4)

Geometric mean speedBesides the arithmetic and harmonic mean, there is a third ‘clas-
sic’ Pythagorean mean, namely thegeometric mean[132]. This mean can be calcu-
lated as

vgeo(ks) =
N(ks)

√
√
√
√

N(ks)

∏
n=1

un(ks) (5.5)

Estimated space mean speed using the instantaneous speed variance A method to esti-
mate the space mean speed, based on locally measured vehiclespeedsun(ks), is pro-
posed by Van Lint [175]. The method uses the empirical relation between the time
mean speedvtms(ks) (defined by (5.3)), and the space mean speedvsms(ks) (as de-
scribed in [182]), which is given by

vtms(ks) =
σ2

i (ks)

vsms(ks)
+ vsms(ks) (5.6)

whereσ2
i (ks) is the variance of the instantaneously measured vehicle speeds. Since

the instantaneous speed varianceσ2
i (ks) cannot be determined exactly by local mea-

surements, the following estimation used:

σ̂2
i (ks) =

1
2N(ks)

N(ks)

∑
n=1

v̂sms(ks)

un(ks)
(un+1(ks)− un(ks))

2

wherev̂sms(ks) is given by (5.4). The estimated space mean speed using the instanta-
neous speed variance then becomes

v̂sms,σ̂i (ks) =
1
2

{

vtms(ks)+
√

(vtms(ks))
2 − 4σ̂2

i (ks)

}

(5.7)
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Estimated space mean speed using the local speed varianceIn [138] an estimate of the
space mean speed is proposed that is based on the time mean speed and variance of
the locally measured speeds. The space mean speed estimate using the local speed
variance is determined by

v̂sms,σl (ks) = vtms(ks)−
σ2

l (ks)

vtms(ks)
(5.8)

wherevtms(ks) is computed using (5.3), and

σ2
l (ks) =

1
N(ks)

N(ks)

∑
n=1

(
un(ks)− vtms(ks)

)2

Time average space mean speedUsing, e.g., video images [43] it is possible to obtain the
space mean speedvsms,s(kt) on a freeway segment for every imaging timekt (recall
thatTs = MtTt). Since the previous mean speed methods are all based on a time period
[ksTs, (ks+1)Ts), we will take a time average of the obtained space mean speeds during
this period:

v̄sms(ks) =
1

Mt

Mt(ks+1)

∑
kt=Mtks

vsms,s(kt) (5.9)

5.6 Case study

We now illustrate the effect of different speed averaging methods on the performance of a
speed limit controller. The six variants for calculating the mean speed discussed in Section
5.5.2 are used to calibrate the model that is used by the controller, resulting in six different
parameter sets. For each of these parameter sets we determine how good the model predicts
future traffic states, and we determine the difference between the measured and the predicted
total time spent (TTS).

In the remainder of this section we first introduce the network and traffic scenario, and
then develop a variable speed limit controller according tothe steps described in Sections 5.3
and 5.4. Next, we use the six different averaging methods within the speed limit controller,
and perform a simulation case study in which we first calibrate the prediction model, and
then compare the performance of the corresponding controllers.

5.6.1 Network and traffic scenario

For the traffic network, a part of the Dutch freeway A12 is selected, see Figure 5.4. The total
length of the considered stretch is 17422 m. There are two on-ramps, near Veenendaal and
near Maarsbergen. The major cause of delay on this stretch are shock waves. Shock waves
are traffic jams that propagate in the opposite direction of the traffic flows, and often emerge
from on-ramps and other types of bottlenecks. The outflow of ashock wave is usually about
70% of the freeway capacity [83], and resolving shock waves can significantly improve the
freeway traffic flow.

The selected freeway stretch is modeled with Paramics v5.1 from Quadstone [137], a
microscopic traffic simulation model. The resulting model will be used as representation of
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flow direction
VeenendaalMaarsbergen

Figure 5.4: Network of the case study, part of the Dutch freeway A12.

the real world. Since Paramics is a stochastic model, each simulation should be performed
several times to obtain statistically significant results.For our model, we perform 5 runs for
each simulation.

During the simulation of the freeway a shock wave is introduced by simulating an in-
cident downstream of the considered stretch. One vehicle isstopped downstream of the
on-ramp near Maarsbergen for a period of 5 minutes, during which one of the two lanes
is blocked. This will create a traffic jam, which expands while the lane is blocked, and
the shock wave starts to move upstream when both lanes are accessible again. The traffic
demandqdem(k) on the freeway is set to a constant value of 4400 veh/h, at which a shock
wave will remain existent in the network when no control is applied.

We start the simulation with a full network, and simulate a period of one hour. Figure
5.5 shows the simulated measurements on the network. On the horizontal axis, the time is
shown, and on the vertical axis, the locations are given. Thefirst segment is at the bottom of
the figure, and the last segment at the top. In the top subplot,the measured mean speeds are
given. Lighter colors represent higher mean speeds. The shock wave is clearly shown as the
thick, dark stripe going upstream as time elapses. Also in the density plot (the middle sub-
plot), the shock wave is clearly visible as the thick, light stripe representing high densities.
The bottom subplot shows the flow, where it can be seen from thedark color that due to the
shock wave the flow decreases. Note that the thin dark stripesthat are going downstream as
time elapses, are caused by differences in speed between individual vehicles.

5.6.2 Design of a dynamic speed limit controller

The influence of different averaging methods on performanceof a controller will be illus-
trated with a variable speed limit controller. We will now follow the design steps for the
controller as described in Sections 5.3 and 5.4. Note however that since the case study is
performed in a simulation environment, not all steps are necessary.

Formulation of the objectives and constraints

The policy objective of the controller is selected to be the reduction of the travel time on the
freeway stretch. The long travel time in the uncontrolled situation is mainly due to shock
waves. Shock waves can be reduced or dissolved by applying dynamic speed limits on the
freeway, see [64]. Traffic upstream of the shock wave can be slowed down, thereby limiting
the inflow to the shock wave. Since the outflow of the shock wavewill stay constant, this
will reduce the length of the shock wave, and can even dissolve it. This effect can be reached
by selecting the total time spent (TTS) as cost function, which should be minimized.

It is also possible to define constraints for the controller.A possible policy constraint
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Figure 5.5: Traffic condition without control.

that we can select is a maximum queue at the origins:

wo(k) ≤ wmax
o ∀o∈ O

wherewo is the queue length at origino, andO is the set of all origins in the network. When
we apply speed limit control, physical constraints on, e.g., the speed limits can be given by:

vmin ≤ vcontrol(kc) ≤ vmax

where vmin and vmax are respectively the minimum and maximum allowed speed, and
vcontrol(kc) is the speed limit applied at control time stepkc. For the case study we use
minimum and maximum values for the speed limits of 40 km/h and120 km/h respectively.
The speed limits vary between these bounds. Further, a penalty on signal variations is added
to the cost function to reduce speed limit oscillations.

When the speed limits are applied to the Paramics model they are rounded to steps of 10
km/h to mimic reality more closely. This increases the mismatch between the predicted and
measured states, which decreases the performance of the controller. However, in Paramics
the actual speed of drivers will vary stochastically aroundthe presented speed limit, which
decreases the negative effect of the rounding operation on the performance of the controller.
Moreover, in [66] it was found that when using the round operation the speeds that are
obtained during a simulation are approximately equal to thespeeds that are obtained during
a simulation where no rounding is applied.

Selection of the network

The complete network is shown in Figure 5.6. Measurements will be taken on the whole
stretch, over the length of 17422 m. We will control the part between the on-ramps at
Veenendaal and Maarsbergen, which results in a controlled stretch of 9775 m.
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Figure 5.6: Detailed network of the case study.

Obtaining measurements

To obtain the measurements we use loop detectors. The loop detectors in the micro-simulator
are placed at the locations of the existing loop detectors onthe freeway. The distances be-
tween subsequent loop detectors is varying between 545 m and810 m.

Selection of the control method

As control method we select model predictive control (MPC),as explained in Section 5.2.2.
This control method requires a model and an optimization algorithm. The model selec-
tion will be described below. As optimization algorithm we select sequential quadratic
programming (SQP) [19] as implemented in the MATLAB function fmincon [154], with
a multi-start approach. This algorithm is selected since itcan handle the nonlinear, non-
convex, bounded optimization problem that should be solvedby the MPC controller. At
each controller stepkc, 16 distinct initial value sets are used.

Model selection

For the speed limit controller we will use the macroscopic traffic flow model METANET,
as described in [106]. The METANET model introduces the division of a freeway network
into multiple links and segments. Each freeway linkm is divided into several segments
i, see Figure 5.7. For the case study, we consider three links,with in total 26 segments,
see Figure 5.6. Segments 1 to 5 belong to link 1, segments 6 to 21 belong to link 2, and
segments 22 to 26 belong to link 3. The segments are chosen such that the loop detectors
are near the downstream boundary, in order to obtain accurate measurements of the outflow
qm,i(ks) of the segments. This means that the segments have lengthsLm,i and thus that each
segment should have its own values for the model parameters,which is not conform the
original formulation of METANET. However, for simplicity,in this case study we assume
that within the given link all segments use the same value forthe model parameters. The
on-ramp near Veenendaal is connected to segment 5, and the on-ramp near Maarsbergen to
segment 22. Segments 7 to 20 will be controlled via variable speed limits.

Within the METANET model the state of segmenti of link mduring the period[kT,(k+
1)T) is given in terms of the densityρm,i(k), mean speedvm,i(k), and outflowqm,i(k) of the
segment. Herek denotes the simulation step, with simulation time intervalT. Each segment
i of link m has a lengthLm,i , while the number of lanesλm is equal for all segments in link
m.
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Figure 5.7: In the METANET model, a freeway link is divided into segments.

The METANET model equations are given by [106]:

qm,i(k) = ρm,i(k)vm,i(k)λm,

ρm,i(k+ 1) = ρm,i(k)+
T

Lm,iλm
(qm,i−1(k)− qm,i(k)) ,

vm,i(k+ 1) = vm,i(k)+
T
τm

(V(ρm,i(k))− vm,i(k))

+
T

Lm,i
vm,i(k)(vm,i−1(k)− vm,i(k))

−
ηmT

τmLm,i

ρm,i+1(k)−ρm,i(k)
ρm,i(k)+κm

, (5.10)

and

V (ρm,i(k)) = vfree
m exp

[

−
1

am

(
ρm,i(k)
ρcrit

m

)am
]

, (5.11)

wherevfree
m is the free flow speed in linkm, ρcrit

m is its critical density (i.e. threshold between
free and congested traffic flow), andτm, ηm, κm, andam are model fitting parameters.

At the locations of the on-ramps, the flows arriving at the freeway and at the on-ramp
are added to determine the flow downstream of the on-ramp:

qm,1(k) = qµ,Nµ(k)+ qr(k)

whereqm,1(k) is the flow entering the freeway linkmdownstream of on-rampr, qµ,Nµ(k) the
flow leaving the freeway linkµ upstream of on-rampr, andqr(k) the flow leaving on-ramp
r. In order to account for the speed drop caused by merging phenomena at the on-ramps,
the following term is added to (5.10) [89, 106]:

−
δmTqr(k)vm,1(k)

Lm,iλmρcrit
m

(5.12)

whereδm is a model parameter of linkm andvm,1(k) the speed at the first segment of the
freeway link downstream of the on-ramp. The virtual entering speedqm,0(k) of leaving link
m downstream of the on-ramp is given by:

vm,0(k) =
vµ,Nµ(k)qµ,Nµ(k)+ vr(k)qr(k)

qµ,Nµ(k)+ qr(k)
,
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wherevr(k) is the speed of the vehicles that leave on-rampr. This virtual entering speed is
used in the speed update equation (5.10) to compute the speedof the traffic that enters the
first segment of linkm.

Origins are modeled using a simple queue model. The number ofvehicleswo in the
queue at origino evolves as follows:

wo(k+ 1) = wo(k)+ T
(

qdem
o (k)− qo(k)

)

, (5.13)

whereqdem
o (k) is the demand at simulation stepk, andqo(k) is the outflow given by

qo(k) = min

{

qdem
o (k)+

wo(k)
T

, Qo
ρmax−ρm,1(k)
ρmax−ρcritm

}

, (5.14)

whereQo is the capacity of origino under free flow conditions, andρmax is the maximum
density. For on-ramps (5.13) and (5.14) are also valid.

In [64] some extensions are described which, among others, formulate the effect of
variable speed limits by replacing (5.11) by:

V (ρm,i(k)) = min

(

vfree
m exp

[

−
1

am

(
ρm,i(k)
ρcrit

m

)am
]

,(1+α)vcontrol
m,i (kc)

)

. (5.15)

The parameterα expresses the obedience of the drivers with respect to the applied speed
limit. When the speed limits are enforcedα will be smaller since drivers will not exceed the
speed limits as much as without enforcement. The indexkc counts the control time steps,
as introduced in Remark 5.1. The interval of simulation timesteps that correspond to the
control time stepkc is given by[kcMcMs,(kc + 1)McMs)− 1].

As cost function we selected the total time spent (TTS), see Section 5.6.2. When using
the METANET model, the TTS can be computed as follows:

JTTS(kc) = T
(kc+Np)McMs

∑
k=kcMcMs+1

(

∑
(m,i)∈M

ρm,i(k)λmLm,i + ∑
o∈O

wo(k)

)

(5.16)

whereM is the set of pairs(m, i) of link indices and the corresponding segment indices.

Calibration and validation

Calibration is done by off-line numerical optimization using an objective function given by

Jcal(θ) =
1

Kc − Np

Kc−Np

∑
kc=1

Mc(kc+Np)

∑
ks=Mckc

Ms(ks+1)

∑
k=Msks+1

J̌cal(θ,ks,k) , (5.17)

whereθ is the set of model parameters consisting ofvfree
m , ρcrit

m , τm, ηm, κm, andam for each
of the three links,Ks is the number of sample steps for which measurement data is available,
and whereJ̌cal(θ,ks,k) is given by:

J̌cal(θ,ks,k) = ∑
(m,i)∈M







(

vsample
m,i (ks)− ṽm,i(k)

v̄(ks)

)2

+

(

ρ
sample
m,i (ks)− ρ̃m,i(k)

ρ̄(ks)

)2





,
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wherev̄(ks) andρ̄(ks) are the average speed and density of the measured data from controller
stepkc to kc+Np. The error in the predictions that are made by the controllerat every control
time step is computed, and then the average of the errors of all prediction periods is taken.
A lower value of the objective function (5.18) means a betterfit of the measured states
{ vsample

m,i ;ρsample
m,i } by the predicted states {̃vm,i ; ρ̃m,i} reproduced by the traffic flow model.

Another option is to compare the two data sets with respect tothe value of the cost
function. When the cost function is selected to be the TTS (as in (5.16)), the difference
between measured and predicted TTS can be determined to judge the performance of the
parameter values. The error is given by

ETTS(θ) =
1

Kc − Np

Kc−Np

∑
kc=1

∣
∣
∣
∣

J̃TTS(kc)− JTTS(kc)

JTTS(kc)

∣
∣
∣
∣

(5.18)

which gives the average percentage of mismatch between the TTS for the measured data
JTTS, and the TTS for the predicted datãJTTS for the parameter setθ, and whereKc is the
final control time step in the scenario.

This offline calibration of the METANET model is performed with the MATLAB func-
tion fmincon [154] which implements SQP, which is the same algorithm thatwill be used in
the on-line controller. We use the algorithm in a multi-start configuration with 100 different
initial values, which increases the probability of finding the global (or best local) optimum.
To deal with the stochasticity of Paramics (see Section 5.6.1) we use 5 different random
seeds. The cost functionsJcal(θ) andETTS(θ) are determined at each control time step,
for the prediction that is made at this time step. For the calibration of the total model the
average valuēJcal(θ) andĒTTS(θ) over the results of all control time steps are determined.

The calibration is be performed for each of the six mean speedcalculation methods de-
scribed in Section 5.5.2 separately, which results in six different parameter sets as presented
in Section 5.6.3.

State estimation

The state of the network consists of the average speed, average density, and average flow.
The speeds are measured by loop detectors, and averaged withthe different methods de-
scribed in Section 5.5.2. The density and flow can be calculated from these measurements
using (5.1) and (5.2), see Section 5.3.5. At every controller time step, a new estimation of
the current state is obtained, based on the last available measurements.

Demand estimation

The Paramics model uses a demand of 4400 veh/h, which means that it randomly introduces
vehicles, with a mean of 4400 veh/h. To make predictions withthe METANET model, an
estimation of this stochastic demand should be made. However, for simplicity we use the
known average value of 4400 veh/h as estimation of the demandduring the case study.

Controller tuning

For the controller we have selected the following parameters. The METANET model (5.11)
uses a simulation time interval ofT=10 s. This period is small enough to ensure that the
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vehicles cannot drive through a whole segment in one simulation step, and large enough
to prevent unnecessary long computation times. The controller time interval equalsTc=60
s, which prevents fast switching between control values andwhich is a reasonable time
to perform the on-line optimization. The prediction horizon equalsNp=20 steps, which is
the time required to drive through the network when a shock wave is present. The control
horizon isNc=10 steps, which forms a trade-off between the required computation time and
the detectability of the effects of the control actions.

Performance evaluation

Now we will illustrate the selection of the evaluation function, using the speed limit control
example. Since the objective is to minimize the TTS, we determine the improvement in
traffic conditions by comparing the obtained values for the TTS. However, only comparing
the TTS based on the number of vehicles in the measured area isnot a good measure, since
the controller will not only increase the outflow, but also the inflow when the shock wave is
resolved successfully. This is due to the fact that the incoming vehicles will not be blocked
anymore, when the shock wave is dissolved. To take into account this change in the demand
a different formulation of the TTS is used, based on the demand qdem(k) and the outflow
qout(k) [64]:

JTTS = TN0McMsKc + T2
McMsKc−1

∑
k=0

(McMsKc − k)
(

qdem(k)− qout(k)
)

(5.19)

whereN0 is the initial number of vehicles in the measured area of the freeway.

5.6.3 Results

The results of the case study are presented here. First, we discuss the calibration of the var-
ious mean speeds, and then we simulate the network using three of the different averaging
methods within the controller and compare the results obtained with the different methods.

Comparison of calibration results for the various mean speeds

We first perform the calibration as described in Section5.6.2. The results are shown in
Table 5.1. The average calibration errorsJ̄cal computed with (5.18) are presented, and next
the average error between the measured and predicted TTSĒTTS is shown, as obtained using
(5.18).

The lower the values for̄Jcal andĒTTS, the better the fit between the model predictions
and the measurements. Based on the average calibration errors J̄cal the estimated space
mean speed using the instantaneous speed variancev̂sms,σ̂i gives the best result, followed by
the time mean speedvtms and the geometric mean speedvgeo. Based on the average error
between measured and predicted TTS the geometric mean speedvgeoperforms the best, fol-
lowed by the time mean speedvtms and estimated space mean speed using the instantaneous
speed variancêvsms,σ̂i , which yields the same performance.

Since the time mean speedvtms, the geometric mean speedvgeo, and the estimated space
mean speed using the instantaneous speed variancev̂sms,σ̂i perform better than the other
averaging methods for both criteria, we will implement these averaging methods in the
speed limit controller.
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Table 5.1: Mean speed performance for calibration.

J̄cal ĒTTS

Time mean speed vtms 38.9 5.5
Estimated space mean speed v̂sms 42.0 5.6
Geometric mean speed vgeo 39.4 5.1
Estimated space mean speed (instantaneous)v̂sms,σ̂i 38.3 5.5
Estimated space mean speed (local) v̂sms,σl 42.3 6.5
Time average space mean speed v̄sms 42.5 6.0

Performance evaluation results

Now the selected mean speed variants are used in the model predictive speed limit controller,
to investigate which variant will give the largest improvement in traffic conditions.

For the comparison of improvement in traffic conditions, theTTS is used. A lower value
of JTTS as given by (5.19) represents better traffic conditions, since on average vehicles are
spending less time in a certain area, indicating that the flowis higher. In the uncontrolled
situation, as shown in Figure 5.5, the TTS is 1068.0 veh·h.

Using the MPC-based traffic controller, the shock waves are dissolved for all averag-
ing methods that are used, see for example Figure 5.8 where the time mean speed is used.
The speed limits lower the flow that enters the shock wave by delaying the upstream traf-
fic. In this way the inflow of the shock wave is lower than the outflow, which reduces the
shock wave. Using time mean speedsvtms(ks) as state variables for the controller gives the
largest improvement compared to the uncontrolled situation (JTTS=901.1 veh·h, i.e., 15.6%
improvement), followed by the estimated space mean speed using the instantaneous speed
variancêvsms,σ̂i (ks) (JTTS=916.1 veh·h, i.e., 14.2% improvement), the geometric mean speed
vgeo(ks) (JTTS=928.0 veh·h, i.e., 13.1% improvement).

The different values forJTTS show that the selected averaging method can make a differ-
ence of 2.5% of the controller performance, which illustrates that it is important to consider
the used averaging technique when designing a controller.

5.7 Conclusions

The use of advanced traffic control systems can significantlyimprove the performance of
the traffic network. However, implementing such controllers is not straightforward. There-
fore, we have investigated issues that are important when advanced traffic control systems
are applied in practice. First, we have presented a theoretical overview of the process of
developing and implementing such a controller, and next we have investigated the effect of
different averaging methods for speed limit controllers.

Within the literature overview, we have first discussed issues related to the design of a
model-based controller. In particular we have considered the selection of the network, mea-
surements, the selection of the objective, the formulationof constraints, the selection of the
model, and selection of the control method. Next, we have described issues related to the
implementation of model-based controllers. More specifically, we have addressed calibra-
tion and validation, state estimation, demand estimation,controller tuning, and performance
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Figure 5.8: Controlled traffic flow using time mean speeds as state variable. Note that for
the simulations with the other averaging methods the plots look similar. The
speed limits are only present at segments 7 to 20, and active during a period of
25 minutes, as shown in the top plot.

evaluation.
Since many of the investigated topics are based on measurements, we have investigated

the effect of measurements on the controller performance. In particular, we have focused
on the effect of using different methods for calculating mean speeds. For a specific case
study, namely simulating a part of the A12 freeway in The Netherlands, we have illustrated
the influence of the averaging method for speed measurementsin the performance of a dy-
namic speed limit controller, that applies model predictive control (MPC) with METANET
as its prediction model. During the calibration of the prediction model, the most accurate
prediction of the TTS has been obtained by using the geometric mean speed. During the
simulation of the traffic with the controller, the time mean speed has resulted in the best
controller performance. With the controller, the TTS couldbe reduced significantly. Im-
provements up to 15.6% compared to the uncontrolled situation are reached, which means
that in this case the geometric mean speed is the most suitable averaging method for the
speed measurements. Reducing the shock waves also has a positive effect on the flow,
which is increased by 4.8%.
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5.A List of symbols

Metanet model

k simulation period counter, for period[kT,(k+ 1)T)
T simulation time step (h)
Ms ratio between the sample time stepTs and the simulation time stepT
M set of pairs(m, i) freeway linksm and corresponding segmentsi
λm number of lanes of freeway linkm
ρm,i(k) density at segmenti of freeway link m at simulation time k

(veh/km/lane)
qm,i(k) outflow of segmenti of freeway linkm at simulation timek (veh/h)
vm,i(k) mean speed on freeway segmenti of link mat simulation timek (km/h)
Lm,i length of segmenti of freeway linkm
wo(k) queue length at origino at simulation timek (veh)
qdem

o (k) traffic demand on origino during simulation periodk (veh/h)

Measurements

ks sampling period counter, for period [ksTs, (ks+1)Ts)
Ts sampling time interval
Mc ratio between the control time stepTc and the sample time stepTs

Ks number of sample steps for which measurement data is available
qsample

d (ks) flow on freeway near detectord during the sampling periodks (veh/h)
vsample

d (ks) mean speed on freeway near detectord during sampling periodks

(km/h)
ρ

sample
d (ks) density on the freeway stretch near detectord during sampling period

ks (veh/km/lane)
ud,n(ks) speed of vehiclen measured by detectord during sampling periodks

(veh/h)
Nd(ks) number of observed vehicles on detectord during sampling periodks

vtms(ks) time mean speed during the sampling periodks (veh/h)
v̂sms(ks) estimated space mean speed during the sampling periodks (veh/h)
vgeo(ks) geometric mean speed during the sampling periodks (veh/h)
σ2

i (ks) variance of the instantaneously measured vehicle speeds during the
sampling periodks (veh/h)

v̂sms,σ̂i (ks) estimated space mean speed using the instantaneous speed variance dur-
ing the sampling periodks (veh/h)

v̂sms,σl (ks) estimated space mean speed using local speed variance during the sam-
pling periodks (veh/h)

σ2
l (ks) variance of the locally measured vehicle speeds during the sampling

periodks (veh/h)
v̄sms(ks) time average space mean speed during the sampling periodks (veh/h)
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Calibration and control
Np prediction horizon (control time steps)
Nc control horizon (control time steps)
θ set of model parameters that should be calibrated
kc controller time step counter, for period [kcTc, (kc+1)Tc)
Tc controller time step (h)
Mc ratio between the control time stepTc and the sample time stepTs

JTTS(kc) total time spent in the network and at origin queues at control time step
kc (veh·h)

Jcal(θ) calibration cost for parameter setθ
ETTS(θ) difference between measured and predicted TTS for parameter set θ

(veh·h)



Chapter 6

Conclusions and future research

During peak periods the traffic demand exceeds the availableroad capacity on several parts
of the road network. This leads to congestion with negative effects such as delay, increased
fuel consumption, and pollution. This problem can be reduced by constructing new roads,
but this is expensive and time-consuming. Another way to reduce the amount of congestion
is to make more efficient use of the available roads. The objective of the research conducted
in this thesis is to develop control methods to increase the efficiency of road use, and thus
to reduce the negative effects of congestion. The focus lieson roadside control systems for
networks that contain freeways as well as urban roads. Methods are developed to integrate
available control measures, and to include the effect of thedrivers’ route choices in the
controllers.

In this chapter we give an overview of the contributions of the research described in this
thesis, and we present recommendations for future researchprojects.

6.1 Research contributions

The main goal of the research described in this thesis is to develop control systems that
allow for a more efficient use of the available road capacity.In general, the developed
controllers should provide road authorities with means to improve the performance of their
networks, to coordinate control actions of different measures, and to incorporate the effects
of information providing. Within this general goal, several sub-goals have been selected:

• Design of a control method for mixed freeway-urban networks,

• Development of controllers that influence route choice,

• Presenting an overview of implementation related issues.

Each of these topics is considered in one or two chapters. Below we will summarize the
research described in the whole thesis. We first describe thedeveloped controllers, and then
consider implementation issues.
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6.1.1 Controllers developed

In this thesis, controllers for three different processes that appear in traffic networks are de-
veloped. All controllers are based on model predictive control (MPC), a control method that
uses a prediction model to predict the future evolution of the traffic flows, and an optimiza-
tion algorithm to determine the optimal control signals. The objective of the controllers is to
reduce the total time that the vehicles spend in the network,for some controllers combined
with other factors, such as minimizing the deviation from a desired flow, or the reduction
of the travel times. Note however that the developed controlmethods can also be used with
different cost functions, e.g., related to pollution, waiting times, number of stops, etc. As
optimization method for the nonlinear non-convex optimization problems that appear within
the MPC-based controllers, multi-start Sequential Quadratic Programming (SQP) is used as
optimization algorithm. For complex objective functions multi-objective optimization tech-
niques are necessary, as described in, e.g., [108].

We will now shortly discuss each of the controllers, considering the process that they
focus on, and describe the corresponding prediction model that is used.

Controller for mixed networks A controller is developed that controls the traffic flows on
networks that consist of freeways and urban roads. The goal of the controller is to
reduce the total time spent in the network. Since the controller considers the whole
network, congestion that appears on on-ramps and off-rampscan be reduced by co-
ordinating the control actions of the control measures in the urban area and on the
freeway. Also, the performance of the urban and freeway networks individually is
in principle improved, due to the integration of all available control measures. The
control measures that are considered are ramp metering installations at on-ramps,
variable speed limits at freeways, and traffic signals at urban intersections. A predic-
tion model is developed for the controller by adapting and extending the urban queue
length model developed by Kashani [82], and coupling this model with the macro-
scopic traffic flow model Metanet. This has resulted in a modelthat describes the
traffic flows on mixed networks, and provides a good trade-offbetween accuracy and
computational effort, and thus is suitable for the use in on-line controllers.

The integrated control of mixed networks has been illustrated with a network
consisting of two freeways and an urban road. The performance of the controller
has been compared with the performance of systems that approximate the existing
control methods SCOOT and UTOPIA. For different traffic scenarios the integrated
controller obtained improvements between 2% and 7%.

Anticipative controllers Three model-based controllers are developed that take the influ-
ence of route choice on freeway networks into account. As prediction model for the
evolution of the traffic flows all controllers use the Metanetmodel.

The first controller uses an equilibrium-based dynamic traffic assignment (DTA)
algorithm to determine the within-day route choice. To obtain this equilibrium-based
dynamic assignment model, a static assignment model based on the Method of Suc-
cessive Averages is combined with a method that adapts the current assignment to-
ward the computed static assignment via a learning factor. This anticipative controller
based on an equilibrium-based DTA model has been applied to anetwork with two
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routes and an on-ramp metering installation. With respect to the situations where
no control was applied, and where the ramp metering strategyALINEA was used,
improvements of respectively 11% and 9% have been obtained.

The second controller used a route-choice-based model thatdescribes the day-
to-day route choice as well as the within-day route choice. The day-to-day route
choice is based on a Bayesian learning algorithm, using the travel times experienced
by the drivers as main factor in the route choice process. Thewithin-day route choice
is based on a density-dependent lookup table. This anticipative controller that uses
a route choice model has been used for on-ramp as well as off-ramp metering in a
network with two routes. Compared with the situation without control, the total time
spent has been improved by 3% for on-ramp metering, and the mean urban density has
been decreased with 60% in the situation where off-ramp metering has been applied.

Third, the reaction on provided travel time information is included in the route-
choice-based method, based on the difference between the provided and expected
travel times, and on the correctness of the provided travel time. This anticipative
route-choice-based controller that uses information providing and variable speed lim-
its for a network with two routes improved the traffic situation with 3% compared to
the situation without control.

Day-to-day route choice controller A controller is designed that actively influences the
drivers’ route choice. For the controller a basic route choice model is developed, with
three different versions that differ with respect to the network properties they can
model. The first version, for networks with separate routes,leads to a mixed integer
linear programming (MILP) problem when it is applied in an MPC controller. This is
an advantage, because for this type of problems fast and efficient solvers are available,
which is a requirement for on-line control. The second version of the model includes
piecewise constant demands, and when it is used in an MPC-based controller the
resulting optimization problem can be approximated with anMILP problem. The last
version of the model includes overlapping routes and piecewise constant demands,
and results in a general non-linear optimization problem.

The day-to-day route choice control for a network with two routes resulted in
improvements between 45% and 72% with respect to the no-control case, depending
on the selected optimization algorithm and the number of initial values.

The day-to-day route choice control is further illustratedwith a network con-
sisting of three routes where the Braess paradox appears, meaning that adding a link
to the network decreases the performance. The controller illustrates that closing this
extra link indeed improves the performance with 15%.

6.1.2 Implementation issues considered

Before the developed controllers can be implemented in practice, many steps should be
taken. This has led to the following topics:

Implementation issuesA short literature overview of issues related to the implementation
of model-based controllers in practice is given. Design issues as well as implementa-
tion issues are discussed.
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Influence of speed averaging methodsThe controllers developed in this thesis base their
control actions on measurements obtained from the road network. These measure-
ments are used to determine the state of the network, which inits term is used to
predict the evolution of the traffic flows. The measurements are averaged over a cer-
tain time period. Different methods can be used to average the measurements, which
leads to different average values. To investigate the effect of these different values
on the performance of the controllers, we compare differentspeed averaging meth-
ods using a speed limit controller that has the objective to reduce shock waves on a
freeway.

The speed limit controller that has been developed to determine the influence of
measurement averaging methods, resulted in a reduction of the total time spent on a
freeway stretch of 16% for the time mean speed, 14% for the estimated space mean
speed, and 13% for the geometric mean speed. This illustrates that the influence of
the averaging method is small for the selected scenario.

6.2 Future research

During the research performed for this thesis new theoretical questions were encountered
which form the basis for interesting topics for future research. In this section we will present
ideas for challenging research projects related to controller design, model development, and
policy issues.

6.2.1 Controller-related issues

In this thesis we have developed several controllers. During the development of these con-
trollers problems and theoretical questions were encountered that could not be solved within
this research project. This has lead to the formulation of the following research topics re-
lated to controller design:

Develop efficient optimization algorithms The applicability of model-based predictive
control methods largely depends on their ability to obtain optimal control settings
within the available time. The controllers designed in thisthesis all use multi-start
SQP as optimization method for non-linear non-convex problems. Other algorithms
might be available, such as, e.g., genetic algorithms [44, 62], pattern search [16, 85],
tabu search [61] and SNOPT [75]. These algorithms are so called ‘global’ optimiza-
tion methods that in general obtain good results in a reasonable amount of time. These
algorithms do not use gradients or Hessians and thus are better suitable for optimiza-
tion problems related to traffic control. Also, the development of new optimization
algorithms can significantly improve the applicability of the developed controllers
and it can also allow coordination of a larger amount of control measures, or the con-
trol of larger networks. The tailor-made algorithms shouldbe suitable for the specific
type of traffic-related optimization problems and make use of, e.g., the form of the
cost function and the type of the available control signals.Special attention should
be paid to the speed and scalability of the algorithms. Sincethere is only a limited
amount of time available for optimization the intermediatesolutions of the algorithm
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should be feasible. This allows the controller to terminatethe optimization process
and return a feasible control signal at the moment that the available time has elapsed.

Another possibility to lower the computation time for each optimization step is to
develop distributed optimization methods, which divide the optimization problem in
several smaller problems, which can be solved simultaneously. In this case algorithms
should be developed that can handle the boundary conditionsappearing due to the
connections between the different problems.

Multi-objective control The objective of most controllers developed in this thesis is to
reduce the total time spent. Many other objectives can be considered, e.g., total
throughput, total delay, fuel consumption, emissions, queue lengths, etc. Some of
these objectives require extensions of the prediction models, or even the development
of new models. When a controller is developed, the total objective almost always has
to be a combination of different goals. The combination of different goals leads to a
multi-objective optimization problem, for which a suitable solution method should be
selected, such as, e.g., combining the objectives into one function using a weighted
sum approach, using goal attainment, or coupling the objectives by introducing a
common variable, see [108]. Another issue related to the objective function is that
some goals can better be left out of the function itself, but can be included into the
control problem as constraints. As a result, for each goal ofthe controller the most
suitable way of handling it should be determined, choosing between making it a con-
straint or including it as part of the objective function.

Translate MPC into a faster control method MPC uses a prediction model and an opti-
mization algorithm to determine the optimal settings for the control measures. This
can lead to significant improvements with respect to the traffic network performance.
However, the required computational effort will remain an issue that strongly reduces
the possibilities of MPC controllers in practice. A solution for this problem can be
the development of faster control methods that approximatethe results that can be
obtained with MPC-based controllers. For example, a possible method is to simulate
and optimize many different traffic scenarios with an MPC-based controller off-line,
approximate the nonlinear results with a large look-up table, and then develop a con-
troller that compares the current scenario with the scenarios in the look-up table and
applies the control actions that the MPC controller has determined during the off-line
simulation. When the current situation is not available in the look-up table the con-
troller interpolates between situations in the look-up table that are relatively close to
the current situation, see [73]. Another option is to develop rule-based controllers
that approximate the MPC-based controllers by formulatingseveral rules that express
the relation between the current traffic situation and the optimal settings for the traffic
control measures.

Develop hierarchical control methods Controlling large traffic networks with one central
controller will lead to large computation times. The maximum allowed computa-
tion time limits the size of the network that can be controlled. This problem can
be overcome by applying hierarchical control, where small parts of the network are
optimized by low-level controllers that use detailed models, and where higher-level
controllers optimize the whole network using a model with a low level of detail, see
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[24, 127, 129]. In this way the processes that have an influence on the total network,
such as, e.g., the route choice, and changes in the demand, can be considered by
the higher-level controller, while the fast traffic flow processes, e.g., vehicle behavior
on the freeway, and queue length evolution at intersections, can be handled by the
low-level controllers. Challenging research questions within the area of hierarchi-
cal control are, e.g., the selection of the number of layers,the areas that should be
considered by each controller, the required communication, the coordination between
the controllers, and the influence that the higher-level controllers should have on the
lower-level controllers.

Include future control measures In the future, new control measures or new applications
of existing measures will become available. These new measures should be included
in the control methods. First of all, the use of traffic information as control measure
can be investigated. Initially, traffic information was provided to inform drivers about
the current traffic situation. Nowadays, the information starts to be used to influence
the drivers, by considering providing information as control measure, see Chapter 3
and [76, 81, 107].

Second, control methods including in-car systems can be developed. The technology
that is located in cars is developing rapidly. The in-car systems can be used for data
gathering, which allows for a more detailed estimation of the current traffic situa-
tion. Algorithms should be developed that can handle all theinformation that can be
obtained by in-car devices, and that combine all this information into an estimated
state of the network. Further, when the possibilities of thein-car systems are com-
bined with road-side systems in one control approach, the performance of the road
network can be increased significantly. Therefore, controllers that can handle these
in-car devices as well as the road-side equipment are being developed, as in [9]. This
research can be extended to the development of intelligent vehicle highway systems,
in which the road-side equipment steers the in-car controllers in such a way that the
vehicles drive completely automated without interventionfrom the drivers. Techni-
cal problems in this area are the large number of devices thatshould be controlled,
the unknown effects of the control actions, the dependence of the controller on the
penetration rate of the in-car systems, and the required computational effort. Another
problem is the introduction of the system. The transition from the current situation
to a fully automated situation should go smoothly. This means that the automation
should be introduced in phases, and that the developed systems should be compati-
ble with the current situation. Further, the social acceptance should be considered.
Drivers might not willingly surrender the authority over their car to an automated
system.

6.2.2 Model-related issues

The controllers developed in this thesis are based on models. The selected models determine
the possibilities of the controller, have a large influence on the controller performance, and
influence the required computation time. This has lead to theformulation of the following
model-related research topics.
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Develop model selection methodsIt is not trivial to decide which model should be used
for a specific application. The goal of the model should be selected first, and next the
effects that should be modeled must be determined. When a model is used within a
model-based traffic controller, the model must at least be able to describe the effects
of the traffic control measures. However, the level of detailin which these effects
should be modeled depends on many factors, including the required accuracy and the
available computation time. As a result, model selection nearly always includes a
trade-off between accuracy and required computational effort. For example, when a
controller uses a fast model the control time step can be smaller, which might make
up for the less accurate results due to the faster feedback loop which increases the
robustness with respect to measurement errors. On the otherhand, a more detailed
model with a longer time step might yield more accurate predictions and thus can
result in better control actions. In many cases this dilemmawill lead to the devel-
opment of new models, or to the adaptation of existing models. Guidelines should
be determined that can help to select useful features for themodel, and to make the
trade-off between the accuracy and the computation time.

Develop and use multi-class traffic modelsTraffic can be divided into different user
classes, like trucks and personal cars, business and leisure drivers, male and female,
etc. Each of these classes will react differently on the available traffic control mea-
sures, or can be controlled by special measures like dynamictruck lanes. When these
different reactions and special measures are taken into account via including a multi-
class model into the controller, the controller performance can be further improved.
Issues that should be considered when designing multi-class controllers are the selec-
tion of efficient and accurate models, the possibly larger computation times of these
multi-class models, selecting which properties of the classes are important for the
control method, and the effect of using ‘binary’ control measures such as opening
and closing an HOV lane.

Develop and use multi-modal modelsEach transportation mode (car, train, lightrail, ship)
uses its own network but these networks do often intersect, at, e.g., railway passages,
bridges, or urban intersections. Opening a bridge for one ship during the peak hour
might cause disproportionally large delays for the road traffic, and delaying a train at a
railway passage might lead to a missed connection for many travelers. This illustrates
that the performance for all networks can be increased by coordinating the control
actions on the different networks. Therefore multi-modal models that are suitable
for the use within controllers should be developed. Issues that could be investigated
are the available control methods for the different modes, and the relation between
the costs for different modes. The different time scales at which the different modes
operate can also form a problem for the design. Moreover, thedifferent actions of
the available control measures might require the use of integer nonlinear optimization
methods.

Investigate stochastic modelsTraffic flows are inherently stochastic. This means that the
controllers should find an optimal solution for the whole setof traffic situations that
might occur in the near future. Including stochastic modelsin the controllers can lead
to the development of robust traffic control methods that canhandle the variations in
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the traffic situation. When stochastic models are investigated, one should take into
account the number of runs that should be performed to get statistically significant
results, and the required computational effort. It should also be considered that robust
controllers are in general conservative, and thus find less optimal solutions.

6.2.3 Policy-related issues

The use of traffic controllers is a policy decision. Politicians determine whether the con-
trollers are used, and what the control objectives are. Further, the potential effect of con-
trollers can be used when long-term policies are developed.This leads to the following
research topics.

Develop desired flow patternsWith the controllers developed in this thesis it is possible
to approximate desired flows, which allows the introductionof optimal flow patterns
in the network. This means however that a method should be developed to determine
what the optimal flows are for different roads. The network, the main origins and des-
tinations, and the surroundings of the network should be analyzed to define important
routes and corresponding demands. Then the locations at which low flows are desired
should be determined together with the routes that can handle larger flows. Based on
this information it should be possible to define the desired traffic assignment. This
desired assignment can be used in the formulation of the objectives of a controller,
for example to steer toward the desired flows. Another situation in which the desired
flows are of interest appears when maintenance works are performed. On the one
hand, the level of service should as high as possible during these works, while on the
other hand the decrease in capacity of the available roads and safety considerations
require lower flows. In this case, the order in which the worksare performed and
the control actions that are taken should be optimized with respect to the difference
between the generated flows and the desired flows.

Investigate social and legal aspects of future control measures Future control methods
can only be used when they are accepted by the drivers, and when the control ac-
tions performed are legal. This is not automatically the case, as can be seen when
considering, e.g., information providing or in-car control systems. When using in-
formation providing on variable message signs, the attitude of the drivers toward the
presented information is important since reacting on the provided information is vol-
untary, and thus the drivers should consider the provided information to be correct,
otherwise they will ignore the messages. This also leads to an investigation of the
legal issues with respect to information providing. In principle, the presented travel
times should correspond to the real travel times, otherwiseit is seen as false inform-
ing. However, when providing information and other controlmeasures are combined
into one control method, the other control measures can be used to make the provided
information true. Is this considered as false informing or not?

When considering in-car systems, the acceptance of the drivers plays a large role. The
drivers should partly or completely surrender their car to the control system, which
limits the possibilities of the driver and might cause distrust with respect to the control
system. Also, the legal aspects of automated highway systems should be considered.
Who will be responsible for, e.g., incidents?
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Influence road layout and spatial schedulingThe layout of the road network has a sig-
nificant influence on the results that can be obtained with traffic control measures.
The number of lanes at urban intersections influences the possibilities of traffic signal
control, the number of on-ramps and off-ramps of a freeway influences the perfor-
mance of variable speed limits, and the number of alternative routes determines the
effect of route choice control. Guidelines should be developed for improving the road
layout in such a way that the performances of traffic controllers can be increased, and
a method for simultaneously developing the road layout and control measures can
be designed. This will lead to an optimal road layout, which also offers a trade-off
between control possibilities and, e.g., road area, numberof ramps, number of lanes,
and number of roads. On the long term, not only the road layoutcan be influenced,
but also the spatial scheduling can be adapted based on the expected traffic demands
and control possibilities. The traffic demand on the networklargely depends on the
origins and destinations in the network. The traffic demand thus can be influenced by
changing important origins and destinations. Existing origins and destinations cannot
be changed within a short period, but via granting construction licenses the location
of buildings and houses can be influenced, e.g., by allowing companies at special
locations only, and residential buildings at others only. When a new residential or
business area is developed, the location of the main originsand destinations can be
selected beforehand. This can lead to the integrated designof the road network and
the location of the main origins and destinations, which canprevent a mismatch be-
tween road capacity and demand, and reduce the negative effects of the traffic on the
surroundings.
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Appendix A

Route guidance during
maintenance works

In this appendix we perform a simulation case study, in whichwe consider the road network
around the Dutch city of Eindhoven. During the years 2008 to 2013 maintenance works will
be performed on this network, combined with a reconfiguration of the freeway part of the
network. It can be expected that this will lead to large traffic problems. In this appendix we
propose a route guidance method to reduce these traffic problems by re-routing the traffic
flows. With this method, we will illustrate the possibilities of influencing the route choice
of drivers on purpose during construction works.

We first give a general overview of maintenance/reconstruction works and the traffic
management during such works. Next, we describe the networkof Eindhoven and focus
on the expected traffic problems during the works. Then we make a detailed model of the
network, which is used as a basis for the case study. Then we design a basic system for
route guidance, which will reduce the travel time influencing the route choice of the drivers.
Finally, we present some simulation results. The work described in this appendix is based
on [69] and [70].

A.1 Maintenance works

Maintenance or reconstruction works are necessary to keep the road network safe and up-
to-date, but they always come with negative side-effects for the traffic operation during
the period that the works are performed. Lanes or complete roads have to be narrowed
or closed, the maximum speed has to be reduced, and the neighboring roads have to deal
with an increase in demand. All this leads to longer travel times and more delay for the
road users. In The Netherlands the deterioration of the traffic operation in a construction
zone has direct consequences for the traffic operation in a large part of the surrounding
network due to the large number of roads in a relatively smallarea. Currently, the difference
between available capacity and traffic demand is small, and much more inconvenience due
to maintenance works cannot be tolerated. However, many parts of the Dutch road network
need maintenance or reconfiguration to be able to cope with the current and future traffic

159



160 A Route guidance during maintenance works

demands. Therefore in The Netherlands the tendency is that more and more effort is put into
the investigation and analysis of the traffic operation during maintenance or reconstruction
projects, see, e.g., [52, 151, 171].

Also in the US the traffic operation during road maintenance works is a topic of cur-
rent research. The US Department of Transportation, and especially the Federal Highway
Department, has developed a general optimization process to minimize the impact of recon-
struction projects on the traffic operation, such as extra congestion and an increase in the
number of incidents [117]. Further, a strategy for finding anoptimal maintenance plan is
described in [34], and the reaction of road users to dynamic route information at freeway
work zones is investigated in [74]. In [74] the estimated travel time to the end of work zone
was presented to the drivers. Showing these travel times actually resulted in the selection of
an alternative route by 7 to 10% of the road users.

A.2 The network around Eindhoven

For the case study, we consider the network around Eindhoven. The city of Eindhoven is
located in the south of The Netherlands. The network around the city is selected since the
city attracts a large amount of traffic due to the presence of large company areas and a large
shopping center, and since routes for long-distance traffictoward Belgium and Germany
pass the city. This combination of local and long-distance traffic forms a challenge for
the road authorities, since the two types of traffic use the same road network, but have
different needs. Furthermore, the capacity of the road network is not enough to handle
the current demand, and thus a reconstruction is required toincrease the capacity. During
this reconstruction the road capacity will be reduced even more. This will increase the
importance of traffic control measures, which should be usedto keep the efficiency of the
road use at an acceptable level.

The selected network has several road administrators. The main road network contain-
ing the freeways is administered by the Dutch Ministry of Transport, Public Works and
Water Management, and the underlying network is administered by the provincial govern-
ment, the city of Eindhoven, and the governments of the surrounding villages, depending on
the location of the different roads. These road administrators are responsible for the main-
tenance, traffic operation, and safety on the roads. There exists an organization that helps
the different parties with issues concerning the road administration. This organization is the
SRE (‘Samenwerkingsverband regio Eindhoven’, the cooperation association of the region
Eindhoven). The SRE initiates, stimulates, and coordinates the cooperation between the 21
communities that form the region of Eindhoven.

The current road network is shown in Figure A.1. For this casestudy we consider
origins/destinations T1, T2, and T3, junctions P and S, and on-ramps/off-ramps Q and R,
as marked in the figure. The main freeways in the network are the A58 located at the north
side of the city, the A2 connecting T2 and T3, and the A67 connecting T1 and T3, with
junctions at Batadorp (T2), De Hogt (P), and Leenderheide (S). Important on-ramps and
off-ramps are Veldhoven Zuid (U), Waalre (R), and the High Tech Campus (Q). Major local
roads are the ring road around the center of Eindhoven, the connections between this ring
road and the freeways, and the roads to the surrounding villages. We mainly consider the
southern part of the network during the case study. A simplified representation of this part
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Figure A.1: The network of Eindhoven.

of the network is presented in Figure A.2, which shows the origins/destinations T1, T2, and
T3, junctions P and S, and on/off-ramps Q, R, and U, and the connecting freeways.

There are three important routes in the network:

• T1 - T2, which is actually the connection from the A67 to the A2, for traffic traveling
from the south to the north of the Netherlands and vice versa.

• T1 - T3, the A67 from west to east and vice versa.

• T2 - T3, the A2 from north to south and vice versa.
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Figure A.2: Schematic representation of the part of the network that is considered during
the case study.

A.2.1 Paramics model of the network of Eindhoven

The network of Eindhoven, as shown in Figure A.1, will be modeled with a detailed micro-
scopic model. The obtained model will be used as a basis for the case study. To create this
model the microscopic modeling and simulation tool Paramics [137] is used. Paramics is a
suite of software tools used to simulate the movement and behavior of individual vehicles
on urban and freeway road networks. It contains three models, a car-following model, a
lane-changing model, and a route choice model. Based on these models the individual ve-
hicle movements and the interactions between the vehicles in the network are determined.
This results in a detailed simulation of the traffic flows on the whole network.

Before actually starting to construct the model, the numberof roads that should be in-
cluded in the model of the network of Eindhoven must be determined. We have decided to
model all freeways. The number of modeled urban roads is based on a trade-off between ac-
curacy and complexity, since including more roads means increasing the complexity, which
increases the required computational effort. We have selected the major urban roads that
handle a large part of the local traffic, and the roads that areused as secondary route by the
long-distance traffic in case of incidents on the freeway. These are the roads N265, N69,
N270, and connections between Eindhoven and Veldhoven, Eersel, Waalre, and Best. Fur-
ther, we model the network south-west of the freeways more thoroughly, since this part is
used for the simulation study. The final network as modeled inParamics is shown in Figure
A.3.

Information about links, nodes, and geometric properties of the network of Eindhoven is
obtained form a static Omnitrans model [118, 146], owned by the SRE. The demand is also
derived from the demands of this Omnitrans model. In the Omnitrans model static demand
information is aggregated over four time periods: morning peak, evening peak, rest of the
day, and twenty-four hours. For each origin in the network, the mean demand during the
selected period is given. For the case study we consider the morning peak between 6:30
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Figure A.3: Network that is modeled with Paramics.

a.m. and 9:00 a.m., since during this period the demand is thehighest, and thus many traffic
problems can be expected. Within Paramics, the demand on thenetwork is represented with
a static Origin-Destination (OD) matrix, which contains mean values of the demand for
each origin-destination pair. The demands of the Omnitransmodel are used to determine
the entries in this OD-matrix. To obtain a more dynamic demand, Paramics multiplies these
static demands with a demand profile, which is equal for all origins. The profile that we
have selected is based on flow measurements on the A67 freeway, and shown in Figure A.4.

The Paramics software offers three different methods to assign the traffic flows to the
network: all-or-nothing assignment, stochastic assignment, and dynamic feedback assign-
ment. For the case study we select the dynamic feedback assignment, which assumes that
drivers will adapt their route choice based on the current traffic situation on the network.
The feedback time is set to 5 minutes, which is short enough toobtain accurate reactions on
changes in the traffic situation, and long enough to prevent fast switching. Factors that in-
fluence the route choice of the drivers are the travel time fora trip and the distance traveled,
where the travel time is selected to be twice as important as the traveled distance, since ac-
cording to [18] travel time is one of the most important aspects influencing the route choice.

Two types of measurement data from the network of Eindhoven are available to validate
the results obtained with the model. The Dutch Ministry of Transport, Public Works, and
Water Management gathers measurements with loop detectorson the freeway, with a detec-
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Figure A.4: Demand profile during the morning peak. For each origin a static demand
is defined, which is multiplied with the factor that is specified in the demand
profile to obtain a dynamic demand.

tor at every stretch of 500 m. These detectors measure, amongothers, the average flows for
every minute. In the urban area manual counts are performed by the SRE on the ring road
around the center, and on the provincial road connecting T1 and U via Veldhoven. These
counts can be translated into average flows for these roads. The obtained average flows are
compared with the simulated flows of the Paramics model. The difference between the flows
was between 2.47% and 13.89%. This is not an excellent result, and before the model can
be used in practice, a more extensive calibration should be performed. However, the results
obtained with this study can be used to illustrate the possible effects of route guidance, but
the actual improvement will differ from the improvement that would have been obtained
with a more accurate model or in reality.

A.3 The network during the maintenance works

During the reconstruction works, the configuration of the network of Eindhoven will be
changed such that the current freeway configuration, with two lanes and a peak lane in each
direction of the freeways, will be reconfigured into a configuration with two times two lanes
in each direction. In this new configuration, the capacity ofthe freeways will be improved by
separating the long-distance and the local traffic. The currently existing two-lane freeways
will serve as long-distance freeways and the newly created two-lane freeways, parallel to
the existing freeways, will serve as freeways for local traffic. These new freeways will be
connected to the underlying network with many on-ramps and off-ramps, to facilitate traffic
entering and leaving the city. The three major junctions (T2, P, and S) will facilitate the
transition between the long-distance and the local freeways.

The case study focuses on the maintenance works around junction P. The link from T1
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Figure A.5: Part of the network that is considered during thecase study.

to T2 will not be available for a period of three years, from 2009 to 2011. We propose a
dynamic route guidance strategy that can be used to reduce the delay that occurs due to this
closure.

Junction P, see Figure A.5, facilitates the traffic from T1 toT2 as well as from T1 to
T3. When the connection between T1 and T2 will be removed, the traffic on the route T1
→ T2 will have to select another route. The most logical alternative route follows the urban
road through Veldhoven. The capacity of this road however isnot high enough to facilitate
the resulting large demands, and the queues that will appearin the residential areas around
this road will cause discomfort and extra pollution. For thecase study, we assume that the
use of this road will be prevented by closing it for long-distance traffic. Then three different
routes remain available for the traffic from T1 to T2. For these routes, the drivers should
travel from T1 in the direction of T3, and then make a U-turn atexit Q, R, or S, and then
continue toward T2, as shown in Figure A.6.

Due to the layout of the network, a problem will appear when all drivers from T1 to T2
use exit Q to make their U-turn, see Figure A.7. The resultingtraffic flows will lead to a
large flow from T1 to Q, which will have to cross the already existing large flow of drivers
that travel from T2 to T3. The available space for the weavingbetween the two traffic flows
is very limited, and thus the weaving will strongly influencethe traffic flows and create
congestion. This congestion will spill back into the upstream directions, toward T1 and T2.

The other two exits that are available to make a U-turn do not have this negative effect.
Re-routing the traffic along these routes will reduce the delay that is experienced during
the maintenance works. However, the travel distance on these routes is longer, so a control
strategy has to be developed to incite drivers to use these routes.
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Figure A.6: Alternative routes that are available when the direct connection from T1 to T2
via P is under construction.
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Figure A.7: Road stretch between P and Q where the traffic fromT1 to Q crosses the traffic
from T2 to T3.
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Figure A.8: Controlled freeway stretch with locations of the DRIPs, the ramp metering in-
stallation, and the loop detectors.

A.4 Proposed route guidance system

To incite drivers that travel from T1 to T2 to use exits R and S of the freeway to make their
U-turn, we propose a route guidance system that is a combination of two measures, off-
ramp metering and providing information on dynamic route information panels (DRIPs).
The measures are located in the network as shown in Figure A.8. The first DRIP is located
at T1 before junction P, the second DRIP is located between exits Q and R, and the off-ramp
metering installation is located at exit Q.

A basic vehicle-actuated control method is used. With this control method, we will
show the possibilities of dynamic route guidance, and justify the development of advanced
route choice controllers, as done in Chapters 3 and 4. The main goal of the control strategy
is to reduce the congestion in the network. A large part of this congestion is caused by the
weaving behavior on the stretch P→ Q. Improving the flow passing this stretch will reduce
the congestion significantly, and is thus a goal of the control methods.

We will now describe the control strategies that are used forthe control measures that
have been selected. The methods are basic switched-controlmethods, which are used in
practice for, e.g., on-ramp metering installations [150].

The off-ramp metering installation uses measurements of the detection loopu1, located
between P and Q. The control strategy that is applied is shownin Figure A.9. If there is no
congestion, the off-ramp metering installation is off. Whenthe measured speedvu1 at the
detector location drops below 30 km/h the ramp metering installation starts metering with
a fixed metering rate. This static metering rate is selected such that a queue appears at the
off-ramp, which will discourage drivers to make a U-turn at exit Q. When fewer vehicles
take the exit, the congestion due to the weaving will decrease, and finally the measured
speed will be above 60 km/h, and the off-ramp metering installation will be turned off.

For the DRIPs we consider two different control strategies.The first strategy uses only
DRIP 1. This strategy is presented in Figure A.10. The trafficis measured with detectoru2
at exit Q and with detectoru3 at exit R. If there is no congestion, the DRIP gives the advice
to take exit Q. If the speed at detectoru2 drops below 30 km/h, the DRIP advises to take
exit R. If the speed at detectoru3 also drops below 30 km/h, the advice switches to exit S.
If the speed at detectoru3 becomes higher than 60 km/h, the advice is to take exit R, and



168 A Route guidance during maintenance works

OFF ON

vu1 < 40 km/h

vu1 > 60 km/h

Figure A.9: State diagram for the ramp metering installation.
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Figure A.10: State diagram for the DRIP when only 1 DRIP is active.

if the speed at detectoru2 becomes higher than 60 km/h, the advice is to take exit U. With
this algorithm a queue appears at exit Q, and when this queue reaches the detector, traffic
is encouraged to take exit R. When the queue at this exit reaches the detector before exit R,
traffic is guided toward exit S.

The second control strategy for the DRIPs uses both DRIPs. The first DRIP switches
between two advises: ‘take exit Q’ and ‘take exit R or S’, see Figure A.11(a). Which
advice is selected depends on the measurements obtained with detectoru2. The second
DRIP specifies this advice. When the first DRIP advises to take exit Q, the second DRIP
is off, see Figure A.11(b). If the first DRIP advises to take exit R or S, the second DRIP
advises to take exit R if the speed at detector locationu3 is above 60 km/h, while it advises
to take exit S if this speed is below 30 km/h. The difference with the first control strategy is
that the delay between the moment that the choice between making a U-turn at exit R or at
junction S is made and the moment that the drivers have reached the selected exit is smaller
for the second strategy, which means that the controllers can more effectively react on the
measurements.

The values that are selected for the thresholds have a large impact on the performance
of the controllers. The values that are used for this case study are shown in the figures. The
value of the lower threshold is selected lower than the speedcorresponding to the critical
density. This to prevent that the density will exceed the critical density, since when the
critical density is reached congestion will appear. The upper threshold is selected in such
a way that it is approximately equal to the speed at which freeflow appears. To improve
the performance of the controllers the values for the thresholds should be optimized with
respect to the performance of the controllers. However, forthe current case study we used
these initially selected values.

It might be expected that the strategy with 2 DRIPs will always perform better than the
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Figure A.11: State diagram for the DRIPs when both DRIPs are active.

strategy that uses only 1 DRIP. However, the purchase and maintenance costs of DRIPs are
high, and the costs of the second DRIP might not even out against the obtained improve-
ments in the travel time. This makes it useful to consider both strategies, and to compare
them with respect to their costs and benefits.

A.5 Simulation study

With a simulation study we illustrate the effect of the routeguidance system. For this study,
the control measures have been implemented in the Paramics model of Eindhoven by means
of agents, using the test bed for multi agent systems for dynamic traffic management, which
is described in [174]. We first describe the set-up of the simulation study, and then we
present the obtained simulation results.

A.5.1 Set-up of the simulation study

The designed control system has been tested for the traffic demand of the morning peak
between 07:00 a.m. and 09:00 a.m. During this period the demand from T1 to T2 is the
largest, and thus the congestion is the most severe. In the network there are already control
measures present, e.g., speed limits for incident detection, and traffic signals at local roads
near the exits. These control measures are implemented in the model, and perform their
control actions simultaneously with the newly developed dynamic route guidance strategy.

The percentage of the vehicles that comply to the route advice on the DRIPs should be
selected. In literature, values between 7% and 14% are presented [51, 74, 90]. Since we
expect that during maintenance works drivers are more willing to comply, we select a value
of 25% for our case study.
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We will perform three different simulations. During the first simulation no control will
be applied. During the second simulation the off-ramp metering installation is active, and
the first strategy for the DRIPS, with only DRIP 1, is applied.During the third simulation,
the off-ramp metering installation and both DRIPs are active, using the second strategy for
the DRIPs.

The performance of the control strategies will be evaluatedwith respect to different cri-
teria. First of all, the outflow of the freeway stretch between P and Q will be considered. The
controller should increase this flow. Second, the delays experienced due to the maintenance
works on the stretches between P and S, S and P, and T1 and P are considered, since at these
stretches the most traffic problems appear. Third, the travel times on important routes in the
network will be considered. The controllers should decrease the travel time from T1 to T2
and T3, without increasing the travel times in other directions too much.

A.5.2 Simulation results

We will now describe the results of the three different simulations. First, we give an
overview of each simulation, and next we compare the results.

In the first simulation, where no control is applied, the expected congestion due to the
weaving behavior appears at the stretch P→ S. The conflicting streams T1→ T2 and T2→
T3 cause this congestion, which spills back for several kilometers into the freeway sections
upstream of the weaving section, blocking the traffic flow originating from T1 as well as the
traffic flow originating from T2.

The second simulation uses off-ramp metering and only one DRIP. At the start of this
simulation DRIP 1, located upstream of the junction gives the advice totake exit Q. When
the demand increases, the weaving behavior between the junction, and the first exit causes
the traffic to slow down, which announces upcoming congestion. When the speed at this
weaving section drops below the threshold of 30 km/h the off-ramp metering installation
is activated. At the off-ramp of exit Q, the flow leaving the freeway is metered such that a
traffic jam is created on the off-ramp. When this jam reaches the end of the off-ramp, but
does not block the slip-lane of the freeway, the DRIP noticesthe congestion on exit Q and
gives the advise totake exit R. When due to the extra traffic making use of exit R, this exit
becomes also fully loaded, the DRIP advises totake exit S. When an exit queue becomes
empty, the advice switches back to the previously displayedadvice.

In the third simulation in general the same scenario as in thesecond simulation occurs,
the only difference being that vehicles that have already passed the first DRIP can be timely
informed to change their route. This means that for these vehicles the time between the
moment that the advise is given and the moment of the actual route choice is reduced. This
results in a decrease of the number vehicles entering the queue when the off-ramp of the
exits R is already full and therefore decreases the congestion.

The flows that are present in the network during the simulations are presented in Table
A.1. In the first column of the table the outflow of the weaving area between P and Q is
listed. The other columns present the flows using exits Q, R, and S. The first row gives the
results without control, while the second and third row present the results with control using
off-ramp metering and respectively one and two DRIPs. The goal of the control strategies
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P→ Q Q R S
No control 9221 2177 1551 440
RM + 1 DRIP 9852 2021 1646 918
RM + 2 DRIPs 9703 2047 1448 1036

Table A.1: Vehicle counts (number of vehicles per two hours)at different locations for the
no control case and the two control methods, where RM is the abbreviation for
ramp metering installation.
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Figure A.12: Delays per vehicle on the stretches P→ S and S→ P.

was to increase the outflow of the stretch P→ Q, which both of them do. They reach this
by leading more traffic to the other exits, which indeed reduces the influence of the weaving
behavior and thus increases the outflow. The strategy with two DRIPs incites more drivers to
take exit S compared to the strategy with one DRIP, and thus obtains the best performance.

The flow at the stretch P→ Q increases when the controllers are used. However, the
delay on the stretch P→ S is not reduced, as shown in Figure A.12, where the first vertical
bar presents the delay for the simulation where no control isapplied, the second bar shows
the situation where off-ramp metering and 1 DRIP are used, and the last bar gives the delay
for the simulation with off-ramp metering and two DRIPs. Thedelay at the stretch P→
S is equal or even higher in the situations where control is applied. This is due to the fact
that more drivers make a U-turn at exits R and S, and thus stay longer at the stretch P→ S
increasing the delay. Also, the delay into the direction S→ P is higher than without control.
This is due to the fact that the drivers that make a U-turn at intersections R and S also use
the stretch S→ Q longer, causing a larger delay in this direction. This effect is the largest
for the controller with two DRIPs, since with this controller the largest number of drivers
takes exit S. This illustrates that for the stretch P→ S itself the controllers are not able to
prevent the congestion. However, the controllers can reduce the spill-back of the traffic jam
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Figure A.13: Delays on the stretch T1→ P.

into the upstream direction by increasing the number of vehicles that passes the stretch P→
Q. This increases the outflow of the upstream stretches, and thus reduces the delay on these
stretches, as shown for the stretch T1→ P in Figure A.13.

The actions of the controllers influence the traffic flows in all directions. Figure A.14
shows the travel times for important routes in the network. The travel time on the route T1
→ T2 is the highest, since the drivers on this route have to makethe U-turn. The presented
travel time is the weighted average over the different exitsthat are used for the U-turn. Other
routes that have high travel times are T1→ T3 and T2→ T3. The traffic flows on these
routes encounter the congestion that spills back from the stretch P→ Q, which increases
the travel times on these routes. The first controller with 1 DRIP is not able to significantly
reduce the travel times on these routes, mostly due to the delay that is caused by the extra
vehicles that cause a queue on the stretch Q→ R. The second controller with 2 DRIPs is
able to divert more vehicles from this queue toward exit S, which reduces the travel times on
these routes. The routes T3→ T1 and T3→ T2 overlap with the routes T1→ T2 only after
the U-turns. The travel time on route T3→ T2 is only influenced by the extra traffic that
uses the stretch S→ P, and thus increases when the controllers are used. The traffic flow on
route T3→ T1 has to cross the traffic flow that originates from on-ramp Q traveling to T2.
This means that the travel time in the uncontrolled situation is high, and that the use of the
controllers can reduce the weaving behavior and decrease the travel time significantly. The
second controller slightly increases the travel time due tothe fact that more vehicles use the
route.

In general, both control methods are able to improve the outflow of the freeway link
between P and Q, and thus reduce the delay on the route from T1 to T2. This however leads
to an increase in delay and travel times on other routes. Whichroutes experience the largest
delay depends on the use of one or two DRIPs.
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Figure A.14: Travel times on important routes in the network.

A.6 Cost-benefit trade-off

Installing DRIPs in the network is expensive. This means that before installing a DRIP, the
costs should be compared to the benefits of the DRIP.

The costs of a DRIP consist of purchase and installation costs, and maintenance costs.
The purchase and installation costs of a DRIP are around¤ 290000, and the maintenance
of a DRIP costs¤ 5000 each year according to the Dutch Ministry of Transport,Public
Works, and Water Management. Assuming that the DRIPs are used during the three years
that junction P will be closed, this results in a total cost of¤ 305000 for the duration of
the reconstruction works at junction P (3 years). The loop detectors and the ramp metering
installation are already present in the current network, orshould be used in the network after
the reconstruction. So to determine the costs of the controlmethods, only the costs of the
DRIPs should be considered. This means that the first controlstrategy, which uses only one
DRIP, costs¤ 305000, and that the second control strategy with two DRIPs costs¤ 610000.

The benefits of a traffic control method are expressed in the reduction of the delay that
they obtain. Each vehicle delay hour costs 20 Euro. The totaldelay in the uncontrolled
situation is 672 h per moring peak, which is 1.4663107 h for all morning peaks during the
considered period of three years, which amounts to 14.7 million euro. The total delay for
the situation where the first route guidance method with off-ramp metering and one DRIP
are used is 633 h per morning peak, which is 4.67·105 h, amounting to 13.8 million euro.
The daily delay for the second controller with off-ramp metering and two DRIPs is 527.4 h
per day, which costs in total 11.5 million euro for the considered period.

An overview of all costs and benefits is presented in Table A.2. The first column presents
the costs of the DRIPs, the second the costs of the vehicle delay hours. The third column
presents the benefits that are obtained with respect to the nocontrol case. The last column
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equipment costs delay costs benefits factor
no control - 14.7 - -
RM + 1 DRIP 0.305 13.8 0.81 2.7
RM + 2 DRIPs 0.610 11.5 3.1 5.1

Table A.2: Costs and benefits of the dynamic route guidance methods (m¤).

gives the ratio between the benefits and the costs. Normally,a measure is implemented by
the Dutch Ministry of Transport, Public Works, and Water Management when its benefits
are four times as much as that it costs. This means that the method with one DRIP provides
not enough benefits to justify the installation, while the method with two DRIPs does. But
note that in other countries other factors can be used, and that the possibilities to use the
DRIPs after the reconstruction period can have an impact on the choice to install one or two
DRIPs.

A.7 Conclusions

We have performed a case study on the network of Eindhoven, which will undergo a major
reconstruction in the coming years. The situation during this reconstruction has been used
to illustrate the potential benefits of dynamic route guidance. First, a microscopic model
of the network has been made using the modeling software Paramics. Then, a basic route
guidance method has been developed, which gives an indication of the effects that could be
reached with route guidance. Also, a cost-benefit trade-offis performed to compare differ-
ent variants of the developed route guidance method. The obtained results are encouraging,
and form a basis for the development of advanced route choicecontrollers.
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Samenvatting

Motivatie
De capaciteit van het huidige wegennetwerk is niet groot genoeg om de verkeersvraag aan
te kunnen. Dit zorgt ervoor dat files op het wegennet een dagelijks terugkerend verschijnsel
zijn geworden. Hoewel het een illusie is dat het fileprobleembinnen een paar jaar volledig
opgelost kan worden, kan de huidige situatie wel verbeterd worden. Dit is noodzakelijk
omdat files nadelige gevolgen hebben voor weggebruikers, zoals langere en onbetrouwba-
re reistijden en hogere kosten. Ook hebben files een nadeligeinvloed op de omgeving en
de omwonenden: ze veroorzaken vervuiling en geluidsoverlast en zorgen voor onveilige
situaties in bijvoorbeeld woonwijken en winkelcentra. Hetdoel van het onderzoek dat be-
schreven is in dit proefschrift is het ontwikkelen van methodes om het verkeer te regelen
waarmee de situatie verbeterd kan worden voor zowel de weggebruikers als voor de omge-
ving.

Gecombineerde regeling van snelwegen en locale wegen
Doordat er steeds meer wegen komen op een klein oppervlak, wordt de invloed die de
verschillende soorten wegen op elkaar hebben steeds groter. Om het verkeer op plaatsen
waar snelwegen en lokale wegen sterk met elkaar verbonden zijn, effectief te kunnen blij-
ven regelen, moeten de maatregelen op beide soorten wegen gekoppeld worden. Hiervoor
ontwikkelen we een model dat zowel het snelwegverkeer als het stadsverkeer kan beschrij-
ven. Voor het snelwegverkeer gebruiken we met het bestaandemodel METANET. Voor het
stadsverkeer gebruiken we een wachtrijmodel ontwikkeld door Kashani en Saridis, uitge-
breid met horizontale rijen, het blokkeren van kruispuntenen een kleinere simulatietijdsstap.
De twee modellen worden met elkaar verbonden door het modelleren van toe- en afritten.
Het resultaat is een efficiënt model dat geschikt is voor gebruik in modelgebaseerde on-line
verkeersregelmethoden. We ontwikkelen een regelmethode gebaseerd op ‘model predictive
control’ (modelgebaseerd voorspellend regelen), waarbijeen voorspelling gemaakt wordt
van de verkeersstromen, en aan de hand van deze voorspellingde beste instellingen voor de
maatregelen bepaald worden. Voor het maken van de voorspelling gebruiken we het hier-
boven beschreven model voor snelwegen en locale wegen.

Regelen van routekeuze
Verkeersmaatregelen beïnvloeden indirect de routekeuze van weggebruikers. Dit effect kan
gebruikt worden om de efficiëntie van de maatregelen te vergroten. Het routekeuze-proces
bestaat uit twee delen: de routekeuze binnen een dag en de routekeuze van dag tot dag.
De routekeuze binnen een dag beschrijft de keuzes die weggebruikers maken terwijl ze
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onderweg zijn, terwijl de dag tot dag routekeuze beschrijfthoe de voorkeur voor een route
verandert over verschillende dagen.

Eerst bekijken we de keuze binnen een dag, met als voorbeeld een toeritdoseringsin-
stallatie. Deze installatie zorgt voor een rij op de toerit die de reistijd via deze toerit langer
maakt. Als gevolg van deze langere reistijd zullen sommige weggebruikers een andere route
kiezen. We ontwikkelen twee verschillende modellen die diteffect beschrijven, en gebruikt
kunnen worden in de regeling van de toeritdoseringsinstallatie: een dynamisch toedelings-
model en een routekeuzemodel gebaseerd op een look-up tabel. Op deze manier kan de
regelmethode voor de toeritdosering verbeterd worden.

De routekeuze van dag tot dag beschrijven we met behulp van het tweede model, ge-
baseerd op de look-up tabel. Hierbij worden de waardes in de tabel aangepast met be-
hulp van ‘Bayesian learning’. Het model veronderstelt dat de routekeuze gebaseerd is op
een combinatie van de huidige voertuigdichtheid en de reistijden op eerdere dagen. Met
dit model bekijken we behalve toeritdosering ook de effecten van afritdosering en de re-
sultaten die bereikt kunnen worden met het tonen van reistijdinformatie op dynamische
route-informatiepanelen. Hierbij nemen we aan dat als de reistijd op deze panelen duidelijk
verschilt van de reistijd die de weggebruikers verwachten,een deel van de weggebruikers
een andere route zal kiezen. We ontwikkelen een modelgebaseerde regelmethode die de
reistijdinformatie op dynamische route-informatiepanelen combineert met variabele snel-
heidslimieten, om zo de routekeuze van weggebruikers actief te kunnen beïnvloeden.

De routekeuzemodellen zoals hiervoor beschreven zijn rekenintensief. Daarom heb-
ben we ook een eenvoudig routekeuzemodel ontwikkeld dat de routekeuze van dag tot dag
beschrijft. Op basis van dit model kunnen relatief snel schattingen van het routekeuzege-
drag gemaakt worden, waardoor het model geschikt is om een eerste indruk te krijgen van
de verkeersverdeling, om gebruikt te worden in on-line optimalisatie-algoritmes of om als
startpunt te gebruiken voor complexere optimalisatie-algoritmes. In dit proefschrift gebrui-
ken we het model in een regelmethode voor variabele snelheden en intensiteitsbeperkingen.
Het doel van deze methode is het beïnvloeden van de routekeuze zodat de prestatie van het
verkeersnetwerk verbeterd kan worden.

Het installeren van maatregelen in de praktijk
Voordat verkeersmaatregelen in de praktijk toegepast kunnen worden, moet aandacht be-
steed worden aan verschillende praktische zaken. We geven een kort overzicht van onder-
werpen die van belang zijn, en onderzoeken specifiek de invloed van het bepalen van het
gemiddelde van de snelheidsmetingen. Hiervoor vergelijken we verschillende methoden
om het gemiddelde te bepalen, namelijk het tijdsgemiddelde, harmonisch gemiddelde, ge-
ometrisch gemiddelde, plaatsgemiddelde en het geschatte plaatsgemiddelde gebaseerd op
de variatie van de instantaan gemeten snelheden van voertuigen in een segment en op de
variantie van de snelheden van voertuigen op het moment dat ze het meetpunt passeren. Elk
van deze methoden is toegepast in een snelheidsregeling op de snelweg, om de prestaties
van de regelaar te kunnen vergelijken.

Conclusies
Het verkeersnetwerk kan efficiënter benut worden als geavanceerde regelmethodes worden
gebruikt. Deze methodes kunnen bestaande en nieuwe maatregelen gebruiken om de kosten
voor de weggebruikers te verlagen en om de routekeuze van weggebruikers te beïnvloe-
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den, waardoor files en wachtrijen verminderd of verplaatst kunnen worden. Dit leidt tot
economische winst door de lagere reistijden, verbetert de leefbaarheid door het reduceren
van vervuiling en geluidsoverlast, en verbetert de veiligheid door het realiseren van lagere
voertuig-intensiteiten in woonwijken en stadscentra.
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Summary

Motivation
The growth of our road infrastructure cannot keep up with thegrowing mobility of people,
and the corresponding increase in traffic demand. This results in daily congestion on the
freeways. It is an illusion that the problem of congestion can be solved completely within
a few years, but it is possible to improve the current situation. This is necessary since the
congestion on the roads has disadvantages for the drivers, including long travel times and
high economic costs. It has also disadvantages for the surroundings of the roads, where
the increased traffic load results in e.g., pollution, noise, and unsafety in residential areas.
The goal of this thesis is to develop model-based traffic control methods that improve the
situation for the drivers as well as for the environment.

Mixed urban and freeway control
Due to the growing density of the road networks, freeways andurban networks become
tightly coupled. This requires that the control on the two types of roads should also be
coupled. Therefore we develop a mixed urban-freeway model that combines a macroscopic
freeway model with an urban queue length model. For the macroscopic model we use the
traffic flow model METANET. The urban queue length model is based on a model developed
by Kashani and Saridis, extended with horizontal queues, blocking effects, and a shorter
time step. The two models are coupled via the modeling of on-ramps and off-ramps. The
obtained macroscopic model can simulate traffic flows efficiently, and thus is suitable for the
use in a model-based control setting. We develop such a model-based control method that
uses model predictive control, with the mixed urban-freeway model as prediction model.

Route choice control
Control measures can also be used to influence route choice. Route choice is a complicated
process that can be divided into two main processes with a different time scale. The within-
day route choice focuses on the choices that drivers make during their trip, while the day-
to-day route choice describes the change in route choice from one day to the next.

We first discuss the effect of ramp metering on within-day route choice. By installing
a ramp metering installation at an on-ramp, the density – andthus the travel time – on the
freeway as well as on the on-ramp itself is changed, which influences the route choice.
We develop two different methods to include route choice in model-based controllers: a
dynamic traffic assignment model, and a model based on a look-up table determined via
Bayesian learning. Second, we investigate day-to-day route choice using the Bayesian
learning model. We assume that drivers base their route choice on a combination of the
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density and the corresponding travel times experienced on previous days. With the model
based on Bayesian learning, in addition to the on-ramp metering, we also briefly explore the
effects that can be obtained with the use of off-ramp metering. Another measure that can
be used to influence the route choice is displaying travel time information on dynamic route
information panels. Displaying travel times with a large enough difference can encourage
drivers to change their route choice. We model the drivers’ reaction on the route informa-
tion, and develop a controller that actively influences the route choice of the drivers using
information on dynamic route information panels in combination with variable speed limits.

Since route choice models as described above in general require large computational ef-
forts, we also formulate a simplified route choice model for day-to-day route choice that can
be used to obtain fast predictions of the route choice behavior, and that is suitable to obtain
a first impression of the traffic assignment, for use in on-line optimization algorithms, or
as initial value for more complex optimization algorithms.We use this model in a model-
based control setting where the objective of the controlleris to influence the route choice,
and investigate in particular speed limit control and outflow control.

Practical control issues
To apply model based controllers in practice, several practical issues have to be considered.
We present a short overview of interesting issues, and next we explicitly investigate the ef-
fect of averaging method that is used for the speed measurements. We compare the time
mean speed, harmonic mean speed, geometric mean speed, timeaverage space mean speed,
and the estimated space mean speed based on instantaneous speed variance and based on
local speed variance. All averaging methods are applied in afreeway speed limit control
method, to investigate the influence of the averaging methodon the controller performance.

Conclusions
The current traffic infrastructure can be used more effectively when advanced control

algorithms are used. Existing traffic control measures can be used to decrease the costs for
the drivers, and to relocate the traffic flows via influencing the route choice. This results in
economical benefits due to shorter travel times, environmental benefits due to the reduction
of pollution and noise, and safety benefits due to the lower flows in urban areas.
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