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Preface
This work was driven by the quest to develop model-based control algorithms for
control of large-scale systems with the focus on large-scale baggage handling sys-
tem. The main problem addressed in this thesis has overlaps with the problem of
routing and scheduling of vehicles in automated warehousing, which is a vast field
of research at the intersection of control theory & optimization of dynamical sys-
tems and operations research. Researchers from both fields have studied similar
problems, albeit with a different scope and objective, for applications such as route
planning of Automated Guided Vehicles (AGV).

What makes this work different is the especial attention paid to three key design
features of the developed control solution, namely scalability, optimal performance,
and robustness, which are necessary to apply the developed control algorithm in
practice. In fact, these three features of the control algorithm guided me in making
key decisions with respect to the choice of modeling framework and the control
approach, and, hence, had significant impact on the composition of this thesis.
For example, in Chapter 2, the choice for modeling the movement of vehicle as
continuous flows rather than considering individual movement of vehicles was made
to arrive at a tractable optimization problem that scales linearly with the size of
problem. In addition, in the same chapter, model-predictive control was chosen as
the main control approach as it enables one to incorporate the model in the control
design with the aim of achieving a defined optimal performance. The robustness
requirement led me to first write Chapter 3 to develop a model-based approach
to deal with unmodeled disturbances in an optimal manner. My concerns with
scalability of the solution developed in Chapter 3 subsequently led to the work of
Chapter 4, where specific tools were developed for linear positive systems, of which
baggage handling system in an example. Using the tools developed in Chapter 4,
the original problem of Chapter 3 was solved in a scalable manner. In addition, the
work of Chapter 4 incorporates the model-based design of Chapter 2, guaranteeing
the optimal performance of the controlled system. Therefore, Chapter 4 marks the
culmination of efforts made in its preceding chapters with the aim of achieving a
robust scalable model-based control design for baggage handling systems.

Even though the subject of Chapter 5 was not initially among the main research
questions driving my work, the work done in Chapter 4 on robustly positively invari-
ant sets for discrete-time linear positive systems and the interesting properties of
positive system intrigued me to study the theory of positive systems in more depth.
In doing so, I gravitated towards the controllability problem for linear positive sys-
tems as it was surprisingly very different from the same problem for linear system.
This led to the work of Chapter 5 on studying the geometry of reachable subsets
from the origin for discrete-time linear positive systems.

This thesis may be of interest to those working on advanced model-based control

xi
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design approaches for large-scale logistic system, and to those who see scalability
as an inseparable part of their approach. In addition, enthusiasts of the theory of
positive system and those curious about how certain properties of linear positive
systems render certain control problems of linear system much simpler may find
reading this work useful.

Yashar Zeinaly
Utrecht, June 2022
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1
Introduction

“I have had my results for a long time; but I do not yet know how I am to
arrive at them.”

Carl Friedrich Gauss, 1777 – 1855

This thesis is presented as a collection of papers, either published, accepted for
publication, or under review. The papers discussed in this thesis cover two main
categories of topics: i) model-based control design of large-scale Baggage Handling
Systems (BHSs), and ii) positive linear systems and their applications in model-
based control of large-scale baggage handling systems. The papers in the first part
discuss modeling of BHSs and several Model Predictive Control (MPC) approaches
for BHSs along with their computational complexity. The publications in the second
part collectively rely on tools and methods from the theory of linear positive systems
to develop a robust MPC approach for linear positive systems with applications to
BHSs, and take a deeper dive into the theory of linear positive systems by provid-
ing a characterization for the infinite-time and the finite-time reachable subsets of
discrete-time linear positive systems.

1.1. Model-Based Control of BHSs

T he interest in large-scale BHSs has recently increased due to the increase in
demand for air travel and cargo shipment, airport competition to attract pas-

sengers and airlines, and labor cost savings. Despite the recent downturn in the air
travel demand due to the COVID-19 pandemic travel restrictions, the International
Air Transportation Association predicts an average annual passenger growth rate of
3.3% [1], based on which 2.3 and 3.4 billion passengers worldwide are estimated to
fly respectively in 2021 and 2022 with the recovery to the 2019 level taking place
in 2024. In addition, robust growth of cargo demand is expected for 2021 and

1
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2022, respectively, at 7.9% and 13.2% above the 2019 level [2]. The unexpected
increase in cargo demand is most likely due to congested supply chains, which have
caused a temporary shift of freight from sea to air. With the increasing demand,
baggage handling service quality becomes a key factor for passenger and airline
satisfaction, which, together with a reduction of expensive manpower, are crucial
for long-term success and sustained business of airports.

Addressing the challenges mentioned above necessitates design and develop-
ment of highly automated BHSs of a larger scales that are able to cope with the
increased demand. More sophisticated designs, however, pose new challenges with
respect to operational cost and efficiency. With modern baggage handling systems
of large scale, it is of paramount importance to develop a systematic scheme to
operate the system as efficiently as possible for two main reasons: i) to reduce
both energy and operational costs to maintain affordability, ii) to fully exploit the
capability of the sophisticated design. In order to develop design methods that are
applicable to real-world BHSs, we focus on computational complexity and scalability
for large-scale BHSs. Hence, the aim is not to develop the “best” performing MPC
scheme, but rather the one that is also applicable to a large-scale BHS.

Chapter 2 of this thesis proposes a modeling framework for BHSs, in which
the BHS is considered as a network of origin, transition, and destination nodes
interconnected by links. The movement of pieces of baggage along the network
links is modeled by baggage accumulation on the links driven by link-to-link baggage
flows. The model developed in this chapter also takes into account the link-to-link
flow travel time, which is generally a function of baggage accumulation on specific
links.

Based on how the link-to-link travel time is treated, three classes of MPC [3, 4]
approaches are proposed, namely a Nonlinear Programming (NLP) based approach,
an Iterative Linear Programming (ILP) based approach, and a Linear Programming
(LP) based approach. Given full information on the current and future baggage de-
mand, the MPC approaches decide on modulating link-to-link baggage flows such
that an optimal balance between timely delivery of pieces of baggage to the destina-
tion nodes and the overall energy consumption is achieved while guaranteeing the
operational constraints. The recursive feasibility of the optimization problem and
the asymptotic stability of the closed-loop system are either validated empirically
via simulation or assured by employing sufficiently long prediction horizons.

The performance and computational complexity of the three MPC approaches
are compared among each other and against a heuristic method commonly used
for control of BHSs. It is shown that the MPC-based approaches can outperform the
heuristic state-of-the art method, with further performance enhancement achieved
for a longer prediction horizon. Furthermore, while the NLP approach provides the
most accurate predictions, the optimization problem quickly becomes intractable for
increasing values of the prediction horizon or for larger BHSs. The LP approach is
the most efficient one, at the cost of low accuracy of predictions, especially for large
prediction horizons. The ILP approach offers a good balance between accuracy of
predictions and complexity of the optimization problem for long prediction horizons.
Since it benefits from accurate predictions over a long horizon, it outperforms the
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heuristic method the most while being the most scalable to more complex BHS
networks.

It is worth mentioning that there is a rich body of literature on Autonomous Mo-
bile Robot (AMR) and Automated Guided Vehicle (AGV) based material handling and
sorting systems [5–11]. A good overview on the application of AMRs in intralogistics
is provided in [10]. For the AGV-based systems, [5, 6] provide a good review of
the literature on the design and control of AGV systems for manufacturing, ware-
housing, and transport of material. While there is overlap between the problem
investigated in Chapter 2 of this thesis and the three main category of problems
in AMR- or AGV-based systems, namely route planning, scheduling of tasks, and
dispatching, there are notable differences that does not allow direct application of
those methods to the control of DCV-based BHSs.

These difference pertain to the objectives, complexity of solutions, and algo-
rithms. The DCV-based BHSs control problem we discuss in Chapter 2, combines
“light” versions of the three problem categories for AMR-based material handling
systems. For example, in the approach of Chapter 2, we do not plan a route for
each individual DCV, but we actually plan a time-based distribution of DCV flows.
This is due to the fact that the main control objectives in Chapter 2, unlike AMR-
or AGV-based systems, are not minimizing throughput time, finding the shortest
path, minimizing travel time, or minimizing travel distance, but rather constrained
time-based distribution of DCV flows in the network with minimum energy con-
sumption. In addition, while the scheduling problem requires complex solutions
for AMR-based manufacturing systems with multiple jobs and machine centers, the
DCV-based BHS system only involves loading and unloading of DCVs, which makes
the scheduling problem much simpler. The multi-objective MPC-based control al-
gorithm developed in Chapter 2 can be implemented efficiently in a centralized
manner for large-scale BHSs with several hundred DCVs. In addition, it provides a
standard way of incorporating time-varying (dynamic) baggage demand profiles. In
contrast, centralized routing and scheduling algorithms for AMR-based systems are
practically feasible only for systems with a small number of vehicles. For large-scale
systems, decentralized control structures are preferred, which come at the cost of
sub-optimal control performance.

In Chapter 3, we focus on the predictability of the baggage demand profile and
we consider the situations in which the baggage demand is only partially known
in contrast to Chapter 2, where full knowledge of the current and future baggage
demand was assumed. In this framework, the unpredictable baggage demand
is considered as an additive disturbance to the system. We propose a two-level
control approach consisting of i) a top-level controller, designed for the nominal
system1, that generates an optimal nominal control input based on full information
of the baggage demand, and ii) a bottom-level controller, designed for the error
system2, that stabilizes the error system. Hence, the actual trajectory converges to
the nominal trajectory driven by the top level controller. In addition to closed-loop
stability of the error system, the bottom-level controller can optionally be designed

1The nominal system is the system without disturbance.
2The error considered here is the difference between actual trajectory and the nominal trajectory.
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to achieve a defined input-output optimal performance.
Assuming that the baggage demand is composed of a nominal part and a small

additive disturbance part, the modeling framework and the MPC approaches de-
veloped in Chapter 2 are used to develop an ILP-based MPC controller at the top
level, which generates nominal link-to-link flows for the nominal component of the
baggage demand. A state feedback controller is designed for the error system to
minimize the 𝐿 gain of the error system from the disturbance input to the error
output, hence minimizing the impact of disturbances on the nominal trajectory in
the 𝐿 -norm sense and providing robustness against perturbations caused by de-
viations of the demand from its nominal value. Using the bounded real lemma
[12–15], the problem of searching for the feedback gain 𝑲 minimizing the induced
𝐿 gain of the closed-loop error system can be expressed in terms of linear matrix
inequalities (LMIs) [16], which results in a convex optimization problem. The final
control input applied to the system is then 𝒖mpc + 𝑲𝒆, where 𝒖mpc and 𝒆 are, re-
spectively, the output of the MPC controller and the error. An important aspect of
this approach is that the state and control constraints of the overall system, de-
rived from operational constraints of the BHS, are ultimately handled by the MPC
controller. For this purpose, assuming a disturbance input with a known bound on
the 𝐿 norm, a positively invariant ellipsoid over the state space of error system
is calculated offline. This state ellipsoid and the corresponding ellipsoid over the
control input space can then be used to “tighten” the state and control constraints
of the nominal MPC design such that the combined output of the controllers and
the resulting system trajectory does not violate the control and state constraints.

In cases where the positively invariant ellipsoid associated with the uncon-
strained 𝐿 -gain-optimal closed-loop error system turns out to be too “large” for
the top level MPC controller to handle, a constrained approach is developed, where
the 𝐿 gain of the error system in minimized subject to ellipsoidal state and con-
trol hard constraints. This approach is further extended by formulating the desired
state and control constrains as soft constraints, hence avoiding infeasibility of the
LMIs due to the overly restrictive state or control constraints. A small case study
illustrates the implementation and performance of the suggested two-level control
scheme.

1.2. Robust MPC for Linear Positive Systems
Chapter 4 discusses output-𝐿 -norm-optimal feedback control design for linear pos-
itive systems, which is meant to be incorporated as the bottom-level controller in
a tube-based MPC approach. For linear systems subject to additive disturbances,
tube-based MPC [4, Chapter 3] is a low complexity robust MPC approach. It con-
sists of a nominal MPC controller generating a nominal control input for the nominal
(i.e., disturbance-free) system and a stabilizing state feedback controller governing
the error system, which pertains to the difference between the uncertain system
and the nominal system. Assuming a stable error system, the state trajectory of
the disturbed system is contained in a bounded neighborhood of the nominal tra-
jectory, which is called a tube. The combined goal of the controllers is to drive
the tube center in a defined optimal manner while guaranteeing satisfaction of the
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constraints for the entire tube. This is achieved by ensuring that the nominal state
and input trajectories satisfy appropriately “tightened” versions of the original con-
straints. The process of constraint tightening normally involves computation of the
minimal robust invariant set, which is difficult to compute, especially for large-scale
systems.

For stable linear positive systems, a robustly positively invariant hypercube con-
taining the minimal robust invariant set can be obtained via a linear program, which
can be used for constraint tightening in the tube-based MPC scheme. Based on
this and given a disturbance set characterized by infinity-norm constraints (i.e.,
box constraints), we propose a state feedback design method for the error system
that renders the closed-loop error system positive while minimizing the disturbance
driven output of the error system in the 𝐿 sense. For linear systems subject to
additive disturbances, the 𝐿 norm of output is a more general measure to cap-
ture the effect the of disturbances than the 𝐿 -induced norm (i.e., 𝐿 gain) of the
system as the 𝐿 norm of the output provides a tighter bound on the “worst-case-
scenario performance” of the system. We show that the joint problem of searching
for the feedback gain 𝑲 and the smallest robustly positively invariant hypercube 𝕏
containing the minimal robust invariant set can be expressed as a linear program.
Our problem formulation also allows for specifying a minimum size for 𝕏 and for
incorporation of infinity-norm hard and soft constraints on the control effort of the
state feedback controller. Hence, in contrast to the approach of Chapter 3, where
symmetric bounds on the state and the control input can only be imposed via el-
lipsoidal approximations, the approach developed in this chapter allows for direct
inclusion of capacity constraints that arise in systems such as BHSs. In addition to
providing a natural way of expressing the capacity constraints in BHSs, this method
is better suited for large-scale BHSs since the conservatism introduced by the ellip-
soidal approximations of the capacity constraints in the LMI-based approach may
lead to infeasibility of the LMIs even though the original capacity constraints are
feasible.

The developed method of state feedback design is applied, within a tube-based
MPC scheme, to a BHS case study, where the nominal control input is generated by
a linear-programming-based MPC controller. In contrast to Chapter 2, the design
of the nominal MPC controller in this chapter explicitly enforces recursive feasibility
and asymptotic stability by including an appropriate terminal constraint set and a
terminal cost function, which are determined using linear programs. Therefore,
the proposed tube-based control scheme is entirely a linear-programming-based
approach, which scales well for large-scale BHSs.

1.3. Reachability of Linear Positive Systems
The class of positive dynamical systems, also known as nonnegative dynamical sys-
tems, generally refers to dynamical systems, the state trajectories of which reside
in the positive orthant for nonnegative initial conditions and nonnegative inputs.
This property, however, does not require the initial states or the control inputs to
be nonnegative even though many real-word examples of positive systems are only
defined for nonnegative inputs and nonnegative initial states. Positive systems arise
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in many applications such as econometrics, bio-chemical reactors, compartmental
systems, and transportation systems. BHSs, as the main application area of this
thesis, are prime examples. The variables in positive systems represent growth
rates, concentration levels, mass accumulation, flows, etc. Obviously, variables of
this nature can only assume nonnegative values. Many classical control problems
such as 𝐻 , 𝐿 , and 𝐿 problems, which are the subject of Chapter 4, can be
made significantly simpler for positive systems. Inspired by the theory of positive
dynamical systems and its applicability to several application domains, this chapter
focuses on a fundamental property of linear positive systems: reachability. Fol-
lowing prior work in the literature on the reachability of linear positive systems,
reachability of discrete-time linear time-invariant positive systems is revisited. This
topic is of particular interest since, due to the fact that linear positive systems are
defined over a cone rather than over a linear subspace, their reachability is not in
general equivalent to the reachability of linear systems.

We propose an alternative formulation of the reachability problem for discrete-
time linear time-invariant positive systems, where the goal is to check whether a
certain subset or subcone of the positive orthant can be reached from the origin
in finite or infinite time, which is motivated from an application point-of-view and
which is in contrast with the classical view of requiring the entire positive orthant
to be reachable from the origin. The latter view of reachability leads to strong
conditions, which are very difficult to satisfy in practice. To formulate our view of
the reachability problem, first a characterization of the finite-time and infinite-time
controllable subsets, which are the cones of all reachable states from the origin in
finite time and infinite time, is given for a single-input positive system. We focus
our attention to the geometry of the controllable subsets and to the cases where
the finite or infinite controllable subsets are polyhedral (i.e., they can be expressed
by a finite number of extremal rays). Then, necessary and sufficient conditions for
polyhedrality of the controllable subsets are derived for a pair (𝑨, 𝒃), with 𝑨 and 𝒃
being the system matrices. For a generic 𝒃 without any imposed structure, it turns
out that such conditions are characterized solely in terms of the spectrum of 𝑨.

Finally, the reachability of a polyhedral target sub-cone or polyhedral target
subset of the positive orthant is established by requiring all extremal rays of the
target sub-cone or extremal points of the polyhedral subset to be included in the
reachable finite-time or infinite-time controllable subsets, which leads to solving a
set of constrained linear equations.

1.4. Organization
The organization of thesis is conceptually illustrated by Fig. 1.1, where the publica-
tion corresponding to each chapter is highlighted, and where relation of the thesis
chapters to each other, in terms of common themes, is indicated.

Chapter 2 describes the model of BHSs, where various MPC-based approaches
are discussed and their performance is evaluated using a detailed case study. For
a BHS subject to additive disturbances, the proposed 2-level control scheme is
introduced in Chapter 3, and the design of a constrained state feedback controller
minimizing the 𝐿 -induced-gain of the closed-loop system is discussed. Chapter 4
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discusses the output-𝐿 -norm-optimal state feedback design problem for discrete-
time linear positive systems and implements the developed design approach in a
tube-based MPC scheme for a BHS. In Chapter 5, we provide our view on the
reachability of discrete-time linear time-invariant positive systems, where necessary
and sufficient conditions for checking the reachability of a subset of the positive
orthant are developed. Finally, Chapter 6 , concluding remarks are laid out and
potential future research directions in continuation of this work are pointed out.
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2
An Integrated Model

Predictive Scheme for
Baggage Handling Systems:

Routing, Line Balancing,
and Empty-Cart

Management
“True optimization is the revolutionary contribution of modern research to

decision processes.”

George Bernard Dantzig, 1914 – 2005

This chapter proposes a new strategy for integrated control of destination-coded-
vehicle-based baggage handling systems. Three main control issues in baggage
handling systems, namely, routing and scheduling, empty-cart management, and
line balancing, are identified and a combined control approach based on model pre-
dictive control is proposed to tackle these issues in an optimal way. It is shown that
the control approach can be formulated as a linear programming problem, which
can be solved very efficiently, and hence the proposed approach can be extended
to large-scale baggage handling systems. We illustrate the applicability and perfor-
mance of the proposed approach by a case study, and we compare the results with
the state-of-the-art method currently used for baggage handling systems.

This chapter is based on [1].

11
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2.1. Introduction

I n the past decade, modern baggage handling systems [2, 3] (BHS) have beenimplemented in large airports to accommodate the rising demand in air travel.
Such baggage handling systems are controlled by state-of-the-art techniques that
are mostly tailor-made for a specific layout. However, with increasing demand, it
becomes necessary to increase the efficiency and reliability of the baggage han-
dling systems by utilizing a systematic controller design approach. Such a control
approach should optimize the performance of the baggage handling system in terms
of reliability and costs. A modern baggage handling system, an essential layout of
which is depicted in Fig. 2.1, is composed of the following components [2]: Des-
tination coded vehicles (DCVs), which are high-speed vehicles powered by linear
induction motors transporting the pieces of baggage between various locations in
the system. Each DCV can carry only one piece of baggage. The term DCV refers to
both carts move powered by linear induction motors and passive tubs on modular
conveyor elements, as illustrated in Fig. 2.2; loading stations, where the pieces of
baggage are loaded onto DCVs after entering the system (either from the check-in
desks or from the transfer flights); unloading stations, where the DCVs unload the
pieces of baggage; the pieces of baggage are then transported to the planes; an
early baggage storage (EBS), which is an automated storage/retrieval system used
to temporarily store the loaded DCVs; a network of uni-directional tracks on which
the DCVs travel. This network connects the loading stations, the unloading stations,
and the EBS; and a switch controller at each junction that determines the path of
the DCVs that pass through that junction. From a high-level control perspective,
there are three main control challenges related to the baggage handling systems
[3–5], namely, i) routing and scheduling of DCVs, ii) line balancing, and iii) empty-
cart management. The routing problem is the problem of routing loaded DCVs
from the loading stations to the unloading stations or to the EBS and the problem
of routing the DCVs from the EBS to the unloading stations. Line balancing is the
problem of dynamically assigning empty DCVs located at the unloading stations to
the loading stations. Closely related to line balancing is empty-cart management,
which is the problem of routing empty DCVs from the unloading stations, through
the network, to their assigned loading stations.

The control problems in baggage handling system can, in general, be related
to operation scheduling, flow shop scheduling, and production scheduling [6, 7],
or to predictive routing and flow control [8, 9]. Recently, the application of model
predictive control (MPC) [10–12] to supply chain management has been studied
in the literature [13–15]. In [8] the authors propose a two-level decision making
process: long-term strategic level based on offline branch and bound optimization
and short-term tactical level based on MPC. In [14], the authors propose a MPC
scheme based on quadratic programming (QP) optimization, and [13] proposes
and MPC approach based on mixed integer linear programming (MILP). Our pro-
posed approach here differs from the literature in the following ways: i) Unlike
the supply chain networks where transport times are fixed or known functions of
time, BHS involves highly variable queue-length-dependent transport delays, which
needs special treatment when developing the model and defining the optimization
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Figure 2.1: Basic configuration of a baggage handling system showing the loading stations, unloading
stations, DCV storage (EBS), and the DCV depot. Vertical baggage and loaded-DCV stacks are assumed
at the loading stations and the EBS, respectively. Vertical empty DCV stacks are assumed at the loading
station and the central depot. In the rest of the network, loaded and empty DCVs accumulate along the
network links.

problem. ii) To achieve timely arrival of DCVs within their time windows as well
as possible, we introduce time-window constrains as soft, rather than hard, con-
straints in the objective function to ensure that the optimization problem remains
feasible at all times. To this end, the objective function includes a time-weighted
sum of DCV queues and DCV flows. In this way, we employ a different objective
function from those in the literature, where travel times are often explicitly penal-
ized and the time window requirements are imposed as optimization constraints.
iii) For realtime control purposes, the proposed algorithm has to be computationally
efficient for large-scale BHS. This makes MPC schemes with long prediction hori-
zons based on MILP or nonlinear optimization practically unsuitable for large-scale
BHS. Therefore, the solutions developed in the literature are not directly applica-
ble to the baggage handling systems. To address this issue, we need to develop
numerically-less-intensive schemes. In this chapter we have opted for an LP-based
approach.

The state-of-the-art control method for baggage handling systems addresses
the
routing problem by using look-up tables to control the switches at the junctions
[2, 5]. These look-up tables are computed off-line for different system operation
scenarios. However, such a control scheme cannot guarantee optimal performance
of the system for complex network layouts. In addition, this control method ad-
dresses the empty-cart management by decoupling the empty-DCV and loaded-DCV
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traffic flows using dedicated loops to transfer empty carts to loading stations. More-
over, it relies on heuristics for line balancing. An immediate shortcoming of such
a control system is that baggage handling systems have to adopt simple design
layouts (e.g., composed of few loops). This limits the achievable performance of
the system in terms of flexibility and baggage throughput.

Recently, it has been shown [4, 5, 16, 17] that a systematically designed con-
trol system can cope with complex network layouts. In [16], a multi-agent control
strategy has been proposed for conveyor-based baggage handling systems, where
each bag is dynamically assigned a path using the shortest path algorithm. The
authors of [16] have shown that their algorithm outperforms the conventional con-
trol scheme used in practice, but they have not included optimal performance in
their problem formulation. Model-based control of DCV-based baggage handling
systems is considered in [4], where an automated way of learning routing rules
has been proposed to solve the routing problem. In comparison with [4], we dis-
cuss optimality of our approach as well as on-time arrival of DCVs to the unloading
stations. In [5], a solution has been proposed for the routing problem based on
model predictive control (MPC) [10–12]. In this approach, a dynamic sequence
of optimal switch positions is assigned to each DCV in order to guide it along an
optimal route to its destination. This approach guarantees optimal performance of
the system, but it is computationally prohibitive for large-scale systems1. A more
computationally efficient MPC-based approach has been proposed in [18], which
arrives at a mixed integer linear programming (MILP) formulation of the problem.
In [19], it has been shown that the problem in [18] can in fact be recast as a linear
programming (LP) problem, which can be solved efficiently for large-scale systems
[20]. Nevertheless, to the best of our knowledge, the previous works have only
focused on a particular control issue of the baggage handling systems. The aim of
this chapter is to propose an optimal integrated solution to routing and scheduling,
empty-cart management, and line balancing.

We consider the following two criteria for an effective baggage handling sys-
tem. First, the pieces of baggage should reach the assigned unloading stations
within pre-specified time windows. Second, the cost of operating the system should
be minimized. In order to achieve an overall optimal performance with respect to
these criteria, in this chapter, we propose a control scheme based on MPC that
addresses the aforementioned control problems in one integrated approach, rather
than treating them as individual sub-problems. Moreover, based on the model we
develop, we show that the resulting optimization problem is in general a nonlin-
ear optimization problem the solution of which can be obtained using a general
nonlinear programming (NLP) approach or a iterative linear programming (ILP) ap-
proach. We also propose a suboptimal solution based on linear programming. We
then compare the performance of these three approaches to each other and to
the state-of-the-art method used for BHS. In addition, we compare our proposed
control approaches in terms of their computational complexity for the case study at
hand.

1For instance, Amsterdam Schiphol airport operates 550 DCVs [2], and Denver International Airport
operates about 4000 DCVs [3], which indicates real-life systems can indeed be large scale.
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The rest of this chapter is organized as follows. In Section 2.2, we develop
the dynamical model. In Section 2.3, we define the MPC optimization problem. A
case study is presented in Section 2.4 to illustrate the performance of the proposed
control approach for a given scenario and finally, Section 2.5 concludes the chapter.

(a) Carts powered by linear induction motors. (b) Passive tubs on modular conveyor ele-
ments.

Figure 2.2: Two types of DCVs used for transporting luggage within BHSs. Note that for both motorized
carts and passive tubs power by modular conveyor belts one can assign a travel route within the network.
Photos courtesy of Vanderlande.

2.2. Dynamical Model
2.2.1. Notation and Assumptions
The baggage handling system network can be seen as a directed graph, where
nodes of the graph are composed of loading stations, unloading stations, junctions,
and the EBS, and where the links represent the tracks of the system. The relation
between the graph representation and the real network is rather symbolic. Not all
components of DCV-based BHS are shown on the graph. However, the most impor-
tant components of BHS, namely, the loading stations, the junctions, the unloading
stations, and the EBS are present in our graph representation of the network. In

𝑣

𝑤

𝑣

𝑙out 𝑙in

Figure 2.3: Physical node , which represents
a loading station, an unloading station, or the
EBS (left) and its “extended” description (right)

𝑞 out , ,

1 2
𝑞 , in ,

𝑞 , out , 𝑞 in , ,𝑜

𝑤

Figure 2.4: Flow variables associated with an
extended loading station connected to external
links and .
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our mathematical description of the system, as depicted in Fig. 2.3, we will replace
physical loading stations, unloading stations, and the EBS with their “extended”
description, which is a super node comprising two nodes, a unique virtual incoming
link, and a unique virtual outgoing link. Please note that there is no virtual link
associated with the junctions of the network, so the links connected to the junc-
tions do represent the tracks. There are no DCV queues on the virtual links and
the travel time on the virtual links represents the time needed for storing DCVs in
their corresponding stacks or the time needed for loading pieces of baggage onto
DCVs. Hence, each loading station and each unloading station, and the EBS has
only one incoming link and one outgoing link. This considerably simplifies repre-
sentation of the model. Hereafter, unless otherwise mentioned, we drop explicit
reference to the “extended” prefix and use the term graph to refer to its extended
version.The graph representation of the network is denoted as 𝐺 = (𝑉, 𝐴), where
𝑉 = 𝑉 ∪ 𝑉 ∪ 𝑉 ∪ {𝑣∗} is the set of nodes composed of set 𝑉 associated with the
loading stations, set 𝑉 associated with the intermediate nodes (i.e., junctions), set
𝑉 associated with the unloading stations, and the node 𝑣∗ associated with the EBS.
Moreover, 𝐴 is the set of arcs composed of links, (i.e., physical tracks as well as
virtual links) connecting the elements of 𝑉. In the sequel, we make the following
assumptions regarding configuration of the network:

A1 Only loaded DCVs are dispatched from the loading stations.

A2 The baggage queues at the unloading stations are ignored. This is because
we assume either destination nodes have sufficient capacity or the pieces
baggage are immediately transported to the planes upon arrival.

A3 The movement of DCVs on the network is approximated by a continuous flow
of DCVs.

A4 The DCV travel time on each link is an integer multiple of the sampling time
Δ𝑡.

Assumption A3 is necessary for tractability of the control problem. Even though
the number of DCVs is an integer in reality, for a fairly large number of DCVs,
the movement of DCVs can be approximated by continuous flows. This is not
very restrictive as the computed flows can then be realized as well as possible by
a lower-level control loop that determines the optimal switching pattern for the
switch controllers at the junctions. Assumption A4 allows us to arrive at a linear
discrete-time model of the system. In this setup, we control the flows of DCVs
within the network. The flows are indexed based on their destinations, enabling
us to distinguish between loaded DCVs and empty DCVs, and also loaded or empty
DCVs with different destinations among themselves. The DCV flows with an index
𝑜 ∈ 𝑉 refer to empty-DCV flows whereas the DCV flows with an index 𝑑 ∈ 𝑉 refer
to loaded-DCV flows. Consequently, partial DCV queues associated with different
destinations occur along the links of the network. The total DCV queue length
along a link is then given as the sum of such partial queue lengths. The system
is composed of baggage and empty-DCV vertical queues at the loading stations,
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empty-DCV vertical queues at the unloading stations, loaded-DCV queues at the
EBS, and empty and loaded DCV queues along the links of the network, as shown
in Fig. 2.4. Note that certain links of the network may carry both empty and loaded
DCV flows. Moreover, the loading stations, the EBS, and the links have limited
capacity. In our mathematical model, we make use of the following notation:

• For each node 𝑣 ∈ 𝑉, 𝐿in is the set of incoming links of 𝑣 and 𝐿out is the set
of outgoing links of 𝑣.

• For each link 𝑙 = (𝑣, 𝑤) of the network, 𝑞 , , is the flow from the end of link
𝑙 to link 𝑝 ∈ 𝐿out, with destination 𝑧.

• For each destination 𝑧, 𝐿 denotes to the set of links that are on some directed
path to 𝑧.

• 𝑠 is the length of link 𝑙. The speed of DCVs is denoted by 𝑣DCV. Moreover Δ𝑡
is the sampling time.

• For each 𝑧 ∈ 𝑉 , 𝑘open and 𝑘close mark, respectively, the beginning and the end
of the time window of destination 𝑧, and 𝑘nom, is the nominal travel time from
𝑣 ∈ 𝑉 ∪𝑉 ∪ {𝑣∗} to 𝑧. Moreover, 𝑘 , = 𝑘open−𝑘nom, and 𝑘 , = 𝑘close−𝑘nom,
are respectively the relative opening time-step and relative closing time-step
of destination 𝑧 as seen from 𝑣.

2.2.2. Model Description
Now we will derive the dynamical model of the baggage handling system in discrete
time under the assumptions A1-A7. In the sequel, 𝒙(𝑘), 𝑘 = 0, 1, … denotes the
value of 𝒙 at time step 𝑘, and ⌈𝑥⌉ denotes the smallest integer bigger than or equal
to 𝑥.

Loading Stations
For each loading station node 𝑜, let 𝑙in = (𝑤 , 𝑜) and 𝑙out = (𝑜,𝑤 ) respectively be
the virtual incoming link and virtual outgoing link of 𝑜 for some 𝑤 ∈ 𝑉\𝑉 . The
control variables at each loading station are the flows of loaded DCVs, 𝑞 , out , , from
the DCV stack at 𝑜 to 𝑙out with destination 𝑑 ∈ 𝑉 , and the flow of empty DCVs,
𝑞 in , , , from 𝑙in to 𝑜 with destination 𝑜. Fig. 2.4 illustrates how the flow variables
are defined for the loading stations. For each outgoing link 𝑝 of 𝑤 , we need to
impose the following constraints for all 𝑘 ∈ ℕ:

𝑞 out , , (𝑘) = 0,∀ 𝑧 ∈ 𝑉
𝑞 out , , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑝 ∉ 𝐿 (2.1)

𝑞 out , , (𝑘) ≥ 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑝 ∈ 𝐿 .
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For each incoming link 𝑝 of 𝑤 , we impose the following constraints for all 𝑘 ∈ ℕ:

𝑞 , in , (𝑘) = 0,∀ 𝑧 ∈ 𝑉
𝑞 , in , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 \{𝑜} (2.2)

𝑞 , in , (𝑘) ≥ 0,𝑧 = 𝑜.

Note that constraint (2.1) implies that the loading station 𝑜 can only send loaded-
DCV flows to the unloading stations that are reachable from 𝑜. Constraint (2.2)
implies that the loading station 𝑜 can only accept empty-DCV flows that are desig-
nated for 𝑜. The evolution of DCV stack at loading station 𝑜, 𝒙 (𝑘), is then given
by

𝒙 (𝑘 + 1) = 𝒙 (𝑘) + Δ𝑡(𝑞 in , , (𝑘) − ∑
∈
𝑞 , out , (𝑘)) (2.3)

0 ≤ 𝒙 (𝑘) ≤ 𝒙 ,max,

where 𝒙 ,max is the maximum capacity of the DCV stack at loading station 𝑜. Let
𝒙bag, (𝑘) be the length of the baggage queue, with destination 𝑑 ∈ 𝑉 , at loading
station 𝑜. Then, 𝒙bag, (𝑘) is described as

𝒙bag, (𝑘 + 1) = 𝒙
bag
, (𝑘) + Δ𝑡(𝑄 , (𝑘) − 𝑞 , out , (𝑘)) (2.4)

𝒙bag, (𝑘) ≥ 0, ∀ 𝑑 ∈ 𝑉 ,

where 𝑄 , (𝑘) is the time varying baggage demand at loading station 𝑜 that needs
to be transported to destination 𝑑. The total length of baggage queue at node 𝑜 is
given by 𝒙bag(𝑘) = ∑

∈
𝒙bag, (𝑘). In order to guarantee that there is no DCV queue

along the virtual outgoing link 𝑙out and the virtual incoming link 𝑙in, their inflow and
outflow must be set equal, or equivalently

𝑞 , out , (𝑘) = ∑
∈ out

𝑞 out , , (𝑘 + 𝑘 out), ∀ 𝑑 ∈ 𝑉 (2.5)

𝑞 in , , (𝑘 + 𝑘 in) = ∑
∈ in

𝑞 , in , (𝑘),

where 𝑘 out is the number of time steps required to load a piece of baggage onto
the DCVs, and 𝑘 in is the number of time steps that is required to store empty DCVs
in the DCV stack.

Unloading Stations
For each unloading station node 𝑑, let 𝑙in = (𝑤 , 𝑑) and 𝑙out = (𝑑,𝑤 ) respectively
be the virtual incoming link and virtual outgoing link of 𝑑 for some 𝑤 ∈ 𝑉 . The
control variables at each unloading station are the flows of empty DCVs, 𝑞 , out , ,



2.2. Dynamical Model

2

19

from 𝑑 to 𝑙out with destination 𝑜, and the flows of loaded DCVs, 𝑞 in , , , from 𝑙in
to 𝑑 with destination 𝑑. For each outgoing link 𝑝 of 𝑤 , we impose the following
constraints for all 𝑘 ∈ ℕ:

𝑞 out , , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 ,
𝑞 out , , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑝 ∉ 𝐿 (2.6)

𝑞 out , , (𝑘) ≥ 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑝 ∈ 𝐿 .

For each incoming link 𝑝 of 𝑤 , we need to impose the following constraints for all
𝑘 ∈ ℕ:

𝑞 , in , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 ,
𝑞 , in , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 \{𝑑}, (2.7)

𝑞 , in , (𝑘) ≥ 0,𝑧 = 𝑑.

Constraint (2.6) implies that unloading station 𝑑 can only send empty-DCV flows
to the loading stations that are reachable from 𝑑. Constraint (2.7) implies the
unloading station 𝑑 can only accept loaded-DCV flows the final destination of which
is 𝑑. The evolution of the DCV stack at unloading station 𝑑 is given by

𝒙 (𝑘 + 1) = 𝒙 (𝑘) + Δ𝑡(𝑞 in , , (𝑘) − ∑
∈
𝑞 , out , (𝑘)), (2.8)

0 ≤ 𝒙(𝑘) ≤ 𝒙 ,max,

where 𝒙 ,max is the maximum capacity of the DCV stack at unloading station 𝑑.
Since, by definition, no DCV queues can occur along the virtual links of 𝑑, we have
to set their inflow equal to their outflow, or equivalently

𝑞 , out , (𝑘) = ∑
∈ out

𝑞 out , , (𝑘 + 𝑘 out), ∀ 𝑜 ∈ 𝑉 , (2.9)

𝑞 in , , (𝑘 + 𝑘 in) = ∑
∈ in

𝑞 , in , (𝑘),

where 𝑘 out , and 𝑘 in are respectively the number of time steps that is required to
release the DCVs stored in the DCV stack, and the number of time steps that is
required to unload and store the DCVs in the DCV stack at the unloading station.

EBS
Let 𝑙out∗ = (𝑣∗, 𝑤∗) and 𝑙in∗ = (𝑤∗, 𝑣∗) be the virtual outgoing and incoming links of
EBS, respectively. For the EBS node 𝑣∗ and for each 𝑑 ∈ 𝑉 , the control variables
are the outflows of loaded DCVs, 𝑞 ∗ , out∗ , , with destination 𝑑, and the inflows of
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loaded DCVs, 𝑞 in∗ , ∗ , , whose final destination is 𝑑. For each outgoing link 𝑝 of 𝑤
∗,

we introduce the following constraints for all 𝑘 ∈ ℕ:

𝑞 out∗ , , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 ,
𝑞 out∗ , , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑣∗ ∉ 𝐿 , (2.10)

𝑞 out∗ , , (𝑘) ≥ 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑣∗ ∈ 𝐿 .

For each incoming link 𝑝 of 𝑤∗, we impose the following constraints for all 𝑘 ∈ ℕ:

𝑞 , in∗ , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 ,
𝑞 , in∗ , (𝑘) = 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑣∗ ∉ 𝐿 (2.11)

𝑞 , in∗ , (𝑘) ≥ 0,∀ 𝑧 ∈ 𝑉 s.t. 𝑣∗ ∈ 𝐿 .

Constraints (2.10) and (2.11) jointly imply that the EBS cannot accept or send out
empty-DCV flows, and that it can only receive and send loaded-DCV flows the final
destination of which is reachable from the EBS. The evolution of the loaded-DCV
queue lengths at the EBS with final destination 𝑑 ∈ 𝑉 is given as

𝒙 ∗ , (𝑘 + 1) = 𝒙 ∗ , (𝑘) + Δ𝑡(𝑞 in∗ , ∗ , (𝑘) − 𝑞 ∗ , out∗ , (𝑘)), (2.12)

𝒙 ∗ , (𝑘) ≥ 0,

The total length of the DCV queues at the EBS is, therefore, given by 𝒙 ∗(𝑘) =
∑
∈
𝒙 ∗ , (𝑘) with the constraint 𝒙 ∗(𝑘) ≤ 𝒙 ∗ ,max, where 𝒙 ∗ ,max is the maximum

capacity of EBS. The following guarantee that no queues occur along the virtual
links of EBS:

𝑞 in∗ , ∗ , (𝑘 + 𝑘 in∗ ) = ∑
∈ in∗

𝑞 , in∗ , (𝑘) (2.13)

𝑞 ∗ , out∗ , (𝑘) = ∑
∈ out∗

𝑞 out∗ , , (𝑘 + 𝑘 out∗ ),

where 𝑘 in∗ , and 𝑘 out∗ are respectively the number of time steps that is required to
store loaded DCVs in the EBS, and the number of time steps that is required to
release loaded DCVs from the EBS.

Links
For each real link 𝑙 = (𝑣, 𝑤) and for each 𝑧 ∈ 𝑉 ∪ 𝑉 , the controls are the empty
and loaded DCV flows, 𝑞 , , , from the link 𝑙 to each of its outgoing links 𝑝 with
destination 𝑧. For each 𝑝 ∈ 𝐿out, the flows of DCVs from 𝑙 to 𝑝 must satisfy

𝑞 , , (𝑘) = 0,∀𝑧 ∈ 𝑉 ∪ 𝑉 s.t. 𝑝 ∉ 𝐿 , (2.14)
𝑞 , , (𝑘) ≥ 0,otherwise,
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for all 𝑘 ∈ ℕ, which implies that the DCVs with final destination 𝑧 can be sent from 𝑙
to 𝑝 if 𝑧 is reachable from 𝑝. Let 𝐹in, (𝑘) be the sum of all DCV flows with destination
𝑧 that enter link 𝑙, and let 𝐹out, (𝑘) be the sum of all DCV flows with destination 𝑧
that leaves link 𝑙. We then have

𝐹in, (𝑘 + 𝑘 (𝑘)) = ∑
∈ in

𝑞 , , (𝑘), (2.15)

𝐹out, (𝑘) = ∑
∈ out

𝑞 , , (𝑘),

where 𝑘 (𝑘) is the number of travel time steps for DCV on the link 𝑙 given by
𝑘 (𝑘) = ⌈ ( ) DCV

DCV
⌉, where 𝑥 (𝑘) = ∑

∈ ∪
𝑥 , (𝑘), 𝑥 (𝑘) ≤ 𝑥 ,max is the total DCV

queue length along link 𝑙 with 𝑥 ,max being the maximum allowed queue length on
link 𝑙 and with 𝑥 , (𝑘) being the partial DCV queue length along link 𝑙 associated
with destination 𝑑 described by

𝒙 , (𝑘 + 1) = 𝒙 , (𝑘) + Δ𝑡(𝐹in, (𝑘) − 𝐹out, (𝑘)), (2.16)
𝒙 , (𝑘) ≥ 0.

The equality and inequality constraints (2.1)-(2.16) define the set of feasible trajec-
tories of the system. Let 𝒙(𝑘) ∈ ℝ be the state vector at time step 𝑘 the elements
of which are the baggage queue lengths at the loading stations; the empty-DCV
queues at the loading stations, at the unloading stations, and on the links; the
loaded-DCV queues on the links and in the EBS; the empty- and loaded-DCV flows
at the past time steps, where the number of past time steps for which we need to
store the flow value depends on the capacity of the link. Let 𝒖(𝑘) ∈ ℝ be the
input vector the elements of which are empty- and loaded-DCV flows from the end
of each link to its outgoing links; the inflow of empty DCVs from the virtual incom-
ing link of loading stations to the loading stations and the outflow of empty DCVs
from unloading stations to their virtual outgoing link; the flow of loaded DCVs to
the EBS from its virtual incoming link, and from the EBS to its virtual outgoing link,
and let 𝒛(𝑘) ∈ ℝ be the disturbance vector the elements of which are 𝑄 , (𝑘)
for all origin and destination pairs. Note that we consider the baggage demand
𝑄 , (𝑘) as a disturbance since it is an exogenous input that is fully measurable or
predictable. We define the output vector 𝒚(𝑘) ∈ ℝ as the collection of queue,
i.e., 𝑥 (𝑘), 𝑥 (𝑘), 𝑥 ∗ , (𝑘), 𝑥 , (𝑘), 𝑥bag, (𝑘). Then, the system description can be
expressed in the form

𝒙(𝑘 + 1) = 𝐴(𝒙(𝑘))𝒙(𝑘) + 𝐵𝒖(𝑘) + 𝐺𝒛(𝑘),
𝒚(𝑘) = 𝐶𝒙(𝑘),
𝐸𝒖(𝑘) = 𝐹𝒙(𝑘), (2.17)

0 ≤ 𝒚(𝑘) ≤ 𝒚max,
0 ≤ 𝒖(𝑘) ≤ 𝒖max,
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for properly defined matrices 𝐴, 𝐵, 𝐶, 𝐸, 𝐹, and 𝐺. Note that initial state of the
system 2.17, and the demand profile 𝑄 , (⋅) have to be properly defined for the
system to have solution for any 𝑘 ∈ ℕ. Note that depending on the value of 𝒙(𝑘),
certain elements of 𝐴(𝒙(𝑘)) have non-zero values. Therefore, (2.17) does not
define a linear discrete-time system with linear constraints.

2.3. MPC Problem Formulation
In this section, we use the dynamic model introduced in Section 2.2 within the
context of MPC. At every time step, based on the current state of the system and
a future prediction of baggage demands, a constrained finite horizon optimization
problem will be solved yielding a sequence of optimal controls. According to the
receding horizon policy, only the first step of this sequence is applied to the system,
and this process is repeated at the next time step [10–12].

2.3.1. Objective Function
The aim of the control scheme is to assure delivery of pieces of baggage to the
unloading stations within the given time windows. Imposing explicit constraints
on delivery times would only be possible using a model that gives exact arrival
times. However, due to its complexity, the resulting optimization problem would
be intractable. Moreover, imposing explicit constraints on delivery times could lead
to an infeasible optimization problem. Using the proposed flow model, the arrival
time of DCVs to the unloading stations cannot be explicitly computed. Therefore,
we include time-window constraints as a soft constraint in the objective function.
Hence, the penalty functions penalize the flows and DCV queue lengths in such
a way that the loaded DCVs are delivered to the unloading stations within their
respective time windows as well as possible. Recall from Section 2.2 that 𝑘 , and
𝑘 , are respectively the relative opening and closing time steps of destination 𝑧, as
seen from node 𝑣. For 𝑣 ∈ 𝑉 ∪ 𝑉 ∪ 𝑣∗ and 𝑧 ∈ 𝑉 , the weighting function

𝐶q(𝑘, 𝑣, 𝑧) ≔ {
𝑟 if 𝑘 ≤ 𝑘 ,
𝑟 + 𝑚 (𝑘 − 𝑘 , ) if 𝑘 , < 𝑘 ≤ 𝑘 ,
𝑟 + 𝑚 (𝑘 , − 𝑘 , ) + 𝑚 (𝑘 − 𝑘 , ) if 𝑘 > 𝑘 , ,

(2.18a)
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depicted in Fig. 2.7, will be used in the penalty terms for the baggage queues in the
loading stations, loaded DCV-queues in the EBS and along the links. For 𝑣 ∈ 𝑉 ∪𝑉
and 𝑧 ∈ 𝑉 , the weighting function

𝐶f(𝑘, 𝑣, 𝑧) ≔ {𝑠 if 𝑘 ≤ 𝑘 ,
𝑠 + 𝑛 (𝑘 − 𝑘 , ) if 𝑘 > 𝑘 , ,

(2.18b)

shown in Fig. and Fig. 2.8, will be used in the penalty terms associated with the
loaded-DCV flows in the loading stations and along the links. For 𝑧 ∈ 𝑉 , the
weighting functions

𝐶f,in∗ (𝑘, 𝑧) ≔ {0 if 𝑘 ≤ 𝑘 ∗ ,
𝑛 (𝑘 − 𝑘 ∗ , ) if 𝑘 > 𝑘 ∗ , ,

(2.18c)

depicted in Fig. 2.5, and

𝐶f,out∗ (𝑘, 𝑧) ≔ 𝐶f,in∗ (𝑘, 𝑧) − 𝑛 (𝑘 − 𝑘 ∗ , ) (2.18d)

will be respectively used to penalize the the EBS inflows and the EBS outflows. For
𝑧 ∈ 𝑉 , the weighting function

𝐶f(𝑘, 𝑧) ≔ {
𝑠 − 𝑛 (𝑘 − 𝑘open) if 𝑘 < 𝑘open

𝑠 if 𝑘open < 𝑘 ≤ 𝑘close
𝑠 + 𝑛 (𝑘 − 𝑘close) 𝑘 > 𝑘close,

(2.18e)

depicted in Fig. 2.6, will be used to penalize the empty-DCV outflows at unloading
stations. In above, 𝑟 ,𝑚 > 𝑚 , 𝑠 , 𝑠 , 𝑛 , and 𝑛 are strictly positive constants that
determine the shape of the weighting function. Note that the relative magnitude of
these constants is a design parameter that determines how much in-time delivery
of DCVs is favored to energy consumption.

Using 2.18, we will define the following penalty terms, which penalize the loaded-
DCV flows and queues. For loading station 𝑜, the penalty terms at time step 𝑘
associated with the baggage queues and the loaded-DCV flows are defined as:

𝐽bagLS (𝑘) ≔ ∑
∈
∑
∈
𝐶q(𝑘, 𝑜, 𝑑)𝑥bag, (𝑘), (2.19)

𝐽flowLS (𝑘) ≔ ∑
∈
∑
∈
𝐶f(𝑘, 𝑜, 𝑑)𝑞 , out , (𝑘).

For links 𝑙 = (𝑣, 𝑤), the loaded-DCV queues and loaded-DCV flows are penalized as
follows:

𝐽DCVL (𝑘) ≔ ∑
∈

∑
( , )∈

𝐶q(𝑘, 𝑤, 𝑑)𝑥 , (𝑘), (2.20)

𝐽flowL (𝑘) ≔ ∑
∈

∑
( , )∈

(𝐶f(𝑘, 𝑤, 𝑑) ∑
∈ out

𝑞 , , (𝑘)),
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For the EBS, penalty term associated with the loaded-DCV queues is defined as:

𝐽DCVEBS (𝑘) ≔ ∑
∈
(𝐶q(𝑘, 𝑣∗, 𝑑) − 𝑟 )𝑥 ∗ , (𝑘), (2.21)

and the penalty terms associated with loaded-DCV flows in and out of the EBS are
defined as:

𝐽inflowEBS (𝑘) ≔ ∑
∈
𝐶f,in∗ (𝑘, 𝑑)𝑞 in∗ , ∗ , (𝑘), (2.22)

𝐽outflowEBS (𝑘) ≔ ∑
∈
𝐶f,out∗ (𝑘, 𝑑)𝑞 ∗ , out∗ , (𝑘),

For the unloading stations 𝑑, the penalty term associated with the inflow of loaded
DCVs to 𝑑 is defined as:

𝐽flowUS (𝑘) ≔ ∑
∈
𝐶f(𝑘, 𝑑)𝑞 in , , (𝑘). (2.23)

One can observe that for 𝑘 ≤ 𝑘 , , as depicted in Fig. 2.7, we assign a constant
weight 𝑟 to the baggage queues at the loading station and to the loaded-DCV
queues along the links. With the choice of 𝑠 ≪ 𝑟 this allows for early release
of baggage, hence loaded-DCVs, into the network. These DCVs will move to the
EBS since the loaded-DCV inflow of the unloading stations is highly penalized (see
Fig. 2.6) and since the inflow of DCVs to the EBS inflicts no cost (see Fig. 2.5).
Please note that, during this period, the DCVs will remain in the EBS since dis-
patching the DCVs is more expensive. For 𝑘 , < 𝑘 ≤ 𝑘 , , the weighting functions
for the baggage queues at the loading stations and for the loaded-DCV queues
along the links and in the EBS increase with the constant slope 𝑚 to have more
loaded DCVs released in the network. The weight of the loaded-DCV inflows to
the EBS increases with the constant slope 𝑛 to prevent DCVs from entering the
EBS. Moreover the inflow of loaded DCVs to the unloading station involves no cost.
Hence, the released DCVs arrive at the specified unloading stations. For 𝑘 > 𝑘 ,
the weighting functions for the baggage queues at the loading stations and for the
loaded-DCV queues along the links increase with the constant slope 𝑚 . In addi-
tion the weighting functions of the loaded-DCV flows along the links and into the
unloading stations increases with the constant slope 𝑛 . Since the slope of the
second part of the weighting functions is larger than the slope of the first part, the
case of having loaded DCVs on the links, or having loaded-DCV flows arriving at the
unloading stations during this time interval becomes expensive.

To take into account the energy consumption, we define the following penalty
terms, which penalize the flow of empty DCVs. The cost of empty-DCV flows,
𝑞 , , (𝑘) is given by

𝐽e(𝑘) ≔ 𝑡 ∑
∈

∑
( , )∈

∑
∈ out

𝑞 , , (𝑘), (2.24)
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where we assign a constant weight 𝑡 > 0 to empty DCV flows to avoid arbitrary
empty DCV flow circulations, which is in accordance with our objective of minimizing
the energy consumption. We define

𝐽 (𝑘) ≔ 𝐽bagLS (𝑘) + 𝐽DCVLS (𝑘) + 𝐽DCVL (𝑘) + 𝐽DCVEBS (𝑘), (2.25)

and

𝐽 (𝑘) ≔ 𝐽flowLS (𝑘) + 𝐽flowL (𝑘) + 𝐽flowUS (𝑘) + 𝐽inflowEBS (𝑘) + 𝐽outflowEBS (𝑘) (2.26)

respectively as the total cost of baggage stacks and loaded DCV queues and the
total cost of loaded DCV flows. The total cost function at time step 𝑘 over the
prediction horizon 𝑁p is then given by

𝐽 p(𝑘) ≔
1

𝐽 ,nom

p

∑𝐽 (𝑘+𝑗)+ 𝛼
𝐽 ,nom

p

∑ 𝐽 (𝑘+𝑗)+ 𝛼
𝐽enom(𝑘)

p

∑ 𝐽e(𝑘)(𝑘+𝑗), (2.27)

where 𝛼 > 0, and 𝛼 > 0 are constants indicating the relative importance of the
respective component of the objective function, and where 𝐽 ,nom, 𝑖 = 1, 2 is the
nominal value2 of 𝐽 (𝑘).

2.3.2. Linear Programming Approach
In general, finding the optimal flow values and optimal queue lengths is a nonlinear
programming problem. To arrive at a linear programming formulation we first make
the following additional assumption:

A-LP The queue lengths remain constant over the prediction horizon.

Assumption A-LP enables us to arrive at a linear programming formulation of the
optimization problem. Under A-LP, the first equation in (2.17) can be written as

𝒙(𝑘 + 𝑗 + 1) = 𝐴(𝒙(𝑘))𝒙(𝑘 + 𝑗) + 𝐵𝒖(𝑘 + 𝑗) + 𝐺𝒛(𝑘 + 𝑗), (2.28)

for 𝑗 = 1, … , 𝑁p − 1, which, together with constraints of (2.17), defines a linear
discrete time-invariant system with linear constraints. Since (2.27) is weighted
sum of the state variables and the input variables, it can be expressed as 𝐽 p(𝑘) =
𝑭T(𝑘)𝒛 p(𝑘)+𝑭T(𝑘)𝒙(𝑘)+𝑭T(𝑘)𝒖 p(𝑘) by successive substitution in (2.28). Here,
𝒛 p(𝑘) = [𝒛T(𝑘), … , 𝒛T(𝑘 +𝑁p −1)]T ∈ ℝ p is the predicted disturbance vector,
𝒖 p(𝑘) = [𝒖T(𝑘), … , 𝒖T(𝑘 + 𝑁p − 1)]T ∈ ℝ p is the control input sequence and
𝑭 (𝑘) ∈ ℝ p , 𝑭 (𝑘) ∈ ℝ , and 𝑭 (𝑘) ∈ ℝ p are coefficient vectors. Note that
since the values of the weighting functions are known for 𝑘, 𝑘 + 1, … , 𝑘 + 𝑁p − 1,
2The nominal value ,nom, , can be computed by averaging over ( ) for , … , , where
( ) is obtained based on simulating the system under the nominal input 𝒖nom( ) and the nominal

baggage demand 𝒛nom( ), for , … , .
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𝑭 (𝑘), 𝑭 (𝑘), and 𝑭 (𝑘) are fully determined at time step 𝑘. Therefore, at every
time step 𝑘, we solve an optimization problem of the form

min
𝒖 p ( )

𝑭T(𝑘)𝒖 p(𝑘)

subject to 𝐴eq(𝑘)𝒖 p(𝑘) = 𝒃eq(𝑘),
𝐴ineq(𝑘)𝒖 p(𝑘) ≤ 𝒃ineq(𝑘), (2.29)

0 ≤ 𝒖 p(𝑘) ≤ 𝒖max,

where the matrices 𝐴eq(𝑘), and 𝐴ineq(𝑘) and the vectors 𝑏eq(𝑘), and 𝑏ineq(𝑘) are
obtained based on (2.17), the current state of the system 𝑥(𝑘), and the predicted
baggage demand 𝒛 p(𝑘) = [𝒛T(𝑘), … , 𝒛T(𝑘 + 𝑁p − 1)]

T ∈ ℝ p . This is an LP
problem, which, among others, can be solved efficiently using the simplex, active-
set, or interior point methods [21].

2.3.3. Iterative Linear Programming Approach
The prediction model (2.28) can yield inaccurate predictions. To remedy this prob-
lem and still arrive at a tractable formulation for the optimization problem, we pro-
pose an iterative version of (49): at each iteration, a problem of the form (2.29) is
solved to find the optimal sequence of flow variables. This sequence is then used
in the model (2.17) in forward simulation to compute the updated values for queue
lengths resulting from the obtained flow values. The updated queue lengths are
then used again in the LP problem formulation to find updated flow values. This
process is repeated for a certain number of iterations. More formally, we replace
the first equation in (2.17) by the prediction model

𝒙( )(𝑘 + 𝑗 + 1) = 𝐴(𝒙( )(𝑘 + 𝑗))𝒙( )(𝑘 + 𝑗) + 𝐵𝒖( )(𝑘 + 𝑗) + 𝐺𝒛(𝑘 + 𝑗), (2.30)

for 𝑗 = 0, … , 𝑁p − 1 with the initial conditions 𝒙( )(𝑘 + 𝑗) = 𝒙(𝑘) for 𝑗 = 0,… ,𝑁p −
1, 𝒙( )(𝑘) = 𝒙(𝑘) for 𝑖 = 1, 2, … , where 𝑖 is the iteration index. Hence, at time
step 𝑘, initializing the algorithm with with the initial predicted state 3 𝒙 p ,( )(𝑘) =
[𝒙T(𝑘), … , 𝒙T(𝑘)]T, the predicted state vector

𝒙 p ,( )(𝑘) = [𝒙T( )(𝑘), … , 𝒙T( )(𝑘 + 𝑁p − 1)]
T

at iteration 𝑖 is computed based on the input sequence,

𝒖 p ,( )(𝑘) = [𝒖T( )(𝑘), … , 𝒖T( )(𝑘 + 𝑁p − 1)]
T

at iteration 𝑖, the predicted disturbance vector 𝒛 p(𝑘), and the predicted state vector
at iteration 𝑖 − 1. Using (2.30), the objective function at time step 𝑘 in iteration 𝑖
3If the optimal input sequence from the previous time step is availabe, it can be used to compute the
initial predicted state.
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be expressed as 𝐽 p , (𝑘) = 𝑭T,( )(𝑘)𝒛 p(𝑘)+𝑭T,( )(𝑘)𝒙(𝑘)+𝑭T,( )(𝑘)𝒖 p ,( )(𝑘).
Therefore, at time step 𝑘 and in iteration 𝑖, we solve an optimization problem of
the following form:

min
𝒖 p ,( )( )

𝑭T,( )(𝑘)𝒖 p ,( )(𝑘)

subject to 𝐴eq( )(𝑘)𝒖 p ,( )(𝑘) = 𝒃
eq
( )(𝑘), (2.31)

𝐴ineq( )(𝑘)𝒖 p ,( )(𝑘) ≤ 𝒃
ineq
( )(𝑘),

where the matrices 𝐴eq( )(𝑘), and 𝐴
ineq
( )(𝑘) and the vectors 𝑏

eq
( )(𝑘), and 𝑏

ineq
( )(𝑘)

are obtained based on (2.30), and the constraints of (2.17) using the predicted state
vector 𝒙 p ,( )(𝑘) at iteration 𝑖 − 1, the current state of the system 𝑥(𝑘), and the
predicted baggage demand 𝒛 p(𝑘). Note that even though we assume constant
queue lengths at each inner iteration of (2.31), the variations in queue lengths over
the prediction horizon are taken into account in the next inner iteration. Therefore,
at the end of inner iterations, the computed flow values are the ones obtained
having taken into account the effect of variations in the queue lengths over the
prediction horizon.

2.3.4. Nonlinear Programming Approach
In this approach, without any simplifying assumptions, we make direct use of the
model presented by (2.17) and the cost given by (2.27) in defining optimization
problem of the following form:

min
𝒖 p ( ) [𝒖T( ), …, 𝒖T( p )]T

𝐽 p(𝑘) subject to (2.17), (2.32)

which is a nonlinear nonconvex problem. Hence, one can use multi-start local
nonlinear optimization algorithms (e.g., an SQP algorithm or interior-point methods
[21]) or global optimization methods (e.g., pattern search and genetic algorithms
[22]).

2.4. Case Study
First, we introduce a state-of-the-art (SOA) method, which is developed based on
our understanding of the method currently used for control of BHS by a leading
supplier of DCV-based baggage handling systems. In this method, the flow of
loaded DCVs at each junction is dynamically assigned to its outgoing links based
on the projected deviation of delivery times from the beginning of the time window
of the destination. In this way, the DCVs are dynamically routed via links that
make timely delivery possible while distributing the traffic in a smart way, hence
avoiding congestion. The empty-DCV flows at each junction are assigned based
on projected travel times, and the length of the baggage queues at the loading
stations. Hence, more empty DCVs are sent via “faster” links to the loading station
with longer baggage queues.
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a) Routing and scheduling of loaded DCVs: at each junction of the network the
flow from an incoming link 𝑙 to an outgoing link 𝑝 with destination 𝑑 at current time
𝑡 = 𝑘Δ𝑡 is obtained as

𝑞 , , (𝑘) =
1/|𝑡 − 𝑡open − 𝑡 , , (𝑘)|
∑ 1/|𝑡 − 𝑡open − 𝑡 , , (𝑘)|

𝑞 ,max,

where 𝑡open is the opening time for the destination, 𝑞 ,max is the maximum flow of
the link, and 𝑡 , , is the estimated travel time from the end of link 𝑙 to destination
𝑑 via link 𝑝. This travel time can be obtained using historical data or by computing
𝑡 , , (𝑘) = 𝑡 (𝑘)+𝑡∗, , , where 𝑡∗, , is the the travel time from 𝑙 to 𝑑 via the shortest
path and 𝑡 (𝑘) is the estimated clearance time of the queues given by

𝑡 (𝑘) =
𝑥 (𝑘)
𝑞 ,max

+
∑ 𝐹in(𝑘 − 𝑗)(𝑛 − 𝑗)

∑ 𝐹in(𝑘 − 𝑗)
+ Δ𝑡
𝑞 ,max

∑ 𝐹in(𝑘 − 𝑗), (2.33)

where 𝑥 (𝑘) is the total queue length at the end of link 𝑝, 𝐹in(𝑘) is the total inflow
of DCVs to link 𝑝, and 𝑛 Δ𝑡 is the DCV travel time from the beginning to the end
of 𝑝. The first term on the right hand side of the (2.33) is the clearance time of
current DCV queue at the end of link 𝑝. The second term determines the average
time that the past DCV flows that are currently traveling on link 𝑝 need to reach
the end of the link, and the last term determines the clearance time of these flows
once they have reached the end of the link.
b) Routing and scheduling of empty DCVs: at each junction of the network, the
flow of empty DCVs from an incoming link 𝑙 to an outgoing link 𝑝 is with destination
𝑜 is given as

𝑞 , , (𝑘) =
𝑥bag

∑ ∈ 𝑥bag
1/𝑡 , , (𝑘)
∑ 1/𝑡 , , (𝑘)

𝑞 ,max,

where 𝑥bag is the total baggage queue at loading station 𝑜, and 𝑡 , , is the es-
timated travel time from the end of link 𝑙 to destination 𝑑 that can be obtained
using historical data or the aforementioned procedure via (2.33). For the network
layout depicted in Fig. 2.9 with 𝑉 = {1, 9}, 𝑉 = {5, 13}, 𝑉 = {2, 3, 4, 6, 7, 10, 11, 12},
and 𝑣∗ = {8}, we compare the the performance of the SOA, LP-MPC, ILP-MPC,
and NLP-MPC against each other in terms of MPC-in-the-loop optimal cost and the
computational burden under the demand scenario depicted in Fig. 2.10 using the
parameters listed in Table 2.1. For the LP and ILP approaches, we use the CPLEX
solver via TOMLAB toolbox for MATLAB, and for the NLP approach, we use the im-
plementation of the interior-point algorithm in the MATLAB optimization toolbox.
For each method, the total MPC-in-the-loop cost and the corresponding CPU time
is listed in Table 2.2 for different prediction horizons using a dual core PC with Intel
E8400 processor running at 3.00GHz and with 4GB of RAM. The reported CPU times
are computed by averaging over the CPU times for all simulation time steps. It can
be observed from Table 2.2 that while the computation time of the LP and ILP-MPC
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Table 2.1: Closed-loop simulation parameters, including the total simulation time steps sim, destina-
tions opening and closure time instants, MPC parameters, link capacities, and the initial value of the bags
and empty DCVs at the loading stations. There are no DCVs initially in the other parts of the network.

MPC Parameters
𝑁p (𝑘openU , 𝑘closeU ), (𝑘openU , 𝑘closeU ) 𝒖max[DCV/s] (𝒙 ,max, 𝒙 ,max, 𝒙 ∗ ,max, 𝒙 ,max)[DCV] (𝛼 , 𝛼 ) (𝑠 , 𝑠 , 𝑛 , 𝑛 ), (𝑟 ,𝑚 ,𝑚 )
8 (60, 90), (80, 120) 6 (50, 100, 120, 26) (1, 1) (1, 1, 1, 2), (0.5, 1, 1, 2)

Closed-loop Simulation Parameters
Δ𝑡[s] (𝑥L (0), 𝑥L (0), 𝑥U (0), 𝑥U (0))[DCV] 𝑁sim 𝑣DCV[m/s] 𝑙DCV[m]
0.5 (20, 49, 90, 0) 150 10 1.5

Table 2.2: Comparison of Closed-loop Performance and Computation Times

𝑁p Opt. Scheme (Solver) Iter./Multi-start Iter. min. CPU Time [s] Avg. CPU Time [s] max. CPU Time Optimal Cost
N/A SOA 𝑁/𝐴 0.0015 0.0036 0.0411 16671.5
2 LP (CPLEX) 𝑁/𝐴 0.0056 0.0074 0.0411 8083.1
2 ILP (CPLEX) 2 0.0128 0.0237 0.7401 8083.1
2 ILP (CPLEX) 4 0.0249 0.0389 0.7416 8083.1
2 ILP (CPLEX) 6 0.0475 0.0530 0.0739 8083.1
2 NLP (interior-point) 3 99.6190 114.53 135.52 8083.1
4 LP (CPLEX) 𝑁/𝐴 0.0074 0.0094 0.0239 7982.1
4 ILP (CPLEX) 2 0.0150 0.0271 0.7664 7869.5
4 ILP (CPLEX) 4 0.0309 0.0445 0.7845 7820.5
4 ILP (CPLEX) 6 0.0453 0.0514 0.0913 7800.5
4 NLP (interior-point) 4 310.00 344.93 376.16 6813.4
6 LP (CPLEX) 𝑁/𝐴 0.0087 0.0197 0.6674 7471.3
6 ILP (CPLEX) 4 0.0375 0.0457 0.0967 5890.2
6 ILP (CPLEX) 8 0.0721 0.0852 0.1133 5574.2
6 NLP (interior-point) 8 419.62 450.15 486.42 4546.7
8 LP (CPLEX) 𝑁/𝐴 0.1212 0.1902 0.3299 5925.3
8 ILP (CPLEX) 6 0.8061 1.0185 1.4325 4949.9

approaches are comparable to the SOA method, they outperform the SOA in terms
of controller-in-the-loop cost. This can also be observed by comparing Fig. 2.15
with Fig. 2.14 which illustrate the controller-in-the-loop performance of the two
methods for the baggage demand profile depicted in Fig. 2.10. While with the ILP-
MPC with three iterations, 70% of the baggage demand for destination 𝑈 = 5 and
80% of the baggage demand for destination 𝑈 = 13 arrive within the respective
time window of destination, with SOA method, only 10% of demand to 𝑈 = 5 and
20% of demand to 𝑈 = 13 arrive within the time windows. One can observe from
Fig. 2.13 and from Table 2.2 that the NLP approach outperforms the LP and ILP
approaches, but its computational burden increases very sharply for high values
of prediction horizon. Moreover, the the optimal cost of ILP approach converges
to the NLP approach by increasing the number of iterations with far less compu-
tation effort. We also observe from Table 2.2 that the ILP approach outperforms
the LP approach in terms of the closed-loop cost and that the difference between
the closed-loop cost of the two increases for the increasing values of the prediction
horizon. Fig. 2.11 compares the computation times of SOA, LP, and ILP methods
for different values of 𝑁p. It can be observed that the computation time of the LP
approach is comparable with the SOA. More importantly, the computation time of
LP and ILP methods increase linearly in the problem size. The computation time of
ILP approach as a function of ILP iteration is depicted in Fig. 2.12.
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Figure 2.9: Schematic layout of the case study network with loading stations L , and L and
unloading stations U , U , and EBS . The nominal travel time of each link, based on the
maximum DCV speed, is indicated in simulation time step.
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Figure 2.10: The baggage demand (left) and number of DCVs in the EBS (right).



2.4. Case Study

2

31

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2
LP
ILP2
ILP4
ILP6
ILP8
SOA

Figure 2.11: Computation time of LP and ILP in seconds as a function of p.
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Figure 2.12: Computation time of the ILP in seconds as a function of ILP iterations
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Figure 2.13: Predicted cost as a function of closed-loop time step using the LP approach (dashed line),
the ILP approach (square markers), and the NLP approach (triangle markers) for different prediction
horizons p.
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Figure 2.14: ILP-MPC-based control. Triangle: total DCV inflow. Square: DCV outflow. Solid line: DCV
queue for unloading stations (left) U and (right) U with the associated time window of destination.
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Figure 2.15: SOA control. Triangle: total DCV inflow. Square: DCV outflow. Solid line: DCV queue for
unloading stations (left) U and (right) U with the associated time window of destination.

2.5. Conclusions and Future Work
In this chapter, we have revisited the problem of dynamic routing and scheduling
of DCVs in baggage handling systems. We have jointly addressed the main control
problems of DCV-based baggage handling systems, namely, routing and schedul-
ing of DCVs, line balancing, and empty cart management. Our derived model was
used as the prediction model within the MPC framework. The objective function
was defined so as to penalize the deviation of baggage delivery time at the unload-
ing stations from pre-specified time windows, and the energy consumption. We
formulated the MPC problem as a nonlinear programming (NLP) problem, which,
for the case study, was computationally very inefficient for large prediction horizons
(e.g., 𝑁p > 6) due to the large-scale nature of the problem. Under some simplifying
assumptions, we showed that the underlying optimization problem can be recast as
a linear programming (LP) problem. However, the performance of the LP approach
is suboptimal with respect to the NLP approach with significant performance loss
for larger values of prediction horizons. To achieve a fast yet close-to-optimal solu-
tion, we have proposed an iterative linear programming (ILP) scheme that solves a
sequence of LP problems to compute the optimal control sequence. We have illus-
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trated that by using this method for an appropriate number of ILP iterations, it is
possible to achieve a performance close to the NLP approach with significantly less
computational burden. We also compared the performance of the our proposed
approach to a state-of-the-art method (SOA) as is used in practice. We illustrated
via simulations that our proposed method outperforms the SOA. The scalability of
our approach was illustrated by numerical tests. Particularly, we showed that the
required computation time increases linearly for increasing values of the prediction
horizon and number of iterations.

For future work, we will compare the performance and computational require-
ments of our approach to an approach based on computing the exact travel time of
each DCV in the network using a given distribution of passengers and baggage al-
lowance for a predefined flight schedule. In addition, the trade-off between perfor-
mance and computational efficiency of the ILP approach, especially for large-scale
systems, will be analyzed in the future.
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3
Towards a Robust
Multi-level Control

Approach for Baggage
Handling Systems

“It is my experience that proofs involving matrices can be shortened by 50%
if one throws the matrices out.”

Emil Artin, 1898 – 1962

This chapter revisits the routing problem in baggage handling systems. We propose
a two-level control approach based on a model predictive controller at the top level
and a constrained feedback controller at the bottom level that minimizes the 𝐿 gain
of the closed-loop system. The model predictive control problem is recast as a linear
programming problem and the constrained feedback controller design problem is
formulated as minimization of a linear objective function subject to linear matrix
inequalities. The effectiveness of the proposed method is illustrated by a case
study.

3.1. Introduction
There has been a growing interest, in the last decade, in automated modern bag-
gage handling systems for large airports. Such baggage handling systems have
enabled big airports to achieve high throughput of passengers and cargo. The ef-
ficiency and reliability of baggage handling systems have improved over time by

This chapter is based on [1].
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implementing more advanced control strategies. However, in order to meet the
increasing demand for air travel and cargo shipment, we need more intelligent and
reliable control methods than the currently available state-of-the-art methods. Mod-
ern baggage handling systems are composed of the following main components:
i) loading stations, where the baggage demand originates. The pieces of baggage
arrive at the loading stations either from a check-in desk or from a transfer flight, ii)
unloading stations that are the final destination of the luggage and from where the
pieces of baggage are boarded on to the planes, iii) a network of tracks that connect
loading stations to unloading stations through junctions, iv) high-speed destination
coded vehicles (DCV) that transport the pieces of baggage on the network from
the loading stations to the unloading stations, v) switch controllers at the junctions
that determine the route of DCVs. A complete description of the baggage handling
system, the state-of-the-art control approaches, and the high-level control prob-
lems can be found in [2] and [3]. In this chapter, building on the work of [4], we
develop a new approach for dynamic routing of DCVs within the network such that
the pieces of baggage arrive at their destination within a given time window with
minimum energy consumption. We also improve the robustness of our approach
against variations in the baggage demand.

The proposed control structure is composed of a controller based on model
predictive control (MPC) at the top level and a controller based on 𝐿 gain opti-
mization at the bottom level. The MPC controller computes the nominal control
input based on nominal prediction of the baggage demand such that the pieces of
baggage arrive at their destination within a specified time window with minimal en-
ergy consumption. The 𝐿 based controller then minimizes the deviation of system
trajectories from the nominal behavior due to unpredicted variations in the nominal
predicted baggage demand. Fig. 3.1 depicts a schematic overview of the proposed
two-level control approach.

The rest of the chapter is organized as follows. In Section 3.2, we present the
dynamical model of the baggage handling system used for our control purposes.
Section 3.3 and Section 3.4 describe the MPC approach and the 𝐿 optimization
control approach, respectively. In Section 3.5, we explain how to combine these
two controller approaches into a two-level control structure. In Section 3.6, we
present a case study illustrating the performance of our proposed control scheme
and finally Section 3.7 concludes the chapter.

3.2. Dynamical Model
The baggage handling system network can be seen as a directed graph 𝐺 = (𝑉, 𝐴),
where 𝑉 = 𝑂 ∪ 𝐼 ∪ 𝐷 is the set of nodes composed of origin nodes 𝑂 (i.e., loading
stations), intermediate nodes 𝐼 (i.e., junctions), and destination nodes 𝐷 (i.e., un-
loading stations), and 𝐴 is the set of arcs composed of links (i.e., tracks) connecting
the nodes. The queue lengths are associated with the nodes and the control vari-
ables are defined at each node as the flows of DCVs from that node to its neighbor
nodes. In a similar manner to the model in [5], the flows are indexed by their des-
tination, enabling us to distinguish between baggage with different destinations.
This is important as the baggage must end up in the right destination. Accordingly,
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�̃�

�̂� 𝒖
+

+
system

𝒚

feedback control −

𝐿 optimization

𝒚∗𝒖∗
model

optimization

historical data queue lengths/flow
constraints time windows

Figure 3.1: Schematic overview of the proposed two-level control approach, where 𝒖∗ and 𝒚∗ are the
nominal input generated by the MPC controller and the resulting output trajectory, respectively, �̂� is the
predicted baggage demand, �̃� is the unpredictable deviation of baggage demand around �̂�, and 𝒖 and
𝒚 are respectively the actual input and output of the system.

at each node 𝑣 ∈ 𝑉 there is a partial queue of DCVs associated with each destination
𝑑 ∈ 𝐷. The following assumptions are made in the derivation of the model:

A1 Each node in the network belongs to at least one directed path from an origin
node (i.e., a loading station) to a destination node (i.e., an unloading station).

A2 A DCV is present at the loading station whenever a piece of baggage arrives.

A3 The movement of pieces of baggage on the network is approximated by a
continuous flow of baggage.

A4 At each node 𝑣, with exception of destination nodes, the DCVs stack up in ver-
tical queues according to their destination. The queue lengths at destination
nodes are considered to be zero. This is because we assume either destina-
tion nodes have unlimited capacity or there is no restriction on the outflow of
destination nodes so the baggage are immediately taken to the planes upon
arrival.

A5 The DCV travel time on each link is an integer multiple of the sampling time
Δ𝑡.

Assumption A1 guarantees that there are no redundant nodes in the network.
By Assumption A2, the pieces of baggage are immediately dispatched from the
loading stations as they arrive. Therefore, we do not need to distinguish between
baggage flows and DCV flows within the system. Otherwise, we would need to
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take into account the movement of empty DCVs from the unloading stations to
the loading stations. Assumption A3 is necessary for tractability of the control
problem. Although the number of DCVs is an integer in reality, for a fairly large
number of DCVs, the movement of DCVs can be approximated by continuous flows.
This is not very restrictive as the computed flows can then be realized as well as
possible by a lower-level control loop that determines the optimal switching pattern
for the switch controllers at the junctions. The actual time required to travel from
a node to another one depends on the length of the DCV queue at the end of the
link connecting these nodes. However, if the queue lengths are sufficiently small
compared to the length of the the links, the variation in the travel time is negligible.
This is equivalent to having vertical queues at each node as stated in assumption
A4. Assumption A5 allows us to arrive at a linear discrete-time model of the system.

We also make use of the following notation:

• The set of sending nodes of a node 𝑣 ∈ 𝑉 defined as 𝑉send = {𝑤 ∈ 𝑉 ∣ (𝑤, 𝑣) ∈
𝐴}, is the set of nodes that can send flow to node 𝑣 .

• The set of receiving nodes of a node 𝑣 ∈ 𝑉 defined as 𝑉recv = {𝑤 ∈ 𝑉 ∣
(𝑣, 𝑤) ∈ 𝐴}, is the set of nodes that can receive flow from node 𝑣.

• The set of all nodes that are on some directed path to a destination node
𝑑 ∈ 𝐷 is 𝑉 .

• For each destination node 𝑑 ∈ 𝐷 and for each origin node 𝑣 ∈ 𝑂∩𝑉 , 𝑄 , (𝑘) is
the baggage inflow (demand) at 𝑣 with destination 𝑑 during the time interval
[𝑘Δ𝑡, (𝑘 + 1)Δ𝑡).

For each destination 𝑑 ∈ 𝐷 and each 𝑣 ∈ 𝑉 and each 𝑤 ∈ 𝑉recv ∩ 𝑉 , we define
the control variable 𝑞 , , (𝑘) that is the partial flow of DCVs with destination node
𝑑 from node 𝑣 to node 𝑤 during the time interval [𝑘Δ𝑡, (𝑘 + 1)Δ𝑡). Accordingly,
𝑥 , (𝑘) denotes the vertical queue length at node 𝑣 associated with destination 𝑑.
The set of feasible trajectories of the system is described by the following linear
constraints in discrete time:

𝑥 , (𝑘 + 1) = 𝑥 , (𝑘) + Δ𝑡(𝐹in, (𝑘) − 𝐹out, (𝑘)) (3.1a)
𝑥 , (𝑘) ≥ 0 (3.1b)
𝑞 , , (𝑘) ≥ 0 (3.1c)

where 𝐹in, (𝑘) is the total inflow of DCVs to node 𝑣, associated with destination 𝑑,
given by

𝐹in, (𝑘) =
⎧⎪
⎨⎪⎩

𝑄 , (𝑘) + ∑
∈ send

𝑞 , , (𝑘 − 𝑘 , ) if 𝑣 ∈ 𝑉 ∩ 𝑂

∑
∈ send

𝑞 , , (𝑘 − 𝑘 , ) if 𝑣 ∈ 𝑉 ∩ (𝐷 ∪ 𝐼)

0 otherwise

(3.2)
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with 𝑘 , Δ𝑡 being the travel time1 on the link (𝑤, 𝑣), and 𝐹out, (𝑘) is the total outflow
of DCVs from node 𝑣 with destination 𝑑, given by

𝐹out, (𝑘) =
⎧

⎨
⎩

𝐹in, (𝑘) if 𝑣 ∈ 𝑉 ∩ 𝐷
∑
∈ recv

𝑞 , , (𝑘) if 𝑣 ∈ 𝑉 ∩ (𝑂 ∪ 𝐼)

0 otherwise

(3.3)

Equation (3.1a) describes the evolution of the queue lengths and (3.1b) constrains
queue lengths to non-negative values. Likewise, (3.1c) guarantees non-negativity
of the control variables (flows).

Let 𝒙(𝑘) be the state vector that includes all queue lengths 𝑥 , (𝑘) and delayed
samples of 𝑞 , , (𝑘) with delay≥ 1. Let 𝒖(𝑘) and 𝒅(𝑘) be the control input vector
that includes all control variables 𝑞 , , (𝑘), and the demand vector composed of
all individual demands 𝑄 , (𝑘), respectively. Then (3.1) can be expressed by a
constrained discrete-time linear system as

𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵 𝒅(𝑘) + 𝐵 𝒖(𝑘) (3.4a)
𝒙(𝑘) ≥ 0 (3.4b)
𝒖(𝑘) ≥ 0 (3.4c)

with properly defined matrices 𝐴, 𝐵 , and 𝐵 .

3.3. MPC Problem Formulation
The model presented in Section 3.2 is used as internal prediction model for the MPC
approach. At time step 𝑘, given the current state of the system and an estimate
of future baggage demand, this model is used to compute the trajectories of the
system based on which a constrained optimal control problem is solved over a
horizon yielding an optimal control sequence. The first element out of the optimal
control sequence is then applied to the system according to the receding horizon
policy and this process is then repeated at the next time step 𝑘 + 1 with new
measurements [6].

The objective function must reflect the following performance criteria: i) the
pieces of baggage assigned to a certain destination (unloading station) must reach
the destination within a given time window, ii) the energy consumption of the sys-
tem should be minimized. The time window represents the time duration in which
the end point is ready to receive the luggage. It is undesirable to have the lug-
gage arrive at the destination out of this time window. Indeed, if the pieces of
luggage arrive too late, they will miss the flight. Too early arrival of the luggage
at the destination point also might inflict a high storage cost on the operator. The
energy consumption is associated with manipulating the actuators in the system
and wear and tear inflicted on the actuators. There are two contributors to the

1Assuming a constant speed for DCVs DCV, , is given by ,
,
DCV

, where , is the length of
link ( , ).
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energy consumption in the system: i) movements of DCVs in the system, which
is related to the magnitude of DCV flows, and ii) variation in the DCV flows. This
is particularly important when the DCV flows obtained here will be realized using
switch controllers at each junction of the network. The variation in the flow then
translates to switching frequency.

In order to achieve the aforementioned control objectives, we consider a cost
function that is a weighted combination of four penalty terms that penalize the DCV
queue lengths, DCV flows (control variables), and the variation of DCV flows. The
cost associated with the DCV is defined as: The constrained linear model given
in Section 3.2 cannot be used to determine the time instant at which a certain
flow of baggage reaches to its destination explicitly. However, we can consider a
cost function to indirectly penalize baggage arrival time deviation from a given time
window. The cost function is composed of three penalty terms. The first penalty
term penalizes the queue lengths being defined as

𝐽tw(𝑘) = ∑
∈
𝐶tw, (𝑘)𝑥 , (𝑘) (3.5)

where 𝐶tw, (𝑘) as illustrated in Fig. 3.2a is given as

𝐶tw, (𝑘) = {
0 if 𝑘 + 𝑘 , ≤ 𝑘open
𝑐tw(𝑘 − 𝑘open + 𝑘 , ) if 𝑘open< 𝑘 + 𝑘 , ≤ 𝑘close
𝑐tw(𝑘close − 𝑘open) if 𝑘 + 𝑘 , > 𝑘close

(3.6)

where 𝑘open and 𝑘close are, respectively, the opening and the closing time steps of
destination 𝑑 and 𝑘 , Δ𝑡 is the expected travel time from node 𝑣 to destination 𝑑
under the current nominal operating conditions2. Note that since 𝐶tw, (𝑘) = 0 for
𝑘 ≤ 𝑘open−𝑘 , , the queue lengths associated with destination 𝑑 are not penalized
before the destination is open, taking into account the DCVs travel time from 𝑣 to 𝑑.
During the time window of destination 𝑑, the weight associated with DCV queues
increases linearly in time, hence, forcing the DCVs to move towards 𝑑.

The penalty term associated with the DCV flows is defined as:

𝐽flow(𝑘) = ∑
∈

∑
∈ recv∩

𝐶flow, (𝑘)𝑞 , , (𝑘) (3.7)

with 𝐶flow, (𝑘) as depicted in Fig. 3.2b being

𝐶flow, (𝑘) = {
−𝑐flow(𝑘 − 𝑘open + 𝑘 , ) if 𝑘 + 𝑘 , ≤ 𝑘open
0 if 𝑘open < 𝑘 + 𝑘 , ≤ 𝑘close
𝑐flow(𝑘 − 𝑘close + 𝑘 , ) if 𝑘 + 𝑘 , > 𝑘close

(3.8)

Note that 𝐶flow, (𝑘) is chosen in such a way that DCV flows to destination 𝑑 are
allowed during the time window of 𝑑. Higher values 𝐶flow, (𝑘) outside of the time
2These can be obtained based on historical data for periods with similar conditions as the current one.
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window prevent early or late DCV flows to the destination 𝑑. Moreover, in order
to allow late DCVs to reach the destination, the slope of the third part of 𝐶flow, (𝑘)
is smaller than the slope of the first part. Now will will introduce the terms in the
cost function that reflect the energy consumption in the network. We penalize all
flows in the network in order to avoid indefinite circulation of DCVs throughout the
network. Hence, we consider the following penalty term:

𝐽e(𝑘) = ∑
∈
∑
∈

∑
∈ recv∩

𝑞 , , (𝑘) (3.9)

In addition, we use the following penalty term to penalize the total variation of the
control signal (i.e, flows), which reflects the wear and tear of the DCVs:

𝐽sw(𝑘) = ∑
∈
∑
∈

∑
∈ recv∩

|𝑞 , , (𝑘) − 𝑞 , , (𝑘 − 1)| (3.10)

The total cost at time step 𝑘 is therefore given as

𝐽(𝑘) = ∑
∈
𝐽tw(𝑘) + 𝛼 ∑

∈
𝐽flow(𝑘) + 𝛼 𝐽e(𝑘) + 𝛼 𝐽sw(𝑘) (3.11)

where 𝛼 > 0 is a weight factor indicating the relative importance of the associated
term in the objective function. The MPC performance index over the prediction
horizon of 𝑁p step is thus given as

𝐽(𝑘, 𝑁p) =
p

∑ 𝐽(𝑖) (3.12)

Now we would like to highlight the following remarks:

R1 The plots of Fig. 3.2a and Fig. 3.2b show respectively coefficients of the
penalty terms (3.5) and (3.7), not the penalty terms themselves. In fact,
at the given time step 𝑘 and for a prediction horizon 𝑁p the values of these
coefficients are known for 𝑘,… , 𝑘+𝑁p−1. Therefore, these coefficients have
fixed values and hence the associated penalty terms (3.5) and (3.7) are linear
in the control variable.

R2 By introducing some dummy variables according to standard techniques in op-
timization [7], terms of the form (3.10) can be recast as a linear programming
problem with linear constraints.

Consider 𝒖(𝑘), 𝒙(𝑘), and 𝒅(𝑘) as introduced in Section 3.2. At every time step 𝑘
we solve the following optimization problem:

min
𝒖( )

𝐹(𝑘)𝒖(𝑘)

subject to 𝐴ineq(𝑘)𝒖(𝑘) ≤ 𝒃ineq(𝑘)
𝐴eq(𝑘)𝒖(𝑘) = 𝒃eq(𝑘) (3.13)
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where the vector 𝐹(𝑘) is defined based on the MPC objective function (3.11),
as explained in Appendix 3.A, and the vector 𝒖(𝑘) includes the control inputs
𝒖(𝑘), … , 𝒖(𝑘+𝑁p−1) and the dummy variables mentioned in Remark R2. Moreover,
𝐴ineq(𝑘), and 𝐴eq(𝑘) are determined based on the constraints, and 𝒃ineq(𝑘), and
𝒃eq(𝑘) are constant vectors that depend on the current state 𝒙(𝑘) and the demand
values 𝒅(𝑘), … , 𝒅(𝑘 + 𝑁p − 1).

The optimization problem given by (3.13) is an LP problem, that can be solved
efficiently with currently available solvers, e.g., MATLAB linprog.

open
, close ,

𝐶tw,

(a)
open

, close ,

𝐶flow,

(b)

Figure 3.2: (a) the coefficient for the queue length penalty term; (b) the coefficient for the flow penalty
term.

3.4. Feedback Control Problem Formulation
3.4.1. Problem Setup
Consider a discrete-time linear system

𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵 𝒅(𝑘) + 𝐵 𝒖(𝑘) (3.14a)
𝒛(𝑘) = 𝐶 𝒙(𝑘) + 𝐷 𝒅(𝑘) + 𝐷 𝒖(𝑘) (3.14b)

with full state feedback
𝒖(𝑘) = 𝐾𝒙(𝑘) (3.15)

where the system matrices, 𝒙 ∈ ℝ , 𝒅 ∈ ℝ , and 𝒖 ∈ ℝ are those of (3.4a) and
𝒛 ∈ ℝ is the controlled output vector. Assume that (𝐴, 𝐵 ) is stabilizable and 𝐾 is
a stabilizing feedback gain. The 𝐿 gain of the closed-loop system is bounded by
𝛾 > 0 (i.e., sup

𝒛
‖𝒛‖
‖𝒅‖ ≤ 𝛾) if and only if there exists a 𝑃 > 0 such that [8], [9]

[
𝒜T𝑃𝒜 − 𝑃 + 𝒞T𝒞 𝒜T𝑃ℬ + 𝒞T𝒟
ℬT𝑃𝒜 + 𝒟T𝒞 ℬT𝑃ℬ + 𝒟T𝒟 − 𝛾𝐼 ] ≤ 0 (3.16)

where

[ 𝒜 ℬ
𝒞 𝒟 ] = [ 𝐴 + 𝐵 𝐾 𝐵

𝐶 + 𝐷 𝐾 𝐷 ] (3.17)
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or equivalently

⎡
⎢
⎢
⎣

−𝑄 𝒜𝑄 ℬ 0
𝑄𝒜T −𝑄 0 𝑄𝒞T
ℬT 0 −𝛾𝐼 𝒟T

0 𝒞𝑄 𝒟 −𝛾𝐼

⎤
⎥
⎥
⎦
≤ 0 (3.18)

with 𝑄 = 𝑃 > 0.
Consider the problem of determining a feedback gain 𝐾 that minimizes the 𝐿

gain of the closed-loop system. It is well-known [9] that with the transformation
𝑌 = 𝐾𝑄, the matrix inequality of (3.18) can be written as

⎡
⎢
⎢
⎣

−𝑄 𝐴𝑄 + 𝐵 𝑌 𝐵 0
𝑄𝐴T + 𝑌T𝐵T −𝑄 0 𝑄𝐶T + 𝑌T𝐷T

𝐵T 0 −𝛾𝐼 𝐷T

0 𝐶 𝑄 + 𝐷 𝑌 𝐷 −𝛾𝐼

⎤
⎥
⎥
⎦
≤ 0 (3.19)

with 𝑄 > 0.
Note that for the closed-loop system given by (3.14) and (3.15), (3.16) implies

𝒙T(𝑘 + 1)𝑃𝒙(𝑘 + 1) − 𝒙T(𝑘)𝑃𝒙(𝑘) + 1𝛾𝒛
T(𝒌)𝒛(𝒌) ≤ 𝛾𝒅T(𝑘)𝒅(𝑘) (3.20)

Now we define the ellipsoid 𝜀 ∶= {𝒙|𝒙T 𝒙 ≤ 1}. Assuming 𝒙(0) = 0, (3.20) yields

𝒙T(𝑇)𝑃𝒙(𝑇) ≤ 𝛾∑𝒅T(𝑘)𝒅(𝑘) < 𝛾∑𝒅T(𝑘)𝒅(𝑘) (3.21)

for any 𝑇 ∈ ℕ. Assuming3 ‖𝒅‖ = 1, we get

𝒙T(𝑇)𝑃𝛾 𝒙(𝑇) < 1 (3.22)

which shows that 𝒙(𝑇) ∈ 𝜀 . Since (3.21) holds for all 𝑇, 𝜀 contains the set of
states that are reachable by a unit energy input signal 𝒅 when the 𝐿 gain of the
closed-loop system is bounded by 𝛾.

3.4.2. Hard State Constraints
Now we consider the problem of searching for the feedback gain 𝐾 that minimizes
the 𝐿 gain of the closed-loop system subject to polytopic state constraints of the
form

𝒂T𝒙(𝑘) ≤ 1, 𝑖 = 1,… , 𝑟. (3.23)

To include the state constraints of (3.23), consider the polytope

𝒫 = {𝒙 ∈ ℝ |𝒂T𝒙 ≤ 1, 𝑖 = 1,… , 𝑟} (3.24)

3It is always possible to scale 𝒅 such that ‖𝒅‖ .
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associated with (3.23). We assume that 𝒫 has the origin in its interior. To guaranty
that (3.23) holds for all 𝑘 > 0 with 𝑥(0) = 0, we must have 𝜀 ⊆ 𝒫 or equivalently
[9]

𝒂T𝛾𝑄𝒂 ≤ 1, 𝑖 = 1,… , 𝑟 (3.25)

Therefore, the following optimization problem needs to be solved:

min
, ,

𝛾 subject to (3.19), (3.25), 𝑄 > 0 (3.26)

This problem is not jointly convex in 𝛾 and 𝑄 and 𝑌. Moreover, it can be shown
in a straightforward manner that the constraints of (3.18) and (3.25) do not sat-
isfy the monotonicity property 𝐺(𝑄, 𝑌, 𝛾 ) > 𝐺(𝑄, 𝑌, 𝛾 ) if 𝛾 > 𝛾 , where 𝐺 < 0
represents constraints (3.19) and (3.25) combined. Therefore, this problem cannot
even be recast as a generalized eigenvalue problem, which is a class of quasiconvex
optimization problems [9].

Now we will replace constraint (3.25) by a more conservative one that is convex
in the optimization variables, in the following manner. Note that

𝛾𝑄 = 1
4(𝛾𝐼 + 𝑄)

T(𝛾𝐼 + 𝑄) − 14(𝛾𝐼 − 𝑄)
T(𝛾𝐼 − 𝑄) (3.27)

Obviously, 𝛾𝑄 < (𝛾𝐼 + 𝑄)T(𝛾𝐼 + 𝑄). Hence,

1
4𝒂

T(𝛾𝐼 + 𝑄)T(𝛾𝐼 + 𝑄)𝒂 ≤ 1 ⟹ 𝒂T𝛾𝑄𝒂 < 1 (3.28)

or equivalently expressed using the Schur complement

[ 𝐼 (𝛾𝐼 + 𝑄)𝒂
𝒂T(𝛾𝐼 + 𝑄) 4 ] > 0 (3.29)

Clearly, this introduces conservatism as the feasibility set of (3.29) is a subset of the
feasibility set of (3.25). This conservatism can be reduced if one can find a lower
bound for (𝛾𝐼 − 𝑄)T(𝛾𝐼 −𝑄) ≥ 0 such that (𝛾𝐼 − 𝑄)T(𝛾𝐼 −𝑄) ≥ 𝛼 𝐼 or equivalently
‖𝛾𝐼 − 𝑄‖ ≥ 𝛼 (in matrix norm sense) for some 𝛼 > 0. Then, instead of (3.29), one
obtains

[ 𝐼 (𝛾𝐼 + 𝑄)𝒂
𝒂T(𝛾𝐼 + 𝑄) 4 + 𝒂T𝛼 𝒂 ] > 0 (3.30)

Therefore we consider (3.26) with (3.25) replaced by (3.29) or by (3.30). This
is an eigenvalue problem [9], which is a convex optimization problem that can
be solved with currently available LMI optimization toolboxes, e.g., MATLAB LMI
toolbox, YALMIP [10], and CVX [11], [12].

3.4.3. Soft State Constraints
In the view of the proposed two-level control scheme, it makes more sense to
replace the hard constraints of (3.25) by soft constraints due to the following ob-
servations: i) the constraints are mainly handled at the top level by the MPC con-
troller, ii) if the constraints are too restrictive the conservative version of the original
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constraints as expressed by (3.29) may become infeasible, which is not desirable.
As an alternative to the approach presented in Section 3.4.2, one can replace hard
constraints by soft ones by considering a multi-objective optimization approach that
penalizes the 𝐿 gain of the closed-loop system and, indirectly, the constraint viola-
tion at the same time. More precisely, we define the following optimization problem
with the objective function that penalizes 𝛾, and the volume of the ellipsoid 𝜀 , which
is proportional to √det 𝛾𝑄 :

min
, ,

𝑐 𝛾 + log (det(𝛾𝑄)) subject to 𝑄 > 0 and (3.19) (3.31)

where 𝑐 > 0 is a weight factor. The magnitude of 𝑐 determines the trade-off
between the 𝐿 gain and the volume of the ellipsoid that represents the set of
reachable states. By minimizing the volume of 𝜀 , we confine the set of reachable
state from the origin. This indirectly minimizes constraint violation since the origin
lies in the interior of polytope 𝒫. However, this objective function is not convex in
the optimization variables 𝛾 and 𝑄. To mitigate this problem, instead of penalizing
the volume of 𝜀 , we penalize an upper bound on the length of semi-major axis
of 𝜀 , which is √𝜆max(𝛾𝑄), where 𝜆max(𝛾𝑄) is the largest eigenvalue of 𝛾𝑄. It is
clear from (3.27), that 𝜆max( (𝛾𝐼 + 𝑄)T(𝛾𝐼 + 𝑄)) constitutes an upper bound on
𝜆max(𝛾𝑄). Then we get

min
, ,

𝑐 𝛾 + 𝜆max(
1
4(𝛾𝐼 + 𝑄)

T(𝛾𝐼 + 𝑄)) subject to 𝑄 > 0 and (3.19) (3.32)

or equivalently

min
, , ,

𝑐 𝛾 + 𝜆 subject to (3.19), 𝑄 > 0, [ 𝜆𝐼 𝛾𝐼 + 𝑄
𝛾𝐼 + 𝑄 4𝐼 ] > 0 (3.33)

This is an eigenvalue problem [9] that can be solved efficiently with currently avail-
able LMI solvers such as MATLAB LMI toolbox. Note that, by inspecting (3.27), the
upper bound on 𝜆max(𝛾𝑄) can be made tighter if one can find an 𝛼 > 0 such that
(𝛾𝐼 − 𝑄)T(𝛾𝐼 − 𝑄) ≥ 𝛼 𝐼 or equivalently, in matrix norm4 sense, ‖𝛾𝐼 − 𝑄‖ ≥ 𝛼.
Then the last constraint in (3.33) will be replaced by

[ (𝜆 + )𝐼 𝛾𝐼 + 𝑄
𝛾𝐼 + 𝑄 4𝐼

] > 0 (3.34)

4For matrix norm, we use the definition ‖ ‖ max( ), where max( ) is the largest singular value of
matrix A.
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As an example, consider a discrete-time linear system given by

𝐴 =
⎡
⎢
⎢
⎣

0.1514 0.4377 0.7293 0.1839
0.3958 0.3999 0.7521 0.9368
0.9720 0.7636 0.8323 0.6137
0.7718 0.8639 0.4821 0.6050

⎤
⎥
⎥
⎦
, 𝐶 = 𝐼

𝐵 =
⎡
⎢
⎢
⎣

0
0

−0.5881
0.2487

⎤
⎥
⎥
⎦
, 𝐵 =

⎡
⎢
⎢
⎣

0.6954
−0.2837
−0.9723
0.6086

⎤
⎥
⎥
⎦
, 𝐷 = 0, 𝐷 = 0.

For 𝑐 taking values in the interval [0.1, 100], Fig. 3.3 illustrates the trade-off be-
tween minimizing the 𝐿 gain and the length of the semi-major axis of 𝜀 .
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Figure 3.3: Trade-off curve between the optimal and the length of the semi-major axis of .

3.5. Integration of MPC and Feedback Controllers
In this section, we briefly explain how the two control schemes presented in Sec-
tions 3.3 and 3.4 can be combined. The baggage demand at each origin node is
composed of a base demand 𝒅∗, which is assumed to be predictable over the pre-
diction horizon 𝑁p, and a small additive perturbation �̃� around the base demand
that cannot be predicted. Based on a future prediction of 𝒅∗, the MPC controller
computes the optimal DCV flows 𝒖∗ and system trajectories 𝒛∗ subject to flow and
queue length constraints such that the DCVs arrive at their destinations with min-
imal energy consumption and with minimal deviation from the time windows. To
minimize the adverse effect of �̃� on optimal system trajectories computed by the
MPC controller, a feedback gain 𝐾 minimizing ‖�̃�‖

‖�̃�‖ = ‖𝒛 𝒛∗‖
‖𝒅 𝒅∗‖ based on the mea-

surement 𝒚(𝑘)−𝒚∗(𝑘) is implemented along the MPC controller in the configuration
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depicted in Fig. 3.1. Therefore, the control law applied to the system at time step
𝑘 is 𝒖(𝑘) = 𝒖∗(𝑘) + 𝐾(𝒚(𝑘) − 𝒚∗(𝑘)) = 𝒖∗(𝑘) + 𝐾�̃�(𝑘).

When we impose constraints on the controlled output 𝒛(𝑘) = 𝒛∗(𝑘) + �̃�(𝑘), the
constraints on �̃�(𝑘) depend on value of 𝒛∗(𝑘). As a result, one needs to update the
feedback gain 𝐾 whenever the value of 𝒛∗(𝑘) changes. This can be avoided if soft
constraints as in Section 3.4.3 are used. Moreover, the MPC control law 𝒖∗ does not
have to be updated at every time instant 𝑘Δ𝑡. Particularly, if the base demand 𝑑∗ is
varying slowly with time, one can use a controller sampling time 𝑚Δ𝑡, with 𝑚 > 1
being an integer number.

3.6. Case Study

21

3

4

5

Figure 3.4: A layout of baggage handling system with one loading station and one unloading station.
The length of each link in the network is 40 m.
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Figure 3.5: Base baggage demand,the perturbations on the base demand, and the actual demand at
the loading station.

In this section we present a case study to illustrate the performance of our pro-
posed control approach for the baggage handling system. For the sake of simplicity,
we consider a simple baggage handling system, the layout of which is depicted in
Fig. 3.4. Here, the focus is to illustrate the effect of the feedback controller on sup-
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Figure 3.6: Optimal flows of DCVs at the unloading station. One can observe that most of the DCVs
arrive at the unloading station within the specified time window.

Table 3.1: Controller design and simulation parameters

MPC Parameters
𝑁p time window 𝒖max[DCV/s] (𝛼 , 𝛼 , 𝛼 ) (𝑐flow, 𝑐flow, 𝑐tw)
12 [40, 70] 4 (1, 125, 1) (100, 0.2, 1)

Feedback Controller Parameters
𝑐 𝛾∗min 𝛾min 𝜆∗max 𝜆max
40 1.4420 1.5222 2.0001 3.8091

Closed-loop Simulation Parameters
Δ𝑡[s] 𝑁sim 𝑥 (initial condition) demand perturbation 𝑣DCV[m/s]
1.41 100 10 �̃� ∈ 𝒰(0, 1), ‖𝒅‖ = 4.02 1.41

pressing the adverse effects of an unpredicted baggage demand on the behavior
of the system. First, assuming that the demand is fully known, the optimal flows
and optimal system trajectories are computed. Next, we consider some unpre-
dictable random perturbations on the base demand and evaluate how closely our
proposed two-level control approach can follow the optimal trajectory. For the two-
level control approach, we have computed the feedback gain 𝐾 based the approach
of Section 3.4.3 using the MATLAB LMI toolbox. Table 3.1 lists the parameters used
for the controller design and the closed-loop simulation. In Table 3.1, 𝜆∗max and 𝛾∗min
denote, respectively, the actual values of 𝜆max(𝛾𝑄) and 𝛾 achieved by the closed-
loop system whereas 𝜆∗max and 𝛾∗min denote those values obtained by solving (3.33).

For the base demand 𝒅∗(𝑘) depicted in Fig. 3.5, the optimal flows to the des-
tination (node 5) are illustrated in Fig. 3.6 and the resulting optimal queue length
at the origin node (node 1) is depicted in Fig. 3.7. It is clear from Fig. 3.6 that the
optimal flows arrive at the destination within the desired time window. The per-
turbation on the base demand �̃�(𝑘) ∈ 𝒰(0, 1) is depicted in Fig. 3.5. It is obvious
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Figure 3.7: Queue lengths at node 1. One can observe that for the two-level control approach, the
queue length at node 1 is only slightly affected by the disturbance.

from Fig. 3.7 that in the presence of unpredictable demand perturbations, the two-
level controller follows the optimal trajectory very closely whereas the MPC based
approach deviates from the optimal trajectory.

3.7. Conclusions and Future Work
The routing problem in baggage handling systems was revisited. A flow-based
model was derived for our control purposes, which are delivering the pieces of
baggage at the unloading stations within a pre-specified time window, and mini-
mizing the energy consumption. We proposed a multi-level control approach with
an MPC controller at the top level and a constrained feedback controller at the
bottom level that minimizes the 𝐿 gain of the closed-loop system. The idea was
that based on some prior knowledge on the baggage demand, the MPC controller
computes the optimal control inputs and system trajectories such that the pieces of
baggage arrive at their destination within a desired time window and with minimal
energy consumption. The feedback controller then would guarantee minimal devi-
ation from this optimal trajectory in face of unknown perturbations on the baggage
demand.

We showed that the MPC problem can be formulated as a linear programming
problem. We proposed twomethods to include state constraints in design procedure
of the feedback controller that can be recast as LMI constraints. Using a simple case
study, we showed the effectiveness of the proposed two-level control approach.

This approach should be extendable to large-scale system. However, for large-
scale systems, the conservatism introduced by (3.28) may render the LMIs in (3.33)
infeasible. Hence, one may need to find a tighter lower bound 𝛼 in (3.34).

For future work, the scalability of the proposed two-level approach to large
network layouts will be investigated. In addition, we will compare the performance
of the two-level control approach with the MPC-based approach for larger network
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layouts and more elaborate scenarios. As a second extension to the current work,
we will include non-polytopic state constraints as well as control signal constraints
in the design procedure of the feedback controller.
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Appendix

3.A. Derivation of Linear Program
In this section we show how the MPC problem of linear system with a linear objective
function can be formulated as a standard linear program. Consider the discrete-time
linear time-invariant system

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩 𝝎(𝑡) + 𝑩 𝒖(𝑡), (3.35)
𝒚(𝑡) = 𝑪𝒙(𝑡),

𝑨 ∈ ℝ × , 𝑩 ∈ ℝ × , 𝑩 ∈ ℝ × , 𝑪 ∈ ℝ × ,
where 𝒙(𝑡) ∈ ℝ , 𝝎(𝑡) ∈ ℝ , 𝒖(𝑡) ∈ ℝ , 𝒚(𝑡) ∈ ℝ are respectively the state at
time 𝑡, the disturbance input at time 𝑡, the control input at time 𝑡, and the output at
time 𝑡. Consider the constrained linear optimization problem defined at the current
time 𝑡 as

min
𝒖( ),𝒖( ),…,𝒖( )

∑(𝒒T𝒚(𝑡 + 𝑘) + 𝒓T𝒖(𝑡 + 𝑘)) (3.36)

+ 𝒔T𝒚(𝑡 + 𝑁)
subject to:

recursion (3.35) for 𝑘 = 1, … , 𝑁 with initial state 𝒙(𝑡),
𝑮𝒚(𝑡 + 𝑘) + 𝒈 ≤ 0, 𝑘 = 1, … , 𝑁,
𝑴𝒖(𝑡 + 𝑘) +𝒎 ≤ 0, 𝑘 = 1, … , 𝑁 − 1,

where 𝒒 ∈ ℝ , 𝒓 ∈ ℝ , and 𝒔 ∈ ℝ are weighting factors, and where 𝑮 ∈
ℝ × , 𝒈 ∈ ℝ , 𝑴 ∈ ℝ × , 𝒎 ∈ ℝ define the output and control constraints,
respectively. This problem can be written in the standard LP form using the explicit
expression of the solution of (3.35), which is given as

𝒙(𝑡 + 𝑘) = 𝑨 𝒙(𝑡) +∑𝑨 (𝑩 𝒖(𝑡 + 𝑘 − 1 − 𝑠) + 𝑩 𝝎(𝑡 + 𝑘 − 1 − 𝑠)), (3.37)

for all 𝑘 ∈ ℕ. Define

𝒙 (𝑡) = [
𝒙(𝑡 + 1)

⋮
𝒙(𝑡 + 𝑁)

] , 𝒚 (𝑡) = [
𝒚(𝑡 + 1)

⋮
𝒚(𝑡 + 𝑁)

] , 𝒖 (𝑡) = [
𝒖(𝑡)
⋮

𝒖(𝑡 + 𝑁 − 1)
] ,

𝝎 (𝑡) = [
𝝎(𝑡)
⋮

𝝎(𝑡 + 𝑁 − 1)
] , 𝑨 = [

𝑨
⋮
𝑨
] , 𝒒 = [

𝒒
⋮
𝒒
] , 𝑪 = [

𝑪
⋱

𝑪
] ,
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𝒓 = [
𝒓
⋮
𝒓
] , 𝑮 = [

𝑮
⋮
𝑮
] , 𝒈 = [

𝒈
⋮
𝒈
] , 𝑴 = [

𝑴
⋮
𝑴
] , 𝒎 = [

𝒎
⋮
𝒎
] ,

𝑩 , =
⎡
⎢
⎢
⎣

𝑩 0 ⋯ 0
𝑨𝑩 𝑩 ⋯ 0
⋮ ⋯ ⋱ 0

𝑨 𝑩 𝑨 𝑩 … 𝑩

⎤
⎥
⎥
⎦
, 𝑩 , =

⎡
⎢
⎢
⎣

𝑩 0 ⋯ 0
𝑨𝑩 𝑩 ⋯ 0
⋮ ⋯ ⋱ 0

𝑨 𝑩 𝑨 𝑩 … 𝑩

⎤
⎥
⎥
⎦
.

Then, using

𝒚 = 𝑪 (𝑨 𝒙(𝑡) + 𝑩 , 𝒖 (𝑡) + 𝑩 , 𝝎 (𝑡)),

the optimization problem (3.36) can be rewritten as

min
𝒖

[𝒒T 𝒔T] 𝑪 (𝑨 𝒙(𝑡) + 𝑩 , 𝝎 (𝑡) + 𝑩 , 𝒖 (𝑡))

subject to:

𝑮 𝑪 𝑩 , 𝒖 + 𝑮 𝑪 (𝑨 𝒙(𝑡) + 𝑩 , 𝝎 ) ≤ 𝒈
𝑴 𝒖 ≤ 𝒎 ,

or equivalently as

min
𝒖

[𝒒T 𝒔T] 𝑩 , 𝒖 (𝑡)

subject to:

𝑮 𝑪 𝑩 , 𝒖 + 𝑮 𝑪 (𝑨 𝒙(𝑡) + 𝑩 , 𝝎 ) ≤ 𝒈
𝑴 𝒖 ≤ 𝒎 ,

which is in the form of standard linear program in the variable 𝒖 .
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Robustly Positively
Invariant Sets for

Discrete-time Linear
Positive Systems:

Application to Tube-based
MPC Approach

“Science can amuse and fascinate us all, but it is engineering that changes
the world.”

Isaac Asimov, 1920 – 1992

For linear discrete-time systems subject to an infinity-norm bounded disturbance,
this chapter presents a Linear-Programming-based method for simultaneous cal-
culation of an infinity-norm bounded robustly positively invariant set and a (con-
strained) state feedback gain that minimizes the 𝐿 -norm of the output over this
set. This result can be applied in tube-based MPC, where the robustly positively
invariant set is used to tighten the nominal state and control constraints. In ad-
dition, this method is used to derive an infinity-norm bounded terminal constraint
set and an infinity-norm-based terminal cost function for (tube-based) MPC ap-
proach, guaranteeing recursive feasibility and (robust) asymptotic stability of the

This chapter is based on [1].
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closed-loop system. Application of the developed approach is demonstrated in a
case study involving baggage handling systems.

4.1. Introduction
For linear systems subject to an additive disturbance, tube-based Model Predictive
Control (MPC) provides a relatively simple approach to robust MPC design. A key
element of this approach is the tube, which is the bundle of all trajectories of the
uncertain system for a given disturbance set. Characterizing the tube is very closely
related to calculating robustly positively invariant and robustly control invariant sets
for the error system, which describes the error dynamics between the uncertain
system and the nominal system (i.e., without disturbance). The problem of finding
robustly positively invariant and robustly control invariant sets for a linear system is,
in general, a complex problem. For a linear system subject to linear state and control
constraints, the solution is an iterative process involving polyhedral projections and
Minkowski differences [2–4], which results in a finite number of iterations only under
certain conditions that depend on the system matrices (𝑨, 𝑩) and the geometry of
admissible state, and control, and disturbance sets [5, 6]. This limits practical
applicability of tube-based MPC to small-scale systems, as for large-scale system
polyhedral projections and Minkowski differences become prohibitively expensive.

In this chapter, we propose a solution for calculating robustly positively invariant
and robustly control invariant sets for discrete-time linear positive systems subject
to infinity-norm bounded constraints and infinity-norm bounded disturbances. We
show that the problem of finding a robustly positively invariant set can be formu-
lated as a linear program (LP), which can be efficiently solved even for large-scale
systems. The LP-based approach for finding a robustly positively invariant set is
later used in designing a tube-based MPC controller, where a constrained state
feedback gain is calculated to not only stabilize the error system, but also to mini-
mize the ‖𝐿‖ norm of the output subject to the given disturbance set. Therefore,
the tube-based MPC controller ensures the “smallest” deviation from the nominal
trajectory in the presence of disturbances for a given control “budget”, which deter-
mines the maximum control effort that can be generated by the feedback controller.
We show that this state feedback controller can be obtained via a linear program
as well.

Based on the approach developed for calculating a robustly control invariant set,
we also develop a linear program for calculating a terminal constraint set and a ter-
minal cost function for the (tube-based) MPC approach such that recursive feasibility
and asymptotic stability of the closed-loop system is theoretically guaranteed.

To illustrate its applicability, we apply the developed methods in a case study
involving automated baggage handling systems (BHSs), which have recently re-
ceived a lot of attention due to growing demand for air travel. The reader is re-
ferred to [7] for a complete description of modern BHSs and their basic components.
From a high-level perspective, the control problems associated with BHSs revolve
around routing, dispatching, and scheduling of high-speed destination coded ve-
hicles (DCVs) that transport the pieces of baggage between loading stations and
unloading stations via various routes in the system. DCVs need to be controlled
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in such a way that pieces of luggage are delivered at their pre-assigned unloading
stations within pre-specified time windows. A detailed description of the high-level
control problems of BHSs can be found in [7, 8].

Having developed a modeling framework for BHSs based on link densities, we
design a nominal MPC control strategy based on the base value of the baggage
demand profile at loading stations, which is assumed to be a known function of time
and, hence, fully predictable. As long as the actual baggage demand at loading
stations is the nominal demand, this controller generates a routing policy that is
optimal in the sense of energy cost and delivery time deviations from the target
time window, while satisfying the capacity constraints of the BHS. We then consider
structured uncertainty in the baggage demand profile and design a tube-based MPC
approach to minimize the effect of uncertainty on the performance of the system,
where the feedback gain for the tube-based MPC controller is calculated via the
solution proposed in this chapter. In addition, we show how the terminal constraint
set and the terminal cost function for the MPC and tube-based MPC problems can
be calculated using our proposed approach. The effectiveness of tube-based MPC
approach in the face of baggage demand uncertainty is then demonstrated by a
simulation study.

The current chapter is different with respect to [8] and [9] in several key aspects:
firstly, the solution proposed solution in [8] assumes full knowledge of the baggage
demand and its future prediction at the loading stations, and hence is not robust
against any possible uncertainty in the baggage demand. In the current chapter,
the tube-based MPC approach is meant to deal with partially uncertain baggage
demand. Secondly, in both [8] and [9], stability and recursive feasibility of the
MPC controller are achieved indirectly by choosing a sufficiently long prediction
horizon, whereas, here, these problems are directly addressed by introducing an
appropriate terminal state constraint and a terminal cost [10, 11]. Finally, the
two-level solution proposed in [9] incorporates an 𝐿 -optimal feedback controller,
which is formulated as Linear Matrix Inequalities (LMIs). In the current chapter we
take advantage of the intrinsic nonnegative dynamics of our model, which allows
for Linear Programming (LP) formulations of the output 𝐿 -norm optimal feedback
controller. Obviously, the LP formulations outweigh the LMI approach in terms of
scalability of the solution to large-scale BHSs.

The rest of this chapter is organized as follows. In Section 4.2 the terminology
and definitions used throughout the chapter are introduced. In Section 4.3, we
present some known results on discrete-time LTI positive systems and extend them
to discrete-time systems, and formulate the output 𝐿 -norm optimization problem
for a discrete-time linear time-invariant positive system. The nominal and tube-
based MPC problems are then formulated in Section 4.4. The dynamical model of
the BHS is developed in Section 4.5. Using the developed model of the BHS, the
proposed control approaches are then applied to a simulated case study and the
results are presented in Section 4.6. Finally, we conclude this chapter in Section 4.7,
pointing out possible directions for future research. Proofs of the propositions and
theorems presented in the chapter are provided in Appendix 4.A.
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4.2. Notation, terminology and definition
For sets 𝔸 and 𝔹, 𝔸⊕𝔹 ≔ {𝑎 + 𝑏 | 𝑎 ∈ 𝔸, 𝑏 ∈ 𝔹} is the Minkowski sum of the two
sets. For non-negative integers 𝑖 and 𝑗, 𝑖 ≤ 𝑗, ℕ ∶ is the finite set {𝑖, 𝑖 +1, … , 𝑗} of
integers and ℕ , is the infinite set {𝑖, 𝑖 + 1, …} of integers. For a vector 𝒙 ∈ ℝ , 𝑥
denotes its 𝑖-th element. In a similar manner for a matrix 𝑨 ∈ ℝ × , 𝐴 , denotes the
element on the 𝑖-th row and the 𝑗-th column, and 𝑨 ,∶ and 𝑨∶, respectively denote
the 𝑖-th row of the matrix and its 𝑗-th column. We denote the all-ones vector in
ℝ , the identity matrix of dimension 𝑛, and any zero matrix of suitable dimension,
respectively, by 1 , 𝑰 , and 0. For matrices 𝑨,𝑩 ∈ ℝ × , 𝑨 ≥ 𝑩 (𝑨 > 𝑩), or
equivalently 𝑨−𝑩 ∈ ℝ × (𝑨−𝑩 ∈ ℝ ×

,s ) means that all entries of 𝒁 ≔ 𝑨−𝑩 are
non-negative (positive).

For a matrix 𝑨 ∈ ℝ × , conv(𝑨) ≔ {∑ 𝑥 𝑨∶, | ∑ 𝑥 = 1, 𝑥 ≥ 0, 𝑖 ∈ ℕ ∶ } is
the convex set generated by its columns. The infinity-induced -norm of 𝑨 ∈ ℝ ×

is defined as ‖𝐴‖ ind ≔ sup𝒙∈ℝ ⧵{ }
‖𝑨𝒙‖
‖𝒙‖ ; it is known [12] that ‖𝐴‖ ind =

max ∈ℕ ∶ (|𝑨|1 ) , where | ⋅ | denotes the element-wise absolute value of its ar-
gument. For a single-column matrix 𝒂 ∈ ℝ , this definition renders into the con-
ventional vector infinity norm ‖𝒂‖ ind = ‖𝒂‖ ≔ max ∈ℕ ∶ (|𝒂|) . For a matrix
𝑨 ∈ ℝ × and a positive scalar 𝛾, the inequality ‖𝑨‖ ind < 𝛾 can then be equiva-
lently expressed as 𝑨1 < 𝛾1 . For a discrete-time signal of dimension 𝑛, defined
as the map 𝒙 ∶ ℕ → ℝ , its 𝐿 norm is defined as ‖𝒙‖ ≔ sup ∈ℕ ‖𝒙(𝑡)‖ .

Define 𝒙 ∈ ℝ , 𝝎 ∈ ℝ , and 𝒛 ∈ ℝ respectively as the state, disturbance, and
monitored/controlled output. An autonomous (i.e., without control input) discrete-
time linear time-invariant system of the form

𝒙 = 𝑨𝒙 + 𝑩 𝝎, (4.1)
𝒛 = 𝑪𝒙 + 𝑫 𝝎

with 𝑨 ∈ ℝ × , 𝑩 ∈ ℝ × , 𝑪 ∈ ℝ × , 𝑫 ∈ ℝ ×

is called a positive system [13–15] if 𝑨 ≥ 0, 𝑩 ≥ 0, 𝑪 ≥ 0, and 𝑫 ≥ 0.
For system (4.1) with initial state 𝒙 ≔ 𝒙(0), and disturbance sequence 𝝎 ≔
(𝝎(0), 𝝎(1), … , 𝝎(𝑘 − 1), 𝝎(𝑘)) of length 𝑘 + 1, 𝑘 ∈ ℕ, the state and output
trajectories at time 𝑡 ∈ ℕ ∶ are given explicitly by the formula

𝒙(𝑡; 𝒙 ,𝝎 ) ≔ 𝑨 𝒙 +∑ 𝑨 (𝑩 𝝎 (𝑡 − 𝑠)), (4.2a)

𝒛(𝑡; 𝒙 ,𝝎 ) ≔ 𝑪𝒙(𝑡; 𝒙 ,𝝎 ) + 𝑫 𝝎 (𝑡 + 1). (4.2b)

For a positive system with 𝒙 ≥ 0, and 𝝎 ∈ ℝ ( ), 𝑘 ∈ ℕ, it is obvious that
𝒙(𝑡; 𝒙 ,𝝎 ) ≥ 0 and 𝒛(𝑡; 𝒙 ,𝝎 ) ≥ 0 for all 𝑡 ∈ ℕ ∶ .
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4.3. Output 𝐿∞-norm-optimal Feedback Control for
Positive Systems

4.3.1. Preliminaries
In this section, we focus on a system of the form

𝒙 = 𝑨𝒙 + 𝑩 𝝎+ 𝑩 𝒖, (4.3)
𝒛 = 𝑪𝒙 + 𝑫 𝝎+𝑫 𝒖,

𝑨 ∈ ℝ × , 𝑩 ∈ ℝ × , 𝑩 ∈ ℝ × , 𝑪 ∈ ℝ × ,
𝑫 ∈ ℝ × , 𝑫 ∈ ℝ × .

Given compact sets 𝕏 ⊆ ℝ , 𝕎 ⊆ ℝ , 𝕌 ⊆ ℝ as the set of initial conditions,
the disturbance set, and the set of admissible controls with 0 ∈ 𝕏 , 0 ∈ 𝕎, and
0 ∈ 𝕌, we are interested in the smallest, in the sense of the 𝐿 -norm of the output,
robustly positively invariant set [2] 𝕏 ⊇ 𝕏 achievable with a linear state feedback
law of the form 𝝁 ∶ 𝒙 ↦ 𝑲𝒙, 𝒖(𝑡) = 𝝁(𝒙(𝑡)) that renders the closed-loop system
positive. Hence, a feedback gain 𝑲 ∈ ℝ × and a set 𝕏 ⊇ 𝕏 are sought such that
the closed-loop system

𝒙 = (𝑨 + 𝑩 𝑲)𝒙 + 𝑩 𝝎, (4.4)
𝒛 = (𝑪 + 𝑫 𝑲)𝒙 + 𝑫 𝝎,
𝒖 = 𝑲𝒙,

is positive, has the property that 𝒙 ∈ 𝕏 implies 𝒖 ∈ 𝕌 and 𝒙 ∈ 𝕏 for all 𝝎 ∈ 𝕎,
and achieves minimum ‖𝒛‖ ,𝕎,𝕏 defined as

‖𝒛‖ ,𝕎,𝕏 ≔ max
𝝎∈𝕎,𝒙 ∈𝕏

‖𝒛‖ = sup
∈ℕ, ∈ℕ ∶ , 𝒙 ∈𝕏,𝝎 ∈𝕎

‖𝒛(𝑡; 𝒙 ,𝝎 )‖ .

We consider the case where both the robustly positively invariant state set in
question, and the given admissible control and disturbance sets are infinity-norm
bounded sets of the form 𝕐 ≔ {𝒚 ∈ ℝ | ‖𝒀 𝒚‖ ≤ 1, 𝒀 ≔ diag(𝒚 ), 𝒚 ∈ ℝ , }.

4.3.2. Upper Bound on 𝐿 -norm of Output
We first present the following result regarding establishing an upper bound on
‖𝒛‖ ,𝕎,𝕏 for the open-loop positive system (4.1) that will be used when discussing
the state feedback design problem.

Proposition 4.1 (Bound on 𝒛 ,𝕎,𝕏). Consider the positive system (4.1) with a pos-
itive scalar 𝛾 ∈ ℝ , , 𝕎 ≔ {𝝎 ∈ ℝ | ‖𝜴 𝝎‖ ≤ 1, 𝜴 ≔ diag(𝝎 ), 𝝎 ∈ ℝ , },
𝕏 ≔ {𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤ 1, 𝑷 ≔ diag(𝒑), 𝒑 ∈ ℝ , }, and 𝕏 = conv(𝑴T),
𝑴 ∈ ℝ × . Then 𝕏 is a robustly positively invariant set containing 𝕏 for the sys-
tem with 𝝎 ∈ 𝕎, and ‖𝑧‖ ,𝕎,𝕏 of the system is bounded as ‖𝑧‖ ,𝕎,𝕏 < 𝛾 if and
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only if

(𝑨 − 𝑰 )𝑷1 + 𝑩 𝜴1 < 0, (4.5a)
𝑪𝑷1 + 𝑫 𝜴1 − 𝛾1 < 0, (4.5b)

𝑷 ≥ diag([‖𝑴(∶, 1)‖ … ‖𝑴(∶, 𝑛)‖ ]T). (4.5c)

See Appendix 4.A for the proof.

Remark 1. Note that with 𝜴 = 𝑰 and 𝕏 = {0}, inequalities 4.5 of Proposition 4.1
are necessary and sufficient conditions for establishing 𝛾 as an upper bound to the
𝐿 -gain of the system, defined as ‖𝑮‖ ≔ sup𝝎∈ℒ

‖𝒛‖
‖𝝎‖ [16, 17]. Hence, the

search for upper bound to 𝐿 -gain of the system, can be considered an special case
of finding an upper bound to ‖𝒛‖ ,𝕎,𝕏.

Remark 2. For the positive system (4.1), the statements of proposition 4.1 are also
valid when the state and disturbance are restricted to their corresponding positive
orthants; that is, when 𝕏 and 𝕎 are respectively replaced by 𝕏 ≔ 𝕏 ∩ ℝ and
𝕎 ≔𝕎∩ℝ .

4.3.3. Derivation of the Feedback Gain
Now, we will discuss the state feedback design problem. The method presented in
this section will be used in Section 4.4.2 for designing a tube-based MPC controller.
Given the infinity norm-bounded sets 𝕎 ≔ {𝝎 ∈ ℝ | ‖𝜴 𝝎‖ ≤ 1, 𝜴 ≔
diag(𝝎 ), 𝝎 ∈ ℝ , }, 𝕌 ≔ {𝒖 ∈ ℝ | ‖𝑼 𝒖‖ ≤ 1, 𝑼 ≔ diag(𝒖 ), 𝒖 ∈ ℝ , },
and the polyhedral set 𝕏 = conv(𝑴T), 𝑴 ∈ ℝ × , existence and derivation of the
feedback gain 𝑲 and the robustly positively invariant set 𝕏 ⊇ 𝕏 are the subject of
the following theorem:

Theorem 4.2. The feedback gain 𝑲 renders the closed-loop system 4.4 posi-
tive with minimum ‖𝒛‖ ,𝕎,𝕏 over a robustly positively invariant set 𝕏 ≔ {𝒙 ∈
ℝ | ‖𝑷 𝒙‖ ≤ 1, 𝑷 = diag(𝒑), 𝒑 ∈ ℝ , }, 𝕏 ⊇ 𝕏 such that 𝑲𝒙 ∈ 𝕌 for all 𝒙 ∈ 𝕏
and all 𝝎 ∈ 𝕎, if and only if there is a solution 𝛾 ∈ ℝ , , 𝒑 ∈ ℝ , , 𝒀 ∈ ℝ × and
𝒀 ∈ ℝ × to the linear program

inf
𝒑∈ℝ , , 𝒀 ,𝒀 ∈ℝ × ,

𝛾 , (4.6a)

subject to ∶
𝑨𝑷 + 𝑩 (𝒀 − 𝒀 ) ≥ 0 , 𝑪𝑷 + 𝑫 (𝒀 − 𝒀 ) ≥ 0 , (4.6b)

[(𝑨 − 𝑰 )𝑷 + 𝑩 (𝒀 − 𝒀 ) 𝑩 𝜴1
𝑪𝑷 + 𝑫 (𝒀 − 𝒀 ) 𝑫 𝜴1 − 𝛾1 ] [11 ] < 0 , (4.6c)

𝑷 ≥ diag([‖𝑴(∶, 1)‖ … ‖𝑴(∶, 𝑛)‖ ]T) , (4.6d)

[𝒀 𝒀 ] 𝑺 ≤ 𝑼1 , ,where { 𝑺 , = 1, 𝑺 , = 0 𝒗 > 0
𝑺 , = 0, 𝑺 , = 1 otherwise

, (4.6e)
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for all 𝑖 ∈ ℕ ∶ , 𝑗 ∈ ℕ ∶ , where 𝒗 ∈ ℝ , 𝑗 ∈ ℕ ∶ is the 𝑗-th vertex of the unit
hypercube in ℝ . The optimal feedback gain 𝑲∗ is retrieved from the optimization
variables 𝑷, 𝒀 , and 𝒀 using 𝑲∗ = (𝒀 − 𝒀 )𝑷 . In addition, the closed-loop
system under the optimal feedback control 𝒖 ≔ 𝜇(𝒙) = 𝑲∗𝒙 is globally ultimately
bounded in the set 𝕏.

the proof can be found in Appendix 4.A.
Note that, as highlighted in Remark 1, with 𝜴 = 𝑰 , 𝕌 = ℝ , and 𝕏 = {0}, The-

orem 4.2 yields a positive closed-loop system with minimum 𝐿 -gain. The problem
of closed-loop 𝐿 -gain minimization with control constraints has been discussed in
[17, 18], where the state of the system is restricted to the positive orthant. How-
ever, that approach does not automatically apply to the case when the state of the
system belongs to a infinity-norm bounded set in ℝ .

The linear program (4.6) involves 𝑛 + 2𝑛𝑛 + 1 optimization variables, and
2𝑛 + 3𝑛 + 2 𝑛 linear inequalities, which may get prohibitively complex for large-
scale systems with an increasing number of variables. The number of inequality
constraints can be significantly reduced by replacing the 2 𝑛 inequalities in 4.6e
by the conservative approximation [𝒀 𝒀 ]1 ≤ 𝑼1 , which consists of 𝑛 in-
equalities. In addition, the number of optimization variables can be reduced by
employing 𝒀 ≔ 𝒀 −𝒀 , 𝒀 ∈ ℝ × and replacing 4.6e by the conservative approx-
imation ∑ ‖𝑼 𝒀∶, ‖ ≤ 1, which is equivalent to 𝒀[𝒗 … 𝒗 ] ≤ 𝑼1 , , where
𝒗 ∈ ℝ , is the 𝑗-th vertex of the unit 𝑛-dimensional hypercube.

4.3.4. Derivation of the Feedback Gain With Soft Control
Constraints

Rather than specifying hard control constraints in the form of 𝒖 ∈ 𝕌, as discussed in
Section 4.3.3, one may be interested in keeping the control effort relatively small,
which is applicable when the resulting feedback control only constitutes a part of
the final control input to the system, and the control input constraint is handled
by a higher-level controller. In addition, in this case, infeasibility of the optimiza-
tion problem (4.6) due to an overly stringent specification of control constraint is
avoided. The optimization problem

inf
𝒑∈ℝ , , 𝒀 ,𝒀 ∈ℝ × , ,

𝛾 + 𝑐 𝑟 , (4.7a)

subject to ∶
(4.6𝑏), (4.6𝑐), (4.6𝑑),

[ 𝒀 𝒀
−𝒀 −𝒀 ] 𝑺 ≤ 𝑟1 , ,where { 𝑺 , = 1, 𝑺 , = 0 𝒗 > 0

𝑺 , = 0, 𝑺 , = 1 otherwise
, (4.7b)

𝑖 ∈ ℕ ∶ , 𝑗 ∈ ℕ ∶ ,

where 𝒗 ∈ ℝ , 𝑗 ∈ ℕ ∶ is the 𝑗-th vertex of the unit n-dimensional hypercube in
ℝ , imposes no constraint on the control input and achieves an arbitrary trade-off,
determined by the weighting factor 𝑐 > 0, between ‖𝒛‖ ,𝕎,𝕏 and ‖𝒖‖ . The
optimal feedback gain is then given by 𝑲∗ = (𝒀 − 𝒀 )𝑷 .
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Since 𝕏 is robustly positively invariant, it holds that ∑ ‖𝒀 ∶, −𝒀 ∶, ‖ ≥ ‖𝑲𝒙‖
= ‖𝒖‖ for any 𝒙 ∈ 𝕏, hence, constituting an upper bound to ‖𝒖‖ . Using this
upper bound with 𝒀 ≔ 𝒀 − 𝒀 , the 2 𝑛 inequalities of 4.7b are decreased to
2𝑛𝑛 inequalities in the following linear program, which minimizes a mixed objective
function composed of a penalty term for ‖𝒛‖ ,𝕎,𝕏 and a penalty term for the upper
bound of ‖𝒖‖ :

inf
𝒑∈ℝ , , 𝒀∈ℝ × , , 𝒓∈ℝ

𝛾 + 𝑐 1 T𝒓 , (4.8a)

subject to ∶
4.6𝑏, 4.6𝑐, 4.6𝑑,

[ 𝒀−𝒀] ≤ 1 𝒓T. (4.8b)

The optimal feedback gain is then given by 𝑲∗ = 𝒀𝑷 .

4.4. Model Predictive Control
This section explains the concept of model predictive control (MPC), especially
within the scope of its application to a BHS described by the dynamic model (4.3).
The external input 𝝎(𝑡) ≔ 𝝎(𝑡) + �̃�(𝑡) is assumed to be composed of 𝝎(𝑡) with
known values for all 𝑡, and a nonnegative additive unmeasurable component �̃�(𝑡).
Within the context of BHSs, 𝝎(𝑡) corresponds to the baseline baggage demand due
to the known flight schedule and �̃�(𝑡) corresponds to unplanned excess of demand.
The system is endowed with state and control constraints of the form

𝒙(𝑡) ∈ 𝕏 ≔ {𝒙 ∈ ℝ |0 ≤ 𝒙 ≤ 𝒙max}, ∀ 𝑡 ∈ ℕ, (4.9a)
𝒖(𝑡) ∈ 𝕌 ≔ {𝒖 ∈ ℝ |0 ≤ 𝒖 ≤ 𝒖max}, ∀ 𝑡 ∈ ℕ, (4.9b)

corresponding to operational constrains such as capacity limits and actuation satu-
ration.

At every time step, based on the current state of the system and future values of
the known component of the external input, a constrained finite-horizon optimiza-
tion problem with a linear cost subject to (4.9) will be solved yielding a sequence of
optimal control inputs. According to the receding horizon policy, only the first step
of this sequence is applied to the system, and this process is repeated at the next
time step [10, 11].

We develop two MPC strategies. One that achieves optimal performance when
�̃�(𝑡) = 0 and one that provides robustness in presence of �̃�(𝑡). In both cases,
the underlying optimization problem is formulated as an LP program by employing
a linear cost function together with the linear constraints (4.9). For both MPC
schemes, while optimizing for the performance defined by the cost function, stability
of closed-loop system is guaranteed by proper selection of weighting vectors of the
cost function.
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4.4.1. Baseline MPC
For the baseline MPC design, we consider the system (4.3) with𝝎(𝑡) ≔ 𝝎(𝑡), which
is a known function of time 𝑡.

Baseline MPC Problem Formulation
Let 𝑁h be the prediction horizon. Given the current time step 𝑡 and the current
state of the system 𝒙 ≔ 𝒙(𝑡), the finite-horizon optimization problem that needs to
be solved is defined as

𝒫
h
(𝑡, 𝒙) ∶ 𝑉∗

h
(𝑡, 𝒙) =min

𝒖
h

{𝑉
h
(𝑡, 𝒙, 𝒖

h
(𝑡)) | 𝒖

h
(𝑡) ∈ 𝒰

h
(𝑡, 𝒙)}, (4.10a)

where,

𝑉
h
(𝑡, 𝒙, 𝒖

h
(𝑡)) =

h

∑ (𝒒zT(𝑡 + 𝑘)𝒛(𝑡 + 𝑘) + 𝒒uT(𝑡 + 𝑘)𝒖(𝑡 + 𝑘)) (4.10b)

+ 𝑉f(𝑡 + 𝑁h, 𝒙(𝑡 + 𝑁h)),
𝒰

h
(𝑡, 𝒙) = {𝒖

h
| 0 ≤ 𝒙(𝑡 + 𝑘) ≤ 𝒙max, 0 ≤ 𝒖(𝑡 + 𝑘) ≤ 𝒖max, (4.10c)

∀ 𝑘 ∈ ℕ ∶ h
, 𝒙(𝑡 + 𝑁h) ∈ 𝕏f},

𝒙(𝑡 + 𝑘) = 𝒙(𝑡 + 𝑘; 𝒙, 𝒖
h
(𝑡), 𝝎

h
(𝑡)), 𝑘 ∈ ℕ ∶ h

, (4.10d)

𝒛(𝑡 + 𝑘) = 𝒛(𝑡 + 𝑘; 𝒙, 𝒖
h
(𝑡), 𝝎

h
(𝑡)), 𝑘 ∈ ℕ ∶ h

, (4.10e)

with 𝒖
h
(𝑡) ≔ (𝒖(𝑡), … , 𝒖(𝑡 + 𝑁h − 1)) and 𝝎 h

(𝑡) ≔ (𝝎(𝑡), … ,𝝎(𝑡 + 𝑁h − 1)) re-
spectively being the sequence of to-be-calculated control actions and the sequence
of known disturbances over the prediction horizon. In above, the weighting func-
tions for the stage cost 𝒒z ∶ ℕ → ℝ ,s and 𝒒u ∶ ℕ → ℝ ,s, the terminal cost function
𝑉f ∶ (ℕ, 𝕏) → ℝ ,s, and the terminal constraint set 𝕏f ⊆ 𝕏 ⊆ ℝ , are design param-
eters, the choice of which will be discussed in the sequel.

Assume 𝒙 ∈ 𝒳
h
(𝑡), where 𝒳

h
(𝑡) is the domain of 𝒫

h
(𝑡, ⋅), which is the set

of all states at time step 𝑡 for which the optimization problem has a solution. The
solution to the optimization problem 𝒫

h
(𝑡, 𝒙) is then the optimal control sequence

𝒖∗
h
(𝑡, 𝒙) = (𝒖∗(𝑡; 𝑡, 𝒙), … , 𝒖∗(𝑡 + 𝑁h − 1; 𝑡, 𝒙)). Finally, according to the receding

horizon policy, the control action to be applied to the system at the current time
step is given as the first element of the optimal control sequence; that is

𝒖mpc(𝑡) ∶= 𝒖∗(𝑡; 𝑡, 𝒙). (4.11)

Note that the even though the system described by (4.3) is time-invariant, the op-
timization problem and the resulting optimal control sequence are time-dependent
due time-varying 𝝎 and the time-dependent weighting factors.

4.4.2. Tube-based MPC
Here we assume that the external input to the system (4.3) is in the form of
𝝎(𝑡) = 𝝎(𝑡) + �̃�(𝑡), where, just as before, 𝝎(𝑡) is known and �̃�(𝑡) ∈ 𝕎 ≔ {𝝎 ≥
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0 | ‖𝜴 𝝎‖ ≤ 1, 𝜴 = diag(𝝎 ), 𝝎 ∈ ℝ , } for all 𝑡 ∈ ℕ. The control scheme
discussed in this section aims at an optimal performance of the closed-loop system
while being robust against perturbations of the external input due to �̃�. Among
others, tube-based MPC is an MPC-based approach that allows us to achieve this
goal. This approach has the advantage that it can be derived with little modifica-
tion to the baseline MPC problem 4.10 and it admits a simple implementation. The
design of a tube-based MPC controller involves the following steps: i) characterize
the bounding tube of uncertain system trajectories for all �̃�(𝑡) ∈ 𝕎, ii) design a
stabilizing feedback controller to ensure boundedness of the generated tube, and
iii) design an MPC controller, satisfying state and control constraints for all state
trajectories in the tube, in order to generate the nominal trajectory. Tube-based
MPC is covered in depth in [10, Chapter 3], of which we provide an overview.

Bounding Tube of System Trajectories
In tube-based MPC approach, a bundle of trajectories containing states of the un-
certain system for all �̃�(𝑡) ∈ 𝕎 is used to represent the state trajectory of the
uncertain system. The bundle of state trajectories is called a tube and is supported
by the nominal trajectory, which is the trajectory of the system driven by a nominal
control signal 𝒖(⋅) with �̃�(⋅) = 0. The size of the tube represents deviation from
the nominal trajectory for all values of �̃�(𝑡) ∈ 𝕎. Consider system (4.3) and let
the uncertain and nominal systems be respectively expressed by

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩 𝒖(𝑡) + 𝑩 𝝎(𝑡) + 𝑩 �̃�(𝑡), (4.12)
𝒛(𝑡) = 𝑪𝒙(𝑡) + 𝑫 𝒖(𝑡) + 𝑫 𝝎(𝑡) + 𝑫 �̃�(𝑡) (4.13)

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩 𝒖(𝑡) + 𝑩 𝝎(𝑡), (4.14)
𝒛(𝑡) = 𝑪𝒛(𝑡) + 𝑫 𝒖(𝑡) + 𝑫 𝝎(𝑡), (4.15)

where 𝒙(𝑡) and 𝒛(𝑡) are, respectively, the state and output of the nominal system,
and 𝒙(𝑡) and 𝒛(𝑡) are those of the disturbed (uncertain) system, and 𝒖(𝑡) is the
nominal control signal generated by the MPC controller, and 𝒖(𝑡) is the control input
to the disturbed system, which is of the form

𝒖(𝑡) = 𝒖(𝑡) + 𝑲(𝒙(𝑡) − 𝒙(𝑡)), (4.16)

where the feedback gain𝑲 is such that 𝑨+𝑩 𝑲 is stable, guaranteeing boundedness
of the generated tube. Hence, with 𝒙e(𝑡) ≔ 𝒙(𝑡) − 𝒙(𝑡) and 𝒛e(𝑡) ≔ 𝒛(𝑡) − 𝒛(𝑡),

𝒙e(𝑡 + 1) = (𝑨 + 𝑩 𝑲)𝒙e(𝑡) + 𝑩 �̃�(𝑡), (4.17a)
𝒛e(𝑡 + 1) = (𝑪 + 𝑫 𝑲)𝒙e(𝑡) + 𝑫 �̃�(𝑡), (4.17b)

describe the error dynamics. Assuming 𝒙(0) = 𝒙(0), it follows from (4.17) that
𝒙e(𝑡) ∈ 𝕊(𝑡) for all 𝑡 ∈ ℕ, where

𝕊(𝑡) ≔ 𝑩 𝕎⊕𝑨 𝑩 𝕎⊕…⊕ 𝑨 𝑩 𝕎 =∑𝑨 𝑩 𝕎, (4.18)
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with 𝑨 ≔ 𝑨+𝑩 𝑲. The set 𝕊(𝑡) contains the state trajectories of the error system
with 𝒙e(0) = 0 for all possible sequences of (�̃�(0), … , �̃�(𝑡 − 1)) and for any 𝑡 ∈ ℕ.
Hence, for the disturbed system we have 𝒙e(𝑡) ∈ 𝑿(𝑡) ≔ {𝒙(𝑡)} ⊕ 𝕊(𝑡), ∀𝑡 ∈ ℕ.

For the MPC use case, the bundle of all trajectories over the prediction horizon
𝑁h ∈ ℕ starting from the initial state 𝒙(𝑡) = 𝒙(𝑡) = 𝒙 under the nominal control
sequence 𝒖

h
(𝑡) = (𝒖(𝑡), … , 𝒖(𝑡+𝑁h−1)) and the known external input sequence

𝝎
h
(𝑡) = (𝝎(𝑡), … , 𝝎(𝑡 + 𝑁h − 1)) for all possible values of disturbance sequence

�̃�
h
(𝑡) = (�̃�(𝑡), … , �̃�(𝑡 +𝑁h −1)) ∈ 𝕎 h , is the tube generated at 𝒙(𝑡) by 𝒖

h
(𝑡)

and 𝝎
h
(𝑡), defined as

𝑿
h
(𝒙, 𝒖

h
(𝑡), 𝝎

h
(𝑡)) ≔ (𝑿(0; 𝒙, 𝒖

h
(𝑡), 𝝎

h
(𝑡)), … , (4.19)

𝑿(𝑁h; 𝒙, 𝒖 h
(𝑡), 𝝎

h
(𝑡))) = ({𝒙}, {𝒙(𝑡 + 1)} ⊕ 𝕊(1), … , {𝒙(𝑡 + 𝑁h)} ⊕ 𝕊(𝑁h)).

The tube described by 4.19 is generated assuming 𝒙e(0) = 0 (i.e., 𝒙(𝑡) = 𝒙(𝑡)). An
outer bounding tube taking initial conditions into account can be obtained by using
𝕊 ≔ lim → 𝕊(𝑡) instead of 𝕊(𝑡), 𝑡 ∈ ℕ ∶ h

, which is the minimal robust positive
invariant set for the system (4.17) with 𝑨 stable [10, 19]. However, 𝕊 is often
very difficult to calculate requiring one to use an approximation of it. In addition,
using 𝕊 one only takes into account initial conditions 𝒙e(0) ∈ 𝕊 .

Our approach utilizes Proposition 4.1 and the associated state feedback deriva-
tion method of Section 4.3.3 for system 4.17 to compute a robustly positively invari-
ant set 𝕊 , which includes a pre-specified minimum set 𝕊min, and a state feedback
gain 𝑲. The state feedback gain 𝑲 calculated in this manner not only does stabi-
lize the error system, but it also achieves minimal ‖𝒛e‖ ,𝕎, min with constrained
control effort. An outer tube containing trajectories of the uncertain system for all
𝒙e(0) ∈ 𝕊 and all �̃� ∈ 𝕎 is constructed as

𝑿
h
(𝒙, 𝒖

h
(𝑡), 𝝎

h
(𝑡)) ≔({𝒙(𝑡)} ⊕ 𝕊 , {𝒙(𝑡 + 1)} ⊕ 𝕊 ,… , (4.20)

{𝒙(𝑡 + 𝑁h)} ⊕ 𝕊 ).

Tube-based MPC Problem Formulation
The tube-based MPC problem is then defined as a modified version of the original
MPC problem 4.10, where the set 𝕊 is used to tighten the original MPC constraints
4.10c so that the original MPC constraints are satisfied by the tube 𝑿

h
(𝒙, 𝒖

h
, 𝝎

h
).

Let 𝕊 ≔ {𝒆 | 0 ≤ 𝒆 ≤ 𝒑, 𝒑 ∈ ℝ , } and 𝑲 ∈ ℝ × , respectively, be the robustly
positively invariant set and the associated state feedback gain obtained using the
method of Section 4.3.3 for the error system 4.17 with �̃� ∈ 𝕎. At the current state
of the nominal system 𝒙 ≔ 𝒙(𝑡), the tube-based MPC problem 𝒫

h
(𝑡, 𝒙) is defined

as 𝒫
h
(𝑡, 𝒙) with 𝒙 = 𝒙 and with tightened constraints 0 ≤ 𝒙(𝑡 + 𝑘) ≤ 𝒙max − 𝒑

and 0 ≤ 𝒖(𝑡 + 𝑘) ≤ 𝒖max − 𝑲𝒑, 𝑘 ∈ ℕ ∶ h
, 𝒙(𝑡 + 𝑁h) ∈ 𝕏f replacing the original

constraints in 4.10, where 𝕏f is a tightened version of the terminal constraint set
𝕏f. The choice of 𝕏f and 𝕏f will be discussed in detail in Section 4.4.3.
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MPC Problem Formulation With Improved Tube Base
In the tube-based MPC approach, it is also possible to optimize for the base of
the tube 𝒙 ≔ 𝒙(𝑡) to achieve improved performance with respect to the MPC cost
function. Let 𝒙 ≔ 𝒙(𝑡) ∈ 𝒳

h
(𝑡) and 𝒙 ≔ 𝒙(𝑡) ∈ {𝒙(𝑡)} ⊕ 𝕊 respectively be

the current state of the nominal system and that of the uncertain system, where
𝒳

h
(𝑡) is the domain of 𝒫

h
(𝑡, 𝒙). The MPC problem with improved tube base is

then defined as

𝒫∗
h
(𝑡, 𝒙) ∶ 𝑉∗

h
(𝑡, 𝒙) = min

𝒗,𝒖
h

{𝑉
h
(𝑡, 𝒙, 𝒗, 𝒖

h
(𝑡)) | 𝒙 − 𝒑 ≤ 𝒗 ≤ 𝒙, (4.21a)

𝒖
h
(𝑡) ∈ 𝒰

h
(𝑡, 𝒗)},

where,

𝑉
h
(𝑡, 𝒙, 𝒗, 𝒖

h
(𝑡)) =

h

∑ (𝒒zT(𝑡 + 𝑘)𝒛(𝑡 + 𝑘) + 𝒒uT(𝑡 + 𝑘)𝒖(𝑡 + 𝑘)) (4.21b)

+ 𝑉f(𝑡 + 𝑁h, 𝒙(𝑡 + 𝑁h)),
𝒰

h
(𝑡, 𝒗) = {𝒖

h
| 0 ≤ 𝒙(𝑡 + 𝑘) ≤ 𝒙max − 𝒑, 0 ≤ 𝒖(𝑡 + 𝑘) ≤ 𝒖max −𝑲𝒑, (4.21c)

∀ 𝑘 ∈ ℕ ∶ h
, 𝒙(𝑡 + 𝑁h) ∈ 𝕏f},

𝒙(𝑡 + 𝑘) = 𝒙(𝑡 + 𝑘; 𝒗, 𝒖
h
(𝑡), 𝝎

h
(𝑡)), 𝑘 ∈ ℕ ∶ h

, (4.21d)

𝒛(𝑡 + 𝑘) = 𝒛(𝑡 + 𝑘; 𝒗, 𝒖
h
(𝑡), 𝝎

h
(𝑡)), 𝑘 ∈ ℕ ∶ h

. (4.21e)

The solution to this new optimization problem, is the improved tube-base 𝒙∗ and
the optimal control sequence 𝒖∗

h
(𝑡, 𝒙∗) = (𝒖∗(𝑡; 𝑡, 𝒙∗), … , 𝒖∗(𝑡+𝑁h−1; 𝑡, 𝒙

∗)). The
constraint 𝒙 − 𝒑 ≤ 𝒗 ≤ 𝒙 ensures that the first element of the tube 4.20 contains
the current state of the uncertain system (i.e., 𝒙 ∈ 𝒙∗⊕𝕊 ). Once again, the MPC
control action at the current time step is the first element of the optimal control
sequence; that is 𝒖mpc(𝑡) ∶= 𝒖

∗(𝑡; 𝑡, 𝒙∗). The subsequent tube base 𝒙 is given by
𝒙 = 𝑨𝒙∗ + 𝑩 (�̃� + 𝝎) + 𝑩 + 𝒖mpc.

Integration of Controllers
Given sets 𝕎 ≔ {𝝎 ≥ 0 | ‖𝜴 𝝎‖ ≤ 1, 𝜴 = diag(𝝎 ), 𝝎 ∈ ℝ , } and 𝕊min ⊂
ℝ , the set 𝕊 ≔ {𝒆 | 0 ≤ 𝒆 ≤ 𝒑, 𝒑 ∈ ℝ , } with 𝕊min ⊆ 𝕊 , and the associated
feedback gain 𝑲 minimizing ‖𝒛e‖ ,𝕎,𝕊 are calculated offline. At every time step,
the optimization problem 4.21 is then solved and the control input 𝒖(𝑡) ≔ 𝒖mpc(𝑡)+
𝑲(𝒙(𝑡) − 𝒙∗(𝑡)) is applied to the (uncertain) system.

4.4.3. Recursive Feasibility and Asymptotic Stability
The design parameters need to be chosen such that asymptotic stability of the
closed-loop system under the control law (4.11) and recursive feasibility [10, Chap-
ter 2] of the optimization problem (4.10) are guaranteed. Asymptotic stability of
the nominal (i.e., without disturbance) closed-loop system is achieved by choosing
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a strictly decreasing terminal cost function 𝑉f(𝒙) ∶ 𝒙 ↦ 𝒒f(𝒙) over a control invariant
terminal constraint set. Recursive feasibility of the controlled system is a property
requiring that 𝒙(𝑡) ∈ 𝒳

h
(𝑡) implies 𝒙(𝑡 + 1) ∈ 𝒳

h
(𝑡 + 1) for any 𝑡 ∈ ℕ. It is

well known that recursive feasibility in the presence of an unknown disturbance is
achieved if the terminal constraint set 𝕏f is robustly control invariant [2, 10, 20–22].
Calculating a (robustly) control invariant 𝕏f in general is a non-trivial task. A classical
approach, introduced in [3], gives amaximal robustly controlled invariant set as the
fixed-point solution to a recursion over sets. However, only under certain conditions
that depend on the system matrices (𝑨, 𝑩) and the geometry of admissible state,
and control, and disturbance sets [5, 6], the maximal robustly control invariant set
can be determined in a finite number of iterations (i.e., in general the fixed-point
might not exist). This approach is further adapted in [4] to ensure that the resulting
set at every iteration is robust control invariant; hence an arbitrarily precise inner
approximation of the maximal robust control set can be calculated. Nonetheless,
practical application of such approaches is mostly limited to small-scale system with
few states. For example, with polyhedral state and control constraints, each itera-
tion involves operations such as Minkowski differences and polyhedral projections,
which become quickly untractable for polyhedra of large dimensions.

We propose a linear-programing-based method for simultaneous calculation of
the set 𝕏f and the terminal cost function 𝑉f(⋅) over 𝕏f. The set 𝕏f obtained in this
manner has the property that it is control invariant when �̃� = 0 and is robustly
control invariant otherwise. In addition 𝑽f(⋅) is strictly decreasing over 𝕏f when
�̃� = 0.
Proposition 4.3. Consider system 4.3 with the external input 𝝎(𝑡) ≔ 𝝎(𝑡) + �̃�(𝑡),
where 𝝎(𝑡) is known and �̃�(𝑡) ∈ 𝕎 ≔ {𝝎 ∈ ℝ | ‖𝜴 𝝎‖ ≤ 1, 𝜴 ≔ diag(𝝎 ),
𝝎 ∈ ℝ , } for all 𝑡 ∈ ℕ. Using the terminal constraint set 𝕏f ≔ {𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤
1, 𝑷 ≔ diag(𝒑), 𝒑 ∈ ℝ , }, the MPC problem 4.21 is recursively feasible if there ex-
ists a “feed forward” control input 𝒖(𝑡), a feedback gain𝑲(𝑡), and a scalar 0 ≤ 𝜆 < 1
satisfying

𝑨 + 𝑩 𝑲(𝑡) ≥ 0 , (4.22a)

(𝑨 + 𝑩 𝑲(𝑡) − 𝜆𝑰 )𝒑 + 𝑩 𝝎 < 0 , (4.22b)
0 ≤ 𝑲(𝑡)𝒑 ≤ 𝒖max − 𝒖(𝑡) , (4.22c)

[𝑩T 𝑫T ]T𝒖(𝑡) = −[𝑩T 𝑫T ]T𝝎(𝑡) , (4.22d)

for all 𝑡 ∈ ℕ.
See Appendix 4.A for the proof.

Proposition 4.4. Suppose conditions of Proposition 4.3 are met for the set 𝕏f ≔
{𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤ 1, 𝑷 ≔ diag(𝒑), 𝒑 ∈ ℝ , } corresponding to the control law
𝒖(𝑡, 𝒙) ≔ 𝒖(𝑡) + 𝑲(𝑡)𝒙(𝑡), and let 𝑟(⋅) ≔ ℕ → ℝ , be a non-increasing positive
bounded function such that lim → 𝑟(𝑡) > 0. Then, with the terminal constraint
set 𝕏f and the terminal cost function 𝑉f(𝑡, 𝒙) ∶ (𝑡, 𝒙) ↦ 𝑟(𝑡)‖𝑷 𝒙‖ , the origin is
asymptotically stable for the nominal closed-loop system (i.e., with �̃�(𝑡) = 0 for all
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𝑡 ∈ ℕ) under the MPC control law 4.11 if, in addition to 4.22, it holds that

𝑪 + 𝑫 𝑲(𝑡) ≥ 0 , (4.23a)

(𝜆 − 1)𝑟(𝑡) ≤ −(𝒒Tz (𝑡)(𝑪 + 𝑫 𝑲(𝑡)) + 𝒒Tu(𝑡)𝑲(𝑡))𝒑 , (4.23b)

for all 𝑡 ∈ ℕ.

The proof is provided in Appendix 4.A. Proposition 4.3 and Proposition 4.4 do
not automatically result in a finite number of inequalities as they require 4.22 and
4.23 to hold for all 𝑡 ∈ ℕ. However, with 𝝎(⋅) being a periodic function of time
such that 𝝎(𝑡 + 𝑇) = 𝝎(𝑡) for some 𝑇 ∈ ℕ, the following propositions, as restate-
ments of Propositions 4.3 and 4.4 for the periodic case, result in a finite number of
inequalities.

Proposition 4.5. Suppose 𝒒z ∶ ℕ → ℝ , , 𝒒u ∶ ℕ → ℝ , , and 𝝎∶ ℕ → ℝ , are given
𝑇-periodic functions of time with 𝑇 ∈ ℕ, and 0 ≤ 𝜆 < 1 is a given scalar. Consider
the nominal MPC problem 4.10 for the system 4.3 with terminal constraint set 𝕏f ≔
{𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤ 1} and the terminal cost function 𝑉f(𝒙)∶ (𝑡, 𝒙) ↦ 𝑟‖𝑷 𝒙‖ .
Under the MPC control law 4.11, the origin is asymptotically stable for the closed-
loop system with 𝝎(𝑡) ≔ 𝝎(𝑡) and the optimization problem 4.10 is recursively
feasible with 𝝎(𝑡) ≔ 𝝎(𝑡) + �̃�(𝑡) if the following set of linear (in)equalities in
variables 𝒑, 𝒀 , … , 𝒀 , 𝑟, 𝒖(0), … , 𝒖(𝑇 − 1) is feasible for all 𝑖 ∈ ℕ ∶ :

𝒑 > 0 , 𝑷 = diag(𝒑) ,
𝑨𝑷 + 𝑩 𝒀 ≥ 0 ,
((𝑨 − 𝜆𝑰 )𝑷 + 𝑩 𝒀 )1 + 𝑩 𝝎 < 0 ,
0 ≤ 𝒀 1 ≤ 𝒖max − 𝒖(𝑖) ,

[𝑩T 𝑫T ]T𝒖(𝑖) = −[𝑩T 𝑫T ]T𝝎(𝑖) ,
𝑪𝑷 + 𝑫 𝒀 ≥ 0 ,
𝑟 > 0 ,
(𝜆 − 1)𝑟 ≤ −𝒒Tz (𝑖)𝑪𝑷1 − (𝒒Tz (𝑖)𝑫 + 𝒒Tu(𝑖))𝒀 1 .

Proposition 4.6. Suppose 𝝎∶ ℕ → ℝ , is a given 𝑇-periodic function of time with
𝑇 ∈ ℕ, and 𝒒z ∶ ℕ → ℝ , and 𝒒u ∶ ℕ → ℝ , are given bounded functions of time,
and 0 ≤ 𝜆 < 1 is a given scalar. Consider the nominal MPC problem 4.10 for
the system 4.3 with terminal constraint set 𝕏f ≔ {𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤ 1} and
the terminal cost function 𝑉f(𝒙)∶ (𝑡, 𝒙) ↦ 𝑟‖𝑷 𝒙‖ . Under the MPC control law
4.11, the origin is asymptotically stable for the closed-loop with 𝝎(𝑡) ≔ 𝝎(𝑡) and
the optimization problem 4.10 is recursively feasible with 𝝎(𝑡) ≔ 𝝎(𝑡) + �̃�(𝑡) if
the following set of linear (in)equalities in variables 𝒑, 𝒀, 𝑟, 𝒖(0), … , 𝒖(𝑇 − 1) is
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feasible for all 𝑖 ∈ ℕ ∶ :

𝒑 > 0 , 𝑷 = diag(𝒑) , (4.24a)
𝑨𝑷 + 𝑩 𝒀 ≥ 0 , (4.24b)

((𝑨 − 𝜆𝑰 )𝑷 + 𝑩 𝒀)1 + 𝑩 𝝎 < 0 , (4.24c)
0 ≤ 𝒀1 ≤ 𝒖max − 𝒖(𝑖) , (4.24d)

[𝑩T 𝑫T ]T𝒖(𝑖) = −[𝑩T 𝑫T ]T𝝎(𝑖) , (4.24e)
𝑪𝑷 + 𝑫 𝒀 ≥ 0 , (4.24f)
𝑟 > 0 , (4.24g)

(𝜆 − 1)𝑟 ≤ −‖𝒒z‖ 1 T𝑪𝑷1 − (‖𝒒z‖ 1 T𝑫 + ‖𝒒u‖ 1 T)𝒀1 . (4.24h)

4.5. Model Description of BHS
4.5.1. Evolution of Link Density
In this section, we present a modeling framework for BHSs that will be used in
combination with the methods developed in Sections 4.3 and 4.4 to illustrate the
application of those methods in designing a BHS control system. The DCV-based
BHS network is symbolically modeled as a directed graph. This symbolic relation
implies that not all components of DCV-based baggage handling system are present
in its graph representation. Nonetheless, the most important components of the
system for the control point of view, including the loading stations, which are entry
points of pieces of baggage to the BHS network), the unloading stations, which are
departure points of pieces of baggage from the network, the early baggage storage
(EBS), which is an automated storage to temporarily store the early baggage, the
central DCV storage (CDS), which is the parking location of empty DCVs, and the
network junctions, which connect various parts of the network, are present in this
model. Within this modeling framework, loading and unloading stations, network
junctions, the CDS and the EBS are represented by links of the graph. The nodes
of the graph simply re-distribute the inbound DCV flows from their upstream links
over their downstream links.

A loading station 𝑖 ∈ {1, … , 𝑁 } is represented by a pair of two distinct links
(𝑜 , 𝑠 ), where 𝑜 is the origin link that transports pieces of baggage to the loading
station, and where 𝑠 is the source link that transports empty DCVs to the loading
station from the CDS. It is assumed that the pieces of baggage are loaded onto
empty DCVs, hence converting empty DCVs to loaded DCVs, at the downstream
node of (𝑜 , 𝑠 ). The set of all origin links and all source links are respectively
denoted by 𝑂 = {𝑜 ,… , 𝑜 } and 𝑆 = {𝑠 , … , 𝑠 }.

The CDS of the system is represented by a unique external link CDS, where
empty DCVs, having left the unloading stations, are stored and from where they
are dispatched to the source links.

An unloading station 𝑖 ∈ {1, … , 𝑁 } is represented by a destination link 𝑑 .
Loaded DCVs are unloaded and converted to unloaded DCVs at the downstream
node of 𝑑 . The resulting empty DCVs are then transported to the CDS. The set of
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all destination links is denoted by 𝐷 = {𝑑 ,… , 𝑑 }.
A network junction 𝑖 ∈ {1, … , 𝑁net} is represented by a network link 𝑛 , which

(partially) connects an origin link to a destination link. The set of all network links
is 𝑁 = {𝑛 ,… , 𝑛net}. The early baggage storage (EBS) of the system is represented
by the graph link EBS ∈ 𝑁, where loaded DCVs can be temporarily stored.

Let 𝐿 = 𝑂 ∪ 𝑆 ∪𝑁∪𝐷 ∪ {CDS} denote the set of all links of the graph. For a link
𝑑 ∈ 𝐷, let 𝑃 ⊆ 𝐿 be the set of links that are on some directed path that include link
𝑑. In addition, for a link 𝑥 ∈ 𝐿, 𝐿 and 𝐿 respectively denote the set of incoming
and outgoing links of 𝑥. For any 𝑥 ∈ 𝑂 ∪ 𝑁, 𝑑 ∈ 𝐷 and 𝑦 ∈ 𝑁 ∪ 𝐷, 𝑞 → , [DCV/s]
is the link flow from link 𝑥 to link 𝑦 with destination 𝑑 given by

𝑞 → , (𝑡) = {
𝑓l→ , (𝑡), if 𝑦 ∈ 𝑃 ∩ 𝐿
0, otherwise . (4.25)

where 𝑓l→ , [DCV/s] is the flow of loaded DCVs from link 𝑥 to link 𝑦 with destination
𝑑. Note that this definition implies that only loaded DCVs can flow from 𝑥 ∈ 𝑂 ∪ 𝑁
to 𝑦 ∈ 𝑁∪𝐷 and that the flow of loaded DCVs with destination index 𝑑 is zero if 𝑦 is
not a downstream link to 𝑥 or if 𝑑 cannot be reached via 𝑦. For any 𝑑 and 𝑑 ∈ 𝐷,
𝑞out, [DCV/s] is the rate at which the DCVs destined for 𝑑 leave destination link
𝑑 , which is defined as

𝑞out, (𝑡) = {
𝑓l →CDS(𝑡), if 𝑑 = 𝑑
0, otherwise . (4.26)

where 𝑓l →CDS(𝑡) [DCV/s] is the rate at which loaded DCVs in destination link 𝑑 are
unloaded and dispatched to the central DCV storage CDS. This definition implies
that only loaded DCVs destined for link 𝑑 are unloaded in 𝑑 and then shipped to
the central DCV storage. For any 𝑜 ∈ 𝑂 and 𝑑 ∈ 𝐷, the rate ([Bag/s]) at which
pieces of baggage destined for 𝑑 enter origin link 𝑜 is defined as

𝑞in, (𝑡) = {
𝑓l , (𝑡), 𝑜 ∈ 𝑃
0, otherwise . (4.27)

where 𝑓l , [Bag/s] is the destination-indexed baggage demand at the origin link 𝑜.
For any 𝑠 ∈ 𝑆, the flow [DCV/s] of empty DCVs to the source link 𝑠 is given as

𝑞in(𝑡) = 𝑓uCDS→ (𝑡) , (4.28)

where 𝑓uCDS→ (𝑡) is the link-to-link flow [DCV/s] of empty (unloaded) DCVs from the
central DCV storage to the source link 𝑠. In this modeling framework, as depicted
in Fig 4.51, pieces of baggage flow into the origin links, where they are picked up
by empty DCVs on the source links. Loaded DCVs then make their way through
the network links toward the destination links, possibly after being stored in the
EBS. Loaded DCVs are finally unloaded at the destination links, where they are
dispatched to the central DCV storage.

Accumulation of loaded DCVs and pieces of baggage on links of the graph is
modeled by a destination-index link density [DCV/m], whereas the link density of
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Figure 4.51: Graph representation of BHS with loading stations stations LS and their unique upstream
links , , … , , and with unloading stations stations US and their unique upstream links ,

, … , , and with EBS.

empty DCVs is non-destination-indexed. We assume that empty DCVs enter the
source links from the central DCV storage and leave the graph network at the load-
ing stations, where they are entirely converted to loaded DCVs by picking up the
luggage accumulated on the origin links. Even though origin links technically carry
luggage and loaded DCVs flow in the network links, we do not distinguish between
luggage densities on origin links and loaded DCVs densities in the rest of the net-
work, using the same notation for both. It is also assumed that loaded DCVs leave
the network at destination links, producing empty DCVs. Hence, empty DCVs only
exist on the central DCV storage and on the source links and their link densities
need not to be modeled in the rest of the network.

For any 𝑜 ∈ 𝑂 and 𝑑 ∈ 𝐷, the number of loaded DCVs on the origin link 𝑜 ∈ 𝑂
with destination 𝑑 ∈ 𝐷 and the corresponding link density are respectively given by

𝑥 l , (𝑡 + 1) = 𝑥 l , (𝑡) + Δ𝑡(𝑞in, (𝑡) − 𝐹out, (𝑡)) , (4.29)

𝜌l , (𝑡) =
1
𝑙 𝑥

l
, (𝑡) (4.30)

where Δ𝑡 is discretization time step and 𝐹out, is the total outflow the link given by

𝐹out, (𝑡) = ∑
∈
𝑞 → , (𝑡) (4.31)

The number of empty (unloaded) DCVs on any source link 𝑠 ∈ 𝑆 and the associated
link density of empty DCVs are respectively given by

𝑥u(𝑡 + 1) = 𝑥u(𝑡) + Δ𝑡(𝑞in(𝑡 − 𝑡 ) − 𝐹out(𝑡)) , (4.32)

𝜌u(𝑡) = 1
𝑙 𝑥

u(𝑡) , (4.33)
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where the total outflow of the link is given by

𝐹out(𝑡) = ∑
∈
𝐹out, (𝑡) , (4.34)

with 𝑜 being the corresponding origin link to the source link 𝑠, (i.e., the pair (𝑜, 𝑠)
belong to the same loading station).

For any 𝑛 ∈ 𝑁 and 𝑑 ∈ 𝐷, the number of loaded DCVs on link 𝑛 with destination
𝑑 and the corresponding link densities are respectively described by the following
equation:

𝑥 l , (𝑡 + 1) = 𝑥 l , (𝑡) + Δ𝑡( ∑
∈
𝑞 → , (𝑡 − 𝑡 ) − ∑

∈
𝑞 → , (𝑡)) , (4.35)

𝜌l , (𝑡) =
1
𝑙 𝑥

l
, (𝑡), (4.36)

For any destination links 𝑑 ∈ 𝐷 and 𝑑 ∈ 𝐷, the number of loaded DCVs at 𝑑 with
destination 𝑑 and the corresponding density of loaded DCVs are given as:

𝑥 l , (𝑡 + 1) = 𝑥 l , (𝑡) + Δ𝑡( ∑
∈

𝑞 → , (𝑡 − 𝑡 ) − 𝑞out, (𝑡)) , (4.37)

𝜌l , (𝑡) =
1
𝑙 𝑥 l , (𝑡), (4.38)

In a similar manner, for the EBS and for any 𝑑 ∈ 𝐷, the number of loaded DCVs
with destination 𝑑 stored in the storage and the corresponding density of loeade
DCVs are respectively given as

𝑥 lEBS, (𝑡 + 1) = 𝑥 lEBS, (𝑡) + Δ𝑡( ∑
∈ EBS

𝑞 →EBS, (𝑡 − 𝑡EBS) − ∑
∈ EBS

𝑞EBS→ , (𝑡)) ,

(4.39)

𝜌lEBS, (𝑡) =
1
𝑙ebs

𝑥 lEBS, (𝑡) (4.40)

The density of empty DCVs in the central DCV storage is described by the following
equations:

𝑥uCDS(𝑡 + 1) = 𝑥uCDS(𝑡) + Δ𝑡(∑
∈
𝑞out, (𝑡 − 𝑡CDS) − 𝑞in(𝑡)) , (4.41)

𝜌uCDS(𝑡) =
1
𝑙CDS

𝑥uCDS(𝑡) , (4.42)

Note that (4.31) and (4.34), and (4.41) and (4.37) jointly guarantee that empty
DCVs accumulate only in the central DCV storage and on the source links, and that
loaded DCVs only accumulate on the rest of the network.
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4.5.2. Inputs, Outputs and Constraints
The manipulated variables of the model are the DCV flows 𝑞l → , with 𝑟 ∈ 𝑂 ∪ 𝑁 ,
𝑑 ∈ 𝐷, 𝑜 ∈ 𝑂 ∩ 𝑃 , 𝑦 ∈ 𝑁 ∪ 𝐷, and 𝑞l , with 𝑑 , 𝑑 ∈ 𝐷, and 𝑞ins with 𝑠 ∈ 𝑆. Since
DCV flows are intrinsically non-negative, we limit the flows to non-negative values
in the model. Moreover, we constrain the total outflow capacity of a link as follows:

0 ≤∑∑𝑞 → , (𝑡) ≤ 𝑞max , 𝑟 ∈ 𝑂 ∪ 𝑁 , 𝑑 ∈ 𝐷 , 𝑦 ∈ 𝑁 ∪ 𝐷 (4.43)

0 ≤∑𝑞 , (𝑡) ≤ 𝑞max , 𝑑 ∈ 𝐷 , 𝑑 ∈ 𝐷 (4.44)

0 ≤∑𝑞in(𝑡) ≤ 𝑞max
CDS , 𝑠 ∈ 𝑆. (4.45)

Model outputs are the link densities, which are intrinsically non-negative and bounded.
The non-negativity constraint along with capacity constraints are included in the
model as below:

0 ≤ ∑
∈
𝜌l , (𝑡) ≤ 𝜌l,max , 𝑜 ∈ 𝑂 , 𝑑 ∈ 𝐷, (4.46)

0 ≤ ∑
∈
𝜌l , (𝑡) ≤ 𝜌l,max , 𝑛 ∈ 𝑁 , 𝑑 ∈ 𝐷 (4.47)

0 ≤ 𝜌u(𝑡) ≤ 𝜌u,max , 𝑠 ∈ 𝑆 (4.48)

0 ≤ ∑
∈
𝜌l , (𝑡) ≤ 𝜌l,max , 𝑑 ∈ 𝐷 , 𝑑 ∈ 𝐷 (4.49)

0 ≤ 𝜌uCDS(𝑡) ≤ 𝜌
u,max
CDS , (4.50)

0 ≤ ∑
∈
𝜌lEBS, (𝑡) ≤ 𝜌

l,max
EBS . (4.51)

The variable 0 ≤ 𝑞in, (𝑡) ≤ 𝑞in,
max , (𝑜, 𝑑) ∈ (𝑂 × 𝐷) is the disturbance input, about

which partial information is availabe in terms of its nominal and maximal values.

4.6. Case Study
The methods developed in this chapter are now deployed on a BHS network with two
loading stations and two unloading stations, which is presented in Figure 4.61. A
model in the form of 4.3 with 𝑛 = 47 states describing DCV queue lengths, 𝑛u = 106
control inputs representing link to link flows, 𝑛d = 848 states representing delayed
samples of control inputs1, 𝑛w = 4 external inputs representing baggage demand,
and 𝑛z = 𝑛 monitored outputs representing link densities, is developed as
1With link length of [m] and DCV travel speed of [m/s], a travel time of samples is obtained for
a sample time of [s].
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Figure 4.61: Graph representation of BHS with loading stations (links 1 and 11), source links 27 and 28,
unloading stations (links 18 and 23), EBS link 15, and the CDS (link 26). Solid lines are associated with
bags/loaded DCVs and dashed lines correspond to empty DCVs. Each link is assumed to have a length
of 64 meters with fixed DCV travel speed of 8 [m/s].
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where Δ𝑡 = 1 [s] is the model sample time and the system matrices 𝑨 ≥ 0, 𝑩 ,
𝑩 ≥ 0, 𝑪 ≥ 0 are appropriately defined based on the modeling framework of
Section 4.5.
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4.6.1. Configuring the MPC Controller
We impose a maximum link density of 𝜌lmax = 0.8 [DCV/m] on all links, and maxi-
mum link-to-link flow of 100 [DCV/min.], which corresponds to 𝒙Tmax = [48 1 T 1001

d
T]

[DCV] and 𝒖max = 1001 u [DCV/min.] in 4.10c. The MPC controller has a prediction
horizon of 𝑁h = 25 steps with control sample time Δ𝑡 = 1 [s]. The controller em-
ploys 𝐽 = 𝒒zT(𝑡)𝒛(𝑡)+12𝒒uT(𝑡)𝒖(𝑡) as the stage cost in the MPC objective function
4.10b and 4.21b, where the weighting function 𝒒z ≔ ℕ → ℝ z

, and 𝒒u ≔ ℕ → ℝ u
,

are depicted in Fig. 4.62. The weighting function 𝒒z(⋅) is designed such that bag-
gage flow arriving at loading stations is first directed to the EBS and is later sent
to a destination link as the corresponding unloading station opens. The control
inputs weighting function 𝒒u(⋅) incentivizes DCVs with destination 𝑑, 𝑑 ∈ {18, 23}
to arrive at the corresponding unloading station during its designated time window.
In addition, it prevents circular free movements of DCVs in the network by making
the loaded DCVs stay in the EBS for as long as possible. The controller assumes
the planned baggage profile 𝝎(⋅) of Fig. 4.63 and unplanned baggage demand
�̃�(𝑡) ∈ 𝕎 ≔ {𝝎 | 0 ≤ 𝝎T ≤ [4.5 2.5 3.5 4]} for all 𝑡 ∈ ℕ. The terminal constraint
set 𝕏f ≔ {𝒙 ≥ 0 | ‖𝑷f 𝒙‖ ≤ 1, 𝑷f = diag(𝒑f)} and the terminal cost function
𝑉f(𝒙) ≔ 𝑟‖𝑷f 𝒙‖ are calculated by solving the linear inequalities 4.24 of Proposi-
tion 4.6 for system 4.52 as 𝒑f = 101 d

and 𝑟 = 1250. For tube-based MPC, the
solution to the linear program 4.6 of Theorem 4.2 with 𝑼 = 10 𝑰 u , 𝑴 = 𝑰

d
, and

𝒀 = 0 yields 𝒑, 𝒀 , and 𝛾 = 0.09. The state feedback controller is then obtained as
𝑲 = 𝒀(diag(𝒑)) , which achieves ‖𝒛e‖ ,𝕎,𝕏e < 0.09 for the error system 4.17 with
bounded control effort 0 ≤ 𝑲𝒙e ≤ 101 u for all 𝒙e ∈ 𝕏e ≔ {𝒙 ∈ ℝ𝒏 𝒏d | 0 ≤ 𝒙 ≤ 𝒑}.

The linear programs for determining the terminal cost and constraint set, and
calculating the feedback gain 𝑲, and the ones associated with the MPC optimization
problems 4.10 and 4.21 are solved using IBM ILOG CPLEX Optimization Studio
(version 12.63) [23] connector for Matlab.

(a) (b)

Figure 4.62: Weighting functions used in the MPC controller design; EBS( , ) is the travel time from
link to destination on the shortest path connecting the two, and o( ) and c( ), respectively, mark
the opening and closing time of destination link . (a): link density weighting function z(⋅) for links
with loaded DCVs. (b): weighting function u(⋅) for link-to-link flows.
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(a) Loading station 1. (b) Loading station 2.

Figure 4.63: Planned and disturbed baggage profile per destination at the loading stations. The opening
and closing time of destination ∈ { , } are marked by o( ) and c( ), respectively.
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(a) Outflow of DCVs from CDS to the unload-
ing stations.

(b) DCV accumulation in the EBS

Figure 4.64: MPC control under planned baggage demand.

4.6.2. Simulation Results
To compare the performance of MPC, tube-based MPC (TB-MPC), and tube-based
MPC with optimized tube base (Optimized TB-MPC) control strategies a series of
simulations are conducted based on the morning baggage demand profile of Fig. 4.63,
which depicts the nominal baggage demand profile and a disturbed profile. In all
simulations, all empty DCVs are initially located at the CDS with no DCV being
present on any other link of the BHS network. First, effectiveness of the MPC
control strategy under the nominal baggage demand profile is tested. As ob-
served in Fig. 4.64 and Fig. 4.65a, the MPC controller performs as expected in
the sense that early baggage demand is directed to EBS, empty DCVs are opti-
mally routed from the CDS to the unloading stations, and the DCV flows arrive at
the designated destinations during their respective time window. Next, we con-
sider a series of scenarios that correspond to disturbance sequences �̃� sim(𝑖) =
(�̃�(𝑖; 0), �̃�(𝑖; 1), … , �̃�(𝑖; 𝑡sim)), 𝑖 ∈ ℕ ∶ , where �̃� sim(𝑖) ∈ 𝕎 sim for all 𝑖 ∈ ℕ ∶
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(a) MPC: nominal demand profile.
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(b) MPC: disturbed demand profile scenario
V.
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(c) TB-MPC: disturbed demand profile sce-
nario V.
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(d) Optim. TB-MPC: disturbed demand pro-
file scenario V.

Figure 4.65: MPC control under (disturbed) baggage demand. Flow of DCVs leaving the network at the
unloading stations.

and 𝑡sim is the simulation time. A qualitative comparison between the three control
strategies is provided in Fig. 4.65 for the sample scenario V. For each scenario,
performance of the MPC controller is compared against those of the TB-MPC and
Optimized TB-MPC controllers, based on the following two criteria: i) the total rel-
ative baggage demand that misses the closing time of its designated destination of
the time window defined as

loss(𝑖) =
∑ ∈{ , } ∑ sim

c( ) 𝑞
out
, (𝑖; 𝑡)

∑ sim 1 w
T(�̃�(𝑖; 𝑡) + 𝝎(𝑡))

, 𝑖 ∈ ℕ ∶ ,

and ii) the total closed loop cost defined as

𝐽cl(𝑖) =
sim

∑𝒒zT(𝑡)𝒛(𝑖; 𝑡) + 12𝒒uT(𝑡)𝒖(𝑖; 𝑡), 𝑖 ∈ ℕ ∶ .
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(a) Optimal value of predicted cost over the
prediction horizon.
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(b) Current closed-loop cost.

Figure 4.66: Comparison of MPC, TB-MPC and optimized TB-MPC approaches in terms of optimal pre-
diction cost and current cost for the closed-loop system.

The results are summarized in Table 4.61, where we have also listed the relative to-
tal baggage demand for the 𝑖-th scenario, defined as∑ sim 1 w

T�̃�(𝑖; 𝑡)/∑ sim 1 w
T𝝎(𝑡).

The total closed loop cost 𝐽cl(𝑖) of TB-MPC and TB-MPC Optimized approaches are
normalized by that of the MPC approach for all 𝑖 ∈ ℕ ∶ .

It it observed from Table 4.61 that as we deviate from the nominal scenario, the
MPC control strategy performs the worst compared to the tube-based variants in
terms of the loss measure. In addition, the difference between closed-loop perfor-
mance of the tube-based methods and the MPC approach increases in significance
for larger deviations from the nominal scenario. It is also evident that optimizing
the tube base enhances the performance of the TB-MPC, but the difference is not as
significant. The difference between the three methods can also be seen in Fig. 4.66,
where the optimal prediction cost at the current state 𝑉

h
(𝑡, 𝒙(𝑡), 𝒖∗

h
(𝑡)) and the

current closed-loop cost 𝐽cl(𝑡) = 𝒒zT(𝑡)𝒛(𝑡) + 12𝒒uT(𝑡)𝒖(𝑡) are depicted.

4.7. Conclusions
For linear discrete time systems subject to an infinity-norm bounded additive distur-
bance 𝝎 ∈ 𝕎, we have shown that the simultaneous problem of finding a robustly
positively invariant set 𝕏 and a (constrained) state feedback gain 𝑲 that minimizes
the ‖𝐿‖ norm of the output over this set for all 𝝎 ∈ 𝕎 can be formulated as a
linear program when 𝑲 renders the closed-loop system positive. This solution is
then leveraged in a tube-based MPC approach, where the feedback gain 𝑲 renders
the error system positive and the set 𝕏 is used to characterize a bounding tube
for trajectories of the uncertain system and to tighten the nominal MPC state and
control input constraints. The feedback gain calculated by this approach has also
the advantage that it ensures minimal deviation between the nominal and uncertain
trajectories for a given control “budget” in terms of the maximal effort allowed by
the feedback controller.
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Table 4.61: Overview of simulation results for MPC, TB-MPC, and TB-MPC Optimized control strategies
under various disturbance scenarios.

Scenario Norm. demand [-] Performance criteria
Control Strategy

MPC TB-MPC Optim. TB-MPC

Nominal 1.00 loss [%] 0 - -
norm. closed-loop cost [-] 1.00 - -

Scenario I 1.13 loss [%] 0.13 0.06 0.00
norm. closed-loop cost [-] 1.00 0.88 0.79

Scenario II 1.14 loss [%] 0.32 0.16 0.15
norm. closed-loop cost [-] 1.00 0.87 0.77

Scenario III 1.16 loss [%] 0.15 0.10 0.00
norm. closed-loop cost [-] 1.00 0.83 0.77

Scenario IV 1.19 loss [%] 0.62 0.29 0.26
norm. closed-loop cost [-] 1.00 0.80 0.75

Scenario V 1.22 loss [%] 0.69 0.30 0.28
norm. closed-loop cost [-] 1.00 0.75 0.72

Scenario VI 1.25 loss [%] 3.03 0.56 0.50
norm. closed-loop cost [-] 1.00 0.78 0.70

Scenario VII 1.27 loss [%] 5.81 1.02 0.96
norm. closed-loop cost [-] 1.00 0.69 0.61

The proposed solution has also been used for calculating an infinity-norm bounded
terminal constraint set and an infinity-norm based terminal cost function for the MPC
and tube-based MPC approaches via linear programs to ensure recursive feasibility
and (robust) asymptotic stability of the closed-loop system.

It has been shown via a case study that the proposed approach can be used
to efficiently design (tube-based) MPC approaches for large-scale linear systems
as all key components of our approach (i.e., calculating the feedback gain, the
terminal constraint set and the terminal cost) and the MPC optimization problem
are formulated as linear programs.

Finally, we would like to emphasize that the methods developed in Section 4.3
do not require the open-loop system to be positive; hence they are applicable to
the wider class of linear systems.
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Appendix

4.A. Proofs
In this section we provide proofs of the propositions and theorems presented in
the chapter. First, we present and prove the following proposition, which can be
regarded as an extension of the Theorem 1.3.12 of [15] to system 4.1, that will be
consequently used in the proof of Proposition 4.1.

Proposition 4.7. The following statements are equivalent for a positive system (4.1)
with a set of states 𝕏 ≔ {𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤ 1, 𝑷 ≔ diag(𝒑), 𝒑 ∈ ℝ , }, a
disturbance set 𝕎 ≔ {𝝎 ∈ ℝ | ‖𝜴 𝝎‖ ≤ 1, 𝜴 ≔ diag(𝝎 ), 𝝎 ∈ ℝ , }, and
a positive scalar 𝜆 ≤ 1.

i) 𝑨𝒑 + 𝑩 𝝎 < 𝜆𝒑.

ii) 𝕏 ⊂ 𝜆𝕏, where 𝕏 ≔ {𝑨𝒙 + 𝑩 𝝎 | 𝝎 ∈ 𝕎, 𝒙 ∈ 𝕏}.

iii) The function 𝑉 ∶ 𝒙 ↦ ‖𝑷 𝒙‖ is a Lyapunov function for the system over the
set 𝕏 ≔ ℝ − int(𝕏), which is strictly decreasing along system trajectories in
𝕏; hence, the system state is globally ultimately bounded [2] in 𝕏.

Proof. (ii ⟹ i): Since 𝑨 ≥ 0 and 𝑩 ≥ 0, it holds that

𝑥max ≔ max
𝒙∈𝕏, 𝝎∈𝕎

𝑨𝒙 + 𝑩 𝝎 = 𝑨𝒑 + 𝑩 𝝎

𝑥min ≔ min
𝒙∈𝕏, 𝝎∈𝕎

𝑨𝒙 + 𝑩 𝝎 = −(𝑨𝒑 + 𝑩 𝝎 ).

Since, by assumption, 𝒙 ∈ int(𝜆𝕏) for all 𝒙 ∈ 𝕏 and 𝝎 ∈ 𝕎, it must then hold that

− 𝜆𝒑 < 𝑥max < 𝜆𝒑 (4.53a)
− 𝜆𝒑 < 𝑥min < 𝜆𝒑, (4.53b)

which is equivalent to 𝑨𝒑 + 𝑩 𝝎 < 𝜆𝒑. Conversely, 𝑨𝒑 + 𝑩 𝝎 < 𝜆𝒑 implies
4.53, which, in turn, implies that 𝒙 ∈ int(𝜆𝕏) for all 𝒙 ∈ 𝕏 and 𝝎 ∈ 𝕎.

(i ⟹ iii): assuming (i) holds, for any scalar 𝑐 ≥ 1 it follows that 𝑨𝑐𝒑+𝑩 𝝎 <
𝜆𝑐𝒑 and that 𝒙 ∈ int(𝜆𝑐𝕏) for all 𝒙 ∈ 𝑐𝕏, and all 𝝎 ∈ 𝕎. Define 𝕏(𝑐) ≔ {𝒙 ∈
ℝ | ‖𝑷 𝒙‖ = 𝑐} as the boundary of 𝑐𝕏. For any 𝒙 ∈ 𝕏(𝑐) ⊆ 𝑐𝕏 it then holds
that ‖𝑷 𝒙 ‖ < 𝑐𝜆 for all 𝝎 ∈ 𝕎. Hence, ‖𝑷 𝒙 ‖ − ‖𝑷 𝒙‖ < (𝜆 − 1)𝑐 =
(𝜆 − 1)‖𝑷 𝒙‖ for all 𝝎 ∈ 𝕎. The proof is complete by noting that 𝑐 ≥ 1 is
chosen arbitrarily; so 𝒙 ∈ 𝕏 implies that there exists a 𝑐 ≥ 1 such that 𝒙 ∈ 𝕏(𝑐).
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Conversely, ‖𝑷 𝒙 ‖ < 𝜆‖𝑷 𝒙‖ for some2 𝒙 ∈ 𝕏(1) and a positive 𝜆 ≤ 1,
implies that −𝜆𝒑 < 𝒙 < 𝜆𝒑 or, equivalently, 𝒙 ∈ int(𝜆𝕏) for all 𝝎 ∈ 𝕎, and,
consequently, 𝑨𝒑 + 𝑩 𝝎 < 𝜆𝒑.

Proof of Proposition 4.1. For the positive system 4.1, equivalence of 4.5a to the set
𝕏 being robustly positively invariant is due to statement (i) of Proposition 4.7 with
𝜆 = 1. Note that the set 𝕏 ≔ {𝒙 ∈ ℝ | ‖diag([‖𝑴(∶, 1)‖ … ‖𝑴(∶, 𝑛)‖ ]T) 𝒙‖ <
1} is the smallest norm-infinity bounded set containing 𝕏 . Thus, 4.5c is equiva-
lent to having 𝕏 ≔ {𝒙 | ‖𝑷 𝒙‖ ≤ 1} include 𝕏 . Finally, note that for 𝝎 ≔
(𝝎 , … , 𝝎 ) ∈ 𝕎 , it follows that

𝒛(𝑡; 𝒑,𝝎 ) − 𝑪𝒑 − 𝑫 𝝎 = (4.54)

{
0 𝑡 = 0, 𝑘 ∈ ℕ
𝑪(∑ 𝑨 )(𝑨 − 𝑰)𝒑 + 𝑪(∑ 𝑨 )𝑩 𝝎 𝑡 ∈ ℕ ∶ , 𝑘 ∈ ℕ

< −𝑪(∑ 𝑨 )𝑩 𝝎 + 𝑪(∑ 𝑨 )𝑩 𝝎 = 0.

Hence, it holds that

−𝑪𝒑 − 𝑫 𝝎 ≤ 𝒛(𝑡;−𝒑,−𝝎 ) ≤ 𝒛(𝑡; 𝒙 ,𝝎 ) ≤ 𝒛(𝑡; 𝒑,𝝎 ) ≤ 𝑪𝒑 + 𝑫 𝝎

for any 𝒙 ∈ 𝕏, 𝑘 ∈ ℕ, 𝝎 ∈ 𝕎 , and for all 𝑡 ∈ ℕ ∶ , with the equality holding
for 𝑡 = 0, 𝒙 = 𝒑 (𝒙 = −𝒑), and 𝝎 = 𝝎 (𝝎 = −𝝎 ). It then follows from the
definition of ‖𝒛‖ ,𝕎,𝕏 that ‖𝒛‖ ,𝕎,𝕏 = ‖𝑪𝒑 + 𝑫 𝝎 ‖ . Hence, 𝑪𝒑 + 𝑫 𝝎 <
1 𝛾 is equivalent to ‖𝒛‖ ,𝕎,𝕏 < 𝛾.

Proof of Theorem 4.2. The proof is constructed by applying Propositions 4.7 and
4.1 to the closed-loop system 4.4. Letting 𝑲 = (𝒀 − 𝒀 )𝑷 , constraint 4.6b is
equivalent to the closed-loop system 4.4 being positive. Constraints 4.6c and 4.6d
are then equivalent to 4.5 of Proposition 4.1, expressed in the closed-loop system
matrices. For the closed-loop system, it then follows from Proposition 4.1 that 𝛾
is an upper bound to ‖𝒛‖ ,𝕎,𝕏. Equation 4.6e guarantees that the control input
constraint ‖𝑼 𝑲𝒙‖ ≤ 1 is satisfied by all vertices of 𝕏 and, thus, by any 𝒙 ∈ 𝕏.
Finally, the closed-loop system is globally ultimately bounded in 𝕏 due to the last
statement of Proposition 4.7.

Proof of Proposition 4.3. Define 𝒖(𝑡, 𝒙) ≔ 𝒖(𝑡)+𝑲(𝑡)𝒙(𝑡), which satisfies the con-
trol constraint 0 ≤ 𝒖(𝑡) ≤ 𝒖max for all 𝑡 ∈ ℕ. The resulting closed-loop system
is

𝒙(𝑡 + 1) = (𝑨 + 𝑩 𝑲(𝑡))𝒙(𝑡) + 𝑩 �̃�(𝑡),
𝒛(𝑡) = (𝑪 + 𝑫 𝑲(𝑡))𝒙(𝑡) + 𝑫 �̃�(𝑡),
Δ𝒖(𝑡) ≔ 𝒖(𝑡, 𝑥) − 𝒖(𝑡) = 𝑲(𝑡)𝒙,

2Note that assuming the Lyapunov forward difference holds for 𝒙 ∈ 𝕏( ) does not cause any loss of
generality as for any 𝒚 ∈ 𝕏( ), with being an arbitrary positive scalar, 𝒚 ∈ 𝕏( ).
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for all 𝑡 ∈ ℕ. Since 4.22a renders the closed-loop system positive for all 𝑡 ∈ ℕ,
it follows from 4.22b and Proposition 4.7 that the set 𝕏f ≔ {𝒙 ∈ ℝ | ‖𝑷 𝒙‖ ≤
1, 𝑷 ≔ diag(𝒑), 𝒑 ∈ ℝ , } is robustly positively invariant for the closed-loop system.
Therefore, it holds for system 4.3 that for all 𝒙(𝑡) ∈ 𝕏f, there exists a feasible
control input in the form of 𝒖(𝑡, 𝒙) ≔ 𝒖(𝑡)+𝑲(𝑡)𝒙(𝑡) such that 𝒙(𝑡 +1) ∈ 𝕏f for all
�̃� ∈ 𝕎.

Proof of Proposition 4.4. First note that for any 𝒙(𝑡) ∈ 𝕏f, we have ‖𝑷 𝒙 ‖ −
‖𝑷 𝒙‖ < (𝜆 − 1)‖𝑷 𝒙‖ and ‖𝑷 𝒙‖𝒑 ≥ 𝒙. Assuming 4.23 holds, it then
follows for any 𝒙(𝑡) ∈ 𝕏f that

𝑽f(𝑡 + 1, 𝒙(𝑡 + 1)) − 𝑽f(𝑡, 𝒙(𝑡)) = 𝑟(𝑡 + 1)‖𝑷 𝒙(𝑡 + 1)‖ − 𝑟(𝑡)‖𝑷 𝒙(𝑡)‖ <
(𝜆 − 1)𝑟(𝑡)‖𝑷 𝒙(𝑡)‖ ≤ ‖𝑷 𝒙(𝑡)‖ (𝒒Tz (𝑡)(𝑪 + 𝑫 𝑲(𝑡)) + 𝒒Tu(𝑡)𝑲(𝑡))𝒑
≤ −(𝒒Tz (𝑡)(𝑪 + 𝑫 𝑲(𝑡)) + 𝒒Tu(𝑡)𝑲(𝑡))𝒙(𝑡) = −(𝒒Tz (𝑡)𝒛(𝑡) + 𝒒Tu(𝑡)Δ𝒖(𝑡)).

Hence, the time-varying version of “basic stability assumption” [10, Assumption
2.23 (a)] is satsified. In addition the time-varying version of basic stability assump-
tion [10, Assumption 2.33 (b)] is automatically fulfilled as there exists a 𝑐 > 0
such that 𝒒Tz (𝑡)𝒛 + 𝒒Tu(𝑡)Δ𝒖 ≥ 𝑐 1 T[𝒛T Δ𝒖T]

T
with any positive bounded func-

tions 𝒒z(⋅) ∶ ℕ → ℝ , and 𝒒u(⋅) ∶ ℕ → ℝ , , and 𝑉f(𝑡, 𝒙) ≤ 𝑐 ‖𝒙‖ with some
scalar 𝑐 > 0 for all 𝑡 ∈ ℕ and for any 𝒙 ∈ 𝕏f. Therefore, due to [10, Theo-
rem 2.39], the origin is asymptotically stable in 𝒳

h
(𝑡) at each 𝑡 ∈ ℕ for the system

𝒙 = 𝑨𝒙 + 𝑩 (𝑲(𝑡) + 𝒖(𝑡)) + 𝑩 𝝎(𝑡).



5
Linear Positive Systems
May Have a Reachable
Subset from the Origin

That is Either Polyhedral or
Nonpolyhedral

”The beauty of mathematics only shows itself to more patient followers.”

Maryam Mirzakhani, 1977 – 2017

Positive systems with positive inputs and positive outputs are used in several branches
of engineering, biochemistry, and economics. Both control theory and system the-
ory require the concept of reachability of a time-invariant discrete-time linear posi-
tive system. The subset of the state set that is reachable from the origin is therefore
of interest. The reachable subset is in general a cone in the positive vector space
of the positive real numbers. It is established in this chapter that the reachable
subset can be either a polyhedral or a nonpolyhedral cone. For a single-input case,
a characterization is provided of when the infinite-time and the finite-time reach-
able subset are polyhedral. An example is provided for which the reachable subset
is nonpolyhedral. Finally, for the case of polyhedral reachable subset(s), a method
is provided to verify if a target set can be reached from the origin using positive
inputs.

The current chapter is based on [1].
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5.1. Introduction
5.1.1. Motivation and Scope
In this chapter, the focus is on the reachable subset from the origin of a single-
input time-invariant discrete-time linear positive system. It will be proven that
such a reachable subset can be either a polyhedral or a nonpolyhedral cone. A
characterization is provided of when this reachable subset is polyhedral.

A positive system may arise in many areas of science and of engineering, such
as econometrics [2], bio-chemical reactors [3], compartmental systems [4, 5], and
transportation system [6, 7],to name a few. The variables in such systems repre-
sent growth rates, concentration levels, mass accumulation, flows, etc. Obviously,
variables of this nature can only assume values that are zero or strictly positive.

For problems of control and system theory with positive systems, a solid body
of concepts, theorems, and algorithms has been developed. Of particular interest
is the theory of linear positive systems [8], which is based on the theory of positive
matrices and their geometric equivalent, polyhedral cones, [9–12].

While the theory of linear positive systems overlaps with the theory of linear sys-
tems, there are distinct differences between the two. Therefore, several concepts
of linear systems cannot be directly generalized to linear positive systems without
reformulation. One such property is the notion of reachability and controllability of
a linear positive system.

The motivation of the investigation of reachability and controllability of a linear
positive system is in 1) their use in control theory as an equivalent condition for
the existence of a control law for particular control objectives; and 2) in the theory
of realization and of system identification. In a positive system, as it arises in the
research areas mentioned above, one may want to know whether from a specified
initial state a particular terminal state can be reached by application of a positive
input to the system. The state to be reached can be a set of concentrations of
chemical substances in bio-reactor or a concentration in a compartment which e.g.
a model of tissue in a human being. More generally, one may want to characterize all
states of a linear positive system that can be reached from the zero initial state using
positive inputs, which is also the object of interest for realization theory of linear
positive systems. The choice for the reachable subset from the origin is essential
for realization theory. Observability of a linear positive system is then of interest
only for states in the reachable set. A characterization of that view of observability
does currently not exist in the literature. The condition formulated in the paper [13]
is too strong because it is based on the assumption that the reachable set from the
origin is the entire positive vector space ℝ . Therefore, characterizing all states of
a linear positive system that can be reached from the zero initial state using positive
inputs is the problem to be investigated in this chapter. More details on the problem
formulation may be found in Section 5.3.

5.1.2. Previous Work
Below the vector space of tuples of the positive real numbers will be referred to as
the positive vector space; it is formally defined in Section 5.2.



5

88 5. Reachable Subsets of Linear Positive Systems from the Origin

Controllability and reachability of a discrete-time linear positive system has been
widely studied and there is a considerable literature. This literature is briefly sur-
veyed below. In most of the literature it is emphasized that the characterization of
controllability of a discrete-time linear positive system takes a very different form
than that of its counterpart for discrete-time linear systems [14–16]. In addition,
while reachability of a linear system may be achieved in a number of steps equal
to the state-space dimension, [17], for discrete-time linear positive systems this
does not hold. For a linear positive system the number of steps required to reach
a certain point in the positive orthant can be larger than the dimension of the sys-
tem, as noted in [15], where this is illustrated using the model of a pharmacokinetic
system.

The concept of reachability used in the literature of discrete-time linear positive
systems is whether every state of the positive vector space can be reached from the
origin either in finite time or in infinite time. The result is then a characterization of
this considered concept of reachability. Publications that are based on that approach
include [14, 18–21].

Reachability of a discrete-time linear positive system is characterized using a
graph-theoretic approach, and canonical reachable or canonical controllable forms
are derived as well in [14, 21]. The authors of [20] have established a link between
positive state controllability and positive input controllability of a related system,
which is then used to obtain a controllability criterion. A survey of results on con-
trollability and reachability of positive systems is provided in [22, 23]. Controllability
results for special classes of 1D and 2D positive systems are provided in [24].

It is worth mentioning that the constrained reachability problem for a discrete-
time linear system in the presence of disturbance with respect to a target tube or a
target set has been widely discussed in the literature [25–28]. Among others [26]
investigates this problem by constructing a sequence of target sets. The reacha-
bility problem is then transformed into a certain inclusion check on the last target
set of this sequence. The authors of [26] also provide an approximate bounding
ellipsoid algorithm to calculate the sequence of target sets and the associated input
sequence. In [25], constrained reachability with respect to a target set is studied as
a special case of reachability with respect to a target tube, and the authors provide
an algorithm to construct the sequence of modified target sets when these sets are
known to be polyhedral. In the above-mentioned literature, checking reachability or
controllability of a target set requires one to directly or indirectly construct certain
modified target sets in an iterative manner. In addition, it is not known in advance
whether a target set can be reached in finite time.

5.1.3. Contribution of This Work
The contribution of this chapter to control and system theory is described next.
Attention is restricted to a time-invariant discrete-time linear positive system. The
problem for a continuous-time linear positive system is different. The results are
mostly for a single-input system. The object of interest is the reachable subset from
the origin state in either finite time or in infinite time. The problem is to characterize
this reachable subset, in particular to determine whether the reachable subset is
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either a polyhedral cone or a nonpolyhedral cone. This problem is of interest to
both control theory and to realization theory.

The problem considered in this chapter differs from the reachability or controlla-
bility problems treated in the literature. In the literature, the problem whether any
state of the positive vector space can be reached by use of a positive input from
the zero initial state has been investigated and a corresponding characterization of
this concept has been provided. In this chapter the focus is on the characterization
of the reachability subset which will often be a strict subset of the positive vector
space. Moreover, it will be investigated whether the reachable subset is a polyhe-
dral cone or a nonpolyhedral cone. In the existing literature the reachable subset
has to equal the positive vector space which is a polyhedral cone. Surprisingly, as
presented in this chapter, there exists an example of a linear positive system of
which the reachable subset from the origin is a nonpolyhedral cone in the positive
vector space. A consequence of this is that the reachable subset has to be inves-
tigated for the following cases: for a prespecified finite time, for an arbitrary finite
time, and for infinite time. It will also be shown that the reachable subset can in
general not be determined in a number of steps that equals the dimension of the
state set but that the number of steps can be strictly larger than the dimension of
the state set.

The specific contributions of the chapter are then as follows. A characteriza-
tion of when the infinite-time reachable subset is a polyhedral cone, is provided
in Theorem 5.13. A related result regarding the geometry of reachable sets for
discrete-time linear systems (not necessarily positive) with positive control inputs
can be found in [29]. A characterization of when the finite-time reachable subset
from the origin is a polyhedral cone, is provided in Theorem 5.15. An example of
linear positive system for which the reachable subset is nonpolyhedral is provided in
Example 4. Results for the problem of when the reachable set contains a particular
cone of terminal states are summarized in Proposition 5.18 and in Proposition 5.19.

The structure of the chapter is described next. Section 5.2 presents necessary
background knowledge on positive matrices and positive systems. It also reports
key terminology of controllability and reachability and links this to linear positive
systems while highlighting existing view of the characterization of controllability
and reachability of linear positive systems in the literature. Section 5.3 presents
the approach of this chapter and the problem formulation. The characterization of
the infinite-time reachable set as a polyhedral cone is provided in Section 5.4. The
characterization of the finite-time reachable set as a polyhedral cone is provided
in Section 5.5. Numerical verifiable conditions for the polyhedrality of the reachset
in terms of the spectrum of the system matrix are provided also in those sections.
Section 5.6 provides results on how to determine reachability for a specified control
objective in the form of a subset of the positive vector space of a linear positive
system.
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5.2. Preliminaries
5.2.1. Positive Real Numbers, Positive Matrices, and Cones
The reader is assumed to be familiar with the integers, the real numbers, and vector
spaces. Denote the set of the integers by ℤ, the set of strictly-positive integers by
ℤ = {1, 2, … }, and the set of the natural numbers by ℕ = {0, 1, 2, … }. For 𝑛 ∈ ℤ
denote ℤ = {1, 2, … , 𝑛}.

The real numbers are denoted by ℝ, the set of the positive real numbers or the
positive numbers by ℝ = [0,∞), and the set of the strictly-positive real numbers
by ℝ = (0,∞) ∈ ℝ . The term positive real numbers is preferred by the authors
over the term nonnegative real numbers which occurs in the literature. The term
positive real numbers is used in the book [30, p. 19].

Define the positive vector space of tuples of the positive real numbers as the
tuple (ℝ ,ℝ ) with the algebraic operations described next. The set of the positive
real numbers is closed with respect to addition and to multiplication. There does
not exist an additive inverse while in the subset (0,∞) there always exists a multi-
plicative inverse. The set of positive vectors ℝ is closed with respect to addition
but there does not exist an additive inverse in this set. The vector of all-ones in
ℝ is denoted by 1 . When used without a subscript 1 is a vector of appropriate
dimension of which all elements are equal one.

For an integer 𝑚 ∈ ℤ and a set of positive vectors 𝒂 , 𝒂 , … , 𝒂 , 𝒂 ∈ ℝ
define in the positive vector space the set

conv([𝒂 … 𝒂 ]) = {𝒙 ∈ ℝ | 𝒙 =∑𝜆 𝒂 , 𝜆 ≥ 0, 𝑖 = 1,… ,𝑚, ∑𝜆 = 1} (5.1)

as the convex polytope generated by 𝒂 , 𝑖 = 1,… ,𝑚.
Define in the vector space of the real numbers ℝ the open ball with center

𝑥 ∈ ℝ and with radius 𝑟 ∈ (0,∞) as the set

𝐵(𝒙, 𝑟) = {𝒚 ∈ ℝ | ‖𝒚 − 𝒙‖ < 𝑟}. (5.2)

The norm on ℝ is the Euclidean norm, ‖𝒙‖ = (∑ 𝑥 ) / . This norm is also
used on ℝ . An open ball in the positive vector space ℝ is defined in a similar
manner with 𝒚 ∈ ℝ replaced by 𝒚 ∈ ℝ in (5.2).

A positive matrix 𝑨 of size 𝑛×𝑚 for 𝑛, 𝑚 ∈ ℤ is a matrix of which each element
𝐴 , = 𝐴 belongs to the positive real numbers ℝ . The set of such matrices is
denoted by ℝ × .

The geometric view point of positive vectors is formulated in terms of rays and
of cones as defined next. A ray is a half line 𝑌 ⊂ ℝ for 𝑛 ∈ ℤ described by a
direction vector 𝒙 ∈ ℝ \{0} such that for all 𝑐 ∈ ℝ , 𝑌 contains all elements of the
form 𝑐 ⋅ 𝒙 ∈ 𝑌. Equivalently,

∃ 𝑛 ∈ ℤ , ∃ 𝒙 ∈ ℝ \{0}, 𝐶(𝑥) = {𝑐 ⋅ 𝒙 ∈ ℝ | ∀ 𝑐 ∈ ℝ }.

Below 𝑐 ⋅ 𝒙 will be denoted by 𝑐 𝒙.
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A cone is a nonempty subset 𝐶 ⊆ ℝ such that (1) if 𝒙 ∈ 𝐶 and 𝑐 ∈ ℝ then
𝑐 𝒙 ∈ 𝐶; and (2) if 𝒙, 𝒚 ∈ 𝐶 then 𝒙 + 𝒚 ∈ 𝐶. It follows that 0 ∈ 𝐶 for any cone 𝐶.
By definition, a cone always includes the zero element of the positive vector space.
That zero element is called the apex of the cone. Cones with an apex not at zero
of the positive vector space are not used in this chapter.

A cone 𝐶 is called a polyhedral cone if there exists an integer 𝑚 ∈ ℤ and a set
of positive vectors 𝑎 , 𝑎 , … , 𝑎 ∈ 𝐶 ⊆ ℝ such that, for any 𝒙 ∈ 𝐶 there exists
positive real numbers 𝑦 ∈ ℝ for 𝑖 = 1,… ,𝑚, 𝒙 = ∑ 𝑦 𝒂 . Equivalently, 𝐶 is a
polyhedral cone if

∃ 𝑚 ∈ ℤ , ∃ 𝒂 , … , 𝒂 ∈ 𝐶, such that,
𝐶 = {𝒙 ∈ ℝ | ∃ 𝒚 ∈ ℝ such that 𝒙 = 𝑨𝒚} , where,

𝑨 = [ 𝒂 𝒂 … 𝒂 ] ∈ ℝ × , 𝒚 =
⎡
⎢
⎢
⎣

𝑦
𝑦
⋮
𝑦

⎤
⎥
⎥
⎦
.

In the representation used above, the cone will also be denoted by

𝐶 = cone([𝒂 … 𝒂 ]) = cone(𝑨) (5.3)

for the positive matrix 𝑨 ∈ ℝ × with the understanding that the cone is generated
by the columns of the matrix 𝑨. Moreover, with little abuse of the notation for
𝑨 ∈ ℝ × and 𝑿 ∈ ℝ × , the cone generated by stacking up the 𝑚+ 𝑝 columns of
the matrices 𝑨 and 𝑿 will be denoted by 𝐶 = cone([𝑨 𝑿]).

A cone is called a nonpolyhedral cone if it is not polyhedral. This implies that
there does not exist a finite number 𝑚 ∈ ℤ as in the above definition. The term
round cone could also be used in this case. An example of a round cone is the well
known ice cream cone which may be found in [9, Ex. 1.2.2].

An example of a polyhedral cone is given by

𝐶 = {𝒙 ∈ ℝ | ∃ 𝒚 ∈ ℝ such that 𝒙 = 𝑨𝒚},

with 𝑨 =
⎡
⎢
⎢
⎣

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥
⎥
⎦
.

A boundary ray of a cone 𝐶 is a ray of the cone that lies on the boundary of the
cone. A ray lies on the boundary of a cone if for every 𝜖 ∈ (0, 1) sufficiently small
and for every element 𝒙 of the ray, the ball 𝐵(𝒙, 𝜖) includes an element outside the
cone.

It is called an extreme (boundary) ray of the cone if it cannot be written as the
strict convex combination of two different rays. Thus 𝒙 ∈ 𝐶 is an extreme ray if
there do not exist vectors 𝒚, 𝒛 ∈ 𝐶 that are boundary rays and a scalar 𝑐 ∈ (0, 1)
such that 𝒙 = 𝑐 𝒚 + (1 − 𝑐) 𝒛. In the above example, each of the columns of the
matrix 𝑨 is an extremal ray of cone cone(𝑨).
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More technical concepts and results regarding positive matrices may be found in
Appendix 5.A because these are well known and not a contribution of this chapter.

The reader may find additional information on positive real numbers, positive
matrices, and cones in the books [9, 31, 32].

5.2.2. Linear Positive Systems
Definition 5.1. Define a discrete-time linear positive system with system matrix
𝑨 and input matrix 𝑩 by the representation

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡), 𝑡 ∈ ℕ, 𝒙(𝒕 ) = 𝒙 , (5.4)
𝑨 ∈ ℝ × , 𝑩 ∈ ℝ × , 𝑡 ∈ 𝑇 = {𝑡 , 𝑡 + 1, 𝑡 + 2,…},
𝒙 ∈ ℝ , 𝒖 ∶ 𝑇 → ℝ , 𝒙 ∶ 𝑇 → ℝ .

An explicit expression for the state function of a discrete-time linear positive
system is well known and provided by the formula

𝒙(𝑡) = 𝑨 𝒙 + ∑ 𝑨 𝑩𝒖(𝑡 − 1 − 𝑠), ∀ 𝑡 ∈ 𝑇, (5.5)

(𝑡 , 𝒙 ) 𝒖( ∶ )↦ (𝑡, 𝒙(𝑡)), where (5.6)
𝒖(𝑡 ∶ 𝑡 − 1) = (𝒖(𝑡 ), 𝒖(𝑡 + 1), … , 𝒖(𝑡 − 1)).

For a time-invariant discrete-time linear positive system we may assume 𝑡 = 0
in Definition 5.1 and in the explicit solution (5.5) as the time axis can be shifted to
the zero time without affecting the trajectories.

Definition 5.1 requires that the mathematical objects of the definition exist. An
alternative definition, which may be found in the literature, defines a linear positive
system as a linear system with as state space 𝑋 = ℝ and requires that for any
initial state 𝒙 ∈ ℝ and any positive input function 𝒖 ∶ 𝑇 → ℝ , the resulting state
function 𝒙 is such that for all 𝑡 ∈ 𝑇, 𝒙(𝑡) ∈ ℝ . It can then be proven that this
alternative definition leads to the condition that the matrices 𝑨 and 𝑩 are positive
matrices. Thus the alternative definition leads back to the form of Definition 5.1.

Books on positive systems or books with chapters on positive systems include
[8, 16, 24].

5.2.3. Terminology of Controllability and Reachability
The literature of control and system theory is not standardized in regard to the terms
controllability and reachability. The authors have chosen to use in this chapter the
terms as introduced by R.E. Kalman in Chapter 2 of the book [33, Def. 2.13, Def.
2.14, p. 32]. Almost the same definitions may be found in [34, Def. 3.1.1]. Related
papers of Kalman on controllability are [35, 36].

Consider the discrete-time linear system with the representation (5.4) and the
corresponding solution (5.5). Associate with this system the initial tuple (𝑡 , 𝒙 ) ∈
𝑇×ℝ consisting of the initial time 𝑡 and the initial state 𝒙 where 𝑡 will often be
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taken to be zero, 𝑡 = 0, and the terminal tuple (𝑡 , 𝒙 ) consisting of the terminal
time 𝑡 and the terminal state 𝑥 where 𝑡 ∈ 𝑇 and 𝒙 = 𝒙(𝑡 ). The solution
displayed above is then denoted as the transition

(𝑡 , 𝒙 ) 𝒖( ∶ )↦ (𝑡 , 𝒙(𝑡 )).

In system theory one often distinguishes between reachability and controllabil-
ity: for reachability one considers an initial tuple consisting of an initial time and an
initial state as fixed and one has to determine which tuples of a terminal time and
a terminal state can be reached by the use of a positive input; for controllability
one considers a terminal time and terminal state as fixed and one has to determine
from which tuples of an initial time and an initial state one can reach the selected
terminal state at the terminal time by the use of a positive input.

In case of a time-invariant system the concepts of reachability and of controlla-
bility do not depend on the initial time because the time axis can be shifted to the
zero time without affecting the trajectories.

Definition 5.2. Consider a linear positive system as defined in Definition 5.1.

(a) Fix an initial tuple (𝑡 , 𝒙 ) ∈ 𝑇 × ℝ . The terminal tuple (𝑡 , 𝒙 ) ∈ 𝑇 × ℝ
is called reachable from the initial tuple (i.e., can be reached from the initial
tuple), if there exists a positive input 𝒖 ∶ {𝑡 , 𝑡 + 1,… , 𝑡 − 1} → ℝ such

that the transition (𝑡 , 𝒙 ) 𝒖( ∶ )↦ (𝑡 , 𝒙(𝑡 )) = (𝑡 , 𝒙 ) exists for this system.
(R.E. Kalman states this for 𝒙 = 0.) The terminal tuple is called reachable
from the origin if it is reachable from the initial tuple (𝑡 , 0) ∈ 𝑇 × ℝ .

Define the reachable set from (𝑡 , 𝒙 ) ∈ 𝑇 × ℝ as

Reachset(𝑡 , 𝒙 ) = {
𝒙 ∈ ℝ | ∃ 𝑡 ∈ 𝑇, ∃ 𝒖 ∶ {𝑡 , … , 𝑡 − 1} → ℝ ,
such that (𝑡 , 𝒙 ) 𝒖( ∶ )↦ (𝑡 , 𝑥 )

} .

(b) Fix a terminal tuple (𝑡 , 𝒙 ) ∈ 𝑇×ℝ . The initial tuple (𝑡 , 𝒙 ) ∈ 𝑇×ℝ is called
controllable to the terminal tuple (i.e., can be controlled to the terminal tuple)
if there exists an input 𝒖 ∶ {𝑡 , 𝑡 + 1,… , 𝑡 − 1} → ℝ such that the transition

(𝑡 , 𝒙 ) 𝒖( ∶ )↦ (𝑡 , 𝒙 ) exists for this system. (R.E. Kalman requires that the
terminal state 𝒙 = 0.) The initial tuple is called controllable to the origin if it
is controllable to the terminal tuple (𝑡 , 0) ∈ 𝑇 × ℝ .

Define the controllable set to the terminal tuple (𝑡 , 𝒙 ) ∈ 𝑇 × ℝ as

Conset(𝑡 , 𝒙 ) = {
𝒙 ∈ ℝ | ∃ 𝑡 ∈ 𝑇, ∃ 𝒖 ∶ {𝑡 , … , 𝑡 − 1} → ℝ ,
such that (𝑡 , 𝒙 ) 𝒖( ∶ )↦ (𝑡 , 𝑥 )

} .

For linear systems, not necessarily a linear positive system, the following result
holds.
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Lemma 5.3. [34, Lemma 3.1.5] Consider a time-invariant discrete-time linear sys-
tem (not necessarily a linear positive system). The system is a reachable system
on the interval {𝑡 , … , 𝑡 }, if and only if it is reachable from the origin on the same
interval.

The above result does not hold for linear positive systems as the following ex-
ample shows.

Example 1. Consider the time-invariant linear positive system

𝒙(𝑡 + 1) = ( 1/2 0
0 1 )𝒙(𝑡) + (

2 0
0 1 )𝒖(𝑡), 𝒙(0) = 𝒙 .

Then the reachable set from the origin is the full positive vector space ℝ . If
𝒙 = (1, 1) then the reachable set from that initial state equals

𝑋(𝒙 ) = {𝒙 ∈ ℝ | 𝑥 ≥ 0.5𝑥 , = 0.5, 𝑥 ≥ 𝑥 , = 1}.

Hence the state 𝒙 = (0.4, 0.4) can never be reached from 𝒙 using positive inputs.
Thus reachability from the origin and from an arbitary initial state of the positive
vector space are different concepts for linear positive systems.

From the above example it is clear that the reachable set from the origin and
the reachable set from an arbitrary initial state are different objects. In this chapter
attention is restricted to the reachable set from the origin.

5.2.4. Existing Results on Reachability and Controllability
of Linear Positive Systems

The existing view of the characterization of controllability and reachability as known
in the literature, is discussed below. In most papers of the literature, the charac-
terization of controllability or of reachability of a linear positive system is based on
the following definition.

Definition 5.4. [16, p. 74, Def. 7]. A linear positive system is said to be com-
pletely reachable if all states 𝒙 ≥ 0 are reachable in finite time from the origin, that
is, if 𝑋r = ℝ , where 𝑋r denotes the cone of all reachable states in finite time using
a positive input.

The underlying idea behind Definition 5.4 probably originates from making an
analogy to reachability of linear systems. This definition is based on the assump-
tion that the state space equals 𝑋 = ℝ . Note that in Definition 5.4 𝑋r ⊆ ℝ by
definition, hence the equality 𝑋r = ℝ holds if in addition ℝ ⊆ 𝑋r. The following
theorem states a necessary and sufficient condition for reachability with respect to
Definition 5.4 for the single-input case.

Theorem 5.5. [16, Th. 27]. A discrete-time linear positive system with a single-
input is completely reachable if it is possible to reorder its state variablesi in such a
way that the input 𝒖 directly influences only 𝒙 , and 𝒙 directly influences 𝒙 for
𝑖 = 1, 2, … , 𝑛 − 1.
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Figure 5.21: Example 2. The shaded area, associated with , represents the region of interest for which
controllability needs to be checked.

Additional results may be found in [16, Ch. 8]. The criterion for complete
reachability of a linear positive system with multiple inputs based on Definition 5.4
is more involved, but it is required that the controllability matrix of the corresponding
linear system, [𝑩 𝑨𝑩 … 𝑨 𝑩], includes a monomial submatrix of dimension 𝑛, for
some 𝑘 ∈ ℕ [14, 15, 19, 21, 22]. Such conditions are often too strong to be
satisfied by most practical linear positive systems.

For several examples of linear positive systems, complete reachability as of Def-
inition 5.4 is not required. For example in economic systems, one would be inter-
ested to know whether a certain growth rate can be achieved, which corresponds to
checking whether a certain extremal ray of a cone inside the positive vector space
is reachable. In bio-chemical reactors, it may be of interest to know whether a set
of desired mass concentrations can be reached by applying a particular input (for
example, a flow of materials).

An example follows that illustrates the concept of reachability stated above.

Example 2. Consider the discrete-time time-invariant linear positive system

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝒃𝒖(𝑡), 𝒙(0) = 𝒙 ,

with

𝑨 = [ 4 4
11 2] , 𝒃 = [

2
1] , 𝒙 = 0.

It is of interest to determine whether the states in the cone 𝐾 ⊂ ℝ , defined by
(5.7) and illustrated by Figure 5.21, can be reached in finite time:

𝐾 ∶ {
3𝑥 − 2𝑥 ≥ 0,
3𝑥 − 2𝑥 ≥ 0,
𝑥 ≥ 0, 𝑥 ≥ 0.

(5.7)

Since 𝐾 ⊂ ℝ , in order to answer this question using the classical approach, one
needs to check the reachability of ℝ , which is very conservative considering the
fact that 𝐾 occupies only a small portion of ℝ . It can be verified that

[𝒃 𝑨𝒃 … 𝑨 𝒃] = [2 12 ⋯
1 24 ⋯]
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does not include a monomial submatrix of dimension 2 for any 𝑘 ∈ ℕ . Therefore,
the conditions of Theorem 5.5 do not hold and we cannot deduce anything about
the reachability of 𝐾. Nevertheless, invoking Theorem 5.15 and using the results
of Section 5.6, it turns out that K is reachable from the origin in a finite number of
steps.

5.3. Approach of This Chapter
The chapter changes the focus of reachability of a linear positive system. In the
classical literature the system is reachable from the origin if the reach set from the
origin equals the entire positive vector space ℝ .

In this chapter, the approach is to determine the reachable set from the origin,
in either finite time or in infinite time, as defined below. The reachable set is then
the main object of study. In this chapter, there is no requirement that the reachable
set from the origin equals the positive vector space ℝ .

In the late 1960s and the 1970s the geometric view point gained momentum in
control and system theory. This viewpoint was developed by W.M. Wonham, [37],
for time-invariant linear control systems using the concept of a linear subspace of
a vector space. The geometric approach to control of nonlinear control systems
was described in the book [38]. Later this led to the development of control theory
in differential-geometric structures, [39, 40], and in algebraic-geometric structures
such as rings [41].

In the geometric approach to control systems the main concept is the reachable
set from the origin. In the context of observability, it is the kernel of the output
map, but that will not be treated in this chapter. For linear positive systems, the
main geometric concept is a cone in the positive vector space ℝ . This geometric
object allows the use of abstract algebra for theory and algorithms. Therefore, in
this chapter the geometric approach to linear positive systems is used.

Based on this new view point, the system theoretic problem under study is:
Characterize the reachable set from the origin of a linear positive system. The
reachable set from the origin is by definition a cone in the positive vector space.
A question is then: Is the reachable set from the origin a polyhedral cone or a
nonpolyhedral cone?

Remark 3. The above formulation has been for decades the approach to reachability
in system theory. The reachable set from the origin is defined as stated above. The
reachable set in general may be a strict subset of the ambient space in which it is
situated. The reader may want to look at the definitions of the reachable subset for
discrete-time polynomial systems, [41], for continuous-time polynomial systems,
[42], rational systems, [43], and infinite-dimensional linear systems, [44].

5.3.1. Concepts
The reachable set and its role in the problem of reachability and of controllability of
linear positive systems have been already discussed in the literature [14, 15, 19, 21,
22]. Below the concept inspired by [15] is used. Recall that only reachability from
the origin, the zero initial state, is considered and that the system is restricted to
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have an input with only one component. Recall the formula of the state transition
of a time-invariant discrete-time linear positive system as

𝒙(𝑡) = ∑ 𝑨 𝒃 𝑢(𝑡 − 1 − 𝑠) (5.8)

= [ 𝒃 𝑨𝒃 … 𝑨 𝒃 ]
⎡
⎢
⎢
⎣

𝒖(𝑡 − 1)
𝒖(𝑡 − 2)

⋮
𝒖(0)

⎤
⎥
⎥
⎦

with conmat (𝑨, 𝒃) = [ 𝒃 𝑨𝒃 … 𝑨 𝒃 ] being the controllability matrix of in-
dex 𝑘.

It is useful to have notation for the infinite reachable set and to contrast that
with the finite reachable set, which is the purpose of the following definition.

Definition 5.6. Consider a single-input time-invariant discrete-time linear positive
system with representation

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) + 𝒃𝒖(𝑡), 𝒙(0) = 0. (5.9)

Define the following subsets of the state space: the 𝑘-step reachable subset from
the origin, the finite-time reachable subset from the origin, and the infinite-time
reachable subset from the origin, respectively as the sets,

Reachset (𝑨, 𝒃) = {𝒙 ∈ ℝ | ∃𝒖 ∶ ℕ → ℝ , (0, 0) 𝒖↦ (𝑘, 𝒙)} , ∀ 𝑘 ∈ ℤ , (5.10)

Reachsetf(𝑨, 𝒃) = ∪ Reachset (𝑨, 𝒃), (5.11)

Reachset (𝑨, 𝒃) = Reachsetf(𝑨, 𝒃). (5.12)

Here, the notation 𝑆 denotes the closure of the set 𝑆 with respect to the Euclidean
topology.

The reachable subsets defined above are subsets of the state set. To simplify
the terminology, in the remainder of the chapter these sets are referred to as the
reachable set from the origin or as the reachable set, without the use of the term
subset.

Once a reachable set has been defined, there is no need for the concept of
complete reachability.
Proposition 5.7. The 𝑘-step reachable subset, the finite-time reachable subset, and
the infinite-time reachable subset of Definition 5.6, each from the zero initial state,
equal respectively the expressions

Reachset (𝑨, 𝒃) = cone(conmat (𝑨, 𝒃)), (5.13)

Reachsetf(𝑨, 𝒃) = cone([𝒃 𝑨𝒃 𝑨 𝒃 … ]), (5.14)

Reachset (𝑨, 𝒃) = Reachsetf(𝑨, 𝒃), where (5.15)
conmat (𝑨, 𝒃) = [𝒃 𝑨𝒃 𝑨 𝒃 … 𝑨𝒌 𝒃] (5.16)
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Proof. The proof is skipped as it can be derived in a straightforward manner. The
reader is referred to [22, 45] for similar proofs. The proof could also be deduced
from the corresponding definition in [15].

5.3.2. Problem Formulation
Having characterized the infinite-time and the finite-time reachable sets from the
origin, the main questions of this chapter are discussed next.
Problem 5.8. For a single-input time-invariant linear positive system, the problems
to be addressed in this chapter are:

(a) Is the finite-time reachable set from the origin Reachsetf(𝑨, 𝒃) a polyhedral
cone or a nonpolyhedral cone?

(b) Is the infinite-time reachable set from the origin Reachset (𝑨, 𝒃) a polyhedral
cone or a nonpolyhedral cone?

(c) If the control objective is specified as a cone in the positive vector space or
as a subset of that space, is that control objective subset then contained in
the reachable set from the origin?

Note that the 𝑘-time reachable set is by definition always a polyhedral set.

5.4. When Is the Infinite-Time Reachable Set a
Polyhedral Set?

In this section, we investigate the polyhedrality of Reachset (𝑨, 𝒃), and charac-
terize this in terms of a necessary and sufficient conditions on the system matrix
𝑨.

The reader is expected to have knowledge of concepts and of results of positive
linear algebra as summarized in Appendix 5.A. The notations used below may be
found in Appendix 5.A.

As summarized in Appendix 5.A, a positive matrix which is nonzero and of di-
mension 𝑛 ≥ 2 is either irreducible or can be fully reduced. The analysis of the
matrix 𝑨 for 𝑘 ∈ ℤ or for its limit, lim → 𝑨 , can then be carried out (1) for
irreducible positive matrices and, (2) for fully reduced matrices. Below the case of
an irreducible system matrix 𝑨 is carried out. The case of a fully reduced positive
matrix is then relatively simple based on the results for the irreducible case [9].

For the remainder of this section, the reader should keep in mind the restriction
to an irreducible positive matrix 𝑨 ∈ ℝ × .
Proposition 5.9. Consider the linear positive system given in (5.4). Assume that
𝑨 ∈ ℝ × is irreducible with cyclicity index 1 ≤ ℎ ≤ 𝑛 and 𝒃 ∈ ℝ . Then, the
infinite-time reachable set from the origin, Reachset (𝑨, 𝒃), is polyhedral if and
only if there exists a 𝑘∗ ∈ ℤ such that

𝑨 ∗𝒃 ∈ cone ([𝒃 𝑨𝒃 … 𝑨 ∗ 𝒃 𝑨f, 𝑏 … 𝑨f, 𝒃]) , (5.17)

where matrices 𝑨f, are introduced in Definition 5.24.
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Proof. The result is almost obvious by geometric considerations except for the pres-
ence of the set of vectors {𝑨f, 𝑏,… , 𝑨f, 𝒃}.

Sufficiency: We will show that

𝐶 = cone ([𝒃 𝑨𝒃 … 𝑨 ∗ 𝒃 𝑨f, 𝒃 … 𝑨f, 𝒃])

is 𝑨-invariant. Let 𝒙 = ∑
∗

𝑐 𝑨 𝒃 + ∑ 𝑐f, 𝑨f, 𝒃 for arbitrary positive coefficients
𝒄 ∈ ℝ ∗

and 𝒄f ∈ ℝ . We then have

𝑨𝒙 =
∗

∑ 𝑐 𝑨 𝒃 +∑𝑐f, 𝑨𝑨f, 𝒃. (5.18)

Using (5.17), and noting that (see Definition 5.24)

𝑨𝑨f, = 𝑨f, , 𝑖 = 0,… , ℎ − 2 (5.19)

𝑨𝑨f, = (𝜌(𝑨)) 𝑨f, ,

(5.18) can be expressed as 𝑨𝒙 = ∑
∗

𝑐 𝑨 𝒃 + ∑ 𝑐f, 𝑨f, 𝒃 for some 𝒄 ∈ ℝ ∗

and some 𝒄f, ∈ ℝ . This proves that 𝑨𝒙 ∈ 𝐶 for any 𝒙 ∈ 𝐶. Hence, the system
trajectory (5.8) remains in 𝐶 and Reachset (𝑨, 𝒃) = 𝐶 is polyhedral.

Necessity: Let 𝒙 = lim →
𝑨 𝒃

(𝜌(𝑨))
. Note that 𝒙 is characterized by the

set of ℎ vectors 𝑨f, 𝒃,… , 𝑨f, 𝒃 [15, Th. 2](also see proof of Lemma 5.25.) In
fact, Lemma 5.25 states that 𝒙 ∈ cone([𝑨f, 𝒃 … 𝑨f, 𝒃]). By the definition of
Reachset (𝑨, 𝒃) as the closure of Reachsetf(𝑨, 𝒃), and by the above explanation of
𝒙 , the extremal rays of the polyhedral
Reachset (𝑨, 𝒃) belong to the sequence {𝑨 𝒃 ∈ ℝ , 𝑘 ∈ ℕ} or are extremal rays of
the cone, cone([𝑨f, 𝒃 … 𝑨f, 𝒃]). Again, by the assumption that Reachset (𝑨, 𝒃)
is polyhedral, there exists a finite 𝑘∗ ∈ ℤ such that
𝑨 ∗𝒃 ∈ cone([𝒃 … 𝑨 ∗ 𝒃 𝑨f, 𝒃 … 𝑨f, 𝒃]).

It is clear that if (5.17) is established for an integer 𝑘∗ ∈ ℤ , it will hold for any
𝑘 ≥ 𝑘∗. The smallest integer 𝑘∗ ∈ ℤ satisfying (5.17) is called the vertex number
and denoted by 𝑘vert of the reachable set Reachset (𝑨, 𝒃). Following the steps of
the proof of Proposition 5.9, we can put forward the following corollary.
Corollary 5.10. Given 𝑨 ∈ ℝ × irreducible with cyclicity index ℎ ∈ {1,… , 𝑛} and
𝒃 ∈ ℝ , the following statements are equivalent:

(a) Reachset (𝑨, 𝒃) is polyhedral.
(b) There exists an integer 𝑘vert ∈ ℤ such that

cone([𝒃 𝑨𝒃 … 𝑨 𝒃 𝑨f, 𝒃 … 𝑨f, 𝒃]) is 𝑨-invariant for 𝑘 ≥ 𝑘vert.
(c) There exists an integer 𝑘vert ∈ ℤ such that for all 𝑘 ≥ 𝑘vert, the matrix equation

𝑨𝑴 = 𝑴𝑿, has a solution 𝑿 ∈ ℝ( )×( ), where
𝑴 = [ 𝒃 𝑨𝒃 … 𝑨 𝒃 𝑨f, 𝒃 … 𝑨f, 𝒃 ] .
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Definition 5.11. A square positive matrix 𝑨 ∈ ℝ × is said to have a positive
recursion if the following holds:

∃𝑚 ∈ ℕ, ∃𝑐 ∈ ℝ for 𝑖 = 0,… ,𝑚 − 1 such that (5.20)

𝑨 = ∑ 𝑐 𝑨 ,

or, equivalently, if

𝑔(𝜆) = 𝜆 − ∑ 𝑐 𝜆 = 0, ∀𝜆 ∈ spec(𝑨).

In terms of the characteristic polynomial of 𝑨, 𝑝𝑨, the existence of a positive
recursion implies that 𝑔 = 𝑝𝑨 𝑄, where 𝑄 is a polynomial of degree 𝑞 with 0 ≤ 𝑞 ≤
𝑚. It is then immediate that

𝑚 = 𝑛 + 𝑞 ≥ 𝑛. (5.21)

Before presenting our main results on polyhedrality of reachable subsets, we
report a key theorem ([46, Th. 5]). In the following 𝑄 denotes the set of all real
polynomials of the form 𝑐 𝑥 −∑ 𝑐 𝑥 , where 𝑛 ≥ 1, 𝑐 > 0, and 𝑐 ≥ 0 for all 𝑖.

Theorem 5.12. [46, Th. 5] Let {𝑎 , … , 𝑎 } be given complex numbers, and let
𝑃(𝑥) be the polynomial 𝑥 − 𝑎 𝑥 − ⋯ − 𝑎 . Then conditions (A), (B) and (C)
below are equivalent:

(A) Any infinite sequence (𝑢 ) of complex numbers which satisfies the recursion
𝑢 = 𝑎 𝑢 + 𝑎 𝑢 + ⋯ + 𝑎 𝑢 for 𝑛 ≥ 0, also satisfies a recursion
with positive coefficients.

(B) The polynomial 𝑃(𝑥) divides a polynomial in 𝑄.

(C) In case the polynomial 𝑃(𝑥) has a positive root 𝑟, then all conditions (1)-(4)
below are satisfied:

(C1) 𝑟 ≥ |𝛼| for any root 𝛼 of 𝑃(𝑥).
(C2) if 𝛼 = 𝑟 for some root 𝛼 of 𝑃(𝑥), then 𝛼/𝑟 is a root of unity.
(C3) all roots 𝑃(𝑥) with absolute value 𝑟 are simple.
(C4) if 𝑃(𝑟) = 𝑃(𝑟𝜖) = 0, where 𝜖 = 1 with 𝑘 ≥ 1 minimal, then 𝑃(𝑥) has no

roots of the form 𝑠𝜔 where 0 < 𝑠 < 𝑟 and 𝜔 = 1.

We are now in the position to state a characterization of Proposition 5.9 in terms
of spec(𝑨), hence, providing numerically verifiable conditions as to when (5.17)
holds.

Theorem 5.13 (Polyhedrality of Reachset (𝑨, 𝒃)). Given an irreducible matrix 𝑨
∈ ℝ × and 𝒃 ∈ ℝ , the following statements are equivalent:
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(a) The infinite-time reachable subset is polyhedral, hence there exists an integer
𝑘∗ ∈ ℤ such that

Reachset (𝑨, 𝒃) = cone([conmat ∗(𝑨, 𝒃) 𝑨 , 𝒃 … 𝑨 , 𝒃]).

Denote the lowest integer for which the above equality holds by 𝑘 ∈ ℤ .

(b) The matrix 𝑨 defined in Definition 5.22, satisfies a positive recursion.

(c) If there exists a positive 𝜆 ∈ spec(𝑨 ), then the following conditions all hold:

(c1) 𝜆 = 𝜌(𝑨 ).
(c2) For any 𝜆 ∈ 𝜎 (𝑨 ), 𝜆 = 𝜌(𝑨 )exp(𝜙 2𝜋𝑖), where 𝜙 ∈ ℚ is a rational

number.

(c3) 𝜎 (𝑨 ), defined in Definition 5.22, includes only simple eigenvalues.

(c4) Given 𝑀 ∈ ℤ by Lemma 5.23, no 𝜆 ∈ 𝜎 (𝑨 ) has a polar angle which is
an integer multiple of 2𝜋/𝑀ℎ.

Note that the condition (a) of Theorem 5.13 involves the determination of the
integer 𝑘∗, which is in principle a test with an infinite number of steps. Similarly,
condition (b) is a test with an infinite number of steps. However, condition (c) of
the theorem is a finite test though it requires the exact eigenvalues.

Proof. (a)⇒(b)⇒(c): Since Reachset (𝑨, 𝒃) is polyhedral, according to Corollary 5.10,
there is a sufficiently large 𝑘 ≥ 𝑛 − ℎ such that the equation

𝑨[𝒃 𝑨𝒃 … 𝑨 𝒃 𝑨 , … 𝑨 , ] = [𝒃 𝑨𝒃 … 𝑨 𝒃 𝑨 , 𝒃 … 𝑨 , 𝒃]𝑿

has a solution 𝑿 ≥ 0. It can be easily verified using (5.17)-(5.19) that

𝑿 = [𝑿 0
𝑿 𝑿 ] , 𝑿 =

⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0 𝛼
1 0 ⋯ 0 𝛼
0 1 0 𝛼
⋮ ⋱ ⋮
0 ⋯ 0 1 𝛼

⎤
⎥
⎥
⎥
⎦

, (5.22)

𝑿 =
⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0 𝜌 (𝑨)
1 0 ⋯ 0 0
0 1 0 0
⋮ ⋱ ⋮
0 ⋯ 0 1 0

⎤
⎥
⎥
⎥
⎦

, 𝑿 =
⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0 𝛽
0 0 ⋯ 0 𝛽
0 0 0 𝛽
⋮ ⋱ ⋮
0 ⋯ 0 0 𝛽

⎤
⎥
⎥
⎥
⎦

. (5.23)

constitutes a solution, where 𝑿 ∈ ℝ × , 𝑿 ∈ ℝ × , and 𝑿 ∈ ℝ × . Let 𝑝𝑿 (𝜆) =
det(𝜆𝑰 − 𝑿 ) and 𝑝𝑿 (𝜆) = det(𝜆𝑰 − 𝑿 ). Since by assumption, 𝑘 ≥ 𝑛 − ℎ and
rank(conmat (𝑨, 𝒃)) = 𝑛, due to [47, Lemma 3.10], 𝑝𝑨(𝜆) divides 𝑝𝑿(𝜆) = 𝑝𝑿 (𝜆)
𝑝𝑿 (𝜆) = (𝜆 −𝜌 (𝑨))(𝜆 −𝛼 𝜆 −⋯−𝛼 ). Since 𝑨 is irreducible with cyclicity
index ℎ, 𝑝𝑨(𝜆) can be expressed as 𝑝𝑨(𝜆) = 𝑝𝑨 (𝜆)𝑝𝑨 (𝜆) = (𝜆 − 𝜌 (𝑨))𝑝𝑨 (𝜆).
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Therefore, 𝑝𝑨 (𝜆) divides 𝑝𝑿 (𝜆), which, due to statements (A) and (B) of Theo-
rem 5.12, proves that 𝑨 has a positive recursion of the form 𝑨 ∗−𝛾 ∗ 𝑨 ∗ −⋯−
𝛾 𝑰 = 0 for some 𝑛 − ℎ ≤ 𝑘∗ ≤ 𝑘 and for some 𝜸 ∈ ℝ ∗

. Assume 𝑨 has a positive
eigenvalue. Since 𝑨 satisfies a positive recursion, the statements (C1-C4) in (C) of
Theorem 5.12 hold for 𝑝𝑨 (𝜆). It is straightforward to check that this implies that
(c1)-(c4) holds1.

(c)⇒(b)⇒(a): Assume 𝑨 has a positive eigenvalue. We need to prove that
statements (c1)-(c4) imply a positive recursion for 𝑨 of the form 𝑨 ∗−𝛼 ∗ 𝑨 ∗ −
⋯−𝛼 𝑰 = 0, for 𝑘∗ ≥ 𝑛 − ℎ and 𝜶 ∈ ℝ ∗

, and that, in turn, implies polyhedrality of
the infinite-time reachable subset.
First we show that the statements (c1)-(c4) imply the statements (C1)-(C4) of The-
orem 5.12. The statement 𝜆 ∈ 𝜎 (𝑨 ) implies (C1) of Theorem 5.12. The require-
ment of all 𝜆 ∈ 𝜎 (𝑨 ) having a rational polar phase implies (C2). The requirement
of all 𝜆 ∈ 𝜎 (𝑨 ) being simple implies (C3), and (C4) is implied from 𝜎 (𝑨 ) includ-
ing no eigenvalue with polar phase 2𝜋𝑚/𝑀ℎ for any 𝑚 ∈ ℤ [9, Theorem 2.2.20].
Next, invoking the equivalence between (C) and (B) of Theorem 5.12 for 𝑝𝑨 (𝜆),
one can observe that there is a polynomial 𝑄(𝜆) of positive degree such that

𝑔(𝜆) = 𝑝𝑨 (𝜆)𝑄(𝜆) = 𝜆
∗ − 𝛼 ∗ 𝜆 ∗ −⋯− 𝛼 = 0, (5.24)

for 𝑘∗ ≥ 𝑛−ℎ and 𝜶 ∈ ℝ ∗
. It follows from (5.20) that 𝑨 has a positive recursion,

which results in (b).
Given (b), there exists a polynomial 𝑔(𝜆) of degree 𝑘∗ ≥ 𝑛 − ℎ satisfying (5.24),
from which one concludes that 𝑝𝑨(𝜆) = 𝑝𝑨 (𝜆)𝑝𝑨 (𝜆) divides ℎ(𝜆) = 𝑝𝑨 (𝜆)𝑔(𝜆) =
(𝜆 − 𝜌 (𝑨))(𝜆 ∗ − 𝛼 ∗ 𝜆 ∗ − ⋯ − 𝛼 ). Now consider the equation 𝑨𝑴 = 𝑴𝑿
with 𝑴 = [𝒃 𝑨𝒃 … 𝑨 ∗ 𝒃 𝑨 , 𝒃 … 𝑨 , 𝒃], where 𝑿 ∈ ℝ( ∗)×( ∗) is an
unknown matrix. Since conmat ∗(𝑨, 𝒃) is full rank by assumption and 𝑘∗ ≥ 𝑛 − ℎ,
𝑴 is of full rank as well. Then, it is known from [47, Lemma 10] that 𝑝𝑨(𝜆) divides
𝑝𝑿(𝜆). Hence, we can choose 𝑿 such that 𝑝𝑿(𝜆) = ℎ(𝜆). A possible choice of 𝑿,
having substituted 𝑘∗ for 𝑘, is then given by (5.22)-(5.23). It is clear from (5.22)-
(5.23) that 𝑿 admits a positive solution. Based on Corollary 5.10, this implies that
Reachset (𝑨, 𝒃) is polyhedral.

Remark 4. For a polyhedral Reachset (𝑨, 𝒃) the following can be observed:

(a) Due to (5.21) and from the second part of the proof of Theorem 5.13 the
vertex number of Reachset (𝑨, 𝒃), 𝑘vert, is at least 𝑛 − ℎ, which implies that
Reachset (𝑨, 𝒃) has at least 𝑛 generators. It has exactly 𝑛 generators (i.e., it is
simplicial) if and only if the characteristic polynomial 𝑝𝑨 of 𝑨 has non-positive
coefficients.

(b) In the view of Lemma 5.25, Reachset (𝑨, 𝒃) can be expressed as Reachset (𝑨, 𝒃) =
cone([𝒃 𝑨𝒃 … 𝑨 𝒃 𝒗 , … 𝒗 , ]), where 𝒗 , , … , 𝒗 , are the ℎ distinct
positive eigenvectors of 𝑨 associated with the eigenvalue 𝜌 (𝑨).

1Condition ∈ (𝑨 ) follows from (C1) of Theorem 5.12, and conditions (c2) and (c3) are, respec-
tively, a direct result of (C2) and (C3). Finally, (c4) is implied from (C4) using Lemma 5.23.
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Example 3 (polyhedral Reachset∞(𝑨, 𝒃)). Consider discrete-time linear time-invariant
positive system of (5.4) with system matrices

𝑨 = [
0.9727 0 0.0263
0.0388 0.1273 0.2156
0 3.4497 0

] , 𝒃 = [
0
1
1
]

where 𝑨 is primitive, i.e., is irreducible with cyclicity index ℎ = 1. We have spec(𝑨) =
{1, 0.9, −0.8}. We can assume 𝑨 = 1, and 𝑨 = diag(0.9, −0.8). Using Theo-
rem 5.13, it is immediate that conditions (c1) and (c2) hold as 𝜆 = 0.9 is a simple
eigenvalue of 𝑨 , which equals the spectral radius of 𝑨 . Condition (c1) holds
as well since the polar angle of 𝜆 = −0.8 is not an integer multiple of the polar
angle of 𝜆 = 0.9. Hence, it can be concluded that the infinite-time reachable sub-
set Reachset (𝑨, 𝒃) is polyhedral. We can also conclude that 𝑨 has a positive
recursion, which is readily verified as 𝑝𝑨 (𝜆) = 𝜆 − 0.1𝜆 − 0.72. Example 5.41 il-
lustrates the growth of Reachset (𝑨, 𝒃). It can be observed that Reachsetf(𝑨, 𝒃) is
not polyhedral since the cone keeps growing for increasing values of 𝑘. Its closure
is, however, polyhedral as shown in Figure 5.41d.

Example 4 (non-polyhedral Reachset (𝑨, 𝒃)). Consider the time-invariant
discrete-time linear positive system of (5.4) with system matrices

𝑨 = [
0 1 0
1 0 0.5
0 0.4 1

] , 𝒃 = [
0
1
0
] ,

where 𝑨 has cyclicity index ℎ = 1 with spec(𝑨) = {−1.05, 0.7116, 1.3383}. One
can assume 𝑨 = 1.3383 and 𝑨 = diag(−1.05, 0.7116). It is immediate that
condition (c1) of Theorem 5.13 is not satisfied as 0.7116 ≠ 𝜌(𝑨 ). Therefore,
Reachset (𝑨, 𝒃) is not polyhedral. This is illustrated by Figure 5.42d, fromwhich it is
clear that Reachset (𝑨, 𝒃) is approaching a round cone as introduced in Section 5.2.
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(a) Reachset (𝑨, 𝒃), 𝑘 = 3 (b) Reachset (𝑨, 𝒃), 𝑘 = 8

(c) Reachset (𝑨, 𝒃), 𝑘 = 19 (d) Reachset (𝑨, 𝒃), 𝑘=3 (red), 8 (blue
and red), 19 (green, blue and red) and
Reachset (𝑨, 𝒃) (the triangle with the red
vertex)

Figure 5.41: (a), (b), (c): The growth of the reachability cone Reachset (𝑨, 𝒃) of Example 3 for different
values of , where generators of the cone are marked by asterisks, and the Frobenius eigenvector is
marked by a red dot. (d): The growth of the reachable cone mapped on the 3-dimensional simplex

{𝒙 ∈ ℝ |1T𝒙 }.

5.5. When Is the Finite-Time Reachable Subsets
a Polyhedral Set?

The polyhedrality of the finite-time reachability set from the origin, Reachsetf(𝑨, 𝒃),
will be proven to be a special case of polyhedrality of Reachset (𝑨, 𝒃) but with
stricter requirements.

In this section we investigate the polyhedrality of the finite-time reachable set
from the origin, Reachsetf(𝑨, 𝒃). Consider a linear positive system with an irre-
ducible system matrix 𝑨 ∈ ℝ × . with the cyclicity index ℎ ∈ {1,… , 𝑛}. It follows
from Proposition 5.9 that the finite-time reachable set from the origin
Reachsetf(𝑨, 𝒃) is polyhedral if and only if there exists a positive integer 𝑘∗ ∈ ℤ
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(a) Reachset (𝑨, 𝒃), 𝑘 = 3 (b) Reachset (𝑨, 𝒃), 𝑘 = 6

(c) Reachset (𝑨, 𝒃), 𝑘 = 10 (d) Reachset (𝑨, 𝒃), 𝑘 = 3 (red region),
𝑘 = 6 (red and blue regions), 𝑘 = 10 (red,
blue and green regions). Reachset∞(𝑨, 𝒃)
approaches a “round cone”.

Figure 5.42: (a), (b), (c): The growth of the reachability cone Reachset (𝑨, 𝒃) of Example 4 for different
values of , where generators of the cone are marked by asterisks, and the Frobenius eigenvector is
marked by a red dot. (d): The growth of the reachable cone mapped on the 3-dimensional simplex

{𝒙 ∈ ℝ |1T𝒙 }.

such that

Reachset ∗ (𝑨, 𝒃) ⊆ Reachset ∗(𝑨, 𝒃), (5.25)
⇔ 𝑨 ∗𝒃 ∈ Reachset ∗(𝑨, 𝒃). (5.26)

The smallest 𝑘∗ for which (5.26) holds is referred to as the vertex number, 𝑘vert, of
Reachsetf(𝑨, 𝒃). Note that (5.26) also implies that

cone([𝑨 , 𝒃 … 𝑨 , 𝒃]) ⊆ Reachset vert(𝑨, 𝒃), (5.27)

which is clearly a restriction on (5.17).
Corollary 5.14. For an irreducible 𝑨 ∈ ℝ × with cyclicity index 1 ≤ ℎ ≤ 𝑛 and for
𝑏 ∈ ℝ , equivalence of the following statements follows directly from the above
argument:
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(a) Reachsetf(𝑨, 𝒃) is polyhedral.

(b) There exists an integer 𝑘vert ∈ ℤ such that cone([𝒃 𝑨𝒃 … 𝑨 𝒃]) is 𝑨-invariant
for any 𝑘 ≥ 𝑘vert.

(c) There exists an integer 𝑘vert ∈ ℤ such that for the matrix equation

𝑨[𝒃 𝑨𝒃 … 𝑨 𝒃] = [𝒃 𝑨𝒃 … 𝑨 𝒃]𝑿,

there exists a solution 𝑿 ∈ ℝ( )×( ), with 𝑘 ≥ 𝑘vert.

(d) Based on (5.27) and Lemma 5.25, there exists an integer 𝑘vert ∈ ℤ such that
for any 𝑘 ≥ 𝑘vert, cone([𝒗 , … 𝒗 , ]) ⊆ Reachset (𝑨, 𝒃).

The following theorem provides necessary and sufficient conditions on spec(𝑨)
for polyhedrality of Reachsetf(𝑨, 𝒃). These conditions turn out to be a conservative
version of those of Theorem 5.13.

Theorem 5.15 (Polyhedrality of Reachsetf(𝑨, 𝒃)). Let 𝑨 ∈ ℝ × be irreducible
with index of cyclicity ℎ ∈ {1,… , 𝑛} and 𝒃 ∈ ℝ . Then the following statements are
equivalent:

(a) The finite-time controllable subset is polyhedral and hence there exists an in-
teger 𝑘∗ ∈ ℤ , 𝑘∗ ≥ 𝑘vert, such that Reachsetf(𝑨, 𝒃) = Reachset ∗(𝑨, 𝒃).

(b) 𝑨 has a positive recursion.

(c) The matrix 𝑨 , defined in Definition 5.22, does not have any positive eigenvalue.

Proof. (a) ⇒ (b) ⇒ (c): Based on Corollary 5.14 with 𝑘 ≥ 𝑛 we obtain

𝑨(conmat (𝑨, 𝒃)) = (conmat (𝑨, 𝒃))𝑿,

where 𝑿 ∈ ℝ × is given by

𝑿 =
⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0 𝛼
1 0 ⋯ 0 𝛼
0 1 0 𝛼
⋮ ⋱ ⋮
0 ⋯ 0 1 𝛼

⎤
⎥
⎥
⎥
⎦

.

Since, by assumption, conmat (𝑨, 𝒃) is of full rank and 𝑘 ≥ 𝑛, there exists
[47, Lemma 3.10] a polynomial 𝑄(𝜆) of positive degree such that 𝑝𝑨(𝜆)𝑄(𝜆) =
𝑝𝑿(𝜆) = 𝜆 − 𝛼 𝜆 − ⋯ − 𝛼 𝜆 − 𝛼 , which, in the view of Definition 5.11,
proves that 𝑨 has a positive recursion. Noting that (b) is equivalent to condition
(B) of Theorem 5.12 ([46, Th. 5]), all conditions (C1)-(C4) are then fulfilled. In
particular, (C4) holds as conditions (C1)-(C3) are already satisfied for a positive
irreducible matrix due to the Perron-Frobenius theorem [9, Th. 2.1.4, 2.2.20]. Con-
dition (C4) requires that no eigenvalue 𝜆 ∈ 𝜎 (𝑨) has a polar angle of 2𝜋𝑘/ℎ for
𝑘 = 0,… , ℎ − 1. Since spec(𝑨) is invariant under a polar rotation of 2𝜋𝑚/ℎ for
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any 𝑚 ∈ ℤ, no 𝜆 ∈ 𝜎 (𝑨) is then positive. Noting that for an irreducible matrix,
(𝜎 (𝑨) ⧵ {𝜌(𝑨)}) ∩ ℝ = ∅ and that spec(𝑨 ) = (𝜎 (𝑨) ∪ 𝜎 (𝑨) ⧵ {𝜌(𝑨)}), one
concludes that 𝑨 has no positive eigenvalue.

(c)⇒ (b)⇒ (a): Given (c), we have spec(𝑨 )∩ℝ = ∅. For an irreducible matrix
it holds that (𝜎 (𝑨)⧵{𝜌(𝑨)})∩ℝ = ∅. Since spec(𝑨 ) = 𝜎 (𝑨)∪(𝜎 (𝑨)⧵{𝜌(𝑨)}),
it follows that 𝜎 (𝑨) ∩ ℝ = ∅, from which it can be immediately concluded that
∄𝜆 ∈ 𝜎 (𝑨), 𝜆 = |𝜆|exp(𝑖2𝜋𝑚/ℎ) for any 𝑚 ∈ ℤ. Hence, we establised that (C4) of
Theorem 5.12 ([46, Th. 5]) holds for 𝑝𝑨(𝜆). Moreover, statements (C1)-(C3) hold
as well for 𝑝𝑨 as 𝑨 is irreducible. Therefore, due to (B) of Theorem 5.12, there
exists a polynomial 𝑄 of positive degree, such that 𝑝𝑨(𝜆)𝑄(𝜆) = 𝜆

∗ −𝛼 ∗ 𝜆 ∗ −
⋯ − 𝛼 𝜆 − 𝛼 , where 𝑘∗ ≥ 𝑛 and 𝛼 ≥ 0, 𝑖 = 0, 1, … , 𝑘∗ − 1. This proves that 𝑨
has a positive recursion based on Definition 5.11. Then, (a) immediately follows as
𝑨 ∗𝒃 = ∑

∗
𝛼 𝑨 𝒃.

Remark 5. Note that since deg(𝑄(𝜆)) ≥ 0, 𝑘vert of Reachsetf(𝑨, 𝒃) is at least 𝑛,
and it equals 𝑛 if and only if 𝑝𝑨(𝜆) = 𝜆 − 𝛼 𝜆 − ⋯ − 𝛼 𝜆 − 𝛼 with 𝛼 ≥ 0,
𝑖 = 0,… , 𝑛 − 1. Hence Reachsetf(𝑨, 𝒃) is a simplicial cone (i.e., has 𝑛 generators)
if and only if the characteristic polynomial of 𝑨 has non-positive coefficients. One
such matrix is a cyclic matrix with cyclicity index ℎ = 𝑛 as 𝑝𝑨(𝜆) = 𝜆 − 𝜌 (𝑨).

Comparing Theorem 5.13 to Theorem 5.15 reveals that the latter is a restricted
version of the former. For example, condition (b) of Theorem 5.13 requires a part
of 𝑨 (i.e., 𝑨 ) to have a positive recursion while that of Theorem 5.15 requires the
entire 𝑨 to have a positive recursion.
Example 5 (polyhedral Reachsetf(𝑨, 𝒃)). Consider the time-invariant discrete-
time linear positive system of (5.4) with system matrices

𝑨 =
⎡
⎢
⎢
⎣

0 1.6333 1.1049 0
23.5667 6.0944 0 0
0 0 1.1225 1.0672
0 1.6611 0 0.7830

⎤
⎥
⎥
⎦
, 𝒃 =

⎡
⎢
⎢
⎣

0
0
1
1

⎤
⎥
⎥
⎦
,

where 𝑨 is irreducible with cyclicity index ℎ = 1. It can be verified that spec(𝑨) =
{10,−4, 1 + 1𝑖, 1 − 1𝑖}. One can recognize that no eigenvalue of 𝑨 = diag(−4, 1 +
𝑖, 1−𝑖) is positive. Therefore, condition (c) of Theorem 5.15 holds and it follows that
𝑨 has a positive recursion. In fact, it can be verified that in this case it holds that
𝑨 = 166.7569𝑰 +16.1434𝑨+39.7036𝑨 +6.0262𝑨 , where 𝑰 denotes the identity
matrix of dimension 4 × 4. In addition, we can conclude that Reachsetf(𝑨, 𝒃) is
polyhedral with 𝑘vert = 6. This is illustrated by Figure 5.51, where it is observed that
Reachset (𝑨, 𝒃) stops growing for 𝑘 ≥ 6, i.e., Reachset (𝑨, 𝒃) = Reachset (𝑨, 𝒃)
for any 𝑘 ≥ 6. One can also notice from Figure 5.51c that 𝐶lim ⊂ Reachset vert(𝑨, 𝒃),
with 𝐶lim introduced in Definition 5.24. Note that in this particular example, since
ℎ = 1, we have 𝐶lim = cone(𝑨 , 𝒃) = {𝑐𝒗 |𝑐 ∈ ℝ }, where 𝒗 is the Frobenius
eigenvector of 𝑨 .

Remark 6 (Concluding Remark on Theorems 5.13 and 5.15). Theorems 5.13 and
5.15 emphasize the equivalence between the three statements; but this does not
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(a) Reachset (𝑨, 𝒃), 𝑘 = 3 (b) Reachset (𝑨, 𝒃), 𝑘 = 4 (c) Reachset (𝑨, 𝒃), 𝑘 = 6

Figure 5.51: Example 5: growth of the reachability cone mapped on the 3-dimensional simplex {𝒙 ∈
ℝ |1T𝒙 }; the generators of the cone and the Frobenius eigenvector are, respectively, marked by
asterisks and a dot.

imply that all cases are directly verifiable. In fact, it is very difficult to verify state-
ment (b) directly especially since 𝑘vert and 𝑘vert are not known a priori. In practice,
statement (a) is practically what one is interested in, and (c) provides numerically
verifiable conditions. Statement (b) serves the dual purpose of facilitating the proof
and providing insight into otherwise-very-abstract statement (a) and statement (c)
by relating them to the matrix having a (partial) positive recursion. Moreover, the
characterization (b) will be useful for a different algebraic characterization which is
to be developed.

5.5.1. Special Case
So far it has been assumed that rank(conmat (𝑨, 𝒃)) = 𝑛. Based on this assump-
tion, the polyhedrality of the finite-time reachable set only depends on the spectrum
of 𝑨. In addition, 𝑘vert ≥ 𝑛 for Reachsetf(𝑨, 𝒃). We now point out that in the ab-
sence of such an assumption, Reachsetf(𝑨, 𝒃) can depend on the structure of 𝒃
and that the vertex number can be less than 𝑛. In particular, it will be shown that
𝑘vert = ℎ if 𝒃 ∈ ℝ is of a particular structure.

Theorem 5.16. Let 𝑨 ∈ ℝ × be irreducible with cyclicity index ℎ with 0 ≤ ℎ ≤
𝑛 − 1. Then, Reachsetf(𝑨, 𝒃) = cone(conmat (𝑨, 𝒃)) if 𝒃 ∈ cone([𝒗 , … 𝒗 , ]),
where 𝒗 , , 𝑖 = 0,… , ℎ − 1 are the ℎ positive eigenvectors of 𝑨 .

Proof. Assume 𝒃 = ∑𝑐 𝒗 , for some 𝒄 ∈ ℝ . Then, since

𝑨 𝒃 = ∑𝑐 𝜌 (𝑨)𝒗 , = 𝜌 (𝑨)𝒃,

it is immediate to see that 𝑨(conmat (𝑨, 𝒃)) = (conmat (𝑨, 𝒃))𝑿 has a positive
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solution

𝑿 =
⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0 𝜌 (𝑨)
1 0 ⋯ 0 0
0 1 0 0
⋮ ⋱ ⋮
0 ⋯ 0 1 0

⎤
⎥
⎥
⎥
⎦

,

which, in the view of Corollary 5.14, completes the proof.

For 𝑨 primitive (i.e., ℎ = 1), this results in the obvious case of Reachsetf(𝑨, 𝒃)
being a ray along the Frobenius eigenvector 𝒗 of 𝑨 when 𝒃 = 𝑐𝒗 for any 𝑐 ≥ 0.

5.6. Does the Reachable Set Contain a Pre-specified
Set?

A direct consequence of polyhedrality of infinite- or finite-time reachable subset
discussed in Section 5.4 and Section 5.5 is that it enables us to determine whether
a given subset of the positive vector space is reachable from the origin. Given a
cone 𝐶obj ⊆ ℝ of control objectives or a subset of ℝ , the problem considered here
is to investigate whether 𝐶obj is contained in Reachsetf(𝑨, 𝒃) or in Reachset (𝑨, 𝒃).
Of particular interest is when 𝐶obj ⊂ ℝ is a polyhedral cone or a polytope. Note that
if the control objective cone 𝐶obj is not polyhedral then once can outer approximate
it by a polyhedral cone 𝐶out ⊆ ℝ such that 𝐶obj ⊂ 𝐶out.

Here, it is assumed that the reachability cone or its closure is polyhedral and that
its corresponding vertex number or an upper bound of it is known. Note that the
authors are not aware of any method to directly compute an upper bound for 𝑘vert
or for 𝑘vert. Nonetheless, such an upper bound could be imposed by length of the
control sequence that can be practically applied. Let 𝑁 ∈ ℤ denote an upper bound
to 𝑘vert, or, where applicable, an upper bound to 𝑘vert. Hence Reachset (𝑨, 𝒃) =
cone([𝒃 … 𝑨 𝒃 𝒗 , … 𝒗 , ]) and/or Reachsetf(𝑨, 𝒃) = cone([𝒃 … 𝑨 𝒃]).
Proposition 5.17. Let 𝐶obj = cone([𝒑 … 𝒑 ]) or 𝐶obj = conv([𝒑 … 𝒑 ]), where
𝒑 ∈ ℝ , 𝑖 = 1,… ,𝑚. Then

(a) 𝐶obj is reachable in finite time if and only if

∀ 𝒑 ∈ {𝒑 ,… , 𝒑 }, 𝒑 ∈ Reachsetf(𝑨, 𝒃).

(b) 𝐶obj is reachable in infinite time (to be called almost reachable) if and only if

∀𝒑 ∈ {𝒑 ,… , 𝒑 }, 𝒑 ∈ Reachset (𝑨, 𝒃), and
∃ 𝒑 ∈ {𝒑 ,… , 𝒑 } such that 𝒑 ∉ Reachsetf(𝑨, 𝒃).

Proof. The proof is obvious from Definition 5.14 and considering the fact that a
cone can be expressed as a positive combination of its generators.
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It is obvious from Proposition 5.17, that checking for reachability from the origin
involves checking the following condition for each 𝑖 ∈ {1, … ,𝑚}:

∃𝒙 ∈ {𝒛|𝑴𝒛 = 𝒑 , 𝒛 ∈ ℝ }, (5.28)

where 𝑴 ∈ ℝ × . Depending on the problem being investigated, either
𝑴 = [𝒃 … 𝑨 𝒃 𝒗 , … 𝒗 , ] or 𝑴 = [𝒃 … 𝑨 𝒃].

In general, since 𝑁 ≥ 𝑛 (see Remark 4 and Remark 5), (5.28) defines an un-
derdetermined system of equations. It is known that the positive solution of (5.28)
is not unique in general [48, 49], and that uniqueness is guaranteed when the so-
lution is sufficiently sparse [48]. The author of [50] characterizes necessary and
sufficient conditions on the polytope 𝑃 = conv(𝑴) for uniqueness of the solution,
and he proves that a unique solution exists if and only if 𝑃 is 𝑘-neighborly 2. In
[49, 53], an equivalent condition is presented in terms of the null space of 𝑴. In
this regard, this problem relates to the sparse measurement problem, where the
aim is to reconstruct a positive sparse vector from lower-dimensional linear mea-
surements [54]. The results in this field do not directly apply here as the necessary
sparsity condition is usually not met. In addition, we are not interested in finding
the sparsest solution of (5.28), which is normally an NP-hard problem [48].

Consider for 𝑛 ∈ ℤ the positive matrix 𝐴 ∈ ℝ × . Let 𝑁 ∈ ℤ with 𝑁 > 𝑛
be an upper bound of 𝑘vert or an upper bound of 𝑘vert. Denote by 𝐶(𝑁, 𝑛) size
of the set of all 𝑛-subsets of ℤ = {1,… ,𝑁}. Let the index set ℐ be an 𝑛-subset
(i.e., |ℐ | = 𝑛) of ℤ for 𝑗 = 1, 2, … , 𝐶(𝑁, 𝑛) such that ∪ ( , )ℐ = ℤ and ℐ ≠ ℐ ,
𝑗, 𝑘 = 1, 2, … , 𝐶(𝑁, 𝑛), 𝑗 ≠ 𝑘.

Let 𝑰ℐ denote the matrix with 𝑛 columns, where the columns are chosen from
the columns of 𝑰 (i.e., the identity matrix of dimension 𝑁) according to the index
set ℐ and let 𝐶obj = cone([𝒑 … 𝒑 ]).
Proposition 5.18. Consider the above defined objects. Then, for any
𝑖 ∈ {1, … ,𝑚}, equation (5.28) has a solution 𝒙 if and only if,

𝑿 = {𝒙 |𝒙 = 𝑰ℐ (𝑴𝑰ℐ ) 𝒑 , 𝒙 ∈ ℝ , 𝑗 = 1,… , 𝐶(𝑁, 𝑛)}, (5.29)

is a non-empty set.

Proof. From our assumption we have 𝒑 ∈ cone(𝑴). Since𝑁 > 𝑛, due to Carathéodory
theorem [55], 𝒑 also lies in at least one simplicial cone generated by 𝑛 columns
of 𝑴. Let 𝒥 ⊂ {1,… ,𝑁} with |𝒥 | = 𝑛 be an index set composed of the indices of
the columns generating this simplicial cone, and let 𝑴𝒥 denote the columns of 𝑴
corresponding to 𝒥 . We can then write 𝒑 ∈ cone(𝑴𝒥 ), which can be expressed as
𝑴𝑰𝒥 𝒛 = 𝒑 having a solution 𝒛 ∈ ℝ . Since 𝑴 has full row rank and 𝑰𝒥 is of full
column rank, one obtains 𝒛 = (𝑴𝑰𝒥 ) 𝒑 . Finally, we obtain a solution 𝒙 ∈ ℝ ,
where 𝒙 = 𝑰𝒥 𝒛 = 𝑰𝒥 (𝑴𝑰𝒥 ) 𝒑 .

The converse is proved in a straightforward manner by noticing that every 𝒛 ∈ 𝑿
satisfies (5.28).
2A -neighborly polytope is a convex polytope in which every set of or fewer vertices forms a face
[51, 52].
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Remark 7. Let 𝑿 = {𝒙 ,… , 𝒙 } for some 𝑞 ∈ ℤ . It is then clear from the proof
of Proposition 5.18 that the set of solutions of (5.28) is the convex hull of 𝑿 , i.e.,
we have for (5.28) that 𝒙 ∈ conv(𝑿 ).

Note that even though Proposition 5.18 provides a method to determine whether
𝐶obj ⊆ cone(𝑴) by checking inclusion of 𝐶obj in any simplicial subcone of cone(𝑴),
the computational complexity of this method can be prohibitive as the check must
be conducted for all 𝐶(𝑁, 𝑛) simplicial subcones in the worst case. A more practical
approach is then presented by the following proposition.
Proposition 5.19. Let

𝑴f = [𝒃 … 𝑨 𝑏],
𝑴 = [𝒃 … 𝑨 𝑏 𝒗f, … 𝒗f, ],
𝐶obj = cone([𝒑 … 𝒑 ]).

Define the following optimization problem for each 𝑖 ∈ {1, … ,𝑚}:

min
𝒙

𝒙T1 (5.30)

subject to 𝑴𝒙 = 𝒑 , and 𝒙 ≥ 0.

We then have the following:

(a) The optimization problem (5.30) with𝑴 = 𝑴 has an optimal solution 𝒙∗ ∈ ℝ
if and only if (5.28) has a solution with 𝑴 = 𝑴 .

(b) The optimization problem (5.30) with 𝑴 = 𝑴f has an optimal solution 𝒙∗ ∈ ℝ
if and only if (5.28) has a solution with 𝑴 = 𝑴f.

Proof. If (5.28) has a solution, the set 𝑿 in (5.29) is non-empty. As mentioned in
Remark 7, the feasible set of (5.30) is conv(𝑿 ). Therefore, the convex optimization
problem with linear penalty function converges to the minimum 1-norm solution in
the feasible set. The converse is obvious.

Example 6. We conclude this section with an example illustrating the application
of Proposition 5.19. Consider the system matrices of Example 5. Let 𝐶obj be the
polytope given by

𝐶obj = {𝒑 ∈ ℝ |𝒑 =∑𝜆 𝒑 , 𝜆 ≥ 0,∑𝜆 = 1},

where

𝒑 = [1, 3, 1, 1]T, 𝒑 = [1, 3, 4, 3]T,
𝒑 = [1, 2, 2, 1]T, 𝒑 = [1, 1, 2, 1]T.

We will now check whether the system initially at rest can be steered to any point
in 𝐶obj in finite time. From Example 5, it is known that 𝑘vert = 6. Thus taking 𝑴 =
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[𝒃 𝑨𝒃 … 𝑨 𝒃], we solve the linear programming problem (5.30) using the Dual-
Simplex algorithm implemented in the Matlab Optimization Toolbox. The optimal
solutions are obtained as

𝒙∗ = [0.1209, 0.3735, 0, 0.0078, 0, 0.0001]T,
𝒙∗ = [2.3460, 0.6165, 0.0876, 0, 0.0003, 0]T,
𝒙∗ = [0.2989, 0.6982, 0.0473, 0, 0.0003, 0]T,
𝒙∗ = [0.2517, 0.7798, 0.0071, 0, 0.0003, 0]T.

Hence, the vertices of 𝐶obj can be reached from the origin in a finite number of steps
using positive inputs, which are determined by the solution vectors 𝒙∗. Moreover,
since 𝑘vert = 6, every vertex of 𝐶obj can be reached in at most 6 steps from the
origin. Since 𝐶obj is the convex hull of its vertices, we can conclude that any point
𝒑 = ∑ 𝜆 𝒑 ∈ 𝐶obj can be reached from the origin in at most 6 steps using the
input sequence 𝒖∗ = ∑ 𝜆 𝒙∗.

5.7. Conclusions and Future Work
The main contribution of the chapter is the result that the reachable set from the
origin of a linear positive system can be either a polyhedral cone or a nonpolyhedral
cone depending on the system matrices. Among other applications, this has direct
consequences for the realization problem, where the choice for the reachable subset
from the origin is essential as observability of a linear positive system is then of
interest only for states in the reachable set.

For a single-input case, necessary and sufficient conditions for polyhedrality of
the reachable set from the origin and its closure are provided. These conditions
are expressed in terms of characteristics of eigenvalues of the system. Finally, the
chapter presents a method to determine for a positive linear system whether a
given target set in the positive orthant can be reached from the origin.

There are several technical issues to be studied. Is it possible to determine in a
finite number of steps for a positive matrix whether there exists a positive recursion
for it?

In this chapter, we have focused on the single input case, where 𝒃 ∈ ℝ . The
problem of characterizing the reachability set from the origin for the multi-input
case is an interesting problem because the results developed here are not directly
applicable. The main issue, as noted in [47], is that the direct sum of two non-
polyhedral cones may still result in a polyhedral cone. Therefore, one cannot apply
the results of this chapter to a set of systems (𝑨, 𝒃 ) separately, with 𝒃 being a
column of 𝑩.

Finally, it is also of interest to investigate the geometry of the reachable set when
the controllability matrix is not of full rank. As far as the authors of this chapter
know, this is still an open issue.
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Appendix

5.A. Positive Matrices
The reader finds in this appendix a summary of the theory of positive matrices
including concepts and decompositions as far as is necessary for the understanding
of this chapter. This theory is well known and therefore not stated in the body of
the chapter.

Decompositions of Positive Matrices
As is well known in the theory of positive matrices, such matrices can be either
reducible or irreducible as defined next. See the books [9, 56] for the definitions.

Definition 5.20. Consider a positive matrix 𝑨 ∈ ℝ × for 𝑛 ∈ ℤ . Call this matrix
reducible if

∃ 𝑷 ∈ ℝ × , a permutation matrix,
∃ 𝑛 , 𝑛 ∈ ℤ , ∃ 𝐴 ∈ ℝ × , 𝐴 ∈ ℝ × , 𝐴 ∈ ℝ × ,
such that 𝑛 = 𝑛 + 𝑛 and

𝐴 = 𝑃 ( 𝐴 𝐴
0 𝐴 )𝑃 . (5.31)

Call the matrix 𝐴 irreducible if (1) 𝐴 ≠ 0 and (2) 𝐴 is not reducible.
Call the matrix 𝐴 fully reduced if either 𝑛 = 1 or there exists a transformation by

a permutation matrix 𝑃 so that 𝑃𝐴𝑃 has a decomposition in upper-block-diagonal
form with only irreducible submatrices on the block-diagonal. Thus the lower-block-
diagonal matrices are all zero. The particular form of a fully-reduced positive matrix
is thus

𝐴 = 𝑃
⎛
⎜
⎜

⎝

𝐴 𝐴 𝐴 … 𝐴 , 𝐴 ,
0 𝐴 𝐴 … 𝐴 , 𝐴 ,
0 0 𝐴 … 𝐴 , 𝐴 ,
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝐴 , 𝐴 ,
0 0 … 0 𝐴 ,

⎞
⎟
⎟

⎠

𝑃 , (5.32)

where 𝑃 ∈ ℝ × is a permutation matrix and the matrices on the block-diagonal of
(5.32) are all irreducible positive matrices.

Decompositions of Positive Matrices Based on Eigenvalues
Recall that for a matrix 𝑨 ∈ ℝ × the spectrum is defined as the set of its eigenvalues
and the spectral radius is defined as 𝜌(𝑨) = max ∈spec(𝑨) |𝜆|. It follows from [9,
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Th. 1.3.2] that every positive matrix 𝑨 ∈ ℝ × has at least one eigenvalue which
equals its spectral radius.

Definition 5.21. [9, Def. 2.2.26]. Define for an integer 𝑛 ∈ ℤ and an irreducible
positive matrix 𝐴 ∈ ℝ × , the index of cyclicity of 𝐴 as the number ℎ ∈ ℤ such that
ℎ equals the maximum number of distinct eigenvalues of 𝐴 which are in modulus
equal to the spectral radius 𝜌(𝐴). In mathematical notation:

ℎ = max{𝑘 ∈ ℤ | ∀ 𝑖 ∈ ℤ , |𝜆 (𝐴)| = 𝜌(𝐴)}. (5.33)

It follows from the comment above the previous definition that ℎ ≥ 1. If ℎ ≥ 2 then
one says that the matrix 𝐴 is cyclic of index ℎ.

Definition 5.22. Consider an integer 𝑛 ∈ ℤ and an irreducible matrix 𝑨 ∈ ℝ × .
Partition the set of eigenvalues into the following two subsets: 𝜎 (𝑨), which is the
spectrum of 𝑨 on the circle centered at origin with radius 𝜌(𝑨), and 𝜎 (𝑨), which is
the spectrum of 𝑨 strictly inside the disc centered at origin with radius 𝜌(𝑨). Hence,

𝜎 (𝑨) = {𝜆 ∈ spec(𝑨)| |𝜆(𝑨)| = 𝜌(𝑨)}, (5.34)
𝜎 (𝑨) = {𝜆 ∈ spec(𝑨)| |𝜆(𝑨)| < 𝜌(𝑨)}

with

spec(𝑨) = 𝜎 (𝑨) ∪ 𝜎 (𝑨), 𝜎 (𝑨) ∩ 𝜎 (𝑨) = ∅;
𝑛 = |𝜎 (𝑨)| = ℎ, 𝑛 = |𝜎 (𝑨)| = 𝑛 − 𝑛 = 𝑛 − ℎ.

In addition, there exists a nonsingular matrix 𝑺 ∈ ℝ × such that the matrix 𝑺 𝑨𝑺
is block-diagonal with,

𝑺 𝑨𝑺 = block-diag(𝑨 , 𝑨 ), (5.35)
𝑨 ∈ ℝ × , 𝑨 ∈ ℝ × , spec(𝑨 ) = 𝜎 (𝑨), spec(𝑨 ) = 𝜎 (𝑨).

Finally, define the sets 𝜎 (𝑨 ) and 𝜎 (𝑨 ) in a similar manner with 𝑨 being replaced
by 𝑨 in (5.34) and define the set 𝜎 (𝑨) ⊆ 𝜎 (𝑨 ) as the set of all eigenvalues of
𝑨 whose whose polar angle is a rational multiple of 2𝜋.

The notation |𝜎 (𝐴)| denotes the number of elements of the indicated set. That
the decomposition (5.35) is indeed a partition follows from Perron-Frobenius theo-
rem [9, Th. 2.1.4, 2.2.20] and from the concept of spectral radius as the maximal
value of the absolute values of all eigenvalues. In general, the matrices 𝑨 and 𝑨
depend on 𝑺. However, the relations (5.35) hold for any such 𝑺. When the matrices
𝑨 and 𝑨 are used in the body of the chapter, then these are characterized by their
spectra. Also note that in contrary to 𝜎 (𝑨), 𝜎 (𝑨 ) can be empty set.

Next, we present the following lemma about the existence of a subset of eigen-
values that are among the (𝑀 ℎ)-th root of unity for some 𝑀 ∈ ℤ . This lemma is
used in the sequel for deriving the conditions on spec(𝑨) for 𝑨 to have a positive
recursion.
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Lemma 5.23. Consider the objects of Definition 5.22.
Then, there exists a minimal integer 𝑀 ∈ ℤ such that

𝜎 (𝑨) ⊆ {𝜆 ∈ spec(𝑨 )| 𝜆 = 𝜌(𝑨 ) exp(2𝜋𝑘𝑀ℎ 𝑖), 𝑘 = 0,… ,𝑀ℎ − 1}, (5.36)

or, equivalently, there exists a minimal integer 𝑀 ∈ ℤ such that the eigenvalues
of 𝑨 /𝜌(𝑨 ) with unit modulus whose arguments are a rational multiple of 2𝜋 are
among the (𝑀 ℎ)-th roots of unity.

Proof of Lemma 5.23. Let 𝛿 be a set of 𝑛 ∈ ℤ members of 𝜎 with the property
that the difference between the polar angle of no two members of 𝛿 is an integer
multiple of 2𝜋/ℎ, or formally we define 𝛿 = {𝜆 ,… , 𝜆 ∈ 𝜎 |arg(𝜆 ) − arg(𝜆 ) ≠
2𝑧𝜋/ℎ, 𝑖 ≠ 𝑗, 𝑧 ∈ ℤ}. For 𝜆 ∈ 𝛿 , 𝑗 = 1,… , 𝑛 , let arg(𝜆 ) = . Define the sets

𝜎 ⊂ 𝜎 for 𝑗 = 1,… , 𝑛 as

𝜎 = {𝜆 ∈ spec(𝑨 )|𝜆 = 𝜌(𝑨 ) exp ((𝑘/ℎ + 𝑝 /𝑞 )2𝜋𝑖), 𝑘 = 0,… , ℎ − 1},

or equivalently using the notation 𝑠 , ≡ 𝑘𝑞 + ℎ𝑝 (mod ℎ𝑞 ),

𝜎 = {𝜆 ∈ spec(𝑨 )|𝜆 = 𝜌(𝑨 ) exp (
𝑠 ,
ℎ𝑞 2𝜋𝑖), 𝑘 = 0,… , ℎ − 1}.

It is clear that 𝜎 ,… , 𝜎 are mutually disjoint. In addition, since the eigenvalues of

𝑨 are invariant under polar rotation of 2𝑘𝜋/ℎ for any 𝑘 ∈ ℤ, we have 𝜎 = ∪ 𝜎 .
Noting that 0 ≤ 𝑠 , ≤ ℎ𝑞 −1 for 𝑘 = 0,… , ℎ−1 and for 𝑗 = 1,… , 𝑛 , one observes
that 𝜎 has the form proposed in (5.36) by choosing 𝑀 = lcm(𝑞 , … , 𝑞 ).

It follows from [9, Th. 2.2.20] that if the matrix 𝐴 ∈ ℝ × is irreducible and if 𝐴
is of index of cyclicity ℎ ≥ 2 then there exists a permutation matrix 𝑃 ∈ ℝ × and
matrices {𝐴 , ∈ ℝ × , 𝑖 = 0, 1, … , ℎ − 1 (mod ℎ)} such that,

∑ 𝑛 = 𝑛,

𝑨 = 𝑷⎛⎜

⎝

0 𝑨 , 0 … 0 0
0 0 𝑨 , … 0 0
⋮ 0 ⋱ 𝑨 , 0
0 0 0 … 0 𝑨 ,
𝑨 , 0 0 … 0 0

⎞
⎟

⎠

𝑷 , (5.37)

with square diagonal blocks.

One then says that the positive matrix 𝑨 is cogredient to the block matrix of equation
(5.37); [9, Def. 2.1.2].

The irreducible positive matrix 𝑨 ∈ ℝ × is called primitive if its trace is strictly
positive; see [9, Def. 2.1.8, Cor. 2.2.28].
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It follows from the proof of [9, Th. 2.2.30] that if the matrix 𝑨 ∈ ℝ × is
irreducible and if 𝐴 is of index of cyclicity ℎ ≥ 2 then there exists a permutation
matrix 𝑷 ∈ ℝ × such that

𝑨 = 𝑷⎛⎜

⎝

𝑪 , 0 0 … 0 0
0 𝑪 , 0 … 0 0
⋮ … ⋮ ⋱ 0 0
0 0 0 … 𝑪 , 0
0 0 0 … 0 𝑪 ,

⎞
⎟

⎠

𝑷 ,

∀ 𝑖 ∈ ℤ , 𝑪 , ∈ ℝ × are primitive matrices with 𝜌(𝑪 , ) = 𝜌 (𝑨);

∑ 𝑛 = 𝑛.

Sources for the above theory are not only [9] but also the book [31, Ch. 3].

Limits of Powers of Positive Matrices
It follows from Theorem [9, Th. 2.4.1] that for a primitive irreducible matrix 𝑨 ∈
ℝ × , the following limit exists:

lim
→

( 𝑨
𝜌(𝑨)) ∈ ℝ × .

Next the above results can be combined. Consider an irreducible matrix 𝐴 ∈
ℝ × . Assume that the index of cyclity of 𝐴 is such that ℎ ≥ 2. It then follows from
the above that 𝐴 is cogredient to a block diagonal matrix with on the diagonal
primitive irreducible matrices. From the above existence of the limit then follows
that,

𝑨 = 𝑷⎛⎜

⎝

𝑪 , 0 0 … 0 0
0 𝑪 , 0 … 0 0
⋮ … ⋮ ⋱ 0 0
0 0 0 … 𝑪 , 0
0 0 0 … 0 𝑪 ,

⎞
⎟

⎠

𝑷 ,

lim
→

( 𝑨
𝜌 (𝑨)) = 𝑷 block-diag( lim

→
(𝑪 , /𝜌 (𝑪 , ), … , lim→ (𝑪 , /𝜌 (𝑪 , )) 𝑷

= 𝑷 block-diag(𝑪 , , , … , 𝑪 , , ) 𝑷 ∈ ℝ × .

Next, we introduce the following lemma characterizing the limit behavior of
conmat (𝑨, 𝒃) as 𝑘 → ∞, which is used for characterizing the infinite-time reachable
subset Reachset (𝑨, 𝒃).

Definition 5.24. Let the positive matrix 𝑨 ∈ ℝ × be irreducible with index of
cyclicity ℎ with 1 ≤ ℎ ≤ 𝑛 and let 𝒃 ∈ ℝ . Define the matrices and the limit cone
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according to

∀ 𝑖 ∈ {0, … , ℎ − 1}, 𝑨 , = lim → (( 𝑨
𝜌(𝑨)) ) 𝑨 ,

𝐶lim = cone([𝑨 , 𝒃 … 𝑨 , 𝒃]).

∀ 𝑖 ∈ {0, … , ℎ − 1}, 𝑨 , = lim → (( 𝑨
𝜌(𝑨)) ) 𝑨 ,

𝐶lim = cone([𝑨 , 𝒃 … 𝑨 , 𝒃]),
Define for 𝑖 = 0,… , ℎ − 1 the positive eigen vectors 𝒗 , ∈ ℝ of the ℎ distinct
eigenvalues of the matrix 𝑨 associated with the Perron root of 𝜌 (𝑨); thus,

𝑨 𝑣 , = 𝜌 (𝑨) 𝑣 , .
Lemma 5.25. Consider the objects of Definition 5.24. Then the limit cone satisfies

𝐶lim ⊆ cone([𝒗 , … 𝒗 , ]).
Proof of Lemma 5.25. Since 𝑨 is irreducible, there exists a monomial matrix 𝑺 ∈
ℝ × [9] such that

�̂� = 𝑺T𝑨𝑺 =
⎡
⎢
⎢
⎢
⎣

0 𝐴 0 … 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … … 0 𝐴
𝐴 0 … … 0

⎤
⎥
⎥
⎥
⎦

, �̂� = 𝑺T𝑏

where 0 ∈ ℝ × , 𝑖 ∈ ℕ are square blocks with∑𝑛 = 𝑛, and where 𝐴 has no

zero rows or columns with 𝐿 =∏𝐴 being an irreducible matrix. Then we have

�̂� = diag(𝐿 , … , 𝐿 ), where 𝐿 =∏𝐴
mod( , )

∏𝐴 is a primitive matrix of dimension

𝑛 × 𝑛 with Perron root 𝜌 (𝑨). Define the matrix �̂� , = lim →
�̂�
𝜌 �̂� for 𝑖 =

0,… , ℎ − 1. Since 𝐿 , 𝑖 = 1,… , ℎ is primitive, it follows from [9] that

�̂� , =
⎡
⎢
⎢
⎢
⎣

𝒙 … 𝒙 0 0 0 0 … 0
0 … 0 𝒙 … 𝒙 0 … 0
0 … 0 0 … 0 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 𝒙 … 𝒙

⎤
⎥
⎥
⎥
⎦

,
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where 𝒙 = 𝑐 𝒙 with 𝑐 , 𝑘 = 1,… , 𝑛 , being some positive scalars and with 𝒙 ∈
ℝ × being the Frobenius eigenvector of 𝐿 . Note that due to the block structure of
�̂�, �̂� , retains the same structure as �̂� , up to a scaled permutation of its columns
for 𝑖 = 1,… , ℎ − 1. Hence, we have �̂� , �̂� ∈ cone(𝑪), where

𝑪 =
⎡
⎢
⎢
⎢
⎣

𝒙 0 … 0
0 𝒙 … 0
0 0 … 0
⋮ ⋮ … ⋮
0 … 0 𝒙

⎤
⎥
⎥
⎥
⎦

.

In the original coordinates, we have 𝑨 , 𝒃 ∈ cone(𝑺𝑪). Clearly, since the columns of
𝑪 are the positive eigenvectors of �̂� and since 𝑺 is monomial, we have 𝑺𝑪 = [𝒗 , …
𝒗 , ], where 𝒗 , ∈ ℝ × is the (𝑖 + 1)-th positive eigenvector of 𝑨 for 𝑖 =
0,… , ℎ−1. This proves that cone([𝑨 , 𝑏 … 𝑨 , 𝑏]) ⊆ cone([𝒗 , … 𝒗 , ]).

5.B. Note on Theorem 5.12
After the publication of our work [1], upon which the current chapter is based, it
was brought to the authors’ attention that the formulation of Theorem 5.12 [46,
Th. 5] (specifically statement C4) is incorrect. Theorem 5.12 concerns the char-
acterization of polynomials admitting a nonnegative recursion that is used in the
proofs of Theorems 5.13 and 5.15 of the current chapter. A counter example to
Theorem 5.12 is provided by L. Farina and L. Benvenuti in [57], where they also
state the correct formulation of the given theorem. The correct formulation of the
theorem is reported below for convenience.

Theorem 5.26. [57, Th. 1] Let {𝑎 , … , 𝑎 } be given complex numbers, and let
𝑃(𝑥) be the polynomial 𝑥 − 𝑎 𝑥 − ⋯ − 𝑎 . Then conditions (A), (B) and (C)
below are equivalent:

(A) Any infinite sequence (𝑢 ) of complex numbers which satisfies the recursion
𝑢 = 𝑎 𝑢 + 𝑎 𝑢 + ⋯ + 𝑎 𝑢 for 𝑛 ≥ 0, also satisfies a recursion
with positive coefficients.

(B) The polynomial 𝑃(𝑥) divides a polynomial in 𝑄.

(C) In case the polynomial 𝑃(𝑥) has a positive root 𝑟, then all conditions (1)-(4)
below are satisfied:

(C1) 𝑟 ≥ |𝛼| for any root 𝛼 of 𝑃(𝑥).
(C2) if 𝛼 = 𝑟 for some root 𝛼 of 𝑃(𝑥), then 𝛼/𝑟 is a root of unity.

(C3) all roots 𝑃(𝑥) with absolute value 𝑟 are simple.

(C4) if 𝑑 is the minimal integer such that 𝜖 = 1 for all roots of unity 𝜖 which
satisfy 𝑃(𝑟𝜖) = 0, then 𝑃(𝑥) has no roots of the form 𝑠𝜔 where 0 < 𝑠 < 𝑟
and 𝜔 = 1.
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The difference between the two formulations of statement C4 is that in Theo-
rem 5.12, due to M. Roitman and Z. Rubinstein [46], statement C4 can hold with
different values of integer 𝑘 for different groups of roots with absolute value 𝑟,
while in Theorem 5.26, due to L. Benvenuti and L. Farina [57], statement C4 must
hold with the same value of the integer 𝑘 (𝑚 in their own words) for all roots with
absolute value 𝑟. It is proved in [57] that the latter formulation of C4 must be used
to conclude equivalence between statements A, B, and C of the theorem, which we
need for Theorems 5.13 and 5.15.

We investigated whether this change has any consequences for Theorems 5.13
and 5.15, and concluded that conditions laid out by these theorems are not affected
by using Theorem 5.26 as the basis for our proofs. Note that the proof of Theo-
rem 5.15 is based on C4 of Theorem 5.12 with 𝑘 = ℎ. In this case 𝑘 cannot take
any other value than ℎ as 𝑨 has exactly ℎ eigenvalues of the form

𝜌(𝑨) exp (2𝜋𝑚ℎ 𝑖), 𝑚 = 0,… , ℎ − 1.

In the case of Theorem 5.13, C4 of Theorem 5.12 must hold with the smallest
integer 𝑀 (see Lemma 5.23) such that

𝜎 (𝑨 ) ⊆ {𝜆| 𝜆 = 𝜌(𝑨 ) exp (2𝜋𝑘𝑀ℎ 𝑖), 𝑘 = 0,… ,𝑀ℎ − 1},

where 𝜎 (𝑨 ) is the set of all eigenvalues of 𝑨 with modulus 𝜌(𝑨 ). Therefore,
our proof is based on a single value for 𝑘 (𝑘 = 𝑀) for all eigenvalues of 𝑨 with
modulus 𝜌(𝑨 ).



6
Conclusions and Further

Research
“I would rather have questions that can’t be answered than answers that

can’t be questioned.”

Richard Phillips Feynman, 1918 – 1988

6.1. Concluding Remarks

T his thesis has addressed a range of topics on model-based control of baggage
handling systems and control of discrete-time linear positive systems, where

the results derived for control of positive systems have been subsequently used
to develop a scalable tube-based model predictive control (MPC) scheme for large-
scale baggage handling systems (BHSs). In short, the thesis has made contributions
along the following main directions:

1) Development of a flow-based modeling framework for large-scale logistic sys-
tems such as BHSs, and scalable MPC-based control strategies for optimal
operation of such systems subject to disturbances.

2) Computation of a robustly positively invariant hypercube for discrete-time lin-
ear positive systems subject to additive constraints together with computation
of the state feedback controller that minimizes the output 𝐿 norm of the out-
put over the hypercube.

3) Characterization of reachable subsets for discrete-time linear positive systems,
and formulation of the reachability problem of a polyhedral subset of the
positive orthant.

We will now elaborate on the contributions and the results.
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6.1.1. Robust Model-based Control of Baggage Handling
Systems

A modeling and control design framework for large-scale BHSs has been proposed
that is based on approximating movements of pieces of baggage by continuous
flows, rather than describing their individual movements. This was necessary to
arrive at models suitable for developing model-based control methods discussed in
the thesis. The developed models were then used within the MPC framework as
MPC enables one to incorporate (partial) knowledge of the disturbance (i.e., the
baggage demand), capacity and flow constraints, and a measure of performance
in an integrated control design approach.

We have shown that the original nonlinear programming (NLP)-based MPC for-
mulation, which is not scalable to large instances of BHSs or to longer prediction
horizons, can be expressed as a linear programming (LP)-based MPC problem or
a iterative linear programming (ILP)-based MPC problem, which leads to tractable
optimization problems for large BHSs. Especially ILP-based MPC has been shown to
achieve accurate predictions in relation to NLP-based MPC, hence, making it possi-
ble to use longer prediction horizons. Therefore, this approach enables one to fully
benefit from knowledge of the future demand profiles (due to the use of large pre-
diction horizons), while scaling to large BHSs. The performance of the developed
MPC schemes has been illustrated by a simulation-based case study. It has been
shown that, with fully predictable baggage demand at the loading stations, the
ILP-based MPC approach outperforms the current state-of-the-art heuristics-based
approach at an affordable computational cost. In addition, the LP-based MPC ap-
proach also outperforms the current state-of-the-art approach for short prediction
horizons while offering the cheapest solution in terms of the required computational
resources.

The MPC solution has then been extended to the cases where only a partial
knowledge of the future baggage demand is known. The uncertainty in the bag-
gage demand has been modeled by expressing the baggage demand as the sum of
a nominal fully predictable component and a relatively smaller zero-mean random
component. To provide robustness against the additive uncertainty, a tube-based
control scheme has been employed, which is a low-complexity robust MPC approach
consisting of a top-level MPC controller for the nominal system and a bottom-level
state feedback controller for the error system. The error system describes the
difference between the uncertain system (i.e., the actual system) and the nominal
system. We have investigated two different approaches, as the subject of two sepa-
rate chapters of this thesis, to the design of the state feedback controller along with
the appropriately modified version of the nominal constraints so that the nominal
MPC problem is still feasible in presence of the error dynamics. Such modifications
commonly entail restricting the nominal MPC state and control constraints by the
minimal robust invariant set and its image on the control subspace, the compu-
tation of which is very difficult in practice for large-scale systems. To make our
approach applicable to large-scale systems, we have proposed a method to calcu-
late the smallest robustly positively invariant ellipsoids and hypercubes that include
the minimal robust invariant set, and we use these sets to tighten the nominal MPC
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constraints.

For the first approach, a feedback controller minimizing the induced 𝐿 gain of
the closed-loop error system from the disturbance input to the error output has
been developed. The problem of searching for the state feedback gain as well as
the associated robustly positively invariant ellipsoid has been formulated as an opti-
mization problem with a linear objective function subject to linear matrix inequalities
(LMIs). Furthermore, to impose state and control constraints on the error system,
another formulation of this problem has been developed that allows for specification
of control and state constraints via suitable additional LMIs.

To develop the second approach, we have first developed some theoretical back-
ground for linear positive systems subject to additive disturbance, and we have
shown that, for positive systems, the existence of a robustly positively invariant set
is characterized by a set of linear inequalities. This result is then exploited to design
the state feedback controller for the error system such that the resulting closed-loop
system is positive and optimal in the sense of the 𝐿 norm of the disturbance-driven
output. We have formulated the joint problem of searching for such feedback gain
and the corresponding robustly positively invariant hypercube as a linear program.
We have also extended the solution to include state and control constraints for the
closed-loop error system, and a minimum size for the desired robustly positively
invariant hypercube.

Systems of BHS nature are often subject to capacity constraints, which are rep-
resented by upper and lower bound on the states and the control inputs. The con-
servatism introduced by ellipsoidal approximation of such constraints, as needed in
the first approach, may lead to an infeasible set of LMIs for large-scale systems.
Further to this point, linear programs can generally be solved more efficiently than
linear semi-definite optimization problems subject to LMIs. Hence, in contrast to the
first approach, which is only suitable for small-scale problems, the latter approach
to feedback design scales well for large-scale systems. In addition, the second ap-
proach allows us to use the 𝐿 norm of the output as the criterion for feedback
gain design, which provides a better measure of the worst-case performance of
the system than the 𝐿 -gain of the system for systems that are subject to additive
disturbances characterized by their minimum and maximum values. Finally, the
effectiveness of the latter state feedback design approach has been illustrated in a
large-scale BHS case study, where a tube-based MPC controller is designed to deal
with structured uncertainty of the baggage demand. In this case study, we have
also shown how recursive feasibility and asymptotic stability of the nominal system
can be guaranteed by the appropriate choice of the terminal cost function and the
terminal constraint set.

Models and methods developed in Chapters 2- 4 can in principle be applied to
vehicle-based sorting systems, where the feed sequence can be controlled and there
is sufficient buffer capacity. However, their applicability to heavily loaded conveyor-
based sorting systems may be limited since such systems cannot be heavily buffered
and there is usually no control over the feed sequence.
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6.1.2. Reachability Problem for Discrete-time Linear
Positive Systems

For discrete-time linear positive systems, we have shown that the reachable subset
from the origin using nonnegative controls and its closure can be either a polyhedral
cone (i.e., generated by a finite number of extremal rays) or a nonpolyhedral cone
depending on system matrices. Whether the reachable subset or its closure is poly-
hedral is closely linked with the system matrix 𝑨, or an appropriately decomposed
version of it, admitting a positive recursion; that is there exist a positive integer 𝑚
and non-negative real coefficients 𝑐 , 𝑖 = 0,… ,𝑚 − 1 such that 𝑨 = ∑ 𝑐 𝑨 .
We have derived necessary and sufficient conditions in terms of the spectrum of
the system matrix 𝑨 for polyhedrality of the reachable subset and its closure.

Polyhedrality of the reachable subset or its closure helps to define an alterna-
tive formulation for reachability of discrete-time linear positive systems, the one
which concerns whether a subset of the positive orthant can be reached from the
origin using a finite sequence of nonnegative controls or can be arbitrarily closely
approached from the origin using a sufficiently long nonnegative control sequence.
This definition of the reachability problem is more useful from an application point
of view, and is in contrast to the classical definition, which is concerned with the
reachability of the entire positive orthant. This is owed to the fact that in practice
one is often interested in reachability of a certain “target” subset of the positive
orthant rather than the entire positive orthant.

For cases where the reachable subset or its closure is a polyhedral cone, we
have presented a method to determine whether a given target subset of the positive
orthant can be reached from the origin. In case the reachable subset is polyhedral,
the developed method can also be used to calculate the finite nonnegative control
sequence driving the system from the origin to any point in the target set. The
applicability of our proposed approach is illustrated by several examples.

6.2. Recommendations for Further Research
6.2.1. Extensions of Models and Methods Developed for

BHSs
The models developed in Chapter 2 for BHSs can in principle be extended to cover
other applications of a similar nature such as logistic systems and material handling
systems. In this regard it is worthwhile to explore whether alternative ways of
modeling density-dependent flow travel times through the network, for example by
including the effect of network congestion on travel times, yield models of higher
accuracy. Furthermore, in addition to robustness against variations in the demand
profile, which was the subject of Chapters 3 and 4, fault tolerance and robustness
against model parameters should be integrated in the model-based control design
process so that the closed-loop system is robust against model mismatch. Among
others, model mismatch can arise from broken components or capacity drop due
to closure of a part of the network. Finally, this work has considered a centralized
control design with full information of the system. For large-scale systems such as
BHSs the centralized controller can be both unreliable, as the control system has a
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single point of failure, and computationally expensive. Hence, one is motivated to
investigate distributed or decentralized robust MPC solutions for such systems.

In this research work, we have addressed high-level model-based control design
of large-scale logistic systems. In practice, the decisions made by the high-level
controller in terms of the link-to-link transfer rate of material need to be translated
to the number of carts, boxes, DCVs, etc. that need to be dispatched from one
link to another in a given period of time. The effect of the conversion of the flow
variables, generated by the high-level controller, to the discrete actions of lower
level controllers should be taken into account when assessing the performance of
the control system. To this end, one must develop a corresponding quantity-based
plant model to asses the performance of the MPC controller designed for the flow-
based model. This amounts to employing an elaborate plant model and a simplified
control model. In this way, the effect of realization of actuation (i.e., translating
flows to movements of DCVs) on the performance of the control system can be
studied.

The models developed for BHSs in this thesis, and possibly their extensions, can
be used in feasibility studies of new BHSs. During the pre-design process and as a
part of cost and benefit analysis, extensive simulations based on BHS models can be
used to determine maximum system throughput for a given capacity, expected time
delays due to baggage transfer, robustness of the system in the event of faults, etc.
In addition, for existing BHSs, such model-based simulations can help optimize the
system operation along user-defined Key Performance Indicators (KPIs) to maximize
utilization of the existing infrastructure as efficiently as possible. The use of model-
based simulations as an instrumental part of planing new BHSs or for upgrading
existing ones can ultimately lead to sustainable BHSs that are not only efficiently
designed, but are also well predictable in terms of maintenance, future costs, and
expected profits.

In this thesis, we have focused on modern automated BHSs with respect to
modeling, control design, and performance analysis. In doing so, we have omitted
the human factor, which has a significant impact on the overall quality of baggage
handling service. In fact, the bottleneck in baggage handling is often in the manual
handling part. Think of baggage not being supplied in time or removed in timely
manner at the unloading stations. Delays made in manual processes can easily
propagate and adversely impact the overall quality of the baggage handling service.
A very interesting research avenue is, therefore, to analyze the baggage handling
process in big airports not in terms of technical capabilities of automated BHSs, nor
the control algorithms, but in terms of the human factors. In this regard, one can
develop (stochastic) models to determine the effect of human-induced delays on
the performance of the BHSs, and include those models in overall control design
for BHSs such that the designed control strategy is ultimately sufficiently robust
against human-induced delays.
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6.2.2. Extensions of the Control Theory of Linear Positive
Systems

The work in this thesis on polyhedrality of finite-time and infinite-time reachable
subsets for linear positive systems only concernedd single-input systems with ir-
reducible system matrix 𝑨. To establish a full picture of the reachable subsets,
extension of these results to the multiple-input case needs to be investigated. Fur-
ther generalization of such results should allow to consider systems with a reducible
system matrix. In addition, in absence of any structure for the input vector 𝒃, the
conditions derived in Chapter 5 depend only on the spectrum of the system matrix
𝑨. It is worthwhile to investigate whether an assumed structure for 𝑩 would lead to
different conditions for polyhedrality of the reachable subsets. Finally, to obtain a
complete picture of the controllability problem when a subset of the positive orthant
is considered as the target set, it is necessary to consider the case where the initial
state is not the origin, but an arbitrary point in the positive orthant, and to derive
the conditions under which the finite-time controllable subsets are polyhedral.

In Chapter 5, we have addressed the problem of determining whether the reach-
able subset is a polyhedral cone or a nonpolyhedral cone. In addition to control
theory, this problem is of interest to the theory of realization and of system identifi-
cation. The choice for the reachable subset from the origin is essential for realization
theory as observability of a linear positive system is then of interest only for states
in the reachable set. A characterization of that view of observability does currently
not exist in the literature. The condition formulated in [1] is too strong because
it is based on the assumption that the reachable set from the origin is the entire
positive vector space ℝ . Developing necessary and sufficient conditions for the
described view of observability (i.e., observability of only a subset of the positive
orthant) will then pave the way towards a better understanding of the realization
problem for linear positive systems.

6.2.3. Other Application Areas of Control Theory of Linear
Positive Systems

Recursive feasibility of the optimization problem and asymptotic stability of the
closed-loop system are key properties of any MPC design. Although these proper-
ties can be essentially achieved by choosing a sufficiently large prediction horizon,
enforcing them explicitly by choosing an appropriate terminal constraint set and a
terminal cost function is essential when the prediction horizon cannot be chosen
arbitrarily large due to computational concerns. The common solution approach
of calculating a (robustly) positively invariant subspace for linear systems requires
expensive iterative calculation, which quickly becomes prohibitive for systems with
a large number of states and inputs. The results of Chapter 4 on calculating (ro-
bustly) positively invariant sets for linear positive systems and the associated state
feedback control law defined over those sets can be further developed to calculate
appropriate terminal constraint set and a terminal cost function for MPC of linear
systems. This approach may be of particular interest in the case of parametric
MPC, where the control sequence over a prediction horizon 𝑁 is parameterized as
𝒖 (𝑡) = (𝑲(𝑡)𝒙(𝑡), … , 𝑲(𝑡 +𝑁−1)𝒙(𝑡 +𝑁−1)), state and control constraints are
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expressed by ∞-norm bounded sets, and the MPC objective function is of the form
𝑉 (𝒙) = ∑ ∈ℕ ∶ ‖𝑷 𝒙(𝑖)‖ + ‖𝑼 𝒖(𝑖)‖ + ‖𝑸 𝒙(𝑁)‖ , with 𝑷 > 0, 𝑼 > 0,
and 𝑸 > 0 being diagonal matrices. The methods developed in Chapter 4 may
then be extended to find a (robustly) positively invariant hypercube and the corre-
sponding Lyapunov function that can be used as the terminal constraint set and the
terminal cost function to guarantee the recursive feasibility of the MPC problem and
asymptotic stability of the closed-loop system. This approach is expected to yield a
linear programming formulation for both calculating the (robustly) invariant hyper-
cube and calculating the optimal control sequence. In addition, developing similar
results as those of Chapter 4 for the case where the disturbance is characterized
by a 1-norm bounded set of the form𝕎 = {𝝎 | ‖𝜴 𝝎‖ ≤ 𝝎max}, with a diagonal
𝜴 > 0, should be also considered. In this case, one should investigate whether
the problem of searching for a feedback controller that minimizes the 𝐿 -norm of
the disturbance driven output and the associated robustly positively invariant set
can be expressed as a linear program. In addition, the geometry of such set and
the associated Lyapunov function defined over such set is of interest. In a similar
manner to what we discussed above, such results could also be useful for the MPC
application, where the aim is to design a receding horizon finite horizon controller
minimizing a suitably defined 𝐿 -norm based cost function subject to 𝐿 -norm based
constraints.

Application of methods developed based on the theory of positive dynamical
systems, such as those developed in Chapter 4, is not restricted to the classical ex-
amples of positive systems such BHSs, logistic systems, economic systems, biore-
actors, pharmacokinetic systems, etc. In fact, the result of Chapter 4 on control
synthesis and other similar results for control of linear positive systems only require
the closed-loop system to be positive, and neither the control input, the disturbance
input, nor the initial state is required to be nonnegative. Hence, other major appli-
cation fields such as motion control, robotics, process control, etc., where the open-
loop system is not necessarily positive, can also benefit from the lower-complexity
control design solutions and analysis methods developed for linear positive systems
as long as the feedback control is designed in such a manner that the closed-loop
system positive. Exploring the relevance and application of methods developed for
linear positive systems to a broader application domain is therefore a topic worth
more attention.

Many of the well-known control design problems take a simpler form for linear
positive systems. For example, it has been shown in [2–4] that the KYP lemma
for linear positive systems can be expressed in terms of a diagonal matrix variable
rather than a general symmetric matrix, which drastically simplifies the 𝐻 -design
problem. Similarly, in [5–8], it has been shown that stability analysis of an inter-
connection of systems based on 𝐿 -gain and 𝐿 -gain criteria and the corresponding
controller synthesis problems can be expressed as linear programs. In addition, we
have shown in Chapter 4 that the joint problem of computing the smallest robustly
invariant hypercube containing the minimal robust invariant subset and computing
the corresponding state feedback controller minimizing the 𝐿 -norm of the distur-
bance driven output over the said hypercube can be expressed as a linear problem.
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While the mentioned works make contributions to analysis of feedback systems and
controller synthesis for linear positive systems, potential application of the theory
nonnegative matrices and positive dynamical systems in other domains of control
theory such as optimal and receding horizon observer design problems, (distributed)
parameter estimation problems, and joint state and parameter estimation problems
has been mostly unexplored. This is an interesting research area, which could yield
promising results as such problems may also benefit from simpler solution forms
due to the properties of linear positive systems.
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Summary
Large-scale baggage handling systems, or large-scale logistic system, for that mat-
ter, pose interesting challenges to model-based control design. These challenges
concern computational complexity, scalability, and robustness of the proposed so-
lutions. This thesis tackles these issues in a collection of papers organized in two
overlapping parts. The first part concerns modeling and Model Predictive Control
(MPC) design of large-scale baggage handling systems (BHSs), where a model-
ing framework for BHSs is proposed that is subsequently used to develop an MPC
scheme for control of large-scale BHSs. The MPC controller optimizes for the timely
arrival of pieces of baggage at their destination within the BHS network under
capacity constraints while minimizing the overall cost of transporting pieces of bag-
gage. Several formulations for the resulting constrained optimization problem are
proposed, and they are compared with each other in terms of closed-loop perfor-
mance and computational complexity. It is shown, via simulation studies, that the
proposed solutions can outperform a heuristics-based approach commonly used for
control of BHSs while scaling well to larger BHS network instances.

In its second part, the thesis focuses on robustness of control design in the face
of a partially known disturbance input (i.e., input baggage demand), and especially
on developing a scalable tube-based MPC scheme. For this purpose, considering
the BHS model essentially as a linear positive system, a linear-programming-based
approach is proposed for the joint calculation of a robustly positively invariant subset
and a constrained state feedback controller that minimizes the disturbance-driven
𝐿 norm of the output over this set. A tube-based MPC control scheme is finally
developed by coupling the state feedback controller with a nominal MPC controller,
guaranteeing recursive feasibility and asymptotic stability. It is shown via simulation
studies that the proposed tube-based approach is effective against unpredictable
disturbances. In addition, since the design of both the nominal MPC controller
and the state feedback controller involves only linear programs, the proposed tube-
based approach scales well to BHS networks of larger size.

Linear positive systems are of interest in several branches of engineering, lo-
gistics, biochemistry, and economics. As a spin-off topic and inspired by the ap-
plications of the theory of linear positive systems to modeling and control design
of systems in the mentioned domains, the third part of the thesis focuses on the
reachability analysis of discrete-time linear positive systems. More specifically, we
revisit the problem of characterizing the subset of the state space that is reachable
from the origin for discrete-time linear positive systems. This problem is of interest
in topics such as optimal control of linear positive systems and realization theory
of linear positive systems. It is established in this thesis that the reachable subset
can be either a polyhedral or a nonpolyhedral cone. For the single-input case, a
characterization is provided of when the infinite-time and the finite-time reachable
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subsets are polyhedral. Finally, for the case of polyhedral reachable subsets, a
method, based on solving a set of linear equations, is provided to verify whether a
target set can be reached from the origin using positive inputs.
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