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Chapter 1

Introduction

S
ince the invention of vehicles, the volume, frequency, and speed of the transporta-
tion of people and goods have increased significantly. The capacity and quality
of vehicular transportation systems, in particular in developed countries, have in-
creased substantially. However, due to the unmatched increase in demand for trans-

portation, road transport is frequently impeded by recurrent and non-recurrent traffic jams
and incidents. The increasing number of traffic jams, the rise in the health and environmen-
tal effects of the vehicular emissions, and the increasing fuel prices are other dimensions of
the challenges of vehicular mobility in most developed countries.

As a result, it has become apparent that multi-objective transportation control and man-
agement systems should be developed to address the multifaceted traffic problems. One
of the well accepted and promising solutions is the use of intelligent transportation sys-
tems. In this regard, this thesis contributes its share to improve the freeway traffic mobility
by considering both environmental (emissions and dispersion of emissions) and economic
concerns (travel time and energy consumption) of differentstakeholders. The contribution
of the thesis is delivered in eight chapters. This chapter introduces the general freeway traf-
fic challenges and the specific problems investigated in thisthesis. It starts with discussing
the traffic systems and challenges that have motivated the commencement of this thesis in
Section 1.1. The possible traffic solutions advocated in literature are in general elaborated
and discussed in Section 1.2. Next the problem statement andthe contribution of the thesis
to the state-of-the-art are provided in Sections 1.3 and 1.4respectively. Finally, the outline
of the thesis is presented in Section 1.5.

1.1 Traffic systems and their challenges

The increasing public awareness and the more stringent environmental policies regarding
the emission of exhaust gases and particulate matter, in combination with the ever increas-
ing demand for transportation and the related traffic jams, have an increasing impact on
the further evolution of our mobility. Either directly or indirectly the recurrent and non-
recurrent traffic problems are affecting our daily life.

For example, freeway traffic systems encounter frequent traffic congestion, incidents,
and increasing and varying traffic demands. Freeway traffic systems operate below-capacity
during the rush hours due to inefficient driving behavior of drivers and non-optimal traffic

1



2 1 Introduction

management systems and during the off-rush hours as there islimited traffic demand. More-
over, the emissions released and the fuel consumed by vehicles are other issues that require
due attention in the introduction of any transportation solution.

The low efficiency of freeway traffic flow can be improved either by shifting the traf-
fic demand through changes in the mode of transportation systems, by the introduction of
incentives to shift the departure and arrival time of commuters, or by improving the traf-
fic control and management systems such that the traffic systems are operated optimally.
However, improving the traffic flow may have a negative impacton the fuel consumption,
emissions, and safety. This means that every transport solution must be scrutinized from dif-
ferent directions so that a (sub-)optimal solution can be obtained to the multifaceted traffic
challenges.

In order to provide a background understanding of the specific problem statement of this
thesis, in the sequel, the main challenges of freeway trafficsystems are briefly discussed by
broadly classifying them into three categories as economicconcerns, environmental con-
cerns, and conflicting interests.

1.1.1 Economic concerns

In general, freeway traffic flows vary over space and time. Thus, the effects of the traffic
flows are also distributed spatially and temporally. However, all traffic flows share some
common behavior and have common effects. This common behavior basically originates
from the desire of each driver to reach an intended destination as fast as and as safely as
possible. This desire also bears some negative effects (such as traffic jams and accidents
due to the conflict of interest between drivers). On the otherhand, faster and more reli-
able transportation systems are necessary for sustained and faster economic prosperity of a
country. Freeway traffic systems are one of the main economicblood vessels that link cities,
towns, and villages with each other and with other economic hubs (such as ports and indus-
trial zones). As such, every minute or second spent in the freeway traffic system amounts
to economic costs. Moreover, the amount of fuel consumed andthe depreciation costs of
inefficiently exploited transportation facilities are other important economic concerns.

These transport costs are not static and they vary with the world economy, the traffic
demand, and the efficiency of the traffic transport systems. Due to the increasing demand
for mobility, and hence the increase in the number of vehicles, the traffic networks are more
often jammed. Increased travel time due to continuous and frequent traffic jams creates
additional losses in the productive hours of both people andgoods. The long time spent
stranded in the traffic networks is also most often observed to increase the stress level of
drivers or passengers [84, 181]. This increases the health risk level of drives, which in turn
affects the economy of drivers (or in general the economy of acountry).

On the one hand, the increased traffic jams are causing increased fuel consumption. On
the other hand, world wide fuel cost is on average increasing[54]. Altogether the economic
losses due to the wasted fuel caused by traffic congestion areincreasing. In addition, the
frequent traffic jams lead to an increase of accidents, whichsubsequently affects the econ-
omy in many aspects. Every time an incident happens, additional time and resources are
allocated to clear the incident and to reopen the traffic network for traffic. Above all, in-
cidents that cost lives are not avoidable and the subsequentsocio-economic disturbances
are harsh. By and large, directly or indirectly the ever increasing traffic jams have severe
consequences on the economy of a country.
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1.1.2 Environmental concerns

In addition to the unproductive hours drivers spend in congested traffic flows and the in-
creased number of accidents and volume of fuel consumption drivers face, motor vehicle
emissions are one main sources of atmospheric pollution [127, 165, 193]. In fact road trans-
portation is one of the major contributors to man-made polluting emissions. In European
cities it has been estimated that more than40% of the hydrocarbon, more than70% of the
nitrogen oxides, and over90% of the carbon monoxide are accounted for by road transport
[175]. Approximately15% of the world’s emissions of carbon dioxide1, the principal global
warming gas, is generated by motor vehicles [131]. Moreover, transportation is responsible
for approximately50% of the emissions of nitrogen oxide and90% of the carbon monoxide
emission world wide [131]. The emissions of road traffic havealso highly adverse effects
on the health of the society [86, 197].

The principal pollutants emitted from typical motor engines are carbon monoxide (CO),
hydrocarbon (HC), oxides of nitrogen (NOx), and particulate matter (PM) [193]. Carbon
monoxide, which is a product of inefficient fuel combustion of engines, is a poisonous
gas. Carbon monoxide reduces the flow of oxygen in the bloodstream of a human body
and it can be fatal. Hydrocarbon emissions result from fuel that does not burn completely
and that is chemically transformed in (and outside of) the engine [193]. Hydrocarbons
released by vehicle exhaust systems are also toxic and are known to cause cancer in the
long term. Hydrocarbons react with oxides of nitrogen to form ozone (O3), which is the
major component of smog. Ozone causes irritations of the eyes and damages the respiratory
system. Oxides of nitrogen (NOx) are formed by the chemical reaction that occurs during
the combustion in the engine of vehicles. Oxides of nitrogen, in particular NO2, cause
short and long term health effects [193]. Particulate matters, a complex mixture of solid and
liquid particles in the air, are emitted mainly by diesel andpoorly maintained petrol vehicles
[30, 193]. Vehicles (such as cars, trucks, and buses) are major sources of fine particles [30].
Particulate matter with an aerodynamic diameter2 below10µm (PM10) and especially the
finer fraction with aerodynamic diameter below2.5µm (PM2.5) was found to be associated
with increased daily mortality and asthma [59, 73, 191].

In line with these facts, traffic conditions have significantimpacts on the concentration
of emissions released by vehicles. Depending on the traffic conditions, the emission levels
can be reduced or even get worse. Since the air-to-fuel ratioconsumed by an engine is a
major determinant factor for the efficiency of engines, the highest CO and HC levels are
produced under fuel-rich conditions, and the highest NOx level is emitted under fuel-lean
conditions [89]. Generally, since fuel-rich operations occur during cold-start conditions, or
under heavy engine loads such as during rapid accelerationsat high speeds and on steep
grades, high levels of CO and HC are generated on congested highways and in other areas
with high traffic density. Moreover, the frequent stop-and-go motion of vehicles in traffic
networks does not only impact the travel time, but also the fuel consumption of the vehicles,
which also severely increases the emission levels. Thus, increased traffic congestion or
improved traffic flows have severe consequences on the emission level, which in turn affects
the environment and the health of drivers in the traffic networks and neighborhoods near to

1The CO2 emissions is affinely related to the fuel consumption [141]. See also (3.4).
2The aerodynamic diameter is a measure to express the size of a particle. The aerodynamic diameter is defined

as the diameter of a unit-density sphere that has the same settling velocity as the particle in question [59]. The
settling velocity is the maximum velocity a particle can have for a given force and a drag force dependent on its
velocity. Thus, at the settling velocity the drag force is equal to the applied force.
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the traffic networks.

1.1.3 Conflicting interests

Road traffic flow is different from other transportation systems (such as railway systems
and airlines) in various ways. The main difference emanatesfrom the fact that the trips in
road transport, in general, are not centrally controlled and planned well ahead as in other
transportation systems. The road traffic demand is stochastic and the traffic control and
management strategies of road transport have to deal with uncertain predictions. One main
challenge in traffic control and management systems is designing a traffic controller or man-
agement strategy in such a way that the traffic jams are reduced to the minimum possible,
while still keeping the required safety level. Another challenge is the desire to reduce emis-
sions and fuel consumption of the vehicles in a traffic network through policy and traffic
control and management measures.

The multifaceted nature of the desired control objectives of traffic systems makes traffic
control and management challenging [187]. The traffic control objectives can vary both spa-
tially and temporally. The objective of a controller can be reduction of travel times, increas-
ing safety, or reduction of emissions and fuel consumption at different times or locations.
Moreover, the objectives of traffic control and management systems may be conflicting or
concurring depending on the traffic conditions [1]. Likewise, the transport authorities and
drivers can have conflicting or concurring objectives. In the following sections, the con-
flicting and concurring objectives of transport authorities with respect to drivers and with
respect to the environment are discussed.

Drivers versus transport authorities

In general, people would like to have short trips and short travel times any time they are in
the traffic network. However, it is hardly possible for the transport authorities to offer short
and fast routes to each individual driver without compromising the mobility of the other
drivers. Moreover, what could be user equilibrium may not necessarily be system optimal
[155, 198]. This means that if the travel cost (such as the travel distance, amount of fuel
consumed, comfort level, and the like) of every driver is thesame regardless of the route
or departure time the driver chose—with no unused route-departure time choices having a
lower cost, then the state is at user (drivers) equilibrium [4, 65, 199]. However, there are
cases where the travel cost of some drivers should be compromised so that the system’s total
travel cost can be lower. In this sense, since the interest oftransport authorities is, by and
large, to improve the total travel cost of the transport systems as a whole, the interest of the
drivers and the transport authorities may sometimes be conflicting.

To illustrate a possible conflict of interest between transport authorities and drivers, let
us first discuss the effect of driving behavior on travel timeusing Fig. 1.1. The figure
shows possible trajectories of two vehicles (one that movesat a suggested speed and hence
called managed vehicle and one that moves at the maximum speed limit called unmanaged
vehicle) that have the same origin and destination. Supposethat at the initial time and
position there is a traffic jam downstream of the vehicles. The unmanaged vehicle will
arrive at the downstream jam at a time instanttjam,unmanaged. However, since the time
required by vehicles to decelerate is smaller than the time required to accelerate [58], the
unmanaged vehicle will accelerate slower to the maximum speed than it decelerates to the
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Figure 1.1: Schematic illustration of capacity drop causeddue to the difference in acceler-
ation and deceleration of a vehicle.

jam speed. Finally, it arrives at its destination at the arrival time instanttarrival,unmanaged.
On the contrary, the managed vehicle does not drive at the maximum speed down to the
traffic jam. It is assigned a lower speed limit such that by thetime it arrives the location
of the downstream traffic jam, the jam has been dissolved, i.e., the vehicle arrives at the
location where the jam was at the time instanttjam,dissolved. This means that the managed
vehicle does not get the traffic jam (depending on the length of the jam and the distance
between the location of the jam and the managed vehicle). Hence, the managed vehicle
takes smaller time to accelerate to the maximum speed after the jam location. Finally, the
managed vehicle arrives its destination faster than the unmanaged vehicle (at time instant
tarrival,managed < tarrival,unmanaged). This means that the traffic jam is dissolved and will
not propagate upstream in the managed case, while the jam will propagate upstream until
the demand decreases under the unmanaged case.

This simple scenario conveys two important messages. First, it shows that the difference
in acceleration and deceleration behavior of vehicles (more specifically drivers) can lead
to increased travel time. Second, it demonstrates that transport managers and operators
can set driving strategies that can dissolve traffic jams to provide better traffic flow for the
continuing demand. Such solutions can also be in the interest of every driver if there are
no off-ramps upstream of the traffic jam location. Otherwise, drivers that have to drive to
the off-ramp before the traffic jam location will be forced toslow down for the benefit of
other drivers that are going to drive through the traffic jam.This means that the transport
authorities will improve the overall system travel time at the expense of the travel time of
the drivers going through the off-ramps.

On-ramp metering is also one of the control measures that creates conflicting interests
between drivers and transport authorities. In general, drivers like to enter the freeway di-
rectly after their arrival at an on-ramp, because, by and large, a continuous on-ramp inflow
into the freeway reduces the travel times of the vehicles at the on-ramp. However, it can cre-
ate a traffic jam just upstream of the on-ramp location that can impact the upstream traffic.
In this sense, the transport authorities would like to regulate the on-ramp flow so that the
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Figure 1.2: General evolution of vehicular emission rates.

overall performance of the freeway is improved. In other words, the transport authorities
have to compromise the travel times of the drivers at the on-ramp (by regulating the inflow)
in order to avoid a possible traffic jam just upstream of the on-ramp, thereby they improve
the traffic network performance.

Transport authorities versus the environment

In general, higher speeds favor the traffic flow but increasesthe amount of emissions re-
leased [1]. This means that the desire to improve the mobility of people and goods by the
transport authorities can affect the emission levels severely. To improve the emission level,
the speed of vehicles should not exceed a certain threshold (e.g.,30 to 70 km/h). This is il-
lustrated with the general emission (or fuel consumption) model in Fig. 1.2. The emissions
rate per unit distance of a vehicle is minimum only at speeds between the congested and the
free-flow regions shown in Fig. 1.2. Under congested traffic conditions, improvement of the
traffic flow also improves the fuel consumption and emissionsprovided that the improved
speed is such that fuel consumption or emissions at that speed are lower than the ones at the
congested speed.

In order to improve the traffic flow, transport authorities may want to construct new and
expand existing transport infrastructures. However, environmentalists are also concerned
with the loss of green areas due to the new infrastructures and the additional emissions that
can be generated due to the improved traffic flow and newly added vehicles (the increased
demand due to the induced effect of improved traffic flow).

So, finding a solution that balances these conflict of interests is one of the challenges
that hampers road traffic control and management. Some of thepossible solutions to reduce
these and other road traffic problems are the subject of next section.

1.2 Possible traffic solutions

As traffic problems are multi-dimensional and intricate, the solutions to address the require-
ments of different stakeholders have to pass through rigorous and all-round examinations.
As the literature suggests, there are several possible approaches to improve the day-to-day
traffic jams, the increased traffic emissions and fuel consumption, and the number of traffic
incidents. The span of possible traffic solutions ranges from the extension of existing infras-
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tructures and construction of new infrastructures, over large-scale substitution of fossil oil
by alternative environmentally safe fuel, and enhancing vehicle technology, to the utiliza-
tion of efficient traffic control and management strategies (i.e., introduction of intelligent
transportation systems). These solutions are briefly discussed in the ensuing sections.

1.2.1 Extension of existing infrastructures and construction of new in-
frastructures

One of the easiest and most straightforward solutions to improve the traffic flow is to in-
crease the capacity of the traffic networks. This would mean to either extend the existing
infrastructures (such as increasing the number of lanes andimproving the slope and quality
of the road networks) or to build new alternative routes wherever there is traffic bottleneck.
However, this solution is often not feasible for several reasons. One and the most obvious
reason is that in many cases there is limited available land that can be used for the con-
struction of new roads or for extension of existing road networks. Sometimes, construction
of new or extension of existing road networks also requires the relocation of established
socio-economic structures (such as residential areas, schools, shops, and farming facilities).

Secondly, even if it is found that there is enough land for theconstruction of road net-
works, construction of new roads or extension of existing road networks is very expensive.
In addition, it may also be heavily time consuming.

Thirdly, the construction of new roads or extension of existing road networks have severe
environmental consequences. The land that would have been green area has to be used for
transportation facilities, the traffic that uses the road will release emissions, and the fine
particles emitted during and after construction have severe consequences on the human
health. Moreover, improvement in traffic flow due to improvedtraffic facilities would mean
increased emissions not only in the areas where the new road networks are built, but also
in the areas where the traffic flow is improved due the diversion of part of the traffic to the
newly constructed alternative traffic road.

Finally, improved traffic flow can also have an induced effecton the traffic demand
[137, 142]. The newly constructed roads or the extended roadnetworks will first reduce
the traffic jams and make road transport more reliable in the sense that the variations in the
travel times will be reduced. However, the increased reliability and reduced traffic jams can
motivate people to switch from public transportation to driving a car or to increase driving
frequency. Consequently, the traffic demand increases, which in turn negatively impacts the
traffic flow and the environment.

1.2.2 Enhancing vehicle and fuel technology

Another important solution that can address some of the traffic challenges outlined above is
the advancement of vehicle technology. For example, by improving the engine technology
of vehicles, it is possible to reduce the energy consumptionand emissions of vehicles [156,
184]. As the efficiency of the engines improves, the fuel consumption of vehicles at lower
speeds is reduced and thereby the emission rate in that speedrange is reduced. This means
that the emission rate curve will be changed as shown in Fig. 1.3(a). Moreover, if the
aerodynamic shape of vehicles is designed in such a way that the drag force—which is
significant at high vehicle speeds—is reduced, then the fuel consumption at high vehicle
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Figure 1.3: Alternative approaches to reduce the emission rates of vehicles. For each case,
the emission rate changes from the dashed curve to the solid curve.

speeds can be reduced. Subsequently, the emissions of the vehicles at high speeds are
reduced as shown in Fig. 1.3(b).

Another alternative approach is the complete substitutionof fossil fuels with environ-
mentally friendly fuel sources or a shift to electric vehicles. An efficient fuel source with
less pollutants would mean reducing the emission rate of vehicles as shown in Fig. 1.3(c)
[93, 200].

These technological improvements of vehicles can contribute towards creating environ-
mentally friendly vehicles, and hence the traffic managers and traffic controllers will have
a wider range of speeds corresponding to low emission rates of vehicles, where they could
focus only on the improvement of traffic flow. Moreover, if vehicles would have been made
intelligent enough to communicate to each other and to the road-side infrastructure, the ca-
pacity drop that is caused due to the driver’s behavior can bereduced to the level where the
infrastructure is used efficiently. Moreover, incidents can be easily detected and vehicles
can be used as means of sensors and information channels to and from the infrastructures.
Intelligent vehicles can be equipped with decision supportsystems to assist drivers. The
intelligence of vehicles can be used to form platoons so thatthe drag force of following
vehicles can be reduced, which in turn reduces the fuel consumption and emissions of the
vehicles [6, 17].

However, the achievement of such vehicles and clean fuels isthought not to be real-
izable in the short to medium term (e.g.,10 years) and vehicle improvements seem to be
approaching their limits [97] . Hence, in the short term, other means have to be sought to
address the traffic challenges. Moreover, even if vehicles are made intelligent, the release
of particulate matter and hydrocarbons (due to the oils and grease used in the vehicle parts)
would still continue (but at lower levels) due to the mechanical motion of the parts of the
vehicles and due to the friction between the tire and the road.

1.2.3 Use of intelligent transportation systems

An alternative and promising solution is the implementation of Intelligent Transportation
Systems (ITS). ITS adds information and communication systems to transport infrastruc-
tures and vehicles. This means that ITS uses the in-vehicle and the road-side information
and communication systems to improve the traffic flow in such away that the existing
infrastructure is utilized as efficiently as possible. ITS can make decisions based on the pre-
vailing and predicted traffic conditions and based on the interests and constraints of traffic
authorities, environmentalists, and policy makers. In addition, ITS can integrate, coordinate,
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and optimize different traffic flow control measures (such astraffic signals, ramp metering,
speed limits, route guidance, etc.) to minimize the impact of traffic jams (such as long travel
times and high emission levels).

ITS includes intelligent vehicles (e.g., vehicles that communicate to each other and to
the infrastructure) and intelligent infrastructures (intelligent sensor systems, communication
systems, control systems, and the like) that allow all stakeholders to interact in a productive
and efficient way so that the traffic system is operated close to optimal.

For example, if vehicles are made intelligent (e.g., vehicles with automatic cruise con-
trol and vehicle-to-vehicle and vehicle-to-infrastructure communication systems), the ca-
pacity drop caused due to the difference in the reaction timeof drivers and the difference in
the reaction time of a driver under free-flow and congestion conditions can be minimized.
Moreover, vehicles can be platooned at small inter-vehicledistances, which increases the
operational capacity of freeways, because the density of vehicles on a freeway can be in-
creased while maintaining high speed at small inter-vehicle distances. Since the vehicles in
a platoon communicate continuously, all vehicles can brakeor accelerate at the same time
(if the vehicles are fully automated), which means that the size of the distance between each
vehicle does not matter. Moreover, as has been discussed in Section 1.2.2, the use of ITS to
platoon vehicles can reduce the fuel consumption and emissions, as a result of reduced drag
force.

Since ITS includes intelligent vehicles and infrastructures, ITS in its full potential is not
realizable in the short to medium term. However, it is possible to increase the intelligence
of current traffic control and management decision systems with the available road-side
information and control systems. For example, the variablespeed limits, ramp metering,
and route guidance systems of freeway traffic can be optimally and dynamically coordinated
and integrated to address travel time, safety, fuel consumption, emissions, and dispersion of
emissions. This is also the main focus of the thesis.

In traditional traffic control and management systems, transport authorities often set fo-
cus on the reduction of the total emission levels of freewaysin order to reduce the emissions
that affect some protected areas (such as schools, hospitals, and residences). Reduced total
emission levels of vehicles on freeways are attained at low traffic speeds (between30 and
70 km/h). Imposing such speed limits to reduce the total emissions heavily restricts the
traffic flow. However, using ITS, it is possible to only consider the dispersion of emissions
to a protected target zone. ITS can predict the dispersion ofemissions to a given target zone
based on the predicted wind speed and wind direction. Then, instead of reducing the total
emissions in the entire network (which has negative impact on the travel time), ITS can dy-
namically focus only on the part of the freeway that affects the emission levels of the given
protected zone. In this way ITS can reduce the emission levels in the target zone while at
the same time improving the traffic flow at the parts of the freeway that do not have effect
on the emission level of the target zone.

With integrated vehicle-road communication systems in place, the ITS-based traffic con-
trol and management systems can guide vehicles based on the emission rate of each vehicle
dynamically. The greener vehicles can be allowed to move through protected areas while
environmentally unfriendly vehicles can be routed throughindustrial (or unprotected) areas.
Therefore, by and large, ITS can be used to provide a balancedtrade-off between different
conflicting interests of stakeholders.



10 1 Introduction

1.3 Problem statement

Out of the three possible traffic solutions highlighted above, the focus of this thesis is the
utilization of ITS-based traffic control and management systems. In general, ITS represents
an extensive and broad traffic management approach. As such,the focus of this thesis
is limited to infrastructure-based ITS. This thesis designs road-side intelligent (dynamic)
controllers that provide a balanced trade-off between the travel times, fuel consumption,
emissions, and dispersion of emissions to a target zone. In view of this, the scope of the
ITS-based solution and the traffic challenges on which this thesis focuses are elaborated
below.

1.3.1 Objectives

As has been indicated in the previous sections, the traffic challenges in general have both
economic and environmental dimensions and there are conflicting interests. The economic
concerns include travel times, fuel consumption, and safety. Emissions and the dispersion of
emissions are two of the environmental issues. The questionis then, can an ITS-based traffic
control and management approach reconcile or provide trade-off between these concerns
that are sometimes conflicting and sometimes concurring? Toanswer this research question,
this thesis sets as an objective to design a road-side-basedtraffic control strategy to reduce
the economic concerns (specifically, the travel time of vehicles in a traffic network and the
fuel consumption) and environmental concerns (in particular, emissions and the dispersion
of emissions to a given target zone) in a balanced way for a given freeway traffic network
with a predictable traffic demand and traffic states.

Therefore, the core research problem of this thesis is defined as to:

Design a dynamic traffic controller such that a balanced trade-off is obtained be-
tween the total time spent, the total emissions released, the total fuel consumed, and
the targeted-dispersion of emissions released by vehiclesin given traffic network.

1.3.2 Approaches

In order to realize the research objective set above, several choices have to be made. Since
traffic systems are relatively slow and since current trafficsolutions can have negative impact
on the future traffic conditions, the outcome of each controldecision on the future of the
traffic conditions have to be predicted before the implementation of any control action. This
can be done using predictive control approaches. But, in order to make predictions, traffic
models are required. Hence, a model-based predictive traffic control approach is chosen.
Furthermore, since models cannot describe the traffic phenomena exactly, predictions can be
erroneous. Thus, the selected control approach should be able to take the model mismatch
into account. To this end, the model-based predictive approach is used in a receding-horizon
feedback fashion, where the prediction is shifted and repeated every time a new value for
the control measure is determined so that the errors in the prediction can be adapted to the
measured values. In this sense, the following are the important conditions considered for
the realization of the envisaged model-based traffic controller:

• The traffic flow, emission, fuel consumption, and dispersionof emission models used
have to be fast enough for on-line control applications and have to be accurate enough
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to give good predictions of the traffic states (such as flow, density, speed, emissions,
fuel consumption, and dispersion of emissions) so that the control decisions based on
these states can have a positive impact on the traffic system.

• Since traffic systems are highly non-linear and since trafficproblems are multifaceted,
the receding-horizon model-based predictive controller should be able to handle non-
linear models, multi-objective traffic control criteria, several constraints, and model
mismatches.

In the light of the above criteria, a model-predictive control approach is selected. This
control approach is able to accommodate non-linearity, handle constraints, multi-objective
criteria, and model mismatch, and it can be operated in a receding-horizon fashion.

1.3.3 Scope of the thesis

The research objective defined above can be attained using different ITS-based traffic con-
trol and management systems. Moreover, since the research objective is a wide and compli-
cated subject, the scope of the thesis is limited to a manageable level and its focus is much
more specific as follows:

• This thesis focuses only on freeway traffic flow to examine andprovide a potential
solution under conflicting and concurring situations of traffic control objectives. This
is because, unlike the urban traffic, the need to reduce emissions and travel times
of freeway traffic systems can be conflicting and concurring [1, 110]. Moreover,
to narrow the focus of the research, throughout the thesis, ahomogeneous vehicle
composition is assumed. So, all the vehicles in the freeway traffic are assumed to
exhibit the same flow and emission characteristics.

• Due to the limited time and facilities, none of the traffic models or control approaches
are tested on real systems. The research is illustrated using only simulations.

• The emissions considered in this thesis are CO, CO2, HC, and NOx. Other road-
based traffic emissions such as SOx and particulate matter (PMx, wherex is the
aerodynamic diameter) are not considered, because there isabundant literature on the
models of CO, CO2, HC, and NOx and the proposed control approaches can quite
easily be extended to those emissions not considered in thisthesis.

• As an illustration of the control approaches, the thesis exploits only two traffic control
measures: variable speed limits and ramp metering. This is because these control
measures have been extensively used in many papers to reducetravel time and avoid
or reduce traffic shock waves [7, 19, 22, 75, 77, 79]. Moreover, these control measures
can be easily modeled in most of the existing traffic flow models. Note, however, that
the approaches can also be extended to other control measures.

1.4 Contribution of the thesis

In addition to the demonstration of the potential of existing models and control approaches
for a sustainable mobility, the major contributions of thisthesis are development of traffic
models and design of traffic controllers.
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1.4.1 Modeling

Since the main goal of the thesis is to design a traffic controlstrategy that provides a bal-
anced trade-off between the travel times, the fuel consumption, the emissions, and the dis-
persion of emissions to a given target zone in a predictive fashion, the approach requires
models to make accurate and reliable predictions of the traffic flow, emissions, and the dis-
persion of emissions. On the other hand, these models are required to be fast enough, so
that they can be used for on-line based control applications. Therefore, it is imperative to
select or develop appropriate models, i.e., models that arefast and that provide accurate
predictions.

Following a literature study on the available traffic flow models, the METANET model
[103, 124, 185] and its extensions [75, 78] have been selected to be used for the prediction of
the traffic flow. The METANET model is a macroscopic model thatuses aggregate variables
to describe the traffic flow. But, macroscopic emission and fuel consumption models are not
accurate enough to provide the prediction of emissions and fuel consumption. As a result,
a way to integrate the macroscopic METANET traffic flow model with a more accurate
and dynamic emission and fuel consumption model is necessary. Therefore, a strategy is
developed to integrate macroscopic traffic flow models with microscopic emission and fuel
consumption models, in particular the VT-micro [2] emission and fuel consumption model.
This results in a macroscopic, but dynamic, emission and fuel consumption model that has
relatively better accuracy.

In order to predict the dispersion of emissions to neighborhoods of freeway traffic net-
works, dispersion models are required. As papers in literature suggest, the existing disper-
sion models are computationally very slow and are not suitable for on-line control applica-
tions. So, this thesis also develops new dispersion models that are computationally efficient.
Note, however, that these models are not compared to the already existing dispersion models
and are neither calibrated to real-life data.

1.4.2 Control design

The second contribution of the thesis is the design of model-based traffic controllers. Ini-
tially, this thesis uses the already established control approaches—model predictive control—
to assess the possibility to address some of the traffic challenges. A model predictive control
approach with multi-objective performance criteria is designed for several cases to demon-
strate that it can indeed reduce the emissions, fuel consumption, and the dispersion of the
emissions while still reducing the total time spent by the vehicles in the traffic network. In
doing so, two traffic control measures are used: variable speed limits and on-ramp metering.

However, as model predictive control is slow and intractable in practice—despite its
capability to provide a balanced trade-off between the conflicting control objectives, another
version of the control approach is designed. This thesis presents a parametrized model
predictive control, specifically called the receding-horizon predictive traffic controller that
is very fast and that (at least for the case studies considered in the thesis) has a performance
that is almost the same as that of the conventional model predictive controller. The thesis
also compares the two control approaches and shows that the receding-horizon predictive
traffic control approach can be used in practice. The receding-horizon predictive traffic
controller is able to reduce the emissions and fuel consumption as well as the dispersion of
the emissions and travel time to almost the same levels as theconventional predictive traffic
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controller, but with faster computation time, which makes it suitable for practical on-line
control applications.

1.5 Thesis overview

This thesis contains eight chapters, including this chapter, and is presented in two parts,
Part I (traffic models) and Part II (traffic control design). Part I contains Chapters 2, 3, and
4 and Part II consists of Chapters 5, 6, and 7. This chapter (Chapter 1) gives the general
overview of the thesis, the problem statement, the approachemployed in this thesis, and the
contribution of the thesis to the state-of-the-art.

Part I of the thesis deals with the modeling of traffic flow in Chapter 2, traffic emissions
in Chapter 3, and the dispersion of traffic emissions into neighborhood of freeways in Chap-
ter 4. The models presented in this part are used for the prediction and simulation of the
control strategies presented in Part II. Therefore, for better understanding of the thesis, it is
suggested to first read Part I and proceed to the next chaptersas indicated in the structure of
the thesis in Fig. 1.4.

Part II of the thesis presents two traffic control strategiesand compares them using
simulation-based experiments. This part first discusses conventional model predictive con-
trol for traffic in Chapter 5. The control strategy is used in several case studies using the
models developed in Part I. Chapter 6, presents a version of the model predictive con-
trol approach, called the receding-horizon predictive control for traffic. In Chapter 7, the
performance of the receding-horizon predictive controller is assessed and compared with
the conventional model predictive controller both in termsof computation time and traffic
control performance criteria.

Finally, the thesis is concluded in Chapter 8, in which both parts of the thesis are sum-
marized and several recommendations for future work are presented.



P
A

R
T

I
T

R
A

F
F

IC
M

O
D

E
LS

P
A

R
T

II
T

R
A

F
F

IC
C

O
N

T
R

O
L

Chapter 1

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6 Chapter 7

Chapter 8

Introduction

Flow modeling

Emission modeling Dispersion modeling

Conventional model
predictive control (cMPC)

Receding-horizon
predictive control (RHPC)

Comparison of
cMPC and RHPC

Conclusions and
open issues

Figure 1.4: Structure of the thesis.



Part I

TRAFFIC MODELS

15





Chapter 2

Traffic Flow Modeling

A
s has been introduced in Chapter 1, model-based traffic control approaches uti-
lize traffic models to design the traffic control measures in such a way that the
desired control objectives are attained. Therefore, it is imperative to make a
selection of (or to develop) models that are suitable for theenvisaged traffic

control approaches. The traffic models can be models of traffic flow, traffic emissions and
fuel consumption, and dispersion of traffic emissions. In this chapter the traffic flow models
that are used throughout this thesis are discussed. The models that describe the traffic emis-
sions, fuel consumption, and dispersion of emissions will be the subject of the subsequent
chapters.

In order to build the basic understanding of traffic flow models, this chapter begins with
first providing a brief overview of traffic flow models in Section 2.1, where it discusses the
application of traffic flow models and the different groups oftraffic flow models. Next in
Section 2.2 car-following (or follow-the-leader) traffic flow models are further examined
with special emphasis on the Gazis-Herman-Rothery [67] andIntelligent Driver Model
[186] models. Section 2.3 presents the METANET [124] model and its extensions [78].
Finally, a summary of the chapter is provided in Section 2.4

2.1 Overview of traffic flow models

Traffic flow models seek to describe the interaction of vehicles with their drivers and the
infrastructure. Almost all the models—directly or indirectly—characterize the relationship
among the traffic variables: the position, the speed, the flow, and the density of vehicles.
These relationships can be based on either the behavior of individual vehicles in a traffic
network in relation to the dynamics of other vehicles, the overall characteristics of the flow
of vehicles in a traffic network, or a combination of the behavior of individual vehicles
in a traffic network and the overall traffic flow characteristics. Almost every traffic flow
modeling technique follows the same principle, i.e., first afirst-principles model based on
the physics governing the system or other analogy system is developed. Next, the parame-
ters that determine the characteristics of the infrastructure, the behavior of drivers, and the
characteristics of vehicles are estimated from data. This is the general procedure in most
traffic modeling approaches [29, 87, 158, 164]. However, there are also some traffic flow
models or relations between traffic variables that are solely determined from data (e.g., the

17
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non-parameter modeling approaches) [41, 87].
In the sequel, the application of traffic flow models and the classification of traffic mod-

els based on their level of detail are elaborated. The discussion will provide a clear picture
for the motivation of the selection of the traffic flow models used in this thesis.

2.1.1 Applications of traffic flow models

Many traffic flow models can be used for different applications. They can be used for the
assessment of traffic control strategies, for the design of model-based traffic controllers, for
the design of new transportation facilities, and for the training of traffic operators and traffic
managers [75, 87].

Appropriate traffic solutions to reduce the recurrent and non-recurrent traffic challenges
can be obtained through thorough understanding of the system and through conduction of
in-depth research. However, field research and experimentsare expensive, because they
disturb the prevailing traffic and require heavy investments. Moreover, due to unpredictable
disturbances and traffic demands, real traffic flow does not guarantee repeatability of ex-
periments and it is thus difficult to assess the performance of a dynamic traffic control or a
dynamic traffic assignment strategy. However, operations and experiments with models are
cheaper and faster. If necessary, experiments can be repeated and different traffic control
and assignment strategies can be compared under the same conditions [75, 87].

Traffic flow models are also used for model-based traffic control or state estimation.
Some traffic control strategies require the model of the traffic system for either prediction
of the traffic state over a time horizon or for an estimation ofunobservable (or unmeasured)
traffic state. Traffic flow models enable traffic operators andmanagers to forecast the traffic
conditions (such as high demands, or travel times) that willoccur in a traffic network over a
predetermined future time horizon [147].

New transportation facilities such as new roads may not havethe desired effect after they
are constructed. For example, new on-ramps to freeways fromurban roads may increase the
access of the freeway for urban drivers, and this may increase the possibility of more traffic
jams on the freeways [75]. Traffic flow models can be used to simulate different designs un-
der different traffic scenarios and thus new transportationfacilities can be evaluated before
they are constructed [75, 87, 147].

Traffic flow models are also used to provide desired training and skills for traffic oper-
ators and traffic managers [75, 87]. They help in providing support for traffic operators to
understand the consequences of different traffic control and management actions. Moreover,
decision support systems can be built based on models to assist or support traffic operators
and traffic managers in their traffic control or assignment operations.

2.1.2 Classification of traffic flow models

Traffic flow models can be studied by grouping them in several ways. The nature of traffic
flow models can be different in terms of their application area, in terms of their level of
detail, in terms of the time domain used to describe them (as discrete-time or continuous-
time models), and in terms of their stochastic or deterministic nature in the description of
the traffic variables [87]. Based on their level of detail, they can be categorized as micro-
scopic, macroscopic, and mesoscopic traffic flow models [87]. Traffic flow models that
treat and model the behavior of individual vehicles in a traffic network fall in the category
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of microscopictraffic flow models.Macroscopictraffic models describe the collective ve-
hicle dynamics in terms of the spatial vehicle density, the average flow, and average speed.
Mesoscopicmodels describe the behavior of small groups of vehicles of aspecific user-class
classified by their position, velocity, and desired velocity at an instant of time [87].

Microscopic traffic flow models

Microscopic traffic flow models describe the physics of individual vehicles as they interact
with the driver and the infrastructure. In such modeling techniques lane changes, the inter-
vehicle distance, and the effect of neighboring vehicles toa vehicle are described. The
main advantage of microscopic traffic flow models is that the behavior of the drivers and
vehicles are described in detail. Therefore, they can provide relatively more information
regarding the characteristics of the traffic flow (e.g., headway time or distance; position,
speed, and acceleration of individual vehicles; heterogeneity of vehicles; and the like) than
other types of models. The main limitation of microscopic models is that they require a
large memory size and they are very slow when used for large traffic networks [117, 130].
Moreover, microscopic models most often require large number of parameters, which are
most often difficult to calibrate. So microscopic traffic flowmodels are not feasible for on-
line prediction and optimization of traffic control systems. These models are mostly useful
for local traffic studies.

Microscopic traffic flow models can also be categorized into different groups based on
their conceptual approaches [87], these are: car-following, microscopic simulation, submi-
croscopic simulation, cellular automaton, and particle models.

The car-following models, also called follow-the-leader models, were pioneered by
Pipes [158]. These models describe the dynamics of a vehicle(along with its driver and
the infrastructure) in relation to its predecessor [29, 87,158]. Car-following models are
very widely used in traffic flow analysis, design, and simulation [164].

Microscopic simulation traffic flow models are computer models where the driver be-
havior is modeled with extensive production (if-then) rules. These models describe both car-
following and lane-changing behavior of individual vehicles [87]. AIMSUN2 and FOSIM
[192] are two examples of microsimulation traffic models.

Submicroscopic simulation models are similar to the microscopic simulation models
except that they have additional non time-space features [87]. These include functioning of
specific parts of vehicles, dynamics of vehicles, and driving tasks of the driver. For instance
they describe how a driver applies the breaks, his reaction time, and the like.

The cellular automaton model describes the traffic system asa lattice of cells of equal
size [128, 129]. A cellular automaton model describes the movement of vehicles from cell
to cell in a discrete way. Moreover, the vehicles assume onlya limited number of discrete
speed values [87].

The particle traffic flow models trace and distinguish individual vehicles in a traffic net-
work. But these models use aggregate equations (e.g., macroscopic traffic flow equations)
of motion to describe the behavior of the individual vehicles [87]. The INTEGRATION
[83] traffic flow model is an example of such a particle models.

Macroscopic traffic flow models

Since in the microscopic traffic models each car is describedby its own equations of motion,
the computer time and memory requirements of correspondingtraffic simulations grow as
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the number of simulated cars increases [81, 87]. Therefore,these kinds of models are
mainly suitable for off-line traffic simulations, detailedstudies (such as on-ramps or lane
merging), or numerical evaluation of collective quantities [8] like the density-dependent
velocity distribution, the distribution of headway distances, etc., and other quantities that
are difficult to determine empirically [81]. For these reasons, coarse fast microsimulation
models have been developed for the simulation of large freeways or freeway networks [48,
130]. However, although they reproduce the main effects of traffic flow, they are not very
suitable for detailed predictions because of their coarse-grained description [81]. Therefore,
many authors prefer macroscopic traffic flow models to microscopic flow models [80, 94,
95, 108, 144].

Macroscopic traffic flow models deal with traffic flow in terms of aggregate variables
(such as average speed, flow, and density). These aggregate variables, which describe the
behavior of the drivers or vehicles, are assumed to depend onthe traffic conditions in the
drivers’ (or vehicles’) direct environments [87]. Macroscopic traffic models do not distin-
guish the behavior of individual vehicles in a traffic stream. So, in macroscopic models the
simulation time and memory requirements mainly depend on the size of spatio-temporal
discretization, but not on the number of cars [48, 81, 87]. Therefore, macroscopic traffic
flow models are suitable for faster thanreal-timetraffic simulations [81, 87]. Another ad-
vantage of macroscopic traffic flow models is that they allow to simulate the traffic dynamics
in several lanes by effective one lane models [82].

Most often macroscopic models are derived from the analogy between vehicular flow
and flow of continuous media (e.g., fluids or gases) [103], resulting in traffic flow mod-
els with a limited number of equations that are relatively easy to handle [87]. The first
macroscopic traffic models were reported in [108] and [169].These models established the
theory for the development of the more finer and accurate traffic flow models presented in
[124, 145, 146, 154, 185].

The independent variables of a continuous macroscopic traffic flow model are location
x, and time instantt. Most macroscopic traffic flow models describe the dynamics of the
densityρ = ρ(x, t), the average speedv = v(x, t), and the flowq = q(x, t); and the
relationship of these variables. Virtually all macroscopic traffic models are based on the
continuity equation [82]

∂ρ(x, t)

∂t
+

∂
(
ρ(x, t)v(x, t)

)

∂x
= ν(x, t) (2.1)

for the source termν(x, t) denoting the rate of vehicles entering the freeway at on-ramp
section or the rate of vehicles leaving the freeway at off-ramp section.

Moreover, in addition to (2.1) most macroscopic models define the relation between the
densityρ(x, t), the flowq(x, t), and the average speedv(x, t) as

q(x, t) = ρ(x, t)v(x, t) (2.2)

where the densityρ(x, t) is per single lane.
However, equations (2.1) and (2.2) do not completely describe the traffic dynamics,

because the number of unknown variables is more than the number of equations. Conse-
quently to get a complete description of the traffic dynamics, other equations are needed. If
no on-ramp and off-ramp is considered on a section of a freeway, the source termν(x, t) =
0. As a third equation, most first-order macroscopic traffic flow models assume a static



2.1 Overview of traffic flow models 21

speed-density relation [52, 53, 108, 134, 169], which leadsto v(x, t) = V (ρ(x, t)), where
V (ρ(x, t)) is the equilibrium speed. But for the description of emergent traffic jams and
stop-and-go traffic, one needs a dynamic speed equation [82]. Then, for most higher-order
macroscopic models, the third equation that describes the dynamics of the average speed
v(x, t) can be written in general [82, 204]

∂v(x, t)

∂t
+v(x, t)

∂v(x, t)

∂x
=

−
1

ρ(x, t)

∂P(ρ(x, t)v(x, t))

∂x
+

1

τ

(
V (ρ(x, t) − v(x, t))

)
(2.3)

whereV (ρ(x, t)) is the generalized equilibrium speed given by the fundamental diagram1

relationship betweenv(x, t) andρ(x, t), τ is the relaxation time, andP(ρ(x, t), v(x, t)) is
the traffic pressure. The traffic pressure is a quantity that describes the degree to which
drivers must interact with each other [157].

The third dynamic equation (2.3) results in a second-order traffic flow model. The differ-
ence between the various existing macroscopic traffic flow models mainly concern the traf-
fic pressureP(ρ(x, t), v(x, t)), the relaxation timeτ , and the generalized equilibrium speed
V (ρ(x, t)) [204] that results in different equations for the average speedv(x, t). However,
[81] introduced a fourth equation that describes the dynamics of the variance of the average
speed. Many papers [49, 103, 124, 145, 171, 185] show that in practice the second-order
macroscopic models, in particular the METANET [124] trafficflow model, can accurately
describe the average traffic dynamics of freeway traffic. So,in this thesis, a second-order
traffic flow model, more specifically the METANET model and some of its extensions [78],
are presented in details in Section 2.3 and it is extensivelyused in the subsequent chapters.

Mesoscopic traffic flow models

The mesoscopic traffic flow models describe the traffic flow in lesser detail than the micro-
scopic models and in greater detail than the macroscopic models. In such models the vehicle
or the driver behavior is not described individually, but inmore aggregate terms. For ex-
ample the same probability distribution functions can be used to categorize or describe the
behavior of a vehicle or a driver [87] in some range of time or distance.

So mesoscopic traffic flow models describe the dynamics of individual or small groups
of vehicles using aggregate variables, such as the velocitydistribution at a specific location
and time instant. For example, in a gas-kinetic mesoscopic traffic model the phase-space
density ρ̂(x, v, t) is defined as themeannumber of vehicles that are at a place between
x − ∆x/2 andx + ∆x/2 and driving with a velocity betweenv − ∆v/2 andv + ∆v/2
during the time range[t − ∆t/2, t + ∆t/2] [81].

The mesoscopic traffic flow models can be grouped into three categories [87]: headway
distribution models (such as [31, 33]), cluster models, andthe gas-kinetic continuum mod-
els (such as [153, 159]). Since the mesoscopic models combine some of the microscopic
characteristics to macroscopic models or the other way around, these models become more
complicated to simulate and calibrate than their corresponding microscopic or macroscopic
versions. So these models are not used in this thesis and hence are not discussed in details.
An interested reader is referred to [31, 33, 87, 153, 159].

1See Fig. 2.2 for specific fundamental diagram.
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2.2 Car-following models

2.2.1 Overview of car-following models

The car-following models, which are also called follow-the-leader models, describe the in-
teraction of a vehicle with its predecessor. Most generally, car-following refers to a situation
in which a vehicle’s speed and longitudinal position are influenced by the vehicle immedi-
ately ahead of it in the same lane. Car–following is characterized by the headway (time or
distance between vehicles) and the degree to which the following vehicle tracks the velocity
changes of the leading vehicle. Car-following behavior is influenced by the driving goals,
road curvature, relative velocity, stream speed, whether car-following is chosen or imposed,
and the duration in the interaction (or coupled) state [164]. Car-following is one of the
main processes in all microscopic simulation models and in modern traffic flow theory. It
attempts to explain the interplay between the phenomena at the individual driver level and
global behavior on a more macroscopic scale [29].

Car-following models have a wide range of applications. By using car-following mod-
els, one can deduct the behavior of a single-lane traffic stream by examining the manner in
which individual vehicles follow one another and from the joint behavior of pairs of vehi-
cles [164]. Moreover, traffic stability is a logical extension of car-following theory, where
local stability refers to the response of a following vehicle in a single pair of vehicles and
asymptotic stability refers to the manner in which the fluctuations of the leading vehicle
are propagated through an entire stream of vehicles in the same lane [119]. Microscopic
models of individual car-following behavior form the building blocks for microsimulation
models of traffic flow, which are used to assess the effects of interventions such as changes
in roadway geometry, traffic signal timing, delineation, signing, etc. [164]. In recent years
the importance of car-following models has increased further in forming the basis of the
functional definitions of advanced vehicle control and safety systems [29]. Other systems,
such as autonomous cruise control, seek to replicate human driving behavior through partial
control of the accelerator, while removing potential hazards that may occur through driver
misperception and reaction time [29].

In this thesis stimulus-response car-following models arediscussed and they are used
in the subsequent chapters. To present the motivation for the choice of these models a
short account on safe-distance car-following models is also presented. It is also important
to note that in this thesis only the longitudinal kinematic behavior of vehicles and drivers
is considered. Since these models are used to demonstrate the potential of the proposed
control approaches as a “proof of concept,” detailed modeling such as lane changing and
overtaking are not considered. However, the traffic controlapproaches to be presented and
illustrated in the second part of this thesis are generic andare also valid for other more
complex models that also include lane changing and other traffic behavior.

The general longitudinal kinematic motion of vehicles is described by

xα(km + 1) = xα(km) + vα(km)Tm + 0.5aα(km)T 2
m (2.4)

vα(km + 1) = vα(km) + aα(km)Tm (2.5)

wherexα(km), vα(km), andaα(km) are respectively the position, speed, and acceleration
of vehicleα in the network at timet = kmTm, wherekm is the microscopic simulation
time step counter, whileTm (e.g.,Tm = 1 s) is the microscopic simulation time step of the
discretized model. The acceleration in (2.4) and (2.5) is determined from the longitudinal
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driver model described in the sequel.

Safe-distance models

The safe-distance car-following modeling approach has been pioneered by Pipes [158]. He
developed a very simple mathematical model based on his postulate that ‘the movements
of several vehicles are controlled by an idealized “law of separation”’. The law considered
in the analysis specifies that each vehicle must maintain a certain prescribed “following
distance” from the preceding vehicle. This distance is the sum of a distance proportional
to the velocity of the following vehicle and a given certain minimum distance of separation
when the vehicles are at rest. After discretization, the longitudinal positionxα(km) of the
following vehicleα relative to the leading vehicle is given by

xα(km) = s0,α + lα + Td,αvα(km) (2.6)

wheres0,α denotes the minimum stand-still inter-vehicle distance,lα denotes the length of
the following vehicle,vα(km) is the velocity of the following vehicle, andTd,α is the overall
reaction time of vehicleα, where the overall reaction timeTd,α is defined as the total time a
driver requires to take an action from the time he/she perceives a stimulus (a change in the
driving behavior of a neighboring vehicle).

The equation shows a linear relationship between the safe distance and the velocity of
the following vehicle. However, the reaction time can also be considered as having three
components: perception time, decision time, and braking time [87]. The braking distance is
defined as the distance needed by a vehicle to come to a full stop, incorporating the reaction
time of the driver and the maximum deceleration. The maximumdeceleration term is a
function of the friction coefficientµf,α between the tire and the road, and the acceleration
due to gravityg. Hence, the total safe distance is

xα(km) = s0,α + lα + Td,αvα(km) +
v2

α(km)

2µf,αg
. (2.7)

The model implies that if the first vehicle stops, the second vehicle needs the distance it can
cover during the overall reaction timeTd,α with unreduced speed and the distance it can
move due to its inertia as full break is applied in order to stop safely.

Stimulus-response models

The main principle behind the stimulus-response car-following modeling is that the driver
reacts to the changes in the kinematic dynamics (stimulus) of a leading vehicle. The reaction
of a following vehicle can be modeled as a function of the changes in the position, speed,
etc. of the leading vehicle. In general such car-following models are given by the form

Responseα = fα

(
Sensitivityα,Stimulusα

)
(2.8)

wherefα is the function that describes the influence of the stimulus and sensitivity on the
response of vehicleα.

In general, in most stimulus-response models the response is the acceleration or deceler-
ationaα of the following vehicleα responding to a stimulus observedTd,α overall reaction
time ahead. In most stimulus-response models the stimulus is assumed to depend on the
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relative positionxα −xα−1 and the relative velocityvα −vα−1 of the leading vehicleα−1
and following vehicleα. Then, in general the stimulus-response car-following models can
be described as

aα(km) = fα

(
xα(km, Td,α), xα−1(km, Td,α), vα(km, Td,α), vα−1(km, Td,α)

)
(2.9)

where the sensitivity, the stimulus, and the response of thedriver are determined according
to the functionfα.

The Gazis-Herman-Rothery (GHR) [67], the car-following model of Newell [133], the
Optimal Velocity Model (OVM) [15], and the Intelligent Driver Model (IDM) [186] fall
into stimulus-response car-following models. Two of thesemodels are presented below:
the GHR and IDM models. These models are also used in the simulation studies of the
subsequent chapters.

2.2.2 The GHR model

The microscopic Gazis-Herman-Rothery (GHR) [67] traffic flow model is the most well-
known stimulus-response based car-following model. This model is developed based on
the intuitive assumption that each driver reacts in some specific fashion to stimuli from the
cars ahead of or behind him. But, since the follow-the-leader theory applies to fairly dense
traffic, some car-following models cannot be used for all traffic conditions. The theory of
the GHR model in its simple form is one of such models, and it should not be extrapolated
to the range of very low vehicle concentrations [67]. Therefore, in order to use the car-
following models (and so the GHR model) for fairly dense traffic, a threshold variable is
introduced to determine whether a vehicle is in the state of car-following or free-flow traffic
conditions [19, 203]. Since the speed and the nature of the reaction of drivers is dependent
on their time (or distance) headway, the threshold is definedbased on the time headway.
The time headway is defined as the time difference between twoconsecutive vehicles that
pass a certain location. This can be described as the time needed by the following vehicle
to reach the current position of the leading vehicle with itscurrent speed. This reads as

th(km) =
xα−1(km) − xα(km)

vα(km)
(2.10)

wherexα−1(km), xα(km) are respectively the positions of the leading and the following
vehicles at timet = kmTm, andvα(km) is the speed of the following vehicle at timet =
kmTm.

Depending on the time headway a vehicle can be either in car-following or in free-
flow mode. When the time headway is larger than the threshold time headwayttr (e.g,
ttr = 10 s), then the vehicle is said to be in free-flow mode, whereas ifthe time headway is
smaller than the threshold time headway, then the vehicle isin a car-following mode.

When a vehicle is in a car-following mode, the GHR model describes the follow-the-
leader traffic behavior following the stimulus-response law in (2.8) with

fα

(
Sensitivityα,Stimulusα

)
= Sensitivityα × Stimulusα (2.11)

where Stimulusα is the relative speed of the following vehicleα with respect to the leading
vehicleα − 1 and the Sensitivityα is a function of the position and speed of the following
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vehicleα and the relative position of the following vehicleα to the leader vehicleα − 1.

In the GHR model the reaction of the driver has been taken as the acceleration of the
vehicle, because a driver has direct control of the acceleration through the gas and brake
pedals. The acceleration is assumed as to be a function of thevariation of its current speed,
and the relative speed and position of the vehicle with respect to its predecessor vehicle
[67]. The model also takes the delay in the reaction of the driver into account in the relative
speed and position of the vehicle. This is given as

aα(km) = cαvıα
α (km)

(
vα−1(km − Td,α) − vα(km − Td,α)

)

(
xα−1(km − Td,α) − xα(km − Td,α)

)α
(2.12)

wherecα, ıα, andα are model parameters, andTd,α is the overall reaction time of the
driver. Note that since we are using discrete-time models, for computational issues it is
assumed that the overall reaction timeTd,α is a positive integer.

However, when the time headway is larger than the threshold time headwayttr, the
interactions between vehicles vanish. Hence, as there is nocar-following behavior the GHR
model cannot describe the traffic flow under such situations [67]. Under the free-flow cases,
drivers intend to relax their speed to their desired speedv0,α(km). So, the stimulus of the
drivers is changed to the relative speed between the vehicleand the desired speed or speed
limit, whichever is smallest. The sensitivity is considered to be a constant [19]. This is
taken to be

aα(km) = σα

(
min

{
vvsl,α(km − Td,α), v0,α(km − Td,α)

}
− vα(km − Td,α)

)
(2.13)

whereσα is the sensitivity of vehicleα (typically 0.01–0.4),vvsl,α(km − Td,α) is the speed
limit observedTd,α ahead.

Under the car-following conditions the GHR model in (2.12) is supposed to use a single
set of parameterspGHR = {cα, ıα, α, Td,α}. However, as the real-world experiences indi-
cate the acceleration of a vehicle is smaller than its deceleration. Vehicles require larger time
to achieve a certain high speed than to decelerate back to theoriginal low speed, which is
related to the slow-to-start phenomena introduced in [16].The larger time required to accel-
erate than to decelerate is one of the reasons for the reduction in the operational capacity of
a freeway network, which is most often referred to as the capacity drop [38, 72, 75]. There-
fore, to capture the difference in the magnitude of the acceleration and deceleration, the
GHR model requires the use of different parameter sets for each case. In literature [19, 203]
it is suggested to use two parameter sets except forTd,α, one set during the accelerating
mode of the vehicles and the second set during the decelerating mode of the vehicles.

Similarly, under free-flow traffic conditions in which the dynamics of a vehicle is de-
scribed by (2.13), the parameterσα is also set differently for vehicles accelerating or decel-
erating towards the desired speed [19, 203].

The main problem in the GHR model is that when the speed difference between the
leading and following vehicles is zero, the response (or acceleration) disappears regardless
of the inter–vehicle distance. This problem is solved by thecar-following model of Newell
[133] and the Optimal-Velocity-Model [15]. However, thesenew models lead to very high
accelerations of orderv0,α(km)/Td,α [186]. The IDM [186] solves the problems encoun-
tered in [15, 67, 133].
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2.2.3 The IDM model

The intelligent driver traffic flow model [186] is a simple model that has only a few intu-
itive parameters. Unlike the GHR [67] model, which describes only the congested traffic
state, the IDM model can describe both free-flow and congested traffic states. Although in
many of the stimulus-response based models the acceleration of the vehicles is modeled by
introducing a delay related to the overall reaction time, the IDM model does not use the
driver reaction time (or any) as a delay parameter for the determination of the acceleration
of the following vehicle, which makes it computationally suitable. In [173] the IDM model
is improved in order to also model high traffic capacity (e.g., 1900 veh/h/lane and above) of
freeways.

In the IDM model the acceleration of a vehicleα following another preceding vehicle
α − 1 is described as

aα = amax,α

[

1 −

(
vα

v0,α

)δ

−

(
s∗(vα,∆vα)

sα

)2]

(2.14)

wherevα denotes the speed of vehicleα, sα = xα−1−xα− lα denotes the inter-vehicle (or
actual) gap of vehicleα from the leading vehicleα−1, ∆vα = vα−vα−1 denotes the speed
difference (approach rate) between the following vehicleα and the leading vehicleα − 1,
amax,α denotes the maximum comfortable acceleration of vehicleα, δ denotes the free-
flow acceleration exponent,v0,α denotes the desired speed of vehicleα, ands∗(vα,∆vα)
denotes the minimum desired gap given by

s∗α(vα,∆vα) = s0,α + max

{

Td,αvα +
vα∆vα

2
√

amax,αbmax,α

, 0

}

(2.15)

with s0,α denoting the minimum inter-vehicle distance at stand still, bmax,α denoting the
maximum comfortable deceleration of vehicleα.

The acceleration expression in (2.14) is a superposition oftwo acceleration terms. These
are the free-flow acceleration and the car-following acceleration. Under free-flow traffic
conditions, the actual gapsα ≫ 0 and thus the influence of the last term in (2.14) becomes
negligible to result in

aα ≈ amax,α

[

1 −

(
vα

v0,α

)δ]

which describes the driver behavior under free-flow traffic conditions. This shows that as
the speed of vehicleα reaches the desired speedv0,α the acceleration approaches zero.
When the speed of vehicleα is greater (or less) than the desired speedv0,α, the acceleration
becomes negative (or positive).

As the traffic behavior almost gets congested, the actual speedvα, the desired speedv0,α

and the actual gapsα of vehicleα decrease. Hence, the acceleration in (2.14) describes the
driver behavior under car-following traffic conditions with the last term becoming signifi-
cant. Then, the car-following acceleration reads as

aα ≈ amax,α

[

1 −

(
s∗(vα,∆vα)

sα

)2]

.
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This expression indicates that as the actual gapsα of a vehicleα approaches the mini-
mum desired gaps∗α (i.e.,s0,α) in a congested (or in car-following) situations, the acceler-
ationaα of vehicleα decreases to zero. If the actual gap continued decreasing below the
minimum desired gap, the last term of (2.14) dominates and the vehicle decelerates.

In the IDM model, according to the sign of the approach rate∆vα, the desired gap
in (2.15) determines the magnitude of the acceleration and deceleration of a vehicle in a
congested traffic state. The magnitude of the acceleration or deceleration under free-flow
conditions is determined by the ratio of the actual and desired speed (the second term in
(2.14)). Thus, unlike the GHR model, the IDM model describesthe dynamics of the traffic
equation with a single parameter setpIDM = {δ, s0,α, v0,α, Td,α, amax, bmax, lα}.

2.3 The METANET model and its extensions

METANET [124] is a deterministic modeling tool for simulating traffic flow phenomena
in freeway networks of arbitrary topology and characteristics including freeway stretches,
bifurcations, on-ramps, and off-ramps [103, 124, 185]. It is a discrete-time, discrete-space
second-order macroscopic traffic flow model that treats the traffic flow as a compressible
fluid. The modeling approach allows for the simulation of allkinds of traffic conditions
(free, dense, congested) and of capacity-reducing events (incidents) with prescribed charac-
teristics (location, intensity, duration). Furthermore,METANET along with its extensions
allows for taking into account control actions such as variable speed limits, ramp metering,
and route guidance [78, 103, 124].

The dimension of the state space of the model depends on the size of the spatial dis-
cretization. Since the number of the vehicles does increaseneither the number of the vari-
ables nor the number of the states, the computation speed of the model is only affected
by two factors: the temporal and the spatial discretizationstep sizes. But, since the dis-
cretization in space (500 m–1000 m) and the discretization in time (10 s–15 s) are coarse,
the computation time of the model is low.

The METANET model uses aggregate variables to describe the behavior of the vehicles
on a freeway. These variables are the densityρ [veh/km/lane] that is defined as the number of
vehicles occupying a length of freeway per lane, the flowq [veh/h] that is also defined as the
number of vehicles passing a point in a given time [119], and the space-mean speedv [km/h]
that describes the average of the instantaneous speed of vehicles occupying a section of a
freeway.

In the METANET model a graphical representation of the traffic network is used in
such a way that a node is placed wherever there is a change in the geometry of a freeway
(such as a lane drop, on-ramp, off-ramp, or a bifurcation). Ahomogeneous freeway stretch
that connects such nodes is designated as a link indexed bym and it is described by a
single set of parameters (see Fig. 2.1). Thus, the traffic network is divided into links with
homogeneous traffic characteristics and each link is subdivided intoNm segments of equal
lengthLm (typically 500-1000 m).

In the METANET traffic flow model five different links are defined. These are:

Freeway links represent homogeneous freeways, and are described by the freeway average
density, speed, and the average outflow.

Origin links are parts of the freeway that receive the traffic demand from outside the net-
work and forward it into the network. They are described by their flow capacity and
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Figure 2.1: A linkm of a freeway sectioned intoNm segments.

their queue.

Destination links receive traffic flow from inside the network and push it to the outside.
They are influenced by the downstream traffic conditions.

Store-and-forward links are characterized by their queue length, flow capacity, their con-
stant travel time. These links are used to store the inflow traffic and forward it to the
outflow with some time delay.

Dummy links are links with zero length. They are used in order to decompose complex
network nodes.

As such the dynamic equations that describe the evolution ofthe traffic state are grouped as
link equations and node equations. In the sequel the link equations, the node equations, the
origins, and the boundary conditions along with some of the extensions of the METANET
model are discussed.

2.3.1 Link equations

As mentioned above, the METANET model uses aggregate variables to describe the behav-
ior of the vehicles on a freeway. The traffic dynamics in a linkm are formulated by first
sectioning the linkm into Nm segments of equal lengthLm as in Fig. 2.1, and next the
traffic dynamics in each segment are described in relation tothe traffic conditions in the
neighboring segments. Three aggregate variables are used to model the traffic behavior in
each segmenti of link m. These variables are the densityρm,i(k) [veh/km/lane] of segment
i of link m at time stepk, the outflowqm,i(k) [veh/h] of segmenti of link m during the time
period[kT, (k + 1)T ), and the space-mean speedvm,i(k) [km/h] of segmenti of link m at
time stepk (see also Fig. 2.1).

Note that in order to make a distinction between the microscopic time step counter and
the macroscopic time step counter, a time step counterk is introduced as macroscopic time
step counter as opposed to the microscopic time counterkm and a time stepT is used as the
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macroscopic time step size (typicallyT = 10 s) as opposed to the microscopic time stepTm

(typicallyTm =1 s–2 s). Related to the CFL criterion encountered in [47], for computational
stability reasons the relation between the length of the segmentLm and the simulation time
stepT must satisfy the condition

Lm > vfree,mT (2.16)

wherevfree,m is the free-flow speed of the linkm.

The outflowqm,i(k) of segmenti of link m during the time period[kT, (k +1)T ) is the
discrete-time domain version of the relation given in (2.2). This is described by

qm,i(k) = λmρm,i(k)vm,i(k) (2.17)

whereλm is the number of lanes in linkm.

The dynamics of the densityρm,i(k) of segmenti of link m is derived from the con-
servation of vehicles law in (2.1), which states that the number of vehicles in a segment is
the sum of the number of vehicles in the segment and the difference between the number
of inflowing and outflowing vehicles. For a segmenti of link m without an on-ramp and
off-ramp, the dynamics of the densityρm,i(k) is described as

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm
[qm,i−1(k) − qm,i(k)] (2.18)

whereqm,i−1(k) is the inflow of segmenti (or outflow of segmenti − 1) of link m during
the time period[kT, (k + 1)T ) andqm,i(k) is the outflow of segmenti of link m during the
time period[kT, (k + 1)T ).

The discrete-time link equations described by (2.17) and (2.18) are based on physical
principles that are exact. These two equations constitute asystem of two independent equa-
tions and three unknown variables. Consequently, to get a complete description of traffic
dynamics, a third independent model equation is needed [87]. This is the general case for
macroscopic models as has been discussed in Section 2.1. In the METANET model the evo-
lution of the space-mean speed in relation to the density is modeled heuristically following
the continuous space-mean speed dynamics in (2.3). The update equation of the space-mean
speedvm,i(k) of segmenti of link m at time stepk is given by the sum of the space-mean
speed at time stepk, therelaxationterm that represents the desire of the drivers to reach a
desired speedV (ρ), aconvectionterm describing the change in the space-mean speed of a
segment caused by the vehicles inflowing from upstream segments, and ananticipationterm
that reflects the change in space-mean speed of a segment due to the difference in density
level of a segment with the downstream segment. This is expressed as

vm,i(k + 1) =vm,i(k) +
T

τ

[
V

(
ρm,i(k)

)
− vm,i(k)

]

+
Tvm,i(k) [vm,i−1(k) − vm,i(k)]

Lm

−
Tη [ρm,i+1(k) − ρm,i(k)]

τLm (ρm,i(k) + κ)
(2.19)

whereτ andη respectively denote a time constant and the anticipation constant,κ is model
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Figure 2.2: Fundamental diagram of a freeway characterizedby the relation (2.20) and
(2.17) withvfree,m = 102 km/hr,ρcr,m = 33 .5 veh/km/lane, andbm = 1 .867 .

parameter, andV
(
ρm,i(k)

)
is the desired speed drivers would like to achieve and it is given

by

V
(
[ρm,i(k)

)
= vfree,m exp

[

−
1

bm

(
ρm,i(k)

ρcr,m

)bm

]

(2.20)

with ρcr,m being the critical density andbm being the parameter2 of the fundamental di-
agram. An illustration of the fundamental diagram is depicted in Fig. 2.2. The diagram
is generated for a freeway characterized by the relation (2.20) and (2.17) withvfree,m =
102 km/h,ρcr,m = 33.5 veh/km/lane, andbm = 1.867 [75].

Remark 2.1 The anticipation parameter in (2.19) captures the reactionof drivers to differ-
ent traffic densities in the downstream segment. In the original METANET model a single
parameter value is used regardless of the sign of the difference in density between the seg-
ments, i.e., the model does not distinguish between accelerating or decelerating behavior
as a result of density difference between the actual segmentand the downstream segment.
However, as has been also discussed in the car-following models in Sections 2.2.2 and 2.2.3,
drivers tend to decelerate faster than to accelerate [19, 58, 203]. Thus different parameter
values are required when the downstream density of a segmentis higher or lower than the
density of the actual segment. In [75, 78] it has been suggested to use a time and segment-
dependentη such that

η =

{

ηh if ρm,i+1(k) ≥ ρm,i(k)

ηl otherwise
(2.21)

whereηh andηl are anticipation model parameters for the two different cases. In this way
the value of the anticipation constantη models the operational capacity drop. �

2In the original METANET model the parameterbm is denoted byam. However, in order to avoid confusion
with the acceleration (which will be indicated witha(·) in this thesis)bm is used instead.
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Remark 2.2 Although it is indicated that the METANET model allows to model controlled
speed limits by varying the parametersρcr,m, vfree,m, andbm in the METANET manual
[185], in [75] it has been suggested to use different expressions. For controlled speed limits
Hegyi [75] suggested that the desired speed in (2.20) be replaced by the following expres-
sion

V
(
ρm,i(k)

)
= min

{

vfree,m exp

[

−
1

bm

(
ρm,i(k)

ρcr,m

)bm

]

, (1 + ̺)uvsl,m,i(k)

}

(2.22)

whereuvsl(k) is the speed limit imposed on segmenti of link m at simulation timek, and
̺ is the drivers non-compliance factor3. If 0 < ̺ < 1, it expresses that the drivers’ target
speed is higher than the displayed speed limit, and if−1 < ̺ < 0, then the drivers’ target
speed is less than the displayed speed limit. �

2.3.2 Node equations

Two or more links can merge or leave from a node of a traffic network as in Fig. 2.3.
The coupling of the traffic variables of the merging links to or the leaving links from
the node is modeled using node equations. Consider Fig. 2.3,wheren1 links (numbered
m1,m2, . . . ,mn1

), enter andn2 links (numberedµ1, µ2, . . . , µn2
) leave noden. The total

flow Qn(k) that enters noden is computed as the sum of outflow of all incoming links, i.e.,

Qn(k) =

n1∑

i=1

qmi,Nmi
(k). (2.23)

The total flowQn(k) entering noden is distributed among the leavingn2 links accord-
ing to

qµi,0(k) = βn,µi
(k)Qn(k) (2.24)

wherei = 1, 2, . . . , n2, βn,µi
(k) are the turning rates (i.e., the fraction of the total flow

through noden that leaves via linkµi), andqµi,0(k) is the flow that leaves noden via link
µi.

A node provides a (virtual) downstream density to incoming (or merging) links and a
(virtual) upstream speed to leaving links, which are neededin (2.19). Thus, the virtual
upstream speedvµi,0(k) of leaving link µi is obtained as the weighted average of all the
space-mean speeds of the incoming links, which is given by

vµi,0(k) =

∑n1

i=1 vmi,Nmi
(k)qmi,Nmi

(k)
∑n1

i=1 qmi,Nmi
(k)

. (2.25)

Moreover, the virtual downstream densityρmi,Nmi
+1(k) of a link mi entering noden

is given by

ρmi,Nmi
+1(k) =

∑n2

i=1 ρ2
µi,1(k)

∑n2

i=1 ρµi,1(k)
. (2.26)

3In [75, 78] the non-compliance factor is denoted byα. Here, we use̺ sinceα is used to designate a vehicle
in the microscopic modeling approaches discussed in Section 2.2.
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Figure 2.3: General interconnection of road links at a noden.

In case the number of lanes changes, a noden is placed in the METANET model. Let
m andm+1 be the indices of respectively the ingoing link and the outgoing link of noden.
Then, the space-mean speed of the last segmentNm of link m is either reduced or increased
by adding the weaving phenomena term

−
φT∆λmρm,Nm

(k)v2
m,Nm

(k)

Lmλmρcr,m
(2.27)

to (2.19), whereφ is a model parameter and∆λm = λm − λm+1 denotes the number of
lanes dropped or increased.

2.3.3 Origins

For origins (such as on-ramps and mainstream entry points) asimple queue model is used.
The dynamics of the queue lengthwo(k) at the origino is modeled as

wo(k + 1) = wo(k) + T (do(k) − qo(k)) (2.28)

wheredo(k) andqo(k) denote respectively the demand and outflow of the origino during
the time period[kT, (k + 1)T ).

The outflowqo(k) of the origin depends on the nature of the origino. The equations
describing on-ramp origins and mainstream origins are different, and these are presented
below.

On-ramp origins

An on-ramp origin is a small road that provides an access to a traffic freeway network.
The on-ramp origins can be both metered (in other words controlled) or unmetered. Ramp
metering is one of the freeway traffic control measures used to regulate the traffic flow
on the freeways by controlling the inflow of vehicles from on-ramp origins to prevent the
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occurrence of traffic breakdown (or congestion) and to reduce the traffic jams [20, 75, 100,
103, 149, 219].

The outflow of metered on-ramp origin depends on the traffic conditions: the available
traffic at the on-ramp that is expressed as the sum of the traffic demand and the queue length
per unit time step, the maximal flow allowed by the metering rate expressed as a fraction
of the origin capacity, and the maximum space available in the freeway to accommodate
the incoming traffic expressed as the fraction of the capacity of the on-ramp origin. This is
given by [101, 102]

qo(k) = min

{

do(k) +
wo(k)

T
, ro(k)Co, Co

(
ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)}

, (2.29)

whereCo is the capacity [veh/h] of the on-rampo under free-flow conditions andρjam,m

is the jam density (or the maximum density of a segment under jammed conditions) of the
link m connected to origino, andro(k) ∈ [0, 1] is the ramp metering rate at time stepk.

For an unmetered on-ramp (wherero(k) ≡ 1) the outflowqo(k) in (2.29) is recast as

qo(k) = min

{

do(k)+
wo(k)

T
, Co, Co

(
ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)}

. (2.30)

If m is the link out of a node to which an on-rampo is connected, then for the first
segment of linkm the term

−
δTqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
(2.31)

is added to the speed update equation (2.19) in order to account for the speed drop caused
by the merging phenomena, whereδ is model parameter.

Main-stream origins

The main-stream origin linko is suggested to be modeled different from the on-ramp origins
in [75]. It is argued that the inflow of a segment can be limitedby an active speed limit or
by the actual speed of the segment. Then, [75] assumes that the maximal inflow equals the
flow that follows from the speed-flow relationship that can bederived from (2.17) and (2.20)
with the speed equal to the speed limit or the actual speed on the first segment, whichever
is smaller. So, the limiting speed of the first segment of linkµ is given by

vlim,µ,1(k) = min

{

uvsl,µ,1(k), vµ,1(k)

}

. (2.32)

Moreover, the outflow of the main-stream origino of link µ that is required for queue model
given in (2.28) cannot exceed

qo(k) = min

{

do(k) +
wo(k)

T
, qmax,µ,1(k)

}

(2.33)
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where

qmax,µ,1(k) =







λµvlim,µ,1(k)ρcr,µ

[

−bµ ln

(

vlim,µ,1(k)
vfree,µ

)] 1
bµ

if vlim,µ,1(k) < V (ρcr,µ)

λµV (ρcr,µ)ρcr,µ otherwise.

2.3.4 Boundary conditions

Since the dynamic equations that describe the evolution of the traffic states in each segment
are interdependent, i.e., the traffic situation downstreamand upstream of a segment influ-
ences the traffic in the actual segment, then at the entry and exit points of the traffic network
boundary conditions have to be defined. In particular, in theMETANET model the states of
a segment depend on the upstream speed, the upstream flow, andthe downstream density.
Hence, we need to describe the upstream speed and upstream flow for the entries of the
network and downstream densities for the exit networks.

Let the virtual speed of a main-stream origino entering noden be denoted byvo(k).
The virtual speed can be user-defined, but if it is not specified it is set to be equal to the
speed of the first segment of the link leaving noden, i.e.,

vo(k) = vµ,0(k) = vµ,1(k)

The boundary conditions for the upstream flow are described by the flow equations
discussed in 2.3.3.

Remark 2.3 The only downstream boundary condition required is the virtual density. In
the standard METANET model, it is assumed that the destination is congestion-free, but
it is also possible to consider user-defined density scenario [75]. When the destination is
assumed to be congestion free, the virtual downstream density ρmi,Nmi

+1(k) of link m is
always considered to be the smallest of the critical densityρcr,mi

(k) of link mi and the
density of the last segmentNmi

of link mi. This can be rewritten as [75]

ρmi,Nmi
+1(k) = min{ρmi,Nmi

(k), ρcr,mi
}. (2.34)

But, if the destination demand scenarioρd(k) is defined, the virtual downstream density
in (2.34) is recast as

ρmi,Nmi
+1(k) = ρd(k).

�

2.4 Summary

As the phrase “model-based traffic control” indicates, the control approach presented in
Part II of this thesis requires models of the traffic system. So, in this chapter an overview
of the traffic flow models in general and the specific traffic models to be used have been
discussed. The chapter has provided the general overview ofthe traffic models by exploring
the general applications of these models and the way they canbe classified. Based on
the level of details, the classification of traffic models as microscopic, macroscopic, and
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mesoscopic has been discussed with a special emphasis on microscopic and macroscopic
models. The general modeling concepts underling the microscopic and macroscopic models
have been in particular discussed.

Among the microscopic models, a brief account has been givenfor the car-following
models, because the car-following models are the building blocks of most traffic flow mod-
els. Two of the car-following models, the GHR model and the IDM model have been dis-
cussed in detail. Since the GHR model is unable to model the traffic flow under free-flow
conditions, it has been suggested to use a separate expression to model the free-flow traffic
conditions if one opts to use the GHR model for the car-following situations under high to
medium traffic densities. Therefore, the GHR model and the additional free-flow expression
can be used to model free-flow and congested traffic conditions for both accelerating and
decelerating cases of individual vehicles. The IDM model, however, is a full-fledged model
that can capture the traffic scenarios the GHR model, withoutthe additional free-flow ex-
pression, cannot. The IDM model does not require different parameters for different traffic
conditions as the GHR model does.

This chapter has also presented the METANET model and some ofits extensions. It has
been pointed out that, unlike the microscopic models, the computation time of the macro-
scopic METANET model does not depend on the number of vehicles in a traffic network.
Therefore, it can be used for the simulation of large networks. Moreover, in addition to the
ramp metering control, it has been also shown how the extended METANET model is able
to include variable speed limits explicitly.

Despite the fact that specific models (GHR, IDM, and METANET)have been chosen
for the model-based strategies in the subsequent chapters,the strategies and approaches to
be presented next in this thesis are general and can be used with more complex and fast
models that are suitable for on-line control applications.





Chapter 3

Traffic Emissions and Fuel
Consumption Modeling

T
raffic control approaches based on on-line optimization require fast and accurate
integrated traffic flow, emissions, and fuel consumption models. On the one hand,
one may use macroscopic traffic flow models to reduce the computation time.
But in principle such models dictate the use of macroscopic emissions and fuel

consumption models that provide coarse estimates. On the other hand, relatively accurate
estimates of emissions and fuel consumption can be obtainedusing microscopic emissions
and fuel consumption models. However, such models are used with microscopic traffic flow
models that require intensive computation times.

Thus, one may want to integrate macroscopic traffic flow models with microscopic emis-
sions and fuel consumption models, which can result in fast computation speeds with fairly
accurate estimates of the emissions and fuel consumption. In general, however, macro-
scopic traffic flow models and microscopic emissions and fuelconsumption models cannot
be integrated with each other because the inputs required bymicroscopic emissions and
fuel consumption models describe the dynamics ofindividual vehicles, while macroscopic
traffic flow models characterize theaveragetraffic flow. So how can these different models
be integrated? If they can be integrated, can the error be quantified?

This chapter provides answers to these and other questions.In answering the questions,
this chapter begins with an overview of emissions and fuel consumption models in Sec-
tion 3.1. It briefly discusses the applications and classifications of the models. Next, in
Sections 3.2 and 3.3 the established microscopic VT-micro [2] and macroscopic COPERT
[139] models are respectively discussed. Their advantagesand disadvantages are presented.
Section 3.4 first presents a general framework for integrating microscopic emissions and
fuel consumption models with macroscopic traffic flow models. Next, the section illustrates
the integration strategy using the VT-micro and METANET models, resulting in the VT-
macro emissions and fuel consumption model. The error that can be introduced due to the
use of macroscopic traffic flow variables with microscopic emissions and fuel consumption
models is analyzed and quantified both mathematically and empirically. The chapter ends
with conclusions in Section 3.5.

Parts of this chapter are published in [114, 212, 218].

37
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3.1 Overview of emissions and fuel consumption models

Traffic emissions and fuel consumption models are models of any form (graphs, tables,
mathematical expressions, computer algorithms, etc.), that calculate (or provide informa-
tion about) emissions and fuel consumption rates for different traffic conditions. In other
words, these models provide the emissions released or fuel consumed by a vehicle or a
group of vehicles based on the operating conditions and status of the vehicle(s). The oper-
ating conditions refer to variables such as speed, acceleration, engine speed, engine power
demand, air-to-fuel ratio, and so on. The status of a vehiclerefers to its physical conditions
related to its age, technology, and maintenance level.

In a broader sense, emissions and fuel consumption models can be either technology-
based engineering emissions and fuel consumption models ortraffic emissions and fuel con-
sumption models. The main difference between these modeling approaches is their level of
detail and their intended applications. Technology-basedengineering models are models for
a specific engine type and size. The main inputs for such models are the speed, acceleration,
engine load, and the specification of the vehicle (or engine). Therefore, technology-based
engineering models are primarily meant to be used by car-manufacturing companies for the
assessment of new technological developments and by government agencies for regulation
purposes [36]. Since these models are very specific and very detailed, they can neither gen-
eralize the emissions and fuel consumption rate of other vehicles in the fleet nor be used for
on-line estimation and prediction, and thus they are not of interest for this thesis.

Traffic emissions and fuel consumption models are developedfor diverse collections
of vehicles grouped in homogeneous categories. These models are simpler and have rel-
atively less details than the technology-based engineering models. Traffic emissions and
fuel consumption models mainly consider the inter-relationship of the different traffic flow
variables (speed, acceleration, flow, density) with the emissions and fuel consumption of
the vehicles in the fleet. Since these models generally try torelate the traffic flow variable
with the fleet emissions and fuel consumption, these models are more suited for the study
of the effects of traffic flow control and management strategies. Moreover, these models are
more suited for on-line estimation and predictions than thetechnology-based engineering
models. Therefore, traffic emissions and fuel consumption models are the center of atten-
tion of this chapter and thesis. In the sequel, the possible applications and classifications of
traffic emissions and fuel consumption models are elaborated.

3.1.1 Application of traffic emissions and fuel consumptionmodels

Road transport has a significant impact upon the environmentlocally and globally. In de-
veloped countries, road transport is one of the major sources of CO2 emissions, which
contributes to climate change which in turn has perilous domestic and global consequences
[107, 143, 162]. This means that the ability to estimate and predict the air pollution will be
essential for local transport plans focusing on the reduction of traffic emissions. Real-time
environmental data and accurately predicted emissions andfuel consumption rates will be
needed to be integrated with existing traffic control and traveler information systems. Real-
time environmental data can be provided with a grid of sensors. However, models are
required to predict the emission or fuel consumption levelsof a transport network.

Traffic emissions and fuel consumption data can be used to determine the most important
parameters that influence the emissions and fuel consumption of road vehicles [91]. These
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important parameters are the building blocks of emissions and fuel consumption models.
With these models, the impact of Intelligent Transportation Systems (ITS) alternatives on
the emissions and fuel consumption can be assessed [1, 44, 45, 131, 163]. Generally, air
quality problems as well as the effectiveness of potential solutions are assessed on the ba-
sis of emissions and fuel consumption models rather than on the basis of measurements,
because experimentation of ITS solutions in real-time is expensive and cannot guarantee
repeatability.

Emissions and fuel consumption models can also be used for the evaluation and assess-
ment of construction of new roads and other transport networks. For example, a newly
constructed road network can reduce the traffic jams of a traffic network, but it can have
severe consequences for the neighborhoods and the environment. An assessment of the im-
pact level could help in the redesign, provision of solutions, or the decision making process
of such projects. Emissions and fuel consumption models canalso be used in the design
and evaluation of local emission control strategies [46]. For example, to evaluate traffic
measures that influence driving behavior (like signal coordination or speed limits) accurate
models are needed that can produce reliable predictions about the magnitude and direction
of relatively small changes in emission levels [44, 45, 131,177]. With the aid of traffic flow
models and traffic emissions and fuel consumption models, itbecomes possible to consider
both congestion and emissions in the problem of policies development, assessment, and
optimization [177].

Often during the development, assessment, and optimization process of environmental
policies the decision process are characterized by a high degree of complexity, uncertainty,
and subjectivity [46]. Therefore, models can be used in the context of decision support
systems to provide the analysts and the decision makers withquantitative estimates, trends,
and insights on the policies simulated.

3.1.2 Classification of traffic emissions and fuel consumption models

There are several types of traffic emissions and fuel consumption models. Based on their
applications, level of detail, modeling strategies, and the like, traffic emissions and fuel con-
sumption models can be grouped into different categories. In general, traffic emissions and
fuel consumption models can be categorized as either staticor dynamic models. Static emis-
sion and fuel consumption models calculate the emissions and fuel consumption of vehicles
based on static traffic behavior (e.g., average speed), while dynamic models consider the
dynamic behavior of the traffic flow (e.g., instantaneous speeds and accelerations). Static
models are generally fed with output of macroscopic traffic models or with forecasts of to-
tal vehicle kilometer traveled. On the other hand, dynamic models allow both instantaneous
and modal analysis based on instantaneous traffic kinematicvariables, such as instantaneous
speed and instantaneous acceleration, or on more aggregated modal variables, such as time
spent in acceleration mode, in cruise mode, and in idle mode.

Based on the level of detail, emissions and fuel consumptionmodels can be classified
into three groups viz. microscopic, macroscopic, and mesoscopic emissions and fuel con-
sumption models. Microscopic models use instantaneous speed and acceleration data to
estimate the emissions and fuel consumption of an individual vehicle. Macroscopic models
use aggregate network or link-based data to estimate network-wide or link-based emissions
and fuel consumption. Mesoscopic models use scales that liebetween the macroscopic scale
and microscopic scale. The ensuing sections provide an overview of these model groups.
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Microscopic models

In order to predict traffic emissions and fuel consumption more accurately and with high
spatial and temporal detail, models that include the variation of vehicle dynamics over time
and space are necessary. Such models are called microscopicemissions and fuel consump-
tion models. Microscopic emissions and fuel consumption models are derived from the
relationship between the second-by-second emissions and fuel consumption rates and ve-
hicle characteristics and road conditions. The vehicle characteristics include the second-
by-second speed, acceleration, and in some cases the vehicle jerk, power, and so on. These
models take the instantaneous vehicle kinematic variables(speed, acceleration, or aggregate
modal variables such as time spent in acceleration mode, in cruise mode, idle mode, and so
on) into account [36, 182]. In general, microscopic emissions and fuel consumption models
can be described as

Jȳ(km) = fȳ(v(km), a(km), · · · ) (3.1)

where the subscript̄y denotes the emission or fuel consumptionȳ ∈ Ȳ = {CO, CO2,
HC, NOx, fuel} andfȳ(·) denotes the function that relates the microscopic-instantaneous
speedv(km), the microscopic-instantaneous accelerationa(km), etc. to the emissions or
fuel consumption rateJȳ(km) at time stepkm.

Due to the disaggregate characteristics of the emissions and fuel consumption data, these
models are usually used to evaluate individual transportation projects and individual vehi-
cles. These models are also used in microscopic traffic simulation models; however, they
are costly and time consuming [206]. The POLY [162], CMEM [9], and VT-Micro [2, 3]
models are some examples of microscopic emissions and fuel consumption models.

Microscopic emissions and fuel consumption models can beemissions and fuel con-
sumption maps, regression-based, or load-basedmodels.

Emissions and fuel consumption maps are a two-dimensional array of emissions and
fuel consumption quantities for different operational conditions of the vehicles. These mod-
els, also called velocity-acceleration look-up tables, have the form of a matrix, where one
dimension represents speed ranges, and the other acceleration or specific power ranges. For
each emission type (CO, CO2, HC, and NOx) and fuel consumption and for each vehi-
cle category, the instantaneous emissions and fuel consumption measurements are assigned
to one cell of the emissions and fuel consumption matrix, according to vehicle speed and
acceleration measured at that time instant.

Although these models are easy to generate and to use, they can be sparse and sensitive
to the driving cycle used to generate them; in addition, theyare not flexible enough to
account factors such as road grade, accessory use, or history effects [182].

Regression-based modelsare usually linear regression functions of instantaneous speed
and acceleration or modal variables [2, 163]. These models can overcome the sparseness
and discretization problems of the emission map models. However, these models lack a
clear physical interpretation, and can also over-fit the calibration data when using a large
number of explanatory variables.
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Load-based models represent the physical and chemical phenomena that generate emis-
sions. The primary variable of these models is the fuel consumption rate. The fuel con-
sumption rate is mainly dependent on the engine speed, the engine power, and air-to-fuel
ratio [36]. In principle, load-based models are adequate todescribe the emissions and fuel
consumption of any vehicle with similar technology and any vehicle operating conditions
by adjusting their parameters. However, these models require detailed specification of vehi-
cles’ engine (such as the engine speed, the engine power, andair-to-fuel ratio) and they are
relatively complicated models. Thus, since such data is notavailable from the traffic flow
models, the load-based models are not suitable for model-based traffic control approaches.

Macroscopic models

Macroscopic emissions and fuel consumption models estimate or predict the emissions or
fuel consumption of a group (or class) of vehicles over a period of time or over a road seg-
ment. These models use the average aggregate network variables (such as average speed,
average density, and road grade) to estimate the network-wide emissions and fuel consump-
tion rates of the traffic flow. Macroscopic emissions models are important tools in an area-
wide emission assessment, which are typically used to calculate and develop national or
regional emission inventory. In the emission regulatory process, macroscopic emissions
models are required for estimating the quantity of pollutants discharged from vehicles.

Macroscopic emissions and fuel consumption models can in general be also studied by
grouping them into three classes as:average-speed-based models, traffic-situation-based
models, andtraffic-variance-based models.

Average-speed-based emissions and fuel consumption models are the simplest emis-
sions and fuel consumption models. These models use the trip-based average speed of the
traffic fleet as an input to estimate or predict the average emissions or fuel consumptions
of vehicles in a traffic network [28, 63, 139]. Since the average-speed-based models do
not capture the emissions and fuel consumption due to the variation of the speed of the
traffic [1, 28], the average-speed-based models are more coarse than microscopic emis-
sions and fuel consumption models and thus provide less accurate estimates or predictions
of the emissions and fuel consumption than the microscopic models. But they result in fast
computation times. Although, in principle, the average-speed-based emissions and fuel con-
sumption models use the trip-based average speed, in practice it is also common to use local
speed measurements (in other words the average speed over short time periods) at discrete
locations as input to the models [28]. In this way, the variation of the speeds can partly be
considered and thereby the estimation accuracy of the models can increase.

For example, the average-speed-based MOBILE [138] emissions model and COPERT
[139] emissions and fuel consumption model estimate the average emissions and fuel con-
sumption based on the average speed of vehicles. The MOBILE model is not sensitive to
a vehicle’s modal events such as idling, cruising, acceleration, and deceleration [205]. The
MOBILE model requires the average speed as the sole descriptor of a vehicle’s modal events
and driving conditions. Moreover, MOBILE requires inputs of detailed vehicle information
such as the vehicle technology, the vehicle age, vehicle mileage, the ambient temperature,
fuel parameters, and the vehicle operating mode are also considered in MOBILE [138]. For
a better discussion of the COPERT emissions and fuel consumption model the reader is
referred to Section 3.3.
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The macroscopic fuel consumption modelsElemental[40, 63] andWatson[196] use
the space-mean speed as input to estimate or predict fuel consumption of a traffic flow.
The Elemental model is an urban fuel consumption model. In the Elemental model, the
fuel consumption is linearly related to the average trip time for a unit distance. Hence, the
model is easy to use in macroscopic traffic models. However, it does not incorporate the
effect of speed variations in the trip. Hence, this may introduce more prediction errors.
The Watson fuel consumption model, however, also incorporates the changes in the positive
kinetic energy during acceleration as a predictor variable. This partially introduces the effect
of speed variations in a trip. But the effects of speed changes during the deceleration phase
are not included. Moreover, at higher average speeds the effect of aerodynamic drag on
fuel consumption becomes significant (this occurs at average speeds over 55 km/h [63]) and
in this case both models do not give good estimates of the fuelconsumption. Thus, these
models can only be used for average speeds less than 50 km/h [206]. This implies that such
models are not suitable to model fuel consumption of freewaytraffic.

Traffic-situation-based models use emissions and fuel consumption factors grouped by
traffic situations described by the average speed, vehicle composition, or volume-to-capacity
ratio to provide the estimate of the emissions or fuel consumption of the traffic flow. In
these models, different emissions and fuel consumption factors are designated for the dif-
ferent traffic conditions. Then, accordingly, the total emissions and fuel consumption of the
traffic flow are computed by integrating the emissions and fuel consumption contributed by
each traffic situation and the corresponding traffic intensity. The models VERSIT+macro

[178], HBEFA [74], and ARTEMIS [92] are examples of traffic-situation-based models.
The VERSIT+macro grids the average speed, and volume-to-capacity ratio of traffic flow
and assigns them emissions and fuel consumption factors to each cell. The HBEFA emis-
sions model describes road traffic emissions based on several classifications such as vehicle
category, fuel type, and driving conditions (such as freeway driving at different mean ve-
locities, urban driving, stop-and-go traffic etc. for different road gradients). The ARTEMIS
emissions model has different sub-models for urban, rural,and freeways driving conditions
and for cold-start and hot-start conditions.

Traffic-variance-based models are other macroscopic models that take the variation of
the average traffic variables into account. In such models, the emissions and fuel consump-
tion are modeled based on the average traffic variables (suchas the average speed, flow, and
density) and an additional correction factor to account forthe effect of the variation of the
variables from their average. In doing so, first the models generate driving patterns using
the traffic variables (average speed, flow, and density) and infrastructure variables (e.g. link
length, number of lanes, and type of intersection) [132]. Next, the correction factors that
represent the variation of the speed, flow, or density along the link are introduced. The
models in [118, 132] are examples of such models.

Mesoscopic models

One common variable of macroscopic emissions and fuel consumption models is the aver-
age speed. This leads to one common weakness of macroscopic models, because of the fact
that the average speed of a trip may be constructed in a numberof different ways, with dif-
fering number of transient vehicle operation. Clearly, allthe types of operations associated
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with a given average speed cannot be accounted for by the use of a single emission factor
[143]. This is normally not a problem at higher average speeds, as these are associated with
relatively little variation in operation, but at the low average speeds associated with con-
gestion the range of possible operational conditions associated with a given average speed
tends to be much greater [28]. The marked variability of vehicle operation at low average
speeds is partly responsible for the poor reliability of thecorresponding emission factors
[28]. On the other hand, microscopic models are very detailed and thus are costly and con-
sume much computation time. This implies that they are not feasible for on-line estimation
or prediction applications.

Mesoscopic emissions and fuel consumption models have somecharacteristics of micro-
scopic models and some characteristics of macroscopic models. The inputs to mesoscopic
models are more aggregate than microscopic models and more disaggregate than macro-
scopic models. Generally, mesoscopic models use few explanatory variables to estimate
vehicle emissions and fuel consumption [206]. For instance, the VT-meso model [206]
estimates the average emissions and fuel consumption ratesof light-duty vehicle on a link-
by-link basis using three independent variables, viz. average travel speed, average number
of stops per unit distance, and average stop duration. In general, mesoscopic models (such
as the model of Akçelik [5, 170], MEASURE [11, 12], and VT-meso [206]) estimate the
emissions during cruising, idling, and acceleration-deceleration driving behavior separately.

However, mesoscopic models are relatively complicated models as compared to their
counterpart microscopic and macroscopic models. For example, the mesoscopic VT-meso
model (see [206]) requires the average travel speed, average number of stops per unit dis-
tance, and average stop duration to compute the emissions and fuel consumption of vehicles
within a link using relatively complicated equations, whereas its microscopic version the
VT-micro model (see Section 3.2) requires the instantaneous speed and acceleration of ve-
hicles to compute the emissions and fuel consumptions with simpler expressions. Thus,
as the input variables for the mesoscopic models are not easily obtained from traffic flow
models, integration of the mesoscopic models with the traffic models is not simple. In view
of this, a new and simple macroscopic emissions and fuel consumption model that takes the
dynamics of the traffic flow into account is developed in Section 3.4. This model provides
accurate estimates relative to the macroscopic models and has fast computation times. But
first the microscopic VT-micro traffic emissions and fuel consumption model is discussed
in the next section, because this model is the basis for the development of the macroscopic
model discussed in Section 3.4.

3.2 The VT-micro model

VT-micro [2] is a microscopic emissions and fuel consumption model that yields the instan-
taneous emissions and fuel consumption rate of an individual vehicleα using the second-
by-second speed and acceleration of the vehicle. Since the speed and acceleration variation
of vehicles have significant impacts on the emissions and fuel consumption, the VT-micro
model captures the effects of these two important factors. Moreover, this model is very sim-
ple and can be easily integrated with microscopic traffic flowmodels. The VT-micro model
has been evaluated and used in different traffic applications [1–3, 163, 206].

The VT-micro model describes the emissions and fuel consumption ȳ ∈ Ȳ/{CO2} of
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an individual vehicleα at time stepkm as

Jα,ȳ(km) = exp
(
ṽ⊤

α (km)Pȳãα(km)
)

(3.2)

whereJα,ȳ(km) is the estimate or prediction of the variableȳ per unit time at every micro-
scopic simulation time stepkm, the operator̃· defines the vectors of the speedvα and the
accelerationaα as

ṽα(km) = [1 vα(km) v2
α(km) v3

α(km)]⊤

ãα(km) = [1 aα(km) a2
α(km) a3

α(km)]⊤
(3.3)

for time stepkm, andPȳ denotes the model parameter matrix for the variableȳ ∈ Ȳ/{CO2}.
The values of the entries ofPȳ are given in Appendix A.

The operating region of the VT-micro emissions and fuel consumption model is de-
scribed in [163] to be from 0 km/h to 120 km/h for the speed1 and from 0 m/s2 to 2.75 m/s2

for the acceleration, where the maximum value of the accelerationamax,α(km) is given by

amax,α(km) =

{

2.75 if vα(km) ≤ 35 km/h

2.75 − 2.75vα(km)−35
85 if 35 km/h < vα(km) ≤ 120 km/h.

Moreover, the VT-micro emissions and fuel consumption model does not yield estimates
of the CO2 emission rate. However, in [141] it is shown that there is an almost affine
relationship between fuel consumption and CO2 emission. Then the CO2 emission can be
computed using the relation

Jα,CO2
(km) = δ1vα(km) + δ2Jα,fuel(km) (3.4)

whereJα,CO2
(km) denotes the CO2 [kg/s] emission rate of vehicleα for time stepkm,

Jα,fuel(km) denotes the fuel consumption rate in l/s for time stepkm, with the model pa-
rameters(δ1, δ2) = (1.17 · 10−6 kg/m, 2.65 kg/l) for a diesel car and(δ1, δ2) = (3.5 ·
10−8 kg/m, 2.39 kg/l) for a gasoline car.

3.3 The COPERT model

One of the most commonly used average-speed-based macroscopic emission and fuel con-
sumption models is the COPERT [139] model. In this model, theemissions (CO, CO2, HC,
and NOx) or fuel consumption of a group (or class) of vehicles are described as a function
of their trip-based average speed in the traffic network. Themodel provides the estimation
or prediction of the emissions or fuel consumptionȳ ∈ Ȳ based on simple second-order
polynomial functions of the trip-based average-speedvav. This is given by

Jȳ = c0v
2
av + c1vav + c2 (3.5)

wherec0, c1, andc2 are model parameters.
For instance, the COPERT emissions model for light-duty EURO I vehicles with 1.4 l

1The unit km/h is used as the unit for vehicles (traffic) speed because it is most commonly used in The
Netherlands.
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Figure 3.1: COPERT model for a1 .4 l to 2 .0 l light-duty EURO I passenger car.

to 2.0 l is given by [139]

JCO = (0.001785v2
av − 0.245vav + 9.617) [g/km]

JHC = (0.0000521v2
av − 0.00888vav + 0.4494) [g/km]

JNOx
= (0.0000854v2

av − 0.0085vav + 0.526) [g/km]

where the trip-based average speedvav is in km/h.

Although in principle the input of COPERT emissions and fuelconsumption model
is the trip-based average speed, it is also used with the speed measurements taken at dis-
crete locations [28]. For such approaches, the discretization can be made fine enough by
considering the distance the vehicles travelled in a singlesampling period. This is equiv-
alent to using the model on second-by-second basis. Thus, inorder to use the model in
such approaches, the emissions and fuel consumption rate isneeded to be converted from
emissions per unit distance to emissions per unit time, because the distance traveled every
simulation time step can be different. So the model should betransformed to emissions and
fuel consumption rates in terms of grams per unit time, whichcan be done by multiplying
the expression in (3.5) by the average speedvav. This transformation provides a way to
use the average-speed models to calculate the emissions released or fuel consumed at every
macroscopic simulation time stepk.

Now, since the input for the transformed model is the speed ateach sampling time, the
model considers the variation of the speed in computing the emissions and fuel consumption
of the traffic flow. Fig. 3.1(a) and Fig. 3.1(b) show the trip average-speed-based and ‘instan-
taneous’ average-speed-based COPERT model for a light-duty EURO I vehicle. Fig. 3.1(a)
depicts the COPERT model used as a trip-based average-speed-based model, where the
emissions rate are provided in g/km, whereas Fig. 3.1(b) depicts the emissions curves of the
COPERT model used with an instantaneous average-speeds, resulting emissions rate in g/s.
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3.4 The VT-macro model

Since the inputs for microscopic emissions and fuel consumption models are the operating
conditions of individual vehicles, the computation time required is proportional to the num-
ber of vehicles. But the inputs for macroscopic emissions and fuel consumption models are
the average operating conditions of a group of vehicles. Hence, the computation time of
the macroscopic models is reduced as compared to the microscopic models. On the other
hand, relatively accurate estimates of emissions and fuel consumption can in general only
be obtained using microscopic emissions and fuel consumption models.

Macroscopic emissions and fuel consumption models are in principle used with macro-
scopic traffic flow models, and the microscopic emissions andfuel consumption models are
used with microscopic traffic flow models. For example in [163], an integrated microscopic
traffic flow model and emissions model has been used for quantifying the environmental
impacts of ITS alternatives. Moreover, a study in [88] showsthe integration of a micro-
scopic emissions and fuel consumption model with a microscopic traffic flow model using a
distributed framework to tackle the computation time. In both [88] and [163] the integration
is based on microscopic traffic flow models and microscopic emissions and fuel consump-
tion models. In general, the output of the macroscopic traffic flow models can be easily
fed to macroscopic emissions and fuel consumption models and the output of microscopic
traffic flow models can be easily fed to microscopic emissionsand fuel consumption mod-
els. This means that the choice made on the traffic flow models also affects the choice of
the emissions and fuel consumption models. Hence, the accuracy of the estimates of the
emissions released and fuel consumed cannot be enhanced if one uses macroscopic models
unless the macroscopic emissions and fuel consumption models themselves are accurate.
But as studies show the available macroscopic emissions andfuel consumption models do
not provide accurate estimations relative to microscopic emissions and fuel consumption
models [1, 28].

So, to get a balanced trade-off between computational complexity and accuracy, one
may want to combine macroscopic traffic flow modes with microscopic emissions and fuel
consumption models. However, this is not straightforward.The macroscopic outputs of the
macroscopic traffic flow models should be transformed into microscopic variables. More-
over, the error that can be introduced due to such approximations is unknown. Therefore,
this section presents an approach to integrate these two types of models so that the macro-
scopic variables can be used to produce relatively accurateestimates of the emissions and
the fuel consumption of the traffic flow.

3.4.1 Integration of models

In the sequel, a general approach to integrate macroscopic traffic flow models with micro-
scopic emissions and fuel consumption models is presented.This approach is generic and
it can be adopted to most combinations of a macroscopic traffic flow model and a micro-
scopic emissions and fuel consumption model such as POLY [162], CMEM [18], and the
microscopic models in [91, 143].

In order to integrate macroscopic traffic flow models with microscopic emissions and
fuel consumption models, the average acceleration, average speed, and the number of ve-
hicles subject to these variables at each simulation time step have to be generated from the
macroscopic traffic variables. This idea is illustrated in Fig. 3.2. The macroscopic traf-
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Figure 3.2: Model integration block diagram. The output variables of the macroscopic traf-
fic model are the average flowq, the average space-mean speedv, and the
average densityρ. These variables are fed to the interface block. The interface
block generates the accelerationa, the speedv, and the corresponding number
of vehiclesn, which are inputs to the microscopic emissions and fuel consump-
tion model. The microscopic emissions and fuel consumptionmodel yields the
emissions and the fuel consumptionJȳ of the traffic flow. Then, both the inter-
face block and microscopic emissions and fuel consumption model block form
the macroscopic emissions and fuel consumption model.

fic variables (the average density, average space-mean speed, and average flow) are fed to
the interface block. The interface block transforms these variables into variables that de-
scribe the average behavior of individual vehicles, i.e., it produces average speed, average
acceleration, and the number of vehicles that are subject tothe average speed and average
acceleration. Note that the macroscopic speed does not contain enough information to fully
reconstruct the individual vehicle trajectories that would be needed to exactly calculate the
microscopic emissions and fuel consumptions. The error that can be introduced by consid-
ering the average speed over a group of vehicles will be analyzed in Section 3.4.5.

Now the general integration approach is illustrated using the METANET traffic flow
model discussed in Section 2.3 and the VT-micro emissions and fuel consumption model
presented in Section 3.2, which will result in a new dynamic macroscopic emissions and fuel
consumption model VT-macro, specifically derived for the METANET traffic flow model.

Since the METANET model is discrete in both space and time there are two acceler-
ation components involved in the model. The first is the “segmental” acceleration of the
vehicles moving within a given segment. The second component is the “cross-segmental”
acceleration of the vehicles going from one segment to another within one simulation time
step (see Fig. 3.3). The segmental and cross-segmental accelerations describe the average
dynamics of a group of vehicles. Therefore, the number of vehicles that are subject to
the corresponding accelerations are also determined. Hence, triples of the form (a, v, n),
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segmenti − 1 segmenti segmenti + 1

Tqm,i−1(k) Lmλmρm,i(k) − Tqm,i(k)
Tqm,i(k)

atk

atk + 1

Figure 3.3: Illustration of segmental and cross-segmentaltraffic flow in METANET.

wherea represents the acceleration,v the speed, andn the number of vehicles involved are
generated.

3.4.2 Segmental acceleration

Recall that in the METANET model, the space and time discretization has to be done in
such a way thatLm > Tvfree,m is satisfied (cf. (2.16)). This condition assures that a
vehicle cannot cross a segment of a link without at least staying there for one full simulation
time step. This means that vehicles can experience speed changes within a segment in one
simulation time step. Therefore, the term segmental acceleration refers to the acceleration
of the vehicles due to the change in space-mean speed within asegment in one time step.
This acceleration is only experienced by the vehicles that stay within the segment from one
time step to the next. The segmental acceleration of the vehicles in the segmenti of link m
at time step2 k is thus given by

aseg,m,i(k) =
vm,i(k + 1) − vm,i(k)

T
(3.6)

where the subscript ‘seg’ is shorthand for ‘segmental’.
Now let us determine the number of vehicles that are subject to this segmental acceler-

ation from time stepk to k + 1. At time stepk the number of vehicles in segmenti is equal
to Lmλmρm,i(k) and from time stepk to k + 1 the number of vehicles leaving segmenti is
Tqm,i(k) (see Fig. 3.3). Hence,

nseg,m,i(k) = Lmλmρm,i(k) − Tqm,i(k) (3.7)

is the number of vehicles that stayed in segmenti and that are subject to the segmental
acceleration given in (3.6).

2Since the METANET model uses the simulation time stepk, the acceleration, speed, and the corresponding
number of vehicles subject to the acceleration and speed are determined at the simulation time stepk.
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3.4.3 Cross-segmental acceleration

The cross-segmental acceleration is the change in speed experienced by vehicles moving
from one segment of a link to another segment of the same link or of a different link. De-
pending on the geometry of the traffic network, there are several possible scenarios for
vehicles moving from one segment to another. In particular,the cross-segmental accelera-
tion from one segment to another segment is different for vehicles staying in a link and for
vehicles crossing a node (an on-ramp, an off-ramp, merging links, and splitting links). In
the sequel the cross-segmental acceleration for each case is discussed.

Vehicles moving between consecutive segments within the same link

At the time stepk the space-mean speed of the vehicles in segmenti of link m is vm,i(k).
In the next time stepk + 1 and in the next segmenti + 1, the speed will bevm,i+1(k + 1).
Thus, for time stepk the cross-segmental acceleration of the vehicles leaving segmenti to
segmenti + 1 of a link m is

across,m,i,i+1(k) =
vm,i+1(k + 1) − vm,i(k)

T
(3.8)

where the subscript ‘cross’ is shorthand for ‘cross-segmental’.
The number of vehicles that are subject to the cross-segmental acceleration in (3.8) is

obtained as

ncross,m,i,i+1(k) = Tqm,i(k). (3.9)

Vehicles crossing a node

Here, first the cross-segmental acceleration and the numberof vehicles subject to the accel-
eration for a general case are presented. Next, these are explained for specific cases.

General case: Let us consider the general case, where several incoming andoutgoing
links are connected to a noden as in Fig. 2.3. In the figure, there aren1 incoming links
andn2 outgoing links. The cross-segmental acceleration of vehicles moving from incoming
link mi to outgoing linkµj is given by

across,mi,µj
(k) =

v1,µj
(k + 1) − vmi,Nmi

(k)

T
(3.10)

The corresponding number of vehicles subject to the cross-segmental acceleration in
(3.10) is given by

ncross,mi,µj
(k) = Tβmi,n,µj

(k)qmi,Nmi
(k) (3.11)

whereβmi,n,µj
(k) is the turning rate from linkmi to the linkµj (the fraction of the total

outflow of link mi that leaves vian to link µj).

Specific cases: Here the general case for vehicles crossing a node is explained for the
specific cases, viz. for an on-ramp, an off-ramp, and a lane drop/increase.
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Figure 3.4: On-ramp and off-ramp.

• On-ramp:In METANET the speed of an on-ramp is not defined. But to determine the
cross-segmental acceleration of the vehicles moving from the on-ramp to the freeway,
we need to assign the speed of the on-ramp. This speed is assumed to be based on
measured or historic data in case no on-line measurements are available. Hence, we
use the on-ramp speedvon,o(k) for the on-rampo. In particular, for a situation like
the one sketched in Fig. 3.4(a), the cross-segmental acceleration and the number of
vehicles subject to the acceleration are respectively

across,on,o(k) =
vm,1(k + 1) − von,o(k)

T
(3.12)

ncross,on,o(k) = Tqon,o(k). (3.13)

whereqon,o(k) is the on-ramp flow given by the equations of the form (2.29) or(2.30).

• Off-ramp: In general, the vehicles in the freeway can leave to an off-ramp o with an
off-ramp speedvoff,o(k), wherevoff,o(k) can be determined in a similar way as the
on-ramp speed discussed above. In particular, in Fig. 3.4(b) the flow of the vehicles
from segmentNm of link m to the off-rampo is given by

qoff,o(k) = βn,o(k)qm,Nm
(k) (3.14)

whereβn,o(k) is the turning rate (i.e., the fraction of the total flow through noden
that leaves via the off-rampo).

Now the cross-segmental acceleration and the number of vehicles flowing from the
segmentNm of link m to the off-rampo can be computed as

across,off,o(k) =
voff,o(k + 1) − vm,Nm

(k)

T
(3.15)

ncross,off,o(k) = Tqoff,o(k). (3.16)

• Lane drop/increase:The cross-segmental acceleration of vehicles moving from the
last segment (with indexNm) of the first linkm with λm lanes to the first segment of
the second linkm + 1 with λm+1 lanes is computed using the relation

across,m,m+1(k) =
vm+1,1(k + 1) − vm,Nm

(k)

T
. (3.17)
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Moreover, the number of vehicles experiencing the acceleration is computed as

ncross,m,m+1(k) = Tqm,Nm
(k). (3.18)

The accelerations derived in the above sections have been based on physical interpreta-
tion of the METANET model. In [114] a pure mathematical derivation is given to express
the accelerations in their original continuous-time domain descriptions. The accelerations
are discretized and these accelerations and the accelerations derived in the above sections
are found to be not identical but consistent and convergent approximations of the original
continuous-time equations.

3.4.4 VT-macro emissions and fuel consumption equations

Unlike in the microscopic case where the speed-acceleration pair is for a single vehicle, the
speed-acceleration pairs generated in Sections 3.4.2 and 3.4.3 hold for groups of vehicles.
Therefore, the emissions and fuel consumption obtained forthe given speed-acceleration
pair have to be multiplied by the corresponding number of vehicles in order to obtain the
total emissions and fuel consumption. The emissions and fuel consumption of each case is
provided next.

Vehicles moving within a segment

In Section 3.4.2 we have derived the segmental accelerationand the corresponding number
of vehicles within a segment of a link at simulation stepk. Using these variables as an input
to the VT-micro model in (3.2), a new macroscopic emissions and fuel consumption model
for the vehicles moving within a segment is obtained as

J̄seg,ȳ,m,i(k) = nseg,m,i(k) exp
(
ṽ⊤

m,i(k)Pȳãseg,m,i(k)
)

(3.19)

whereJ̄seg,ȳ,m,i(k) denotes the values of the variableȳ ∈ Ȳ/{CO2} at simulation step
k and Ȳ = {CO, CO2, HC, NOx, fuel}, the average acceleration vectorãseg,m,i(k) and
the average space-mean speed vectorṽm,i(k) are respectively obtained fromaseg,m,i(k)
andvm,i(k) by using the operator̃· defined in (3.3), whileaseg,m,i(k) andnseg,m,i(k) are
respectively given by (3.6) and (3.7), andvm,i(k) is the average space-mean speed of the
vehicles in segmenti of link m at simulation stepk.

The emissions model in (3.19) can also be extended to model the CO2 emission using
the expression in (3.4) as

J̄seg,CO2,m,i,i+1(k) = nseg,m,i(k)
(
δ1vm,i(k) + δ2 exp(ṽ⊤

m,i(k)Pfuelãseg,m,i(k))
)

(3.20)

where theδ1 andδ2 are model parameters as given in (3.4).

Vehicles moving from segment to segment within a link

For vehicles moving from one segment of a link to another segment of the same link, the
macroscopic emissions and fuel consumption model is given by

J̄cross,ȳ,m,i,i+1(k) =ncross,m,i,i+1(k) exp
(
ṽ⊤

m,i(k)Pȳãcross,m,i,i+1(k)
)

(3.21)
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J̄cross,CO2,m,i,i+1(k) =ncross,m,i,i+1(k)
(
δ1vm,i(k)+

δ2 exp(ṽ⊤
m,i(k)Pfuelãcross,m,i,i+1(k))

)
(3.22)

whereJ̄cross,ȳ,m,i,i+1(k) denotes the value of the variableȳ ∈ Ȳ/{CO2} of vehicles mov-
ing from segmenti to segmenti + 1 of link m at simulation stepk, J̄cross,CO2,m,i,i+1(k)
denotes the value of the CO2 emission released by vehicles moving from segmenti to seg-
menti + 1 of link m at simulation stepk, the average acceleration vectorãcross,m,i,i+1(k)
and the average space-mean speed vectorṽm,i(k) are respectively obtained by applying the
vector operatioñ· (cf. (3.3)) onacross,m,i,i+1(k) andvm,i(k), with across,m,i,i+1(k) and
ncross,m,i,i+1(k) respectively given by (3.8) and (3.9).

Vehicles crossing a node

The emissions and fuel consumption of the vehicles crossinga node where merging and
splitting links are connected is given by

J̄cross,ȳ,mi,µj
(k) =ncross,mi,µj

(k) exp
(

ṽ⊤
mi,Nmi

(k)Pȳãcross,mi,µj
(k)

)

(3.23)

J̄cross,CO2,mi,µj
(k) =ncross,mi,µj

(k)
(
δ1vmi,Nmi

(k)+

δ2 exp(ṽ⊤
mi,Nmi

(k)Pfuelãcross,mi,µj
(k))

)
(3.24)

whereJ̄cross,ȳ,mi,µj
(k) is the value of the variablēy ∈ Ȳ/{CO2} of the vehicles moving

from the linkmi to link µj at the simulation stepk, J̄cross,CO2,mi,µj
(k) is the value of the

CO2 emission of the vehicles moving from linkmi to link µj at the simulation stepk, the
vectors̃across,mi,µj

(k) andṽmi,Nmi
(k) are respectively obtained using the vector operation

·̃ (cf., (3.3)) toacross,mi,µj
(k) andvmi,Nmi

(k) with across,mi,µj
(k) andncross,mi,µj

(k) re-
spectively given by (3.10) and (3.11), andvmi,Nmi

(k) the average space-mean speed of the
last segment of linkmi at simulation stepk.

Overall emissions and fuel consumption model

The total emissions or fuel consumption of vehicles in a traffic network at simulation time
stepk is therefore

Jtotal,ȳ(k) =
∑

m∈M

Nm∑

i=1

J̄seg,ȳ,m,i(k) +
∑

m∈M

Nm−1∑

i=1

J̄cross,ȳ,m,i,i+1(k)

+
∑

n∈N

∑

mi∈In

∑

µj∈On

J̄cross,ȳ,mi,µj
(k) (3.25)

where ȳ ∈ Ȳ = {CO, CO2, HC, NOx, fuel}, M is the set of links in the network,N
is the set of nodes in the network,In is the set of links that enter noden, On is the set
of links that leave noden, andJ̄seg,ȳ,m,i(k), J̄cross,ȳ,m,i,i+1(k), andJ̄cross,ȳ,mi,µj

(k) are
respectively given by (3.19) (or (3.20)), (3.21) (or (3.22)), or (3.23) (or (3.24)).

Thus, the interface block and the VT-micro block in Fig. 3.2 forms a new macroscopic
emissions and fuel consumption model. We call this new modelthe “VT-macro” emissions
and fuel consumption model.
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3.4.5 Analysis of VT-macro

In the previous section we have proposed the integration of the macroscopic traffic flow
model METANET with the microscopic emissions and fuel consumption model VT-micro,
which resulted in a macroscopic emissions and fuel consumption model VT-macro. Due to
the approximation of the speed and acceleration of the individual vehicles by the average
speed and the average acceleration over the number of vehicles, the model may introduce
errors. Moreover, the motive for the development of the model is to gain computational
speed while keeping the estimation error as small as possible. Therefore, analysis of the
maximum error that can be introduced by this model is required. In the ensuing paragraphs,
the analysis of this error is presented.

This section examines the effect of going from one individual vehicle (VT-micro) to a
group of vehicles (VT-macro). In general, one could consider different macroscopic and
microscopic simulation time steps, i.e.,T 6= Tm. However, this problem is mainly related
to traffic flow models (e.g., METANET vs. IDM). Here the focus of the analysis is only
on the VT-macro model. Since the METANET model is not directly based on microscopic
modeling approaches, this thesis will not delve into the analysis of the approximation errors
induced by the METANET traffic flow model. Hence, it is assumedhere thatT = Tm.

Let the speed of an individual vehicleα and the average speed over a group of vehicles
be respectivelyvα(km) andv̄(km). If the relative deviation of the speedv of an individual
vehicleα from the average speed isδv,α(km), then the speed of an individual vehicleα can
be expressed as

vα(km) = v̄(km)(1 + δv,α(km)). (3.26)

Similarly, let the acceleration of vehicleα be aα(km) and the average acceleration of its
group bēa(km), then the acceleration of vehicleα will be

aα(km) = ā(km)(1 + δa,α(km)) (3.27)

whereδa,α(km) is the relative deviation of the acceleration of vehicleα from the average
acceleration̄a(km).

In Section 3.4, the speed and acceleration inputs are transformed into a vector through
the operator̃· defined in (3.3). Using the approximation relation(1 + δ)n ≈ (1 + nδ) for
smallδ, and thẽ· operation, we get

ṽα(km) = (I + Eδv,α(km))˜̄v(km), ãα(km) = (I + Eδa,α(km))˜̄a(km)

whereI is an identity matrix of proper dimension,E = diag(0, 1, 2, 3), ˜̄v(km) = [1 v̄(km)
v̄2(km) v̄3(km)]⊤, and˜̄a(km) = [1 ā(km) ā2(km) ā3(km)]⊤.

Hence, the emissions or fuel consumption rateJα,ȳ(km) of vehicleα with the speed
vα(km) and the accelerationaα(km) can be expressed in terms of the average speedv̄(km),
average acceleration̄a(km), speed deviationδv,α(km), and acceleration deviationδa,α(km)
as

Jα,ȳ(km) = exp
[

˜̄v⊤(km)Pȳ ˜̄a(km) + δv,α(km)˜̄v⊤(km)EPȳ ˜̄a(km)

+ δa,α(km)˜̄v⊤(km)PȳE˜̄a(km)
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+ δv,α(km)δa,α(km)˜̄v⊤(km)EPȳE˜̄a(km)
]

(3.28)

for ȳ ∈ Ȳ/{CO2}.
Using the Taylor series expansion and neglecting higher-order terms of the deviations

δv,α andδa,α, the emissions or fuel consumption̄y of vehicleα in (3.28) can be approxi-
mated by

Jα,ȳ(km) ≈ exp
(

˜̄v⊤(km)Pȳ ˜̄a(km)
)[

1 + δv,α(km)˜̄v⊤(km)EPȳ ˜̄a(km)

+ δa,α(km)˜̄v⊤(km)PȳE˜̄a(km)
]

. (3.29)

Therefore, the relative error of the estimation of emissions and fuel consumption̄y of
individual vehicles due to the averaging of the speed and theacceleration is

ǫapprox,α,ȳ(km) ≈ δv,α(km)˜̄v⊤(km)EPȳ ˜̄a(km) + δa,α(km)˜̄v⊤(km)PȳE˜̄a(km). (3.30)

The VT-macro model is simulated in the operating region of the VT-micro model to
determine an upper bound for the error in (3.30) for several possible combinations of the
acceleration and speed ranges. Fig. 3.5 presents the maximum values of the approximate
relative error (3.30) for all the possible speed and acceleration combinations within the op-
erating region of the model when the deviations of the speed and acceleration are within
±5%. The color-bars on the right side of the plots show the maximum values of the approx-
imate relative errors introduced by the model for combinations of the deviationsδv,α and
δa,α.

3.4.6 Empirical verification

In this section the macroscopic VT-macro emissions and fuelconsumption model is evalu-
ated by comparing it with the microscopic VT-micro emissions and fuel consumption model
(3.2). To do so, the microscopic car-following “Intelligent Driver Model (IDM)” [186] is
calibrated to a macroscopic traffic flow METANET model of a Dutch highway. In the se-
quel, the description of the freeway, its modeling, and the results of the simulation based on
the calibrated models are discussed.

Freeway and scenario description

The freeway stretch that is considered for the analysis of the VT-macro model is a part
of the Dutch A12 freeway going from the connection with the N11 at Bodegraven up to
Harmelen, and is shown in Fig. 3.6. The freeway has three lanes in each direction. The
part that is considered is approximately 14 km and it has two on-ramps and three off-ramps.
The stretch is equipped with double-loop detectors at a typical distance of 500 to 600 m,
measuring the average speed and flow every minute.

The data of the freeway has been used to calibrate the METANETmodel in [79]. The
same parameters that have been obtained in the study [79] arenow used to calibrate the
microscopic car-following IDM model [186]. The IDM model isselected because, in
Section 2.2.3 it has been motivated that this model improvessome of the deficiencies of
the well-known microscopic models GHR [67] and OVM [15]. Thecalibrated IDM car-
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Figure 3.5: Upper bounds for the approximate error of (3.30)for different deviations of
the speedδv,α and accelerationδa,α of an individual vehicleα for scenarios
with average speeds (5–120 km/h) and average accelerations (−5–2 .75 m/s2)
respectively.

Figure 3.6: A part of the Dutch A12 freeway going from the Bodegraven (left of the figure)
up to Harmelen (right of the figure) considered for the empirical verification of
the VT-macro emissions and fuel consumption model.

following model is subsequently coupled with the microscopic VT-micro emissions and
fuel consumption model and the integrated models are considered as a benchmark.

In order to compare the performance of the integrated macroscopic traffic flow and emis-
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Figure 3.7: Traffic demands scenario used for the calibrating of the IDM model to the
METANET model.

sions and fuel consumption models with the microscopic flow and emissions and fuel con-
sumption models, four different traffic demand scenarios are used. In this way it is also
possible to show to some extent the robustness of the modeling approach presented in this
chapter. To provide a glimpse of the nature of the demand profiles, the calibrating demand
d3,cal is depicted in Fig. 3.7, where the other demand profiles are related to the calibrating
demand profile asd1(k) = 0.8d3,cal(k), d2(k) = 0.9d3,cal(k), andd4(k) = 1.1d3,cal(k).
The average of the space-mean speed and the average of the density of the traffic flow over
the whole freeway network for the demand profiled1(k) = 0.8d3,cal(k) are depicted in
Fig. 3.8. These quantities are obtained using the microscopic IDM model and the macro-
scopic METANET model of the freeway.

Now the two integrated models (microscopic and macroscopicapproaches) are then sim-
ulated for the four scenarios and the corresponding emissions, fuel consumption, and CPU
time are collected. The results of the simulation are presented and discussed afterwards.

Moreover, to compare the newly developed dynamic-macroscopic emissions and fuel
consumption model, the VT-macro model3, with the average-speed-based macroscopic emis-
sions and fuel consumption model, the COPERT [139] model is considered. First the COP-
ERT model is integrated to the METANET model and next the COPERT model is calibrated
in such a way that the error between the emissions and fuel consumption estimates of the
COPERT model and that of the VT-micro model is minimal. The demand profiled3,cal is
used for the calibration process. Since it is suggested thatthe accuracy of average-speed-
based emissions and fuel consumption models can be improvedif the speeds are averaged

3Recall that the VT-macro emissions and fuel consumption model consists of a transformation step that derives
the accelerations and corresponding number of vehicles fromthe output of the METANET flow model and the VT-
micro emissions and fuel consumption model that uses the speed and acceleration of the vehicles to compute the
emissions and fuel consumption. Next, the resulting value of the emissions and fuel consumption corresponding to
a single vehicle are multiplied by the number of vehicles subject to the speed-acceleration pairs used to determine
the values. So the term “VT-macro” implicitly refers an integrated VT-micro and the interfacing block in Fig. 3.3.
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Figure 3.8: Average space-mean speed and average density ofthe freeway for the demand
profiled1 (k) = 0 .8d3 ,cal(k) as generated using the IDM and METANET mod-
els.

at shorter time intervals [28], then the emissions and fuel consumption estimations are made
at every simulation time. Finally, the COPERT model is simulated as integrated with the
METANET model and the VT-micro model as integrated to the IDMmodel for the four
aforementioned demand profiles.

For the macroscopic simulation case the simulation time step is set to beT = 10 s, while
for the microscopic simulation the simulation time step is set to beTm = 1 s.

Validation and discussion

Recall that the VT-micro emissions and fuel consumption model estimates the emissions and
fuel consumption of each vehicle at specific times (every 1 s)and specific places. Therefore,
to compare the results of the VT-macro and COPERT models withthe VT-micro model, we
have aggregated the emissions and fuel consumption estimates of the VT-micro model (or
individual vehicles) over 10 s time periods in order to determine the total emission and total
fuel consumption in a specific segment of the freeway. These integrated emissions and fuel
consumption values during each 10 s of the simulation of the VT-micro model are compared
with the corresponding emissions and fuel consumption estimates of the VT-macro and the
COPERT models.

Fig. 3.9 provides plots of the estimates of the CO, HC, and NOx emissions, and fuel
consumption of the freeway for the demand scenariod1(k) = 0.8d3,cal(k) that are estimated
using the VT-micro, VT-macro, and COPERT models. The figure shows the evolution of the
emissions and fuel consumption during the simulation period of 1 h. Fig. 3.9 clearly shows
a very good fit of the estimates of the VT-macro model to the estimates of the VT-micro
model, whereas the estimates of the COPERT show a bad fit. The corresponding relative
error of the macroscopic approaches with respect to the VT-micro is presented in Fig. 3.10.
The figure clearly indicates that the estimation error of theVT-macro model is small for the
this particular scenario, while that of the COPERT model is large. Note, however, that the
error in Fig. 3.10 is not only due to the error introduced by the VT-macro model as given
in (3.30). The error is introduced both due to the mismatch between the METANET and
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Figure 3.9: Comparison of the emissions and fuel consumption estimated using the macro-
scopic VT-macro and COPERT models and the microscopic VT-micro emissions
and fuel consumption models for the demand profiled1 (k) = 0 .8d3 ,cal(k).

the IDM traffic flow models and due to the mismatch between the VT-micro and the VT-
macro emissions and fuel consumption models and between theVT-micro and the COPERT
emissions and fuel consumption models. Therefore, it is notpossible to relate the errors in
Fig. 3.10 with the approximate errors in (3.30). It is neither possible to relate the error in
Fig. 3.10 with the error due to the mismatch between the VT-micro model and the COPERT
model.

The average of the absolute relative-estimation error of the emissions and fuel consump-
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Figure 3.10: Relative-estimation error of the macroscopicVT-macro and COPERT mod-
els with respect to microscopic VT-micro model for the demand profile
d1 (k) = 0 .8d3 ,cal(k).

tion over the whole simulation time and the whole freeway is also computed. The average
of the absolute relative-estimation error is determined using

eav,ȳ =
1

Ns

Ns∑

k=1

‖ȳmodel(k) − ȳVT−micro(k)‖

ȳVT−micro(k)
× 100% (3.31)

whereNs is a positive integer that denotes the duration of the simulation andȳ(·)(k) denotes
the value of the emissions or fuel consumptionȳ ∈ Ȳ/{CO2} of VT-micro, VT-macro, or
COPERT at the simulation time stepk.

The results are presented in Table 3.1 and Table 3.2. Table 3.1 indicates that the maxi-
mum average-absolute-relative error of the VT-macro modelfor these particular simulations
is not more than 9.5%. So, although the model has been calibrated for a different demand
profile, for the demand profilesd1, d2, andd4 the estimates of the macroscopic approach
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Table 3.1: The average of the absolute relative-estimationerror of VT-macro with re-
spect to VT-micro. The demand profiles are related asd1 (k) = 0 .8d3 ,cal(k),
d2 (k) = 0 .9d3 ,cal(k), andd4 (k) = 1 .1d3 ,cal(k).

Average absolute
Scenarios relative-estimation error (%) CPU time (s)

CO HC NOx fuel VT-micro VT-macro

d1 2.4 2.5 2.5 3.2 112 1.70
d2 2.3 1.9 2.7 2.6 124 1.52
d3,cal 3.4 2.9 4.5 3.7 142 1.65
d4 9.4 7.0 9.2 6.6 162 1.61

Table 3.2: The average of absolute relative-estimation error of COPERT with respect
to VT-micro. The demand profiles are related asd1 (k) = 0 .8d3 ,cal(k),
d2 (k) = 0 .9d3 ,cal(k), andd4 (k) = 1 .1d3 ,cal(k).

Average absolute
Scenarios relative-estimation error (%)

CO HC NOx fuel

d1 17.9 20.0 17.1 18.2
d2 12.0 14.2 11.8 13.2
d3,cal 6.7 9.3 7.9 9.0
d4 7.5 10.0 8.0 7.0

are not far from the estimates of the microscopic approach. From Table 3.2, one sees that
the error that is introduced by the COPERT model is at least 100% more than the error in-
troduced by the VT-macro for almost all the cases. Recall also that the COPERT model is
calibrated to VT-micro, while the VT-macro model uses exactly the same parameters used
by the VT-micro model.

In addition to the improvement of the emissions and fuel consumption estimation that
can be obtained when microscopic emissions and fuel consumption models are integrated
with macroscopic traffic flow models, the second motivation for the integration of the mi-
croscopic emissions and fuel consumption model with macroscopic traffic flow model is the
need for reduced simulation time. In this regard the simulation times for the four different
scenarios are compared. Table 3.1 provides the CPU time of the VT-micro (microscopic)
and VT-macro (macroscopic) simulations for the different scenarios. It can be seen that the
CPU time of the VT-macro simulation is independent of the demand (or number of vehi-
cles) in the traffic network and is almost constant for all four scenarios. On the other hand,
the CPU time required for the simulation of the VT-micro model increases as the demand
increases. Moreover, the CPU time required for the simulation of the VT-micro model is
very large relative to the CPU time required by the VT-macro model to simulate the same
traffic scenario. Note that the CPU time required to simulatethe VT-macro model and the
COPERT model is the same, i.e., the difference is almost negligible.
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3.5 Conclusions

This chapter has provided a general overview of emissions and fuel consumption mod-
els. After discussing the two modeling approaches viz. the technology-based engineering
emissions and fuel consumption modeling approach and the traffic emissions and fuel con-
sumption modeling approach, the attention of the chapter has shifted to the different traffic
emissions and fuel consumption models. This chapter has elaborated on the different traffic
emissions and fuel consumption models by categorizing theminto three different groups,
namely microscopic, macroscopic, and mesoscopic models. The chapter has also discussed
two basic models, the VT-micro model from the microscopic group and the COPERT model
from the macroscopic group.

This chapter has also presented a general framework for the integration of macroscopic
traffic flow models with microscopic emissions and fuel consumption models. A distinction
has been made between segmental and cross-segmental variables in order to capture the
discrete temporal and spatial nature of macroscopic trafficflow models. The approach has
been further demonstrated using the METANET traffic flow model and VT-micro emissions
and fuel consumption model, which resulted in the VT-macro model.

Moreover, this chapter has presented an analysis of the maximum approximate error
that can be introduced by the use of macroscopic variables todetermine the emissions and
fuel consumption of individual vehicles. Both the analyticand empirical results show that
the errors introduced by using VT-macro are less than10%. A comparison of the errors of
the VT-macro model with the established average-speed-based macroscopic model COP-
ERT also shows that the VT-macro model is more closer to the VT-micro model (which
is claimed to be “better” than macroscopic emissions and fuel consumption models) than
the COPERT model for the cases considered. Furthermore, thesimulation results indicate
that the simulation time (CPU time) can be tremendously decreased if one uses the macro-
scopically integrated emissions and fuel consumption model (VT-macro), while this only
introduces errors less than10% over the whole estimation for the particular scenarios.





Chapter 4

Traffic Emissions Dispersion
Modeling

R
educing the amount of emitted gases of the traffic flow can improve the overall
traffic network emissions. However, since dispersion of these emissions is de-
pendent on the wind, temperature, rainfall, and topographyof the freeway neigh-
borhood, the dispersion of the emissions can be distributedunevenly. This means

that certain areas can face higher emission levels than other areas. For example, protected
target zones such as schools and hospitals could face high emission levels (pollution) de-
spite the reduced total emission levels at the network level. Hence, it is unwise to affect the
traffic flow (or compromise the travel time) of the whole freeway at all times. It is better
to focus on the parts of the freeway that affect the target zones and on the time windows in
which the corresponding emissions originate. This could bedone by predicting the evolu-
tion of the emissions dispersion factors (such as the temperature, the wind speed, and wind
direction) and by predicting freeway sections originatingthe emissions dispersed to a given
target zone. In this way, only the traffic flow on the parts of the freeway that have negative
impacts on the target zone have to be controlled dynamicallyso as to attain reduced traffic
emissions and improved travel times.

Therefore, in order to predict the dispersion of the emissions, area-wide emission (dis-
persion) models are required. This chapter, therefore, presents computationally efficient
emissions dispersion models. First, an overview and examination of existing dispersion
models in the literature is presented in Section 4.1. Next, apoint-source dispersion model,
a basis for the development of enhanced models in the subsequent sections is discussed in
Section 4.2. Section 4.3 presents computationally efficient grid-based dispersion models
that are developed based on the point-source dispersion concept. Finally, the conclusions of
the chapter are presented in Section 4.4.

Parts of this chapter are published in [213–217].

4.1 Overview of dispersion models

Despite the significant reduction of emissions in general and the factors that affect the emis-
sion rate of vehicles (such as engine efficiency, aerodynamic shape of vehicles), air pol-
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lution, in particular, mainly associated with road traffic is still a significant environmental
problem in most developed countries [127]. Consequently, the impact of traffic emissions
has become an important research issue [26, 140], leading tonumerous modeling studies
related to the influence of meteorological, topological, and dispersion factors on pollutant
accumulation/dissipation patterns [190]. In road traffic environments and especially in those
areas where population and traffic density are relatively high, human exposure to hazardous
substances is expected to be significantly increased [190].This is often the case in and
near busy urban and freeway traffic networks. Within these streets, pedestrians, cyclists,
drivers, and residents are likely to be exposed to pollutantconcentrations exceeding current
air quality standards [190].

Dispersion of vehicular emissions is affected by several factors. Some of the main
factors are the speed of the vehicles, the wind speed and winddirection, the temperature,
rainfall, the topography of the area near to the freeway or urban roads, etc. However, it is
difficult to consider all the factors that influence the dispersion of the vehicular emissions in
the modeling process. Most models consider either the speedof the vehicles, the ambient
temperature, the wind speed and wind direction, or the topography of the area around the
freeway or urban traffic networks into account, whichever has significant effects [13, 25, 43,
112, 165].

Moreover, all the factors do not have a significant influence at all spatial and temporal
scales of the dispersion process. For instance, the speeds of the vehicles influence the dis-
persion of the emissions in the close vicinity of the roads [13]. This means that the effect
of traffic speed is important factor in the dispersion modeling process of urban traffic, while
on the contrary its effect is not an important of consideration for models that consider the
dispersion of freeway traffic emissions to sensitive targetzones located at a relative dis-
tant location. This is because in the region far from the freeway, where most residence
areas, schools, and other buildings are located, the dispersion of the emissions is primarily
affected by the wind and the temperature [13], and thus the effect of the speed of the vehi-
cles becomes negligible. On the other hand, the road side walls of the buildings in the urban
canyon are important factors for the dispersion of vehicular emissions [51, 90, 135], because
the walls block the dispersion of the emissions as wind blowsperpendicular to the roadway,
which creates circulation (or eddy like motion) of the emissions within the canyon.

4.1.1 Dispersion models

There is a multitude of dispersion models especially developed for street canyon applica-
tions (such as AEOLIUS [32], CALINE4 [25], CPRM [194], CAR [60]). There is, however,
only a very limited number of models for the dispersion of emissions from freeway traffic.
Although the basic governing modeling concepts for both thefreeway and urban traffic net-
works are similar, they have certain important differences. Due to the generally complex
geometrical structure of urban sites a variety of time and space scales is involved [174].
However, since the topology of freeways is relatively homogeneous uniform time and space
scales are used. The dispersion of emissions from urban traffic is affected by the canyons of
the urban streets and the dispersion distance of interest isshort. However, the dispersion of
emissions in freeways is less obstructed than the dispersion of the urban emissions. More-
over, the dispersion of the emissions in the near-wake (in the close vicinity of the freeway)
is of less interest. Indeed, for freeways the dispersion of the emissions to relatively distant
areas, where most public residences, schools, and parks arelocated is most often of interest.
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According to the need and intended application of the models, the modeling approaches
and modeling details of dispersion models can be different [127]. Although there are no
clear-cut distinctions between different categories, dispersion models can be classified into
groups according to their physical or mathematical principles (e.g., Gaussian, Computa-
tional Fluid Dynamic (CFD), and reduced-scale models) and their level of complexity (e.g.,
as parametric or numerical) [43, 190]. In this thesis the dispersion models are grouped
into three categories: Gaussian models, CFD models, and reduced-scale models. In the
following sections, a brief account on each of the modeling approaches is discussed.

Gaussian dispersion models

Gaussian dispersion models (such as STREET [90], CPBM [202], and OSPM [85]) are gov-
erned by a system of differential equations called the diffusion equations. These systems
of equations describe the three-dimensional concentration field generated usually by a point
source. With a set of assumptions that can reasonably be applied to atmospheric processes,
the diffusion equation has a specific, closed-form algebraic solution that is Gaussian, i.e.,
the resulting solution of the diffusion equations describes the concentrations of emissions
from a continuously emitting source to be proportional to the traffic emission rate and in-
versely proportional to the wind speed. Moreover, the horizontal and vertical time averaged
pollutant concentrations are described by Gaussian distributions [127, 190].

In its simplest form, the Gaussian plume model assumes that there are no chemical
or removal processes taking place and that pollutant material reaching the ground or the
top of the mixing layer as the plume grows is reflected back towards the plume centerline
[190]. Moreover, it assumes that the wind is constant duringthe time period of release and
reception and has a constant direction. In other words, the model uses the time average of
the wind speed and wind direction [121]. The classical Gaussian plume model also assumes
that there is a continuous release of the emissions. The ensemble average (i.e., probabilistic)
plume shape is approximated by the time average to sufficiently smooth the effects of plume
meandering [121].

In Gaussian models, the atmospheric dispersion parametersare functions of either dis-
tance from the release point or time since release [43, 127].They may also be functions
of atmospheric stability and surface roughness. The equation for the Gaussian plume is a
function only of the mean wind speed and the crosswind and vertical standard deviations
(
σy(x) andσz(x)

)
. The contaminant concentration,C(x, y, z), is given by
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(4.1)

whereQ is the source strength expressed as mass of released material per unit time,v is time
averaged wind speed that is assumed to be uniform everywhere, σy is the standard deviation
of C(x, y, z) in the cross-wind direction (in this case in they−axis) andσz is the standard
deviation ofC(x, y, z) in the vertical direction. Thez-dependent terms model the trapping
effect of the ground by proposing a mirror source at a distancehs beneath the ground [121].
Note that the dispersion parametersσy andσz are function of the downwind direction,x.

Gaussian models are not directly applicable to small-scaledispersion within the ur-
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ban canopy, since they treat buildings and other obstacles only via a surface roughness
parametrization [190]. The Gaussian dispersion models areapplicable for pollutant emis-
sions into uniform atmospheric flow [174]. The main problem of Gaussian models is their
validation, as they include several empirical parameters often derived from experimental
data [127]. Moreover, the validity of results is limited to street geometries and dispersion
conditions similar to those for which the validation was carried out [127].

Although generally it is accepted that Gaussian dispersionmodels are not suitable for
predicting flows and concentrations in complex-structure urban or industrial areas [174],
many authors use them in urban streets by introducing surface roughness variables [43, 127]
or error functions [112]. For short-range local problems (0-5 km) simple Gaussian type
models have generally been used [174]. Despite their shortcomings, Gaussian dispersion
models are used for industrial applications (i.e., point sources). Moreover, specially de-
signed Gaussian plume models are used to calculate pollutant concentrations over urban
agglomerations (i.e., area sources) and in the vicinity of highways (i.e., line sources) [190].
Gaussian tools are widely used in risk analysis procedures,providing fast dispersion esti-
mations and usually reliable results when describing unobstructed gas flow over flat terrain
[121]. For example the Gaussian models STREET [90], CPBM [202], and OSPM [85]
have been developed as relatively simple tools that requireless expertise and computational
resources [127].

CFD dispersion models

The term Computational Fluid Dynamics (CFD) refers to a branch of fluid mechanics that
uses numerical methods and algorithms to solve and analyze the dynamics of fluid (liquid
and gas) flows. Computers are heavily used in order to performthe computations required
for simulating the interaction of the fluids with the environment. Since the CFD modeling
approaches are powerful modeling techniques, they are extensively used in the modeling of
the dispersion of emissions from industries and traffic [70]. The CFD dispersion models
are capable of dealing with irregularly shaped walls and other boundary conditions using
flexible fine-scale grids [190]. Furthermore, since they usually include advanced turbulence
treatment schemes, the CFD models are suitable for small-scale pollutant dispersion appli-
cations [174].

The governing fluid flow and dispersion equations of the CFD models are derived from
the basic conservation and transport principles: mass conservation, momentum conserva-
tion, and pollutant transport [174, 190]. To directly solvethese equations (especially in
a turbulent flow) of dispersion of emissions, a very fine grid is required to capture all the
relevant scales [174]. Furthermore, a time-dependent solution over a sufficiently long pe-
riod is needed to yield stable time averages of the flow variables. This approach is called
Direct Numerical Simulation (DNS). As the computational demand is too high, DNS is not
applicable for real-time applications [121, 174].

The computational demand can be substantially reduced whenthe time-dependent equa-
tions are solved on a grid that is fine enough to resolve the larger atmospheric eddies [174].
This approach is called large eddy simulation [174]. However, since the large eddies are
always unsteady, large eddy simulation models require input conditions that are time depen-
dent as well [174]. Although less demanding than DNS, large eddy simulation dispersion
models still require significant computation time, which renders them unsuitable for on-line
applications [174, 190].
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In order to tackle the computational issues, the Reynolds-Average Navier-Stokes ap-
proaches are most widely used in most CFD methods [161]. In these approaches the equa-
tions are averaged in time over all turbulent scales, to directly yield the statistically steady-
state solution of the mean and turbulent flow [174]. Yet the computation time is still so high
that such models cannot be used for real-time applications.However, despite the expensive
computation time CFD models require, their popularity is increasing to describe the flow
field in urban street canyons [126, 161, 201], because the CFDmodels provide accurate
estimates of the dispersion of the emissions and they can also be applied to heterogeneous
topologies which is the case in urban areas [34, 122, 127, 172, 190].

Reduced-scale dispersion models

Reduced-scale dispersion models are models that are developed based on the similarity prin-
ciple [190]. By reducing the physical (geometrical) scale of a given flow domain, where the
flow of the dispersion is required to be modeled, a similarityis established. The parameters
in the reduced scale are adjusted to the original full-scaleconditions such that the funda-
mental flow dynamics are reproduced. Then, based on the reduced scale of the dispersion
environment, a model can be developed or all possible scenarios can be studied within the
small-scale controlled environment.

The reduced-scale modeling is conducted in a wind tunnel or water tank facilities [190].
In either of these facilities, the dispersion of emissions is experimented and models are
validated. In practice, wind tunnels are more often used forsimulating pollutant dispersion
than water tanks. However, the same principles and considerations can be also applied to
methods based on water tank facilities [190]. Although it isa difficult task to scale the
full-scale environment to a wind tunnel facility, the wind tunnel modeling can efficiently
approximate real atmospheric conditions in urban streets.Moreover, it allows isolating and
studying separately each one of the dispersion phenomena involved in micro-scale pollutant
dispersion [190].

As [190] describes it, three monitoring techniques have been often used in wind tunnel
experiments:

• Visualization of the flow: Visualization of the flow aids in exploring all possible
flow and patterns of the dispersion of emissions that can be obtained for different
arrangements of the buildings in the urban or freeway areas.

• Tracer dispersion: It is important to quantify the concentration of emissions (or tracer
such as dye, ionic salt, or radioactive materials) at the receptor location near to free-
way or urban streets. With the wind tunnel experiments it is possible to quantify the
relationship between the quantity of the concentration andthe position of the recep-
tors in either urban or freeway streets.

• Laser Doppler Anemometry (LDA): This technique is used to study in more detail
the patterns observed during flow visualization experiments.

Since the dispersion phenomena in the real environment (or full-scale reality) cannot be
fully described by the reduced-scale wind tunnel models, most often reduced-scale model-
ing is used as a complementary tool to numerical modeling. Moreover, these models have
been useful in model development and validation [14]. Nevertheless, differences between
reduced-scale and full-scale systems should be carefully considered when validating numer-
ical models [190].
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4.1.2 Applications of dispersion models

Dispersion models have a wide range of applications. Although the main goal of all disper-
sion models is to provide an accurate estimate or predictionof the dispersion of emissions
from an emission source, their application domains are diverse. Scientists use dispersion
models to understand the physical and chemical phenomena that govern the diffusion and
dispositions of pollutant both over time and space. The dispersion models can be used to
underline the dominant factors of dispersion and to research methods or techniques that can
be used to affect these factors.

Dispersion models can be used to assess the impact of new infrastructure on the disper-
sion of emissions to target zones. The models can be used in the design and development of
new road infrastructures and new buildings near traffic networks with intense traffic flows.
For example, the direction of windows, doors, and inclination of roofs can be designed in
such a way that the pollution from road networks does not become a health threat. Disper-
sion models can also be used to study the resulting impact of pollution shields along the
sides of traffic roads.

Moreover, traffic engineers and researchers can study the impact of traffic control so-
lutions on the level of emissions dispersed to neighborhoods of the traffic networks. The
models can be used to find a trade-off between the demand for reduced travel times and
the need for reduced emission levels, in particular in specific target zones. Since reduction
of the overall emissions of freeway does not necessarily mean reduced emission levels in
a particular target zone (e.g., hospitals, schools, residences, and parks), consideration of
dispersion of emissions to target zones during the design oftraffic control strategies is of
paramount importance. Therefore, dispersion models can beuseful in such applications.

Dispersion models are now widely used for assessing road side air quality by provid-
ing predictions of present and future air pollution levels as well as temporal and spatial
variations [176]. The models can also be used to prioritize locations for emergency medi-
cal responses in the immediate aftermath of a release of emissions due to any unexpected
disasters [161].

In summary, the general overview of the existing emissions dispersion models highlights
that the dispersion models described above cannot be used for on-line applications, which
is the main core of the control approach proposed in Part II ofthis thesis. Although the
Gaussian models are relatively faster than the CFD models, they still suffer from high com-
putation times. Moreover, the Gaussian models assume constant wind speed and wind di-
rection. Therefore, in the next sections of this chapter, new traffic emissions dispersion
models that are computationally efficient and that take the variation of the wind speed and
wind direction into account are presented. First, the basicconcept on which the models
are developed—the point-source model—is presented in Section 4.2. Next, new grid-based
models are presented in Section 4.3.
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Figure 4.1: Dispersion of emissions from a point source in a2D Cartesian coordinate sys-
tem.

4.2 Point source dispersion modeling

4.2.1 Basic dispersion model

In this section, the dispersion of the emissions from vehicles in a section of a freeway is
modeled using a point source approach. As an emission source, let us consider a point in
a 2D Cartesian coordinate system denoted by(x, y) as shown in Fig. 4.1. The variables
Vw(k) andϕ(k) respectively denote the wind speed and wind direction at thepoint (x, y)
and during the time interval[kT, (k + 1)T ).

If the point emission source at the point(x, y) and at time stepk has emitted a certain
amount of emissions, the emissions will diverge and propagate due to the combined wind,
temperature, and dispersion effects. For simplicity, at this point, the wavefronts of the
emissions are assumed to be straight lines. Moreover, half of the divergence angle of the
emissions from the point source at(x, y) at time stepk is denoted byβ(k). This angleβ(k)
describes the dispersion cone as depicted in Fig. 4.1. Sincethe emissions from vehicles are
relatively more dense and have a higher temperature than theair particles, the emitted gases
also expand sideways. The expansion of the emissions is inversely related to the wind speed
[13]. Moreover, the sideways expansion of the emissions is dependent on other factors
(such as the temperature and the inherent emissions characteristics). Since the emissions
get dispersed in all directions when the wind speed is zero, the maximum value ofβ(k) for
a flat surrounding without any obstructions isβmax = π. Moreover, the angle gets smaller
as the wind speed increases. Hence, the relationship between the wind speed and dispersion
parameter is considered to be

β(k) =
βmax

1 + β0Vw(k)
(4.2)

whereβmax ∈ [0, π] denotes half of the maximum divergence angle at zero wind speed and



70 4 Traffic Emissions Dispersion Modeling

β0 is model parameter that depends on the temperature and otherdispersion factors.
As the emissions propagate (or disperse) in the direction ofthe wind, they form a dis-

persion cone as depicted in Fig. 4.1. The dispersion cone is represented by the left-most
point (xl(k + 1), yl(k + 1)), the right-most point(xr(k + 1), yr(k + 1)), and the source
point (x, y). The left-most point and the right-most point are computed as

xl(k + 1) = x − TVw(k)
cos(ϕ(k) − β(k))

cos(β(k))
(4.3)

yl(k + 1) = y + TVw(k)
sin(ϕ(k) − β(k))

cos(β(k))
(4.4)

xr(k + 1) = x − TVw(k)
cos(ϕ(k) + β(k))

cos(β(k))
(4.5)

yr(k + 1) = y + TVw(k)
sin(ϕ(k) + β(k))

cos(β(k))
(4.6)

if β(k) 6= 0.
These model equations are the basis for the derivation of thedispersion models in the

subsequent sections. In the ensuing sections, the dispersion of the emissions for constant
and variable wind cases is first presented. Next, these concepts will be used to develop an
extended grid-based dispersion model in Section 4.3.1.

4.2.2 Variable-wind dispersion model

Throughout the modeling process in the following sections of this thesis, the areas near the
freeways are assumed to be flat topographically. Moreover, as in [25, 43, 96, 123] it is
assumed that the meteorological conditions are horizontally homogeneous. This means that
the wind direction and wind speed responsible for transporting the plume from the emission
source to the target zone and the turbulence and temperatureresponsible for diffusion are
assumed not to change with location throughout the neighborhood of the freeway.

It has been pointed out that in the close vicinity of the road the speeds of the vehicles
influence the dispersion of the emissions [13]. In the regionfar from the freeway, where
most residences, schools, and other buildings are located,the dispersion of the emissions
is primarily dependent on the speed and direction of the windand the temperature of the
atmosphere [13]. Since this thesis focuses on the dispersion of emissions (i.e., area-wide
emissions) at specific locations at a large distance (e.g.,1 km or more) from a traffic freeway,
the effect of the speed of the vehicles on the dispersion of the emissions is assumed to be
negligible. Moreover, the wavefronts of the emissions are considered approximately planar
at far distance from the freeway. Then, the emission particles will move due to wind and
dispersion effects and the trajectory of the dispersion of the emissions will be captured by
straight line wavefronts moving orthogonal to the wind direction and dispersion cones. The
emissions are also assumed to emanate from the center point1 of the segments of the links.
This assumption is valid when the length of the freeway segment is much smaller than the
distance from the segment to the target.

Fig. 4.2(a) shows the propagation of emissions of vehicles from segmenti of a link m at

1This point modeling approach can also be extended to a line modeling approach, where the emissions are
considered to emanate from a center line parallel and equal tothe segments.
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Figure 4.2: Schematic representation for a snapshot of horizontal dispersion of vehicle
emissions with varying wind speed and angle.

time stepk− 1. The emissions propagate with a line wavefront in the direction of the wind.
The sideways dispersion of the emissions from the source is modeled by the divergence
angleβ(k) (4.2). At time stepk the divergence angle corresponds to half of the angle of the
dispersion cone (see Fig. 4.1).

Here we approximate wavefronts emanating from segmenti of link m by lines with
pl,m,i(k, ℓ) as left-most2 point of the emission front at time stepk that was released from
segmenti of link m at time stepℓ, andpr,m,i(k, ℓ) as right-most2 point of the emission
front at time stepk that was released from segmenti of link m at time stepℓ. Any emission

2With respect to the wind direction.



72 4 Traffic Emissions Dispersion Modeling

at a point of the wavefront formed by a line segment joining the pointspl,m,i(k, ℓ) and
pr,m,i(k, ℓ) diverge with an angle equal toβ(k) both to the left and to the right with respect
to the wind direction (e.g., see the pointspl,m,i(k, ℓ) and pr,m,i(k, ℓ) in Fig. 4.2(a) and
4.2(b)). Each of these points on the line betweenpl,m,i(k, ℓ) andpr,m,i(k, ℓ) results in a
small cone due to wind and dispersion factors. Now, one can approximate the resulting
wavefront by the line formed by joining the left-most pointpl,m,i(k + 1, ℓ) of the emission
cone for the left-most point and the right-most pointpr,m,i(k + 1, ℓ) of the emission cone
for the right-most point of the previous wavefront.

In general, the wind speed and the wind direction change in time and space. Let us
suppose that the wind speed and direction have changed (seeVw(k) andϕ(k) in Fig. 4.2(b))
at time stepk. This means that the dispersion speed and dispersion direction at every point
of the wavefront formed by the line segment joining the points pl,m,i(k, ℓ) andpr,m,i(k, ℓ)
will change (see the small cones at these points in Fig. 4.2(b)). During the time period
[kT, (k+1)T ) the emissions at the wavefront formed by the line segment joining the points
pl,m,i(k, ℓ) andpr,m,i(k, ℓ) will reach the wavefront formed by the line segment joining the
pointspl,m,i(k + 1, ℓ) andpr,m,i(k + 1, ℓ) due to the wind speedVw(k) and wind direction
ϕ(k) as shown in Fig. 4.2(b). Then, the evolution of the end pointsof the wavefronts
pl,m,i(k + 1, ℓ) = (xl,m,i(k + 1, ℓ), yl,m,i(k + 1, ℓ)) andpr,m,i(k + 1, ℓ) = (xr,m,i(k +
1, ℓ), yr,m,i(k + 1, ℓ)) is modeled by adapting (4.3)–(4.6) as

xl,m,i(k + 1, ℓ) = xl,m,i(k, ℓ) − TVw(k)
cos(ϕ(k) − β(k))

cos(β(k))
,

yl,m,i(k + 1, ℓ) = yl,m,i(k, ℓ) + TVw(k)
sin(ϕ(k) − β(k))

cos(β(k))
,

xr,m,i(k + 1, ℓ) = xr,m,i(k, ℓ) − TVw(k)
cos(ϕ(k) + β(k))

cos(β(k))
,

yr,m,i(k + 1, ℓ) = yr,m,i(k, ℓ) + TVw(k)
sin(ϕ(k) + β(k))

cos(β(k))
.

Now, let us consider the wavefront formed by the pointspl,m,i(k, ℓ) andpr,m,i(k, ℓ)
and letJȳ,m,i

(
pl,m,i(k, ℓ), pr,m,i(k, ℓ)

)
be the corresponding emission rate for emission

ȳ ∈ Ȳ/{fuel} at time stepk (see Chapter 3). Then, the emission for the next wavefront is

Jȳ,m,i(pl,m,i(k + 1, ℓ), pr,m,i(k + 1, ℓ)) = (1 − γ)Jȳ,m,i(pl,m,i(k, ℓ), pr,m,i(k, ℓ)) (4.7)

where0 ≤ γ < 1 is a factor that characterizes the vertical dispersion (evaporation).

Then the area that is subject to the emissionJȳ,m,i

(
pl,m,i(k + 1, ℓ), pr,m,i(k + 1, ℓ)

)

during the time period[kT, (k + 1)T ) is the tetragon formed by the pointspl,m,i(k, ℓ),
pl,m,i(k + 1, ℓ), pr,m,i(k + 1, ℓ), andpr,m,i(k, ℓ). The area of this tetragon is denoted by
Am,i

(
pl,m,i(k, ℓ), pl,m,i(k + 1, ℓ), pr,m,i(k + 1, ℓ), pr,m,i(k, ℓ)

)
. Let the area of the inter-

section of the target zonet and the tetragon formed by the emission wavefronts be denoted
by Aint,m,i(k, ℓ). Then, the amount of emission̄y released at time stepℓ from segmenti of
link m and that is dispersed to the target zonet from segmenti of link m during the time
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period[kT, (k + 1)T ) can be computed as

Jȳ,t,m,i(k + 1, ℓ) =
TAint,m,i(k, ℓ)Jȳ,m,i

(
pl,m,i(k + 1, ℓ), pr,m,i(k + 1, ℓ)

)

Am,i

(
pl,m,i(k, ℓ), pl,m,i(k + 1, ℓ), pr,m,i(k + 1, ℓ), pr,m,i(k, ℓ)

) .

(4.8)

Since the wavefronts are emanating from segmenti of link m at each time step, we have
to consider the sum ofJȳ,t,m,i(k+1, ℓ) over all wavefronts emitted in the past that intersect
with the target zonet during the time period[kT, (k + 1)T ). Let this total emission level
be denoted byJtot,ȳ,t,m,i(k + 1). Thus the emission level of̄y at the target zonet over the
time period[kT, (k + 1)T ) due to all segments of the links in a freeway network will be

Dȳ,t(k) =
∑

(m,i)∈Mall

Jtot,ȳ,t,m,i(k) (4.9)

whereMall is the set of all pairs of segment and link indices.
Due to the continuous variation of the wind speed and wind direction, the geometrical

shape and size of the intersectionAint,m,i(k) between the target zonet and the disper-
sion tetragonAm,i(·) changes frequently. Therefore, it is not possible to derivea general
closed form analytical expression forAint,m,i(k) and its area. Moreover, as the number of
target zones considered increases, the number of intersections that have to be determined
increases. Consequently, the computation time is high and as a result this modeling ap-
proach cannot be applied for on-line based control applications. However, on the basis of
the concepts presented above two computationally efficientgrid-based dispersion models
are presented in the following section.

4.3 Grid-based dispersion modeling

In this section two grid-based dispersion models are proposed. First, an extension of the
variable-wind dispersion model is presented in Section 4.3.1. Next a more computationally
efficient dispersion model is proposed in Section 4.3.2 by exploiting the basic concepts of
the point-source dispersion model.

4.3.1 Extended grid-based dispersion model

Since the emissions from a segment of a freeway are better described in a narrow and long
area emissions source, instead of approximating the emissions as a point source, the area
around the neighborhood of the freeway is gridded as in Fig. 4.3(a), where the grid cells are
of equal dimensions. Next, all the emissions from the part ofthe freeway within the cell are
aggregated and assigned to the cell uniformly. Then, the evolution of the emission levels
in each of the cell of the grid is modeled using the point-source approach. This means that
the evolution of the emission sources within a cell, the effects of the emissions from the
neighboring cells, and other external factors (e.g., polluting industries) are modeled. In the
sequel a way these phenomena can be captured is presented.

The thick gray line represents a part of a freeway traffic network. Each cell is denoted
by Cic,jc , where the subscriptic indicates the position of the cell in thex direction and the
subscriptjc indicates the position of the cell in they direction. A cellCic,jc is described
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Figure 4.3: Schematic representation of area-source dispersion of emissions in2D space.

by the four corner points(xic , yjc), (xic+1, yjc), (xic+1, yjc+1), and(xic , yjc+1), where
xic < xic+1 andyjc < yjc+1 (see also Fig. 4.3(b)).

Let the emission level in cellCic,jc for emissionȳ ∈ Ȳ/{fuel} at a time stepk be
denoted byJȳ,ic,jc(k). The emission levelJȳ,ic,jc(k) includes the rate at which the emission
ȳ is dispersed from the neighboring cells, the rate at which the emission̄y is generated by the
part of the freeway in the cell, and the rate at which the emission ȳ is dispersed from sources
within the cell (e.g., polluting factories). Then, the emissions in cellCic,jc can be considered
as emissions emanating from a continuum of uniformly distributed point sources. These
emissions get dispersed according to the point source modeldiscussed in Section 4.2. But,
since it is assumed that the meteorological factors are horizontally homogeneous, it is not
important to trace the dispersion of all the point sources. In fact, one only has to track the
dispersion of the emissions at the corner points of the cells, where each corner point yields
a dispersion cone as shown in Fig. 4.3(b).

During the time period[kT, (k + 1)T ), the emission levelJȳ,ic,jc(k) of emissionȳ of
cell Cic,jc will propagate to the dispersion zone denoted by the tetragon Ctg,ic,jc(k + 1).
This is schematically represented in Fig. 4.3(b) with the shaded area. The corner points
of the tetragonCtg,ic,jc(k + 1) are formed by the extremal points of the dispersion cones
formed at the corner points of the cellCic,jc and these extremal points are denoted by
(xl,ic(k + 1), yl,jc(k + 1)), (xr,ic+1(k + 1), yr,jc(k + 1)), (xr,ic+1(k + 1), yr,jc+1(k + 1)),
and(xl,ic(k + 1), yl,jc+1(k + 1)).

Let us denote the area of the dispersion tetragonCtg,ic,jc(·) by Atg,ic,jc(·) and the area
of the cellCic,jc by Aic,jc . It is assumed that the cellCic,jc has at most eight neighboring
cells that disperse emissions to the cell. This assumption is valid if the dimension of the
cells is greater than the distance traveled by the emissionsin one simulation time step,
which is related to the CFL criterion encountered in [47]. Otherwise, the cells that disperse
emissions to cellCic,jc can be different from just the immediate neighboring cells.The
immediate neighboring cells are:Cic−1,jc+1, Cic,jc+1, Cic+1,jc+1 to the top,Cic−1,jc and
Cic+1,jc to the left and right respectively, andCic−1,jc−1, Cic,jc−1, Cic+1,jc−1 to the bottom
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of the cell. Then, during the evolution of the emissions of cell Cic,jc , the dispersion tetragon
Ctg,ic,jc(k +1) could be dispersed to each of the neighboring cells and part of it can remain
in the original cellCic,jc . Moreover, emissions from the neighboring cells can be dispersed
to cell Cic,jc . Therefore, the emission levelJȳ,ic,jc(k + 1) at which the emission̄y will be
dispersed in cellCic,jc during the time period[kT, (k + 1)T ) is given by

Jȳ,ic,jc(k + 1) = Jsrc,ȳ,ic,jc(k) + Jext,ȳ,ic,jc(k)

+ (1 − γ(k))
∑

(uc,vc)∈N (ic,jc)

A(Cic,jc

⋂
Ctg,uc,vc

(k + 1))

Atg,uc,vc
(k + 1)

Jȳ,uc,vc
(k) (4.10)

whereJsrc,ȳ,ic,jc(k) is the emission level at which emission̄y ∈ Ȳ/{fuel} generated by
sources (e.g., vehicles in a part of a freeway in the cell) in cell Cic,jc at time stepk and
Ȳ = {CO, CO2, HC, NOx, fuel}, Jext,ȳ,ic,jc(k) is the emission level at which emissionȳ
is generated by external sources (e.g., factories) that contribute to the emission level of̄y in
cell Cic,jc at time stepk, N (ic, jc) denotes the set of neighbors to cellCic,jc and the cell
itself, C1

⋂
C2 denotes the intersection of polytopesC1 andC2, A(C) denotes the area of

the polytopeC, and0 ≤ γ(k) < 1 is a factor that characterizes the vertical dispersion of
the emissions.

The emission level at the target zonet is therefore computed by summing up the fraction
of the emissions contributed by each cell that intersects with the target zonet. Mathemati-
cally, the emission level of̄y at the target zonet at time stepk is given by

Dȳ,t(k) = T
∑

(ic,jc)∈Tint,t

A(Ctarget,t

⋂
Cic,jc)

Aic,jc

Jȳ,ic,jc(k) (4.11)

whereCtarget,t is the polytope describing the target zonet andTint,t is the set of all cells in
the grid that have a non-zero intersection with the target zonet.

To sum up, the main advantages of this extended grid-based dispersion model are that
it can easily and without additional computational effort include multiple target zones; that
it is computationally fast; that it takes the variation of wind speed and wind direction into
account; that it provides the evolution of emissions over the region around the freeway rather
than only focusing on the target zone; and that it also considers the effect of emissions from
other emission sources like factories.

However, this model has one drawback that emanates from the point source approach.
When the wind speed is zero, the dispersion of the emissions isnot modeled. So, in the se-
quel we propose a grid-based approach that uses the point-source model as conceptual basis
and that captures the dispersion of emissions in the no wind case. Moreover, this second
grid-based model requires less computation time than the extended grid-based dispersion
model. Since the coordinates of the dispersion tetragon in the extended grid-based disper-
sion model are dependent on the wind speed and direction, it is difficult to have a simple
analytic solution to the intersection of the dispersion tetragon and the cells. This leads to a
continuous computation of the intersections. In the model to be presented below, a general
analytic solution for the intersections can be provided andthereby the computation time is
reduced.
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4.3.2 Expanding grid-based dispersion model

When the wind speed is zero and there are no other obstructions, emissions expand in all
directions uniformly. However, this phenomenon is not reflected in the point source model
or the extension of it presented above. This section presents how to model this phenomenon
and how to reduce the computation time further. We call the resulting model the expanding
grid-based dispersion model.

Dispersion modeling concept

When the wind speed is zero, the coordinate points that are computed using (4.3)–(4.6) are
the same as the emission source point. Under such cases, the divergence angle in (4.2)
becomesβmax, which under no obstruction is equal toπ. This indicates that the emission
should be expanding (diverging) in all directions. The problem is that due to the zero wind
speed the coordinate points do not move a distance away from the emission source point,
which means that according to the model equations (4.3)–(4.6) there is no dispersion of the
emissions over the horizontal 2D plane.

This problem could be solved by adding a term to the coordinate variables that is de-
pendent on the temperature and the inherent dispersion factors of the emissions. But, since
the point source dispersion model is based on the assumptionthat the emission wavefronts
move as a straight line, which is valid for higher wind speeds, the added term will result in
emissions moving into one direction along a line without dispersing sideways.

However, if one would consider the dispersion wavefront to be a curve, under no wind
condition this curve would be a circle and the added term would be the expansion factor of
the emissions. It is this analysis that led to the development of the expanding grid-based dis-
persion model. Hence, when there is no wind and no other external disturbances, emissions
expand in all directions. In the ideal case, the shape of the expansion is a circle for a point
emission source. When there is a non-zero wind speed, the expanding emissions (circles
of emissions) will move in the direction of the wind while continuing to expand uniformly.
This is the main concept for the development of the expandinggrid-based dispersion model.

Expanding emission cells and emission levels

Just as in the case of the extended grid-based-dispersion model, we grid the region around
the freeway into squares of equal dimensions. But, unlike inthe extended grid-based dis-
persion model, where the corner points of a cell are considered, here the center of the cells
is taken as a representative of the emissions in the cell.

We denote the expansion factor of the emissions of the grid attime stepk cells by̟(k)
per unit time in each direction. For computational simplicity reasons it is assumed that the
shape of the expanding emission cells remains intact. Hence, when the wind speed is zero,
the emissions in the cellCic,jc expand due to dispersion factors as illustrated by the shaded
region in Fig. 4.4(a) and the sides of the expanded cells at time stepk are approximated by
squares of length

Le(k) = (1 + T̟(k))L (4.12)

whereL is the length of the sides of the grid cells.
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Figure 4.4: Expansion of emissions from a cell under windy and no-wind conditions.

When the wind speed is non-zero, the expanded emission cell ofcell Cic,jc is displaced
in the wind direction as depicted in Fig. 4.4(b). We use the center points of the (expanded)
emission cells to represent the displacement of the (expanded) emission cells. The corner
points of the expanded emission cells can be determined fromthe coordinates of the dis-
placed center point and the expansion factor. Next, we can determine the emission level in
cell Cic,jc . Although the expression for the emission level in cellCic,jc can be expressed
in a similar way as (4.10), in this particular approach it is possible to explicitly describe the
equation of the intersections between the expanded emission cells (dispersion squares) and
the original grid cells with simpler equations.

So, let us suppose the level of the emissionȳ ∈ Ȳ/{fuel} at time stepk in cell Cic,jc is
Jȳ,ic,jc(k), then at the end of the time period[kT, (k + 1)T ) the emission level in the cell
becomes

Jȳ,ic,jc(k + 1) =Jsrc,ȳ,ic,jc(k) + Jext,ȳ,ic,jc(k)

+ (1 − γ(k))
∑

(uc,vc)∈N (ic,jc)

α
(uc,vc)
(ic,jc)

(k)

L2
e(k)

Jȳ,uc,vc
(k) (4.13)

whereα
(uc,vc)
(ic,jc)

(k) denotes the area of the part of the expanded emission cell (dispersion
tetragon) of cellCuc,vc

that intersects with the cellCic,jc at time stepk and by straightfor-
ward but somewhat elaborate calculations (see Appendix B),it is found that these quantities
are given by

α
(uc,vc)
(ic,jc)

(k) = a2+ic−uc
(k) · b2+jc−vc

(k)

with

a1(k) = max

{

0, TVw(k) cos(ϕ(k)) +
LT̟(k)

2

}
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Table 4.1: The average CPU time per cell required to compute the intersections between
the neighboring cells and the dispersion tetragon (or square) of a given cell for
the extended grid-based and the expanding grid-based dispersion models.

Dispersion model CPU time [s]

Extended grid-based 0.680
Expanding grid-based 0.010

a2(k) = Le(k) − a1(k) − a3(k)

a3(k) = max

{

0,−TVw(k) cos(ϕ(k)) +
LT̟(k)

2

}

b1(k) = max

{

0,−TVw(k) sin(ϕ(k)) +
LT̟(k)

2

}

b2(k) = Le(k) − b1(k) − b3(k)

b3(k) = max

{

0, TVw(k) sin(ϕ(k)) +
LT̟(k)

2

}

provided thatT < 2
̟(k) andL > 2TVw(k)

2−T̟(k) for all time stepk. If these CFL-like conditions
onT andL are not satisfied, it is still possible to derive similar formulas, which also require
redefinition of the neighborhood setN (ic, jc) of cell Cic,jc .

Note also that the computation of the above intersections gives the same result for all
the cells in the grid. This means that the computation has to be done only for one cell per
every simulation time stepk.

The emission level at the target zone is computed in a similarway as in the extended
grid-based dispersion model of Section 4.3.1. Thus, the mathematical expression for the
emissionȳ level at the target zonet at time stepk is given by (4.11).

4.3.3 Comparison of grid-based dispersion models

In Sections 4.3.1 and 4.3.2, two grid-based dispersion models have been presented. In order
to quantify the required computation times and to determinetheir competitive speeds, the
two models are simulated. Since the main difference of the extended grid-based dispersion
model and the expanding grid-based dispersion model lies onthe determination of the inter-
sections of the dispersion regions and the gird cells, here the time required to compute the
intersections of the dispersion tetragon (square) with theneighboring cells are compared. In
order to compute the intersections and the area of the polytopes of the extended grid-based
dispersion model the MATLABr Multi-Parametric Toolbox (MPT) is used [106]. Recall
that in the expanding grid-based dispersion model the intersections and the area of the poly-
topes (or squares) have analytical solutions and hence no computation tools are required
there.

The average computation time per cell required to determinethe intersections of each
dispersion tetragon or square for the two models is presented in Table 4.1. The results
indicate that the time consumed by the extended grid-based dispersion model is much higher
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than the time consumed by the expanding grid-based dispersion model. This is because
the expressions for the intersections in the extended grid-based dispersion model are more
complicated than those for the expanding grid-based model.

Note that since the computations are done for a single cell, these intersection values are
also the same for the remaining cells in the grid. Each cell inthe grid only has to update its
emission levels based on the dynamic equation given by (4.10) for the extended grid-based
dispersion model and by (4.13) for the expanding grid-baseddispersion model. Since the
computation time required to update the emission levels is negligible for each cell (i.e., only
(4.10) and (4.13) have to be evaluated for each cell in the grid) and since the computation
time of both the models is less than a second, both models are suitable for on-line appli-
cations that have more than1 s simulation time step size. But if the number of the cells in
the grid is very large, the update time can be large, which in turn affects the applicability of
the models for on-line based applications. It can be seen that the computation time of the
expanding grid-based dispersion model is even very small and thus it can also be used for
on-line based control applications that perform multiple runs with in a second.

4.4 Conclusions

As dispersion of emissions to the neighborhoods of traffic networks is an important aspect
that requires due attention during the development and deployment of traffic solutions, the
development of computationally efficient and accurate dispersion models is of paramount
importance. In cases where the reduction of overall emissions has a severe impact on the
travel time, traffic managers can instead consider the reduction of the dispersion of emis-
sions to a target zone so that the effect on the travel time canbe reduced.

Bearing this in mind, this chapter has first elaborated on theexisting dispersion models
from literature. It has discussed the general dispersion modeling strategies and their appli-
cations. Moreover, it has highlighted on the computation demand of the models. It has also
been pointed out that the existing dispersion models, in particular the CFD and Gaussian
models, are not suitable for on-line based traffic control approaches.

So this chapter has proposed new dispersion models that can be used for on-line ap-
plications. The chapter has first presented a point source dispersion model. Next, a direct
extension of the point source dispersion model (extended grid-based dispersion model) has
been discussed. However, it was found out that the extended grid-based dispersion model
has one drawback. When there is no wind, the model does not model the dispersion of the
emissions. So a more elegant, expanding grid-based dispersion model has been presented.
In addition to its capability to model dispersion of emissions when there is no wind, the ex-
panding grid-based dispersion model is also faster than theextended grid-based dispersion
model.

A simulation has been performed to compare the computation time required to deter-
mine the intersections of the dispersion tetragon or squareand the grid cells of the two
grid-based dispersion models. The simulations have shown that the computation demand of
the models is less than a second, which makes both of the models suitable for on-line ap-
plications, in particular for simulation that use macroscopic traffic emission models where
the simulation time step size is more than a second. Moreover, the expanding grid-based
dispersion model has required very small computation time,which makes it even suitable
for on-line control applications where multiple runs are performed every control time step.



80 4 Traffic Emissions Dispersion Modeling

In the subsequent chapters, these models will be used in an on-line based traffic control
approaches.
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Chapter 5

Model Predictive Traffic Control

D
ynamic traffic control methods continuously measure the state of the traffic net-
work and respond accordingly. Dynamic traffic control methods can either be
non-predictive [145, 221] or predictive [22, 75, 220]. Since traffic systems are
highly non-linear and time-variant systems, model-based predictive traffic con-

trol approaches [19, 75, 77, 220] such as Model Predictive Control (MPC) are promising
candidates.

MPC is a model-based control approach that is based on the optimization of control
inputs that improve a given performance criterion (objective function) over some prediction
horizon. The performance criterion of MPC is formulated as acost function of the predicted
system states, outputs, or inputs. The MPC approach can be used for non-linear and time-
variant systems. In addition, it can incorporate constraints on the inputs, states, and outputs
of the system.

Since the core control strategy used in this thesis is MPC, this chapter provides a brief
account of the basic concepts of MPC and MPC for traffic systems in Sections 5.1 and 5.2
respectively. For detailed discussions on MPC, we refer thereader to [35, 116, 120, 167].
Continuing, the traffic performance criteria and multi-criteria optimization approaches con-
sidered in this thesis are presented in Sections 5.3 and 5.4 respectively. The MPC controller
is demonstrated in two simulation-based case studies for a balanced reduction of travel time,
emissions, fuel consumption, and dispersion of emissions in Section 5.5. The chapter con-
cludes with Section 5.6.

Parts of this chapter are published in [57, 208, 211, 213, 215].

5.1 Philosophy of model predictive control

Model Predictive Control (MPC) [35, 116, 120, 167], also known as Moving Horizon Con-
trol or Receding Horizon Control is a popular technique for the control of slow dynamical
systems, such as those encountered in chemical process control in the petrochemical, pulp
and paper industries, and in gas pipeline control [66, 98]. As in [66], this thesis too refers to
MPC as family of control strategies that explicitly use models. MPC, in general, computes
optimal control solutions of an on-line optimization problem that is formulated to reflect
the desired performance of a system. All MPC-based control approaches share five main
concepts:

83
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System and disturbance modeling:Since the control solutions of MPC are determined based
on the future evolution of the system states and outputs, andon the evolution of
either the known disturbances or the probabilistic properties (or bounds) of the
unknown disturbances, whether it is for off-line or on-linedesign, MPC requires
models of the system and the unknown disturbances in order tomake predictions
of these variables over a future prediction period.

Performance criterion:The MPC control strategy provides optimal control solutions that
improve a predefined performance criterion. Usually, the performance criterion
is defined as a cost function. The cost function is defined overa future prediction
period (finite or infinite). MPC then seeks optimal control solutions that minimize
the cost function. Hence, definition of an appropriate cost function is an important
step in the design of an MPC controller.

Constraints: MPC can handle both equality and inequality constraints on the system states,
outputs, and inputs. The constraints can be motivated by theoperational limits
of the system, economic requirements, environmental demands, safety require-
ments, and the like. The constraints can be linear or non-linear. In the design of
an MPC controller, the description of the constraints involved is another impor-
tant aspect that requires due attention.

Optimization: MPC uses optimization techniques and tools to optimize the control inputs
in such a way that the value of the given cost function is minimal. Depending on
the system model, the constraints, and the cost function, the solutions obtained
can be optimal or sub-optimal. In principle MPC uses on-lineoptimization to
design optimal control inputs. But to gain some computational speeds it is also
possible (in some cases) to design MPC based on off-line optimization (such
MPC is known as explicit MPC [23]).

Receding horizon principle:The principle of receding horizon (or moving horizon), which
is the core of MPC, was first introduced by Propoi [160] in 1963[66]. This means
that after computation of the optimal future control sequence, only the first control
sample is implemented, subsequently the horizon is shiftedone sample and the
optimization is restarted with new information of the system. This is illustrated
in Fig. 5.1(b). At every control time stepkc, the MPC controller determines
the optimal control input that minimizes a given performance criterion over the
prediction period[kc, kc + Np − 1]. The dashed line in Fig. 5.1(b) shows the
control input as designed based on the predicted states (which are indicated by
the dots). At the next control time stepkc +1, the MPC controller again takes the
new prevailing system state and uses it to make new predictions by shifting the
prediction horizon one step forward. This process is repeated continuously in the
receding horizon approach discussed here.

Fig. 5.1(a) presents the interrelationship of the five concepts presented above. Measure-
ments of the system state are collected through sensors every sampling time stepks with
a sampling time step sizeTs. However, the controller receives the measurements (such as
speed, density, flow, and traffic demand) every control time stepkc (with step sizeTc). For
the sake of simplicity and ease of implementation the control time stepTc is defined to be an
integer multiple of the sampling time stepTs: Tc = M1Ts, whereM1 ∈ N. Thus, at every
control time step the sampling time and the control time are related byks(kc) = M1kc.
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Figure 5.1: Conceptual representation of model predictivecontrol.

In addition, usually a distinction is made between the control time stepkc and the sim-
ulation time stepk (or km for microscopically modeled systems). At every time instant of
the formt = kcTc = kT , the control time stepkc is an integer divisor of the simulation
time stepk (with simulation time step sizeT ). Thus, these are related byk(kc) = M2kc

for a positive integerM2 (for microscopic modelskm(kc) = M3kc, whereM3 is a positive
integer).

The main advantages of MPC are that it takes the effect of the control inputs on the future
system states, that it is able to take both equality and inequality non-linear constraints of the
manipulated and controlled variables into account, and that it can be used for non-linear
systems. Moreover, MPC can handle several process models aswell as many performance
criteria of significance to the system [98, 120].

MPC, and in particular, MPC for non-linear systems also has certain disadvantages.
The main disadvantage of MPC for non-linear systems emanates from the non-linear and
non-convex optimization problem involved. Such optimization problems do not only pose
difficulty in computing optimal solutions, but also the computation time involved to get the
(sub-)optimal solutions may become very high. Usually, thecomputation time exponentially
increases as the number of control inputs (optimization variables) or the prediction horizon
increase.
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To alleviate the computational problems of MPC several methods can be used. The
simplest ones are the introduction of a control horizon and blocking [116]. Instead of vary-
ing the control inputs over the full prediction horizonNp, one can define a control horizon
Nc ≤ Np after which the control input is kept constant (see Fig. 5.1(b)). The optimization
time can also be reduced by introducing blocking in such a waythat the control inputs are
varied at an integer multiple of the control time step. So, instead of varying the control
inputs every control time step, they can be kept constant (uniformly or non-uniformly) for
some integer multiple times of the control time step (see Fig. 5.1(c)). In these ways, the
computation time can be reduced. However, the reduction in the computation time is in
general gained at the expense of reduced performance. Moreover, due to model mismatch
and the involved non-linear and non-convex optimization problem, the MPC controller, in
general, does not guarantee the stability and optimality ofthe control solutions. Although
in most cases stability can be imposed though ad hoc approaches, optimality is difficult to
guarantee, because due to the non-linearity and non-convexity of the optimization problem
it is possible to find multiple local minima.

In the next section, this control strategy is discussed in relation to traffic systems.

5.2 Conventional MPC for traffic systems

Fig. 5.1 shows a general block diagram representation of an MPC controller. When it is used
with traffic systems, the system and the model blocks in Fig. 5.1(a) respectively denote the
real traffic system and the model of the traffic system (such asthe traffic flow, emissions,
and fuel consumption models). In general the control measures can be speed limits, ramp
metering rates, route guidance instructions, and so on. Themeasurements denote the traffic
states (such as the speed, flow, and density) at every sampling timeks.

Remark 5.1 In Part I of the thesis the simulation time step for microscopic and macro-
scopic models are designated askm andk respectively. For simplicity of the proceeding
discussions only the case of macroscopic models is considered next, unless specified ex-
plicitly. However, all the results to follow also apply to microscopic models (in fact to any
dynamic model). For the microscopic models the variablesk andM2 in the macroscopic
models should be replaced bykm andM3 respectively. �

Now, in the context of MPC, the dynamic traffic models in Part Ican be described or
approximated by a system of ordinary difference equations of the form

x(k + 1) = f(x(k), u(k)), y(k) = h(x(k)), (5.1)

wherex(k) ∈ R
nx denotes the traffic state vector (e.g., the position, flow, speed, density

of vehicles in a traffic network, etc.),u(k) ∈ R
nu denotes the traffic control inputs vector

(containing values for the variable speed limits, ramp metering rates, etc.), andy(k) ∈ R
ny

denotes the output of the traffic system (e.g., the total timespent, total emissions, total fuel
consumption, or total emission dispersion level on target zones),f : R

nx × R
nu → R

nx is
the state vector field, andh : R

nx → R
ny is the output vector field, withnx, nu, andny

being positive integer numbers.
It is customary to usêx to denote the prediction of variablex and the notation̂x(k2|k1)

to denote the predicted value ofx at simulation time stepk2 using the information available
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at control time stepk1 with k2 ≥ M2k1. At every control time stepkc, the MPC controller
predicts the traffic states vector

x(kc) = [x̂⊤(M2kc|kc) x̂⊤(M2kc + 1|kc) . . . x̂⊤(M2(kc + Np) − 1|kc)]
⊤,

the traffic outputs vector

y(kc) = [ŷ⊤(M2kc|kc) ŷ⊤(M2kc + 1|kc) . . . ŷ⊤(M2(kc + Np) − 1|kc)]
⊤,

and the initial control input vector

u(kc) = [u⊤
c (kc|kc) u⊤

c (kc + 1|kc) . . . u⊤
c (kc + Np − 1|kc)]

⊤

using the models of the traffic system in the MPC controller and the measurements as ini-
tial states. The inputu(k) at every simulation time stepk is related to the control input
uc(kc) at every control time stepkc according tou(k) = uc(kc) for k = M2kc,M2kc +
1, . . . ,M2(kc + 1) − 1.

At this time, the control objective of the MPC controller (more specifically the conven-
tional MPC) is to optimize the vector of control inputsu that solves the following optimiza-
tion problem at control time stepkc

min
u(kc)

J(kc,u(kc)) : = V (x(kc),u(kc),y(kc)) (5.2)

subject to:G(x(kc),u(kc),y(kc)) ≤ 0,

Q(x(kc),u(kc),y(kc)) = 0,

and system model (5.1)

whereJ(kc,u(kc)) denotes the objective function (such as travel time, emissions, disper-
sion of emissions, or a combination of these) defined by a real-valued user-defined function
V (·), G(·) is the inequality constraint mapping, andQ(·) is the equality constraint mapping.

As has been introduced in the previous section only the first control inputu∗
c(kc|kc) of

the optimal sequenceu∗(kc) is applied to the system till the next control time stepkc + 1,
after which the MPC controller repeats the above process allover again using a receding
horizon approach. Since the control inputs are generated based on the current and predicted
future states of the traffic, the predicted future states canbe different from the actual ones
due to unexpected internal and external effects and modeling errors. However, since only the
first control input is applied for the nextkc + 1 and then a new measurement of the traffic
states is undertaken, the prediction errors can be reduced.This mechanism introduces a
feedback of the output of the system to the controller.

However, due to its high computational demand, conventional MPC for traffic systems
is not tractable in practice [22, 56, 77, 109, 188]. There aremany advancements in the
literature (e.g., [24, 71, 98, 111, 179, 189, 195]) to address the computational complex-
ity problems of MPC in general. Kotsialos et al. [105] and Papamichail et al. [151] used
a model-predictive hierarchical control approach to coordinate ramp meters for a freeway
network and reported computation times in the order of15 s without further explaining the
details of the optimization algorithm. In this regard, the efforts to address the computational
issues of conventional MPC and a new and efficient MPC approach for freeway traffic sys-
tems will be the subject of the next chapter.
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5.3 Traffic performance criteria

Since MPC can accept any quantifiable form of performance criterion, a special structure
is not required to formulate the performance criteria of theMPC controller. The main aim
of any traffic controller is to improve the performance of thetraffic network. However, the
performance could vary depending on the desire of the stakeholders of the network, the
time of operation of the network, and the location of the network. For example, environ-
mentalists would like reduced dispersion of emissions and propagation of sound pollution
to a protected target zone, while transport authorities could be interested to improve traffic
throughput and safety. Moreover, the desired performance criterion of a given network can
vary from time to time. For example, depending on the wind direction, wind speed, the
temperature, and so on, the desired performance criteria can be different. When the wind
direction is in the opposite direction of a given target zone(e.g., a hospital or school), the
traffic control performance criteria can be set to improve the traffic flow, while when the
wind is blowing towards a given target zone, the performancecan be set to take dispersion
of emissions into account.

In light of the conflicting demands, this thesis considers four performance criteria viz.
total time spent, emissions, fuel consumption, and dispersion of emissions to target zones.
Due to the similarity and close inter-relationship betweenthe last three performance crite-
ria, these four traffic performance criteria are grouped into two as traffic flow performance
criteria and emissions and fuel consumption performance criteria. These are discussed in
the subsequent sections in detail.

Since the performance criteria are going to be used in an MPC control approach, the
values of all the performance criteria are determined at every control time stepkc over
the prediction horizonNp. However, the expressions can also be used in general for the
determination of an overall traffic performance criterion of a traffic network for an entire
simulation period (see Remark 5.2).

5.3.1 Flow performance criteria

Traffic network flow performance can be described or formulated using different criteria.
As a result, the objective of the traffic controllers can be different. The flow performance
criteria can be the throughput, travel times, homogeneity of the traffic flow, or the safety
level of the traffic flow both over space and time. Since the total time spent (TTS for short)
is often considered as performance criterion of traffic controllers, in this thesis too the total
time spent is used as flow performance criterion.

For microscopic approaches

The formulation of the total time spent is different for microscopic and macroscopic models.
The main difference is the way the number of vehicles is determined and the time and space
scale considered. In the microscopic approaches, the number of vehicles is determined by
counting each vehicle in the traffic network. The travel timeof each vehicle at every location
is collected. Then, the total time spent is determined by adding up the travel time of each
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vehicle in the network. This reads as

TTS(kc) = Tm

M3(kc+Np)−1
∑

km=M3kc

N (km) (5.3)

whereN (km) denotes the number of vehicles in the network at timet = kmTm and the
positive integerM3 relateskc andkm askm(kc) = M3kc. The number of vehiclesN (km)
can be measured using microscopic measurement techniques or can be predicted using mi-
croscopic traffic models (e.g., models presented in Section2.1.2 and Section 2.2).

Remark 5.2 The total time spent (TTS) in (5.3) is determined over the prediction period
[M3kc,M3(kc + Np) − 1]. But it is also possible to determine the value of theTTS over
the simulation period[0, Ns] as

TTS(kc) = Tm

Ns−1∑

km=0

N (km) (5.4)

whereNs is the total number of simulation steps. �

For macroscopic approaches

In macroscopic approaches, the number of vehicles and the travel time is obtained by com-
puting or measuring the average number of vehicles in part ofa traffic network over a given
period of time. The travel times for the parts of the networksand time periods are added
together to obtain the total time spent by the vehicles in thetraffic network. Mathematically,
this is given by

TTS(kc) = T

M2(kc+Np)−1
∑

k=M2kc

[
∑

(m,i)∈Mall

Lmλmρm,i(k) +
∑

o∈Oall

wo(k)

]

(5.5)

whereMall is the set of all pairs of segment and link indices andOall is the set of all
origins, where the macroscopic variables, densityρm,i(k) and the queue lengthwo(k) are
either estimated or measured quantities at the time instantt = kT , andM2 is a positive
integer that relates the control time stepkc andk ask(kc) = M2k. Since this thesis uses
the METANET macroscopic flow model, these quantities are obtained from the METANET
model presented in Section 2.3.

The first term in (5.5),Lmλmρm,i(k), indicates the number of vehicles in segmenti of
link m and hence multiplied by the time step sizeT gives the time spent by the vehicles
in the corresponding segment of the link. The second term in (5.5) corresponds to the time
spent by the vehicles queuing at the mainstream or on-ramp origins.

5.3.2 Emissions and fuel consumption performance criteria

Other important traffic performance criteria are the emissions and energy consumption of
the vehicles. Environmentalists are much concerned to reduce the total emission levels or
local emission levels, while drivers and policy makers may be interested to have energy-
efficient traffic systems.
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Like the flow performance criteria, in this thesis the trafficemissions and fuel consump-
tion performance criteria are formulated as the performance of the whole traffic network
and not the performance of individual vehicles. This means that the emissions and en-
ergy efficiency performance criteria of a traffic network arerespectively defined as the total
emissions and the total fuel consumption of the network. In the sequel, the total emissions
released and the total fuel consumed by the vehicles in a traffic network are defined. How-
ever, the formulation of the expressions is different if oneuses microscopic or macroscopic
modeling or measurement approaches.

For microscopic approaches

For microscopic approaches, the total emissions (TE for short) are determined as the sum-
mation of the emissions of each vehicle in the traffic networkover time and space. More-
over, the total fuel consumption (TFC) is determined in the same way. These are expressed
as

TE(kc) = Tm

M3(kc+Np)−1
∑

km=M3kc

∑

α∈V(km)

∑

ȳ∈Ȳ/{fuel}

µȳJȳ,α(km) (5.6)

TFC(kc) = Tm

M3(kc+Np)−1
∑

km=M3kc

∑

α∈V(km)

Jfuel,α(km) (5.7)

whereV(km) denotes the set of vehicles present in the network at the timet = kmTm,
Ȳ = {CO, NOx, HC, CO2, fuel}, andJȳ,α(km) for ȳ ∈ Ȳ denotes the emissions or fuel
consumption of vehicleα at time stepkm and is obtained using (3.2) and (3.4). The value
of µȳ ≥ 0 is the weighting factor of each emissionȳ ∈ Ȳ/{fuel}.

The dispersion of emissions to target zone can be computed microscopically by consid-
ering the emission of each vehicle and the evolution of the emissions over time and space.
The dispersion of emissions from traffic networks are in general determined by integrating
the individual emission sources over a segment of a freeway.So, conceptually, this is a
macroscopic approach, because it does not consider the dispersion of emissions from indi-
vidual vehicles but the dispersion of emissions from the whole segment of a freeway. Thus,
the dispersion level performance criterion is given in the sequel in relation to macroscopic
approaches.

For macroscopic approaches

In Chapter 3, the macroscopic emissions and fuel consumption models provide the emis-
sions and fuel consumption of a number of vehicles in a given segment during a given period
of time. The total emissions (TE) of a traffic network over a given period of time is then
obtained by adding the emissions contribution of every segment of a freeway over the whole
span of time considered. The total fuel consumption is also obtained in the same way. In
this case, at every control time stepkc, the total emissions and total fuel consumption of
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vehicles in a given freeway over a prediction horizonNp is determined by

TE(kc) = T

M2(kc+Np)−1
∑

k=M2kc

∑

ȳ∈Ȳ/{fuel}

µȳJtotal,ȳ(k) (5.8)

TFC(kc) = T

M2(kc+Np)−1
∑

k=M2kc

Jtotal,fuel(k) (5.9)

whereȲ = {CO, CO2, HC, NOx, fuel} andJtotal,ȳ(k) is the emission or fuel consumption
ȳ of segmenti of link m over the time period[kT, (k + 1)T ) as defined in (3.25).

In regard to emission dispersion levels, in this thesis two performance criteria are con-
sidered, viz. the maximum dispersion level in the target zone and the total dispersion level
in the target zone within the prediction period[M2kc,M2(kc+Np)−1]. At the control time
stepkc, the weighted total maximum emission dispersion levelMDL(kc) of each emission
gasȳ at all the target zones over the prediction period[M2kc,M2(kc + Np) − 1] is

MDL(kc) = T
∑

t∈Tall

∑

ȳ∈Ȳ/{fuel}

µd,ȳ max
k∈{M2kc,M2kc+1,...,M2(kc+Np)−1}

Dȳ,t(k) (5.10)

whereDȳ,t(k) is the target dispersion level of emissionȳ at target zonet obtained using
(4.9) or (4.11) andTall is the set of all target zones.

The second performance criterion involves the cumulative effect of the dispersed emis-
sions. At control time stepkc, the total dispersion level (TDL) of all emissions at all the
target zones over the prediction period[M2kc,M2(kc + Np) − 1] is given by

TDL(kc) = T
∑

t∈Tall

∑

ȳ∈Ȳ/{fuel}

M2(kc+Np)−1
∑

k=M2kc

µd,ȳDȳ,t(k). (5.11)

5.3.3 Variation in traffic control measures

Dynamic traffic control approaches, such as MPC, dynamically vary the settings of the
traffic control measures such as variable speed limits and ramp metering rates both in time
and in space. In general, frequent fluctuations and big changes in the values of the control
measures are not desired from safety and driver comfort point of view. Since it is also
possible to have different optimal traffic control settingsthat can result in the same traffic
performance, priority is usually given to attain the same performance level with a minimal
fluctuation in the traffic control measures.

In general, at control time stepkc the total fluctuation of the traffic control measures
over time and space is expressed by

U∆(kc) = µu,1

kc+Np−1
∑

ℓ=kc

∑

s∈Uall

(
ūs(ℓ) − ūs(ℓ − 1)

)2

+ µu,2

kc+Np−1
∑

ℓ=kc

∑

(s1,s2)∈Call

(
ūs1

(ℓ) − ūs2
(ℓ)

)2
(5.12)
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whereµu,1 ≥ 0 andµu,2 ≥ 0 are the weighting factors between the fluctuation in time
and in space respectively,ūs(kc) is the traffic control measure at control time stepkc and
at locations, Uall is the set of all traffic control measures, andCall is the set of all pairs of
consecutive traffic control measures.

Although the formulation above is general, throughout thisthesis the variable speed
limits and ramp metering traffic control measures are used. In that case the expression for
U∆(kc) becomes

U∆(kc) =

kc+Np−1
∑

ℓ=kc

[
∑

s∈Sall

µs

(
us(ℓ) − us(ℓ − 1)

)2

+
∑

(s1,s2)∈Pall

µcs

(
us1

(ℓ) − us2
(ℓ)

)2

+
∑

r∈Rall

µr

(
ur(ℓ) − ur(ℓ − 1)

)2

]

(5.13)

with us(kc) denoting the speed limits at control time stepkc, ur(kc) denoting the ramp me-
tering rate at control time stepkc, Sall denoting the set of all speed limits,Pall denoting the
set of all pairs of consecutive speed limits,Rall denoting the set of all controlled on ramps,
andµs = (#(Sall)v

2
step)−1, µcs = (#(Pall)v

2
step)−1, andµr = (#(Rall))

−1 respectively
are the weighting of the variation of the speed limits over time, the variation of the speed
limits in space, and the variation of the ramp metering rate over time, where#(·) denotes
the set cardinality andvstep is the maximum speed limit step change allowed.

5.4 Multi-criteria optimization

In the above sections, different traffic performance criteria were discussed. In an MPC
control approach, the formulation of an appropriate optimization problem is required. For a
multi-criteria traffic control approach a systematic combination of the different performance
criteria is required. Generally, an optimization problem of MPC is formulated as in (5.2).
The objective function of the optimization problem can be a vector of control objectives.
For convenience let us consider a multi-criteria optimization problem given by

min
x

Jvector(x) (5.14)

s.t. g(x) ≤ 0 and h(x) = 0

whereJvector(k) ∈ R
m denotes a vector ofm objective functions andg(x) andh(x) are

the inequality and equality constraint functions.
Most often, the objective functions are competing, which require trade-offs as there may

be no solution that minimizes all the criteria at the same time. As the number of the objec-
tives increases, the trade-offs are likely to become more complex and less easily quantified
[68]. So for such competing multi-objective criteria, the multi-objective optimization must
generate and select the Pareto-optimal1 solutions [62]. Multi-objective techniques such as

1A solution is a Pareto-optimal if and only if there does not exist any other solution that results in a lower
value of all the cost functions [39, 125].
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the weighted sum strategy, theǫ-constraint method, and the goal attainment method can be
used in case of competing objective functions [62, 68]. For its simplicity in the context
of MPC, in this thesis, the weighted-sum multi-objective optimization strategy is used. In
the sequel, the formulation of the multi-criteria objective function, the normalization of the
weights, and the optimization method employed are discussed.

5.4.1 Weighted sum

The weighted sum strategy converts the multi-objective problem of minimizing the vector
Jvector(x) into a problem with a scalar objective function by constructing a weighted sum
of all the objectives. This results in the following optimization problem

min
x

J(x) =
m∑

i=1

ζiJvector,i(x) (5.15)

s.t. g(x) ≤ 0 and h(x) = 0

whereζi ≥ 0 for i = 1, 2, . . . ,m.
Using this strategy, at every control time stepkc, a single objective function of a traffic

control system with the objectives of reducing the total time spent by vehicles in a traffic
network, the total emissions and total fuel consumption of vehicles in the traffic network,
and the dispersion of the emissions of the vehicles to a target zonet can be formulated as

J(kc) = ζ1
TTS(kc)

TTSn
+ ζ2

TE(kc)

TEn
+ ζ3

TFC(kc)

TFCn

+ ζ4,MDL
MDL(kc)

MDLn
+ ζ4,TDL

TDL(kc)

TDLn
+ ζ5

U∆(kc)

U∆,n
(5.16)

whereTTS(kc), TE(kc), TFC(kc), MDL, TDL(kc), andU∆(kc) are respectively given
by (5.5) (or (5.3)), (5.8) (or (5.6)), (5.9) (or (5.7)), (5.10), (5.11), and (5.12) and where the
subscript ‘n’ denotes the normalization ofTTS, TE, TFC, MDL, TDL, andU∆. The
normalizations are discussed in the next section.

5.4.2 Normalization

One of the challenges with the weighted-sum approach is the determination of the weights
for the different performance criteria. This is because thedifferent performance criteria
mostly have different dimensions and values. Some can have very large values while others
can have very small values and thus the determination of the weights can be difficult. In
order to have the same order of magnitude and dimension and inorder to make the weight
assignment between the different performance criteria easy and physically interpretable, the
unbalanced values and dimensions of the performance criteria can be equalized by normal-
izing them to unity and dimensionless quantities.

So, these normalization values have to be determined beforehand. Usually, these values
have to be the maximum possible values of the performance criteria. However, in some
cases, like in the traffic system, it is difficult to determinethe maximum possible value of
the performance criteria. So, throughout this thesis the nominal values are taken as the
normalization values of the performance criteria. These nominal values are determined
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under the uncontrolled natural traffic flow conditions. Thismeans that the variable speed
limits are set to the free-flow speed, and the ramp metering installations are uncontrolled
(set green always).

Since the different variation terms in control inputU∆,n is already normalized at every
control time stepkc in (5.13), here the normalization is the prediction horizonNp.

5.4.3 Optimization method

Optimization is one of the main elements in an MPC control strategy. It is also one of the
main bottlenecks potentially resulting in extensive computational requirements. Since the
traffic flow models are highly non-linear, the objective functions are also non-linear with
respect to the traffic control measures. Moreover, the objective functions are non-convex
with respect to the traffic control measures. This leads to a non-linear and non-convex
optimization problem.

There is no optimization method that can guarantee to reach an optimal solution of a
non-convex optimization problem in finite time. Therefore,since the MPC traffic control
problem considered in this thesis is non-linear and non-convex and since it has to be solved
within a limited time frame (at least withinTc time units), it is difficult to obtain global
optimal solutions. It is therefore important to make a proper choice of an optimization tech-
nique. Due to the non-convex nature of the objective functions, global or multi-start local
optimization methods are required. In this case multi-start Sequential Quadratic Program-
ming (SQP) [27, 152], pattern search [10], genetic algorithms [55], or simulated annealing
[61] can be used.

Throughout this thesis, the SQP local optimization method in combination with a multi-
start approach is used. SQP is a powerful method for solving non-convex and constrained
continuous optimization problems. This approach has been extensively applied in MPC
based traffic control approaches in [21, 75, 77, 99, 102, 103]. Since SQP is a local optimiza-
tion problem, in order to increase the possibility of attaining the global optimal solution, the
optimization process is repeated several times with different initial points. This is called a
multi-start approach. For more details of SQP we refer the reader to [27, 136, 152, 166].

5.5 Case studies

In this section different cases studies that illustrate theconventional MPC presented in this
chapter as applied to traffic systems are presented. Since models are required to make
predictions of the traffic states, the MPC controller uses the models presented in Part I of
the thesis. Section 5.5.1 presents case studies where reduction of travel time, emissions,
and fuel consumption are defined as the performance criteriaof the MPC controller. In
Section 5.5.2 the reduction of dispersion of emissions to target zones is also considered.

5.5.1 Balanced reduction of travel times, emissions, and fuel consump-
tion

In this section two case studies are presented: Case study A presents the use of variable
speed limits to provide a balanced trade-off between traveltimes and emissions; Case study
B illustrates the integrated use of variable speed limits and ramp metering for sustainable
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Figure 5.2: A two-lane single-link freeway considered for Case study A.
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Figure 5.3: Demanddo(k) at the origin and densityρd(k) at the end of the freeway seg-
ments considered for Case study A.

mobility, in particular for the reduction of total time spent, emission of NOx, and fuel con-
sumption of vehicles in a given traffic network.

Case study A

The use of variable speed limits for improved traffic flow and emissions is presented in
this section. A case study with a12 km two-lane freeway is considered. The freeway is
divided into12 segments, where only the middle6 segments are controlled with dynamic
speed limits (see Fig. 5.2; this is similar to the network considered in [78]). The freeway
is modeled using the METANET traffic flow model presented in Section 2.3. As emissions
model the VT-macro model of Section 3.4 is used. The demand ofthe traffic flow at the
origin of the freeway is given in Fig. 5.3(a). Moreover, a density profile at the end of the
freeway is presented in Fig. 5.3(b). These profiles provide one particular example of a
traffic scenario where there is a dynamic demand with a peak during the rush hour and a
shock wave (see Fig. 5.4) that can cause traffic jams.

In this case study the network parametersT = 10 s, τ = 18 s, bm = 1.867, κ =
40 veh/km/lane,ηh = 65 km2/h, ηl = 30 km2/h, ρjam,m = 180 veh/km/lane,ρcr,m =
33.5 veh/km/lane, andvmin = 10 km/h are used [78]. Furthermore, the noncompliance
factor is assumed to be̺ = 0 (i.e., all drivers comply to traffic control measures), the



96 5 Model Predictive Traffic Control
ρ

m
,i
(k

)
[v

eh
/k

m
]

Segments [km]
Time [h]0

0.5

1

1.5

2

2

4

6

8

10

12

50

100

(a) Density profile

v
m

,i
(k

)
[k

m
/h

]

Segments [km]
Time [h]

0

0
0.5

1

1.5

2

2

4

6

8

10

12

50

100

(b) Speed profile

Figure 5.4: Density and speed profiles of the traffic flow underuncontrolled Scenario S1 of
Case study A. The arrows indicate the driving direction.

free-flow speedvfree,m = 102 km/h, and the capacity of the link isCo = 2000 veh/h/lane.
The simulation period for this case is 2 hours. The traffic system is simulated for

both controlled and uncontrolled scenarios. An MPC controller is designed for the con-
trolled scenarios with a control time step sizeTc = 1 min, a prediction horizon ofNp =
30 (corresponding to30 min), control horizonNc = 10 (corresponding to10 min), and with
eight initial points for the multi-start SQP optimization.The eight initial points of the multi-
start optimization include: the control inputs of the previous control step, the upper bound
and the lower bound of the control inputs, the average of the upper and lower bounds, and
four random points. Three different control objectives aredefined for the MPC controller.
Thus, in total four scenarios are simulated, and these are:

S1: Uncontrolled

S2: Controlled, total time spent (TTS) only

S3: Controlled, total emissions (TE) only, and

S4: Controlled, weighted sum of total time spent (TTS) and total emissions (TE).

For the first Scenario S1, no controller is implemented. The density and speed profileof
the traffic under this scenario are presented in Fig. 5.4. As can be seen, the shock wave that
started at the end of the freeway propagates in the upstream direction. The total time spent
in this case is2142.3 veh·h. The total emissions (of CO, HC, and NOx) for the same case is
15.9 kg. As has been discussed in the previous sections, these values (determined under the
uncontrolled scenario) are used as the nominal values for the normalization of the control
objectives.

For theTTS controlled Scenario S2, the weights2 in (5.16) are set toζ1 = 1 andζ2 =
ζ3 = ζ4,MDL = ζ4,TDL = ζ5 = 0. In the third Scenario S3, only the total emission (TE)
is taken as MPC control objective. In this case (Scenario S3), the weights areζ1 = ζ3 =

2In this simulation we did not take the variation of the controlinput into account. Thus, the weightζ5
corresponding to the variation in control input is set to beζ5 = 0. In hindsight, it is better to consider non-
zero weight. In the subsequent sections non-zero weight forthe variation of the control inputs are considered.
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Table 5.1: Simulation results for Case study A. The values inside the brackets indicate the
relative change of the performance criteria as compared to the uncontrolled Sce-
nario S1. Negative values indicate a decrease (i.e., improvement) in the value of
the performance criteria, while positive values indicate an increase in the value
of the performance criteria as compared to the uncontrolledscenario.

Scenarios
Performance Criteria

TTS [veh·h] TE [kg]

S1: Uncontrolled 2142.3 15.907
S2: TTS 1687.7 (−21.2%) 16.131 (+1.3%)
S3: TE 2167.2 ( +1.2%) 14.657 (−7.6%)
S4: TTS + TE 2037.9 ( −4.9%) 14.747 (−7.6%)

ζ4,MDL = ζ4,TDL = ζ5 = 0, ζ2 = 1, µCO = µHC = µNOx
= 1, andµCO2

= 0. For the last
Scenario S4, where a weighted combination of theTTS andTE is considered, the weights
are set toζ1 = ζ2 = 1, ζ3 = ζ4,MDL = ζ4,TDL = ζ5 = 0, µCO = µHC = µNOx

= 1, and
µCO2

= 0.
The simulation results are listed in Table 5.1. Moreover, Table 5.1 provides the relative

change of the performance indicators of the different controlled scenarios as compared to
the uncontrolled Scenario S1. These values are computed as

Ip =
pcontrolled − puncontrolled

puncontrolled
(5.17)

wherepuncontrolled denotes the value of the performance criteriap ∈ {TTS,TE} for the
uncontrolled scenario andpcontrolled is the value of the performance criteriap for the con-
trolled scenarios.

Under the considered traffic conditions, the results in Table 5.1 indicate that when the
objective of the controller is to reduce the travel time (Scenario S2), the MPC controller
reduces the total time spent by21.2% (as compared to the uncontrolled Scenario S1) at
the expense of increased emissions by1.3%. However, when the objective of the MPC
controller is to reduce total emissions (Scenario S3), the total emissions are reduced by
7.6% relative to the uncontrolled scenario. But the total time spent is increased by1.2%.
These results indicate that a control strategy that focuseseither only on the total time spent
or only on the total emissions may impact the emissions or thetravel time negatively. On
the other hand, in particular in this case study, when the objective of the controller is set
to be the weighted sum of total emissions and total time spent(Scenario S4), the controller
results in an improvement of the total time spent and total emissions by4.9% and7.6%
respectively as compared to the uncontrolled scenario.

The variation of the traffic densities and speeds for the Scenarios S2, S3 and S4 over the
whole link are depicted in Fig. 5.5, Fig. 5.6, and Fig. 5.7 respectively. Recall that under the
uncontrolled Scenario S1, the shock wave created around the timet = 0.25 h propagates
through the entire link upstream from segment12 to segment1 (see Fig. 5.4). However,
when the MPC controller is implemented to reduce the travel time (Scenario S2) the shock
wave is reduced and dissolves in time as it propagates upstream (see Fig. 5.5), i.e., the con-
troller creates a relatively smooth traffic flow. Moreover, the peak of the shock wave at
segment12 of Scenario S2 is less than that of Scenario S1. This shows that the proposed
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(b) Speed profile

Figure 5.5: Density and speed profiles of the traffic flow underTTS-controlled ScenarioS2

of Case study A. The arrows indicate the driving direction.
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Figure 5.6: Density and speed profiles of the traffic flow underTE-controlled ScenarioS3

of Case study A. The arrows indicate the driving direction.

MPC controller is able to avoid the appearance of the shock waves in the uncontrolled sce-
nario. However, this is at the expense of increased emissions (see Table 5.1). In Scenario S1,
the MPC controller has reduced and smoothened the space-mean speed and it has increased
the density. But, since the emission reduction resulting from the homogenized space-mean
speed is over-compromised by the increase in emission resulting from the increased density
(number of vehicles), the net effect has resulted in increased total emissions.

Fig. 5.6 shows the density and speed profiles for the scenariowhere the objective of
the MPC controller is to reduce only the total emissions. Although the differences of these
profiles from the uncontrolled case are not significant, one can see that the speed under
the Scenario S3 (i.e., the controller focusing on the reduction of total emissions only) is
lower than under the uncontrolled case (Scenario S1). As a result the travel time has been
increased while the emissions have been reduced (see Table 5.1). In this case (Scenario S3)
the MPC controller has slightly improved the shock wave (reduces emission levels), has
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Figure 5.7: Density and speed profiles of the traffic flow underTTS + TE-controlled Sce-
nario S4 of Case study A. The arrows indicate the driving direction.

reduced and homogenized the higher speeds (reduces emission levels), and has increased
the density slightly (increases emission levels) as compared to the uncontrolled case. Thus,
as a net effect, the controller results in reduced total emissions.

Fig. 5.7 presents the density and speed profiles for the scenario in which the objective
of the MPC controller is to reduce both the total emissions and total time spent (Scenario
S4). The figure and the values in Table 5.1 of the scenario show that the MPC has offered
a balanced trade-off between reducing the total emissions and the total time spent. Fig. 5.7
shows that the shock waves get reduced as compared to the uncontrolled scenario. The
trade-off between the total time spent and the total emissions can be adjusted by changing
the weight of the performance criterion in (5.16). One can see that the total emissions (TE)
for Scenario S3 and S4 are almost the same, while the total time spent (TTS) are different
(see Table 5.1). Since the optimization process is a non-convex problem, it is possible to
have multiple local minima. As a result, if the MPC controller focuses only on theTE,
it may not compromise small loss inTE that could result in betterTTS. However, with
the addition ofTTS on the cost function of the controller, the controller can seek solutions
(local minima) that can reduceTTS while still reducingTE. Scenario S4 shows such
situation.

Case study B

In this case study, two traffic control measures are considered, viz. variable speed limits and
ramp metering. A simple freeway network similar3 to the network considered in [75, 76]
is used for this case study (see Fig. 5.8). The network consists of one mainstream freeway
link with two speed limits and one metered on-ramp. The on-ramp is located at a distance
of 4 km from the mainstream origin of the freeway link, and it has acapacity of2000 veh/h.
The mainstream freeway link has two lanes with a capacity of2100 veh/h each. Segments
3 and4 of the freeway are equipped with variable message signs where speed limits can
be displayed. The outflow at the end of the freeway is considered to be unrestricted. It

3In [75, 76], the considered freeway network has been used to reduce the travel time using MPC. In this case
study the same network is considered to reduce travel time, emissions, and fuel consumptions using MPC.
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Figure 5.8: A6 km freeway with metered on-ramp and two dynamic speed limitsconsidered
for Case study B.
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Figure 5.9: On-ramp demand (dashed line) and mainstream demand (solid line) profiles
considered for Case study B.

is assumed that the queue length at the on-ramp may not exceed100 vehicles, in order to
prevent spill-back to a surface street intersection.

The network parameters used for this case are the same as usedin Case study A of this
section, except that the on-ramp model parameter isδ = 0.0122 and the desired speed is
10% higher than the displayed speed limit, i.e., the drivers’ noncompliance factor is̺ = 0.1.
These values are based on [75, 76]. The controller sampling time Tc is again chosen to
be 1 min. The prediction horizon and the control horizon of the MPC are selected to be
respectivelyNp = 15 (corresponding to15 min) andNc = 7 (corresponding to7 min) as
used in [75].

To examine the effect of the combination of variable speed limits and ramp metering
typical demand profiles are considered for the mainstream origin and the on-ramp (see Fig-
ure 5.9). The mainstream demand has a constant, relatively high level and a drop after2 h to
a low value in a time span of15 min. The demand on the on-ramp increases to near capacity,
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Table 5.2: Simulation results for Case study B. The values inthe bracket indicate the relative
change of the performance criteria as compared to the uncontrolled Scenario S1.
Negative values indicate a decrease (i.e., an improvement)in the value of the
performance criteria, while positive values indicate an increase in the value of
the performance criteria as compared to the uncontrolled scenario.

Scenarios
Performance Criteria

TTS [veh·h] Total NOx [kg] TFC [l]

S1: Uncontrolled 1459 8.719 6108
S2: TTS 1247 (−14.6%) 8.288 ( −4.9%) 5274 (−13.7%)
S3: TTS + TFC 1257 (−13.9%) 8.147 ( −6.6%) 4934 (−19.2%)
S4: TTS+NOx 1412 ( −3.2%) 7.654 (−12.2%) 5290 (−13.4%)
S5: TTS + TFC+NOx 1336 ( −8.5%) 7.786 (−10.7%) 5088 (−16.7%)

remains constant for15 min, and decreases finally to a constant low value.
For the given demand profiles one uncontrolled (Scenario S1) and four controlled (Sce-

narios S2 to S5) situations are compared. Scenario S1 is considered as a benchmark to
compare the results of the simulations when an MPC controller is implemented. For all the
controlled scenarios, in order to give less emphasis to the variation of the control input, the
weight corresponding to the variation of the control inputsin (5.16) is taken to beζ5 = 0.4
(as in [75, 76]). The following performance criteria are considered for the MPC controller
in the controlled scenarios:

S2: Total time spent (i.e.,ζ1 = 1, ζ2 = ζ3 = ζ4,MDL = ζ4,TDL = 0),

S3: Total fuel consumption and total time spent (i.e.,ζ1 = ζ3 = 1, ζ2 = ζ4,MDL =
ζ4,TDL = 0 ),

S4: Total NOx emissions and total time spent (i.e.,ζ1 = ζ2 = 1, ζ3 = ζ4,MDL =
ζ4,TDL = 0, andµCO = µHC = µCO2

= 0, µNOx
= 1), and

S5: Total fuel consumption, total NOx emissions, and total time spent (i.e.,ζ1 = ζ2 =
ζ3 = 1, ζ4,MDL = ζ4,TDL = 0, µCO = µHC = µCO2

= 0, andµNOx
= 1).

Table 5.2 gives the simulation results of the uncontrolled simulation (Scenario S1) and
the controlled simulations (Scenarios S2 to S5). Moreover, the table gives the relative
change as defined in (5.17) withp ∈ {TTS,TFC,NOx}. When the MPC controller is
implemented (Scenarios S2 to S5) the values of all the performance indicators are reduced
by a certain amount compared to the uncontrolled situation.But the reduction of the respec-
tive performance indicators is dependent on the objective of the controller. As can be seen in
the table, when the objective of the controller is to reduce theTTS (Scenario S2), theTTS
is reduced by14.6%. Moreover, the total NOx emissions and the total fuel consumption are
reduced by4.9% and13.7% respectively. This indicates that under the given traffic demand
and traffic scenario, reducing theTTS can also help in reducing the total NOx emissions
and the total fuel consumption.

When the objective of the controller also includes the total fuel consumption as well as
theTTS (Scenario S3), the results forTTS differ slightly compared to Scenario S2, while
the total fuel consumption shows a significant reduction. Sofor Scenario S3 more fuel is
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saved by making a small sacrifice in theTTS that can be saved when onlyTTS is the
control objective (Scenario S2).

In Scenario S4 the objective of the controller is to reduce the total NOx emissions and
the TTS where both criteria are weighted equally. In this scenario,the TTS does not
show a significant improvement compared to the uncontrolledscenario. On the other hand,
the total NOx emissions decrease significantly. Moreover, we can see thatthe total fuel
consumption is reduced by13.4%, which is less than the improvement in Scenario S3. Thus,
although the combination of a largerTTS and more fuel consumption indicates inefficient
driving behavior in terms of the economic performance indicators (travel time and energy
consumption), there is a positive impact on the NOx emission.

Scenario S5 encompasses the concerns regarding the travel time, energyconsumption,
and the environment, as it addresses all three performance indicators by weighting them
equally. The simulation results in Table 5.2 show that in this case the MPC controller
achieves a balanced trade-off between total time spent, thetotal fuel consumption, and the
total NOx emission. As can be seen from the table, the three performance indicators are re-
spectively improved by8.5%, 10.7%, and16.7%. Fig. 5.11 also provides more information
on the states of the system when the objective of the controller is to address the total fuel
consumption, total NOx emission, and total time spent.

The action of the MPC controller in Scenario S5 can be more clear when we compare
Fig. 5.10 and Fig. 5.11. Fig. 5.10 and Fig. 5.11 depict the traffic states (density and space-
mean speed), the queue length (at the on-ramp and mainstreamorigins), the flows at the
on-ramp and mainstream origins, and the control inputs (thevariable speed limits and ramp
metering rate) of the traffic system under Scenarios S2 and S5 respectively4. The dynamics
of the queue length in the Fig. 5.11 is different than in Fig. 5.10. This can be explained
as follows. Since the initial speed and the number of the vehicles in the freeway origin is
larger than the initial speed and the number of the vehicles at the on-ramp, the emissions
and fuel consumption of the vehicles at the freeway origin will have more effect on the
value of the control objective function than their waiting time or than the emissions and
fuel consumption of the vehicles at the on-ramp. Thus, the controller tries to avoid a queue
on the freeway origin without violating the on-ramp queue length (see Fig. 5.11). This has
resulted in frequent fluctuation of the control inputs. Thiscan be seen in Fig. 5.11, where
the control input fluctuates during the simulation periods where the queue lengths fluctuate
(i.e., between0.5 h and2 h of the simulation periods). In Scenario S2 a queue can develop
in the mainstream origin under two conditions. One possiblecondition is when the queue
length at the on-ramp has reached its maximum limit (the sameas in Fig. 5.11). The second
possibility is when the contribution of the queue on theTTS is the same whether it is formed
at the on-ramp or at the mainstream origin. But if in the long run theTTS can be reduced
by forming a queue at the mainstream origin, the controller can let a queue develop on the
mainstream origin. This can be one of the reasons for the formation of the queue in Scenario
S2 while the queue in the on-ramp is below its limit.

4Since detailed results of the MPC controller under different control performance indicators are given in Ta-
ble 5.2, the evolution of the traffic states of all the scenarios is not presented. As an illustration and as good
representatives, Scenarios S2 and S5 are chosen and the evolution of the traffic states of these scenarios are respec-
tively depicted in Fig. 5.10 and Fig. 5.11, because ScenarioS2 shows a traffic problem where most traffic control
approaches focus on and Scenario S5 shows the potential of MPC to provide a balanced trade-off between possibly
conflicting traffic performance criteria.
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Figure 5.10: The trajectory of the traffic states and the control signals of Case study B when
the objective of the controller is reducing the total time spent only (Scenario
S2). The arrows indicate the driving direction.

In the two case studies presented above, macroscopic trafficmodels are used. However,
similar conclusions are reached using microscopic models in our papers [207, 209, 210].
To avoid presentation of similar concepts and to focus on themain relevant points, those
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Figure 5.11: The trajectory of the traffic states and the control signals of Case study B when
the objective of the controller is to minimize the total fuelconsumption, total
NOx emissions, and total time spent (Scenario S5). The arrows indicate the
driving direction.

results are not discussed in this thesis. Moreover, the MPC approach is so generic that it
can be applied with other complex and extensive models. Hence, throughout this thesis,
the simulations are based on the macroscopic models, because this eases the computational
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demands of the approach.

5.5.2 Reduction of area-wide emissions

In the previous section, the use of MPC for the reduction of traffic travel time, emissions,
and fuel consumption was presented. Two control measures, variable speed limits and ramp
metering, were considered. In this section the dispersion of the emissions to a given target
zone is considered as an additional performance criterion of the MPC controller. Two case
studies are presented. In the first case (Case study C), only variable speed limit is used as
a traffic control measure. Moreover, the dispersion of emissions under constant wind speed
and wind direction is considered. In the second case (Case study D), an additional traffic
control measure, ramp metering, and variable wind speed andwind direction are considered.

Case study C

In this case study, a12 km three-lane freeway stretch, which is sectioned into twelve equal
segments of size1 km is considered. Each section of the freeway is equipped with a variable
speed limit control (see Fig. 5.12). Since the intention is to illustrate the use of MPC with
multi-objective traffic control performance criteria, forcomputational reasons, the speed
limits are coupled in groups of four, where each group displays the same speed limit at the
same time. In general, it is possible that the performance ofMPC can decrease due to this
grouping. For this case study, since the main goal is to demonstrate the potential of MPC,
we allow a small loss in performance for increased computation speed.

In this case study, a protected zone (e.g., school) with an area of200 m×200 m is located
at 2 km north and6 km east of the origin of the freeway (see Fig. 5.12). The freeway and
its neighborhood are subject to a wind blowing with speedVw = 8 m/s and with an angle
ϕ = π/3 radians with respect to the freeway as shown in Fig. 5.12. Fig. 5.13 depicts the
traffic demand at the origin of the freeway.

The traffic flow, emissions, and dispersion of the emissions of the freeway considered are
modeled using the METANET, VT-macro, and point-source dispersion models presented in
respectively Sections 2.3, 3.4, and 4.2. The freeway parameters have the same values as in
Case study B of Section 5.5.1.

An uncontrolled Scenario S1 of the traffic setup is used as the benchmark to compare
the performance of the MPC controller for different traffic performance criteria. For the
controlled Scenarios S2 to S5, a multi-objective performance criterion defined in (5.16),
with ζ3 = ζ4,TDL = 0, ζ5 = 0.01, µCO = µHC = µNOx

= 1, andµCO2
= µfuel = 0 is

considered throughout this case study. By varying the weights ζ1, ζ2, andζ4,MDL in (5.16),
the following control objectives are considered:

S2: Total time spent (i.e.,ζ1 = 1 andζ2 = ζ3 = ζ4,MDL = ζ4,TDL = 0),

S3: Total emissions (i.e.,ζ2 = 1 andζ1 = ζ3 = ζ4,MDL = ζ4,TDL = 0),

S4: Dispersion level (i.e.,ζ4,MDL = 1 andζ1 = ζ2 = ζ3 = ζ4,TDL = 0), and

S5: Total time spent, total emissions, and dispersion level with ζ1 = 10, ζ2 = 1, ζ3 =
ζ4,TDL = 0, andζ4,MDL = 5.
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Figure 5.12: A12 km 3 -lane traffic freeway considered for Case study C. The freeway is
equipped with12 variable speed limits and there is a neighboring school of
area0 .04 km2 at a distance of2 km from the center. It is subjected to wind
with wind speedVw = 8 m/s and wind directionϕ = π/3 radians.
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Figure 5.13: Traffic demand profile for Case study C.

The control time stepTc = 2 min, the prediction horizonNp = 7 (corresponding to
14 min), and the control horizonNc = 5 (corresponding to10 min) are used. The duration
of the simulation is1 h with a simulation time step sizeT = 10 s.

The simulation results for the different scenarios are tabulated in Table 5.3. The first
row of the table shows the results of the simulation for a casewhere no controller is imple-
mented. Under this scenario, the evolution of the dispersion of the emissions of the freeway
to the school area is depicted in Fig. 5.14 (solid line). The second to the fifth rows of the ta-
ble provide the simulation results under the controlled scenarios and the relative percentage
change as compared to the uncontrolled scenario using the expression given in (5.17) with
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Table 5.3: Simulations results under uncontrolled and different traffic control objectives of
Case study C. The values in brackets indicate the relative change of the per-
formance criteria of the controlled scenarios compared to the uncontrolled sce-
nario. Negative values indicate a decrement (i.e., an improvement) of the perfor-
mance criteria as compared to the uncontrolled scenario, while positive values
indicate an increment in the performance criteria.

Scenarios
Performance Criteria

TTS [veh·h] TE [kg] MDL [µg/m2]

S1: Uncontrolled 1488.8 133.3 56.3
S2: TTS 1100.7 (−26%) 162.5 (+22%) 62.1 (+10%)
S3: TE 1783.9 (+20%) 64.8 (−51%) 19.3 (−66%)
S4: MDL 1783.9 (+20%) 64.8 (−51%) 19.3 (−66%)
S5: 10TTS + TE + 5MDL 1382.6 ( −7%) 85.6 (−36%) 34.1 (−39%)

p ∈ {TTS,TE,MDL}.
The levels in Fig. 5.14 have the same initial value for all thescenarios. This is because

the initial emission levels of the freeway cannot be affected by the controller. Hence, only
the impact of the emissions emitted after the start of the simulation can be affected.

When the objective of the controller is to reduce theTTS (Scenario S2), the dispersion
level is smaller than in the uncontrolled case only for about15 min (see Fig. 5.14). However,
after about30 min of the simulation time, the dispersion level of theTTS controlled case in
the target area becomes higher for the rest of the simulationtime. As a result, in Table 5.3
we see that the maximum dispersion levelMDL and the total emissionsTE for theTTS
controlled case increase by10% and22% respectively compared to the uncontrolled case.
However, theTTS is improved by26% relative to the uncontrolled case. This indicates that
reducing the travel time can have a negative impact on the area-wide emissions. Obviously,
the negative impact of the improved travel time on the emissions can be accounted to the
increase in speed of the vehicles as can be seen in Fig. 5.15.

When the objective of the controller is to reduce either theTE (Scenario S3) or the
MDL (Scenario S3), the results are almost the same (see Table 5.3 and Fig. 5.14). In these
two scenarios the travel time is increased by20% compared to the uncontrolled case. But,
the TE and theMDL are respectively reduced by about51% and66%. Moreover, the
evolution of the dispersion levels on the target zone is smaller throughout the simulation (see
Fig. 5.14). This shows that the emissions and dispersion levels are lower when the speed
of the vehicles is lower (see Fig. 5.15), which is consistentwith the emission rate models.
On the contrary, the travel time increases as the speed of thevehicles decreases. So the
results are consistent with the traffic flow and emission ratetheory. For theTTS controlled
case (Scenario S2) and around0.45 h, the emission levels at the target zone have abruptly
increased (seeTTS controlled scenario of Fig. 5.14). The abrupt increase in emission levels
is caused due to the abrupt increase in the speed of vehicles at around0.3 h (seeTTS
controlled scenario of Fig. 5.15). Due to the distance of thetarget zone from the freeway
(2 km from the center) and due to the low wind speed (8 m/s), the high emission levels
released from the freeway are experienced after about0.15 h at the target zone. Since the
significant increase in the average speed at about0.5 h is accompanied by a significant
reduction in the number of vehicles (see Fig. 5.15), the emissions have not shown significant
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Figure 5.14: Evolution of dispersion levels for the uncontrolled and the controlled scenarios
of Case study C.

change.

Finally, all the performance criteria (TTS, TE, andMDL) are combined in the objective
function of the controller as in the last row of Table 5.3. In this case theTTS is reduced by
7% compared to the uncontrolled scenario. Furthermore, theTE andMDL are respectively
reduced by36% and39% relative to the uncontrolled scenario. However, the reduction in
percentage of the performance criteria is less than the scenarios where the objective of the
controller is focused only on either of these measures.

In general, the simulation results demonstrate that variable speed limits can be used in
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Figure 5.15: Evolution of average speedvav(k) and average densityρav(k) over all the
segments of the freeway for the uncontrolled and the controlled scenarios of
Case study C.

some cases to alleviate, in a balanced way, the problem of emissions and of lost time due to
traffic jams. Note, however, that there are also cases where the variable speed limit is not
effective, e.g., if all segments of a traffic freeway are congested [75].

Case study D

In Case study C, variable speed limits are applied to reduce travel time, emissions, and the
dispersion of emissions into a given target zone. The point-source dispersion model with
constant wind speed and wind direction has been used. In the current case study, ramp
metering traffic control is also taken into account. Moreover, the wind speed and wind
direction are assumed to vary in time. A12 km three-lane freeway stretch with one on-
ramp is considered. The freeway is divided into12 segments with the on-ramp at the sixth
segment from the left as depicted in Fig. 5.16. Each segment of the freeway is equipped with
a variable speed limit. In this case study, the variable speed limits are grouped in groups of
two such that each segment in a group will have the same speed limit signs. This implies
the MPC controller optimizes only6 speed limits and1 on-ramp metering rate. So, in total
there are7 control variables at each control time step.

The traffic flow demand at the mainstream origin and the on-ramp origin is shown
in Fig. 5.17. In addition, the freeway is subject to a wind with speed and direction (see
Fig. 5.16) given by

Vw(k) = 7 + 2 sin(0.005πk + π/6) sin(0.01πk) (5.18)
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Figure 5.16: A12 km freeway with12 variable speed limits and1 on-ramp for Case study
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ϕ(k) =
2π

5
+

π

4
cos(0.004πk) (5.19)

where the wind speedVw(k) is expressed in m/s and the wind direction (angle)ϕ(k) in
radians.

Similar to Case study C, a multi-objective performance criterion that accommodates the
emissions, dispersion of emissions, and travel time is considered in addition to the uncon-
trolled scenario. The performance criteria for this case study are the same as in Case study
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Table 5.4: Simulations results under uncontrolled and different traffic control objectives of
Case study D. The values in the brackets indicate the relative change of the per-
formance criteria of the controlled scenarios compared to the uncontrolled sce-
nario. Negative values indicate a decrement (i.e., an improvement) of the per-
formance criteria as compared to the uncontrolled scenario, while the positive
values indicate an increment of the performance criteria.

Scenarios
Performance Criteria

TTS [veh·h] TE [kg] MDL [µg/m2]

S1: Uncontrolled 1362 127.5 163.2
S2: TTS 692 (−49%) 148.2 (+16%) 160.6 ( −1%)
S3: TE 1621 (+20%) 65.6 (−49%) 87.7 (−46%)
S4: MDL 1606 (+15%) 71.8 (−44%) 104.7 (−36%)
S5: 10TTS + TE + 5MDL 749 (−45%) 109.4 (−15%) 142.6 (−13%)

C. Moreover, the parameters of the MPC controller are set thesame as that of the MPC con-
troller in Case study C. For all the five scenarios (one uncontrolled and four controlled), the
case study is simulated for an hour. The simulation results for these scenarios are tabulated
in Table 5.4.

Table 5.4 compares the performance of the MPC controller with respect to the uncon-
trolled scenario using (5.17) withp ∈ {TTS,TE,MDL}. The performance measures con-
sidered are the total time spent (TTS), the total emissions (TE), and the maximum disper-
sion level (MDL) at the target zone. As can be seen, when the objective of the controller is
theTTS, theTE is worsened and theMDL in the target zone is almost unchanged as com-
pared to the uncontrolled scenario. Similarly, if the objective of the controller is to reduce
theTE or theMDL, theTTS gets worse than for the uncontrolled scenario. But there is
an important difference between the two scenarios. TheTTS gets much worse when the
objective of the controller isTE than when it isMDL. Moreover, theMDL in Scenario S4
is larger than theMDL in Scenario S3, which in fact should not be the case (see Remark 5.3
for possible reasons).

Remark 5.3 In general, theMDL is expected to be lower when the objective of the con-
troller is reducingMDL than when the objective of the controller is reducingTE. However,
the results in Table 5.4 show the opposite. This can happen for two possible reasons, viz.

1. When the prediction horizon of the MPC controller is not large enough to capture the
important dispersion dynamics. Under such cases, the traffic solutions that give better
performance for the prevailing traffic situation may have negative impact on the future
traffic conditions. This is because that since the traffic state changes at every control
time step and since the controller uses this state as an initial condition to predict the
future traffic states, any change to the state (which can be good for the current traffic
situation) may lead to a situation that may turn out to be bad for the future traffic
performance.

2. The second reason is due to the optimization process. Since the optimization is non-
linear and non-convex problem and since the control objectives for the two cases have
different non-linearity and non-convexity, it is possiblethat theMDL can be minimal
under Scenario S3 than Scenario S4.
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Figure 5.18: Evolution of dispersion levels for the controlled and uncontrolled scenarios of
Case study D.

�

More can be observed by also looking into the evolution of thedispersion levels. The
evolution of the dispersion level in the target area is plotted in Fig. 5.18. The figure depicts
the dispersion level for the different controlled scenarios and for the uncontrolled scenario.
To have more insight in what is happening the space-mean speed of the complete freeway
in shown in Fig. 5.19.

From Fig. 5.19 one can see that the two shock waves of the traffic flow observed in the
uncontrolled case are dissolved when the objective of the controller is to reduce only the
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Figure 5.19: Space-mean speed over segments and time for controlled and uncontrolled
scenarios of Case study D. The arrows indicate the driving direction.

total time spent (Scenario S1). Under this situation the dispersion level becomes even more
worse than for the uncontrolled case (see Fig. 5.18), i.e., despite the fact that the maximum
dispersion level (MDL) at aboutt = 0.53 h is less than the uncontrolled scenario, it can be
seen that the dispersion levels during most of the time undertheTTS controlled case are
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higher than for the uncontrolled scenario. However, if the objective of the controller is set to
reduce the maximum dispersion level, one sees that theTTS of the traffic flow gets worse
by 15% (see Fig. 5.19 and Table 5.4), but the dispersion level is reduced by36%.

When the objective of the controller is the weighted sum of theTTS, TE, andMDL,
theTTS is improved relatively to both the uncontrolled scenario and to the scenario where
only TE or MDL are the objective of the controller. Moreover, theTE and MDL are
also reduced compared to the uncontrolled scenario. However, their decrement relative to
Scenario S3 (TE controlled) or Scenario S4 (MDL controlled) is small. In general, it can be
observed that as the weights of the performance indicators vary, the controller can shift its
focus towards the improvement of the indicators with higherweighting factor. In this way
the model predictive controller can be used to specifically improve the traffic performance.

5.6 Conclusions

Model predictive traffic control is a potentially very promising control approach since it is
able to use non-linear and complex system models, it takes both system and operational
constraints into account, and it makes decisions based on the evolution of the current and
the future possible traffic states. In many papers in the literature it has been shown that the
model predictive control, in particular model predictive traffic control, is able to optimally
coordinate different control measures and to provide (sub-)optimal solutions to improve the
traffic flow. In this chapter, a short account on the concept ofMPC and how it can be used
for traffic control has been discussed.

In addition to the travel time as the performance criterion of traffic controllers, the fuel
consumption and the emissions of vehicles in a traffic network, and the dispersion of the
emissions to neighborhoods of traffic networks are important traffic performance criteria.
In this context, this chapter has presented how these quantities can be formulated. More-
over, the formulation of a multi-objective criterion for the MPC traffic controller has been
discussed.

Finally, four cases studies, two that focus on the reductionof combined travel time,
emissions, fuel consumption, and two that focus on the reduction of combined travel time,
emissions, and dispersion of emissions have been presented. In the case studies, the use
of variable speed limits alone and variable speed limits integrated with ramp metering have
been illustrated. The case studies demonstrated that MPC isable to provide a balanced
trade-off between the travel times, emissions, fuel consumption, and dispersion of the emis-
sions to a target zone.

However, the simulations in all the cases consumed long computation times, which
makes the control approach intractable for real-time applications. So an improvement in
the computation time is required. The following chapter will present a version of the MPC
controller that has lower computation times which makes it tractable in practice.



Chapter 6

Receding-Horizon Parametrized
Control

A
s has been indicated in the previous chapter, Model Predictive Control (MPC),
and in particular, non-linear MPC has certain disadvantages. The main disad-
vantage emanates from the non-linear and non-convex optimization involved.
Usually, in practice the computation time exponentially increases as the num-

ber of control inputs or the prediction horizon increases. To alleviate the computational
problems the introduction of a control horizon or blocking has been discussed in Chapter 5.
However, these approaches do not bring down the computationtime to the level at which
MPC can be applied for freeway traffic in practice, unless theperformance is compromised
significantly.

Another interesting approach that can reduce the computation time considerably is the
parametrization of the control inputs (by a smaller number of parameters than the number
of control inputs), so that the controller optimizes a set ofparameters instead of optimiz-
ing a sequence of control inputs as in the case of conventional MPC. In this approach the
parameters are optimized in such a way that a given performance criterion is improved in
a receding horizon fashion. To do so, the control inputs are described using certain control
laws that are dictated by the values of the parameters.

This chapter then presents parametrized MPC, more specifically called Receding Hori-
zon Parametrized Control (RHPC). This chapter begins by providing some introductory
notes on parametrized MPC in Section 6.1. Next, the philosophy of the RHPC controller
and its general formulation is elaborated in Section 6.2. Following the design of RHPC
for variable speed limits and ramp metering in Section 6.3, case studies are presented in
Section 6.4. At the end, the conclusions of the chapter are put forward in Section 6.5.

Parts of this chapter are published in [216, 217].

6.1 Parametrized MPC

It has been indicated that the freeway traffic system is complex, non-linear, and time-variant.
Controlling the traffic network to get a system (or user) optimum traffic flow, while at the
same time reducing the externalities of traffic flow (such as emissions and fuel consumption)

115
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is a day-to-day challenge. In this regard, many studies thatfocus on the design of traffic
controllers to improve the traffic flow under certain traffic conditions [42, 79, 149, 150] have
been conducted for decades. The freeway traffic controllersin [78, 79] are designed to avoid
or at least to reduce shock waves on freeways. The freeway controllers designed in [42,
149, 150] are state feedback control policies where the parameters of the control policies
are determined using off-line optimization approaches based on simulation or historical data
of the given freeway. This means the control policies perform well for the specific scenarios
they are optimized to. In [104] an optimal open-loop freewaycontroller called AMOC
(Advanced Motorway Optimal Control) is proposed. However,the traffic conditions change
so frequently that the performance of the controllers is then most often reduced.

An excellent traffic control solution for freeway traffic problems is a controller that
takes the current and future traffic situation into account and that predicts the consequences
of its control actions. One such control strategy, Model Predictive Control (MPC), has been
proposed more than three decades ago [50, 168] and has been discussed in Chapter 5. Recall
that an MPC approach can handle model uncertainties, include constraints, support multi-
objective performance criteria, and can be used with non-linear models [35, 116]. Moreover,
in several case studies, MPC has proved to yield significant gains in the performance of the
traffic network [22, 77, 220]. However, it has been pointed out that this comes with one
main limitation; the computation time is very large [22, 77](see also Section 5.6).

Indeed, there are many advancements and efforts described in the literature (e.g., [24, 37,
71, 98, 111, 179, 183, 189, 195]) to address the computation problems of MPC in general.
Most available papers in literature deal either with lineartime-invariant systems or specific
classes of non-linear systems (such as linear time-varying, linear parameter-varying, and
piecewise affine systems). However, traffic systems are too complex and non-linear such
that they do not fall within the specific classes of non-linear systems for which the methods
to reduce the computation time have been developed.

In an effort to formulate the model structure of the METANET traffic flow model
[103, 124, 145, 146] to suit for advanced control approaches, the authors in [113, 115]
have approximated the METANET traffic flow model by a Linear Parameter-Varying (LPV)
model. That model has been extended in [213] to include emission models in an LPV form.
But the models do not have the provision to use variable speedlimits, which is an important
freeway control measure [79, 180]. These models use only ramp metering as a traffic con-
trol measure. Moreover, the number of scheduling variablesof the LPV models increases
as the size of the traffic network increases, which increasesthe computation time exponen-
tially. Although the LPV approach may have potential to reduce the computation time with
some errors introduced, the approach requires further research. The authors of [69] have
proposed to use a game-theoretic approach withdistributedcontrollers to address the com-
putational complexity of MPC for traffic systems. Moreover,in [105, 151] it is proposed to
use a model-predictive hierarchical control approach, which is also reported to be computa-
tionally tractable in practice. In [64] it is also proposed to apply an artificial neural network
as an offline control approach for optimal freeway traffic control instead of using on-line
optimization.

In this chapter, however, a centralized traffic control approach that yields fast computa-
tion speeds is presented. A Receding-Horizon ParametrizedController (RHPC for short)
is proposed as a traffic control approach that combines the advantages of conventional
MPC (i.e., prediction, adaptation, and handling constraints, multi-objective criteria, and
non-linear models) and the advantages of state feedback controllers (i.e., faster computa-
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tion speed and easier implementation). The control approach does not impose any specific
structure on the traffic models. This idea is related to the parametrization concept intro-
duced by [71, 98, 111, 179]. In general, depending on the parametrization the proposed
RHPC approach can introduce loss in performance relative toits counterpart, conventional
MPC.

In the conventional MPC approach the control inputs of a system are optimized directly.
In parametrized MPC approach the control signals are parametrized according to some con-
trol policies (laws) and the parameters of the control policies are optimized over a given time
horizon to reduce a pre-defined objective (cost) function [71, 98, 111, 179]. Therefore, the
control inputs in parametrized MPC are optimized indirectly as opposed to the conventional
MPC approach. The parameters of the control policies can be optimized in such a way that
they are constant over the prediction horizon [98, 111, 179]or they can be considered to
be time-varying over the prediction horizon [71]. In addition to the fact that the approaches
of [71, 98, 111, 179] are not well developed to handle the general class of non-linear sys-
tems (such as traffic systems), all the parametrization concepts in [71, 98, 111, 179] revolve
around the transformation of the non-convex optimization problem of conventional MPC
into a convex optimization problem through the parametrization of the control inputs. This
means that the number of parameters can be (and usually also is) larger than the number
of control inputs of conventional MPC. So if the parametrization cannot transform the opti-
mization into a convex problem, the computation time of the MPC will not be reduced.

But if the parametrization is defined appropriately and if the number of parameters that
describe the laws of the control signals is smaller than the number of control signals, it is
possible to reduce the computation time of the MPC controller without necessarily trans-
forming the MPC optimization problem into a convex problem,which is the approach
proposed in this chapter. This means that for the same problem set-up, in general the
parametrized MPC results in lower computation times than conventional MPC. However,
note that since the space of the control signals is in principle reduced due to the parametriza-
tion process, in general the performance of parametrized MPC may be less optimal than that
of conventional MPC.

6.2 Basic concepts of RHPC

In this section the proposed Receding-Horizon Parametrized Control (RHPC) is discussed
in detail. First, the general philosophy of the RHPC traffic controller is discussed. The
different possible variants of the controller and their relative computation speeds under the
same conditions are examined. Next, the general description on how the method can be
employed to design dynamic traffic control laws is put forward.

6.2.1 Philosophy of RHPC traffic controller

The concept of RHPC can be illustrated with the schematic diagram depicted in Fig. 6.1.
The system block represents the real traffic system where themeasurement of the traffic state
(such as the speed, density, and flow) is fed to the RHPC controller. The RHPC controller
contains two layers: the feedback layer and the optimization layer. The feedback layer has
a control law block that receives the traffic state and determines the value of traffic control
measures at every control time stepkc,i (with control time step sizeTc,i). The control laws
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Figure 6.1: Schematic representation of model-based receding-horizon parametrized con-
trol (RHPC).

of the feedback layer are described by a set of parameters which are updated every control
(parameter-update) time stepkc wherekc,i(kc) = M4kc with M4 being a positive integer.

The optimization layer contains the model of the traffic system, the optimization tool,
and the control law (which is the same as that of the feedback layer) blocks (see Fig. 6.1).
Similar to the conventional MPC controller, with the measurements of the traffic states at
control (parameter-update) time stepkc as the initial states of the model, the RHPC con-
troller predicts the evolution of the system states using the system model (such as traffic
flow, emissions, and dispersion models). The optimization block optimizes a set of param-
eters that describe the control policy in such a way that the defined control objective (cost)
function is reduced over the prediction period while the constraints are met. The optimal
set of parameters is fed to the control law block. The controllaw block uses the parameters
along with the measured and predicted traffic states from themodel to generate the traffic
control measures (such as speed limits, ramp metering rate,and route guidance signals).
The parameters are optimized and generated as if they are intended to be used for the whole
prediction horizon. However, the optimization layer of theRHPC controller applies only the
parameter values of the first control time step to the feedback layer. At the next control time
step, the prediction horizon shifts one control time step, and the RHPC controller repeats
the optimization process all over again, which is called thereceding horizon concept (see
also Section 5.1).

Although RHPC and conventional MPC are based on the same concept, they have four
major differences. First, the number of optimization variables is different. Due to the
parametrization RHPC is designed in such a way that the number of parameters required
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to describe the control laws is smaller than the number of control inputs. Note that in RHPC
the parameters of the control laws are the optimization variables while in conventional MPC
the control inputs are the optimization variables. Second,unlike the conventional MPC con-
troller, the RHPC controller does not necessarily optimizethe parameters every control time
stepkc,i as does conventional MPC (i.e., the control (parameter-update) time step sizeTc

of the optimization layer is in general greater than the control time step sizeTc,i). The
optimization of the RHPC controller is undertaken at every control time stepkc, which is
related to the control time stepkc,i askc,i(kc) = M4kc whereM4 is a positive integer.
Third, due to the parametrization with few number of parameters, the range of the control
signals of RHPC is reduced as compared to conventional MPC. In this context RHPC is
more conservative than conventional MPC, since in general the full space of optimal con-
trol inputs cannot be reached from the parameter space (see Section 7.1). This may result
in a loss of performance compared to conventional MPC. Fourth, since the number of the
optimization variables of RHPC is smaller than that of conventional MPC, the computation
time of RHPC is smaller than the computation time of conventional MPC. In the ensuing
sections the difference between conventional MPC and RHPC will be more clear.

Remark 6.1 From now on, for the sake of simplicity of the exposition, we just take the
control (parameter-update) time step sizeTc of the optimization layer to be equal to the
control time step sizeTc,i of the feedback layer. However, expansion of the subsequent
theories to the case whereTc 6= Tc,i is straightforward. �

The computation time of RHPC depends on the way the parameters are allowed to vary
over the control horizon. This can be realized in three different ways:

1. Control policies with constant parameters.This option is used in most of the literature
[71, 98, 111, 179]. In this approach a state feedback controller (control law) with
constant parameter is designed. So in this option (control policies with constant pa-
rameters), the parameters of the control law do not change over the prediction horizon
as shown in Fig. 6.2(a). Although the parameters are kept constant throughout the pre-
diction horizon, the control inputs in general vary due to the variation in the states of
the system (see Fig. 6.2(a)). Thus, the number of parametersover the entire prediction
horizon is small, which leads to reduced computation time, while in the conventional
MPC approach—if the control inputs have to vary over the prediction horizon as in
this case—the number of control inputs that have to be optimized increases propor-
tionally to the control horizon. However, in general, sincethis option of control input
parametrization limits the space of the parameters, it is conservative and could have a
lower performance than the two approaches presented next.

2. Control policies with variable parameters.In contrast to the first option, where the pa-
rameters are kept constant throughout the control horizon,in this approach the param-
eters of the control policies vary over the whole control horizon (see Fig. 6.2(b)). So,
both the control input and the parameters vary at the same time (see Fig. 6.2(b)). Since
the parameters can vary over the entire control horizon, thespace of the control inputs
is larger than the first option elaborated above. In this approach the computation time of
the RHPC controller is smaller than that of the conventionalMPC controller provided
that the number of parameters describing the control laws isless than the number of
control inputs of the system. This control approach requires higher computation time
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Figure 6.2: Control policy parametrization options over a control horizon in an RHPC
scheme.

than the first option. However, since it is rich, this option yields better performance
than the first option.

3. Control policies with limited parameters variations.To reduce the computation time of
the second option and to relax the conservativeness of the first option, one can combine
the two options, which results in a hybrid option called blocking. There, the parameters
are forced to remain constant during some pre-defined uniform or non-uniform inter-
vals over the prediction horizon. In this way, it is possibleto find a balanced trade-off
between the performance and the computation time of the RHPCcontrol approach.

6.2.2 General formulation of RHPC for traffic systems

Recall that, in general, the traffic system can be described by the systems of non-linear
difference equations given in (5.1). Depending on the modeltype, the state vectorx(·)
represents the dynamic states of the traffic system. For example, for macroscopic traffic
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models, it contains the average speeds, flows, densities, and queue lengths. The variable
u(·) represents the control signals (such as the dynamic speed limits and the ramp metering
rates), and the variabley(·) contains the outputs of the traffic system. This could be the
travel time, throughput, and emissions.

In Chapter 5 it has been explained that the sampling (measurement) time sizeTs and the
simulation time step sizeT are in general different. Moreover, the control time step sizeTc

is not necessarily equal to the sampling time step sizeTs. In this thesis, for computational
convenience the sampling time step size and the control timestep size has been assumed
to be related byTc = M1Ts for a positive integerM1. In this thesis the system states and
outputs at every control time stepkc are used in the formulation of the control policies.
Therefore, we introduce new variablexc(kc), yc(kc), uc(kc), andrc(kc) that denote the
traffic system state, output, control input, and reference signal at control time stepkc. These
variables are equal to the corresponding system variables at a every measurement time step
ks = M1kc, whereks is the sampling (measurement) time step counter.

Therefore, in the RHPC control formulation, at every control time stepkc the discrete-
time control inputuc(kc) can be defined as a parametrized function of the measured or
estimated traffic state vectorxc(kc − 1), the output vectoryc(kc − 1), and the parameter
vectorθ(kc − 1). So, the RHPC control law is in general given by

uc(kc + 1 + j′|kc) = f
(
x̂c(kc + j′|kc), ŷc(kc + j′|kc), θ(kc + j′|kc)

)
(6.1)

for j′ = 0, 1, . . . , Np − 1, wheref(·) is a user-defined mapping and thex̂c(kc + j′|kc) and
ŷc(kc + j′|kc) denote the predicted values of respectivelyxc andyc at time stepkc + j′

using the information available at time stepkc.

At every control time stepkc, the RHPC controller collects all the parameters of the
control law (6.1) into a vectorθ(kc) = [θ⊤(kc|kc), . . . , θ

⊤(kc + Np − 1|kc)]
⊤ and solves

the following optimization problem

min
θ(kc)

J(kc,θ(kc)) := V
(
x(kc),y(kc),θ(kc)

)
(6.2)

subject to:G
(
x(kc),y(kc),θ(kc)

)
≤ 0,

Q
(
x(kc),y(kc),θ(kc)

)
= 0,

system model (5.1) and control law (6.1),

wherex(kc), y(kc), V (·), G(·), andQ(·) are defined in a similar way as in (5.2).

Next, only the first value of the parameter vectorθ(kc), i.e., θ(kc|kc) is implemented
for the traffic system, until the next control time stepkc + 1, at which the RHPC controller
repeats the above process all over again using a receding horizon approach as described in
the previous sections.

Since the RHPC optimization problem is non-linear and non-convex, global or multi-
start local optimization methods are required (see Section5.4.3). Moreover, the formulation
of the traffic performance criteria (cf. Section 5.3) and definition of multi-criteria objec-
tive functions and normalizations (cf. Section 5.4) of eachperformance criterion used for
this RHPC approach are exactly the same as for conventional MPC. In the sequel the way
parametrized control laws for variable speed limits and ramp metering can be formulated is
presented.
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Figure 6.3: A freeway link withN segments and variable speed limits.

6.3 RHPC for variable speed limits and ramp metering

Variable speed limits and ramp metering rates are two of the traffic control measures that are
often used for freeway traffic control. In general, traffic control measures and in particular
variable speed limits and ramp metering are extensively discussed in [75]. The potential
of these control measures to control and to improve the traffic flow have been illustrated in
many papers [21, 76–78, 99, 103, 148, 149]. In Chapter 5, it has also been demonstrated
that the variable speed limits and ramp metering sometimes can be coordinated in such a
way that the emissions and fuel consumption can be reduced while at the same time the
traffic flow is improved.

In this section the control policies for variable speed limits and ramp metering to be
used in an RHPC approach are formulated in general. From the general expression of the
control policies, specific examples are formulated and usedin subsequent case studies. It
is important to note that the formulation of the control policies does not necessarily have to
follow the structures to be presented. The concept discussed in Section 6.2 is so general that
it can be applied to different formulations and traffic control measures.

6.3.1 RHPC for variable speed limits

Although one can design an RHPC controller for any dynamic traffic models, in this thesis
the RHPC controller is designed based on macroscopic models. Actually, since speed limits
are used to limit the speed of all vehicles within the same segment of a link, it is logical
to use the macroscopic variables such as the average speed, density, or flow of the vehicles
to design the RHPC controller for speed limit control. So, inthis particular case a link
with a number of segments as depicted in Fig. 6.3 is considered. There are two ways to
control the variable speed limits on a link of the freeway. One option is to control the
variable speed limits of each segment independently, and the second option is to group a
number of neighboring variable speed limits together and toassign them the same value.
The general strategy to be presented below holds for both options. Here the former option
will be presented and the second option easily follows.

One of the main causes of traffic jams or shock waves is the heterogeneous traffic den-
sity and speed in the traffic network. Differences in vehicles speeds and densities between
segments of a freeway occur so often. This results in frequent acceleration and decelera-
tion of vehicles in the freeway. Then, due to the difference in acceleration and deceleration
of vehicles the operational capacity of a freeway is reduced. Therefore, the intention of
traffic control solutions using speed limits is to obtain homogenized traffic flows (such as
homogenized speed and density of vehicles on the freeway [7,180]) so that the desired per-
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formance measure can be met (could be increased flow, reducedemissions, and improved
safety). Hence, the control laws of the variable speed limits designed below make use of
this discussion.

From traffic theory, it has become apparent that the density of every segment is affected
by the density of the downstream segment (cf. (2.18)). It means if upstream traffic density is
low and if the vehicles upstream flow at certain speed to a dense downstream segment, due
to the perspective of the drivers (despite the speed downstream), the speed of the upstream
vehicles is affected negatively. On the contrary, if the downstream density is low, drivers
tend to increase their speed. Hence, it is important to consider the density of the downstream
segment in determining the speed limit of a segment. Assigning high speed limits while the
downstream segment is congested will not change the speed ofthe vehicles in the current
segment nor will it improve the flow.

However, density alone cannot describe the flow relation of the two consecutive seg-
ments. It is also required to use the speed to determine the control signal that can produce
the desired flow. In fact, it is logical to take the downstreamspeed, because drivers can only
adapt their speeds to the speeds of the vehicles in front of them. This means that in addition
to the downstream density, the downstream speed is also important in the parametrization
of the control signals. Note however that, the use of the speeds and densities of the down-
stream is not limited only to those of the neighboring segments. One can also use the speeds
and densities of multiple downstream segments as long as thenumber of parameters in the
parametrization of the control inputs does not exceed the number of control signals. This is
because that the computational advantage of the RHPC approach lies in the reduced number
of parameters that has to be optimized. Moreover, it is also possible to use a larger number
of parameters than the number of the control inputs, if the first or third options in Section 6.2
are used.

Now, using the downstream speed and density of the traffic flow, a general approach in
designing the dynamic speed limit controller for a link of a freeway depicted in Fig. 6.3 can
be formulated as follows. The dynamic speed limituvsl,m,i(kc + 1) of segmenti of link m
at control time stepkc + 1 can in general be expressed as

uvsl,m,i(kc + 1) = fm

(
vc,m,i(kc), vc,m,i+1(kc),

ρc,m,i(kc), ρc,m,i+1(kc), θm(kc)
)

(6.3)

wherefm(·) is a general user-defined mapping function that determines the control law
of the speed limit of segmenti of link m, θm(kc) is the parameter vector,vc,m,i(kc) is the
measured or estimated average speed of segmenti of link m at timet = kcTc, andρc,m,i(kc)
is the measured or estimated average density of segmenti of link m at timet = kcTc.

The functionfm(·) can be a reflection of the error (difference) between the traffic vari-
ables (in this particular case the speed and density) of different segments that has an influ-
ence on the speed and density of a segment under consideration. The function can be linear
or non-linear. Depending on the wayfm(·) is defined the number of parameters required
could be small or large. However, it is only important to be aware of the fact that the number
of the parameters needed to describefm(·) has to be less than the number of the variable
speed limits for improved computation times.

In general one can use different relations forfm(·). In this thesis a linear expression is



124 6 Receding-Horizon Parametrized Control

proposed, viz.

uvsl,m,i(kc + 1) = θm,0(kc)uvsl,ref,m(kc)

+ θm,1(kc)fm,1

(
vc,m,i(kc), vc,m,i+1(kc)

)

+ θm,2(kc)fm,2

(
ρc,m,i(kc), ρc,m,i+1(kc)

)
(6.4)

whereuvsl,ref,m(kc) is the reference speed that can be either the maximum allowedspeed
limit of the link or the speed limit that is currently being displayed on the speed limit board,
fm,1(·) andfm,2(·) are state feedback functions that relate respectively the speeds and den-
sities to the variable speed limit control, andθm,0(kc), θm,1(kc), andθm,2(kc) are time-
dependent parameters that parametrize the speed limit control signals. In the sequel we
provide a specific example of the speed limit controller given in (6.4).

Speed limit controller

The speed limit controller presented in (6.4) is general. The functionsfm,1(·) andfm,2(·)
could be defined in different ways. In the sequel, the two functions are defined by consider-
ing the relative difference of the corresponding variablesof the functions. This is motivated
by the reason that if for a certain performance level the reference speed of a link of a freeway
is determined, the controller has to seek a way to minimize the speed difference between
the segments and the reference speed. However, since the traffic states in the preceding
segments also affect the traffic states of an actual segment,then the traffic states of the pre-
ceding states also have to be considered in the speed limit control laws. In this context, the
functionfm,1(·) is defined as the relative-speed difference of a segment withrespect to the
speed of downstream segment, and the functionfm,2(·) is defined as the relative-density
difference of a segment with respect to the density of downstream segment. Thus,

fm,1(vc,m,i(kc), vc,m,i+1(kc)) =
vc,m,i+1(kc) − vc,m,i(kc)

vc,m,i+1(kc) + κv
, (6.5)

fm,2(ρc,m,i(kc), ρc,m,i+1(kc)) =
ρc,m,i+1(kc) − ρc,m,i(kc)

ρc,m,i+1(kc) + κρ
, (6.6)

whereκv andκρ respectively denote the minimum non-zero speed and densitymodel pa-
rameters. Moreover, the variablesvc,m,i(kc), vc,m,i+1(kc), ρc,m,i(kc), andρc,m,i+1(kc)
represent the traffic variables of segmenti andi + 1 of link m at the control time stepkc.
However, if the speed limits are going to be applied for a group of segments, these variables
should be the average of the traffic state variables of the segments grouped together, because
since the speed limits determined by the control laws are going to be applied for the entire
group, then the values of the speed limits have to be determined based on the average traffic
states of the segments in the group.

In this thesis, the reference speeduvsl,ref,m(kc) in (6.4) is chosen to be constant inde-
pendent of time and it is taken to be equal to the maximum speedlimit vfree,m of the given
link. So, depending on the performance criterion of the RHPCcontroller, the parameter
θm,0(kc) corresponding to the reference speed can be optimized such that the reference
speed that results in better performance can be set. Therefore, the control policies have to
systematically harmonize the traffic flow (by minimizing thedifference in speed and density
of neighboring segments of a link) while at the same time pushing the speed limits towards
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the reference speed (θm,0(kc)vfree,m). Now, the RHPC speed limit control law becomes

uvsl,m,i(kc + 1) = θm,0(kc)vfree,m + θm,1(kc)
vc,m,i+1(kc) − vc,m,i(kc)

vc,m,i+1(kc) + κv

+ θm,2(kc)
ρc,m,i+1(kc) − ρc,m,i(kc)

ρc,m,i+1(kc) + κρ
. (6.7)

The proposed controller has only

• 3 parameters (if the first option of Section 6.2 is used),

• 3 × Np parameters1 (if the second option of Section 6.2 is used), and

• between3 and3 × Np parameters (if the third option of Section 6.2 is used)

to be optimized at every control time stepkc in the RHPC control strategy. This means that
this speed limit controller can reduce the computation timeif it is used with a freeway link
with at leastN independent variable speed limits such that theN × Np is larger than the
number of parameters in either of the three possible optionslisted above.

Usually, the speed limits are constrained. Maximum allowable speed limits are set for
safety reasons, while the lower speed limits are set such that displaying speed limits below
the lower limit does not have any physical advantage. For example, a freeway speed limit
of 20 km/h is not useful as a speed limit lower than40 km/h is considered congested traffic.
These upper and lower bounds of the speed limits can also be described as constraints for
the parameters of the control policies. This can be recast as

[
vfree,m fm,1(·) fm,2(·)
−vfree,m −fm,1(·) −fm,2(·)

]




θm,0(kc)
θm,1(kc)
θm,2(kc)



 ≤

[
Vu,m

−Vl,m

]

(6.8)

whereVl,m andVu,m are respectively the lower and upper speed limits.

6.3.2 RHPC for ramp metering control

The design of an RHPC controller for ramp metering is similarto the way the RHPC variable
speed limit controller is designed. In the case of ramp metering control, the main goal of the
controller is to increase the traffic performance level (e.g., throughput, emissions, etc.) of
the on-ramp without affecting the traffic flow in the freeway.The on-ramp flow is basically
dependent on the current densityρm,1(k) of the freeway segment and the critical density
ρcr,m of the freeway link (see Fig. 6.4). When the density of the freeway link is below the
critical density, the traffic flow can move freely if the downstream traffic is unrestricted.
However, as the density of the first segment of linkm (of Fig. 6.4) approaches the critical
density (which is the meta-stable state of the traffic system) any small disturbance can create
a traffic jam (see also Fig. 2.2). Hence, the ramp metering control signal has to take this
effect into account. In view of this, a ramp metering controlthat is affine with respect to the
time dependent parameterθ3,m(kc) is proposed and it reads as

ur,m(kc + 1) = ur,ref,m(kc) + θm,3(kc)fm,3

(
ρc,m,1(kc), ρcr,m

)
(6.9)

1Recall thatNp is the prediction horizon.
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Figure 6.4: Freeway on-ramp.

for k = M2kc, whereur,ref,m(kc) is the reference ramp metering rate andfm,3(·) is a
user-defined mapping.

The reference ramp metering rateur,ref,m(kc) can be either the maximum rate that re-
sults in desired flow or the currently applied metering rate.One possible specific on-ramp
controller is presented in the sequel.

On-ramp controller

With similar reasoning as in (6.5) and (6.6), for the on-rampcontrol, this thesis considers
the RHPC ramp metering control law

ur,m(kc + 1) = ur,m(kc) + θm,3(kc)
ρcr,m − ρc,m,1(kc)

ρcr,m
. (6.10)

In this RHPC ramp metering controller, the referenceur,ref,m(kc) is taken to be the
currently applied ramp metering rate. The idea behind the structure of the controller is
the same as that of ALINEA [149]. In the RHPC approach, the parameterθm,3(kc) is
updated every control time step and it is optimized on-line,while in ALINEA the parameter
is optimized off-line and is constant irrespective of the prevailing traffic conditions.

Note, however, that ALINEA is a special case of the on-ramp controller presented in
Section 6.3.2. One can obtain the ALINEA on-ramp controllerfrom (6.10) by setting
θm,3(kc) = K (a constant gain parameter).

Similar to the speed limit control, the constraint on the on-ramp metering rate can be
translated to a constraint on the parameterθm,3(kc): the constraint0 ≤ ur,m(kc + 1) ≤ 1
can be recast as

[
fm,3(·)
−fm,3(·)

]

θm,3(kc) ≤

[
1 − ur,ref,m(kc)

ur,ref,m(kc)

]

. (6.11)

6.4 Reduction of area-wide emissions

Now the RHPC traffic controller discussed above is illustrated with two case studies. In
these case studies, the reduction of travel time, emissions, and dispersion of emissions using
variable speed limits and ramp metering as traffic control measures are presented. The two
traffic control measures are generated using the control laws given in (6.7) and (6.10).

Both case studies presented below use the macroscopic traffic flow model METANET
described in Section 2.3 and the macroscopic emission and fuel consumption model VT-



6.4 Reduction of area-wide emissions 127

Target zone (0.04 km2)

2 km

6060 505070 70 9090

ϕ(k)

Vw(k)

Seg.1 Seg.2 Seg.5 Seg.6 Seg.12

. . .

. . .. . .
. . .

1 km

5 km

12 km

Figure 6.5: A12 km freeway with12 variable speed limits and1 on-ramp for Case study
E.

macro proposed in Section 3.4. The first case study in Section6.4.1 uses the point-source
emission dispersion model, while the second case study in Section 6.4.2 uses the extended
grid-based dispersion model discussed respectively in Section 4.2 and Section 4.3.1.

6.4.1 Case study E: Using a point source model

In this case study, the RHPC controller uses the point-source emission dispersion model
with variable wind speed and wind direction. The case study illustrates the proposed control
approach by considering the same12 km three-lane freeway stretch as in Case study D of
Section 5.5.2. The layout of the case study is repeated in Fig. 6.5 for convenience. The
freeway is divided into12 equal segments with an on-ramp at the sixth segment from the
left (see Fig. 6.5) and each segment is provided with a variable speed limit. Moreover, a
target is located at a distance2 km from the freeway as shown in the figure.

Like in Case study D of Section 5.5.2, the freeway in this casestudy is also subject to a
wind with speed and direction given by

Vw(k) = 7 + 2 sin(0.005πk + π/6) sin(0.01πk) (6.12)

ϕ(k) =
2π

5
+

π

4
cos(0.004πk) (6.13)

where the wind speedVw(k) is expressed in m/s and the wind direction (angle)ϕ(k) in
radians.

The evolution of the wind speed and wind direction is shown inFig. 6.6. The demand
profile of the traffic at the mainstream and on-ramp origins isalso the same as in Case study
D, and is shown in Fig. 6.7. Moreover, the downstream traffic is assumed to be unrestricted.

In this case study, different scenarios with different control objectives are simulated.
First, the uncontrolled Scenario S1 is simulated. This scenario is considered as the bench-
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mark to compare the performance of the RHPC controller underfour different control ob-
jectives. The control objectives of the RHPC controller aredefined by varying the weights
of the cost function presented in (5.16). Accordingly, fourcombinations (corresponding to
four controlled scenarios) as listed next are examined. In all the cases, the weight corre-
sponding to the variation of the control inputs is set asζ5 = 0.01, because the emphasis
on the variation of the control inputs is required to be less as compared to the travel time,
emissions, or dispersion of emissions.

S2: Focuses on the reduction of the total time spent (TTS). This is obtained by setting
ζ1 = 1, ζ2 = ζ3 = ζ4,MDL = ζ4,TDL = 0, and all the weightsµ(·) for the emissions
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Table 6.1: Simulation results for uncontrolled and controlled scenarios for the Case study
E. The values in the brackets indicate the relative change ofthe performance
criteria as compared to the uncontrolled Scenario S1. Negative values indicate
a decrease (i.e., an improvement) in the value of the performance criteria, while
positive values indicate an increase in the value of performance criteria as com-
pared to the uncontrolled scenario.

Scenarios
Performance Criteria

TTS [veh·h] TE [kg] MDL [µg/m2]

S1: Uncontrolled 1362.1 127.5 163.2
S2: TTS 875.3 (−36%) 145.4 (+14%) 196.9 (+25%)
S3: TE 1590.3 (+17%) 66.4 (−48%) 100.0 (−37%)
S4: MDL 1509.0 (+11%) 70.8 (−44%) 101.2 (−36%)
S5: 10TTS + TE + 5MDL 874.1 (−36%) 120.3 ( −6%) 194.4 (+23%)

and fuel consumption are zero.

S3: Minimizes the total emissionsTE (CO, HC, and NOx). In this caseζ1 = ζ3 =
ζ4,MDL = ζ4,TDL = 0, ζ2 = 1, µCO = µHC = µNOx

= 1, andµCO2
= 0.

S4: The controller focuses on the reduction of the maximum dispersion level (MDL) in
the target zone as defined in (5.10). This is obtained by setting ζ1 = ζ2 = ζ3 =
ζ4,TDL = 0, ζ4,MDL = 1, µCO = µHC = µNOx

= 1, µCO2
= 0, µd,CO = µd,HC =

µd,NOx
= 1, andµd,CO2

= 0.

S5: The combination of travel time, emissions, and dispersion of emissions to the target
zone is considered. In this scenario the weights are set asζ1 = 10, ζ2 = 1, ζ3 =
ζ4,TDL = 0, ζ4,MDL = 5, µCO = µHC = µNOx

= 1, µCO2
= 0, µd,CO = µd,HC =

µd,NOx
= 1, andµd,CO2

= 0.

The simulation was conducted for1 h and the tuning parameters of the RHPC controller
are set exactly the same as that of the conventional MPC controller used in Section 5.5.2,
i.e.,Tc = 2 min, Np = 7 (corresponding to14 min), andNc = 5 (corresponding to10 min)
with simulation time step sizeT = 10 s. The simulation results of the uncontrolled and con-
trolled scenarios are given in Table 6.1. Table 6.1 also provides the relative changes of the
performance criteria in the controlled scenarios as compared to the uncontrolled scenario.
These relative changes are computed using

Ip =
pcontrolled − puncontrolled

puncontrolled
× 100% (6.14)

wherepuncontrolled denotes the value the performance criteriap ∈ {TTS,TE,MDL} for
the uncontrolled scenario andpcontrolled is the value of the performance criteriap for the
controlled scenarios.

As can be seen from the table, when the objective of the RHPC controller is set to re-
ducing either the total emissions (Scenario S3) or the dispersion level (Scenario S4), the
travel time increases by more than11% relative to the uncontrolled Scenario S1. Both the
dispersion level and the total emission are reduced by more than44% and36% respectively
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Figure 6.8: Evolution of average speedvav(k) and average densityρav(k) over all the seg-
ments of the freeway for uncontrolled and controlled scenarios of Case study
E.

as compared to the uncontrolled scenario. This is so becausewhen the RHPC controller is
focusing on the reduction of total emissionsTE of the freeway or the dispersion levelMDL
over the target area, the speed of the traffic is reduced (see Fig. 6.8). This means that the
travel time is increased. An important point to notice here is the difference inTTS when
the objective of the controller is to reduce eitherTE only orMDL only. When the focus of
the RHPC controller is on theTE, theTTS becomes worse than when the objective of the
controller is to reduceMDL (see Scenarios S3 and S4 in Table 6.1). This is because of the
fact that when the controller is focusing on the reduction ofTE, it will reduce the total emis-
sions caused by all vehicles over the whole traffic network. However, when the intention
of the controller is to reduce the dispersionMDL at the target area, it only focuses on the
reduction of the emissions caused by vehicles in those partsof the traffic network that affect
this particular target. Thus, the parts of the traffic network that do not cause emissions that
affect the target area are allowed to have better traffic flow when the focus of the controller
is on reducing theMDL. As it has been pointed out in Section 5.5.2, in general, theMDL
is expected to be lower when the objective of the controller is reducingMDL than when
the objective of the controller is reducingTE. However, the results in Table 6.1 show the
opposite. This can happen for two possible reasons discussed in Remark 5.3 for Case Study
D.

The evolution of the dispersion level at the target zone is presented in Fig. 6.9. The figure
depicts the total dispersion for different control objectives. It shows that the dispersion level
becomes higher than in the uncontrolled case if the control objective is to reduceTTS or the
combination ofTTS, TE, andMDL (see also Table 6.1). This is probably due to the higher
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Figure 6.9: Evolution of dispersion levels in target zone for the uncontrolled and the con-
trolled scenarios of Case study E.

average traffic speed shown in Fig. 6.8, because higher traffic speeds favor traffic flow while
they have a negative impact on emissions. Thus, the dispersion level becomes higher as the
travel time gets lower as a result of increased traffic speed.It is also important to note that
in this case study theTE has decreased whileMDL has increased under Scenario S5, which
indicates that reduction of emissions may not necessarily mean reduction of the dispersion
level to a target zone.

Finally, Fig. 6.10 depicts the evolution of the emissions ofthe freeway over time. The
variation of the emissions in Fig. 6.10 and the dispersion level in Fig. 6.9 show different
characteristics due to two reasons. One, due to the locationof the freeway segments relative
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Figure 6.10: Evolution of emission levels of the freeway forthe uncontrolled and the con-
trolled scenarios of Case study E.

to the target, the emissions do not necessarily reach the target location fromall segments.
Second, due to the variation of the wind speed and wind direction, the dispersion of the
emissions of the segments that affect the target varies. This phenomenon is observed in
Fig. 6.9. At around0.3 h the dispersion level is zero. This is the time range where none of
the segments disperse emissions to the target location. This zero dispersion-level window in
Fig. 6.9 is also due to an intrinsic shortcoming of the point-source dispersion model. Since
the centers of the segments of the freeway are considered as the emission sources with the
point-source dispersion model, at high wind speeds the dispersion cones will be narrow so
that the regions between the dispersion cones of the segments may not encounter emissions
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Figure 6.11: A12 km three-lane freeway stretch considered for the Case studyF. Each cell
in the grid is200 m by200 m.

in the model (whereas in reality they do). Under such cases the dispersion level experienced
by the target zone can become zero.

6.4.2 Case study F: Using extended grid-based dispersion model

In this case study, the extended grid-based dispersion model presented in Section 4.3.1 is
used to predict the dispersion of the emissions to a target zone. The traffic flow and emission
models are the same models as that of the first case study reported in Section 6.4.1. Fig. 6.11
shows a12 km three-lane freeway stretch, which is the same as freeway considered in Case
study E of Section 6.4.1. As in Case study E, the freeway shownin Fig. 6.11 is divided into
12 segments with each of length1 km and equipped with a variable speed limit. Only the
sixth segment of the freeway has a metered on-ramp.

A time-varying traffic demand is assumed at the on-ramp and mainstream origins as
shown in Fig. 6.7. The traffic flow at the end of the mainstream is considered to be un-
restricted. Moreover, the neighborhood of the freeway is considered to be flat with no
obstructions and is subject to varying wind speed and wind direction. For this case study,
the wind speed and wind direction are the same as given in (6.12) and (6.13), which are
depicted in Fig. 6.6.

Since this case study also takes into account the dispersionof emissions to a target
zone, a target zone that is1 km away from the middle of the segment with the on-ramp (see
Fig. 6.11) is considered. The target zone has an area of400 m×400 m. Moreover, since
the extended grid-based dispersion model is employed, the neighborhood of the freeway is
meshed into a grid of square cells of dimension200 m as shown in Fig. 6.11. This means that
there are12 000 m/200 m= 60 cells along the freeway stretch and5 cells from the center
of the freeway to the center of the target zone. This means that 5 × 60 = 300 emission
dispersion states have to be updated every simulation time step.

As a performance measure of the RHPC controller, the multi-objective function defined
in (5.16) is used. To quantify the performance of the controller under different controlled
scenarios, the results of the controlled scenarios are compared to the uncontrolled situation.
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Table 6.2: Simulation results for the uncontrolled and the controlled scenarios of Case study
F. The values in the brackets indicate the relative change ofthe performance
criteria as compared to the uncontrolled Scenario S1. Negative values indicate
a decrease (i.e., an improvement) in the value of the performance criteria, while
positive values indicate an increase in the value of the performance criteria as
compared to the uncontrolled scenario.

Scenarios
Performance Criteria

TTS [veh·h] TE [kg] MDL [µg/m2]

S1: Uncontrolled 1362.1 127.5 137.6
S2: TTS 860.5 (−37%) 140.9 (+11%) 145.2 ( +6%)
S3: TE 1618.1 (+19%) 66.1 (−48%) 96.4 (−30%)
S4: MDL 1613.2 (+18%) 70.7 (−45%) 93.5 (−32%)
S5: 10TTS + TE + 5MDL 1528.7 (+12%) 77.5 (−39%) 119.2 (−13%)

In all the controlled scenarios considered, the weight corresponding to the variation of the
control inputs is set asζ5 = 0.01, so that less emphasis is given to the minimization of
the variation of the control inputs than the other traffic performance measures. Moreover
the weights of the emissions are setµCO = µHC = µNOx

= 1 andµCO2
= 0 so that

equal weight is given to CO, HC, and NOx; and CO2 is not taken into account. Note
that since there is an affine relationship between fuel consumption and CO2 as described
in Section 3.2 reduction of CO2 or fuel consumption would mean almost the same. In
addition, the same emission gases are also considered for the dispersion cost function, i.e.,
µd,CO = µd,HC = µd,NOx

= 1 andµd,CO2
= 0.

For the RHPC-controlled scenarios, the control objectivesare set to reduce:

S2: The total time spentTTS, which is obtained by settingζ1 = 1 and ζ2 = ζ3 =
ζ4,MDL = ζ4,TDL = 0 of the general control objective given in (5.16),

S3: The total emissionsTE obtained by settingζ2 = 1 and ζ1 = ζ3 = ζ4,MDL =
ζ4,TDL = 0 of (5.16),

S4: The maximum dispersion levelMDL obtained withζ4,MDL = 1 andζ1 = ζ2 = ζ3 =
ζ4,TDL = 0 of (5.16), and

S5: The weighted combination of theTTS, TE, andMDL with ζ1 = 10 andζ2 = 1,
ζ3 = ζ4,TDL = 0, ζ4,MDL = 5 of the general control objective given in (5.16).

The simulation period is1 h with a simulation time step ofT = 10 s. The predic-
tion horizon and the control horizon are set toNp = 14 min andNc = 10 min with
the control time stepTc = 2 min. Under the uncontrolled scenario, the free-flow speed
vfree,m = 120 km/h is used. The simulation results are shown in Table 6.2, Fig. 6.12, and
Fig. 6.13. Table 6.2 provides the value of the performance criteria and relative changes of
the performance criteria of the controlled scenarios as compared to the uncontrolled sce-
nario. These values are computed using the expression in (6.14).

As can be seen from the Table 6.2 and Fig. 6.12 both the total emissions and the dis-
persion levels are worse if the objective of the controller is to reduce theTTS. Indeed the
TTS is reduced by37%. However, when the objective function of the RHPC controller is
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Figure 6.12: Evolution of dispersion levels at the target zone for uncontrolled and RHPC-
controlled scenarios of Case study F.

set eitherTE or MDL, theTTS increases by at least18% while theTE and theMDL are
reduced by more than30%. For those cases (Scenarios S1 to S5) Fig. 6.12 also shows the
evolution of the dispersion levels at the target zone. When the objective of the controller
is eitherTE or DL, the dispersion levels are lower than the uncontrolled and the TTS-
controlled scenarios for almost all of the simulation time.The dispersion levels of all the
cases are the same only at the beginning (about4 min after the simulation—the time the
emissions take to reach the target zone) where the initial traffic conditions are the same for
all the scenarios. Differences are created after the controller starts influencing the traffic
flow.
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The last scenario, where a weighted combination of the performance criteria is defined
as the objective of the RHPC controller, shows that the controller provides a balanced trade-
off between total time spent, total emissions, as well as maximum dispersion levels of the
emissions. In fact, the travel time is worsened compared to the uncontrolled scenario and to
theTTS-controlled scenario. But it is better as compared to the scenarios where the control
objectives areTE andMDL.

The space-time evolution of the space-mean speeds under theuncontrolled and con-
trolled scenarios are also plotted in Fig. 6.13. These plotsshow the effect of the different
traffic control performance measures on the space-mean speed of the traffic flow. Under
the uncontrolled scenario, two shock waves are observed. These shock waves are resolved
when the objective of the RHPC controller is minimizingTTS, which results in reduced
travel time. However, then the emission and dispersion levels are high, which is consistent
with the fact that higher speeds favor flow while negatively impact the emissions. On the
contrary, the space-mean speed is lower than in the uncontrolled and theTTS-controlled
scenarios when the objective of the RHPC controller is either TE or MDL. The space-
mean speed is slightly improved when the objective of the RHPC controller is the weighted
sum ofTTS, TE, andMDL as in Scenario S5, resulting in improved traffic flow at the cost
of increased emissions and dispersion levels as compared toScenarios S3 and S4 (see also
Table 6.2).

6.5 Conclusions

Since the computational demand of conventional MPC makes itintractable in practice, a
new parametrized MPC approach called Receding-Horizon Predictive Control (RHPC) has
been presented in this chapter. The general concept and general formulation of RHPC have
been discussed. Unlike conventional MPC, RHPC optimizes a set of parameters that de-
scribe control laws in such a way that a given objective function is minimized. Since the
number of parameters used for the description of the controllaws is smaller than the control
inputs, the computation time of RHPC is smaller as compared to conventional MPC which
directly optimizes the control inputs. However, it has beendiscussed that the performance
of the RHPC controller can be reduced as the number of controlinputs described by the
same parameters increases.

As an example the speed limits and ramp metering traffic control measures have been
formulated in this control approach. Under different options, the theoretical background
why the RHPC controller can be faster than the conventional MPC is elaborated. Simulation-
based comparisons of these controllers will be presented inthe next chapter.

This chapter has also demonstrated the use of RHPC for the reduction of travel time,
emissions, and dispersion of emissions to a target zone using two case studies. The first
case study (Case study E) has used the point-source dispersion model and the second case
study (Case study F) has used the extended grid-based dispersion model. For both case
studies time-varying traffic demand and wind have been considered. These case studies
illustrate that the RHPC controller can provide a balanced trade-off between travel times,
emissions, and dispersion of emissions to a given target zone.
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Chapter 7

Conventional MPC versus RHPC

I
n the last two chapters, Chapter 5 and Chapter 6, the conventional Model Predictive
Control (MPC) and the Receding-Horizon Parametrized Control (RHPC) approaches
have been discussed. These two control approaches have beenillustrated with a num-
ber of case studies to reduce travel times, emissions, fuel consumption, and dispersion

of emissions to target zones. Moreover, the ability of the control approaches to provide a
balanced trade-off between these conflicting control performance criteria has been demon-
strated.

However, in neither of the two chapters, the computation time of the controllers for the
different cases were presented. Furthermore, the performance indicators of the controllers
were not compared. Therefore, the two control approaches are compared in detail in this
chapter. The computation time required by the two control approaches under the same traffic
conditions is presented. The performance of the controllers for different control objectives
are compared.

In this chapter, first a general qualitative comparison of the controllers is discussed in
Section 7.1. This section highlights the challenges for theoretical comparison of conven-
tional MPC (designated as cMPC hereafter) and RHPC and it sheds light on future research
directions in this area. Next, two case studies are considered to compare the cMPC and the
RHPC controllers. The first case study, Section 7.2, presents the comparison of the cMPC
and RHPC controllers using a part of the A12 Dutch freeway. The traffic performance cri-
teria and the computation time of the two controllers are discussed. In Section 7.3, further
comparison of the cMPC and RHPC controllers is conducted using the traffic scenario de-
scribed in Section 6.4.2. In this second case study, in addition to the travel time and the
emissions, the dispersion of emissions to a target zone is also considered as the control
performance criterion. Finally, the conclusions of the chapter are given in Section 7.4.

7.1 Qualitative comparison of controllers

Both the cMPC controller and the RHPC controller require thefive basic elements of MPC
discussed in Section 5.1, i.e., system and disturbance modeling, performance criterion, de-
scription of constraints, optimization, and the receding horizon principle. In general, the
utilization of these concepts makes the RHPC controller andthe cMPC controller similar.

139
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Figure 7.1: Control space of the cMPC controller and the RHPCcontroller provided that
the number of the control inputs is larger than the number of parameters of the
control laws of the RHPC controller and ifTc = Tc,i andNc = Np.

In the RHPC approach, whether the control horizon is large orsmall, the actual control
inputs (the variable speed limits and the ramp metering rates for example) can in general
always vary for every control time step over the entire prediction horizon. This is because
of the fact that the control laws in the RHPC controller are dependent on the state of the
system. Thus, as far as there is variation in the state of the system, the control inputs vary
according to the control laws provided that the parameters of the control laws are non-zero.
However, this is not the case when the cMPC controller is used. Based on the size of the
control horizon and the blocking introduced, the variationof the control inputs can differ.
For example, if the control horizon is set toNc = 1, the control inputs cannot vary over the
prediction horizon if one uses the cMPC controller, while they can if one uses the RHPC
controller.

However, there is one catch. Since at every control time stepkc the RHPC controller
describes the control inputs based on control laws with a number of parameters that is less
than the number of the control inputs, the dimension of the control input space of RHPC is
less than the dimension of the control input space of conventional MPC.Therefore, ifTc =
Tc,i andNc = Np, the possible input space of the RHPC approach over the prediction period
might be limited as compared to the cMPC approach. This is illustrated in Fig. 7.1. Thus,
if the number of the parameters of the RHPC control laws is smaller than the number of the
control inputs and ifTc = Tc,i andNc = Np, the control space of the RHPC controller over
the prediction period will be a subset of the control input space of the cMPC controller (see
also Fig. 7.1). However, ifTc 6= Tc,i or Nc 6= Np, the optimal control input spaces of the
two controller may or may not have common point. Hence, depending on the control laws
of the RHPC controller, the intersection of the control input space of the RHPC controller
and the optimal control input space of the cMPC controller can be anything. Due to this
fact, a general comparison of the two controllers becomes difficult.

Under the condition thatTc = Tc,i andNc = Np, the RHPC control law of the speed
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limit defined in (6.7) can be compactly recast as

uvsl,RHPC,m,i(kc + j) = z⊤m,i(kc + j)θm(kc + j) (7.1)

for j = 0, 1, 2, . . . , Np − 1, whereuvsl,RHPC,m,i(kc) is the variable speed limit of segment
i of link m obtained using the RHPC controller,zm,i(kc) = [vfree,m fm,1(·) fm,2(·)]

⊤, and
θm(kc) = [θm,0(kc) θm,1(kc) θm,2(kc)]

⊤.
Now, at every control time stepkc and over the prediction period[Tckc, Tc(kc+Np−1)],

all speed limitsuvsl,RHPC,m,i(kc + j) described by the same parameter vectorθm(kc + j)
can be concatenated as








Uvsl,RHPC,m(kc)
Uvsl,RHPC,m(kc + 1)

...
Uvsl,RHPC,m(kc + Np − 1)








︸ ︷︷ ︸

Uvsl,RHPC,m(kc)

=








Zm(kc) 0 . . . 0
0 Zm(kc + 1) . . . 0
...

...
. ..

...
0 0 . . . Zm(kc + Np − 1)








︸ ︷︷ ︸

Z⊤
m(kc)

Θm(kc) (7.2)

whereUvsl,RHPC,m(kc)=[uvsl,RHPC,m,1(kc) uvsl,RHPC,m,2(kc) . . . uvsl,RHPC,m,Nvsl
(kc)]

⊤

Θm(kc) = [θ⊤m(kc) θ⊤m(kc+1) . . . θ⊤m(kc+Np−1)]⊤, Zm(kc) = [zm,1(kc) zm,2(kc) . . .
zm,Nvsl

(kc)]
⊤, andNvsl is the number of speed limits that are described by the same pa-

rameter vectorθm(kc + j).
The control input space of RHPC is equal to that of conventional MPC, if for any vector

Uvsl,cMPC,m(kc) in the control input space of conventional MPC, one can find a vector
Θm(kc) that solves the following equation

Uvsl,cMPC,m(kc) = Uvsl,RHPC,m(kc) = Z⊤
m(kc)Θm(kc). (7.3)

Note thatZm(kc) in fact depends on the control inputs that are applied over the predic-
tion horizon. Hence, for everyUvsl,cMPC,m(kc), the value ofZm(kc) can be determined.
Therefore, if for theZm(kc) corresponding toUvsl,cMPC,m(kc) we have

Rank
(

Zm(kc)
)

= Rank
([

Z⊤
m(kc)

∣
∣
∣Uvsl,cMPC,m(kc)

])

, (7.4)

then (7.3) has a solutionΘ∗
m(kc). In such cases, the performance of the conventional MPC

JcMPC(U∗
vsl,cMPC,m(kc)) and the performance of the RHPC controllersJRHPC(Θ∗

m(kc))
are equal.

However, if the rank condition in (7.4) is not satisfied, the control inputs generated by
the RHPC controller will not be able to reach the full controlinput space of the cMPC
controller. This will in general negatively impact the performance of the RHPC controller.

In general, the performance of the cMPC controller and the performance of the RHPC
controller have to be compared using the value of the controlobjective given in (5.16)
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Figure 7.2: Schematic representation of the part of the Dutch A12 freeway considered for
Case study G. The map of the freeway is also depicted in Fig. 3.6.

under the two control schemes. However, even if the control objectives are equal (i.e.,
JcMPC(U∗

vsl,cMPC,m(kc)) = JRHPC(U∗
vsl,RHPC,m(kc))), it does not necessarily imply that

the control inputs generated using the conventional MPC andthe RHPC controllers are
equal (i.e., it does not mean thatU∗

vsl,cMPC,m(kc) = U∗
vsl,RHPC,m(kc)) unless the rank

condition in (7.4) is satisfied andZm(kc) is a full column rank matrix. This is due to two
reasons: first, since the objective function of the controllers are non-linear and non-convex
with respect to the control inputs, then the optimization problem can have multiple possible
global minima, second even if the minimum of the control objective function is unique
and the rank condition in (7.4) is satisfied, multiple valuesof Θm(kc) are possible in case
Zm(kc) is not of full column rank. Hence, in general qualitative comparison of the RHPC
controller and the cMPC controller is not possible, and therefore, in this thesis, case studies
are used to compare the performance of the cMPC and the RHPC controllers. Although the
case studies cannot generalize on the comparison of the two control approaches, the results
can provide an understanding on the performance of the control approaches.

7.2 Case study G: Reduction of travel times and emissions

In this case study, the cMPC and the RHPC control approaches are applied to reduce the
travel time and emissions with different weights for both criteria. The two control ap-
proaches, cMPC and RHPC, are compared to each other and to theuncontrolled scenario.

7.2.1 Set-up of the case study

The freeway stretch considered for this case study is a part of the Dutch A12 freeway going
from the connection with the N11 at Bodegraven up to Harmelen, and is shown in Fig. 3.6.
The schematic representation of the freeway is depicted in Fig. 7.2. The freeway has three
lanes in each direction. In this case study, the traffic flow inthe direction from left to right
of Fig. 7.2 is simulated. The part of the A12 freeway that is considered is approximately
14650 m long and it has two on-ramps (near Waarder and Woerden) and three off-ramps
(near Waarder, Woerden, and Harmelen). The stretch is equipped with double-loop detec-
tors at a typical distance of500 m to 600 m, measuring the average speed and flow every
minute. It has24 segments, each of which is equipped with a dynamic speed limit.

In [79] real-life data of the part of A12 freeway described above has been used to cali-
brate a METANET model. In this case study, the parameters that have been obtained in [79]
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Figure 7.3: Time-varying demand profile for the main-streamand on-ramp origins of the
A12 freeway considered in Case study G.

are used. The parameters of the freeway as obtained in [79] are listed in Appendix A.2.
A time-varying demand at the mainstream origin and at on-ramp origin is considered.

The demand profile for a duration of one hour is shown in Fig. 7.3. With the given traffic
demand, the traffic flow on the freeway in the uncontrolled case evolves as shown in Fig. 7.4.
The spatial-temporal profile of the space-mean speed and thedensity of the traffic show a
shock wave created at the beginning of the simulation at the20th segment counted from
the origin of the freeway. The shock wave propagates till the2nd segment before it gets
dissolved at0.8 h.

Under this (uncontrolled) scenario, the total time spent bythe vehicles is1045.8 veh·h
and the total emissions of the traffic flow is219.5 kg. In the subsequent simulations these
values will be used as a benchmark and as nominal values of theperformance measures.

7.2.2 Control objective

A general weighted-sum control objective has been given in (5.16). In this case study, since
the travel time and emissions are considered as the performance criteria to compare the
cMPC controller and the RHPC controller, the weights of the control objective are set as
ζ3 = ζ4,MDL = ζ4,TDL = 0 , ζ5 = 0.01, andµCO = µHC = µNOx

= 1, andµCO2
= 0.

By varying the weightsζ1 andζ2 different controlled scenarios with different emphasis on
TTS andTE are considered. For the fixed values ofζ3, ζ4, andζ5 listed above the control
objective of the cMPC and the RHPC controllers reads as

J(kc) = ζ1
TTS(kc)

TTSn
+ ζ2

TE(kc)

TEn
+ 0.01

U∆(kc)

U∆,n
(7.5)

where the nominal (normalization) valuesTTSn, TEn, andU∆,n are the values when no
controller is implemented (see Section 7.2.1).
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Figure 7.4: Traffic states of the A12 freeway of Case study G for the traffic demand in
Fig. 7.3 and when no controller is implemented. The arrows indicate the driving
direction.

The total time spentTTS(kc) is determined using (5.5), the total emissionsTE(kc)
is obtained using the macroscopic emission model given in (5.8), and the variation of the
control inputU∆(kc) for both control approaches is determined using (5.13) withµs =
(8Npv2

step)−1, µcs = (7Npv2
step)−1, andµr = (2Np)−1 for vstep = 10 km/h.

For the controlled scenarios discussed below, the24 speed limits of the freeway stretch
are coupled in groups of3, where each speed limit control in the group is assigned the same
value (see Fig. 7.2). Thus, there are8 variable speed limit values. Moreover,2 ramp meters
are controlled independently. This means that there are10 control variables (8 speed limit
values and2 ramp metering rates) for both the cMPC controller and the RHPC controller.
The grouping of the speed limits is done so that the computation time of the cMPC controller
can be sped up to a level where the simulation can be finished within a maximum of24 h
while it does not have any effect on the speed of the RHPC controller. Note that when using
the RHPC controller for the grouped speed limits, the statesrequired for the control laws are
the average values of the states of the segments in a group. Inthis way, the RHPC controller
can also result in speed limits that are the same for the segments of a group. Moreover, the
same parameter values are used for the whole freeway stretch.

Moreover, the speed limits are constrained by the upper speed limit Vu,m = vref,m =
120 km/h and the lower speed limitVl,m = 40 km/h. At every control time stepkc, the
optimization problem that minimizes the cost function (7.5) is solved using multi-start Se-
quential Quadratic Programming (SQP) introduced in Section 5.4.3. More specifically,5
initial starting points are used, of which1 is random, while the rest consists of the lower
bounds of the optimization variables, the upper bounds, theaverage of the lower and up-
per bounds, and the one time-step forward-shifted version of the solutions of the previous
optimization step.

For both the cMPC and the RHPC controlled cases, the control time stepTc = 1 min,
the prediction horizonNp = 15 (corresponding to15 min), and the simulation time step
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T = 10 s are used. The control horizonNc = 10 (corresponding to10 min) for the cMPC
controller. For the RHPC controller, since the control lawsgiven in (6.7) and (6.10) under
the first option of the RHPC strategy in Section 6.2.1 is employed, the control horizon is set
Nc = 1 (corresponding to1 min). This means that the number of optimization variables of
the RHPC controller is equal to the number of the controller parameters, i.e.,4 (3 for the
variable speed limits and1 for the ramp metering rates). The number of the optimization
variables of the cMPC controller is10 × Nc = 100.

In this case study, the weightsζ1 and ζ2 are related byζ2 = 10 − ζ1, whereζ1 ∈
{0, 1, 2, . . . , 10}. Therefore,11 possible combinations of theTTS andTE are considered.
The evolution of system states is simulated for1 h. The simulation results are discussed in
the sequel.

7.2.3 Results and discussion

Let us first look at the simulation results of the cMPC and the RHPC controllers when the
control objectives are either onlyTTS, TE, or 9TTS + TE, i.e., when the weights are set
as:

1. ζ1 = 10 andζ2 = 0, i.e., the focus of the controllers is on reducing only the total time
spentTTS.

2. ζ1 = 0 andζ2 = 10: in this scenario the focus of the controllers is on reducingthe
total emissions (TE).

3. ζ1 = 9 andζ2 = 1, i.e., the controllers focus on the reduction of theTTS and the
TE with a different degree of emphasis. This combination should result in a trade-off
between travel time and emissions.

The results of the simulations of these three cases are presented in Table 7.1. The results
give the values of each performance criterion for each control scenario. For comparison
reasons, Table 7.1 also tabulates the results of the cMPC andthe RHPC controllers. It can be
seen that the difference between the performance criteria (TTS andTE) of the two control
approaches is not significant for the three different combinations of weights. However, the
difference in the average computation time (CPU Time) per control time step is significant.
The average computation time step per control time step is computed as the average of all
computation time steps required at every control time step by the controllers to minimize
the given objective function by optimizing the control inputs over the prediction horizon.

Table 7.2 provides the relative performance of the proposedRHPC traffic controller as
compared to the cMPC traffic controller for the three cases presented in Table 7.1. The
relative comparison of the RHPC controller is obtained using the equation

Rc =
cRHPC − ccMPC

ccMPC
× 100% (7.6)

whereccMPC denotes the value of the performance criterionc ∈ {TTS,TE, CPU Time} for
the cMPC controller andcRHPC is the value of the performance criterionc for the RHPC
controller. So a negative value of the relative comparison indicates the RHPC controller
performs better than the cMPC controller and a positive value indicates a worse performance
of the RHPC controller as compared to the cMPC controller.



146 7 Conventional MPC versus RHPC

Table 7.1: Simulation results of the cMPC traffic controllerand the RHPC traffic controller
for Case study G. The CPU time is the average computer computation time re-
quired to compute the control variables in one control time step, where one con-
trol time step isTc = 60 s.

Scenarios Controller
Performance Criteria

TE [veh·h] TE [kg] CPU Time [s]

Uncontrolled — 1045.8 219.5 0.0

TTS
RHPC 841.1 216.9 10.9
cMPC 811.5 230.5 375.2

TE
RHPC 2377.5 82.7 25.7
cMPC 2283.1 92.0 1862.7

9TTS + TE
RHPC 842.7 213.9 40.4
cMPC 807.4 214.0 1809.3

Table 7.2: Relative comparison of the RHPC traffic controller with respect to the cMPC
traffic controller for Case study G. Negative values indicate the RHPC controller
performs better than the cMPC controller and positive values indicate a worse
performance of the RHPC controller as compared to the cMPC controller.

Scenarios
Relative Comparison

Control Performance Criterion CPU Time

TTS +4% −97%
TE −10% −99%
9TTS + TE −2% −98%

As can be seen from Table 7.2, the loss in the performance of the RHPC controller is at
most4% for each case. But, the improvement in the computation timesin all cases is more
than97%.

In Fig. 7.5 the spatial-temporal profile of the space-mean speed and the density of the
traffic flow are presented to compare the performance of the controllers with respect to each
other and the uncontrolled scenario. The shock wave createdat the20th segment from the
origin of the freeway in Fig. 7.4 propagates till the2nd segment before it gets dissolved at
about0.8 h. However, when the system is controlled to reduce theTTS (see Fig. 7.5(a) and
Fig. 7.5(b)) using either the cMPC or the RHPC controllers the shock wave is suppressed at
the very early stage. The profiles of the space-mean speed andthe density generated through
the two controllers (cMPC and RHPC) are almost the same. However, the evolution of the
space-mean speed in the cMPC-controlled case is smoother than in the RHPC-controlled
case. Moreover, the space-mean speed under the cMPC-controlled case is on average higher
than the RHPC-controlled case.

The above comparison of the controllers gives a detailed comparison for three combinations
of the weightsζ1 andζ2 in (7.5). Now, the RHPC and the cMPC controllers are simulated
for several possible weight combinations. In particular, that the relationζ2 = 10 − ζ1,
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(a) TTS controlled using RHPC
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(b) TTS controlled using cMPC

Figure 7.5: Space-mean speed and density profiles of Case study G as a function of time
and space using different controllers. The arrows indicatethe driving direction.

for ζ1 ∈ {0, 1, 2, . . . , 10} is considered. The results of the simulation for the different
weight combinations are depicted in Fig. 7.6. The figure provides the relative change of the
performance criteria, in particularTTS andTE, as compared to the uncontrolled scenario,
which is computed using

Ip =
pcontrolled − puncontrolled

puncontrolled
× 100% (7.7)
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Figure 7.6: Trade-off curve for Case study G, where the objective function
J = ζ1TTS + (10 − ζ1 )TE + 0 .01U∆ for ζ1 = 0 , 1 , . . . , 10 . Each point on
the graph indicates the relative change of theTTS and TE of the controlled
scenarios as compared respectively to theTTS and TE of the uncontrolled
scenario. Negative values indicate a decrease (i.e., an improvement) of the
value of the performance criteria as compared to the uncontrolled scenario and
a positive value indicate an increase of the value of the performance criteria
compared to the uncontrolled scenario.

wherepcontrolled ∈ {TTS,TE} is the performance criteria of either the RHPC controller or
the cMPC controller of the different controlled scenarios andpuncontrolled ∈ {TTS,TE} is
the performance criteria of the uncontrolled scenario.

The figure shows that theTTS can be reduced by a factor of more than19% and theTE
by less than2% when the focus of the RHPC controller is onTTS (ζ1 = 10, ζ2 = 0) only.
With the cMPC controller and the same control objective, thetravel timeTTS is reduced
by more than20% while the emissionsTE increase by more than5%. Moreover, the figure
shows that theTE can be reduced by more than58% if the focus of the two controllers
is on TE (ζ1 = 0, ζ2 = 10) only, but then theTTS increases by more than110%. The
figure also indicates that a reduction of more than30% in emissions can be attained without
significantly affecting the travel time if the relative weight of theTTS is aboutζ1 = 4 while
theTE has a weight ofζ2 = 6 when the controller is RHPC and if the relative weight of the
TTS is aboutζ1 = 2.5 while theTE has a weight ofζ2 = 7.5 when the controller is cMPC.
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Figure 7.7: Computer CPU computation time per every controltime step of the cMPC con-
troller and the RHPC controller of Case study G.

This indicates that the optimal control inputs generated bythe two controllers are different
and that the same weights of the performance measures of the control objectives may not
have the same impact on the performance of the controllers.

Although the trade-off curves generated using the RHPC controller and the cMPC con-
troller are more or less similar, there are important differences when the combinations of
the weights are one ofζ1 ∈ {1, 2, . . . , 7} andζ2 = 10 − ζ1. For these values the RHPC
controller gives better improvement to theTE than the cMPC controller does. But the
cMPC controller results in lowerTTS than the RHPC controller does. In general, however,
one can see that the RHPC controller has somehow comparable performance to the cMPC
controller.

Since the main motivation for the design of the RHPC controller is to reduce the compu-
tation time of the cMPC controller so that the control approach can be tractable in practice,
the average computation time required at every control timestep is also depicted in Fig. 7.7.
As can be seen, for all the weight combinations considered inthis case study, the computa-
tion time of the RHPC controller is below the control time step Tc = 60 s line. This means
that the RHPC controller is feasible in practice for this particular case study. On the contrary,
the computation times of the cMPC controller for all the cases are way above the control
time step, which makes it intractable in practice. Clearly,the computation time of the RHPC
controller and the cMPC controller are very different. However, the gain in the computation
time of the RHPC controller is obtained at the cost of small loss in performance.
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Figure 7.8: A12 km three-lane freeway stretch considered for the Case studyH. Each cell
in the grid is200 m by200 m.

7.3 Case study H: Reduction of dispersion of emissions

In the previous section, a case study that focuses on the reduction of travel times and emis-
sions has been simulated to compare the cMPC and the RHPC controllers. In this section,
another dimension of the performance measure, the dispersion of emissions to a target zone,
is also taken into account.

7.3.1 Set-up of the case study

In this case study, a12 km freeway stretch described in Section 6.4.2 is considered. The
schematic representation of the freeway is again depicted in Fig. 7.8 for convenience. As
in Section 6.4.2, the neighborhood of the freeway is assumedto be flat with no obstructions
and is subject to varying wind speed and wind direction described by

Vw(k) = 7 + 2 sin(0.005πk + π/6) sin(0.01πk) (7.8)

ϕ(k) =
2π

5
+

π

4
cos(0.004πk) (7.9)

where the wind speedVw(k) is expressed in m/s and the wind direction (angle)ϕ(k) in
radians.

Moreover, in order to study the dispersion of the emissions,a target zone of interest that
is 1 km away from the middle of the segment with the on-ramp (see Fig. 7.8) is assumed.
Just as in the case study of Section 6.4.2, the target zone hasan area of400 m×400 m and
the neighborhood of the freeway is meshed into a grid of square cells of dimension200 m
as shown in Fig. 7.8.

The freeway traffic of this case study is modeled using the METANET traffic flow model
of Section 2.3 with the model parameters presented in Section 6.4.2. The VT-macro emis-
sion and fuel consumption model of Section 3.4 is used to model the emissions of the traffic
flow of the freeway. In this section, the dispersion of the emissions to the given target zone
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Figure 7.9: Traffic demand profile at the mainstream origin and the on-ramp origin of Case
study H.
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Figure 7.10: Traffic flow characteristics when no traffic control is applied for the demand
profile depicted in Fig. 7.9 of Case study H. The arrows indicate the driving
direction.

is modeled using the expanding grid-based dispersion model1 of Section 4.3.2, with the
expansion factor̟ = 0.05 (5%) and the vertical dispersion factorγ = 0.1 (10%).

The traffic at the downstream of the traffic flow is considered to be unrestricted. A time-
varying traffic demand both at the mainstream origin and the on-ramp origin is considered.
The demand profile is also the same as the demand used in the case study presented in Sec-
tion 6.4.2. For convenience the demand profile is depicted again in Fig. 7.9. The simulation
period is1 h with a simulation time step ofT = 10 s.

1Note that in Section 6.4.2, the extended grid-based dispersion model discussed in Section 4.3.1 is used.
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7.3.2 Control objective

In all the controlled scenarios of this case study, the performance measure of the cMPC
and the RHPC controllers are defined using the multi-criteria objective function defined in
(5.16). In all the controlled scenarios, the weight for the variation of the control input is set
ζ5 = 0.01. Moreover,ζ3 = ζ4,TDL = 0 so that the controllers do not consider the reduction
of fuel consumption and total dispersion levelTDL. The weights of the emissions are
µCO = µHC = µNOx

= 1 to give equal weight to CO, HC, and NOx; moreover,µCO2
= 0.

The values ofζ1, ζ2, andζ4,MDL are varied depending on the effect the controllers are
required to induce. In particular, the following four different combinations are considered:

S2: [ζ1 ζ2 ζ4,MDL] = [1 0 0], where the controllers focus on the reduction ofTTS only,

S3: [ζ1 ζ2 ζ4,MDL] = [0 1 0], where the controllers focus on the reduction ofTE only,

S4: [ζ1 ζ2 ζ4,MDL] = [0 0 1], where the controllers focus on the reduction ofMDL only,
and

S5: [ζ1 ζ2 ζ4,MDL] = [10 1 1], where the controllers focus on the reduction of10TTS +
TE + MDL.

In all the above scenarios of this particular case study, themaximum dispersion level
MDL is determined using (5.10) withµd,CO = µd,HC = µd,NOx

= 1 andµd,CO2
= 0.

The control time stepTc = 2 min, the prediction horizonNp = 7 (corresponding to
14 min), and the control horizonNc = 5 (corresponding to10 min) are used for both the
cMPC and the RHPC controllers. The RHPC controller used in this case study employs the
third option of the RHPC control concept discussed in Section 6.2.1, i.e., the parameters
of the control laws are allowed to vary only until the controlhorizonNc after which they
are kept constant. Since the optimization problem is non-linear and non-convex, multi-start
Sequential Quadratic Programming (SQP) with8 initial points is used. Four of the initial
points are random, while the rest consists of the lower bounds of the optimization variables,
the upper bounds, the average of the lower and the upper bounds, and one time-step forward-
shifted values of the optimization variables (either the parameters in the case of the RHPC
controller and the control inputs in the case of the cMPC controller).

The values of the performance measures under the uncontrolled condition (Scenario S1)
are taken to be the nominal values used for normalization in the objective function. In the
uncontrolled situation, the traffic demand creates the traffic flow that is characterized by
the density and space-mean speed profiles depicted in Fig. 7.10. Due to high initial traffic
densities at the end of the freeway and high traffic demands atthe on-ramp origin of the free-
way, two shock waves are created that propagate upstream. Under these traffic conditions,
the total time spentTTS is 1362.1 veh·h, the values of the total emissionsTE is 127.5 kg,
and the maximum dispersed emission levelMDL at the target zone is61.6µg/m2. In the
following section these values will also be used as benchmark to evaluate the performance
of the traffic controllers.

7.3.3 Results and discussion

The simulation results for each of the controlled ScenariosS2 to S5 of the two control ap-
proaches (cMPC and RHPC) are compared to each other and to theuncontrolled Scenario
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Table 7.3: Performance criteria for the uncontrolled and RHPC-controlled and cMPC-
controlled scenario of Case study H. The controlled scenarios have the following
control objectives: S2 : TTS, S3 : TE, S4 : MDL, and S5 : 10TTS+TE+MDL.
The CPU Time is the average computer computation time required by the con-
trollers to compute the control variables in one control time step, where one
control time step isTc = 120 s.

Scenarios Controller
Performance Criteria

TTS [veh·h] TE [kg] MDL [µg/m2] CPU Time [s]

S1 : Uncontrolled 1362.1 127.5 61.6 0

S2 :
RHPC 875.8 141.6 78.7 110
cMPC 704.0 147.7 78.3 345

S3 :
RHPC 1611.5 66.2 29.9 214
cMPC 1624.5 65.9 30.6 731

S4 :
RHPC 1604.5 66.5 30.0 1690
cMPC 1624.8 69.6 34.4 11933

S5 :
RHPC 1526.0 70.6 34.5 2075
cMPC 1030.4 92.7 45.3 10400

S1. First, let us analyze the comparison of the controlled simulation scenarios with the un-
controlled scenario. The comparison results are listed in Table 7.3. From the table it can be
observed that both controllers perform well according to the intention of the control objec-
tive. The controllers reduce the traffic control performance criteria and provide a balanced
trade-off when the combined objective function (Scenario S5) is considered.

The controllers clearly show differences in performance. From Table 7.3, it is observed
that in some cases the cMPC controller performs better than the RHPC controller. This
is quantified and explicitly presented in Table 7.4. Table 7.4 lists the relative comparison
of the RHPC controller with respect to the cMPC controller. It is determined using the
equation given in (7.6). In this particular case study, the performance measurec in (7.6)
is c ∈ {TTS,TE,MDL, CPU Time}. Then, as can be seen from Table 7.4, the cMPC
controller mostly performs better than the RHPC controlleras expected (cf. Section 7.1).
However, the computation time (see Table 7.3 and Table 7.4) of the RHPC controller is
significantly lower than that of the cMPC controller. The RHPC controller improves the
computation time (expressed in CPU Time) by more than68% with respect to the cMPC
controller for the considered scenarios. The CPU time in Table 7.3 increases as one pro-
gresses from Scenario S2 to Scenario S5 of the controlled cases. This is because in each
scenario only the models that are required to generate the corresponding performance cri-
teria are simulated. This means that in Scenario S2 only the METANET traffic flow model
is simulated, while for example in Scenario S3 the METANET model and the VT-macro
model are simulated. Therefore, the computation time of thescenarios with multiple per-
formance criteria becomes high (e.g., in this particular case Scenario S5 has higher CPU
Time, because it uses traffic flow, emissions, and dispersionof emissions models).

The space-mean speed profiles under the different control objectives are also presented
through Fig. 7.11 to Fig. 7.13. These figures compare the space-time speeds of the traffic
network when the control approaches are cMPC and RHPC. As canbe seen from all the
figures, the shock waves observed in Fig. 7.10 are dissolved both by the cMPC and RHPC
controllers. However, cMPC results in a smoother speed evolution than RHPC.
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Table 7.4: Relative comparison of the values of the performance criteria of the RHPC con-
troller and the cMPC controller of Case study H for the different controlled sce-
narios. Negative values of the performance criteria indicate the RHPC controller
performs better than the cMPC controller while positive values of the perfor-
mance criteria indicate the RHPC controller performs worsethan the cMPC
controller.

Relative Comparison
Scenarios Control Performance Criterion CPU Time

S2 : TTS +24% −68%
S3 : TE +0% −71%
S4 : MDL −12% −86%
S5 : 10TTS + TE + MDL +36% −80%
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Figure 7.11: Time-space evolution of space-mean speed of Case study H when the control
objective of the cMPC and the RHPC controllers isTTS. The arrows indicate
the driving direction.

In Fig. 7.13, it can be seen that the speed is higher when the control approach is
cMPC than when the control approach is RHPC. This is reflectedin the higher travel times
and lower emissions and dispersion levels in the RHPC-controlled case than the cMPC-
controlled case (see also the last row of Table 7.3).

Furthermore, the evolution of the dispersion level in the target zone is depicted in
Fig. 7.14. Under theTTS-controlled Scenario S2, both the cMPC and the RHPC con-
trol approaches worsen the dispersion level. However, the dynamics of the evolutions of
the dispersion of the emissions under the two control strategies are completely different.
The RHPC controller causes a higher fluctuation in the dispersion level than the cMPC
controller, regardless of the difference in the values of the dispersion levels. This can be
explained by the speed variation observed in Fig. 7.11. A similar situation is also observed
in Fig. 7.14(b), where the dispersion level fluctuates more in the cMPC-controlled case than
in the RHPC-controlled case. This is because that the space-mean speed fluctuates less in
the RHPC-controlled case than in the cMPC-controlled case (see Fig. 7.12).
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Figure 7.12: Time-space evolution of space-mean speed of Case study H when the control
objective of the cMPC and the RHPC controllers isMDL. The arrows indicate
the driving direction.
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Figure 7.13: Time-space evolution of space-mean speed of Case study H when the control
objective of the cMPC and the RHPC controllers is10TTS + TE + MDL.
The arrows indicate the driving direction.

A similar phenomenon is observed from Fig. 7.13 and Fig. 7.14(c). However, in general,
despite the difference in the value of the performance improvement (TTS, TE, MDL, and
CPU Time), the two control approaches (cMPC and RHPC) produce similar trends in the
evolution of the emissions and the speed of the traffic for thevarious scenarios.

7.4 Conclusions

This chapter has presented the general similarities and differences between conventional
Model Predictive Control (cMPC) and Receding-Horizon Predictive Control (RHPC). It
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Figure 7.14: The influence of cMPC and RHPC control approaches on the evolution of the
dispersion levelDL(k) in the target zone under different control scenarios of
Case study H. The dispersion levelDL(k) is the total sum of emission lev-
els CO, HC, and NOx in the target zone at every simulation time stepk as
expressed inµg/m2.

further has compared the two control approaches using simulation-based case studies.
The first case study illustrated that RHPC may have relatively good performance while
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featuring a very low computation time, which makes it feasible for practical applications.
With all the scenarios considered (different combinationsof the total time spent and the
total emissions) the computation time demand of the RHPC controller has been less than
one control time step while still improving the control performance measures as compared
to the uncontrolled scenario. Moreover, for this case studythe performance of the RHPC
controller was comparable to that of the cMPC controller.

In the second case study, where dispersion of emissions was taken into account, both the
RHPC and the cMPC controllers were too slow (i.e., the computation time required at every
control time step is larger than one control time step size),which makes them unsuitable
for practical applications. In fact this is due to the added computation time required by
the dispersion model and due to the larger number of initial points used for the optimization
process (i.e., the number of the initial points of the optimization was5 in the first case study,
while it is increased to8 in the second case study.). Nonetheless, even in this secondcase,
the RHPC controller has proved to be very much faster than thecMPC controller, albeit at
the cost of a lower performance. The reduction in the computation time as compared to
the loss in performance measure of the RHPC controller relative to the cMPC controller is
small.





Chapter 8

Conclusions and Open Issues

T
his thesis has presented and discussed freeway traffic flow models, freeway traf-
fic emissions and fuel consumption models, freeway traffic emissions dispersion
models, and model-based freeway traffic control approaches. In this chapter the
main conclusions of the thesis are summarized. Moreover, ashas been pointed

out in some of the chapters, this thesis also leaves some openissues that require further
research work. This chapter highlights the main issues thatcan be researched in the future
and in some cases the chapter provides some pointers (recommendations) for the pursuit of
the solutions to the open issues.

8.1 Conclusions

Traffic systems are non-linear and complex systems. Due to the unpredictable behavior of
drivers and unknown disturbances, development of traffic flow models that provide accurate
estimates and predictions of traffic states and that are applicable to all situations is very
challenging. Thus, models are developed with a minor acceptable mismatch from the reality.
Using such models to make predictions of traffic states and making decisions based on the
uncertain predictions can have a negative impact, especially if decisions are based on longer
prediction horizons, where the introduction of predictionerrors is highly plausible.

In cases where models have some uncertainty or are complex, the receding-horizon-
based model predictive control approaches are good candidates due to two main reasons. On
the one hand, the control approaches make use of predicted traffic states to design control
measures so that a given traffic control objective is attained, and thus future travel times and
traffic demands can be considered when allocating the limited infrastructure. On the other
hand, since such control approaches rely on the predictability of the traffic states, when there
are errors in the prediction of the traffic states, the errorscan be corrected during the next
prediction step as it uses the receding-horizon-feedback concept. This means that the model-
based traffic controllers presented in this thesis adapt themselves to the prevailing traffic
situations and update the traffic control measures that can improve the traffic performance.

This thesis has considered multi-objective traffic controlperformance measures. In par-
ticular, the reduction of travel time, emissions, fuel consumption, and dispersion of emis-
sions to neighborhoods have been taken into account. This means that the controllers have
to predict these performance indicator on-line for every possible combination of traffic con-

159



160 8 Conclusions and Open Issues

trol measures, in particular the variable speed limits and ramp metering discussed in this
thesis. Therefore, it is imperative to select models that can be used for on-line applications
and to design model-based controllers that are tractable inpractice. To this end, models
have been selected and compared and traffic controllers havebeen designed and compared.
The main conclusions of the process and the results are summarized as follows:

Traffic flow modeling:Initially, a brief overview of the traffic flow models has beengiven in
Chapter 2. From the literature it can be concluded that, despite the fact that microscopic
traffic flow models such as the GHR (Gazis-Herman-Rothery) model [67] and IDM
(Intelligent Driver Model) [186] provide a relatively accurate description of individual
vehicles in a traffic flow, due to the limited contemporary computational capability
of computers and the current state of microscopic models, macroscopic models are
much better suited for on-line applications, because macroscopic models demand low
computation time and memory size. In particular, model-based traffic control (where
models are required to make on-line predictions and estimations) require macroscopic
traffic flow models. Moreover, as long as traffic control measures are not tailored
for individual vehicles, macroscopic traffic flow models aresuitable for on-line based
traffic control applications, where control measures (suchas speed limits and ramp
metering) are assigned arbitrarily to collection of vehicles.

In this thesis, the METANET [103, 124, 145, 146] traffic flow model, which is macro-
scopic and discrete in time and space is selected to describethe traffic flow of freeway
systems. Moreover, in many occasions this model has been proved to result in a good
description of the traffic phenomenon of the freeway traffic systems [103, 145, 146].
As has been demonstrated in several articles, the computation time of the METANET
traffic flow model and its extensions [77] does not depend on the number of the ve-
hicles in the traffic network. Therefore, the METANET model and its extensions can
be used for the simulation of large-scale networks. Moreover, in addition to the ramp
metering control, it is relatively easy to include variablespeed limits explicitly in the
METANET model.

Traffic emissions modeling:Literature suggests that microscopic emissions and fuel con-
sumptions models are more accurate than macroscopic emissions and fuel consump-
tion models. Since the macroscopic traffic flow model METANETis chosen for the
simulation and prediction of the traffic flow, the use of macroscopic emissions and fuel
consumption models would have decreased the accuracy of theestimation of the traffic
emissions and fuel consumption. Therefore, it has been imperative to find a way to
integrate the microscopic emissions and fuel consumption models with macroscopic
traffic flow models in order to increase the estimation or prediction accuracy of the
emissions and the fuel consumption. To this end, Chapter 3 ofthis thesis has pre-
sented a general framework for the integration of macroscopic traffic flow models with
microscopic emissions and fuel consumption models. The approach has been further
demonstrated using the METANET traffic flow model and the VT-micro [2] emissions
and fuel consumption model, which resulted in the VT-macro emissions and fuel con-
sumption model.

The analytical and empirical examination of the errors thatcan enter due to the inte-
gration of the VT-micro microscopic emissions and fuel consumption model with the
METANET macroscopic traffic flow model have been shown to be small for small de-
viations in the speed and in the acceleration of the vehiclesfrom their average values.
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Comparison of the newly developed macroscopic VT-macro model to the established
average-speed-based macroscopic model, COPERT [139], hasshown the excellent per-
formance of the VT-macro model. Moreover, the VT-macro emissions and fuel con-
sumption model shows a significant reduction of the computation time relative to its
parent microscopic emissions and fuel consumption model, VT-micro.

Freeway traffic emissions dispersion modeling:As not only the emissions from vehicles on
a freeway but also the dispersion of the emissions to protected areas is important, traffic
management and control practices should also take the dispersion of released emissions
into account. The prediction or analysis of the impact of different traffic control and
management actions on the dispersion of emissions can be done with emissions dis-
persion models. Emissions dispersion models require the emissions of vehicles in the
traffic networks (either measured on-line or predicted) as an input. In prediction-based
control approaches (such as the model predictive control discussed in this thesis), pre-
diction of the traffic states and thereby determination of the emissions is required before
one can predict the dispersion of the emissions to a given target zone. In general, this
entails a higher demand for computation time. Therefore, dispersion models with a low
computation time while still offering considerably accurate estimation or prediction are
required for the on-line model based control approaches as is the case in this thesis.

So, this thesis has presented new dispersion models that canbe used for an on-line
applications. First a point-source dispersion model was presented. This is used as a
basis for the development of the subsequent efficient grid-based models, the extended
grid-based and expanding grid-based dispersion models. These models take the effect
of varying wind speed and wind direction on the dispersion ofemissions into account.
The variation of the dispersion of emissions with the variation of temperature can be
considered. Moreover, the computation of the grid-based dispersion models is small
and it is also independent of the number of target zones considered.

Conventional Model Predictive Control (cMPC):Due the non-linear and time-varying na-
ture of freeway traffic systems and due to the potentially conflicting interests of differ-
ent stakeholders of the traffic systems, this thesis has proposed Model Predictive Con-
trol (MPC) to dynamically steer the freeway traffic flow such that a balanced trade-off
between the conflicting interests can be obtained. Chapter 5has highlighted the basic
concepts of the cMPC controller as applied to traffic systems; it has illustrated ways to
describe the multi-objective traffic control performance criteria; and it has formulated
model predictive traffic control optimization problem.

In this thesis, case studies have been used to demonstrate cMPC for freeway traffic
applications with multifaceted and sometimes conflicting objectives (e.g., reduction
of travel times and emissions are conflicting requirements in case of low to medium
traffic, while under congested traffic conditions both requirements are in essence the
same). In this regard, the case studies have illustrated that—depending on the weights
assigned to the individual control performance criteria—itis possible to reduce not
only the travel times of vehicles in a traffic network, but also the emissions and the
dispersion of the emissions to a given target zone. This means that assigning different
weights in the control approach offers the capability for different stakeholders to affect
the traffic flow in order to favor the traffic performance criteria they would like to focus
on. Moreover, the case studies have also illustrated the ability and potential of cMPC
to efficiently coordinate variable speed limits and ramp metering.
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The simulation results of the case studies have also illustrated the potential of coor-
dinated and integrated variable speed limits and ramp metering to improve the per-
formance of the traffic network. In this regard, the cMPC controller has been able to
integrate and coordinate the traffic measures. Depending onthe wind speed and wind
direction, the cMPC controller has been able to steer the traffic flow in such a way that
the dispersion of emissions to a given target zone is reduced. The simulation results
suggest that—instead of focusing on the total emissions—reduction of the dispersion
of emissions to a specific target zone is best strategy in areas where there is frequent
traffic jams and where there is the need to reduce the emissionlevels on a given target
zone. In this way, only the parts of the traffic network that have effects on the emis-
sion levels of a protected target zone can be regulated to produce low emission levels.
Hence, the constraint on the traffic flow of the parts of the traffic network that have no
effect on the protected target zone is relaxed, as such the traffic flow in these parts of
the traffic network can be improved.

However, as other papers from literature already suggestedbefore, the simulation stud-
ies have shown that the computation time demand of the cMPC controller is very high,
which makes it not suitable for practical on-line applications.

Receding-Horizon Predictive Control (RHPC):Since the large computational demands of
the cMPC controller makes it intractable in practice, in Chapter 6 of this thesis a
parametrized MPC strategy called Receding-Horizon Predictive Controller (RHPC)
has been proposed. Under the same conditions, if the controlmeasures of the traf-
fic system can be described by control laws with a number of parameters that is less
than the number of the control measures, the computation time of the RHPC controller
can be decreased. To this end, Chapter 6 has discussed the general concept behind the
RHPC controller and the parametrization of the control laws. Specifically, the con-
cepts have been applied to design the RHPC controller for variable speed limits and
ramp metering.

Similar to the cMPC controller, the RHPC controller has beenused in simulation-based
case studies to reduce the travel times, the emissions, and the dispersion of the emis-
sions to a target zone. Moreover, the RHPC controller has been used to integrate and
coordinate variable speed limits and ramp metering in such away that a given traffic
performance criterion is improved. The case studies have illustrated that the RHPC
controller, as its parent cMPC controller, can improve the traffic flow, the emission
levels, and the dispersion of the emissions to a target zone.The RHPC controller has
also shown the trade-off involved between the travel times,emissions, and dispersion
of emissions to a target zone. Based on the weights assigned to the traffic performance
criteria, the RHPC controller has been able to provide a balanced trade-off between the
conflicting and sometimes concurring traffic performance criteria.

Comparison of cMPC and RHPC:Since the control objectives of the controllers are non-
linear and non-convex, the performance of the cMPC and the RHPC controllers could
not be compared (or quantified) analytically. Hence, the performance loss induced by
the parametrization of the control measures cannot be generalized.

Due to lack of analytical description of the performance of the RHPC controller as
compared to the cMPC controller, this thesis has compared the control approaches us-
ing simulation-based case studies in Chapter 7. The case studies have indicated that the



8.2 Open issues 163

RHPC controller, in particular when the control objective is reduction of travel times,
has very low computation time which makes it suitable for practical applications. How-
ever, the computational gain of the RHPC controller has beenobtained at the expense
of a performance loss relative to the cMPC controller. The loss in performance in gen-
eral increases as the number of control inputs that are determined by the same control
laws increases. Hence, a trade-off has to be made between computational efficiency
and loss in performance relative to the cMPC controller.

8.2 Open issues

Although this thesis answers several important questions related to the application of model-
based predictive control to solve the potentially conflicting traffic control performance cri-
teria, there are many open issues that still require furtherinvestigation and research work.
In this section some of the open issues that are worth of attention in relation to this thesis
work are discussed.

This thesis has developed macroscopic emissions and fuel consumption models and dis-
persion of freeway traffic emissions models. These models have not yet been validated nor
calibrated to real-life data. The VT-macro emissions and fuel consumption model presented
uses the parameters of the VT-micro emissions and fuel consumption model [2] that is cal-
ibrated based on microscopic real-life data. The dispersion models are neither compared
to established models nor calibrated to real-life data. Therefore, these models cannot be
used in practice before assessing them with respect to real-life data. In order to improve
the quality and assert the use of the models for practical applications, it is recommended to
make further extensive research on the validation and comparison of the models with real
data and available models. In this regard, some open issues that require further examination
and research are:

Extensive validation of the VT-macro emissions and fuel consumption model:The newly de-
veloped VT-macro emissions and fuel consumption model has been compared only to
the parent VT-micro model [2] and the COPERT model [139]. Moreover, the VT-
macro model has not yet been calibrated with the original data of the VT-micro model.
Calibration of the VT-macro model with the original data of the VT-micro model or
some other data could improve the quality and reliability ofthe model. Additionally,
comparison of the VT-macro model with other macroscopic andmicroscopic emissions
and fuel consumption models both in terms of the computationtime and estimation or
prediction accuracy is an important step before exploitation of the model.

Moreover, the error introduced during the empirical comparison of the VT-macro model
with the VT-micro model could have been caused due to the mismatch between the mi-
croscopic and macroscopic traffic flow models. This issue hasnot been investigated
and could not be quantified in this thesis. Therefore, further research is suggested to
find relations or explanation to the emissions or fuel consumption estimation errors that
can be caused due to the mismatch between the different traffic flow models.

A general framework to integrate the macroscopic traffic flowmodels with microscopic
emissions and fuel consumption models has been presented inChapter 3. This frame-
work has been demonstrated only with the METANET flow model and the VT-micro
emissions and fuel consumption model. The applicability (or the shortcomings) of the
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framework can also be investigated for other models (e.g., the cell transmission flow
model [52, 53] with the VT-micro model).

Calibration, validation, and extension of dispersion models: Similarly to the emissions and
fuel consumption models, the proposed dispersion models are neither calibrated nor
compared with any real-life data or existing dispersion models. The accuracy of the
models when calibrated with real data or models is not known.Therefore, it is recom-
mended that the freeway emissions dispersion models are calibrated and validated with
real-life data and are also compared with other existing models both in terms of their
computation time and their estimation or prediction accuracy.

Furthermore, the dispersion models developed in this thesis do not describe the evolu-
tion of the dispersion of the emissions in the vertical direction. The dispersion models
describe the evolution of the emissions horizontally whileconsidering a vertical dis-
persion factor that to some extent reflects the effect of the vertical dispersion on the
horizontal dispersion level. However, it is therefore recommended to also extend the
developed models to fully describe the vertical dispersionof the emissions (i.e., to
extend them to3D models).

The wind speed and wind direction in the dispersion models are assumed to be ho-
mogeneous spatially (i.e., every point in the horizontal space—all at the same time—
experience the same wind speed and wind direction). However, the wind speed and
wind direction vary in space. So, we recommend to extend the dispersion models by
including a wind model for each cell in the grid that depends on the wind speed and
wind direction of the neighboring cells.

Consideration of traffic composition:In reality, the traffic composition is not homogeneous.
It comprises light and heavy duty vehicles and old and new vehicles driven by drivers
of different age and experience level. But throughout this thesis homogeneous traf-
fic composition has been assumed. This means that all vehicles are assumed to be
characterized by the same behavior. Therefore, it is recommended that the models be
assessed for the cases with heterogeneous traffic compositions. Moreover, the impact
of the controllers designed under such traffic compositionsshould be examined.

Other important issue is related to the traffic control design. As has been indicated in
this thesis, the main shortcoming of the cMPC controller is that the required computation
time is very high. To alleviate this issue the RHPC controller has been introduced at the
cost of some performance loss. However, even the RHPC control approach still has some
unresolved issues, in particular the relative loss or improvement of the RHPC controller
with respect to the cMPC controller is not determined in general. Moreover, other dynamic
control strategies (or even control laws of the RHPC controller) that may result in better
outcomes have not been investigated. Thus, it is recommended that future research is con-
ducted to study:

Quantifying possible or maximum performance loss:The performance loss of the RHPC
controller with respect to the cMPC controller due to the parametrization of the con-
trol laws requires both extensive analytic approximationsand empirical investigations.
In other words, the research question “What is the (approximate) relation between the
control objectives of the RHPC and the cMPC controllers for the respective control
input spaces of the controllers?” requires detailed examination. This is because the
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relation between the control objective functions of the controllers in terms of the pa-
rameter space for the RHPC controller and in terms of the control inputs for the cMPC
controller can give a clear understanding in the amount of performance loss of the
RHPC controller with respect to the cMPC controller.

Systematic approach for the formulation of control laws:In general, in this thesis, the con-
trol laws of the RHPC controller have been developed heuristically with the help of
a priori knowledge of traffic systems. But could there be a general approach that can
be used to formulate control laws in a systematic way? The development of a strategy
to define a control law such that the control input space of theRHPC approximates
the optimal control input space of the cMPC as closely as possible can improve the
performance of the RHPC and the time to attain the optimal values.

Alternative control approaches:In this thesis, the RHPC controller has been introduced to
reduce the computation time of the cMPC controller. In general, this is at the expense
of loss in performance relative to the cMPC controller. However, there are also new
control strategies for special system model structures. One of these approaches is Lin-
ear Parameter Varying (LPV)-MPC, which requires LPV modelsof the systems. For
many non-linear systems the LPV-based control approaches have proved to increase
the performance of traditional control approaches. In thisregard, there have been ef-
forts to model the traffic flow, emissions, and fuel consumption models in an LPV form
[113, 115, 213]. However, since these models are not able to use variable speed limits
as a control measure, these models have not been used in LPV-MPC or other LPV-
based traffic control approaches. So, such approaches can also be investigated and can
be compared to the RHPC control approach presented in this thesis.

Including and assessing other traffic control measures:In this thesis, only the speed limits
and ramp metering have been used as traffic control measures.Utilization and impact
assessment of other traffic control measures, such as route guidance, lane closure, and
road pricing, within the scope of the proposed control approaches is also an important
subject to be considered in future research.

Simulation versus prediction models:All the case studies presented in this thesis use the
same model as a simulator of the real traffic system and as a predictor of the traffic
states required by the model-based controllers. However, if the cMPC and the RHPC
controllers would be implemented in practice, the reality will be definitely different
from the prediction models used by the controllers. This mismatch can have conse-
quences on the performance of the controllers. Hence, the performance of the con-
trollers also has to be investigated by using different models for the simulation and
prediction of the controllers. Such an approach would give some idea of how the con-
trollers would cope with such a model mismatch when applied in reality.

In this thesis, centrally governed traffic controllers havebeen designed for system op-
timal operations of traffic systems. However, system optimal operations of traffic systems
does not necessarily mean that all stakeholders are at equilibrium. Moreover, in this thesis,
intelligent (or fully autonomous) vehicles have not been considered. In view of these, it is
also interesting to investigate the following research questions in the future.

System optimum versus user equilibrium traffic operation:In this thesis the traffic control
performance criteria were defined to be total time spent, total emissions, total fuel con-
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sumption, and the dispersion level on a target zone of the total traffic network consid-
ered. But, minimum total time spent, total fuel consumed, ortotal emissions released
does not mean that every driver has the same travel cost per unit time. The systems’
optimal solutions that were sought using the control approaches presented in this thesis
do not show a user equilibrium. Therefore, the traffic solutions that resulted in system
optimal operations are not efficient in allocating resources equally. On the other hand,
user equilibrium traffic operations are in general viewed asa reasonable approxima-
tion of the non-cooperative decisions made by commuters andare not efficient for the
allocation of the scarce traffic network capacities [198]. Therefore, a traffic control
approach is efficient if it can provide both system optimal and user equilibrium traffic
solutions.

However, at least for some cases, it can be possible that the same system optimum
can be obtained with different combination of traffic control measures or the same
user equilibrium operations can be attained with differentcombination of traffic con-
trol measures. Then, a traffic control strategy can select the combinations of traffic
control measures that results in the minimum difference between the user equilibrium
and system optimal traffic operations. In this sense, it is interesting to research the
user equilibrium approach of the model-based traffic control approaches presented in
this thesis. Moreover, a combination of both user equilibrium and system optimal ap-
proaches can be considered as a future research direction.

Platooning: As has been briefly presented in Chapter 1, platooning of vehicles can decrease
the fuel consumption and emissions of vehicles [6, 17]. Moreover, the number of
vehicles occupying a traffic network can increase, because the inter-vehicle distance
is reduced. The question is then, how can the model-based traffic control strategies
influence intelligent vehicles to formulate platoons in such a way that a given traffic
performance criterion is improved? Since travel time, fuelconsumption, and emissions
of the vehicles depend on the platooning, modifications are required in the available
traffic flow, fuel consumption, and emission models. Therefore, further research is
recommended to investigate platooning as a traffic control measure to improve travel
time, fuel consumption, emissions, and dispersion of emissions to a given target zone.
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Model Parameters

T
his appendix lists the values of the parameters of the macroscopic VT-macro
emissions and fuel consumption model and the values of the parameters of the
METANET traffic flow model for the part of the A12 Dutch freeway. These pa-
rameter values are used in the simulation studies presentedthroughout this thesis.

A.1 VT-macro (VT-micro) parameters

The values of the parameters of the VT-macro model are the same as that of the VT-micro
model [2]. But since the values of VT-micro are given for speed inputs in ft/s and accelera-
tion in ft/s2 and the outputs are in mg/s for the emissions and gal/h for thefuel consumption,
the values of the parameters are transformed in order to use SI-units for the inputs and for the
outputs. Thus, the values of the model parameterPȳ for the emissions and fuel consumption
variableȳ ∈ Ȳ/{CO2} = {CO, HC, NOx, fuel} are given by:

PCO = 0.01







−1292.81 48.8324 32.8837 −4.7675
23.2920 4.1656 −3.2843 0
−0.8503 0.3291 0.5700 −0.0532
0.0163 −0.0082 −0.0118 0







,

PHC = 0.01







−1454.4 0 25.1563 −0.3284
8.1857 10.9200 −1.9423 −1.2745
−0.2260 −0.3531 0.4356 0.1258
0.0069 0.0072 −0.0080 −0.0021







,

PNOx
= 0.01







−1488.32 83.4524 9.5433 −3.3549
15.2306 16.6647 10.1565 −3.7076
−0.1830 −0.4591 −0.6836 0.0737
0.0020 0.0038 0.0091 −0.0016







,

and

Pfuel = 0.01







−753.7 44.3809 17.1641 −4.2024
9.7326 5.1753 0.2942 −0.7068
−0.3014 −0.0742 0.0109 0.0116
0.0053 0.0006 −0.0010 −0.0006







,
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when the inputs of the emissions and fuel consumption model are in SI-units and the outputs
are in kg/s for emissions and l/s for fuel consumption.

A.2 Parameters of part of the A12 Dutch freeway

The METANET traffic flow model has been calibrated to the data collected from part of the
A12 Dutch freeway by [79] (these values are also used in Chapters3 and 7 of this thesis).
The values of the parameters as obtained by [79] are listed below.

Parameters Values Units

bm 2.8260 –
λ 3 –
δ 0.8942 –
̺ 1 –
τ 14.76 s
T 10 s
κ 32.9010 veh/km/lane
ρcr,m 24.1801 veh/km/lane
ρjam,m 187.6495 veh/km/lane
vref,m 117.6946 km/h
vmin 13.0010 km/h
ηh 26.2669 km2/h
ηl 64.2005 km2/h
Co,1 None veh/h
Co,2 1 751.2 veh/h
Co,3 1 976.2 veh/h
Lm1

[530 530 535 600 595 480] m
Lm2

[800 640 785 700 725 656 600 600 414] m
Lm3

[653 527 494 616 665 635 600 688 582] m
βm1,off 0.0234 –
βm2,off 0.1618 –
βm3,off 0.1228 –



Appendix B

Derivation of The Intersection
Formulas

I
n the derivations of the intersection equations given in Section 4.3.2, two conditions
are stated:T < 2

̟(k) andL > 2TVw(k)
2−T̟(k) . If the simulation time step sizeT and the

grid square lengthL are selected in such a way that these conditions are satisfied, then
any dispersion square of a cell will only be able to cover at most nine neighboring cells

as depicted in Fig. B.1.
Now let us first consider the displacement of the center point(0, 0) to (xe, ye) due to

the windVw(k) with a directionϕ(k). The displaced center point of the expanded square is
then

(xe(k), ye(k)) =
(
− TVw(k) cos(ϕ(k)), TVw(k) sin(ϕ(k))

)
(B.1)

Since, the expanded dispersion square is expanded by a factor ̟(k) per unit time fromL
to Le(k) = (1 + T̟(k))L, then the corner pointsc1(k), c2(k), c3(k), andc4(k) can be
described as

c1(k) =

(

xe(k) −
Le(k)

2
, ye(k) +

Le(k)

2

)

(B.2)

c2(k) =

(

xe(k) +
Le(k)

2
, ye(k) +

Le(k)

2

)

(B.3)

c3(k) =

(

xe(k) +
Le(k)

2
, ye(k) −

Le(k)

2

)

(B.4)

c4(k) =

(

xe(k) −
Le(k)

2
, ye(k) −

Le(k)

2

)

(B.5)

In order to determine the values ofα
(uc,vc)
(ic,jc)

(k), we need to determine the magnitude of
a1(k), a2(k), a3(k), b1(k), b2(k), andb3(k). With straightforward calculations the value of
a1(k) is

a1(k) = TVw(k) cos(ϕ(k)) +
TL̟(k)

2
. (B.6)
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Figure B.1: Expanded and displaced dispersion square of thecell Cic,jc . The point
(xe(k), ye(k)) denotes the new center of the expanded and dispersed disper-
sion square. The areas of the parts of the dispersion square of cell Cic,jc that

intersect the grid cellsCuc,vc
are denoted byα(uc,vc)

(ic,jc)
. The variableϕ(k) de-

notes the direction of the windVw(k) in which the emissions are dispersed.

However, due to the variation of the wind speedVw(k), wind directionϕ(k), and the ex-
pansion factor̟ (k), the value ofa1(k) can be negative. This indicates that the dispersion
square does not intersect to the neighboring cell in the leftside of a cell. Moreover, using
this negative value to determine the area of the intersection could result in invalid values.
Therefore, to avoid such cases, the value fora1(k) is modified as

a1(k) = max

{

0, TVw(k) cos(ϕ(k)) +
TL̟(k)

2

}

. (B.7)

Using similar reasoning,a3(k), b1(k), andb3(k) are given by

a3(k) = max

{

0, −TVw(k) cos(ϕ(k)) +
TL̟(k)

2

}

(B.8)
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b1(k) = max

{

0, −TVw(k) sin(ϕ(k)) +
TL̟(k)

2

}

(B.9)

b3(k) = max

{

0, TVw(k) sin(ϕ(k)) +
TL̟(k)

2

}

. (B.10)

The values fora2(k) andb2(k) are then

a2(k) = Le(k) − a1(k) − a2(k) (B.11)

b2(k) = Le(k) − b1(k) − b2(k). (B.12)

So, the areas of theα(uc,vc)
(ic,jc)

(k) can be obtained as

α
(uc,vc)
(ic,jc)

(k) = a2+ic−uc
(k) · b2+jc−vc

(k). (B.13)
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S. Roujol, J. Laurikko, M. Weilenmann, K. Markewitz, S. Geivanidis, D. Ajtay, and
L. Paturel. Emission factor modeling and database for lightvehicles. Technical
Report LTE 0523, Institut National de Recherche sur les Transport et Leur Securite,
Bron, France, June 2007.

[93] S. Jun, Y. Fubing, L. Gesheng, and G. Xiaohong. A new approach of spark ignition
engine fueled with ethanol. InProceedings of the Asia-Pacific Power and Energy
Engineering Conference, pages 1–4, Chengdu, China, March 2010.
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Glossary

Conventions

The following conventions are used in this thesis for notation and symbols:

• N represents the set of natural numbers.

• R denotes the set of all real numbers.

• x̂(k2|k1) designates the predicted value ofx at a time stepk2 using the information
at time stepk1.

• An operatorA is defined such thatA(x) provides the value of the area of a region
defined byx.

• The# in #(x) is defined as the set cardinality ofx.

• The intersection between two or more regions is described using
⋂

, e.g.,A
⋂

B de-
notes the intersection of regionA and regionB.

• The superscript⊤ denotes the transpose of a matrix (or vector).

• The˜ operator is defined in such a way thatx̃ results in a vector[1 x x2 x3]⊤.

List of symbols and notations

Below follows a list of symbols and notations used in this thesis.

Latin symbols

Aic,jc area of cellCic,jc

Aint,m,i area of an intersection betweenAm,i and a target zonet
Am,i area of a dispersion tetragon of the emissions released from

segmenti of link m
Atg,ic,jc area of dispersion tetragonCtg,ic,jc of a cellCic,jc

a average acceleration
a instantaneous acceleration
ā average acceleration of a number of vehicles
a2+ic−uc

part of a horizontal dimension of an expanded cell

191
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across,m,i,i+1 acceleration of vehicles crossing segmenti to i + 1 of link m
across,m,m+1 acceleration of vehicles crossing linkm to link m + 1
across,off,o acceleration of vehicles leaving an off-ramp
across,on,o acceleration of vehicles entering an on-ramp
amax,α maximum acceleration of vehicleα
aseg,m,i acceleration of vehicles within segmenti of link m
aα acceleration of vehicleα
ãα a vector[1 aα a2

α a3
α]⊤

b2+jc−vc
part of a vertical dimension of an expanded cell

bm parameter of the fundamental diagram of linkm
bmax,α maximum comfortable deceleration of vehicleα
bµ parameter of the fundamental diagram of linkµ

Call the set of all pairs of consecutive traffic control measures
C(x, y, z) contamination concentration at the point(x, y, z)
Cic,jc a cell in a grid with its bottom-left coordinate at(ic, jc)
Co capacity flow of origino
Ctarget,t a polytope of target zonet
Ctg,ic,jc a dispersion tetragon of cellCic,jc

Cuc,vc
a cell in a grid with its bottom-left coordinate at(uc, vc)

c controller performance criteria
co, c1, c2 coefficients of COPERT model
ccMPC values of the performance criteriac of cMPC controller
cRHPC values of the performance criteriac of RHPC controller
cα GHR model parameter for vehicleα

Dȳ,t dispersion level of emission̄y at a target zonet
d1, d2, d3,cal, d4 traffic demands of cases1, 2, 3, and4
do traffic demand of origino

E a diagonal matrix with0, 1, 2, and3 as its diagonal entries
eav,ȳ average of absolute relative-estimation error of emissionȳ

f state vector function
fm a vector of nonlinear control law functions
fm,1, fm,2, fm,3 nonlinear control law functions
fȳ microscopic emission and fuel consumption function
fα stimulus response function

G nonlinear constraint
g gravitational acceleration
g inequality constraint function
g input state vector function

h(x) equality constraint function
h(x) output vector function
hs mirror emission source distance beneath the ground
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In the set of links that enter noden
I identity matrix
Ip relative performance indicator of a controller
i segment index
ic horizontal grid-cell index
ı GHR model parameter

J objective function
J̄cross,ȳ,m,i,i+1 total ȳ of vehicles crossing from segmenti to i + 1 of link m
J̄cross,ȳ,mi,µj

total ȳ of vehicles crossing from linkmi to link µj

Jext,ȳ,ic,jc emission contributed to cellCic,jc by an external source
J̄seg,ȳ,m,i total ȳ of vehicles within segmenti of link m
Jsrc,ȳ,ic,jc emissions released in the cellCic,jc

Jtot,ȳ,t,m,i total emission rate of segmenti of link m of emissionȳ generated
in the past time and that intersects a target zone during the time
period[kT, (k + 1)T )

J̄total,ȳ total emission̄y generated by vehicles in a network
Jvector a vector of objective functions
Jvector,i ith objective function of vectorJvector

Jȳ emission or fuel consumption rate
Jȳ,ic,jc the emission level of̄y atCic,jc

Jȳ,m,i the emission rate of a wavefront of segmenti of link m
Jȳ,t,m,i emission rateJȳ,m,i that arrives the target zonet
Jȳ,α emissionȳ generated by vehicleα
j positive integer counter
j′ positive integer counter
jc vertical grid-cell index
 GHR model parameter

k macroscopic simulation time step counter
kc cMPC and RHPC optimization layer control time step counter
kc,i RHPC feedback layer control time step counter
km microscopic simulation time step counter
ks sampling time step counter

L length (or width) of a grid cell
Le length (or width) of a expanded cell
Lm length of segments of linkm
lα length of vehicleα
ℓ time step at which an emission is released

M the set of links in a network
Mall the set of all pairs of indices of segments and links
M1, M2, M3, M4 positive integer multipliers
m index of a link
m1, m2, . . . ,mn1

indices of merging links

N the set of nodes in a network
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N the set of neighborhood cells of a cell and the cell it self
Ns number of total simulation time steps
Nm number of segments of linkm
Nc control horizon
Np prediction horizon
n number of vehicles, a node
ncross,m,i,i+1 number of vehicles crossing segmenti to i + 1 of link m
ncross,m,m+1 number of vehicles crossing linkm to link m + 1
ncross,off,o number of vehicles leaving an off-ramp
ncross,on,o number of vehicles entering an on-ramp
nseg,m,i number of vehicles within a segment
nu, nx, ny dimensions of control input, state, and output of a system
nvsl number of variable speed limits

Oall the set of all origins
On the set of links that leave noden
o origin index

P(ρ, v, t) traffic pressure
Pall the set of all pairs of consecutive speed limits
Pȳ parameter matrix of emission or fuel consumptionȳ
p traffic performance criteria
pcontrolled the value of a performance criteria of a controlled scenario
pl,m,i left most point of an emission dispersion wavefront
pr,m,i right most point of an emission dispersion wavefront
puncontrolled the value of a performance criteria of uncontrolled scenario

Q nonlinear equality constraint
Q source strength (mass of released material per unit time)
Qn(k) total flow entering noden
q flow
q(x, t) instantaneous flow
qmax,µ,1 maximum outflow of the first segment of linkµ
qm,i outflow of segmenti of link m
qo the outflow of origino
qoff,o off-ramp flow of origino
qon,o on-ramp flow of origino
qµi,0(k) flow leaving noden via link µi

Rall the set of all controlled on-ramps
Rc relative controller performance
r index of on-ramp
ro ramp metering rate of origino

Sall the set of all speed limits
S1, S2, S3, S4, S5 simulation scenarios
s speed limit index of segments
s1, s2 speed limit indies of segmentss1 ands2
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s0,α minimum stand-still headway distance of vehicleα
sα actual headway distance of vehicleα from vehicleα − 1
s∗ minimum desired headway distance of a vehicle

Tall the set of all target zones
Tint,t the set of all cells that intersect a target zonet
T macroscopic simulation time step size
TTSn, TEn, TFCn normalized values ofTTS, TE, andTFC
MDLn, TDLn normalized values ofMDL andTDL
Tc computation time step size of RHPC optimization layer or cMPC
Tc,i RHPC feedback layer control time step size
Td,α overall driver reaction time
Tm microscopic simulation time step size
Ts sampling time step size
th headway time of a vehicle
tarrival,managed destination arrival time of managed vehicle
tarrival,unmanaged destination arrival time of unmanaged vehicle
tjam,dissolved jam dissolving time
tjam,managed arrival time of managed vehicle to a downstream jam
tjam,unmanaged arrival time of unmanaged vehicle to a downstream jam
t continuous time
t target zone

Uall the set of all traffic control measures
U∆ weighted sum of control input variation over time and space
U∆,n normalized value ofU∆

Uvsl,cMPC,m a vector of[uvsl,cMPC,m,i(kc) . . . uvsl,cMPC,m,nvsl
(kc)]

⊤

Uvsl,cMPC,m a sequence of predictedUvsl,cMPC,m

U∗
vsl,cMPC,m the optimal value ofUvsl,cMPC,m

Uvsl,RHPC,m a vector of[uvsl,RHPC,m,i(kc) . . . uvsl,RHPC,m,nvsl
(kc)]

⊤

Uvsl,RHPC,m a sequence of predictedUvsl,RHPC,m

U∗
vsl,RHPC,m the optimal value ofUvsl,RHPC,m

u control input sequence over a prediction horizon
u∗ optimal value ofu
uc a control input
ur a ramp metering of on-rampr
ur,m ramp metering rate of an on-rampr of link m
ur,ref,m reference ramp metering rate of an on-rampr of link m
us, us1

, us2
speed limit control of segmentss, s1, ands2

ūs, ūs1
, ūs2

traffic control measure of segmentss, s1, ands3

uvsl,cMPC,m,i variable speed limit of cMPC controlled segmenti of link m
uvsl,m,i variable speed limit of segmenti of link m
uvsl,ref,m reference variable speed limit of linkm
uvsl,RHPC,m,i variable speed limit of RHPC controlled segmenti of link m

V(km) the set of vehicles present in a network at time stepkm

V (ρ, t) generalized equilibrium speed, desired speed
V a description of the cost function
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Vl,m lower boundary of variable speed limit
Vu,m upper boundary of variable speed limit
Vw wind speed
v instantaneous speed
v space-mean speed
v time-average wind speed
v̄ the average speed of a number of vehicles
v0,α desired speed of vehicleα
vav trip-based average speed
vc measured or estimated space-mean speed at control time step
vc,m,i, vc,m,i+1 vc of segmenti andi + 1 of link m
vfree,m free-flow speed
vlim,µ,1 limiting speed of the first segment of linkµ
vm,i space-mean speed of segmenti of link m
vmi,Nmi

space-mean speed of segmentNmi
of link mi

vmin minimum space-mean speed
von,o on-ramp space-mean speed of origino
voff,o off-ramp space-mean speed
vstep the maximum speed limit step change allowed
vvsl,α speed limit of vehicleα
vα, vα−1 speed of vehicleα andα − 1
ṽα a vector[1 vα v2

α v3
α]⊤

vµi,0(k) virtual upstream space-mean speed of linkµi

wo queue length of origino

x a vector of predicted values of statex
x coordinate
x state variable
x vehicle position
x̂ predicted value of the variablex
x0 origin of thex−axis
xc the statex at a control time step
x̂c predicted value of the statexc

xl, xr left and rightx−axis coordinate values of a line
xl,ic , xr,ic left and right sidex−axis coordinate values of a cellCic,·

xl,m,i value ofx coordinate ofpl,m,i

xr,m,i value ofx coordinate ofpr,m,i

xα, xα−1 position of vehicleα andα − 1

Ȳ the set{CO, HC, NOx, CO2, fuel}
y a vector of predicted values of outputy
y coordinate, output vector
y0 origin of they−axis
yc the outputy at a control time step
ŷc predicted value of the stateyc

yl, yr left and righty−axis coordinate values of a line
yl,jc , yr,jc left and right sidey-axis coordinate values of cellC·,jc



Glossary 197

yl,m,i value ofy coordinate ofpl,m,i

yr,m,i value ofy coordinate ofpr,m,i

ȳ emissions CO, HC, NOx, and CO2 or fuel consumption
ȳmodel the value of̄y computed using a given model
ȳVT−micro the value of̄y computed using VT-micro model

Zm a vector ofzm,i of all segments
Zm a diagonal matrix withZm as its diagonal entries
z coordinate
zm,i a vector[vfree,m f1,m,i(·) f2,m,i(·)]

⊤

Greek symbols

α an index of a vehicle
αuc,vc

ic,jc
an area of the intersection between cellCic,jc and the dispersion
tetragon of cellCuc,vc

β half of the emission divergence angle
β0 temperature dependent emission dispersion model parameter
βmax half of the maximum emission divergence angle
βmi,n,µj

fraction of vehicles that leave linkmi to link µj through noden
βn,µi

fraction of vehicles leaving noden to link µi

γ vertical emission dispersion (“evaporation”) factor

∆t a small time span
∆v a small fraction of speedv
∆vα an approach rate of vehicleα to vehicleα − 1
∆x a small section ofx
δ free-flow acceleration exponent of IDM model
δ METANET on-ramp model parameter
δ1, δ2 model parameters relating fuel consumption and CO2

δa,α relative acceleration deviation of vehicleα from the average
acceleration̄a

δv,α relative speed deviation of vehicleα from the average speed̄v

ǫapprox,α,ȳ approximate relative estimation error of emission or fuel
consumption̄y of vehicleα

ζi weight of traffic performance criterion
ζ4,MDL, ζ4,TDL weights of emission dispersion for theMDL andTDL

ηh high anticipation constant
ηl low anticipation constant
ηm,i anticipation constant of segmenti of link m

Θm a vector ofθ⊤m(·) over a prediction horizon
Θ∗

m optimal value ofΘm

θ the sequence of parameterθ over a prediction horizon
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θ control law parameter of RHPC controller
θm control law parameter vector[θm,0 θm,1 θm,2 θm,3]

⊤ of link m
θm,0, θm,1, θm,2 variable speed limit control law parameter of linkm
θm,3 ramp metering control law parameter of linkm

κ non-zero constant parameter of METANET model

λm number of lanes of linkm

µ1, . . . , µj , . . . , µn2
indices of diverging links

µcs weight of the variation of variable speed limits over space
µd,ȳ weight of dispersion of emissions̄y
µf,α friction coefficient of vehicleα
µr weight of the variation of ramp metering
µs weight of the variation of variable speed limits over time
µu,1 weight of the variation of control input over time
µu,2 weight of the variation of control input over space
µȳ weight of emission or fuel consumption̄y

ν a source term denoting rate of vehicles entering an on-ramp or
leaving an off-ramp

π a constant of value3.14159
̟ grid-cell emission expansion factor

ρ density
ρc,m,i, ρc,m,i+1 measured or estimated density of segmentsi andi + 1 of link m

at control time stepkc

ρcr,m critical density of linkm
ρd user defined downstream density
ρjam,m jam density of linkm
ρm,i density of segmenti of link m
ρmi,Nmi

+1 density of segmentNmi
+ 1 of link mi

ρµi,1 density of the first segment of linkµi

ρ̂ phase-space density
̺ drivers non-compliance factor

σy standard deviation ofC(x, y, z) along they−axis direction
σz standard deviation ofC(x, y, z) along thez−axis direction
σα free-flow sensitivity of vehicleα

τ relaxation time

φ lane-drop/increase model parameter of METANET
ϕ wind direction
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List of abbreviations

The following are list of frequently used abbreviations in this thesis:

ALINEA Asservissement LIŃeaire d’ Entŕe Autoroutìere
CFD Computational Fluid Dynamics
cMPC conventional Model Predictive Control
CPU Central Processing Unit
GHR Gazis-Herman-Rothery
IDM Intelligent Driver Model
LPV Linear Parameter Varying
MDL Maximum Dispersion Level
METANET Modèle d’Ecoulement du Traffic Autoroutier NETwork
MPC Model Predictive Control
MPT Multi-Parametric Toolbox
RHPC Receding Horizon Parametrized Control
Seg. (or seg.) Segment
SQP Sequential Quadratic Programing
TDL Total Dispersion Level
TE Total Emissions
TFC Total Fuel Consumption
TTS Total Time Spent
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Summary

Model-Based Traffic Control for Sustainable Mobility

Faster and more reliable transportation systems are necessary for sustained and faster eco-
nomic growth of a country. Freeway traffic networks are one ofthe main economic blood
vessels that link cities, towns, and villages with each other and with other economic hubs
(such as ports and industrial zones). However, due to the increasing demand for mobility
and hence the increasing number of vehicles, traffic networks are jammed more and more
frequently, impairing the traffic flow, increasing fuel consumption, increasing emissions and
the dispersion of the emissions to sensitive areas.

Freeway traffic systems often operate below capacity duringthe rush hours due to high
traffic demand and due to inefficient driving behavior of drivers and non-optimal traffic
management systems. It is recognized that the low efficiencyof freeway traffic flow can be
improved either by shifting the mode of transport, by introducing incentives to shift the de-
parture and arrival time of commuters, or by improving the traffic control and management
systems such that the traffic networks are operated more optimally.

However, improving the traffic flow may have a negative impacton the emissions, fuel
consumption, and safety. Traffic management and control strategies that focus on the re-
duction of emissions and fuel consumption are neither favorable for the traffic flow, because
emissions and fuel consumption are minimal at low vehicularspeeds (between30 km/h and
70 km/h), which can severely hinder the traffic flow and thereby increase the travel times.
This means that traffic control and management strategies that resolve or avoid traffic jams
can be beneficial for both the travel times and the environment when the traffic speed is
optimized within a limited range (e.g., up to80 km/h).

So, policy makers and traffic managers have to provide balanced solutions to the concern
of traffic congestion and environmental issues depending onthe traffic conditions. However,
this is not a simple task, because the dynamic nature of the traffic flow (both in time and
space) and the effect of other weather factors (such as wind on the dispersion of emissions
and rain on the flow of the traffic and dispersion of emissions)have to be taken into account.

As the literature suggests, there are several possible approaches to improve the day-to-
day traffic jams, the increased traffic emissions and fuel consumption, and the increased
number of traffic accidents. The span of possible traffic solutions ranges from the extension
of existing infrastructures and construction of new infrastructures, over large-scale substitu-
tion of fossil oil by alternative environmentally safe fuels and enhancing vehicle technology,
to the utilization of efficient traffic control and management strategies (e.g., the introduction
of intelligent transportation systems).

For several reasons, Intelligent Transportation Systems (ITS) offer promising solutions
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to the multi-dimensional traffic problems. One of the fundamental reasons is that with the
use of ITS, traffic operators and managers can increase the efficiency of the operation of the
traffic network such that during high-demand periods the traffic network can be operated
close to their designed operational capacity. To this end, this thesis presents an ITS-based
state-of-the-art freeway traffic control approach, a model-based traffic control solution that
takes the need to optimize both economic criteria (such as travel times and fuel consump-
tion) and environmental criteria (such as emissions and their dispersion) into account.

The model-based control approach adopted in this thesis, viz. Model Predictive Con-
trol (MPC) makes use of two basic concepts: on-line prediction and rolling horizon. In
order to make predictions of the traffic variables and to makedecisions on the traffic con-
trol measures depending on the intended control objectives, the control approach requires
models of traffic flow, traffic emissions, traffic fuel consumption, and dispersion of the traf-
fic emissions to a given target zone. Based on the evolution ofpredicted variables over a
certain prediction horizon and using on-line optimization, the controller determines traffic
control inputs that can optimize a desired traffic performance criterion. To avoid possible
model mismatch and unpredicted uncertainties, the proposed controller applies the second
concept—rolling horizon, where after the computation of a sequence of optimal control in-
puts, only the first control input is implemented and next, the horizon is shifted one sample
and the optimization is restarted with new information about the traffic states.

However, due the high computation time required by the on-line optimization process,
the conventional MPC controller is often not tractable in practice, i.e., the computation time
required by the optimization process of the conventional MPC controller is often larger than
one control time step. In order to reduce the computation time, this thesis presents an al-
ternative for the conventional MPC control strategy, viz. aReceding Horizon Parametrized
Control (RHPC). In this newly proposed RHPC control approach, the control inputs (such
as variable speed limits and ramp metering rates) are described by parametrized state-
dependent control laws. The RHPC controller then optimizesthe parameters of the con-
trol laws, different from the conventional MPC controller,where the traffic control inputs
are optimized directly. As a result, the optimization process of the RHPC controller is in
general faster than the optimization process of the conventional MPC controller.

The conventional MPC and the RHPC approaches are illustrated using macroscopic
models for traffic flow, traffic emissions, traffic fuel consumption, and dispersion of traffic
emissions. In most of the simulations in this thesis the macroscopic METANET model is
used as traffic flow model. However, as there are no emission, fuel consumption, and emis-
sion dispersion models that are suitable for real-time on-line prediction-based control appli-
cations, while still providing estimates with considerable accuracy, this thesis first presents
fast emission, fuel consumption, and emission dispersion models. These models are devel-
oped in such a way that they can be integrated seamlessly withthe macroscopic traffic flow
model METANET.

As emission and fuel consumption model, the macroscopic VT-macro model is devel-
oped. The VT-macro model is obtained by integrating the macroscopic METANET traffic
flow model and the microscopic VT-micro emission and fuel consumption model. The VT-
macro model uses the macroscopic traffic variables (averagespeed, density, and flow) to
generate the acceleration and corresponding number of the vehicles subject to the given av-
erage speed and acceleration in the traffic flow. The values ofthe average speed, average
acceleration, and corresponding number of vehicles are used to estimate the emissions and
fuel consumption of the traffic flow.
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Furthermore, this thesis investigates the possible errorsthat can be introduced due to the
integration of the macroscopic traffic flow model METANET andthe microscopic emission
and fuel consumption model VT-micro. The results of the specific case studies considered
show that the errors introduced are small. Moreover, the comparison of the emissions and
fuel consumption estimates of the VT-macro model and the COPERT model with respect
to the VT-micro model (which is claimed to be accurate but slow) show that the VT-macro
model tracks the evolution of the emissions generated by theVT-micro model with better
accuracy than the COPERT model does. The simulations also show that the VT-macro
model has the same computation speed as the COPERT model, while at the same time it is
faster than the VT-micro model.

In order to predict the dispersion of emissions to the neighborhoods of freeway traf-
fic networks, dispersion models are required. As literaturesuggest, the existing dispersion
models are computationally very slow and are not suitable for on-line control applications.
So, this thesis also develops new dispersion models that arecomputationally efficient. First
the basic point-source dispersion model is presented. Next, these point-source dispersion
model is extended to grid-based dispersion models that are computationally efficient. Two
of such models are developed, viz. extended grid-based and expanding grid-based disper-
sion. These models can consider the effects of variable windspeeds, wind directions, and
temperatures and can be used with both microscopic and macroscopic traffic emission mod-
els. As the main focus of this thesis has been on the dispersion of the emissions at the
ground level, the dispersion of the emissions into the vertical direction is modeled via an
“evaporation” factor. Note, however, that these models arenot yet compared to the already
existing dispersion models and are neither calibrated to real-life data, which is one of the
topics of the thesis that is recommended for future work.

The conventional MPC controller and the RHPC controller usethe aforementioned mod-
els in the extensive simulation-based case studies of the thesis to illustrate the potential of
the control approaches. Using the proposed models and the control approaches, this thesis
assesses the potential benefits of the existing infrastructure-based traffic control measures,
in particular variable speed limits and ramp meters. In the simulations the control law of
the variable speed limits is described using three parameters and the control law of the ramp
metering is described using one parameter. However, the RHPC approach is so general that
the control laws can be defined in any way suitable one opts to.Moreover, the conventional
MPC and the RHPC controllers proposed in this thesis can alsobe used with other more
complex and computationally fast models.

Moreover, a multi-objective performance criterion that considers the total time spent by
vehicles in the traffic network, the total emissions, total fuel consumption, and the disper-
sion of the emissions to a given target zone is considered forboth the conventional MPC
and RHPC controllers, so that the controllers can optimize the control measures to provide
a balanced trade-off between the mobility and the environmental performance indicators.
Moreover, the trade-offs involved between these conflicting (and sometimes concurring)
traffic performance indicators are discussed.

As the simulation results of the thesis indicate, both the conventional MPC and the
RHPC controllers are able to provide a balanced trade-off between travel time, emissions,
fuel consumption, and dispersion of emissions. Moreover, the simulations show that the
conventional MPC controller suffers from high computationtime requirements, which makes
it infeasible in practice. On the contrary, the RHPC controller requires a very low computa-
tion time and it is shown to be applicable in practice. Moreover, the simulations show that
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the performance of the RHPC controller is similar to the performance of the conventional
MPC controller, which is considered to be more optimal within the given context. Further-
more, the extensive case studies show that depending on the traffic conditions and weather
factors, it is possible to reduce—with a balanced trade-off—the travel times, emissions, fuel
consumption, and the dispersion of emissions to a given target zone using the control ap-
proaches and control measures investigated in this thesis.Moreover, although reduction of
the total emissions from a freeway has a positive impact on the global emissions levels, it
does not always reduce the emission levels in a specific target zone (protected area) where
emissions levels are required to be as low as possible. Instead, if the focus of the controllers
is on reducing the emission levels in a specific target zone, the controllers can reduce the
emission levels at the target zone while allowing the total emissions from a freeway to be
higher than when the focus of the controllers is on reducing the total emissions of the free-
way. This is because of the following. When the focus of the controllers is on reducing the
travel time and the dispersion level in a target zone, the controller dynamically—based on
the wind speed and wind direction—affects the part of the freeway that releases the emis-
sions that will be dispersed to the target zone, while improving the traffic flow on the part
of the freeway the emissions of which do not have effect on theemission levels of the target
zone.

Finally, the thesis also indicates some recommendations regarding the open issues that
are not investigated in the thesis and that can be consideredas topic for future work. These
topics include extensive validation of models, simulationand practical test of the control
approaches, and investigation of different control measures and different performance indi-
cators for the traffic controllers.

Solomon Kidane Zegeye



Samenvatting

Modelgebaseerde Verkeersregeling voor Duurzame Mobili-
teit

Voor een duurzame en snelle economische groei van een land iseen snel en betrouwbaar
transportsysteem noodzakelijk. Snelwegnetwerken zijn vitale economische slagaders die
steden en dorpen met elkaar en met economische centra (zoalshavens en industrieterrei-
nen) verbinden. De toenemende vraag naar mobiliteit en daarmee het toenemende aantal
voertuigen zorgt er echter voor dat verkeersnetwerken steeds vaker verstopt raken. Dit doet
afbreuk aan de verkeersdoorstroming, zorgt voor toenemendbrandstofverbruik, meer uit-
stoot en de verspreiding van schadelijke stoffen naar kwetsbare plaatsen.

Door de hoge verkeersvraag, het inefficiënte gedrag van bestuurders en niet-optimale
verkeersregelsystemen functioneren snelwegen tijdens het spitsuur vaak onder hun capaci-
teitsgrens. Het is bekend dat de lage efficiëntie van snelwegverkeer verhoogd kan worden
door andere vormen van transport aan te bieden, door alternatieve aankomst- en vertrektij-
den te belonen, en door het verkeersregeling- en -managementsysteem te verbeteren zodat
het verkeersnetwerk optimaler functioneert.

Het bevorderen van de verkeersdoorstroming kan echter een negatieve invloed heb-
ben op de uitstoot, het brandstofverbruik en de veiligheid.Verkeersmanagement- en -
regelstrategiëen die gericht zijn op het verminderen van de uitstoot en het brandstofverbruik,
kunnen juist nadelig zijn voor de verkeersdoorstroming, omdat de uitstoot en het brandstof-
verbruik minimaal zijn bij lage voertuigsnelheden (tussen30 km/h en70 km/h), wat een
sterk nadelig effect kan hebben op de verkeersdoorstromingen daarmee op de reistijden.
Dit betekent dat verkeersregel- en -managementstrategieën die files oplossen of vermijden
slechts dan een positief effect hebben op reistijden en het milieu als de verkeerssnelheid
wordt geoptimaliseerd binnen een beperkt interval (bv. tot80 km/h).

Politici en verkeersmanagers moeten dus een evenwichtige oplossing zoeken die reke-
ning houdt met het probleem van de files en met de milieuaspecten die afhankelijk van de
verkeersituatie ontstaan. Dit is geen eenvoudige opgave omdat het dynamische karakter van
de verkeersstroom (zowel in tijd als in ruimte) en de invloedvan weersfactoren (zoals wind
bij de verspreiding van emissies en regen bij de verkeersdoorstroming en de verspreiding
van emissies) meegenomen moeten worden.

In de literatuur worden verschillende mogelijke methoden beschreven voor het aanpak-
ken van dagelijkse files, de toenemende verkeersuitstoot, het toenemende brandstofverbruik
en het toenemend aantal verkeersongelukken. De reikwijdtevan de mogelijke verkeersop-
lossingen loopt van het uitbreiden van de bestaande infrastructuur en de bouw van nieuwe
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infrastructuur, via grootschalige vervanging van fossiele brandstoffen door alternatieve, mi-
lieuvriendelijke brandstoffen en verbetering van de voertuigtechnologie, naar het gebruik
van efficïente verkeersregel- en -managementstrategieën (bv. de invoering van intelligente
transportsystemen).

Intelligente Transportsystemen (ITS) bieden om diverse redenen interessante, veelbelo-
vende oplossingen voor de veelzijdige verkeersproblemen.De belangrijkste reden is dat ver-
keersoperatoren en -managers door het invoeren van ITS de efficiëntie van het regelen van
het verkeersnetwerk kunnen verhogen zodat tijdens spitstijden het verkeersnetwerk tot zijn
uiterste capaciteit kan worden gebruikt. Dit proefschriftstelt daarom een ITS-gebaseerde,
geavanceerde, modelgebaseerde snelwegregeling voor, dierekening houdt met de noodzaak
van zowel het optimaliseren van economische criteria (zoals reistijden en brandstofverbruik)
en met milieucriteria (zoals uitstoot en de verspreiding daarvan).

De modelgebaseerde regelmethode die in dit proefschrift beschreven wordt,Model Pre-
dictive Control(MPC), maakt gebruik van twee basisconcepten: online voorspelling en een
schuivende horizon. De regelmethode heeft modellen van de verkeersstroom, de uitstoot,
het brandstofverbruik en de verspreiding van de uitstoot nodig om voorspellingen te maken
van de verkeersvariabelen en om afhankelijk van de regeldoelen beslissingen te nemen over
de verkeersmaatregelen. Op basis van de evolutie van de voorspelde waardes over een afge-
sproken voorspellingshorizon en met gebruik van online optimalisering, bepaalt de regelaar
regelingangen voor verkeersmaatregelen die de gewenste criteria voor de verkeersprestatie
optimaliseren. De methode maakt daarnaast gebruik van een schuivende horizon om mo-
gelijke modelfouten en onvoorziene onzekerheden te voorkomen. Hierbij worden na het
bepalen van een reeks optimale regelingangen enkel de regelingangen voor de eerste regel-
stap gëımplementeerd, waarna de voorspellingshorizonéén regelstap opgeschoven wordt
en het optimalisatieproces opnieuw gestart wordt met nieuwverkregen informatie over de
situatie van het verkeersnetwerk.

De conventionele MPC-regelaar is in de praktijk vaak niet realiseerbaar, doordat het
online optimalisatieproces teveel rekentijd nodig heeft.Dat wil zeggen dat de rekentijd
die nodig is voor de conventionele MPC-regelaar meestal langer is dan de duur van een
regelstap. Om de rekentijd te reduceren introduceert dit proefschrift een alternatief voor
de conventionele MPC-regelstrategie, namelijkReceding Horizon Parametrized Control
(RHPC). In deze nieuwe RHPC-methode worden de regelingangen (zoals variabele snel-
heidslimieten en doseringsfracties voor toeritdoseringen) beschreven met behulp van ge-
parameteriseerde, toestandsafhankelijke regelwetten. In tegenstelling tot de conventionele
MPC-regelaar, waar de verkeersregelingangen direct worden geoptimaliseerd, optimaliseert
de RHPC-regelaar de parameters van de regelwetten. Hierdoor is het optimaliseringspro-
ces van de RHPC-regelaar in het algemeen sneller dan het optimaliseringsproces van de
conventionele MPC-regelaar.

De conventionele MPC-aanpak en de RHPC-aanpak worden geı̈llustreerd met behulp
van macroscopische modellen voor de verkeersstroom, de uitstoot, het brandstofverbruik
en de verspreiding van de uitstoot. In de meeste simulaties in dit proefschrift is het macro-
scopische METANET-model als verkeersstroommodel gebruikt. Aangezien er echter geen
modellen voor de uitstoot, het brandstofverbruik en de verspreiding van de uitstoot bestaan
die geschikt zijn voorreal-time online modelgebaseerde regeling en die nog steeds vol-
doende nauwkeurige schattingen geven, introduceert dit proefschrift snelle modellen voor
de uitstoot, het brandstofverbruik en de verspreiding van de uitstoot. Deze modellen zijn zo
ontworpen dat ze naadloos kunnen worden geı̈ntegreerd met het macroscopische verkeers-
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stroommodel METANET.
Een macroscopisch VT-macro model is ontwikkeld als uitstoot- en brandstofverbruik-

model. Het VT-macro model is verkregen door de integratie van het macroscopische ver-
keersstroommodel METANET en het microscopische uitstoot-en brandstofverbruikmodel
VT-micro. Het VT-macro model maakt gebruik van macroscopische verkeersvariabelen
(gemiddelde snelheid, dichtheid en doorstroming) om de versnelling van de verkeersstroom
en het corresponderende aantal voertuigen te berekenen diede gegeven gemiddelde snelheid
en versnelling hebben. De waardes van de gemiddelde snelheid, gemiddelde versnelling en
het corresponderende aantal voertuigen worden gebruikt omde uitstoot en het brandstof-
verbruik van de verkeersstroom in te schatten.

Verder onderzoekt dit proefschrift de mogelijke fouten diekunnen ontstaan door de
integratie van het macroscopische verkeersstroommodel METANET en het microscopische
uitstoot- en brandstofverbruikmodel VT-micro. De resultaten van verschillende casestudies
die onderzocht zijn, tonen aan dat de ontstane fouten klein zijn. Verder toont de vergelijking
van schattingen van de uitstoot en het brandstofverbruik van het VT-macro model en het
COPERT-model ten opzichte van het VT-micro model (waarvan men stelt dat het precies
maar langzaam is) aan dat het VT-macro model de ontwikkelingvan uitstoot gegenereerd
door het VT-micro model preciezer volgt dan het COPERT-model. De simulaties tonen ook
dat het VT-macro model even snel is als het COPERT-model, terwijl het sneller is dan het
VT-micro model.

Om de verspreiding van de uitstoot in de omgeving van snelwegnetwerken te voorspel-
len, zijn verspreidingsmodellen nodig. De literatuur stelt dat de bestaande verspreidings-
modellen erg langzaam zijn en ongeschikt voor online regeltoepassingen. Daarom zijn
in dit proefschrift nieuwe verspreidingsmodellen ontwikkeld die efficïent werken. Eerst
wordt als basis het puntbron-verspreidingsmodel gepresenteerd. Daarna wordt dit puntbron-
verspreidingsmodel uitgebreid naar rastergebaseerde modellen die zeer efficïent werken. Er
worden twee rastergebaseerde modellen ontwikkeld, namelijk het uitgebreide rastergeba-
seerde model en het uitdijende rastergebaseerde model. Deze modellen kunnen omgaan
met de gevolgen van een variabele windsnelheid, windrichting en temperatuur en ze kunnen
worden gebruikt in combinatie met zowel microscopische alsmacroscopische verkeersuit-
stootmodellen. Omdat de focus van dit proefschrift ligt op de verspreiding van de uitstoot
dicht bij de grond, wordt de verspreiding van de uitstoot in de verticale richting gemodel-
leerd met behulp van een “verdampings”-factor. Merk op dat deze modellen nog niet worden
vergeleken met bestaande verspreidingsmodellen en dat ze ook niet worden geijkt met echte
data. Dit iséén van de open onderwerpen die in dit proefschrift worden aanbevolen voor
toekomstig onderzoek.

Om de mogelijkheden van de regelmethoden te illustreren gebruiken de conventionele
MPC-regelaar en de RHPC-regelaar de bovengenoemde modellen in de uitgebreide simula-
tiegebaseerde casestudies van dit proefschrift. Met behulp van de voorgestelde modellen en
regelmethoden bepaalt dit proefschrift de mogelijke voordelen van bestaande infrastructuur-
gebaseerde verkeersmaatregelen, met name variabele snelheidslimieten en toeritdoseringen.
In de simulaties wordt de regelwet van de variabele snelheidslimieten beschreven door mid-
del van drie parameters en de regelwet van de toeritdoseringwordt beschreven met behulp
vanéén parameter. De RHPC-aanpak is echter zo algemeen dat de regelwetten op elke ge-
schikte en gewenste manier kunnen worden gedefinieerd. Verder kunnen de conventionele
MPC-regelaars en de RHPC-regelaars die in dit proefschriftzijn voorgesteld, ook gebruikt
worden in combinatie met andere complexere en snellere modellen.
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Verder is er eenmulti-objectiveprestatiecriterium onderzocht dat van alle voertuigen in
het verkeersnetwerk de totale reistijd, de gezamenlijke uitstoot, het gezamenlijke brandstof-
verbruik en de verspreiding van de uitstoot naar een bepaaldgebied beschouwt; dit voor
zowel de conventionele MPC-regelaars als voor de RHPC-regelaars, zodat de regelaars de
maatregelen kunnen optimaliseren en een evenwichtig compromis kunnen vinden dat zowel
de mobiliteits- als de milieukwaliteitscriteria recht doet. Ook worden de afwegingen die
samenhangen met deze tegenstrijdige (en soms parallel lopende) indicatoren van de ver-
keersprestatie besproken.

Zoals de simulatieresultaten van dit proefschrift aantonen, zijn zowel de conventionele
MPC-regelaars als de RHPC-regelaars in staat een evenwichtig compromis tussen reistijd,
uitstoot, brandstofverbruik en verspreiding van schadelijke stoffen te bereiken. Tevens tonen
de simulaties aan dat de conventionele MPC-regelaar gebuktgaat onder een hoge rekentijd,
wat hem in de praktijk onbruikbaar maakt. Daarentegen heeftde RHPC-regelaar slechts
weinig rekentijd nodig en blijkt hij in de praktijk goed bruikbaar te zijn. Verder tonen de
simulaties aan dat de prestaties van de RHPC-regelaar vergelijkbaar zijn met de prestaties
van de conventionele MPC-regelaar, die in principe meer optimale resultaten oplevert in
de gegeven context. Verder tonen uitgebreide casestudies aan dat het afhankelijk van de
verkeerstoestand en de weersfactoren mogelijk is om met behulp van de regelmethoden
uit dit proefschrift de reistijden, van de uitstoot, het brandstofverbruik en de verspreiding
de uitstoot — met een evenwichtig compromis — te reduceren. Hoewel de reductie van
de totale uitstoot van een snelweg een positief effect heeftop de gebiedsbrede emissieni-
veaus, zal het niet altijd de emissieniveaus in een specifiekgebied (een beschermde zone,
waarvoor vereist wordt dat de emissieniveaus juist zo laag mogelijk moeten zijn) verlagen.
Omgekeerd, als de focus van de regelaars op het reduceren vande emissieniveaus in een
bepaald gebied ligt, kan dat tot lokaal lagere emissieniveaus leiden, terwijl de totale uitstoot
van de snelweg hoger is dan wanneer de focus van de regelaars op de totale uitstoot ligt.
Dit kan als volgt uitgelegd worden. Als de focus van de regelaar ligt op het reduceren van
reistijden en het emissieniveau in een specifiek gebied, danzal de regelaar — afhankelijk
van de windsnelheid en de windrichting — dynamisch de verkeersstroom vertragen op dat
deel van de snelweg dat verantwoordelijk is voor de uitstoot, terwijl de verkeersstroom in
het overige deel van de snelweg waarvandaan uitstoot geen effect op het specifieke gebied
heeft, verhoogd zal worden.

Tenslotte geeft dit proefschrift enkele aanbevelingen voor open problemen die in dit
proefschrift niet behandeld zijn en die in aanmerking komenvoor toekomstig onderzoek.
Hiertoe horen onder meer een uitgebreide validatie van de modellen, simulatie en prak-
tijktests van de regelmethoden en onderzoek naar bijkomende regelmaatregelen en andere
prestatie-indicatoren voor de verkeersregelaars.

(Dutch translation provided by Prof. dr. ir. J. Hellendoorn)
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