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Abstract

The use of trailing edge flaps has developed into a

promising technique to reduce loads on large wind tur-

bines. Fatigue and extreme loads, predominantly in the

blade root, are critical to the life of rotor blades and these

loads can be reduced significantly by locally influencing

the lift along the span of the rotor blades. To design

controllers for such “smart” rotor systems, linear models

are still the tool of choice. Although linear models can

be obtained from the first principles models implemented

in aeroelastic design tools, we emphasize the value of

system identification techniques. Identification of linear

models of wind turbine dynamics is complicated by the

fact that strong periodic components are present in out-

put measurements. These components are associated

with effects such as gravity, wind shear, skew inflow con-

ditions, tower shadow and rotational sampling of the tur-

bulent wind field. When traditional system identification

techniques are used, the estimates may be very poor

due to the strong presence of these components in the

measurements. In this paper, a subspace identification

method is described together with a method to remove

the effect of periodic disturbances on the quality of iden-

tified models, by generating periodic signals that serve

as additional inputs to the identification procedure. The

paper is concluded with an example that demonstrates

the effectiveness of the suggested approach.

Keywords: System identification, subspace identifica-

tion, periodic disturbances, MOESP, smart rotor

1 Introduction

The use of trailing edge flaps has developed into a

promising solution to reduce loads in large wind turbines.

Fatigue loads, predominantly in the blade root, are crit-

ical to the life of rotor blades and these loads can be

reduced significantly by locally influencing the lift along

the span of the rotor blades. This issue will become

even more important as rotor sizes increase beyond

∗The authors gratefully acknowledge the support of Vestas Wind

Systems A/S.

150m. Since the pioneering research on trailing edge

flaps [1, 2, 3, 4] which emerged from the field of rotorcraft

research [5, 6, 7], several proofs of concept, both com-

putational and experimental, have demonstrated the po-

tential for load reduction using distributed flap actuation

[4, 8, 9, 10]. Extending fatigue life by reducing dynamic

loads is an important factor in lowering the cost of energy

and supporting the trend of increasingly large rotors. To

design controllers for wind turbines or their subsystems,

linear models are still widely used due to their simplicity

and the wide range of tools available [11, 12, 13, 14]. Al-

though linear models can be obtained from the first princi-

ples models implemented in aeroelastic design tools, we

emphasize the value of system identification techniques.

Often, linearised models obtained from first-principles

models are of high order such that a reduction step may

be necessary. Furthermore, such models follow the theo-

retical nature of the model and therefore parameters are

bound to differ from the true turbine’s parameters [15].

A linear model obtained from measurements of a true

system provides a realistic model of the underlying dy-

namics which, in many cases, gives a more accurate or

relevant dynamical description of the process under con-

sideration [16, 17]. Identification of linear models of wind

turbine dynamics is complicated by the fact that strong

periodic components are present in the measurements

of certain output channels. These components are as-

sociated with effects such as gravity, wind shear, skew

inflow conditions, tower shadow and rotational sampling

of the turbulent wind field. These loads that arise dur-

ing operation are highly correlated with the rotor speed

and its higher harmonics. When standard system identi-

fication methods are applied, the estimates may be very

poor due to the strong presence of these components in

the measurements. Several authors have studied system

identification problems in the presence of periodic distur-

bances. In [18], the authors extend a subspace identi-

fication framework to incorporate periodic disturbances.

Unfortunately, the frequency of the disturbance must be

constant, and its period must span an integer number of

data samples. The same authors also propose a method

to deal with arbitrary periodic disturbances [19], but at

present there are no provisions for closed-loop data or
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the presence of (coloured) process noise. In this paper,

we revisit an idea suggested by Van Baars et al. [20]

and propose the use of periodic signals with the same

frequency as the rotor and its higher harmonics as addi-

tional inputs to the identification problem. This method is

simple to implement in practice and since the additional

signals only contain power at a few isolated frequencies,

the identified dynamics are not affected by this proce-

dure. Experimental results demonstrate a significant im-

provement of estimated models when this technique is

used. The technique is also applicable to closed-loop

identification problems.

The paper is structured as follows: In section 2 the ad-

vantages of a system identification approach are high-

lighted. In section 3 the basic principles of subspace

identification are discussed. In section 4 a procedure is

described to deal with periodic disturbances. In section

5 the methodology is applied to the example of a “smart”

rotor. The paper concludes with a discussion of the re-

sults and some recommendations for further work.

2 Advantages of system identifica-

tion

It is common practice to tune the controllers in present-

day turbines on the basis of linear system models. Usu-

ally, such models are obtained from first principles mod-

els implemented in aeroelastic codes, which are then nu-

merically linearised in one or more operating points. Al-

though such procedures yield the desired linear models,

these inherently exhibit dynamics that are different from

the true system due to the theoretical and approximative

nature of the simulation tools [15]. Also, the resulting

models may be of high order, especially in the case of

blade element momentum models. While it is very bene-

ficial to have access to simulation tools during the design

of wind turbines, it is also relevant to be able to obtain

models from measured operational data that describe the

process under control more accurately. This is relevant

when identifying (sub)systems of a wind turbine that can

only operate safely or within reasonable limits when op-

erating in closed-loop [17]. Furthermore, it is well known

that measuring the system under closed-loop operation

provides more accurate linear models if such models are

used for control design purposes [17, 21, 22]. That is, the

closed-loop displays better performance if the controller

is designed on the basis of such linear models.

3 Subspace identification frame-

work

The identification framework used in this research is

based on the subspace class of identification methods

[23]. These methods seek a linear time-invariant state-

space model of the system to be identified based on

matrices constructed from input-output data. The fun-

damental subspaces associated with these matrices can

be exploited to find an approximate realization of the

data-generating system. This system can be retrieved

in a state-space form. More specifically, the Multivari-

able Output-Error State-sPace (MOESP) method is ap-

plied to find the system matrices {A,B,C,D} that de-
fine the identified model. A key advantage of subspace

methods is that they are based on efficient linear least-

squares techniques and therefore non-iterative in nature.

As such, they result in a globally optimal solution for a

given model order in a single step. Furthermore, the

size of the data matrices and the model order are the

only decision parameters, making the method simpler to

use than most prediction-error methods which may re-

quire an a priori parametrisation and a non-linear least-

squares optimisation. The method can deal with an ar-

bitrary number of inputs and outputs and can therefore

identify MIMO systems. In light of the previous sec-

tion, it should be noted that the method applied here is

also suited to closed-loop identification problems where

knowledge of the controller operating in the closed-loop

is not required. This novel extension of the MOESP algo-

rithm (CL-MOESP) has been treated in detail in [24].

3.1 Elements of subspace identification

For simplicity of presentation, we only present the ba-

sic elements of MOESP subspace identification. For a

complete treatment, the reader is referred to [23]. An ex-

tension to the case of closed-loop identification with ad-

ditional periodic signals is treated in [24].

In the framework of subspace identification, a linear dy-

namic relation is estimated (typically in state-space for-

mat) between the subspaces of matrices constructed

from input and output data {uk, yk}
N
k=1. That is, a lin-

ear model of the following form is to be identified:

xk+1 = Axk +Buk, (1a)

yk = Cxk +Duk, (1b)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n and D ∈ R

l×m.

Additionally, xk ∈ R
n, uk ∈ R

m and yk ∈ R
l are re-

spectively the state vector, input signal and output signal.

In this presentation it is assumed that noise does not af-

fect the system, but this hypothetical assumption is not

made in the full treatment. In the next sections it will be

shown how a dynamic model can be obtained from the

measured input and output data sets.

3.2 Deriving the data equations

Starting from some initial state xk, the state equation can
be propagated j steps ahead, resulting in the expression

xk+j = A
jxk +

[

Aj−1B · · · AB B
]







uk
...

uk+j−1






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Based on this equation and the output equation (Eq. 1b)

future outputs can then be written as

yk+j = CA
jxk+

[

CAj−1B · · · CAB CB D
]











uk
...

uk+j−1
uk+j











Stacking s of these predicted outputs results in Eq. 2.











yk
yk+1
...

yk+s−1











= Osxk +Hs











uk
uk+1
...

uk+s−1











, (2)

where the block-Toeplitz matrix Hs is defined as

Hs =



















D 0 0 · · · 0

CB D 0
. . . 0

CAB CB D
. . . 0

...
. . .

. . .

CAs−2B CAs−3B · · · CB D



















.

The extended observability matrix is also recognised in

Eq. 2;

Os =











C
CA
...

CAs−2











. (3)

The data columns in Eq. 2 can be augmented with

time-shifted versions. To this end, Hankel matrices of

input and output data are defined as follows, assuming

that all samples at our disposal are used:

Y1,s,N =











y1 y2 · · · yN−s+1
y2 y3 · · · yN−s+2
...

...
. . .

...

ys ys+1 . . . yN











,

U1,s,N =











u1 u2 · · · uN−s+1
u2 u3 · · · uN−s+2
...

...
. . .

...

us us+1 . . . uN











.

The integer s denotes the number of block rows in the
Hankel matrices. s should be chosen to be about 2-
3 times the maximum expected model order. The data

equation incorporating all measurement data can now be

given as follows:

Y1,s,N = OsX0,N +HsU1,s,N , (4)

where X0,N =
[

x1 · · · xN−s+1
]

represents the state

sequence. Note that the state sequence is at this point

unknown so that it is not possible yet to solve this system

for the unknown parameters. In the next section, a pro-

jection matrix will be found that eliminates the influence

of the input on the system, so that the unforced response

(response to the initial state) can be found.

3.3 Estimating the extended observability

matrix Os

In Eq. 4 the matrix U1,s,N is known. Therefore, a projec-

tion matrix

Π⊥U1,s,N
= I − U⊤1,s,N (U1,s,NU

⊤

1,s,N )
−1U1,s,N

can be constructed, such that U1,s,NΠ
⊥

U1,s,N
= 0. This

matrix eliminates U1,s,N from the right hand side of Eq. 4
resulting in

Y1,s,NΠ
⊥

U1,s,N
= OsX0,NΠ

⊥

U1,s,N
. (5)

This equation provides the projection of the output Han-

kel matrix Y1,s,N onto the orthogonal complement of the

row space of the input Hankel matrix. If the input Hankel

matrix has full row rank1, it can be shown that the col-

umn space of Os is contained in and, in fact, equal to the

column space of Y1,s,NΠ
⊥

U1,s,N
[23]:

range(Os) = range(Y1,s,NΠ
⊥

U1,s,N
). (6)

Thus, the column-space of Y1,s,NΠ
⊥

U1,s,N
serves as a ba-

sis for the column space of the extended observability

matrix Os. This column space can be found by perform-

ing a singular value decomposition of R22, which yields

Y1,s,NΠ
⊥

U1,s,N
= UnΣnV

⊤

n , (7)

where n is the number of non-zero singular values and
also the order of the underlying dynamical system. The

columns of Un provide a basis for Os so that Os = Un
up to a similarity transformation. In the case of noise af-

fecting the measurements, all of the singular values will

be non-zero, but a gap between two successive singu-

lar values will often indicate the order of the system. In

such cases, instrumental variables [23] need to be used

to obtain unbiased estimates of the system matrices.

Estimates of the matrices A and C can subsequently
be found by examining the structure of Eq. 3. Given the

structure ofOs, the C-matrix is found as the first l rows of
Os. A can be found as the solution to the overdetermined
problem Os(1 : (s − 1)l, :)A = Os(l + 1 : sl, :) (using
MATLAB notation). The matrices B and D and the initial

state x0 can be computed by solving a least-squares
problem as shown in the next section.

1Note that this is equivalent to requiring that the individual inputs are

persistently exciting of at least order s [23]
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3.4 Estimating B, D and the initial state

Based on the system equations (Eq. 1), the output at

time k can be written as as

yk = CA
kx0 +

k−1
∑

τ=0

CAk−τ−1Buτ +Duk

Since A and C are now known, it can be seen that the

unknown elements of x(0), B and D appear linearly.

Therefore, the parameters can be obtained after solving

a least-squares problem [23]. An efficient method is de-

scribed in [24].

3.5 Experiment design

To be able to identify a suitable model from input-output

data, several guidelines must be observed [23, 25]. The

excitation signal should be such that it excites all the rel-

evant modes of the system. At the same time, the ex-

citation signal should observe the system’s limitations,

yet provide sufficient excitation to result in a satisfactory

signal-to-noise ratio. Common identification signals are

broadband multisine signals, step signals and pseudo-

random binary sequences. The latter type has the advan-

tage of being strictly limited in amplitude, while delivering

maximal signal energy to the system within the amplitude

constraints. Furthermore, if such a sequence is sampled

at fraction of the system sample rate, the excitation spec-

trum can be shaped such that the low-frequency content

is emphasised without violating amplitude constraints.

In cases where severe noise affects the system, which

might occur with high turbulence levels in wind energy,

the only means of achieving a satisfactory signal-to-noise

ratio may be to use a crested multisine signal containing

a limited number of strategically chosen frequencies. In

general, a model identification procedure is an iterative

procedure, in which more knowledge of the system’s un-

derlying dynamics is gained after every trial. This knowl-

edge can the be exploited to tailor the excitation and mea-

surement conditions in subsequent steps. Generally, the

sample rate should be up to about ten times the band-

width of interest to avoid effects of aliasing and at the

same time limit the amount of high-frequency noise that

contaminates the measurements [25]. At the same time,

the experiment duration should usually be at least about

ten times the length of the slowest time constant of the

system to ensure that the low-frequency behaviour of the

process is captured. It is clearly seen that a trade-off

between sample frequency and measurement duration

must be made that is dictated by storage and/or process-

ing limitations regarding the number of data points. The

duration is further constrained by the ability for the pro-

cess to operate around one operating point in the case of

a non-linear system.

4 Embedding periodic distur-

bances into the identification

framework

The identification of blade dynamics subject to control de-

vices such as trailing edge flaps is complicated by several

issues. First, on real turbines actuator deflections and

rates are limited, while at the same time strong distur-

bances are present. This can make it hard to achieve

satisfactory signal-to-noise ratios for system identifica-

tion procedures. Furthermore, a significant part of the

disturbances are periodic in nature and highly correlated

with the periodic motion of the rotor (1P, 2P, 3P, etc...).

These periodic disturbances are mainly associated with

effects such as gravity, wind shear, skew inflow condi-

tions, tower shadow and rotational sampling of the tur-

bulent wind field. Such strong periodic components fail

to match the standard hypothesis in system identification

that measurements are corrupted with a stochastic noise

component.

Since the output measurements (e.g. tip displacement

or blade root moment) are highly influenced by the peri-

odic disturbances, the standard identification procedures

are likely to search for a causal relation between the ap-

plied inputs and the outputs which is not present at the

frequencies of the periodic disturbances. In many cases

this will lead to a poor description of the input-to-output

behaviour of the system. In this paper we make use of

the knowledge of the rotor speed and propose to add sig-

nals to the identification procedure to reduce the effect of

this problem.

Since the output measurements are to a large extent

corrupted with periodic signals of known frequencies, it

is possible to construct virtual input signals with corre-

sponding frequencies that are able to account for peri-

odic components in the outputs [20]. The operation of

such signals can be explained as follows: the outputs

are affected by a periodic signal of unknown amplitude

and phase. Any periodic sinusoidal signal of unknown

amplitude and phase can be constructed from a linear

combination of a cosine and sine function with unit am-

plitude and zero phase:

A sin (ωt+ φ) = α sinωt+ β cosωt (8)

Thus, pairs of sine and cosine input signals can be gen-

erated at each of the disturbance frequencies, to account

for the periodic components in the output. As shown in

Figure 1, these constructed signals can be added as in-

puts to the identification procedure together with the ac-

tual inputs applied to the system. One has to take care

when adding periodic signals as inputs as they contain

energy at only one frequency. Usually, a standard as-

sumption in system identification is that each of the in-

put signals has a fairly broad-band spectrum to ensure

that the numerical operations remain well-conditioned.

To deal with the narrow-band inputs, the subspace algo-

rithm had to be modified to avoid solving a rank-deficient
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least-squares problem. This modification is treated in de-

tail in [24].

Figure 2: “Smart” rotor scale model in the Open Jet facility.

5 Results for a “smart” rotor blade

Recently, measurements were performed on a scale

model of a wind turbine [26] in the Open Jet wind tun-

nel at Delft University of Technology (Fig. 2). The scale

model has two “smart” rotor blades, where each of the

blades is equipped with piezoelectric trailing edge flaps.

These devices are used to alleviate the blade loads by

modifying the the local aerodynamic loads. The afore-

mentioned identification procedure was used to identify

linear state-space models of the system to support con-

troller design and improve understanding of the dynam-

ics. The case under consideration concerned the iden-

tification of the dynamics from the trailing edge flap ac-

tuators on each of the two blades to the strain measure-

ments in the root of the blades. The strains are mea-

sured using piezoelectric macro fibre composite (MFC)

strain gauges. In an experiment, 10000 samples of I/O

data were obtained at a rate of 100Hz. As input sig-

nals two independent pseudo-random binary sequences

were used with amplitudes of 400V, close to the satura-

tion limits, and a sample rate of 50Hz (half the sample

frequency) to increase energy in the low-frequency exci-

tation region. To determine the problematic periodic com-

ponents, the power spectra of the output signals were

analysed. These showed distinct peaks at 1P and 3P

frequencies. Figure 3 shows how the periodic compo-

nents affect the output measurements: the excitation ca-

pability of the actuators is limited and therefore the strong

components at 1P and 3P are still strongly represented

in the output measurements and cannot be dominated

by the actuation. Since turbulence was hardly present

under these experimental conditions, the random input

signal proved able to excite the system to a sufficient

extent apart from the frequencies where periodic effects

dominate the response. In Figure 4, the results of an

identification experiment are shown. The strong effect of

Frequency [Hz]

P
o
w
e
r
[d
B
2
/H
z
]

0 10 20 30 40 50

-150

-100

-50

Figure 3: Output spectra for measurements with ( ) and with-

out ( ) an excitation signal present, showing the dominance

of the periodic effects at 1P and 3P.

the periodic signals on the output measurements forces

the identification procedure to identify incorrect dynam-

ics specifically at the 1P and 3P frequencies to account

for the presence of these frequencies in the output sig-

nal. With the addition of periodic signals as indicated

above, these incorrect dynamics are no longer present.

In Figure 5 the bode magnitude diagram of the complete

12th order model is shown. The identified models have

been used successfully in a model based feed-forward-

feedback control design which was applied to the “smart”

rotor model [27].

M
F
C
b
la
d
e
1
[V
]

From Flap blade 1 [V]

Frequency [Hz]

101

10−3

10−2

Figure 4: Comparison of two linear models from one the trail-

ing edge actuators to a strain measurements at the blade root

showing the mismatch at 1P resulting from a standard iden-

tification procedure. The grey line ( ) corresponds to the

identified model without adding periodic input signals, the black

line ( ) corresponds to identified model obtained with added

periodic signals. The results shown correspond to the case

ω = 430 rpm and v = 10m/s.
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Figure 1: The identification setup used in this context. The measured identification data y(t) is perturbed by unknown disturbances
d(t) acting on the turbine; the 1P and 2P periodic signals are added to the set of input signals u(t) used for identification in order
to suppress the effect of the disturbances on the quality of the identified model of u(t) → y(t).
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Figure 5: Comparison of the estimated linear model with spectral estimates of the transfer function from the trailing edge actuators

to strain measurements at the blade root. The conditions correspond to ω = 370 rpm and v = 7m/s. The gray line corresponds
to the models identified without addition of periodic signals.
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5.1 Model validation

The quality of the identified models can be assessed

in several ways. There is no way to obtain an exact

linearised reference model in this case. Therefore, a

good start is to compare the identified frequency re-

sponse functions to the empirical transfer function esti-

mates Ĥi→j(e
jωk) based on the FFTs of the input-output

data, defined by

Ĥi→j(e
jωk) =

Yj(e
jωk)

Ui(ejωk)
.

The estimates are shown in Figure 5 together with the

identified models. On the whole, the results are quite

accurate. It is observed that for some cases there are

slight differences in the low-frequency behaviour. As a

means of cross-validation, the dataset was split up into a
2/3 part for identification and a a 1/3 part for validation. As a

quality measure, the variance-accounted-for (VAF) was
used, which gives a measure of how well the variability

of the output signal is predicted by the linear model and

is expressed as

VAF =

(

1−

∑N

j=1(yj − ŷj)
2

∑N

j=1 y
2
j

)

× 100%,

where ŷ is the output predicted by the identified model.
The VAF values were around 95% for both the identi-

fication and validation data sets, indicating that a good

quality model has been found and that the model does

not suffer from over-fitting, in which the model is fitted

to the experiment noise. A second test for model qual-

ity can be carried out by examining the autocorrelation

spectra of the prediction errors ǫj = yj − ŷj . If the model
has truly fitted the input-output data accurately, the pre-

diction error signals should be white noise signals, indi-

cating that all correlation has been removed from the data

and all information has been extracted from the signal. In

Fig. 6 these spectra are shown together with the 99%

confidence bounds and it can be seen that the residual

signals are almost uncorrelated. An examination of the

spectral content reveals that the correlation still present

in the residuals is dominated by some unmodelled peri-

odic components at higher harmonics of the rotor speed.

6 Conclusions

The foregoing sections have demonstrated the poten-

tial of subspace system identification for obtaining linear

models from operational wind-turbine data. By incorpo-

rating the knowledge of the rotor frequency and gener-

ating additional input signals, the strong periodic com-

ponents in the output measurements can be accounted

for. The experimental results indicate that the accuracy

of a system identification procedure can be improved by

adding such periodic signals. The subspace techniques

applied here are naturally suited to multivariable systems

and the resulting models have been successfully applied

τ

R
ǫ
ǫ
(τ
)/
R
ǫ
ǫ
(0
)

-20 -10 0 10 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6: Normalised autocorrelation spectra of the output

residual signals between the predicted and true output signals.

The concentrated peak at τ = 0 indicates that the signals are
almost white.

in model based controller design. Further work will in-

clude testing the procedure on the identification of other

subsystems of wind turbines, such as reported in [17].

Additionally, we wish to extend the presented methods to

techniques that are able to identify locally linear dynam-

ics across the entire operational regime of wind turbines.
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