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Abstract

This paper applies a novel data driven fault detection
and identification (FDI) approach to large-scale wind tur-
bines. This new approach directly links subspace identifi-
cation with fault detection and identification filter designs.
Physical modeling of a wind turbine is bypassed. The
FDI filters are directly identified from the input and out-
put (I/O) signals measured on the fault-free wind turbine;
and therefore provide more usability to their practitioners.
The nonlinear dynamics of the wind turbine are converted
into a linear time invariant (LTI) model via inverse Cole-
man transformation. The data driven FDI approach for
LTI systems can hence be applied without linearizing the
nonlinear model. The simulation results verify the effec-
tiveness of the data driven FDI designs for detecting and
estimating additive sensor faults on the wind turbine.

Keywords: fault detection and identification, subspace
identification, data-driven methods.

1 Introduction

Generating electricity from wind has become a reality in
recent years. In fact, the authors of this paper are fre-
quently encouraged by their electricity providers to sub-
scribe to the supply from wind turbines. In the Nether-
lands, the modern wind turbines are joining the traditional
wind mills as new landmarks.

However, potential faults of wind turbines can occur
in their gearbox, blades, sensors, and the motors yaw-
ing the rotor. These faults cause remarkable downtime
of a wind turbine. The maintenance of a wind turbine,
where these faults has occurred, is actually a big chal-
lenge for industrial practitioners, especially for offshore
large-scale wind turbines. The challenge can actually be
attributed to the difficulty and even the danger in access-
ing the turbines. This hence necessitates the availability
of automatic detection (also known as condition monitor-
ing in the literature) and identification of the faults and
reconfiguration of the control system accordingly.

In the existing literature, condition monitoring of wind
turbines has been developed based on signal process-
ing and artificial intelligence (AI) techniques, e.g. [1, 2].
Signal processing is to extract features from measured

data; while AI is used to classify the features to differ-
ent conditions. This is also known as a “black-box” ap-
proach. However, black-box approaches usually suffer
from lacking the robustness against unseen data. On
the other hand, for a dynamic process, the initial state
and control signals largely influence the readings from
sensors. Black-box methods cope with this variations by
performing as many experiments as possible. An alter-
native way is of course to rely on the dynamic model of a
wind turbine, which take the initial state and control sig-
nals into account. This is the so-called “model-based”
approaches, e.g. [3].

Generally, modeling by first principles is a time-
consuming and expensive task. This is especially true
for such a large-scale system as a wind turbine. An alter-
native way is to use system identification techniques [4],
which models based on data. In fact, the model used for
FDI design in [3] was identified from data. However, with
system identification, a model still has to be built before
the FDI design tasks can actually be carried out. A more
user friendly approach should avoid the modeling step,
and directly design the FDI filters from data. Obviously,
the less the intermediate steps, the more the usability of
the approach. Inspired by this, [5, 6] have recently devel-
oped a new approach for directly synthesizing FDI filters
from data; i.e. the Fault detection and Identification ap-
proach Connected to Subspace Identification, or FICSI.
It is the purpose of this paper to apply this approach on
wind turbines.

The rest of the paper is organized as follows. We first
introduce the wind turbine model considered throughout
the paper. The data driven FDI algorithm is then devel-
oped for this system. Simulation experiments are finally
presented, where the parameterized nonlinear wind tur-
bine model as introduced in Section 2 play the role of a
real turbine. The results verify the effectiveness of the
proposed methodology in detecting and estimating addi-
tive sensor faults on the wind turbine.

2 Wind turbine model

2.1 Physical wind turbine model

In this paper, we consider a seven degrees of freedom
(DOF) model as described in [7] and [8]. The model de-
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Figure 1: Schematic representation of the wind turbine model.

scribes the rotational dynamics of a wind turbine around
a particular operating point. The model contains the
DOFs for the main rotation, first torsion mode of the drive
train, the first fore-aft, and sideward bending mode of the
tower. In this model the blades are considered to be rigid.
In Figure 1, a schematic representation of the model is il-
lustrated.

Using a linearized conversion of the aerodynamic be-
havior, the model equations can be written in the follow-
ing continuous time nonlinear form:

ẋ = Ax+

(

B(1) +

3∑

i=1

B(i+1)ϕ(i)

)

u (1)

+

(

F (1) +

3∑

i=1

F (i+1)ϕ(i)

)

v,

y =

(

C(1) +
3∑

i=1

C(i+1)ϕ(i)

)

x+Du+Gv, (2)

where the matrices B(i), C(i), and F (i) are multiplied
with the azimuth angle ϕ(i) of the accompanying rotor
blade. The wind turbine model under consideration has
three rotor blades (i = 1, 2, 3) and is normally used to de-
sign individual pitch controllers. The system state, input,
disturbance, and output vector are given by:

x =
[
δΩro, xfa, ẋfa, xsw, ẋsw, ε, ε̇

]T
,

u =
[
δθ1, δθ2, δθ3, δTge

]T
,

v =
[
δv1, δv2, δv3

]T
,

y =
[
δΩge, ẋfa, ẋsw, δM1, δM2, δM3

]T
,

respectively. This model contains thus the control inputs
for the variation in generator torque δTge and the pitch
angle δθi of each rotor blade. Furthermore, the model
contains the inputs for the wind speed disturbance δvi on

each of the three rotor blades. The outputs are the vari-
ations in generator speed δΩge, the fore-aft velocity ẋfa
and sideward velocity ẋsw of the tower, and the blade root
bending moment δMi of each rotor blade. The state con-
tains the variations in rotor speed δΩro, the fore-aft dis-
placement xfa and velocity ẋfa, the sideward displace-
ment xsw and velocity ẋsw, and the drive-train displace-
ment ε and speed ε̇.

The model under consideration has a constant A ma-
trix while the input and output matrices depend on the
azimuth angle, ϕ. In [7] the Coleman transformation is
used to transform this model to an LTI model. The Cole-
man transformation is a nonlinear transformation that
is used to transform the outputs defined in the rotat-
ing frame to the fixed non-rotating frame. In a similar
way this can be done for the inputs. For brevity, we
shall only give the transformed LTI model in the Cole-
man domain, while refer to the detailed representations
of {A,B(j), F (j), C(j), D,W |j = 1, · · · , 4} in [7, 8]; i.e.

ẋcm = Acmxcm +Bcmucm + Fcmvcm, (3)

ycm = Ccmxcm +Dcmucm +Wcmvcm, (4)

where the matrices are defined in (5). The I/Os and dis-
turbances in the Coleman domain are defined as follows,
where the signals δTge, δΩge, ẋfa, ẋsw are not trans-
formed.

ucm =
[
δθcm1 δθcm2 δθcm3 δTge

]T
,

vcm =
[
δvcm1 δvcm2 δvcm3

]T
,

ycm =
[
δΩge ẋfa ẋsw δMcm1 δMcm2 δMcm3

]T
.

In the parametric matrices the parameters kMx, kMz ,
kFx, and kFz describe the aerodynamic gains from the
pitch angle to the root moment, flap moment, root force,
and flap force, respectively. The parameters hMx, hMz ,
hFx, and hFz describe the gain from the wind speed to
the root moment, flap moment, root force, and flap force,
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(5)

respectively. The constants R and H are the rotor radius
and the height of the hub, respectively; the mass moment
of inertia J , the mass m, the stiffness k and the damp-
ing d. Furthermore, the subscripts ro, to, and ge refer to
the rotor, tower, and generator, respectively. The aerody-
namic constants are listed in Table 1 and are derived for
a wind speed of 16 m/s, a pitch angle of 10 degrees, and
a rotor speed of 1.795 rad/s.

Table 1: Numerical values of the model parameters [8].

parameter value

H 55.953 m
R 40 m
Jge 1.067× 106 kgm2

Jro 7.187× 106 kgm2

kro 1.262× 108 N/m
dro 1.262× 105 Ns/m
mto 1.5657× 105 kg
kto 1.235× 106 N/m
dto 2.7995× 103 Ns/m
hMx

8.3806× 104 Ns
hFx 7.2019× 103 Ns/m
hMz

−1.8948× 105 Ns
hFz 4.0683× 103 Ns/m
kMx

−3.7711× 104 Nm
kFx −6.1478× 103 N
kMz

1.6174× 105 Nm
kFz −1.8306× 103 N

The Coleman transformation and inverse are defined
as follows [7].

P =





1 sin(ϕ(1)) cos(ϕ(1))
1 sin(ϕ(2)) cos(ϕ(2))
1 sin(ϕ(3)) cos(ϕ(3))



 ,

P−1 =





1
3

1
3

1
3

2
3 sin(ϕ

(1)) 2
3 sin(ϕ

(2)) 2
3 sin(ϕ

(3))
2
3 cos(ϕ

(1)) 2
3 cos(ϕ

(2)) 2
3 cos(ϕ

(3))



 .

[
δθcm1, δθcm2, δθcm3

]T

= P−1 ·
[
δθ1, δθ2, δθ3

]T
,

[
δvcm1, δvcm2, δvcm3

]T

= P−1 ·
[
v1, v2, v3

]T
,

[
δMcm1, δMcm2, δMcm3

]T

= P−1 ·
[
δM1, δM2, δM3

]T
.

(6)

For simulation purposes, the equations of motion are
converted to discrete time using a zero-order hold dis-
cretization method with a sampling time of 0.01 s. Denote
the discrete time model by

x(k + 1) = Acm,dx(k) +Bcm,ducm(k) + Fcm,dvcm(k),

ycm(k) = Ccm,dx(k) +Dcm,ducm(k) +Wcm,dvcm(k).

Here, k discrete sampling instant. The subscript “d” rep-
resents discrete time. The transformation of the state
space matrices to the discrete time can be found in stan-
dard modern control engineering textbooks, e.g. [9].

2.2 State observer for the wind turbine

with additive faults

In this paper, we consider additive sensor or actuator
faults in the wind turbine; i.e.

x(k + 1) = Acm,dx(k) +Bcm,ducm(k)

+ Ecm,dfcm(k) + Fcm,dvcm(k), (7)

ycm(k) = Ccm,dx(k) +Dcm,ducm(k)

+ Gcm,dfcm(k) +Wcm,dvcm(k). (8)

Here, Ecm,d = Bcm,d, Gcm,d = Dcm,d for actuator faults;
while Ecm,d = 0, Gcm,d = I, with appropriate dimen-
sions for sensor faults.
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Assume that v are zero mean white noise; hence so is
vcm. A Kalman filter for the LTI wind turbine model in the
Coleman domain takes the following form,

x̂(k + 1) = Acm,dx̂(k) +Bcm,ducm(k)

+ Ecm,dfcm(k) +Kcm,de(k), (9)

ycm(k) = Ccm,dx̂(k) +Dcm,ducm(k)

+ Gcm,dfcm(k) + e(k). (10)

Here e(k) is a zero mean white noise, or the so-called
innovation signal, whose covariance, denoted by Σe, is
determined by that of vcm [10].

The closed-loop form of Eqs. (9,10) can then be rewrit-
ten as

x̂(k + 1) = Φcm,dx̂(k) + B̃cm,ducm(k)

+ Ẽcm,dfcm(k) +Kycm(k), (11)

ycm(k) = Ccm,dx̂(k) +Dcm,ducm(k)

+ Gcm,dfcm(k) + e(k), (12)

where Φcm,d = Acm,d −Kcm,dCcm,d, B̃cm,d = Bcm,d −

Kcm,dDcm,d, Ẽcm,d = Ecm,d − Kcm,dGcm,d. This ob-
server can be assumed to be asymptotically stable [10].
Since the fault signals fcm are unknown, one cannot sim-
ulate the closed-loop observer (11,12). The faults will be
dealt with in the next section.

3 Data driven FDI methodology

Modeling the wind turbine is an expensive and time con-
suming task. The effectiveness of the subspace model
identification in identifying the wind turbine has been ver-
ified in [3, 11], with the wind speed disturbances v as-
sumed as white noise. In this paper, we will show that the
wind turbine model needs not to be identified for FDI pur-
pose. Instead, FDI filters can be directly identified from
I/O signals of the wind turbine.

Given a sequence of I/O signals, consecutively mea-
sured at N sampling instants, an output predictor in the
following form of the fault-free plant with fcm(k) ≡ 0 can
be identified, provided that the input signals persistently
excite ([4]) the wind turbine.

ycm(k) = Ccm,dΦ
s
cm,dx̂(k − s) + Ξ0z

k−1
k−s + e(k). (13)

Here, s is a positive integer, called the “past” horizon.
With s large enough, Φs

cm,d = 0, due to its stability. The
initial condition term, Ccm,dΦ

s
cm,dx̂(k − s), can hence be

neglected.

Ξ0 �
[
Ccm,dΦ

s−1
cm,dB̃cm,d, Ccm,dΦ

s−1
cm,dKcm,d, · · · ,

Ccm,dB̃cm,d, Ccm,dKcm,d

]

contains a sequence of Markov parameters of the closed-
loop observer form (11,12). The vector zk−1

k−s collects a

sequence of s past I/O samples; i.e. zk−1
k−s =

[
uTcm(k −

s) yTcm(k−s) · · · uTcm(k−1) y
T
cm(k−1)

]T
. Solving (13)

in a least-squares (LS) sense results in an unbiased es-
timate Ξ̂0 and an estimated Σ̂e [12].

With the identified Markov parameters in Ξ0, an L-
step output predictor with the additive faults, denoted by

yk,L =
[
yTcm(k − L+ 1) · · · yTcm(k)

]T
, can be written

as ([6])

yk,L = Hs,uuk−L,s +Hs,yyk−L,s + TL,uuk,L
+TL,yyk,L +Hs,f fk−L,s + TL,f fk,L + ek,L.

(14)

Here yk−L,s =
[
yTcm(k − s− L+ 1) · · · yTcm(k − L)

]T
;

and

Hs,⋆ =







Ccm,dΦ
s−1

cm,d
B⋆ Ccm,dΦ

s−2

cm,d
B⋆ · · · Ccm,dB⋆

Ccm,dΦ
s
cm,dB⋆ Ccm,dΦ

s−1

cm,d
B⋆ · · · Ccm,dΦcm,dB⋆

.

.

.
.
.
.

.

.

.
Ccm,dΦ

s+L−2

cm,d
B⋆ Ccm,dΦ

s+L−2

cm,d
B⋆ · · · Ccm,dΦ

L−1

cm,d
B⋆








,

TL,⋆ =






D⋆

Ccm,dB̃⋆ D⋆

.

.

.
. . .

. . .

Ccm,dΦ
L−2

cm,d
B̃⋆ · · · Ccm,dB̃⋆ D⋆





,

where with “⋆” standing for “f, u, y”, B⋆ and D⋆

respectively stands for Ẽcm,d, B̃cm,d,Kcm,d and
Gcm,d, Dcm,d, 0.

Define the residual vector as

rk = (I − TL,y) · yk,L − TL,u · uk,L −Hs,u · uk−L,s

− Hs,y · yk−L,s (15)

=
[
Hs,f TL,f

]
· fk,s+L + ek,L. (16)

The distribution of rk belongs to the following parametric
family [13].

rk ∼

{
N (0, Ce), fault free,

N (
[
Hs,f TL,f

]
· fk,s+L, Ce), faulty.

(17)
where N stands for normal distribution. Ce = IL ⊗ Σe

is the covariance matrix of rk, where “⊗” denotes Kro-
necker product. Standard χ2 test can be applied to detect
the change in the mean of rk [6].

On the other hand, Eq. (15) defines an ill-posed least-
squares problem for solving fk,s+L. It is proved in [6] that
as L → ∞, the following estimate of f(k) is unbiased.

f̂(k) = T −1
L,f ·
[
−Hs,z TL,u,y

]

︸ ︷︷ ︸

F

·zk,s+L, (18)

where Hs,z denotes the Hankel matrix Hs,⋆ with B⋆ re-

placed by B =
[

B̃cm,d Kcm,d

]

; while zk,s+L, TL,u,y are

respectively defined as















u(k − L− s+ 1)
y(k − L− s+ 1)

...
u(k)
y(k)















,











D
−CB D

...
...

. . .

−CΦL−2
cm,dB −CΦL−3

cm,dB · · · D










,

where D = [−Dcm,d Iℓ]. T −1
L,f is the inverse of TL,f ,

which is square and invertible in the case of sensor faults,
provided that Acm,d − Ecm,dCcm,d is stable [6].
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In the case of actuator faults, Gcm,d = 0. We then
need that Ccm,dEcm,d is square, and

Acm,d −Acm,dEcm,d(Ccm,dEcm,d)
−1Ccm,d

is stable to guarantee (18) is asymptotically unbiased [6].
Unfortunately, Ccm,dEcm,d is not square in the wind tur-
bine model. However, we can replace (12) with

ỹcm(k) � UT
CEycm(k) = UT

CE ·
[
Ccm,dx̂(k)

+Dcm,ducm(k) +Gcm,dfcm(k) + e(k)
]
,

where UCE is the range space of Ccm,dEcm,d from its
SVD,

[
UCE U⊥CE

]
[
ΣCE

0

]

V T
CE . (19)

The matrices Ccm,d, Dcm,d, Gcm,d,Σe shall be respec-
tively replaced by UT

CECcm,d, U
T
CEDcm,d, U

T
CEGcm,d,

UT
CEΣeUCE .
The matrix F defined in (18) contains a sequence of

Markov parameters, from which the following fault esti-
mation filter can be realized

xfe(k + 1) = Afexfe(k) +Bfez(k), (20)

yfe(k) = Cfexfe(k) +Dfez(k), (21)

where z(k) =

[
u(k)
y(k)

]

. It is proved in [6] that the filter

(20,21) are asymptotically equivalent to unknown input
observers (UIOs).

4 Data driven FDI of the wind tur-

bine model

In this section, we use the model introduced in Sec. 2
to simulate the wind turbine. The I/Os collected from the
simulation are used for the data driven FDI designs intro-
duced in Sec. 3.

The open-loop wind turbine is not asymptotically sta-
ble, which contains an integrator. A collective pitch con-
troller in a feedback loop is added to stabilize the system.
The controller used can be found in [8]. Extra excitation
signals rδθ1 , rδθ2 , rδθ3 , rδTge were superimposed onto the
pitch-angle inputs, defined as follows.

• rδθ2 , rδθ3 ≡ 0,1

• rδθ1 as a zero-mean white noise with a variance
of 100, low-passed with a cut-off frequency of
4.5176rad/s.

• rδTge as a zero-mean white noise with a vari-
ance of 106, low-passed with a cut-off frequency of
0.2π(rad/s).

The wind speed disturbances along x, y, z directions are
respectively chosen as low pass filtered zero-mean white
noise with a variance of 2, whose spectrums are shown
in Fig. 2. This does not conflict with the white noise
assumption of v in the data-driven algorithms, because
the filter dynamics can be embedded into the identified
innovation type output predictor.

1Since in reality, they cannot be excited.
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Figure 2: The spectrum of the wind speed disturbances.

The I/Os are transformed into the Coleman domain by
(6). The parameters in the data driven FDI designs are
chosen as follows:

• the detection horizon L = 3 for fault detection,

• the detection horizon L = 100 for fault estimation,

• the past horizon s = 20,

• the false alarm rate α = 10−5 for the hypothesis test
of fault detection,

• 3000 I/O samples for identification.

The identification signals are scaled such that the co-
variance of both the inputs and the outputs is unity. Note
that due to the poorly excited wind turbine, the least-
squares problem (13) is regularized by a factor of ρ =
100.

Consider the drifting fault of the sensor measuring the
collective blade root moment Mz1; i.e.

fMz1
(k) =

{
0, k < t1,

106 · k−t1
t2−t1

t1 ≤ k < t2.

Figure 3 illustrates the fault detection result of the iden-
tified residual generator defined by (15). The successful
classification rate is 100%.

Figure 4 illustrates the fault estimation result of the
data-driven FICSI, by the identified estimation filter
(20,21). The stability of Acm,d − Ecm,dCcm,d is automat-
ically satisfied by the wind turbine model. The tornado-
shaped curve is due to the inverse Coleman transforma-
tion (6). Clearly, the fault estimates are unbiased.

As one more case study to detect actuator faults, con-
sider a constant bias fault on the variation in the genera-
tor torque δTge; i.e.

fδTge(k) =

{
0, k < t1,

3× 106 · k−t1
t2−t1

t1 ≤ k < t2.

Figure 5 illustrates the fault detection result of the iden-
tified residual generator defined by (15). The successful
classification rate is 99.8%.
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Figure 3: Fault detection by the identified FICSI fault detection
filter, with s = 20, L = 3.
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Figure 4: Fault estimation by the identified FICSI fault estima-
tion filter, with s = 20, L = 100.

5 Conclusions

In this paper, we have studied a data driven FDI filter
design approach for LTI systems on a large-scale wind
turbine. This approach does not require modeling its dy-
namics; but instead, identifies detection and asymptoti-
cally unbiased estimation filters directly from the I/O sig-
nals of the turbine. The wind turbine under consideration
is described by a seventh order nonlinear state space
model. To deal with its nonlinearity, the I/O signals of the
turbine are transformed into the Coleman domain, where
its dynamics correspond to an LTI model. Due to the cur-
rent limitation in the identification of the output predictor,
it shall be an attractive extension of the developed FDI
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Figure 5: Fault detection by the identified FICSI fault detection
filter, with s = 20, L = 3.

algorithms to handle other types of disturbances in the
future work, e.g. periodic disturbances.
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