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Chapter 1

Introduction

ince the invention of vehicles, the volume, frequency, greksl of the transporta-
tion of people and goods have increased significantly. Tipadty and quality
f vehicular transportation systems, in particular in deped countries, have in-
reased substantially. However, due to the unmatcheddseli@ demand for trans-
portation, road transport is frequently impeded by reaureend non-recurrent traffic jams
and incidents. The increasing number of traffic jams, theeirighe health and environmen-
tal effects of the vehicular emissions, and the increasieggrices are other dimensions of
the challenges of vehicular mobility in most developed d¢oas.

As aresult, it has become apparent that multi-objectivesfrartation control and man-
agement systems should be developed to address the netkifataffic problems. One
of the well accepted and promising solutions is the use @fligent transportation sys-
tems. In this regard, this thesis contributes its share pyane the freeway traffic mobility
by considering both environmental (emissions and dispersf emissions) and economic
concerns (travel time and energy consumption) of diffestakeholders. The contribution
of the thesis is delivered in eight chapters. This chapteoduces the general freeway traf-
fic challenges and the specific problems investigated irthigisis. It starts with discussing
the traffic systems and challenges that have motivated timenemcement of this thesis in
Section 1.1. The possible traffic solutions advocated @ndiure are in general elaborated
and discussed in Section 1.2. Next the problem statemertharmbntribution of the thesis
to the state-of-the-art are provided in Sections 1.3 andekgectively. Finally, the outline
of the thesis is presented in Section 1.5.

1.1 Traffic systems and their challenges

The increasing public awareness and the more stringentogmaental policies regarding
the emission of exhaust gases and particulate matter, ibication with the ever increas-
ing demand for transportation and the related traffic janasehan increasing impact on
the further evolution of our mobility. Either directly ordirectly the recurrent and non-
recurrent traffic problems are affecting our daily life.

For example, freeway traffic systems encounter frequeffictreongestion, incidents,
and increasing and varying traffic demands. Freeway traffitesns operate below-capacity
during the rush hours due to inefficient driving behavior ofers and non-optimal traffic

1



2 1 Introduction

management systems and during the off-rush hours as tHemétéd traffic demand. More-
over, the emissions released and the fuel consumed by eskint other issues that require
due attention in the introduction of any transportatiorusoh.

The low efficiency of freeway traffic flow can be improved eitly shifting the traf-
fic demand through changes in the mode of transportatioesgstby the introduction of
incentives to shift the departure and arrival time of cormersjtor by improving the traf-
fic control and management systems such that the trafficragstéee operated optimally.
However, improving the traffic flow may have a negative impatthe fuel consumption,
emissions, and safety. This means that every transpoti@olust be scrutinized from dif-
ferent directions so that a (sub-)optimal solution can kaiobd to the multifaceted traffic
challenges.

In order to provide a background understanding of the sjpgmifiblem statement of this
thesis, in the sequel, the main challenges of freeway trafitems are briefly discussed by
broadly classifying them into three categories as econamicerns, environmental con-
cerns, and conflicting interests.

1.1.1 Economic concerns

In general, freeway traffic flows vary over space and time. sTlioe effects of the traffic
flows are also distributed spatially and temporally. Howeed traffic flows share some
common behavior and have common effects. This common bahba&sically originates
from the desire of each driver to reach an intended destinats fast as and as safely as
possible. This desire also bears some negative effecth gmutraffic jams and accidents
due to the conflict of interest between drivers). On the ottaerd, faster and more reli-
able transportation systems are necessary for sustainefdster economic prosperity of a
country. Freeway traffic systems are one of the main econbloéz vessels that link cities,
towns, and villages with each other and with other economimst{such as ports and indus-
trial zones). As such, every minute or second spent in trenag traffic system amounts
to economic costs. Moreover, the amount of fuel consumedtadepreciation costs of
inefficiently exploited transportation facilities are etimportant economic concerns.

These transport costs are not static and they vary with thédveaonomy, the traffic
demand, and the efficiency of the traffic transport systemse @ the increasing demand
for mobility, and hence the increase in the number of vehjdlee traffic networks are more
often jammed. Increased travel time due to continuous aeguiént traffic jams creates
additional losses in the productive hours of both peoplegoatls. The long time spent
stranded in the traffic networks is also most often obseroeddrease the stress level of
drivers or passengers [84, 181]. This increases the heéslitterel of drives, which in turn
affects the economy of drivers (or in general the economyaufumtry).

On the one hand, the increased traffic jams are causing sBexidael consumption. On
the other hand, world wide fuel cost is on average incregd8#p Altogether the economic
losses due to the wasted fuel caused by traffic congestiomeneasing. In addition, the
frequent traffic jams lead to an increase of accidents, whidisequently affects the econ-
omy in many aspects. Every time an incident happens, additiime and resources are
allocated to clear the incident and to reopen the traffic agkvfor traffic. Above all, in-
cidents that cost lives are not avoidable and the subsegoeig-economic disturbances
are harsh. By and large, directly or indirectly the ever éasing traffic jams have severe
consequences on the economy of a country.
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1.1.2 Environmental concerns

In addition to the unproductive hours drivers spend in csetegbtraffic flows and the in-
creased number of accidents and volume of fuel consumptivard face, motor vehicle
emissions are one main sources of atmospheric pollution, [i&5, 193]. In fact road trans-
portation is one of the major contributors to man-made pioluemissions. In European
cities it has been estimated that more tHaf% of the hydrocarbon, more th&i% of the
nitrogen oxides, and ové&0% of the carbon monoxide are accounted for by road transport
[175]. Approximatelyl 5% of the world’s emissions of carbon dioxidehe principal global
warming gas, is generated by motor vehicles [131]. Moredvansportation is responsible
for approximatelys0% of the emissions of nitrogen oxide afd% of the carbon monoxide
emission world wide [131]. The emissions of road traffic hals highly adverse effects
on the health of the society [86, 197].

The principal pollutants emitted from typical motor engirage carbon monoxide (CO),
hydrocarbon (HC), oxides of nitrogen (N® and particulate matter (PM) [193]. Carbon
monoxide, which is a product of inefficient fuel combustiohemgines, is a poisonous
gas. Carbon monoxide reduces the flow of oxygen in the bloeast of a human body
and it can be fatal. Hydrocarbon emissions result from foat tioes not burn completely
and that is chemically transformed in (and outside of) thgiren [193]. Hydrocarbons
released by vehicle exhaust systems are also toxic and avenkio cause cancer in the
long term. Hydrocarbons react with oxides of nitrogen torf@zone (@), which is the
major component of smog. Ozone causes irritations of the @yd damages the respiratory
system. Oxides of nitrogen (NQare formed by the chemical reaction that occurs during
the combustion in the engine of vehicles. Oxides of nitrogerparticular NQ, cause
short and long term health effects [193]. Particulate msteecomplex mixture of solid and
liquid particles in the air, are emitted mainly by diesel @adrly maintained petrol vehicles
[30, 193]. Vehicles (such as cars, trucks, and buses) amr s@jrces of fine particles [30].
Particulate matter with an aerodynamic diametezglow 10 um (PM,,) and especially the
finer fraction with aerodynamic diameter belavé pm (PM ;) was found to be associated
with increased daily mortality and asthma [59, 73, 191].

In line with these facts, traffic conditions have significampacts on the concentration
of emissions released by vehicles. Depending on the traffiditions, the emission levels
can be reduced or even get worse. Since the air-to-fuel catisumed by an engine is a
major determinant factor for the efficiency of engines, tighst CO and HC levels are
produced under fuel-rich conditions, and the highest,N&Yel is emitted under fuel-lean
conditions [89]. Generally, since fuel-rich operationsurcduring cold-start conditions, or
under heavy engine loads such as during rapid acceleradtonigh speeds and on steep
grades, high levels of CO and HC are generated on congegthdidys and in other areas
with high traffic density. Moreover, the frequent stop-ayaimotion of vehicles in traffic
networks does not only impact the travel time, but also tieédansumption of the vehicles,
which also severely increases the emission levels. Thaseased traffic congestion or
improved traffic flows have severe consequences on the emigsiel, which in turn affects
the environment and the health of drivers in the traffic neks@nd neighborhoods near to

1The CQ, emissions is affinely related to the fuel consumption [141f &eo|(3.4).

2The aerodynamic diameter is a measure to express the size dicéepathe aerodynamic diameter is defined
as the diameter of a unit-density sphere that has the samiegetlocity as the particle in question [59]. The
settling velocity is the maximum velocity a particle can haved given force and a drag force dependent on its
velocity. Thus, at the settling velocity the drag force is@do the applied force.
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the traffic networks.

1.1.3 Conflicting interests

Road traffic flow is different from other transportation ges (such as railway systems
and airlines) in various ways. The main difference emanfates the fact that the trips in
road transport, in general, are not centrally controlled planned well ahead as in other
transportation systems. The road traffic demand is stachastl the traffic control and
management strategies of road transport have to deal witbrtain predictions. One main
challenge in traffic control and management systems is diegj@ traffic controller or man-
agement strategy in such a way that the traffic jams are relduche minimum possible,
while still keeping the required safety level. Another ¢badje is the desire to reduce emis-
sions and fuel consumption of the vehicles in a traffic nekwbrough policy and traffic
control and management measures.

The multifaceted nature of the desired control objectiiesadfic systems makes traffic
control and management challenging [187]. The traffic admtpbjectives can vary both spa-
tially and temporally. The objective of a controller can bduction of travel times, increas-
ing safety, or reduction of emissions and fuel consumpttodiféerent times or locations.
Moreover, the objectives of traffic control and managemgstesns may be conflicting or
concurring depending on the traffic conditions [1]. Likesyishe transport authorities and
drivers can have conflicting or concurring objectives. la thllowing sections, the con-
flicting and concurring objectives of transport authostigith respect to drivers and with
respect to the environment are discussed.

Drivers versus transport authorities

In general, people would like to have short trips and shasafrtimes any time they are in
the traffic network. However, it is hardly possible for thartsport authorities to offer short
and fast routes to each individual driver without comprangighe mobility of the other
drivers. Moreover, what could be user equilibrium may natassarily be system optimal
[155, 198]. This means that if the travel cost (such as theetrdistance, amount of fuel
consumed, comfort level, and the like) of every driver is shene regardless of the route
or departure time the driver chose—with no unused routeftiggatime choices having a
lower cost, then the state is at user (drivers) equilibridmgb, 199]. However, there are
cases where the travel cost of some drivers should be congedmso that the system’s total
travel cost can be lower. In this sense, since the interesapn$port authorities is, by and
large, to improve the total travel cost of the transporteyst as a whole, the interest of the
drivers and the transport authorities may sometimes beictmg.

To illustrate a possible conflict of interest between tramsputhorities and drivers, let
us first discuss the effect of driving behavior on travel tiosing Fig. 1.1. The figure
shows possible trajectories of two vehicles (one that mavessuggested speed and hence
called managed vehicle and one that moves at the maximurd §pgecalled unmanaged
vehicle) that have the same origin and destination. Suppitgeat the initial time and
position there is a traffic jam downstream of the vehicles.e Thmanaged vehicle will
arrive at the downstream jam at a time iNSt&Rf, unmanaged. HOWeEVer, since the time
required by vehicles to decelerate is smaller than the teqeired to accelerate [58], the
unmanaged vehicle will accelerate slower to the maximunedpiean it decelerates to the
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Speed [m/s]
mmmanaged
Yjam,dissolved (.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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AAAtjAAT]:nA,

Time [s]

Figure 1.1: Schematic illustration of capacity drop causke to the difference in acceler-
ation and deceleration of a vehicle.

jam speed. Finally, it arrives at its destination at thevafriime instant . rival,unmanaged-
On the contrary, the managed vehicle does not drive at thenmiax speed down to the
traffic jam. It is assigned a lower speed limit such that bytthne it arrives the location
of the downstream traffic jam, the jam has been dissolved,the vehicle arrives at the
location where the jam was at the time insta@t, dgissolved. This means that the managed
vehicle does not get the traffic jam (depending on the len§thejam and the distance
between the location of the jam and the managed vehicle).céjeghe managed vehicle
takes smaller time to accelerate to the maximum speed aftgaim location. Finally, the
managed vehicle arrives its destination faster than theamaigred vehicle (at time instant
Larrival,managed < larrival,unmanaged). 1NiS Mmeans that the traffic jam is dissolved and will
not propagate upstream in the managed case, while the jdmpraflagate upstream until
the demand decreases under the unmanaged case.

This simple scenario conveys two important messages, Eissiows that the difference
in acceleration and deceleration behavior of vehicles émsprecifically drivers) can lead
to increased travel time. Second, it demonstrates thaspgah managers and operators
can set driving strategies that can dissolve traffic jamgdovigde better traffic flow for the
continuing demand. Such solutions can also be in the intefe=svery driver if there are
no off-ramps upstream of the traffic jam location. Otherwikévers that have to drive to
the off-ramp before the traffic jam location will be forceddlow down for the benefit of
other drivers that are going to drive through the traffic jafhis means that the transport
authorities will improve the overall system travel time la¢ £xpense of the travel time of
the drivers going through the off-ramps.

On-ramp metering is also one of the control measures thataseonflicting interests
between drivers and transport authorities. In generaledsilike to enter the freeway di-
rectly after their arrival at an on-ramp, because, by argelaa continuous on-ramp inflow
into the freeway reduces the travel times of the vehiclelseabh-ramp. However, it can cre-
ate a traffic jam just upstream of the on-ramp location thatiegact the upstream traffic.
In this sense, the transport authorities would like to raguthe on-ramp flow so that the
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Emission rate [kg/m]

Congested ! ! Free-flow
| |
| |

Y

Vehicle speed [m/s]

Figure 1.2: General evolution of vehicular emission rates.

overall performance of the freeway is improved. In otherdgpithe transport authorities
have to compromise the travel times of the drivers at theaomgr(by regulating the inflow)

in order to avoid a possible traffic jam just upstream of theamp, thereby they improve
the traffic network performance.

Transport authorities versus the environment

In general, higher speeds favor the traffic flow but incredlsesamount of emissions re-
leased [1]. This means that the desire to improve the myplafipeople and goods by the
transport authorities can affect the emission levels sdyeto improve the emission level,
the speed of vehicles should not exceed a certain thresb@d30 to 70 km/h). This is il-
lustrated with the general emission (or fuel consumptioojletin Fig/ 1.2. The emissions
rate per unit distance of a vehicle is minimum only at speet&éen the congested and the
free-flow regions shown in Fig. 1.2. Under congested traffiditions, improvement of the
traffic flow also improves the fuel consumption and emissimmwided that the improved
speed is such that fuel consumption or emissions at thatisgyedower than the ones at the
congested speed.

In order to improve the traffic flow, transport authoritiesymeant to construct new and
expand existing transport infrastructures. However, remvhentalists are also concerned
with the loss of green areas due to the new infrastructuréstenadditional emissions that
can be generated due to the improved traffic flow and newlydddbicles (the increased
demand due to the induced effect of improved traffic flow).

So, finding a solution that balances these conflict of interissone of the challenges
that hampers road traffic control and management. Some pisble solutions to reduce
these and other road traffic problems are the subject of eekibs.

1.2 Possible traffic solutions

As traffic problems are multi-dimensional and intricates lolutions to address the require-
ments of different stakeholders have to pass through rigoamd all-round examinations.
As the literature suggests, there are several possibl@agipes to improve the day-to-day
traffic jams, the increased traffic emissions and fuel comiam, and the number of traffic
incidents. The span of possible traffic solutions rangeas fitte extension of existing infras-
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tructures and construction of new infrastructures, ovaydascale substitution of fossil oil
by alternative environmentally safe fuel, and enhancirgole technology, to the utiliza-
tion of efficient traffic control and management strategies, (introduction of intelligent
transportation systems). These solutions are briefly dimliin the ensuing sections.

1.2.1 Extension of existing infrastructures and constructin of new in-
frastructures

One of the easiest and most straightforward solutions taamgpthe traffic flow is to in-
crease the capacity of the traffic networks. This would meagither extend the existing
infrastructures (such as increasing the number of laneingmebving the slope and quality
of the road networks) or to build new alternative routes \etier there is traffic bottleneck.
However, this solution is often not feasible for severabm®s. One and the most obvious
reason is that in many cases there is limited available Iaatidan be used for the con-
struction of new roads or for extension of existing road meks. Sometimes, construction
of new or extension of existing road networks also requihesrelocation of established
socio-economic structures (such as residential areasoksgtshops, and farming facilities).

Secondly, even if it is found that there is enough land fordbtwestruction of road net-
works, construction of new roads or extension of existirgdroetworks is very expensive.
In addition, it may also be heavily time consuming.

Thirdly, the construction of new roads or extension of eéxggtoad networks have severe
environmental consequences. The land that would have lreen grea has to be used for
transportation facilities, the traffic that uses the roatl selease emissions, and the fine
particles emitted during and after construction have sweensequences on the human
health. Moreover, improvement in traffic flow due to improweadfic facilities would mean
increased emissions not only in the areas where the new tagrks are built, but also
in the areas where the traffic flow is improved due the diversiopart of the traffic to the
newly constructed alternative traffic road.

Finally, improved traffic flow can also have an induced effestthe traffic demand
[137,/142]. The newly constructed roads or the extended nadaorks will first reduce
the traffic jams and make road transport more reliable in ¢inses that the variations in the
travel times will be reduced. However, the increased réiigland reduced traffic jams can
motivate people to switch from public transportation tosohg a car or to increase driving
frequency. Consequently, the traffic demand increaseshahiturn negatively impacts the
traffic flow and the environment.

1.2.2 Enhancing vehicle and fuel technology

Another important solution that can address some of thédi@fallenges outlined above is
the advancement of vehicle technology. For example, byaripg the engine technology
of vehicles, it is possible to reduce the energy consumgimhemissions of vehicles [156,
184]. As the efficiency of the engines improves, the fuel comstion of vehicles at lower
speeds is reduced and thereby the emission rate in that sgoeggelis reduced. This means
that the emission rate curve will be changed as shown in ER(a)l Moreover, if the
aerodynamic shape of vehicles is designed in such a way hbatirag force—which is
significant at high vehicle speeds—is reduced, then the foe$umption at high vehicle
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Figure 1.3: Alternative approaches to reduce the emissaiag of vehicles. For each case,
the emission rate changes from the dashed curve to the sole.c

speeds can be reduced. Subsequently, the emissions of Hfedegeat high speeds are
reduced as shown in Fig. 1.3(b).

Another alternative approach is the complete substitutiofossil fuels with environ-
mentally friendly fuel sources or a shift to electric vebil An efficient fuel source with
less pollutants would mean reducing the emission rate atle=has shown in Fig. 1.3(c)
[93,200].

These technological improvements of vehicles can cortitawards creating environ-
mentally friendly vehicles, and hence the traffic managadsteaffic controllers will have
a wider range of speeds corresponding to low emission réteshicles, where they could
focus only on the improvement of traffic flow. Moreover, if velbs would have been made
intelligent enough to communicate to each other and to thd-gide infrastructure, the ca-
pacity drop that is caused due to the driver's behavior caretheced to the level where the
infrastructure is used efficiently. Moreover, incidents ¢e easily detected and vehicles
can be used as means of sensors and information channeld fmanthe infrastructures.
Intelligent vehicles can be equipped with decision suppgstems to assist drivers. The
intelligence of vehicles can be used to form platoons sottieatrag force of following
vehicles can be reduced, which in turn reduces the fuel ecopgan and emissions of the
vehicles|[6, 17].

However, the achievement of such vehicles and clean fudtsigght not to be real-
izable in the short to medium term (e.dg( years) and vehicle improvements seem to be
approaching their limits [97] . Hence, in the short term,esttneans have to be sought to
address the traffic challenges. Moreover, even if vehidlesrade intelligent, the release
of particulate matter and hydrocarbons (due to the oils aedsg used in the vehicle parts)
would still continue (but at lower levels) due to the meclkahimotion of the parts of the
vehicles and due to the friction between the tire and the.road

1.2.3 Use of intelligent transportation systems

An alternative and promising solution is the implementatid Intelligent Transportation
Systems (ITS). ITS adds information and communicationesystto transport infrastruc-
tures and vehicles. This means that ITS uses the in-vehiciaghe road-side information
and communication systems to improve the traffic flow in suckiag that the existing
infrastructure is utilized as efficiently as possible. ' enake decisions based on the pre-
vailing and predicted traffic conditions and based on therestts and constraints of traffic
authorities, environmentalists, and policy makers. Initiatt ITS can integrate, coordinate,
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and optimize different traffic flow control measures (suclrafic signals, ramp metering,
speed limits, route guidance, etc.) to minimize the impéattdfic jams (such as long travel
times and high emission levels).

ITS includes intelligent vehicles (e.g., vehicles that caumicate to each other and to
the infrastructure) and intelligent infrastructureséliigent sensor systems, communication
systems, control systems, and the like) that allow all $talders to interact in a productive
and efficient way so that the traffic system is operated closptimal.

For example, if vehicles are made intelligent (e.g., velsickith automatic cruise con-
trol and vehicle-to-vehicle and vehicle-to-infrastruetcommunication systems), the ca-
pacity drop caused due to the difference in the reaction tifkgivers and the difference in
the reaction time of a driver under free-flow and congestimmditions can be minimized.
Moreover, vehicles can be platooned at small inter-vehd@déances, which increases the
operational capacity of freeways, because the density litles on a freeway can be in-
creased while maintaining high speed at small inter-vetdidtances. Since the vehicles in
a platoon communicate continuously, all vehicles can bralaccelerate at the same time
(if the vehicles are fully automated), which means that the sf the distance between each
vehicle does not matter. Moreover, as has been discussettiing1.2.2, the use of ITS to
platoon vehicles can reduce the fuel consumption and emnissas a result of reduced drag
force.

Since ITS includes intelligent vehicles and infrastruei TS in its full potential is not
realizable in the short to medium term. However, it is pdssib increase the intelligence
of current traffic control and management decision systeiils thve available road-side
information and control systems. For example, the variapked limits, ramp metering,
and route guidance systems of freeway traffic can be optraall dynamically coordinated
and integrated to address travel time, safety, fuel confompemissions, and dispersion of
emissions. This is also the main focus of the thesis.

In traditional traffic control and management systems sjparnt authorities often set fo-
cus on the reduction of the total emission levels of freevimgsder to reduce the emissions
that affect some protected areas (such as schools, hespital residences). Reduced total
emission levels of vehicles on freeways are attained at faffi¢ speeds (betweesd and
70 km/h). Imposing such speed limits to reduce the total emissheavily restricts the
traffic flow. However, using ITS, it is possible to only considhe dispersion of emissions
to a protected target zone. ITS can predict the dispersiemidsions to a given target zone
based on the predicted wind speed and wind direction. Tinstead of reducing the total
emissions in the entire network (which has negative impache travel time), ITS can dy-
namically focus only on the part of the freeway that affebhtsémission levels of the given
protected zone. In this way ITS can reduce the emissiondeénehe target zone while at
the same time improving the traffic flow at the parts of theii@gthat do not have effect
on the emission level of the target zone.

With integrated vehicle-road communication systems io@l#he ITS-based traffic con-
trol and management systems can guide vehicles based omiggian rate of each vehicle
dynamically. The greener vehicles can be allowed to moveutyir protected areas while
environmentally unfriendly vehicles can be routed throumgtustrial (or unprotected) areas.
Therefore, by and large, ITS can be used to provide a balanadd-off between different
conflicting interests of stakeholders.
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1.3 Problem statement

Out of the three possible traffic solutions highlighted aqahe focus of this thesis is the
utilization of ITS-based traffic control and managementesys. In general, ITS represents
an extensive and broad traffic management approach. As suehpcus of this thesis
is limited to infrastructure-based ITS. This thesis desigrad-side intelligent (dynamic)
controllers that provide a balanced trade-off between iéneet times, fuel consumption,
emissions, and dispersion of emissions to a target zoneiew of this, the scope of the
ITS-based solution and the traffic challenges on which tmésis focuses are elaborated
below.

1.3.1 Objectives

As has been indicated in the previous sections, the traffitlatiges in general have both
economic and environmental dimensions and there are dimdlimterests. The economic
concerns include travel times, fuel consumption, and gafghissions and the dispersion of
emissions are two of the environmental issues. The queisttban, can an ITS-based traffic
control and management approach reconcile or provide -nédsetween these concerns
that are sometimes conflicting and sometimes concurringgh$wer this research question,
this thesis sets as an objective to design a road-side-Ia@gtd control strategy to reduce
the economic concerns (specifically, the travel time of elelsiin a traffic network and the
fuel consumption) and environmental concerns (in pamic@missions and the dispersion
of emissions to a given target zone) in a balanced way for engikeeway traffic network
with a predictable traffic demand and traffic states.
Therefore, the core research problem of this thesis is dkfiseo:

Design a dynamic traffic controller such that a balanced &auff is obtained be-
tween the total time spent, the total emissions releasedotial fuel consumed, and
the targeted-dispersion of emissions released by vehitlgisen traffic network.

1.3.2 Approaches

In order to realize the research objective set above, deslevices have to be made. Since
traffic systems are relatively slow and since current traffiations can have negative impact
on the future traffic conditions, the outcome of each cordesision on the future of the
traffic conditions have to be predicted before the implemgm of any control action. This
can be done using predictive control approaches. But, iardmmake predictions, traffic
models are required. Hence, a model-based predictivectiadfitrol approach is chosen.
Furthermore, since models cannot describe the traffic phena exactly, predictions can be
erroneous. Thus, the selected control approach shouldlbécatake the model mismatch
into account. To this end, the model-based predictive aabres used in a receding-horizon
feedback fashion, where the prediction is shifted and rtegeavery time a new value for
the control measure is determined so that the errors in #digiton can be adapted to the
measured values. In this sense, the following are the irapbdonditions considered for
the realization of the envisaged model-based traffic ctiatro

e The traffic flow, emission, fuel consumption, and dispersibamission models used
have to be fast enough for on-line control applications anatho be accurate enough
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to give good predictions of the traffic states (such as flomsidg speed, emissions,
fuel consumption, and dispersion of emissions) so thatahéral decisions based on
these states can have a positive impact on the traffic system.

¢ Since traffic systems are highly non-linear and since trpffiblems are multifaceted,
the receding-horizon model-based predictive controheutd be able to handle non-
linear models, multi-objective traffic control criterigg\v@ral constraints, and model
mismatches.

In the light of the above criteria, a model-predictive cohtipproach is selected. This
control approach is able to accommodate non-linearitydlgaconstraints, multi-objective
criteria, and model mismatch, and it can be operated in aliegéorizon fashion.

1.3.3 Scope of the thesis

The research objective defined above can be attained udfagedt ITS-based traffic con-
trol and management systems. Moreover, since the reseljettioe is a wide and compli-
cated subject, the scope of the thesis is limited to a mamdgézvel and its focus is much
more specific as follows:

e This thesis focuses only on freeway traffic flow to examine pravide a potential
solution under conflicting and concurring situations offtcacontrol objectives. This
is because, unlike the urban traffic, the need to reduce Emgsand travel times
of freeway traffic systems can be conflicting and concurrihg]10]. Moreover,
to narrow the focus of the research, throughout the thedimnaogeneous vehicle
composition is assumed. So, all the vehicles in the freewafia are assumed to
exhibit the same flow and emission characteristics.

e Due to the limited time and facilities, none of the traffic netelor control approaches
are tested on real systems. The research is illustrated aslg simulations.

e The emissions considered in this thesis are COy,4C, and NQ. Other road-
based traffic emissions such as ,Sénd particulate matter (PM wherez is the
aerodynamic diameter) are not considered, because thedvanslant literature on the
models of CO, C@, HC, and NQ and the proposed control approaches can quite
easily be extended to those emissions not considered ithisss.

e As an illustration of the control approaches, the thesisagtgonly two traffic control
measures: variable speed limits and ramp metering. Thigdause these control
measures have been extensively used in many papers to teaveldime and avoid
or reduce traffic shock waves [7, 19, 22,75, 77, 79]. Moredhesse control measures
can be easily modeled in most of the existing traffic flow medglote, however, that
the approaches can also be extended to other control measure

1.4 Contribution of the thesis

In addition to the demonstration of the potential of exigtinodels and control approaches
for a sustainable mobility, the major contributions of tthigsis are development of traffic
models and design of traffic controllers.
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1.4.1 Modeling

Since the main goal of the thesis is to design a traffic costraltegy that provides a bal-
anced trade-off between the travel times, the fuel consiempthe emissions, and the dis-
persion of emissions to a given target zone in a predictighifm, the approach requires
models to make accurate and reliable predictions of thédrfédw, emissions, and the dis-
persion of emissions. On the other hand, these models angeddo be fast enough, so
that they can be used for on-line based control applicatidiherefore, it is imperative to

select or develop appropriate models, i.e., models thafasteand that provide accurate
predictions.

Following a literature study on the available traffic flow nets] the METANET model
[103, 124, 185] and its extensions [75, 78] have been sel¢ctee used for the prediction of
the traffic flow. The METANET model is a macroscopic model tinsgts aggregate variables
to describe the traffic flow. But, macroscopic emission amdldonsumption models are not
accurate enough to provide the prediction of emissions aeldcbnsumption. As a result,
a way to integrate the macroscopic METANET traffic flow modéfhma more accurate
and dynamic emission and fuel consumption model is necges3herefore, a strategy is
developed to integrate macroscopic traffic flow models wittrascopic emission and fuel
consumption models, in particular the VT-micro [2] emissand fuel consumption model.
This results in a macroscopic, but dynamic, emission andcfugsumption model that has
relatively better accuracy.

In order to predict the dispersion of emissions to neighbods of freeway traffic net-
works, dispersion models are required. As papers in liteeatuggest, the existing disper-
sion models are computationally very slow and are not slgitis on-line control applica-
tions. So, this thesis also develops new dispersion mddaiste computationally efficient.
Note, however, that these models are not compared to tredglexisting dispersion models
and are neither calibrated to real-life data.

1.4.2 Control design

The second contribution of the thesis is the design of mbdskd traffic controllers. Ini-
tially, this thesis uses the already established contym@arhes—model predictive control—
to assess the possibility to address some of the trafficastgls. A model predictive control
approach with multi-objective performance criteria isigeed for several cases to demon-
strate that it can indeed reduce the emissions, fuel consam@and the dispersion of the
emissions while still reducing the total time spent by thkigkes in the traffic network. In
doing so, two traffic control measures are used: variablecsfinits and on-ramp metering.
However, as model predictive control is slow and intracahl practice—despite its
capability to provide a balanced trade-off between the auimty control objectives, another
version of the control approach is designed. This thesisgms a parametrized model
predictive control, specifically called the receding-kori predictive traffic controller that
is very fast and that (at least for the case studies consldietbe thesis) has a performance
that is almost the same as that of the conventional modelgiresicontroller. The thesis
also compares the two control approaches and shows thagdkding-horizon predictive
traffic control approach can be used in practice. The regedarizon predictive traffic
controller is able to reduce the emissions and fuel consiempk well as the dispersion of
the emissions and travel time to almost the same levels amtientional predictive traffic
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controller, but with faster computation time, which makestuiitable for practical on-line
control applications.

1.5 Thesis overview

This thesis contains eight chapters, including this chrajgted is presented in two parts,
Part | (traffic models) and Part Il (traffic control designarf contains Chapters 2, 3, and
[4 and Part Il consists of Chaptérs 5, 6, and 7. This chaptesifteh 1) gives the general
overview of the thesis, the problem statement, the appreagiioyed in this thesis, and the
contribution of the thesis to the state-of-the-art.

Part | of the thesis deals with the modeling of traffic flow inapker 2, traffic emissions
in Chapter 8, and the dispersion of traffic emissions intgimebrhood of freeways in Chap-
ter/4. The models presented in this part are used for theqtidiand simulation of the
control strategies presented in Part Il. Therefore, fotebemderstanding of the thesis, it is
suggested to first read Part | and proceed to the next chastémdicated in the structure of
the thesis in Fig. 1.4.

Part/ Il of the thesis presents two traffic control strategied compares them using
simulation-based experiments. This part first discussegerdgional model predictive con-
trol for traffic in Chapter 5. The control strategy is used éveral case studies using the
models developed in Part I. Chapter 6, presents a versioheofritodel predictive con-
trol approach, called the receding-horizon predictivetamrfor traffic. In Chapter 7, the
performance of the receding-horizon predictive contrabeassessed and compared with
the conventional model predictive controller both in teroigomputation time and traffic
control performance criteria.

Finally, the thesis is concluded in Chapter 8, in which bathtgof the thesis are sum-
marized and several recommendations for future work arsepted.
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Chapter 2

Traffic Flow Modeling

s has been introduced in Chagter 1, model-based traffical@ayproaches uti-

lize traffic models to design the traffic control measuresuichsa way that the

desired control objectives are attained. Therefore, itvipdrative to make a

selection of (or to develop) models that are suitable foraheisaged traffic
control approaches. The traffic models can be models ofdaridfiv, traffic emissions and
fuel consumption, and dispersion of traffic emissions. Is thapter the traffic flow models
that are used throughout this thesis are discussed. Thesrtbdedescribe the traffic emis-
sions, fuel consumption, and dispersion of emissions wilthe subject of the subsequent
chapters.

In order to build the basic understanding of traffic flow madéhis chapter begins with
first providing a brief overview of traffic flow models in Semti 2.1, where it discusses the
application of traffic flow models and the different groupgrafffic flow models. Next in
Section 2.2 car-following (or follow-the-leader) traffiof¥ models are further examined
with special emphasis on the Gazis-Herman-Rothery [67] latelligent Driver Model
[186] models. Section 2.3 presents the METANET [124] model #s extensions [78].
Finally, a summary of the chapter is provided in Section 2.4

2.1 Overview of traffic flow models

Traffic flow models seek to describe the interaction of vedsiakith their drivers and the
infrastructure. Almost all the models—directly or indidget-characterize the relationship
among the traffic variables: the position, the speed, the fiow the density of vehicles.
These relationships can be based on either the behaviodivfdnal vehicles in a traffic
network in relation to the dynamics of other vehicles, therall characteristics of the flow
of vehicles in a traffic network, or a combination of the baebawf individual vehicles
in a traffic network and the overall traffic flow charactedsti Almost every traffic flow
modeling technique follows the same principle, i.e., fir§itst-principles model based on
the physics governing the system or other analogy systemvislaped. Next, the parame-
ters that determine the characteristics of the infrastirectthe behavior of drivers, and the
characteristics of vehicles are estimated from data. Ehiké general procedure in most
traffic modeling approaches [29, 87, 158, 164]. Howevenglae also some traffic flow
models or relations between traffic variables that are yaletermined from data (e.g., the

17
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non-parameter modeling approaches) [41, 87].

In the sequel, the application of traffic flow models and tlassification of traffic mod-
els based on their level of detail are elaborated. The disousvill provide a clear picture
for the motivation of the selection of the traffic flow modetged in this thesis.

2.1.1 Applications of traffic flow models

Many traffic flow models can be used for different applicasiohey can be used for the
assessment of traffic control strategies, for the designaafelbased traffic controllers, for
the design of new transportation facilities, and for théirey of traffic operators and traffic
managers [75, 87].

Appropriate traffic solutions to reduce the recurrent ana-rezurrent traffic challenges
can be obtained through thorough understanding of therayatel through conduction of
in-depth research. However, field research and experinsatexpensive, because they
disturb the prevailing traffic and require heavy investraeMoreover, due to unpredictable
disturbances and traffic demands, real traffic flow does nataguee repeatability of ex-
periments and it is thus difficult to assess the performafheedynamic traffic control or a
dynamic traffic assignment strategy. However, operatiosexperiments with models are
cheaper and faster. If necessary, experiments can be eepaad different traffic control
and assignment strategies can be compared under the sadigorE({75, 87].

Traffic flow models are also used for model-based traffic cbrdr state estimation.
Some traffic control strategies require the model of thditraf/stem for either prediction
of the traffic state over a time horizon or for an estimationmdébservable (or unmeasured)
traffic state. Traffic flow models enable traffic operators arahagers to forecast the traffic
conditions (such as high demands, or travel times) thatowdlr in a traffic network over a
predetermined future time horizon [147].

New transportation facilities such as new roads may not trevdesired effect after they
are constructed. For example, new on-ramps to freewaysurban roads may increase the
access of the freeway for urban drivers, and this may inertdaspossibility of more traffic
jams on the freeways [75]. Traffic flow models can be used talsita different designs un-
der different traffic scenarios and thus new transportdtailities can be evaluated before
they are constructed [75, 87, 147].

Traffic flow models are also used to provide desired trainimg) gkills for traffic oper-
ators and traffic managers [75, 87]. They help in providingpsut for traffic operators to
understand the consequences of different traffic contebhaanagement actions. Moreover,
decision support systems can be built based on models &t assiupport traffic operators
and traffic managers in their traffic control or assignmerrapons.

2.1.2 Classification of traffic flow models

Traffic flow models can be studied by grouping them in seveeglswy The nature of traffic
flow models can be different in terms of their applicationaar@ terms of their level of
detail, in terms of the time domain used to describe them i@seate-time or continuous-
time models), and in terms of their stochastic or deterrtimisature in the description of
the traffic variables [87]. Based on their level of detaiktttan be categorized as micro-
scopic, macroscopic, and mesoscopic traffic flow models. [&fhffic flow models that
treat and model the behavior of individual vehicles in aficafetwork fall in the category
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of microscopictraffic flow models.Macroscopictraffic models describe the collective ve-
hicle dynamics in terms of the spatial vehicle density, therage flow, and average speed.
Mesoscopienodels describe the behavior of small groups of vehiclespgaific user-class
classified by their position, velocity, and desired velpeit an instant of time [87].

Microscopic traffic flow models

Microscopic traffic flow models describe the physics of indidal vehicles as they interact
with the driver and the infrastructure. In such modelinghteques lane changes, the inter-
vehicle distance, and the effect of neighboring vehicles teehicle are described. The
main advantage of microscopic traffic flow models is that thkdvior of the drivers and
vehicles are described in detail. Therefore, they can geovélatively more information
regarding the characteristics of the traffic flow (e.g., eadtime or distance; position,
speed, and acceleration of individual vehicles; heteretjgiof vehicles; and the like) than
other types of models. The main limitation of microscopicdels is that they require a
large memory size and they are very slow when used for laaffctnetworks [117, 130].
Moreover, microscopic models most often require large remalh parameters, which are
most often difficult to calibrate. So microscopic traffic flomodels are not feasible for on-
line prediction and optimization of traffic control systenifhiese models are mostly useful
for local traffic studies.

Microscopic traffic flow models can also be categorized inti@igent groups based on
their conceptual approaches [87], these are: car-follgwinicroscopic simulation, submi-
croscopic simulation, cellular automaton, and particlelais.

The car-following models, also called follow-the-leadeodals, were pioneered by
Pipes [158]. These models describe the dynamics of a vefatdag with its driver and
the infrastructure) in relation to its predecessor [29,B38]. Car-following models are
very widely used in traffic flow analysis, design, and simola{164].

Microscopic simulation traffic flow models are computer nedehere the driver be-
havior is modeled with extensive production (if-then) sul&@hese models describe both car-
following and lane-changing behavior of individual velgl[87]. AIMSUN2 and FOSIM
[192] are two examples of microsimulation traffic models.

Submicroscopic simulation models are similar to the micopsc simulation models
except that they have additional non time-space featuigs T®iese include functioning of
specific parts of vehicles, dynamics of vehicles, and dgtasks of the driver. For instance
they describe how a driver applies the breaks, his readtios and the like.

The cellular automaton model describes the traffic systemlagtice of cells of equal
size [128, 129]. A cellular automaton model describes theament of vehicles from cell
to cell in a discrete way. Moreover, the vehicles assume arigited number of discrete
speed values [87].

The particle traffic flow models trace and distinguish indiral vehicles in a traffic net-
work. But these models use aggregate equations (e.g., staic traffic flow equations)
of motion to describe the behavior of the individual vehic[87]. The INTEGRATION
[83] traffic flow model is an example of such a particle models.

Macroscopic traffic flow models

Since in the microscopic traffic models each car is desctilyats own equations of motion,
the computer time and memory requirements of corresportdifiic simulations grow as
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the number of simulated cars increases [81, 87]. Theretbese kinds of models are
mainly suitable for off-line traffic simulations, detailstudies (such as on-ramps or lane
merging), or numerical evaluation of collective quansti8] like the density-dependent
velocity distribution, the distribution of headway distas, etc., and other quantities that
are difficult to determine empirically [81]. For these reasocoarse fast microsimulation
models have been developed for the simulation of large fagewr freeway networks [48,
130]. However, although they reproduce the main effectsaffi¢ flow, they are not very
suitable for detailed predictions because of their cogra@ed description [81]. Therefore,
many authors prefer macroscopic traffic flow models to mwwpg flow models [80, 94,
95, 108, 144].

Macroscopic traffic flow models deal with traffic flow in termkaggregate variables
(such as average speed, flow, and density). These aggregetkles, which describe the
behavior of the drivers or vehicles, are assumed to depenteotraffic conditions in the
drivers’ (or vehicles’) direct environments [87]. Macrogic traffic models do not distin-
guish the behavior of individual vehicles in a traffic stre€®o, in macroscopic models the
simulation time and memory requirements mainly depend ersthe of spatio-temporal
discretization, but not on the number of cars [48, 81, 87]er&fore, macroscopic traffic
flow models are suitable for faster theeal-timetraffic simulations [81, 87]. Another ad-
vantage of macroscopic traffic flow models is that they allowimulate the traffic dynamics
in several lanes by effective one lane models [82].

Most often macroscopic models are derived from the anal@gyden vehicular flow
and flow of continuous media (e.g., fluids or gases) [1L03}ltieg in traffic flow mod-
els with a limited number of equations that are relativelgyeto handle|[87]. The first
macroscopic traffic models were reported in [108] and [188Fse models established the
theory for the development of the more finer and accuratéafddw models presented in
[124, 145, 146, 154, 185].

The independent variables of a continuous macroscopiictfedw model are location
z, and time instant. Most macroscopic traffic flow models describe the dynamiadh®
densityp = p(z,t), the average speed = v(x,t), and the flowg = ¢(x,t); and the
relationship of these variables. Virtually all macrosaopaffic models are based on the
continuity equation [82]

op(wt) Dl o(a.)
ot + Ox

=v(x,t) (2.1)

for the source ternv(x,t) denoting the rate of vehicles entering the freeway at orpram
section or the rate of vehicles leaving the freeway at affgaection.

Moreover, in addition to (2.1) most macroscopic models @etfire relation between the
densityp(z, t), the flowq(z, t), and the average speefl, t) as

Q(x’t) = p(£7t)v('r7t) (2.2)

where the density(z, t) is per single lane.

However, equations (2.1) and (2.2) do not completely desctiie traffic dynamics,
because the number of unknown variables is more than the ewafilequations. Conse-
guently to get a complete description of the traffic dynamitser equations are needed. If
no on-ramp and off-ramp is considered on a section of a frgelva source term(z, t) =
0. As a third equation, most first-order macroscopic traffigvflmodels assume a static
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speed-density relation [52, 53, 108, 134, 169], which ldadsz,t) = V(p(z,t)), where
V(p(x,t)) is the equilibrium speed. But for the description of emetgdeaffic jams and
stop-and-go traffic, one needs a dynamic speed equationT82h, for most higher-order
macroscopic models, the third equation that describesyhardics of the average speed
v(x, t) can be written in general [82, 204]

ov(x,t)
+o(z,t)

ot Ox

1 0P(p(x,t)v(z,t)) 1

" ol ox +—(Vip(a,t) (1) (@23)

ov(z,t)

whereV (p(z, 1)) is the generalized equilibrium speed given by the fundaaieti@gran
relationship between(z, t) andp(x, t), T is the relaxation time, an®(p(z, t), v(x,t)) is
the traffic pressure. The traffic pressure is a quantity tleatidbes the degree to which
drivers must interact with each other [157].

The third dynamic equatioh (2.3) results in a second-ordéfid flow model. The differ-
ence between the various existing macroscopic traffic floetsomainly concern the traf-
fic pressuréP (p(z, t), v(z, t)), the relaxation time-, and the generalized equilibrium speed
V(p(z,t)) [204] that results in different equations for the averageesp(z, t). However,
[81] introduced a fourth equation that describes the dynamwi the variance of the average
speed. Many papers [49, 103, 124, 145, 171, 185] show thatitipe the second-order
macroscopic models, in particular the METANET [124] traffaw model, can accurately
describe the average traffic dynamics of freeway traffic. isSthis thesis, a second-order
traffic flow model, more specifically the METANET model and soaf its extensions [78],
are presented in details in Section]2.3 and it is extensivedyl in the subsequent chapters.

Mesoscopic traffic flow models

The mesoscopic traffic flow models describe the traffic flonesskr detail than the micro-
scopic models and in greater detail than the macroscopietsokh such models the vehicle
or the driver behavior is not described individually, butiore aggregate terms. For ex-
ample the same probability distribution functions can bedu® categorize or describe the
behavior of a vehicle or a driver [87] in some range of timeistahce.

So mesoscopic traffic flow models describe the dynamics @fichahl or small groups
of vehicles using aggregate variables, such as the veldistgibution at a specific location
and time instant. For example, in a gas-kinetic mesoscogffic¢ model the phase-space
density p(z, v,t) is defined as theneannumber of vehicles that are at a place between
x — Az/2 andz + Az /2 and driving with a velocity between — Av/2 andv + Av/2
during the time rangl — At/2, t + At/2] [81].

The mesoscopic traffic flow models can be grouped into thregodes [87]: headway
distribution models (such as [31, 33]), cluster models, thiedyas-kinetic continuum mod-
els (such as [153, 159]). Since the mesoscopic models censisime of the microscopic
characteristics to macroscopic models or the other waynakdhese models become more
complicated to simulate and calibrate than their corredjpgnmicroscopic or macroscopic
versions. So these models are not used in this thesis and hemaot discussed in details.
An interested reader is referred to[31, 33,87, 153, 159].

1See Fig. 2.2 for specific fundamental diagram.
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2.2 Car-following models

2.2.1 Overview of car-following models

The car-following models, which are also called follow-feader models, describe the in-
teraction of a vehicle with its predecessor. Most generadly-following refers to a situation
in which a vehicle’s speed and longitudinal position areuieficed by the vehicle immedi-
ately ahead of it in the same lane. Car—following is charéxd by the headway (time or
distance between vehicles) and the degree to which thenfiolipvehicle tracks the velocity
changes of the leading vehicle. Car-following behavionftuenced by the driving goals,
road curvature, relative velocity, stream speed, whethefatlowing is chosen or imposed,
and the duration in the interaction (or coupled) state [16aar-following is one of the
main processes in all microscopic simulation models andddem traffic flow theory. It
attempts to explain the interplay between the phenomer®andividual driver level and
global behavior on a more macroscopic scale [29].

Car-following models have a wide range of applications. Bing car-following mod-
els, one can deduct the behavior of a single-lane traffiastrigy examining the manner in
which individual vehicles follow one another and from thanjdehavior of pairs of vehi-
cles [164]. Moreover, traffic stability is a logical extemsiof car-following theory, where
local stability refers to the response of a following veginit a single pair of vehicles and
asymptotic stability refers to the manner in which the flations of the leading vehicle
are propagated through an entire stream of vehicles in tine $ane [119]. Microscopic
models of individual car-following behavior form the builg blocks for microsimulation
models of traffic flow, which are used to assess the effectstefientions such as changes
in roadway geometry, traffic signal timing, delineatiorgreéng, etc. [164]. In recent years
the importance of car-following models has increased @urth forming the basis of the
functional definitions of advanced vehicle control and sa$ystems| [29]. Other systems,
such as autonomous cruise control, seek to replicate hurivamgdbehavior through partial
control of the accelerator, while removing potential hdsahat may occur through driver
misperception and reaction time [29].

In this thesis stimulus-response car-following modelsdiseussed and they are used
in the subsequent chapters. To present the motivation ®chtivice of these models a
short account on safe-distance car-following models is piesented. It is also important
to note that in this thesis only the longitudinal kinemat&hhbvior of vehicles and drivers
is considered. Since these models are used to demonsteaptintial of the proposed
control approaches as a “proof of concept,” detailed madeduch as lane changing and
overtaking are not considered. However, the traffic corgpgroaches to be presented and
illustrated in the second part of this thesis are genericaedalso valid for other more
complex models that also include lane changing and othifictleehavior.

The general longitudinal kinematic motion of vehicles isd&ed by

To (b +1) = 20 (k) + Vo (k) T + 0.5a0 (km)T2 (2.4)
Ua(km =+ 1) = va(km) + aa(km)Tm (2.5)

wherez,, (km), va(km), anda, (k) are respectively the position, speed, and acceleration
of vehicle« in the network at time = k,,T,, wherek,, is the microscopic simulation
time step counter, whil&},, (e.g.,7,, = 1) is the microscopic simulation time step of the
discretized model. The accelerationlin (2.4) and|(2.5) terd@ined from the longitudinal
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driver model described in the sequel.

Safe-distance models

The safe-distance car-following modeling approach has bemneered by Pipes [158]. He
developed a very simple mathematical model based on hislptsthat ‘the movements
of several vehicles are controlled by an idealized “law gfegation™. The law considered
in the analysis specifies that each vehicle must maintainrtaineprescribed “following
distance” from the preceding vehicle. This distance is tima sf a distance proportional
to the velocity of the following vehicle and a given certaimimum distance of separation
when the vehicles are at rest. After discretization, theikolinal positionz,, (ky,) of the
following vehicle« relative to the leading vehicle is given by

xa(km) = 50, + la + Td,ava(kjm) (26)

wheres , denotes the minimum stand-still inter-vehicle distarigegenotes the length of
the following vehiclep,, (kv ) is the velocity of the following vehicle, arifi; , is the overall
reaction time of vehicler, where the overall reaction tin¥, ,, is defined as the total time a
driver requires to take an action from the time he/she pessa stimulus (a change in the
driving behavior of a neighboring vehicle).

The equation shows a linear relationship between the saferdie and the velocity of
the following vehicle. However, the reaction time can algocbnsidered as having three
components: perception time, decision time, and braking {87]. The braking distance is
defined as the distance needed by a vehicle to come to a fpllisttorporating the reaction
time of the driver and the maximum deceleration. The maxind&oeleration term is a
function of the friction coefficienf:; , between the tire and the road, and the acceleration
due to gravityg. Hence, the total safe distance is
v2 (km)

[e3

ma(km) = 50, + loz + Td7ava(km) + .
2Nf,o¢g

(2.7)
The model implies that if the first vehicle stops, the secasticle needs the distance it can
cover during the overall reaction tin#; , with unreduced speed and the distance it can
move due to its inertia as full break is applied in order tgpstafely.

Stimulus-response models

The main principle behind the stimulus-response car¥fidtig modeling is that the driver
reacts to the changes in the kinematic dynamics (stimufusheading vehicle. The reaction
of a following vehicle can be modeled as a function of the ¢eanin the position, speed,
etc. of the leading vehicle. In general such car-followingdels are given by the form

Response,, = fo (Sensitivitya, Stimulusa) (2.8)

where f,, is the function that describes the influence of the stimuhgs sensitivity on the
response of vehicle.

In general, in most stimulus-response models the respsttise acceleration or deceler-
ationa,, of the following vehiclex responding to a stimulus observég,, overall reaction
time ahead. In most stimulus-response models the stimslassumed to depend on the
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relative positionz,, — z_1 and the relative velocity, — v,_1 of the leading vehicle: — 1
and following vehiclen. Then, in general the stimulus-response car-following el®dan
be described as

aa(km) - fa (xoz(kma Td,a)a xafl(kma Td,a); 'Uoz(kma Td,a)a 'Uozfl(kmv Td,a)) (29)

where the sensitivity, the stimulus, and the response dditiver are determined according
to the functionf,,.

The Gazis-Herman-Rothery (GHR) [67], the car-followingdabof Newell [133], the
Optimal Velocity Model (OVM) [15], and the Intelligent Drar Model (IDM) [186] fall
into stimulus-response car-following models. Two of thesedels are presented below:
the GHR and IDM models. These models are also used in the aimulstudies of the
subsequent chapters.

2.2.2 The GHR model

The microscopic Gazis-Herman-Rothery (GHR) [67] trafficMlmodel is the most well-
known stimulus-response based car-following model. Thislehis developed based on
the intuitive assumption that each driver reacts in someipdéashion to stimuli from the
cars ahead of or behind him. But, since the follow-the-ledgeory applies to fairly dense
traffic, some car-following models cannot be used for affitaonditions. The theory of
the GHR model in its simple form is one of such models, andausthnot be extrapolated
to the range of very low vehicle concentrations|[67]. Theref in order to use the car-
following models (and so the GHR model) for fairly denseftcafa threshold variable is
introduced to determine whether a vehicle is in the statapfalowing or free-flow traffic
conditions [19, 203]. Since the speed and the nature of diio: of drivers is dependent
on their time (or distance) headway, the threshold is defiveesed on the time headway.
The time headway is defined as the time difference betweercdmsecutive vehicles that
pass a certain location. This can be described as the tinteddgy the following vehicle
to reach the current position of the leading vehicle wittciterent speed. This reads as

Ta—1 (km) - x(x(km)

1\Pm) — 2.1

b (Fi) O (2.10)
wherez,_1(km), zo(k m) re respectively the positions of the leading and the fatigw
vehicles at timg = k,, andv, (k) is the speed of the following vehicle at time=
kT

Depending on the time headway a vehicle can be either inatiamfing or in free-
flow mode. When the time headway is larger than the threshold tieadway., (e.g,
ti, = 108), then the vehicle is said to be in free-flow mode, wheretigifime headway is
smaller than the threshold time headway, then the vehidtedascar-following mode.

When a vehicle is in a car-following mode, the GHR model déssrithe follow-the-
leader traffic behavior following the stimulus-response ila (2.8) with

fa (Sensitivitya, Stimulusa) = Sensitivity, x Stimulus, (2.11)

where Stimulug is the relative speed of the following vehiclewith respect to the leading
vehiclea — 1 and the Sensitivity is a function of the position and speed of the following
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vehiclea and the relative position of the following vehialeto the leader vehicle — 1.

In the GHR model the reaction of the driver has been takeneadheleration of the
vehicle, because a driver has direct control of the acagershrough the gas and brake
pedals. The acceleration is assumed as to be a function watheion of its current speed,
and the relative speed and position of the vehicle with retsfeits predecessor vehicle
[67]. The model also takes the delay in the reaction of theedinto account in the relative
speed and position of the vehicle. This is given as

(Ua—l(k'm - Td,oz) - Ua(km - Td,a))
(xafl(km - Td,a) - xozufm - Td,a))Ja

ao(km) = cavle (k) (2.12)

wherec,, ., andj, are model parameters, afid ., is the overall reaction time of the
driver. Note that since we are using discrete-time modelscémputational issues it is
assumed that the overall reaction tiffie, is a positive integer.

However, when the time headway is larger than the threslimid headwayt,,, the
interactions between vehicles vanish. Hence, as theredamfmllowing behavior the GHR
model cannot describe the traffic flow under such situatiéiis [Under the free-flow cases,
drivers intend to relax their speed to their desired speedk.,). So, the stimulus of the
drivers is changed to the relative speed between the vedmiclehe desired speed or speed
limit, whichever is smallest. The sensitivity is considg&te be a constant [19]. This is
taken to be

aa(km) =0q (min{vvsl,a(km - Td,oc)a UO,a(km - Td,a)} - va(km - Td,a)) (213)

whereo,, is the sensitivity of vehiclex (typically 0.01-0.4)pye1,o (km — T4.«) iS the speed
limit observedIy ., ahead.

Under the car-following conditions the GHR model in (2.12%upposed to use a single
set of parameterscur = {ca, %o Jas Td,o f- HOWever, as the real-world experiences indi-
cate the acceleration of a vehicle is smaller than its deatide. Vehicles require larger time
to achieve a certain high speed than to decelerate back trigieal low speed, which is
related to the slow-to-start phenomena introduced in [IBg larger time required to accel-
erate than to decelerate is one of the reasons for the reduntthe operational capacity of
a freeway network, which is most often referred to as the aapdrop [38, 72, 75]. There-
fore, to capture the difference in the magnitude of the araibn and deceleration, the
GHR model requires the use of different parameter sets fir ease. In literature [19, 203]
it is suggested to use two parameter sets exceplfqr, one set during the accelerating
mode of the vehicles and the second set during the decelgratde of the vehicles.

Similarly, under free-flow traffic conditions in which the mymics of a vehicle is de-
scribed by|(2.13), the parametes is also set differently for vehicles accelerating or decel-
erating towards the desired speed [19, 203].

The main problem in the GHR model is that when the speed diffee between the
leading and following vehicles is zero, the response (oelecation) disappears regardless
of the inter—vehicle distance. This problem is solved bydéefollowing model of Newell
[133] and the Optimal-Velocity-Model [15]. However, thesew models lead to very high
accelerations of ordery o (km)/Ta,o [186]. The IDM [186] solves the problems encoun-
tered in [15, 67, 133].
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2.2.3 The IDM model

The intelligent driver traffic flow model [186] is a simple maldhat has only a few intu-
itive parameters. Unlike the GHR [67] model, which descsibealy the congested traffic
state, the IDM model can describe both free-flow and conddsafic states. Although in
many of the stimulus-response based models the accelerdtibe vehicles is modeled by
introducing a delay related to the overall reaction time, lBM model does not use the
driver reaction time (or any) as a delay parameter for therdehation of the acceleration
of the following vehicle, which makes it computationallyitaible. In [173] the IDM model
is improved in order to also model high traffic capacity (e1§00 veh/h/lane and above) of
freeways.

In the IDM model the acceleration of a vehiclefollowing another preceding vehicle
«a — 1is described as

s N 2
(o = Umax.o {1 - (”“ ) - (s (”‘“A”‘*>> } (2.14)
V0, Sa

wherev,, denotes the speed of vehieles,, = x,_1 —x, — I, denotes the inter-vehicle (or
actual) gap of vehicle from the leading vehicle.—1, Av, = v, —v,—1 denotes the speed
difference (approach rate) between the following vehickend the leading vehicle — 1,
amax,o denotes the maximum comfortable acceleration of vehiclé denotes the free-
flow acceleration exponenty , denotes the desired speed of vehieleands* (v, Avy)
denotes the minimum desired gap given by

OLA «
5t (Va, Avg) = 50,0 + max{Td,ava SRl o} (2.15)

)
2 vV amax,abmax,a

with s¢ o denoting the minimum inter-vehicle distance at stand, $till.x, ., denoting the
maximum comfortable deceleration of vehicle

The acceleration expressionlin (2.14) is a superpositibwafcceleration terms. These
are the free-flow acceleration and the car-following acegien. Under free-flow traffic
conditions, the actual gag, >> 0 and thus the influence of the last termlin (2.14) becomes

negligible to result in
N
Ao = amax,a |:1 - (a) :|
V0,

which describes the driver behavior under free-flow traféioditions. This shows that as
the speed of vehicle: reaches the desired speegl, the acceleration approaches zero.
When the speed of vehicteis greater (or less) than the desired spegg, the acceleration
becomes negative (or positive).

As the traffic behavior almost gets congested, the actualipg the desired speeg ,,
and the actual gap, of vehiclea decrease. Hence, the acceleration in (2.14) describes the
driver behavior under car-following traffic conditions tvithe last term becoming signifi-
cant. Then, the car-following acceleration reads as

* 2
o ~ G [1 _ <S(UA%>> }

Sa
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This expression indicates that as the actual gapf a vehiclea approaches the mini-
mum desired gap’, (i.e., so,o) in @ congested (or in car-following) situations, the aecel
ationa,, of vehiclea decreases to zero. If the actual gap continued decreasioy bee
minimum desired gap, the last term [of (2.14) dominates aed¢hicle decelerates.

In the IDM model, according to the sign of the approach rate,, the desired gap
in (2.15) determines the magnitude of the acceleration @ueldration of a vehicle in a
congested traffic state. The magnitude of the acceleratiateceleration under free-flow
conditions is determined by the ratio of the actual and ddsspeed (the second term in
(2.14)). Thus, unlike the GHR model, the IDM model descrithesdynamics of the traffic
equation with a single parameter ggbn = {0, 50,0, V0,0, Td,as Gmax; bmax, la -

2.3 The METANET model and its extensions

METANET [124] is a deterministic modeling tool for simulag traffic flow phenomena
in freeway networks of arbitrary topology and charactarssincluding freeway stretches,
bifurcations, on-ramps, and off-ramps [103, 124, 185]s k idiscrete-time, discrete-space
second-order macroscopic traffic flow model that treats téic flow as a compressible
fluid. The modeling approach allows for the simulation oflafids of traffic conditions
(free, dense, congested) and of capacity-reducing eviectdénts) with prescribed charac-
teristics (location, intensity, duration). FurthermoETANET along with its extensions
allows for taking into account control actions such as \deiapeed limits, ramp metering,
and route guidance [78, 103, 124].

The dimension of the state space of the model depends onzth@fsthe spatial dis-
cretization. Since the number of the vehicles does increaiker the number of the vari-
ables nor the number of the states, the computation spedtahodel is only affected
by two factors: the temporal and the spatial discretizasitap sizes. But, since the dis-
cretization in space500 m—1000 m) and the discretization in timd {s—15s) are coarse,
the computation time of the model is low.

The METANET model uses aggregate variables to describeghavior of the vehicles
on a freeway. These variables are the densfitieh/km/lane] that is defined as the number of
vehicles occupying a length of freeway per lane, the figweh/h] that is also defined as the
number of vehicles passing a point in a given time [119], &iedspace-mean speefkm/h]
that describes the average of the instantaneous speediofegebccupying a section of a
freeway.

In the METANET model a graphical representation of the teaffetwork is used in
such a way that a node is placed wherever there is a change getimetry of a freeway
(such as a lane drop, on-ramp, off-ramp, or a bifurcationfiomogeneous freeway stretch
that connects such nodes is designated as a link indexed bpd it is described by a
single set of parameters (see Fig. 2.1). Thus, the traffizorktis divided into links with
homogeneous traffic characteristics and each link is sidetivinto V,,, segments of equal
length L,, (typically 500-1000 m).

In the METANET traffic flow model five different links are defideThese are:

Freeway links represent homogeneous freeways, and are described byp#wneafy average
density, speed, and the average outflow.

Origin links are parts of the freeway that receive the traffic demand fratside the net-
work and forward it into the network. They are described jirtiow capacity and
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Figure 2.1: A linkm of a freeway sectioned intty,,, segments.

their queue.

Destination links receive traffic flow from inside the network and push it to thesale.
They are influenced by the downstream traffic conditions.

Store-and-forward links are characterized by their queue length, flow capacity; thosi-
stant travel time. These links are used to store the infloffidrand forward it to the
outflow with some time delay.

Dummy links are links with zero length. They are used in order to decomposnplex
network nodes.

As such the dynamic equations that describe the evolutitmedfraffic state are grouped as
link equations and node equations. In the sequel the linktians, the node equations, the
origins, and the boundary conditions along with some of ttteresions of the METANET
model are discussed.

2.3.1 Link equations

As mentioned above, the METANET model uses aggregate Vasiah describe the behav-
ior of the vehicles on a freeway. The traffic dynamics in a linkare formulated by first
sectioning the linkm into N,,, segments of equal length,, as in Fig/ 2.1, and next the
traffic dynamics in each segment are described in relaticdhedraffic conditions in the
neighboring segments. Three aggregate variables are aiseddel the traffic behavior in
each segmeritof link m. These variables are the density ; (k) [veh/km/lane] of segment
i of link m at time stepk, the outflowg,,, ; (k) [veh/h] of segment of link m during the time
period[kT, (k + 1)T), and the space-mean spagg; (k) [km/h] of segment of link m at
time stepk (see also Fig. 2.1).

Note that in order to make a distinction between the micrpgctime step counter and
the macroscopic time step counter, a time step counigintroduced as macroscopic time
step counter as opposed to the microscopic time couéftend a time steff’ is used as the



2.3 The METANET model and its extensions 29

macroscopic time step size (typically= 10 s) as opposed to the microscopic time sigp

(typically T;,, =1s-2s). Related to the CFL criterion encountered in [4Tlgémputational

stability reasons the relation between the length of thensegZ,,, and the simulation time
stepT’ must satisfy the condition

Lm > Ufree,mT (216)

wherevgee n, is the free-flow speed of the link.

The outflowg,,, ;(k) of segment of link m during the time perio¢kT, (k+1)T) is the
discrete-time domain version of the relation given in (2)is is described by

where)\,,, is the number of lanes in link..

The dynamics of the density,, ;(k) of segment of link m is derived from the con-
servation of vehicles law in (2.1), which states that the benof vehicles in a segment is
the sum of the number of vehicles in the segment and the diféer between the number
of inflowing and outflowing vehicles. For a segmeérdf link m without an on-ramp and
off-ramp, the dynamics of the density, ; (k) is described as

il +1) = i B) + s i1 () — i () (2.18)

wheregq,, ;—1(k) is the inflow of segment (or outflow of segment — 1) of link m during
the time periodkT, (k + 1)T") andg,, ; (k) is the outflow of segmeritof link m during the
time period[kT, (k + 1)T).

The discrete-time link equations described by (2.17) anti8)2are based on physical
principles that are exact. These two equations constiteystem of two independent equa-
tions and three unknown variables. Consequently, to getrglaie description of traffic
dynamics, a third independent model equation is needed [@7§ is the general case for
macroscopic models as has been discussed in Section 2hie METANET model the evo-
lution of the space-mean speed in relation to the densityodated heuristically following
the continuous space-mean speed dynamics in (2.3). Theéeupgiaation of the space-mean
speedv,, ; (k) of segment of link m at time step is given by the sum of the space-mean
speed at time step, therelaxationterm that represents the desire of the drivers to reach a
desired speetl' (p), aconvectiorterm describing the change in the space-mean speed of a
segment caused by the vehicles inflowing from upstream segnend amnticipationterm
that reflects the change in space-mean speed of a segment theedifference in density
level of a segment with the downstream segment. This is espteas

’Um)i(kﬁ + 1) :Um,i(k) + g [V([)m,i(k})) — ’Um)i(k)]
+ Tvm’i(k) [Um,iil(k) — Um,i(k)]
_ T77 [pm,i+1(k) - pm,i(k)]
7L (pmyi(k) + k)

(2.19)

wherer andn respectively denote a time constant and the anticipatiostent,s is model
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Figure 2.2: Fundamental diagram of a freeway characteribgdthe relation((2.20) and
(2.17) withvgee, m = 102 km/hr, pe, ., = 33.5 veh/km/lane, andl,,, = 1.867.

parameter, anH(pmﬁi(k‘)) is the desired speed drivers would like to achieve and itviergi
by

) bm
V([pm,i(k)) = VUfree,m €XP [_lin (pm,z(k)) ] (220)

Pcr,m

with pe..m being the critical density antl,, being the parametéof the fundamental di-
agram. An illustration of the fundamental diagram is deggicin Fig/2.2. The diagram
is generated for a freeway characterized by the relatic®®0f2and [(2.17) withvgee,m =
102km/h, pe;,m = 33.5 veh/km/lane, and,, = 1.867 [75].

Remark 2.1 The anticipation parameter in (2/19) captures the reactianivers to differ-
ent traffic densities in the downstream segment. In thermaldlETANET model a single
parameter value is used regardless of the sign of the differan density between the seg-
ments, i.e., the model does not distinguish between aetilgror decelerating behavior
as a result of density difference between the actual segamehthe downstream segment.
However, as has been also discussed in the car-followinggmauSections 2.2.2 and 2.2.3,
drivers tend to decelerate faster than to accelerate [L2@&H. Thus different parameter
values are required when the downstream density of a segmbigher or lower than the
density of the actual segment. In [75, 78] it has been sugdéstuse a time and segment-

dependent; such that
{Uh
’[7 =
m

wheren, andn, are anticipation model parameters for the two differenesasn this way
the value of the anticipation constapmodels the operational capacity drop. |

|f pm,i+1(k) Z pm,i(k)

. (2.21)
otherwise

2In the original METANET model the paramety, is denoted byz,,,. However, in order to avoid confusion
with the acceleration (which will be indicated with. in this thesisp,, is used instead.
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Remark 2.2 Although it is indicated that the METANET model allows to nebdontrolled
speed limits by varying the parametess .., Vree,m, andb,, in the METANET manual
[185], in [75] it has been suggested to use different exjprass For controlled speed limits
Hegyi [75] suggested that the desired speed in (2.20) baaeglby the following expres-
sion

bm Pcr,m

) (1 + Q)uvsl,m,i(k)} (222)

whereu, (k) is the speed limit imposed on segmenf link m at simulation timet, and

o is the drivers non-compliance factorf 0 < ¢ < 1, it expresses that the drivers’ target
speed is higher than the displayed speed limit, andlif< ¢ < 0, then the drivers’ target
speed is less than the displayed speed limit. O

2.3.2 Node equations

Two or more links can merge or leave from a node of a traffic ndtwas in Fig/ 2.8.
The coupling of the traffic variables of the merging links totbe leaving links from
the node is modeled using node equations. Consider Fignwhé&en, links (numbered
my, Ma, ..., My, ), €nter anchy links (numbereguy, po, - . ., un,) leave noder. The total
flow @, (k) that enters node is computed as the sum of outflow of all incoming links, i.e.,

Qn(k) = Z Am; Ny, (k) (2.23)
=1

The total flow@,, (k) entering node: is distributed among the leaving; links accord-
ing to

qlbuo(k") = 6717lh(k)Qn(k) (224)

wherei = 1,2,...,n9, By, (k) are the turning rates (i.e., the fraction of the total flow
through node: that leaves via link:;), andg,,, o (k) is the flow that leaves nodevia link
i -

A node provides a (virtual) downstream density to incomiogrierging) links and a
(virtual) upstream speed to leaving links, which are nedde@.19). Thus, the virtual
upstream speed,,, (k) of leaving link 11; is obtained as the weighted average of all the
space-mean speeds of the incoming links, which is given by

27:11 Um,Nm, (k)qmi’N'mi (k)
221 dm;,N,,, (k) .

Moreover, the virtual downstream density,, v, +1(k) of a link m; entering node:
is given by

U 0(k) = (2.25)

2?31 n, 1(k)
Prmi N, +1(k) = S~ (2.26)
it D iy Puia(k)

3In [75, 78] the non-compliance factor is denoteddyHere, we use sincec is used to designate a vehicle
in the microscopic modeling approaches discussed in Secton 2
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Figure 2.3: General interconnection of road links at a node

In case the number of lanes changes, a nodeplaced in the METANET model. Let
m andm + 1 be the indices of respectively the ingoing link and the ourtgdink of noden.
Then, the space-mean speed of the last segiigmf link m is either reduced or increased
by adding the weaving phenomena term

_OTANwpm N, (K)vp, v, (F)
Lm )\m Pcr,m

(2.27)

to (2.19), wherep is a model parameter ani),,, = A\, — A\,11 denotes the number of
lanes dropped or increased.

2.3.3 Origins

For origins (such as on-ramps and mainstream entry poirgishle queue model is used.
The dynamics of the queue length (k) at the origino is modeled as

wolk + 1) = wo(k) + T(do(k) — g0(k)) (2.28)

whered, (k) andg, (k) denote respectively the demand and outflow of the origituring
the time periodkT, (k + 1)T).

The outflowg, (k) of the origin depends on the nature of the originThe equations
describing on-ramp origins and mainstream origins areswifit, and these are presented
below.

On-ramp origins

An on-ramp origin is a small road that provides an access raffict freeway network.

The on-ramp origins can be both metered (in other words cbhed) or unmetered. Ramp
metering is one of the freeway traffic control measures usegtgulate the traffic flow
on the freeways by controlling the inflow of vehicles from @mp origins to prevent the
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occurrence of traffic breakdown (or congestion) and to redhe traffic jams [20, 75, 100,
103, 149, 219].

The outflow of metered on-ramp origin depends on the trafficdimns: the available
traffic at the on-ramp that is expressed as the sum of thectcffnand and the queue length
per unit time step, the maximal flow allowed by the metering expressed as a fraction
of the origin capacity, and the maximum space available éenfteeway to accommodate
the incoming traffic expressed as the fraction of the capaéithe on-ramp origin. This is
given by [101, 102]

4o(k) = min{%(k) L2l L e, ("jﬂm”” - ”"”’1(“) } (2.29)
T Pjam,m — Pcr,m

whereC, is the capacity [veh/h] of the on-rampunder free-flow conditions ang ., .,
is the jam density (or the maximum density of a segment uradenjed conditions) of the
link m connected to origim, andr,(k) € [0, 1] is the ramp metering rate at time step

For an unmetered on-ramp (whetgk) = 1) the outflowg, (k) in (2.29) is recast as

. wo(k) pjam m — Pm 1(k)
qo(k) = mln{do k)+ , Co, C, ( : : . 2.30
( ) ( ) T Pjam,m — Pecr,m ( )

If m is the link out of a node to which an on-ramapis connected, then for the first
segment of linkm the term
8T qo(k)vm (k)
LA (pma (k) + K)

is added to the speed update equation (2.19) in order to attmnthe speed drop caused
by the merging phenomena, wherés model parameter.

(2.31)

Main-stream origins

The main-stream origin link is suggested to be modeled different from the on-ramp agigin
in [75]. It is argued that the inflow of a segment can be limibgdan active speed limit or
by the actual speed of the segment. Then, [75] assumes thatakimal inflow equals the
flow that follows from the speed-flow relationship that cardbéaved from (2.17) and (2.20)
with the speed equal to the speed limit or the actual speetlefirst segment, whichever
is smaller. So, the limiting speed of the first segment of Jirik given by

Vlim, 1,1 (k) = min{uvsl,u,l (k)7 Vp,1 (k) } . (232)
Moreover, the outflow of the main-stream origiof link 1 that is required for queue model
given in (2.28) cannot exceed

w, (k)
T

(k) = min{do(k) 1 wolh) q<k>} (2.33)
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where

1

o
(k) = MWM%ﬂm%M{mh(mmw“O] if Vi, (F) < V(peryp)

v
Gmax,pu,1 free,

Auv(f)cr,u)pcr,u otherwise.

2.3.4 Boundary conditions

Since the dynamic equations that describe the evolutioheotraffic states in each segment
are interdependent, i.e., the traffic situation downstraach upstream of a segment influ-
ences the traffic in the actual segment, then at the entryxanpants of the traffic network
boundary conditions have to be defined. In particular, ilMIETANET model the states of
a segment depend on the upstream speed, the upstream flotheatholwnstream density.
Hence, we need to describe the upstream speed and upstreaforfithe entries of the
network and downstream densities for the exit networks.

Let the virtual speed of a main-stream origirentering node: be denoted by, (k).
The virtual speed can be user-defined, but if it is not spektifies set to be equal to the
speed of the first segment of the link leaving nadee.,

Uo(k) = v,u,O(k) = Uﬂal(k)

The boundary conditions for the upstream flow are describethé flow equations
discussed in 2.3.3.

Remark 2.3 The only downstream boundary condition required is theugirtensity. In
the standard METANET model, it is assumed that the destinas congestion-free, but
it is also possible to consider user-defined density sceifidt]. When the destination is
assumed to be congestion free, the virtual downstreamtgiensi v,, +1(k) of link m is
always considered to be the smallest of the critical density,,, (k) of link m, and the
density of the last segmeni,,, of link m;. This can be rewritten as [75]

pmi,Nmi—i-l(k) - min{pm,,y,Nmi (k)a pcr,nzi}- (234)

But, if the destination demand scenapig(k) is defined, the virtual downstream density
in (2.34) is recast as

PmiNpn, +1(k) = pa(k).

2.4 Summary

As the phrase “model-based traffic control” indicates, tbatwl approach presented in
Part 11 of this thesis requires models of the traffic system, i8 this chapter an overview
of the traffic flow models in general and the specific traffic mledo be used have been
discussed. The chapter has provided the general overvithve tfaffic models by exploring

the general applications of these models and the way theybearlassified. Based on
the level of details, the classification of traffic models asroscopic, macroscopic, and
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mesoscopic has been discussed with a special emphasis msooipic and macroscopic
models. The general modeling concepts underling the ndopms and macroscopic models
have been in particular discussed.

Among the microscopic models, a brief account has been dimethe car-following
models, because the car-following models are the buildiagks of most traffic flow mod-
els. Two of the car-following models, the GHR model and th&liBodel have been dis-
cussed in detail. Since the GHR model is unable to model #fctflow under free-flow
conditions, it has been suggested to use a separate expréssnodel the free-flow traffic
conditions if one opts to use the GHR model for the car-folfmysituations under high to
medium traffic densities. Therefore, the GHR model and tlitiadal free-flow expression
can be used to model free-flow and congested traffic condifionboth accelerating and
decelerating cases of individual vehicles. The IDM modelyéver, is a full-fledged model
that can capture the traffic scenarios the GHR model, wittrraiadditional free-flow ex-
pression, cannot. The IDM model does not require differanameters for different traffic
conditions as the GHR model does.

This chapter has also presented the METANET model and soiteedftensions. It has
been pointed out that, unlike the microscopic models, tmeprdation time of the macro-
scopic METANET model does not depend on the number of vehidla traffic network.
Therefore, it can be used for the simulation of large netsoloreover, in addition to the
ramp metering control, it has been also shown how the exteRHETANET model is able
to include variable speed limits explicitly.

Despite the fact that specific models (GHR, IDM, and METANHE&ye been chosen
for the model-based strategies in the subsequent chatlterstrategies and approaches to
be presented next in this thesis are general and can be uiedhatie complex and fast
models that are suitable for on-line control applications.






Chapter 3

Traffic Emissions and Fuel
Consumption Modeling

raffic control approaches based on on-line optimizatiomiregfast and accurate

integrated traffic flow, emissions, and fuel consumption et®@dOn the one hand,

one may use macroscopic traffic flow models to reduce the ctatipn time.

But in principle such models dictate the use of macroscopiissgions and fuel
consumption models that provide coarse estimates. On kiee baand, relatively accurate
estimates of emissions and fuel consumption can be obtaisiad microscopic emissions
and fuel consumption models. However, such models are uleanicroscopic traffic flow
models that require intensive computation times.

Thus, one may want to integrate macroscopic traffic flow meaéh microscopic emis-
sions and fuel consumption models, which can result in fastputation speeds with fairly
accurate estimates of the emissions and fuel consumptiorgemeral, however, macro-
scopic traffic flow models and microscopic emissions anddoasumption models cannot
be integrated with each other because the inputs requireditrpscopic emissions and
fuel consumption models describe the dynamicmdividual vehicles, while macroscopic
traffic flow models characterize tlaveragetraffic flow. So how can these different models
be integrated? If they can be integrated, can the error betifjed?

This chapter provides answers to these and other questioasswering the questions,
this chapter begins with an overview of emissions and fuesamption models in Sec-
tion|3.1. It briefly discusses the applications and clasifins of the models. Next, in
Sections 3.2 and 3.3 the established microscopic VT-mfafid macroscopic COPERT
[139] models are respectively discussed. Their advantageésisadvantages are presented.
Section 3.4 first presents a general framework for integgathicroscopic emissions and
fuel consumption models with macroscopic traffic flow modlext, the section illustrates
the integration strategy using the VT-micro and METANET ralsd resulting in the VT-
macro emissions and fuel consumption model. The error trabe introduced due to the
use of macroscopic traffic flow variables with microscopidssions and fuel consumption
models is analyzed and quantified both mathematically arirarally. The chapter ends
with conclusions in Section 3.5.

Parts of this chapter are published in [114, 212, 218].

37
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3.1 Overview of emissions and fuel consumption models

Traffic emissions and fuel consumption models are modelspffarm (graphs, tables,
mathematical expressions, computer algorithms, etaj,dalculate (or provide informa-
tion about) emissions and fuel consumption rates for difietraffic conditions. In other
words, these models provide the emissions released or funslumed by a vehicle or a
group of vehicles based on the operating conditions andsstdtthe vehicle(s). The oper-
ating conditions refer to variables such as speed, acteley&ngine speed, engine power
demand, air-to-fuel ratio, and so on. The status of a velidbrs to its physical conditions
related to its age, technology, and maintenance level.

In a broader sense, emissions and fuel consumption modelsecaither technology-
based engineering emissions and fuel consumption modeksfiic emissions and fuel con-
sumption models. The main difference between these magafiproaches is their level of
detail and their intended applications. Technology-ba&segineering models are models for
a specific engine type and size. The main inputs for such ra@delthe speed, acceleration,
engine load, and the specification of the vehicle (or engimégrefore, technology-based
engineering models are primarily meant to be used by camufaaturing companies for the
assessment of new technological developments and by goeatragencies for regulation
purposes [36]. Since these models are very specific and e¢ajlet], they can neither gen-
eralize the emissions and fuel consumption rate of otheicke=hin the fleet nor be used for
on-line estimation and prediction, and thus they are nohtafrest for this thesis.

Traffic emissions and fuel consumption models are develdpediverse collections
of vehicles grouped in homogeneous categories. These madelsimpler and have rel-
atively less details than the technology-based engingeriadels. Traffic emissions and
fuel consumption models mainly consider the inter-retaghop of the different traffic flow
variables (speed, acceleration, flow, density) with thessimins and fuel consumption of
the vehicles in the fleet. Since these models generally trglate the traffic flow variable
with the fleet emissions and fuel consumption, these modelsare suited for the study
of the effects of traffic flow control and management straggMoreover, these models are
more suited for on-line estimation and predictions thantéohnology-based engineering
models. Therefore, traffic emissions and fuel consumptiodets are the center of atten-
tion of this chapter and thesis. In the sequel, the possjipécations and classifications of
traffic emissions and fuel consumption models are elabdrate

3.1.1 Application of traffic emissions and fuel consumptiormodels

Road transport has a significant impact upon the environioeatly and globally. In de-
veloped countries, road transport is one of the major ssuoeCO, emissions, which
contributes to climate change which in turn has perilous ektio and global consequences
[107,143, 162]. This means that the ability to estimate aredipt the air pollution will be
essential for local transport plans focusing on the reduatif traffic emissions. Real-time
environmental data and accurately predicted emissiongushdonsumption rates will be
needed to be integrated with existing traffic control anddler information systems. Real-
time environmental data can be provided with a grid of sensdidowever, models are
required to predict the emission or fuel consumption leeéks transport network.

Traffic emissions and fuel consumption data can be used¢ordigte the mostimportant
parameters that influence the emissions and fuel consumgtimad vehicles [91]. These
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important parameters are the building blocks of emissiorsfael consumption models.
With these models, the impact of Intelligent TransportatBystems (ITS) alternatives on
the emissions and fuel consumption can be assessed [1, 44345163]. Generally, air
quality problems as well as the effectiveness of potenthltBns are assessed on the ba-
sis of emissions and fuel consumption models rather thamerbaésis of measurements,
because experimentation of ITS solutions in real-time j{geesive and cannot guarantee
repeatability.

Emissions and fuel consumption models can also be usedd@viduation and assess-
ment of construction of new roads and other transport nétsvofFFor example, a newly
constructed road network can reduce the traffic jams of fidnagétwork, but it can have
severe consequences for the neighborhoods and the eneinbnAn assessment of the im-
pact level could help in the redesign, provision of solusicor the decision making process
of such projects. Emissions and fuel consumption modelsatsmbe used in the design
and evaluation of local emission control strategies [46pr €&xample, to evaluate traffic
measures that influence driving behavior (like signal coatibn or speed limits) accurate
models are needed that can produce reliable predictiong & magnitude and direction
of relatively small changes in emission levels [44, 45, 1317]. With the aid of traffic flow
models and traffic emissions and fuel consumption moddigdbmes possible to consider
both congestion and emissions in the problem of policie®ld@ment, assessment, and
optimization [177].

Often during the development, assessment, and optimizptiacess of environmental
policies the decision process are characterized by a higiedef complexity, uncertainty,
and subjectivity [46]. Therefore, models can be used in thaext of decision support
systems to provide the analysts and the decision makergwithtitative estimates, trends,
and insights on the policies simulated.

3.1.2 Classification of traffic emissions and fuel consumpin models

There are several types of traffic emissions and fuel consammodels. Based on their
applications, level of detail, modeling strategies, aralitke, traffic emissions and fuel con-
sumption models can be grouped into different categoriegeheral, traffic emissions and
fuel consumption models can be categorized as either stafignamic models. Static emis-
sion and fuel consumption models calculate the emissioth$ueah consumption of vehicles
based on static traffic behavior (e.g., average speed)ewllgihamic models consider the
dynamic behavior of the traffic flow (e.g., instantaneousdseand accelerations). Static
models are generally fed with output of macroscopic traffadeis or with forecasts of to-
tal vehicle kilometer traveled. On the other hand, dynanmiclets allow both instantaneous
and modal analysis based on instantaneous traffic kinenatables, such as instantaneous
speed and instantaneous acceleration, or on more aggtegattal variables, such as time
spent in acceleration mode, in cruise mode, and in idle mode.

Based on the level of detail, emissions and fuel consumptiodels can be classified
into three groups viz. microscopic, macroscopic, and negms emissions and fuel con-
sumption models. Microscopic models use instantaneousdsped acceleration data to
estimate the emissions and fuel consumption of an indiVideizicle. Macroscopic models
use aggregate network or link-based data to estimate rletwide or link-based emissions
and fuel consumption. Mesoscopic models use scales thmtlieeen the macroscopic scale
and microscopic scale. The ensuing sections provide awieveof these model groups.
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Microscopic models

In order to predict traffic emissions and fuel consumptiorrereccurately and with high
spatial and temporal detail, models that include the vianatf vehicle dynamics over time
and space are necessary. Such models are called microsooiggions and fuel consump-
tion models. Microscopic emissions and fuel consumptiordet® are derived from the
relationship between the second-by-second emissionsueh@dnsumption rates and ve-
hicle characteristics and road conditions. The vehicleatttaristics include the second-
by-second speed, acceleration, and in some cases theevighiclpower, and so on. These
models take the instantaneous vehicle kinematic varigbpesed, acceleration, or aggregate
modal variables such as time spent in acceleration modeyisecmode, idle mode, and so
on) into account [36, 182]. In general, microscopic emissiand fuel consumption models
can be described as

Jg(km) = fﬂ(v(km)7a(km)7"') (31)

where the subscripy denotes the emission or fuel consumptipre ) = {CO, CQ,,
HC, NO,, fuel} and f;(-) denotes the function that relates the microscopic-inateuus
speedv(ky, ), the microscopic-instantaneous acceleratith, ), etc. to the emissions or
fuel consumption ratdy (k) at time stepk,,.

Due to the disaggregate characteristics of the emissiahiahconsumption data, these
models are usually used to evaluate individual transgortadrojects and individual vehi-
cles. These models are also used in microscopic traffic ationl models; however, they
are costly and time consuming [206]. The POLY [162], CMEM, [@hd VT-Micro [2, 3]
models are some examples of microscopic emissions anddasumption models.

Microscopic emissions and fuel consumption models caerhissions and fuel con-
sumption mapgegression-basear load-basednodels.

Emissions and fuel consumption maps are a two-dimensional array of emissions and
fuel consumption quantities for different operational dibions of the vehicles. These mod-
els, also called velocity-acceleration look-up tablesiehthie form of a matrix, where one
dimension represents speed ranges, and the other acoslenaspecific power ranges. For
each emission type (CO, GOHC, and NQ) and fuel consumption and for each vehi-
cle category, the instantaneous emissions and fuel corisampeasurements are assigned
to one cell of the emissions and fuel consumption matrixpeding to vehicle speed and
acceleration measured at that time instant.

Although these models are easy to generate and to use, thédgecparse and sensitive
to the driving cycle used to generate them; in addition, they not flexible enough to
account factors such as road grade, accessory use, oyteffierts [182].

Regression-based modelsare usually linear regression functions of instantanepesd
and acceleration or modal variables [2, 163]. These modeisogercome the sparseness
and discretization problems of the emission map models. édew these models lack a
clear physical interpretation, and can also over-fit thébcation data when using a large
number of explanatory variables.
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Load-based models represent the physical and chemical phenomena that geresras-
sions. The primary variable of these models is the fuel comdion rate. The fuel con-
sumption rate is mainly dependent on the engine speed, tlineespower, and air-to-fuel
ratio [36]. In principle, load-based models are adequatieszribe the emissions and fuel
consumption of any vehicle with similar technology and aehigle operating conditions
by adjusting their parameters. However, these modelsneedetailed specification of vehi-
cles’ engine (such as the engine speed, the engine powegjratadfuel ratio) and they are
relatively complicated models. Thus, since such data isawailable from the traffic flow
models, the load-based models are not suitable for modsdebmaffic control approaches.

Macroscopic models

Macroscopic emissions and fuel consumption models estimapredict the emissions or
fuel consumption of a group (or class) of vehicles over aquedf time or over a road seg-
ment. These models use the average aggregate networklgar{abch as average speed,
average density, and road grade) to estimate the netwat&-evhissions and fuel consump-
tion rates of the traffic flow. Macroscopic emissions modedsimportant tools in an area-
wide emission assessment, which are typically used to leadcand develop national or
regional emission inventory. In the emission regulatorgcpss, macroscopic emissions
models are required for estimating the quantity of polltgatischarged from vehicles.

Macroscopic emissions and fuel consumption models cannergébe also studied by
grouping them into three classes as/erage-speed-based moddtsffic-situation-based
models andtraffic-variance-based models

Average-speed-based emissions and fuel consumption maglelare the simplest emis-
sions and fuel consumption models. These models use thbdsigd average speed of the
traffic fleet as an input to estimate or predict the averagessons or fuel consumptions
of vehicles in a traffic network [28, 63, 139]. Since the agerapeed-based models do
not capture the emissions and fuel consumption due to thatiar of the speed of the
traffic [1,28], the average-speed-based models are momsecdidan microscopic emis-
sions and fuel consumption models and thus provide lesgatecestimates or predictions
of the emissions and fuel consumption than the microscopitets. But they result in fast
computation times. Although, in principle, the averageespbased emissions and fuel con-
sumption models use the trip-based average speed, inqga#ds also common to use local
speed measurements (in other words the average speed ovetirgle periods) at discrete
locations as input to the models [28]. In this way, the vaoiabf the speeds can partly be
considered and thereby the estimation accuracy of the madelincrease.

For example, the average-speed-based MOBILE [138] emissitodel and COPERT
[139] emissions and fuel consumption model estimate theageeemissions and fuel con-
sumption based on the average speed of vehicles. The MOBldehis not sensitive to
a vehicle’s modal events such as idling, cruising, accet®raand deceleration [205]. The
MOBILE model requires the average speed as the sole demooifd vehicle’s modal events
and driving conditions. Moreover, MOBILE requires inpufsietailed vehicle information
such as the vehicle technology, the vehicle age, vehicleagé, the ambient temperature,
fuel parameters, and the vehicle operating mode are alsidwred in MOBILE|[138]. For
a better discussion of the COPERT emissions and fuel cortsummodel the reader is
referred to Sectiagn 3.3.
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The macroscopic fuel consumption mod&lemental[40, 63] andWatson[196] use
the space-mean speed as input to estimate or predict fuslogtion of a traffic flow.
The Elemental model is an urban fuel consumption model. énBlemental model, the
fuel consumption is linearly related to the average trigetiior a unit distance. Hence, the
model is easy to use in macroscopic traffic models. Howetvelgés not incorporate the
effect of speed variations in the trip. Hence, this may ithie more prediction errors.
The Watson fuel consumption model, however, also incotpertfie changes in the positive
kinetic energy during acceleration as a predictor variablas partially introduces the effect
of speed variations in a trip. But the effects of speed chawdgeing the deceleration phase
are not included. Moreover, at higher average speeds thetedf aerodynamic drag on
fuel consumption becomes significant (this occurs at aeespgeds over 55 km/h [63]) and
in this case both models do not give good estimates of thecwgdumption. Thus, these
models can only be used for average speeds less than 50 kpGh This implies that such
models are not suitable to model fuel consumption of freetnaffic.

Traffic-situation-based models use emissions and fuel consumption factors grouped by
traffic situations described by the average speed, vehdahgposition, or volume-to-capacity
ratio to provide the estimate of the emissions or fuel cormtion of the traffic flow. In
these models, different emissions and fuel consumpticlofa@re designated for the dif-
ferent traffic conditions. Then, accordingly, the total ssivns and fuel consumption of the
traffic flow are computed by integrating the emissions antidaesumption contributed by
each traffic situation and the corresponding traffic ingnsthe models VERSIT®acr
[178], HBEFA [74], and ARTEMIS [92] are examples of traffittmtion-based models.
The VERSIT+2<*° grids the average speed, and volume-to-capacity raticaéficrflow
and assigns them emissions and fuel consumption factoactoaell. The HBEFA emis-
sions model describes road traffic emissions based on $elassifications such as vehicle
category, fuel type, and driving conditions (such as frgedsving at different mean ve-
locities, urban driving, stop-and-go traffic etc. for diffat road gradients). The ARTEMIS
emissions model has different sub-models for urban, raral,freeways driving conditions
and for cold-start and hot-start conditions.

Traffic-variance-based models are other macroscopic models that take the variation of
the average traffic variables into account. In such modeadsemissions and fuel consump-
tion are modeled based on the average traffic variables ésittte average speed, flow, and
density) and an additional correction factor to accountliereffect of the variation of the
variables from their average. In doing so, first the modelseggte driving patterns using
the traffic variables (average speed, flow, and density) @finastructure variables (e.g. link
length, number of lanes, and type of intersection) [132]xtN#he correction factors that
represent the variation of the speed, flow, or density altveglink are introduced. The
models in [118, 132] are examples of such models.

Mesoscopic models

One common variable of macroscopic emissions and fuel copgon models is the aver-
age speed. This leads to one common weakness of macrosoogétsrbecause of the fact
that the average speed of a trip may be constructed in a nushdédferent ways, with dif-
fering number of transient vehicle operation. Clearlytladl types of operations associated
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with a given average speed cannot be accounted for by thef assitngle emission factor
[143]. This is normally not a problem at higher average speaslthese are associated with
relatively little variation in operation, but at the low amge speeds associated with con-
gestion the range of possible operational conditions &stsatwith a given average speed
tends to be much greater [28]. The marked variability of ekhoperation at low average
speeds is partly responsible for the poor reliability of tweresponding emission factors
[28]. On the other hand, microscopic models are very detaited thus are costly and con-
sume much computation time. This implies that they are retifde for on-line estimation
or prediction applications.

Mesoscopic emissions and fuel consumption models have cbanacteristics of micro-
scopic models and some characteristics of macroscopiclmotiee inputs to mesoscopic
models are more aggregate than microscopic models and neaggdegate than macro-
scopic models. Generally, mesoscopic models use few exfolignvariables to estimate
vehicle emissions and fuel consumption [206]. For instatice VT-meso model [206]
estimates the average emissions and fuel consumptionafdight-duty vehicle on a link-
by-link basis using three independent variables, viz. ayetravel speed, average number
of stops per unit distance, and average stop duration. largemmesoscopic models (such
as the model of Akgelik [5, 170], MEASURE [11, 12], and VT-see[206]) estimate the
emissions during cruising, idling, and acceleration-tie¢ion driving behavior separately.

However, mesoscopic models are relatively complicatedeatsods compared to their
counterpart microscopic and macroscopic models. For elartige mesoscopic VT-meso
model (see [206]) requires the average travel speed, avenagber of stops per unit dis-
tance, and average stop duration to compute the emissidrfa@rconsumption of vehicles
within a link using relatively complicated equations, wés its microscopic version the
VT-micro model (see Section 3.2) requires the instantamespeed and acceleration of ve
hicles to compute the emissions and fuel consumptions viitipler expressions. Thus,
as the input variables for the mesoscopic models are ndyedgiained from traffic flow
models, integration of the mesoscopic models with the ¢raffbdels is not simple. In view
of this, a new and simple macroscopic emissions and fuelropgon model that takes the
dynamics of the traffic flow into account is developed in Set8.4. This model provides
accurate estimates relative to the macroscopic models anthbht computation times. But
first the microscopic VT-micro traffic emissions and fuel samption model is discussed
in the next section, because this model is the basis for thelafgment of the macroscopic
model discussed in Section 3.4.

3.2 The VT-micro model

VT-micro [2] is a microscopic emissions and fuel consumptizodel that yields the instan-
taneous emissions and fuel consumption rate of an indiVicklgcle o using the second-
by-second speed and acceleration of the vehicle. Sincepdezisand acceleration variation
of vehicles have significant impacts on the emissions anldchressumption, the VT-micro
model captures the effects of these two important factoselver, this model is very sim-
ple and can be easily integrated with microscopic traffic floadels. The VT-micro model
has been evaluated and used in different traffic applicafibn3, 163, 206].

The VT-micro model describes the emissions and fuel contomp € ))/{CO,} of
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an individual vehiclex at time stepk,, as
Jog(km) = exp (8q, (ki) Pya(km)) (3.2)

whereJ, ;(km) is the estimate or prediction of the varialgi@er unit time at every micro-
scopic simulation time step,,, the operatof defines the vectors of the speed and the
accelerationu,, as

Vo (km) = [1 va (k) v2

(k) 03 (k)] T
o (km) = [1 ao(km) a2 3 (3.3)

[\Je)
—
o=
g
S
=
3
=
-

for time stepk,,, andPy denotes the model parameter matrix for the varighte) /{CO,}.
The values of the entries @t; are given in Appendix A.

The operating region of the VT-micro emissions and fuel comation model is de-
scribed in [163] to be from 0 km/h to 120 km/h for the speadd from 0 m/3 to 2.75 m/$
for the acceleration, where the maximum value of the aca8t8Ta,ax o (km ) iS given by

2. if v (k) < 35 km/h
amax,a(km):{ . if va(km) < 35km/

2.75 — 2,752 bm) =5 it 35kmih < v (k) < 120km/h

Moreover, the VT-micro emissions and fuel consumption nhddes not yield estimates
of the CG, emission rate. However, in [141] it is shown that there is Bnoat affine
relationship between fuel consumption andJ/3#nission. Then the CQOemission can be
computed using the relation

Ja,COz (km) = 61Ua(km) + 52Ja,fuel(km) (34)

where J, co, (km) denotes the C@lkg/s] emission rate of vehicle: for time stepk,,,
Ja, el (km) denotes the fuel consumption rate in I/s for time stgp with the model pa-
rameters(dy, 62) = (1.17 - 10~%kg/m, 2.65 kg /1) for a diesel car anddy,52) = (3.5 -
10~%kg/m, 2.39 kg/1) for a gasoline car.

3.3 The COPERT model

One of the most commonly used average-speed-based mauimeadssion and fuel con-
sumption models is the COPERT [139] model. In this modelgiiméssions (CO, CQ HC,
and NQ,) or fuel consumption of a group (or class) of vehicles aredeed as a function
of their trip-based average speed in the traffic network. Mbdel provides the estimation
or prediction of the emissions or fuel consumptipre ) based on simple second-order
polynomial functions of the trip-based average-spegd This is given by

Jy = covgv + C1Vay + Co (3.5

wherecg, ¢1, andc, are model parameters.
For instance, the COPERT emissions model for light-duty BURehicles with 1.41

1The unit km/h is used as the unit for vehicles (traffic) speecabse it is most commonly used in The
Netherlands.
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Figure 3.1: COPERT model for a.4 1to 2.0 | light-duty EURO | passenger car.

to 2.01is given by [139]

Jco = (0.001785v2, — 0.245v,, + 9.617) [g/km]
Jic = (0.0000521v2, — 0.00888v,, + 0.4494) [g/km]
Jno, = (0.0000854v2, — 0.0085v,, + 0.526) [g/km]

where the trip-based average spegdis in km/h.

Although in principle the input of COPERT emissions and faehsumption model
is the trip-based average speed, it is also used with thelgpeasurements taken at dis-
crete locations [28]. For such approaches, the discraizagn be made fine enough by
considering the distance the vehicles travelled in a sieghapling period. This is equiv-
alent to using the model on second-by-second basis. Thumdaer to use the model in
such approaches, the emissions and fuel consumption raézded to be converted from
emissions per unit distance to emissions per unit time, Usecthe distance traveled every
simulation time step can be different. So the model shouldlaresformed to emissions and
fuel consumption rates in terms of grams per unit time, wigizh be done by multiplying
the expression in (3.5) by the average spegd This transformation provides a way to
use the average-speed models to calculate the emissieasedlor fuel consumed at every
macroscopic simulation time stép

Now, since the input for the transformed model is the speedeth sampling time, the
model considers the variation of the speed in computingrfisestons and fuel consumption
of the traffic flow. Fig| 3.1(a) and Fig. 3.1(b) show the trigeage-speed-based and ‘instan-
taneous’ average-speed-based COPERT model for a lightedlliRO | vehicle. Fig. 3.1(a)
depicts the COPERT model used as a trip-based average-spsed model, where the
emissions rate are provided in g/km, whereas|Fig. 3.1(hteihe emissions curves of the
COPERT model used with an instantaneous average-spesdkingemissions rate in g/s.
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3.4 The VT-macro model

Since the inputs for microscopic emissions and fuel consiampnodels are the operating
conditions of individual vehicles, the computation timgquied is proportional to the num-
ber of vehicles. But the inputs for macroscopic emissiorsfaal consumption models are
the average operating conditions of a group of vehicles. celethe computation time of
the macroscopic models is reduced as compared to the migicsmodels. On the other
hand, relatively accurate estimates of emissions and fureumption can in general only
be obtained using microscopic emissions and fuel consoemptodels.

Macroscopic emissions and fuel consumption models arericipte used with macro-
scopic traffic flow models, and the microscopic emissionsfaabconsumption models are
used with microscopic traffic flow models. For example in [[L&B integrated microscopic
traffic flow model and emissions model has been used for dyengithe environmental
impacts of ITS alternatives. Moreover, a study|in [88] shakes integration of a micro-
scopic emissions and fuel consumption model with a micneisdoaffic flow model using a
distributed framework to tackle the computation time. 11hj&8] and [163] the integration
is based on microscopic traffic flow models and microscopiissions and fuel consump-
tion models. In general, the output of the macroscopic trdiifiv models can be easily
fed to macroscopic emissions and fuel consumption modelstenoutput of microscopic
traffic flow models can be easily fed to microscopic emissemmd fuel consumption mod-
els. This means that the choice made on the traffic flow modetsadfects the choice of
the emissions and fuel consumption models. Hence, the aocwof the estimates of the
emissions released and fuel consumed cannot be enhancezrlies macroscopic models
unless the macroscopic emissions and fuel consumption ImtitEmselves are accurate.
But as studies show the available macroscopic emissionfughdonsumption models do
not provide accurate estimations relative to microscopiéssions and fuel consumption
models [1, 28].

So, to get a balanced trade-off between computational eottpland accuracy, one
may want to combine macroscopic traffic flow modes with micopsc emissions and fuel
consumption models. However, this is not straightforwditte macroscopic outputs of the
macroscopic traffic flow models should be transformed intorasicopic variables. More-
over, the error that can be introduced due to such approxinsts unknown. Therefore,
this section presents an approach to integrate these tws tfpmodels so that the macro-
scopic variables can be used to produce relatively accestimates of the emissions and
the fuel consumption of the traffic flow.

3.4.1 Integration of models

In the sequel, a general approach to integrate macrosaayffic flow models with micro-
scopic emissions and fuel consumption models is preseiiteid.approach is generic and
it can be adopted to most combinations of a macroscopicddiiv model and a micro-
scopic emissions and fuel consumption model such as POLR],[TBVEM [18], and the
microscopic models in [91, 143].

In order to integrate macroscopic traffic flow models with m&copic emissions and
fuel consumption models, the average acceleration, agespged, and the number of ve-
hicles subject to these variables at each simulation tiee Isave to be generated from the
macroscopic traffic variables. This idea is illustrated ig.B.2. The macroscopic traf-



3.4 The VT-macro model 47

Integrated model

Traffic flow model

Macroscopic

Emissions & fuel
' consumption model:

>
> U
T > [
' Y Y '
(SN 1
! Interface ;
o 1
g :
S ! N A A
G { / i
S :
S . . : o
' Microscopic T Jy

Figure 3.2: Model integration block diagram. The outputiades of the macroscopic traf-
fic model are the average floy the average space-mean speedand the
average density. These variables are fed to the interface block. The interfa
block generates the acceleratianthe speed, and the corresponding number
of vehicles:, which are inputs to the microscopic emissions and fuel wons
tion model. The microscopic emissions and fuel consumptiode! yields the
emissions and the fuel consumptignof the traffic flow. Then, both the inter-
face block and microscopic emissions and fuel consumptmehblock form
the macroscopic emissions and fuel consumption model.

fic variables (the average density, average space-mead, sre average flow) are fed to
the interface block. The interface block transforms themgables into variables that de-
scribe the average behavior of individual vehicles, iteproduces average speed, average
acceleration, and the number of vehicles that are subjeabetaverage speed and average
acceleration. Note that the macroscopic speed does nainartough information to fully
reconstruct the individual vehicle trajectories that veblbé needed to exactly calculate the
microscopic emissions and fuel consumptions. The errdrcidyabe introduced by consid-
ering the average speed over a group of vehicles will be aadlin Sectioh 3.4.5.

Now the general integration approach is illustrated ushey METANET traffic flow
model discussed in Section 2.3 and the VT-micro emissiodsfael consumption model
presented in Section 3.2, which will result in a new dynamacmscopic emissions and fuel
consumption model VT-macro, specifically derived for the MBIET traffic flow model.

Since the METANET model is discrete in both space and timeetlaee two acceler-
ation components involved in the model. The first is teedmentélacceleration of the
vehicles moving within a given segment. The second compadséhe “cross-segmental
acceleration of the vehicles going from one segment to @anaetithin one simulation time
step (see Fig. 3.3). The segmental and cross-segmenté¢ratioms describe the average
dynamics of a group of vehicles. Therefore, the number ofcleh that are subject to
the corresponding accelerations are also determined. el¢mgles of the formd, v, n),
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Figure 3.3: lllustration of segmental and cross-segmetrtfic flow in METANET.

wherea represents the acceleratianthe speed, and the number of vehicles involved are
generated.

3.4.2 Segmental acceleration

Recall that in the METANET model, the space and time diszatittn has to be done in
such a way thaf.,, > Tvgee,m IS satisfied (cf. [(2.16)). This condition assures that a
vehicle cannot cross a segment of a link without at leastragaiere for one full simulation
time step. This means that vehicles can experience speedehavithin a segment in one
simulation time step. Therefore, the term segmental atéde refers to the acceleration
of the vehicles due to the change in space-mean speed wigggraent in one time step.
This acceleration is only experienced by the vehicles ttagt\within the segment from one
time step to the next. The segmental acceleration of thele=hin the segmeritof link m

at time step k is thus given by

Um,,i(k + ]-) - UM,i(k)
T

Aseg,m,i (k) = (3.6)
where the subscript ‘seg’ is shorthand for ‘segmental’.

Now let us determine the number of vehicles that are subjetttis segmental acceler-
ation from time steg to k£ + 1. At time stepk the number of vehicles in segmeris equal
to Ly A pm,i (k) and from time steg to k£ + 1 the number of vehicles leaving segmeisg
Tqm,i(k) (see Fig. 3.8). Hence,

nscg,m,,i(k) == Lm,)\mpm,i(k) - T(Im,z(k) (37)

is the number of vehicles that stayed in segmieahd that are subject to the segmental
acceleration given in (3.6).

2since the METANET model uses the simulation time stethe acceleration, speed, and the corresponding
number of vehicles subject to the acceleration and speedetgentined at the simulation time step
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3.4.3 Cross-segmental acceleration

The cross-segmental acceleration is the change in speediexped by vehicles moving
from one segment of a link to another segment of the same limi a different link. De-
pending on the geometry of the traffic network, there are re¢yessible scenarios for
vehicles moving from one segment to another. In partictir,cross-segmental accelera-
tion from one segment to another segment is different forcles staying in a link and for
vehicles crossing a node (an on-ramp, an off-ramp, mergikg,l and splitting links). In
the sequel the cross-segmental acceleration for eachsdseussed.

Vehicles moving between consecutive segments within thensa link

At the time stepk: the space-mean speed of the vehicles in segieflink m is vy, ;(k).
In the next time ste + 1 and in the next segmentt- 1, the speed will bey,, ;41 (k + 1).
Thus, for time steg the cross-segmental acceleration of the vehicles leawigment; to
segment + 1 of a linkm is

Um,i k +1) - Um,i k
across,m,i,i+1(k) - : +1( T) - ( ) (38)

where the subscript ‘cross’ is shorthand for ‘cross-sedgaien
The number of vehicles that are subject to the cross-segineciteleration in (3:8) is
obtained as

ncross,m,i,i+1(k) = TQm,z(k) (39)

Vehicles crossing a node

Here, first the cross-segmental acceleration and the nuofibehicles subject to the accel-
eration for a general case are presented. Next, these dedrnepfor specific cases.

General case: Let us consider the general case, where several incomingatging
links are connected to a nodeas in Fig/ 2.3. In the figure, there ang incoming links
andns outgoing links. The cross-segmental acceleration of vefimoving from incoming
link m; to outgoing linky; is given by

V1, (B +1) = Uy N, ()
Qcross,m; 1 (k) = K T - (310)

The corresponding number of vehicles subject to the cregsisntal acceleration in
(3.10) is given by

ncross,mi,#j (k) = Tﬂmi,n,pj (k)Qmi,Nmi (k) (311)

where3,,; ».., (k) is the turning rate from linkn; to the link 115 (the fraction of the total
outflow of link m; that leaves via to link ;).

Specific cases: Here the general case for vehicles crossing a node is ergldor the
specific cases, viz. for an on-ramp, an off-ramp, and a laog/ihcrease.
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Figure 3.4: On-ramp and off-ramp.

e On-ramp:In METANET the speed of an on-ramp is not defined. But to deieerthe
cross-segmental acceleration of the vehicles moving flenoh-ramp to the freeway,
we need to assign the speed of the on-ramp. This speed is edsarbe based on
measured or historic data in case no on-line measurementailable. Hence, we
use the on-ramp speed, ,(k) for the on-ramp. In particular, for a situation like
the one sketched in Fig. 3.4(a), the cross-segmental aatiele and the number of
vehicles subject to the acceleration are respectively

Um,1(k 4+ 1) — Uon,o(k)
T (3.12)

ncross,on,o(k) = qun,o(k)' (313)

whereg,,, (k) is the on-ramp flow given by the equations of the farm (2.292a30).

Qcross,on,o (k) =

e Off-ramp: In general, the vehicles in the freeway can leave to an offera with an
off-ramp speedig . (k), Wwherev.g (k) can be determined in a similar way as the
on-ramp speed discussed above. In particular, in Fig. Bthéflow of the vehicles
from segmentV,,, of link m to the off-rampo is given by

ot o(k) = Bro(k)qm,N,, (k) (3.14)

where(, ,(k) is the turning rate (i.e., the fraction of the total flow thgbunoden
that leaves via the off-ramg).

Now the cross-segmental acceleration and the number oflesHiowing from the
segmentV,, of link m to the off-rampo can be computed as
ok +1) — vy k

across70ﬂ‘7o(k) — UOH, ( + ),11 v 7N7n( ) (315)

ncross,off,o(k) = quff,o(k)- (316)

e Lane drop/increaseThe cross-segmental acceleration of vehicles moving fitwen t
last segment (with inde®,,,) of the first linkm with \,,, lanes to the first segment of
the second linkn + 1 with \,, 1 lanes is computed using the relation

Um kE+1)—vpn,, (k
across,m,,7rt+1(k) = +171( 2)_, AV ( ) (317)
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Moreover, the number of vehicles experiencing the accéberés computed as
ncross,m,m—&-l(k‘) = TQm,Nm (k) (318)

The accelerations derived in the above sections have beed loa physical interpreta-
tion of the METANET model. In [114] a pure mathematical datien is given to express
the accelerations in their original continuous-time dam@scriptions. The accelerations
are discretized and these accelerations and the acceferatérived in the above sections
are found to be not identical but consistent and convergamtoximations of the original
continuous-time equations.

3.4.4 VT-macro emissions and fuel consumption equations

Unlike in the microscopic case where the speed-accelerpt@ is for a single vehicle, the
speed-acceleration pairs generated in Sections 3.4.2.4®I®ld for groups of vehicles.

Therefore, the emissions and fuel consumption obtainedhigiven speed-acceleration
pair have to be multiplied by the corresponding number ofalek in order to obtain the

total emissions and fuel consumption. The emissions arlc@msumption of each case is
provided next.

Vehicles moving within a segment

In Section 3.4.2 we have derived the segmental acceleratidrthe corresponding number
of vehicles within a segment of a link at simulation stepJsing these variables as an input
to the VT-micro model in[(3.2), a new macroscopic emissiamsfael consumption model
for the vehicles moving within a segment is obtained as

Jseg,g.m,i (k) = Nseg,m.i (k) exp (T, ;(k) Pyliseg,m,i(k)) (3.19)

Wherejqegyg,my,;(k) denotes the values of the varialglec ))/{CO,} at simulation step
k and) = {CO, CQ, HC, NO,, fuel}, the average acceleration vectk, m i (k) and
the average space-mean speed vettpr(k) are respectively obtained fromeg, (k)
andwv,, ;(k) by using the operatordefined in((3.3), whil@iseg i (k) andngeg m,i(k) are
respectively given by (316) and (3.7), ang (k) is the average space-mean speed of the
vehicles in segmenitof link m at simulation ste.

The emissions model inh (3.19) can also be extended to model@ emission using
the expression in (3.4) as

jseg,COQ,m,i,iJrl(k) = nseg,m,i(k) (5lvm,i(k) + 52 exp(f};lr;’i(k)Pfueldseg,m,i(k))) (320)

where they; andd, are model parameters as given'in (3.4).

Vehicles moving from segment to segment within a link

For vehicles moving from one segment of a link to another ssgrof the same link, the
macroscopic emissions and fuel consumption model is giyen b

Jcross,ﬂgm,i,ﬂrl(k) :ncross,m,i,iJrl(k) exXp (6;,i(k)Pyacross,m,i,i+1(k)> (321)
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jcross,COQ,m,i,i+1 (k) =MNcross,m,i,i+1 (k) (511]711,1' (k)+
02 exp(Typ i (k) Prucificross,m.ii+1(k))) (3.22)

wWhereJeross 5.m.i.i+1(k) denotes the value of the varialgjes J/{CO,} of vehicles mov-
ing from segment to segment + 1 of link m at simulation ste, Jeross,cos,m.i.i+1(k)
denotes the value of the G@mission released by vehicles moving from segni¢otseg-
ment: + 1 of link m at simulation stek, the average acceleration veciQfoss m, i i+1(k)
and the average space-mean speed vegig(k) are respectively obtained by applying the
vector operation (cf. (3.3)) ONdacross,m, i i+1(k) @and v, ;(k), With across,m.ii+1(k) and
Neross,m.i,i+1 (k) respectively given by (3!8) and (3.9).

Vehicles crossing a node

The emissions and fuel consumption of the vehicles crossingde where merging and
splitting links are connected is given by

jcross,gj,mf;,uj (k) =TNcross,m;,u; (k) €xp (ﬂ’;YerNmi (k)ng&cross,mi,uj (k)> (323)
jcross,COQ,mi,/Lj (k) :ncross,mi,u] (k) (5lvm,,,,Nmi ('ZC)+
52 eXp(f);,r,%Nmi (k)PfllelaCl'OSS7m7j,/l.J (k'))) (324)

whereJeross ,m. i, (k) is the value of the variablg € /{CO.} of the vehicles moving
from the linkm; to link ; at the simulation step, Jcross,commi’#j (k) is the value of the
CO, emission of the vehicles moving from link; to link 1, at the simulation step, the
VECIOISicross,m; u; (k) @MUy, N, (k) are respectively obtained using the vector operation
7 (cf., (3.3)) t0across,m, u; (k) @NAy, n,, (k) With aeross,m, iy (k) @NdNcross,m, i, (k) Te-
spectively given by (3.10) and (3.11), and, N, (k) the average space-mean speed of the
last segment of linkn; at simulation stej.

Overall emissions and fuel consumption model

The total emissions or fuel consumption of vehicles in ditrafetwork at simulation time
stepk is therefore

N, Np—1
Jtotal,y(k) = Z steg,y,m,i(k)"' Z Z jcross,gj,m,i,i—i—l(k)

meM i=1 meM  i=1

+ Z Z Z jcrossg]}mi,uj(k) (325)

neN m;€Z, p; €0,

wherey € Y = {CO, CQ, HC, NQ,, fuel}, M is the set of links in the network)
is the set of nodes in the network,, is the set of links that enter nodg O,, is the set
of links that leave node, and Jecg, y,m.i(k), Jeross,g,m.i,i+1(k), @ndJeross g,m. ., (k) are
respectively given by (3.19) (dr (3.20)), (3.21) (or (322 (3.23) (orl(3.24)).

Thus, the interface block and the VT-micro block in Fig. 2Pnfis a new macroscopic
emissions and fuel consumption model. We call this new mttaetV T-macro” emissions
and fuel consumption model.
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3.4.5 Analysis of VT-macro

In the previous section we have proposed the integratiomeftacroscopic traffic flow
model METANET with the microscopic emissions and fuel canption model VT-micro,
which resulted in a macroscopic emissions and fuel condomptodel VT-macro. Due to
the approximation of the speed and acceleration of the ighali vehicles by the average
speed and the average acceleration over the number of @ghibk model may introduce
errors. Moreover, the motive for the development of the rhagléo gain computational
speed while keeping the estimation error as small as pessithierefore, analysis of the
maximum error that can be introduced by this model is requitethe ensuing paragraphs,
the analysis of this error is presented.

This section examines the effect of going from one individighicle (VT-micro) to a
group of vehicles (VT-macro). In general, one could consitiferent macroscopic and
microscopic simulation time steps, i.€!,# T,,. However, this problem is mainly related
to traffic flow models (e.g., METANET vs. IDM). Here the focukthe analysis is only
on the VT-macro model. Since the METANET model is not dingtthsed on microscopic
modeling approaches, this thesis will not delve into thdyesisiof the approximation errors
induced by the METANET traffic flow model. Hence, it is assurhede thafl’ = Ty,.

Let the speed of an individual vehicteand the average speed over a group of vehicles
be respectively,, (k. ) andv(k,,). If the relative deviation of the speedof an individual
vehiclea from the average speedds (k). then the speed of an individual vehiclecan
be expressed as

va(km) = E(km)(l + 5v,a(km))- (326)

Similarly, let the acceleration of vehicle be a,, (k) and the average acceleration of its
group bea(k.,), then the acceleration of vehiclewill be

o (km) = @(km)(1 + da,0(km)) (3.27)

whered, (k) is the relative deviation of the acceleration of vehielérom the average
acceleratiorti(ky,).

In Section 3.4, the speed and acceleration inputs are tnanstl into a vector through
the operatof defined in[(3.3). Using the approximation relatign+ §)" ~ (1 + nd) for
small§, and the operation, we get

Va(km) = (I + Eby,a(kn))0(km),  @alkm) = (I + Edq,a(km))a(km)
wherel is an identity matrix of proper dimensiof, = diag(0, 1,2, 3), v(km) = [1 9(km)
0% (k) 02 (kw)] ", anda(ky) = [1 a(ky) @% (k) @ (k)] "
Hence, the emissions or fuel consumption rétg; (k) of vehiclea with the speed
va (km) and the acceleration, (k,,) can be expressed in terms of the average spéed),

average acceleratiai(k,, ), speed deviation, . (k., ), and acceleration deviatian (k)
as

Joug () = exp [T (ki) Py () + 0,0 (kin)3 T (kin) EPya ()
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+ 51},0:(km)aa,a(km)lz)T (km)ERan(km)] (328)

fory € Y/{CO.}.

Using the Taylor series expansion and neglecting high#gerailerms of the deviations
8y, andd, ., the emissions or fuel consumptigrof vehicle« in (3.28) can be approxi-
mated by

oy (km) ~ exp (5T(km)Pgé(km)) [1 ¥ 8y (k)5 T (k) E Py (Fm)

+ 6a,0(km)0 " (km) PyEa(kn)|.  (3.29)

Therefore, the relative error of the estimation of emissiand fuel consumptiof of
individual vehicles due to the averaging of the speed andd¢heleration is

€approx.a.g(km) ~ 0y o (km)0 " (km) EPya(km) + 0a.0(km)0 ' (km)PyEa(ky). (3.30)

The VT-macro model is simulated in the operating region ef ¥I-micro model to
determine an upper bound for the errorlin (3.30) for severakjble combinations of the
acceleration and speed ranges. Fig. 3.5 presents the nmaximlues of the approximate
relative error((3.3D) for all the possible speed and acatter combinations within the op-
erating region of the model when the deviations of the sp@edazceleration are within
+5%. The color-bars on the right side of the plots show the mari values of the approx-
imate relative errors introduced by the model for comboraiof the deviations, , and
O,

3.4.6 Empirical verification

In this section the macroscopic VT-macro emissions anddoesumption model is evalu-
ated by comparing it with the microscopic VT-micro emiss@amd fuel consumption model
(3.2). To do so, the microscopic car-following “Intelligeriver Model (IDM)” [186] is
calibrated to a macroscopic traffic flow METANET model of a Eluhighway. In the se-
quel, the description of the freeway, its modeling, and #seilts of the simulation based on
the calibrated models are discussed.

Freeway and scenario description

The freeway stretch that is considered for the analysis @f\Mi-macro model is a part
of the Dutch A12 freeway going from the connection with thelNdt Bodegraven up to
Harmelen, and is shown in Fig. 3.6. The freeway has threeslaneach direction. The
part that is considered is approximately 14 km and it has toamnps and three off-ramps.
The stretch is equipped with double-loop detectors at acsmistance of 500 to 600 m,
measuring the average speed and flow every minute.

The data of the freeway has been used to calibrate the METANEdel in [79]. The
same parameters that have been obtained in the study [7@areised to calibrate the
microscopic car-following IDM model [186]. The IDM model selected because, in
Section 2.2.3 it has been motivated that this model impreoese of the deficiencies of
the well-known microscopic models GHR [67] and OVM [15]. Toalibrated IDM car-
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Figure 3.5: Upper bounds for the approximate error of (3.30) different deviations of
the speed, , and acceleratior, ,, of an individual vehiclex for scenarios
with average speeds {120 km/h) and average accelerations {—2.75 m/$)
respectively.
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Figure 3.6: A part of the Dutch A2 freeway going from the Bodegraven (left of the figure)
up to Harmelen (right of the figure) considered for the engairiverification of
the VT-macro emissions and fuel consumption model.

following model is subsequently coupled with the microscogT-micro emissions and
fuel consumption model and the integrated models are ceresichs a benchmark.
In order to compare the performance of the integrated meopistraffic flow and emis-
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Figure 3.7: Traffic demands scenario used for the calibmutof the IDM model to the
METANET model.

sions and fuel consumption models with the microscopic flod @missions and fuel con-
sumption models, four different traffic demand scenari@swesed. In this way it is also
possible to show to some extent the robustness of the modmtiproach presented in this
chapter. To provide a glimpse of the nature of the demandigsothe calibrating demand
ds a1 is depicted in Fig. 3.7, where the other demand profiles dagextto the calibrating
demand profile ad; (k) = 0.8ds,cai(k), d2(k) = 0.9d3 ca1(k), @andda(k) = 1.1dg cai(k).
The average of the space-mean speed and the average of ity déthe traffic flow over
the whole freeway network for the demand profilgk) = 0.8ds c1(k) are depicted in
Fig.[3.8. These quantities are obtained using the micras¢bp1 model and the macro-
scopic METANET model of the freeway.

Now the two integrated models (microscopic and macrosagicoaches) are then sim-
ulated for the four scenarios and the corresponding enmissfael consumption, and CPU
time are collected. The results of the simulation are prteskeand discussed afterwards.

Moreover, to compare the newly developed dynamic-macpisamissions and fuel
consumption model, the VT-macro moglekith the average-speed-based macroscopic emis-
sions and fuel consumption model, the COPERT [139] moda@isiclered. First the COP-
ERT model is integrated to the METANET model and next the CRPEodel is calibrated
in such a way that the error between the emissions and fusuogption estimates of the
COPERT model and that of the VT-micro model is minimal. Thendad profileds .. is
used for the calibration process. Since it is suggestedthileaaccuracy of average-speed-
based emissions and fuel consumption models can be impibthexispeeds are averaged

3Recall that the VT-macro emissions and fuel consumption modeiists of a transformation step that derives
the accelerations and corresponding number of vehiclestlierutput of the METANET flow model and the VT-
micro emissions and fuel consumption model that uses the speegcaaleration of the vehicles to compute the
emissions and fuel consumption. Next, the resulting value®emissions and fuel consumption corresponding to
a single vehicle are multiplied by the number of vehicles stttijethe speed-acceleration pairs used to determine
the values. So the term “VT-macro” implicitly refers an intagd VT-micro and the interfacing block in Fig. 3.3.
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Figure 3.8: Average space-mean speed and average denshg éleeway for the demand
profile d; (k) = 0.8ds ca1(k) as generated using the IDM and METANET mod-
els.

at shorter time intervals [28], then the emissions and faesamption estimations are made
at every simulation time. Finally, the COPERT model is siatedl as integrated with the
METANET model and the VT-micro model as integrated to the Ibidddel for the four
aforementioned demand profiles.

For the macroscopic simulation case the simulation tinyeistset to b&d” = 10 s, while
for the microscopic simulation the simulation time stepaste beT,, = 1s.

Validation and discussion

Recall that the VT-micro emissions and fuel consumption @hedtimates the emissions and
fuel consumption of each vehicle at specific times (everyahs)specific places. Therefore,
to compare the results of the VT-macro and COPERT modelsthétiv T-micro model, we
have aggregated the emissions and fuel consumption estirnathe VT-micro model (or
individual vehicles) over 10 s time periods in order to defiewe the total emission and total
fuel consumption in a specific segment of the freeway. Thategiated emissions and fuel
consumption values during each 10 s of the simulation of thenicro model are compared
with the corresponding emissions and fuel consumptiomesés of the VT-macro and the
COPERT models.

Fig. 3.9 provides plots of the estimates of the CO, HC, and, @issions, and fuel
consumption of the freeway for the demand scendfi@) = 0.8ds .1 (k) that are estimated
using the VT-micro, VT-macro, and COPERT models. The fighms the evolution of the
emissions and fuel consumption during the simulation pleoiol h. Fig[ 3.9 clearly shows
a very good fit of the estimates of the VT-macro model to thareges of the VT-micro
model, whereas the estimates of the COPERT show a bad fit. dihesponding relative
error of the macroscopic approaches with respect to the \fenis presented in Fig. 3.10.
The figure clearly indicates that the estimation error offfiemacro model is small for the
this particular scenario, while that of the COPERT modehrgé. Note, however, that the
error in Fig/ 3.10 is not only due to the error introduced by YA-macro model as given
in (3.30). The error is introduced both due to the mismatdiveen the METANET and
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Figure 3.9: Comparison of the emissions and fuel consummstimated using the macro-
scopic VT-macro and COPERT models and the microscopic ¢ mmissions
and fuel consumption models for the demand prafilg:) = 0.8ds ca (k).

the IDM traffic flow models and due to the mismatch between tiienicro and the VT-

macro emissions and fuel consumption models and betweafithaicro and the COPERT
emissions and fuel consumption models. Therefore, it igoesible to relate the errors in
Fig./3.10 with the approximate errors in (3130). It is neithessible to relate the error in
Fig./3.10 with the error due to the mismatch between the Vdroninodel and the COPERT
model.

The average of the absolute relative-estimation erroreéthissions and fuel consump-
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Figure 3.10: Relative-estimation error of the macroscoygit-macro and COPERT mod-
els with respect to microscopic VT-micro model for the dednamnofile
d; (k) = 0.8ds car(k).

tion over the whole simulation time and the whole freewayl$® @omputed. The average
of the absolute relative-estimation error is determinedgis

N,
1 - ||gm0del(k> - gVTfmicro(k’)H
Cav,j — ~+ — x 100% 3.31

v Ns ; yVT—micro(k) 0 ( )

wherel\; is a positive integer that denotes the duration of the sitimi@ndy., (k) denotes
the value of the emissions or fuel consumptipag /{CO.} of VT-micro, VT-macro, or
COPERT at the simulation time stép

The results are presented in Table/3.1 and Table 3.2. Tabiedicates that the maxi-
mum average-absolute-relative error of the VT-macro mfmtehese particular simulations
is not more than 9.5%. So, although the model has been dalibfar a different demand
profile, for the demand profile$,, d-, andd, the estimates of the macroscopic approach
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Table 3.1: The average of the absolute relative-estimagoior of VT-macro with re-
spect to VT-micro. The demand profiles are relatedialt) = 0.8ds ca (%),
dg(k’) = 0.9d37ca1(k), andd4 (lﬂ) = I-Zdé’,cal(k)-

Average absolute

Scenarios relative-estimation error (%) CPU time (s)
CO HC NO, fuel VT-micro VT-macro

dy 24 25 25 3.2 112 1.70

ds 23 19 2.7 2.6 124 1.52

ds3.cal 34 29 45 3.7 142 1.65

dy 94 7.0 9.2 6.6 162 1.61

Table 3.2: The average of absolute relative-estimatiororenf COPERT with respect
to VT-micro. The demand profiles are related ds(k) = 0.8ds ca(k),
dQ(k) = 0.9d37ca1(k), andd4 (k) = I-ZdS,cal(k)-

Average absolute
Scenarios relative-estimation error (%)
CO HC NG fuel

dy 17.9 200 171 182
dy 120 142 118 132
ds ol 67 93 79 90
dy 75 100 80 7.0

are not far from the estimates of the microscopic approachmMable 3.2, one sees that
the error that is introduced by the COPERT model is at lea@¥%d thore than the error in-
troduced by the VT-macro for almost all the cases. Recall thlat the COPERT model is
calibrated to VT-micro, while the VT-macro model uses ekaitte same parameters used
by the VT-micro model.

In addition to the improvement of the emissions and fuel oongion estimation that
can be obtained when microscopic emissions and fuel corsummodels are integrated
with macroscopic traffic flow models, the second motivationthe integration of the mi-
croscopic emissions and fuel consumption model with maogis traffic flow model is the
need for reduced simulation time. In this regard the sinmaimes for the four different
scenarios are compared. Table 3.1 provides the CPU timesdf Thmicro (microscopic)
and VT-macro (macroscopic) simulations for the differezgrsrios. It can be seen that the
CPU time of the VT-macro simulation is independent of the ded(or number of vehi-
cles) in the traffic network and is almost constant for allrfscenarios. On the other hand,
the CPU time required for the simulation of the VT-micro mbitkereases as the demand
increases. Moreover, the CPU time required for the simutadif the VT-micro model is
very large relative to the CPU time required by the VT-macdei to simulate the same
traffic scenario. Note that the CPU time required to simullageVT-macro model and the
COPERT model is the same, i.e., the difference is almostigibi.
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3.5 Conclusions

This chapter has provided a general overview of emissiodsfael consumption mod-
els. After discussing the two modeling approaches viz. ¢éieriology-based engineering
emissions and fuel consumption modeling approach andalffectemissions and fuel con-
sumption modeling approach, the attention of the chapteshdted to the different traffic
emissions and fuel consumption models. This chapter hbsmlted on the different traffic
emissions and fuel consumption models by categorizing timtonthree different groups,
namely microscopic, macroscopic, and mesoscopic modbekschiapter has also discussed
two basic models, the VT-micro model from the microscopmuyrand the COPERT model
from the macroscopic group.

This chapter has also presented a general framework fontbgration of macroscopic
traffic flow models with microscopic emissions and fuel conption models. A distinction
has been made between segmental and cross-segmentalegnabrder to capture the
discrete temporal and spatial nature of macroscopic triidfic models. The approach has
been further demonstrated using the METANET traffic flow maahel VT-micro emissions
and fuel consumption model, which resulted in the VT-macoalah.

Moreover, this chapter has presented an analysis of thenmiaxiapproximate error
that can be introduced by the use of macroscopic variabldsteymine the emissions and
fuel consumption of individual vehicles. Both the analyitd empirical results show that
the errors introduced by using VT-macro are less th@f. A comparison of the errors of
the VT-macro model with the established average-speegdbascroscopic model COP-
ERT also shows that the VT-macro model is more closer to themi€fo model (which
is claimed to be “better” than macroscopic emissions antidoesumption models) than
the COPERT model for the cases considered. Furthermorajrthéation results indicate
that the simulation time (CPU time) can be tremendouslyeBszd if one uses the macro-
scopically integrated emissions and fuel consumption m@demacro), while this only
introduces errors less than% over the whole estimation for the particular scenarios.






Chapter 4

Traffic Emissions Dispersion
Modeling

educing the amount of emitted gases of the traffic flow can awvgthe overall

traffic network emissions. However, since dispersion of¢hemissions is de-

pendent on the wind, temperature, rainfall, and topograbtiye freeway neigh-

borhood, the dispersion of the emissions can be distribwtegenly. This means
that certain areas can face higher emission levels tham ateas. For example, protected
target zones such as schools and hospitals could face higsiemlevels (pollution) de-
spite the reduced total emission levels at the network lé¥ehce, it is unwise to affect the
traffic flow (or compromise the travel time) of the whole fregwat all times. It is better
to focus on the parts of the freeway that affect the targeeg@md on the time windows in
which the corresponding emissions originate. This coulddiee by predicting the evolu-
tion of the emissions dispersion factors (such as the temtyey, the wind speed, and wind
direction) and by predicting freeway sections originatimg emissions dispersed to a given
target zone. In this way, only the traffic flow on the parts @ flreeway that have negative
impacts on the target zone have to be controlled dynamisallgs to attain reduced traffic
emissions and improved travel times.

Therefore, in order to predict the dispersion of the emissiarea-wide emission (dis-
persion) models are required. This chapter, thereforesepts computationally efficient
emissions dispersion models. First, an overview and exatiim of existing dispersion
models in the literature is presented in Section 4.1. Neggiat-source dispersion model,
a basis for the development of enhanced models in the subisesgections is discussed in
Section 4.2. Section 4.3 presents computationally effiaieid-based dispersion models
that are developed based on the point-source dispersi@epbriinally, the conclusions of
the chapter are presented in Section 4.4.

Parts of this chapter are published|in [213-217].

4.1 Overview of dispersion models

Despite the significant reduction of emissions in generdltha factors that affect the emis-
sion rate of vehicles (such as engine efficiency, aerodymaimpe of vehicles), air pol-

63
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lution, in particular, mainly associated with road trafficstill a significant environmental
problem in most developed countries [127]. Consequeritlyjmpact of traffic emissions
has become an important research issue [26, 140], leadingn@rous modeling studies
related to the influence of meteorological, topologicalj dispersion factors on pollutant
accumulation/dissipation patterns [190]. In road trafficieonments and especially in those
areas where population and traffic density are relativegh Hiuman exposure to hazardous
substances is expected to be significantly increased [18Bis is often the case in and
near busy urban and freeway traffic networks. Within thessett, pedestrians, cyclists,
drivers, and residents are likely to be exposed to pollutantentrations exceeding current
air quality standards [190].

Dispersion of vehicular emissions is affected by severaiofs. Some of the main
factors are the speed of the vehicles, the wind speed anddiiection, the temperature,
rainfall, the topography of the area near to the freeway bamroads, etc. However, it is
difficult to consider all the factors that influence the disien of the vehicular emissions in
the modeling process. Most models consider either the spieind vehicles, the ambient
temperature, the wind speed and wind direction, or the ta@ty of the area around the
freeway or urban traffic networks into account, whichevex ¢ignificant effects [13, 25, 43,
112, 165].

Moreover, all the factors do not have a significant influertcallsspatial and temporal
scales of the dispersion process. For instance, the spé#us wehicles influence the dis-
persion of the emissions in the close vicinity of the roady.[IThis means that the effect
of traffic speed is important factor in the dispersion maugfirocess of urban traffic, while
on the contrary its effect is not an important of considerafor models that consider the
dispersion of freeway traffic emissions to sensitive tamyetes located at a relative dis-
tant location. This is because in the region far from thevivee where most residence
areas, schools, and other buildings are located, the digpenf the emissions is primarily
affected by the wind and the temperature [13], and thus tleetedf the speed of the vehi-
cles becomes negligible. On the other hand, the road side @fahe buildings in the urban
canyon are important factors for the dispersion of vehicetaissions [51, 90, 135], because
the walls block the dispersion of the emissions as wind blegrpendicular to the roadway,
which creates circulation (or eddy like motion) of the eri@as within the canyon.

4.1.1 Dispersion models

There is a multitude of dispersion models especially depaofor street canyon applica-
tions (such as AEOLIUS [32], CALINE4 [25], CPRM [194], CAR(B. There is, however,
only a very limited number of models for the dispersion of gsions from freeway traffic.
Although the basic governing modeling concepts for botHtdeway and urban traffic net-
works are similar, they have certain important differencesie to the generally complex
geometrical structure of urban sites a variety of time aratepscales is involved [174].
However, since the topology of freeways is relatively hoerogpus uniform time and space
scales are used. The dispersion of emissions from urbdic ieséffected by the canyons of
the urban streets and the dispersion distance of interglbi$. However, the dispersion of
emissions in freeways is less obstructed than the dispeddithe urban emissions. More-
over, the dispersion of the emissions in the near-wake @rclbse vicinity of the freeway)
is of less interest. Indeed, for freeways the dispersiom@femissions to relatively distant
areas, where most public residences, schools, and parksated is most often of interest.
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According to the need and intended application of the motledsmodeling approaches
and modeling details of dispersion models can be differéd?]. Although there are no
clear-cut distinctions between different categoriegp@lision models can be classified into
groups according to their physical or mathematical prilesige.g., Gaussian, Computa-
tional Fluid Dynamic (CFD), and reduced-scale models) aeit tevel of complexity (e.g.,
as parametric or numerical) [43, 190]. In this thesis theelision models are grouped
into three categories: Gaussian models, CFD models, antedescale models. In the
following sections, a brief account on each of the modelimgraaches is discussed.

Gaussian dispersion models

Gaussian dispersion models (such as STREET [90], CPBM [202] OSPM [85]) are gov-
erned by a system of differential equations called the siiffa equations. These systems
of equations describe the three-dimensional concentréigtil generated usually by a point
source. With a set of assumptions that can reasonably bedpplatmospheric processes,
the diffusion equation has a specific, closed-form algelsalution that is Gaussian, i.e.,
the resulting solution of the diffusion equations desaitie concentrations of emissions
from a continuously emitting source to be proportional te traffic emission rate and in-
versely proportional to the wind speed. Moreover, the torial and vertical time averaged
pollutant concentrations are described by Gaussian ldliitns [127, 190].

In its simplest form, the Gaussian plume model assumes liea¢ tare no chemical
or removal processes taking place and that pollutant nshtexaching the ground or the
top of the mixing layer as the plume grows is reflected baclatdw the plume centerline
[190]. Moreover, it assumes that the wind is constant duttiregtime period of release and
reception and has a constant direction. In other words, thdehruses the time average of
the wind speed and wind direction [121]. The classical Gangdume model also assumes
that there is a continuous release of the emissions. Theratsaverage (i.e., probabilistic)
plume shape is approximated by the time average to suffigismiooth the effects of plume
meandering [121].

In Gaussian models, the atmospheric dispersion paranstefanctions of either dis-
tance from the release point or time since release [43, 1PA¢y may also be functions
of atmospheric stability and surface roughness. The equédir the Gaussian plume is a
function only of the mean wind speed and the crosswind anticeéstandard deviations
(oy(z) ando.(x)). The contaminant concentratiofi(x, y, z), is given by

2 2
o= o] 42 Yol -352)]
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where() is the source strength expressed as mass of released hadetiait time,v is time
averaged wind speed that is assumed to be uniform everywhgisthe standard deviation
of C(x,y, ) in the cross-wind direction (in this case in theaxis) ando, is the standard
deviation ofC(z, y, z) in the vertical direction. The-dependent terms model the trapping
effect of the ground by proposing a mirror source at a digagdeneath the ground [121].
Note that the dispersion parametetsando. are function of the downwind directiom,
Gaussian models are not directly applicable to small-sdepersion within the ur-
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ban canopy, since they treat buildings and other obstaclgswia a surface roughness
parametrization [190]. The Gaussian dispersion modelsappécable for pollutant emis-

sions into uniform atmospheric flow [174]. The main problehGaussian models is their

validation, as they include several empirical parametélenaderived from experimental

data [127]. Moreover, the validity of results is limited tiveet geometries and dispersion
conditions similar to those for which the validation wasrigat out [127].

Although generally it is accepted that Gaussian dispensiodels are not suitable for
predicting flows and concentrations in complex-structutean or industrial areas [174],
many authors use them in urban streets by introducing suréaghness variables [43, 127]
or error functions [112]. For short-range local problemsb ¢n) simple Gaussian type
models have generally been used [174]. Despite their stroitgs, Gaussian dispersion
models are used for industrial applications (i.e., poinirses). Moreover, specially de-
signed Gaussian plume models are used to calculate pdlicoacentrations over urban
agglomerations (i.e., area sources) and in the vicinityigiilvays (i.e., line sources) [190].
Gaussian tools are widely used in risk analysis procedpresjding fast dispersion esti-
mations and usually reliable results when describing umobi®d gas flow over flat terrain
[121]. For example the Gaussian models STREET [90], CPBM2][28nd OSPM |[85]
have been developed as relatively simple tools that retgsseexpertise and computational
resources [127].

CFD dispersion models

The term Computational Fluid Dynamics (CFD) refers to a bhaof fluid mechanics that
uses numerical methods and algorithms to solve and andlgzeéynamics of fluid (liquid
and gas) flows. Computers are heavily used in order to perfleencomputations required
for simulating the interaction of the fluids with the envimeant. Since the CFD modeling
approaches are powerful modeling techniques, they arasxedy used in the modeling of
the dispersion of emissions from industries and traffic [70he CFD dispersion models
are capable of dealing with irregularly shaped walls aneéioboundary conditions using
flexible fine-scale grids [190]. Furthermore, since theyaligunclude advanced turbulence
treatment schemes, the CFD models are suitable for srred#-pollutant dispersion appli-
cations [174].

The governing fluid flow and dispersion equations of the CFRlemmare derived from
the basic conservation and transport principles: massecasition, momentum conserva-
tion, and pollutant transport [174, 190]. To directly solnese equations (especially in
a turbulent flow) of dispersion of emissions, a very fine gsiddquired to capture all the
relevant scales [174]. Furthermore, a time-dependentisolover a sufficiently long pe-
riod is needed to yield stable time averages of the flow vasabThis approach is called
Direct Numerical Simulation (DNS). As the computationafréand is too high, DNS is not
applicable for real-time applications [121, 174].

The computational demand can be substantially reduced thiedime-dependent equa-
tions are solved on a grid that is fine enough to resolve tlyetaatmospheric eddies [174].
This approach is called large eddy simulation [174]. Howgesince the large eddies are
always unsteady, large eddy simulation models requiretiomuditions that are time depen-
dent as well [174]. Although less demanding than DNS, ladyesimulation dispersion
models still require significant computation time, whichders them unsuitable for on-line
applications [174, 190].
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In order to tackle the computational issues, the Reynoldsaige Navier-Stokes ap-
proaches are most widely used in most CFD methods [161].esetlapproaches the equa-
tions are averaged in time over all turbulent scales, tactirgield the statistically steady-
state solution of the mean and turbulent flow [174]. Yet thepotation time is still so high
that such models cannot be used for real-time applicatidogiever, despite the expensive
computation time CFD models require, their popularity isr@asing to describe the flow
field in urban street canyons [126, 161, 201], because the @B@8els provide accurate
estimates of the dispersion of the emissions and they carbalapplied to heterogeneous
topologies which is the case in urban areas|[34, 122, 127,19(3.

Reduced-scale dispersion models

Reduced-scale dispersion models are models that are geddb@ased on the similarity prin-
ciple [190]. By reducing the physical (geometrical) scdla given flow domain, where the
flow of the dispersion is required to be modeled, a simildsitgstablished. The parameters
in the reduced scale are adjusted to the original full-scafeditions such that the funda-
mental flow dynamics are reproduced. Then, based on theeddale of the dispersion
environment, a model can be developed or all possible siosnzain be studied within the
small-scale controlled environment.

The reduced-scale modeling is conducted in a wind tunnebtemank facilities [190].
In either of these facilities, the dispersion of emissioh®xperimented and models are
validated. In practice, wind tunnels are more often usedifoulating pollutant dispersion
than water tanks. However, the same principles and coraides can be also applied to
methods based on water tank facilities [190]. Although iaidifficult task to scale the
full-scale environment to a wind tunnel facility, the winghhel modeling can efficiently
approximate real atmospheric conditions in urban stréétseover, it allows isolating and
studying separately each one of the dispersion phenomeolaea in micro-scale pollutant
dispersion [190].

As [190] describes it, three monitoring techniques havenlmften used in wind tunnel
experiments:

e Visualization of the flow: Visualization of the flow aids in @rring all possible
flow and patterns of the dispersion of emissions that can lairedal for different
arrangements of the buildings in the urban or freeway areas.

e Tracer dispersion: Itis important to quantify the concatitn of emissions (or tracer
such as dye, ionic salt, or radioactive materials) at thepte location near to free-
way or urban streets. With the wind tunnel experiments iissible to quantify the
relationship between the quantity of the concentrationtaedoosition of the recep-
tors in either urban or freeway streets.

e Laser Doppler Anemometry (LDA): This technique is used talgtin more detail
the patterns observed during flow visualization experisient

Since the dispersion phenomena in the real environmentifjesdale reality) cannot be
fully described by the reduced-scale wind tunnel modelsstrofien reduced-scale model-
ing is used as a complementary tool to numerical modelingrelgler, these models have
been useful in model development and validation [14]. Ninedess, differences between
reduced-scale and full-scale systems should be carefutisidered when validating numer-
ical models|[190].
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4.1.2 Applications of dispersion models

Dispersion models have a wide range of applications. Alghahe main goal of all disper-
sion models is to provide an accurate estimate or predictidhe dispersion of emissions
from an emission source, their application domains arersiéeScientists use dispersion
models to understand the physical and chemical phenomangdkiern the diffusion and
dispositions of pollutant both over time and space. Theadspn models can be used to
underline the dominant factors of dispersion and to rebemethods or techniques that can
be used to affect these factors.

Dispersion models can be used to assess the impact of nastinftture on the disper-
sion of emissions to target zones. The models can be used design and development of
new road infrastructures and new buildings near traffic ndta/with intense traffic flows.
For example, the direction of windows, doors, and inclioratdf roofs can be designed in
such a way that the pollution from road networks does not ieca health threat. Disper-
sion models can also be used to study the resulting impacblaftion shields along the
sides of traffic roads.

Moreover, traffic engineers and researchers can study thacdnof traffic control so-
lutions on the level of emissions dispersed to neighborbaddhe traffic networks. The
models can be used to find a trade-off between the demanddaced travel times and
the need for reduced emission levels, in particular in $jgetairget zones. Since reduction
of the overall emissions of freeway does not necessarilynmeduced emission levels in
a particular target zone (e.g., hospitals, schools, reseke and parks), consideration of
dispersion of emissions to target zones during the desidraffic control strategies is of
paramount importance. Therefore, dispersion models caisdfal in such applications.

Dispersion models are now widely used for assessing roadasidquality by provid-
ing predictions of present and future air pollution levedsveell as temporal and spatial
variations [176]. The models can also be used to prioritiwations for emergency medi-
cal responses in the immediate aftermath of a release obEmssdue to any unexpected
disasters [161].

In summary, the general overview of the existing emissidapadsion models highlights
that the dispersion models described above cannot be used-dme applications, which

is the main core of the control approach proposed in|Part thisf thesis. Although the

Gaussian models are relatively faster than the CFD modhadg,still suffer from high com-

putation times. Moreover, the Gaussian models assumeasdngind speed and wind di-
rection. Therefore, in the next sections of this chaptew traffic emissions dispersion
models that are computationally efficient and that take #rétion of the wind speed and
wind direction into account are presented. First, the basiwept on which the models
are developed—the point-source model—is presented in $&&b Next, new grid-based
models are presented in Section 4.3.
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Figure 4.1: Dispersion of emissions from a point source i2laCartesian coordinate sys-
tem.

4.2 Point source dispersion modeling

4.2.1 Basic dispersion model

In this section, the dispersion of the emissions from velsich a section of a freeway is
modeled using a point source approach. As an emission sdataes consider a point in
a 2D Cartesian coordinate system denoted:hyy) as shown in Fig. 4.1. The variables
Vi (k) andp(k) respectively denote the wind speed and wind direction aptiet (x, y)
and during the time intervakT’, (k + 1)T).

If the point emission source at the poiat, y) and at time stef has emitted a certain
amount of emissions, the emissions will diverge and projgadae to the combined wind,
temperature, and dispersion effects. For simplicity, & goint, the wavefronts of the
emissions are assumed to be straight lines. Moreover, h#ffieodivergence angle of the
emissions from the point source(at y) at time stepk is denoted by3(k). This angle3(k)
describes the dispersion cone as depicted if Fig. 4.1. Siecemissions from vehicles are
relatively more dense and have a higher temperature thairtharticles, the emitted gases
also expand sideways. The expansion of the emissions iss#lyaelated to the wind speed
[13]. Moreover, the sideways expansion of the emissionsejgeddent on other factors
(such as the temperature and the inherent emissions obiastics). Since the emissions
get dispersed in all directions when the wind speed is zheoptaximum value of (k) for
a flat surrounding without any obstructionsds., = 7. Moreover, the angle gets smaller
as the wind speed increases. Hence, the relationship bethveavind speed and dispersion
parameter is considered to be

Bmax

O = T35V

(4.2)

wheregf.x € [0, 7] denotes half of the maximum divergence angle at zero winedspad



70 4 Traffic Emissions Dispersion Modeling

8o is model parameter that depends on the temperature anddigbersion factors.

As the emissions propagate (or disperse) in the directigdgheofvind, they form a dis-
persion cone as depicted in Fig. 4.1. The dispersion congpiesented by the left-most
point (x;(k + 1),y (k + 1)), the right-most poinz,(k + 1),y (k + 1)), and the source
point (x, y). The left-most point and the right-most point are computed a

cos(p(k) — B(k))

2k +1) =2 —TVy(k) cos(B(R) (4.3)
-+ 1) =y + TV () =HED S (4.4
sk +1) = 2 — TVie(k) COS(ii]z)gz;g(k)) (4.5)
ye(k+1) =y + TVW(k)W (4.6)

if 5(k) # 0.

These model equations are the basis for the derivation afitpersion models in the
subsequent sections. In the ensuing sections, the dispestthe emissions for constant
and variable wind cases is first presented. Next, these ptsedll be used to develop an
extended grid-based dispersion model in Section 4.3.1.

4.2.2 Variable-wind dispersion model

Throughout the modeling process in the following sectidithis thesis, the areas near the
freeways are assumed to be flat topographically. Moreowem §25, 43, 96, 123] it is
assumed that the meteorological conditions are horidgritamogeneous. This means that
the wind direction and wind speed responsible for trangmpthe plume from the emission
source to the target zone and the turbulence and temperaspensible for diffusion are
assumed not to change with location throughout the neididmat of the freeway.

It has been pointed out that in the close vicinity of the rdael 4peeds of the vehicles
influence the dispersion of the emissions [13]. In the red@wrfrom the freeway, where
most residences, schools, and other buildings are locttedispersion of the emissions
is primarily dependent on the speed and direction of the waimdl the temperature of the
atmosphere [13]. Since this thesis focuses on the dispeadiemissions (i.e., area-wide
emissions) at specific locations at a large distance (ekgn,or more) from a traffic freeway,
the effect of the speed of the vehicles on the dispersionetthissions is assumed to be
negligible. Moreover, the wavefronts of the emissions amsaered approximately planar
at far distance from the freeway. Then, the emission pagielill move due to wind and
dispersion effects and the trajectory of the dispersiorhefamissions will be captured by
straight line wavefronts moving orthogonal to the wind diien and dispersion cones. The
emissions are also assumed to emanate from the centet pbthe segments of the links.
This assumption is valid when the length of the freeway segnsemuch smaller than the
distance from the segment to the target.

Fig. 4.2(a) shows the propagation of emissions of vehictas segment of a link m at

1This point modeling approach can also be extended to a line lingdepproach, where the emissions are
considered to emanate from a center line parallel and equaéteegments.
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Figure 4.2: Schematic representation for a snapshot of zmral dispersion of vehicle
emissions with varying wind speed and angle.

time stepk — 1. The emissions propagate with a line wavefront in the diveatf the wind.

The sideways dispersion of the emissions from the sourceodefad by the divergence
angle3(k) (4.2). At time stepk the divergence angle corresponds to half of the angle of the
dispersion cone (see Fig. 4.1).

Here we approximate wavefronts emanating from segmefitink m by lines with
Pim,i(k, ) as left-most point of the emission front at time stépthat was released from
segment of link m at time stepl, andp; ,,,..(k, ¢) as right-most point of the emission
front at time stegk that was released from segmeiaif link m at time steff. Any emission

2With respect to the wind direction.
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at a point of the wavefront formed by a line segment joining gointsp ., ;(k, ) and
pr.m.i(k, £) diverge with an angle equal f&(k) both to the left and to the right with respect
to the wind direction (e.g., see the points,, ;(k, ¢) andp;, ., :(k,¢) in Fig.|4.2(a) and
4.2(b)). Each of these points on the line betweep, ;(k,¢) andp, ., ;(k, ¢) results in a
small cone due to wind and dispersion factors. Now, one c@noapnate the resulting
wavefront by the line formed by joining the left-most pojnt,, ; (k + 1, ¢) of the emission
cone for the left-most point and the right-most paint,, ;(k + 1, ¢) of the emission cone
for the right-most point of the previous wavefront.

In general, the wind speed and the wind direction changenie tind space. Let us
suppose that the wind speed and direction have changet($eeandp(k) in Fig. 4.2(b))
at time stepk. This means that the dispersion speed and dispersionidimextevery point
of the wavefront formed by the line segment joining the pojnt,, ;(k, £) andp; ., ;(k, ¢)
will change (see the small cones at these points in|Fig. ).2@uring the time period
[£T, (k4 1)T) the emissions at the wavefront formed by the line segmenirjgithe points
P1m,i (K, €) andp; ., :(k, ¢) will reach the wavefront formed by the line segment joining t
pointspi . ;(k + 1,¢) andp, ., ;(k + 1, ¢) due to the wind speeW,, (k) and wind direction
(k) as shown in Fig. 4.2(b). Then, the evolution of the end poaitthe wavefronts
pl,m,i(k + 176) = (l'l,m,i(k + 176)7y1,m,i(k + 1,6)) andpr,m,i(k + 176) = (xr,m,i(k +
1,0), yr.m.i(k + 1,£)) is modeled by adapting (4.3)—(4.6) as

- . _ cos(p(k) — B(k))
Ty i(k 4+ 1,0) = 21 (K, £) — TV (k) I
yl,m,i(k +1,¢0) = yl,'m,i(k7 )+ TVW(k)Wv

xrym,i(k + 1, @) — wr,m,i(k}, @) - va(k) COS(CO(b() ?;C)%( )) 7

yr7m,i(k + 1,6) = yr,m,i(kvg) + TVW(k) COS( (k))

Now, let us consider the wavefront formed by the points, ;(k, £) and p; ., ;(k, ¢)
and letJy m i (p1,m.i (k. £), pr.m,i(k, £)) be the corresponding emission rate for emission
i € Y/{fuel} at time stepk (see Chaptér 3). Then, the emission for the next wavefront is

Jﬂ,m,i(pl,m,i(k + 1a e)vpr,m,i(k + 17£)) = (1 - W)Jg,m,i(pl,m,i(ka e)vpr,m,i(k7 6)) (47)

where0 < v < 1 is a factor that characterizes the vertical dispersiongenation).

Then the area that is subject to the emissign,, ; (p1,m.i(k + 1,€), prm,i(k + 1,0))
during the time periodkT, (k + 1)T') is the tetragon formed by the points,, ;(k, ¢),
Prom,i(k 4+ 1,€), prm,i(k + 1,¢), andp, ., ;(k,¢). The area of this tetragon is denoted by
A i (pl,m,i(ka e)apl,m,i(k +1, g)apr,m,i(k +1, é)apr,m,i(kvg))' Let the area of the inter-
section of the target zornteand the tetragon formed by the emission wavefronts be dénote
by Aine,m.i(k, £). Then, the amount of emissigrreleased at time steffrom segment of
link m and that is dispersed to the target zerfeom segment of link m during the time
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period[kT, (k 4+ 1)T') can be computed as

TAint,m,i(k7 E)Jg,m,i (pl,m,i(k +1, E)apr,m,i(k +1, é))

Am,i (pl,m,i(k7 E)apl,mﬂ’(k + 1a €)7pr,m,i(k + 13 €)7pr,m,i(ka f)) ’
(4.8)

Jgtmilk+1,0) =

Since the wavefronts are emanating from segmentink m at each time step, we have
to consider the sum of; + ., ; (k+ 1, £) over all wavefronts emitted in the past that intersect
with the target zone during the time periodkT, (k + 1)T'). Let this total emission level
be denoted bYo(.5,1,m.:(k + 1). Thus the emission level gfat the target zoneover the
time period[kT, (k 4+ 1)T') due to all segments of the links in a freeway network will be

Dya(k) =" Y Jrotgimi(k) (4.9)
(mvi’)eMall

whereM ,; is the set of all pairs of segment and link indices.

Due to the continuous variation of the wind speed and windatiion, the geometrical
shape and size of the intersectidn,; ., ;(k) between the target zonteand the disper-
sion tetragom,,, ;(-) changes frequently. Therefore, it is not possible to desigeneral
closed form analytical expression fdk, ., ;(k) and its area. Moreover, as the number of
target zones considered increases, the number of intensethat have to be determined
increases. Consequently, the computation time is high aral r@sult this modeling ap-
proach cannot be applied for on-line based control apjdicat However, on the basis of
the concepts presented above two computationally effigjgdtbased dispersion models
are presented in the following section.

4.3 Grid-based dispersion modeling

In this section two grid-based dispersion models are preghoirst, an extension of the
variable-wind dispersion model is presented in Sectioril#4]d9ext a more computationally
efficient dispersion model is proposed in Section 4.3.2 Iplating the basic concepts of
the point-source dispersion model.

4.3.1 Extended grid-based dispersion model

Since the emissions from a segment of a freeway are betteriloed in a narrow and long
area emissions source, instead of approximating the emissis a point source, the area
around the neighborhood of the freeway is gridded as in F&{a), where the grid cells are
of equal dimensions. Next, all the emissions from the patthefreeway within the cell are
aggregated and assigned to the cell uniformly. Then, thkigon of the emission levels
in each of the cell of the grid is modeled using the point-sewapproach. This means that
the evolution of the emission sources within a cell, theafeof the emissions from the
neighboring cells, and other external factors (e.g., piolpindustries) are modeled. In the
sequel a way these phenomena can be captured is presented.

The thick gray line represents a part of a freeway traffic netwEach cell is denoted
by C;. ;., where the subscript indicates the position of the cell in thedirection and the
subscriptj. indicates the position of the cell in thedirection. A cellC;_ ;. is described
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Figure 4.3: Schematic representation of area-source d&pe of emissions i2D space.

by the four corner pointsz;.,y;.), (%i.+1,Y;.), (Tict1,Yje+1), and (@i, y;.+1), where
Ti, < Tj+1 al"ldyjC < Yje+1 (See also Flg 43(b))

Let the emission level in cell;_ ;. for emissiony € Y/{fuel} at a time step: be
denoted byJj ;. ;. (k). The emission levely ;. ;. (k) includes the rate at which the emission
gy is dispersed from the neighboring cells, the rate at whietethissiory is generated by the
part of the freeway in the cell, and the rate at which the eioniggis dispersed from sources
within the cell (e.g., polluting factories). Then, the esnigis in cellC;, ;. can be considered
as emissions emanating from a continuum of uniformly disted point sources. These
emissions get dispersed according to the point source niisteissed in Section 4.2. But,
since it is assumed that the meteorological factors aredatally homogeneous, it is not
important to trace the dispersion of all the point sourcedatt, one only has to track the
dispersion of the emissions at the corner points of the ,aghgre each corner point yields
a dispersion cone as shown in Fig. 4.3(b).

During the time periodkT, (k + 1)T), the emission levely ;. ;. (k) of emissiony of
cell C;, ;. will propagate to the dispersion zone denoted by the tetrdgg; ;. (k + 1).
This is schematically represented in Fig. 4.3(b) with thadgd area. The corner points
of the tetragorCl, ;. ;. (k + 1) are formed by the extremal points of the dispersion cones
formed at the corner points of the cell;_ ;. and these extremal points are denoted by
(@Lic(k+ 1), y15.(k 4+ 1)), (@ric+1(k+ 1), 105 (k4 1)), (i1 (k + 1), p g1 (B + 1)),
and(ml,ic(k + 1), Z/l,jc—&-l(k' + 1))

Let us denote the area of the dispersion tetraggn. ;. (-) by Aig i, ;. () and the area
of the cellC;_ ;. by A;_ ;.. Itis assumed that the cell;_; has at most eight neighboring
cells that disperse emissions to the cell. This assumps$ialid if the dimension of the
cells is greater than the distance traveled by the emissiose simulation time step,
which is related to the CFL criterion encountered in [47]h@tvise, the cells that disperse
emissions to cell;_ ;. can be different from just the immediate neighboring cellfie
immediate neighboring cells ar€;__; ;. 1, Ci. jo+1, Ci.+1,5.+1 to the top,C;_ 1 ;, and
Ci.+1,5. tothe left and right respectively, add 1 ;. 1, C;, j.—1, Ci.+1,j.—1 to the bottom
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of the cell. Then, during the evolution of the emissions dif €g,_;_, the dispersion tetragon
Ctg,i..j. (k+1) could be dispersed to each of the neighboring cells and partan remain
in the original cellC;_ ;.. Moreover, emissions from the neighboring cells can beentgx
to cell C;_ ;.. Therefore, the emission levé}, ;_ ;. (k + 1) at which the emissiog will be
dispersed in cell’;, ;. during the time perio@kT, (k+ 1)T) is given by

Jgsicic (b +1) = Jacgic.jc (k) + Jext.goic.je (k)

e F Aeyfsgen

Jyuewe (k) (4.10)
(1te.06) EN (e

where Jyec,g.i..5. (k) is the emission level at which emissigne ) /{fuel} generated by
sources (e.g., vehicles in a part of a freeway in the cell)eilh €;_ ;. at time stepk and

)Y = {CO, CQ;, HC, NO,, fuel}, Jext,g,i.,j. (k) 1S the emission level at which emissign

is generated by external sources (e.g., factories) thatibate to the emission level afin

cell C;_ ;. at time stepk, N (i, j.) denotes the set of neighbors to o€}l ;. and the cell
itself, C; [ C2 denotes the intersection of polytop@s andC,, A(C') denotes the area of
the polytopeC, and0 < ~(k) < 1 is a factor that characterizes the vertical dispersion of
the emissions.

The emission level at the target zarnis therefore computed by summing up the fraction
of the emissions contributed by each cell that intersedts thie target zoné. Mathemati-
cally, the emission level gf at the target zoneat time stepk is given by

Dg,t(k) =T Z A(Ctargjlt,t n Cic,jc)

(icvjc)eq—int.t

T icje (k) (4.11)

tere

whereCi.rget ¢ is the polytope describing the target zarendTi, ¢ is the set of all cells in
the grid that have a non-zero intersection with the targeézo

To sum up, the main advantages of this extended grid-baspérdion model are that
it can easily and without additional computational effortlude multiple target zones; that
it is computationally fast; that it takes the variation ofihwispeed and wind direction into
account; that it provides the evolution of emissions overdgion around the freeway rather
than only focusing on the target zone; and that it also censithe effect of emissions from
other emission sources like factories.

However, this model has one drawback that emanates fromaing gpurce approach.
When the wind speed is zero, the dispersion of the emissions imodeled. So, in the se-
guel we propose a grid-based approach that uses the poirtesmodel as conceptual basis
and that captures the dispersion of emissions in the no wasd.cMoreover, this second
grid-based model requires less computation time than ttendgd grid-based dispersion
model. Since the coordinates of the dispersion tetragohdrextended grid-based disper-
sion model are dependent on the wind speed and directiondifficult to have a simple
analytic solution to the intersection of the dispersionagon and the cells. This leads to a
continuous computation of the intersections. In the moalélet presented below, a general
analytic solution for the intersections can be provided tedeby the computation time is
reduced.
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4.3.2 Expanding grid-based dispersion model

When the wind speed is zero and there are no other obstructaorissions expand in all
directions uniformly. However, this phenomenon is not itéld in the point source model
or the extension of it presented above. This section pre$ent to model this phenomenon
and how to reduce the computation time further. We call talting model the expanding
grid-based dispersion model.

Dispersion modeling concept

When the wind speed is zero, the coordinate points that arpwima using (4.3)—(4.6) are
the same as the emission source point. Under such casesyéngedce angle in (4.2)
becomes3,,.x, Which under no obstruction is equal 4o This indicates that the emission
should be expanding (diverging) in all directions. The feabis that due to the zero wind
speed the coordinate points do not move a distance away frerarhission source point,
which means that according to the model equations (4.3)-(Aere is no dispersion of the
emissions over the horizontal 2D plane.

This problem could be solved by adding a term to the coordinatiables that is de-
pendent on the temperature and the inherent dispersiar$aaftthe emissions. But, since
the point source dispersion model is based on the assunthtibthe emission wavefronts
move as a straight line, which is valid for higher wind spe¢hls added term will result in
emissions moving into one direction along a line withoupdising sideways.

However, if one would consider the dispersion wavefrontéalturve, under no wind
condition this curve would be a circle and the added term dbel the expansion factor of
the emissions. Itis this analysis that led to the develogmithe expanding grid-based dis-
persion model. Hence, when there is no wind and no otherredtdisturbances, emissions
expand in all directions. In the ideal case, the shape ofxparesion is a circle for a point
emission source. When there is a non-zero wind speed, thed@ixgaemissions (circles
of emissions) will move in the direction of the wind while ¢imuing to expand uniformly.
This is the main concept for the development of the expangiiitgbased dispersion model.

Expanding emission cells and emission levels

Just as in the case of the extended grid-based-dispersidalywee grid the region around
the freeway into squares of equal dimensions. But, unlikhénextended grid-based dis-
persion model, where the corner points of a cell are consitjdrere the center of the cells
is taken as a representative of the emissions in the cell.

We denote the expansion factor of the emissions of the gtithatstepk cells byw (k)
per unit time in each direction. For computational simpjiceasons it is assumed that the
shape of the expanding emission cells remains intact. Hevizen the wind speed is zero,
the emissions in the cell;, ;, expand due to dispersion factors as illustrated by the shade
region in Fig. 4.4(a) and the sides of the expanded cellsre $sitepk are approximated by
squares of length

Le(k) = (1 + Tw(k))L 4.12)

whereL is the length of the sides of the grid cells.
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Figure 4.4: Expansion of emissions from a cell under windg ao-wind conditions.

When the wind speed is non-zero, the expanded emission amllaf;_ ;. is displaced
in the wind direction as depicted in Fig. 4.4(b). We use thaeepoints of the (expanded)
emission cells to represent the displacement of the (exgremission cells. The corner
points of the expanded emission cells can be determined tihencoordinates of the dis-
placed center point and the expansion factor. Next, we cterrdie the emission level in
cell C;_ ;.. Although the expression for the emission level in ¢gll ;. can be expressed
in a similar way as (4.10), in this particular approach itasgible to explicitly describe the
equation of the intersections between the expanded emisslits (dispersion squares) and
the original grid cells with simpler equations.

So, let us suppose the level of the emisgjon ) /{fuel} at time stepk in cell C;_ ;. is

Jy,i..j. (k), then at the end of the time peri¢l’, (k + 1)T") the emission level in the cell
becomes

Jgicje (b +1) =Jsre gic i (k) + Jext,gic.j. (K)
(uc,vc) k)

(1) Y a@g‘;;)(

(uc WC)EN(ic ;.7c) ¢

Jg,ue e (K) (4.13)

Wherea&f’;g)(k) denotes the area of the part of the expanded emission csfigidiion
tetragon) of cellC,,_ ,, that intersects with the cefl;_ ;, at time stepk and by straightfor-
ward but somewhat elaborate calculations (see Appendii BYound that these quantities

are given by

Q) (k) = ags,—u, () - bao—on (F)

with

a1(k) = max {0, TV, (k) cos(p(k)) + LTw(k)}

2
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Table 4.1: The average CPU time per cell required to compligeintersections between
the neighboring cells and the dispersion tetragon (or sgliaf a given cell for
the extended grid-based and the expanding grid-based dispemodels.

Dispersion model CPU time [s]
Extended grid-based 0.680
Expanding grid-based  0.010
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ax L0, — TV (k) sin(o(k)) + ZLZH) }

ba(k) = Le(k) — bi(k) — bs(k)

S
W
—

&y
~

|

max {O, TVy (k) sin(p(k)) + LT;E(]C) }

provided thal” < % andL > 222/;(('2)) for all time stepk. If these CFL-like conditions
onT andL are not satisfied, it is still possible to derive similar fadas, which also require
redefinition of the neighborhood s&f(i., j.) of cell C;_ ;..

Note also that the computation of the above intersectiovssgihe same result for all
the cells in the grid. This means that the computation hagtddme only for one cell per
every simulation time step.

The emission level at the target zone is computed in a simitgr as in the extended
grid-based dispersion model of Section 4.3.1. Thus, théemaatical expression for the
emissiony level at the target zoneat time stepk is given by [(4.11).

4.3.3 Comparison of grid-based dispersion models

In Sections 4.3.1 and 4.3.2, two grid-based dispersion teddee been presented. In order
to quantify the required computation times and to deterrttiedr competitive speeds, the
two models are simulated. Since the main difference of thengbed grid-based dispersion
model and the expanding grid-based dispersion model liésedetermination of the inter-
sections of the dispersion regions and the gird cells, lereitne required to compute the
intersections of the dispersion tetragon (square) wit#ighboring cells are compared. In
order to compute the intersections and the area of the pmdgtof the extended grid-based
dispersion model the MATLAB Multi-Parametric Toolbox (MPT) is used [106]. Recall
that in the expanding grid-based dispersion model thedatgions and the area of the poly-
topes (or squares) have analytical solutions and hence mpuation tools are required
there.

The average computation time per cell required to deterniaentersections of each
dispersion tetragon or square for the two models is predentdable/ 4.1. The results
indicate that the time consumed by the extended grid-baspdmion model is much higher
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than the time consumed by the expanding grid-based digpensodel. This is because
the expressions for the intersections in the extendedtmgsdd dispersion model are more
complicated than those for the expanding grid-based model.

Note that since the computations are done for a single beletintersection values are
also the same for the remaining cells in the grid. Each cehéngrid only has to update its
emission levels based on the dynamic equation given by 4ot @he extended grid-based
dispersion model and by (4.13) for the expanding grid-balsgersion model. Since the
computation time required to update the emission levelsgdigible for each cell (i.e., only
(4.10) and((4.13) have to be evaluated for each cell in tref) grid since the computation
time of both the models is less than a second, both modelsuédeble for on-line appli-
cations that have more thdrs simulation time step size. But if the number of the cells in
the grid is very large, the update time can be large, whichrin affects the applicability of
the models for on-line based applications. It can be sedrthibacomputation time of the
expanding grid-based dispersion model is even very smédltlaus it can also be used for
on-line based control applications that perform multipies with in a second.

4.4 Conclusions

As dispersion of emissions to the neighborhoods of trafftevoeks is an important aspect
that requires due attention during the development andbglepnt of traffic solutions, the
development of computationally efficient and accurateefisippn models is of paramount
importance. In cases where the reduction of overall emissims a severe impact on the
travel time, traffic managers can instead consider the temtuof the dispersion of emis-
sions to a target zone so that the effect on the travel timdearduced.

Bearing this in mind, this chapter has first elaborated orextigting dispersion models
from literature. It has discussed the general dispersiodatittg strategies and their appli-
cations. Moreover, it has highlighted on the computatiomaled of the models. It has also
been pointed out that the existing dispersion models, itiquéar the CFD and Gaussian
models, are not suitable for on-line based traffic contrpkapches.

So this chapter has proposed new dispersion models thatecaseu for on-line ap-
plications. The chapter has first presented a point sousgediion model. Next, a direct
extension of the point source dispersion model (extendiedgsed dispersion model) has
been discussed. However, it was found out that the extendedgsed dispersion model
has one drawback. When there is no wind, the model does notliiedeispersion of the
emissions. So a more elegant, expanding grid-based dispen®del has been presented.
In addition to its capability to model dispersion of emissiavhen there is no wind, the ex-
panding grid-based dispersion model is also faster thaextended grid-based dispersion
model.

A simulation has been performed to compare the computaitioe tequired to deter-
mine the intersections of the dispersion tetragon or sgaacdethe grid cells of the two
grid-based dispersion models. The simulations have shiogtritie computation demand of
the models is less than a second, which makes both of the msdighble for on-line ap-
plications, in particular for simulation that use macrqscdraffic emission models where
the simulation time step size is more than a second. Moretiverexpanding grid-based
dispersion model has required very small computation tintech makes it even suitable
for on-line control applications where multiple runs arefpemed every control time step.
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In the subsequent chapters, these models will be used in-ineohased traffic control
approaches.
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Chapter 5

Model Predictive Traffic Control

ynamic traffic control methods continuously measure thie sifithe traffic net-

work and respond accordingly. Dynamic traffic control methcan either be

non-predictive [145, 221] or predictive [22, 75, 220]. Sirtecaffic systems are

highly non-linear and time-variant systems, model-basediptive traffic con-
trol approaches [19, 75, 77, 220] such as Model Predictivett@b(MPC) are promising
candidates.

MPC is a model-based control approach that is based on tlmipation of control
inputs that improve a given performance criterion (objecfunction) over some prediction
horizon. The performance criterion of MPC is formulated asst function of the predicted
system states, outputs, or inputs. The MPC approach candoefasnon-linear and time-
variant systems. In addition, it can incorporate constsaim the inputs, states, and outputs
of the system.

Since the core control strategy used in this thesis is MP€ ctepter provides a brief
account of the basic concepts of MPC and MPC for traffic systienSections 5.1 arid 5.2
respectively. For detailed discussions on MPC, we refereader to [35, 116, 120, 167].
Continuing, the traffic performance criteria and multiteria optimization approaches con-
sidered in this thesis are presented in Sections 5.3 ané&péctively. The MPC controller
is demonstrated in two simulation-based case studies falambed reduction of travel time,
emissions, fuel consumption, and dispersion of emissioi@ection 5.5. The chapter con-
cludes with Section 5/6.

Parts of this chapter are publishedin [57,1208, 211, 213}.215

5.1 Philosophy of model predictive control

Model Predictive Control (MPC) [35, 116, 120, 167], also Wmoas Moving Horizon Con-

trol or Receding Horizon Control is a popular technique fa tontrol of slow dynamical

systems, such as those encountered in chemical proceseldorihe petrochemical, pulp
and paper industries, and in gas pipeline control [66, 98]inA66], this thesis too refers to
MPC as family of control strategies that explicitly use misd®&PC, in general, computes
optimal control solutions of an on-line optimization prets that is formulated to reflect
the desired performance of a system. All MPC-based conpptaaches share five main
concepts:

83
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System and disturbance modelingince the control solutions of MPC are determined based
on the future evolution of the system states and outputsparttie evolution of
either the known disturbances or the probabilistic prageror bounds) of the
unknown disturbances, whether it is for off-line or on-luesign, MPC requires
models of the system and the unknown disturbances in ordeake predictions
of these variables over a future prediction period.

Performance criterion:The MPC control strategy provides optimal control solusidhat
improve a predefined performance criterion. Usually, thégomance criterion
is defined as a cost function. The cost function is defined afeture prediction
period (finite or infinite). MPC then seeks optimal contrdlgions that minimize
the cost function. Hence, definition of an appropriate amstfion is an important
step in the design of an MPC controller.

Constraints: MPC can handle both equality and inequality constraintdersystem states,
outputs, and inputs. The constraints can be motivated byleeational limits
of the system, economic requirements, environmental ddsyasafety require-
ments, and the like. The constraints can be linear or na@atinin the design of
an MPC controller, the description of the constraints imedl is another impor-
tant aspect that requires due attention.

Optimization: MPC uses optimization techniques and tools to optimize tmdrol inputs
in such a way that the value of the given cost function is malirdepending on
the system model, the constraints, and the cost functiensekutions obtained
can be optimal or sub-optimal. In principle MPC uses on-laptimization to
design optimal control inputs. But to gain some computati@peeds it is also
possible (in some cases) to design MPC based on off-linenggtion (such
MPC is known as explicit MPC [23]).

Receding horizon principleThe principle of receding horizon (or moving horizon), winic
is the core of MPC, was first introduced by Propoi [160] in 1§83. This means
that after computation of the optimal future control seaquggionly the first control
sample is implemented, subsequently the horizon is shiftedsample and the
optimization is restarted with new information of the systeThis is illustrated
in Fig.|5.1(b). At every control time stef., the MPC controller determines
the optimal control input that minimizes a given performausciterion over the
prediction periodk., k. + N, — 1]. The dashed line in Fig. 5.1(b) shows the
control input as designed based on the predicted statesl{veine indicated by
the dots). At the next control time stép+ 1, the MPC controller again takes the
new prevailing system state and uses it to make new predgcty shifting the
prediction horizon one step forward. This process is reggeadntinuously in the
receding horizon approach discussed here.

Fig./5.1(a) presents the interrelationship of the five cptepresented above. Measure-
ments of the system state are collected through sensorg saepling time stef; with
a sampling time step siZE;. However, the controller receives the measurements (ssich a
speed, density, flow, and traffic demand) every control titap & (with step sizel.). For
the sake of simplicity and ease of implementation the cotitne stepT.. is defined to be an
integer multiple of the sampling time st@p: 7. = M1 T, whereM; € N. Thus, at every
control time step the sampling time and the control time al@ed byk,(k.) = M; k..
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Figure 5.1: Conceptual representation of model predictigatrol.

In addition, usually a distinction is made between the adriime stepk. and the sim-
ulation time stepk (or k,, for microscopically modeled systems). At every time instain
the formt = k. T, = kT, the control time step. is an integer divisor of the simulation
time stepk (with simulation time step siz&). Thus, these are related byk.) = Msk.
for a positive integeM/s (for microscopic model,, (k.) = Msk., whereMs is a positive
integer).

The main advantages of MPC are that it takes the effect ofdh&a inputs on the future
system states, that it is able to take both equality and ml@gunon-linear constraints of the
manipulated and controlled variables into account, anditt@@n be used for non-linear
systems. Moreover, MPC can handle several process modeisliees many performance
criteria of significance to the system [98, 120].

MPC, and in particular, MPC for non-linear systems also hertam disadvantages.
The main disadvantage of MPC for non-linear systems emsaifade the non-linear and
non-convex optimization problem involved. Such optimi@atproblems do not only pose
difficulty in computing optimal solutions, but also the camtgtion time involved to get the
(sub-)optimal solutions may become very high. Usuallycbmputation time exponentially
increases as the number of control inputs (optimizatioraiséas) or the prediction horizon
increase.
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To alleviate the computational problems of MPC several wdthcan be used. The
simplest ones are the introduction of a control horizon dodKking [116]. Instead of vary-
ing the control inputs over the full prediction horizdy,, one can define a control horizon
N, < N, after which the control input is kept constant (see Fig.[®)1(The optimization
time can also be reduced by introducing blocking in such athaythe control inputs are
varied at an integer multiple of the control time step. Saeténad of varying the control
inputs every control time step, they can be kept constaritofumly or non-uniformly) for
some integer multiple times of the control time step (see|&ig(c)). In these ways, the
computation time can be reduced. However, the reductiohéncomputation time is in
general gained at the expense of reduced performance. Maretue to model mismatch
and the involved non-linear and non-convex optimizatiaobpgm, the MPC controller, in
general, does not guarantee the stability and optimalith@fcontrol solutions. Although
in most cases stability can be imposed though ad hoc apprsachtimality is difficult to
guarantee, because due to the non-linearity and non-citynedthe optimization problem
it is possible to find multiple local minima.

In the next section, this control strategy is discussedlatioa to traffic systems.

5.2 Conventional MPC for traffic systems

Fig.'5.1 shows a general block diagram representation ofR@ kbntroller. When it is used
with traffic systems, the system and the model blocks in Fifa) respectively denote the
real traffic system and the model of the traffic system (sucthadgraffic flow, emissions,
and fuel consumption models). In general the control meascan be speed limits, ramp
metering rates, route guidance instructions, and so onniesurements denote the traffic
states (such as the speed, flow, and density) at every santipfia %;.

Remark 5.1 In Part/1 of the thesis the simulation time step for microscamd macro-
scopic models are designated/as and k respectively. For simplicity of the proceeding
discussions only the case of macroscopic models is comsldext, unless specified ex-
plicitly. However, all the results to follow also apply to endscopic models (in fact to any
dynamic model). For the microscopic models the variaklesd M in the macroscopic
models should be replaced by, and M5 respectively. |

Now, in the context of MPC, the dynamic traffic models in Pacah be described or
approximated by a system of ordinary difference equatidriseoform

w(k+1) = f(z(k),uk), y(k) = h(z(k)), (5.1)

wherez(k) € R"= denotes the traffic state vector (e.g., the position, flowedp density
of vehicles in a traffic network, etc.),(k) € R™ denotes the traffic control inputs vector
(containing values for the variable speed limits, ramp miegerates, etc.), angd(k) € R"v
denotes the output of the traffic system (e.g., the total §pent, total emissions, total fuel
consumption, or total emission dispersion level on targaes),f : R"= x R"« — R"= s
the state vector field, and : R"> — R"v is the output vector field, with, n,, andn,
being positive integer numbers.

Itis customary to usé to denote the prediction of variabteand the notatiord: (k2| k1)
to denote the predicted valueofit simulation time step, using the information available
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at control time stef;, with ko > Msk. At every control time step., the MPC controller
predicts the traffic states vector

(k) = [&7 (Makelke) &' (Make +1lkc) ... &7 (Ma(ke + Np) = 1]kc)] T
the traffic outputs vector
y(ke) =[5 (Makelke) §" (Make +1lke) ... §" (Ma(ke + Np) — 1K),
and the initial control input vector
u(ke) = [ug (kelke) ul (ke +1lke) ... ul (ke + Np = 1]kc)] "

using the models of the traffic system in the MPC controllat B measurements as ini-
tial states. The input(k) at every simulation time step is related to the control input
uc (k) at every control time step. according tou(k) = uc(k.) for k = Mk, Mok, +
1., My(ke +1) — 1.

At this time, the control objective of the MPC controller (raspecifically the conven-
tional MPC) is to optimize the vector of control inpuighat solves the following optimiza-
tion problem at control time stefp.

min I (ke w(ke)) : = V(w(ke), uke), y(ke)) (5.2)
subject to:G(x(k.), u(ke), y(k:)) <0,
Q(ke), ulke), y(ke)) = 0,
and system model (5.1)

whereJ (k., u(k.)) denotes the objective function (such as travel time, emissidisper-
sion of emissions, or a combination of these) defined by avaakd user-defined function
V(-), G(-) is the inequality constraint mapping, agd-) is the equality constraint mapping.

As has been introduced in the previous section only the finstrol inputu (k. |k.) of
the optimal sequence* (k.) is applied to the system till the next control time stgpt 1,
after which the MPC controller repeats the above processvell again using a receding
horizon approach. Since the control inputs are generatsebban the current and predicted
future states of the traffic, the predicted future statesbeadifferent from the actual ones
due to unexpected internal and external effects and magetiors. However, since only the
first control input is applied for the neXt + 1 and then a new measurement of the traffic
states is undertaken, the prediction errors can be redutkid. mechanism introduces a
feedback of the output of the system to the controller.

However, due to its high computational demand, conventibtC for traffic systems
is not tractable in practice [22, 56, 77, 109, 188]. Thereraamy advancements in the
literature (e.g., [24, 71, 98, 111, 179, 189, 195]) to adsltbe computational complex-
ity problems of MPC in general. Kotsialos et al. [105] and &ajchail et al.|[151] used
a model-predictive hierarchical control approach to cowte ramp meters for a freeway
network and reported computation times in the order5o§ without further explaining the
details of the optimization algorithm. In this regard, tfiledts to address the computational
issues of conventional MPC and a new and efficient MPC apprimdreeway traffic sys-
tems will be the subject of the next chapter.
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5.3 Traffic performance criteria

Since MPC can accept any quantifiable form of performanderwn, a special structure
is not required to formulate the performance criteria of feC controller. The main aim
of any traffic controller is to improve the performance of thaffic network. However, the
performance could vary depending on the desire of the stddlefs of the network, the
time of operation of the network, and the location of the rekw For example, environ-
mentalists would like reduced dispersion of emissions angamation of sound pollution
to a protected target zone, while transport authoritiesdcbe interested to improve traffic
throughput and safety. Moreover, the desired performaritaion of a given network can
vary from time to time. For example, depending on the wineédation, wind speed, the
temperature, and so on, the desired performance critenidealifferent. When the wind
direction is in the opposite direction of a given target zémg., a hospital or school), the
traffic control performance criteria can be set to improwe tifaffic flow, while when the
wind is blowing towards a given target zone, the performaraebe set to take dispersion
of emissions into account.

In light of the conflicting demands, this thesis considers foerformance criteria viz.
total time spent, emissions, fuel consumption, and dispeisf emissions to target zones.
Due to the similarity and close inter-relationship betwésnlast three performance crite-
ria, these four traffic performance criteria are grouped tnto as traffic flow performance
criteria and emissions and fuel consumption performaniterier. These are discussed in
the subsequent sections in detail.

Since the performance criteria are going to be used in an M#*@a approach, the
values of all the performance criteria are determined atyegentrol time stepk. over
the prediction horizonV,. However, the expressions can also be used in general for the
determination of an overall traffic performance criteridradraffic network for an entire
simulation period (see Remadrk 5.2).

5.3.1 Flow performance criteria

Traffic network flow performance can be described or forradaising different criteria.
As a result, the objective of the traffic controllers can Wéedént. The flow performance
criteria can be the throughput, travel times, homogendith® traffic flow, or the safety
level of the traffic flow both over space and time. Since theltitne spent (TTS for short)
is often considered as performance criterion of traffic malars, in this thesis too the total
time spent is used as flow performance criterion.

For microscopic approaches

The formulation of the total time spent is different for ndscopic and macroscopic models.
The main difference is the way the number of vehicles is deterd and the time and space
scale considered. In the microscopic approaches, the numilvehicles is determined by
counting each vehicle in the traffic network. The travel twheach vehicle at every location
is collected. Then, the total time spent is determined byraddp the travel time of each
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vehicle in the network. This reads as

M3 (ke+Np)—1

TTS(ke) =Twm Y. N(km) (5.3)

km=M3zk.

where N (k,,) denotes the number of vehicles in the network at time k,,7,,, and the
positive integetM relatesk. andk,, ask., (k.) = Msk.. The number of vehicled/ (k)
can be measured using microscopic measurement techniguan be predicted using mi-
croscopic traffic models (e.g., models presented in Seetib2 and Section 2.2).

Remark 5.2 The total time spent{TS) in (5.3) is determined over the prediction period
[Msk., M3(k. + Np) — 1]. But it is also possible to determine the value of TES over
the simulation periodD, N, as

TTS(k Z N (k (5.4)
km=0
whereN; is the total number of simulation steps. O

For macroscopic approaches

In macroscopic approaches, the number of vehicles andabel time is obtained by com-
puting or measuring the average number of vehicles in partiafffic network over a given
period of time. The travel times for the parts of the netwaaks time periods are added
together to obtain the total time spent by the vehicles inrdific network. Mathematically,
this is given by

Mz (ke+Np)—1

CEOETED S ED S S WINTRSS SEC] BT
(

k=Msk. 7n,i)€]ﬂa]1 0€0an

where M, is the set of all pairs of segment and link indices ang, is the set of all
origins, where the macroscopic variables, dengijty; (k) and the queue length, (k) are
either estimated or measured quantities at the time instanttT", and M, is a positive
integer that relates the control time stepandk ask(k.) = Msk. Since this thesis uses
the METANET macroscopic flow model, these quantities araiobt from the METANET
model presented in Section 2.3.

The first term in/(5.5) L., A\ pm i (k), indicates the number of vehicles in segmeot
link m and hence multiplied by the time step siZegives the time spent by the vehicles
in the corresponding segment of the link. The second terrB.B) corresponds to the time
spent by the vehicles queuing at the mainstream or on-raigmer

5.3.2 Emissions and fuel consumption performance criteria

Other important traffic performance criteria are the erissiand energy consumption of
the vehicles. Environmentalists are much concerned toceethe total emission levels or
local emission levels, while drivers and policy makers mayiriierested to have energy-
efficient traffic systems.
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Like the flow performance criteria, in this thesis the traffinissions and fuel consump-
tion performance criteria are formulated as the perforraasfcthe whole traffic network
and not the performance of individual vehicles. This meduag the emissions and en-
ergy efficiency performance criteria of a traffic network eggpectively defined as the total
emissions and the total fuel consumption of the networkhéngequel, the total emissions
released and the total fuel consumed by the vehicles infectredtwork are defined. How-
ever, the formulation of the expressions is different if oises microscopic or macroscopic
modeling or measurement approaches.

For microscopic approaches

For microscopic approaches, the total emissions (TE fortshee determined as the sum-
mation of the emissions of each vehicle in the traffic netwar&r time and space. More-
over, the total fuel consumption (TFC) is determined in thme way. These are expressed
as

M3 (kc+Np)—1

TE(ke) =T Y > > Hedgalkn) (5.6)
km=Mzk. aEV(km) gej}/{ﬁlel}
M (ke+Np)—1

TFC(ke) =T . > Juetalkm) (5.7)

km=Mszke a€V(km)

whereV(k,,) denotes the set of vehicles present in the network at the timek,, Ty,

Y = {CO, NQ,, HC, CO;, fuel}, andJ; o (km) for § € Y denotes the emissions or fuel
consumption of vehicler at time stepk,, and is obtained using (3.2) and (3.4). The value
of 115 > 0 is the weighting factor of each emissigre J/{fuel}.

The dispersion of emissions to target zone can be computa@sebpically by consid-
ering the emission of each vehicle and the evolution of thesgions over time and space.
The dispersion of emissions from traffic networks are in galngetermined by integrating
the individual emission sources over a segment of a freev@ay. conceptually, this is a
macroscopic approach, because it does not consider thersiisp of emissions from indi-
vidual vehicles but the dispersion of emissions from the lelsegment of a freeway. Thus,
the dispersion level performance criterion is given in teguel in relation to macroscopic
approaches.

For macroscopic approaches

In Chapter 3, the macroscopic emissions and fuel consumptiadels provide the emis-
sions and fuel consumption of a number of vehicles in a giegment during a given period
of time. The total emissions (TE) of a traffic network over aegi period of time is then
obtained by adding the emissions contribution of every ssyrof a freeway over the whole
span of time considered. The total fuel consumption is alstained in the same way. In
this case, at every control time stép, the total emissions and total fuel consumption of
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vehicles in a given freeway over a prediction horizZgpis determined by

My (ke+Np)—1

TE(kC) =T Z Z M@Jtotal,g(k) (58)
k=Mske  gey/{fuel}
Mj(kc+Np)—1
TFC(kC) =T Z Jtotal,fucl(k) (59)

k=Msk,

where) = {CO, CQ;, HC, NQ,, fuel} andJseta1,5 (k) is the emission or fuel consumption
y of segment of link m over the time periodkT, (k + 1)T) as defined in (3.25).

In regard to emission dispersion levels, in this thesis texdggmance criteria are con-
sidered, viz. the maximum dispersion level in the targezand the total dispersion level
in the target zone within the prediction peridd. k., M2 (k. + N,,) —1]. At the control time
stepk., the weighted total maximum emission dispersion I&&}L(%.) of each emission
gasy at all the target zones over the prediction pefidfy k., Mo (k. + N,) — 1] is

MDL(k:) =T Y > pag max Dy.(k)  (5.10)
t€Tm1 gE I (fucl) k€{Mskc,Mskc+1,...,Ma(ke+Np)—1}

where Dy (k) is the target dispersion level of emissigrat target zone obtained using
(4.9) or (4.11) and,, is the set of all target zones.

The second performance criterion involves the cumulatifeceof the dispersed emis-
sions. At control time step., the total dispersion level (TDL) of all emissions at all the
target zones over the prediction periddz k., Mz (k. + Np) — 1] is given by

Ma(ke+Np)—1

TDL(ke) =T > Y > agDya(k). (5.11)

t€Tan geY/{fuel}  k=Mazk.

5.3.3 \Variation in traffic control measures

Dynamic traffic control approaches, such as MPC, dynamyically the settings of the
traffic control measures such as variable speed limits amg raetering rates both in time
and in space. In general, frequent fluctuations and big @simgthe values of the control
measures are not desired from safety and driver comfortt dimiew. Since it is also
possible to have different optimal traffic control settirigat can result in the same traffic
performance, priority is usually given to attain the samdgreance level with a minimal
fluctuation in the traffic control measures.

In general, at control time stefp. the total fluctuation of the traffic control measures
over time and space is expressed by

ke+Np—
U *,Uul Z Z Ug 7u§£—1))
=k sEUan
kc+Np—1
A S (1 (0) — g, (1) (5.12)

L=ke  (s1,52)€Can
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wherepu,; > 0 andu, 2 > 0 are the weighting factors between the fluctuation in time
and in space respectively,(k.) is the traffic control measure at control time siepand
at locations, U,y is the set of all traffic control measures, ahg is the set of all pairs of
consecutive traffic control measures.

Although the formulation above is general, throughout thissis the variable speed
limits and ramp metering traffic control measures are usedhdt case the expression for
Un (k.) becomes

ket+Np—1

UA(kC) = Z Z Ms(us(@ - “s(f - 1))2

=k, SESan

+ Z Hes (Usl (E) — Usy (6)) ’

(81,52)€Pan

+ Z o (ur (€) = up (€ — 1))2 (5.13)

r€Ran

with u (k. ) denoting the speed limits at control time stepu..(k.) denoting the ramp me-
tering rate at control time sté, S,; denoting the set of all speed limitB,; denoting the
set of all pairs of consecutive speed limi&,;; denoting the set of all controlled on ramps,
andps = (F#(San)viiep) " Hes = (#(Pan)vdep) 'y andu, = (#(Ran)) ' respectively
are the weighting of the variation of the speed limits overej the variation of the speed
limits in space, and the variation of the ramp metering ra&r time, where#(-) denotes
the set cardinality and,, is the maximum speed limit step change allowed.

5.4 Multi-criteria optimization

In the above sections, different traffic performance datevere discussed. In an MPC
control approach, the formulation of an appropriate optation problem is required. For a
multi-criteria traffic control approach a systematic conaion of the different performance
criteria is required. Generally, an optimization problefi#C is formulated as in (5/2).
The objective function of the optimization problem can beeatar of control objectives.
For convenience let us consider a multi-criteria optim@aproblem given by

min Jvector (.’I}) (5 14)
s.t. g(x) <0 and h(z) =0

where Jyector (k) € R™ denotes a vector afi objective functions ang(x) andh(z) are
the inequality and equality constraint functions.

Most often, the objective functions are competing, whiafuiee trade-offs as there may
be no solution that minimizes all the criteria at the sametidks the number of the objec-
tives increases, the trade-offs are likely to become mongpbex and less easily quantified
[68]. So for such competing multi-objective criteria, theltirobjective optimization must
generate and select the Pareto-optinsallutions [62]. Multi-objective techniques such as

1A solution is a Pareto-optimal if and only if there does notsexiny other solution that results in a lower
value of all the cost functions [39, 125].
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the weighted sum strategy, theonstraint method, and the goal attainment method can be
used in case of competing objective functions [62, 68]. E®isimplicity in the context

of MPC, in this thesis, the weighted-sum multi-objectivdimization strategy is used. In
the sequel, the formulation of the multi-criteria objeetfunction, the normalization of the
weights, and the optimization method employed are disclisse

5.4.1 Weighted sum

The weighted sum strategy converts the multi-objectivéolerm of minimizing the vector
Jvector () INt0 @ problem with a scalar objective function by constinga weighted sum
of all the objectives. This results in the following optiration problem

minJ (@) = Y Givector,i(2) (5.15)
=1
s.it. g(z) <0 and h(z) =0

where(; > 0fori=1,2,...,m.

Using this strategy, at every control time step a single objective function of a traffic
control system with the objectives of reducing the totaletispent by vehicles in a traffic
network, the total emissions and total fuel consumptionedfisles in the traffic network,
and the dispersion of the emissions of the vehicles to attacyest can be formulated as

TTS (k. TE(k. TFC(k.
J(ke) = Q1 TT(S )+C2 Té )+C3 TFé )
MDL(k. TDL(k, Una (ke
+ C4,MDLW£) + (4, TDL TD£ ) + (s [?A( ) (5.16)

)

whereTTS(k.), TE(k.), TFC(k.), MDL, TDL(k.), andUa (k.) are respectively given
by (5.5) (or[(5.3)),[(5.8) (or (5.6)), (5.9) (ar (5.7)), (B)1 (5.11), and (5.12) and where the
subscript 1’ denotes the normalization of TS, TE, TFC, MDL, TDL, andUa. The
normalizations are discussed in the next section.

5.4.2 Normalization

One of the challenges with the weighted-sum approach isdétermination of the weights
for the different performance criteria. This is becausedtiferent performance criteria
mostly have different dimensions and values. Some can fextydarge values while others
can have very small values and thus the determination of #ighis can be difficult. In
order to have the same order of magnitude and dimension amdén to make the weight
assignment between the different performance criteria @aa physically interpretable, the
unbalanced values and dimensions of the performanceiaré@n be equalized by normal-
izing them to unity and dimensionless quantities.

So, these normalization values have to be determined befode Usually, these values
have to be the maximum possible values of the performanterieri However, in some
cases, like in the traffic system, it is difficult to determthe maximum possible value of
the performance criteria. So, throughout this thesis thainal values are taken as the
normalization values of the performance criteria. Thesminal values are determined
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under the uncontrolled natural traffic flow conditions. Thisans that the variable speed
limits are set to the free-flow speed, and the ramp meteris@liations are uncontrolled
(set green always).

Since the different variation terms in control inguik ,, is already normalized at every
control time stegk. in (5.13), here the normalization is the prediction hori2gn

5.4.3 Optimization method

Optimization is one of the main elements in an MPC contratstyy. It is also one of the
main bottlenecks potentially resulting in extensive cotapianal requirements. Since the
traffic flow models are highly non-linear, the objective ftions are also non-linear with
respect to the traffic control measures. Moreover, the tibgtunctions are non-convex
with respect to the traffic control measures. This leads t@mlimear and non-convex
optimization problem.

There is no optimization method that can guarantee to reaasptimal solution of a
non-convex optimization problem in finite time. Therefos&ce the MPC traffic control
problem considered in this thesis is non-linear and norv&oand since it has to be solved
within a limited time frame (at least withifi, time units), it is difficult to obtain global
optimal solutions. It is therefore important to make a pragmice of an optimization tech-
nigue. Due to the non-convex nature of the objective fumstiglobal or multi-start local
optimization methods are required. In this case multitSaquential Quadratic Program-
ming (SQP)|[27, 152], pattern search [10], genetic algor&h55], or simulated annealing
[61] can be used.

Throughout this thesis, the SQP local optimization metimombimbination with a multi-
start approach is used. SQP is a powerful method for solvimgaonvex and constrained
continuous optimization problems. This approach has betensively applied in MPC
based traffic control approachesin [21, 75,77, 99,/102,.1%i8ke SQP is a local optimiza-
tion problem, in order to increase the possibility of atitagrthe global optimal solution, the
optimization process is repeated several times with diffemitial points. This is called a
multi-start approach. For more details of SQP we refer thdeeto [27, 136, 152, 166].

5.5 Case studies

In this section different cases studies that illustratecthventional MPC presented in this
chapter as applied to traffic systems are presented. Sindelshare required to make
predictions of the traffic states, the MPC controller usesrtiodels presented in Part | of
the thesis. Section 5.5.1 presents case studies wheretiedo€ travel time, emissions,
and fuel consumption are defined as the performance cribérine MPC controller. In
Section 5.5.2 the reduction of dispersion of emissionsrgetazones is also considered.

5.5.1 Balanced reduction of travel times, emissions, and fueonsump-
tion
In this section two case studies are presented: Case studgskrnds the use of variable

speed limits to provide a balanced trade-off between ttawels and emissions; Case study
B illustrates the integrated use of variable speed limits @mp metering for sustainable
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Figure 5.2: A two-lane single-link freeway considered f@as€ study A.
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Figure 5.3: Demandi, (k) at the origin and density, (k) at the end of the freeway seg-
ments considered for Case study A.

mobility, in particular for the reduction of total time sgeamission of NQ, and fuel con-
sumption of vehicles in a given traffic network.

Case study A

The use of variable speed limits for improved traffic flow amdisgsions is presented in
this section. A case study with 2 km two-lane freeway is considered. The freeway is
divided into12 segments, where only the middiesegments are controlled with dynamic
speed limits (see Fig. 5.2; this is similar to the networksidered in|[78]). The freeway
is modeled using the METANET traffic flow model presented iotid® 2.3. As emissions
model the VT-macro model of Sectibn 3.4 is used. The demariteofraffic flow at the
origin of the freeway is given in Fig. 5.3(a). Moreover, a signprofile at the end of the
freeway is presented in Fig. 5.3(b). These profiles provide particular example of a
traffic scenario where there is a dynamic demand with a pegakglthe rush hour and a
shock wave (see Fig. 5.4) that can cause traffic jams.

In this case study the network parametérs= 10s, 7 = 18s, b, = 1.867, k =
40veh/km/lane,y, = 65km?/h, ;1 = 30km?/h, pjam.m = 180veh/km/lane,pe, , =
33.5veh/km/lane, and,;, = 10km/h are used [78]. Furthermore, the noncompliance
factor is assumed to be = 0 (i.e., all drivers comply to traffic control measures), the
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Figure 5.4: Density and speed profiles of the traffic flow ungegontrolled Scenario;Sof
Case study A. The arrows indicate the driving direction.

free-flow speedyec., = 102 km/h, and the capacity of the link &, = 2000 veh/h/lane.
The simulation period for this case is 2 hours. The traffidesysis simulated for
both controlled and uncontrolled scenarios. An MPC coldras designed for the con-
trolled scenarios with a control time step size = 1 min, a prediction horizon ofV, =
30 (corresponding t80 min), control horizonV, = 10 (corresponding ta0 min), and with
eight initial points for the multi-start SQP optimizatiofhe eight initial points of the multi-
start optimization include: the control inputs of the poag control step, the upper bound
and the lower bound of the control inputs, the average of gpeouand lower bounds, and
four random points. Three different control objectives @eéned for the MPC controller.
Thus, in total four scenarios are simulated, and these are:

S;: Uncontrolled

S,: Controlled, total time spentl{T'S) only

S3: Controlled, total emissiondl(E) only, and

S,: Controlled, weighted sum of total time spefitl(S) and total emissions[{E).

For the first Scenario;$Sno controller is implemented. The density and speed praofile
the traffic under this scenario are presented in/Fig. 5.4.ahse seen, the shock wave that
started at the end of the freeway propagates in the upstrgantidn. The total time spent
in this case i2142.3 vehh. The total emissions (of CO, HC, and NJor the same case is
15.9kg. As has been discussed in the previous sections, thasesy@etermined under the
uncontrolled scenario) are used as the nominal values éondhmalization of the control
objectives.

For theTTS controlled Scenario S the weight$ in (5.16) are set tg; = 1 and¢, =
(3 = ¢4 mpL = Ca, 71, = (5 = 0. In the third Scenario § only the total emission(E)
is taken as MPC control objective. In this case (Scenag)o tBe weights aré; = (3 =

2In this simulation we did not take the variation of the contirgbut into account. Thus, the weigljg
corresponding to the variation in control input is set todge= 0. In hindsight, it is better to consider non-
zero weight. In the subsequent sections non-zero weiglihévariation of the control inputs are considered.
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Table 5.1: Simulation results for Case study A. The valusslinthe brackets indicate the
relative change of the performance criteria as comparedhéouncontrolled Sce-
nario S. Negative values indicate a decrease (i.e., improvemeribe value of
the performance criteria, while positive values indicateilacrease in the value
of the performance criteria as compared to the uncontrofleenario.

Performance Criteria

Scenarios TTS[Vehh] TE [kq]
S;: Uncontrolled 2142.3 15.907
S: TTS 1687.7 (—=21.2%) 16.131 (+1.3%)
S;: TE 2167.2 ( +1.2%) 14.657 (—7.6%)
S, TTS + TE 2037.9 ( —4.9%) 14.747 (—7.6%)

CampL = G4 TpL = (5 = 0, (2 = 1, co = pmc = pno, = 1, anduco, = 0. For the last
Scenario 9, where a weighted combination of ti&l'S andTE is considered, the weights
aresetta; = ¢ =1, = ¢ampr, = G, o = (5 = 0, pco = prc = pno, = 1, and
tco, = 0.

The simulation results are listed in Table|5.1. Moreovehld®.1 provides the relative
change of the performance indicators of the different @iletd scenarios as compared to
the uncontrolled Scenario, SThese values are computed as

Ip _ Pcontrolled — Puncontrolled (517)

Puncontrolled

wherepuncontrollea denotes the value of the performance criteria {TTS, TE} for the
uncontrolled scenario an@.untroned 1S the value of the performance critegidor the con-
trolled scenarios.

Under the considered traffic conditions, the results in &bl indicate that when the
objective of the controller is to reduce the travel time (&u® S), the MPC controller
reduces the total time spent By.2% (as compared to the uncontrolled Scenariyp &
the expense of increased emissionsit®/%. However, when the objective of the MPC
controller is to reduce total emissions (Scenarid, $he total emissions are reduced by
7.6% relative to the uncontrolled scenario. But the total timergps increased by.2%.
These results indicate that a control strategy that foceiglesr only on the total time spent
or only on the total emissions may impact the emissions otrthe! time negatively. On
the other hand, in particular in this case study, when theatlvg of the controller is set
to be the weighted sum of total emissions and total time s{@s#nario g), the controller
results in an improvement of the total time spent and totakgions by4.9% and 7.6%
respectively as compared to the uncontrolled scenario.

The variation of the traffic densities and speeds for the &ten S, S; and S over the
whole link are depicted in Fi§. 5.5, Fig. 5.6, and Fig. 5. pezgively. Recall that under the
uncontrolled Scenario;$the shock wave created around the titne 0.25 h propagates
through the entire link upstream from segméftto segment (see Figl 5.4). However,
when the MPC controller is implemented to reduce the traxe {Scenario § the shock
wave is reduced and dissolves in time as it propagates apsifgee Fid. 5.5), i.e., the con-
troller creates a relatively smooth traffic flow. Moreovédre tpeak of the shock wave at
segmentl2 of Scenario $is less than that of Scenariq .SThis shows that the proposed
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Figure 5.6: Density and speed profiles of the traffic flow urifiBrcontrolled Scenaricbs
of Case study A. The arrows indicate the driving direction.

MPC controller is able to avoid the appearance of the shoalesvin the uncontrolled sce-
nario. However, this is at the expense of increased emis¢sae Table 5/1). In Scenarig,S
the MPC controller has reduced and smoothened the spaaespead and it has increased
the density. But, since the emission reduction resultioghfthe homogenized space-mean
speed is over-compromised by the increase in emissiontirggfiom the increased density
(number of vehicles), the net effect has resulted in in@gastal emissions.

Fig.[5.6 shows the density and speed profiles for the scemdrawe the objective of
the MPC controller is to reduce only the total emissionshdligh the differences of these
profiles from the uncontrolled case are not significant, cere see that the speed under
the Scenario $(i.e., the controller focusing on the reduction of total ssivns only) is
lower than under the uncontrolled case (Scenayio 8s a result the travel time has been
increased while the emissions have been reduced (see Tahlérbthis case (ScenarigB
the MPC controller has slightly improved the shock wave b emission levels), has
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Figure 5.7: Density and speed profiles of the traffic flow urti@&S + TE-controlled Sce-
nario S, of Case study A. The arrows indicate the driving direction.

reduced and homogenized the higher speeds (reduces emlsgits), and has increased
the density slightly (increases emission levels) as coatptr the uncontrolled case. Thus,
as a net effect, the controller results in reduced total gions.

Fig./5.7 presents the density and speed profiles for the sodnavhich the objective
of the MPC controller is to reduce both the total emissions tatal time spent (Scenario
S,). The figure and the values in Table 5.1 of the scenario shawthie MPC has offered
a balanced trade-off between reducing the total emissiodste total time spent. Fig. 5.7
shows that the shock waves get reduced as compared to thatrolleal scenario. The
trade-off between the total time spent and the total emisséan be adjusted by changing
the weight of the performance criterion in (5.16). One cantbat the total emission¥'E)
for Scenario $and S are almost the same, while the total time sp&it'§) are different
(see Tablé 5.1). Since the optimization process is a nowexoproblem, it is possible to
have multiple local minima. As a result, if the MPC controlfecuses only on thd'E,
it may not compromise small loss AE that could result in bettéf'T'S. However, with
the addition of 'T'S on the cost function of the controller, the controller caaksgolutions

(local minima) that can reduc&TS while still reducingTE. Scenario $ shows such
situation.

Case study B

In this case study, two traffic control measures are consijeiz. variable speed limits and
ramp metering. A simple freeway network simildo the network considered in [75, 76]
is used for this case study (see Fig. 5.8). The network ctsnsfone mainstream freeway
link with two speed limits and one metered on-ramp. The ongrés located at a distance
of 4 km from the mainstream origin of the freeway link, and it haspacity 02000 veh/h.
The mainstream freeway link has two lanes with a capaci316f veh/h each. Segments
3 and4 of the freeway are equipped with variable message signsengpaed limits can
be displayed. The outflow at the end of the freeway is consttléw be unrestricted. It

3In [75, 76], the considered freeway network has been useefdiace the travel time using MPC. In this case
study the same network is considered to reduce travel times&mgs and fuel consumptions using MPC.
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Figure 5.8: A6 km freeway with metered on-ramp and two dynamic speed lowiitsidered
for Case study B.
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Figure 5.9: On-ramp demand (dashed line) and mainstreamagiein{solid line) profiles
considered for Case study B.

is assumed that the queue length at the on-ramp may not ex6eeathicles, in order to
prevent spill-back to a surface street intersection.

The network parameters used for this case are the same amuBask study A of this
section, except that the on-ramp model parametérs 0.0122 and the desired speed is
10% higher than the displayed speed limit, i.e., the driversicampliance factor ig = 0.1.
These values are based on [75, 76]. The controller samphmg ¥, is again chosen to
be 1 min. The prediction horizon and the control horizon of the ®1&e selected to be
respectivelyN, = 15 (corresponding td5 min) andN, = 7 (corresponding t@ min) as
used in|[75].

To examine the effect of the combination of variable spesqtdi and ramp metering
typical demand profiles are considered for the mainstreaginand the on-ramp (see Fig-
ure 5.9). The mainstream demand has a constant, relatiggiyidvel and a drop aftexrh to
alow value in a time span ab min. The demand on the on-ramp increases to near capacity,
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Table 5.2: Simulation results for Case study B. The valutisatbracket indicate the relative
change of the performance criteria as compared to the umothed Scenario $.
Negative values indicate a decrease (i.e., an improvenierttje value of the
performance criteria, while positive values indicate anrease in the value of
the performance criteria as compared to the uncontrollezhseio.
Performance Criteria

Scenarios TTS[vehh] — TotalNO,[kg] _ TFC[I

S;: Uncontrolled 1459 8.719 6108

S,: TTS 1247 (—14.6%) 8.288( —4.9%) 5274 (—13.7%)
S;: TTS + TFC 1257 (—-13.9%) 8.147( —6.6%) 4934 (—19.2%)
S, TTS+NO, 1412 ( —3.2%) 7.654(—12.2%) 5290 (—13.4%)
S5: TTS + TFC+NO, 1336 ( —8.5%) 7.786(—10.7%) 5088 (—16.7%)

remains constant far5 min, and decreases finally to a constant low value.

For the given demand profiles one uncontrolled (Scenafi@&d four controlled (Sce-
narios $ to S;) situations are compared. Scenarip IS considered as a benchmark to
compare the results of the simulations when an MPC contrislienplemented. For all the
controlled scenarios, in order to give less emphasis todhiation of the control input, the
weight corresponding to the variation of the control ingaté5.16) is taken to bés = 0.4
(asin [75, 76]). The following performance criteria are siolered for the MPC controller
in the controlled scenarios:

S,: Total time spent (i.eg; =1, (2 = (3 = (4, mpL = (s, o1, = 0),

S;: Total fuel consumption and total time spent (i.€.,= ¢3 = 1, (o = {4MpL =
CarpL = 0),

S,: Total NO, emissions and total time spent (i.€, = (2 = 1, (3 = (4 mpL =
¢4, toL = 0, andpco = puc = pco, = 0, uno, = 1), and

S5 Total fuel consumption, total NOemissions, and total time spent (i.&,, = (>
¢3 =1, &,mpL = Cu,tor = 0, co = pre = pco, = 0, anduno, = 1).

Table 5.2 gives the simulation results of the uncontrolietl$ation (Scenario § and
the controlled simulations (Scenariogs ® S). Moreover, the table gives the relative
change as defined in (5.17) withe {TTS, TFC,NO,}. When the MPC controller is
implemented (Scenarios $0 S;) the values of all the performance indicators are reduced
by a certain amount compared to the uncontrolled situaBemthe reduction of the respec-
tive performance indicators is dependent on the objecfitteeccontroller. As can be seenin
the table, when the objective of the controller is to redine=ltT'S (Scenario §), theTTS
is reduced byl 4.6%. Moreover, the total NQemissions and the total fuel consumption are
reduced byt.9% and13.7% respectively. This indicates that under the given traffimded
and traffic scenario, reducing tH&I'S can also help in reducing the total N@missions
and the total fuel consumption.

When the objective of the controller also includes the tatal tonsumption as well as
the TTS (Scenario 9), the results fofl' TS differ slightly compared to Scenarig, Swhile
the total fuel consumption shows a significant reduction.f@&Gcenario $ more fuel is
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saved by making a small sacrifice in tH&'S that can be saved when onlyTS is the
control objective (Scenario,d

In Scenario $ the objective of the controller is to reduce the total Némissions and
the TTS where both criteria are weighted equally. In this scenatie, TTS does not
show a significant improvement compared to the uncontrateshario. On the other hand,
the total NQ. emissions decrease significantly. Moreover, we can sedghbabtal fuel
consumption is reduced ly.4%, which is less than the improvement in ScenarjoBhus,
although the combination of a larg&fT'S and more fuel consumption indicates inefficient
driving behavior in terms of the economic performance iattics (travel time and energy
consumption), there is a positive impact on the Ngbission.

Scenario § encompasses the concerns regarding the travel time, ecengymption,
and the environment, as it addresses all three performawieators by weighting them
equally. The simulation results in Table 5.2 show that irs ttise the MPC controller
achieves a balanced trade-off between total time spentptakfuel consumption, and the
total NO, emission. As can be seen from the table, the three perfomriadicators are re-
spectively improved b®.5%, 10.7%, and16.7%. Fig./5.11 also provides more information
on the states of the system when the objective of the coetri@lito address the total fuel
consumption, total NQemission, and total time spent.

The action of the MPC controller in Scenarig &n be more clear when we compare
Fig.[5.10 and Fig. 5.11. Fig. 5.10 and Fig. 5.11 depict thifi¢ratates (density and space-
mean speed), the queue length (at the on-ramp and mainstiégins), the flows at the
on-ramp and mainstream origins, and the control inputsy@niable speed limits and ramp
metering rate) of the traffic system under Scenaripar®l § respectivel§. The dynamics
of the queue length in the Fig. 5.11 is different than in Fig.0b6 This can be explained
as follows. Since the initial speed and the number of theckesiin the freeway origin is
larger than the initial speed and the number of the vehidléiseaon-ramp, the emissions
and fuel consumption of the vehicles at the freeway origilh kave more effect on the
value of the control objective function than their waitingé or than the emissions and
fuel consumption of the vehicles at the on-ramp. Thus, tmgrotler tries to avoid a queue
on the freeway origin without violating the on-ramp queusgld (see Fid. 5.11). This has
resulted in frequent fluctuation of the control inputs. Téés be seen in Fig. 5.11, where
the control input fluctuates during the simulation periodiere the queue lengths fluctuate
(i.e., betweer.5 h and2 h of the simulation periods). In Scenarig & queue can develop
in the mainstream origin under two conditions. One possibledition is when the queue
length at the on-ramp has reached its maximum limit (the s@sve Figl 5.11). The second
possibility is when the contribution of the queue onTHES is the same whether it is formed
at the on-ramp or at the mainstream origin. But if in the long theTTS can be reduced
by forming a queue at the mainstream origin, the controlerlet a queue develop on the
mainstream origin. This can be one of the reasons for thedtbom of the queue in Scenario
S, while the queue in the on-ramp is below its limit.

4Since detailed results of the MPC controller under diffemtrol performance indicators are given in Ta-
ble|5.2, the evolution of the traffic states of all the scesmis not presented. As an illustration and as good
representatives, Scenarios &d $ are chosen and the evolution of the traffic states of thesmsios are respec-
tively depicted in Fig. 5.10 and Fig. 5.11, because Scer&ishows a traffic problem where most traffic control
approaches focus on and ScenarcB8ows the potential of MPC to provide a balanced trade-dif®éen possibly
conflicting traffic performance criteria.



5.5 Case studies 103

3 N = O
E 0N E. \\\\\\\\\\
\\\\\\§§\\\\\\\%\§\\\\\\ . ész
: AN \\\\\\\ \\%\\
Qé ¢ 25 ¢ \\\\\\ \\\\\\\\
S;;nt \\\ s S;;nt .
Time [h] T Time[n]
(a) Density (b) Speed
H i
:rime [h] 2 D ;'ime [h]
(c) Queue length (d) Origin flow
1
:rime [hl]s 2 . D ” jl'ime [hl]s
(e) On-ramp metering rate (f) Variable speed limits

Figure 5.10: The trajectory of the traffic states and the corgignals of Case study B when
the objective of the controller is reducing the total timesponly (Scenario
$;). The arrows indicate the driving direction.

In the two case studies presented above, macroscopic tnadfilels are used. However,
similar conclusions are reached using microscopic moaetsir papers [207, 209, 210].
To avoid presentation of similar concepts and to focus omta@ relevant points, those
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Figure 5.11: The trajectory of the traffic states and the corgignals of Case study B when
the objective of the controller is to minimize the total faehsumption, total
NO, emissions, and total time spent (Scenari. SThe arrows indicate the

driving direction.

results are not discussed in this thesis. Moreover, the MiCoach is so generic that it
can be applied with other complex and extensive models. &jethcoughout this thesis,
the simulations are based on the macroscopic models, letidagases the computational
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demands of the approach.

5.5.2 Reduction of area-wide emissions

In the previous section, the use of MPC for the reduction affitr travel time, emissions,
and fuel consumption was presented. Two control measusdaple speed limits and ramp
metering, were considered. In this section the dispersidheoemissions to a given target
zone is considered as an additional performance criteffistnedVIPC controller. Two case
studies are presented. In the first case (Case study C), arigble speed limit is used as
a traffic control measure. Moreover, the dispersion of eimissunder constant wind speed
and wind direction is considered. In the second case (Casly &), an additional traffic
control measure, ramp metering, and variable wind speedarttidirection are considered.

Case study C

In this case study, & km three-lane freeway stretch, which is sectioned intoverelqual
segments of sizékm is considered. Each section of the freeway is equippduawariable
speed limit control (see Fig. 5.12). Since the intentioridltistrate the use of MPC with
multi-objective traffic control performance criteria, foomputational reasons, the speed
limits are coupled in groups of four, where each group digptae same speed limit at the
same time. In general, it is possible that the performanddRE can decrease due to this
grouping. For this case study, since the main goal is to dstrete the potential of MPC,
we allow a small loss in performance for increased computapeed.

In this case study, a protected zone (e.qg., school) withea@®00 mx 200 m is located
at 2km north ands km east of the origin of the freeway (see Fig. 5.12). The fageand
its neighborhood are subject to a wind blowing with sp&gd= 8 m/s and with an angle
¢ = m/3 radians with respect to the freeway as shown inFig. 5.12./5-t depicts the
traffic demand at the origin of the freeway.

The traffic flow, emissions, and dispersion of the emissiditiseofreeway considered are
modeled using the METANET, VT-macro, and point-source elisipn models presented in
respectively Sections 2.3, 3.4, and|4.2. The freeway paembave the same values as in
Case study B of Section 5.5.1.

An uncontrolled Scenario;Sof the traffic setup is used as the benchmark to compare
the performance of the MPC controller for different traffierfprmance criteria. For the
controlled Scenarios,Sto S5, a multi-objective performance criterion defined [in (5,16)
with (3 = (4oL = 0, (5 = 0.01, pco = puc = pNo, = 1, anduco, = fifuel = 01
considered throughout this case study. By varying the vigigh (>, and¢s mpr in (5.16),
the following control objectives are considered:

S,: Total time spent (i.e4; = 1 and(s = (3 = (4 mpL = Ca,rpL = 0),
S;: Total emissions (i.e¢; = 1 and¢; = (3 = (4, mpL = ¢4, oL = 0),
S,: Dispersion level (i.egs vpr, = 1 and¢; = ¢ = (3 = (4, o1, = 0), and

Ss: Total time spent, total emissions, and dispersion leveh wit= 10, (; = 1, (3 =
Ca,ror, = 0, and¢y mpr = 5.
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Figure 5.12: A12 km 3-lane traffic freeway considered for Case study C. The frgewa
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Figure 5.13: Traffic demand profile for Case study C.

The control time stel. = 2min, the prediction horizonV, = 7 (corresponding to
14 min), and the control horizoW. = 5 (corresponding td0 min) are used. The duration
of the simulation isl h with a simulation time step siZ€ = 10s.

The simulation results for the different scenarios are labd in Table 5.3. The first
row of the table shows the results of the simulation for a egsere no controller is imple-
mented. Under this scenario, the evolution of the disparsidhe emissions of the freeway
to the school area is depicted in Fig. 5.14 (solid line). Téwosd to the fifth rows of the ta-
ble provide the simulation results under the controlledhades and the relative percentage
change as compared to the uncontrolled scenario using firession given i (5.17) with
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Table 5.3: Simulations results under uncontrolled andeddiit traffic control objectives of
Case study C. The values in brackets indicate the relatiemgh of the per-
formance criteria of the controlled scenarios comparedht® tincontrolled sce-
nario. Negative values indicate a decrement (i.e., an img@neent) of the perfor-
mance criteria as compared to the uncontrolled scenariadjeypositive values
indicate an increment in the performance criteria.

Performance Criteria

Scenarios TTSvehh]  TE[kg] MDT [1g/n?]
S;: Uncontrolled 1488.8 133.3 56.3

S,: TTS 1100.7 (=26%)  162.5 (+22%)  62.1 (+10%)
S, TE 1783.9 (420%)  64.8(=51%) 19.3 (—66%)
S,: MDL 1783.9 (420%)  64.8(=51%) 19.3 (—66%)
S;: 10TTS + TE + 5MDL  1382.6( —7%)  85.6(—36%) 34.1(—39%)

p € {TTS, TE, MDL}.

The levels in Fig. 5.14 have the same initial value for allshenarios. This is because
the initial emission levels of the freeway cannot be affédig the controller. Hence, only
the impact of the emissions emitted after the start of theikition can be affected.

When the objective of the controller is to reduce THES (Scenario $), the dispersion
level is smaller than in the uncontrolled case only for aliéuhin (see Fig. 5.14). However,
after abouB0 min of the simulation time, the dispersion level of th&'S controlled case in
the target area becomes higher for the rest of the simultitimen As a result, in Table 5.3
we see that the maximum dispersion ledMDL and the total emissior§E for the TTS
controlled case increase b9% and22% respectively compared to the uncontrolled case.
However, thel'TS is improved by26% relative to the uncontrolled case. This indicates that
reducing the travel time can have a negative impact on theewi@e emissions. Obviously,
the negative impact of the improved travel time on the emissican be accounted to the
increase in speed of the vehicles as can be seen ih Fig. 5.15.

When the objective of the controller is to reduce either e (Scenario $) or the
MDL (Scenario $), the results are almost the same (see Table 5.3 and Fig. Snlthese
two scenarios the travel time is increased20% compared to the uncontrolled case. But,
the TE and theMDL are respectively reduced by abdiit% and66%. Moreover, the
evolution of the dispersion levels on the target zone is Engdroughout the simulation (see
Fig. 5.14). This shows that the emissions and dispersicgidenre lower when the speed
of the vehicles is lower (see Fig. 5.15), which is consisteith the emission rate models.
On the contrary, the travel time increases as the speed ofethieles decreases. So the
results are consistent with the traffic flow and emissionttagery. For thél['T'S controlled
case (Scenarioo® and around).45 h, the emission levels at the target zone have abruptly
increased (s€€TS controlled scenario of Fig. 5.14). The abrupt increase iission levels
is caused due to the abrupt increase in the speed of vehicEe®w@nd0.3h (seeTTS
controlled scenario of Fig. 5.15). Due to the distance ofténget zone from the freeway
(2km from the center) and due to the low wind spe8&an(s), the high emission levels
released from the freeway are experienced after abdéth at the target zone. Since the
significant increase in the average speed at abdiit is accompanied by a significant
reduction in the number of vehicles (see Fig. 5.15), the gionis have not shown significant
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Figure 5.14: Evolution of dispersion levels for the uncotied and the controlled scenarios
of Case study C.

change.
Finally, all the performance criterid ('S, TE, andMDL) are combined in the objective
function of the controller as in the last row of Table 5.3. listcase th&'TS is reduced by
7% compared to the uncontrolled scenario. Furthermorel'thandMDL are respectively
reduced by36% and39% relative to the uncontrolled scenario. However, the rédndn

percentage of the performance criteria is less than theasiocsnwhere the objective of the
controller is focused only on either of these measures.

In general, the simulation results demonstrate that virigieeed limits can be used in
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Figure 5.15: Evolution of average speed, (k) and average density., (k) over all the
segments of the freeway for the uncontrolled and the cdettracenarios of
Case study C.

some cases to alleviate, in a balanced way, the problem afs@ni and of lost time due to
traffic jams. Note, however, that there are also cases wheredriable speed limit is not
effective, e.qg., if all segments of a traffic freeway are a@sigd [75].

Case study D

In Case study C, variable speed limits are applied to redaselttime, emissions, and the
dispersion of emissions into a given target zone. The poorce dispersion model with
constant wind speed and wind direction has been used. Inutient case study, ramp
metering traffic control is also taken into account. Moreptkee wind speed and wind
direction are assumed to vary in time. 1& km three-lane freeway stretch with one on-
ramp is considered. The freeway is divided iibsegments with the on-ramp at the sixth
segment from the left as depicted in Fig. 5.16. Each segni¢mé dreeway is equipped with
a variable speed limit. In this case study, the variable dfiegts are grouped in groups of
two such that each segment in a group will have the same speiégigns. This implies
the MPC controller optimizes only speed limits and on-ramp metering rate. So, in total
there arer control variables at each control time step.

The traffic flow demand at the mainstream origin and the orpramigin is shown
in Fig./5.17. In addition, the freeway is subject to a windhaépeed and direction (see
Fig./5.16) given by

Vi (k) = 7+ 2sin(0.0057k + 7/6) sin(0.017k) (5.18)
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Figure 5.17: Traffic demand flow at the mainstream and on-ranigins for Case study D.

p(k) = 2% + %COS(0.00‘lﬂ'k) (5.19)
where the wind speelf,, (k) is expressed in m/s and the wind direction (ang€}) in
radians.

Similar to Case study C, a multi-objective performancescidin that accommodates the
emissions, dispersion of emissions, and travel time isidensd in addition to the uncon-
trolled scenario. The performance criteria for this casdystre the same as in Case study
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Table 5.4: Simulations results under uncontrolled andeddiit traffic control objectives of
Case study D. The values in the brackets indicate the relatiange of the per-
formance criteria of the controlled scenarios comparedhte tincontrolled sce-
nario. Negative values indicate a decrement (i.e., an im@neent) of the per-
formance criteria as compared to the uncontrolled scenanibile the positive
values indicate an increment of the performance criteria.

Performance Criteria

Scenarios TTSvehh]  TE[kg] MDT [1g/n?]
S;: Uncontrolled 1362 127.5 163.2

S,: TTS 692 (—49%) 1482 (+16%) 160.6( —1%)
S, TE 1621 (+20%)  65.6 (—49%)  87.7 (—46%)
S,: MDL 1606 (£15%) 718 (—44%) 1047 (—36%)
Ss: 10TTS + TE + 5MDL 749 (—45%)  109.4(—15%)  142.6 (—13%)

C. Moreover, the parameters of the MPC controller are setdhee as that of the MPC con-
troller in Case study C. For all the five scenarios (one urrotiet! and four controlled), the
case study is simulated for an hour. The simulation resaitthese scenarios are tabulated
in Table 5.4.

Table 5.4 compares the performance of the MPC controlldr véispect to the uncon-
trolled scenario using (5.17) withe {TTS, TE, MDL}. The performance measures con-
sidered are the total time spefit]S), the total emissionsI{E), and the maximum disper-
sion level MDL) at the target zone. As can be seen, when the objective obtiteodier is
theTTS, theTE is worsened and theIDL in the target zone is almost unchanged as com-
pared to the uncontrolled scenario. Similarly, if the objecof the controller is to reduce
the TE or theMDL, the TTS gets worse than for the uncontrolled scenario. But there is
an important difference between the two scenarios. TH8 gets much worse when the
objective of the controller iT'E than when it isMDL. Moreover, theMDL in Scenario $
is larger than th&IDL in Scenario $, which in fact should not be the case (see Remark 5.3
for possible reasons).

Remark 5.3 In general, theM DL is expected to be lower when the objective of the con-
troller is reducingVIDL than when the objective of the controller is reducinig. However,
the results in Table 5.4 show the opposite. This can happewéopossible reasons, viz.

1. When the prediction horizon of the MPC controller is nog&aenough to capture the
important dispersion dynamics. Under such cases, thectsaffiitions that give better
performance for the prevailing traffic situation may havgatee impact on the future
traffic conditions. This is because that since the traffitesthanges at every control
time step and since the controller uses this state as aalioithdition to predict the
future traffic states, any change to the state (which can bd fr the current traffic
situation) may lead to a situation that may turn out to be lmadHe future traffic
performance.

2. The second reason is due to the optimization processe 8ircoptimization is non-
linear and non-convex problem and since the control objesfior the two cases have
different non-linearity and non-convexity, it is possithat theMDL can be minimal
under Scenariothan Scenario S
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Figure 5.18: Evolution of dispersion levels for the conedland uncontrolled scenarios of

Case study D.

O

More can be observed by also looking into the evolution ofdispersion levels. The
evolution of the dispersion level in the target area is plbih Fig/ 5.18. The figure depicts
the dispersion level for the different controlled scensiaad for the uncontrolled scenario.
To have more insight in what is happening the space-meard sge¢be complete freeway

in shown in Fig[ 5.19.

From Fig/ 5.19 one can see that the two shock waves of thectfiaffi observed in the
uncontrolled case are dissolved when the objective of timralter is to reduce only the
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total time spent (Scenario 5 Under this situation the dispersion level becomes everemo
worse than for the uncontrolled case (see [Fig. 5.18), iespite the fact that the maximum
dispersion level¥IDL) at aboutt = 0.53 h is less than the uncontrolled scenario, it can be
seen that the dispersion levels during most of the time utidslf' TS controlled case are
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higher than for the uncontrolled scenario. However, if thgctive of the controller is set to
reduce the maximum dispersion level, one sees thdl'the of the traffic flow gets worse
by 15% (see Fig. 5.19 and Table 5.4), but the dispersion level isaed by36%.

When the objective of the controller is the weighted sum of TH&, TE, andMDL,
theT'TS is improved relatively to both the uncontrolled scenarid smthe scenario where
only TE or MDL are the objective of the controller. Moreover, th& and MDL are
also reduced compared to the uncontrolled scenario. Howihar decrement relative to
Scenario $(TE controlled) or Scenario SMDL controlled) is small. In general, it can be
observed that as the weights of the performance indicatgs the controller can shift its
focus towards the improvement of the indicators with highierghting factor. In this way
the model predictive controller can be used to specificatigrove the traffic performance.

5.6 Conclusions

Model predictive traffic control is a potentially very prasimg control approach since it is
able to use non-linear and complex system models, it takds dystem and operational
constraints into account, and it makes decisions basedeoeutiution of the current and
the future possible traffic states. In many papers in thealitee it has been shown that the
model predictive control, in particular model predictivaftic control, is able to optimally
coordinate different control measures and to provide {syitinal solutions to improve the
traffic flow. In this chapter, a short account on the concept!BC and how it can be used
for traffic control has been discussed.

In addition to the travel time as the performance criteribtraffic controllers, the fuel
consumption and the emissions of vehicles in a traffic nékwand the dispersion of the
emissions to neighborhoods of traffic networks are impaértiaffic performance criteria.
In this context, this chapter has presented how these gieanten be formulated. More-
over, the formulation of a multi-objective criterion foreatMPC traffic controller has been
discussed.

Finally, four cases studies, two that focus on the reduotibnombined travel time,
emissions, fuel consumption, and two that focus on the témluof combined travel time,
emissions, and dispersion of emissions have been preselméke case studies, the use
of variable speed limits alone and variable speed limitsgrated with ramp metering have
been illustrated. The case studies demonstrated that MRGlésto provide a balanced
trade-off between the travel times, emissions, fuel coqdiam, and dispersion of the emis-
sions to a target zone.

However, the simulations in all the cases consumed long atatipn times, which
makes the control approach intractable for real-time appbns. So an improvement in
the computation time is required. The following chapted wiesent a version of the MPC
controller that has lower computation times which makesitteble in practice.



Chapter 6

Receding-Horizon Parametrized
Control

s has been indicated in the previous chapter, Model Predi€ontrol (MPC),

and in particular, non-linear MPC has certain disadvargadée main disad-

vantage emanates from the non-linear and non-convex @gatiion involved.

Usually, in practice the computation time exponentiallgreases as the num-
ber of control inputs or the prediction horizon increases. alleviate the computational
problems the introduction of a control horizon or blockiragtbeen discussed in Chapter 5.
However, these approaches do not bring down the computttianto the level at which
MPC can be applied for freeway traffic in practice, unlesspddormance is compromised
significantly.

Another interesting approach that can reduce the computéithe considerably is the
parametrization of the control inputs (by a smaller numifgzazameters than the number
of control inputs), so that the controller optimizes a sepafameters instead of optimiz-
ing a sequence of control inputs as in the case of convehtMRE. In this approach the
parameters are optimized in such a way that a given perfarenariterion is improved in
a receding horizon fashion. To do so, the control inputs aseiibed using certain control
laws that are dictated by the values of the parameters.

This chapter then presents parametrized MPC, more spdigifiedied Receding Hori-
zon Parametrized Control (RHPC). This chapter begins byigirtg some introductory
notes on parametrized MPC in Section 6.1. Next, the philogaf the RHPC controller
and its general formulation is elaborated in Section 6.2llofing the design of RHPC
for variable speed limits and ramp metering in Section 6a3ecstudies are presented in
Section 6.4. At the end, the conclusions of the chapter arfopuard in Sectioh 6.5.

Parts of this chapter are published in [216, 217].

6.1 Parametrized MPC
It has been indicated that the freeway traffic system is ceryplon-linear, and time-variant.
Controlling the traffic network to get a system (or user) wptn traffic flow, while at the

same time reducing the externalities of traffic flow (suchrassions and fuel consumption)
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is a day-to-day challenge. In this regard, many studiesftiats on the design of traffic
controllers to improve the traffic flow under certain traffanditions [42, 79, 149, 150] have
been conducted for decades. The freeway traffic controlig8, 79] are designed to avoid
or at least to reduce shock waves on freeways. The freewayotlers designed in [42,
149, 150] are state feedback control policies where thenpeters of the control policies
are determined using off-line optimization approachegtias simulation or historical data
of the given freeway. This means the control policies penfarell for the specific scenarios
they are optimized to. In [104] an optimal open-loop freeveamtroller called AMOC
(Advanced Motorway Optimal Control) is proposed. Howetlee, traffic conditions change
so frequently that the performance of the controllers is tim@st often reduced.

An excellent traffic control solution for freeway traffic flems is a controller that
takes the current and future traffic situation into accowmatthat predicts the consequences
of its control actions. One such control strategy, Modetittéve Control (MPC), has been
proposed more than three decades ago [50, 168] and has keasstid in Chapter 5. Recall
that an MPC approach can handle model uncertainties, iaaodstraints, support multi-
objective performance criteria, and can be used with noeali models [35, 116]. Moreover,
in several case studies, MPC has proved to yield significainsgn the performance of the
traffic network [22, 77, 220]. However, it has been pointed that this comes with one
main limitation; the computation time is very large [22, {3¢e also Sectidn 5.6).

Indeed, there are many advancements and efforts descnibieslliterature (e.g., [24, 37,
71,98,111, 179, 183, 189, 195]) to address the computatimligams of MPC in general.
Most available papers in literature deal either with lintxae-invariant systems or specific
classes of non-linear systems (such as linear time-varyimgar parameter-varying, and
piecewise affine systems). However, traffic systems are dotptex and non-linear such
that they do not fall within the specific classes of non-lirgsstems for which the methods
to reduce the computation time have been developed.

In an effort to formulate the model structure of the METANE®ftic flow model
[103, 124, 145, 146] to suit for advanced control approacties authors in [113, 115]
have approximated the METANET traffic flow model by a LinearaPaeter-Varying (LPV)
model. That model has been extended in [213] to include épnissodels in an LPV form.
But the models do not have the provision to use variable slraéd, which is an important
freeway control measure [79, 180]. These models use onlp ragtering as a traffic con-
trol measure. Moreover, the number of scheduling variablédee LPV models increases
as the size of the traffic network increases, which increeesomputation time exponen-
tially. Although the LPV approach may have potential to reglthe computation time with
some errors introduced, the approach requires furthearelse The authors of [69] have
proposed to use a game-theoretic approach digttributedcontrollers to address the com-
putational complexity of MPC for traffic systems. Moreoviar[105, 151] it is proposed to
use a model-predictive hierarchical control approach¢tvis also reported to be computa-
tionally tractable in practice. In [64] it is also proposecapply an artificial neural network
as an offline control approach for optimal freeway traffic tcohinstead of using on-line
optimization.

In this chapter, however, a centralized traffic control apgh that yields fast computa-
tion speeds is presented. A Receding-Horizon Paramet@oedroller (RHPC for short)
is proposed as a traffic control approach that combines thandages of conventional
MPC (i.e., prediction, adaptation, and handling constsaimulti-objective criteria, and
non-linear models) and the advantages of state feedbadkotiers (i.e., faster computa-
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tion speed and easier implementation). The control apprdaes not impose any specific
structure on the traffic models. This idea is related to thupatrization concept intro-
duced by [71, 98, 111, 179]. In general, depending on thenpetrization the proposed
RHPC approach can introduce loss in performance relatiits tmunterpart, conventional
MPC.

In the conventional MPC approach the control inputs of agsysire optimized directly.
In parametrized MPC approach the control signals are pareee according to some con-
trol policies (laws) and the parameters of the control pedi@re optimized over a given time
horizon to reduce a pre-defined objective (cost) functidn P8, 111, 179]. Therefore, the
control inputs in parametrized MPC are optimized indirgat opposed to the conventional
MPC approach. The parameters of the control policies campbmized in such a way that
they are constant over the prediction horizon [98, 111, brghey can be considered to
be time-varying over the prediction horizon [71]. In adalitito the fact that the approaches
of [71,98, 111] 179] are not well developed to handle the gdrdass of non-linear sys-
tems (such as traffic systems), all the parametrizationequtsdn [71, 98, 111, 179] revolve
around the transformation of the non-convex optimizatiombfem of conventional MPC
into a convex optimization problem through the parametioreof the control inputs. This
means that the number of parameters can be (and usuallysalErger than the number
of control inputs of conventional MPC. So if the parametiiza cannot transform the opti-
mization into a convex problem, the computation time of te@Awill not be reduced.

But if the parametrization is defined appropriately and & tumber of parameters that
describe the laws of the control signals is smaller than thmber of control signals, it is
possible to reduce the computation time of the MPC contreliéhout necessarily trans-
forming the MPC optimization problem into a convex problemhich is the approach
proposed in this chapter. This means that for the same probkt-up, in general the
parametrized MPC results in lower computation times tharveotional MPC. However,
note that since the space of the control signals is in priacgduced due to the parametriza-
tion process, in general the performance of parametrize@ MBy be less optimal than that
of conventional MPC.

6.2 Basic concepts of RHPC

In this section the proposed Receding-Horizon ParametiCantrol (RHPC) is discussed
in detail. First, the general philosophy of the RHPC trafiimicoller is discussed. The
different possible variants of the controller and theiatise computation speeds under the
same conditions are examined. Next, the general descriptiohow the method can be
employed to design dynamic traffic control laws is put fordvar

6.2.1 Philosophy of RHPC traffic controller

The concept of RHPC can be illustrated with the schematigrdia depicted in Fig. 6/1.
The system block represents the real traffic system whera¢lasurement of the traffic state
(such as the speed, density, and flow) is fed to the RHPC dtamtréhe RHPC controller
contains two layers: the feedback layer and the optimindtiger. The feedback layer has
a control law block that receives the traffic state and deteathe value of traffic control
measures at every control time step (with control time step siz& ;). The control laws
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Figure 6.1: Schematic representation of model-based liegekorizon parametrized con-
trol (RHPC).

of the feedback layer are described by a set of parametecdhvané updated every control
(parameter-update) time stépwherek. ;(k.) = M.k, with M, being a positive integer.

The optimization layer contains the model of the traffic sgstthe optimization tool,
and the control law (which is the same as that of the feedlma) blocks (see Fig. 6.1).
Similar to the conventional MPC controller, with the mea&snents of the traffic states at
control (parameter-update) time stepas the initial states of the model, the RHPC con-
troller predicts the evolution of the system states usirgsystem model (such as traffic
flow, emissions, and dispersion models). The optimizatiookoptimizes a set of param-
eters that describe the control policy in such a way that &fimeld control objective (cost)
function is reduced over the prediction period while thestmints are met. The optimal
set of parameters is fed to the control law block. The coménwlblock uses the parameters
along with the measured and predicted traffic states fronmibdel to generate the traffic
control measures (such as speed limits, ramp metering aateroute guidance signals).
The parameters are optimized and generated as if they aralied to be used for the whole
prediction horizon. However, the optimization layer of idPC controller applies only the
parameter values of the first control time step to the feddlzger. At the next control time
step, the prediction horizon shifts one control time steyl #the RHPC controller repeats
the optimization process all over again, which is calledrdeeding horizon concept (see
also Section 5.1).

Although RHPC and conventional MPC are based on the sameptrbey have four
major differences. First, the number of optimization vhles is different. Due to the
parametrization RHPC is designed in such a way that the nuofligarameters required
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to describe the control laws is smaller than the number afrobimputs. Note that in RHPC
the parameters of the control laws are the optimizatioratdes while in conventional MPC
the control inputs are the optimization variables. Secantike the conventional MPC con-
troller, the RHPC controller does not necessarily optintimeparameters every control time
stepk.; as does conventional MPC (i.e., the control (parameteaig)dime step siz&.
of the optimization layer is in general greater than the mdritme step sizelt ;). The
optimization of the RHPC controller is undertaken at evesgtool time stepk., which is
related to the control time stefp.; ask.i(k.) = Mik. where M, is a positive integer.
Third, due to the parametrization with few number of parargtthe range of the control
signals of RHPC is reduced as compared to conventional MP@i¢ context RHPC is
more conservative than conventional MPC, since in genbeafull space of optimal con-
trol inputs cannot be reached from the parameter space &®®i$7.1). This may result
in a loss of performance compared to conventional MPC. Rpsihce the number of the
optimization variables of RHPC is smaller than that of cartiemal MPC, the computation
time of RHPC is smaller than the computation time of converal MPC. In the ensuing
sections the difference between conventional MPC and RHit®@avmore clear.

Remark 6.1 From now on, for the sake of simplicity of the exposition, wstjtake the
control (parameter-update) time step siZeof the optimization layer to be equal to the
control time step siz€ ; of the feedback layer. However, expansion of the subsequent
theories to the case whefg # T, ; is straightforward. O

The computation time of RHPC depends on the way the parasnateallowed to vary
over the control horizon. This can be realized in three diffé ways:

1. Control policies with constant parameter§his option is used in most of the literature
[71,198, 111, 179]. In this approach a state feedback cdatr@tontrol law) with
constant parameter is designed. So in this option (conttitips with constant pa-
rameters), the parameters of the control law do not changetbe prediction horizon
as shown in Fig. 6.2(a). Although the parameters are kegtaohthroughout the pre-
diction horizon, the control inputs in general vary due te Hariation in the states of
the system (see Fig. 6.2(a)). Thus, the number of parammtershe entire prediction
horizon is small, which leads to reduced computation timajenin the conventional
MPC approach—if the control inputs have to vary over the mtémh horizon as in
this case—the number of control inputs that have to be opéichincreases propor-
tionally to the control horizon. However, in general, sittleis option of control input
parametrization limits the space of the parameters, itiseovative and could have a
lower performance than the two approaches presented next.

2. Control policies with variable parameter$n contrast to the first option, where the pa-
rameters are kept constant throughout the control horincthjs approach the param-
eters of the control policies vary over the whole controlibam (see Fig. 6.2(b)). So,
both the control input and the parameters vary at the sanee(sige Fig. 6.2(b)). Since
the parameters can vary over the entire control horizorsplaee of the control inputs
is larger than the first option elaborated above. In this@gq the computation time of
the RHPC controller is smaller than that of the conventiddBIC controller provided
that the number of parameters describing the control laiesis than the number of
control inputs of the system. This control approach reguigher computation time
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scheme.

than the first option. However, since it is rich, this optidelgs better performance
than the first option.

3. Control policies with limited parameters variation$o reduce the computation time of
the second option and to relax the conservativeness of gt@fition, one can combine
the two options, which results in a hybrid option called lBiog. There, the parameters
are forced to remain constant during some pre-defined umitornon-uniform inter-
vals over the prediction horizon. In this way, it is possitidind a balanced trade-off
between the performance and the computation time of the Rt¢lR@ol approach.

6.2.2 General formulation of RHPC for traffic systems

Recall that, in general, the traffic system can be descrilyethd systems of non-linear
difference equations given in (5.1). Depending on the moygled, the state vector(-)
represents the dynamic states of the traffic system. For ghearfor macroscopic traffic



6.2 Basic concepts of RHPC 121

models, it contains the average speeds, flows, densitidsg@eue lengths. The variable
u(-) represents the control signals (such as the dynamic spaitd #ind the ramp metering
rates), and the variablg(-) contains the outputs of the traffic system. This could be the
travel time, throughput, and emissions.

In Chapter 5 it has been explained that the sampling (meawsum® time siz€l, and the
simulation time step siz€ are in general different. Moreover, the control time stee $i.
is not necessarily equal to the sampling time step $izdn this thesis, for computational
convenience the sampling time step size and the control sbeye size has been assumed
to be related by, = M; T, for a positive integeM/;. In this thesis the system states and
outputs at every control time stép are used in the formulation of the control policies.
Therefore, we introduce new variahle(k.), y.(kc), uc(kc), andr.(k.) that denote the
traffic system state, output, control input, and refereigmed at control time step.. These
variables are equal to the corresponding system variables\awery measurement time step
ks = M1k, wherek, is the sampling (measurement) time step counter.

Therefore, in the RHPC control formulation, at every cohtiroe stepk. the discrete-
time control inputu.(k.) can be defined as a parametrized function of the measured or
estimated traffic state vectat.(k. — 1), the output vectoy.(k. — 1), and the parameter
vectorf(k. — 1). So, the RHPC control law is in general given by

ek + 1+ j'lke) = f(Zc(ke + j'lke), Ge (ke + 5'ke), 0(ke + j'|kc)) — (6.1)

forj’ =0,1,...,N, — 1, wheref(-) is a user-defined mapping and the k. + j'|k.) and
Jc(kc + j'|k.) denote the predicted values of respectivelyandy,. at time stepk. + j
using the information available at time step

At every control time steg., the RHPC controller collects all the parameters of the
control law (6.1) into a vectoB(k.) = [0 (kc|kc),...,0" (ke + N, — 1|k)] T and solves
the following optimization problem

g(l]gl) J(km e(kc)) = V(.’B(k’c), y(kc)ﬂ e(kc)) (62)

subject to:G (z(ke), y(ke), O(kc)) <0,

Q(x(ke), y(ke), 0(ke)) =0,
system model (5!1) and control law (6.1)

wherex(k.), y(k.), V(-), G(-), andQ(-) are defined in a similar way as in (5.2).

Next, only the first value of the parameter vecfik.), i.e., 0(k.|k.) is implemented
for the traffic system, until the next control time step+ 1, at which the RHPC controller
repeats the above process all over again using a recedirmph@pproach as described in
the previous sections.

Since the RHPC optimization problem is non-linear and nomvex, global or multi-
start local optimization methods are required (see Seétihi3). Moreover, the formulation
of the traffic performance criteria (cf. Section ]5.3) and mi&fin of multi-criteria objec-
tive functions and normalizations (cf. Section 5.4) of epeiformance criterion used for
this RHPC approach are exactly the same as for conventioR&.Nh the sequel the way
parametrized control laws for variable speed limits andgametering can be formulated is
presented.
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Figure 6.3: A freeway link withV' segments and variable speed limits.

6.3 RHPC for variable speed limits and ramp metering

Variable speed limits and ramp metering rates are two ofr#fféct control measures that are
often used for freeway traffic control. In general, traffiattol measures and in particular
variable speed limits and ramp metering are extensivelgudised in [75]. The potential
of these control measures to control and to improve the drfidfiv have been illustrated in
many papers [21, 76-78, 99, 103, 148, 149]. In Chapter 5 sitateo been demonstrated
that the variable speed limits and ramp metering sometiragsbe coordinated in such a
way that the emissions and fuel consumption can be reducdd aththe same time the
traffic flow is improved.

In this section the control policies for variable speed tgrand ramp metering to be
used in an RHPC approach are formulated in general. Fromehergl expression of the
control policies, specific examples are formulated and usetdibsequent case studies. It
is important to note that the formulation of the control pms does not necessarily have to
follow the structures to be presented. The concept disdiissgection 6.2 is so general that
it can be applied to different formulations and traffic cohtneasures.

6.3.1 RHPC for variable speed limits

Although one can design an RHPC controller for any dynanaiffitrmodels, in this thesis
the RHPC controller is designed based on macroscopic motietigally, since speed limits
are used to limit the speed of all vehicles within the samenseg of a link, it is logical
to use the macroscopic variables such as the average spesitydor flow of the vehicles
to design the RHPC controller for speed limit control. Sothis particular case a link
with a number of segments as depicted in Fig. 6.3 is congidefbere are two ways to
control the variable speed limits on a link of the freeway. eQaption is to control the
variable speed limits of each segment independently, amd¢hond option is to group a
number of neighboring variable speed limits together andstign them the same value.
The general strategy to be presented below holds for botbraptHere the former option
will be presented and the second option easily follows.

One of the main causes of traffic jams or shock waves is thedgetaeous traffic den-
sity and speed in the traffic network. Differences in velidpeeds and densities between
segments of a freeway occur so often. This results in freigaeceleration and decelera-
tion of vehicles in the freeway. Then, due to the differencadceleration and deceleration
of vehicles the operational capacity of a freeway is reducBderefore, the intention of
traffic control solutions using speed limits is to obtain loganized traffic flows (such as
homogenized speed and density of vehicles on the freewdB]) so that the desired per-
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formance measure can be met (could be increased flow, redmeisdions, and improved
safety). Hence, the control laws of the variable speed dimésigned below make use of
this discussion.

From traffic theory, it has become apparent that the denbiyery segment is affected
by the density of the downstream segment (cf. (2.18)). ltmadfaupstream traffic density is
low and if the vehicles upstream flow at certain speed to aeddagnstream segment, due
to the perspective of the drivers (despite the speed dogarsiy, the speed of the upstream
vehicles is affected negatively. On the contrary, if the dstream density is low, drivers
tend to increase their speed. Hence, it is important to densie density of the downstream
segment in determining the speed limit of a segment. Assgghigh speed limits while the
downstream segment is congested will not change the spetbé ohicles in the current
segment nor will it improve the flow.

However, density alone cannot describe the flow relatiorhefttvo consecutive seg-
ments. It is also required to use the speed to determine titeotgignal that can produce
the desired flow. In fact, it is logical to take the downstresgraed, because drivers can only
adapt their speeds to the speeds of the vehicles in froneai tirhis means that in addition
to the downstream density, the downstream speed is alsatampon the parametrization
of the control signals. Note however that, the use of thedpaad densities of the down-
stream is not limited only to those of the neighboring segmetne can also use the speeds
and densities of multiple downstream segments as long asutiber of parameters in the
parametrization of the control inputs does not exceed thebeu of control signals. This is
because that the computational advantage of the RHPC appliea in the reduced number
of parameters that has to be optimized. Moreover, it is atssiple to use a larger number
of parameters than the number of the control inputs, if tis¢ dir third options in Section 6.2
are used.

Now, using the downstream speed and density of the traffic Biayeneral approach in
designing the dynamic speed limit controller for a link ofegway depicted in Fig. 6.3 can
be formulated as follows. The dynamic speed limit; .., ; (k. + 1) of segment of link m
at control time stef. + 1 can in general be expressed as

Uvsl,m,i(kc + 1) = .fm (Uc,m,i(kc)7 Uc,m,,11+1(kc)7
pc,m,i(kc); pc,m,i+1(kc)a em(kc)) (63)

where f,,,(-) is a general user-defined mapping function that determines<oéntrol law
of the speed limit of segmentof link m, 6,,,(k.) is the parameter vector, ,,, ; (k.) is the
measured or estimated average speed of segroélik m attimet = k.Tc, andpc i, i (kc)

is the measured or estimated average density of segnoéfink m at timet = k. T.

The functionf,,(-) can be a reflection of the error (difference) between thédradri-
ables (in this particular case the speed and density) ddréifit segments that has an influ-
ence on the speed and density of a segment under consideritie function can be linear
or non-linear. Depending on the wdy,(-) is defined the number of parameters required
could be small or large. However, it is only important to beeswof the fact that the number
of the parameters needed to describg-) has to be less than the number of the variable
speed limits for improved computation times.

In general one can use different relations foy(-). In this thesis a linear expression is
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proposed, viz.

uvsl,m,i(k'c + 1) = em,O(kc)uvsl,ref,m(kc)
+ 9m,1 (kc)fm,l (Uc,m,i(kc)7 Uc,m,i+1 (kc))
+ em,Q(kc)fnm,Q (pc,m,i(kc); pc,m,iJrl (kc)) (64)

whereuys ref,m (kc) IS the reference speed that can be either the maximum allepeed
limit of the link or the speed limit that is currently beingsgiayed on the speed limit board,
fma(-) andf,, o(-) are state feedback functions that relate respectivelygbeds and den-
sities to the variable speed limit control, afg o(k.), 0.1 (k:), andb,, o(k.) are time-
dependent parameters that parametrize the speed limitot@ignals. In the sequel we
provide a specific example of the speed limit controller giire(6.4).

Speed limit controller

The speed limit controller presented in (6.4) is generak flmctionsf,, 1(-) and f,,, 2 ()
could be defined in different ways. In the sequel, the twotions are defined by consider-
ing the relative difference of the corresponding variabiethe functions. This is motivated
by the reason that if for a certain performance level theregfee speed of a link of a freeway
is determined, the controller has to seek a way to minimiezesgheed difference between
the segments and the reference speed. However, since ffie gtates in the preceding
segments also affect the traffic states of an actual segthentthe traffic states of the pre-
ceding states also have to be considered in the speed lintitottaws. In this context, the
function f,,, 1 (-) is defined as the relative-speed difference of a segmentresiect to the
speed of downstream segment, and the funcfign (-) is defined as the relative-density
difference of a segment with respect to the density of doweast segment. Thus,

Uc,m,i+1(kc) — Uc,m,i(kC)
Uc,m,i—i—l(kc) + Ky
_ Pcmyitl (kc) - pc,m,i(kc)

m, c,m,i kc s Pe,m,i kc - 5 6.6
f ,2(p Y ( ) Pe. ’+1( >) pc,er,i+1(kc) +/€p ( )

fm,l(vc7m7i<kc)7vc7m7i+l (kc>) = 3 (65)

wherek, andx, respectively denote the minimum non-zero speed and demsitiel pa-
rameters. Moreover, the variables,, ;(kc), vem. i+1(ke), pem.i(ke), and pem i+1(ke)
represent the traffic variables of segméandi + 1 of link m at the control time step..
However, if the speed limits are going to be applied for a groissegments, these variables
should be the average of the traffic state variables of thmeets grouped together, because
since the speed limits determined by the control laws areggt be applied for the entire
group, then the values of the speed limits have to be deterhiased on the average traffic
states of the segments in the group.

In this thesis, the reference speed; .cf,m (k) in (6.4) is chosen to be constant inde-
pendent of time and it is taken to be equal to the maximum sjp@édve.e ., of the given
link. So, depending on the performance criterion of the RHBGYroller, the parameter
0m.,0(kc) corresponding to the reference speed can be optimized sathhie reference
speed that results in better performance can be set. Theréfie control policies have to
systematically harmonize the traffic flow (by minimizing tiference in speed and density
of neighboring segments of a link) while at the same time ggthe speed limits towards
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the reference spee€,{ o(kc)Viree,m). NOW, the RHPC speed limit control law becomes

Uc,m,i+1(kc) - Uc,m,’i(kC)
Uc,m,i-{—l(kc) + Ky

uvsl,mﬂ’(k‘c + 1) = em,O(kc)Ufree,m + em,l(kc)

Pec,m i+1(kc) — Pe,m z(kc)
+ Oy 0 (ko) 2 _— . 6.7
72( ) pc7m7i+1(kc) + K/p ( )

The proposed controller has only
o 3 parameters (if the first option of Section 6.2 is used),
e 3 x N, parameters(if the second option of Section 6.2 is used), and
e betweers and3 x N, parameters (if the third option of Section 6.2 is used)

to be optimized at every control time stepin the RHPC control strategy. This means that
this speed limit controller can reduce the computation fifntds used with a freeway link
with at least/V independent variable speed limits such thatahex N, is larger than the
number of parameters in either of the three possible optisiesl above.

Usually, the speed limits are constrained. Maximum allde/a@peed limits are set for
safety reasons, while the lower speed limits are set suthliglaying speed limits below
the lower limit does not have any physical advantage. Fomgka, a freeway speed limit
of 20 km/h is not useful as a speed limit lower th&nkm/h is considered congested traffic.
These upper and lower bounds of the speed limits can alsodueilded as constraints for
the parameters of the control policies. This can be recast as

am O(kc)
Vfree,m fml() fm,Q(') ’ Vll:m
—VUfree,m _f'm,l(') _fm,Q('):| z:,;gzzg = |:_‘/1,m:| (68)

whereV ,,, andV,, ,,, are respectively the lower and upper speed limits.

6.3.2 RHPC for ramp metering control

The design of an RHPC controller for ramp metering is simdahe way the RHPC variable
speed limit controller is designed. In the case of ramp nreerontrol, the main goal of the
controller is to increase the traffic performance level .(algoughput, emissions, etc.) of
the on-ramp without affecting the traffic flow in the freewde on-ramp flow is basically
dependent on the current density, ; (k) of the freeway segment and the critical density
per,m Of the freeway link (see Fig. 6.4). When the density of thevileelink is below the
critical density, the traffic flow can move freely if the dowream traffic is unrestricted.
However, as the density of the first segment of linkof Fig. 6.4) approaches the critical
density (which is the meta-stable state of the traffic syytamg small disturbance can create
a traffic jam (see also Fig. 2.2). Hence, the ramp meteringrabsignal has to take this
effect into account. In view of this, a ramp metering conthait is affine with respect to the
time dependent paramety.,,,(k.) is proposed and it reads as

ur,m.(kc + ]-) = ur,rcf,m(kc) + em,B(kc)fm,S (pc,m,l(kc); pcr,m) (69)

1Recall thatV,, is the prediction horizon.
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Flow

Figure 6.4: Freeway on-ramp.

for k = Maske, whereu, .t m (k) is the reference ramp metering rate afigls(-) is a
user-defined mapping.

The reference ramp metering ratg,e  (kc) can be either the maximum rate that re-
sults in desired flow or the currently applied metering r&ae possible specific on-ramp
controller is presented in the sequel.

On-ramp controller

With similar reasoning as in (6.5) and (6.6), for the on-razoptrol, this thesis considers
the RHPC ramp metering control law

cr,m — Mc,m kc
U (e + 1) = U (k) + O (o) 2mm —Pes a(ke) (6.10)

Per,m

In this RHPC ramp metering controller, the referengges . (k.) is taken to be the
currently applied ramp metering rate. The idea behind thecttre of the controller is
the same as that of ALINEA [149]. In the RHPC approach, theupaterd,, s(k.) is
updated every control time step and it is optimized on-hnigije in ALINEA the parameter
is optimized off-line and is constant irrespective of thevailing traffic conditions.

Note, however, that ALINEA is a special case of the on-ramptradier presented in
Section 6.3.2. One can obtain the ALINEA on-ramp controftem (6.10) by setting
0m,3(k.) = K (a constant gain parameter).

Similar to the speed limit control, the constraint on theramp metering rate can be
translated to a constraint on the paramétgg (k. ): the constraind < u, (k. +1) <1
can be recast as

{j}nmdi())} O3 (ke) < [1 ;uf,i(r};(]){)} : (6.11)

6.4 Reduction of area-wide emissions

Now the RHPC traffic controller discussed above is illugtdatvith two case studies. In
these case studies, the reduction of travel time, emissaorasdispersion of emissions using
variable speed limits and ramp metering as traffic contrasuees are presented. The two
traffic control measures are generated using the contrsl ¢ggaven in (6.7) and (6.10).

Both case studies presented below use the macroscopic ftaffi model METANET
described in Section 2.3 and the macroscopic emission accfinsumption model VT-
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Figure 6.5: A12 km freeway with/2 variable speed limits and on-ramp for Case study
E.

macro proposed in Section 3.4. The first case study in Se6tibd uses the point-source
emission dispersion model, while the second case studydticBes.4.2 uses the extended
grid-based dispersion model discussed respectively itidde¢.2 and Sectidn 4.3.1.

6.4.1 Case study E: Using a point source model

In this case study, the RHPC controller uses the point-goansission dispersion model
with variable wind speed and wind direction. The case stlidstrates the proposed control
approach by considering the sarriekm three-lane freeway stretch as in Case study D of
Section 5.5.2. The layout of the case study is repeated iné&gfor convenience. The
freeway is divided intal2 equal segments with an on-ramp at the sixth segment from the
left (see Figl 6.5) and each segment is provided with a \Viarigipeed limit. Moreover, a
target is located at a distan2é&m from the freeway as shown in the figure.

Like in Case study D of Section 5.5.2, the freeway in this Gisdy is also subject to a
wind with speed and direction given by

Vi (k) = 7+ 2sin(0.0057k + 7/6) sin(0.017k) (6.12)
o(k) = %” + 2005(0.0047%) (6.13)

where the wind speelf,, (k) is expressed in m/s and the wind direction (anglé}) in
radians.

The evolution of the wind speed and wind direction is showRim|6.6. The demand
profile of the traffic at the mainstream and on-ramp origiredse the same as in Case study
D, and is shown in Fig. 6.7. Moreover, the downstream tradfesisumed to be unrestricted.

In this case study, different scenarios with different coinbbjectives are simulated.
First, the uncontrolled Scenarig % simulated. This scenario is considered as the bench-
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Figure 6.6: The wind speel, (k) and wind directionp(k) given by[(6.12) and (6.13) re-
spectively.
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Figure 6.7: Traffic demand flow at the mainstream and on-ramigires for Case study E.

mark to compare the performance of the RHPC controller ufaerdifferent control ob-
jectives. The control objectives of the RHPC controller @eéned by varying the weights
of the cost function presented in (5/16). Accordingly, foambinations (corresponding to
four controlled scenarios) as listed next are examined.llltha cases, the weight corre-
sponding to the variation of the control inputs is setas= 0.01, because the emphasis
on the variation of the control inputs is required to be less@mpared to the travel time,
emissions, or dispersion of emissions.

S,: Focuses on the reduction of the total time sp&Mt'§). This is obtained by setting
¢1=1,¢ = {3 = GumpL = ¢4, ror = 0, and all the weightg., for the emissions
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Table 6.1: Simulation results for uncontrolled and contdlscenarios for the Case study
E. The values in the brackets indicate the relative changtefperformance
criteria as compared to the uncontrolled Scenario Slegative values indicate
a decrease (i.e., an improvement) in the value of the pedoo® criteria, while
positive values indicate an increase in the value of perforce criteria as com-
pared to the uncontrolled scenario.

Performance Criteria

Scenarios TTS[vehh]  TE[kg] MDT, [ig/n?]
S;: Uncontrolled 1362.1 127.5 163.2

S,: TTS 875.3 (—36%) 145.4 (+14%) 1969 (+25%)
S, TE 1590.3 (117%)  66.4 (—48%)  100.0 (—37%)
S,: MDL 1500.0 (+11%)  70.8 (—44%) 101.2 (—36%)
Sy 10TTS + TE + 5MDL  874.1 (=36%) 120.3 ( —6%) 194.4 (+23%)

and fuel consumption are zero.

S;: Minimizes the total emission¥E (CO, HC, and NQ). In this case(; = (3 =
CGmprL = G oL = 0, & =1, pco = puc = pno, = 1, anduco, = 0.

Ss: The controller focuses on the reduction of the maximum dpe level MDL) in
the target zone as defined in (5.10). This is obtained byngetii = ¢ = (3 =
Ca,ton = 0, G4 mpr, = 1, pco = puc = pno, = 1, pco, = 0, ftd,co = pd,HC =
pa,No, = 1, andpuq .co, = 0.

Ss: The combination of travel time, emissions, and dispersfoentissions to the target
zone is considered. In this scenario the weights are s¢t as 10, (; = 1, (3 =
Ga,roL = 0, Q4 MDL = 5, flco = pHC = UNO, = 1, plco, = 0, fd,co = Hda,HC =
Hd,NO, = 1, and/.l/d7002 =0.

The simulation was conducted foh and the tuning parameters of the RHPC controller
are set exactly the same as that of the conventional MPCalemtused in Section 5.5.2,
i.e.,T. = 2min, N, = 7 (corresponding td4 min), andN, = 5 (corresponding ta0 min)
with simulation time step siZ€ = 10s. The simulation results of the uncontrolled and con-
trolled scenarios are given in Table 6.1. Table 6.1 alsoigesvthe relative changes of the
performance criteria in the controlled scenarios as coathty the uncontrolled scenario.
These relative changes are computed using

Ip _ Pcontrolled — Puncontrolled % 100% (614)

Puncontrolled

wherepuncontrolled denotes the value the performance criteria {TTS, TE, MDL} for
the uncontrolled scenario ang,.t.oneq 1S the value of the performance critegigfor the
controlled scenarios.

As can be seen from the table, when the objective of the RHP@alter is set to re-
ducing either the total emissions (Scenarig 6r the dispersion level (Scenariq)Sthe
travel time increases by more thah% relative to the uncontrolled Scenarig. Both the
dispersion level and the total emission are reduced by nhareitt% and36% respectively
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Figure 6.8: Evolution of average speegl, (k) and average density,, (k) over all the seg-
ments of the freeway for uncontrolled and controlled scersaof Case study
E.

as compared to the uncontrolled scenario. This is so beeguse the RHPC controller is
focusing on the reduction of total emissichR of the freeway or the dispersion levdDL
over the target area, the speed of the traffic is reduced (ge€.B). This means that the
travel time is increased. An important point to notice haréhie difference inL'T'S when
the objective of the controller is to reduce eitAdt only or MDL only. When the focus of
the RHPC controller is on thE€E, the TTS becomes worse than when the objective of the
controller is to reduc&IDL (see Scenarios;3and § in Tablg 6.1). This is because of the
fact that when the controller is focusing on the reductio'Bf it will reduce the total emis-
sions caused by all vehicles over the whole traffic networkweber, when the intention
of the controller is to reduce the dispersibiDL at the target area, it only focuses on the
reduction of the emissions caused by vehicles in those phttie traffic network that affect
this particular target. Thus, the parts of the traffic neftbat do not cause emissions that
affect the target area are allowed to have better traffic flln@mwthe focus of the controller
is on reducing th&IDL. As it has been pointed out in Section 5.5.2, in generalMid.

is expected to be lower when the objective of the controereducingM DL than when
the objective of the controller is reducifig. However, the results in Talle 6.1 show the

opposite. This can happen for two possible reasons distisg&emark 5.3 for Case Study
D.

The evolution of the dispersion level at the target zonegs@nted in Fig. 6.9. The figure
depicts the total dispersion for different control objees. It shows that the dispersion level
becomes higher than in the uncontrolled case if the conljelabive is to reduc&T'S or the
combination ofT'TS, TE, andMDL (see also Table 6.1). This is probably due to the higher
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Figure 6.9: Evolution of dispersion levels in target zonetfte uncontrolled and the con-
trolled scenarios of Case study E.

average traffic speed shown in Fig. 6.8, because highectsaffieds favor traffic flow while
they have a negative impact on emissions. Thus, the digpdisiel becomes higher as the
travel time gets lower as a result of increased traffic spiasl.also important to note that
in this case study th&€E has decreased whidDL has increased under Scenari Bhich
indicates that reduction of emissions may not necessagigmmeduction of the dispersion
level to a target zone.

Finally, Fig. 6.10 depicts the evolution of the emissionshef freeway over time. The
variation of the emissions in Fig. 6.10 and the dispersioelln Fig.[6.9 show different
characteristics due to two reasons. One, due to the locatithe freeway segments relative
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Figure 6.10: Evolution of emission levels of the freewaythar uncontrolled and the con-
trolled scenarios of Case study E.

to the target, the emissions do not necessarily reach thettication fromall segments.
Second, due to the variation of the wind speed and wind directhe dispersion of the
emissions of the segments that affect the target variess giénomenon is observed in
Fig./6.9. At around).3 h the dispersion level is zero. This is the time range where rof
the segments disperse emissions to the target locatios z&€ho dispersion-level window in
Fig.[6.9 is also due to an intrinsic shortcoming of the paiotice dispersion model. Since
the centers of the segments of the freeway are considerée a&srtission sources with the
point-source dispersion model, at high wind speeds thesdiggn cones will be narrow so
that the regions between the dispersion cones of the segmeaytnot encounter emissions



6.4 Reduction of area-wide emissions 133

Target zone

Flow Wind

Figure 6.11: A12 km three-lane freeway stretch considered for the Case $tugch cell
in the grid is200 m by 200 m.

in the model (whereas in reality they do). Under such casedifipersion level experienced
by the target zone can become zero.

6.4.2 Case study F: Using extended grid-based dispersion ohel

In this case study, the extended grid-based dispersion Inpoglgented in Sectidn 4.3.1 is
used to predict the dispersion of the emissions to a targeet. ZEhe traffic flow and emission
models are the same models as that of the first case studyeepoSection 6.4.1. Fig. 6.11
shows al2 km three-lane freeway stretch, which is the same as freeomsidered in Case
study E of Sectioh 6.4.1. As in Case study E, the freeway shiowiy.[6.11 is divided into
12 segments with each of lengthkm and equipped with a variable speed limit. Only the
sixth segment of the freeway has a metered on-ramp.

A time-varying traffic demand is assumed at the on-ramp anithstraam origins as
shown in Figl 6.7. The traffic flow at the end of the mainstreamdnsidered to be un-
restricted. Moreover, the neighborhood of the freeway isswtered to be flat with no
obstructions and is subject to varying wind speed and wingction. For this case study,
the wind speed and wind direction are the same as given i2)@uid (6.18), which are
depicted in Fig. 6.6.

Since this case study also takes into account the dispeddiemissions to a target
zone, a target zone thatikm away from the middle of the segment with the on-ramp (see
Fig.[6.11) is considered. The target zone has an are@(@fnx400 m. Moreover, since
the extended grid-based dispersion model is employed dighiborhood of the freeway is
meshed into a grid of square cells of dimenst6fim as shown in Fig. 6.11. This means that
there arel2 000 m/200 m= 60 cells along the freeway stretch afdells from the center
of the freeway to the center of the target zone. This mearisitba60 = 300 emission
dispersion states have to be updated every simulation tiepe s

As a performance measure of the RHPC controller, the mbjgative function defined
in (5.16) is used. To quantify the performance of the cotgrainder different controlled
scenarios, the results of the controlled scenarios are amdpo the uncontrolled situation.
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Table 6.2: Simulation results for the uncontrolled and tbetomolled scenarios of Case study
F. The values in the brackets indicate the relative changthefperformance
criteria as compared to the uncontrolled Scenario Slegative values indicate
a decrease (i.e., an improvement) in the value of the pedoo® criteria, while
positive values indicate an increase in the value of thequarénce criteria as
compared to the uncontrolled scenario.

Performance Criteria

Scenarios TTSvehh]  TE[Kg] NDT, [1g/n7]
S;: Uncontrolled 1362.1 127.5 137.6

S,: TTS 860.5 (—37%) 140.9 (+11%) 1452 ( +6%)
S, TE 1618.1 (+19%)  66.1 (—48%)  96.4 (—30%)
S,: MDL 1613.2 (+18%)  70.7 (—45%)  93.5 (—32%)
Sy 10TTS + TE+ 5MDL  1528.7 (412%)  77.5 (—39%) 119.2 (—13%)

In all the controlled scenarios considered, the weightesponding to the variation of the
control inputs is set ag; = 0.01, so that less emphasis is given to the minimization of
the variation of the control inputs than the other trafficfpenance measures. Moreover
the weights of the emissions are $gio = puc = pno, = 1 andpuco, = 0 so that
equal weight is given to CO, HC, and NQand CQ is not taken into account. Note
that since there is an affine relationship between fuel copsion and CQ as described
in Section 3.2 reduction of CQor fuel consumption would mean almost the same. In
addition, the same emission gases are also considered:fdigpersion cost function, i.e.,
[d,CO = [id,HC = Hd,NO, = 1 andug,co, = 0.

For the RHPC-controlled scenarios, the control objectaresset to reduce:

S,: The total time spen'TS, which is obtained by setting, = 1 and{; = (3 =
Ca,mpr, = ¢4 ror, = 0 of the general control objective given in (5.16),

S;: The total emissiond'E obtained by settings = 1 and(; = (3 = {4 mpr =
C4,TDL =0 of ﬂ5.16),

S,: The maximum dispersion leveIDL obtained with(s ypr, = 1 and¢; = (o = (3 =
¢4 rpr = 0 of (5.16), and

S;: The weighted combination of tH€TS, TE, andMDL with (; = 10 and{; = 1,
(3 = ¢4, oL = 0, ¢4, M1, = 5 Of the general control objective given in (5.16).

The simulation period id h with a simulation time step of' = 10s. The predic-
tion horizon and the control horizon are setAg = 14min and N, = 10min with
the control time ste@. = 2min. Under the uncontrolled scenario, the free-flow speed
Vrree,m = 120km/h is used. The simulation results are shown in Table 6¢/6-12, and
Fig. 6.13. Tablé 6.2 provides the value of the performanitera and relative changes of
the performance criteria of the controlled scenarios aspesed to the uncontrolled sce-
nario. These values are computed using the expressionli)(6.

As can be seen from the Table 6.2 and Fig. 6.12 both the totilseans and the dis-
persion levels are worse if the objective of the controketoi reduce th&'TS. Indeed the
TTS is reduced bya7%. However, when the objective function of the RHPC contrdke
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Figure 6.12: Evolution of dispersion levels at the targenedor uncontrolled and RHPC-
controlled scenarios of Case study F.

set eithefT'E or MDL, theTTS increases by at lea$8% while the TE and theMDL are
reduced by more tha30%. For those cases (Scenariost8 S;) Fig.[6.12 also shows the
evolution of the dispersion levels at the target zone. Wherothjective of the controller
is eitherTE or DL, the dispersion levels are lower than the uncontrolled &edItl'S-
controlled scenarios for almost all of the simulation tinfée dispersion levels of all the
cases are the same only at the beginning (abmuin after the simulation—the time the
emissions take to reach the target zone) where the initiidiconditions are the same for
all the scenarios. Differences are created after the dbmtrstarts influencing the traffic
flow.
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The last scenario, where a weighted combination of the peeace criteria is defined
as the objective of the RHPC controller, shows that the otietrprovides a balanced trade-
off between total time spent, total emissions, as well asimam dispersion levels of the
emissions. In fact, the travel time is worsened comparelegancontrolled scenario and to
theT'T'S-controlled scenario. But it is better as compared to theaes where the control
objectives ardl'E andMDL.

The space-time evolution of the space-mean speeds undentuoatrolled and con-
trolled scenarios are also plotted in Fig. 6.13. These @otsv the effect of the different
traffic control performance measures on the space-meanl sfiebe traffic flow. Under
the uncontrolled scenario, two shock waves are observeglsershock waves are resolved
when the objective of the RHPC controller is minimiziig’'s, which results in reduced
travel time. However, then the emission and dispersiondex@ high, which is consistent
with the fact that higher speeds favor flow while negativehpact the emissions. On the
contrary, the space-mean speed is lower than in the undiectrand theTT'S-controlled
scenarios when the objective of the RHPC controller is eittie or MDL. The space-
mean speed is slightly improved when the objective of the idéntroller is the weighted
sum of T'TS, TE, andMDL as in Scenario § resulting in improved traffic flow at the cost
of increased emissions and dispersion levels as compai®cktmarios $and S (see also
Table 6.2).

6.5 Conclusions

Since the computational demand of conventional MPC makigdréctable in practice, a
new parametrized MPC approach called Receding-Horizodi€ee Control (RHPC) has
been presented in this chapter. The general concept andagjéarenulation of RHPC have
been discussed. Unlike conventional MPC, RHPC optimizest @fsparameters that de-
scribe control laws in such a way that a given objective fiemcts minimized. Since the
number of parameters used for the description of the colatne is smaller than the control
inputs, the computation time of RHPC is smaller as comparedhventional MPC which
directly optimizes the control inputs. However, it has bdatussed that the performance
of the RHPC controller can be reduced as the number of compaolts described by the
same parameters increases.

As an example the speed limits and ramp metering traffic obmeasures have been
formulated in this control approach. Under different opsipthe theoretical background
why the RHPC controller can be faster than the conventior®CN& elaborated. Simulation-
based comparisons of these controllers will be presenttittinext chapter.

This chapter has also demonstrated the use of RHPC for thetied of travel time,
emissions, and dispersion of emissions to a target zong tsim case studies. The first
case study (Case study E) has used the point-source d@pensidel and the second case
study (Case study F) has used the extended grid-based si@penodel. For both case
studies time-varying traffic demand and wind have been densd. These case studies
illustrate that the RHPC controller can provide a balancade-off between travel times,
emissions, and dispersion of emissions to a given target.zon
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Chapter 7

Conventional MPC versus RHPC

n the last two chapters, Chapter 5 and Chapter 6, the coovahtModel Predictive

Control (MPC) and the Receding-Horizon Parametrized @bRHPC) approaches

have been discussed. These two control approaches havélbsteated with a num-

ber of case studies to reduce travel times, emissions, dmslummption, and dispersion
of emissions to target zones. Moreover, the ability of thetid approaches to provide a
balanced trade-off between these conflicting control perémce criteria has been demon-
strated.

However, in neither of the two chapters, the computatioretirhthe controllers for the
different cases were presented. Furthermore, the perfareniadicators of the controllers
were not compared. Therefore, the two control approachesa@npared in detail in this
chapter. The computation time required by the two contrptagches under the same traffic
conditions is presented. The performance of the contsoftardifferent control objectives
are compared.

In this chapter, first a general qualitative comparison efabntrollers is discussed in
Sectior 7.1. This section highlights the challenges footagcal comparison of conven-
tional MPC (designated as cMPC hereafter) and RHPC anddisdight on future research
directions in this area. Next, two case studies are coresidercompare the cMPC and the
RHPC controllers. The first case study, Section 7.2, pregbatcomparison of the cMPC
and RHPC controllers using a part of the22ADutch freeway. The traffic performance cri-
teria and the computation time of the two controllers areusised. In Section 7.3, further
comparison of the cMPC and RHPC controllers is conductetgusie traffic scenario de-
scribed in Sectioh 6.4.2. In this second case study, in iaddib the travel time and the
emissions, the dispersion of emissions to a target zonests @nsidered as the control
performance criterion. Finally, the conclusions of theathaare given in Section 7.4.

7.1 Qualitative comparison of controllers

Both the cMPC controller and the RHPC controller requirefitee basic elements of MPC
discussed in Section 5.1, i.e., system and disturbancelimgdperformance criterion, de-
scription of constraints, optimization, and the recedingizon principle. In general, the
utilization of these concepts makes the RHPC controllertha@MPC controller similar.

139
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Figure 7.1: Control space of the cMPC controller and the RH&®troller provided that
the number of the control inputs is larger than the numberasbmeters of the
control laws of the RHPC controller andf. = 7t ; and N, = Nj,.

In the RHPC approach, whether the control horizon is largenaall, the actual control
inputs (the variable speed limits and the ramp meteringsriieexample) can in general
always vary for every control time step over the entire préoln horizon. This is because
of the fact that the control laws in the RHPC controller arpedelent on the state of the
system. Thus, as far as there is variation in the state ofytfters, the control inputs vary
according to the control laws provided that the parametittssocontrol laws are non-zero.
However, this is not the case when the cMPC controller is uSsded on the size of the
control horizon and the blocking introduced, the variatidrthe control inputs can differ.
For example, if the control horizon is setdq = 1, the control inputs cannot vary over the
prediction horizon if one uses the cMPC controller, whileytitan if one uses the RHPC
controller.

However, there is one catch. Since at every control time gteghe RHPC controller
describes the control inputs based on control laws with alraraf parameters that is less
than the number of the control inputs, the dimension of therobinput space of RHPC is
less than the dimension of the control input space of coiwesit MPC.Therefore, i, =
T.;andN. = Np, the possible input space of the RHPC approach over thegti@aperiod
might be limited as compared to the cMPC approach. Thisustilhted in Fig. 7.1. Thus,
if the number of the parameters of the RHPC control laws idlemthan the number of the
control inputs and i, = Tt ; and N, = N, the control space of the RHPC controller over
the prediction period will be a subset of the control inpuaagof the cMPC controller (see
also Fig! 7.1). However, if. # T.; or N. # N, the optimal control input spaces of the
two controller may or may not have common point. Hence, déipgnon the control laws
of the RHPC controller, the intersection of the control inppace of the RHPC controller
and the optimal control input space of the cMPC controller ba anything. Due to this
fact, a general comparison of the two controllers beconféisudt.

Under the condition thdf, = T, ; and N, = N,,, the RHPC control law of the speed
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limit defined in [(6.7) can be compactly recast as

Uyt RHPC i (Ke + J) = 2, i (ke + 5)0m (e + 7) (7.1)

forj =0,1,2,..., N, — 1, whereuys ruprc,m,i(kc) is the variable speed limit of segment
i of link m obtained using the RHPC controlle,, ;(k.) = [vtee.m fm1(?) fm2(-)]T, and
em(kc) = [G'm,O(kc) em,l(kc) 9m,2(kc)]T-

Now, at every control time stefp. and over the prediction peridd. k., T. (k. +Np,—1)],
all speed limitSuys; rRuPC,m,i (ke + j) described by the same parameter veétptk. + j)
can be concatenated as

Uvst, RHPC,m ()
Uvst,REPC,m (ke + 1)

UvSI,RHPC,m(kc + Np - 1)

Uysl,ruprc,m (kec)

Zm(ke) 0 0
0 Zm(ke+1) 0
. On(k) (7.2
0 0 Zm (ke + Ny — 1)
z], (k)

whereUyg rupc,m (kc) = [Uvst REPC,m,1 (Ke) Uvst, REPC,m,2 (Kc) -+ - Uvst, RHPC,m, Nowy ()] T

O, (ko) = [0, (ke) 0} (ke+1) ... 0} (ke +Np—D]T, Zp(ke) = [2m1 (ke) 2m2(ke) ...
Zm.Noa (k)] T, and Ny is the number of speed limits that are described by the same pa
rameter vectob,,, (k. + j).

The control input space of RHPC is equal to that of conveatiMPC, if for any vector
U s,empc,m(ke) in the control input space of conventional MPC, one can fingetor
©,.(k.) that solves the following equation

Uvsl,CMPC,m(kc) = UVSl,RHPC,m(kC) = Z;rrl(kc)@m(kc) (73)

Note thatZ,, (k.) in fact depends on the control inputs that are applied owepthdic-
tion horizon. Hence, for ever§y/ 4 cvpc,m (kc), the value ofZ,, (k.) can be determined.
Therefore, if for theZ,,, (k.) corresponding t&/ ¢ cvpc,m (ke) we have

Rank(Zm(kc)) - Rank({z;(kc)

Uvsl,cMPC,m(kc):| ) , (7.4)

then (7.3) has a solutio®;, (k.). In such cases, the performance of the conventional MPC
Jempc (U gq.empe,m (ke)) and the performance of the RHPC controllgtgipc(©;, (k. ))
are equal. '

However, if the rank condition in (7.4) is not satisfied, tlmtrol inputs generated by
the RHPC controller will not be able to reach the full contimgbut space of the cMPC
controller. This will in general negatively impact the perhance of the RHPC controller.

In general, the performance of the cMPC controller and thitopmance of the RHPC
controller have to be compared using the value of the comtinpdctive given in[(5.16)
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Figure 7.2: Schematic representation of the part of the Bui¢2 freeway considered for
Case study G. The map of the freeway is also depicted in Fg. 3.

under the two control schemes. However, even if the contofgatives are equal (i.e.,
Jempc (U g .enpe,m(ke)) = Jrapc (Ug ruapc,m (ke))), it does not necessarily imply that
the control inputs generated using the conventional MPCthadRHPC controllers are
equal (i.e., it does not mean thelty, \ipc (k) = Ulg rupc.m(kec)) unless the rank
condition in (7.4) is satisfied and,, (k.) is a full column rank matrix. This is due to two
reasons: first, since the objective function of the corgrsliare non-linear and non-convex
with respect to the control inputs, then the optimizatioolgem can have multiple possible
global minima, second even if the minimum of the control obje function is unique
and the rank condition in (7.4) is satisfied, multiple valoé®,, (k.) are possible in case
Z 1 (k¢) is not of full column rank. Hence, in general qualitative garison of the RHPC
controller and the cMPC controller is not possible, anddfae, in this thesis, case studies
are used to compare the performance of the cMPC and the RHR@bers. Although the
case studies cannot generalize on the comparison of theamimot approaches, the results
can provide an understanding on the performance of theaapproaches.

7.2 Case study G: Reduction of travel times and emissions

In this case study, the cMPC and the RHPC control approaaeeapplied to reduce the
travel time and emissions with different weights for botitesia. The two control ap-
proaches, cMPC and RHPC, are compared to each other andundbetrolled scenario.

7.2.1 Set-up of the case study

The freeway stretch considered for this case study is a paredutch Al2 freeway going
from the connection with the Nl at Bodegraven up to Harmelen, and is shown in[Fig. 3.6.
The schematic representation of the freeway is depictedgin/2. The freeway has three
lanes in each direction. In this case study, the traffic flothandirection from left to right
of Fig.[7.2 is simulated. The part of thela freeway that is considered is approximately
14650 m long and it has two on-ramps (near Waarder and Woerden)raad boff-ramps
(near Waarder, Woerden, and Harmelen). The stretch is pedipith double-loop detec-
tors at a typical distance &f00 m to 600 m, measuring the average speed and flow every
minute. It ha24 segments, each of which is equipped with a dynamic speet] limi

In [79] real-life data of the part of & freeway described above has been used to cali-
brate a METANET model. In this case study, the parametettha been obtained in [79]
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Figure 7.3: Time-varying demand profile for the main-streanal on-ramp origins of the
A12 freeway considered in Case study G.

are used. The parameters of the freeway as obtained in [#8kted in Appendik A.2.

A time-varying demand at the mainstream origin and at onprangin is considered.
The demand profile for a duration of one hour is shown in [Fig. With the given traffic
demand, the traffic flow on the freeway in the uncontrolle@@mlves as shown in Fig. 7.4.
The spatial-temporal profile of the space-mean speed andetisty of the traffic show a
shock wave created at the beginning of the simulation aReie segment counted from
the origin of the freeway. The shock wave propagates till2#esegment before it gets
dissolved ad.8 h.

Under this (uncontrolled) scenario, the total time spenthgyvehicles is045.8 vehh
and the total emissions of the traffic flow4$9.5 kg. In the subsequent simulations these
values will be used as a benchmark and as nominal values péttfi@mance measures.

7.2.2 Control objective

A general weighted-sum control objective has been giveB.ig). In this case study, since
the travel time and emissions are considered as the penficeneriteria to compare the
cMPC controller and the RHPC controller, the weights of thatml objective are set as
(3 = CampL = QoL = 0, (5 = 0.01, anduco = pnc = pno, = 1, anduco, = 0.

By varying the weightg; and(, different controlled scenarios with different emphasis on
TTS andTE are considered. For the fixed values(of {4, and(; listed above the control
objective of the cMPC and the RHPC controllers reads as

TE(kc) UA(kc)
+ (s TE, + 0.01 Uan

TTS(k.)
TTS,

J(ke) =G (7.5)

where the nominal (normalization) valugs'S,, TE,, andUx ,, are the values when no
controller is implemented (see Section 7.2.1).



144 7 Conventional MPC versus RHPC

pm,i(k) [veh/km/lane]

4\\ ':8*“\ ‘ “

‘ ‘\\
“$' \\\\§§“ "“‘

“&Q\ “3“1’ ’
“‘\\ ‘\“‘ <Al "

Segments Segments

Time [h] Time [h]

Figure 7.4: Traffic states of the #® freeway of Case study G for the traffic demand in
Fig. 7.3 and when no controller is implemented. The arrowdidate the driving
direction.

The total time spenT'TS(k.) is determined using (5.5), the total emissionE (k.)
is obtained using the macroscopic emission model given.B),(and the variation of the
control mputUA( ) for both control approaches |s determined using (5.13) with=
(8Npv2iep) ™t ptes = (TN vstcp) 1, andu, = (2N,) 7! for vgep = 10 km/h.

For the controlled scenarios discussed belowpthspeed limits of the freeway stretch
are coupled in groups &f where each speed limit control in the group is assignedahees
value (see Fig. 7.2). Thus, there @reariable speed limit values. Moreoveérramp meters
are controlled independently. This means that therd @@ontrol variables§ speed limit
values and ramp metering rates) for both the cMPC controller and the RidBntroller.
The grouping of the speed limits is done so that the computéitne of the cMPC controller
can be sped up to a level where the simulation can be finishihihvd maximum of24 h
while it does not have any effect on the speed of the RHPC altertr Note that when using
the RHPC controller for the grouped speed limits, the stagsired for the control laws are
the average values of the states of the segments in a grotips lmay, the RHPC controller
can also result in speed limits that are the same for the sgigroéa group. Moreover, the
same parameter values are used for the whole freeway stretch

Moreover, the speed limits are constrained by the upperdsii@é V, ,,, = vret,m =
120 km/h and the lower speed limif ,, = 40km/h. At every control time step., the
optimization problem that minimizes the cost function Jisssolved using multi-start Se-
guential Quadratic Programming (SQP) introduced in Sedfid.3. More specifically;
initial starting points are used, of whidhis random, while the rest consists of the lower
bounds of the optimization variables, the upper boundsatieeage of the lower and up-
per bounds, and the one time-step forward-shifted versidheosolutions of the previous
optimization step.

For both the cMPC and the RHPC controlled cases, the comtnel stepZ, = 1 min,
the prediction horizonV,, = 15 (corresponding td5 min), and the simulation time step
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T = 10s are used. The control horizd¥i, = 10 (corresponding td0 min) for the cMPC
controller. For the RHPC controller, since the control layigen in (6.7) and (6.10) under
the first option of the RHPC strategy in Section 6.2.1 is eygdip the control horizon is set
N, = 1 (corresponding td min). This means that the number of optimization variables of
the RHPC controller is equal to the number of the controllnameters, i.e4 (3 for the
variable speed limits antl for the ramp metering rates). The number of the optimization
variables of the cMPC controller i€) x N. = 100.

In this case study, the weights and (; are related by, = 10 — (3, where(; €
{0,1,2,...,10}. Therefore,11 possible combinations of tHETS andTE are considered.
The evolution of system states is simulated fér. The simulation results are discussed in
the sequel.

7.2.3 Results and discussion

Let us first look at the simulation results of the cMPC and ti#PR controllers when the
control objectives are either onyTS, TE, or 9TTS + TE, i.e., when the weights are set
as:

1. {; = 10and(; = 0, i.e., the focus of the controllers is on reducing only thalttme
spentT'TS.

2. (1 = 0and({, = 10: in this scenario the focus of the controllers is on reducirg
total emissionsTE).

3. (1 = 9and(; = 1, i.e., the controllers focus on the reduction of ti&S and the
TE with a different degree of emphasis. This combination sthoesult in a trade-off
between travel time and emissions.

The results of the simulations of these three cases arerpeesim Table 7.1. The results
give the values of each performance criterion for each obstenario. For comparison
reasons, Table 7.1 also tabulates the results of the cMP@afHPC controllers. It can be
seen that the difference between the performance crit€fi® @ndTE) of the two control
approaches is not significant for the three different cortidms of weights. However, the
difference in the average computation time (CPU Time) petrobtime step is significant.
The average computation time step per control time steprigated as the average of all
computation time steps required at every control time stethb controllers to minimize
the given objective function by optimizing the control itpwver the prediction horizon.

Table[ 7.2 provides the relative performance of the prop&ddBC traffic controller as
compared to the cMPC traffic controller for the three casesented in Table 7.1. The
relative comparison of the RHPC controller is obtained gisive equation

CRHPC — CcMPC
CcMPC

R, = x 100% (7.6)
wherec.ipc denotes the value of the performance criterian {TTS, TE, CPU Time} for
the cMPC controller andrypc is the value of the performance criteriorfor the RHPC
controller. So a negative value of the relative comparisalicates the RHPC controller
performs better than the cMPC controller and a positiveevaldicates a worse performance
of the RHPC controller as compared to the cMPC controller.
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Table 7.1: Simulation results of the cMPC traffic controkerd the RHPC traffic controller
for Case study G. The CPU time is the average computer cotiqutime re-
quired to compute the control variables in one control tirepswhere one con-
trol time step isT, = 60 s.

Performance Criteria

Scenarios Controller TE[ehh] TE[kg CPU Time[s]
Uncontrolled — 1045.8 219.5 0.0
TTS RHPC 841.1 216.9 10.9
cMPC 811.5 230.5 375.2
TR RHPC 2377.5 82.7 25.7
cMPC 2283.1 92.0 1862.7
RHPC 842.7 213.9 40.4
ITTS+TE  vpc 807.4  214.0 1809.3

Table 7.2: Relative comparison of the RHPC traffic controlléth respect to the cMPC
traffic controller for Case study G. Negative values indéctite RHPC controller
performs better than the cMPC controller and positive valiredicate a worse
performance of the RHPC controller as compared to the cMP@rober.

Relative Comparison

Scenarios  —= oo Performance Criterion CPU Time
TTS +4% —97%
9TTS + TE —2% —98%

As can be seen from Table 7.2, the loss in the performanceed®HPC controller is at
most4% for each case. But, the improvement in the computation tima#i cases is more
than97%.

In Fig. 7.5 the spatial-temporal profile of the space-meaedmand the density of the
traffic flow are presented to compare the performance of thealters with respect to each
other and the uncontrolled scenario. The shock wave creati@d20'" segment from the
origin of the freeway in Fig. 714 propagates till the segment before it gets dissolved at
about0.8 h. However, when the system is controlled to reducéelti€ (see Fig. 7.5(a) and
Fig.| 7.5(b)) using either the cMPC or the RHPC controlleesshock wave is suppressed at
the very early stage. The profiles of the space-mean spedt@ddnsity generated through
the two controllers (cMPC and RHPC) are almost the same. Menvthe evolution of the
space-mean speed in the cMPC-controlled case is smooteiriithe RHPC-controlled
case. Moreover, the space-mean speed under the cMPC{tamhtiase is on average higher
than the RHPC-controlled case.

The above comparison of the controllers gives a detailecpanison for three combinations
of the weights(; and(, in (7.5). Now, the RHPC and the cMPC controllers are simdlate
for several possible weight combinations. In particulbgttthe relationt, = 10 — (3,
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Figure 7.5: Space-mean speed and density profiles of Cadg &uas a function of time
and space using different controllers. The arrows indi¢atedriving direction.

for ¢ € {0,1,2,...,10} is considered. The results of the simulation for the différe
weight combinations are depicted in Fig. 7.6. The figure joes/the relative change of the
performance criteria, in particul&fTS andTE, as compared to the uncontrolled scenario,
which is computed using

Ip _ Pcontrolled — Puncontrolled « 100% (77)

Puncontrolled
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Figure 7.6: Trade-off curve for Case study G, where the dhjec function
J=CTTS+ (10 — ¢(;)TE + 0.01U for¢; = 0,1, ..., 10. Each point on
the graph indicates the relative change of th&'S and TE of the controlled
scenarios as compared respectively to tH€S and TE of the uncontrolled
scenario. Negative values indicate a decrease (i.e., arawament) of the
value of the performance criteria as compared to the unadleti scenario and
a positive value indicate an increase of the value of thegoerénce criteria
compared to the uncontrolled scenario.

wherepcontroed € {TTS, TE} is the performance criteria of either the RHPC controller or
the cMPC controller of the different controlled scenariod Auncontroned € {TTS, TE} is
the performance criteria of the uncontrolled scenario.

The figure shows that tHETS can be reduced by a factor of more th&¥% and theTE
by less thar2% when the focus of the RHPC controller is @S (; = 10, > = 0) only.
With the cMPC controller and the same control objective,ttheel timeTTS is reduced
by more thar20% while the emissionS'E increase by more thas¥%s. Moreover, the figure
shows that thél'E can be reduced by more th&8% if the focus of the two controllers
is onTE ({1 = 0, {3 = 10) only, but then thel'TS increases by more thari0%. The
figure also indicates that a reduction of more tBa# in emissions can be attained without
significantly affecting the travel time if the relative whigpf theT'TS is about(; = 4 while
the TE has a weight of; = 6 when the controller is RHPC and if the relative weight of the
TTS is about{; = 2.5 while theTE has a weight of> = 7.5 when the controller is cMPC.
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Figure 7.7: Computer CPU computation time per every corttrok step of the cMPC con-
troller and the RHPC controller of Case study G.

This indicates that the optimal control inputs generatethleytwo controllers are different
and that the same weights of the performance measures obtitelcobjectives may not
have the same impact on the performance of the controllers.

Although the trade-off curves generated using the RHPCrotheit and the cMPC con-
troller are more or less similar, there are important déferes when the combinations of
the weights are one @ € {1,2,...,7} and{, = 10 — ;. For these values the RHPC
controller gives better improvement to tA& than the cMPC controller does. But the
cMPC controller results in loweFTS than the RHPC controller does. In general, however,
one can see that the RHPC controller has somehow compartiterpance to the cMPC
controller.

Since the main motivation for the design of the RHPC corgrdd to reduce the compu-
tation time of the cMPC controller so that the control apptoean be tractable in practice,
the average computation time required at every control siteg is also depicted in Fig. 7.7.
As can be seen, for all the weight combinations consideréisrcase study, the computa-
tion time of the RHPC controller is below the control timepsfe = 60 s line. This means
that the RHPC controller is feasible in practice for thigjgatar case study. On the contrary,
the computation times of the cMPC controller for all the cagee way above the control
time step, which makes it intractable in practice. Cledhg,computation time of the RHPC
controller and the cMPC controller are very different. Hoese the gain in the computation
time of the RHPC controller is obtained at the cost of smalslm performance.
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Figure 7.8: A12 km three-lane freeway stretch considered for the Case dtudsach cell
in the grid is200 m by 200 m.

7.3 Case study H: Reduction of dispersion of emissions

In the previous section, a case study that focuses on thetiedwf travel times and emis-
sions has been simulated to compare the cMPC and the RHP®lbenst In this section,
another dimension of the performance measure, the digpes§emissions to a target zone,
is also taken into account.

7.3.1 Set-up of the case study

In this case study, &2 km freeway stretch described in Section 6.4.2 is consideféu:
schematic representation of the freeway is again depictédg. 7.8 for convenience. As
in Section 6.4.2, the neighborhood of the freeway is assumbd flat with no obstructions
and is subject to varying wind speed and wind direction dieedrby

Vi (k) = 7 + 25in(0.0057k + 7/6) sin(0.017k) (7.8)
o(k) = %” + gcos(0.0047rk) (7.9)

where the wind speelf,, (k) is expressed in m/s and the wind direction (angté}) in
radians.

Moreover, in order to study the dispersion of the emissianarget zone of interest that
is 1 km away from the middle of the segment with the on-ramp (sge FB) is assumed.
Just as in the case study of Section 6.4.2, the target zonanha®a oft00 mx400 m and
the neighborhood of the freeway is meshed into a grid of sjoalls of dimensiol200 m
as shown in Fig. 718.

The freeway traffic of this case study is modeled using the MEHT traffic flow model
of Section 2.3 with the model parameters presented in $g6ti2. The VT-macro emis-
sion and fuel consumption model of Section 3.4 is used to hthdemissions of the traffic
flow of the freeway. In this section, the dispersion of thessiains to the given target zone



7.3 Case study H: Reduction of dispersion of emissions 151

5000F

4500

—  Origin |
-=-- On-ramp

4000

3500

Demandveh/h]
N N w
o a o
8 8 8

1500f
1000} pmmmmmmmm <
.

500+

|

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Time [h]

Figure 7.9: Traffic demand profile at the mainstream origiddhe on-ramp origin of Case
study H.
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Figure 7.10: Traffic flow characteristics when no traffic cohis applied for the demand
profile depicted in Fig. 7.9 of Case study H. The arrows intidhe driving
direction.

is modeled using the expanding grid-based dispersion rhadebection 4.3.2, with the
expansion factoto = 0.05 (5%) and the vertical dispersion factgr= 0.1 (10%).

The traffic at the downstream of the traffic flow is considerebd unrestricted. A time-
varying traffic demand both at the mainstream origin and theamonp origin is considered.
The demand profile is also the same as the demand used in thstadg presented in Sec-
tion|6.4.2. For convenience the demand profile is depictathdg Fig! 7.9. The simulation
period is1 h with a simulation time step &f = 10s.

INote that in Section 6.4.2, the extended grid-based digpensodel discussed in Section 4.3.1 is used.
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7.3.2 Control objective

In all the controlled scenarios of this case study, the perémce measure of the cMPC
and the RHPC controllers are defined using the multi-cetehjective function defined in
(5.16). In all the controlled scenarios, the weight for theiation of the control input is set

(s = 0.01. Moreover(s = (4, Tpr1, = 0 S0 that the controllers do not consider the reduction
of fuel consumption and total dispersion leVEDL. The weights of the emissions are
Hco = puc = #no, = 1to give equal weight to CO, HC, and NOmoreoveruco, = 0.

The values of¢;, {2, and(y mpr, are varied depending on the effect the controllers are
required to induce. In particular, the following four difft combinations are considered:

Sa: [¢1 2 ¢ampL] = [1 0 0], where the controllers focus on the reductioriTafS only,
S3: [¢1¢2 ¢ampr] = [0 1 0], where the controllers focus on the reductioril@ only,

Sy [¢1 ¢ ¢ampr] = [0 0 1], where the controllers focus on the reductioMIDL only,
and

Ss: [¢1 2 CampL] = [10 1 1], where the controllers focus on the reduction 0T TS +
TE + MDL.

In all the above scenarios of this particular case studynmbhgimum dispersion level
MDL is determined using (5.10) wilas co = pa,nc = pa,No, = 1 anduq,co, = 0.

The control time ste@. = 2min, the prediction horizonV, = 7 (corresponding to
14 min), and the control horizoWV, = 5 (corresponding td0min) are used for both the
cMPC and the RHPC controllers. The RHPC controller usedigndase study employs the
third option of the RHPC control concept discussed in Sacli@.1, i.e., the parameters
of the control laws are allowed to vary only until the contholrizon NV, after which they
are kept constant. Since the optimization problem is no@di and non-convex, multi-start
Sequential Quadratic Programming (SQP) withitial points is used. Four of the initial
points are random, while the rest consists of the lower bswifithe optimization variables,
the upper bounds, the average of the lower and the upper boaind one time-step forward-
shifted values of the optimization variables (either theapgeters in the case of the RHPC
controller and the control inputs in the case of the cMPC rodliet).

The values of the performance measures under the uncectadhdition (Scenario,$
are taken to be the nominal values used for normalizatiohérobjective function. In the
uncontrolled situation, the traffic demand creates thdid¢réibw that is characterized by
the density and space-mean speed profiles depicted in Eig. Due to high initial traffic
densities at the end of the freeway and high traffic demanttie @in-ramp origin of the free-
way, two shock waves are created that propagate upstreaderthese traffic conditions,
the total time spent'TS is 1362.1 vehh, the values of the total emissioi% is 127.5 kg,
and the maximum dispersed emission |evEDL at the target zone i61.6 ug/m?. In the
following section these values will also be used as benckeagvaluate the performance
of the traffic controllers.

7.3.3 Results and discussion

The simulation results for each of the controlled ScenaBiot S; of the two control ap-
proaches (cMPC and RHPC) are compared to each other and tad¢batrolled Scenario
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Table 7.3: Performance criteria for the uncontrolled and REtcontrolled and cMPC-
controlled scenario of Case study H. The controlled scersaniave the following
control objectives: §: TTS, S : TE, S, : MDL,and § : 10TTS+TE-+MDL.
The CPU Time is the average computer computation time reduy the con-
trollers to compute the control variables in one control ¢iratep, where one
control time step isl, = 120 s.

Performance Criteria

Scenarios  Controller  — e i Th[kg] MDL [ug/m?] CPU Time[s]

S : Uncontrolled 1362.1 127.5 61.6 0
) RHPC 875.8 141.6 78.7 110
S cMPC 704.0 147.7 78.3 345
RHPC 1611.5 66.2 29.9 214

cMPC 1624.5 65.9 30.6 731

S : RHPC 1604.5 66.5 30.0 1690
cMPC 1624.8 69.6 34.4 11933

S RHPC 1526.0 70.6 34.5 2075
cMPC 1030.4 92.7 45.3 10400

S,. First, let us analyze the comparison of the controlled &timn scenarios with the un-
controlled scenario. The comparison results are listecbiel7.3. From the table it can be
observed that both controllers perform well according ®ittiention of the control objec-
tive. The controllers reduce the traffic control performandteria and provide a balanced
trade-off when the combined objective function (Scenagipi$considered.

The controllers clearly show differences in performanaentTable 7.3, it is observed
that in some cases the cMPC controller performs better tharRHPC controller. This
is quantified and explicitly presented in Table 7.4. Tabkligts the relative comparison
of the RHPC controller with respect to the cMPC controllet.isl determined using the
equation given in[ (7.6). In this particular case study, teefggmance measurein (7.6)
is c € {TTS, TE,MDL,CPU Time. Then, as can be seen from Table 7.4, the cMPC
controller mostly performs better than the RHPC contradierexpected (cf. Section 7.1).
However, the computation time (see Table 7.3 and Table #.#)eoRHPC controller is
significantly lower than that of the cMPC controller. The RE{Eontroller improves the
computation time (expressed in CPU Time) by more thé¥ with respect to the cMPC
controller for the considered scenarios. The CPU time idela@8 increases as one pro-
gresses from Scenarig $0 Scenario $ of the controlled cases. This is because in each
scenario only the models that are required to generate thespmnding performance cri-
teria are simulated. This means that in Scenasio8y the METANET traffic flow model
is simulated, while for example in Scenarig e METANET model and the VT-macro
model are simulated. Therefore, the computation time oksttemarios with multiple per-
formance criteria becomes high (e.qg., in this particulaecdcenario Shas higher CPU
Time, because it uses traffic flow, emissions, and disperdiemissions models).

The space-mean speed profiles under the different contjettikes are also presented
through Figl 7.11 to Fig. 7.13. These figures compare theesfime speeds of the traffic
network when the control approaches are cMPC and RHPC. Abearen from all the
figures, the shock waves observed in Fig. 7.10 are dissoletdly the cMPC and RHPC
controllers. However, cMPC results in a smoother speediéeol than RHPC.
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Table 7.4: Relative comparison of the values of the perfogeariteria of the RHPC con-
troller and the cMPC controller of Case study H for the diéfet controlled sce-
narios. Negative values of the performance criteria intkdhe RHPC controller
performs better than the cMPC controller while positiveues of the perfor-
mance criteria indicate the RHPC controller performs wotkan the cMPC

controller.
Relative Comparison
Scenarios Control Performance Criterion CPU Time
S, : TTS +-24% —68%
S TE +0% —71%
S, : MDL —12% —86%
S5 : 10TTS + TE + MDL +36% —80%
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Figure 7.11: Time-space evolution of space-mean speed & €ady H when the control
objective of the cMPC and the RHPC controllerdi§S. The arrows indicate
the driving direction.

In Fig.[7.13, it can be seen that the speed is higher when th&atapproach is
cMPC than when the control approach is RHPC. This is refleat#ite higher travel times
and lower emissions and dispersion levels in the RHPC-obhedi case than the cMPC-
controlled case (see also the last row of Table 7.3).

Furthermore, the evolution of the dispersion level in theyea zone is depicted in
Fig. 7.14. Under thél'TS-controlled Scenario 5 both the cMPC and the RHPC con-
trol approaches worsen the dispersion level. However, yimamics of the evolutions of
the dispersion of the emissions under the two control gfieseare completely different.
The RHPC controller causes a higher fluctuation in the d&perlevel than the cMPC
controller, regardless of the difference in the values efdispersion levels. This can be
explained by the speed variation observed in Fig. 7.11. Alairsituation is also observed
in Fig. 7.14(b), where the dispersion level fluctuates motdé cMPC-controlled case than
in the RHPC-controlled case. This is because that the apaea speed fluctuates less in
the RHPC-controlled case than in the cMPC-controlled csse Fig. 7.12).
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Figure 7.13: Time-space evolution of space-mean speed £¢ €ady H when the control
objective of the cMPC and the RHPC controllersli#I'TS + TE + MDL.
The arrows indicate the driving direction.

A similar phenomenon is observed from Fig. 7.13 and Fig.(€)L4However, in general,
despite the difference in the value of the performance ivgmeent {'TS, TE, MDL, and
CPU Time), the two control approaches (cMPC and RHPC) pmdirnilar trends in the
evolution of the emissions and the speed of the traffic fovthv®us scenarios.

7.4 Conclusions

This chapter has presented the general similarities amerelifces between conventional
Model Predictive Control (cMPC) and Receding-Horizon Retaee Control (RHPC). It
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Figure 7.14: The influence of cMPC and RHPC control approaabre the evolution of the
dispersion leveDL(k) in the target zone under different control scenarios of
Case study H. The dispersion leveL (k) is the total sum of emission lev-
els CO, HC, and NQ@ in the target zone at every simulation time steps
expressed img/n?.

further has compared the two control approaches using atinntbased case studies.
The first case study illustrated that RHPC may have relatigebd performance while
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featuring a very low computation time, which makes it febssilor practical applications.
With all the scenarios considered (different combinatiohshe total time spent and the
total emissions) the computation time demand of the RHPGralter has been less than
one control time step while still improving the control perhance measures as compared
to the uncontrolled scenario. Moreover, for this case sthdyperformance of the RHPC
controller was comparable to that of the cMPC controller.

In the second case study, where dispersion of emissionsak@s into account, both the
RHPC and the cMPC controllers were too slow (i.e., the coatjrt time required at every
control time step is larger than one control time step sizéich makes them unsuitable
for practical applications. In fact this is due to the addechputation time required by
the dispersion model and due to the larger number of inibalfs used for the optimization
process (i.e., the number of the initial points of the optimtion was in the first case study,
while it is increased t@ in the second case study.). Nonetheless, even in this seased
the RHPC controller has proved to be very much faster thacMfeC controller, albeit at
the cost of a lower performance. The reduction in the contjmdime as compared to
the loss in performance measure of the RHPC controllerivel&d the cMPC controller is
small.






Chapter 8

Conclusions and Open Issues

his thesis has presented and discussed freeway traffic flalelsydreeway traf-

fic emissions and fuel consumption models, freeway trafficssions dispersion

models, and model-based freeway traffic control approacimethis chapter the

main conclusions of the thesis are summarized. Moreovdnaaseen pointed
out in some of the chapters, this thesis also leaves someispees that require further
research work. This chapter highlights the main issuesciratbe researched in the future
and in some cases the chapter provides some pointers (remmations) for the pursuit of
the solutions to the open issues.

8.1 Conclusions

Traffic systems are non-linear and complex systems. Duectarpredictable behavior of
drivers and unknown disturbances, development of traffie fraodels that provide accurate
estimates and predictions of traffic states and that aracaybt to all situations is very
challenging. Thus, models are developed with a minor aebépmismatch from the reality.
Using such models to make predictions of traffic states arldngalecisions based on the
uncertain predictions can have a negative impact, espeitidecisions are based on longer
prediction horizons, where the introduction of predicterors is highly plausible.

In cases where models have some uncertainty or are complexeteding-horizon-
based model predictive control approaches are good caadidae to two main reasons. On
the one hand, the control approaches make use of predietffid states to design control
measures so that a given traffic control objective is atthiaad thus future travel times and
traffic demands can be considered when allocating the khiitieastructure. On the other
hand, since such control approaches rely on the prediityatiithe traffic states, when there
are errors in the prediction of the traffic states, the ercarsbe corrected during the next
prediction step as it uses the receding-horizon-feedba&eapt. This means that the model-
based traffic controllers presented in this thesis adaphsbb/es to the prevailing traffic
situations and update the traffic control measures thatroprove the traffic performance.

This thesis has considered multi-objective traffic conpefformance measures. In par-
ticular, the reduction of travel time, emissions, fuel aamgtion, and dispersion of emis-
sions to neighborhoods have been taken into account. Thassrteat the controllers have
to predict these performance indicator on-line for evergsitde combination of traffic con-

159
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trol measures, in particular the variable speed limits amdpr metering discussed in this
thesis. Therefore, it is imperative to select models thatlmaused for on-line applications

and to design model-based controllers that are tractabpeactice. To this end, models

have been selected and compared and traffic controllersdearedesigned and compared.
The main conclusions of the process and the results are stirethas follows:

Traffic flow modeling:Initially, a brief overview of the traffic flow models has begimen in
Chapter 2. From the literature it can be concluded that,itkee fact that microscopic
traffic flow models such as the GHR (Gazis-Herman-Rotherywleh{67] and IDM
(Intelligent Driver Model) [186] provide a relatively ac@aie description of individual
vehicles in a traffic flow, due to the limited contemporary gatational capability
of computers and the current state of microscopic modelsrasaopic models are
much better suited for on-line applications, because nsaogpic models demand low
computation time and memory size. In particular, modekdasaffic control (where
models are required to make on-line predictions and estimstrequire macroscopic
traffic flow models. Moreover, as long as traffic control measuare not tailored
for individual vehicles, macroscopic traffic flow models arétable for on-line based
traffic control applications, where control measures (saslspeed limits and ramp
metering) are assigned arbitrarily to collection of vedscl

In this thesis, the METANET [103, 124, 145, 146] traffic flow deb, which is macro-
scopic and discrete in time and space is selected to deshahgaffic flow of freeway

systems. Moreover, in many occasions this model has beergto result in a good
description of the traffic phenomenon of the freeway traffisteams|[103, 145, 146].
As has been demonstrated in several articles, the computatie of the METANET

traffic flow model and its extensions [77] does not depend emtimber of the ve-
hicles in the traffic network. Therefore, the METANET modeHsts extensions can
be used for the simulation of large-scale networks. Morgameaddition to the ramp
metering control, it is relatively easy to include variabfgeed limits explicitly in the
METANET model.

Traffic emissions modeling.iterature suggests that microscopic emissions and fual co
sumptions models are more accurate than macroscopic emssand fuel consump-
tion models. Since the macroscopic traffic flow model METANEThosen for the
simulation and prediction of the traffic flow, the use of maoapic emissions and fuel
consumption models would have decreased the accuracy e$timeation of the traffic
emissions and fuel consumption. Therefore, it has beenratipe to find a way to
integrate the microscopic emissions and fuel consumptiodets with macroscopic
traffic flow models in order to increase the estimation or ftémh accuracy of the
emissions and the fuel consumption. To this end, Chapter tBisfthesis has pre-
sented a general framework for the integration of macrasdegific flow models with
microscopic emissions and fuel consumption models. Theoagh has been further
demonstrated using the METANET traffic flow model and the Vitnm[2] emissions
and fuel consumption model, which resulted in the VT-maenissions and fuel con-
sumption model.

The analytical and empirical examination of the errors dzat enter due to the inte-
gration of the VT-micro microscopic emissions and fuel eonption model with the
METANET macroscopic traffic flow model have been shown to balkfar small de-
viations in the speed and in the acceleration of the vehfobes their average values.
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Comparison of the newly developed macroscopic VT-macroehtmdthe established
average-speed-based macroscopic model, COPERT [13%hbam the excellent per-
formance of the VT-macro model. Moreover, the VT-macro siniss and fuel con-
sumption model shows a significant reduction of the comparteime relative to its

parent microscopic emissions and fuel consumption modeinicro.

Freeway traffic emissions dispersion modelir&s not only the emissions from vehicles on
a freeway but also the dispersion of the emissions to predeteas is important, traffic
management and control practices should also take therdisp®f released emissions
into account. The prediction or analysis of the impact ofedént traffic control and
management actions on the dispersion of emissions can kewitin emissions dis-
persion models. Emissions dispersion models require thes@ms of vehicles in the
traffic networks (either measured on-line or predicted)reimput. In prediction-based
control approaches (such as the model predictive contscldised in this thesis), pre-
diction of the traffic states and thereby determination efghissions is required before
one can predict the dispersion of the emissions to a givgetaone. In general, this
entails a higher demand for computation time. Therefospetision models with a low
computation time while still offering considerably accerastimation or prediction are
required for the on-line model based control approaches thgicase in this thesis.

So, this thesis has presented new dispersion models thdiecased for an on-line
applications. First a point-source dispersion model wasgmted. This is used as a
basis for the development of the subsequent efficient gagktd models, the extended
grid-based and expanding grid-based dispersion modekseTimodels take the effect
of varying wind speed and wind direction on the dispersioarafssions into account.
The variation of the dispersion of emissions with the vasiabf temperature can be
considered. Moreover, the computation of the grid-basegdadsion models is small
and it is also independent of the number of target zones deresi.

Conventional Model Predictive Control (cMPCPue the non-linear and time-varying na-
ture of freeway traffic systems and due to the potentiallyflaiimg interests of differ-
ent stakeholders of the traffic systems, this thesis hasopempModel Predictive Con-
trol (MPC) to dynamically steer the freeway traffic flow sublatta balanced trade-off
between the conflicting interests can be obtained. Chagtashighlighted the basic
concepts of the cMPC controller as applied to traffic systenhas illustrated ways to
describe the multi-objective traffic control performancigetia; and it has formulated
model predictive traffic control optimization problem.

In this thesis, case studies have been used to demonstr&€ ¢ freeway traffic
applications with multifaceted and sometimes conflictifgeotives (e.g., reduction
of travel times and emissions are conflicting requirememtsaise of low to medium
traffic, while under congested traffic conditions both reguients are in essence the
same). In this regard, the case studies have illustratée-thgpending on the weights
assigned to the individual control performance criteriatsipossible to reduce not
only the travel times of vehicles in a traffic network, butcatee emissions and the
dispersion of the emissions to a given target zone. This m#eat assigning different
weights in the control approach offers the capability fdfedent stakeholders to affect
the traffic flow in order to favor the traffic performance crigethey would like to focus
on. Moreover, the case studies have also illustrated tHigyadmd potential of cMPC
to efficiently coordinate variable speed limits and rampariegy.
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The simulation results of the case studies have also ifitesdrthe potential of coor-
dinated and integrated variable speed limits and ramp mgtéo improve the per-

formance of the traffic network. In this regard, the cMPC calfér has been able to
integrate and coordinate the traffic measures. Dependirieowind speed and wind
direction, the cMPC controller has been able to steer ttiéctfbow in such a way that

the dispersion of emissions to a given target zone is redu€bd simulation results
suggest that—instead of focusing on the total emissions—etixntuof the dispersion

of emissions to a specific target zone is best strategy irsavbare there is frequent
traffic jams and where there is the need to reduce the emiksiels on a given target
zone. In this way, only the parts of the traffic network thatéhaffects on the emis-
sion levels of a protected target zone can be regulated thupeolow emission levels.
Hence, the constraint on the traffic flow of the parts of th#itraetwork that have no

effect on the protected target zone is relaxed, as suchdffi tilow in these parts of

the traffic network can be improved.

However, as other papers from literature already suggéstede, the simulation stud-
ies have shown that the computation time demand of the cMPREatter is very high,
which makes it not suitable for practical on-line applioas.

Receding-Horizon Predictive Control (RHPCgince the large computational demands of
the cMPC controller makes it intractable in practice, in @ea 6 of this thesis a
parametrized MPC strategy called Receding-Horizon PtigdicController (RHPC)
has been proposed. Under the same conditions, if the cantabkures of the traf-
fic system can be described by control laws with a number adrpaters that is less
than the number of the control measures, the computatiandirthe RHPC controller
can be decreased. To this end, Chdpter 6 has discussed tiralgemcept behind the
RHPC controller and the parametrization of the control laBpecifically, the con-
cepts have been applied to design the RHPC controller foablarspeed limits and
ramp metering.

Similar to the cMPC controller, the RHPC controller has besed in simulation-based
case studies to reduce the travel times, the emissionshardigpersion of the emis-
sions to a target zone. Moreover, the RHPC controller has beed to integrate and
coordinate variable speed limits and ramp metering in sushyathat a given traffic

performance criterion is improved. The case studies héwstriated that the RHPC
controller, as its parent cMPC controller, can improve tladfit flow, the emission

levels, and the dispersion of the emissions to a target Zbhe . RHPC controller has
also shown the trade-off involved between the travel tireesissions, and dispersion
of emissions to a target zone. Based on the weights assigrled traffic performance
criteria, the RHPC controller has been able to provide areald trade-off between the
conflicting and sometimes concurring traffic performandeda.

Comparison of cMPC and RHPCSince the control objectives of the controllers are non-
linear and non-convex, the performance of the cMPC and the@Ebntrollers could
not be compared (or quantified) analytically. Hence, thégperance loss induced by
the parametrization of the control measures cannot be glze.

Due to lack of analytical description of the performance @ RHPC controller as
compared to the cMPC controller, this thesis has compaeddhtrol approaches us-
ing simulation-based case studies in Chdpter 7. The cadiestuave indicated that the
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RHPC controller, in particular when the control objectige@duction of travel times,
has very low computation time which makes it suitable focpical applications. How-
ever, the computational gain of the RHPC controller has lodained at the expense
of a performance loss relative to the cMPC controller. Ths o performance in gen-
eral increases as the number of control inputs that arerdited by the same control
laws increases. Hence, a trade-off has to be made betwegputational efficiency
and loss in performance relative to the cMPC controller.

8.2 Open issues

Although this thesis answers several important questiglasad to the application of model-
based predictive control to solve the potentially conftigtiraffic control performance cri-
teria, there are many open issues that still require fuithesstigation and research work.
In this section some of the open issues that are worth oftaitem relation to this thesis
work are discussed.

This thesis has developed macroscopic emissions and fagliogption models and dis-
persion of freeway traffic emissions models. These modeis hat yet been validated nor
calibrated to real-life data. The VT-macro emissions amd donsumption model presented
uses the parameters of the VT-micro emissions and fuel cgpison model [2] that is cal-
ibrated based on microscopic real-life data. The disparsiodels are neither compared
to established models nor calibrated to real-life data. rdfoee, these models cannot be
used in practice before assessing them with respect tdifeeaata. In order to improve
the quality and assert the use of the models for practicdiagions, it is recommended to
make further extensive research on the validation and cosgraof the models with real
data and available models. In this regard, some open issaeequire further examination
and research are:

Extensive validation of the VT-macro emissions and fuetwoption modelThe newly de-
veloped VT-macro emissions and fuel consumption model bas lsompared only to
the parent VT-micro model [2] and the COPERT model [139]. &bwer, the VT-
macro model has not yet been calibrated with the original dathe VT-micro model.
Calibration of the VT-macro model with the original data bétVT-micro model or
some other data could improve the quality and reliabilityref model. Additionally,
comparison of the VT-macro model with other macroscopicraimoscopic emissions
and fuel consumption models both in terms of the computdiina and estimation or
prediction accuracy is an important step before explaitatif the model.

Moreover, the error introduced during the empirical congmar of the VT-macro model

with the VT-micro model could have been caused due to the atismbetween the mi-

croscopic and macroscopic traffic flow models. This issuenmdeen investigated

and could not be quantified in this thesis. Therefore, furtheearch is suggested to
find relations or explanation to the emissions or fuel corggtion estimation errors that

can be caused due to the mismatch between the different filatfi models.

A general framework to integrate the macroscopic traffic fleedels with microscopic
emissions and fuel consumption models has been presen@thjstef 3. This frame-
work has been demonstrated only with the METANET flow model #re VT-micro

emissions and fuel consumption model. The applicabilittife shortcomings) of the
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framework can also be investigated for other models (ehg.cell transmission flow
model [52, 53] with the VT-micro model).

Calibration, validation, and extension of dispersion misdeSimilarly to the emissions and

fuel consumption models, the proposed dispersion modelseither calibrated nor
compared with any real-life data or existing dispersion eied The accuracy of the
models when calibrated with real data or models is not kndvmerefore, it is recom-
mended that the freeway emissions dispersion models abeated and validated with
real-life data and are also compared with other existingetsoboth in terms of their
computation time and their estimation or prediction accura

Furthermore, the dispersion models developed in thisshdsnot describe the evolu-
tion of the dispersion of the emissions in the vertical dimet The dispersion models
describe the evolution of the emissions horizontally whibesidering a vertical dis-

persion factor that to some extent reflects the effect of #héical dispersion on the

horizontal dispersion level. However, it is therefore mooended to also extend the
developed models to fully describe the vertical dispergibthe emissions (i.e., to

extend them t@D models).

The wind speed and wind direction in the dispersion modedsagsumed to be ho-
mogeneous spatially (i.e., every point in the horizontalcgp—all at the same time—
experience the same wind speed and wind direction). Howé#wvemwind speed and
wind direction vary in space. So, we recommend to extend ig@edsion models by
including a wind model for each cell in the grid that dependste wind speed and
wind direction of the neighboring cells.

Consideration of traffic compositionn reality, the traffic composition is not homogeneous.

this

It comprises light and heavy duty vehicles and old and neviclehdriven by drivers
of different age and experience level. But throughout thesis homogeneous traf-
fic composition has been assumed. This means that all vehatke assumed to be
characterized by the same behavior. Therefore, it is recamded that the models be
assessed for the cases with heterogeneous traffic congpssitioreover, the impact
of the controllers designed under such traffic compositgthaild be examined.

Other important issue is related to the traffic control desig§s has been indicated in
thesis, the main shortcoming of the cMPC controllehat the required computation

time is very high. To alleviate this issue the RHPC contrdiies been introduced at the
cost of some performance loss. However, even the RHPC d¢@pgpooach still has some

unr

esolved issues, in particular the relative loss or imgneent of the RHPC controller

with respect to the cMPC controller is not determined in gahé/oreover, other dynamic
control strategies (or even control laws of the RHPC colgrpthat may result in better
outcomes have not been investigated. Thus, it is recomndethdé future research is con-
ducted to study:

Quantifying possible or maximum performance lo$$ie performance loss of the RHPC

controller with respect to the cMPC controller due to theapaetrization of the con-
trol laws requires both extensive analytic approximatiand empirical investigations.
In other words, the research question “What is the (approg)malation between the
control objectives of the RHPC and the cMPC controllers Far tespective control
input spaces of the controllers?” requires detailed exatitin. This is because the
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relation between the control objective functions of thetoalters in terms of the pa-
rameter space for the RHPC controller and in terms of therobinputs for the cMPC
controller can give a clear understanding in the amount ofop@ance loss of the
RHPC controller with respect to the cMPC controller.

Systematic approach for the formulation of control laws:general, in this thesis, the con-
trol laws of the RHPC controller have been developed hecaiy with the help of
a priori knowledge of traffic systems. But could there be aegalnapproach that can
be used to formulate control laws in a systematic way? Theldpment of a strategy
to define a control law such that the control input space ofRREC approximates
the optimal control input space of the cMPC as closely asiplessan improve the
performance of the RHPC and the time to attain the optimaiesal

Alternative control approachesln this thesis, the RHPC controller has been introduced to
reduce the computation time of the cMPC controller. In gehhis is at the expense
of loss in performance relative to the cMPC controller. Hegrethere are also new
control strategies for special system model structureg @these approaches is Lin-
ear Parameter Varying (LPV)-MPC, which requires LPV moddlthe systems. For
many non-linear systems the LPV-based control approacies roved to increase
the performance of traditional control approaches. In thggard, there have been ef-
forts to model the traffic flow, emissions, and fuel consuompthodels in an LPV form
[113,/115, 213]. However, since these models are not ablsdwariable speed limits
as a control measure, these models have not been used in E®/dvl other LPV-
based traffic control approaches. So, such approachessaheainvestigated and can
be compared to the RHPC control approach presented in #sssth

Including and assessing other traffic control measurgsthis thesis, only the speed limits
and ramp metering have been used as traffic control meadutiézation and impact
assessment of other traffic control measures, such as roigtenge, lane closure, and
road pricing, within the scope of the proposed control apphes is also an important
subject to be considered in future research.

Simulation versus prediction model&ll the case studies presented in this thesis use the
same model as a simulator of the real traffic system and asdicfmeof the traffic
states required by the model-based controllers. Howelvigre icMPC and the RHPC
controllers would be implemented in practice, the realiill e definitely different
from the prediction models used by the controllers. Thisnmaitch can have conse-
guences on the performance of the controllers. Hence, tHerpeance of the con-
trollers also has to be investigated by using different neéte the simulation and
prediction of the controllers. Such an approach would goreesidea of how the con-
trollers would cope with such a model mismatch when apphetality.

In this thesis, centrally governed traffic controllers haeen designed for system op-
timal operations of traffic systems. However, system ogtioparations of traffic systems
does not necessarily mean that all stakeholders are atleguit. Moreover, in this thesis,
intelligent (or fully autonomous) vehicles have not beensidered. In view of these, it is
also interesting to investigate the following researchstjoas in the future.

System optimum versus user equilibrium traffic operatibnthis thesis the traffic control
performance criteria were defined to be total time sperd| &vhissions, total fuel con-
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sumption, and the dispersion level on a target zone of tla ti@iffic network consid-
ered. But, minimum total time spent, total fuel consumedptal emissions released
does not mean that every driver has the same travel cost pidimn@. The systems’
optimal solutions that were sought using the control apghiea presented in this thesis
do not show a user equilibrium. Therefore, the traffic sohsdithat resulted in system
optimal operations are not efficient in allocating resosregually. On the other hand,
user equilibrium traffic operations are in general viewe@ asasonable approxima-
tion of the non-cooperative decisions made by commutersaamdot efficient for the
allocation of the scarce traffic network capacities [198hefiefore, a traffic control
approach is efficient if it can provide both system optimal aser equilibrium traffic
solutions.

However, at least for some cases, it can be possible thatathe system optimum
can be obtained with different combination of traffic cohtneasures or the same
user equilibrium operations can be attained with diffe@rhbination of traffic con-
trol measures. Then, a traffic control strategy can selexttmbinations of traffic
control measures that results in the minimum differencevéen the user equilibrium
and system optimal traffic operations. In this sense, it terésting to research the
user equilibrium approach of the model-based traffic cortpproaches presented in
this thesis. Moreover, a combination of both user equilioriand system optimal ap-
proaches can be considered as a future research direction.

Platooning: As has been briefly presented in Chapter 1, platooning otlehcan decrease
the fuel consumption and emissions of vehicles [6, 17]. Mwoee, the number of
vehicles occupying a traffic network can increase, becéesénter-vehicle distance
is reduced. The question is then, how can the model-baskid tantrol strategies
influence intelligent vehicles to formulate platoons infsacway that a given traffic
performance criterion is improved? Since travel time, fisglsumption, and emissions
of the vehicles depend on the platooning, modifications eggired in the available
traffic flow, fuel consumption, and emission models. Thawfdurther research is
recommended to investigate platooning as a traffic contedsure to improve travel
time, fuel consumption, emissions, and dispersion of éoriso a given target zone.



Appendix A

Model Parameters

his appendix lists the values of the parameters of the meopis VT-macro

emissions and fuel consumption model and the values of trenpeers of the
METANET traffic flow model for the part of the 22 Dutch freeway. These pa-
rameter values are used in the simulation studies prestmtaaghout this thesis.

A.1 VT-macro (VT-micro) parameters

The values of the parameters of the VT-macro model are the santhat of the VT-micro
model [2]. But since the values of VT-micro are given for gpaguts in ft/s and accelera-
tion in ft/s> and the outputs are in mg/s for the emissions and gal/h fdutieonsumption,
the values of the parameters are transformed in order tolus@tS for the inputs and for the
outputs. Thus, the values of the model param&jgfor the emissions and fuel consumption
variabley € J/{COy} = {CO, HC, NQ,, fuel} are given by:

[—1292.81 48.8324 32.8837 —4.7675
P — o1 | 232920 41656 —3.2843 0
co = —0.8503  0.3291  0.5700 —0.0532]|°
| 0.0163  —0.0082 —0.0118 0
[—1454.4 0 25.1563 —0.3284
P 001 | 81857 109200 —1.9423 —1.2745
HC = V55102260 —0.3531  0.4356  0.1258 |°
| 0.0069  0.0072  —0.0080 —0.0021
[—1488.32 83.4524  9.5433 —3.3549
Po — .01 | 152306 16.6647 10.1565 —3.7076
NOx = —0.1830 —0.4591 —0.6836 0.0737 |’
| 0.0020  0.0038  0.0091 —0.0016
and
[ —753.7  44.3809 17.1641 —4.2024
P ool | 97326 51753 0.2042  —0.7068
fuel = VY51 _0.3014 —0.0742  0.0109  0.0116 |’
| 0.0053  0.0006 —0.0010 —0.0006
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when the inputs of the emissions and fuel consumption madéhssI-units and the outputs
are in kg/s for emissions and I/s for fuel consumption.

A.2 Parameters of part of the Al2 Dutch freeway

The METANET traffic flow model has been calibrated to the daléected from part of the
A12 Dutch freeway by [79] (these values are also used in Chaptarsl 7 of this thesis).
The values of the parameters as obtained by [79] are listesvbe

Parameters Values Units

bm 2.8260 -

A 3 -

1) 0.8942 -

0 1 -

T 14.76 S

T 10 S

K 32.9010 veh/km/lane
Per,m 24.1801 veh/km/lane
Piam,m 187.6495 veh/km/lane
Vref.m 117.6946 km/h

Umin 13.0010 km/h

Th 26.2669 km?/h

m 64.2005 km?/h

Con None veh/h

Co2 1751.2 veh/h

Co3 1976.2 veh/h

Lo, [530 530 535 600 595 480] m

Ly, [800 640 785 700 725 656 600 600 414] m

Ly, [653 527 494 616 665 635 600 688 582] m

By off 0.0234 -
Brg.oft 0.1618 -
Brng off 0.1228 -



Appendix B

Derivation of The Intersection
Formulas

n the derivations of the intersection equations given iniSe.3.2, two conditions

are statedT’ < %5 andL > 22_T¥‘;((’j€)). If the simulation time step siz&€ and the
grid square lengtti. are selected in such a way that these conditions are satitfesd
any dispersion square of a cell will only be able to cover astmine neighboring cells
as depicted in Fig. Bl1.
Now let us first consider the displacement of the center p@int) to (., y.) due to
the windV4, (k) with a directionp (k). The displaced center point of the expanded square is
then

(ze(k), ye(k)) = (= TV (k) cos(p(k)), TVi (k) sin((k))) (B.1)

Since, the expanded dispersion square is expanded by a fatt9 per unit time fromL
to L.(k) = (1 + Tw(k))L, then the corner points, (k), c2(k), c3(k), andcs(k) can be
described as

ci(k) (xe(k) - Lcék),yc(k) + L;“) (B.2)
ca(k) = (a:e(k) - Leék)7ye(k) + Lez(k)> (B.3)
c3(k) = (a:e(k:) + Leék)’ye(k) - LeQ(k)) (B.4)
ca(k) = (we(k) - Leék),ye(k) — LQ(M) (B.5)

In order to determine the values o ““”.”C)(k), we need to determine the magnitude of

ic,jc)

a1 (k), az(k), as(k), b1(k), ba(k), andbs (k). With straightforward calculations the value of
ai (k) is

TLw(k)

a1(k) = TVy (k) cos(e(k)) + 3

(B.6)
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v)
Le(k) ! es(k)
(k) J /
\.
aledd (k) (ioo) a1 (k) ba (k)
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L
2
(ic.de)
agelel (kg
(o), ek | 2o ®
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2150y (F) 0,0) 2(k)

i 1870 i
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Figure B.1: Expanded and displaced dispersion square of bk C;_ ;.. The point
(zo(k),ye(k)) denotes the new center of the expanded and dispersed disper-
sion square. The areas of the parts of the dispersion squacelbC;,_ ;. that

intersect the grid cell&”,_,, are denoted bwéfﬂ”)) The variablep(k) de-

notes the direction of the winld, (k) in which the emissions are dispersed.

However, due to the variation of the wind speég(k), wind directionp(k), and the ex-
pansion factoro(k), the value ofa; (k) can be negative. This indicates that the dispersion
square does not intersect to the neighboring cell in thesld# of a cell. Moreover, using
this negative value to determine the area of the intersectwld result in invalid values.
Therefore, to avoid such cases, the valuesfdk) is modified as

a1 (k) = max {O, TV, (k) cos(p(k)) + TL;U(k)} (B.7)

Using similar reasoningss(k), b1 (k), andbs (k) are given by

as(k) = max {O, —TVy (k) cos(e(k)) + TLT;(k)} (B.8)
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b1 (k) = max {0, —TVy (k) sin(e(k)) + TLZ(k) }
b3(k) = max {O, TV, (k) sin(p(k)) + TL?;(IC) }

The values for (k) andby (k) are then

as(k) = Lo(k) — a1 (k) — as(k)
ba(k) = Le(k) — b1 (k) — ba(k).

So, the areas of thegz‘c“jzc))(k) can be obtained as

o) (k) = azyi, —u, (k) by s, v (F).

(B.9)

(B.10)

(B.11)
(B.12)

(B.13)
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Conventions

The following conventions are used in this thesis for notaind symbols:

N represents the set of natural numbers.
R denotes the set of all real numbers.

Z(ka|k1) designates the predicted valueaoét a time stegk, using the information
at time stepk;.

An operatorA is defined such thatl(x) provides the value of the area of a region
defined byz.

The# in #(x) is defined as the set cardinality of

The intersection between two or more regions is describedy(i3, e.g.,A( B de-
notes the intersection of regiochand regionB.

The superscript denotes the transpose of a matrix (or vector).

The ~ operator is defined in such a way thatesults in a vectofl = 2% 2°]T.

List of symbols and notations

Below follows a list of symbols and notations used in thissthe

Latin symbols

Ai . area of cellC;_ ;.

Aint,m,i area of an intersection betwedh, ; and a target zonge

A area of a dispersion tetragon of the emissions released from
segment of link m

Asgic e area of dispersion tetragdn, ;_ ;. of acellC;_ ;.

a average acceleration

a instantaneous acceleration

a average acceleration of a number of vehicles

aA24i,—u, part of a horizontal dimension of an expanded cell
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Qoross,m.i,i+1 acceleration of vehicles crossing segmetat: + 1 of link m
eross,m,m+1 acceleration of vehicles crossing link to link m + 1
Aeross,off 0 acceleration of vehicles leaving an off-ramp

cross,on,o acceleration of vehicles entering an on-ramp

Gmax,a maximum acceleration of vehicle

Aseg,m,i acceleration of vehicles within segmendf link m

g acceleration of vehicle

o avector[l a, a? a3]"

botj.—v. part of a vertical dimension of an expanded cell

bm parameter of the fundamental diagram of link

bmax,a maximum comfortable deceleration of vehicle

by parameter of the fundamental diagram of ljmk

Can the set of all pairs of consecutive traffic control measures
Cl(z,y,2) contamination concentration at the pofmt y, )

Ci. j a cell in a grid with its bottom-left coordinate @t j.)

Co capacity flow of origino

Crarget,t a polytope of target zone

Cig.ic.je a dispersion tetragon of cedl;_ ;.

Cugve a cell in a grid with its bottom-left coordinate @t., v.)

c controller performance criteria

Co, C1, C2 coefficients of COPERT model

CcMPC values of the performance criteraf cMPC controller
CRHPC values of the performance criteriaof RHPC controller

Ca GHR model parameter for vehicte

Dy dispersion level of emissiopat a target zone

dy, d2, d3.cal, da traffic demands of casds 2, 3, and4

do traffic demand of origir

E a diagonal matrix withy, 1, 2, and3 as its diagonal entries
av.y average of absolute relative-estimation error of emisgion
f state vector function

Im a vector of nonlinear control law functions

fm1, fm2, fm3 nonlinear control law functions

fy microscopic emission and fuel consumption function

fa stimulus response function

g nonlinear constraint

g gravitational acceleration

g inequality constraint function

input state vector function

(2) equality constraint function
(2) output vector function
s mirror emission source distance beneath the ground
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SN

<

Jcross,y,m,i,i+1
Jcross,gj,mi,uj
Jext,gic.je
Jseg,g,m,i
Js.rc,g,ic,jC
Jtot,gj,t,m,i

Jtotal,gj
Jvcctor
Jvector,i
Jy
Sgic.je
Jy,m,i
J@,t,m,i

Jg,a

[¢)

B <

?T?T‘O?T‘?T‘W‘ ~

w

3

S
(0]

Q

if%

Man

My, Mo, Ms, My
m

my, M2, ...,Mn,

N

the set of links that enter node

identity matrix

relative performance indicator of a controller
segment index

horizontal grid-cell index

GHR model parameter

objective function

total § of vehicles crossing from segmeirttio : + 1 of link m
total y of vehicles crossing from linkq; to link 1

emission contributed to cell;_ ;. by an external source
total  of vehicles within segmernitof link m

emissions released in the cél]_ ;.

total emission rate of segmentf link m of emissiony generated
in the past time and that intersects a target zone duringrtiee t
period[kT, (k + 1)T')

total emissiony generated by vehicles in a network

a vector of objective functions

i*? objective function of vector,ecior

emission or fuel consumption rate

the emission level of atC;_ ;.

the emission rate of a wavefront of segmenf link m
emission rate/y ,,, ; that arrives the target zone
emissiony generated by vehicle

positive integer counter

positive integer counter

vertical grid-cell index

GHR model parameter

macroscopic simulation time step counter

cMPC and RHPC optimization layer control time step counter
RHPC feedback layer control time step counter

microscopic simulation time step counter

sampling time step counter

length (or width) of a grid cell

length (or width) of a expanded cell

length of segments of linka

length of vehiclex

time step at which an emission is released

the set of links in a network

the set of all pairs of indices of segments and links
positive integer multipliers

index of a link

indices of merging links

the set of nodes in a network
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N the set of neighborhood cells of a cell and the cell it self

Ny number of total simulation time steps

N,, number of segments of link

N control horizon

Np prediction horizon

n number of vehicles, a node

Necross,m,i,i+1
Necross,m,m+1
Ncross,off 0
Ncross,on,o
Nseg,m,i

Moy Mgy Ny
Thysl

Oan
O’n

(]

P(p,v,t)
Pan

by

p
Pcontrolled
Plym,i
DPrm,i

Puncontrolled

Q

Q

Qn (k)
q

q(,t)
Gmax,u,1
qm,i

do

qoff o0

Gon,o

qﬂi,()(k)

Ran
R,
,

To

Sl

S1, S2, S3, S4, S5

S
S1, S2

number of vehicles crossing segmend i + 1 of link m
number of vehicles crossing link to link m + 1

number of vehicles leaving an off-ramp

number of vehicles entering an on-ramp

number of vehicles within a segment

dimensions of control input, state, and output of a system
number of variable speed limits

the set of all origins
the set of links that leave node
origin index

traffic pressure

the set of all pairs of consecutive speed limits

parameter matrix of emission or fuel consumptipn

traffic performance criteria

the value of a performance criteria of a controlled scenario
left most point of an emission dispersion wavefront

right most point of an emission dispersion wavefront

the value of a performance criteria of uncontrolled scenari

nonlinear equality constraint

source strength (mass of released material per unit time)
total flow entering node

flow

instantaneous flow

maximum outflow of the first segment of link
outflow of segment of link m

the outflow of origino

off-ramp flow of origino

on-ramp flow of origino

flow leaving noden via link 1;

the set of all controlled on-ramps
relative controller performance
index of on-ramp

ramp metering rate of origin

the set of all speed limits

simulation scenarios

speed limit index of segmeat

speed limit indies of segmenis ands,
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S50,
Sa
*

S

7;11
Znt ,t
T

TTS,, TE,, TFC,

MDL,,, TDL,
T,

Tc,i

Td,a

arrival,managed

o~~~

jam,dissolved

~

jam,managed

~~

jam,unmanaged

o~

Uan

Ua

UA,n

Uvsl,cMPC,m,

Uvsl,cMPC,m
jsl,cMPCn’n

Uys1,REPC,m

UVSI,RHPC,m
\tsl,RHPC,m

u

u*

U

Uy

Ur,m

Uy, ref,m

Usy, Usyy Usy

lg, Us,, Us,

Uvysl,cMPC,m,i

Uvysl,m,i

Uvsl,ref,m

Uvys], RHPC,m,i

arrival,unmanaged

minimum stand-still headway distance of vehiale
actual headway distance of vehicldrom vehiclea — 1
minimum desired headway distance of a vehicle

the set of all target zones

the set of all cells that intersect a target zone
macroscopic simulation time step size

normalized values of'TS, TE, andTFC

normalized values dfIDL andTDL

computation time step size of RHPC optimization layer or EMP
RHPC feedback layer control time step size

overall driver reaction time

microscopic simulation time step size

sampling time step size

headway time of a vehicle

destination arrival time of managed vehicle

destination arrival time of unmanaged vehicle

jam dissolving time

arrival time of managed vehicle to a downstream jam
arrival time of unmanaged vehicle to a downstream jam
continuous time

target zone

the set of all traffic control measures

weighted sum of control input variation over time and space
normalized value ot/x

a vector Of[uvsl,cMPC,m,i(kc) O uvsl,cMPC,rn,nvsl(kc)]—r

a sequence of predictéd, cvpc,m

the optimal value oU v cMmpc,m

a vector Of[uvsl,RHPC,m,i(kc) cee ’U/vsl,RHPC,WL,nVSl(kc)]—r
a sequence of predictéd.q ruprc,m

the optimal value oU vs rupC,m

control input sequence over a prediction horizon
optimal value ofu

a control input

a ramp metering of on-ramp

ramp metering rate of an on-rampf link m

reference ramp metering rate of an on-rangf link m
speed limit control of segmenis s, andss

traffic control measure of segmentss;, andss

variable speed limit of cMPC controlled segmewof link m
variable speed limit of segmeibf link m

reference variable speed limit of link

variable speed limit of RHPC controlled segmeénf link m

the set of vehicles present in a network at time gtgp
generalized equilibrium speed, desired speed
a description of the cost function
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V0,

Vav

Uc

Ve,m,iy Veym,i+1
Vfree,m
Vlim, 1
Um,i
Umi,Nmi
Umin
Von,o
Voft,o0
/Ustep
Uvsl,a

Vo Va—1
Ua

1}““0(]{3)

Ye

Ye

Y, Yr
Yljes Yr,je

lower boundary of variable speed limit
upper boundary of variable speed limit
wind speed

instantaneous speed

space-mean speed

time-average wind speed

the average speed of a number of vehicles
desired speed of vehicte

trip-based average speed

measured or estimated space-mean speed at control time step
v Of segment andi + 1 of link m

free-flow speed

limiting speed of the first segment of link
space-mean speed of segmeat link m
space-mean speed of segmaiy, of link m;
minimum space-mean speed

on-ramp space-mean speed of origin
off-ramp space-mean speed

the maximum speed limit step change allowed
speed limit of vehiclex

speed of vehicler anda — 1

avector[l v, v2 v3]T

[e3%

virtual upstream space-mean speed of Jink
queue length of origim

a vector of predicted values of state
coordinate

state variable

vehicle position

predicted value of the variable

origin of thexz—axis

the stater at a control time step

predicted value of the state

left and rightz—axis coordinate values of a line
left and right sider—axis coordinate values of a céll;_ .
value ofz coordinate op; ,, ;

value ofz coordinate op; ,, ;

position of vehiclenw anda — 1

the set{ CO, HC, NQ,, CO;, fuel}

a vector of predicted values of output

coordinate, output vector

origin of they—axis

the outputy at a control time step

predicted value of the staig

left and righty—axis coordinate values of a line
left and right sidey-axis coordinate values of cell. ;,
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Y,m,i
Yr,m,i

y

Ymodel
gVT—micro

Zm,
Zm
z

Zm,i

Greek symbols

(%
Uc,Ve
leye

B
Bo
ﬁmax

ﬁmia”:”j

ﬂn,m

y

At
Av

€approx,a,§

Gi

¢4,MDL, G4, TDL

h
m
77m K3

value ofy coordinate of; ,,, ;

value ofy coordinate ofy ,, ;

emissions CO, HC, NQ and CQ or fuel consumption
the value ofy computed using a given model

the value ofy computed using VT-micro model

a vector ofz,, ; of all segments
a diagonal matrix witlZ,,, as its diagonal entries
coordinate

a VeCtor[vfree,m fl,m,i(') f2,m,i(')]—r

an index of a vehicle
an area of the intersection between ¢gll ;. and the dispersion
tetragon of cellC',_ .,

half of the emission divergence angle

temperature dependent emission dispersion model panamete
half of the maximum emission divergence angle

fraction of vehicles that leave link; to link 1; through node:
fraction of vehicles leaving nodeto link p;

vertical emission dispersion (“evaporation”) factor

a small time span

a small fraction of speed

an approach rate of vehicteto vehiclea — 1

a small section of

free-flow acceleration exponent of IDM model

METANET on-ramp model parameter

model parameters relating fuel consumption ang CO
relative acceleration deviation of vehialefrom the average
acceleratiorm

relative speed deviation of vehiatefrom the average speed

approximate relative estimation error of emission or fuel
consumptiony of vehicle«

weight of traffic performance criterion
weights of emission dispersion for théDL andTDL

high anticipation constant
low anticipation constant
anticipation constant of segmentf link m

a vector off,! (-) over a prediction horizon
optimal value 09,,,
the sequence of parameteover a prediction horizon
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0 control law parameter of RHPC controller
0,, control law parameter vect®,,, o 0.1 O 2 9m73]T of link m

07n,07 Hm,l» 0m,2
9m,3

3

w

p
Pc,myis Peymyi+1

Pcr,m

Pd

pjam,m
Pmi
pmi,qu’+l
Pui,1

P

1

Oy
Oz
Oa

T

0
2

variable speed limit control law parameter of link
ramp metering control law parameter of link

non-zero constant parameter of METANET model
number of lanes of linkn

indices of diverging links

weight of the variation of variable speed limits over space
weight of dispersion of emissions

friction coefficient of vehiclex

weight of the variation of ramp metering

weight of the variation of variable speed limits over time
weight of the variation of control input over time

weight of the variation of control input over space

weight of emission or fuel consumptign

a source term denoting rate of vehicles entering an on-ramp o
leaving an off-ramp

a constant of valug.14159
grid-cell emission expansion factor

density

measured or estimated density of segmemtsd: + 1 of link m
at control time steg.

critical density of linkm

user defined downstream density
jam density of linkm

density of segmentof link m

density of segmernv,,,, + 1 of link m;
density of the first segment of link;
phase-space density

drivers non-compliance factor

standard deviation af'(x, y, z) along they—axis direction
standard deviation af'(x, y, z) along thez—axis direction
free-flow sensitivity of vehiclex

relaxation time

lane-drop/increase model parameter of METANET
wind direction
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List of abbreviations

The following are list of frequently used abbreviationshistthesis:

ALINEA
CFD
cMPC
CPU

GHR

IDM

LPV

MDL
METANET
MPC

MPT
RHPC
Seg. (or seg.)
SQP

TDL

TE

TFC

TTS

Asservissement LINaire d’ Ente Autoroutere
Computational Fluid Dynamics
conventional Model Predictive Control
Central Processing Unit
Gazis-Herman-Rothery
Intelligent Driver Model
Linear Parameter Varying
Maximum Dispersion Level
Modele d’Ecoulement du Traffic Autoroutier NETwork
Model Predictive Control
Multi-Parametric Toolbox
Receding Horizon Parametrized Control

Segment
Sequential Quadratic Programing

Total Dispersion Level
Total Emissions
Total Fuel Consumption
Total Time Spent
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Summary

Model-Based Traffic Control for Sustainable Mobility

Faster and more reliable transportation systems are reagdss sustained and faster eco-
nomic growth of a country. Freeway traffic networks are onéhefmain economic blood
vessels that link cities, towns, and villages with each & with other economic hubs
(such as ports and industrial zones). However, due to tlreastng demand for mobility
and hence the increasing number of vehicles, traffic netsvark jammed more and more
frequently, impairing the traffic flow, increasing fuel cangption, increasing emissions and
the dispersion of the emissions to sensitive areas.

Freeway traffic systems often operate below capacity duhagush hours due to high
traffic demand and due to inefficient driving behavior of drivand non-optimal traffic
management systems. It is recognized that the low efficiehfigeway traffic flow can be
improved either by shifting the mode of transport, by introithg incentives to shift the de-
parture and arrival time of commuters, or by improving ttadfic control and management
systems such that the traffic networks are operated monmalbyi

However, improving the traffic flow may have a negative imgacthe emissions, fuel
consumption, and safety. Traffic management and contrallegfies that focus on the re-
duction of emissions and fuel consumption are neither ferfor the traffic flow, because
emissions and fuel consumption are minimal at low vehicsgeeeds (betweetd km/h and
70 km/h), which can severely hinder the traffic flow and therairease the travel times.
This means that traffic control and management strategisabkolve or avoid traffic jams
can be beneficial for both the travel times and the environmdren the traffic speed is
optimized within a limited range (e.g., up 80 km/h).

So, policy makers and traffic managers have to provide bathsalutions to the concern
of traffic congestion and environmental issues dependirtpetraffic conditions. However,
this is not a simple task, because the dynamic nature of #fiictflow (both in time and
space) and the effect of other weather factors (such as wirtdeodispersion of emissions
and rain on the flow of the traffic and dispersion of emissidrase to be taken into account.

As the literature suggests, there are several possibl®agipes to improve the day-to-
day traffic jams, the increased traffic emissions and fuebaoption, and the increased
number of traffic accidents. The span of possible traffictsmhs ranges from the extension
of existing infrastructures and construction of new infinastures, over large-scale substitu-
tion of fossil oil by alternative environmentally safe fa@nd enhancing vehicle technology,
to the utilization of efficient traffic control and managerstnategies (e.g., the introduction
of intelligent transportation systems).

For several reasons, Intelligent Transportation Systéhi$) ©ffer promising solutions
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to the multi-dimensional traffic problems. One of the fundaual reasons is that with the
use of ITS, traffic operators and managers can increaseftbiere€y of the operation of the
traffic network such that during high-demand periods thfficraetwork can be operated
close to their designed operational capacity. To this dnid,thesis presents an ITS-based
state-of-the-art freeway traffic control approach, a mdmeded traffic control solution that
takes the need to optimize both economic criteria (suchaaglttimes and fuel consump-
tion) and environmental criteria (such as emissions anid diispersion) into account.

The model-based control approach adopted in this thesisMadel Predictive Con-
trol (MPC) makes use of two basic concepts: on-line pregficind rolling horizon. In
order to make predictions of the traffic variables and to nmadasions on the traffic con-
trol measures depending on the intended control objectiliescontrol approach requires
models of traffic flow, traffic emissions, traffic fuel consuiop, and dispersion of the traf-
fic emissions to a given target zone. Based on the evolutigmegficted variables over a
certain prediction horizon and using on-line optimizatitre controller determines traffic
control inputs that can optimize a desired traffic perforogaariterion. To avoid possible
model mismatch and unpredicted uncertainties, the praposetroller applies the second
concept—rolling horizon, where after the computation of guemce of optimal control in-
puts, only the first control input is implemented and nexa, torizon is shifted one sample
and the optimization is restarted with new information atiba traffic states.

However, due the high computation time required by the pa-tiptimization process,
the conventional MPC controller is often not tractable iagbice, i.e., the computation time
required by the optimization process of the conventionalOMBntroller is often larger than
one control time step. In order to reduce the computatioe tithis thesis presents an al-
ternative for the conventional MPC control strategy, viReceding Horizon Parametrized
Control (RHPC). In this newly proposed RHPC control appmdle control inputs (such
as variable speed limits and ramp metering rates) are thescby parametrized state-
dependent control laws. The RHPC controller then optimthesparameters of the con-
trol laws, different from the conventional MPC controllemere the traffic control inputs
are optimized directly. As a result, the optimization psef the RHPC controller is in
general faster than the optimization process of the cormatMPC controller.

The conventional MPC and the RHPC approaches are illudtnagéng macroscopic
models for traffic flow, traffic emissions, traffic fuel consption, and dispersion of traffic
emissions. In most of the simulations in this thesis the ostopic METANET model is
used as traffic flow model. However, as there are no emissiehcbnsumption, and emis-
sion dispersion models that are suitable for real-timeinaprediction-based control appli-
cations, while still providing estimates with considemhtcuracy, this thesis first presents
fast emission, fuel consumption, and emission dispersiodeais. These models are devel-
oped in such a way that they can be integrated seamlesslyheitmacroscopic traffic flow
model METANET.

As emission and fuel consumption model, the macroscopier¥d€ro model is devel-
oped. The VT-macro model is obtained by integrating the oezmpic METANET traffic
flow model and the microscopic VT-micro emission and fuelstonption model. The VT-
macro model uses the macroscopic traffic variables (avespged, density, and flow) to
generate the acceleration and corresponding number oktlieles subject to the given av-
erage speed and acceleration in the traffic flow. The valuéiseohverage speed, average
acceleration, and corresponding number of vehicles am tosestimate the emissions and
fuel consumption of the traffic flow.
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Furthermore, this thesis investigates the possible etinatssan be introduced due to the
integration of the macroscopic traffic flow model METANET ahd microscopic emission
and fuel consumption model VT-micro. The results of the #jmecase studies considered
show that the errors introduced are small. Moreover, thepesivon of the emissions and
fuel consumption estimates of the VT-macro model and the EROPmodel with respect
to the VT-micro model (which is claimed to be accurate butglshow that the VT-macro
model tracks the evolution of the emissions generated by ihmicro model with better
accuracy than the COPERT model does. The simulations atse ghat the VT-macro
model has the same computation speed as the COPERT modiel atvtlie same time it is
faster than the VT-micro model.

In order to predict the dispersion of emissions to the neighdods of freeway traf-
fic networks, dispersion models are required. As literatuiggest, the existing dispersion
models are computationally very slow and are not suitabl@feline control applications.
So, this thesis also develops new dispersion models thabanputationally efficient. First
the basic point-source dispersion model is presented., Neede point-source dispersion
model is extended to grid-based dispersion models thatcampuatationally efficient. Two
of such models are developed, viz. extended grid-basedgrahding grid-based disper-
sion. These models can consider the effects of variable gpeeds, wind directions, and
temperatures and can be used with both microscopic and swapic traffic emission mod-
els. As the main focus of this thesis has been on the dispeddithe emissions at the
ground level, the dispersion of the emissions into the e&lrtiirection is modeled via an
“evaporation” factor. Note, however, that these modelsateyet compared to the already
existing dispersion models and are neither calibratedablife data, which is one of the
topics of the thesis that is recommended for future work.

The conventional MPC controller and the RHPC controllertheeaforementioned mod-
els in the extensive simulation-based case studies of #sstho illustrate the potential of
the control approaches. Using the proposed models and ttimtapproaches, this thesis
assesses the potential benefits of the existing infrastrerttased traffic control measures,
in particular variable speed limits and ramp meters. In theutions the control law of
the variable speed limits is described using three paramatel the control law of the ramp
metering is described using one parameter. However, theadRpproach is so general that
the control laws can be defined in any way suitable one optdéoeover, the conventional
MPC and the RHPC controllers proposed in this thesis cank@sesed with other more
complex and computationally fast models.

Moreover, a multi-objective performance criterion thatsiders the total time spent by
vehicles in the traffic network, the total emissions, totadlfconsumption, and the disper-
sion of the emissions to a given target zone is consideretdtr the conventional MPC
and RHPC controllers, so that the controllers can optintieecontrol measures to provide
a balanced trade-off between the mobility and the envirariedgoerformance indicators.
Moreover, the trade-offs involved between these confliicfiand sometimes concurring)
traffic performance indicators are discussed.

As the simulation results of the thesis indicate, both theveantional MPC and the
RHPC controllers are able to provide a balanced trade-aiffdxen travel time, emissions,
fuel consumption, and dispersion of emissions. Moreoves,simulations show that the
conventional MPC controller suffers from high computatiiome requirements, which makes
it infeasible in practice. On the contrary, the RHPC cofgralequires a very low computa-
tion time and it is shown to be applicable in practice. Moggpthe simulations show that
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the performance of the RHPC controller is similar to the genfance of the conventional
MPC controller, which is considered to be more optimal wittiie given context. Further-
more, the extensive case studies show that depending oraffie tonditions and weather
factors, it is possible to reduce—with a balanced trade-dfie-ttavel times, emissions, fuel
consumption, and the dispersion of emissions to a giveretamgne using the control ap-
proaches and control measures investigated in this thdsiseover, although reduction of
the total emissions from a freeway has a positive impact ergtbbal emissions levels, it
does not always reduce the emission levels in a specificttaoge (protected area) where
emissions levels are required to be as low as possible alsfehe focus of the controllers
is on reducing the emission levels in a specific target zdrecontrollers can reduce the
emission levels at the target zone while allowing the tomaissions from a freeway to be
higher than when the focus of the controllers is on redudiregtdtal emissions of the free-
way. This is because of the following. When the focus of tharoiliers is on reducing the
travel time and the dispersion level in a target zone, thérother dynamically—based on
the wind speed and wind direction—affects the part of thewesgethat releases the emis-
sions that will be dispersed to the target zone, while imiprgp¥he traffic flow on the part
of the freeway the emissions of which do not have effect orethission levels of the target
zone.

Finally, the thesis also indicates some recommendatiayadang the open issues that
are not investigated in the thesis and that can be considearepic for future work. These
topics include extensive validation of models, simulatéord practical test of the control
approaches, and investigation of different control messand different performance indi-
cators for the traffic controllers.

Solomon Kidane Zegeye



Samenvatting

Modelgebaseerde Verkeersregeling voor Duurzame Mobili-
teit

Voor een duurzame en snelle economische groei van een laahisnel en betrouwbaar
transportsysteem noodzakelijk. Snelwegnetwerken ziges/ieconomische slagaders die
steden en dorpen met elkaar en met economische centra (mvades en industrieterrei-
nen) verbinden. De toenemende vraag naar mobiliteit emusahet toenemende aantal
voertuigen zorgt er echter voor dat verkeersnetwerkemistesker verstopt raken. Dit doet
afbreuk aan de verkeersdoorstroming, zorgt voor toenerheattistofverbruik, meer uit-
stoot en de verspreiding van schadelijke stoffen naar laegsplaatsen.

Door de hoge verkeersvraag, het ineffitie gedrag van bestuurders en niet-optimale
verkeersregelsystemen functioneren snelwegen tijdenspitsuur vaak onder hun capaci-
teitsgrens. Het is bekend dat de lage dffitie van snelwegverkeer verhoogd kan worden
door andere vormen van transport aan te bieden, door dimreaankomst- en vertrektij-
den te belonen, en door het verkeersregeling- en -managgysteem te verbeteren zodat
het verkeersnetwerk optimaler functioneert.

Het bevorderen van de verkeersdoorstroming kan echter egatiave invioed heb-
ben op de uitstoot, het brandstofverbruik en de veiligheittrkeersmanagement- en -
regelstrategi@n die gericht zijn op het verminderen van de uitstoot en fetdstofverbruik,
kunnen juist nadelig zijn voor de verkeersdoorstromingdathte uitstoot en het brandstof-
verbruik minimaal zijn bij lage voertuigsnelheden (tussérkm/h en70 km/h), wat een
sterk nadelig effect kan hebben op de verkeersdoorstrogningaarmee op de reistijden.
Dit betekent dat verkeersregel- en -managementstrétegiie files oplossen of vermijden
slechts dan een positief effect hebben op reistijden en Hetunals de verkeerssnelheid
wordt geoptimaliseerd binnen een beperkt interval (b\8@dm/h).

Politici en verkeersmanagers moeten dus een evenwichpigesing zoeken die reke-
ning houdt met het probleem van de files en met de milieuaspetie afhankelijk van de
verkeersituatie ontstaan. Dit is geen eenvoudige opgadabhet dynamische karakter van
de verkeersstroom (zowel in tijd als in ruimte) en de inviead weersfactoren (zoals wind
bij de verspreiding van emissies en regen bij de verkeersttoming en de verspreiding
van emissies) meegenomen moeten worden.

In de literatuur worden verschillende mogelijke methodesdhreven voor het aanpak-
ken van dagelijkse files, de toenemende verkeersuitstettpnemende brandstofverbruik
en het toenemend aantal verkeersongelukken. De reikwigdtale mogelijke verkeersop-
lossingen loopt van het uitbreiden van de bestaande infi@atir en de bouw van nieuwe
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infrastructuur, via grootschalige vervanging van fossketandstoffen door alternatieve, mi-
lieuvriendelijke brandstoffen en verbetering van de wagtechnologie, naar het gebruik
van efficénte verkeersregel- en -managementstrageg{bv. de invoering van intelligente
transportsystemen).

Intelligente Transportsystemen (ITS) bieden om diverdemen interessante, veelbelo-
vende oplossingen voor de veelzijdige verkeersproblemerhelangrijkste reden is dat ver-
keersoperatoren en -managers door het invoeren van ITSiciémtie van het regelen van
het verkeersnetwerk kunnen verhogen zodat tijdens gpéathet verkeersnetwerk tot zijn
uiterste capaciteit kan worden gebruikt. Dit proefschsiétlt daarom een ITS-gebaseerde,
geavanceerde, modelgebaseerde snelwegregeling voekdi@ng houdt met de noodzaak
van zowel het optimaliseren van economische criteria §&z@édtijden en brandstofverbruik)
en met milieucriteria (zoals uitstoot en de verspreidingrdan).

De modelgebaseerde regelmethode die in dit proefschsftyeven wordtiodel Pre-
dictive Control(MPC), maakt gebruik van twee basisconcepten: online pediisg en een
schuivende horizon. De regelmethode heeft modellen varedegrsstroom, de uitstoot,
het brandstofverbruik en de verspreiding van de uitstodighom voorspellingen te maken
van de verkeersvariabelen en om afhankelijk van de regieldbeslissingen te nemen over
de verkeersmaatregelen. Op basis van de evolutie van dspelde waardes over een afge-
sproken voorspellingshorizon en met gebruik van onlinéwglisering, bepaalt de regelaar
regelingangen voor verkeersmaatregelen die de gewelitggacvoor de verkeersprestatie
optimaliseren. De methode maakt daarnaast gebruik vanobetivende horizon om mo-
gelijke modelfouten en onvoorziene onzekerheden te vooeko Hierbij worden na het
bepalen van een reeks optimale regelingangen enkel dénmggaegen voor de eerste regel-
stap gémplementeerd, waarna de voorspellingshorigén regelstap opgeschoven wordt
en het optimalisatieproces opnieuw gestart wordt met nigerkregen informatie over de
situatie van het verkeersnetwerk.

De conventionele MPC-regelaar is in de praktijk vaak nieliseerbaar, doordat het
online optimalisatieproces teveel rekentijd nodig heddat wil zeggen dat de rekentijd
die nodig is voor de conventionele MPC-regelaar meestgears dan de duur van een
regelstap. Om de rekentijd te reduceren introduceert diéfgchrift een alternatief voor
de conventionele MPC-regelstrategie, nameRj&ceding Horizon Parametrized Control
(RHPC). In deze nieuwe RHPC-methode worden de regelinga(mmals variabele snel-
heidslimieten en doseringsfracties voor toeritdosernfpdeschreven met behulp van ge-
parameteriseerde, toestandsafhankelijke regelwettetegenstelling tot de conventionele
MPC-regelaar, waar de verkeersregelingangen direct wmaydeptimaliseerd, optimaliseert
de RHPC-regelaar de parameters van de regelwetten. Hieiglbet optimaliseringspro-
ces van de RHPC-regelaar in het algemeen sneller dan hetadiséringsproces van de
conventionele MPC-regelaar.

De conventionele MPC-aanpak en de RHPC-aanpak worddosgeserd met behulp
van macroscopische modellen voor de verkeersstroom, gimaiit het brandstofverbruik
en de verspreiding van de uitstoot. In de meeste simulatidi proefschrift is het macro-
scopische METANET-model als verkeersstroommodel gebréikngezien er echter geen
modellen voor de uitstoot, het brandstofverbruik en depreiding van de uitstoot bestaan
die geschikt zijn vooreal-time online modelgebaseerde regeling en die nog steeds vol-
doende nauwkeurige schattingen geven, introduceert défgchrift snelle modellen voor
de uitstoot, het brandstofverbruik en de verspreiding vauitstoot. Deze modellen zijn zo
ontworpen dat ze naadloos kunnen wordeimggreerd met het macroscopische verkeers-
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stroommodel METANET.

Een macroscopisch VT-macro model is ontwikkeld als uitstea brandstofverbruik-
model. Het VT-macro model is verkregen door de integratie et macroscopische ver-
keersstroommodel METANET en het microscopische uitstentbrandstofverbruikmodel
VT-micro. Het VT-macro model maakt gebruik van macrosccipisverkeersvariabelen
(gemiddelde snelheid, dichtheid en doorstroming) om dengdling van de verkeersstroom
en het corresponderende aantal voertuigen te berekende degeven gemiddelde snelheid
en versnelling hebben. De waardes van de gemiddelde steffeeniddelde versnelling en
het corresponderende aantal voertuigen worden gebruikdemitstoot en het brandstof-
verbruik van de verkeersstroom in te schatten.

Verder onderzoekt dit proefschrift de mogelijke fouten Kismnen ontstaan door de
integratie van het macroscopische verkeersstroommod@AWET en het microscopische
uitstoot- en brandstofverbruikmodel VT-micro. De restdtavan verschillende casestudies
die onderzocht zijn, tonen aan dat de ontstane fouten kiigin\’erder toont de vergelijking
van schattingen van de uitstoot en het brandstofverbruikhet VT-macro model en het
COPERT-model ten opzichte van het VT-micro model (waarvam istelt dat het precies
maar langzaam is) aan dat het VT-macro model de ontwikkefmguitstoot gegenereerd
door het VT-micro model preciezer volgt dan het COPERT-rhdde simulaties tonen ook
dat het VT-macro model even snel is als het COPERT-modeaijjtéret sneller is dan het
VT-micro model.

Om de verspreiding van de uitstoot in de omgeving van sneletegerken te voorspel-
len, zijn verspreidingsmodellen nodig. De literatuur tstielt de bestaande verspreidings-
modellen erg langzaam zijn en ongeschikt voor online regpkissingen. Daarom zijn
in dit proefschrift nieuwe verspreidingsmodellen ontvelk die efficént werken. Eerst
wordt als basis het puntbron-verspreidingsmodel geptesah Daarna wordt dit puntbron-
verspreidingsmodel uitgebreid naar rastergebaseerdellodlie zeer effiént werken. Er
worden twee rastergebaseerde modellen ontwikkeld, ngningt uitgebreide rastergeba-
seerde model en het uitdijende rastergebaseerde modek rbedellen kunnen omgaan
met de gevolgen van een variabele windsnelheid, windrighgh temperatuur en ze kunnen
worden gebruikt in combinatie met zowel microscopischevesroscopische verkeersuit-
stootmodellen. Omdat de focus van dit proefschrift ligt e@pverspreiding van de uitstoot
dicht bij de grond, wordt de verspreiding van de uitstooténverticale richting gemodel-
leerd met behulp van een “verdampings”-factor. Merk op datdnodellen nog niet worden
vergeleken met bestaande verspreidingsmodellen en dakzeet worden geijkt met echte
data. Dit iséén van de open onderwerpen die in dit proefschrift wordeteasien voor
toekomstig onderzoek.

Om de mogelijkheden van de regelmethoden te illustrererugein de conventionele
MPC-regelaar en de RHPC-regelaar de bovengenoemde moufetie uitgebreide simula-
tiegebaseerde casestudies van dit proefschrift. Met pefanl de voorgestelde modellen en
regelmethoden bepaalt dit proefschrift de mogelijke vetad van bestaande infrastructuur-
gebaseerde verkeersmaatregelen, met name variabeleidsbthieten en toeritdoseringen.
In de simulaties wordt de regelwet van de variabele snedligigbten beschreven door mid-
del van drie parameters en de regelwet van de toeritdosendt beschreven met behulp
vanéén parameter. De RHPC-aanpak is echter zo algemeen dateleetign op elke ge-
schikte en gewenste manier kunnen worden gedefinieerdeMenen de conventionele
MPC-regelaars en de RHPC-regelaars die in dit proefsdijifivoorgesteld, ook gebruikt
worden in combinatie met andere complexere en snellere lleade
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Verder is er eemulti-objectiveprestatiecriterium onderzocht dat van alle voertuigen in
het verkeersnetwerk de totale reistijd, de gezamenlijistaot, het gezamenlijke brandstof-
verbruik en de verspreiding van de uitstoot naar een bepgedted beschouwt; dit voor
zowel de conventionele MPC-regelaars als voor de RHPQaage zodat de regelaars de
maatregelen kunnen optimaliseren en een evenwichtig ammipkunnen vinden dat zowel
de mobiliteits- als de milieukwaliteitscriteria recht do€@ok worden de afwegingen die
samenhangen met deze tegenstrijdige (en soms paralleldepéndicatoren van de ver-
keersprestatie besproken.

Zoals de simulatieresultaten van dit proefschrift aantozén zowel de conventionele
MPC-regelaars als de RHPC-regelaars in staat een eveigvicimhpromis tussen reistijd,
uitstoot, brandstofverbruik en verspreiding van schildetitoffen te bereiken. Tevens tonen
de simulaties aan dat de conventionele MPC-regelaar gghakionder een hoge rekentijd,
wat hem in de praktijk onbruikbaar maakt. Daarentegen tdeRHPC-regelaar slechts
weinig rekentijd nodig en blijkt hij in de praktijk goed bkldaar te zijn. Verder tonen de
simulaties aan dat de prestaties van de RHPC-regelaarijidrgar zijn met de prestaties
van de conventionele MPC-regelaar, die in principe meein@gh resultaten oplevert in
de gegeven context. Verder tonen uitgebreide casestudieda het afhankelijk van de
verkeerstoestand en de weersfactoren mogelijk is om metlpetan de regelmethoden
uit dit proefschrift de reistijden, van de uitstoot, hetrmatofverbruik en de verspreiding
de uitstoot — met een evenwichtig compromis — te reducerepewé! de reductie van
de totale uitstoot van een snelweg een positief effect lmgefte gebiedsbrede emissieni-
veaus, zal het niet altijd de emissieniveaus in een speggéied (een beschermde zone,
waarvoor vereist wordt dat de emissieniveaus juist zo laagetijk moeten zijn) verlagen.
Omgekeerd, als de focus van de regelaars op het reduceratevamissieniveaus in een
bepaald gebied ligt, kan dat tot lokaal lagere emissieniséziden, terwijl de totale uitstoot
van de snelweg hoger is dan wanneer de focus van de regefadestotale uitstoot ligt.
Dit kan als volgt uitgelegd worden. Als de focus van de regeligt op het reduceren van
reistijden en het emissieniveau in een specifiek gebiedzdhde regelaar — afhankelijk
van de windsnelheid en de windrichting — dynamisch de vedstmom vertragen op dat
deel van de snelweg dat verantwoordelijk is voor de uitstisowijl de verkeersstroom in
het overige deel van de snelweg waarvandaan uitstoot gésst ep het specifieke gebied
heeft, verhoogd zal worden.

Tenslotte geeft dit proefschrift enkele aanbevelingenr\agmen problemen die in dit
proefschrift niet behandeld zijn en die in aanmerking komeor toekomstig onderzoek.
Hiertoe horen onder meer een uitgebreide validatie van ddetiem, simulatie en prak-
tijktests van de regelmethoden en onderzoek naar bijkomeggklmaatregelen en andere
prestatie-indicatoren voor de verkeersregelaars.

(Dutch translation provided by Prof. dr. ir. J. Hellendoorn
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