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Next, I would like to thank Lucian Buşoniu at the Technical University of Cluj-Napoca.

I am grateful to him for all the discussions on research, for the detailed explanation of his

work, and for the good memories at conferences. It was a pleasure for me to work with him.

I also want to thank Zsófia Lendek for the nice dinner and great weekend trips in Romania.

Furthermore, I would like to thank the other members of the PhD committee, Dr. Jan

Komenda, Prof.dr. Bernd Heidergott, Prof.dr.ir. Kees Vuik, and Prof.dr.ir. Fred van Keulen,

for their valuable time and useful comments on the manuscript of this thesis.

I am also grateful to all my friends and colleagues at DCSC. I would like to express my

gratitude to Anahita, Anna, Anqi, Bart Karsbergen, Chengpu, Dieky, Edwin, Elisabeth, Fan,

Farid, Hai, Hildo, HuiZhen, Juan, Jun, Kim, Laura, Le, Maolong, Marco, Max, Mohammad,

Noortje, Patricio, Pieter, Reinier, Renshi, Sachin, Sadegh, Samira, Shu, Shukai, Shuai Liu,

Shuai Yuan, Subramanya, Vahab, Yashar, Yihui, Yiming, Yu Hu, Zhao, Zhe, Zhou. Many

thanks to Will van Geest for helping me with developing the C codes. I would like to thank

Hans Hellendoorn, Robert Babuška, Kitty, Esther, Heleen, Marieke, Kiran, and Saskia for

being very kind and helpful.

I would like to thank my friends Qingqing, Zi, Xiangrong, Bo, Xiaoyan, Huarong, Zhiyong,

Jianbin, Ran, Jingyi, Shijie, Jialun, Likun, Tao, Yu Sun, Changgong, and Zongwei for making

my life in Delft more colorful.

I would like to extend my gratitude to Prof. Qidi Wu, Prof. Li Li, Prof. Fei Qiao, Prof.

Weisheng Xu, and Prof. Jitao Sun in Tongji University, for their help and support.

Finally, my deepest gratitude goes to my family. I would like to thank my parents for their

unconditional love and support through my whole life. I thank my husband Yan for always

being there for me. Thank you for your listening, understanding, and encouragement. Last

but not least, my sweet daughter, thanks for your presence in our life.

Jia Xu, Shanghai, May 2019

i





Glossary

The symbols and acronyms that occur frequently in this thesis are listed as follows.

List of Symbols

Sets

R set of real numbers

R≥0 set of nonnegative real numbers

Z set of integers

Z≥0 set of nonnegative integers

[a,b] closed interval in R: [a,b] = {x ∈R|a ≤ x ≤ b}

(a,b) open interval in R: (a,b) = {x ∈R|a < x < b}

Functions

f : D → T function with domain of definition D and target T

O( f ) any real function g such that lim supx→∞

|g (x)|

f (x)
is finite

Matrices, Vectors, and Norms

R
m×n set of the m by n matrices with real entries

R
n set of the real column vectors with n components: Rn =R

n×1

In n by n identity matrix

AT transpose of the matrix A

Ai j , [A]i j entry of the matrix A on the i-th row and the j -th column

Ai ,· i-th row of the matrix A

A·, j j -th column of the matrix A

‖A‖p p-norm of the matrix A (p ≥ 1)

‖A‖∞ ∞-norm of the matrix A

xi i-th component of the vector x

‖x‖p p-norm of the vector x (p ≥ 1)

‖x‖∞ ∞-norm of the vector x

Model Predictive Control

Np prediction horizon length

Nc control horizon length

iii
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Max-Plus Algebra

⊕ max-algebraic addition

⊗ max-algebraic multiplication

ε −∞

Rε R∪ {−∞}

We use 2 to indicate the end of a proof or a remark.

Acronyms

MPC Model Predictive Control

DES Discrete-Event System

MPL Max-Plus Linear

SMPL Stochastic Max-Plus Linear

PWA Piecewise Affine

DOO Deterministic Optimistic Optimization

OPD Optimistic Planning of Deterministic
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Chapter 1

Introduction

1.1 Motivation of the research

Techniques to model, analyze and control man-made complex systems such as flexible

manufacturing systems, timetable dependent transportation networks, array processors,

communications networks, queuing systems, have received more and more attention from

both industry and academia. These systems are typical examples of discrete-event systems

(DES). The dynamics of DES are event-driven as opposed to time-driven, i.e., the behavior

of a DES evolves in time by the occurrence of events at possibly irregular (deterministic or

stochastic) time intervals. An event corresponds to the start or the end of an activity. If we

consider a production system, then possible events are: the arrival of raw materials, the

completion of a product on a machine, a machine breakdown, and so on.

There are many modeling and analysis techniques for DES [11, 28, 75], such as queuing

theory, Petri nets [102, 154], max-plus algebra [7, 74, 89], state machines, formal languages,

automata, temporal logic, perturbation analysis [76], generalized semi-Markov processes,

and so on. All these modeling and analysis techniques have particular advantages and

disadvantages. The selection of the most appropriate method from the above

methodologies depends on the system we want to model and on the goals we want to

achieve. In particular, the max-plus-algebraic approach allows us to determine and to

analyze many properties of the system, but this approach can only be applied to a subclass

of DES with synchronization but no choice. Synchronization requires the availability of

several resources at the same time, whereas choice appears when at a certain time a user

has to choose among several resources. Consider a production system consisting of a finite

number of machines that can manufacture several product types. Before we can assemble a

product on a machine, the raw materials (intermediate goods) have to be available and the

machine has to be idle. This reflects the synchronization feature. The starting time of a

machine is related to the maximum of the arrival times of the raw materials (intermediate

goods) and the time of completion of the previous product. The completion time of a

product on a machine is the sum of the starting time of the machine and the processing

time of the product. Hence, maximization and addition are the two basic operations of

max-plus-algebraic models. In addition, a product may be manufactured on one of several

machines that can process that product and that are idle at that time, so the product must

choose among those machines. However, there is no choice if each product type has been

assigned a fixed processing route.

Although in general DES lead to a nonlinear description in conventional algebra, there

1



2 1.1 Motivation of the research

exists a subclass of DES, namely DES with synchronization but no choice, for which we can

get a “linear” model in the max-plus algebra. Such systems are called max-plus linear (MPL)

systems. There exists a remarkable analogy between the basic operations of the max-plus

algebra (maximization and addition) and the basic operations of conventional algebra

(addition and multiplication). As a consequence, many concepts and properties of

conventional algebra also have a max-plus-algebraic analogue. Furthermore, this analogy

also allows us to translate many concepts, properties, and techniques from conventional

linear system theory to system theory for MPL systems. However, there are also some major

differences that prevent a straightforward translation of properties, concepts, and

algorithms from conventional linear algebra and linear system theory to the max-plus

algebra and max-plus-algebraic system theory for DES. MPL models were first introduced

in the 1960s by Cuninghame-Green [42, 43] and Giffler [59–61]. Later the theory of max-plus

algebra was further developed by Cuninghame-Green [44, 45] and this topic attracted more

attention, e.g., [35–37, 65, 66, 105–107]. The book [7] provides an extensive overview of

related work until the early 1990s. A more recent textbook on max-plus algebra and its

applications is [74]. Many results have been obtained for modeling and control of MPL

systems, see [1, 2, 27, 49, 58, 63, 69–71, 77, 79, 84, 95, 98, 124–126, 130, 136, 143, 144] and the

references therein.

In recent decades technological innovations have caused a considerable interest in the

study of dynamical processes of a mixed continuous and discrete nature. Such processes

are called hybrid systems [73, 93, 139] and they are characterized by the interaction of

continuous-variable models (governed by differential or difference equations) on the one

hand, and logic rules and DES (described by, e.g., automata, finite state machines, ets.) on

the other hand. Hybrid systems arise in many fields and some specific examples of hybrid

systems are temperature control systems, electrical networks with diodes and switches,

traffic networks, power networks, manufacturing systems, robots, fermentation processes,

etc. One particular feature of hybrid systems is that there exist many different modeling

frameworks [3, 15, 93, 139] (such as hybrid automata, timed Petri nets, piecewise affine

systems, ...), that offer a trade-off between modeling power and decision power, i.e., the

more accurate a model is, the more difficult it is to make analytic statements about the

model (often resulting in intractable, NP-hard or undecidable problems).

Piecewise affine (PWA) systems are defined using a number of non-overlapping

polyhedral regions in the input-state space, where in each region the system has affine

dynamics. Typical examples of systems that can be modeled using PWA systems are

electrical networks, mechanical systems subject to constraints, and systems subject to

saturation. In fact, PWA systems can be considered as one of the simplest extensions of the

well-known class of linear systems, that on the one hand can describe nonlinear

phenomena and also approximate nonlinear systems to any desired accuracy, and for

which on the other hand tractable analysis and control methods have been developed. The

earliest result on PWA systems is [127]. PWA systems have been studied by many

researchers [8, 10, 12, 32, 33, 50, 80, 81, 86, 87, 90, 112, 115, 121, 129, 131, 140, 145, 146, 153].

Model predictive control (MPC) [94, 114] has been developed for application in the

process industry, where it has become a very popular advanced control strategy. A key

advantage of MPC is that it is able to deal with multi-input multi-output systems and that it

can include constraints on input, outputs, and states. Furthermore, MPC can handle

structural changes, such as sensor or actuator failures and changes in system parameters or

system structure, by adapting the model. In essence, MPC uses a prediction model in
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combination with (on-line) optimization to determine a sequence of control inputs that

optimizes a given performance criterion over a given prediction window subject to various

operation constraints. The computed control inputs are applied to the system in a moving

horizon fashion (i.e., the first control input sample is applied to the system, after which the

new state of the system is measured or estimated and the whole optimization procedure is

repeated), which introduces feedback into the control loop.

In general, most MPC approaches for MPL systems and PWA systems subject to linear

constraints and/or general linear or piecewise objective functions result in mixed integer

linear programming (MILP) problems. Although there exist efficient solvers for MILP

problems, MILP is in essence an NP-hard problem, which implies that the computation

time required to solve the problem increases significantly if the size of the MPC problem

increases (e.g., when higher-order systems or longer control horizons are considered).

Hence, there is a need for efficient MPC approaches for MPL systems and PWA systems.

1.2 Research goals and approach

The main aim of this thesis is to develop efficient model-based optimal control approaches

for (stochastic) MPL systems and continuous PWA systems. In this thesis we will in particular

focus on the following topics:

1. improving the efficiency of current MPC approaches for MPL systems,

2. improving the performance of current MPC approaches for continuous PWA systems

(with linear constraints on the inputs and the outputs),

3. extension of MPC approaches to stochastic MPL systems.

To achieve these research goals, in this thesis we will consider the following approaches

to reduce the computational burden of the MPC optimization problem:

• Optimistic optimization algorithms

Optimistic optimization [18, 68, 100, 101, 132] is a class of algorithms that start from

a hierarchical partition of the feasible set and gradually focus on the most promising

area until they eventually perform a local search around the global optimum of the

function. A sequence of feasible solutions is generated during the process of iterations

and the best solution is returned at the end of the algorithm. The gap between the best

value returned by the algorithm and the real global optimum can be expressed as a

function of the number of iterations, which can be specified in advance.

• Optimistic planning algorithms

Optimistic planning [20, 22, 78, 96, 101] is a class of planning algorithms originating

in artificial intelligence applying the ideas of optimistic optimization. This class of

algorithms works for discrete-time systems with general nonlinear (deterministic or

stochastic) dynamics and discrete control actions. Based on the current system state,

a control sequence is obtained by optimizing an infinite-horizon sum of discounted

bounded stage costs (or the expectation of these costs for the stochastic case).

Optimistic planning uses a receding-horizon scheme and provides a characterization

of the relationship between the computational budget and near-optimality.
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• Stochastic model predictive control

Due to model mismatch or disturbances, uncertainties are often considered in the

prediction model of MPC. For the situation that the uncertainties are characterized as

random variables, stochastic MPC [54, 99] has emerged as a useful control design

method where usually the expected value of an objective function is optimized

subject to input, state, or output constraints. Due to the probabilistic nature of the

uncertainties, those constraints are usually formulated as chance constraints, i.e., the

probability of constraint violation is limited to a predefined probability level.

Stochastic MPC takes advantage of the knowledge of the probability distributions of

the uncertainties and is based on stochastic programming and chance-constrained

programming [25, 30, 53, 142].

1.3 Contributions of the thesis

The main contributions achieved in this thesis are listed as follows:

• We adapt optimistic optimization for solving the MPC optimization problem for MPL

systems. We consider MPC for MPL systems with simple bound constraints on the

increments of the control inputs. The objective function is a trade-off between the

output cost (i.e., weighted tardiness-earliness penalty with respect to a due-date

signal) and the input cost (i.e., feed as late as possible). A dedicated semi-metric is

developed satisfying the necessary requirements for optimistic optimization. Based

on the theoretical analysis, we prove that the complexity of optimistic optimization is

exponential in the control horizon instead of the prediction horizon. Hence, using

optimistic optimization is computationally more efficient when the control horizon is

small and the prediction horizon is large.

• The infinite-horizon optimal control problem for MPL systems is addressed. The

considered objective function is a sum of discounted stage costs over an infinite

horizon. We consider the increments of the control inputs as control variables and

the control space is discretized as a finite set. The resulting optimal control problem

is equivalently transformed into an online planning problem that involves

maximizing a reward function. We adapt an optimistic planning algorithm to solve

this problem. Given a finite computational budget, a control sequence is returned

and the first control action or a subsequence of the returned control sequence is

applied to the system and then a receding-horizon scheme is adopted. The proposed

optimistic planning approach yields a characterization of the near-optimality of the

resulting solution. The simulation results show that when a subsequence of the

returned control sequence is applied, this approach results in a lower tracking error

compared with a fintie-horizon approach.

• We further adapt optimistic optimization for solving the MPC optimization problem

for continuous PWA systems. The considered 1-norm and ∞-norm objective

functions are continuous PWA functions. The linear constraints on the states and the

inputs are treated as soft constraints and replaced by adding a penalty function to the

objective function. The proposed optimistic optimization approach is based on

recursive partitioning of the resulting hyperbox feasible set. We derive expressions for



Chapter 1 - Introduction 5

the core parameters of optimistic optimization and discuss the near-optimality of the

resulting solution by applying optimistic optimization. The performance of the

proposed approach is illustrated with a case study on adaptive cruise control.

• We extend optimistic optimization from a hyperbox feasible set to a polytopic feasible

set. More specifically, we propose a partitioning framework of the polytopic feasible

set satisfying the requirements of optimistic optimization by employing Delaunay

triangulation and edgewise subdivision. For this partitioning approach, we derive

analytic expressions for the core ingredients that are used for characterizing the

near-optimality of the solution obtained by optimistic optimization. When applied

for optimizing PWA functions, the proposed optimistic optimization approach is

computationally more efficient than MILP if the number of polyhedral subregions in

the domain is much larger than the number of variables of the PWA function.

• MPC for stochastic MPL systems with linear constraints on the inputs and the outputs

is considered. Due to the uncertainties, these linear constraints are formulated as

probabilistic or chance constraints. The proposed probabilistic constraints can be

equivalently rewritten into a max-affine form (i.e., the maximum of affine terms) if

the linear constraints are monotonically nondecreasing as a function of the outputs.

Based on the resulting max-affine form, two methods are developed for solving the

chance-constrained MPC problem for stochastic MPL systems: Method 1 uses Boole’s

inequality to convert the multivariate chance constraints into univariate chance

constraints for which the probability can be computed more efficiently. Furthermore,

Method 2 employs the multidimensional Chebyshev inequality and transforms the

multivariate chance constraints into constraints that are linear in the inputs. The

simulation results show that the two proposed methods are faster than the Monte

Carlo simulation method and yield lower closed-loop costs than the nominal MPC

method.

1.4 Outline of the thesis

The structure of this thesis is illustrated in Figure 1.1. Chapter 2 presents the background

knowledge required to understand the main contributions of this thesis. Chapter 3

addresses model-based control of MPL systems by using optimistic optimization and

optimistic planning respectively. In Chapters 4 and 5, optimistic optimization is applied to

solve the MPC optimization problem of continuous PWA systems and further the more

general optimization problem of continuous nonconvex PWA functions with a given

polytopic feasible set. In Chapter 6, we investigate efficient MPC approaches for stochastic

MPL systems with chance constraints.

More specifically, the thesis is organized as follows:

Chapter 2 Background

First, the basics of max-plus algebra, max-plus linear (MPL) discrete-event systems

and piecewise affine (PWA) systems are presented. Next, we provide a short

introduction to model predictive control (MPC) for general nonlinear systems.

Moreover, the formulations of MPC approach for MPL systems and PWA systems are

presented. Afterwards, we describe optimistic optimization algorithms as well as one
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particular algorithm, the deterministic optimistic optimization (DOO) algorithm

including its hierarchical partitioning framework, necessary assumptions, and

performance analysis. Optimistic optimization algorithms have been applied to

planning problems resulting in optimistic planning algorithms. In this chapter we

discuss one variant called optimistic planning for deterministic systems (OPD).

Chapter 3 Optimistic optimization and planning for model-based control of MPL systems

This chapter considers model-based control of MPL systems with continuous and

discrete-valued control variables respectively. Here control variables refer to the

increments of the control inputs. On the one hand, we apply DOO to solve the MPC

optimization problem of MPL systems with continuous-valued control variables,

which usually leads to a nonsmooth nonconvex optimization problem. Dedicated

semi-metrics are developed for different types of objective functions such that the

required assumptions of DOO are satisfied. On the other hand, we address the

infinite-horizon optimal control problem of MPL systems with discrete-valued

control variables. OPD is used to solve such problem where a sum of discounted state

costs over an infinite horizon is considered as the objective function.

This chapter is based on the papers [147–149].

Chapter 4 Optimistic optimization for MPC of continuous PWA systems

In general MPC for continuous PWA systems leads to a nonlinear, nonconvex

optimization problem. In this chapter we consider 1-norm and ∞-norm objective

functions subject to linear constraints on the states and the inputs. The feasible set is

transformed into a hyperbox by considering the linear constraints as soft constraints

and adding a penalty function to the objective function. Based on recursive

partitioning of the hyperbox, analytic expressions for the core parameters required by

DOO are derived. Then the guarantee on the performance of the solution returned by

the algorithm is discussed in terms of these parameters.

This chapter is based on the paper [150].

Chapter 5 Optimistic optimization of continuous nonconvex PWA functions

From the previous chapter, it is observed that the optimization of continuous

nonconvex PWA functions arises in the context of control of continuous PWA

systems. In order to get a hyperbox feasible set, the linear constraints on the states

and the inputs are treated as soft constraints and replaced by a penalty function. To

prevent this compromise, in this chapter we consider the optimization of continuous

nonconvex PWA functions over a given polytope with arbitrary shape. As a

consequence, we need to design an alternative partitioning approach instead of the

standard partitioning. We introduce a partitioning approach by employing Delaunay

triangulation and edgewise subdivision based on which DOO is applied to solve such

optimization problem. This leads to a better performance than the MILP method

when the number of polyhedral subregions in the domain of the PWA function is

large.

This chapter is based on the paper [151].

Chapter 6 MPC for stochastic MPL systems with chance constraints
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The behavior of an MPL system evolves in time by the occurrence of events at possibly

irregular time intervals. In practice, these time intervals may be not deterministic due

to stochastic durations of the activities. In this chapter we consider MPC for

stochastic MPL systems where the distribution of the stochastic uncertainties is

supposed to be known. Due to the uncertainties, the linear constraints on the inputs

and the outputs are formulated as probabilistic or chance constraints, i.e., the

constraints are required to be satisfied with a predefined probability level. Under the

assumption that the linear constraints are monotonically nondecreasing as a function

of the outputs, the proposed chance constraints are equivalently rewritten into a

max-affine form (i.e., the maximum of affine terms). Subsequently, two approaches

based on Boole’s inequality and Chebyshev’s inequality respectively are developed to

solve the chance-constrained MPC problem for stochastic MPL systems.

This chapter is based on the paper [152].

Chapter 7 Conclusions and recommendations

The thesis is concluded with the main contributions and some recommendations for

future research.
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Chapter 2

Background

In this chapter we first give a brief overview of max-plus linear systems and piecewise affine

systems. Next, we introduce model predictive control for general nonlinear systems and

present the formulation of model predictive control for max-plus linear systems and

piecewise affine systems. Subsequently, we provide a description of optimistic optimization

algorithms and optimistic planning algorithms.

2.1 Max-plus linear (MPL) discrete-event systems

Complex discrete-event systems (DES) include man-made systems, such as production

systems, railway networks, logistic systems, that consist of a finite number of resources

(e.g., machines, railway tracks) shared by several users (e.g., workpieces, trains) all of which

pursue some common goal (e.g., the assembly of products, transportation of people or

goods) [7]. The state transitions of such systems are driven by the occurrence of

asynchronous events. Events correspond to starting or ending of some time-consuming

activities (e.g., the start or completion of a processing step, the arrival or departure of a train

in a station). In general, DES lead to nonlinear descriptions in conventional algebra [7, 28].

However, there exists a subclass of DES for which we can get a “linear” model in the

max-plus algebra [7, 74], which has maximization and addition as its basic operations.

These systems are called max-plus linear (MPL) systems. In the next subsections, we

introduce some basic concepts of the max-plus algebra and of MPL systems.

2.1.1 Max-plus algebra

Define ε=−∞ and Rε =R∪ {ε}. For any x, y ∈Rε, define the operations ⊕ and ⊗ by

x ⊕ y = max(x, y), x ⊗ y = x + y.

The structure (Rε,⊕,⊗) is called the max-plus algebra [7, 45, 74]. The operations ⊕ and ⊗ are

called the max-plus-algebraic addition and max-plus-algebraic multiplication, respectively.

Many concepts and properties from linear algebra can be translated to the max-plus algebra

by replacing + by ⊕ and · by ⊗. The elements ε and 0 are called the zero element and identity

element, respectively, i.e., for any x ∈Rε, we have

x ⊕ε= ε⊕x = x, x ⊗ε= ε⊗x = ε, x ⊗0= 0⊗x = x.

9
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For matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε , the max-plus-algebraic operations can be

extended as follows:

[

A⊕B
]

i j = ai j ⊕bi j = max(ai j ,bi j ), i = 1, . . . ,m, j = 1, . . . ,n,

[

A⊗C
]

i l =

n
⊕

k=1

ai k ⊗ckl = max
k=1,...,n

(ai k +ckl ), i = 1, . . . ,m, l = 1, . . . , p.

The m ×n zero matrix εm×n in the max-plus algebra has all its entries equal to ε. The n ×n

identity matrix En in the max-plus algebra has the diagonal entries equal to 0 and the other

entries equal to ε. The max-plus algebraic matrix power of A ∈R
n×n
ε is defined as follows:

A⊗0

= En ,

A⊗k

= A⊗ A⊗k−1

, for k = 1,2, . . . .

Note that we use both linear algebra and the max-plus algebra in this thesis. Therefore,

we will always write ⊕ and ⊗ explicitly in all equations. The conventional multiplication (·)

is usually omitted.

2.1.2 MPL systems

MPL systems are characterized by synchronization (expressed by maximization, i.e., a new

operation starts as soon as all preceding operations have been finished), passing of time

(expressed by addition, the finishing time of an operation equals the starting time plus the

duration of activities), and the absence of choice. Synchronization requires the availability

of several resources at the same time (e.g., if we consider a production system, a processing

step can only start as soon as raw materials or intermediate products are available and the

previous cycle has been completed), whereas choice appears when some user must choose

among several resources (e.g., the absence of choice implies that a production system has

been assigned a fixed route schedule for each workpiece) [7]. MPL systems can be described

by equations of the following form:

x(k +1) = A⊗x(k)⊕B ⊗u(k), (2.1)

y(k) =C ⊗x(k), (2.2)

where the index k is the event counter, x(k) ∈ R
nx
ε is the state, u(k) ∈ R

nu
ε is the input, y(k) ∈

R
ny

ε is the output, and where A ∈R
nx×nx
ε , B ∈R

nx×nu
ε , and C ∈R

ny×nx

ε are the system matrices.

The elements of u(k), x(k), and y(k) are typically time instants at which input events,

internal processes, and output events occur for the k-th time. For example, if we consider

the MPL system (2.1)-(2.2) as a model of a manufacturing system, then u(k) represents the

k-th feeding times of raw materials, x(k) contains the k-th starting times of the production

processes, and y(k) gives the k-th completion times for the end products. Note that in

practice the event times can easily be measured; so we consider the case of full state

information in this thesis.

Since the inputs represent event times, a typical constraint of MPL systems is that the

input sequence should be nondecreasing, i.e.,

u(k +1)−u(k) ≥ 0, k = 0,1,2, . . . . (2.3)
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2.2 Piecewise affine (PWA) systems

Hybrid systems contain both continuous and discrete dynamics that interact with each

other. Typical examples of hybrid systems include temperature control systems, automotive

engines, chemical processes, robotic manufacturing systems, and air-traffic management

systems [3]. PWA systems [81, 127] are often used to model hybrid systems and have

received increasing attention since they are capable of describing hybrid phenomena and

since they are considered as the “simplest” extension of linear systems that can

approximate nonlinear and nonsmooth systems with arbitrary accuracy. Briefly speaking,

PWA systems are defined using a polyhedral partition of the state and input space where

each polyhedron is associated with an affine dynamical description. Next, we present some

definitions related to PWA systems and some descriptions equivalent to PWA systems.

2.2.1 Definitions

This section is based on [15, 113].

Definition 2.1 (Polyhedron) A polyhedron P is a convex set given as the intersection of a

finite number of closed half-spaces, i.e.,

P = {x ∈R
n
|Ax ≤ b},

for some matrix A and some vector b.

Definition 2.2 (Polytope) A bounded polyhedron P is called a polytope. A polytope P can

also be defined as the convex hull of a finite number of points and can be written as

P =

{ VP
∑

i=1

λi vi

∣

∣

∣λi ≥ 0, i = 1, . . . ,VP ,
VP
∑

i=1

λi = 1
}

,

where vi denotes the i-th vertex of P and VP is the total number of vertices of P .

Definition 2.3 (Polyhedral partition) Given a polyhedron P ⊆ R
n , then a polyhedral

partition of P is a finite collection {P i }N
i=1

of nonempty polyhedra satisfying

(i)
⋃N

i=1
P i =P ;

(ii) (P i \∂P i )
⋂

(P j \∂P j ) =; for all i 6= j where ∂ denotes the boundary.

Definition 2.4 (PWA function) A scalar-valued function f : P → R, where P ⊆ R
n is a

polyhedron, is PWA if there exists a polyhedral partition {P i }N
i=1

of P such that f is affine on

each P i , i.e.

f (x) =αT
(i )x +β(i ),

for all x ∈P i , with α(i ) ∈R
n , β(i ) ∈R, for i = 1, . . . , N.

If a PWA function f is continuous on the boundary of any two neighboring regions, then f

is said to be continuous PWA.

A vector-valued function is continuous PWA if each of its components is continuous PWA.
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Proposition 2.5 [67, 108] If f : R
n → R is a continuous PWA function, then f can be

represented in the max-min canonical form

f (w) = max
i∈I

min
j∈Ji

{

αT
i j w +βi j

}

, (2.4)

or in the min-max canonical form

f (w) = min
i∈Ĩ

max
j∈J̃i

{

α̃T
i j w + β̃i j

}

, (2.5)

where I ,Ji ,Ĩ ,J̃i are finite index sets and αi j , α̃i j ∈ R
n , βi j , β̃i j ∈ R for all i , j . For vector-

valued functions, the above forms exist component-wise.

2.2.2 PWA systems

A PWA system is a dynamical system of the form

x(k +1) = fX (x(k),u(k)),

y(k) = fY (x(k),u(k)),

where fX , fY are vector-valued PWA functions. Moreover, if fX , fY are continuous, then the

system is continuous PWA.

Consider the following explicit description of a discrete-time PWA system:

x(k +1) = Ai x(k)+Bi u(k)+ gi , for

[

x(k)

u(k)

]

∈P i , (2.6)

where the index k is the time counter, x(k) ∈ R
nx is the state, u(k) ∈ R

nu is the input, Ai ,Bi ,

and gi are the system matrices and vectors for the i-th region with i ∈ {1, . . . , N } where N is

the number of regions. Each region P i is a polyhedron given as P i = {Fi x(k)+Gi u(k) ≤ hi }

where Fi ,Gi , and hi are suitable matrices and vectors and {P i }N
i=1

is a polyhedral partition of

the state and input space.

As shown in [8], the system (2.6) can equivalently be represented as

x(k +1) =
N
∑

i=1

zi (k),

zi (k), [Ai x(k)+Bi u(k)+ gi ]σi (k),
N
∑

i=1

σi (k) = 1,

E1k u(k)+E2kσ(k)+E3k z(k) ≤ E4k x(k)+E5k ,

(2.7)

where σi (k) ∈ {0,1}, σ(k) =
[

σ1(k) · · · σN (k)
]T

, z(k) =
[

z1(k) · · · zN (k)
]T

, and

E1k , . . . ,E5k are appropriately defined linear constraint matrices at time step k. Systems in

the form of (2.7) are a specific type of mixed logical dynamical systems.

Definition 2.6 (Max-min-plus-scaling (MMPS) function) A scalar-valued MMPS function

f : Rn →R is defined by the recursive grammar

f (x) = xi |α|max( fk (x), fl (x))|min( fk (x), fl (x))| fk (x)+ fl (x)|β fk (x),
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Figure 2.1: MPC scheme [26]

with i ∈ {1, . . . ,nx}, α,β ∈R, and where fk : Rn →R, fl : Rn →R are again MMPS functions; the

symbol | stands for “or”, and max and min are performed entrywise.

A function f : Rn →R
m is a (general) MMPS function if all entries are scalar-valued MMPS

functions.

Systems that can be described as

x(k +1) =M (x(k),u(k)), (2.8)

with input u and state x and where M is an MMPS function, are called MMPS systems.

A scalar-valued MMPS function M can be rewritten into the max-min canonical form

(2.4) or into the min-max canonical form (2.5) with w = [xT uT ]T . For vector-valued MMPS

functions this statement holds componentwise. By introducing additional auxiliary

variables or extra constraints, the equivalence between (2.6) and (2.8) can be established

(see [72] for details). If the system (2.6) is continuous (i.e. the right-hand side of (2.6) is

continuous on the boundary of any two neighboring regions), then a direct connection

between (2.6) and (2.8) can be derived following Proposition 2.5 (see [48] for details).

2.3 Model predictive control (MPC)

2.3.1 MPC for general nonlinear systems

Model predictive control (MPC) [26, 57, 94, 114, 116] is an advanced control strategy for

control of multivariate systems in the presence of input and state/output constraints.

Figure 2.1 is a representation of the MPC strategy. In MPC, a prediction model is used to

predict the future outputs from time step k + 1 up to k + Np where Np is called the

prediction horizon. The prediction of outputs depends on the known inputs, states, and

outputs up to the current time step k and on the future input sequence
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u(k), . . . ,u(k +Np −1) which are to be calculated. At every step, the future input sequence is

calculated by optimizing a given objective function subject to constraints on states, inputs,

and outputs. In addition, a control horizon Nc ≤ Np is usually used in MPC to reduce the

number of variables of the MPC optimization problem by assuming

u(k + j ) = u(k +Nc −1),

for j = Nc, . . . , Np −1, resulting in a decrease of the computational burden.

Consider a general nonlinear discrete-time system of the form

x(k +1) = f (x(k),u(k)), (2.9)

y(k) = h(x(k),u(k)), (2.10)

where f and h are the state and output functions, the vector x represents the state, u is the

input, and y is the output. Define the sequence vectors

x̃(k) =
[

xT (k +1) · · · xT (k +Np)
]T

,

ỹ(k) =
[

yT (k +1) · · · yT (k +Np)
]T

,

ũ(k) =
[

uT (k) · · · uT (k +Np −1)
]T

.

At time step k, the MPC optimization problem is then described as follows:

min
ũ(k),x̃(k),ỹ(k)

J (k) (2.11)

subject to

the prediction model (2.9)-(2.10), (2.12)

u(k + j ) = u(k +Nc −1) for j = Nc, . . . , Np −1, (2.13)
(

ũ(k), x̃(k), ỹ(k)
)

∈C, (2.14)

where C represents the set of feasible states, feasible outputs, and feasible inputs and where

J is a given objective function, usually a function of the input energy and the differences

between the predicted outputs and the reference signal. The optimal future input sequence

is determined by solving the problem (2.11)-(2.14). Moreover, MPC uses a receding-horizon

principle. At time step k, only the first element u(k) of the optimal input sequence is

applied to the system. At the next time step, the known information is updated by new

measurements and the prediction horizon is shifted. The problem (2.11)-(2.14) is solved

again at time step k + 1 based on the new information. The feedback from the

measurements makes MPC a closed-loop controller. The whole process is represented in

Figure 2.2.

2.3.2 MPC for MPL systems

The MPC framework has been extended to MPL systems in [47]. In this section, we briefly

introduce the formulation of MPC problem for MPL systems. We consider the following MPL
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Figure 2.2: MPC loop

system:

x(k +1) = A⊗x(k)⊕B ⊗u(k), (2.15)

y(k) =C ⊗x(k), (2.16)

where A ∈ R
nx×nx
ε , B ∈ R

nx×nu
ε , and C ∈ R

ny×nx

ε . As indicated in Section 2.1.2, we assume that

at event step k, the state x(k) can be measured or estimated using previous measurements.

We can then use (2.15)-(2.16) to predict the future outputs of the system from event step k+1

up to k +Np. Define the sequence vectors

ỹ(k) =
[

yT (k +1) · · · yT (k +Np)
]T

,

ũ(k) =
[

uT (k) · · · uT (k +Np −1)
]T

.

The evolution of the MPL system can be presented as follows [47]:

ỹ(k) = H ⊗ ũ(k)⊕ g (k), (2.17)

where

H =













C ⊗B ε · · · ε

C ⊗ A⊗B C ⊗B · · · ε
...

...
. . .

...

C ⊗ A⊗Np−1
⊗B C ⊗ A⊗Np−2

⊗B · · · C ⊗B













,

g (k) =













C ⊗ A

C ⊗ A⊗2

...

C ⊗ A⊗Np













⊗x(k) .

In [47], different choices for the objective function in MPC for MPL systems have been

considered. A typical example of an objective function J at event step k is as follows:

J (k) = Jout(k)+λJin(k),
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Jout(k) =

Np
∑

j=1

ny
∑

i=1

max(yi (k + j )− ri (k + j ),0),

Jin(k) =−

Np
∑

j=1

nu
∑

l=1

ul (k + j −1),

where the nonnegative scalar λ is the trade-off between the output objective function Jout

and the input objective function Jin. Considering a manufacturing system, Jout corresponds

to a penalty for every late delivery and Jin corresponds to feeding the raw materials as late as

possible.

The MPL-MPC problem at event step k is defined as follows:

min
ũ(k),x̃(k),ỹ(k)

J (k) (2.18)

subject to

ỹ(k) = H ⊗ ũ(k)⊕ g (k), (2.19)

u(k + j ) ≥ u(k + j −1), for j = 0, . . . , Np −1, (2.20)

∆u(k + j ) =∆u(k +Nc −1), for j = Nc, . . . , Np −1, (2.21)
(

ũ(k), x̃(k), ỹ(k)
)

∈C , (2.22)

where ∆u(k) = u(k) − u(k − 1). In general, the problem (2.18)-(2.22) is a nonlinear

nonconvex optimization problem due to the nonconvex constraint ỹ(k) = H ⊗ ũ(k)⊕g (k). If

inputs, states, and outputs are bounded, then the problem can be transformed into a

mixed-integer linear programming problem. For some special cases, namely, if the

objective function is a monotonically non-decreasing piecewise affine function of the

output and an affine function of the input and if the constraints are linear and

monotonically non-decreasing as a function of the output, then the problem can be

reduced to a linear programming problem [47].

2.3.3 MPC for PWA systems

Since PWA systems are a special class of nonlinear systems, the MPC problem for PWA

systems can be defined similarly as in Section 2.3.1 with the difference that the prediction

model in problem (2.11)-(2.14) is replaced by the PWA model or its equivalent forms. In

MPC for PWA systems, the output objective function is usually taken as a 1/2/∞-norm of

the differences between the output and the reference signal. More details of PWA-MPC

problems will be discussed in Chapter 4.

2.4 Optimistic optimization algorithms

Optimistic optimization algorithms [101] have been introduced for solving large-scale

optimization problems given a finite computational budget. These algorithms can be

applied to function optimization over general feasible solution spaces, such as metric

spaces, trees, graphs, and Euclidean spaces. The motivation for designing optimistic

optimization algorithms comes from the experimental success of the Upper Confidence
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Bound strategy applied to Trees (UCT) [88] which is very efficient in sequential decision

making problems. However, the potential risk of UCT is to stop exploring the optimal

branch too early because the current upper confidence bound of the optimal branch is

underestimated and it may take a long time to rediscover the optimal branch. This risk can

possibly result in poor performance of UCT on simple problems for a limited computation

time. Thus the objective of optimistic optimization algorithms is to obtain efficient

algorithms with finite-time performance guarantees. The performance of optimistic

optimization algorithms depends on the local behavior of the objective function around its

global optima and is expressed in terms of the quantity of near-optimal solutions measured

with some metric. To illustrate the basic idea of the optimistic optimization algorithms, in

the next subsections, we present an optimization problem of a function f solved by an

optimistic strategy, more precisely, the deterministic optimistic optimization (DOO)

algorithm. This section is based on [100, 101].

Consider a minimization of a deterministic function f over a feasible set X . The

notations f and X remain generic in this section. Since the implementation of the

optimistic optimization algorithms is based on a hierarchical partitioning of the feasible

set, we first introduce the partitioning framework of the feasible set before going to the

details of DOO.

2.4.1 Partitioning of the feasible set

For any integer h ∈ {0,1, . . .}, the feasible set X is recursively split into K h subsets (called

cells) where K is a finite positive integer denoting the maximum number of child cells of a

parent cell. The partition may be represented by a tree structure, as illustrated in Figure 2.3.

The whole set X is denoted as X 0,0 and corresponds to the root node (0,0) of the tree. Each

cell at any depth h is denoted as X h,d for d ∈ {0, . . . ,K h −1} and corresponds to a node (h,d)

in the tree. A cell X h,d at depth h is split into K child cells {X h+1,di }K
i=1

. Each cell X h,d is

characterized by a representative point xh,d ∈ X h,d in which f may be evaluated.

Remark 2.7 For a hypercube feasible set, one can get a partitioning satisfying the

assumptions of DOO by using the standard partitioning [109] where each cell is split into

regular same-sized subcells and the split occurs along one dimension. For a hyperbox

feasible set, the feasible set can be divided by bisecting each dimension as shown in Figure

2.3. Moreover, a partitioning approach for a polytopic feasible set is developed in Chapter 5.

2

2.4.2 Assumptions

To obtain a measure of complexity of the optimization problem, some assumptions need to

be made about the function and the partitioning of the feasible set [100]. These assumptions

are expressed in the form of a semi-metric, which is defined as follows. Let R≥0 denote the

set of nonnegative real numbers.

Definition 2.8 (Semi-metric ℓ) A semi-metric on a set X is a function ℓ : X ×X → R≥0

satisfying the following conditions for any x, y ∈X :

i) ℓ(x, y) = ℓ(y, x) ≥ 0;

ii) ℓ(x, y) = 0 if and only if x = y.
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Figure 2.3: Hierarchical partitioning of the feasible set X represented by a tree.
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Definition 2.9 (ℓ-ball) An ℓ-ball of radius r > 0 centered at a point p in X , denoted by Bp,r ,

is defined by

Bp,r = {x ∈X |ℓ(x, p) ≤ r }.

We then consider the following assumptions:

Assumption 2.10 There exists a semi-metricℓ defined on X and at least one global optimizer

x∗ ∈X of f (i.e., f (x∗) = min
x∈X

f (x)) such that for all x ∈X ,

f (x)− f (x∗) ≤ ℓ(x, x∗).

Assumption 2.11 There exists a decreasing sequence {δ(h)}∞
h=0

with δ(h) > 0, such that for

any depth h ∈ {0,1, . . .}, for any cell X h,d at depth h, we have

sup
x∈X h,d

ℓ(x, xh,d ) ≤ δ(h),

where δ(h) is called the maximum diameter of the cells at depth h.

Assumption 2.12 There exists a scalar ν > 0 such that any cell X h,d at any depth h contains

an ℓ-ball of radius νδ(h) centered in xh,d .

One main challenge of DOO is to design a semi-metric ℓ, a sequence {δ(h)}∞
h=0

, and a

scalar ν that satisfy these assumptions.

Remark 2.13 Assumption 2.10 regards the local properties of f near one global optimum

with respect to a semi-metric ℓ, guaranteeing that f does not decrease too fast around the

global optimum. Assumptions 2.11-2.12 subsequently connect ℓ to the hierarchical

partitioning that generates cells that shrink with further partitioning. Let δ(h) be the

maximum diameter1 of the cells at depth h. Loosely speaking, this means that the value of

δ(h +1)/δ(h) should be less than a given constant that is strictly smaller than 1. The scalar ν

can be considered as the maximum ratio of the radius of the inscribed ball of any cell and

the maximum distance between any two points in that cell. 2

2.4.3 Deterministic optimistic optimization (DOO)

Deterministic optimistic optimization (DOO) algorithm is an application of the optimistic

strategy in deterministic function optimization. Given a finite number n of iterations, DOO

generates a sequence of feasible solutions during the iterations and returns the best solution

x(n) at the end of the algorithm. As shown in Figure 2.4, starting with the root node T =

{(0,0)}, DOO incrementally updates the tree T for iteration step t = 1, . . . ,n. For each cell

X h,d , define a b-value function, i.e.,

bh,d
= f (xh,d )−δ(h) .

At each iteration t , DOO select a leaf2 of the current tree T with minimum bh,d value to

expand by adding its K children to the current tree. Expanding a leaf (h,d) corresponds to

1The diameter of a cell is the maximum distance (measured by using the semi-metric ℓ) between any two

points in that cell.
2A leaf of a tree is a node with no children. The set L contains the leaves of the tree T .
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Given: partitioning of X , number n of iterations

Initialize the tree T ← {(0,0)} (root node)

for t = 1 to n do

Select the leaf (h†,d †) ∈L with minimum bh†,d†

value

Expand this node (h†,d †) by adding its K children to T

end for

Return x(n)= argmin(h,d)∈T f (xh,d )

Figure 2.4: Deterministic optimistic optimization (DOO) algorithm

splitting the cell X h,d into K subcells and evaluating the function f at the representative

points of the children cells. Once the computational budget n is used, DOO returns the node

of the tree T that yields the lowest function value of f , as the recommended solution. The

returned result is an approximation of the global minimum of f . The performance of DOO

is assessed by the difference between the approximation and the true optimal value. The

analysis in the next subsection gives upper bounds on this difference.

2.4.4 Analysis of DOO

Let (hmax,dmax) be the deepest node that has been expanded by the algorithm up to n

iterations. We have

f (x∗) ≤ f (x(n)),

and

f (x(n)) ≤ f (xhmax,dmax )

≤ f (x∗)+δ(hmax) ,

i.e.,

f (x(n))− f (x∗) ≤ δ(hmax) .

So the returned solution x(n) provides an upper bound f (x(n)) of the global minimum f (x∗).

In addition, the difference between the upper bound and the global minimum is bounded

by δ(hmax).

The bound δ(hmax) provides a posterior guarantee on the performance of DOO and is

obtained once the algorithm terminates. Moreover, the following analysis provides a priori

guarantee on the performance. The performance of the algorithm depends on the

complexity of the optimization problem, which may be expressed in terms of the quantity

of the near-optimal solutions measured with the semi-metric ℓ.

From Assumptions 2.10-2.11, for any cell X h,d containing a global optimizer x∗, we have

bh,d
= f (xh,d )−δ(h)

≤ f (xh,d )−ℓ(x∗, xh,d )

≤ f (x∗) .

So the b-value of any cell X h′,d ′

for which bh′,d ′

> f (x∗) is always greater than the b-value

of a cell containing the optimal solution. At each iteration, the algorithm always selects the

leaf with the smallest b-value. Consequently, only the cells satisfying bh,d ≤ f (x∗) might



Chapter 2 - Background 21

be explored. The more cells satisfying bh,d ≤ f (x∗), the slower the convergence speed of

the algorithm. In general, the number of cells satisfying bh,d ≤ f (x∗) will increase if the

number of optimal solutions increases. Therefore, the algorithm is in general more efficient

for problems with a unique optimal solution than for those where the optimal solution is not

unique.

Let x∗ be a global minimizer of f and for any ε> 0, let

Xε = {x ∈X | f (x)− f (x∗) ≤ ε},

be the set of ε-near-optimal solutions.

Definition 2.14 [100] The near-optimality dimension is the smallest η ≥ 0 such that for any

ε> 0, there exists a constant C > 0 such that the maximal number of disjoint ℓ-balls of radius

νε with center in Xε is less than Cε−η.

Theorem 2.15 [100] Assume that there exist some constants c > 0 and γ ∈ (0,1) such that

δ(h) ≤ cγh for any h. Let x(n) be the solution returned after n iterations. Then we have:

(i) If η> 0, then

f (x(n))− f (x∗) ≤ (
C

1−γη
)1/ηn−1/η.

(ii) If η= 0, then

f (x(n))− f (x∗) ≤ cγn/C−1.

Remark 2.16 The near-optimality dimension actually characterizes the number of the ε-

near-optimal solutions of f with respect to the semi-metric ℓ around the global optimum.

Theorem 2.15 gives bounds on the suboptimality of the returned solution. For η > 0, the

suboptimality bound decreases as a power of the computational budget n. The convergence

speed of optimistic optimization is faster with smallerη. The best case is η= 0, which implies

that the suboptimality bound decreases exponentially with n. Therefore, developing a semi-

metricℓ such that η is small is of great importance for optimistic optimization to be efficient.

2

2.5 Optimistic planning algorithms

Besides the function optimization problems discussed in the previous section, the

optimistic approach has also been applied to planning problems, resulting in optimistic

planning algorithms. Optimistic planning algorithms optimize an infinite-horizon

discounted reward function with the action space having a finite number of discrete

actions. Optimistic planning algorithms return a sequence of actions as the recommended

solution the length of which is influenced by the computational budget, the value of the

discount factor, and the complexity of the problem. This is different from applying

optimistic optimization algorithms in MPC, which consider a continuous feasible space

and return a control sequence with a fixed length optimizing a fixed-horizon objective

function. In [20], three types of optimistic planning algorithms have been reviewed, i.e.,

optimistic planning for deterministic systems [78], open-loop optimistic planning [17], and

optimistic planning for sparsely stochastic systems [19]. Moreover, in [20] the theoretical

guarantees on the performance of these algorithm are also provided. Recently, optimistic
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planning has been used for nonlinear networked control systems [22], and nonlinear

switched systems [23]. In order to limit computations, optimistic planning with a limited

number of action switches has been introduced in [96]. In this section, we present

optimistic planning algorithms for solving an optimal control problem for discrete-time

deterministic systems, i.e., optimistic planning for deterministic systems (OPD). This

section is based on [20, 78, 101].

2.5.1 Optimistic planning for deterministic systems (OPD)

Optimistic planning for deterministic systems (OPD) [78, 101] is an algorithm that solves an

optimal control problem for discrete-time deterministic systems described by an equation

of the form

x(k +1) = f (x(k),u(k)),

where f : X ×U → X is the transition function, x ∈ X is the state, and u ∈ U is the action.

The state space X is large (possibly infinite) and the action space U is finite with K possible

actions, i.e., U , {u1, . . . ,uK }.

Given the initial state x(0), OPD designs a control sequence u = (u(0),u(1), . . .)

maximizing3 the following infinite-horizon discounted reward function:

J (u, x(0)) =
∞
∑

k=0

γk R(k +1), (2.23)

where R(k) ∈ [0,1] is the reward for the transition from x(k) to x(k +1) as a result of u(k) and

where γ ∈ (0,1) is the discount factor that is often used in the fields of dynamic programming

and reinforcement learning and that expresses the difference in importance between future

costs and present costs. The value of γ is usually selected close to 1. The optimal value of

(2.23) is denoted as

J∗(x(0)) = max
u

J (u, x(0)).

For a given initial state, OPD explores the space of all possible control sequences u.

Define ud = (u(0), . . . ,u(d − 1)) as a length d sequence with d ∈ {1,2, . . .} and define u|d as

any infinite-length sequence of which the first d components coincide with ud . For any

initial state x(0), each ud determines a state sequence x(1), . . . , x(d). Define

v(ud ) =
d−1
∑

k=0

γkR(k +1), (2.24)

b(ud ) = v(ud )+
γd

1−γ
. (2.25)

The value v(ud ) is the sum of discounted rewards along the trajectory starting from the initial

state x(0) and applying the control sequence ud , and provides a lower bound of the value

J (u|d , x(0)) for any u|d . On the other hand, note that R(k) ∈ [0,1]; hence,

J (u|d , x(0)) = v(ud )+
∞
∑

k=d

γkR(k +1)

3Now we maximize the reward function while before we minimized the objective function.
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x(0)

x(1)1 x(1)2

x(2)1 x(2)2 x(2)3 x(2)4

x(3)1 x(3)2

u1 u2

u1 u2 u1 u2
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Figure 2.5: The tree representation of OPD with K = 2, i.e., U = {u1,u2}. The root node at depth

d = 0 denotes the initial state x(0). Each edge starting from a node at depth d

corresponds to a control action u(d). Each node corresponds to a reachable state

x(d)i , i = 1, . . . ,K d . The depth d corresponds to the time step. Any node at depth d

is reached by a unique sequence ud (e.g., the thick line for node x(3)2) starting from

x(0).

≤ v(ud )+
∞
∑

k=d

γk
·1

≤ v(ud )+
γd

1−γ
.

So b(ud ) provides an upper bound of J (u|d , x(0)) for any u|d .

The search process of OPD over the space of all possible control sequences u can be

represented as a tree exploration process, as illustrated in Figure 2.5. Nodes of the tree

correspond to reachable states; in particular, the root node is the initial state x(0). Edges of

the tree correspond to the possible control actions. Each node at some depth d is reached

by a unique path through the tree, i.e., each node corresponds to a unique control sequence

ud = (u(0), . . . ,u(d −1)). Expanding a node means adding its K children to the current tree,

i.e., generating transitions and rewards as well as computing the v and b-values for the K

children. Given a finite number of node expansions, at each step, OPD always expands the

most promising leaf, i.e., the control sequence ud with the largest upper bound b(ud ). The

algorithm terminates if the given number of node expansions n has been reached. Finally,

the algorithm returns the control sequence u
∗
d ′ = (u∗(0),u∗(1), . . . ,u∗(d ′ − 1)) that

maximizes the lower bound v where d ′ is the length of the returned optimal control

sequence. The process of OPD is summarized in Figure 2.6.

OPD uses a receding-horizon scheme, so once u
∗
d ′ has been computed, subsequently,

only the first component u∗(0) of u
∗
d ′ is applied to the system, resulting in the state x∗(1). At

the next time step, x∗(1) is used as the initial state and the whole process is repeated. From

the viewpoint of the receding-horizon scheme, OPD can be seen as a variant of MPC. In MPC,

a receding-horizon controller is obtained by repeatedly solving a finite-horizon open-loop

optimal control problem and applying the first control input to the system. Using the current

system state as the initial state, a control sequence is computed by optimizing an objective
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Input: initial state x(0), action space U = {u1, . . . ,uK }, number of node expansions n

Initialize: T ← {x(0)}

expand the root node by adding its K children to T

t ← 1

while t <n

expand the leaf with largest b-value

t ← t +1

end while

Return u
∗
d ′ = argmaxud∈L (T ) v(ud ) where L (T ) is the set of leaves of T

Figure 2.6: Optimistic planning for deterministic systems (OPD)

function over a finite horizon (prediction horizon). The whole procedure is repeated at the

next step when new state measurements are available. Different from MPC, rather than a

fixed-horizon setting OPD optimizes an infinite-horizon discounted objective function. The

length of the returned control sequence is influenced by the computational budget, the value

of the discount factor γ, and the complexity of the problem.

2.5.2 Analysis of OPD

Define the set of near-optimal nodes at depth d as follows:

T ∗
d =

{

ud

∣

∣

∣J∗(x(0))−v(ud ) ≤
γd

1−γ

}

.

OPD only expands the nodes in T ∗
d

, d ∈ {0,1,2, . . .}, so the number of nodes in T ∗
d

, denoted

as |T ∗
d
|, determines the efficiency of the algorithm. Define the asymptotic branching factor

κ ∈ [1,K ] as κ= lim supd→∞ |T ∗
d
|1/d , which characterizes the complexity of the problem. The

following theorem summarizes the near-optimality analysis presented in [22, 78, 101].

Theorem 2.17 Let the initial state x(0) and the number of node expansions n be given.

(i) Let u
∗
d ′ be the d ′-length sequence returned by the OPD algorithm and let u

∗|d ′ be any

infinite-length sequence of which the first d ′ components coincide with u
∗
d ′ . Then we have

J∗(x(0))− J (u
∗
|d ′ , x(0)) ≤ b(u

∗
d ′)−v(u

∗
d ′) ≤

γd ′

1−γ
.

(ii) If κ> 1, then

J∗(x(0))− J (u
∗
|d ′ , x(0)) =O

(

n
−

log1/γ
logκ

)

.

(iii) If κ= 1, then

J∗(x(0))− J (u
∗
|d ′ , x(0)) =O

(

γcn
)

,

where c is a constant. 2

Remark 2.18 Theorem 2.17(i) provides an a posteriori bound on the near-optimality of the

returned control sequence, while Theorem 2.17(ii)-(iii) imply a priori bound based on the

complexity of the problem. The branching factor κ characterizes the number of nodes that

will be expanded by the OPD algorithm. If κ > 1, then OPD needs a number of expansions

n = O(κd ) to reach the depth d in the optimistic planning tree; if κ = 1, then n = O(d) is
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required. Thus, κ = 1 is the ideal case where the number of near-optimal nodes at every

depth is bounded by a constant independent of d and the a priori bound on the

near-optimality decreases exponentially with n. 2

2.6 Summary

In this chapter, we have summarized some basic background of max-plus algebra,

max-plus linear (MPL) systems, and piecewise affine (PWA) systems. We have introduced

model predictive control (MPC) for general nonlinear systems as well as for MPL systems

and PWA systems. Moreover, we have presented optimistic optimization algorithms

including the partitioning framework and some assumptions. We have particularly

discussed the deterministic optimistic optimization (DOO) algorithm, which will be used to

solve the MPC optimization problem encountered in the following chapters. Finally, we

have introduced optimistic planning for deterministic systems (OPD) algorithms, which

will be applied to receding-horizon control for MPL systems with discrete control variables

in the next chapter.





Chapter 3

Optimistic optimization and planning for

model-based control of MPL systems

In this chapter we deal with model-based control of max-plus linear (MPL) systems. We

particularly consider the increments of the control inputs as control variables and

investigate two cases where the control variables are respectively continuous valued and

discrete valued. In the case of continuous control variables, we consider four types of

output objective functions combined with just-in-time input objective functions and adapt

an optimistic optimization algorithm to solve the model predictive control optimization

problem for MPL systems by developing a dedicated semi-metric that satisfies the

assumptions of optimistic optimization. Besides, in the case of discrete control variables,

we address the infinite-horizon optimal control problem for MPL systems by using

optimistic planning. More precisely, we consider a sum of discounted stage costs over an

infinite horizon as the objective function. The resulting problem is solved by an optimistic

planning algorithm.

3.1 Introduction

The state transitions of discrete-event systems (DES) are driven by occurrence of discrete

events [28]. Events correspond to starting or ending some time-consuming activities. For

example, an event may correspond to the arrival or departure of a train in a station, or the

start or completion of a job on a machine. Typical examples of DES include railway

networks, traffic control systems, flexible manufacturing systems, computer networks, and

transportation systems. Due to the increasing complexity of these man-made systems,

effective modeling tools are necessary for the analysis and control of DES. Max-plus algebra

is a useful tool to model and analyze DES. Maximization and addition are two basic

operations in the max-plus algebra. In conventional algebra, DES usually result in

nonlinear systems, but there is a class of DES which can lead to linear systems in the

max-plus algebra, called max-plus linear (MPL) systems [7, 36]. Many results for control of

MPL systems have been achieved, e.g. [2, 14, 39, 58, 70, 77, 84, 95].

Model predictive control (MPC) is an advanced control design technique widely used in

the process industry [26, 57, 116]. It is able to deal with multi-input multi-output systems

and handle constraints on inputs and outputs. In MPC, an optimal control sequence is

designed by solving an on-line optimization problem to minimize some given objective

functions. The MPC framework has been extended to MPL systems in [47](see Chapter 2 of

27
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this thesis for a brief introduction). For some special cases, the MPL-MPC problem can be

formulated as a linear programming. However, in general, it results in a nonsmooth

nonconvex optimization problem. To solve this problem, one approach is to recast it as a

mixed integer linear programming (MILP) problem. Nonetheless, the computational

complexity of most MILP algorithms grows in the worst case exponentially if the number of

variables increases [123]. For the MILP problem resulting from the MPL-MPC problem, the

number of auxiliary binary variables is in general proportional to the number of max

operators (i.e., the prediction horizon and the number of inputs and outputs). Thus, the

computation time required to solve the corresponding MILP problem will become

unacceptable if the prediction horizon is large. As the event space corresponding to the

prediction horizon should contain the crucial dynamics of the process, the prediction

horizon can be very large for some MPL-MPC problems.

Optimistic optimization [101] is a class of algorithms that can find an approximation of

the global optimal solution for nonlinear optimization problem. This method is called

optimistic because the most promising solutions are examined first at each iteration. The

main advantage of optimistic optimization is that one can specify the computational

budget (e.g. the number of node expansions) in advance and guarantee bounds on the

suboptimality with respect to the global optimum. Situations with a short control horizon

and a long prediction horizon are rather common for DES control and it is useful to have a

method to solve the corresponding MPC optimization problem without a significant

influence of the prediction horizon. For a given MPL-MPC problem, the method using

optimistic optimization in this chapter will be more efficient than the MILP method in the

case of small control horizons and large prediction horizons.

Sometimes discrete control variables for MPL systems are required in practice. For

example, for a manufacturing system it could happen that the raw materials are required to

be fed to the manufacturing cell at 1 or 2 hours intervals; or for a railway network the

departure times of trains might only be selected as multiples of 5 minutes. These

constraints lead to discrete variables. In the optimal control problem given in this chapter,

the objective function is a sum of discounted stage costs over an infinite horizon. Our goal

is then to design a control sequence optimizing the infinite-horizon discounted objective

function. The approach in this chapter is based on optimistic planning algorithms

introduced below.

Optimistic planning is a class of planning algorithms originating in artificial intelligence

applying the ideas of optimistic optimization [101]. This class of algorithms works for

discrete-time systems with general nonlinear (deterministic or stochastic) dynamics and

discrete control actions. Based on the current system state, a control sequence is obtained

by optimizing an infinite-horizon sum of discounted bounded stage costs (or the

expectation of these costs for the stochastic case). Optimistic planning uses a

receding-horizon scheme and provides a characterization of the relationship between the

computational budget and near-optimality. In optimistic planning for MPL systems with

discrete control variables, we consider an infinite-horizon discounted objective function,

which is more flexible than selecting a fixed finite-horizon objective function since the

prediction horizon does not have to be fixed a priori. The length of the returned control

sequence varies depending on the computational budget, the complexity of the problem,

and the discount factor. Based on the standard geometric series, discounting is a simple

way to obtain finite values for the total sum of stage costs over an infinite horizon. This is

very convenient for comparing different infinite-length control sequences.
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This chapter is organized as follows. In Section 3.2, the MPC problem for MPL systems

with continuous control variables is presented. Generalized expressions of objective

functions are given and a simple bound constraint on the input rate is considered. An

optimistic optimization algorithm is applied to solve the proposed problem. In Section 3.3,

we consider the infinite-horizon optimal control problem for MPL systems where the

action space is discretized as a finite set. The objective function consists of a sum of

discounted stage costs over an infinite horizon. We use an optimistic planning algorithm to

address the considered problem. Finally, the chapter ends with concluding remarks and

future research ideas.

3.2 Optimistic optimization for MPC of MPL systems with

continuous control variables

Consider the following MPL system

x(k +1) = A⊗x(k)⊕B ⊗u(k), (3.1)

y(k) =C ⊗x(k), (3.2)

where the index k is the event counter, x(k) ∈ R
nx
ε is the state, u(k) ∈ R

nu
ε is the input,

y(k) ∈ R
ny

ε is the output, and where A ∈ R
nx×nx
ε , B ∈ R

nx×nu
ε , and C ∈ R

ny×nx

ε are the system

matrices. Let y(k + j ), j = 1,2, . . . be the estimate of the output at event step k + j based on

the information available at event step k. Given a prediction horizon Np, the estimation of

the evolution of the MPL system from event step k + 1 up to k + Np can be presented as

follows

ỹ(k) = H ⊗ ũ(k)⊕ g (k), (3.3)

with

ỹ(k) = [yT (k +1) . . . yT (k +Np)]T ,

ũ(k) = [uT (k) . . . uT (k +Np −1)]T ,

for appropriate H , g (k) (see Section 2.3.2 for details of H , g (k)).

3.2.1 Objective function

The MPC framework has been extended to MPL systems in [47]. The considered objective

function J consists of the weighted sum of an output cost and an input cost:

J = Jout +λJin,

where the scalar λ > 0 is the trade-off between the output cost and the input cost. In this

section, as a generalization of the costs presented in [47], we consider four more general

output objective functions.
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Figure 3.1: Output objective function max
(

α(y − r ),β(r − y)
)

with α= 3, β= 1/3

Output objective function Jout

In a manufacturing system, a penalty may be incurred for every delay for urgent orders. In

addition, an inventory cost may have to be paid for perishable goods. Therefore, we include

both a tardiness and an earliness penalty in the output objective function with parameters

to express the trade-off between the two kinds of penalties.

In particular, assume that r and y express the due date signal and completion time

signal of the products respectively. Different penalty policies for the output objective

function max(α(y − r ),β(r − y)) can be achieved by choosing different parameters α,β with

α,β ≥ 0,α+β > 0. If α > β, the penalty for tardiness is higher than the one for earliness; if

β > α, the penalty for earliness is higher than the one for tardiness. Fig. 3.1 shows one

specific penalty policy (with α>β).

In this section, parameters αl ,βl , l = 1, . . . ,ny with αl ,βl ≥ 0, αl +βl > 0 are introduced

as weighting coefficients for the tardiness and earliness penalties with respect to a due date

signal r . Denote

Φl , j ,k = max
(

αl

(

yl (k + j )− rl (k + j )
)

,βl

(

rl (k + j )− yl (k + j )
)

)

,

where yl (k+ j ) is the l-th element of the estimate of the output at event step k+ j , and rl (k+ j )

is the l-th element of the due date r (k + j ). Corresponding to the definitions of the 1-norm

and the ∞-norm, we consider four different cases for Jout:

J 1,1
out(k) =

Np
∑

j=1

ny
∑

l=1

Φl , j ,k , J 1,∞
out (k) =

Np
∑

j=1

max
l=1,...,ny

Φl , j ,k ,

J∞,1
out (k) = max

j=1,...,Np

ny
∑

l=1

Φl , j ,k , J∞,∞
out (k) = max

j=1,...,Np

max
l=1,...,ny

Φl , j ,k .

It is easy to show that Jout,1 and Jout,2 in [47] are special cases of J 1,1
out .
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Input objective function Jin

The control inputs of MPL systems often represent the time instants at which the control

events occur, e.g., raw materials are fed into the production system. For the sake of just-in-

time manufacturing and keeping low internal buffer level, it is better to maximize the control

inputs. This is in contrast to the traditional case where the control input efforts should be

minimized. Below are two objective functions that lead to the maximization of the inputs

[47]:

J 1
in(k) =−

Np
∑

j=1

nu
∑

s=1

us(k + j −1), (3.4)

J 2
in(k) =−

Np
∑

j=1

nu
∑

s=1

|us (k + j −1)|2. (3.5)

Relationship between ũ and ∆ũ

Since the control inputs correspond to the times of occurrence of input events, they are

generally monotonically increasing. Hence, it is usually more convenient to consider the

increments of the control inputs as control variables. Define the input rate

∆u(k) = u(k)−u(k −1).

In MPL-MPC, a control horizon Nc with Nc < Np is often introduced and the control input

rate is taken to be constant from event step k + Nc on. Thus, the use of Nc reduces the

computational burden. For an in-depth discussion about tuning of Nc, we refer the reader

to [133]. Consequently, we assume

∆u(k + j ) =∆u(k +Nc −1), j = Nc, . . . , Np −1.

Denote

ū(k −1) =
[

uT (k −1) · · · uT (k −1)
]T

,

and define L ∈R
Npnu×Ncnu as

L =



























Inu 0 · · · 0 0

Inu Inu · · · 0 0
...

...
. . .

...
...

Inu Inu · · · Inu Inu

Inu Inu · · · Inu 2Inu

...
...

. . .
...

...

Inu Inu · · · Inu (Np −Nc +1)Inu













































Ncnu rows











(Np −Nc)nu rows

(3.6)

with Inu the nu ×nu identity matrix. Then

ũ(k) = L∆ũ(k)+ ū(k −1), (3.7)
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where

∆ũ(k) =







∆u(k)
...

∆u(k +Nc −1)






=







u(k)−u(k −1)
...

u(k +Nc −1)−u(k +Nc −2)






.

Based on the definition of the objective function J , we know that J is a function of ỹ and ũ.

Using (3.3) to eliminate ỹ from Jout, the eliminated J only depends on ũ now. Then using

(3.7) to replace ũ by ∆ũ, the resulting J only depends on ∆ũ, denoted as J∆.

3.2.2 Constraints

Simple bound constraints on the input rate are common in practice, meaning that there is a

minimum and a maximum separation between input events:

a ≤∆ũ(k) ≤ b, for all k, (3.8)

with a,b real vectors of size Ncnu ×1. The resulting feasible set is actually a hyperbox. Note

that in practice the elements of a are always non-negative real values; hence, the constraint

(2.3) is then automatically satisfied (namely the control input sequence is nondecreasing).

3.2.3 Problem formulation

Combining the material of previous subsections, we finally obtain the following MPL-MPC

problem at event step k, for given σ,τ ∈ {1,∞}, ω ∈ {1,2}:

min
∆ũ(k)

Jσ,τ,ω
∆

(k) = Jσ,τ
out(k)+λJωin(k) (3.9)

subject to

ỹ(k) = H ⊗ ũ(k)⊕ g (k), (3.10)

ũ(k) = L∆ũ(k)+ ū(k −1), (3.11)

a ≤∆ũ(k) ≤ b. (3.12)

A finite optimal solution of the MPL-MPC problem (3.9)-(3.12) exists if the feasible set is

bounded and closed and the objective function is finite for finite arguments. These

conditions hold in general.

3.2.4 Optimistic optimization for the MPL-MPC problem

In this section, we adapt the deterministic optimistic optimization (DOO) algorithm for

solving the MPL-MPC problem (3.9)-(3.12). More specifically, we develop a dedicated

semi-metric ℓ that satisfies Assumptions 2.10-2.12 for the case that σ= τ=ω= 1, i.e.,

J 1,1,1
∆

= J 1,1
out +λJ 1

in .

The expressions of ℓ for other cases can be derived similarly. Let

X = {∆ũ(k)|a ≤∆ũ(k) ≤ b},
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be the hyperbox feasible set. Before proceeding further, we first present the following result.

Theorem 3.1 Let ∆ũ(k) be an arbitrary input rate sequence vector and ∆ũ∗(k) be an optimal

solution to problem (3.9)-(3.12). Then it holds that

J 1,1,1
∆

(∆ũ(k))− J 1,1,1
∆

(∆ũ∗(k))

≤

ny
∑

l=1

max(αl ,βl )

Np
∑

j=1

max
i=1,..., j nu

∣

∣Li ,·(∆ũ(k)−∆ũ∗(k))
∣

∣+λ
∥

∥L(∆ũ(k)−∆ũ∗(k))
∥

∥

1 , (3.13)

where αl , βl are as defined in Section 3.2.1 and Li ,· is the i-th row of L in (3.6).

Proof : Let ũ(k) and ũ∗(k) be the respective input sequence vectors corresponding to ∆ũ(k)

and ∆ũ∗(k). Assume that ỹ(k) is the output sequence vector resulting from applying ũ(k) to

the system and ỹ∗(k) is the output sequence vector resulting from applying ũ∗(k). Let

l̃ = ( j −1)ny + l ,

thus

ỹ l̃ (k) = yl (k + j ),

ỹ∗

l̃
(k) = y∗

l (k + j ),

r̃ l̃ (k) = rl (k + j ),

for l = 1, . . . ,ny , j = 1, . . . , Np.

It is easy to verify that, for any x, y, z ∈R, we have

max
(

α(x − z),β(z −x)
)

−max
(

α(y − z),β(z − y)
)

≤ max(α,β)|x − y |,

where α,β are non-negative real numbers. Hence, we have

J 1,1
out(∆ũ(k))− J 1,1

out(∆ũ∗(k)) ≤

Np
∑

j=1

ny
∑

l=1

max(αl ,βl )
∣

∣

∣ỹ l̃ (k)− ỹ∗

l̃
(k)

∣

∣

∣ . (3.14)

From (2.17), we have

ỹ l̃ (k) = max
(

Hl̃ ,·⊗ ũ(k), g l̃ (k)
)

,

and

ỹ∗

l̃
(k) = max

(

Hl̃ ,·⊗ ũ∗(k), g l̃ (k)
)

,

where Hl̃ ,· is the l̃ -th row of H . Thus, we have

∣

∣

∣ỹ l̃ (k)− ỹ∗

l̃
(k)

∣

∣

∣≤

∣

∣

∣Hl̃ ,·⊗ ũ(k)−Hl̃ ,·⊗ ũ∗(k)
∣

∣

∣ . (3.15)

Denote

Hl̃ ,·⊗ ũ(k) = max
w=1,..., j nu

(

Hl̃ w + ũw (k)
)

= Hl̃ w0
+ ũw0 (k),

Hl̃ ,·⊗ ũ∗(k) = max
z=1,..., j nu

(

Hl̃ z + ũ∗
z (k)

)
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= Hl̃ z0
+ ũ∗

z0
(k)

≥ Hl̃ w0
+ ũ∗

w0
(k). (3.16)

Then we have

∣

∣

∣Hl̃ ,·⊗ ũ(k)−Hl̃ ,·⊗ ũ∗(k)
∣

∣

∣=

∣

∣

∣Hl̃ w0
+ ũw0(k)−Hl̃ z0

− ũ∗
z0

(k)
∣

∣

∣

(3.16)
≤

∣

∣

∣Hl̃ w0
+ ũw0 (k)−Hl̃ w0

− ũ∗
w0

(k)
∣

∣

∣

≤
∣

∣ũw0(k)− ũ∗
w0

(k)
∣

∣

≤ max
i=1,..., j nu

∣

∣ũi (k)− ũ∗
i (k)

∣

∣

(3.7)
≤ max

i=1,..., j nu

∣

∣Li ,·(∆ũ(k)−∆ũ∗(k))
∣

∣ . (3.17)

Therefore, from (3.14), (3.15) and (3.17), we have

J 1,1
out(∆ũ(k))− J 1,1

out(∆ũ∗(k)) ≤

ny
∑

l=1

max(αi ,βi )

Np
∑

j=1

max
i=1,..., j nu

∣

∣Li ,·(∆ũ −∆ũ∗)
∣

∣ . (3.18)

On the other hand,

J 1
in(∆ũ(k))− J 1

in(∆ũ∗(k)) =−

[

Np
∑

j=1

nu
∑

s=1

us(k + j −1)−

Np
∑

j=1

nu
∑

s=1

u∗
s (k + j −1)

]

=

Np
∑

j=1

nu
∑

s=1

[

u∗
s (k + j −1)−us(k + j −1)

]

=

Npnu
∑

i=1

[

ũ∗
i (k)− ũi (k)

]

≤ ‖ũ(k)− ũ∗(k)‖1

≤ ‖L(∆ũ(k)−∆ũ∗(k))‖1. (3.19)

From (3.18)-(3.19), we deduce that (3.13) holds. 2

According to Theorem 3.1, we can define ℓ1,1,1 : X × X → R
+, such that for any

∆ũ(k),∆ṽ(k) ∈X ,

ℓ1,1,1(∆ũ(k),∆ṽ(k)), ℓ1,1
out(∆ũ(k),∆ṽ(k))+λℓ1

in(∆ũ(k),∆ṽ(k)), (3.20)

with

ℓ1,1
out(∆ũ(k),∆ṽ(k)) =

ny
∑

l=1

max(αl ,βl )

Np
∑

j=1

max
i=1,..., j nu

∣

∣Li ,·(∆ũ(k)−∆ṽ(k))
∣

∣ ,

ℓ1
in(∆ũ(k),∆ṽ(k)) = ‖L(∆ũ(k)−∆ṽ(k))‖1,

where λ> 0 and αl ,βl are as defined in Section 3.2.1. Because L is not singular, it is easy to

verify that the function ℓ1,1,1 defined by (3.20) is a semi-metric on X . Therefore, Assumption

2.10 are satisfied for σ= τ=ω= 1.
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Regarding the partitioning of X = {∆ũ(k)|a ≤∆ũ(k) ≤ b}, we take the center of X as the

starting point (corresponding to the root node of the tree). At each iteration, we bisect each

dimension of X ; so the number of branches K equals 2Ncnu . From (3.8), for any ∆ũ(k) ∈ X h,d

where X h,d is a cell at depth h with node index d and is characterized by its center ∆ũh,d (k),

we have

‖∆ũ(k)−∆ũh,d (k)‖∞ ≤
1

2h+1
‖b −a‖∞ , (3.21)

‖∆ũ(k)−∆ũh,d (k)‖1 ≤
1

2h+1
‖b −a‖1 . (3.22)

Based on the proposed expression for ℓ1,1,1, we now derive the expressions for δ(h) and ν

appearing in Assumptions 2.11-2.12. Corresponding to the superscript of ℓ1,1,1, the derived

δ(h) and ν will be written as δ1,1,1(h) and ν1,1,1.

Theorem 3.2 Define

δ1,1,1(h) =
1

2h+1

[

δ1,1
out +λδ1

in

]

, (3.23)

for h ∈ {0,1, . . .} with

δ1,1
out =

Np(Np +1)‖b −a‖∞

2

ny
∑

l=1

max(αl ,βl ), (3.24)

δ1
in = ‖L(b −a)‖1 . (3.25)

Then for any h ∈ {0,1, . . .}, d ∈ {0, . . . ,K h −1}, it holds that

sup
∆ũ(k)∈X h,d

ℓ1,1,1(∆ũ(k),∆ũh,d (k)) ≤ δ1,1,1(h),

where ∆ũh,d (k) is the center of the cell X h,d .

Proof : For any ∆ũ(k) ∈ X h,d , we have1

ℓ1,1
out(∆ũ(k),∆ũh,d (k)) =

ny
∑

l=1

max(αl ,βl )

Np
∑

j=1

max
i=1,..., j nu

∣

∣

∣Li ,·(∆ũ(k)−∆ũh,d (k))
∣

∣

∣

≤

ny
∑

l=1

max(αl ,βl )

[

Np
∑

j=1

max
i=1,..., j nu

‖Li ,·‖1

]

‖∆ũ(k)−∆ũh,d (k)‖∞

(3.21)
≤

ny
∑

l=1

max(αl ,βl )
Np(Np +1)

2

‖b −a‖∞

2h+1

(3.24)
≤

1

2h+1
δ1,1

out ,

and

ℓ1
in(∆ũ(k),∆ũh,d (k)) = ‖L(∆ũ(k)−∆ũh,d (k))‖1

(3.22)
≤

1

2h+1
‖L(b −a)‖1

1Note that for every x, y ∈R
n , we have |xT y | ≤ ‖x‖1‖y‖∞ [62].
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(3.25)
≤

1

2h+1
δ1

in .

Thus if we define δ1,1,1(h) as in (3.23), then

sup
∆ũ(k)∈X h,d

ℓ1,1,1(∆ũ(k),∆ũh,d (k)) ≤ δ1,1,1(h).

2

Theorem 3.3 Choose ν1,1,1 such that

0 < ν1,1,1
≤

ρ min
i=1,...,Ncnu

(bi −ai )

δ1,1
out +λδ1

in

.

Then any cell X h,d at any depth h contains an ℓ-ball Bh,d of radius ν1,1,1δ1,1,1(h) centered in

∆ũh,d where 0 < ρ < 1 and δ1,1,1(h), δ1,1
out, and δ1

in are as defined in (3.23)-(3.25).

Proof : According to Theorem 3.2, we can define a decreasing sequence {δ1,1,1(h)}∞
h=0

as in

(3.23). Select a real number ρ with 0 < ρ < 1. From (3.8), the ℓ-ball Bh,d of radius

ν1,1,1δ1,1,1(h) centered in ∆ũh,d is inside the cell X h,d , if we choose ν1,1,1 such that

ν1,1,1δ1,1,1(h) ≤ ρ

min
i=1,...,Ncnu

(bi −ai )

2h+1
.

Then ν1,1,1 can be chosen as

ν1,1,1
≤

ρ min
i=1,...,Ncnu

(bi −ai )

2h+1δ1,1,1(h)

≤

ρ min
i=1,...,Ncnu

(bi −ai )

δ1,1
out +λδ1

in

.

2

Up to now, we have proved that Assumptions 2.10-2.12 are satisfied for σ= τ=ω= 1. In

a similar way, we can obtain corresponding results for other cases. The analytic expressions

for ℓ and δ(h) with different σ,τ,ω are presented as follows.

1) σ= 1, τ=∞

ℓ1,∞
out (∆ũ(k),∆ṽ(k)) = max

l=1,...,ny

max(αl ,βl )

Np
∑

j=1

max
i=1,..., j nu

∣

∣Li ,·(∆ũ(k)−∆ṽ(k))
∣

∣ ,

δ1,∞
out =

Np(Np +1)‖b −a‖∞

2
max

l=1,...,ny

max(αl ,βl ) .

2) σ=∞, τ= 1

ℓ∞,1
out (∆ũ(k),∆ṽ(k)) =

ny
∑

l=1

max(αl ,βl ) max
j=1,...,Np

max
i=1,..., j nu

∣

∣Li ,·(∆ũ(k)−∆ṽ(k))
∣

∣ ,
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δ∞,1
out = Np‖b −a‖∞

ny
∑

l=1

max(αl ,βl ) .

3) σ=∞, τ=∞

ℓ∞,∞
out (∆ũ(k),∆ṽ(k)) = max

l=1,...,ny

max(αl ,βl ) max
j=1,...,Np

max
i=1,..., j nu

∣

∣Li ,·(∆ũ(k)−∆ṽ(k))
∣

∣ ,

δ∞,∞
out = Np‖b −a‖∞ max

l=1,...,ny

max(αl ,βl ) .

4) ω= 2

ℓ2
in(∆ũ(k),∆ṽ(k)) = 2‖Lb + ū(k −1)‖2‖L(∆ũ(k)−∆ṽ(k))‖2 ,

δ2
in = 2‖Lb + ū(k −1)‖2 ‖L(b −a)‖2 .

Remark 3.4 The computational complexity of DOO in our implementation is exponential in

the control horizon Nc. On the other hand, the MPL-MPC problem can also be formulated as

an MILP problem [8, 47]. The number of auxiliary binary variables that are used to convert

the max operator into linear equations is proportional to the prediction horizon Np. As a

result, the complexity of state-of-the-art MILP algorithms is in the worst case exponential in

Np [123]. Therefore, DOO will be more efficient if Nc ≪ Np. 2

3.2.5 Examples

In this section, we illustrate the proposed approach and the statement in Section 3.2.4 for

MPL systems with randomly selected system matrices and for an industrial manufacturing

system. All experiments are implemented in Matlab 2014b on an 3.1 GHz processor with 3.7

GB RAM.

Example 1: Random systems

Consider the MPL system (3.1)-(3.2) with nu = ny = 1. We will consider nx = 5,10,20 and

perform experiments for Nc = 3,4,5 and Np = Nc +1, . . . ,60. Assume that λ= 0.01, u(−1) = 0,

σ = τ = ω = 1, and −15 ≤ ∆u(k) ≤ 15 for all k. The elements of A,B ,C , x(0) are selected as

random integers uniformly distributed in the interval [0,10], but some elements of

A,B ,C , x(0) may be equal to ε with a probability 0.2. The increments of the reference

sequence r are random integers uniformly distributed in the interval [0,10]. For each

nx ∈ {5,10,20}, we generate 20 random (A,B ,C , x(0)) combinations. For each choice of

(A,B ,C , x(0)), we generate 10 random reference sequences {r (k)}
Np

k=1
. The computational

budget of DOO is set to 200 node expansions.

We compare the efficiency of our method with the MILP solvers [4] cplex and glpk for

solving the problem (3.9)-(3.12). This comparison is fair because our method and the MILP

solvers are all implemented in object code and called from Matlab. We specifically use the

cplex solver inside the Tomlab toolbox of Matlab and the glpk solver called through the

glpkmex interface.

The CPU time for each method is plotted using a logarithmic scale in Figure 3.2. We can

see that, in Figure 3.2(a), for Nc = 3, the mean CPU time curves of DOO (oo) and the MILP

solvers intersect at Np = 6. For Nc = 4 and Nc = 5, the intersections of the mean CPU time

curves for oo and for the MILP solvers occur at respectively Np = 9 and Np = 14 as shown in
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Figure 3.2: (a-c) The CPU time for DOO (oo), cplex, and glpk for Nc = 3,4,5; (d) Relative

error between oo and the MILP solvers.
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Figure 3.3: (a) The CPU time for DOO (oo) and cplex; (b) Relative error between oo and

cplex.

Figure 3.2(b-c). Thus DOO is faster than MILP when Np is about two or three times as large

as Nc. We can also see that the computation time of the MILP solvers is exponential in Np,

while Np has no significant influence on the computation time of DOO.

We also compute the relative error between the objective function value obtained by

DOO and the best value among the two MILP solvers (see Figure 3.2(d)). The difference

between the objective function values provided by the two MILP solvers are negligible, so it

is not plotted. For each nx and each combination of A,B ,C , x(0) and r (k), the relative error

of DOO is computed. The plotted relative errors are the average values over all instances.

We can see that for each value of Nc considered, the average relative errors are less than

3.5×10−3.

Example 2: Industrial manufacturing system

Now we consider the manufacturing unit for producing rubber tubes for automobile

equipment presented in [5]. The dynamic behavior of this system is described by an MPL

system with 19 states, 2 inputs, and 1 output (see [5] for details). Let Nc = 2. We run

experiments for Np = Nc + 1, . . . ,40 with λ = 0.0001, σ = τ = ω = 1, u(−1) = [0 0]T and

2 ≤ ∆ui (k) ≤ 8, i = 1,2, for all k. The increments of the reference sequence r are random

integers uniformly distributed in the interval [2,10]. We use DOO and the cplex solver to

solve the corresponding MPL-MPC problem2. The computational budget of DOO is set to

700 node expansions. Figure 3.3 shows the CPU time for DOO and cplex and the relative

error between the values of J 1,1,1
∆

provided by both methods. We can see that DOO is faster

than cplex when Np ≥ 14 and that the relative error between the objective function values

is less than 9%.

2The glpk solver is not used for comparison because cplex is much faster than glpk when solving the

resulting MILP problem for this example.
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3.3 Optimistic planning for MPL systems with discrete

control variables

In the previous section, we have used optimistic optimization to solve the finite-horizon

optimal control problem for MPL systems with continuous control inputs. In this section, we

propose to apply optimistic planning to solve the infinite-horizon optimal control problem

for MPL systems where the action space is discretized as a finite set. Note that although

the evolution of MPL systems is event-driven in contrast to time-driven as in a discrete-time

system, optimistic planning can still be applied because of the analogy between descriptions

of MPL systems and conventional linear time-invariant discrete-time systems. Also note that

considering an infinite-horizon discounted objective function is more flexible than selecting

a fixed finite-horizon objective function since the prediction horizon does not have to be

fixed a priori.

3.3.1 Problem statement

Consider the following MPL system

x(k +1) = A⊗x(k)⊕B ⊗u(k), (3.26)

y(k) =C ⊗x(k), (3.27)

where k is the event counter, x(k) ∈ R
nx
ε is the state, u(k) ∈ R

nu
ε is the input, y(k) ∈ R

ny

ε is the

output and where the input u(k) is rewritten as

u(k) = u(k −1)+∆u(k).

For the sake of simplicity, we consider the single input case (i.e., nu = 1); however, an

extension to multiple inputs can be made. We assume that the increments ∆u(k) of the

inputs take values from a given finite set U , {u1, . . . ,uK } with K the number of actions and

with ui ≥ 0 for all i , and where U is called the action space.

Given a due date signal {r (k)}∞
k=0

with r (k) ∈ R
ny , a typical objective in optimal control

for MPL systems is minimizing the due date error between the output event times and the

due dates, e.g., the tardiness values max(yl (k)− rl (k),0). So we consider the following stage

cost:

ρ(k) =

ny
∑

l=1

min
(

max(yl (k)− rl (k),0), g
)

+λF (∆u(k)), (3.28)

where λ> 0 is a trade-off between the delay of completion times with respect to the due date

signal and the feeding rate. The positive scalar g is introduced to make ρ(k) bounded, more

specifically, g is a predefined value larger than yl (k)−rl (k) for any l and k. For each element

ui of the finite set U , we assign a cost F (ui ) according to some criterion. In addition, we

make the following assumption in this section.

Assumption 3.5 For any i ∈ {1, . . . ,K }, we have F (ui ) ≤ g .

If we consider a just-in-time setting, then the smaller the value of ∆u(k), the larger the value

of its cost, i.e., F should be a positive monotonically nonincreasing function of ∆u(k). For

example, assume that U = {u1,u2}, i.e., the next feeding time is after u1 or u2 time units and
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assume that u1 < u2, then we could have

F (∆u(k)) =αi g if ∆u(k) = ui ,

with α1 >α2 > 0 and α1 +α2 = 1. Another example could be:

F (∆u(k)) = g −∆u(k), with g ≥ max(U ).

It is easy to verify that ρ(k) always belongs to the interval [0, g +λg ].

Given initial conditions x(0) and u(−1), define an infinite-length control sequence ∆u =

(∆u(0),∆u(1), . . .) and the infinite-horizon discounted objective function corresponding to

∆u:

J (∆u, x(0),u(−1)) =
∞
∑

k=0

γkρ(k +1).

Note that we have J (∆u, x(0),u(−1)) ∈ [0,
g+λg

1−γ ] providing that Assumption 3.5 holds.

The infinite-horizon discounted optimal control problem for MPL systems with discrete

inputs is now defined as follows:

min
∆u

J (∆u, x(0),u(−1)) (3.29)

subject to

x(k +1) = A⊗x(k)⊕B ⊗u(k), (3.30)

y(k) =C ⊗x(k), (3.31)

u(k)= u(k −1)+∆u(k), (3.32)

∆u(k) ∈U , {u1, . . . ,uK }, k = 0,1, . . . . (3.33)

Note that (2.3) is automatically satisfied since ui ≥ 0 for all i .

3.3.2 Optimistic planning for MPL systems

In this section, we apply optimistic planning of deterministic systems (OPD) to solve the

infinite-horizon discounted optimal control problem (3.29)-(3.33). We first define lower

and upper bound functions similar to (2.24) and (2.25). The bounded stage cost (3.28)

corresponds to a bounded reward function:

R(k) = 1−
ρ(k)

g +λg
. (3.34)

Furthermore, R(k) ∈ [0,1]. Define

J̄ (∆u, x(0),u(−1)) =
∞
∑

k=0

γk R(k +1). (3.35)

The minimization problem (3.29)-(3.33) can now be translated into the following

maximization problem:

max
∆u

J̄ (∆u, x(0),u(−1)) (3.36)
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subject to

x(k +1) = A⊗x(k)⊕B ⊗u(k), (3.37)

y(k) =C ⊗x(k), (3.38)

u(k) = u(k −1)+∆u(k), (3.39)

ρ(k) =

ny
∑

l=1

min
(

max(yl (k)− rl (k),0), g
)

+λF (∆u(k)), (3.40)

R(k) = 1−
ρ(k)

g +λg
, (3.41)

∆u(k) ∈U , {u1, . . . ,uK }, k = 0,1, . . . . (3.42)

Define

∆ud = (∆u(0), . . . ,∆u(d −1)),

v(∆ud ) =
d−1
∑

k=0

γkR(k +1),

b(∆ud ) = v(∆ud )+
γd

1−γ
.

So v(∆ud ) and b(∆ud ) provide lower and upper bounds of J̄ (∆u|d , x(0),u(−1)) for any

infinite-length sequence ∆u|d of which the first d components coincide with ∆ud . When

applying OPD to solve the problem (3.36)-(3.42), the upper bound function b is used to

select the most promising control sequence (corresponding to the largest b-value among all

leaves of the current tree) to expand. The lower bound function v is used for determining

the best control sequence at the end of the algorithm.

Given initial conditions x(0) and u(−1), a due date signal {r (k)}∞
k=0

, and the number of

node expansions n, OPD returns a control sequence ∆u
∗
d ′ that maximizes the lower bound v

function. The first action of ∆u
∗
d ′ is applied to the system and the whole process is repeated

at each event step. In this way, a receding-horizon controller is obtained. The length d ′ of

the returned sequence is the maximum depth reached by the algorithm for the given finite

n. According to Theorem 2.17(i) (see also [22]), we have the following corollary for the near-

optimality guarantee of the returned control sequence:

Corollary 3.6 Let

J̄∗(x(0),u(−1)),max
∆u

J̄ (∆u, x(0),u(−1)),

be the optimal value of the objective function in problem (3.36)-(3.42). Let ∆u
∗|d ′ be any

infinite-length sequence of which the first d ′ components coincide with ∆u
∗
d ′ returned by

OPD. Then we have

J̄∗(x(0),u(−1))− J̄ (∆u
∗
|d ′ , x(0),u(−1))

≤ b(∆u
∗
d ′)−v(∆u

∗
d ′)

≤
γd ′

1−γ
.

2
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OPD applies the first component of ∆u
∗

d ′ to the system and generates a new control

sequence at the next event step. Rather than recomputing a new control sequence at every

event step, one can alternatively apply the first subsequence of length d̄ of ∆u
∗

d ′ (with

d̄ ≤ d ′) to the system and recompute the control sequence only every d̄ event steps [22].

Recall that d ′ is the maximum depth reached by the algorithm for the fixed n. In order to

obtain a control sequence with a sufficient length, the number of node expansions n should

be large enough such that the length of the returned sequence ∆u
∗
d ′ is at least d̄ . In the

worst case, the algorithm will explore all branches of the tree, so n should be larger than
∑d̄−1

k=0
K k +1 to guarantee that at least one path has length d̄ . However, in general a smaller n

can be selected because OPD explores the tree in an efficient way rather than evaluating all

actions in the action space at each node expansion step.

3.3.3 Example

Consider the following MPL system from [103]:

x(k +1) =











ε 0 ε 9

4 3 4 5

8 ε 2 8

0 1 ε ε











⊗x(k)⊕











0

5

2

8











⊗u(k), (3.43)

y(k) =
[

6 5 8 ε
]

⊗x(k). (3.44)

Given a due date signal r (k) = 50+ 6.5k, and the initial conditions x(0) =
[

6 12 9 14
]T

and3 u(−1) = 6, we consider the following stage cost function

ρ(k) = min
(

max(y(k)− r (k),0), g
)

+λ(g −∆u(k)), (3.45)

with g = 500, λ= 0.001, ∆u(k) ∈U = {6,8}, K = 2. The discount factor in (3.35) is γ= 0.95.

The optimistic planning based approach is implemented to obtain a receding-horizon

controller for the MPL system (3.43)-(3.44). In addition, a finite-horizon approach is also

implemented for comparison. More specifically, given a fixed finite horizon dN = 10, a full

tree4 is explored from the root node to the depth dN. The finite-horizon approach returns a

control sequence that maximizes the following function

J̄N =

dN−1
∑

k=0

γk R(k +1),

where R is the reward corresponding to (3.45).

The difference between y and r is used for comparing the optimistic planning approach

and the finite-horizon approach. For each approach, we consider both applying the first

action only and applying a subsequence of length d̄ to the system once an optimal control

sequence is obtained. Fig. 3.4 shows the results of applying the first action only with n =

100 for the optimistic planning approach and with dN = 10 for the finite-horizon approach.

3Considering a production system, the initial state x(0) contains the starting times of the production

processes for the 0-th cycle. The initial input u(−1) represents the time at which a batch of raw material is

fed to the system for the 0-th cycle.
4Here a full tree is a tree in which every node that is not a leaf node, has K children.
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Figure 3.4: Tracking error for the closed-loop controlled system of the example of Section 3.3.4

when applying the first action only of the returned sequences for both approaches
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Figure 3.5: Tracking error for the closed-loop controlled system of the example of Section 3.3.4

when applying the first subsequence of length d̄ = 9 of the returned sequences for

both approaches
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We can see that the two approaches result in the same tracking error. Fig. 3.5 shows the

results of applying a subsequence of length d̄ = 9 with n = 500 and dN = 10. We can see that

in this case the optimistic planning approach gives a lower tracking error than the finite-

horizon approach. In addition, for both approaches, the range of tracking errors by applying

a subsequence is smaller than that by applying the first action only. Thus, for the considered

MPL system (3.43)-(3.44), applying a subsequence of length d̄ = 9 yields a better tracking

than applying the first action only for both approaches. However, this does not mean that

applying a subsequence performs better for any experimental instance.

3.4 Conclusions

In this chapter, we have extended optimistic optimization and optimistic planning to model-

based control for MPL systems.

In Section 3.2, we have generalized the expressions of the objective function given in

[47, 133]. We have derived analytic expressions for the semi-metric required by the DOO

algorithm for each objective function and extended the DOO algorithm to solve the MPL-

MPC problem subject to bound constraints on the control variables. Based on the theoretical

and numerical analysis, we found that the complexity of the proposed approach increases

exponentially in the control horizon instead of the prediction horizon. This is in contrast

to the worst-case complexity of the MILP method which is exponential in the prediction

horizon. As illustrated by the numerical results, DOO is more efficient than MILP when the

prediction horizon is large and the control horizon is small.

In Section 3.3, we have extended the OPD algorithm to the infinite-horizon optimal

control problem for MPL systems with the control variable taking values in a finite set. The

considered infinite-horizon discounted objective function aims at reducing the tracking

error between the output signal and a due date signal. Within a limited computational

budget, the OPD algorithm returns a control sequence the level of suboptimality of which

can be characterized. In particular a bound can be derived for the difference between the

optimal value of the objective function and the near-optimal value corresponding to the

returned control sequence. The results of a numerical example show that for the given MPL

system the proposed approach yields a better tracking than a finite-horizon approach when

applying a subsequence of the returned control sequence.

We only considered the simple bounds on the input rate in Section 3.2. In the future, we

will consider the case with general linear constraints on inputs and outputs. Moreover, we

will focus on solving the robust optimal control problem for MPL systems with disturbances

using (variants of) optimistic planning. We will also explore the infinite-horizon optimal

control problem for other discrete-event and hybrid systems such as max-min-plus-scaling

and piecewise affine systems.





Chapter 4

Optimistic optimization for MPC of

continuous PWA systems

In this chapter we consider model predictive control (MPC) for discrete-time continuous

piecewise affine systems with 1-norm and ∞-norm objective functions subject to linear

constraints on the states and the inputs. We extend optimistic optimization to solve the

resulting MPC optimization problem and derive analytic expressions for the core

parameters required by optimistic optimization. We also discuss the level of suboptimality

of the returned solution. The performance of the proposed approach is illustrated with a

case study on adaptive cruise control.

4.1 Introduction

Piecewise affine (PWA) systems [127] are a subclass of hybrid systems, containing both

continuous and discrete dynamics. PWA systems are defined by a polyhedral partition of

the state and input space where each polyhedron is associated with an affine dynamical

description. It has been proved [72] that continuous PWA systems are equivalent to other

classes of hybrid systems, such as mixed logical dynamical (MLD) systems and

max-min-plus-scaling (MMPS) systems. Based on this equivalence between continuous

PWA systems and MLD systems, the MPC problem for continuous PWA systems can be

written as a mixed-integer linear programming (MILP) problem [8]. However, the efficiency

of solving the resulting MILP problem is limited by the number of integer variables. The

number of integer variables is in general proportional to the value of the prediction horizon

and the number of polyhedral partitions of the considered PWA system. The complexity of

current MILP algorithms increases in the worst case exponentially if the number of integer

variables increases. On the other hand, from the equivalence between continuous PWA

systems and MMPS systems, the corresponding MPC optimization problem can be solved

by a sequence of linear programming (LP) problems [48]. Nevertheless, the complexity of

that approach is determined by the number of LP problems to be solved, which may

increase rapidly if the prediction horizon increases. Therefore, developing an efficient

approach with guaranteed performance for solving the continuous PWA-MPC optimization

problem is the motivation of this chapter.

In this chapter, at each time step, a sequence vector of control inputs is computed by

using optimistic optimization to solve a nonlinear, nonconvex optimization problem

subject to linear constraints. The feasible set is transformed into a hyperbox by applying the

47
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penalty function method. Considering a 1-norm and ∞-norm objective function, we design

a dedicated semi-metric and the analytic expressions for the parameters of optimistic

optimization, which characterize the suboptimality of the solution in terms of the

near-optimality dimension. We show that the near-optimality dimension of the resulting

optimization problem is zero, which results in the suboptimality bound of the returned

solution decreasing exponentially in the computational budget. Compared with the MILP

method, which provides the true optimum, the solution returned by optimistic

optimization given a finite computational budget is near-optimal, but optimistic

optimization can be computationally efficient when the number of polyhedral partitions of

the PWA system is large.

This chapter is organized as follows. In Section 4.2, the MPC problem for discrete-time

PWA systems is formulated. In Section 4.3, the proposed optimistic-optimization-based

approach is presented and the suboptimality is discussed. In Section 4.4, the effectiveness

of the proposed approach is illustrated with an adaptive cruise control case study. Finally,

Section 4.5 concludes this chapter.

4.2 MPC for continuous PWA systems

Consider the following discrete-time PWA system:

x(k +1) = Ai x(k)+Bi u(k)+ gi , for

[

x(k)

u(k)

]

∈P i , (4.1)

where the index k is the time counter1, x(k) ∈ R
nx is the state, u(k) ∈ R

nu is the input, Ai ,Bi ,

and gi are the system matrices and vectors for the i-th region with i ∈ {1, . . . , N } where N is

the number of regions. Each region P i is a polyhedron given as P i = {Fi x(k)+Gi u(k) ≤ hi }

where Fi ,Gi , and hi are suitable matrices and vectors and {P i }N
i=1

is a polyhedral partition of

the state and input space.

As discussed in Section 2.2.2, the continuous PWA system (4.1) can equivalently be

written as the MLD system (2.7) and the MMPS system (2.8).

Remark 4.1 In this chapter, we assume that the PWA system (4.1) is continuous, i.e., the

right-hand side of (4.1) is continuous on the boundary of any two neighbouring regions. The

advantage of considering continuous PWA systems is that (4.1) can equivalently be written

as in the form of the MMPS system (2.8) without introducing additional auxiliary variables

or extra constraints. 2

4.2.1 Objective function and constraints

Let Np and Nc be the prediction horizon and the control horizon. Define the sequence

vectors

x̃(k) =
[

xT (k +1) · · · xT (k +Np)
]T

,

ũ(k) =
[

uT (k) · · · uT (k +Nc −1)
]T

.

1Note that in Chapter 3, the index k is the event counter; while in this chapter, k represents the time

counter.
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Let r be a given reference signal. Define the control input increment

∆u(k) = u(k)−u(k −1). (4.2)

In this chapter, we consider the following objective function

J (ũ(k)) = ‖x̃(k)− r̃ (k)‖p +λ‖∆ũ(k)‖q , (4.3)

where p, q ∈ {1,∞}, λ is a nonnegative scalar, and

r̃ (k) =
[

r T (k +1) · · · r T (k +Np)
]T

,

∆ũ(k) =
[

∆uT (k) · · · ∆uT (k +Nc −1)
]T

.

Besides, we consider the following linear constraints on the state and the input:

Pk x̃(k)+Qk ũ(k) ≤ bk , (4.4)

xmin ≤ x(k + j ) ≤ xmax, j = 1, . . . , Np, (4.5)

umin ≤ u(k + j −1) ≤ umax, j = 1, . . . , Nc, (4.6)

with Pk ∈R
nc×nx Np , Qk ∈R

nc×nu Nc , bk ∈R
nc , xmin, xmax ∈R

nx , and umin,umax ∈R
nu .

4.2.2 Problem formulation

At time step k, the MPC problem for the system (4.1) can be written as

min
ũ(k)

J (ũ(k)) (4.7)

subject to

the prediction model (4.1), (2.7), or (2.8) (4.8)

Pk x̃(k)+Qk ũ(k) ≤ bk , (4.9)

xmin ≤ x(k + j ) ≤ xmax, j = 1, . . . , Np, (4.10)

umin ≤ u(k + j −1)≤ umax, j = 1, . . . , Nc, (4.11)

u(k + j ) = u(k +Nc −1), j = Nc, . . . , Np −1. (4.12)

An optimal control sequence vector ũ(k) is obtained by solving the problem (4.7)-(4.12);

subsequently, only the first control input u(k) is applied to the system. At the next time

step, this process is repeated.

Remark 4.2 In Section 2.2.2, we have stated that the PWA system (4.1) can equivalently be

represented as an MLD system in the form of (2.7). If (2.7) is used as the prediction model,

the PWA-MPC problem (4.7)-(4.12) can be recast into an MILP problem following the

procedures in [8] where the number of variables and constraints is proportional to the

product nN Np. However, in practice, the worst-case complexity of the MILP problem is

exponential in nN Np. When the system (4.1) is continuous, another solution approach for

the problem (4.7)-(4.12) has been presented in [48]. That approach is based on the

equivalence between the PWA system (4.1) and the MMPS system (2.8) and consists in
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solving a sequence of LP problems based on writing the objective function (4.3) in the form

(2.5). The number of LP problems is determined by the number of minimization operations

in (2.5); the size of each LP problem relates to the number of maximization operations

corresponding to each minimization operation. But the number of minimization and

maximization operations may increase rapidly with growing Np, which makes the approach

less efficient. Therefore, we are motivated to alleviate the influence of Np on the complexity.

In the remaining part of this chapter, we will introduce an approach the complexity of

which mainly depends on Nc instead of Np. 2

4.3 Optimistic optimization approach

In this section, we present the optimistic optimization approach for the PWA-MPC problem

(4.7)-(4.12) provided that the PWA system (4.1) is continuous.

Recall the definitions of 1-norm and ∞-norm for vectors x ∈R
n :

‖x‖1 =

n
∑

i=1

|xi |, ‖x‖∞ = max
i=1,...,n

|xi |, and |xi | = max(xi ,−xi ).

According to the equivalence between the system (4.1) and (2.8), the objective function

(4.3) can be transformed into an expression in the form of (2.4) or (2.5) (cf. Theorem 3.1 in

[48]). Currently, we consider the max-min canonical form (2.4) while the results can easily

be extended to (2.5) due to duality.

Using (2.8) as the prediction model, the state vector x̃(k) can be eliminated from the

objective function. Then the objective function (4.3) only has ũ(k) as the independent

variable:

J (ũ(k)) = max
i∈I

min
j∈Ji

{

αT
i j k ũ(k)+βi j k

}

, (4.13)

with αi j k ∈ R
nu Nc , βi j k ∈ R. The parameter vectors αi j k and the constant terms βi j k can

be computed from the known information at time step k, namely, the system matrices and

vectors Ai , Bi , and gi in (4.1), the reference sequence vector r̃ , the current state x(k), and the

previous control input u(k −1).

4.3.1 Penalty method

The feasible set defined by constraints (4.4)-(4.6) is a polytope. In order to easily guarantee

the Assumptions 2.10-2.12 for optimistic optimization, we transform the problem into a

problem with hyperbox constraints. Hence, we treat (4.4) and (4.5) as soft constraints and

replace them by adding a penalty function to the objective function:

Jp(ũ(k)) =β ·max
(

0,

max
i=1,...,nc

(

Pi ,·x̃(k)+Qi ,·ũ(k)−bi

)

,

max
j=1,...,Np

max
l=1,...,nx

(

xl (k + j )−xmax,l , xmin,l −xl (k + j )
)

)

,

(4.14)

where β is the penalty coefficient; Pi ,· and Qi ,· are the i-th rows of Pk and Qk respectively; bi

is the i-th element of bk ; xl (k + j ), xmin,l , and xmax,l are the l-th elements of x(k + j ), xmin,
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and xmax respectively. So we have the new objective function

Jnew(ũ(k)) = J (ũ(k))+ Jp(ũ(k)), (4.15)

subject to the bound constraint (4.6). Consequently, the feasible set is actually an nu Nc-

dimensional hyperbox, i.e.,

U ,
{

ũ
∣

∣

∣

[

uT
min · · · uT

min

]T
≤ ũ ≤

[

uT
max · · · uT

max

]T
}

.

By performing scaling and translation operations, the hyperbox U can be transformed into

a unit hypercube Uc. For the sake of simplicity of notation, we assume from now on that ũ

actually already belongs to a unit hypercube Uc. Note that the new objective function can

also be written in the form

Jnew(ũ) = max
i∈I

min
j∈Ji

{

α̂T
i j ũ + β̂i j

}

, (4.16)

with α̂i j ∈ R
nu Nc , β̂i j ∈ R. In the remaining part of this section the time counter k is omitted

for the sake of simplicity.

4.3.2 Development and analysis

Now we design the semi-metric ℓ, the diameter δ(h), and the scalar ν for solving the

continuous PWA-MPC problem (4.7)-(4.12) with the new objective function (4.16) using

optimistic optimization. These parameters are required for the implementation of the

deterministic optimistic optimization (DOO) algorithm and for the characterization of the

suboptimality of the returned solution.

Theorem 4.3 Define

ᾱ,max
i , j

‖α̂i j ‖2,

where α̂i j are the parameter vectors in (4.16). Let ũ∗ be a global optimizer of the objective

function Jnew subject to ũ ∈ Uc. Recalling the hierarchical partitioning framework presented

in Section 2.4.1, let the branching number K = Dnu Nc where nu Nc is the dimension of the

hypercube Uc and each edge of Uc is cut into D equal parts. Let U h,d be the cell at depth h

with node index d and let ũh,d ∈U h,d be the center of U h,d .

(i) If we define

ℓ(ũ, ṽ) = ᾱ‖ũ − ṽ‖2, (4.17)

for any ũ, ṽ ∈Uc, then ℓ is a semi-metric defined on Uc such that for any ũ ∈Uc, we have

Jnew(ũ)− Jnew(ũ∗) ≤ ℓ(ũ, ũ∗). (4.18)

(ii) If we define

δ(h) =
ᾱ

2
(nu Nc)1/2/Dh , (4.19)

then for any cell U h,d at any depth h, we have

sup
ũ∈U h,d

ℓ(ũ, ũh,d ) ≤ δ(h). (4.20)
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(iii) Select 0< ρ ≤ 1. If we define

ν= ρ(nu Nc)−1/2, (4.21)

then any cell U h,d contains an ℓ-ball with radius νδ(h) centered in ũh,d .

Proof : (i) From Proposition 2.5, the objective function Jnew is a continuous PWA function.

It is easy to verify that the constant

ᾱ,max
i , j

‖α̂i j ‖2,

is actually a Lipschitz constant2 for Jnew [56]. According to the Lipschitz continuity, we have

Jnew(ũ)− Jnew(ũ∗) ≤ ᾱ‖ũ − ũ∗
‖2,

for any ũ ∈Uc. If we define the semi-metric as

ℓ(ũ, ṽ) = ᾱ‖ũ − ṽ‖2,

then the inequality (4.18) is satisfied.

(ii) Recall the hierarchical partitioning presented in Section 2.4.1. The feasible set Uc is

a unit hypercube, so the maximum distance between any two points in Uc is (nu Nc)1/2. The

cell U h,d at depth h of the partitioning is also a hypercube and the edge length of U h,d is

1/Dh. Because ũh,d is the center of the cell U h,d , for any ũ ∈U h,d , we have

‖ũ − ũh,d
‖2 ≤

1

2
(nu Nc)1/2/Dh .

Define

δ(h) =
ᾱ

2
(nu Nc)1/2/Dh .

Therefore, for any ũ ∈U h,d , we have

ℓ(ũ, ũh,d ) = ᾱ‖ũ − ũh,d
‖2 ≤ δ(h).

(iii) An ℓ-ball of radius νδ(h) centered in ũh,d can be written as

B=
{

ũ ∈Uc

∣

∣ℓ(ũ, ũh,d ) = ᾱ‖ũ− ũh,d
‖2 ≤ νδ(h)

}

.

Note that Uc is a hypercube and so is the cell U h,d . Thus, the center uh,d is also the center

of the inscribed ball of U h,d . Let r (h) be the radius of the inscribed hyperball of U h,d , so

r (h)= 1
2

L/Dh . If we select ν such that

0 < ν≤
ᾱr (h)

δ(h)
,

then for any ũ ∈B, we have

‖ũ− ũh,d
‖2 ≤

νδ(h)

α
≤ r (h).

2A Lipschitz constant of a function is a real number such that for every pair of points on the graph of this

function, the absolute value of the slope of the line connecting them is not greater than this real number.
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Hence, then we have B⊂U h,d . Note that

ᾱr (h)

δ(h)
= (nu Nc)−1/2.

Thus if we select a scalar 0 < ρ ≤ 1 and choose

ν= ρ(nu Nc)−1/2,

then U h,d contains an ℓ-ball of radius νδ(h) centered in ũh,d . 2

Up to now, we have derived the expressions for all core parameters required by

optimistic optimization. At each time step k, we apply optimistic optimization to solve the

MPC optimization problem (4.7)-(4.12) to obtain a sequence of control inputs. To discuss

the suboptimality of the returned solution, we compute the local near-optimality

dimension for the objective function Jnew over Uc. Denote the set of ε-near-optimal

solutions as

Uε = {ũ ∈Uc|Jnew(ũ)− Jnew(ũ∗) ≤ ε}.

Theorem 4.4 Let ũ∗ be a global optimizer of Jnew subject to ũ ∈Uc and let ũ♮ be the solution

returned by optimistic optimization after n iterations. If ũ∗ is a strict local minimizer of Jnew,

then the local near-optimality dimension is η= 0 and we have

Jnew(ũ♮)− Jnew(ũ∗) ≤
ᾱ

2
(nu Nc)1/2D1−n/C ,

for some constant C > 0.

Proof : Because Jnew is a continuous PWA function and ũ∗ ∈ Uc is a strict local minimizer,

there exists a δ0 > 0 such that the neighbourhood

N (ũ∗,δ0) = {ũ ∈Uc|‖ũ − ũ∗
‖2 ≤ δ0},

consists of nδ0
subregions where each region is associated with an affine function of Jnew.

Denote the affine functions active in the neighbourhood N (ũ∗,δ0) as

αT
i ũ +βi , i = 1, . . . ,nδ0

.

For any ũ ∈ N (ũ∗,δ0), define the line that connects ũ to ũ∗; so Jnew(ũ) decreases linearly

when ũ varies towards ũ∗ along this line. Furthermore, the smallest slope with which the

objective function can decrease is given as

α= min
i=1,...,nδ0

min
j=1,...,nu Nc

|αi , j |,

where α> 0 if ũ∗ is a strict local minimizer of Jnew. Thus, for any ũ ∈N (ũ∗,δ0), we have

Jnew(ũ)− Jnew(ũ∗) ≥α‖ũ − ũ∗
‖2. (4.22)

For any δ0 > 0, there exists a ε0 > 0 such that for any ũ ∈N (ũ∗,δ0), we have

Jnew(ũ)− Jnew(ũ∗) ≤ ε0.
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PSfr

leader follower

communication r̃ (k)

distance d (k)

speed x(k)speed r (k)

Figure 4.1: Adaptive cruise control set-up considered in the case study of Section 4.4

From (4.22), we have

‖ũ − ũ∗
‖2 ≤ ε0/α.

Furthermore, for any ε ∈ (0,ε0], for any ũ ∈Uε, we have

‖ũ− ũ∗
‖2 ≤ ε/α.

Namely, for any ε ∈ (0,ε0], the set Uε is included in the set N (ũ∗,ε/α). Note that the set

N (ũ∗,ε/α) is actually an ℓ-ball of radius (ᾱ/α)ε, where the semi-metric ℓ is defined as in

(4.17). Therefore, there exists a constant C > 0 such that the maximal number of disjoint ℓ-

balls of radius νε with center in N (ũ∗,ε/α) is less than C . Hence, based on Definition 2.14,

we then have η= 0.

According to (4.19), if we define c =
ᾱ
2

(nu Nc)1/2 and γ=
1
D

, then we have δ(h)= cγh . From

Theorem 2.15(ii), we have

Jnew(ũ♮)− Jnew(ũ∗) ≤ cγn/C−1

≤
ᾱ

2
(nu Nc)1/2D1−n/C .

2

Remark 4.5 Theorem 4.4 shows that with the semi-metric (4.17), for the continuous

PWA-MPC problem with the objective function (4.16) subject to (4.6) the near-optimality

dimension is η = 0 when the optimizer is strict. This means that the optimization problem

can be solved by optimistic optimization efficiently, converging quickly to the optimal

solution. 2

4.4 Example: Adaptive cruise control

In this section, we demonstrate the proposed approach with an adaptive cruise control

problem for a road vehicle following a leader vehicle. We consider the setup introduced in

[38]. The goal of a cruise controller is to track the velocity of the vehicle in front,

guaranteeing secure driving and optimal usage of the brake system. The velocity of the

leader vehicle is communicated to the follower vehicle and considered as a reference signal.

As shown in Fig. 4.1, let x(k) be the velocity of the follower vehicle at time step k. Let r (k) be

the velocity of the leader vehicle at time step k. A nonlinear model for the positive velocity

of the follower vehicle is given in [38]. That model can be approximated by the following
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continuous PWA system:

x(k +1) = Ai x(k)+Bi u(k)+ gi , if x ∈ (pi−1, pi ], (4.23)

with i = 1,2, A1 = 0.9883, B1 = 4.598, g1 = −0.0614, A2 = 0.9655, B2 = 4.5446, g2 = 0.3711,

p0 = 0, p1 =
xmax

2
, and p2 = xmax where xmax = 37.5 m/s is the maximum velocity and p1 is

the breakpoint for the least-squares fitting of the nonlinear friction. The control input u(k)

is the throttle/brake position at time step k.

Note that (4.23) is equivalent to the following MMPS system:

x(k +1) = min
(

A1x(k)+B1u(k)+ g1, A2x(k)+B2u(k)+ g2

)

. (4.24)

Let d(k) be the distance between two vehicles at time step k, so d(k + 1) = d(k)+ (r (k)−

x(k))T with T the sampling time. Due to safety and human comfort requirements, we add

constraints on d(k), x(k), u(k) for each time step k:

dsafe ≤ d(k + j ), j = 1, . . . , Np, (4.25)

adecT ≤ x(k + j )−x(k + j −1)≤ aaccT, j = 1, . . . , Np, (4.26)

−τ≤∆u(k + j −1) ≤ τ, j = 1, . . . , Nc, (4.27)

xmin ≤ x(k + j ) ≤ xmax, j = 1, . . . , Np, (4.28)

−umax ≤ u(k + j −1) ≤ umax, j = 1, . . . , Nc, (4.29)

where dsafe = 10 m corresponds to the safe following distance to reduce the risk of collision,

aacc = 2.5 m/s2 and adec = −1 m/s2 are the allowable acceleration and deceleration for

human comfort, τ = 0.2 is the maximum brake variation, xmax = 37.5 m/s and xmin = 5 m/s

are the maximum and minimum velocities, and umax = 1 is the maximum brake.

In order to minimize the velocity deviation between the follower and the leader vehicle

and minimize the variation of the control input ∆u, we consider the following objective

function:

J (ũ(k)) = ‖x̃(k)− r̃ (k)‖∞+λ‖∆ũ(k)‖1, (4.30)

with the trade-off λ= 0.05 and Np = Nc = 2. Based on (4.24), x̃(k) and ∆ũ(k) in (4.30) can be

substituted by ũ(k). Moreover, the constraints (4.25)-(4.28) are replaced by adding a penalty

function to the objective function. The penalty coefficient is selected as β = 10. The new

objective function can be rewritten in the form of (4.16) and the resulting feasible set is a

hypercube.

At each time step k, the MPC optimization problem is respectively solved by using the

MILP method and the optimistic optimization approach. The corresponding MILP problem

is solved by the cplex function (with the default settings) in the Tomlab optimization

environment in Matlab. The optimistic optimization approach is implemented in Matlab.

The termination criteria of optimistic optimization (oo) are a combination of the

computational budget and the depth limitation. More specifically, given the number of

node expansions tmax, the number of evaluations (computational budget) of the objective

function is n = K tmax + 1 with K = 2Nc the branching number in the tree. In addition, the

maximum depth of the resulting tree is limited as hmax = 10. The algorithm will terminate

and return the best solution if the computational budget is used or the maximum depth is

reached.
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(2) Varying reference velocity r
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Figure 4.2: Simulation results of cplex and optimistic optimization (oo) for the example

of Section 4.4 for constant and varying reference velocities (tmax = 10 for oo): (a)

Velocity of the follower vehicle; (b) Distance between the two vehicles; (c) Control

input; (d) Throttle/Brake variation
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(1) Constant reference velocity r
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(2) Varying reference velocity r
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Figure 4.3: Simulation results of cplex and optimistic optimization (oo) for the example of

Section 4.4 for constant and varying reference velocities (tmax = 100 for oo): (a)

Velocity of the follower vehicle; (b) Distance between the two vehicles; (c) Control

input; (d) Throttle/Brake variation
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(1) Constant reference velocity r
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(2) Varying reference velocity r

0 10 20 30 40 50

Time (s)

0

10

20

30

40

x(
k)

(a)

reference
oo
cplex

0 10 20 30 40 50

Time (s)

0

50

100

d(
k)

(b)

0 10 20 30 40 50

Time (s)

-1

-0.5

0

0.5

1

u(
k)

(c)

0 10 20 30 40 50

Time (s)

-0.4

-0.2

0

0.2

0.4

u(
k)

(d)

Figure 4.4: Simulation results of cplex and optimistic optimization (oo) for the example of

Section 4.4 for constant and varying reference velocities (tmax = 1000 for oo): (a)

Velocity of the follower vehicle; (b) Distance between the two vehicles; (c) Control

input; (d) Throttle/Brake variation
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Table 4.1: CPU times per step, closed-loop costs over the simulation period, and the relative

error of oo and cplex

tmax = 10 tmax = 100 tmax = 1000 cplex

CPU time (s) 0.001 0.01 0.1 0.004

Constant r
45.8 41.96 39.98 39.76

15.19% 5.51% 0.53% 0

Varying r
102.62 100.22 96.92 96.62

6.21% 3.72% 0.3% 0

Fig. 4.2 shows the simulation results of adaptive cruise control for the follower vehicle

tracking different reference velocities over the simulation horizon [1,50]. The constant

reference velocity is 18.75 m/s and the varying reference velocity is given as

r (k) = 10e−0.05k sin(0.3k) + 18.75. The number of node expansions in optimistic

optimization is tmax = 10. We can see that the trajectory of the velocity of the follower

vehicle controlled by optimistic optimization can track both types of reference velocities

(Fig. 4.2(1a) and 4.2(2a)). However, the variation of the control input is not smooth,

especially for the case with constant reference. Fig. 4.3 and 4.4 shows the simulation results

when tmax is increased for optimistic optimization from 10 to 100 and 1000. We can see that

the trajectories of the velocity and the distance resulting from optimistic optimization track

the trajectories resulting from cplex better than the case in Fig. 4.2. Moreover, the control

inputs solved by optimistic optimization are smoother and quite close to the control inputs

solved by cplex. The closed-loop cost over the simulation period of optimistic

optimization with tmax = 1000 is 96.92 for the varying reference signal; the relative error

compared with the cost of cplex is 0.3% (this relative error is computed as

100|(costcplex − costoo)/costcplex|). The closed-loop costs of optimistic optimization given

different computational budgets and the relative error comparing with cplex are listed in

Table 4.1. The relative error of closed-loop costs of optimistic optimization decreases if the

computational budget increases. The average CPU times for optimistic optimization and

cplex solving the optimization problem at each time step are also included in Table 4.1.

Note that optimistic optimization will be faster if we would transfer the Matlab code into

object code.

4.5 Conclusions

In this chapter, we have extended optimistic optimization to MPC for discrete-time

continuous PWA systems and MMPS systems, which in general leads to an MILP problem.

We have considered a 1-norm and ∞-norm objective function subject to a hyperbox

feasible set. We have developed a dedicated semi-metric and other parameters required by

optimistic optimization for the corresponding problem. In addition, a bound on the

suboptimality of the returned solution with respect to a global optimum has been derived

given a finite computational budget. A case study on adaptive cruise control has been

implemented to illustrate the performance of the proposed approach.

In our future work, we will investigate the stochastic MPC for PWA systems with

uncertainties. Moreover, we will also derive expressions for the core parameters of

optimistic optimization considering a polytopic feasible set.





Chapter 5

Optimistic optimization of continuous

nonconvex PWA functions

In the previous chapter we have considered model predictive control for continuous

piecewise affine (PWA) systems with a 1-norm or ∞-norm objective function subject to a

hyperbox feasible set. We have seen that the resulting model predictive control

optimization problem actually involves the optimization of a continuous nonconvex PWA

function over a hyperbox. The current chapter is an extension of the previous chapter. More

precisely, we extend optimistic optimization to the global optimization problem of a

continuous nonconvex PWA function over a polytope. Moreover, we replace the common

assumptions of optimistic optimization by just one compact assumption and

correspondingly adapt the definition for the near-optimality dimension. In addition, we

provide a partitioning approach for a polytope by employing Delaunay triangulation and

edgewise subdivision. For this partitioning, we derive the analytic expressions for the core

parameters required by optimistic optimization for continuous PWA functions.

5.1 Introduction

Piecewise affine (PWA) functions are widely used in various fields for approximating

nonlinearities, see [6, 111, 128]; they also appear as cost functions of numerous

optimization problems, see [41, 104, 117]. During the last decades, optimization of PWA

functions has been investigated by many researchers. A traditional technique for the

optimization of a convex PWA function subject to linear constraints consists in

transforming the problem into a single equivalent linear programming (LP) problem and

then applying LP methods. Moreover, some LP methods have been extended to directly

deal with the optimization of convex PWA function without resorting to LP reformulations,

e.g., the simplex algorithm [55] and the interior point algorithm [29]. The optimization of a

nonconvex PWA function is often recast as a mixed integer linear programming (MILP)

problem [40, 141]. However, the worst-case complexity of MILP solvers grows exponentially

with the number of polyhedral subregions of the PWA function, which usually make the

problem solving process less efficient.

In this chapter we compress the common assumptions of optimistic optimization into a

compact one and give a new definition for the near-optimality dimension, which is used for

measuring the complexity of the optimization problem. Moreover, the linear constraints on

the optimization variables are now considered as hard constraints and, for the first time in

61
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the literature on optimistic optimization, a polytopic feasible set is considered. This

extension from a hyperbox feasible set to a polytopic one is not trivial but useful because a

polytopic feasible set allows to include general affine constraints on the control variables

rather than only single bound constraints. A partition of the given polytope is required to

perform the search process. The partitioning should generate well-shaped cells that shrink

with the depth. We first employ Delaunay triangulation to divide the polytope into a mesh

of simplices and next repeatedly use edgewise subdivision to subdivide the simplices into

smaller simplices that satisfy the requirements for optimistic optimization. For this

partitioning approach, we develop analytic expressions for the core parameters of

optimistic optimization based on the knowledge of the Lipschitz constants of the PWA

objective function f . The effectiveness of the resulting algorithm is illustrated with

numerical examples and the results show that using optimistic optimization algorithms for

the optimization of a continuous and nonconvex PWA function over a given polytope is

more efficient than transforming it into an MILP problem if the number of polyhedral

subregions of the PWA function is large. The second example shows that the proposed

approach is also efficient for the optimization of max-min-plus-scaling (MMPS) functions,

which are equivalent to continuous PWA functions.

This chapter is organized as follows. In Section 5.2, we describe the optimization

problem of continuous nonconvex PWA functions. In Section 5.3, we adapt the

deterministic optimistic optimization (DOO) algorithm to the setting in [68]. In Section 5.4,

we propose a partitioning approach for which we develop the analytic expressions for the

core parameters of DOO. In Section 5.5, the proposed approach is assessed with numerical

examples. Finally, Section 5.6 includes some conclusions and future work directions.

5.2 Problem statement

Consider the following optimization problem:

min
x∈P

f (x) (5.1)

subject to

Ax ≤ b. (5.2)

The objective function f : P →R is a scalar-valued continuous PWA function where P ∈R
nx

is a polyhedron and there exists a polyhedral partition {P i }N
i=1

of P such that f is affine on

each P i , i.e.,

f (x) =αT
(i )x +β(i ), ∀x ∈P i ,

with α(i ) ∈ R
nx , β(i ) ∈ R, i = 1, . . . , N . The matrix A ∈ R

m×nx and vector b ∈ R
m are the

constraint matrix and vector. We assume that the feasible set

X = {x ∈R
nx |Ax ≤ b},

is nonempty and bounded. From Definition 2.2, X is a polytope. If f is convex, then the

problem (5.1)-(5.2) is equivalent to a set of LP problems [92], which can be solved very

efficiently.

In this chapter, we consider the case that f is continuous and nonconvex and that the

number of polyhedral subregions N is much larger than nx . For this case, one possible
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solution approach consists in transforming the problem (5.1)-(5.2) into an MILP problem.

The number of auxiliary variables and linear constraints in the resulting MILP description is

proportional to N . So the complexity of the resulting MILP problem grows in the worst case

exponentially in N . In the next section, we will introduce an optimistic optimization

algorithm for the problem (5.1)-(5.2). The knowledge of a Lipschitz constant of f is

important for designing the two key parameters ν and ρ of optimistic optimization. For any

x, y ∈P i , we have

∣

∣ f (x)− f (y)
∣

∣=
∣

∣αT
(i )x +β(i ) −αT

(i ) y −β(i )

∣

∣

=
∣

∣αT
(i )(x − y)

∣

∣

≤ ‖α(i )‖2‖x − y‖2 . (5.3)

The last inequality is obtained from the property that for every x, y ∈ R
n , we have |xT y | ≤

‖x‖2‖y‖2. It is easy to verify that max
i=1,...,N

‖α(i )‖2 is the smallest Lipschitz constant of f (see

[56] and Proposition 2.2.7 in [122] for a proof).

5.3 Adaptation of DOO

In Section 2.4, we have introduced the background of the deterministic optimistic

optimization (DOO) algorithm. In this section, we particularly adapt the assumptions

presented in [100] to a compact one like the one in [68]. In this section, we consider f and

X as a general objective function and a general feasible space.

Four necessary assumptions are stated in [100] (written as Assumptions 2.10-2.12 in

Section 2.4.2) regarding the function f and the partitioning used in the DOO algorithm.

Those assumptions are expressed in terms of a semi-metric. However, as discussed in [68],

this semi-metric actually just seems to link the function and the partitioning and it is not

used in the implementation of the algorithm. So in [68] the assumptions for the DOO

algorithm are merged into a single one by discarding the semi-metric. In this chapter, we

use the setting in [68] and make the following assumption where two parameters ν and ρ

are introduced to directly relate f to the partitioning.

Assumption 5.1 Given the partitioning of X , let d∗
h

be the index of the cell at depth h

containing a global optimizer x∗, i.e., x∗ ∈ X h,d∗
h , and let xh,d∗

h be the representative point of

the cell X h,d∗
h . Then there should exist ν > 0 and ρ ∈ (0,1) such that for any h ∈ {0,1, . . .}, we

have

f (xh,d∗
h )− f (x∗) ≤ νρh .

The process of DOO is summarized in Figure 2.4. Adapting DOO for Assumption 5.1, at

each iteration t , DOO selects a a leaf of the current tree with the minimum value f (xh,d )−νρh

to expand. Assumption 5.1 implies that any cell containing x∗ satisfies

f (xh,d∗
h )−νρh

≤ f (x∗).

Consequently, a cell X h′,d ′

such that

f (xh′,d ′

)−νρh′

> f (x∗),
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will never be selected to split because there always exists a cell containing x∗ such that

f (xh,d∗
h )−νρh

< f (xh′,d ′

)−νρh′

.

More specifically, DOO only expands nodes of the set

I ,
⋃

h≥0

Ih ,

where

Ih = {(h,d)| f (xh,d )− f (x∗) ≤ νρh}.

The elements of Ih can be considered as νρh-near-optimal solutions. A measure (called

near-optimality dimension) is defined in [100] to characterize the number of near-optimal

solutions and to derive bounds on the difference between the optimal solution and the

solution returned by the algorithm. In this section, we adapt the definition of

near-optimality dimension in [68] to make it equivalent to the definition in [100].

Definition 5.2 The near-optimality dimension of f is the smallest η> 0 such that there exists

a positive constant C such that the maximum number of cells X h,d at any depth h for which

f (xh,d )− f (x∗) ≤ νρh is less than C (νρh)−η.

With this near-optimality dimension, the results in [100] about bounds on the

suboptimality still hold.

Theorem 5.3 For a given finite number n of iterations, let x∗ be a global minimizer and let

x(n) be the solution returned by the algorithm after n iterations.

(i) Let (hmax,dmax) be the deepest node that has been expanded by the algorithm up to n

iterations. Then we have

f (x(n))− f (x∗) ≤ νρhmax .

(ii) If η> 0, then

f (x(n))− f (x∗) ≤
( C

1−ρη

)1/η
n−1/η.

(iii) If η= 0, then

f (x(n))− f (x∗) ≤ νρn/C−1.

Proof : (i) Since DOO only expands the nodes of the set I , we have

f (xhmax,dmax )−νρhmax ≤ f (x∗).

Note that x(n) is the returned solution with minimum function value of f among the

expanded nodes, so

f (x(n)) ≤ f (xhmax ,dmax ).

Since x∗ is a global minimizer, we have

f (x∗) ≤ f (x(n)).
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Hence,

f (x(n))−νρhmax ≤ f (xhmax,dmax )−νρhmax

≤ f (x∗).

Furthermore, f (x(n))−νρhmax and f (x(n)) are respectively a lower and an upper bound of

f (x∗). In addition, the distance between the two bounds is bounded by νρhmax .

(ii) From Definition 5.2, we have

|Ih | ≤C (νρh)−η.

Define an indicator function 1Ih
(h,d) as: if (h,d) has been expanded, 1Ih

(h,d) = 1, else

1Ih
(h,d) = 0. When η> 0, the number of node expansions n satisfies

n =

hmax
∑

h=0

K h−1
∑

d=0

1Ih
(h,d)

≤

hmax
∑

h=0

|Ih |

≤Cν−η
hmax
∑

h=0

(ρ−η)h

≤Cν−η
ρ−η(hmax+1) −1

ρ−η−1

≤Cν−η
ρ−ηhmax −ρη

1−ρη

≤Cν−η
ρ−ηhmax

1−ρη
.

Thus, we have

(νρhmax )η ≤
C

n(1−ρη)
.

Combined with (i), this yields,

f (x(n))− f (x∗) ≤
( C

1−ρη

)1/η
n−1/η.

(iii) When η= 0, we have

n ≤Cν−η
hmax
∑

h=0

(ρ−η)h

≤C (hmax +1).

Thus, we have

hmax ≥
n

C
−1.

Since ρ ∈ (0,1), we obtain

f (x(n))− f (x∗) ≤ νρhmax ≤ νρn/C−1.
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2

5.4 Optimistic optimization of PWA functions

In this section, we first develop a partitioning approach for the polytopic feasible set

X = {x ∈R
nx |Ax ≤ b}.

Standard partitioning works well for hypercubes which are one class of regular polytopes

(having high degree of symmetry). However, the polytope considered in our problem can be

irregular with arbitrary shape. So we need to divide the polytope into a collection of

simplices and then subdivide each simplex into smaller simplices. There are many methods

in literature to refine simplices. The method used in this chapter can to a great extent

maintain the shape of the simplices and the volume of the refined simplices decrease with a

fixed rate. Those properties of the partitioning scheme in this chapter allow us to develop

expressions for the parameters of DOO.

Definition 5.4 (Simplex) An m-simplex S ⊂ R
n with 0 ≤ m ≤ n is the convex hull of m + 1

affinely independent points v0, . . . , vm ∈R
n , which are its vertices. It can be written as

S =

{ m
∑

i=0

λi vi

∣

∣

∣λi ≥ 0, i = 0, . . . ,m,
m
∑

i=0

λi = 1
}

.

If m = n, the set S is simply called a simplex of Rn . Let ei = vi − vi−1, i = 1, . . . ,n. The n-

dimensional volume of S is

vol(S ) =
1

n!

∣

∣det(e1,e2, . . . ,en)
∣

∣. (5.4)

5.4.1 Hierarchical partition of a polytope

The partitioning of X consists of two stages: (i) dividing the polytope X into a collection of

simplices; (ii) subdividing each simplex into smaller simplices. We propose to use Delaunay

triangulation for the first stage and next to use edgewise subdivision repeatedly for the

second stage.

Delaunay triangulation [31] divides a polytope into a mesh of high-quality simplices

where high-quality means that in the division process, simplices with very short edges are

created as little as possible. This property assures the regularity of the partitioning of X .

Edgewise subdivision [51] divides a simplex S of Rnx into knx nx-simplices, where each

edge of S is cut into k equal pieces (k is an integer parameter that can be selected). A ready-

to-implement algorithm for edgewise subdivision is presented in [64]. Below we present the

definition and some properties of edgewise subdivision. Those properties are needed in the

next section for the development of expressions for the parameters ν and ρ of DOO.

Definition 5.5 (Congruence class) [13] Two non-degenerate1 simplices S ,S ′ are called

congruent to each other if there exists a translation vector v ∈ R
nx , a scaling factor c > 0, and

an orthogonal matrix Q ∈R
nx×nx such that2 S ′ = v +cQS . In that case S and S ′ are said to

1An m-simplex S is called degenerate if its m-dimensional volume equals 0.
2We define v +cQS = {v +cQx|x ∈S }.
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Table 5.1: List of Symbols

X polytopic feasible set

{Xs |s = 1, . . . , Nt} simplicial mesh of X

k subsimplices of edgewise subdivision shrinks by the factor 1/k

nx dimension of X

K knx , branching factor of optimistic optimization

h subdivision depth

d index of simplices at depth h

X h,d
s simplex at depth h of the edgewise subdivision of Xs

Lh,d
s maximum edge length of X h,d

s

r h,d
s inradius of X h,d

s

xh,d
s incenter of X h,d

s

Ns number of congruence classes of the edgewise subdivision of Xs

Cs,i , i = 1, . . . , Ns representative simplices of the congruence classes

γs ratio between the maximum and minimum volumes among the

representative simplices for Xs

ρs,i inradius of Cs,i

ρs minimum of ρs,i

vs,0, . . . , vs,n vertices of Xs

v h,d
s,0 , . . . , v h,d

s,n vertices of X h,d
s

be elements of the same congruence class.

Properties of edgewise subdivision. For every integer k ≥ 1, the edgewise subdivision of a

simplex S ⊂R
nx has the following properties [51]:

(i) all generated simplices have the same nx-dimensional volume;

(ii) all generated simplices fall into at most nx !/2 congruence classes;

(iii) the faces of S are subdivided with the same k and the same method;

(iv) repeated subdivision has the same effect as increasing k.

The property (iv) that repeated subdivision has the same effect as increasing k, means that

instead of dividing an nx -simplex S into knx nx-simplices and subsequently subdividing

each subsimplex into l nx nx-simplices, we can subdivide S into (kl )nx nx-simplices and

reach the same result.

5.4.2 PWA optimistic optimization

In this section, for the partitioning approach given in Section 5.4.1, we develop analytic

expressions for the parameters ν and ρ satisfying Assumption 5.1 for applying DOO to solve

the problem (5.1)-(5.2). Some of the symbols that occur frequently in this section are listed

in Table 5.1.

By performing Delaunay triangulation, the feasible set X is divided into a mesh of

simplices {Xs |s = 1, . . . , Nt}. Every simplex Xs in the simplicial mesh is taken as the original
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simplex on which repeated edgewise subdivision is performed. Properties (i)-(iv) of

edgewise subdivision given in Section 5.4.1 are essential for the proofs in the rest of this

section. For any integer k ≥ 1, edgewise subdivision divides Xs into knx nx-simplices; so the

maximum number K of child cells of a parent cell equals knx .

Note that h ∈ {0,1, . . .} is the depth of the subdivision (indicator of the recursion of

edgewise subdivision) and d ∈ {0, . . . ,K h −1} is the index of a simplex at a given depth h. Let

X h,d
s be a simplex at depth h generated by repeated edgewise subdivision of Xs . Let

Lh,d
s ,r h,d

s , xh,d
s be the maximum edge length, inradius (i.e., the radius of the inscribed

hyper-ball) and incenter (i.e., the center of the inscribed hyper-ball) of X h,d
s . Let Nc ≤ nx !/2

be the number of congruence classes that all simplices generated by repeated edgewise

subdivision of Xs fall into (see Property (ii)). Note that the simplices in each congruence

class are the same up to translation, scaling, and rotation. Let Cs,i , i = 1, . . . , Nc, be a

representative simplex3 of each congruence class. Define the ratio between the maximum

and minimum volumes among the representative simplices for Xs as

γs = max
i , j=1,...,Nc

vol(Cs,i )

vol(Cs, j )
. (5.5)

Let τs,i be the inradius of Cs,i and denote

τs = min
i=1,...,Nc

τs,i . (5.6)

Let vs,0, . . . , vs,nx be the vertices of Xs . Let v h,d
s,0 , . . . , v h,d

s,nx
be the vertices of X h,d

s . Define

es,i = vs,i −vs,i−1 ,

eh,d
s,i

= v h,d
s,i

−v h,d
s,i−1

,

with i = 1, . . . ,nx . Then taking into account the proof of the independence lemma in [51] as

well as the fact that repeated subdivision has the same effect as increasing k (see Property

(iv)), there exists a permutation πh,d
s of {1, . . . ,nx} such that

eh,d
s,i

=
1

kh
e

s,πh,d
s (i )

.

Note that we have

v h,d
s,i

−v h,d
s,0 = eh,d

s,i
+eh,d

s,i−1
+·· ·+eh,d

s,1 . (5.7)

Now select an arbitrary edge of X h,d
s and let v h,d

s,i
and v h,d

s, j
with j > i be the corresponding

vertices. By (5.7), we have

∣

∣

∣v
h,d
s, j

−v h,d
s,i

∣

∣

∣=

∣

∣

∣e
h,d
s, j

+eh,d
s, j−1

+·· ·+eh,d
s,i+1

∣

∣

∣

=
1

kh

∣

∣

∣e
s,πh,d

s ( j )
+e

s,πh,d
s ( j−1)

+·· ·+e
s,πh,d

s (i+1)

∣

∣

∣.

3A representative simplex of a congruence class is defined here as the simplex resulting from scaling any

simplex in the class such that its maximum edge length equals 1.
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Define

θs,min = min
i=1,...,nx

|es,i | , θs,max =

nx
∑

i=1

|es,i | . (5.8)

Note that θs,min > 0. Then we have

1

kh
θs,min ≤

∣

∣v h,d
s, j

−v h,d
s,i

∣

∣≤
1

kh
θs,max . (5.9)

Lemma 5.6 Denote

Ls,h = max
d∈Dh

Lh,d
s ,

and

rs,h = min
d∈Dh

r h,d
s ,

where Dh = {0, . . . ,K h −1} is the index set of simplices at depth h. Then we have

Ls,h+1

Ls,h

≤
1

k
γ

1/nx
s ,

rs,h

Ls,h

≥
θs,minτs

θs,max
, (5.10)

where γs , τs , θs,min and θs,max are as defined in (5.5), (5.6), (5.8) and 1/k is the factor of

edgewise subdivision.

Proof : Let X h,d ′

s be the simplex that has the maximum edge length Ls,h among all simplices

at depth h and assume that X h,d ′

s belongs to congruence class i with a representative simplex

Cs,i . By definition the maximum edge length of Cs,i equals 1.

From Property (iv), repeated subdivision is equivalent to increasing k; so a division at

depth h actually corresponds to selecting kh instead of k. Moreover, from Property (i), we

have

vol(X h,d ′

s ) =
vol(Xs)

khnx
.

Scaling X h,d ′

s with a factor 1/Ls,h scales every column in the matrix of which the determinant

is taking in the volume formula (5.4), resulting in a multiplication with (1/Ls,h)nx compared

to the original expression. Hence, we have

vol(Cs,i ) =
( 1

Ls,h

)nx

vol(X h,d ′

s ) =
( 1

Ls,h

)nx vol(Xs )

khnx
. (5.11)

Likewise let X h+1,d ′′

s be the simplex that has the maximum edge length Ls,h+1 among all

simplices at depth h + 1 and assume that X h+1,d ′′

s belongs to congruence class j with a

representative simplex Cs, j . So

vol(Cs, j ) =
( 1

Ls,h+1

)nx vol(Xs)

k(h+1)nx
. (5.12)

Thus (5.11) and (5.12) result in

(Ls,h+1

Ls,h

)nx

=
1

knx

vol(Cs,i )

vol(Cs, j )
, (5.13)
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and thus
Ls,h+1

Ls,h
=

1

k

( vol(Cs,i )

vol(Cs, j )

)1/nx

≤
1

k
γ

1/nx
s .

This completes the proof of the first inequality in (5.10).

Let X h,d ♯

s be the simplex that has the shortest inradius rs,h among all simplices at depth h

and assume that X h,d ♯

s belongs to congruence class l with a representative simplex Cs,l . The

maximum edge length of Cs,l equals 1 and the inradius of Cs,l is τs,l . Thus, we have

rs,h = Lh,d ♯

s τs,l .

Due to (5.6), we also have

rs,h ≥ Lh,d ♯

s τs .

Note that (5.9) implies that

1

kh
θs,min ≤ Lh,d

s ≤
1

kh
θs,max , ∀d ∈Dh .

Hence,

rs,h ≥ Lh,d ♯

s τs ≥
1

kh
θs,minτs ,

and thus

rs,h

Ls,h

≥

1
kh θs,minτs

Ls,h

≥

1
kh θs,minτs

1
kh θs,max

≥
θs,minτs

θs,max
.

This completes the proof. 2

Theorem 5.7 Denote

α= max
i=1,...N

‖α(i )‖2 ,

and

νs =αLs,0 , ρs =
Ls,h+1

Ls,h

,

where Ls,h is as defined in Lemma 5.6. Let

ν= max
s=1,...,Nt

νs , ρ = max
s=1,...,Nt

ρs .

If k is selected as an integer that is strictly larger than max
s=1,...Nt

γ
1/nx
s , then for any cell X h,d∗

h that

contains a global optimizer x∗ with the incenter selected as the representative point xh,d∗
h of

the cell X h,d∗
h , we have ν> 0, ρ ∈ (0,1), and

f (xh,d∗
h )− f (x∗) ≤ νρh .

Proof : From (5.13), we can conclude that ρs =
Ls,h+1

Ls,h
does not depend on h. Note that with

the given definitions of ν and ρ, they are naturally positive constants. Moreover, if k is

selected as an integer that is strictly larger than maxs=1,...Nt γ
1/nx
s , then, from Lemma 5.6, for

any s, we have

ρs ≤
1

k
γ

1/nx
s < 1 .
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So ν> 0 and ρ ∈ (0,1). Assume that x∗ is contained in a cell X
h,d∗

h
s and the incenter of X

h,d∗
h

s

is selected as the representative point x
h,d∗

h
s . Then we have

f (x
h,d∗

h
s )− f (x∗)

(5.3)
≤ α‖x

h,d∗
h

s −x∗
‖2

≤αL
h,d∗

h
s

≤αLs,h .

From ρs =
Ls,h+1

Ls,h
, we have

Ls,h = (ρs )hLs,0 . (5.14)

Thus,

f (x
h,d∗

h
s )− f (x∗) ≤α(ρs )hLs,0 .

From νs =αLs,0, we have

f (x
h,d∗

h
s )− f (x∗) ≤ νs (ρs )h .

Let ν= max
s=1,...,Nt

νs and ρ = max
s=1,...,Nt

ρs . Therefore, for any cell X h,d∗
h that contains x∗, we have

f (xh,d∗
h )− f (x∗) ≤ νρh .

This completes the proof. 2

Lemma 5.8 Let

σ=µ1µ2 min
s=1,...,Nt

σs ,

where

µ1 = min
s′,s′′=1,...,Nt

Ls′′,0

Ls′,0

, µ2 = min
s,s′′=1,...,Nt

Ls,h

Ls′′,h

,

and σs is a positive constant such that

0<σs ≤
τsθs,min

αθs,max
.

Then any cell X h,d at any depth h contains a ball of radius σνρh centered in xh,d , denoted as

B(xh,d ,σνρh) =
{

x ∈X
∣

∣

∣

∥

∥x −xh,d
∥

∥

2 ≤σνρh
}

⊂ X h,d ,

where ν and ρ are defined as in Theorem 5.7.

Proof : First we prove that µ2 is independent of h. Similar to the proof of Lemma 5.6, we get

vol(X h,d ′

s ) =
vol(Xs)

khnx

= (Ls,h )nx vol(Cs,i ), i ∈ {1, . . . , Ns},

and

vol(X h,d ′′

s′′
) =

vol(Xs′′)

khnx



72 5.4 Optimistic optimization of PWA functions

= (Ls′′,h)nx vol(Cs′′, j ), j ∈ {1, . . . , Ns′′}.

Hence, we have

Ls,h

Ls′′,h

=

(vol(X h,d ′

s )vol(Cs′′, j )

vol(X h,d ′′

s′′
)vol(Cs,i )

)1/nx

,

which is independent of h. So µ2 is independent of h.

Now, we prove that σνρh ≤σsνs (ρs )h for any s = 1, . . . , Nt , where νs and ρs are defined as

in Theorem 5.7. The inequality to be proved is rewritten as σ≤σs
νs (ρs )h

νρh . Let s ′ and s ′′ denote

the indices such that νs′ = max
1,...,Nt

νs and ρs′′ = max
1,...,Nt

ρs . Thus we have ν= νs′ , ρ = ρs′′ , and

νs (ρs )h

νρh
=

νs (ρs )h

νs′(ρs′′)h

=
αLs,0(ρs )h

αLs′,0(ρs′′)h

=
Ls,h

Ls′,0(ρs′′)
h

=
Ls′′,0Ls,h

Ls′,0Ls′′,0(ρs′′)h

=
Ls′′,0Ls,h

Ls′,0Ls′′,h

≥µ1µ2 .

If σ=µ1µ2 min
s=1,...,Nt

σs , then we have σνρh ≤σsνs (ρs )h for any s = 1, . . . , Nt .

Finally, we prove that B(xh,d ,σνρh) ⊂ X h,d . For any x ∈B(xh,d ,σνρh), we have

‖x −xh,d
‖ ≤σνρh

≤σsνs (ρs )h

≤
τsθs,min

αθs,max
αLs,0(ρs )h

(5.14)
≤

τsθs,min

θs,max
Ls,h

(5.10)
≤ rs,h ,

where rs,h defined in Lemma 5.6 is the minimum among the inradii of simplices at depth h.

Therefore, x ∈B(xh,d ,σνρh) implies that x ∈ X h,d . This completes the proof. 2

Theorem 5.7 gives analytic expressions for the parameters ν and ρ required by DOO.

Lemma 5.8 guarantees that the subsimplices generated by the developed partitioning

approach do not become too slim with very short edges.

Remark 5.9 In Theorem 5.7, the parameter α requires the knowledge of the Lipschitz

constants of the PWA function f . Actually, it may not always be possible to find the smallest

Lipschitz constant of a general PWA objective function. In this case, an upper bound on the

Lipschitz constants is also acceptable, but note that a larger α results in a larger ν and
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consequently results in a larger number of cells such that f (xh,d )− f (x∗) ≤ νρh . As a result,

the algorithm may waste time on exploring too many unnecessary cells, which will lower

the degree of optimality of the resulting solution for the predefined computational budget.

2

In Section 5.2 of [132], it is shown that functions defined over a finite-dimensional and

bounded space X have a near-optimality dimension equal to 0 if the functions have an

upper and lower envelope around one global maximizer x∗ of the same order, i.e., there

exists constants c ∈ (0,1) and δ> 0, such that for all x ∈X :

min(δ,cℓ(x, x∗)) ≤ f (x∗)− f (x) ≤ ℓ(x, x∗), (5.15)

where ℓ is a semi-metric. Clearly, the condition (5.15) is satisfied by the continuous

nonconvex PWA functions considered in this chapter. So the near-optimality dimension in

our problem is equal to 0.

5.5 Examples

In this section, we evaluate the optimistic optimization approach and compare it with other

methods.

Example 6.1

The instances considered include 60 randomly generated continuous PWA functions

f : R2 → R in which the vector pairs α(i ) ∈ R
2, β(i ) ∈ R contain pseudorandom values drawn

from the standard normal distribution N (0,1) with i = 1, . . . , N where N is also random.

Below we compare the efficiency of the DOO algorithm, the MILP method, and the

DIRECT algorithm [83]. DIRECT is a Lipschitz algorithm not requiring the knowledge of the

Lipschitz constant. It uses an optimistic splitting technique similar to the optimistic

optimization algorithm.

The corresponding MILP problem is derived based on the techniques in [8] and solved

with the intlinprog function in the Matlab Optimization Toolbox and the cplex function

called using the Tomlab interface toolbox for Matlab. DOO is implemented as a function in

Matlab (called pwadoo). Note that pwadoo and intlinprog are both Matlab functions and

cplex is implemented in object code, which implies that it will in general run much faster

than a equivalent program written in Matlab. DIRECT is performed using the glbDirect

solver in Tomlab and is implemented in object code.

Figure 5.1 shows the semi logarithmic plot of CPU time (average over 10 runs) for

different solvers as a function of N . The function values of f returned from different solvers

are denoted as fint, fcpl, foo, and fdir, where fint and fcpl of every instance are equal. The

iteration in pwadoo (glbDirect) is stopped if the gap between fcpl and foo ( fdir) is less than

5% (the gap is calculated as 100|( foo − fcpl)/ fcpl| and 100|( fdir − fcpl)/ fcpl|). We can see that

pwadoo is faster than intlinprog and even cplex for 80% of the instances. Figure 5.2 shows

the relative error of pwadoo and glbDirect given different number of iterations for all 60

PWA function instances. We can see that the rate of convergence of pwadoo is slower than

glbDirect. This is because the Lipschitz constant is used in the DOO algorithm.
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Figure 5.1: CPU time of intlinprog, cplex, pwadoo and glbDirect for the

optimization of PWA functions (N is the number of polyhedral subregions of PWA

functions)

The experiments show that DOO finds an approximation solution close to the optimal

solution requiring computation time less than that of the MILP solvers taking to find the

optimal solution. Hence, we propose to use DOO instead of the MILP method to solve the

optimization problem of the PWA function for the case that N is much larger than the

dimension of the feasible set.

Example 6.2

Any continuous PWA function can be represented as a min-max or max-min composition of

its affine components [108], which is similar to the canonical form of max-min-plus-scaling

(MMPS) functions. As presented in [48], the optimization of MMPS functions can be written

as a finite set of LP problems where the worst-case complexity is largely determined by the

number of affine terms in equivalent canonical form of the MMPS expression. We consider

an MMPS function written as

g (x) = min
i=1...M

max
j=1...M

{

αT
(i , j )x +β(i , j )

}

, ∀x ∈R
2,

where αi j ∈ R
2,βi j ∈ R contains pseudorandom values drawn from the standard normal

distribution. We use the linprog function of Tomlab to solve the set of LPs resulting from

the minimization problem of g . The optimistic optimization approach is implemented as a

function in Matlab (called mmpsdoo).

Figure 5.3 shows the semi-logarithmic plot of the CPU time (average over 10 runs) of the

LP approach and the optimistic optimization approach for increasing n. The gap between

the function value g lp returned by linprog and goo returned by mmpsdoo is restricted to 5%

(the gap is calculated as 100|(g lp − goo)/g lp|). We can see that using the mmpsdoo function is

more efficient than solving a sequence of LPs.
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function instances
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Figure 5.3: CPU time of linprog and optimistic optimization (mmpsdoo) for the optimization

of MMPS functions (M is the number of max and min operations of MMPS

functions)

5.6 Conclusions

In this chapter, we have considered the optimization of a continuous nonconvex PWA

function over a polytope. We have proposed an optimistic-optimization-based approach to

solve the given problem. In particular, by employing Delaunay triangulation and edgewise

subdivision, we have constructed a partition of the feasible set satisfying the requirements

for optimistic optimization. We have also derived the analytic expressions for the core

parameters. Numerical examples have been implemented to test the proposed approach.

Compared with the MILP based methods, the optimistic-optimization-based approach is

more efficient especially for large problems.

The partitioning scheme developed in this chapter is the only way we have found

currently satisfying all the requirements of optimistic optimization. In the future, we will

search for other suitable partitioning schemes. In addition, the proposed algorithm is

formulated in a deterministic setting. We will also investigate a stochastic setting.

Furthermore, we will investigate the performance of the optimistic optimization algorithms

which does not require the knowledge of the Lipschitz constant, such as the simultaneous

optimistic optimization (SOO) algorithm, for solving the optimization problem of PWA

functions.



Chapter 6

MPC for stochastic MPL systems with

chance constraints

In this chapter we consider model predictive control for max-plus linear systems with

stochastic uncertainties the distribution of which is supposed to be known. We consider

linear constraints on the inputs and the outputs. Due to the uncertainties, these linear

constraints are formulated as probabilistic or chance constraints, i.e., the constraints are

required to be satisfied with a predefined probability level. Two methods based on Boole’s

inequality and Chebyshev’s inequality respectively are introduced to transform the chance

constraint into a reduced form that can be evaluated efficiently. The simulation results for a

production system example show that the two proposed methods are faster than a Monte

Carlo simulation method and yield lower closed-loop costs than the nominal model

predictive control method.

6.1 Introduction

Due to model mismatch or disturbances, uncertainties are often considered in the

prediction model of model predictive contro (MPC). Many results have been achieved in

the area of robust MPC dealing with the situation that the uncertainties are assumed to be

deterministic and bounded, see e.g., [9, 97] and the references therein. On the other hand,

for the situation that the uncertainties are characterized as random variables, stochastic

MPC [54, 99] has emerged as a useful control design method where usually the expected

value of a cost criterion is optimized subject to input, state, or output constraints. Due to

the probabilistic nature of the uncertainties, those constraints are usually formulated as

chance constraints, i.e., the probability of constraint violation is limited to a predefined

probability level. Stochastic MPC takes advantage of the knowledge of the probability

distributions of the uncertainties and is based on stochastic programming and

chance-constrained programming [25, 30, 53, 142].

In contrast to conventional linear systems, where uncertainties are usually modelled by

adding an extra term in the system equations, uncertainties in max-plus linear (MPL)

systems are usually included in the system matrices [7]. The MPC framework has been

extended to stochastic max-plus linear (SMPL) systems in [134]. The expected value of the

outputs is used in the objective criterion and in the constraint. Some results about MPC for

SMPL systems can be found in [52, 120, 137, 138]. To the author’s best knowledge currently

[120] is the only result in literature that has considered the chance-constrained MPC

77
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problem for SMPL systems. In [120], the chance constraints are approximated and

substituted with a finite number of pointwise constraints at independently generated

scenarios of the uncertainties. The approach in [120] is different from the methods

developed in this chapter as we transform the chance constraints into a reduced form

based on some probabilistic inequalities.

In particular, in this chapter we develop approaches for solving the chance-constrained

MPC problem based on probabilistic inequalities and properties of SMPL systems. More

specifically, if the chance constraints are monotonically nondecreasing as a function of the

outputs (i.e., the coefficients of the outputs in the linear constraints are nonnegative), we

rewrite the chance constraints into an equivalent max-affine form, namely, the maximum

of some correlated random variables. Those correlated random variables are affine

functions of the uncertainties of the SMPL system. Based on the resulting max-affine form,

we develop two methods for transforming the chance constraints into a reduced form. In

the first method, based on Boole’s inequality, the probability of the maximum of correlated

random variables is decomposed into the sum of probabilities of a single random variable.

In the second method, we provide sufficient conditions for applying the multidimensional

Chebyshev inequality to transform the chance constraints into constraints that are linear in

the control inputs. The approaches developed in this chapter are assessed with a

production system example and compared with a Monte Carlo (MC) simulation method

and the nominal MPC method. The results show that the two proposed methods generally

take less computation time than the MC simulation method to achieve a similar

performance. The nominal MPC method is faster than the other methods, but it yields a

worse performance.

This chapter is organized as follows. Section 6.2 provides preliminaries about p-norms,

probabilistic inequalities and the definition of max-affine functions. A brief introduction to

SMPL systems is given in Section 6.3. The MPC problem formulation with chance

constraints for SMPL systems is presented in Section 6.4. Two approaches for solving the

proposed problem are developed in Section 6.5 and illustrated with a production system

example in Section 6.6. Finally, Section 6.7 concludes the chapter.

6.2 Probabilistic inequalities

This section is based on [34, 82, 119].

Definition 6.1 (Joint probability distribution) Let X = [X1, . . . , Xn]T be a random vector and

x = [x1, . . . , xn]T be a realization of X . Let fX be the joint probability density function of X . For

any set D ∈R
n , the probability that a realization of X falls inside D is then

Pr{X ∈D} =

∫

D
fX (x1, . . . , xn)dx1 · · ·dxn .

Theorem 6.2 (Boole’s inequality) For a countable collection of events A1, A2, A3, ..., we have1

Pr
(

⋃

i

Ai

)

≤
∑

i

Pr(Ai ). (6.1)

1The event A1
⋃

A2 would occur if A1 or A2 occurs.
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Definition 6.3 (Expected value) Let fX be the joint probability density function of a random

vector X = [X1, . . . , Xn]T . The expected value of a function g of X is defined as

E[g (X )] =

∫∞

−∞

· · ·

∫∞

−∞

g (x) fX (x1, . . . , xn)dx1 · · ·dxn ,

provided that E[|g (X )|] ≤∞.

Theorem 6.4 (Jensen’s inequality) Let ϕ be an integrable, concave function of a random

variable v. Then

E[ϕ(v)] ≤ϕ(E[v ]). (6.2)

Theorem 6.5 (Multidimensional Chebyshev inequality) Let X = [X1, . . . , Xn]T be a random

vector with mean µX = E[X ] and covariance matrix ΣX = E[(X −µ)(X −µ)T ]. If ΣX is positive

definite, then for any a > 0 we have

Pr
{

(X −µX )T Σ−1
X (X −µX ) ≤ a

}

≥ 1−
n

a
. (6.3)

Theorem 6.6 Let X be a random vector with mean µX and covariance matrix ΣX . Let B ∈

R
m×n be a real matrix. Then the linear combination Y = B X satisfies

µY = E[Y ] = E[B X ] = BµX ,

ΣY = Cov(Y ) = Cov(B X ) = BΣX B T .

Definition 6.7 (Max-affine function) A max-affine function f of x ∈ R
n
ε is a function of the

form

f (x) = max
i=1,...,n

(αT
i x +ξi ),

with constant coefficients αi ∈R
n and ξi ∈R.

6.3 Stochastic MPL systems

The random vector w(k) ∈R
nw collects uncertainties at event step k caused by disturbances

or model mismatch. Just as in [137] we adopt the following assumption in this chapter:

Assumption 6.8 At any event step k, the components of w(k) are independent and

identically distributed random variables with a given probability distribution, i.e., {wi (k) : i }

is a collection of i.i.d. random variables. In addition, the uncertainties at different event steps

are independent, i.e., w(0), w(1) . . . are mutually statistically independent.

Consider a stochastic max-plus linear (SMPL) system [134] of the form

x(k) = A(w(k))⊗x(k −1)⊕B(w(k))⊗u(k), (6.4)

y(k) =C (w(k))⊗x(k), (6.5)

where k is the event counter, u(k) ∈R
nu
ε and y(k)∈R

ny

ε are the input and output of the system

consisting of the time instants at which the input and output events occur for the k-th cycle,

and x(k) ∈R
nx
ε is the state of the system representing the time instants at which the internal

processes of the system start for the k-th cycle.
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u(k) M1 M2 y(k)
t1 = 0 t2 = 1 t3 = 0

d1(k)= 5+w (k) d2(k)= 1

Figure 6.1: A production system

Typically, the entries of the uncertain system matrices A(w(k)), B(w(k)), and C (w(k))

consist of sums of internal process times and transportation times [7]. In general, the

components of w(k) correspond to perturbations in these process and transportation

times. Due to the possibility of breakdown or delay of machines and transporters, the

process and transportation times might be disturbed by uncertainties. Since the machines

and the transport systems in the production system usually work independently, the

uncertainties occurring at different machines and transporters are usually independent.

For the sake of simplicity, we assume that the uncertainties at the current cycle do not

influence the uncertainties at the next cycle. Instead of modeling uncertainties by adding

an extra max-plus-algebraic term in (6.4) and (6.5), uncertainties should rather be modeled

as an additive term to these system matrices. Then, the entries of the uncertain system

matrices are max-affine functions of w(k).

As an example, we consider the production system presented in [134] (see Figure 6.1).

This system consists of two machines M1 and M2 where raw materials are fed into M1,

afterwards intermediate products are fed into M2, and finally the finished goods leave the

production system. Just as in [134] we assume that the transportation times are constant

(i.e., t1 = t3 = 0, t2 = 1) and so is the processing time of M2 (i.e., d2(k) = 1). Here xi (k)

represents the time instant at which machine i starts for the k-th time. The system matrices

of the corresponding SMPL model are given as follows:

A =

[

d1(k −1) ε

d1(k −1)+d1(k)+ t2(k) d2(k −1)

]

,

B =

[

t1(k)

d1(k)+ t1(k)+ t2(k)

]

, C =
[

ε d2(k)+ t3(k)
]

.

6.4 MPC for stochastic MPL systems

In [134], the MPC framework has been extended to SMPL systems in which the expected

value of the outputs is used in the objective function and in the constraints. In this section,

we give a brief introduction to this framework and formulate the MPC problem using chance

constraints instead of using expected value of the outputs in the constraints.

6.4.1 Prediction of future outputs

Define

ũ(k) =
[

uT (k) · · · uT (k +Np −1)
]T

,

ỹ(k) =
[

yT (k) · · · yT (k +Np −1)
]T

,

w̃(k) =
[

w T (k −1) · · · w T (k +Np −1)
]T

,
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where Np is the prediction horizon. By using successive substitution on (6.4)-(6.5), the

prediction of the future outputs is given by

ỹ(k) = C̃ (w̃ (k))⊗x(k −1)⊕ D̃(w̃(k))⊗ ũ(k).

The detailed expressions of C̃ (w̃(k)) and D̃(w̃(k)) are given by [134]:

C̃ (w̃(k)) =







C̃1(w̃(k))
...

C̃Np (w̃(k))






,

D̃(w̃(k)) =







D̃11(w̃(k)) · · · D̃1Np (w̃(k))
...

. . .
...

D̃Np1(w̃(k)) · · · D̃NpNp (w̃(k))






,

where for i , j = 1, . . . , Np,

C̃i (w̃(k)) =C (k + i −1)⊗ A(k + i −1)⊗·· ·⊗ A(k),

D̃i j (w̃ (k)) =











C (k + i −1)⊗ A(k + i −1)⊗·· ·⊗ A(k + j )⊗B(k + j −1), if i > j ,

C ( j + i −1)⊗B(k + j −1), if i = j ,

ε, if i < j .

Note that the entries of C̃ (w̃(k)) and D̃(w̃(k)) are max-affine functions of w̃(k) [134]. So

the components of ỹ(k) are max-affine functions of w̃(k) and ũ(k). Since w̃(k) is a random

vector, ỹ(k) is also a random vector.

6.4.2 Objective function

Define an objective function J that reflects the input and output cost functions from event

step k to k +Np −1:

J (k) = Jout(k)+λJin(k),

with the scalar λ ≥ 0 the trade-off between Jout and Jin. In MPC, one aims to design an

optimal control sequence u(k), . . . ,u(k + Np − 1) that minimizes J (k) subject to constraints

on the inputs and the outputs. Different choices for Jout and Jin are given in [47]. In this

chapter Jout and Jin are chosen as

Jout(k) =

Np−1
∑

j=0

ny
∑

i=1

ηi (k + j ),

Jin(k) =−

Np−1
∑

j=0

nu
∑

l=1

ul (k + j ),

where

ηi (k) = max(yi (k)− ri (k),0),

reflects the delay between the completion time y and the due-date signal r . The selected

Jin corresponds to the just-in-time rule. Note that the results in this chapter can be easily

extended to other cases such as 1-norm and ∞-norm objective functions used in [47].
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Note that Jout is random. To obtain a deterministic objective function, the expected

value of J (k) is used as the objective function [134]. Moreover, J is actually the maximum of

some correlated random variables and it is difficult to get an analytic expression for the

distribution of J . So the expected value E[J (k)] cannot be computed analytically. In this

chapter, E[J (k)] will be computed or approximated by different methods, namely, MC

simulation and MC integration. We will combine each method for E[J (k)] with the methods

for chance constraints developed in the next section and compare the efficiency and

performance of every combination for a production system example (see Section 6.6).

6.4.3 Chance constraints

Consider the following linear constraints:

Gũ(k)+H ỹ(k) ≤ h(k), (6.6)

where G ∈ R
c×Npnu and H ∈ R

c×Npny are constant matrices and h(k) ∈ R
c is a vector

depending on the known information at event step k, i.e., the state and input at previous

event step and the due-date sequence vector r̃ (k) =
[

r T (k) · · · r T (k +Np −1)
]T

.

Note that (6.6) is random due to the uncertainties w̃(k). To reformulate the random

constraints (6.6), we require that (6.6) is satisfied for sufficiently many realizations of w̃(k),

namely,

Pr
{

Gũ(k)+H ỹ(k) ≤ h(k)
}

≥ 1−ǫ, (6.7)

where ǫ ∈ (0,1) is the probability of possible violation of (6.6). In other words, we require that

(6.6) is satisfied at least with a probability 1− ǫ. The probabilistic constraint (6.7) is usually

called chance constraint.

6.4.4 Problem formulation

Now we combine the material of previous subsections. At step k, the chance-constrained

MPC problem for SMPL systems is then defined as follows:

min
ũ(k)

E[J (k)] (6.8)

subject to

(6.4)− (6.5), (6.9)

Pr
{

Gũ(k)+H ỹ(k) ≤ h(k)
}

≥ 1−ǫ, (6.10)

u(k + j ) ≥ u(k + j −1), j = 0, . . . , Np −1. (6.11)

The constraint (6.11) is added since the u(k), . . . ,u(k + Np − 1) correspond to consecutive

event occurrence times.

In general, problem (6.8)-(6.11) is a nonlinear nonconvex optimization problem. For

decreasing the computational burden, we aim to transform the problem into reduced

forms. In this chater, E[J (k)] will be approximated by MC simulation [118] and MC

integration [46] respectively. Moreover, MC simulation will also be used to deal with the

chance constraint and compared with the two approaches developed in the next section.
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Remark 6.9 The SMPL-MPC problem was first defined in [134] where the linear constraint

(6.6) was reformulated as

Gũ(k)+HE[ỹ (k)] ≤ h(k),

instead of the chance constraint (6.7). This means that (6.6) might actually be violated but

the extent of violation is uncertain. Therefore, we are motivated to consider using (6.7). 2

Remark 6.10 If G and H are block diagonal matrices, then the chance constraint (6.7) can

be equivalently written as

Pr
{

G j u(k + j −1)+H j y(k + j −1) ≤ h j (k), j = 1, . . . , Np

}

≥ 1−ǫ, (6.12)

where G j ∈R
c j×nu , H j ∈R

c j×ny , h j (k) ∈R
c j , and

G =







G1

. . .

GNp






, H =







H1

. . .

HNp






, h(k)=







h1(k)
...

hNp (k)






.

Note that (6.12) involves joint chance constraints.

Alternatively, one can consider individual chance constraints:

Pr
{

G j ,i u(k + j −1)+H j ,i y(k + j −1) ≤ h j ,i (k)
}

≥ 1−ǫ, i = 1, . . . ,c j , j = 1, . . . , Np, (6.13)

where G j ,i , H j ,i ,h j ,i (k) are the i-th rows of G j , H j ,h j (k).

The joint chance constraints (6.12) mean that the linear constraints on the inputs and

the outputs are satisfied simultaneously from event step k to k + Np − 1 with a probability

1− ǫ, while the individual chance constraints (6.13) only limit the probability of violation of

every constraint at each event step to ǫ. In this chapter, we consider (6.7). However, the

method developed here can also deal with MPC problems for SMPL systems with joint

chance constraints (6.12) or individual chance constraints (6.13). 2

6.5 Chance-constrained MPC for stochastic MPL systems

In this section, we develop approaches for solving the chance-constrained MPC problem

(6.8)-(6.11).

6.5.1 Max-affine form of chance constraints

First we rewrite the chance constraint (6.10) into a max-affine form. We have

Pr
{

Gũ(k)+H ỹ(k) ≤ h(k)
}

= Pr
{

Gũ(k)+H ỹ(k)−h(k) ≤ 0
}

= Pr
{

max
i=1,...,c

(Gũ(k)+H ỹ(k)−h(k))i ≤ 0
}

.

Note that the vector Gũ(k)+H ỹ(k)−h(k) only contains affine operations on the components

of ũ(k) and ỹ(k).

Assumption 6.11 H has nonnegative entries.
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Recall that the components of ỹ(k) are max-affine functions of w̃(k) and ũ(k). Assuming

that H has nonnegative entries, therefore, each component of Gũ(k)+ H ỹ(k)−h(k) is also

a max-affine function of w̃(k) and ũ(k). Let m =
∑c

i=1 ni where ni is the number of affine

expressions appearing in the maximization for the i-th component of Gũ(k)+H ỹ(k)−h(k).

Hence, we have

Pr
{

max
i=1,...,c

(Gũ(k)+H ỹ(k)−h(k))i ≤ 0
}

= Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

,

with

z(k) =Λw̃(k)+Γũ(k)+Ξ(k), (6.14)

for some appropriately defined matrices and vectors Λ ∈ R
m×nw̃ , Γ ∈ R

m×Npnu , Ξ(k) ∈ R
m

where nw̃ = (Np +1)nw . Therefore, the chance constraint (6.10) is equivalent to

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

≥ 1−ǫ, (6.15)

if H has nonnegative elements.

According to (6.14), the components of z(k) are generally not independent and it is

difficult to get an analytic expression for the distribution of their maximum. Although the

probability in (6.15) can be computed by numerical integration based on MC simulation

[46], the computational load is usually heavy. In the following subsections we will introduce

two methods to transform (6.15) into a reduced form that can be evaluated efficiently.

6.5.2 Method 1: based on Boole’s inequality

In this subsection, we apply Boole’s inequality to convert the multivariate constraints (6.15)

into several univariate constraints that can be evaluated efficiently.

Theorem 6.12 If
m
∑

i=1

Pr{zi (k) > 0} ≤ ǫ, (6.16)

then

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

≥ 1−ǫ.

Proof : We have

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

= 1−Pr
{

max
i=1,...,m

(zi (k)) > 0
}

.

According to the Boole’s inequality (6.1), we have

Pr
{

max
i=1,...,m

(zi (k)) > 0
}

≤

m
∑

i=1

Pr{zi (k) > 0}.

So if
m
∑

i=1

Pr{zi (k) > 0} ≤ ǫ,

then

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

≥ 1−ǫ.

2
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We can see that Theorem 6.12 does not require Assumption 6.8. Based on Theorem 6.12,

the optimal control sequence at step k can be calculated by solving the optimization

problem (6.8)-(6.9), (6.11) and (6.16), which can be solved more efficiently than the original

optimization problem (6.8)-(6.11). However, (6.16) is more conservative than the original

chance constraint (6.10).

6.5.3 Method 2: based on Chebyshev’s inequality

Theorem 6.12 transforms the chance constrain (6.15) into a reduced form, but the resulting

constraints are still nonlinear. Now we introduce an alternative method applying the

multidimensional Chebyshev inequality to transform (6.15) into linear constraints on the

control inputs and we propose a sufficient condition for applying such method.

According to Assumption 6.8, the components of w̃(k) ∈ R
nw̃ are independent and

identically distributed random variables. Let µw̃ and Σw̃ be the mean vector and covariance

matrix of w̃(k). Define

µz(k) =Λµw̃ +Γũ(k)+Ξ(k), (6.17)

Σz =ΛΣw̃ΛT . (6.18)

From Theorem 6.6, µz (k) and Σz are the mean vector and covariance matrix of z(k).

Theorem 6.13 Assume that Σz ∈R
m×m is a positive definite matrix2. Let λmin(Σ−1

z ) > 0 be the

smallest eigenvalue of the matrix Σ−1
z . Let

µ̄z(k) = max
i=1,...,m

µz,i (k).

If µ̄z (k) < 0 and
m

(µ̄z(k))2λmin(Σ−1
z )

≤ ǫ,

then

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

≥ 1−ǫ.

Proof : For the sake of simplicity, in this proof, we will write z,µz instead of z(k),µz (k).

Consider

max(z1, . . . , zm) = max(z1 − µ̄z , . . . , zm − µ̄z )+ µ̄z

≤ max(z1 −µz,1, . . . , zm −µz,m)+ µ̄z

≤ max(|z1 −µz,1|, . . . , |zm −µz,m |)+ µ̄z

=: ‖z −µz‖∞+ µ̄z

≤ ‖z −µz‖2 + µ̄z . (6.19)

For a symmetric matrix A ∈R
n×n , the smallest eigenvalue λmin(A) has a property that

λmin(A)xT x ≤ xT Ax,

2Note that every covariance matrix is symmetric and positive semi-definite.
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for all x ∈R
n [62]. If Σz is positive definite, so is Σ−1

z ; then we have λmin(Σ−1
z ) > 0 and

λmin(Σ−1
z )‖z −µz‖

2
2 ≤ (z −µz)T Σ−1

z (z −µz ). (6.20)

Combining (6.19) and (6.20), we have

Pr
{

max(z1, . . . , zm) ≤ 0
}

≥ Pr
{

‖z −µz‖2 ≤−µ̄z

}

≥ Pr
{

‖z −µz‖
2
2 ≤ µ̄2

z

}

≥ Pr
{

λmin(Σ−1
z )‖z −µz‖

2
2 ≤λmin(Σ−1

z )µ̄2
z

}

≥ Pr
{

(z −µz )TΣ−1
z (z −µz) ≤λmin(Σ−1

z )µ̄2
z

}

. (6.21)

From the multidimensional Chebyshev inequality (6.3), we have

Pr
{

(z −µz )TΣ−1
z (z −µz) ≤λmin(Σ−1

z )µ̄2
z

}

≥ 1−
m

µ̄2
zλmin(Σ−1

z )
. (6.22)

If
m

µ̄2
zλmin(Σ−1

z )
≤ ǫ,

therefore, from (6.21) and (6.22), we have

Pr
{

max(z1, . . . , zm) ≤ 0
}

≥ 1−ǫ.

2

Based on Theorem 6.13, the chance constraint (6.15) can be transformed into the

following constraint:

µz (k) ≤−

( m

ǫλmin(Σ−1
z )

)1/2

.

By substituting (6.17), we obtain

Γũ(k) ≤−Λµw̃ −Ξ(k)−
( m

ǫλmin(Σ−1
z )

)1/2

. (6.23)

Note that this constraint is linear in ũ(k). Thus the optimal control sequence at step k can

be calculated by solving the optimization problem (6.8)-(6.9), (6.11), and (6.23) where (6.11)

and (6.23) are both linear constraints.

Remark 6.14 It is important to know that the sufficient condition for this transformation

into linear constraints is Σz > 0 (i.e., Σz is positive definite). From Assumption 6.8, Σw̃ is

positive definite. So from (6.18), Σz is positive definite if Λ is a full-row rank matrix, i.e., Λ

has rank m. However, in practice, Λ is not always full-row rank and it can even have zero

rows. In that case, an alternative procedure is to separate the zero rows from Λ and to divide

the remaining part of Λ into several block matrices along the row dimension , i.e., we can
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assume without loss of generality that Λ has the following format:

Λ=













0

Λ1
...

Λs













,

such that every block matrix Λl is full-row rank. Then we have

z(k) =













z0(k)

z1(k)
...

zs (k)













=













0

Λ1
...

Λs













w̃(k)+













Γ0

Γ1
...

Γs













ũ(k)+













Ξ0(k)

Ξ1(k)
...

Ξs (k)













.

On the one hand, if

Γ0ũ(k)+Ξ0(k) > 0,

then

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

= 0.

On the other hand, if

Γ0ũ(k)+Ξ0(k) ≤ 0,

then

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

= Pr

















Λ1
...

Λs






w̃(k)+







Γ1
...

Γs






ũ(k)+







Ξ1(k)
...

Ξs(k)






≤ 0











,

and the linear constraint (6.23) becomes

Γ0ũ(k) ≤−Ξ0(k),

Γ1ũ(k) ≤−Λ1µw̃ −Ξ1(k)−
(

ms
ǫλmin(Σ−1

z,1)

)1/2

,

...

Γs ũ(k) ≤−Λsµw̃ −Ξs (k)−
(

ms
ǫλmin(Σ−1

z,s )

)1/2

,

(6.24)

with Σz,l =ΛlΣw̃ΛT
l

, l = 1, . . . , s.

The linear constraints (6.24) guarantee the following constraints:

Pr{z0(k) > 0} = 0,

Pr{z1(k) > 0} ≤ ǫ/s,
...

Pr{zs (k) > 0} ≤ ǫ/s.

(6.25)

Consequently,
s

∑

l=1

Pr{zl (k) > 0} ≤ ǫ. (6.26)
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Similarly to the proof of Theorem 6.12, according to Boole’s inequality (6.1), then we have

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

= 1−Pr
{

max
i=1,...,m

(zi (k)) > 0
}

(6.1)
≥ 1−

s
∑

l=1

Pr{zl (k) > 0}

(6.26)
≥ 1−ǫ.

2

In the chance-constrained MPC problem for SMPL systems, the matrix Λ ∈ R
m×nw̃ in

(6.14) is usually tall, namely, m > nw̃ (see the example in Section 6.6). In that case, Λ will not

be full-row rank and thus Σz is positive semi-definite (i.e., Σz ≥ 0).

Theorem 6.15 Assume that Σz ∈ R
m×m has rank nZ and nZ < m. Let λmax(Σz ) be the largest

eigenvalue of Σz . Let

µ̄z(k) = max
i=1,...,m

µz,i (k).

If µ̄z (k) < 0 and
mλmax(Σz )

(µ̄z (k))2
≤ ǫ,

then

Pr
{

max
i=1,...,m

(zi (k)) ≤ 0
}

≥ 1−ǫ.

Proof : For the sake of simplicity, in this proof, we will write w̃ , z,µz instead of

w̃(k), z(k),µz (k). Compute the singular value decomposition of Σz :

Σz =
[

U1 U2

]

[

S1 0

0 0

][

U T
1

U T
2

]

,

with U1 ∈R
m×nZ , U2 ∈R

m×(m−nZ ), and S1 ∈R
nZ ×nZ > 0. Note that

S1 = diag(s1, . . . , snZ ),

where si are the non-zero eigenvalues of Σz . Thus

λmax(Σz ) = max
i=1,...,nZ

si .

Introduce a dummy random variable ṽ ∈ R
m−nZ where ṽ is not correlated with w̃ ,

satisfying E[ṽ ] = 0 and E[ṽ ṽ T ] = δI where 0≤ δ<λmax(Σz ). Define

z ′
=U2ṽ .

Then we have

E[z ′] = 0,

and

E[z ′z ′T ] = δU2U T
2 ≥ 0.
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Define z+ = z + z ′. First note that E[z+] =µz+ =µz . Furthermore,

Σz+ , E[(z + z ′
−µz )(z + z ′

−µz)T ]

= E[(z −µz )(z −µz )T
+ z ′(z −µz )T

+ (z −µz)z ′T
+ z ′z ′T ]

= E[(z −µz )(z −µz )T ]+E[z ′z ′T ]

=Σz +δU2U T
2

=
[

U1 U2

]

[

S1 0

0 δI

][

U T
1

U T
2

]

,

where Σz+ is invertible. Then we derive

Σ−1
z+ =

[

U1 U2

]

[

S−1
1 0

0 δ−1I

][

U T
1

U T
2

]

,

and since 0 ≤ δ<λmax(Σz ),

λmin(Σ−1
z+ ) = min

( 1

s1
, . . . ,

1

snZ

)

=
1

λmax(Σz )
.

Similarly to the proof of Theorem 6.13, we have

Pr
{

max(z+
1 , . . . , z+

m) ≤ 0
}

≥ Pr
{

(z+
−µz )T Σ−1

z+ (z+
−µz ) ≤λmin(Σ−1

z+ )µ̄2
z

}

≥ Pr
{

(z+
−µz )T Σ−1

z+ (z+
−µz ) ≤

µ̄2
z

λmax(Σz )

}

.

Note that

lim
δ→0

(z+
−µz )TΣ−1

z+ (z+
−µz ) = (z −µz)T Σ−1

z+ (z −µz),

and so for δ→ 0 we find

Pr
{

max(z1, . . . , zm) ≤ 0
}

≥ Pr
{

(z −µz)T Σ−1
z+ (z −µz) ≤

µ̄2
z

λmax(Σz )

}

.

From the multidimensional Chebyshev inequality (6.3), we have

Pr

{

(z −µz)T Σ−1
z+ (z −µz) ≤

µ̄2
z

λmax(Σz )

}

≥ 1−
mλmax(Σz )

µ̄2
z

.

So if
mλmax(Σz )

µ̄2
z

≤ ǫ,

then, we have

Pr
{

max(z1, . . . , zm) ≤ 0
}

≥ 1−ǫ.

2
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6.5.4 Discussion

For Method 1, we need to know the respective distributions of z1(k), . . . , zm(k) instead of the

distribution of their maximum; and for Method 2, we need to know the mean vector and

covariance matrix of z(k). Based on (6.14), z(k) is an affine function of w̃(k). Therefore, to

apply the two methods developed in this chapter, we require w̃(k) to be random variables

the distribution of which is preserved or known under summation and multiplication by a

scalar, such as the normal distribution, the Poisson distribution, and the gamma distribution

[110].

6.6 Example

In this section, we consider the production system presented in [134] (see Figure 6.1). We

assume that the processing time of M1 is perturbed by a random variable w(k): d1(k) =

5+w(k) where w(k) has a normal distribution with expected value 0 and variance 2.

The initial state is x(0) =
[

0 10
]T

, u(0) = 0, the prediction horizon is chosen as Np = 3,

and the trade-off between the output and input costs is selected as λ= 10−5. At each event

step k, an MPC optimization problem in the form of (6.8)-(6.11) is solved. The experiment is

performed for k = 1, . . . ,50. We consider the following chance constraint:

Pr{y(k + j )− r (k + j ) ≤ h, j = 0, . . . , Np −1} ≥ 1−ǫ,

which is equivalent to

Pr
{

max
i=1,...,19

(zi (k)) ≤ 0
}

≥ 1−ǫ,

with z(k) = Λw̃(k)+Γũ(k)+Ξ(k) where the detailed expressions of Λ, Γ, and Ξ(k) are as

follows

Λ=















































































1 1 0 0

0 0 0 0

0 1 0 0

1 1 1 0

0 1 1 0

1 1 0 0

0 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

0 1 1 1

0 0 1 1

1 1 1 0

0 1 1 0

1 1 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















































































, Γ=















































































0 0 0

0 0 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1















































































, Ξ(k) =





















































































12+x1(k −1)

2+x2(k −1)

7






− r (k)−10



















17+x1(k −1)

12

13+x1(k −1)

3+x2(k −1)

8

7



















− r (k +1)−10





































22+x1(k −1)

17

12

18+x1(k −1)

13

14+x1(k −1)

4+x2(k −1)

9

8

7





































− r (k +2)−10















































































.
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We consider two different cases: (i) r (k)= 10+30·k, ǫ= 0.5, h = 20; (ii) r (k)= 10+75·k, ǫ=

0.2, h = 50. The Boole method (Method 1) and the Chebyshev method (Method 2) developed

in Section 6.5 are applied to deal with the chance constraint and compared with two other

methods: an MC simulation method and the nominal MPC method. For each case, we solve

the chance-constrained MPC problem (6.8)-(6.11) in closed loop for k = 1, . . . ,50 and run the

experiment 10 times, each time with a different realization of w . For each round, the same

realization is used for all methods. Table 6.1 lists the mean computation time for the entire

simulation over the 10 realizations and the mean closed-loop costs over the 10 realizations.

The closed-loop costs are computed as Jclp =
∑50

k=1

(

max(y(k)− r (k),0)−λu(k)
)

. Figure 6.2

and 6.3 show the mean tracking error over 10 realizations for all methods.

The nominal MPC method consists in computing the optimal control sequence by using

the deterministic MPL system as the prediction model and considering deterministic linear

constraints. The MC simulation method consists in approximating E [J (k)] and the chance

constraint by using random samples. When using the Boole method or the Chebyshev

method to deal with the chance constraint, we consider two different ways to compute the

value of E [J (k)], namely, MC integration and MC simulation.

From Table 6.1, we can see that for both cases, although the nominal MPC method is

faster than the other methods, it yields higher closed-loop costs. This is because the outputs

resulting from nominal MPC violates the due dates at many event steps (see Figure 6.2 the

purple solid line with circle markers).

The MC simulation method generally achieves the lowest closed-loop costs, but it takes

a longer computation time, e.g., for case (i), it takes 225 seconds with 5 ·103 random samples

resulting in Jclp = −0.3817. The outputs resulting from MC simulation are always below the

due dates (see Figure 6.2 the black solid line with diamond markers).

When using the Boole method or the Chebyshev method to deal with the chance

constraint, using MC simulation for computing E [J (k)] is better than using MC integration

in terms of computation time. Moreover, given the same number of samples, compared

with only using MC simulation, the computation time of the combination of the Boole

method and MC simulation decreases by about 40% and the computation time of the

combination of the Chebyshev method and MC simulation decreases by about 50%.

6.7 Conclusions

We have considered the chance-constrained MPC problem for stochastic max-plus linear

systems and developed two methods to deal with the chance constraints. Method 1

converts the chance constraint into several univariate constraints by applying Boole’s

inequality. Method 2 uses Chebyshev’s inequality and transforms the chance constraint

into linear constraints on the control inputs. The two methods are assessed with a

production system and compared with two other methods: MC simulation and nominal

MPC. The results show that the two methods are faster than MC simulation while achieving

a similar performance and yield a better performance than nominal MPC.

In the future, one possible improvement of Method 2 is to find some optimal way to

allocate the probability level ǫ of constraint violation to each of the inequalities in (6.24)

(note that in the current chapter ǫ is allocated uniformly). Moreover, more extensive

simulations will be implemented.
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Table 6.1: The computation time and closed-loop costs Jclp using different methods (The

number following MC simulation and MC integration indicates the number of

random samples used)

Case (i): r (k) = 10+30 ·k, ǫ= 0.5, h = 20

Methods
Time [s] Jclp

Constraint E[J (k)]

Nominal MPC Nominal MPC 0.94 29.6440

MC simulation

103

MC simulation

103 50 -0.3196

5 ·103 5 ·103 225 -0.3817

104 104 444 -0.3816

Boole

MC integration

6 ·105 1271 0.8227

106 2055 -0.3667

2 ·106 4194 -0.3807

MC simulation

103 39 -0.3196

5 ·103 117 -0.3817

104 216 -0.3816

Chebyshev

MC integration

6 ·105 1240 -0.1135

106 2020 -0.1190

2 ·106 4266 -0.3798

MC simulation

103 26 -0.3195

5 ·103 104 -0.3817

104 189 -0.3816

Case (ii): r (k) = 10+75 ·k, ǫ= 0.2, h = 50

Methods
Time [s] Jclp

Constraint E[J (k)]

Nominal MPC Nominal MPC 0.77 29.0703

MC simulation

103

MC simulation

103 51 -0.8933

5 ·103 5 ·103 230 -0.9554

104 104 425 -0.9553

Boole

MC integration

6 ·105 1352 -0.2058

106 2251 -0.4716

2 ·106 4625 -0.9538

MC simulation

103 39 -0.8933

5 ·103 122 -0.9554

104 212 -0.9553

Chebyshev

MC integration

6 ·105 1277 -0.5894

106 2117 -0.8450

2 ·106 4248 -0.9544

MC simulation

103 27 -0.8933

5 ·103 109 -0.9554

104 201 -0.9553
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and ǫ= 0.5 (b) r (k) = 10+75 ·k, h = 50 and ǫ= 0.2
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Figure 6.3: Tracking error resulting from using Boole and MC simulation, Chebyshev and MC

simulation, MC simulation, and nominal MPC with (a) r (k) = 10+30 ·k, h = 20

and ǫ= 0.5 (b) r (k) = 10+75 ·k, h = 50 and ǫ= 0.2 (The settings of MC simulation

and nominal MPC methods are the same as in Figure 6.2)





Chapter 7

Conclusions and recommendations

In this chapter we conclude the thesis by summarizing the main results of the previous

chapters. Then we present some recommendations on topics that may be interesting for

future research.

7.1 Conclusions of the thesis

In this thesis, we have provided efficient solutions to model predictive control (MPC)

problems for max-plus linear (MPL) systems (a specific class of discrete-event systems

(DES)), stochastic MPL systems, and continuous piecewise affine (PWA) systems (a specific

class of hybrid systems). We have extended variants of optimistic optimization algorithm

and optimistic planning algorithms to the control design problem for MPL systems and

continuous PWA systems. Moreover, we have developed efficient approaches to solve the

chance-constrained MPC problem for stochastic MPL systems. The main results presented

in this thesis are summarized as follows:

• MPC and optimal control for MPL systems

We have extended the deterministic optimistic optimization (DOO) algorithm to MPC

for MPL systems with continuous control variables and bound constraints on the

control variables. First the expressions of the objective function given in [47, 133] in

MPC for MPL systems have been generalized. Then analytic expressions for the

semi-metric required by DOO have been derived for each type of objective function.

Based on the theoretical and numerical analysis, we found that the complexity of the

proposed approach increases exponentially in the control horizon instead of in the

prediction horizon. This is in contrast to the worst-case complexity of the

mixed-integer linear programming (MILP) method for MPC problems, which is

exponential in the prediction horizon. The examples have shown that the proposed

approach based on DOO is more efficient than MILP when the prediction horizon is

large and the control horizon is small.

The infinite-horizon optimal control problem for MPL systems with discrete control

variables has been solved by using the optimistic planning for deterministic systems

(OPD) algorithm. The considered infinite-horizon objective function is a discounted

sum of the tracking error between the output signal and a due date signal. Given a

limited number of iterations, OPD returns at each step a control sequence resulting in

95
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a near-optimal value of the objective function. A bound on the difference between the

optimal value of the objective function and the near-optimal value is provided. The

results of a numerical example have shown that for the given MPL system the

proposed approach yields a better tracking than a finite-horizon approach in which a

subsequence of the returned control sequence is applied at every control step.

• MPC for continuous PWA systems

We have extended DOO to MPC for discrete-time continuous PWA systems and

MMPS systems, which in general leads to a nonlinear, nonconvex optimization

problem. In particular, a 1-norm or ∞-norm objective function is considered subject

to linear constraints on the states and the inputs. The feasible set is transformed into

a hyperbox by considering the linear constraints as soft constraints and adding a

penalty function to the objective function. We have developed a dedicated

semi-metric and other parameters required by DOO for the proposed problem. A

bound on the suboptimality of the returned solution with respect to a global

optimum has been derived as a function of the number of iterations in the algorithm.

A case study on adaptive cruise control has been implemented to illustrate the

performance of the proposed approach.

• Global optimization of PWA functions over a polytope

In [68], the common assumptions of optimistic optimization algorithms have been

reformulated into a single assumption. Furthermore, a new definition of the measure

of near-optimality analysis has been given. We have adapted this new setting for DOO

and considered the global optimization of continuous nonconvex PWA functions over

a polytope with the adapted DOO algorithm. The polytopic feasible set may be

irregular with arbitrary shape for which the standard partitioning cannot be used. We

have presented a partitioning approach based on Delaunay triangulation and

edgewise subdivision. Based on this partitioning approach, analytic expressions for

the core parameters of the adapted DOO algorithm have been derived. Numerical

results have shown that the resulting DOO approach is more efficient than MILP

when the considered PWA function has a large number of polyhedral subregions.

• Chance-constrained MPC for stochastic MPL systems

MPC for stochastic MPL systems has been considered where linear constraints on the

input and the outputs are written as chance constraints. We have developed two

approaches to solve the resulting chance-constrained MPC optimization problem.

Based on Boole’s inequality, method 1 converts the chance constraint into several

univariate constraints. Based on Chebyshev’s inequality, method 2 transforms the

chance constraint into linear constraints on the control inputs. The two approaches

have been compared with the Monte Carlo simulation method and the nominal MPC

method for a benchmark production system. The results have shown that although

the nomical MPC method is faster than the other methods, it yields higher

closed-loop costs. The Monte Carlo simulation method generally achieves the lowest

closed-loop costs, but it requires a longer computation time. While achieving a

similar performance, method 1 is 40% faster than the Monte Carlo simulation method

and method 2 is 50% faster. Hence, method 2 is recommended if its required

conditions are satisfied.
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7.2 Recommendations for future work

Some suggestions and recommendations for future research are listed below.

• In Chapter 3 we have concluded that the complexity of DOO increases exponentially

in the control horizon Nc instead of the prediction horizon Np. This is in contrast to

the worst-case complexity of the MILP method, which is exponential in the prediction

horizon. However, if we bisect each dimension of the hyperbox feasible set, the

number of branches of the tree established in DOO equals to 2Ncnu . This implies that

the complexity of DOO will become unacceptable with nu increasing. One possible

solution to solve this bottleneck is to use an input parameterization of the form

u(k) = f (θ, x(k)) where θ is a free parameter vector with a lower dimension than u(k).

• The class of optimistic algorithms are applications of the so-called optimism in the

face of uncertainty principle (i.e., the most promising area of the feasible set is

searched first) to large-scale optimization problems [101]. For deterministic function

optimization, the uncertainty in the optimistic principle comes from the fact that the

feasible solution space of the objective function may be infinite while we are given a

finite computational budget only. Moreover, the optimistic algorithms are also adept

in dealing with stochastic situations where the uncertainty comes from the noisy

estimate of the objective function evaluation. We have exploited the performance of

deterministic variants of optimistic optimization algorithms and optimistic planning

algorithms for MPL-MPC problems and PWA-MPC problems. The exploitation of

stochastic variants of optimistic algorithms of MPC for MPL systems and PWA

systems with disturbances and uncertainties are interesting topics for future work.

• MPL systems can model a subclass of DES with synchronization and no choice. This

corresponds to the situation that a user or a product is assigned a fixed route when

passing through the system and leads to a reduction of flexibility. The emergence of

switching MPL systems [135] overcomes this shortcoming. Switching MPL systems

are a class of DES that can switch between different modes of operation. In each

mode the system is described by an MPL system with different system matrices for

each mode. The switching may depend on the inputs and the states, or it may be a

stochastic process. Switching MPL systems have been applied to gait generation for

multilegged robots [91] and modeling railway networks [85]. The MPC optimization

problem of switching MPL systems contains both continuous and discrete

optimization variables. To solve this problem, it would be interesting to consider a

mix of optimistic optimization algorithms and optimistic planning algorithms.

• Using MPC, an infinite-horizon optimal control problem is solved by repeatedly

solving a finite-horizon optimal control problem in a receding horizon fashion. On

the other hand, optimistic planning algorithms consider an infinite-horizon

discounted objective function with discrete actions. Recently optimistic planning

algorithms have been extended to be able to deal with continuous actions [21, 24]. It

is interesting to compare the performance of considering an finite-horizon objective

function and an infinite-horizon discounted objective function. A good start is to

perform a simulation-based comparison; next theoretical analysis may be carried out

to verify the simulation results.
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• In Chapter 3, we have considered optimistic planning for MPL systems which is a

subclass of discrete-event systems. However, OPD has a more general scope of

application and works for optimal control problems of general discrete-time

nonlinear systems. It would be interesting to develop optimistic planning for PWA

systems.

• Due to the computational complexity of the optimization problem, it is difficult to

apply MPC to large-scale systems in practice. Hence, we need to consider a more

structural control design method, such as distributed MPC or multi-level MPC for

large-scale DES and hybrid systems. Using distributed MPC, the considered

large-scale DES or hybrid system is assumed to consist of a collection of

interconnected subsystems and the control decisions are made by several control

agents where each control agent manages one subsystem. Compared with the MPC

optimization problem of the overall system, each agent then solves an optimization

problem with a smaller size. The approaches proposed in this thesis such as

optimistic optimization algorithms, optimistic planning algorithms, and the MILP

method, can be employed by each agent to solve its problem. Considering multi-level

MPC, at lower levels, control agents usually deal with local, fast dynamics and use

more detailed models to optimize objectives with short horizons. The optimization

problems at lower levels can be solved by existing mathematical programming

methods, while at higher levels, control agents typically deal with large scales, slow

dynamics and use less detailed models to optimize objectives with long horizons. The

approaches developed in this thesis can be adapted for the optimization problems at

higher levels. In addition, a possible direction to build a multi-level structure is based

on design structure matrix (DSM) [16].

• In order to further improve the efficiency of current MPC approaches for MPL

systems and PWA systems, one can consider more deeply the specific properties

(such as nonexpansivity property of MPL systems) of the studied systems to make the

optimization algorithms more efficient.

• Optimistic optimization algorithms and optimistic planning algorithms are both

based on a hierarchical partitioning of the feasible space. The efficiency of the

partitioning approach has an important influence on the performance of the

optimistic algorithms. Looking for more effective partitioning approaches (such as

adaptive mesh refinement) offers the possibility of improving the current optimistic

algorithms.

• In this thesis we only consider numerical examples and simple applications for case

studies. The performance of the implementation of the developed approaches in

practical environments needs to be investigated.



Appendix A

Norms

This appendix is based on [62]. For any x ∈R
n , the p-norm of x is defined as:

‖x‖p = (|x1|
p
+·· ·+ |xn |

p )1/p , p ≥ 1.

The 1-, 2-, and ∞-norms are the most important:

‖x‖1 = |x1|+ · · ·+ |xn |,

‖x‖2 = (|x1|
2
+·· ·+ |xn |

2)1/2,

‖x‖∞ = max(|x1|, . . . , |xn |),

and it holds that

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 .

A classic result concerning p-norms is the Hölder inequality:

|xT y | ≤ ‖x‖p‖‖y‖q
1

p
+

1

q
= 1.

Below are two special cases of this inequality:

|xT y | ≤ ‖x‖2‖y‖2,

|xT y | ≤ ‖x‖1‖y‖∞.
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Summary

Optimization and Model-Based Control for Max-Plus Linear

and Continuous Piecewise Affine Systems

This PhD thesis considers the development of optimization and model-based control

techniques for max-plus linear (MPL) and continuous piecewise affine (PWA) systems. The

three main topics investigated in this thesis are as follows:

1. Optimistic optimization and planning for model-based control of MPL systems

Model predictive control (MPC) for MPL systems usually leads to a nonsmooth

nonconvex optimization problem with real-valued variables, which may be hard to

solve efficiently. An alternative approach is to transform the given problem into a

mixed integer linear programming (MILP) problem. However, the computational

complexity of current MILP algorithms increases in the worst case exponentially as a

function of the prediction horizon. In this thesis, we adapt optimistic optimization for

solving the MPC optimization problem for MPL systems. Optimistic optimization is a

class of algorithms that can find an approximation of the global optimum for general

nonlinear optimization problems. A key advantage of optimistic optimization is that

one can characterize the level of near-optimality of the resulting solution with respect

to the global optimum, given a finite computational budget. We consider MPC for

MPL systems with boundary constraints on the increments of the control inputs. The

objective function is a trade-off between the output cost (i.e., weighted

tardiness-earliness penalty with respect to a due-date signal) and the input cost (i.e.,

feed as late as possible). A dedicated semi-metric is developed satisfying the

necessary requirements for optimistic optimization. Based on the theoretical

analysis, we prove that the complexity of optimistic optimization is exponential in the

control horizon instead of the prediction horizon. Hence, using optimistic

optimization is computationally more efficient when the control horizon is small and

the prediction horizon is large.

In addition, we address the infinite-horizon optimal control problem for MPL systems

where the considered objective function is a sum of discounted stage costs over an

infinite horizon. We consider the increments of the control inputs as control variables

and the control space is discretized as a finite set. The resulting optimal control

problem is equivalently transformed into an online planning problem that involves

maximizing a reward function. We adapt an optimistic planning algorithm to solve

this problem. Given a finite computational budget, a control sequence is returned

and the first control action or a subsequence of the returned control sequence is

applied to the system and then a receding-horizon scheme is adopted. The proposed
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optimistic planning approach yields a characterization of the near-optimality of the

resulting solution. The simulation results show that when a subsequence of the

returned control sequence is applied, this approach results in a lower tracking error

compared with a fintie-horizon approach.

2. Optimistic optimization for MPC of continuous PWA systems

We further adapt optimistic optimization for solving the MPC optimization problem

for continuous PWA systems. The considered 1-norm and ∞-norm objective

functions are continuous PWA functions. The linear constraints on the states and the

inputs are treated as soft constraints and replaced by adding a penalty function to the

objective function. The proposed optimistic optimization approach is based on

recursive partitioning of the resulting hyperbox feasible set. We derive expressions for

the core parameters of optimistic optimization and discuss the near-optimality of the

resulting solution by applying optimistic optimization. The performance of the

proposed approach is illustrated with a case study on adaptive cruise control.

From the first part of this topic, we can see that the optimization problem of a

continuous nonconvex PWA function arises in the context of control of continuous

PWA systems. In the literature, it has been shown that this type of optimization

problem can be formulated as a MILP problem, the worst-case complexity of which

grows exponentially with the number of polyhedral subregions in the domain of the

PWA function. In the first part, we have applied optimistic optimization to solve the

global optimization problem of a continuous nonconvex PWA function over a

hyperbox control space. But the constraints on the states and the inputs were treated

as soft constraints. In the second part, we extend optimistic optimization from a

hyperbox feasible set to a polytopic feasible set. More specifically, we propose a

partitioning framework of the polytopic feasible set satisfying the requirements of

optimistic optimization by employing Delaunay triangulation and edgewise

subdivision. For this partitioning approach, we derive analytic expressions for the

core ingredients that are used for characterizing the near-optimality of the solution

obtained by optimistic optimization. When applied to optimize PWA functions, the

proposed optimistic optimization approach is computationally more efficient than

MILP if the number of polyhedral subregions in the domain is much larger than the

number of variables of the PWA function.

3. MPC for stochastic MPL systems with chance constraints

The topic of the last part of this thesis is MPC for MPL systems with stochastic

uncertainties the distribution of which is supposed to be known. We consider linear

constraints on the inputs and the outputs. Due to the uncertainties, these linear

constraints are formulated as probabilistic or chance constraints, i.e., the constraints

are required to be satisfied with a predefined probability level. The proposed

probabilistic constraints can be equivalently rewritten into a max-affine form (i.e., the

maximum of affine terms) if the linear constraints are monotonically nondecreasing

as a function of the outputs. Based on the resulting max-affine form, two methods are

developed for solving the chance-constrained MPC problem for stochastic max-plus

linear systems. Method 1 uses Boole’s inequality to convert the multivariate chance

constraints into univariate chance constraints for which the probability can be

computed more efficiently. Furthermore, Method 2 employs the multidimensional
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Chebyshev inequality and transforms the multivariate chance constraints into

constraints that are linear in the inputs. With a production system example, the two

proposed methods are compared to the numerical integration method and the

nominal MPC method. From the point of view of computation time, both our

methods are faster than numerical integration. From the point of view of tracking the

due-date signal, Method 2 is generally better than the other three methods.





Samenvatting

Optimalisatie en modelgebaseerde regeling van

max-plus-lineaire en continue stuksgewijs affiene systemen

Dit proefschrift gaat over de ontwikkeling van optimalisatie- en modelgebaseerde

regelmethoden voor max-plus-lineaire (MPL) en continue stuksgewijs affiene (in het

Engels: piecewise affine, PWA) systemen. Dit proefschrift onderzoekt de volgende drie

hoofdthema’s:

1. Optimistische optimalisatie en planning voor modelgebaseerde regeling van

MPL-systemen

Modelgebaseerde voorspellende regeling (in het Engels: model predictive control,

MPC) voor MPL-systemen leidt meestal tot een niet-glad, niet-convex

optimalisatieprobleem met reële variabelen. Omdat het moeilijk is om een dergelijk

probleem efficiënt te oplossen, wordt een alternatieve benadering ontwikkeld om het

gegeven probleem om te zetten in een gemengd integer lineair

programmeringsprobleem (in het Engels: mixed integer linear programming, MILP).

De rekencomplexiteit van de huidige MILP-algoritmen neemt echter in het slechtste

geval exponentieel toe als een functie van de voorspellingshorizon. In dit proefschrift

passen we optimistische optimalisatie aan voor het oplossen van het

MPC-optimalisatieprobleem voor MPL-systemen. Optimistische optimalisatie is een

klasse van algoritmen die een benadering van het globale optimum kunnen vinden

van algemene niet-lineaire optimalisatieproblemen. Een belangrijk voordeel van

optimistische optimalisatie is dat het niveau van bijna-optimaliteit van de

resulterende oplossing in vergelijking met het globale optimum kan gekarakteriseerd

worden, gegeven een eindig rekenbudget. We beschouwen MPC voor MPL-systemen

met begrenzingen op de incrementen van de regelingangen. De doelfunctie is een

afweging tussen de uitgangskosten (d.w.z. een gewogen traagheids-vroegheidstraf

met betrekking tot een vervaldatumsignaal) en de ingangskosten (d.w.z. grondstoffen

zo laat mogelijk voeden aan het systeem). We ontwikkelen een specifieke

semi-metriek die voldoet aan de noodzakelijke vereisten voor optimistische

optimalisatie. Gebaseerd op de theoretische analyse bewijzen we dat de complexiteit

van optimistische optimalisatie exponentieel is in de regelhorizon in plaats van de

voorspellingshorizon. Daarom is optimistische optimalisatie rekenkundig efficiënter

wanneer de regelhorizon klein is en de voorspellingshorizon groot.

Daarnaast pakken we het oneindige-horizon optimale-regelingprobleem voor

MPL-systemen aan waarbij de beschouwde doelfunctie een som is van

gedisconteerde kosten per fase over een oneindige horizon. We beschouwen de
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incrementen van de regelingangen als regelvariabelen en we discretiseren de ruimte

van regelingangen als een eindige verzameling. Het resulterende

optimale-regelingprobleem wordt op gelijkaardige wijze omgezet in een online

planningsprobleem dat gericht is op het maximaliseren van een beloningsfunctie. We

passen het optimistisch planningsalgoritme aan om dit probleem op te lossen. Voor

een gegeven eindig rekenbudget wordt een regelsequentie berekend en de eerste

regelactie of een deelrij van de berekende regelsequentie wordt toegepast op het

systeem. Vervolgens wordt een schema gebruikt met een glijdende horizon. De

voorgestelde optimistische planningsbenadering levert een karakterisering op van de

bijna-optimaliteit van de resulterende oplossing. De simulatieresultaten tonen aan

dat wanneer een subsequentie van de berekende regelsequentie wordt toegepast,

deze benadering resulteert in een lagere volgfout (in het Engels: tracking error

vergeleken met een eindige-horizonbenadering.

2. Optimistische optimalisatie voor MPC van continue PWA-systemen

We passen optimistische optimalisatie verder aan voor het oplossen van het

MPC-optimalisatieprobleem voor continue PWA-systemen. De beschouwde

doelfuncties op basis van een 1-norm of een ∞-norm zijn continue PWA-functies. De

lineaire beperkingen op de toestanden en de ingangen worden behandeld als zachte

beperkingen en vervangen door het toevoegen van een strafterm aan de doelfunctie.

De voorgestelde optimistische optimalisatiebenadering is gebaseerd op recursieve

partitionering van de resulterende hyperbox verzameling van toegelaten waarden. We

leiden uitdrukkingen af voor de kernparameters van optimistische optimalisatie en

we bespreken de bijna-optimaliteit van de resulterende oplossing. De prestatie van de

voorgestelde aanpak wordt geïllustreerd met een case study over adaptieve

snelheidsregeling.

Uit de resultaten van het eerste deel van dit onderwerp kunnen we zien dat het

optimalisatieprobleem met een continue niet-convexe PWA-functie ontstaat in de

context van regeling van continue PWA-systemen. In de literatuur is aangetoond dat

dit type optimalisatieprobleem kan worden geformuleerd als een MILP-probleem,

waarvan de complexiteit in het slechtste geval exponentieel groeit met het aantal

polyhedrale deelgebieden in het domein van de PWA-functie. In het eerste deel

passen we optimistische optimalisatie toe om globale optimalisatieprobleem van een

continue niet-convexe PWA-functie op te lossen met een hyperbox als verzameling

van toegelaten waarden. Hierbij werden de beperkingen op de toestanden en

ingangen behandeld als zachte beperkingen. In het tweede deel breiden we

optimistische optimalisatie uit van een hyperbox als verzameling van toegelaten

waarden naar een polytopische verzameling van toegelaten waarden. In het bijzonder

stellen we een partitioneringsraamwerk voor van de polytopische verzameling van

toegelaten waarden die voldoet aan de vereisten van optimistische optimalisatie door

gebruik te maken van Delaunay triangulatie en onderverdeling van de randen. Voor

deze partitioneringsaanpak leiden we analytische uitdrukkingen af voor de

basisingrediënten die worden gebruikt voor het karakteriseren van de

bijna-optimaliteit van de oplossing verkregen door optimistische optimalisatie. Voor

het optimaliseren van PWA-functies is de voorgestelde optimistische

optimalisatiemethode rekenkundig efficiënter dan MILP als het aantal polyhedrale
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deelgebieden in het domein veel groter is dan het aantal variabelen van de

PWA-functie.

3. MPC voor stochastische MPL-systemen met kansbeperkingen

Het onderwerp van het laatste deel van dit proefschrift is MPC voor MPL-systemen

met stochastische onzekerheden waarvan de kansverdeling verondersteld wordt

bekend te zijn. We beschouwen lineaire beperkingen op de ingangen en de

uitgangen. Vanwege de onzekerheden worden deze lineaire beperkingen

geformuleerd als probabilistische of toevallige beperkingen, d.w.z. de beperkingen

moeten voldaan zijn met een vooraf bepaald waarschijnlijkheidsniveau. De

voorgestelde probabilistische beperkingen kunnen op equivalente wijze worden

herschreven in een max-affiene vorm (d.w.z. het maximum van affiene termen) als de

lineaire beperkingen monotoon niet-dalend zijn als een functie van de uitgangen.

Gebaseerd op de resulterende max-affiene vorm worden twee methoden ontwikkeld

voor het oplossen van het MPC-probleem voor stochastische MPL systemen met

kansbeperkingen: methode 1 gebruikt de ongelijkheid van Boole om de

multi-variable kans om te zetten in kansbeperkingen in 1 variable en waarvoor de

waarschijnlijkheid efficiënter kan worden berekend. Methode 2 maakt gebruik van de

multidimensionale Chebyshev-ongelijkheid en transformeert de multi-variable

kansbeperkingen in beperkingen die lineair zijn in de ingangen. Door middel van een

voorbeeld van een productiesysteem worden de twee voorgestelde methoden

vergeleken met de numerieke integratiemethode en de nominale MPC-methode.

Vanuit het oogpunt van rekentijd zijn de nieuw ontwikkelde methoden sneller dan

numerieke integratie. Vanuit het oogpunt van het volgen van het vervaldatumsignaal

is methode 2 in het algemeen beter.
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