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1 CHAPTER

Introduction

A
ctive control is becoming more and more important for the wind en-
ergy community. If we compare the ‘old’ stall regulated turbines

with today’s individual pitch controlled turbines we see that the loads
can be considerably reduced, leading to lighter or larger turbines. Still,
there is a challenge to come up with novel designs and control concepts
for the new generation of large scale offshore wind turbines.

The control engineering group in Delft, nowadays called the Delft Center
for Systems and Control (DCSC), has a long history in the modeling,
identification, and control of wind turbines. The main focus in the past
was on first principles modeling of, and robust controller synthesis for
flexible variable-speed wind turbines. However, the citations below
emphasize the role of experimental validation and system identification
in the complete design process.

”To demonstrate the cost-effectiveness of controlled wind turbines in practice, it
is essential that the opportunity is given to implement the presented ideas and
resulting control strategies in a flexible, variable-speed wind turbine.”
[Molenaar 03]

”..direct validation of models describing wind energy conversion systems by a
direct comparison with measured data is of very limited use. One of the few
possible solutions to this problem is the application of system identification.”
[Bongers 94]

These challenges are embedded in this thesis. We show the proof of concept
of the ‘smart’ rotor and we develop novel subspace linear parameter-varying
system identification algorithms. The goal of this chapter is to show how
these contributions relate to the ‘state-of-the-art’ control and identifica-
tion, and coincide with the long term perspectives in the wind energy
community.

1



2 Chapter 1: Introduction

1.1 Introduction to the wind energy field

The current wind turbine technology is still rather young compared to that of fos-
sil fuel. However, the wind energy community is maturing quickly. Figure 1.1
shows that in 1995 there was a capacity of only 4.8 GW of wind power installed
worldwide, while in 2007 there was already 94 GW (GWEC 2008). With a pre-
dicted capacity of 160 GW in 2010 (WWEA 2008), the increasing human awareness
of the need for sustainable energy, and the predicted lack of availability of fossil
fuels, wind energy has a bright future.
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Figure 1.1: Total world wide installed and predicted installed capacity (WWEA
2008; GWEC 2008). Where the gray and black bars represent realized
and predicted capacity, respectively.

Wind energy played an important role in the history of the Netherlands1. Due
to this history, the Netherlands has developed a strong position in the research
and development in the wind energy field. The research institutes: 1). Delft Uni-
versity Wind Energy Research Institute (DUWIND 2008), 2). Energy research Center of
the Netherlands (ECN 2008) and 3). knowledge center Wind turbine Materials and Con-
structions (WMC 2008) perform applied and fundamental research in the multi-
disciplinary field of wind energy. These centers work on different international
and national projects. One of the projects acquired by DUWIND is the project:

1For a detailed overview of the history of wind energy we refer to Molenaar (2003)



1.1 Introduction to the wind energy field 3

”‘Smart’ dynamic rotor control of large offshore wind turbines” (van Kuik et al. 2003)
and is sponsored by the Dutch national funding agency STW (STW 2008). As part
of this project, this thesis mainly concentrates on the control and identification of
wind turbines.

The motivation, highlighted in the project title, for focusing on the design of
wind turbines of increasing size, is the trend in recent years to place the turbines
offshore. This due to low turbulence levels offshore and the fact that in Europe
the best onshore locations are already taken (van der Tempel 2006). However,
the offshore foundations account for a large portion of the total wind turbine cost
leading to the desire of the wind industry to increase the energy yield per wind
turbine, and hence the rotor diameter, as much as possible. Hence, modern wind
turbines designed for offshore application have become the largest rotating ma-
chines on earth with the length of one blade almost equal to the entire wing span
of a Boeing 747. As illustrated in Figure 1.2 we see the progression from a 1.6 MW
turbine realized in 1996 with a rotor diameter of 60 m to a sophisticated version
of the E-126 6+ MW ENERCON turbine in 2008 (ENERCON 2008), which has a
rotor diameter of 127 m. This trend in increasing rotor size and the trend to go

’86 ’88 ’90 ’92 ’94 ’96 ’98 ’00 ’02 ’04 ’06 ’08

0.03 0.3 0.5 1.3 1.6 2 4.5 5 6MW

33m�

127m�

60m�

Figure 1.2: The trend in the development of wind turbines.

offshore explains the last part of the project title: ”..large offshore wind turbines”.
The first part of the project title relates to the tradeoff between the increasing size
of the blades and the potentially damaging loads thereon. With the current con-
trol concept, the boundary of what is possible is reached, since increased turbine
blade dimensions lead to drastically increased loads thereon. It is believed that
more advanced control concepts and methodologies can surpass current limita-
tions, resulting in even larger and more reliable wind turbines. One such novel
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control concept is the so-called ‘smart’ rotor. This explains the first part of the
project title: ”‘smart’ dynamic rotor control..”. In the next section we focus on the
state-of-the-art control of wind turbines and indicate a number of technologies,
possibilities, and challenges to design the new generation of wind turbines from
a control engineering perspective.

1.2 Control of wind turbines

The technology and science of control of wind turbines can be divided into two
time frames: current state-of-the-art (including the short term developments) and
future prospects. There is also a second distinction that we can make and that is
the distinction between the academic wind community and the industrial coun-
terpart. In this section we start with a brief introduction to the current state-of-
the-art control of industrial wind turbines, then focus on some new technologies,
possibilities, and challenges that may be applied to the next generation of wind
turbines. Finally, we indicate that the academic wind energy community has a
strong focus towards modern model based control.

1.2.1 State-of-the-art control of industrial wind turbines

There have been two main operation concepts to keep the loads on wind turbines
(e.g. fatigue loads, power variations) within acceptable limits and to optimize the
energy yield. The concept widely used from the seventies until the nineties of the
previous century was the ‘Danish concept’ (Manwell et al. 2002). Such turbines
combine constant rotor speed with stall of the flow around the rotor blades and
are stable by design; increasing wind speeds automatically induce increasing drag
forces that limit the produced power (this concept is also referred to as: stall tur-
bine). In that period, all other control options were considered too complex and
also the technology for variable speed control was not mature enough. Due to the
development of dedicated converters, regulation concerning maximum allowable
sound emissions and grid requirements, the most recent large wind turbines run
at variable rotational speed, combined with the adjustment of the collective pitch
angle of the blades (Bossanyi 2000; van der Hooft et al. 2003). This state-of-the-
art control concept basically splits the operation range of a wind turbine into two
parts: below-rated power and above-rated power; also referred to as ‘below-rated’
and ‘above-rated’, respectively. Below-rated is the operation region in which the
wind does not contain enough kinetic energy to fully exploit the capacity of the
generator. In this region the pitch position (angular position of the blade with re-
spect to its longitudinal axis), θc, is kept constant (also referred to as: fine pitch)
while the generator torque, Tge, is controlled in such a way that the turbine tracks
the optimal aerodynamic efficiency. In the above-rated power region, the objec-
tive is to produce rated power, where power is the product between generator
torque and the generator rotational velocity. In the above-rated region these two
quantities are kept constant and the pitch actuator takes over the control task. By
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pitching the blades the lift forces can be reduced and consequently the aerody-
namic moment can be controlled in such a way that the power is kept constant.
The equilibrium solutions are illustrated in Figure 1.3, where we see the character-
istics of the turbine for certain wind speeds; also referred to as operating points.
However, a wind turbine is a dynamic system, so if a wind gust occurs, the wind
turbine will go through a transient before converging to its new equilibrium. The
transient behavior of a wind turbine is a complex combination of the aerodynam-
ics and structural dynamics (together aeroelastics), the controllers, and the wind.
A low-gain controller will cause the turbine to react slowly and sub-optimally to
the changing wind conditions (see Leith and Leithead (1996)), while an aggressive,
high-gain controller, will quickly approach the required equilibrium but impose
a considerable load on the turbine. With a required lifetime of approximately
20 years, a trade-off is necessary between energy production and load control,
better known as a multi-objective control problem (Zhou et al. 1996) to the con-
trol engineers. This problem is challenging because the emphasis of the controller
should switch bumplessly from power tracking to load reduction depending on
the operating point (Leith and Leithead 1996; Bianchi et al. 2007; Østergaard et al.
2008a). For example, low wind speeds generally produce relatively small struc-
tural loads and the energy yield can be increased if the aerodynamic efficiency is
tracked accurately. At high wind speeds the loads are also high and the extracted
power is already at its maximum, so the focus must switch to load control and the
minimization of the power fluctuations.

If the wind speed is known the power set point can be generated and ei-
ther the pitch or torque controller is active. There are two remarks to be made.
The first is that the switching from below-rated to above-rated is presented in
an adhoc manner. In practice, an effort is made to make the transition between
below-rated and above-rated more smooth, resulting in a more complicated con-
trol scheme (Bossanyi 2000; van der Hooft et al. 2003). The second remark is that
the effective wind speed is hard to measure and generally is estimated using a
large variety of techniques (Bossanyi 2000; van der Hooft et al. 2003; van der Hooft
and van Engelen 2003, 2004; Østergaard et al. 2007a). Finally, a number of exten-
sions are presented in the literature, mainly to damp the tower and drive-train
vibrational modes (van der Hooft et al. 2003).

For controller design it is also important to realize that the dynamics of wind
turbines are dependent on the operational position, as clearly shown in Hansen
(2007). However, for a certain operational position the dynamics can be consid-
ered to be Linear Time-Invariant (LTI), a requirement for linear controller design
methods (Franklin et al. 1994; Zhou et al. 1996; Ogata 1997). Common practice in
the wind industry is to make the gains of the designed controller dependent on the
operating point, called ”gain scheduling” (Leith and Leithead 1996; Bossanyi 2000;
van der Hooft et al. 2003). However, as already indicated in Leith and Leithead
(1996), interpolation between the different local controllers can result in unsatis-
factory designs outside the points for which the controller was designed. Recently,
more systematic scheduling methods have been proposed in the academic wind
community based on the Linear Parameter-Varying (LPV) model structure to cir-
cumvent this problem (Ohtsubo and Kajiwara 2004; Bianchi et al. 2004, 2005, 2007;
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Lescher et al. 2006; Østergaard et al. 2008a,b; Østergaard 2008). The LPV model
structure will be introduced in more detail in the next section.

Full-span collective pitch control, as previously discussed, is widely accepted
in the wind energy community, but can only handle slow wind changes that affect
the entire rotor. Because of the increasing rotor size it is necessary to react to the
distributed nature of turbulence in a more detailed way: each blade separately and
at several separate radial distances. This first item is dealt with by Individual Pitch
Control (IPC) (Bossanyi 2003, 2005; van Engelen and van der Hooft 2004; Hansen
et al. 2005; van Engelen 2006; Selvam et al. 2008), motivated by the helicopter in-
dustry (Ham 1980; Friedmann and Millott 1995; Lovera et al. 2006, 2007), which
is the latest development in the wind turbine industry to further minimize the
loads and is ready to be commercialized. With this concept each blade is pitched
individually to suppress the periodic loads caused by tower shadow, wind shear,
rotational sampling, yaw misalignment, etc. However, the performance of the IPC
method is restricted by the limited bandwidth of and wear in the pitch actuators
and because they only affect the load on the whole blade. A more advanced oper-
ation concept is required to further reduce the loads in order to optimize the rotor
diameter with respect to weight and size.

To summarize one can say that compared to the stall turbines, full-span col-
lective pitch control is a step forward; the control of the blade pitch angle has not
only led to power regulation, but also to a significantly lighter blade construction
due to the lower load spectrum and a lighter gear box due to shaved torque peaks.
With the introduction of IPC, which will be implemented in the near future, the
loads can be reduced considerably leading to even lighter or larger turbines. How-
ever, due to the increasing size of wind turbines it is necessary to look ahead to
control concepts which can impose a force profile matching the distributed nature
of turbulence in order to reduce the loads and to guarantee an economic lifetime
of 20 years for the new generation of large scale offshore wind turbines (diameter
over 150 meters). So, for the next generation of wind turbines we must look for
novel control concepts that may be considered too complex at this point in time in
the wind energy field, but so was IPC 20 years ago.

1.2.2 Introduction to the ‘smart’ rotor concept

There are a large number of concepts for the next generation of wind turbines. For
all of these ideas, the most important design drivers are the loads (both extreme
loads and fatigue loads). In the current designs this is solved by the mechanical
design and collective pitch control (Fuglsang 2008). In the previous paragraph we
discussed that pitch control is not a feasible solution for larger and more flexible
machines, consequently more advanced concepts are required.

One advanced operation concept is to use a number of actuators that locally
change the force profile on the wind turbine blade to cope with the spatial dis-
tributed nature of turbulence. This, in combination with sensors that measure the
loads and a controller that manipulates the measured signals and generates an
appropriate actuation signal, is defined as the ‘smart’ rotor concept. In Figure 1.4
an example of a ‘smart’ wind turbine is given.
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Figure 1.4: An ‘illustrative’ example of the new generation of wind turbines: the
‘smart’ rotor concept (Houtzager 2007). At the tip of the blade a num-
ber of additional control devices are drawn.

The ‘smart’ rotor concept is borrowed from the helicopter industry, where
active devices like e.g. trailing edge flaps (Barret 1990; Chopra 2000), or Micro-
Electro-Mechanical translational tabs (MEM-tabs) (Standish and Van Dam 2005)
are proposed to reduce the loads. MEM-tabs and trailing edge flaps are illustrated
in Figure 1.5 and Figure 1.6, respectively. Both of these concepts manipulate the
boundary layer of the flow to change the aerodynamic forces and consequently
control the loads. Trailing edge flaps are considered as the most promising idea
for the ‘smart’ rotor concept (Marrant and Van Holten 2006). In Barlas et al. (2007)
and Barlas and van Kuik (2007) a more detailed overview is given about these
developments as well as some more exotic concepts.

The main goal of the ‘smart’ rotor is to reduce the fatigue loads to increase the
lifetime of the wind turbine. However, when the lifetime constraint is reached the
wind turbine rotor size may be increased or the rotor design may be optimized
with respect to weight. Recently some research on this topic has been performed
in the wind industry where trailing edge flaps (Joncas et al. 2005; Troldborg 2005;
Buhl et al. 2005; Basualdo 2005; Andersen 2005; Andersen et al. 2006; Gaunaa 2006;
Bak et al. 2007), and MEM-tabs (Zayas et al. 2006; Chow and van Dam 2007; van
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Dam et al. 2007) have been used for load alleviation. The first step in the design of

Figure 1.5: MEM-tab. Figure 1.6: Trailing edge flaps.

this new control concept was a feasibility study. This study was performed by Ba-
sualdo (2005), where he showed the feasibility of a trailing edge flap applied on
an airfoil (2-D study). In Andersen (2005) and Andersen et al. (2006) the feasibil-
ity of the ‘smart’ rotor concept on a rotating blade was demonstrated. The first
proof of concept study was reported by Bak et al. (2007); a rigid cross-section with
a trailing edge flap was used to validate the 2-D aerodynamic model of Gaunaa
(2006).

In van Wingerden et al. (2008) (see also Chapter 2 of this thesis) a 3-D exper-
iment is presented that also takes into account the blade aeroelastic effects and a
feedback controller, thus proving the concept of a ‘smart’ rotor blade. This exper-
imental work is significantly different from the work done by Bak et al. (2007);
which used 2-D models without aeroelastics or a feedback controller.

1.2.3 Modern model based control in the wind energy commu-
nity

So, it should be clear from the discussion so far that control is becoming more and
more important for the wind energy field; progressing from stall induced turbines
to IPC turbines and now the ‘smart’ rotor concept.

Currently, the control methodologies used in the wind industry are mainly
based on Single-Input Single-Output (SISO) gain-scheduled PID regulators (Leith
and Leithead 1996; van der Hooft et al. 2003). However, in the academic en-
vironments several articles are available that discuss optimal control (Stol 2001;
Wright 2004; Hand and Balas 2007; Østergaard et al. 2007b), fuzzy logic con-
trol (Jauch et al. 2007), model predictive control (Henriksen 2007, 2008), robust
control (Bongers 1994; Bianchi et al. 2007), and recently Linear Parameter-Varying
(LPV) control (Ohtsubo and Kajiwara 2004; Bianchi et al. 2004, 2005, 2007; Lescher
et al. 2006; Østergaard et al. 2008a,b; Østergaard 2008) of wind turbines. In gen-
eral the industry is reluctant to use these novel methodologies due to their relative
complexity and the expected small performance improvement. However, with the
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more advanced operation concepts, such as the ‘smart’ rotor concept, the number
of control variables is increasing and it becomes necessary to use Multiple-Input
Multiple-Output (MIMO) model based control algorithms.

Still, the ‘smart’ rotor technology is a technology for the future and faces a
number of challenges before the concept can be adopted by the industry, such
as: development of suitable actuators and sensors, reliability, maintenance, in-
tegration of the actuators and sensors in a wind turbine, controller design, etc.
Furthermore, the wind community should be convinced: a large number of proof
of concept studies, studies in which the added value of these novel concepts is
demonstrated and quantified, must be performed.

1.3 Introduction to LPV system identification

The increasing number of control variables in modern wind turbines will neces-
sitate model based controller design for the wind energy community. In this sec-
tion we motivate that Linear Parameter-Varying (LPV) system identification is a
necessary building block for modern model based controller design for the wind
community.

1.3.1 Modeling

A model for modern model based controller design is a mathematical model nor-
mally governed by (preferably linear) differential equations. For controller syn-
thesis this model should only contain the relevant dynamics between the input,
the output, and the disturbances and should be accurate around the bandwidth
of the controller. These requirements are based on implementation and conser-
vatism issues. The two ways for obtaining a model and their application to the
wind industry are listed below:

First Principles (FP) modeling: In FP modeling, the laws of physics are used to
develop mathematical models. The main advantage of FP modeling is that
you can have a model before the actual system is built and consequently
the model can be used for system design and optimization. However, these
FP models are not tailored for control requirements because they typically
contain irrelevant dynamics and are nonlinear. A similar philosophy can be
found in the wind energy community, where a large number of design codes
are available (see Molenaar (2003) for a complete overview), but while con-
troller design is a part of the design process, the models are not directly
tailored to do so. However, there are a number of dedicated design tools
that have the opportunity to derive models for controller synthesis (for ex-
ample see van Engelen (2007); Garrad Hassan (2008)). Still, the amount of
detail in the model is normally the choice of the user, who normally tends to
‘overmodel’ the system to make sure to capture all the dynamics. Another
point that should be mentioned is that it is hard to have exact knowledge
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of the material and aerodynamic properties, although small differences may
produce significant different dynamics (Witteveen et al. 2007). Especially for
detailed and complex models these uncertainties may have a big influence
on the design and eventual implementation. In Witteveen et al. (2007) they
include these uncertainties in their Computational Fluid Dynamics (CFD)
models. Taking into account these uncertainties in the controller design pro-
cess can lead to conservative but robust controller designs. Still, these mod-
els need to be calibrated based on measured data. With the high number of
tunable parameters and the nonconvex nature of the problem, this is rather
time-consuming.

Experimental modeling (system identification): In experimental modeling, also
referred to as system identification, actual input and output data of the sys-
tem is used to obtain a mathematical description of the system. Because this
approach uses actual input and output data it will only model the dynamics
present in the data. For a fixed operation point of a wind turbine, where the
dynamics are assumed to be linear, LTI system identification (Ljung 1987;
Verhaegen and Verdult 2007) is a well-established methodology to obtain a
model for control. There are a number of scientific publications with appli-
cations in wind energy on this topic (see e.g. Bongers and van Baars (1991);
van Baars and Bongers (1992, 1994); van Baars et al. (1993); James III et al.
(1993); Knudsen et al. (1997); Marrant and Van Holten (2004); Hansen et al.
(2006); Pires (2008)). The resulting models are only valid around one op-
erating point. A typical problem for the application of system identifica-
tion to wind turbines is that the data generating system, the wind turbine,
has to operate in closed-loop, which requires some additional properties of
the identification algorithms (Van den Hof and Schrama 1995; Van den Hof
2004). Another reason to use closed-loop system identification is given by
Hjalmarsson et al. (1994), where they show that the iteration between closed-
loop system identification and controller (re)design is beneficial for finding
the ‘optimal’ controller.

We motivated that closed-loop system identification has a number of advantages
compared to FP modeling, although an FP model is required to design wind tur-
bines. Common practice outside the wind community is to use a mix of the two
modeling approaches. This approach can be summarized as follows: develop an
FP model for general design of the system and to synthesis a base-line controller.
When implemented on the real system, the model used for controller synthesis
should be refined by using system identification to obtain more accurate models
around the bandwidth to obtain less conservative controllers. In the next step the
controller synthesis should be performed on this identified model and if neces-
sary the identification step and controller synthesis step can be repeated until a
satisfactory result is obtained.

The application of system identification techniques to wind energy systems is
currently not used by the wind energy industry2. This is because up to now the

2However, Siemens recently performed a feasibility study to include system identification in their
controller design process (Pires 2008).
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wind industry has been satisfied with the performance of controllers based on FP
models, but that does not mean that there is nothing to gain. This is acknowl-
edged by the wind industry, and as a result the current state-of-the-art is to do ac-
tual measurements on a turbine at a number of different operation positions and
compute the Power Spectral Density (PSD) for each. The PSD’s are combined in a
3-D plot (the 2-D equivalent, is also referred to as a Campbell plot) to indicate the
time-varying disturbances and dynamics (Rossetti et al. 2008). This plot is used to
calibrate the FP models and based on this calibrated model an optimization step
of the controller is performed. This calibration and updating process is repeated
until a satisfactory performance is reached. A large number of tunable parameters
and the nonconvexity of the problem make this a time-consuming process. Fur-
thermore, as stated by Bongers (1994): ’...direct validation of the models describing the
dynamics of the turbine by direct comparison with measured data is of very limited use’.
For optimizing the controller it is more interesting to directly model the dynam-
ics between the actuators, disturbances, and sensors because in these signals gain
and phase information is present, which is basically the information needed for
controller synthesis. By direct comparison of the measured PSD data with PSD
data obtained from simulations, one can model the complete system, containing
the dynamics of the wind turbine, the feedback controllers, and the disturbances.
However, from this model it is still far from trivial how to isolate properties be-
longing to the dynamics of the wind turbine that are needed for controller synthe-
sis. As indicated by Bongers (1994) the most promising solution is the application
of system identification.

We motivated that system identification is a valuable tool for the wind com-
munity and is a logical next-step to be applied on a ‘real’ turbine for controller
redesign. We also motivated that with the increasing dimensions of turbines and
the application of more advanced control concepts MIMO control is required, and
consequently we need MIMO system identification. There is one more point we
would like to emphasize with respect to the identification of wind turbines. We
mentioned that for a certain operation point the wind turbine can be considered
to be LTI. However, a wind turbine switches from one operation point to the other
quite rapidly as a result of the variations in wind speed. Common practice is
to perform model identification and control at a number of different operating
points, and then interpolate. As already indicated by Leith and Leithead (1996);
the actual performance of such a controller can deviate from the expected perfor-
mance in the transitions between different operating points. As mentioned ear-
lier, more advanced scheduling methods have been proposed based on the Lin-
ear Parameter-Varying (LPV) model structure to circumvent this problem and to
guarantee performance and stability in an operation region. For the identification
procedure this implies that we must identify LPV models instead of LTI models.
We introduced the identification of LTI models solely based on input and output
data, also referred to as black-box modeling, which is a bit counter intuitive since
known parameters are disregarded. In the LPV identification framework we in-
clude, in addition to the input and output data, the knowledge of the operation
point of the wind turbine, and consequently the identification framework is re-
ferred to as gray box identification. In the next paragraph we elaborate more on
the LPV model structure and the challenges for system identification.
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1.3.2 LPV model structure

Linear Parameter-Varying (LPV) systems are a particular class of nonlinear sys-
tems which have attracted considerable attention in recent years. They can be
thought of as a particular type of time-varying system, where the variation de-
pends explicitly on a time-varying parameter referred to as the scheduling or
weight sequence. For state-space systems, this results in the system matrices being
a known function of this scheduling sequence. This is sometimes interpreted as an
interpolation between different local linear models (Murray-Smith and Johansen
1997). The LPV model structure is represented by (continuous time3):4

ẋ = A (µ)x+B (µ)u+K (µ) e,

y = C (µ)x+D (µ)u+ e,

where x and ẋ are the state vector and its time derivative, respectively. A, B, C, D,
andK are the system matrices. u, y, and e are the input, output, and noise signals,
respectively. Finally, the parameter µ represents the parameter dependency of the
model (for a wind turbine this might be the rotor speed, rotor position, or pitch
angle).

The LPV model structure was introduced by Shamma and Athans (1991) and
due to their close relation to Linear Fractional Transformation (LFT) descriptions
(Lee and Poolla 1999), it has been possible to apply advanced control synthesis
techniques to these systems, either continuous time or discrete time, which have
guaranteed stability and performance (Becker and Packard 1994; Zhou et al. 1996;
Apkarian and Adams 1998; Scherer 2001; Wu and Dong 2006). For wind turbines
this translates to one global controller where the gains are dependent on the opera-
tion point with guaranteed stability in the transitions between different operation
points, tracking of maximum power in the below-rated power region, and load
reduction capacity above-rated power. For this controller framework, continuous
or discrete time mathematical models are required in the synthesis step. However,
other control methodologies are also making the step towards LPV controller syn-
thesis such as data-driven control (Yoo and Rhee 2002) and model predictive con-
trol (Salcedo et al. 2007) which require discrete time models. This, together with
the fact that sampled data is obtained from real systems, is the reason that we
focus on discrete time model identification in this thesis. However, we also note
the work presented in Tóth et al. (2008) where it is shown that the discretization
of continuous time LPV systems is far from trivial. For example a nicely affine
parameter-dependent model in continuous time is likely to translate into a more
complex fractional parameter dependent model in discrete time. We will illustrate
this difficulty in Section 4.9 with an example.

3For a discrete time formulation see Section 3.2 and 4.2.
4For a more elaborate discussion on the LPV model structure we refer to Casella and Lovera (2008).
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1.3.3 LPV system identification

From the wind energy perspective we labeled the LPV identification problem as
a kind of ‘gray-box’ identification problem because data (operational position) is
used for the identification problem. However, the LPV identification problem can
also be formulated in a black-box way assuming that the scheduling is not known.
Intuitively this is a hard problem, which basically coincides with nonlinear system
identification. In this thesis we assume that we know the scheduling sequence
as in the LPV framework, where it is assumed that the scheduling sequence is
measurable. To be more precise we will focus on state-space LPV identification
with known scheduling. Similarly to the LTI case, a distinction can be made be-
tween state-space and input-output model representations of an LPV system, for
which the most common identification procedures are Subspace Model Identifi-
cation (SMI) and Prediction Error (PE) identification, respectively. In the input-
output setting, results from LTI theory can be extended quite straightforwardly to
the LPV setting (Bamieh and Giarre 2002; Previdi and Lovera 2004; Wei 2006; Tóth
et al. 2007). The focus of this subsection is on state-space LPV identification meth-
ods. Although these methods face a number of challenges from a computational
point of view, they have a number of advantages over the input-output setting:

• State-space methods have a straightforward extension to MIMO systems. In
the input-output setting, the first step is to do model structure selection: to
select the structure (e.g. OE, ARX) and the corresponding orders. In the
state-space setting, the only degree of freedom is the state order. However,
if we consider the subspace identification scheme, an estimation of the order
is a part of the algorithm. The model structures for the input-output setting
and their corresponding algorithms are hard to translate to the MIMO set-
ting, while in the state-space setting this occurs naturally. This argument
holds for the LPV case as well as for the LTI case.

• The state-space model structure is the desired structure for controller syn-
thesis. The conversion from input-output model description to the state-
space model description is one-to-one in the LTI case. In the LPV case the
dependency on the scheduling parameter can change significantly (e.g. from
static dependency to dynamic dependency), which makes this point impor-
tant for LPV systems.

These issues motivate why the focus of this thesis is on state-space LPV identi-
fication. In general we can distinguish between four approaches to LPV system
identification: 1.) Interpolation 2.) Nonlinear optimization 3.) Subspace identification
4.) Identification using dedicated scheduling sequences. Below a short overview of the
different methods is given.

Interpolation: Common practice in industry is to identify a set of models be-
longing to different operating points, also referred to as stationary or local
models. This is followed by an interpolation of the models into a particular
parametrization (e.g. balanced state-space realization (Lovera and Mercere
2007)). For wind energy this translates into interpolation between the LTI
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models corresponding to different operational points. A similar approach is
followed in Steinbuch et al. (2003); Groot Wassink et al. (2005); Wijnheijmer
et al. (2006) for mechanical motion systems. The followed approach is intu-
itive and simple and it leans on well-established realization and LTI system
identification theory. However, the methods are only applicable if the ap-
plication allows the scheduling to be constant for a certain period. Further-
more, in Tóth et al. (2007) it is shown that the interpolation between these
stationary models can lead to unstable models of the LPV structure, even if
the original system is stable. This phenomena was already acknowledged
by Leith and Leithead (1996) where they stated that simply requiring local
linear equivalence at the equilibrium points provides an inadequate basis
for the choice of realization for the interpolated models.

Nonlinear optimization: The second approach is based on nonlinear optimiza-
tion. In this approach the scheduling sequence is allowed to vary arbitrarily.
It is well known that if the scheduling and full state information is available
this results in a linear estimation problem (Nemani et al. 1995; Lovera 1997).
However, when only input and output data is used the problem turns into
a nonconvex optimization problem. In Lee and Poolla (1999); Verdult et al.
(2002, 2003) a parametric approach is followed where the LPV parameters
are estimated using nonlinear optimization. The main disadvantage is that
there is no guarantee of finding the global optimum. Furthermore, the state
basis is fixed in the optimization algorithm, which can lead to ill-conditioned
problems. The latest development in this particular category is from Borges
et al. (2004) which splits the problem into a linear and a nonlinear part using
Separable Least Squares (SLS).

Subspace identification: To overcome the drawbacks related to nonlinear opti-
mization and the interpolation framework, the field of subspace LPV identi-
fication was founded. A milestone in this field is the Ph.D. thesis of Verdult
(2002). This Ph.D. thesis extends the Bilinear identification scheme of Fa-
voreel (1999) and Favoreel et al. (1997, 1999) and later improved by Verdult
et al. (1998) and Chen and Maciejowski (2000) to LPV systems. Compared
to the subspace LTI counterpart MOESP (Verhaegen and Dewilde 1992) this
algorithm has the inherent drawback that it estimates the state sequences
using a certain past window, possibly leading to biased results. Similar ap-
proximations are made in the subspace LTI algorithm: N4SID (Van Over-
schee and De Moor 1996), however, by making the past window larger and
larger this bias will tend to zero. It turns out that identification of LPV sys-
tems with arbitrarily varying scheduling sequences is challenging from a nu-
merical point of view (Verdult and Verhaegen 2001, 2002): the data matrices
grow exponentially with the size of the past window. With the introduction
of the kernel method (Verdult and Verhaegen 2005), the ‘curse of dimension-
ality’ was partially solved, however, a different bias was introduced (Verdult
and Verhaegen 2005). In van Wingerden and Verhaegen (2008b, 2009) (see
also Chapter 4 of this thesis) a significant dimension reduction is obtained,
resulting in better estimates.

Identification using dedicated scheduling sequences: The fundamental problem
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in the interpolation setting, and the numerical issues in the nonlinear opti-
mization and subspace approach, forced researchers also to look at alter-
natives. Recently, a number of papers appeared where the structure of the
scheduling sequence is exploited; it turns out that if the scheduling is peri-
odic (Felici et al. 2007b; van Wingerden et al. 2008a) (see also Chapter 3 of
this thesis), piecewise constant (Verdult and Verhaegen 2004; van Winger-
den et al. 2007; van Wingerden and Verhaegen 2007), or white noise (Santos
et al. 2005, 2006), well-established LTI subspace techniques can be extended
to identify LPV or bilinear systems. The main advantage of this approach
is that it leans on LTI techniques and does not require any approximation5.
In Felici et al. (2007b); Verdult and Verhaegen (2004); van Wingerden et al.
(2007); van Wingerden and Verhaegen (2007) a strong similarity appears
with the interpolation methods. First a number of stationary models are
estimated using well-established linear techniques but then, instead of in-
terpolation, an intersection problem is formulated resulting in an LPV rep-
resentation that is theoretically correct. Similarly as in the interpolation set-
ting, the scheduling should have a certain structure, which can be restrictive
for certain applications.

Open-loop versus closed-loop identification

Some of the applications on which LPV controller synthesis is of interest are un-
stable by nature and must operate in closed-loop to be identified, e.g. aerospace
applications (Barker and Balas 2000) and wind turbines (Bianchi et al. 2007). It
is well known that for LTI subspace identification the projector type of subspace
algorithms (e.g. MOESP (Verhaegen and Dewilde 1992) and N4SID (Van Over-
schee and De Moor 1996)) give biased estimates if the identification data is gen-
erated under closed-loop conditions. The main reason for the bias is the con-
straint that the noise and the input should be uncorrelated. This assumption is
clearly violated if there is a feedback loop present (as clearly explained by Ljung
and McKelvey (1996)). Predictor-based subspace identification methods (e.g. PB-
SID (Chiuso and Picci 2005) and SSARX (Jansson 2005)) do not suffer from this
drawback. The literature on LPV system identification indicated so far does not
deal with closed-loop identification schemes, although the interpolation scheme
can easily be extended to this particular setting. Recently, in van Wingerden et al.
(2008a,b); van Wingerden and Verhaegen (2008a,b, 2009) (see also Chapter 3 and 4
of this thesis) novel subspace driven algorithms are presented that are based on
their LTI counterparts PBSID (Chiuso and Picci 2005) and PBSIDopt (Chiuso 2007)
for systems with arbitrary and dedicated scheduling sequences.

1.4 Goals of this thesis

In the previous sections we mainly highlighted two research areas: the ‘smart’ rotor
concept and LPV system identification. This thesis contributes to the development

5If we use the MOESP type of algorithms.
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of these two research areas. In this section we specify what the goals of this thesis
are.

The first step in the design of a ‘smart’ rotor is a feasibility study in which
the basic concept of the ‘smart’ rotor is explored without too much detail on the
boundary conditions (e.g. lightning strikes, robustness, etc). Within the project:
ADAPtive WING geometry for reduction of wind turbine loads (ADAPWING 2008),
done at the Danish research institute Risø, the focus was on a theoretical feasi-
bility study. With respect to this work, the goal in this thesis is to show the fea-
sibility of the ‘smart’ rotor under realistic wind turbine conditions (e.g. realistic
disturbances, feedback control, and load measurements). Furthermore, we adopt
the model based controller design cycle (modeling, identification, validation, and
control) to control the ‘smart’ rotor. This cycle is used because it is common prac-
tice in high-tech mechatronic industries (e.g. the automotive, lithographic, and he-
licopter industry) and is therefore also suitable for the wind industry, since with
the current evolution wind turbines also deserve the additive high-tech. The suc-
cess of the realization might also help aerodynamicists and structural experts to
embrace control engineering much earlier in their design cycle and use control
engineering as a lever to create additional design freedom. To be more precise, we
state the following goal:

Goal 1: Experimental: Show the experimental feasibility of the ‘smart’
rotor concept with emphasis on the controller design cycle.

In pursuit of this, we can partially achieve the desire highlighted in the abstract of
this chapter; to show the contribution of control on an experimental wind turbine.
With the first challenge we also include the desire highlighted in the second state-
ment given by Bongers; to validate models using system identification. However,
as indicated in this chapter, wind turbines are nonlinear systems and in order
to apply LPV control on wind turbines there is also a need for LPV modeling.
As introduced in the previous section, the identification of LPV systems is rather
young; only a few algorithms have been developed and they only considered the
open-loop situation6. The second goal is therefore a more fundamental one and
is:

Goal 2: Fundamental: Develop efficient LPV identification techniques to
obtain accurate LPV models of nonlinear systems given input, output,
and scheduling data generated under open and closed-loop conditions.

These two goals allow us to contribute to the development of the new generation
of wind turbines. First by showing the feasibility and second to come up with a
building block for modern model based control.

6The closed-loop algorithms mentioned so far are a part of this thesis.
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1.5 Contributions of this thesis

The contributions appear in two major subclasses: 1. Proto-typing of a ‘smart’ rotor
and 2. Discrete time LPV state space identification:

1a. We showed the utility of active control on the ‘smart’ rotor under realistic
wind turbine conditions, i.e. unknown disturbances, feedback control, and
load measurements. In the wind tunnel we showed, with our experimental
setup, that when the disturbance is known, perfect cancellation is possible.
However, under realistic circumstances the disturbance is not known and
feedback control is required. For this situation we showed the broadband
load reduction capabilities of the ‘smart’ rotor for different load cases, e.g.
with a sinusoidal disturbance we can reduce the amplitudes by 90% at the
first eigenfrequency of the blade.
—see Chapter 2 and (van Wingerden et al. 2008)—

1b. We showed in our design that when you embrace control engineering in an
early phase in the design cycle you create a lever to obtain additional design
freedom. This result brings the cooperation between control engineers, aero-
dynamicists, and structural experts at the Delft University of Technology to
a higher level.
—see Chapter 2 and (van Wingerden et al. 2008)—

2a. We showed that by using a periodic scheduling sequence the identification of
LPV systems can be recasted into a number of linear time-invariant iden-
tification problems. Existing LTI subspace identification methods can then
be used to determine the column space of the observability matrix for each
LTI system. We have solved the crucial step in determining the original LPV
system by ensuring that the obtained observability matrices and related state
sequences are defined with respect to the same global state basis.
—see Chapter 3, (van Wingerden et al. 2008a), and (Felici et al. 2007a)—

2b. For LPV systems without periodic scheduling, we presented a novel sub-
space identification method. We derived a factorization that divides the
parameter-varying extended controllability matrix into an unknown and a
known part. Based on this factorization, a closed-loop identification method
is developed to estimate the state sequence from which the LPV system ma-
trices can be constructed.
—see Chapter 4 and (van Wingerden and Verhaegen 2008a,b, 2009)—

2c. The structure in the scheduling sequence in 2a and in the data matrices in 2b
is explored in order to derive computationally efficient formulations for the
identification methods.
—see chapter 3-4 and (van Wingerden and Verhaegen 2008a,b)—

2d. These algorithms are the first such LPV identification algorithms suited for
data generated in closed-loop, which is a requirement for most aerospace
and wind energy applications.
—see Chapter 3-4, (van Wingerden et al. 2008a), and (van Wingerden and
Verhaegen 2009)—
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1.6 Organization of this thesis

The two goals formulated in Section 1.4 have a totally different character and
therefore this thesis is split up into two parts:

Part I: Experimental part The main challenge in the first part of this thesis is to
demonstrate the effectiveness of the combination of modeling, identifica-
tion, control, and validation on a practical demonstrator and to show the
feasibility of the ‘smart’ rotor concept. Some results in this part are pub-
lished elsewhere and are listed below:

• J.W. van Wingerden, A.W. Hulskamp, T. Barlas, B. Marrant, G.A.M. van Kuik,
D-P. Molenaar and M. Verhaegen “On the proof of concept of a smart wind
turbine rotor blade for load alleviation”, in Wind Energy, 2008, 11(3), 265-280.

Part II: Fundamental part In this fundamental part, a set of algorithms is devel-
oped to identify MIMO Linear Parameter-Varying systems for data gener-
ated in an open and closed-loop setting. The algorithms developed are not
solely developed for wind energy but they may be applied to all kinds of
dynamical systems with LPV characteristics. This part contains two chap-
ters which can be read independently. In the first chapter we describe a
novel LPV identification framework where we use dedicated scheduling se-
quences for the identification experiment. In the second chapter we deal
with LPV systems where the scheduling is allowed to vary arbitrarily. At
the end of both chapters the link with wind energy is highlighted using aca-
demic case studies. Some results in this part are published elsewhere and
are listed below:

For periodic scheduling:

• J.W. van Wingerden, I. Houtzager, F. Felici, and M. Verhaegen, “Closed-loop
identification of the time-varying dynamics of variable-speed wind turbines”,
to appear in International Journal of robust and nonlinear control, special issue on
Wind turbines: New challenges and advanced control solutions.

• F. Felici, J.W. van Wingerden and M. Verhaegen, “Subspace identification of
MIMO LPV systems using a periodic weight sequence”, in Automatica, 2007,
43(10), 1684-1697.

For arbitrary scheduling:

• J.W. van Wingerden and M. Verhaegen, “Subspace identification of Bilinear and
LPV systems for open and closed loop data”, to appear in Automatica.

• J.W. van Wingerden and M. Verhaegen, “Subspace identification of multivari-
able LPV systems: a novel approach”, invited paper IEEE Multi-conference on
Systems and Control, San Antonio, USA, September 2008.

• J.W. van Wingerden and M. Verhaegen, “Subspace identification of multivari-
able LPV systems: a PBSID approach”, invited paper The 47

th IEEE Conference
on Decision and Control, Cancun, Mexico, December 2008.

The outline of this thesis is visualized in Figure 1.7.
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Figure 1.7: Visualization of the outline of this thesis.
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2 CHAPTER

On the proof of concept of a ‘smart’
wind turbine rotor blade for load

alleviation

I
n this chapter a proof of concept study is performed to show the feasi-
bility of the load alleviation abilities of a ‘smart’ blade; that is, a blade

equipped with a number of control devices that locally change the lift pro-
file on the blade, combined with appropriate sensors and feedback con-
trollers. Theoretical and experimental models are developed of a scaled
non-rotating rotor blade that is equipped with two trailing edge flaps and
strain sensors to facilitate feedback control. A pitch actuator is used to
induce disturbances with a similar character as a gust or turbulence. A
feedback controller based on classical loop shaping is designed that min-
imizes the root bending moment in the flapping direction. We show that
with appropriate control techniques the loads for periodic disturbances
and for turbulence generated disturbances can be reduced up to 90% and
55%, respectively.

2.1 Introduction

In the previous chapter we discussed the state-of-the-art control in wind energy
and motivated the ‘smart’ rotor concept. We also gave an overview of the work
already done in this field. In this chapter we present a 3-D experiment that takes
into account the blade aeroelastic effects and a feedback controller such that we
have a proof of concept study of a ‘smart’ rotor blade. This experimental work is
significantly different from the work done by Bak et al. (2007); they worked with 2-
D models without aeroelastics, and they did not implement a feedback controller.
We use a scaled non-rotating pitchable flexible rotor blade that is equipped with
two trailing edge flaps. In the root two strain sensors are applied to facilitate

23
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feedback control. The pitch degree of freedom is used to induce vibrations while
the trailing edge flaps are used to compensate for the disturbances. Furthermore,
we focus on the suppression of the 1P and 3P1 loads in the flapping direction of
a wind turbine blade and the ability to suppress the loads induced by gusts. For
the scaled wind turbine blade the 1P and 3P frequencies are close to or below
the first eigenfrequency of the blade (the first flapping mode). This means, from
a mechanical point of view, that one vibration mode is dominantly present and
the interaction between the mechanical and aerodynamic behavior is of critical
interest.

The outline of this chapter is as follows. In Section 2.2 the experimental setup
is presented, in Section 2.3 an analytical two-port model that facilitates controller
design and model validation is presented, while in Section 2.4 the experimental
results are presented. Finally, we end this chapter with the main conclusions.

2.2 Experimental Setup

In this section we present the experimental setup used to show the feasibility of
the ‘smart’ rotor concept.

The ‘smart’ rotor that we use for our experimental validation is a non-rotating,
pitchable blade with constant cross-section (see Figure 2.1). The blade is equipped
with two trailing edge flaps to enable its use for future research. However, the two
actuators are used together as one actuator, by applying the same control signal,
because the main focus of this work is to suppress the first bending mode. For the
same reason two strain sensors are applied in the root located on the central axis
and at the leading edge of the blade, respectively. The experimental setup mainly
consists of the following components: Wind tunnel, Blade, Actuators, Sensors,
and Real-Time environment. Every element of the experimental setup will be
described in this section.

2.2.1 Wind tunnel

A Low-Speed Low-Turbulence Wind Tunnel of the Delft University of Technology
is used. It is an atmospheric tunnel of the closed-throat single-return type, with
a maximum speed of 120 m/s. The test section is 1.8 m wide, 1.25 m high, and
2.6 m long. The total circuit length is 72.7 m and has a contraction ratio of 17.1 to 1.
The free-stream turbulence level in the test section varies from 0.015% at 20 m/s
to 0.07% at 75 m/s. These wind speeds correspond to Reynolds numbers in the
range from 1.5 · 105 to 5 · 105, using 0.12 m chord models. In this wind tunnel it is
not possible to tailor the incoming wind in such a way as to simulate disturbances
that excite the model 1P and 3P disturbances. In the experimental setup the pitch
actuator is used for this purpose.

1once-per-revolution and three-times-per-revolution, respectively.
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Figure 2.1: Photo of the ‘smart’ blade with the trailing edge flaps, the strain sen-
sors, and the pitch actuator.
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2.2.2 Blade Design

A blade of a reference turbine was used to scale our experimental model. The
blade under consideration has a flap eigenfrequency of 1 Hz, a chord of 1.8 m at
75% blade length, and a span of 40 m. The maximum rotational speed of the blade
is around 0.28 Hz with a nominal wind speed of 14 m/s. This implies that the 3P
load, 0.84 Hz, is close to the first flapping mode of the blade at 1 Hz. The exper-
imental blade is designed to have the same dynamic properties and the reduced
frequency is used to scale the dynamics. The reduced frequency is given by:

k =
ωkc

2Vk
, (2.1)

where k is the reduced frequency, c the chord length in meters, ωk is the angular
frequency of the unsteady disturbances in rad/s, and Vk is the velocity in m/s.
We use the reduced frequency to scale the first flap eigenfrequency (also referred
to as the flapping mode) and the 1P and 3P frequencies. This means that, with a
wind speed of 45 m/s, we have a flapping frequency of 12.5 Hz. In Table 2.1 an
overview of the parameters is presented.

Table 2.1: Scaling of the dynamic properties based on the 75% blade length values.

Reference Experimental

turbine model

Chord [m] 1.8 0.12

Characteristic velocity [m/s] 54 45

1P load [Hz] 0.28 3.5

3P load [Hz] 0.84 10.5

1st flap eigenfrequency [Hz] 1 12.5

k (1P)[-] 0.03 0.03

k (3P)[-] 0.09 0.09

k (eigenfrequency) [-] 0.1 0.1

The outer shape of the blade is given by the shape of the DU-W96-180 airfoil
with 0.12 m chord and a length of 0.9 m, 0.35 m shorter than the height of the wind
tunnel. To circumvent aerodynamic tip effects, an aerodynamic table is placed
in the wind tunnel. The aerodynamic table prevents, by its size, flow around
the tip of the blade. By this the flow remains 2-D, which has the advantage that
the aerodynamic modeling is simpler than for a 3-D tip flow. In this phase of
research this is considered to be appropriate. The table has a diameter of 1 m,
and a distance below the blade tip of 3 mm. The blade is constructed in three
different sections for structural reasons (Hulskamp et al. 2007). This is because
the tip sections, in which the actuators are mounted, are also to be used in a future
rotating experiment for which the root and middle section will be modified. The
blade sections consist of foam cores, to which anodized aluminium inserts and
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Figure 2.2: Schematic representation of the trailing edge flap.

prefabricated spars can be attached, wrapped with a number of glass fibre 8H-
satin plies. This preform is placed in the aerodynamically contoured cavity of a
rigid mold and vacuum infused with epoxy resin. In Figure 2.1 a photo of the
blade is presented with the trailing edge flaps.

2.2.3 Actuators & sensors

The most challenging part in the design of the ‘smart’ rotor is the design of the
actuator. In this chapter we design a specific actuator for the scaled blade model.
The scalability is questionable with the actuator we propose; however, this is out-
side the scope of this research. In Marrant and Van Holten (2006) it is shown that
the most effective control device is a trailing edge flap. Consequently, the blade
was equipped with 2 trailing edge flaps in the outboard part of the blade, which is
where the largest aerodynamic leverage can be obtained. The flaps have a width
of 10.5 cm in the span direction and cover half the chord length (6 cm). The size
is chosen in such a way that sufficient load reduction can be obtained for pitch
variations of 2 degrees (Marrant and Van Holten 2006; Andersen et al. 2006). The
active part of the trailing edge flaps consist of Thundertm TH-6R actuators (Face
international cooperation 2008). These are piezo-electric based benders that can
deflect several millimeters under the application of a AC voltage from −450 V to
900 V. The actual deflection also depends on the structure around the bender and
the aerodynamic loading. The actuators are shaped with soft foam to give them
an aerodynamic shape. The foam is covered with a latex skin to provide a smooth
surface. The actuators are attached to the blade through a bracket that is mounted
on the spar. In Figure 2.2 the design of the flap is presented.

For control purposes, the blade is equipped with sensors that measure the dy-
namic behavior of the blade. Because the final goal for this non-rotating ‘smart’
blade is to reduce the fatigue loads, two piezoelectric patches (PZT) are adhered
to the root to measure the high strains associated with the first bending mode.
One PZT is placed on the neutral axis to measure the flapwise loads while the sec-
ond PZT is placed near the leading edge of the blade to also measure the lead-lag
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Figure 2.3: Schematic representation of all the available signals, hardware, and
their interaction with the ’real-time’ environment.

loads, the objective for future experiments. The first PZT signal is used as input
for the feedback controller. The main advantage of a PZT is that no amplification
is required to have a good signal-to-noise ratio. However, with the PZT it is not
possible to do static measurements due to the capacitance behavior of the PZT.
This high pass behavior is desirable for this experiment, as we want to control the
dynamic behavior of the system, rather than the static deformations of the system.
However, static deformations may be taken into account if different sensors (e.g.
strain gauges or optic fibers) are used to measure the static strain. In Figure 2.1
the strain sensors can be found in the root of the blade.

For the pitching of the system a high force linear actuator with internal encoder
is used. When a voltage is applied to the linear actuator it will elongate. How-
ever, a considerable amount of drift is present and a high gain feedback controller,
where we compare the measured position with the reference position, is used to
overcome this drawback. The reference signal can be chosen arbitrarily such that
we can mimic the 1P, 3P, and gust loads with the described pitch system.

2.2.4 Real-Time environment

The ‘smart’ rotor described so far is not ‘smart’ when there is no control added.
This controller intelligence and data acquisition capability are added with the
inclusion of a dSPACEtm (dSPACE GmbH 2008) chip. The controller and data
acquisition scheme are fully developed in the Matlabtm (The Mathworks 2008)
and Simulinktm (The Mathworks 2008) environment and then compiled to the
dSPACEtm chip. On a separate computer all the signals are monitored using Con-
trol Desktm (dSPACE GmbH 2008) and the control parameters can be adjusted in
real-time in the same environment.
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In Figure 2.3 a schematic representation is given of the data processing sys-
tem. The dSPACEtm chip has 8 Digital to Analog Converter (DAC) ports; 3 are
used to generate signals to the pitch amplifier, Vpitch, and the high voltage am-
plifier, Vthunder. The outputs of the amplifiers are directly connected to the blade.
Furthermore, 16 Analog to Digital Converter (ADC) ports are available; these are
used to monitor the PZT’s and the voltages and currents of the high voltage am-
plifier. The encoder of the pitch actuator is attached to the encoder input of the
dSPACEtm card. The dSPACEtm system is used with a sample frequency of 10kHz
for control and data acquisition. With a controller incorporated in the real-time
environment our blade deserves the additive ‘smart’.

2.3 Modeling of a ‘smart’ rotor blade and model vali-

dation

In this section we develop an analytic model of the experimental setup for con-
troller design and for model validation. This means that we develop a compact
model that includes the most dominant dynamics of every research field. Because
of the multidisciplinary nature of a ‘smart’ rotor blade, a two-port approach is
used to model the dynamics. The main advantage of such an approach is the ex-
changeability of the sub-models. For example: more complexity can be added to
the mechanical block without altering the aerodynamic block. In Figure 2.4 the
two-port representation of the model is presented. In the following subsections
the different sub-models are presented and a feedback controller is introduced.
At the end of the section we model the complete system in one step using an ex-
perimental approach. This experimental model is used to validate and update the
first principles model.

2.3.1 Aerodynamic model

The dynamic behavior of the system is generated by the aerodynamic forces act-
ing on the blade; these are caused by the wind and velocity perturbations imposed
by the dynamic movement of the blade. This two-port coupling between the me-
chanics and the aerodynamics is also referred to as aeroelastics. Different models
can be used to model this interaction. Theodorsen’s model (Theodorsen 1935) is a
well known model that also takes into account rigid trailing edge flaps. However,
in Gaunaa (2006) a more advanced model is presented that takes into account the
deformation shape of the trailing edge flaps. For both models it holds that, when
we assume that the static lift curve is linear, the aerodynamics can be modeled as
a linear model for a given nominal wind speed (Theodorsen 1935; Lau and Krener
1999; Gaunaa 2006). The higher-order partial differential equations describing the
aerodynamics can be rewritten as a number of first-order differential equations
and they can be put in the state-space format (Kailath et al. 2000) given by:

ẋa = Aa(W )xa +Ba1(W )ym +Ba2(W )Vf , (2.2a)

F = Ca(W )xa +Da1(W )ym +Da2(W )Vf , (2.2b)
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Figure 2.4: Two-port model of a ‘smart’ rotor blade.

where xa and ym represent the aerodynamic lag states and the mechanical out-
puts to the aerodynamic system, respectively. The forces acting on the blades are
represented by F , while the nominal wind speed is represented by W , and the
small perturbations in the wind speed are represented by Vf . The system matrices
are Aa(W ), Ba1(W ), Ba2(W ), Ca(W ), Da1(W ), and Da2(W ); these can be directly
derived from the aeroelastic equations of motion as demonstrated in Theodorsen
(1935); Lau and Krener (1999); Gaunaa (2006). We use the representation presented
in Theodorsen (1935), and, consequently, 4 lag states are added for every grid
point. In the next section the blade is discretized in 4 segments. We apply the
same aerodynamic grid and this implies that we have 16 lag states.

2.3.2 Mechanical model

The mechanical model of the blade has a two port coupling between the aerody-
namics and the controller. The mechanical information fed to the aerodynamic
model is the acceleration, velocity, and position profiles of the rotor blade while it
experiences the aerodynamic force profile. The coupling with the controller takes
place via the actuators and sensors.

The dynamics that form the coupling between the different input and output
signals can be modeled with arbitrary complexity and accuracy. Different meth-
ods have been developed to describe the mathematical relations to get an accurate
representation of the blade dynamics. These methods can roughly be classified
into three types of systems; finite element, multibody, and modal representation.

For the experimental study, the multibody approach is chosen, because this ap-
proach is very appropriate for controller design, since the number of equations of
motion remains small. The multibody approach approximates a flexible body as
a set of rigid bodies coupled with springs and dampers. The spring stiffness and
damping coefficients are functions of the material properties and the geometry of
the original flexible body. This ‘superelement’ method has already been exten-
sively tested and it is used for wind turbine simulation in DAWIDUM (Molenaar
2003). In Figure 2.5 this approach is demonstrated. The mechanical model ob-
tained is nonlinear but can easily be linearized. For this model we use a linear
model with 8 states; this accurately represents the first 2 flapping modes. The
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Three bladed wind turbine Superelement approximation

Figure 2.5: The multi body approximation of a wind turbine (Molenaar 2003).

torsion and lead-lag degrees of freedom are neglected because the main focus of
the experiments in this chapter is to reduce the flapping motion. However, the
lead-lag modes should be modeled for a ‘real’ wind turbine because they couple
with the flapping modes.

In the mechanical modeling part we also include the sensors and actuators.
The pitch actuator is modeled as a rotational torque generating device while the
pitch angle is modeled as a measured input. The pitch actuator is only used to
induce a vibration and is not used for load alleviation; thus it is modeled as a
tracking controller that controls the position of the blade. The trailing edge flaps
are modeled as a second-order filter that outputs the flap angles, angular veloci-
ties, and accelerations. The second-order systems can be tuned on the mechanical
behavior of the trailing edge flap. The resulting linear mechanical model is repre-
sented in the following state-space representation:

ẋm = Amxm +Bm1F +Bm2Vthunder, (2.3a)

ym = Cm1xm +Dm1F +Dm2Vthunder, (2.3b)

Vstrain = Cm2xm, (2.3c)

where xm represents the mechanical states. The forces acting on the blades are
represented by F , the control input is represented by Vthunder, and the output is
given by ym and Vstrain that represent the mechanical outputs to the aerodynamic
system and the measured strain, respectively. The system matrices are Am, Bm1,
Bm2, Cm1, Cm2, Dm1, and Dm2.
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2.3.3 Controller Design

The main focus of the ‘smart’ rotor concept is to reduce the fatigue loads. For con-
troller design it is important to know the dynamic relation between the actuator
used for control, the control device, and the sensor used for control. The state-
space formulations of the previous subsections can be coupled to obtain a 28th

order first principles model that describes the desired relations. In Figure 2.6 the
dynamic relation between the actuators and sensors is given by means of a Bode
plot (Franklin et al. 1994; Ogata 1997). In Figure 2.6 we see the frequency depen-
dent gain and phase (delay) of the dynamics. We will explain the Bode plot with
the help of an example: Figure 2.6 presents the Bode plots between the pitch po-
sition and the measured strain and between the ‘smart’ actuators (that both have
the same signal) and the measured strain. The measured strain is expressed in
Volts. In the top left figure the gain of the pitch system with respect to the strain
is given. If we have a sinusoid with a frequency of 4 Hz (enter in the x-axis) we
observe a gain of 10. This means that for this specific sinusoid the strain is 10*1=10
Volt. If we apply a sinusoid signal with the same frequency but with an amplitude
of -400 V on the trailing edge flaps we also find, Figure 2.6 top right, that the strain
sensor will sense a sinusoid signal with an amplitude of -400*0.025=-10 Volt. In the
subplots in the bottom of Figure 2.6 we can conclude that the output sinusoid has
a phase shift of 20 degrees with respect to the input. Since this shift is the same for
both signals at this specific input frequency the signals are in phase. If we apply
both signals we use the superposition principle of linear systems to observe that
the two effects will cancel out in the output and consequently the system will be
motionless. In this case we assume that we know the disturbance beforehand and
perfect cancellation can take place. Bak et al. (2007) also performed this exercise on
a similar experimental setup for a 2-D airfoil where the lift was minimized. From
now on we refer to this situation as feedforward control. In reality the disturbance
is not known beforehand and real-time measured information is required to com-
pensate for the unknown disturbances. In this case feedback control is applied.

In industry it is common practice to use the Bode plot between the input and
output to design a feedback controller. The goal of feedback control is to sup-
press the disturbance as much as possible; however, the ability to do so is limited
by the requirement that the system remains stable; a bounded input will result
in a bounded output. In Figure 2.7 the structure of the feedback loop is pre-
sented. The feedback controller has as input the strain in the root expressed in
volts (Vstrain). Based on this signal the controller generates the deflection of the
trailing edge flaps by applying a voltage to the Thunder actuators (Vthunder). For
a stable non-minimum phase system, loop-shaping is a well known method to
design stable feedback controllers based on the Bode plot of the system of inter-
est (Franklin et al. 1994; Zhou et al. 1996; Ogata 1997). For the system considered,
a smoothed Proportional-Derivative (PD) controller with additional notch filter
will make a stable feedback controller with a considerable amount of disturbance
rejection (Franklin et al. 1994; Zhou et al. 1996; Ogata 1997). This controller, used
for the first principles and experimental model, is represented by the following
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Figure 2.6: The linear models represented by their Bode Plot; gray is for 30 m/s
and black 45 m/s. The three peaks correspond to the first 3 flapping
modes.

transfer function:

C(s) = P

(
s
τ1

+ 1
s
τ2

+ 1

)(
s2 + 2ωξ1s+ ω2

s2 + 2ωξ2s+ ω2

)
, (2.4)

where C(s) and s represent the controller and the Laplace operator, respectively.
The variables P , τ1, τ2, ω, ξ1, and ξ2 are parameters to tune the feedback controller
for the theoretical and experimental study. These parameters are tuned based on
Figure 2.7 using loop-shaping, to have a sufficient amount of gain margin, phase
margin, and bandwidth (see Zhou et al. (1996) for more information). However,
applying this analytically tuned feedback controller to the experimental setup is
not advisable. Due to some unforseen dynamics that have not been taken into
account in the model and/or uncertainties in the parameters, the system can be-
come unstable. Thus, we present experimental modeling in the next subsection
to obtain a Bode plot from measured signals on which we can tune the controller
given in (2.4).
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Figure 2.7: Schematic representation of the feedback problem.

2.3.4 Experimental modeling

The analytical modeling done so far strongly depends on a large number of pa-
rameters that completely determine the dynamic behavior of the system (e.g. stiff-
ness, damping, shape of the flap, etc). Most of these parameters can be roughly
estimated or calculated. Still, a large amount of uncertainty is present (e.g. the
dynamics around the trailing edge flaps, actuator and sensor dynamics, etc); this
makes it hard to design a stable feedback controller. In this subsection we use
experimental modeling to build a linear dynamic model. A subspace identifi-
cation method is used because of the numerically simplicity and the potential
to work with Multiple-Input Multiple-Output (MIMO) systems (Verhaegen 1994;
Van Overschee and De Moor 1996; Verhaegen and Verdult 2007). Subspace iden-
tification uses linear algebra (e.g. QR, SVD) to estimate a state-space model from
measured data. From this state-space model, representing the dynamics of the
system, a Bode plot with the measured gains and phase behavior can be made.
The controller in (2.4) can then be tuned with this plot using loop shaping.

The control loops in the current system are the transfer functions between the
trailing edge flaps, the pitch actuator, and the PZT sensor. The performance of
the subspace identification is evaluated by looking at the Variance-Accounted-For
(VAF) on a data set different from the data set used for determining the model.
The VAF value is defined as:

VAF (yk, ŷk) = max

{
1 − var(y − ŷ)

var(y)
, 0

}
∗ 100%, (2.5)

where ŷ denotes the output signal obtained by simulating the identified system, y
is the measured signal, and var() denotes the variance of a quasistationary signal.

The subspace identification is done with a step signal on the pitch actuator
while a white noise signal with a bandwidth of 100 Hz is applied on the trailing
edge flaps. These identifications can be done for different wind speeds and dif-
ferent angles of attack. However, it is expected that the angle of attack does not
change the dynamic behavior of the blade. We performed subspace identification
for two models: one for the 30 m/s situation and one for the 45 m/s situation, both
with an angle of attack of 6 degrees. However, we will validate the model not only
for this angle of attack, but also for an angle of attack of 3 degrees. In Table 2.2
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the settings and the VAF values are presented for the two subspace identification
models and in Figure 2.8 the Bode plots are presented.

Table 2.2: The Variance Accounted For (VAF) for the different models.

V [m/s] θ[deg] VAF PZT [%]

30 3 85.2

30 6 86.2

45 3 89.5

45 6 91.6

From Figure 2.8 three resonance peaks can be observed; these represent the
first flapping mode, the first lead-lag mode, and the second flapping mode. The
third flapping mode is not seen because the excitation signal has a bandwidth
of only 100 Hz, below the mode frequency of about 120 Hz. When we look at
the effect of the wind speed in Figure 2.8, the gain is higher for a wind speed of
45 m/s, so we need gain scheduling. However, the eigenfrequencies hardly vary.
Furthermore, we see in Table 2.2 from the VAF values of the PZT that the pitch
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angle hardly changes the dynamic response of the system. This is because the
system is still below stall and consequently the lift curve is still linear. The VAF
values are higher for the higher wind speed. This is caused by the fact that with
similar excitation the measured signals are larger and consequently the signal-to-
noise ratio is higher, which has a direct effect on the VAF.

If we compare the subspace identification model with the first principles model
(the model that incorporates the aerodynamic model and the mechanical model),
we see globally the same behavior (compare Figure 2.6 with Figure 2.8 ). For the
low frequencies we see a severe difference due to the unmodeled dynamics of
the piezo sensors in the analytical model2. Piezo electric sensors can not measure
static loads and that explains the difference with the identified model. Further-
more, from subspace identification 10 states appeared to be dominantly present
in the data resulting in a 10th order model, which is significantly smaller than the
28th order first principles model. For advanced control methodologies (e.g. LQR,
H2, H∞), where the controller is of the same order as the model, implementation
problems will arise (e.g. computational power) and model reduction should be
performed.

The controller presented in the previous subsection is tuned on the subspace
identification model. However, due to the unknown dynamics of the model at
higher frequencies, a second-order roll-off filter with a cut-off frequency of 200 Hz
is added to suppress the higher frequencies in the feedback signal. Furthermore,
due to the low gain at the 1P frequency and inverted notch is added to have some
disturbance rejection in the low frequency range. In Appendix A more controller
details are given.

2.4 Wind tunnel measurements

In this section the main results of the experiments in the wind tunnel are pre-
sented. The subspace identification experiment has already been presented in the
previous sections. In this section we present 4 cases that will show the possibilities
of the ‘smart’ rotor concept. The first experiment is the so-called feedforward ex-
periment where we use prior information to compensate for the disturbances. For
the second experiment we do a similar experiment without prior information but
now using the feedback controller. In the third experiment we show the response
of the system to step disturbances with and without control. In the fourth exper-
iment we show the response of the system to a filtered white noise with peaks at
the 1P and 3P frequencies to mimic a typical turbulence spectrum.

2.4.1 Case 1: Feedforward control with a periodic disturbance

The first result that we present is based on the feedforward approach. A sinu-
soidal disturbance is applied to the pitch reference and a sinusoidal ‘smart’ rotor

2For analytical modeling of piezoelectric elements we refer to van Wingerden (2004a,b) and refer-
ences therein.
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Figure 2.9: With (black) and without (gray) feedforward control for the 3P distur-
bance with an amplitude of 0.5 degrees on the pitch for a wind speed
of 45 m/s. The dotted line represents the estimated strain [V].

actuation signal is applied to the flaps with different amplitude and phase. In
Figure 2.9 the results are depicted for a sinusoidal disturbance with a frequency
that corresponds to the 3P frequency with an amplitude of 0.5 degrees for a wind
speed of 45 m/s. This signal is presented in the top left of Figure 2.9. From in-
spection of Figure 2.8 we decide to provide a sinusoidal input to the trailing edge
flaps with a phase shift (delay) of 8 degrees and an amplitude of -400 volts. This
control signal is depicted in the top right of Figure 2.9. The gray line represents
the situation without control and the black line with control. The performance
signal, the PZT signal, is presented in the lower part of Figure 2.9. It saturates at
10 V due to the sensor specifications. However, because we apply a pure sinusoid
the estimated output is represented by the dashed line.

We observe that for the controlled case we see a reduction of close to 90% from
the uncontrolled case at this particular frequency. However, we have to stress that
the disturbance is known and the most ideal cancellation is reached. Theoreti-
cally the reduction should be 100%; however, limitations on the input amplitude
play an important role. The same result is obtained for different frequencies and
working conditions. In Bak et al. (2007) similar results are presented for the 2-
D situation with a rigid blade.
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2.4.2 Case 2: Feedback control with a periodic disturbance

With feed forward control it is assumed that the disturbance is known and per-
fect cancellation can take place when an accurate model of the system is available.
When there are small uncertainties, the feed forward can be tuned online with-
out any consequences for stability. For feedback control this unfortunately does
not hold; an accurate model is required to design a feedback controller (see Sec-
tion 2.3). The feedback controller described in (2.4) was tuned off-line and imple-
mented. In Figure 2.10 we present a similar situation as in the feed forward case.
However, the control signal is now generated by the feedback controller and we
evaluate the controller at the first eigenfrequency of the blade. The load reduction

Time [s]

P
it

ch
a

n
g

le
[d

eg
]

Time [s]

V
o

lt
a

g
e

o
n

fl
a

p
1

&
2

[V
]

Time [s]

P
Z

T
o

u
tp

u
t

[V
]

0 0.1 0.2 0.3 0.4 0.5

0 0.25 0.50 0.25 0.5

-15

-10

-5

0

5

10

15

-400

0

400

-0.5

0

0.5

Figure 2.10: With (black) and without (gray) feedback control for the eigenfre-
quency with an amplitude of 0.5 degrees on the pitch for a wind
speed of 45 m/s. The dotted line represents the estimated strain [V].

capability is around 90%. Due to the phase behavior of the system, this perfor-
mance can not be reached for every frequency, but it can be expected for the 3P
excitation, which is close to this eigenfrequency (see Appendix A for frequency
domain details).
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2.4.3 Case 3: Feedback control with a step disturbance

The main advantage of the feedback controller is that we can apply an arbitrary
disturbance and the feedback controller will try to compensate for that. In the
third case we mimic a wind gust by applying a step disturbance to the pitch sys-
tem. The results are shown in Figure 2.11. We observe that the feedback controller
works fine and damps the first flapping mode of the blade. It also attenuates the
peak and the peak-to-peak amplitudes, thus reducing the fatigue loading.

Time [s]

P
it

ch
a

n
g

le
[d

eg
]

Time [s]

V
o

lt
a

g
e

o
n

fl
a

p
1

&
2

[V
]

Time [s]

P
Z

T
o

u
tp

u
t

[V
]

0 0.5 1 1.5 2 2.5 3

0 1 2 30 1 2 3

-10

-5

0

5

10

-500

0

500

-2

0

2

Figure 2.11: With (black) and without (gray) feedback control for a step distur-
bance on the pitch reference for a wind speed of 45 m/s.

2.4.4 Case 4: Feedback control with a representative noise signal

For the fourth experiment we use a filtered white noise to mimic the 1P and 3P
loads on a real wind turbine blade. The input is completely unknown so every
feed forward algorithm would fail. Because fatigue reduction is the main objective
of this experiment, we express the performance using the Power Spectral Density
(PSD), which is given by:

Φu =
1

N
|U(ω)|2 , (2.6)
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where Φu represents the PSD of the time signal u of length N and U(ω) represents
the discrete time Fourier transform of the signal u. In Figure 2.12 the disturbance
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Figure 2.12: The PSD of the pitch input signal.

spectrum is presented for a load spectrum with peaks at 1P and 3P. Observe that
the 1P peak is a little bit higher than the 3P peak. In Figure 2.13 the PSDs of the
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Figure 2.13: The PSD of the measured strains with (black) and without (gray)
feedback control.

PZT sensor with and without control are given. In this figure we see that without
control the 3P peak has a much larger amplification than the 1P peak. This is
caused by the fact that the 3P peak is close to the first eigenfrequency. This can
also be seen in Figure 2.8 where we see a larger gain at the 3P frequency than
at the 1P frequency. If we compare the feedback results with the results without
feedback we can conclude that a significant reduction in the standard deviation is
obtained at the 1P (37%) and 3P (55%) frequencies.
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2.5 Conclusions

In this chapter we developed an experimental model and a theoretical model of a
‘smart’ rotor blade. We scaled down the dynamics of a representative wind tur-
bine blade using the reduced frequency and applied two trailing edge flaps as ad-
ditional control devices. In the root, strain sensors are added to facilitate feedback
control. The pitch system is used to impose realistic disturbances. It is shown
that, when the disturbance is known, perfect cancellation can be realized; how-
ever, due to actuator saturation the reduction in the amplitude that was reached
was limited to 90%. In real life the disturbance is not known and feedback control
is required. For this situation a model was required and we used experimental
modeling to validate the theoretical model and designed the feedback controller
using the loop shaping technique. Furthermore, we showed that, with a relatively
simple model, the dynamics can be represented with a sufficient amount of detail
to design feedback controllers. The feedback controllers have been tested on the
experimental setup for different cases. With a sinusoidal disturbance we showed
that we can reduce the amplitudes by 90% at the first eigenfrequency of the blade.
In the second feedback case a step was applied on the pitch, to mimic a gust,
and it was shown that the oscillation corresponding to the first mode was almost
completely removed. In the last feedback case a noise signal with a representa-
tive turbulence spectrum was applied and it was shown, in the PSD, that the 1P
disturbance was reduced by 37% while the 3P frequency was reduced by 55%.
The feasibility of the ‘smart’ rotor concept was demonstrated on this non-rotating
experiment.
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3 CHAPTER

Subspace identification of MIMO
LPV systems using a periodic

scheduling sequence

I
n this chapter we present a novel algorithm to identify LPV systems
with affine parameter dependence. This algorithm is applicable for

data generated in either open or closed-loop. The key assumption is that
there is structure in the scheduling sequence; it is periodic or almost pe-
riodic. This allows us to use methods from LTI subspace identification
to determine the column space of the periodic observability matrices and
the corresponding periodic state sequences. It is shown that the crucial
step in determining the original LPV system is to ensure that the obtained
observability matrices and state sequences are defined with respect to the
same global state basis. Once the LPV model has been identified, it is
valid for arbitrary scheduling sequences as well.

3.1 Introduction

Linear Parameter-Varying (LPV) systems, already introduced in Chapter 1, are a
particular class of nonlinear systems which have attracted considerable attention
in recent years. Although we motivated the use of LPV system identification from
a wind energy perspective, LPV system theory can be applied to a much wider
field of applications. Recently, a number of industrial applications of LPV systems
were published:

• compressors (Giarre et al. 2006),

• wind turbines (Bianchi et al. 2007; Østergaard 2008),

• aerospace applications (Barker and Balas 2000),

45
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• biomedical applications (Takahashi and Massaquoi 2007),

• motion platforms (Groot Wassink et al. 2005; Wijnheijmer et al. 2006),

• web server (Qin and Wang 2007; Tanelli et al. 2008),

• etc.

Earlier we motivated the need for efficient state-space LPV system identification
algorithms in wind energy. Similar arguments can be used to motivate LPV sys-
tem identification for the applications listed above. In this thesis we contribute
to the development of system identification by introducing two novel subspace
based identification frameworks to identify LPV systems under open and closed-
loop conditions. In this chapter we develop a novel identification framework for
LPV systems with a particular scheduling sequence; periodic. In the next chapter
we address LPV systems with arbitrary scheduling as well.

Recently, a number of papers appeared where the structure of the scheduling
sequence is exploited; it turns out that if the scheduling is periodic (Felici et al.
2007b; van Wingerden et al. 2008a), piecewise constant (Verdult and Verhaegen
2004; van Wingerden et al. 2007; van Wingerden and Verhaegen 2007), or white
noise (Favoreel et al. 1999; Santos et al. 2005, 2006), well-established LTI subspace
techniques can be used to identify LPV or bilinear systems.

For Linear Time-Varying (LTV) systems it is well known that ensemble iden-
tification can be used to obtain accurate models (MacNeil et al. 1992). In these
algorithms the system undergoes the same time-variation multiple times and LTI
identification techniques can be employed to estimate a set of models. If sub-
space algorithms are considered, multiple models are obtained corresponding to
a certain window of the time-variation (stationary sequence models). It is well
known that all these stationary models are identified in a different state basis and
consequently, if the order of appearance of the time-varying dynamics changes,
the LTV model is no longer valid (Verhaegen and Yu 1995). For LPV systems
the time-variation is given by the scheduling sequence and every stationary se-
quence model is related to a stationary scheduling sequence. The crucial step in
the identification framework presented in this chapter is that we transform all the
stationary sequence models to the same global state basis, which makes it possible
to reconstruct the LPV system matrices.

This chapter is set up as follows. We start in Section 3.2 with the problem for-
mulation for this framework where we assume periodic scheduling. In Section 3.3
it will be shown how LTI subspace algorithms can be used to construct the ob-
servability matrices and the state sequences of the so-called stationary sequence
models. These observability matrices and state sequences are all identified in a
different state basis. In Section 3.4 we show how these observability matrices and
state sequences can be transformed to the same state basis. In Section 3.5 we show
how to circumvent the ‘curse of dimensionality’. In Section 3.6 the result of the
intersection problem is used to transform all the stationary models to the same
global state basis and we estimate the LPV system matrices. In the following sec-
tion, Section 3.7, we discuss extensions of the proposed algorithm with respect to
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the model structure and the structure in the scheduling sequence. In Section 3.8
two simple simulation studies are performed while in Section 3.9 the algorithm is
applied on the rotational dynamics of a wind turbine. We end this chapter with
our conclusions concerning periodic LPV identification.

Some results published in this chapter are published elsewhere, see Felici et al.
(2007b); van Wingerden et al. (2007); van Wingerden and Verhaegen (2007); van
Wingerden et al. (2008a).

3.2 Problem formulation and assumptions

In this section we present the model structure that we consider in this chapter.
Furthermore, some assumptions are listed and some notation is introduced.

3.2.1 Problem formulation

For the derivation of the algorithm we consider the following LPV system:

xk+1 =

m∑

i=1

µ
(i)
k

(
A(i)xk +B(i)uk

)
+Kek, (3.1a)

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek, (3.1b)

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rℓ, are the state, input, and output vectors. ek ∈ Rℓ

denotes the zero-mean white innovation process. The matrices A(i) ∈ Rn×n,
B(i) ∈ Rn×r, C(i) ∈ Rℓ×n, D(i) ∈ Rℓ×r, K ∈ Rn×ℓ are the local system, input, out-

put, direct feedthrough, and the observer matrices; and µ
(i)
k ∈ R the local weights.

The index m is referred to as the number of local models or scheduling parame-
ters. Note that the system, input, output, and direct feedthrough matrices depend
linearly on the time-varying scheduling vector. The time-varying system matrix
is now given by:

Ak =
m∑

i=1

µ
(i)
k A(i),

and a similar thing can be done for the other system matrices. We can rewrite (3.1a)-
(3.1b) in the predictor form as:1

xk+1 =

m∑

i=1

µ
(i)
k

(
Ã(i)xk + B̃(i)uk

)
+Kyk, (3.2a)

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek, (3.2b)

1Observe that if K is allowed to be parameter-dependent we have for example the product between

K(i)C(j), which significantly makes the notation for LPV system identification more cumbersome as
we will discuss later.
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with:
Ã(i) = A(i) −KC(i), B̃(i) = B(i) −KD(i).

It is well-known that an invertible linear transformation of the state does not
change the input-output behavior of a state-space system. Therefore, we can
only determine the system matrices up to a similarity transformation T ∈ Rn×n:
T−1A(i)T , T−1B(i), T−1K , C(i)T , and D(i).

The identification problem can now be formulated as:

Problem Description 3.1 (LPV system identification)
Given the input sequence uk, the output sequence yk, and the scheduling se-
quence µk over a time interval k = {0, . . . , N − 1}; find, if they exist, the LPV
system matrices A(i), B(i), C(i), D(i), and K up to a global similarity transfor-
mation.

3.2.2 Assumptions and notation

The scheduling sequence:

µk =
[
µ

(1)
k , · · · , µ

(m)
k

]T
,

is assumed to be known and periodic with period π, defined over Π periods:

µk = µk+τπ ∀τ ∈ {1, 2, · · · ,Π − 1}, ∀k ∈ {0, 1, · · · , π − 1}.

For persistency of excitation it is also required that the scheduling sequence satis-
fies the following relation:

rank
([

µ0, µ1, · · · , µπΠ−p−f

])
= m,

and πΠ − p − f + 1 > m where p and f are referred to as the past and future
window length, respectively. Furthermore, we assume that the feedback problem
is well-posed. So, there is either a delay in the feedback controller or in the system.

We also define the transition matrix for discrete time time-varying systems and
this is given by (Rugh 1996):

φj,k = Ãk+j−1 · · · Ãk+1Ãk, (3.3)

and for simplicity we define:

B
(i)

=
[
B̃(i), K

]
.

Similar as in Jansson (2005); Chiuso (2007) the past and future windows are used
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to define the following stacked vector:

zpk =





zk
zk+1

...
zk+p−1




,

with zk =
[
uTk , yTk

]T
and we define the time-varying observability matrix:

Γ̃fk =





Ck+p
Ck+p+1φ1,k+p

...
Ck+p+f−1φf−1,k+p




∈ R

fℓ×n, (3.4)

for which we assume that it has full column rank for all k, which is equivalent
to requiring that the system is observable on all the intervals of length f accord-
ing to the condition for observability of LPV systems (Rugh 1996). Note that the
fulfillment of this requirement depends both on the system matrices and on the
scheduling sequence. To illustrate this time-varying observability matrix see the
following example:

Example 3.1 (Γ̃fk)
For m = 2, f = 3, and k = p = 0 one obtains:

Γ̃3
0 =





C(1) ⊗ µ
(1)
0 + C(2) ⊗ µ

(2)
0(

C(1) ⊗ µ
(1)
1 + C(2) ⊗ µ

(2)
1

)(
Ã(1) ⊗ µ

(1)
0 + Ã(2) ⊗ µ

(2)
0

)

(
C(1) ⊗ µ

(1)
2 + C(2) ⊗ µ

(2)
2

)(
Ã(1) ⊗ µ

(1)
1 + Ã(2) ⊗ µ

(2)
1

)
· · ·

· · ·
(
Ã(1) ⊗ µ

(1)
0 + Ã(2) ⊗ µ

(2)
0

)




.

The LPV controllability matrix Kpk ∈ Rn×(r+ℓ)p is defined as:

Kpk =
[
φp−1,k+1B̆k, · · · , φ1,k+p−1B̆k+p−2, B̆k+p−1

]
, (3.5)

with B̆k =
[
B̃k, K

]
. It is assumed that Kpk has full row rank, n, for all k, which

can be seen as a condition for reachability of LPV systems. For a factorization of
this particular matrix we refer to Section 4.3.

In the next section we will use these assumptions to extrapolate a number of
LTI predictor-based subspace algorithms to periodic systems.
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3.3 Periodic predictor-based subspace identification

It is well known that the projector type of subspace algorithms (e.g. MOESP (Ver-
haegen and Dewilde 1992) and N4SID (Van Overschee and De Moor 1996)) give
biased estimates if the data is generated under closed-loop conditions. The main
reason for the bias is the constraint that the noise, ek, and the input, uk, should
be uncorrelated. This assumption is clearly violated if there is a feedback loop
present (as clearly explained in Ljung and McKelvey (1996)). Predictor-based sub-
space identification methods (e.g. PBSID (Chiuso and Picci 2005) and SSARX (Jans-
son 2005)) do not suffer from this drawback if either the direct feedthrough of the
system or the feedback controller is zero. These methods use high-order ARX
models to remove the correlation between the input and noise sequence. In this
chapter, we extend these predictor-based algorithms to the periodic situation. The
reason to use only the predictor framework is threefold:

1. The projector based algorithms can be made periodic in a similar way, see Fe-
lici et al. (2007b).

2. The predictor-based methods can cope with data generated in an open and
closed-loop setting.

3. Predictor-based methods can be applied to LPV system identification where
arbitrary scheduling is used (see next chapter).

In predictor-based subspace identification methods we use a number of predictors
to estimate the Markov parameters. From the estimates the product between the
extended observability matrix and state sequence can be constructed. From this
point, an SVD can be used to estimate the observability matrix. However, because
we work in the innovation framework an estimate of the observability matrix is
not enough to determine the system matrices and that is why we also estimate
the state sequence. In this section we show how two of these methods can be
extended to the periodic setting2.

3.3.1 Predictors

The state at time instance k+p is a function of the known past inputs and outputs,
zpk, and the initial state, xk. Using (3.2a) the state xk+p is given by:

xk+p = φp,kxk + Kpkzpk, (3.6)

where Kpk are matrices depending on Ãk and B̆k. The key approximation in this
algorithm is that we assume that φj,k ≈ 0 for all j ≥ p. It can be shown that
if the system in (3.2a)-(3.2b) is uniformly exponentially stable the approximation
error can be made arbitrarily small (Knudsen 2001; Verdult and Verhaegen 2002).

2When the reader is not familiar with PBSID we would like to refer to Appendix B, where a short
summary of the algorithm is given.
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The same approximation is made in the N4SID algorithm (Van Overschee and
De Moor 1996; Verhaegen and Verdult 2007). With this approximation, (3.6) can
be substituted in (3.2b) to obtain the following set of equations:






yk+p ≈ Ck+pK
p

kz
p
k +Dk+puk+p + ek+p

yk+p+1 ≈ Ck+p+1K
p+1

k zp+1
k +Dk+p+1uk+p+1 + ek+p+1

...

yk+p+f−1 ≈ Ck+p+f−1K
p+f−1

k zp+f−1
k +Dk+p+f−1uk+p+f−1 + ek+p+f−1

,

for all k ∈ {0, · · · ,Ππ − p − f}. This set of equations looks really cumbersome.
However, at this point we are going to exploit the periodic nature of the schedu-
ling sequence. In this case we can show that this set of equations can be viewed at
as a set of linear multi-variable ARX regression problems. To show this, we define
the following data matrices:

Z
p

k =
[
zpk, zpk+π, zpk+2π , · · · , zp

k+(Π−1)π

]
, (3.7)

and we define:

Y k =
[
yk+p, yk+p+π, yk+p+2π, · · · , yk+p+(Π−1)π

]
, (3.8)

and a similar thing can be done for Uk and Xk. At this point it is important to
stress that if the periodic state sequences are known, we can also construct the
whole state sequence, X . Now we use the fact that we have periodic scheduling
so this implies that:

Ck = Ck+π ,

Kp+ik = Kp+ik+π ,

Dk = Dk+π ,

for all k ∈ {0, · · · , π(Π − 1)}. With other words the system matrices are periodic
and if we batch the data accordingly we obtain π multi-variable ARX regression
problems. With the data matrices defined periodically in (3.7)-(3.8) and this obser-
vation we can formulate the following linear problem:

min
Ck+p+iK

p+i

k ,Dk+p+i

||Y k+i − Ck+p+iK
p+i

k Z
p+i

k −Dk+p+iUk+i||2F , (3.9)

for all i ∈ {0, · · · , f − 1} and for all k ∈ {0, · · · , π − 1}. The notation: ||..||F
represents the Frobenius norm (Golub and Loan 1996), while also the condition
should hold that the following matrix has full row rank:

[
Z
p+i

k

Uk+i

]
.
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For finite p the solution of this linear problem will be biased due the approxima-
tion made that φj,k ≈ 0 for all j ≥ p. In the LTI literature a number of papers
appeared that studied the effect of the window size and although they proved the
asymptotic properties of the algorithms (if p→ ∞ the bias disappears) it is hard to
quantify the effect for finite p (Knudsen 2001; Chiuso and Picci 2005; Chiuso 2007).
Furthermore, the linear problem stated in (3.9) looks rather cumbersome with all
the indices, but for given i and k we end up with a really simple linear problem.
In the next subsection we introduce two algorithms that make use of the obtained
estimates to construct the extended observability matrix times the state sequence.

3.3.2 Extended observability times controllability matrix

The product KpkZ
p

k, which by definition represents the periodic state sequenceXk,
can not directly be estimated. In the LTI literature it is common practice to use

the estimates of similar matrices as Ck+p+iK
p+i

k to construct an estimate of the

extended observability matrix times the extended controllability matrix, Γ̃fkK
p

k.
The structure of this matrix is demonstrated by the following example:

Example 3.2 (Observability matrix times controllability matrix)
For k = 0, π = 6, and p = f = 3 one obtains:

Γ̃3
0K

3

0 =




C3Ã2Ã1B0 C3Ã2B1 C3B2

C4Ã3Ã2Ã1B0 C4Ã3Ã2B1 C4Ã3B2

C5Ã4Ã3Ã2Ã1B0 C5Ã4Ã3Ã2B1 C5Ã4Ã3B2



 .

The algorithms PBSID and PBSIDopt differ from each other by the construction of

the matrix Γ̃fkK
p

k. For PBSID the estimate of the matrix is given by:

̂̃
ΓfkK

p

k =





̂Ck+pK
p

k(:, 1 : (r + ℓ)p)
̂

Ck+p+1K
p+1

k (:, 1 : (r + ℓ)p)
...

̂
Ck+p+f−1K

p+f−1

k (:, 1 : (r + ℓ)p)




, (3.10)

for all k ∈ {0, · · · , π−1}, where (:, 1 : (r+ℓ)p) is Matlab notation for taking the first
(r + ℓ)p columns of the matrix. Note that for constructing these matrices we have
to solve f × π linear problems. In the case of the periodic-PBSIDopt algorithm we
only have to solve π linear problems because for this particular solution we again
exploit the approximation that φj,k ≈ 0 for all j ≥ p leading to an upper block
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triangular realization of Γ̃fkK
p

k that is given by (we assume f = p):

̂̃ΓfkK
p

k ≈





̂Ck+pK
p

k[
0ℓ×ℓ+r

̂Ck+p+1K
p

k+1(:, 1 : (p− 1)(r + ℓ)

]

...[
0ℓ×(p−1)(ℓ+r)

̂Ck+p+f−1K
p

k+f−1(:, 1 : (r + ℓ))

]




. (3.11)

To construct this matrix we only have to solve the set of linear equations given
in (3.9) for i = 0 resulting in π linear problems. This is illustrated in the following
example:

Example 3.3 (Periodic-PBSIDopt solution)
For k = 0 and π = p = f = 3 one obtains:

Γ̃3
0K

3

0 =




C0Ã2Ã1B0 C0Ã2B1 C0B2

0 C1Ã0Ã2B1 C1Ã0B2

0 0 C2Ã1Ã0B2



 ,

Γ̃3
1K

3

1 =




C1Ã0Ã2B1 C1Ã0B2 C1B0

0 C2Ã1Ã0B2 C2Ã1B0

0 0 C0Ã2Ã1B0



 ,

Γ̃3
2K

3

2 =




C2Ã1Ã0B2 C2Ã1B0 C2B1

0 C0Ã2Ã1B0 C0Ã2B1

0 0 C1Ã0Ã2B1



 .

Observe that from all the first rows, the 3 solutions of (3.9) for i=0, we can con-
struct the three matrices.

By computing a Singular Value Decomposition (SVD) of
̂̃
ΓfkK

p

kZ
p

k, constructed by
the periodic-PBSIDopt or the periodic-PBSID algorithm, we can estimate the state
sequence and the order of the π stationary models. We will use the following SVD:

̂̃
ΓfkK

p

kZ
p

k =
[
Uk Uk,⊥

] [ Σk,n 0
0 Σk

] [
Vk
Vk,⊥

]
,

where Σk,n is the diagonal matrix containing the n largest singular values and Vk
is the corresponding row space. Note that we can find the largest singular values
by detecting a gap between the singular values (Verhaegen and Verdult 2007). The
periodic state and periodic extended observability matrices are now estimated by:

X̂k = T−1
k Σk,nVn, (3.12a)

Γ̃fk = UkTk. (3.12b)
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This can be done for all k = {0, . . . , π − 1}, obtaining different column spaces and
periodic state sequences. The similarity transformations Tk, similar as in periodic
PO-MOESP, will also be different at each time, which can be interpreted as each

of the state sequences X̂k being in a different basis. We would like to stress that
if the stationary models are in the same state basis the problem is solved. It was
already shown in Lovera (1997) that if the state and the scheduling is known the
problem reduces to a linear estimation problem.

3.4 A common state basis

In the previous section we showed how two predictor-based subspace identifi-
cation methods can be extended to periodic systems. We found a set of observ-
ability matrices and state sequences, but all these observability matrices and state
sequences are identified in a different state basis. In this section we show that with
a special factorization we can combine all these observability matrices in a global
state basis and this is the key to identify the LPV system matrices. The work pre-
sented in this section shows strong similarities with the work presented in Felici
et al. (2007b).

3.4.1 Factorization of the extended observability matrix

In this section we define a fundamental factorization in which we separate the un-
known system matrices from the known weighting sequence. The time-varying
extended observability matrix can be factorized in a matrix containing only the
scheduling terms and a constant matrix that depends only on the system matri-

ces Ã(i), and C(i). Before we formulate this factorization in a lemma we have to
introduce a number of definitions. We start with the following definition:

Definition 3.1 We define the matrix:

Pj =




Pj−1Ã

(1)

...

Pj−1Ã
(m)



 ,

with

P1 =




C(1)

...
C(m)



 .

To illustrate this definition see the following example



3.4 A common state basis 55

Example 3.4 (Pj)
For m=2 one obtains:

P1 =

[
C(1)

C(2)

]
, P2 =





C(1)Ã(1)

C(2)Ã(1)

C(1)Ã(2)

C(2)Ã(2)



 , P2 =





C(1)Ã(1)Ã(1)

C(2)Ã(1)Ã(1)

C(1)Ã(2)Ã(1)

C(2)Ã(2)Ã(1)

C(1)Ã(1)Ã(2)

C(2)Ã(1)Ã(2)

C(1)Ã(2)Ã(2)

C(2)Ã(2)Ã(2)





.

The amount of block-rows grows exponentially as mj .

This operator is used in the expression for the extended observability matrix in
the following lemma.

Lemma 3.1 (Factorization of the LPV observability matrix) Let Γ̃fk be defined as in
(3.4), and let

S =





P1

P2

...
Pf




∈ R

q×n, (3.13)

and let Mk ∈ Rfℓ×q be given as

Mk =





µTk+p 0 · · · 0

0 µTk+p ⊗ µTk+p+1 · · · 0
...

...
. . .

...
0 0 · · · µTk+p ⊗ · · · ⊗ µTk+p+f−1




⊗ Iℓ, (3.14)

where ⊗ denotes the Kronecker product (Brewer 1978) and now it holds, for all k, that

Γ̃fk = MkS. (3.15)

Proof: The proof is by straightforward computation. 2

Note that the number of rows of S (columns of Mk), denoted by q, increases expo-

nentially with f according to the relation q =
∑f

j=1 ℓm
j . In the next example we

illustrate the proposed factorization:
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Example 3.5 (Mk and S)
For m = 2, ℓ = 1, and p = k = 0 one obtains:

M0 =





µ
(1)
0 0 0

µ
(2)
0 0 0

0 µ
(1)
0 µ

(1)
1 0

0 µ
(1)
0 µ

(2)
1 0

0 µ
(2)
0 µ

(1)
1 0

0 µ
(2)
0 µ

(2)
1 0

0 0 µ
(1)
0 µ

(1)
1 µ

(1)
2

0 0 µ
(1)
0 µ

(1)
1 µ

(2)
2

0 0 µ
(1)
0 µ

(2)
1 µ

(1)
2

0 0 µ
(1)
0 µ

(2)
1 µ

(2)
2

0 0 µ
(2)
0 µ

(1)
1 µ

(1)
2

0 0 µ
(2)
0 µ

(1)
1 µ

(2)
2

0 0 µ
(2)
0 µ

(2)
1 µ

(1)
2

0 0 µ
(2)
0 µ

(2)
1 µ

(2)
2





T

, S =





C(1)

C(2)

C(1)Ã(1)

C(2)Ã(1)

C(1)Ã(2)

C(2)Ã(2)

C(1)Ã(1)Ã(1)

C(2)Ã(1)Ã(1)

C(1)Ã(2)Ã(1)

C(2)Ã(2)Ã(1)

C(1)Ã(1)Ã(2)

C(2)Ã(1)Ã(2)

C(1)Ã(2)Ã(2)

C(2)Ã(2)Ã(2)





,

multiplication of M0 with S results in the matrix given in Example 3.1.

3.4.2 Determination of the transformation matrices

We now formulate a theorem to determine the transformation matrices Tk in (3.12a)-
(3.12b). Since the algorithms presented in the previous section are unbiased es-
timators for the observability matrices under specific conditions, p → ∞ and
Π → ∞, we present the theorem for this case.

Theorem 3.1 (Transformation into common basis) Let Uk be equal to Γ̃fk up to a
similarity transformation, obtained from (3.12b) in the noiseless and unbiased case, such
that:

UkTk = Γ̃fk , (3.16)

Define

Ũ =





U0 0 · · · 0
0 U1 · · · 0
...

...
. . . 0

0 0 · · · Uπ−1




∈ R

ℓfπ×nπ, (3.17a)

Γ̃ =





Γ̃f0 0 · · · 0

0 Γ̃f1 · · · 0
...

...
. . . 0

0 0 · · · Γ̃fπ−1




∈ R

ℓfπ×nπ, (3.17b)
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T̂ =
[
T T0 , T T1 , · · · , T Tπ−1

]T ∈ R
nπ×n, (3.17c)

M̃ =
[
MT

0 , MT
1 , · · · , MT

π−1

]T ∈ R
ℓfπ×q, (3.17d)

where Mk is defined in (3.14). Also, define T̃ equal to T̂ up to an unknown square invert-
ible matrix T ∈ Rn×n.

T̃ = T̂ T. (3.18)

Finally, let it hold that

rank
([

Γ̃, M̃
])

= rank (Γ̃) + rank (M̃) − n. (3.19)

Then the system of equations:

Ũφ = M̃ψ, (3.20a)

φT ŨT Ũφ = In, (3.20b)

ψT M̃T M̃ψ = In, (3.20c)

with unknowns φ and ψ has a solution φ ∈ Rnπ×n, which is unique up to a square
orthogonal matrix Q ∈ Rn×n. Moreover, there exists an invertible T ∈ Rn×n such that

φ = T̂ T = T̃ .

Proof: It is easy to see that Ũ T̂ = Γ̃ = M̃S. That implies that the combination of

T̂ and S is a solution of the intersection problem given in (3.20a). However, with a
post-multiplication with an invertible square matrix T we still satisfy (3.20a). This
degree of freedom represents in which basis the system is identified. Now we
have to show that we find a solution that is unique up to this matrix T . To have
a unique solution the intersection should be n dimensional. This directly results
in condition (3.19). So, with the intersection problem defined in (3.20a) and the
condition stated in (3.19) we find the similarity matrices up to a global similarity
transformation T . 2

Condition (3.19) is essential for this theorem. It is a requirement both on the sys-

tem and on the scheduling sequence, through Γ̃ and M̃ , respectively. It might be

true that certain systems have an Γ̃ such that the condition is never satisfied. This
might pose a restriction on which LPV systems can be identified in this manner.
On the other side, it can be seen that in some cases an inappropriate choice of the

scheduling sequence might give an M̃ such that (3.19) is violated.

The system of equations (3.20a) – (3.20c) can not be solved exactly in the pres-
ence of noise. For this reason, we replace (3.20a) by the minimization problem

minφ,ψ ‖Ũφ − M̃ψ‖2
F . Under these modifications, these problems are known as

Canonical Correlation Analysis (CCA) problems (Van Overschee and De Moor
1996). Such problems can be interpreted as attempting to determine the intersec-
tion between the column spaces of two known matrices, or as a generalization of
angles between subspaces. The constraints (3.20b), (3.20c) ensure orthogonality of
the projections. Different methods for solution exist on which we will not elabo-
rate further (Seber 1984; Krzanowski 1988). It is however important to note that
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Table 3.1: Total number of rows in the matrix S for r = l = 1

m=1 m=2 m=3 m=4 m=5
f=2 2 6 12 20 30
f=4 4 30 120 340 155
f=6 6 126 1092 5460 19530
f=8 8 510 9840 87380 488280

when the dimension of the target space (the number of rows in (3.20a)) is small

compared to the dimension of the signal space (the number of columns of Ũ and

M̃ ), CCA methods may obtain solution directions which are determined mainly

by noise, which in our case is present because UkTk ≈ Γ̃fk . This is also known as
overfitting. A method to decrease the variance of the solutions, at the cost of in-
troducing a bias, is to employ regularization as presented in De Bie and De Moor
(2003). It can be shown that a solution of (3.20a) - (3.20c) can be found by solving
the regularized generalized eigenvalue problem:

[
0 ŨT M̃

M̃T Ũ 0

] [
φ
ψ

]
= λ

[
ŨT Ũ + ν1Inπ 0

0 M̃T M̃ + ν2Iq

] [
φ
ψ

]
,

where λ is referred to as the canonical correlation coefficient and will be between
0 and 1, indicating the closeness of the subspaces. The generalized eigenvectors
corresponding to the highest canonical coefficients are chosen as solutions. The
regularization parameters ν1, ν2 should be chosen appropriately as will be dis-
cussed in Section 3.8.2.

3.5 Kernel method

A drawback of (3.20a) is that the matrix ψ has a large number of rows, q, which is
demonstrated in Table 3.1. Since, we are not particularly interested in ψ, it is pos-
sible to determine φ while avoiding computations in this high-dimensional space.
A similar method is used in Verdult and Verhaegen (2005) to alleviate problems

due to large matrix dimensions. The basic intuition is that the column space of M̃

is equal to that of M̃M̃T . Not only does the latter matrix have fewer columns, it is
also rather straightforward to compute. The result is formulated in the following
theorem.

Theorem 3.2 (More efficient determination of Tk) Let the same definitions and con-
ditions as Theorem 3.1 hold. Additionally, let Θ ∈ Rℓfπ×ℓfπ be defined as

Θ = M̃M̃T =





M0M
T
0 M0M

T
1 · · · M0M

T
π−1

M1M
T
0 M1M

T
1 · · · M1M

T
π−1

...
...

. . .
...

Mπ−1M
T
0 Mπ−1M

T
1 . . . Mπ−1M

T
π−1




, (3.21)
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with Mk as defined in (3.14). Finally, let

rank
([

Γ̃, Θ
])

= rank (Γ̃) + rank (Θ) − n. (3.22)

Then the system of equations:

Ũφ = ΘΥ, (3.23a)

φT ŨT Ũφ = In, (3.23b)

ΥTΘTΘΥ = In, (3.23c)

with unknowns φ and Υ has the same solution φ ∈ Rnπ×n unique up to a square orthog-
onal matrix Q ∈ Rn×n, as Theorem 3.1.

Proof: The matrix ψ which solves (3.20a) can be written as ψ = M̃TΥ+ψN where
ψN is an arbitrary matrix in the null space of M̃ : M̃ψN = 0, and M̃TΥ lies in the

row space of M̃ . Since ψN does not influence the solution φ it may be disregarded,

thus we can parameterize the solutions in the mentioned row space as ψ = M̃TΥ

with Υ ∈ Rfπ×n. Since M̃ψ = M̃M̃TΥ = ΘΥ, T̃ may be equivalently obtained by
(3.23a) – (3.23c). 2

Note that the resulting problem is much smaller since ψ ∈ Rq×n and Υ ∈
Rℓfπ×n and for large f , q ≫ ℓfπ. Also, the matrix Θ can be constructed from the
known model weights directly without having to compute the (large) matrices
Mk, since:

Mi−pM
T
j−p=





µTi µj 0 · · · 0
0 (µTi µj)(µ

T
i+1µj+1) · · · 0

...
...

. . .
...

0 0 · · ·
(
(µTi µj)· · ·(µTi+f−2µj+f−1)

)




⊗ Iℓ.

This kernel method makes it possible to solve the equations in a computationally
efficient way.

3.6 Determination of the system matrices

In the previous sections we applied LTI subspace techniques to obtain the peri-
odic state sequences up to an unknown similarity transformation (see (3.12a)).
Followed by two sections how we can transform all these local periodic state se-
quences to the same global state basis. With the similarity transformations given
in Theorem 3.1 and applying them on (3.12a) the whole state sequence is given in
the same global state base, T−1X . Given this state sequence the computation of
the system matrices, up to a global similarity transformation, becomes trivial (see
also Lovera (1997)) and can be done in two steps:
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Compute C(i), D(i) and the noise sequence ek With the estimated state, the in-
put, the output, and the scheduling sequence given, (3.1b) reduces to a lin-
ear problem in the unknowns C(i), D(i), which can be formulated as a re-
gression problem. The residual of the regression problem is ek (ek = yk −
∑m

i=1 µ
(i)
k

(
C(i)xk +D(i)uk

)
).

Compute A(i), B(i), and K With the estimated state, the input, the scheduling,
and the noise sequence given, (3.1a) reduces to a linear problem in the un-
knowns A(i), B(i), and K , which can be formulated as a regression problem.

This ends the description of the algorithm. A brief algorithmic summary is given
below:

Algorithm 3.1 (Periodic LPV-PBSIDopt )
The algorithm can be summarized as follows:

1. Create the matrices Z
p

k, Uk, and Y k for all k ∈ {0, · · · , π− 1} using (3.7)
and (3.8),

2. Solve the linear problem (3.9) for i = 0 and for all k ∈ {0, · · · , π − 1},

3. Construct Γ̃fkK
p

kZ
p

k for all k ∈ {0, · · · , π − 1} using (3.11),

4. Compute the state sequences and observability matrices using (3.12a) and
(3.12b) for all k ∈ {0, · · · , π − 1},

5. Solve intersection problem using Theorem 3.1 or Theorem 3.2 and trans-
form all the state sequences to the same basis,

6. With the estimated state, use the linear relations (3.1a)-(3.1b) to obtain the
system matrices.

Algorithm 3.2 (Periodic LPV-PBSID)
The algorithm can be summarized as follows:

1. Create the matrices Z
p+i

k , Uk+i, and Y k+i for all i ∈ {0, · · · , f − 1} and
for all k ∈ {0, · · · , π − 1} using (3.7) and (3.8),

2. Solve the linear problem (3.9) for all i ∈ {0, · · · , f − 1} and for all k ∈
{0, · · · , π − 1},

3. Construct Γ̃fkK
p

kZ
p

k for all k ∈ {0, · · · , π − 1} using (3.10),

4. Compute the state sequences and observability matrices using (3.12a) and
(3.12b) for all k ∈ {0, · · · , π − 1},

5. Solve intersection problem using Theorem 3.1 or Theorem 3.2 and trans-
form all the state sequences to the same basis,

6. With the estimated state, use the linear relations (3.1a)-(3.1b) to obtain the
system matrices.
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3.7 Dedicated scheduling sequences

In the previous sections we discussed the identification of LPV systems using a
periodic scheduling sequence. In this section we briefly discuss the issues that
you face when you have almost periodic scheduling or a scheduling referred to as
piecewise constant scheduling. Furthermore, we discuss the model structure with
parameter-varying noise structure (parameter-varyingK ; K(i)).

3.7.1 Almost Periodic scheduling

The rotational dynamics of variable-speed wind turbines is not perfectly periodic.
When there is a wind gust the rotor speed will increase for a moment until the
feedback control is able to compensate for the gust. Consequently, the periodic
loads that are related to the rotor speed will vary and the scheduling vector is not
purely periodic anymore. Still, there are parts in the data that experience the same
parameter-varying dynamic behavior. In a similar way a number of stationary
sequence models can be estimated by selecting parts of the scheduling sequence
with the same time-variation. In van Wingerden et al. (2008a) this approach is fol-
lowed and applied on the rotational dynamics of a variable-speed wind turbine.
The example is also included at the end of this chapter.

The big challenge in this approach is to find a number of stationary sequence
models from the data. There are a number of options, going from doing it by hand
to using advanced clustering algorithms. We will not discuss the different meth-
ods in more detail, because in the next chapter we introduce the framework for
arbitrary scheduling and in this framework we can also exploit structure in the
scheduling without looking for stationary sequences. However, for more infor-
mation we refer to van Wingerden et al. (2008a).

3.7.2 Piecewise constant scheduling

We define piecewise constant scheduling as a scheduling sequence that is constant
for a number of samples. In Figure 3.1 and Figure 3.2 the shapes of two possible
scheduling sequences are sketched that satisfy this requirement. For this kind of

11

2

3

Figure 3.1: Illustrative example of a

µ
(i)
k sequence with hard

switching between the
different stationary se-
quence models.

1 1

2

3

Figure 3.2: Illustrative example of a

µ
(i)
k sequence with soft

switching between the
different stationary se-
quence models.
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scheduling sequence it is straightforward to localize data sequences that experi-
ence the same dynamic behavior; the sequences where the scheduling is constant.
The data points where the scheduling is constant can be combined and used in an
LTI identification algorithm. Similar as for the periodic case, we can do this for a
number of constant values; stationary models. Again all these models are iden-
tified in a different state basis. For these stationary models we can formulate the
intersection problem formulated in Theorem 3.1. However, if we only use data
obtained in intervals where the scheduling is constant it turns out that the rank
conditions specified in the same theorem do not hold. In van Wingerden et al.
(2007); van Wingerden and Verhaegen (2007) we showed that if we use the tran-
sitions from 1 local stationary model, for instance model 1 in Figure 3.1 or 3.2, to
the other models a global LPV model can be identified. Again we will not discuss
this algorithm in detail in this thesis because in the next chapter we introduce the
framework for arbitrary scheduling and in this framework we can also exploit
structure in the scheduling without searching for stationary sequences.

3.7.3 Parameter-varying K matrix

In this chapter we worked with a model structure with a parameter-invariant K
matrix. The main reason for this assumption is to keep the description of the algo-
rithm as transparent as possible. For the case that we have a parameter-dependent
K matrix we obtain the following predictor form:

xk+1 =
m∑

i=1

µ
(i)
k



A(i)xk +B(i)uk +K(i)yk −K(i)
m∑

j=1

µ
(j)
k

(
C(j)xk +D(j)uk

)


 ,

yk =
m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek,

For the first steps in the algorithm, the estimation of the stationary models, this
is not an issue. This model structure becomes an issue if we are going to solve
the intersection problem. To be more precise the factorization of the parameter-
varying observability matrix becomes more involved. However, the factorization
is really cumbersome and we do not require it for the computation. So, we do not
give an explicit formula for this matrix. However, the matrix Mk is required to
solve the intersection problem. We change the definition given in Definition 3.14
in the following way:

Mk =





µ̃Tk+p 0 · · · 0

0 µ̃Tk+p ⊗ µ̃Tk+p+1 · · · 0
...

...
. . .

...
0 0 · · · µ̃Tk+p ⊗ · · · ⊗ µ̃Tk+p+f−1




⊗ Iℓ,

with µ̃Tk = µTk ⊗ µTk . With this substitution the problem can be solved with a
parameter-dependent K matrix. The disadvantage of a parameter-dependent K
matrix is the ‘curse of dimensionality’. Due to the substitutions listed above the
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number of rows of S (columns of Mk) is now given by q =
∑f

j=1 ℓm
j+1 instead of

q =
∑f

j=1 ℓm
j .

3.8 Simulation Examples

We have tested the proposed identification approach on two simple simulated
models. The first model is based on the dynamics of a wind turbine and has two
states and a parameter-dependent A matrix. The second example is a MIMO sys-
tem with three states and parameter-dependent A, B, C, and D matrices, which
better shows the capabilities of the algorithm. In the next section we discuss a
more detailed wind turbine example.

3.8.1 Example 1: Flapping dynamics of a wind turbine

The first example might represent a simple model of the out-of-plane dynamics of
a flexible rotor blade of a fixed speed wind turbine (see Eggleston and Stoddard
(1987)). Among other phenomena, gravity will lead to a nonlinear description
of the flapping dynamics. This gravity induced nonlinearity can be introduced
in an LPV model by choosing the scheduling sequence as the cosine of the blade
rotation angle, resulting in periodic scheduling. After choosing some wind tur-
bine parameters, the following LPV system description can be derived from the
differential equations governing the flapping dynamics:

[
A(1) A(2)

]
=

[
0 0.0734 −0.0021 0

−6.5229 −0.4997 −0.0138 0.5196

]
,

[
B(1) B(2)

]
=

[
−0.7221 0
−9.6277 0

]
,

[
C(1) C(2)

]
=

[
1 0 0 0

]
,

[
D(1) D(2)

]
=

[
0 0

]
,

[
K(1) K(2)

]
=

[
0.1 0
0.02 0

]
.

The flapping dynamics is excited using a constant wind speed with added turbu-
lence modeled by a white noise input signal uk with E[uk] = 10 and var (uk) = 1.

The periodic scheduling is given by µk =
[

1, cos(2π
p
k)
]T

. For the identifica-
tion experiment we used Π =500, π=10, and p = f=8. The collected data uk, yk,
and µk is then used in the identification algorithm without using regularization in
the CCA step. The performance of the identified system is evaluated by looking
at the eigenvalues of the A(i) matrices and the value of the Variance-Accounted-
For (VAF) on a data set different from the one used for identification. The VAF is
defined as:

VAF (yk, ŷk) = max

{
1 − var (yk − ŷk)

var (yk)
, 0

}
× 100,
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Figure 3.3: Eigenvalues of the estimatedA(1) andA(2) matrices in one plot (×), for
100 experiments with SNR = 10dB and using the periodic LPV-PBSID
and periodic LPV-PBSIDopt algorithm, the left and right figure, respec-
tively. The big crosses correspond to the real values of the eigenvalues
of the matrices.

where ŷk denotes the output signal obtained by simulating the identified LPV
system, yk is the output signal of the true LPV system.

To investigate the sensitivity of the identification algorithm with respect to
noise, a Monte-Carlo simulation with 100 runs was carried out. For each of the 100
simulations a different realization of the input uk is used. During the simulation
noise is added with a specific Signal-to-Noise Ratio (SNR):

SNR(dB) = 10 log10

var (yk)

var (ek)
.

An LPV model was identified for a SNR ratio of 10dB, with the Periodic LPV-
PBSIDopt and the Periodic LPV-PBSID algorithm. In Figure 3.3 the eigenvalues
of the estimated models are compared to the true values for the Periodic LPV-
PBSIDopt and Periodic LPV-PBSID algorithm. Figure 3.4 shows the corresponding
histograms of the VAF values on a fresh validation data set but with the same
scheduling vector. As expected the quality of the identified models is affected
by the noise. There, is no significant difference between the two identification
algorithms. However, we have to stress that the Periodic LPV-PBSIDopt algorithm
has a lower computational complexity.

3.8.2 Example 2: Third order MIMO system

The first example is based on a system that has a periodic scheduling by nature.
This assumption only holds for a number of practical applications. However, the
proposed algorithm also works for other systems where the scheduling can be
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Figure 3.4: Histogram of VAF values (%) obtained for validation data with the
models estimated using a data set with SNR = 10dB and using the
periodic LPV-PBSID and periodic LPV-PBSIDopt algorithm, the left and
right figure, respectively. The range of VAF values from 0 to 100% is
divided into bins of 2%. For each bin, it is shown how many data sets
out of the total 100 resulted in VAF values that fall into that bin.

made periodic during the identification experiment. In this second example a
more general case is considered: a MIMO system with parameter-dependent A,
B, C, and D matrices where the validation is done with a scheduling that is not
periodic. In this example we also illustrate the effect of the regularization param-
eters. The following third order model is used:

[
A(1) A(2)

]
=




0 0.9 0.2 0.6 0.5 0.5

−0.9 0.5 0 0.5 0.6 0
−0.2 0 0.2 −0.5 0 0.6



 ,

[
B(1) B(2)

]
=




1 0.4
1 0.2
1 0.12



 ,

[
C(1) C(2)

]
=

[
0.2 1 0.5 0.2 0.1 1
0.2 0.1 1 0.3 0.4 0.8

]
,

[
D(1) D(2)

]
=

[
0.1 0.2
0.2 0.1

]
,

[
K(1) K(2)

]
=




0.0130 0.0225 0 0
0.0089 0.0060 0 0
0.0002 −0.0010 0 0



 .

As input we take a zero-mean white noise signal with var (uk) = 1
2

√
2. For the

identification experiment we used Π =1000, π=18, and p = f = 7. The collected
data (uk, yk, and µk) is used to identify an LPV system. The obtained model is

validated by simulating it with a non-periodic scheduling sequence where µ
(1)
k +

µ
(2)
k = 1 ∀k and µ

(1)
k is a white noise signal with E[µ

(1)
k ] = 0.5 and var (µ

(1)
k ) =

0.01. The input used in the validation has the same properties as that used in the
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experiment.

An LPV model was identified for a signal-to-noise ratio of 30dB. For this noise
level it was found that unless regularization is employed the results are com-
pletely unsatisfactory. Experiments showed that the first parameter ν1 has little

effect on the performance of the algorithm, probably due to the fact that Ũ is well
conditioned. Therefore ν1 is chosen to be 0. The choice of ν2 was then made by
plotting the average validation VAF for 50 simulations against a logarithmic grid
of different values of the parameter and choosing the value corresponding to a
peak. It was found, however, that different choices of the periodic scheduling
sequence µk have an important effect on the degree of regularization required.
To illustrate this, we have repeated the identification for two different scheduling
sequences:

µk,1 = [0.2 cos(
2πk

p
) + 0.8, 0.2 sin(

2πk

p
) + 0.8],

and

µk,2 = [0.8 cos(
2πk

p
) + 0.2, 0.8 sin(

2πk

p
) + 0.2].

The results are summarized in Figures 3.5 to 3.6. In the first case, it can be seen that
a relatively high value of regularization is required to obtain acceptable values of
the VAF, while in the second case a high VAF is obtained using smaller values.
The consequence is that the results obtained using µk,1 are less accurate than those
obtained using µk,2
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Figure 3.5: The VAF for the validation data as function of the regularization pa-
rameter ν2 for identification data generated with µk,1 (left) and µk,2
(right), SNR = 30dB. For the periodic LPV-PBSID (solid) and the peri-
odic LPV-PBSIDopt(dashed) algorithm, respectively.

We draw the conclusion that the choice of the magnitude and average value of
the periodic scheduling is crucial for the performance of the algorithm. Different
choices yield different requirements on the regularization parameter.
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Figure 3.6: True and estimated eigenvalues of A(1) and A(2) in one plot for 50
experiments with SNR = 30dB using the periodic LPV-PBSID algo-
rithm. The small crosses (×) are the estimated eigenvalues for the
scheduling sequence µk,1 (left with ν2 = 1× 10−1) and µk,2 (right with
ν2 = 1 × 10−4).

3.9 Case study: Rotational dynamics of a wind tur-

bine

Linear Time-Invariant (LTI) system identification is well-established and a few ap-
plications can be reported in the wind energy (Bongers and van Baars 1991; van
Baars and Bongers 1992, 1994; van Baars et al. 1993; James III et al. 1993; Knud-
sen et al. 1997; Marrant and Van Holten 2004; Hansen et al. 2006). However, the
techniques used are all based on the open-loop setting and will give biased re-
sults in the closed-loop setting (Van den Hof and Schrama 1995). In this chapter
we presented an identification approach to identify LPV systems assuming that
the scheduling sequence repeats itself a number of times. In this section we use
a nonlinear model of the rotational dynamics to illustrate the effectiveness of the
proposed algorithm. We start this section with the description of the wind turbine
model used. Followed by a simulation to obtain input-output data. In the last part
of this section the simulation results are presented.

3.9.1 First principles model of a Horizontal Axis Wind Turbine
(HAWT)

In this example, we consider a seven degrees of freedom model as described
in van Engelen (2006) and van Engelen et al. (2007). The model describes the rota-
tional dynamics of a wind turbine around a particular operating point. The model
contains degrees of freedom for the main rotation, first torsion mode of the drive
train, the first fore-aft, and sideward bending mode of the tower. In this model
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Figure 3.7: Schematic representation of the wind turbine model.

the blades are considered to be rigid. In Figure 3.7, a schematic representation of
the model is given

Using a linearized conversion of the aerodynamic behavior, the model equa-
tions can be written in the following continuous time LPV system:

ẋ = Ax+

(
B(1) +

3∑

i=1

B(i+1)ϕ(i)

)
u+

(
F (1) +

3∑

i=1

F (i+1)ϕ(i)

)
v, (3.24a)

y =

(
C(1) +

3∑

i=1

C(i+1)ϕ(i)

)
x+Du+Gv, (3.24b)

where the matrices B(i), C(i), and F (i) are multiplied with the scheduling se-
quence, which is the azimuth angle ϕ(i) of the accompanying rotor blade. The
wind turbine model under consideration has three rotor blades (i = 1, 2, 3) and
is normally used to design IPC controllers. The system state, input, disturbance,
and output vector are given by:

x =
[
δΩro, xfa, ẋfa, xsw , ẋsw , ε, ε̇

]T
,

u =
[
δθ1, δθ2, δθ3, δTge

]T
,

v =
[
δv1, δv2, δv3

]T
,

y =
[
δΩge, ẋfa, ẋsw , δM1, δM2, δM3

]T
,
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respectively. This model contains thus the control inputs for the variation in gen-
erator torque δTge and the pitch angle δθi of each rotor blade. Furthermore, the
model contains the inputs for the wind speed disturbance δvi on each of the three
rotor blades. The outputs are the variations in generator speed δΩge, the fore-aft
velocity ẋfa and sideward velocity ẋsw of the tower, and the blade root bending
moment δMi of each rotor blade. The state contains the variations in rotor speed
δΩro, the fore-aft displacement xfa and velocity ẋfa, the sideward displacement
xsw and velocity ẋsw , and the drive-train displacement ε and speed ε̇.

The model under consideration has a constant A matrix while the input and
output matrices depend on the azimuth angle, ϕ. In van Engelen (2006) the Cole-
man transformation is used to transform this model to an LTI model. The Coleman
transformation is a nonlinear transformation that is used to transform the outputs
defined in the rotating frame to the fixed non-rotating frame and on a similar way
this can be done for the inputs. However, this transformation can not cope with a
failing sensor/actuator, gravity, and yaw misalignment. If the Coleman transfor-
mation is applied to these models still periodic components will be present in the
dynamics. However, all the mentioned phenomena will still lead to an LPV model
where the system undergoes the same time-variation a number of times. Still, in
this chapter we selected the model given in (3.24a)-(3.24b) based on its simplic-
ity, available documentation (van Engelen 2006; van Engelen et al. 2007), and the
mentioned phenomena will not change the proposed LPV system identification
algorithm.

The constant state-space matrix A, is given by:

A =





0 0 − 3hMx

Jro
0 0 − kro

Jro
− dro

Jro

0 0 1 0 0 0 0

0 − kto

mto
q1 0 0 0 0

0 0 0 0 1 0 0

0 0 − 27R
16H2

hF z

mto
− kto

mto
− dto

mto
0 0

0 0 0 0 0 0 1

0 0 − 3hMx

Jro
0 0 −Jro+Jge

JroJge
kro −Jro+Jge

JroJge
dro





,

with q1 = 81R
32H2

hMz

mto
− dto

mto
+ 3hF x

mto
. The constant state-space matrices D and G are

given by:

D =





0 0 0 0
0 0 0 0
0 0 0 0

kMz 0 0 0
0 kMz 0 0
0 0 kMz 0




,
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G =





0 0 0
0 0 0
0 0 0

hMz 0 0
0 hMz 0
0 0 hMz




.

The state-space matrices B, C, and F do have an LPV structure and are given by:

[
B(0) B(i+1)

]
=





kMx

Jro

kMx

Jro

kMx

Jro
0 0

0 0 0 0 0
kF x

mto

kF x

mto

kF x

mto
0 3

2H
kMz

mto

0 0 0 0 07×(i−1) 0 07×(4−i)

0 0 0 3
2H

1
mto

− kF z

mto

0 0 0 0 0
kMx

Jro

kMx

Jro

kMx

Jro

1
Jge

0︸︷︷︸
ith column





,

[
F (0) F (i+1)

]
=





hMx

Jro

hMx

Jro

hMx

Jro
0

0 0 0 0
hF x

mto

hF x

mto

hF x

mto

3
2H

hMz

mto

0 0 0 07×(i−1) 0 07×(3−i)

0 0 0 −hFz

mto

0 0 0 0
hMx

Jro

hMx

Jro

hMx

Jro
0︸︷︷︸

ith column





,

[
C(0)

C(i+1)

]
=





1 0 0 0 0 0 −1
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 −hMz 0 0 0 0
0 0 −hMz 0 0 0 0
0 0 −hMz 0 0 0 0

0(i+2)×7

0 0 9RhMz

8H 0 0 0 0
0(3−i)×7



 }(i+3)th row

.

In these matrices the parameters kMx, kMz , kFx, and kFz describe the aerodynamic
gains from the pitch angle to the root moment, flap moment, root force, and flap
force, respectively. The parameters hMx, hMz , hFx, and hFz describe the gain
from the wind speed to the root moment, flap moment, root force, and flap force,
respectively. The constants R and H are the rotor radius and the height of the
hub, respectively; the mass moment of inertia J , the mass m, the stiffness k and
the damping d. Furthermore, the subscripts ro, to, and ge refer to the rotor, tower,
and generator, respectively. The aerodynamic constants are listed in Table 3.2 and
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are derived for a wind speed of 16 m/s, a pitch angle of 10 degrees, and a rotor
speed of 1.795 rad/s.

Table 3.2: Numerical values of the model parameters (van Engelen et al. 2007).

.

parameter value parameter value

H 55.953 m hMx
8.3806× 104 Ns

R 40 m hFx
7.2019× 103 Ns/m

Jge 1.067× 106 kgm2 hMz
−1.8948× 105 Ns

Jro 7.187× 106 kgm2 hFz
4.0683× 103 Ns/m

kro 1.262× 108 N/m kMx
−3.7711× 104 Nm

dro 1.262× 105 Ns/m kFx
−6.1478× 103 N

mto 1.5657× 105 kg kMz
1.6174× 105 Nm

kto 1.235× 106 N/m kFz
−1.8306× 103 N

dto 2.7995× 103 Ns/m

3.9.2 Simulation of the closed-loop wind turbine model

The LPV system given in (3.24a) and (3.24b) is used to obtain the input, output,
and the scheduling sequence for the identification algorithm. For this purpose, the
equations are converted to discrete time using a naive zero-order hold discretiza-
tion method with a sample time of 0.1 s. The naive approach omits the switching
behaviors of the sampled scheduling signals. For our case, where the scheduling
sequence is a function of the azimuth angles the scheduling sequences are given
by the following smooth signals:

ϕk =
[

sin
(

2πk
v

)
, sin

(
2πk
v + 2π

3

)
, sin

(
2πk
v + 4π

3

) ]T
.

When an appropriate sample time is chosen this method gives a good approxima-
tion of the continuous time LPV system.

The wind turbine system is not asymptotically stable, it has an integrator. A
collective pitch controller in a feedback loop is added to stabilize the system. The
controller used, can be found in van Engelen et al. (2007) where the collective pitch
controller is parameterized. For the pitch-angle inputs we take an additional zero-
mean white noise with var (θk,i) = 1 deg, which is added to the control signal of
the collective pitch controller. As input for the generator torque we take also a
zero-mean white noise signal with var (Tge,k) = 1 · 106 Nm. The wind disturbance
signals are also zero-mean white noise with var (vk,i) = 1 m/s but these signals
are assumed to be unknown.
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3.9.3 Closed-loop LPV subspace identification results

The collected data of uk, yk, and µk from the simulations are used in the identifi-
cation experiments. The scheduling sequence can be rewritten as:

µk =
[

1, ϕk,1, ϕk,2
]T
,

to fulfill the assumption that this scheduling matrix must be of full rank. The third
azimuth angle can be written as a linear combination of the other two angles. For
the identification experiments we used Π = 1000, π = 35, f = 16, and p = 10. For
this particular example we used the periodic LPV-PBSID algorithm.

The performance of the identified system is evaluated by looking at the eigen-
values of the A matrix and the value of the VAF on a data set different from the
one used for identification. For meaningful VAF values the system under con-
sideration must be asymptotically stable, otherwise a small error will give low
VAF values due to the increasing or decreasing characteristic of the outputs. This
problem occurs for the output of the generator speed, therefore Bode diagrams at
a fixed scheduling vector are used to evaluate the performance at those specific
channels.

To investigate the sensitivity of the identification algorithm with respect to the
wind disturbances, a Monte-Carlo simulation with 100 runs was carried out. For
each of the 100 simulations a different realization of the input uk and wind distur-
bance vk is used. In Figure 3.8 the eigenvalues of the estimated models are com-
pared with the true values. It shows that the identified eigenvalues are very close
to the true eigenvalues and that the variance and bias is very small. Figure 3.9
shows the corresponding histograms of the VAF values on a fresh validation set
with the same scheduling vector and without the wind disturbances. The out-
puts of the blade root moments M1, M2, and M3 score very high VAF values, all
within 98% and 100%. The outputs ẋfa and ẋsw are more affected by the wind
disturbance. However, the values are still satisfactory high. The bode diagrams
with the generator speed Ωge as output are given in Figure 3.10. Also in this fig-
ure satisfactory fits are shown, especially for the transfer function with as input
the pitch angles. However, for the transfer function between generator torque and
generator speed, the low frequent behavior shows a large variance due to the high
disturbance that has a significant effect on the estimation of the pole belonging to
the integrator. However, this is a well-known phenomena in LTI system identifi-
cation. The resonance frequency is well estimated and for controller design this
resonance frequency will significantly limit the bandwidth.

3.10 Conclusion

Wind turbines are nonlinear systems, although their nonlinearity is linearly de-
pendent on measurable scheduling signals and therefore they can be modeled in
the LPV framework. With LPV controller synthesis, which is strongly related to



3.10 Conclusion 73

Real Axis

Im
a

g
in

a
ry

A
x

is

Real Axis

Im
a

g
in

a
ry

A
x

is

Real Axis

Im
a

g
in

a
ry

A
x

is

0.96 0.98 1

0.95 0.96

0 0.5 1

-0.02

-0.01

0

0.01

0.02

0.27

0.28

-1

-0.5

0

0.5

1

Figure 3.8: Eigenvalues of the estimatedAmatrix in the complex plane, for 100 ex-
periments with a wind disturbance of var (v) = 1 m/s. The big crosses
correspond to the real values of the eigenvalues of the matrix. The
boxes to the right show a magnification of three pole locations.
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Figure 3.9: Histogram of VAF values (%) of the outputs ẋfa, ẋsw , and M1,2,3. The
range of VAF values from 0 to 100% is divided into bins of 2%. For
each bin, it is shown how many data sets out of the total 100 resulted
in VAF values that fall into that bin.



74 Chapter 3: LPV identification using periodic scheduling

Bode Diagram (θ1 → Ωge)

Frequency (rad/s)

M
a

g
n

it
u

d
e

(d
B

)

Bode Diagram (θ2 → Ωge)

Frequency (rad/s)

M
a

g
n

it
u

d
e

(d
B

)

Bode Diagram (θ3 → Ωge)

Frequency (rad/s)

M
a

g
n

it
u

d
e

(d
B

)

Bode Diagram (Tge → Ωge)
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Figure 3.10: Bode diagrams of the original transfer functions (dashed) and the
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.
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robust controller design, gain-scheduled controllers can be calculated with guar-
anteed stability and performance margins. In this chapter we discussed LPV sys-
tem identification using periodic scheduling sequences. The obtained LPV model
is then valid for different scheduling sequences as well. We exploited the fact
that the system experienced the same time-variation a number of times. We used
LTI system identification techniques, PBSID and PBSIDopt, to identify a number of
observability matrices and state sequences which are, inherent to subspace iden-
tification, identified in a different state basis. We showed that by formulating an
intersection problem all the states can be reconstructed in a global state basis from
which the system matrices could be estimated. The algorithm is first implemented
on two simple test examples. The first shows the effectiveness of the periodic LPV-
PBSIDopt and the periodic LPV-PBSID algorithm. The second illustrates that the
performance of the algorithm is affected by the choice of the scheduling sequence.
Further research could shed more light on the issue of the choice of this scheduling
sequence in relation to the use of regularization. Finally, we applied the approach
successfully on the rotational dynamics of a horizontal axis wind turbine.





4 CHAPTER

Subspace identification of MIMO
LPV systems using an arbitrary

scheduling sequence

I
n this chapter we present a novel algorithm to identify LPV systems
with affine parameter dependence. This algorithm is applicable for

data generated in either open or closed-loop. With respect to the previous
chapter the scheduling is now allowed to vary arbitrarily. A factorization
is introduced that makes it possible to form a predictor, which is based
on past inputs, outputs, and scheduling data. The predictor contains the
LPV equivalent of the Markov parameters. Using this predictor, ideas
from closed-loop LTI identification are developed to estimate the state se-
quence from which the LPV system matrices can be constructed. A nu-
merically efficient implementation is presented using the kernel method.
It turns out that if structure is present in the scheduling sequence the com-
putational complexity reduces even more.

4.1 Introduction

From a system theoretic point of view the identification and control of Linear
Parameter-Varying (LPV) systems has attracted considerable attention in recent
years as already highlighted in the introduction of this thesis and the introduction
of the previous chapter. In the previous chapter we developed a set of algorithms
that exploit the structure in the scheduling sequence to enable the use of well-
known LTI techniques to identify LPV systems. This can be seen as the latest
development in the field of LPV system identification. When it is possible to con-
trol the scheduling sequence during the data acquisition, the approach presented
in the previous chapter is appropriate. However, for many applications you can
not control the scheduling sequence. For instance for a wind turbine the opera-
tional position is strongly correlated with the wind and we all know that the wind

77



78 Chapter 4: LPV identification using arbitrary scheduling

is not controllable. For systems where there is no structure is the scheduling se-
quence we talk about LPV systems with arbitrary scheduling sequences, which is
the topic of this chapter.

For the case of arbitrary scheduling we presented in the introduction two ap-
proaches with the potential to tackle the identification problem: subspace iden-
tification and nonlinear optimization based approaches. Previous work showed
that these two methods should be developed simultaneously because for the non-
linear optimization technique good initial guesses are required while for the sub-
space approaches it is typical to have a biased estimate. In the field of subspace
LPV identification a milestone contribution is presented in Verdult (2002). Verdult
(2002) extends the Bilinear identification scheme of Favoreel et al. (1997, 1999)
and Favoreel (1999), and later improved by Verdult et al. (1998) and Chen and
Maciejowski (2000), to LPV systems. Compared to the subspace LTI counterpart
MOESP (Verhaegen and Dewilde 1992) this algorithm has the inherent drawback
that it estimates the state sequence using a certain past window, possibly leading
to biased results. Similar approximations are made in the subspace LTI algorithm:
N4SID (Van Overschee and De Moor 1996), however, by making the past win-
dow larger and larger this bias will tend to zero. It turns out that identification
of LPV systems with arbitrarily varying scheduling sequences is challenging from
a numerical point of view (Verdult and Verhaegen 2001, 2002); the data matrices
involved in this algorithm grow exponentially with the size of the past window.
With the introduction of the kernel method, the ‘curse of dimensionality’ was par-
tially solved, however, a different bias was introduced (Verdult and Verhaegen
2005). Still, they showed that the obtained estimates are good initial guesses for
nonlinear optimization approaches (Lee and Poolla 1999; Verdult et al. 2003). An-
other disadvantage of the approach presented in Verdult (2002) is that the algo-
rithm is only suited for data generated in open loop.

In this chapter we discuss a novel LPV identification algorithm that can cope
with data generated in open and closed-loop, which is the first main contribution
of this chapter. We present a factorization that makes it possible to formulate a
predictor that contains the LPV equivalent of the Markov parameters. The second
main contribution is that we present an approach that stays close to the formula-
tions given in Chiuso (2007) and that can be seen as an extension of the algorithms
presented therein. The computational complexity of the algorithm is significantly
smaller than the algorithms in Verdult (2002), but still the dimensions grow ex-
ponentially. Similar to what is done in Verdult and Verhaegen (2005) we present
the kernel method to reduce the computational complexity. However, we derive
computationally efficient formulations of the kernels, which is the third main con-
tribution of this chapter. We also show that if the scheduling sequence is periodic,
piecewise constant, or structured in some sense, the identification procedure sig-
nificantly simplifies even more from a computational point of view.

The outline of this chapter is as follows; we start in Section 4.2 with the prob-
lem formulation and assumptions. In Section 4.3 we present a factorization that
separates the unknown system matrices from the known input, output, and sche-
duling data. In Section 4.4 the basic idea behind the identification scheme is pre-
sented and the ‘curse of dimensionality’ will appear. In Section 4.5 the kernel
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method is presented, where compact formulations of the kernels are presented.
The algorithm is presented for a specific model structure, in Section 4.6 we will
discuss extensions to other model structures as well. In Section 4.7 we show that
dedicated scheduling sequences significantly reduce the computational complex-
ity. In Section 4.8 three simulation examples are presented that show the poten-
tial of the proposed algorithm. At the end of this chapter we briefly go back to
the ‘smart’ rotor concept and present a case study to identify the dynamics of a
‘smart’ airfoil, Section 4.9. We end this chapter with our conclusions concerning
this novel algorithm.

Some results published in this chapter are published elsewhere, see van Winger-
den and Verhaegen (2008a,b, 2009).

4.2 Problem formulation and assumptions

In this section we present the model structure we consider in this chapter. Fur-
thermore, some assumptions are listed and some notation is introduced.

4.2.1 Problem formulation

For the derivation of the algorithm we consider the LPV model structure defined
in (4.1a)-(4.1b). However, similar results can be derived for LPV systems with
parameter-varying output equation, which we will briefly discuss in Section 4.6.
For now we consider:

xk+1 =
m∑

i=1

µ
(i)
k

(
A(i)xk +B(i)uk +K(i)ek

)
, (4.1a)

yk = Cxk +Duk + ek, (4.1b)

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rℓ, are the state, input, and output vectors. ek ∈
Rℓ denotes the zero-mean white innovation process. The matrices A(i) ∈ Rn×n,
B(i) ∈ Rn×r, C ∈ Rℓ×n, D ∈ Rℓ×r,K(i) ∈ Rn×ℓ are the local system, input, output,

direct feedthrough, and the observer matrices; and µ
(i)
k ∈ R the local weights. The

index m is referred to as the number of local models or scheduling parameters.
Note that the system, input, and the observer matrices depend linearly on the
time-varying scheduling vector. The time-varying system matrix is now given by:

Ak =
m∑

i=1

µ
(i)
k A(i),

and a similar thing can be done for the other system matrices. We assume that we
have an affine dependence and the scheduling is given by:

µk =
[

1, µ
(2)
k , · · · , µ

(m)
k

]T
.
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We can rewrite (4.1a)-(4.1b) in the predictor form as:

xk+1 =
m∑

i=1

µ
(i)
k

(
Ã(i)xk + B̃(i)uk +K(i)yk

)
, (4.2a)

yk = Cxk +Duk + ek, (4.2b)

with
Ã(i) = A(i) −K(i)C, B̃(i) = B(i) −K(i)D.

It is well-known that an invertible linear transformation of the state does not
change the input-output behavior of a state-space system. Therefore, we can
only determine the system matrices up to a similarity transformation T ∈ Rn×n:
T−1A(i)T , T−1B(i), T−1K(i), CT , and D.

The identification problem can now, similar as in the previous chapter, be for-
mulated as:

Problem Description 4.1 (LPV system identification)
Given the input sequence uk, the output sequence yk, and the scheduling se-
quence µk over a time interval k = {0, . . . , N − 1}; find, if they exist, the LPV
system matrices A(i), B(i), K(i), C, and D up to a global similarity transforma-
tion.

4.2.2 Assumptions and notation

First we define the transition matrix for discrete time time-varying systems (Rugh
1996) and this is given by:

φj,k = Ãk+j−1 · · · Ãk+1Ãk. (4.3)

To make the notation more transparent we define:

zk =

[
uk,
yk

]
,

B̆k =
[
B̃k, Kk

]
,

B
(i)

=
[
B̃(i), K(i)

]
.

Similar as in Jansson (2005) and Chiuso (2007) we define a past window denoted
by p. This window is used to define the following stacked vector:

zpk =





zk
zk+1

...
zk+p−1




,
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which is a vector containing past and future data. We assume that the state se-
quence:

X =
[
xp+1, · · · , xN

]
,

has full row rank and the matrix:

Γf =





C

CÃ(1)

...

C
(
Ã(1)

)f−1




, (4.4)

has full column rank and where f is referred to as the future window. This last
matrix can be interpreted as the extended observability matrix of the first local
model. For persistency of excitation it is also required that the scheduling se-
quence satisfies the following relation:

rank
([

µ0, µ1, · · · , µN−p−f

])
= m,

andN−p−f+1 > m. Furthermore, we assume that the feedback problem is well-
posed. So, there is either a delay in the feedback controller or in the system. The
problem formulation so far does not require any assumptions on the correlation
between the input and noise sequence, which opens the possibility to apply the
algorithm in closed-loop.

These definitions and assumptions are used in Section 4.4 but first we define
a factorization to extend the predictor-based subspace identification approaches
(see Chiuso (2007) for an overview) to LPV systems.

4.3 Factorization of the LPV controllability matrix

In this section we define a fundamental factorization in which we separate the
unknown system matrices from the known weighting sequence. To be more pre-
cise we will factorize the time-varying extended controllability matrix, which is
defined in the following definition.

Definition 4.1 Given the transition matrix in (4.3) the time-varying extended controlla-
bility matrix is given by:

Kpk =
[
φp−1,k+1B̆k, · · · , φ1,k+p−1B̆k+p−2, B̆k+p−1

]
.

To illustrate this definition see the following example:
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Example 4.1 (Kpk)
For m = 2, k = 0, and p = 3 one obtains:

K3

0 =
[ (

Ã(1) + Ã(2) ⊗ µ
(2)
2

)(
Ã(1) + Ã(2) ⊗ µ

(2)
1

)(
B

(1)
+B

(2) ⊗ µ
(2)
0

)
, · · ·

(
Ã(1) + Ã(2) ⊗ µ

(2)
2

)(
B

(1)
+B

(2) ⊗ µ
(2)
1

)
,
(
B

(1)
+B

(2) ⊗ µ
(2)
2

) ]
.

From this example we clearly see that this time-varying controllability matrix is
depending on the known scheduling sequence and the LPV system matrices. The
next step is to factorize the time-varying extended controllability matrix in a ma-
trix containing only the scheduling terms and a constant matrix, which depends

only on the system matrices Ã(i), and B
(i)

. Before we formulate this factoriza-
tion in a lemma we have to introduce a number of definitions. We start with the
following definition:

Definition 4.2 We define the matrix:

Lj =
[
Ã(1)Lj−1, · · · , Ã(m)Lj−1

]
,

with
L1 =

[
B

(1)
, · · · , B

(m)
]
.

To illustrate this definition see the following example:

Example 4.2 (Lj)
For m = 2 one obtains:

L1 =
[
B

(1)
, B

(2)
]
,

L2 =
[
Ã(1)B

(1)
, Ã(1)B

(2)
, Ã(2)B

(1)
, Ã(2)B

(2)
]
,

L3 =
[
Ã(1)Ã(1)B

(1)
, Ã(1)Ã(1)B

(2)
, Ã(1)Ã(2)B

(1)
, Ã(1)Ã(2)B

(2)
, · · ·

Ã(2)Ã(1)B
(1)
, Ã(2)Ã(1)B

(2)
, Ã(2)Ã(2)B

(1)
, Ã(2)Ã(2)B

(2)
]
.

The number of block-columns grows exponentially as mj . Using this definition
we define the matrix Kp, which we refer to as LPV extended controllability matrix.

Definition 4.3 The operator Lj is used to define the LPV extended controllability matrix:

Kp =
[
Lp, Lp−1, · · · , L1

]
∈ R

n×q̃,

with q̃ = (r + ℓ)
∑p

j=1m
j .
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To present the factorized expression of the time-varying extended controllability
matrix in Lemma 4.1, we still need the following two definitions:

Definition 4.4 We define the matrix:

Pp|k = µk+p−1 ⊗ · · · ⊗ µk ⊗ Ir+ℓ,

with Pp|k ∈ Rm
p(r+ℓ)×(r+ℓ) and ⊗ represents the Kronecker product (Brewer 1978).

Now we define:

Definition 4.5 With Definition 4.4 we can define:

Np
k =





Pp|k 0
Pp−1|k+1

. . .

0 P1|k+p−1




,

with Np
k ∈ Rq̃×p(r+ℓ).

To illustrate this, see the following example:

Example 4.3 (Np
k )

For m = 2, k = 0, and p = 3 one obtains:

N3
0 =





1 0 0

µ
(2)
0 0 0

µ
(2)
1 0 0

µ
(2)
1 µ

(2)
0 0 0

µ
(2)
2 0 0

µ
(2)
2 µ

(2)
0 0 0

µ
(2)
2 µ

(2)
1 0 0

µ
(2)
2 µ

(2)
1 µ

(2)
0 0 0

0 1 0

0 µ
(2)
1 0

0 µ
(2)
2 0

0 µ
(2)
2 µ

(2)
1 0

0 0 1

0 0 µ
(2)
2





⊗ Iℓ+r.

Now we can state the following lemma:
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Lemma 4.1 Given the model structure in (4.2a)-(4.2b) we use Definition 4.3, and 4.5 to
obtain:

Kpk = KpNp
k ,

where Kpk is the time-varying extended controllability matrix, which equals Definition 4.1,
Np
k depends on the known scheduling sequence, and Kp is an unknown matrix defined

in Definition 4.3. Note that the number of columns of Kp (rows of Np
k ), denoted by q̃,

increases exponentially with p according to the relation q̃ = (r + ℓ)
∑p

j=1m
j .

Proof: Proof follows through straightforward computations. 2

Using the examples in this section this definition can be illustrated.

4.4 LPV predictor-based subspace identification

With the factorization defined in Section 4.3 we now can present the core of this
chapter. We will use similar ideas as discussed in Chiuso (2007) but now we in-
troduce the LPV counterpart.

4.4.1 Predictors

The first objective of the algorithm is to reconstruct the state sequence up to a
similarity transformation. The state xk+p is given by:

xk+p = φp,kxk + KpNp
k z

p
k,

where φp,k is the transition matrix given in (4.3), Kp is the time-invariant extended
LPV controllability matrix, and the matrix Np

k is a matrix solely depending on the
scheduling sequence. The key approximation in this algorithm is that we assume
that φj,k ≈ 0 for all j ≥ p. Similar as in the LTI case it can be shown that if the
system in (4.2a)-(4.2b) is uniformly exponentially stable the approximation error
can be made arbitrarily small by making p large (Verdult and Verhaegen 2002).
With this assumption the state xk+p is approximately given by:

xk+p ≈ KpNp
k z

p
k. (4.5)

In a number of LTI subspace methods it is well known to make this step (Van Over-
schee and De Moor 1996; Jansson 2005; Chiuso 2007). The input-output behavior
is now approximately given by:






yk+p ≈ CKpNp
k z

p
k +Duk+p + ek+p := y

(p)
k+p

yk+p+1 ≈ CKp+1Np+1
k zp+1

k +Duk+p+1 + ek+p+1

...

yk+p+f−1 ≈ CKp+f−1Np+f−1
k zp+f−1

k +Duk+p+f−1 + ek+p+f−1

. (4.6)
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Now we define the stacked matrices Ui, Yi, and Zi:

Ui =
[
up+i, · · · , uN−f+i+1

]
, (4.7a)

Yi =
[
yp+i, · · · , yN−f+i+1

]
, (4.7b)

Zi =
[
Np+i

0 zp+i0 , · · · , Np+i
N−p−fz

p+i
N−p−f

]
, (4.7c)

for all i ∈ {0, · · · , f − 1}. If the matrix
[
ZTi , UTi

]T
has full row rank for all

i ∈ {0, · · · , f − 1}, the matrices CKp+i and D can be estimated by solving the
following linear regression problem:

min
CKp+i,D

||Yi − CKp+iZi −DUi||2F , (4.8)

for all i ∈ {0, · · · , f −1} and where || · · · ||F represents the Frobenius norm (Golub
and Loan 1996). For finite p the solution of this linear problem will be biased
due the approximation made in (4.5). In the LTI literature a number of papers
appeared that studied the effect of the window size and although they proved the
asymptotic properties of the algorithms (if p → ∞ the bias disappears) it is hard
to quantify the effect for finite p (Knudsen 2001; Chiuso and Picci 2005; Chiuso
2007). In Section 4.8 we demonstrate that a rather large approximation does not
directly imply a large bias in the estimate of the system matrices.

4.4.2 Extended observability times controllability matrix

The product KpZ0, which represents by definition the state sequence, X , can not
directly be estimated. In the LTI literature it is common practice to use the esti-
mate of the linear-time invariant equivalent of CKp+i to construct the extended
observability matrix times the extended controllability matrix. For the LPV situ-
ation a similar approach can be followed. However, in this case we look at the
product ΓfKp, where Γf is defined in (4.4). This matrix can be constructed with
Definition 4.2 to equal the following matrix (we assume f = p):

ΓfKp =





CLp CLp−1 · · · CL1

CÃ(1)Lp CÃ(1)Lp−1 · · · CÃ(1)L1

...
...

. . .
...

C
(
Ã(1)

)f−1

Lp C
(
Ã(1)

)f−1

Lp−1 · · · C
(
Ã(1)

)f−1

L1




. (4.9)

This particular matrix is constructed in the LPV-PBSID algorithm. The following
matrix is used in the LPV-PBSIDopt algorithm (we assume f = p):

ΓfKp ≈





CLp CLp−1 · · · CL1

0 CÃ(1)Lp−1 · · · CÃ(1)L1

. . .
...

0 C
(
Ã(1)

)f−1

L1




. (4.10)
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The zeros appear in this equation based on the approximation that φj,k ≈ 0 for all
j ≥ p. This matrix represents the extended observability matrix of the first local
model times the LPV controllability matrix. Observe that from the linear regres-
sion problems formulated in (4.8) we only need the solution for i = 0 to construct
the matrix given in (4.10). With the factorizations presented in Definition 4.2 we
can construct this product between the extended observability matrix of the first
local model and the extended LPV controllability matrix solely from the elements
of CKp. To illustrate this we refer to Table 4.1 where an example is given. For the
LPV-PBSID algorithm we have to construct the matrix given in (4.9) or alterna-
tively given by:

ΓfKp =





CKp

C
(
Ã(1)

)
Kp

...

C
(
Ã(1)

)f−1

Kp




.

Observe that from the linear problems formulated in (4.8) and the factorizations

presented in Definition 4.2 we can construct the (i+ 1)
th

block row of ΓfKp from
the estimate of CKp+i. From which we can construct ΓfKpZ0, which equals by
definition the extended observability matrix times the state sequence, ΓfX . The
construction of ΓfKp is a rather cumbersome task. However, when we introduce
the kernel method the construction of this matrix simplifies significantly.

From the constructed matrix ΓfKp, either the LPV-PBSID or LPV-PBSIDopt

way, we can compute ΓfKpZ0, which equals by definition the extended observ-
ability matrix times the state sequence, ΓfX . By computing a Singular Value De-
composition (SVD) of this estimate we can estimate the state sequence and the
order of the system. We will use the following SVD:

Γ̂fKpZ0 =
[
U U⊥

] [ Σn 0
0 Σ

] [
V
V⊥

]
, (4.11)

where Σn is the diagonal matrix containing the n largest singular values and V is
the corresponding row space. Note that we can find the largest singular values by
detecting a gap between the singular values (Verhaegen and Verdult 2007). The
state is now estimated by:

X̂ = ΣnV . (4.12)

It is well known that when the state, input, output, and scheduling sequence are
known the system matrices can be estimated (Nemani et al. 1995; Lovera 1997;
Verdult and Verhaegen 2002). First we use (4.1b), which is now a linear relation in
C andD and where ek represents white noise. From this equation an estimate can
be found of the C and D matrix while also the noise sequence can be estimated.
The estimated noise sequence is used to transform (4.1a) into a linear expression
depending on A(i), B(i), andK(i) and consequently all the system matrices can be
estimated.
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Table 4.1: Example of the matrix ΓpKp for p = 3, m = 2, and constant input matrix; B(i) = 0 for i > 1.

Γ3K3 ≈ C




Ã(1)Ã(1)B

(1)
Ã(1)Ã(2)B

(1)
Ã(2)Ã(1)B

(1)
Ã(2)Ã(2)B

(1)
Ã(1)B

(1)
Ã(2)B

(1)
B

(1)

0 0 0 0 Ã(1)Ã(1)B
(1)

Ã(1)Ã(2)B
(1)

Ã(1)B
(1)

0 0 0 0 0 0 Ã(1)Ã(1)B
(1)



 .
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Table 4.2: Total number of rows in the matrix Zi for m = 4 and r = ℓ = 1

i = 0 i = 1 i = 2 i = 3 i = 4
p = 2 40 168 680 2728 10920
p = 3 168 680 2728 10920 43688
p = 4 680 2728 10920 43688 174760
p = 5 2728 10920 43688 174760 699048

4.4.3 ‘Curse of dimensionality’

Similar as in Verdult and Verhaegen (2002) the presented method suffers from the
‘curse of dimensionality’. The number of rows of Zi grow exponentially with the
past and future window. The number of rows of Zi is given by:

ρZi
= (r + ℓ)

p+i∑

j=1

mj .

In Table 4.2 the ‘curse of dimensionality’ is demonstrated. Observe that the growth
of the dimensions is almost similar to the work of Verdult and Verhaegen (2002)
if we consider the LPV-PBSID algorithm (see Table 1 in Verdult and Verhaegen
(2002)). However, we would like to stress that for the LPV-PBSIDopt algorithm we
only need Z0 and consequently resulting is a smaller set of regression parameters
that we have to estimate. So, we can conclude that the computational complexity
of the LPV-PBSID is similar to the algorithm presented in Verdult and Verhaegen
(2002) but is much higher compared to the LPV-PBSIDopt case. Still, the ‘curse of
dimensionality’ plays an important role. In the next section the kernel method is
derived for the LPV-PBSIDopt and the LPV-PBSID algorithm.

4.4.4 Summary of the LPV algorithms

The predictor-based subspace algorithms are presented in a conceptual way. No
explicit algorithm recipe is given. This is due to the fact that the construction
of the matrices (4.9) and (4.10) is quite cumbersome. In the next section we will
derive explicit formulas for the algorithms. A sketch of the algorithms is now
given below:
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Algorithm 4.1 (LPV-PBSIDopt)
The LPV-PBSIDopt algorithm can be summarized as follows:

1. Create the matrices Ui, Yi, and Zi using (4.7a), (4.7b) and (4.7c) for i = 0,

2. Solve the linear problem given in (4.8) for i = 0,

3. Construct ΓfKpZ0 using (4.7c) and (4.10),

4. Compute the state sequence using (4.11) and (4.12),

5. With the estimated state, use the linear relations (4.1a)-(4.1b) to obtain the
system matrices.

Algorithm 4.2 (LPV-PBSID)
The LPV-PBSID algorithm can be summarized as follows:

1. Create the matrices Ui, Yi, and Zi using (4.7a), (4.7b) and (4.7c) for all
i ∈ {0, · · · , f − 1},

2. Solve the linear problem given in (4.8) for all i ∈ {0, · · · , f − 1},

3. Construct ΓfKpZ0 using (4.7c) and (4.9),

4. Compute the state sequence using (4.11) and (4.12),

5. With the estimated state, use the linear relations (4.1a)-(4.1b) to obtain the
system matrices.

4.5 Kernel method

The LPV identification methods presented in the previous paragraph suffer from
the ‘curse of dimensionality’. However, similar as in Verdult and Verhaegen (2005)
we can use the kernel method to overcome this drawback. In Section 4.5.1 we
present the kernel method for the proposed LPV identification schemes. In Sec-
tion 4.5.2, a computationally efficient formula is presented for the proposed model
structure. The kernel method is normally ill-conditioned, but in Section 4.5.3 reg-
ularization is proposed to overcome this drawback. In the last subsection a sum-
mary of the algorithms with kernels is given.

4.5.1 Kernel Method

The LPV identification approach presented in the previous section resulted in a
linear problem formulated in (4.8), from now on also referred to as primal prob-
lem. This equation can be solved by using traditional Least Squares (LS). How-
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ever, the data matrices grow exponentially with the past window for LPV-PBSIDopt

and with the past and future window for LPV-PBSID. In Verdult and Verhaegen
(2005) it was shown that the solution of this linear problem is equal to the solution
of the dual problem if the solution with the minimum-norm is considered (Golub
and Loan 1996). In this subsection we show how the kernel method can be ex-
ploited for the presented LPV identification schemes.

The linear problem in (4.8) has a unique solution if the matrix:

[
Zi
Ui

]
,

has full row rank and this solution is given by:

[
ĈKp+i D̂

]
= Yi

[
ZTi , UTi

]([ Zi
Ui

] [
ZTi , UTi

])−1

.

When the matrix
[
ZTi , UTi

]T
has missing row rank the solution is not unique.

This will occur when the past window is large. However, the solution with the
smallest norm, min ||

[
CKp+i, D

]
||2F , can still be computed by using the SVD

of the matrix:
[
Zi
Ui

]
=
[
Ui, U⊥,i

] [ Σn,i 0
0 0

] [
VTi
VT⊥,i

]
,

where Σn,i is the diagonal matrix containing the non-zero singular values and VTi
and Ui are the corresponding row and column space, respectively. The solution
with the minimum-norm is now given by:

[
ĈKp+i, D̂

]
= Y ViΣ−1

n,iUTi .

The computations take place in a large dimensional space spanned by the columns
of Zi. If we consider the minimum-norm solution of (4.8) the dual problem avoids
computations in this large dimensional space (Suykens et al. 2002). The dual prob-
lem results in:

min
αi

‖αi‖2
F with Yi − αi

[
ZTi Zi + UTi Ui

]
= 0, (4.13)

where αi are the Lagrange Multipliers and
[
ZTi Zi + UTi Ui

]
is referred to as the

kernel matrix. If the matrix
[
ZTi , UTi

]T
has full column rank the solution to

this dual problem is given by:

α̂i = Yi
([

ZTi Zi + UTi Ui
])−1

,

= YiViΣ−2
n,iVTi .
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The estimate of
[
CKp+i, D

]
is now given by:

[
ĈKp+i, D̂

]
= α̂i

[
ZTi , UTi

]
,

= YiViΣ−1
n,iUTi .

The construction of the matrix ĈKp+i from the dual problem requires the matrix
Zi, explicitly. However, due to the ‘curse of dimensionality’ this can lead to di-
mension problems. For the construction of CKp+iZi we do not need the matrix
Zi explicitly, we only have to construct ZTi Zi and UTi Ui for the computation of αi
and an estimate of CKp+iZi is given by:

ĈKp+iZi = α̂ZTi Zi. (4.14)

With this above we can not reconstruct the extended controllability matrix times
the state sequence directly. However, in the previous section we used these esti-
mates to build the matrix given in (4.9) and (4.10). We mentioned that this was a
rather cumbersome task. However, in the next two lemma’s things clear up:

Lemma 4.2 (Extended observability matrix times state sequence (LPV-PBSIDopt))
Given the model structure in (4.1a)-(4.1b) and Definition 4.4, we can define the following
matrices:

Zi,j =
[
Pp−j|j−izj−i, · · · , Pp−j|N+j−i−1zN+j−i−1

]
,

with Zi,j ∈ Rm
p−j+1(r+ℓ)×N and N = N − p− f + 1. Now we have:

C
(
Ã(1)

)i
Lp−j = α0

(
Zi,j

)T
,

and then we can construct the matrix ΓfKpZ0 as follows:

ΓfKpZ0 =





α0

∑p−1
j=0

(
Z0,j

)T
Z0,j

α0

∑p−1
j=1

(
Z1,j

)T
Z0,j

...

α0

∑p−1
j=p−1

(
Zf−1,j

)T
Z0,j




. (4.15)

Proof: The proof follows from the derivation of the dual problem. 2

Lemma 4.3 (Extended observability matrix times state sequence (LPV-PBSID))
Given the model structure in (4.2a)-(4.2b) and the Definition 4.4. Now we have:

C
(
Ã(1)

)i
Kp = αiZ

T
0 .

So with α =
[
αT0 , αT1 , · · · , αTf−1

]T
. We can construct the matrix ΓfKpZ0 as
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follows
ΓfKpZ0 = αZT0 Z0. (4.16)

Proof: The proof follows from the derivation of the dual problem. 2

With one of the previous lemma’s we can go back to the original problem and
compute an SVD of this estimate to find the state sequence. Again it is important
to stress that we do not requireZi but we only need ZTi Zi. This observation makes
it possible to derive a computationally more efficient implementation.

4.5.2 Computation of the kernel matrices

In the previous subsection it was already stressed that we do not have to compute
Zi but we only need ZTi Zi. In this section an analytical expression is given that
does not require the calculation of Zi. First we define the matrix

Ñ =
[

0, 1, · · · , N − f − p
]
,

and the following lemma:

Lemma 4.4 Given the vectors λ1, λ2, · · · , λν ∈ Rκ×1 and θ1, θ2, · · · , θν
∈ Rκ×1 the product

(λ1 ⊗ λ2 ⊗ · · · ⊗ λν)
T

(θ1 ⊗ θ2 ⊗ · · · ⊗ θν) ,

is given by:
ν∏

j=1

λTj θj . (4.17)

Proof: With the properties of the Kronecker product (⊗) defined in Brewer (1978),
(A⊗B) (C ⊗D) = AC ⊗ BD, we can rewrite (4.4) as: λT1 θ1 ⊗ · · · ⊗ λTν θν and
observing that all the elements between the Kronecker products are scalers results
in (4.17). 2

With Lemma 4.4 we can define the kernels for the model structure given in (4.1a)-
(4.1b) for both LPV-PBSIDopt and LPV-PBSID.1

Theorem 4.1 (Kernels for LPV-PBSIDopt) Given Lemma 4.4 and the model structure
given in (4.1a)-(4.1b) we have for j ≥ i

(
Zi,j

)T
Z0,j =

(
p−j−1∏

v=0

µT
Ñ+v+j−i

µÑ+v+j

)(
zT
Ñ+j−i

zÑ+j

)

1We define µ
Ñ+v

=
[

µv , · · · , µN−f−p+v

]
.
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and

ZT0 Z0 =

p−1∑

j=0

(
Z0,j

)T
Z0,j.

We can solve (4.13) for i = 0 and construct (4.15) .

Proof: Using Lemma 4.4 the proof follows by straightforward computations. 2

Theorem 4.2 (Kernels for LPV-PBSID) Given Lemma 4.4 and the model structure
given in (4.1a)-(4.1b) we have:

ZTi Zi =

p+i−1∑

j=0








p+i−1∏

v=j

µT
Ñ+v

µÑ+v




(
zT
Ñ+j

zÑ+j

)




We can solve (4.13) for all i ∈ {0, · · · , f − 1} and construct (4.16) .

Proof: Using Lemma 4.4 the proof follows by straightforward computations. 2

For N ≫ p and N ≫ m the computational complexity of the indirect com-
putation, so first constructing Zi and then computing the product

(
ZTi Zi

)
, is of

order O(N2q̂) with q̂ =
∑p

j=1m
j and direct construction of

(
ZTi Zi

)
is of the order

O(N2), which illustrates the computational efficiency of the algorithm.

The kernels are valid for the model structure given in (4.1a)-(4.1b). The whole
derivation of the kernel matrices can be repeated for different model structures as
well and these kernels can be found in Appendix C.

4.5.3 Regularization

The kernel ZTi Zi described in the previous paragraph is square and has the size of
the number of data points available. This normally leads to an ill-conditioned set
of equations. This conditioning problem can be circumvented through regular-
ization. There are a number of regularization techniques (for a detailed overview
see Sima (2006)). In Verdult and Verhaegen (2005) a simulation study is performed
to select the optimal regularization technique and corresponding regularization
parameter selection method. In this study they conclude that Tikhonov regular-
ization (Tikh) with Generalized Cross Validation (GCV) regularization parameter
selection gives the best result. In this thesis we will adopt these settings.

4.5.4 Summary of the algorithm

We end this section with the summary of the closed-loop kernel LPV identification
algorithms.
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Algorithm 4.3 (LPV-PBSIDopt (kernel))
The algorithm can be summarized as follows:

1. Create the matrices
(
Zi,j

)T
Zi,j and ZT0 Z0 using Theorem 4.1 and com-

pute UT0 U0 using (4.7a) for i = 0,

2. Solve the linear problem given in (4.13) for i = 0. If desired regularized,

3. Construct ΓfKpZ0 using (4.15),

4. Compute the state sequence using (4.11) and (4.12),

5. With the estimated state, use the linear relations (4.1a)-(4.1b) to obtain the
system matrices.

Algorithm 4.4 (LPV-PBSID (kernel))
The algorithm can be summarized as follows:

1. Create the matrices ZTi Zi using Theorem 4.2 and compute UT0 U0 using
(4.7a) for all i ∈ {0, · · · , f − 1},

2. Solve the linear problem given in (4.13) for all i ∈ {0, · · · , f − 1}. If
desired regularized,

3. Construct ΓpKpZ0 using (4.16),

4. Compute the state sequence using (4.11) and (4.12),

5. With the estimated state, use the linear relations (4.1a)-(4.1b) to obtain the
system matrices.

4.6 Different model structures

For the derivation of the LPV identification algorithm we used the model struc-
ture given in (4.1a)-(4.1b). This model structure has a parameter-invariant output
equation. The main reason to make this assumption is that the derivation of the
algorithm becomes more cumbersome with parameter-varying output equation.
Another reason could be that most applications also have a time-invariant output
equation. This argument will not hold because converting these first principles
models to discrete time normally results in a parameter-varying output equation
(this will be demonstrated in Section 4.9).

In this section we discuss other model structures. We start with the model
structure with parameter-varying output equation but with a constant K and we
discuss the consequences for the proposed algorithm. Followed by a discussion
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about the model structure where all the matrices are parameter-varying. Finally,
we discuss the bilinear model structure.

4.6.1 Parameter-varying output equation and constant K

In this subsection we consider the following model structure:

xk+1 =
m∑

i=1

µ
(i)
k

(
A(i)xk +B(i)uk

)
+Kek, (4.18a)

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek, (4.18b)

which has a parameter-varying output equation but a parameter-invariantK ma-
trix. The predictor representation of this model structure is given by:

xk+1 =
m∑

i=1

µ
(i)
k

(
Ã(i)xk + B̃(i)uk

)
+Kyk, (4.19a)

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek, (4.19b)

with
Ã(i) = A(i) −KC(i), B̃(i) = B(i) −KD(i).

This model structure will affect the proposed identification method at two points.
The factorization presented in Section 4.3 is affected by the fact thatK is parameter-
invariant and this has consequences for the data matrices. In Appendix C the ker-
nels are given for different model structures and also for a parameter-invariant
K . The second issue is caused by the parameter-varying output equation. The
linear problem given by (4.8) is now also dependent on: C(2)Kp+i, · · · , C(m)Kp+i
and D(2), · · · , D(m) but still the terms C(1)Kp+i are estimated and these terms are
again used to construct the extended observability matrix times the extended LPV
controllability matrix. From this point on the algorithm proceeds in a similar way
as discussed in the previous sections. In Appendix C explicit formulas are given
for LPV system identification for this particular model structure.

4.6.2 Parameter-varying output equation and parameter-varying K

In this subsection we consider the following model structure:

xk+1 =

m∑

i=1

µ
(i)
k

(
A(i)xk +B(i)uk +K(i)ek

)
, (4.20a)

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek, (4.20b)
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which has a parameter-varying output equation and a parameter-varying K ma-
trix. The predictor representation of this model structure is given by:

xk+1 =

m∑

i=1

µ
(i)
k



A(i)xk +B(i)uk +K(i)yk −K(i)
m∑

j=1

µ
(j)
k

(
C(j)xk +D(j)uk

)


 ,

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek,

If we compare this model structure with the model structure with parameter-
invariant K we see a significant increase of complexity. With respect to the previ-
ous subsection we have to change the factorization of the time-varying controlla-
bility matrix. This factorization can be obtained with a similar recipe as presented
in this chapter. However, the consequence is that the ‘curse of dimensionality’
will play an even more important role. However, to circumvent this problem we
assume the following predictor model:

xk+1 =

m∑

i=1

µ
(i)
k

(
Ã(i)xk + B̃(i)uk +K(i)yk

)
, (4.21a)

yk =

m∑

i=1

µ
(i)
k

(
C(i)xk +D(i)uk

)
+ ek, (4.21b)

with
Ã(i) = A(i) −K(i)C(i), B̃(i) = B(i) −K(i)D(i).

This model structure is also considered in the appendix.

4.6.3 Bilinear systems

Bilinear systems are nonlinear systems due to the product of the states with the
input. Many important processes in engineering, system biology, and economics
may be modeled by bilinear systems (Bruno et al. 1974). Due to their nice proper-
ties bilinear system identification received considerable attention in recent years.

We consider a discrete time bilinear system of the form:

xk+1 = A(1)xk +

r+1∑

i=2

u
(i−1)
k

(
A(i)xk

)
+Buk +Kek, (4.22a)

yk = Cxk +Duk + ek. (4.22b)

This model structure can be considered to be a subset of the LPV model structure
given in (4.1a)-(4.1b). However, now we have a parameter-invariant input and
noise matrix and the scheduling is given by the input. For this model structure
we can directly use the proposed algorithm described in this chapter. For explicit
formulas we refer to Appendix C.
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4.7 Dedicated scheduling sequences

Recently, a number of papers appeared where the structure of the scheduling se-
quence is exploited to overcome the computational complexity of the general LPV
identification approach (see also Chapter 3). It turns out that if periodic sche-
duling (Felici et al. 2007b; van Wingerden et al. 2008a), piecewise constant sche-
duling (Verdult and Verhaegen 2004; van Wingerden et al. 2007; van Wingerden
and Verhaegen 2007), or white noise scheduling (Favoreel et al. 1999; Santos et al.
2005, 2006) is used well-established LTI subspace techniques can be used to iden-
tify LPV systems or bilinear systems. In Felici et al. (2007b); van Wingerden et al.
(2007); van Wingerden and Verhaegen (2007); van Wingerden et al. (2008a) they
have to solve a numerical sensitive intersection problem and in Verdult and Ver-
haegen (2004); van Wingerden et al. (2007); van Wingerden and Verhaegen (2007)
the local models are interconnected by formulating a number of least squares
problems, which require accurate local models. In Santos et al. (2005, 2006) an
iterative approach is used to obtain the system matrices. In this section we show
how structure in the scheduling sequence further reduces the computational com-
plexity of the algorithm presented in this chapter.

4.7.1 Periodic scheduling

We will use the kernel algorithm to show that the computational complexity sig-
nificantly reduces when the scheduling is periodic, piecewise constant or is struc-
tured in some sense.

The matrix ZT0 Z0 is given by:

QT





(Np
0 )
T
Np

0 (Np
0 )
T
Np

1 · · · (Np
0 )
T
Np

N

(Np
1 )
T
Np

0 (Np
1 )
T
Np

1 · · · (Np
1 )
T
Np

N
...

. . .
(
Np

N

)T
Np

0

(
Np

N

)T
Np

1 · · ·
(
Np

N

)T
Np

N




Q,

with Q = diag
([

zp0, zp2, · · · , zp
N

])
and N = N − f − p. If the system is

periodic with period π we observe that Ni = Ni+π and consequently the matrix
ZT0 Z0 will lose rank. In the kernel method we are only interested in the row space
of CKpZ0. In the previous section an estimate of CKpZ0 was given by α0Z

T
0 Z0 if

the matrix ZT0 Z0 has no full row rank we can select the rows that span the row
space of this matrix without altering the row space of CKpZ0. This means that
we only have to select the rows of ZT0 Z0 that span the row space of this matrix.
For periodic scheduling it is sufficient to select the first π × (r + ℓ)p rows if the
matrix Q has full rank. For piecewise constant scheduling (van Wingerden et al.
2007) the same time-variation will be present a number of times and in this case
the matrix ZTi Zi will lose rank. For this situation it is harder to select the rows
that span the row space of ZTi Zi. There are more scheduling sequences where
the same or almost the same time-variation in the dynamics occurs. In the next
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subsection we present a sketch of an algorithm how to select the correct rows for
structured scheduling sequences.

4.7.2 Kernel selection

To exploit structure like periodic or piecewise constant scheduling it is important
to select the linear independent rows of ZTi Zi. However, we can also select the
rows that are independent up to a certain threshold, ǫ. In this way only the most
dominant rows are selected. There are different methods to select the most domi-
nant rows but we summarize the most straightforward approach in Algorithm 4.5.

Algorithm 4.5 (Kernel selection algorithm using LPV-PBSIDopt)
The algorithm can be summarized as follows:a

Init Give a tolerance level ǫ
define the matrix:
Z =

(
(Z0)

T (Z0)
)
(1, :) +

(
(U0)

T (U0)
)
(1, :)

D = {1}
For j=2:N̄

Compute:
Z =

(
(Z0)

T (Z0)
)
(j, :) +

(
(U0)

T (U0)
)
(j, :)

If minΞ ||ZΞ −Z||2F > ǫ

Z=
[
ZT ZT

]T

Add j to the set D
End

End

Solve minα̃ ‖Y0 − α̃0Z‖2
F . The estimate of the extended observability ma-

trix is now given by (4.15) where only the rows indicated by the set D of
∑p−1

j=i

(
Zi,j

)T
Z0,j are used. Similar as in the original algorithm an SVD can

be computed to obtain an estimated of the state and consequently the system ma-
trices can be estimated.

aMatlab notation is used for convenience

With this algorithm the number of selected rows can still be large. More advanced
kernel selection algorithms can be used to select the most dominant rows of ZT0 Z0.
In Suykens et al. (2002) and Espinoza et al. (2006) they use fixed-sized kernels. In
machine learning literature more methods can be found on how to select a fixed
number of kernels (see for instance Smola and Scholkopf (2000)).

The advantage of the method presented above is that we can deal with large
data sets when the row space of ZT0 Z0 is small. In the next section we present
simulation examples that show the potential of the proposed LPV identification
algorithm. We also show that we can deal with a large data set if we have periodic
scheduling.
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4.8 Simulation Examples

In this section we show some features of the novel algorithm on three different
simulation examples.

4.8.1 Example 1: Open-loop LPV identification

In the first example we demonstrate the effectiveness of the LPV-PBSIDopt algo-
rithm on an open-loop problem. Furthermore, we explore the effect of regular-
ization and the window size. We use the benchmark model used in Verdult and
Verhaegen (2000, 2002, 2005). This is a fourth order MIMO open-loop LPV model
with m = 4, r = 2, and ℓ = 3. The collected data uk, yk, and µk are used for the
identification algorithm. The system matrices are given by:

A(1) =





−1.3 −0.6325 −0.1115 0.0596
1 0 0 0
0 1 0 0
0 0 1 0



 ,

A(2) =





−0.51 −0.1075 −0.007275 −0.0000625
1 0 0 0
0 1 0 0
0 0 1 0



 ,

A(3) =





0.2 0 0 0
0 0.4 0 0
0 0 0 0
0 0 0 0



 , A(4) =





0 0 0 0
0 0 0 0
0 0 0.3 0
0 0 0 0.3



 ,

B(1) =





0 1
1 0
1 0
0 1



 , B(2) = B(3) = B(4) =





0 0
0 0
0 0

0.3 0.3



 ,

K =





0.16 0 0
0 0.16 0
0 0 0.16

0.16 0 0



 , C =




1 0 0 0
0 1 0 0
0 0 1 0



 , D =




0 0
0 0
0 0



 .

The scheduling and input sequence are given by:

µk =





1
ρk

1
2 sin

(
2πk
100

)
ρk

1
2 cos

(
2πk
100

)
ρk



 , and uk =

[
G(q)ηk + 4H(q)νk

ξk

]
,

where ρk is a uniformly distributed random sequence with unit variance, ηk, νk,
and ξk are zero-mean white Gaussian noise sequences of unit variance, q denotes
the shift operator, G(q) = 0.75 + 1.05q−1 + 0.15q−2, and H(q) is a second-order
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Table 4.3: The VAF on a fresh data set for 100 monte carlo simulations. The experiments are performed for different settings.

p = 3 Kernel LPV-PBSIDopt Kernel LPV-PBSIDopt+Tikh+GCV
Output 1 Output 2 Output 3 Output 1 Output 2 Output 3

N=500, SNR=40 93.2 93.5 93.8 96.8 96.7 96.8
N=500, SNR=∞ 100.0 100.0 100.0 99.9 100.0 100.0

N=1000, SNR=40 98.0 98.0 98.0 98.4 98.4 98.5
N=1000, SNR=∞ 100.0 100.0 100.0 99.9 99.9 99.9

VAF(yk, y
(p)
k )

Output 1 Output 2 Output 3

N=1000, SNR=∞ 54.0 34.5 15.7

p = 5 Kernel LPV-PBSIDopt Kernel LPV-PBSIDopt+Tikh+GCV
Output 1 Output 2 Output 3 Output 1 Output 2 Output 3

N=500, SNR=40 66.5 67.2 67.6 90.5 90.6 90.8
N=500, SNR=∞ 99.4 99.4 99.4 99.2 99.3 99.3

N=1000, SNR=40 17.2 19.1 21.0 94.8 95.0 95.1
N=1000, SNR=∞ 100.0 100.0 100.0 100.0 100.0 100.0

VAF(yk, y
(p)
k )

Output 1 Output 2 Output 3

N=1000, SNR=∞ 70.8 67.5 56.8
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low-pass Butterworth filter with a cut-off frequency of one-fifth of the sampling
frequency.

The performance of the identified system is evaluated by looking at the value
of the Variance-Accounted-For (VAF) on a data set different from the one used for
identification. The VAF value is defined as:

VAF (yk, ŷk) = max

{
1 − var(yk − ŷk)

var(yk)
, 0

}
∗ 100%,

where ŷk denotes the output signal obtained by simulating the identified LPV sys-
tem, yk is the output signal of the true LPV system, and var() denotes the variance
of a quasi-stationary signal. To investigate the sensitivity of the identification al-
gorithm with respect to output and process noise, a Monte-Carlo simulation with
100 runs was carried out. For each of the 100 simulations a different realization of
the input uk and scheduling sequence µk is used.

In Table 4.3 the results of the different identification methods are summarized,
where the VAF values are based on a validation data set. If we look at the iden-
tification results for the system with N = 1000 and no noise (SNR=∞) the results
are significantly better than the results presented in Verdult and Verhaegen (2005).
Remarkably, we observe that the VAF is 100% for a finite p. However, if we com-

pute the VAF between yk and y
(p)
k defined in (4.6), which basically indicates the

approximation we make, the VAF values are significantly smaller. This stresses
the point that although the approximation error is rather large we can not predict
how large the bias term is and how it transfers to the final estimate of the sys-
tem matrices. That is why from a theoretical point of view we can state that it is
better to pick a large p because then the consistency can be proven (Verdult and
Verhaegen 2002). However, a large p, due to the ‘curse of dimensionality’, and a
finite N implies a large number of variables to be estimated leading to minimum-
norm solutions with a larger variance. From this perspective it is better to choose
a small p. In this particular simulation example this trade-off already appears for
a small p. Estimation with a finite p is an interesting research field for both LTI and
LPV system identification. In Section 4.8.3 we clearly show the trade-off between
bias and variance on a simple bilinear identification example.

4.8.2 Example 2: Closed-loop LPV identification

In this section we demonstrate the operation of the algorithm with data collected
in closed-loop, we compare the LPV-PBSIDopt and LPV-PBSID, and we exploit the
structure in the scheduling sequence. We use the model described in Felici et al.
(2007b) (and in Section 3.8.1), which might represent the flapping dynamics of a
wind turbine blade (Eggleston and Stoddard 1987). To apply state feedback we
now assume that this model has an identity output matrix. We take a past and
future window of 8 and limit ourselves to 2000 data points. To show the potential
of the closed-loop setting a time-varying state feedback is used. The controller is
synthesized using a discrete time periodic Riccati equation (Hench and Laub 1994;
Varga 2005). Process noise is added with a variance of

√
0.1.



102 Chapter 4: LPV identification using arbitrary scheduling

V
A

F
(%

)
o

f
ch

a
n

n
el

1
V

A
F

(%
)

o
f

ch
a

n
n

el
2

M

0 100 200 300

0 100 200 300

0

25

50

75

100

0

25

50

75

100

Figure 4.1: The VAF for 100 Monte Carlo simulations as a function of the numbers
of rows of ZTi Zi that taken into account. The dashed line and the solid
line represent the regularized and the un-regularized version of the
LPV-PBSIDopt algorithm.
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Figure 4.2: The VAF for 100 Monte Carlo simulations as a function of the numbers
of rows of ZTi Zi that taken into account. The dashed line and the solid
line represent the regularized and the un-regularized version of the
LPV-PBSID algorithm.
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Figure 4.3: Eigenvalues of the estimated A(1) and A(2) in one plot for the LPV-
PBSIDopt algorithm, for 100 experiments andM = 100. The big crosses
correspond to the real values of the eigenvalues of the matrices.

An LPV model was identified using the kernel version of the LPV-PBSIDopt

and the LPV-PBSID algorithm and we exploit the fact that the scheduling se-
quence contains structure, it is periodic. We take the first M rows of ZTi Zi into
account. As mentioned earlier there are smarter ways to select these rows, how-
ever, this will illustrate the effectiveness of the approach. In Figure 4.1 and 4.2 the
mean VAF value as a function of M is presented for the regularized and the un-
regularized LPV-PBSIDopt and LPV-PBSID algorithm, respectively. We observe
that we can select an optimum of 100 rows and we see that regularization is not
required anymore. Furthermore, we observe that for this particular simulation ex-
ample the LPV-PBSIDopt and LPV-PBSID algorithm have a similar performance.

In Figure 4.3 the eigenvalues of the estimated models are compared with their
true values. As expected the closed-loop algorithm gives consistent results but a
small bias arises due to the approximation made in the algorithm.

4.8.3 Example 3: Bilinear identification

In the previous two examples we demonstrated a number of key features of the
proposed algorithm. In this example we demonstrate the effect of the past win-
dow using a low order open loop bilinear model. As indicated in this chapter a
small p will lead in general to biased estimates while for large p, even without
noise, the variance will increase due to the ‘curse of dimensionality’. The bilinear
system is given by:

[
A(1), A(2)

]
=

[
0.5 0.5 0.2 0.2
−0.5 0.5 −0.2 0.2

]
,
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Figure 4.4: The mean value of the VAF over 100 experiments (solid line) is pre-
sented with respect to the past window size using 500 (left) and 1000
(right) data points. The VAF values of the 100 experiments are within
the gray confidence region.

B =

[
1
0

]
, C =

[
1 1

]
, D =

[
0
]
.

The input is generated by filtering a zero-mean white noise sequence with a fourth-
order low pass Butterworth filter that has a cutoff frequency of 0.8 times the
Nyquist frequency. Because we work with a bilinear system the scheduling is

given by µk =
[
1, uTk

]T
. To investigate the sensitivity of the identification algo-

rithm with respect to the realization of the input and noise, a Monte-Carlo simu-
lation with 100 runs was carried out. Compared with the previous two examples
the complexity of this example is small, which enables us to clearly demonstrate
the trade-off between a large p and a small p. In Figure 4.4 we demonstrate the
effect of p on the amount of approximation we introduce and the consequence
for the identification algorithm. The top figures present the VAF between yk and
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y
(p)
k , defined in (4.6), which basically indicates the amount of approximation we

incorporated in the algorithm. The system is uniformly exponentially stable and
therefore the approximation error will converge to zero if p goes to infinity. In
the plots in the middle the VAF is given between the signal generated by the es-
timated model, using noise free data, and the validation data. In this figure we
see that for really small p we have a biased estimate, while for large p the variance
increases due to the fact that we look for a minimum-norm solution because the
number of unknowns exceeds the number of data points. In the bottom figure,
noise with an SNR of 15dB is added to the identification data and we clearly see
a larger variance for a larger p. This simulation example illustrates the trade-off
problem for the identification for both bilinear and LPV systems. With increasing
complexity it is expected that it is more worthwhile to pick a small p, as already
seen in the first example. However, if the bias is too large the biased estimate may
serve as an initial estimate for optimization based identification algorithms (Lee
and Poolla 1999; Verdult et al. 2003), which was already suggested in Verdult and
Verhaegen (2002).

4.9 Case study: a ‘smart’ airfoil

In this section we apply the proposed LPV identification approach on a ‘smart’ 2-
D airfoil. This is an airfoil with at the trailing edge a control surface, trailing edge
flap. The lay-out of such an airfoil is illustrated in Figure 4.5. A similar model is
used for flutter control and detection and a detailed description of this model can
be found in a large number of scientific papers (see for instance Ko et al. (1997);
Zeng and Singh (1998); Block and Strganac (1998); Lind and Baldelli (2005); Lee
and Singh (2007)). The control of a ‘smart’ airfoil and flutter control is already a
research topic for several years (see also Chapter 2). The main issue is that the
dynamics is strongly dependent on the free stream wind speed. The system can
become unstable when the wind speed reaches a certain wind speed; flutter limit.
In Lau and Krener (1999) and Barker and Balas (2000) LPV controller synthesis
is proposed to solve this problem. In this section we show that the algorithms
presented in this chapter can be used to obtain a model for LPV control.

In this example we first derive an analytical LPV model of the system under
consideration. In Section 4.9.2 we show that due to discretization we lose the
‘nice’ affine LPV structure. Then we derive a time-varying state-feedback control
law that stabilizes the system over the whole trajectory. On the controlled flutter
model we apply our closed-loop identification scheme.

4.9.1 Analytical LPV modeling

There are a large number of 2-D ‘smart’ airfoil models available in the literature.
The main difference between these models is the number of mechanical degrees
of freedom that are taken into account and the unsteadiness of the aerodynamic
model. The general mechanical degrees of freedom are the plunge, h, the pitch,
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Figure 4.5: Schematical representation of the ‘smart’ airfoil model used in this
simulation example.

α, and the trailing edge flap, β. The trailing edge flap is normally seen as the
control variable and if this control surface is considered to be infinitely stiff the
corresponding dynamics can be ignored. This is also the approach we will follow
in this example. The equations of motion are now given by:

[
mt mwxαb

mwxαb Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
kh 0
0 kα

] [
h
α

]
=

[
−L
M

]
,

where mw is the mass of the wing, mt is the total mass, b is the semi-chord of the
wind, Iα is the moment of inertia, xα is the non dimensionalized distance of the
center of mass from the elastic axis, the thicknesses and damping coefficients of
the plunge and pitch degree of freedom are kh, kα, ch, and cα, respectively. The
inputs L and M are the aerodynamic force and moment, respectively. This set
of second-order differential equations can also be written as a set of first-order
differential equations:





ḣ
α̇

ḧ
α̈



 =





0 0 1 0
0 0 0 1

Iα

q1
kh

−mwxαb
q1

kα
Iα

q1
ch

−mwxαb
q1

cα
−mwxαb

q1
kh

mt

q1
kα

−mwxαb
q1

ch
mt

q1
cα









h
α

ḣ
α̇



+
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



0 0
0 0

−Iα

q1

mwxαb
q1

mwxαb
q1

−mt

q1





[
−L
M

]
, (4.23)

with q1 = −mtIα +m2
wx

2
αb

2.

The aerodynamic forces can be modeled in several ways. With unsteady aero-
dynamics the dynamics of the airflow around the blade is modeled. A number
of models are available to describe this dynamic behavior (see Theodorsen (1935);
Leishman (2002); Gaunaa (2006)) leading to an additional set of differential equa-
tions. In this section we assume quasi-steady aerodynamics and that means that
the unsteadiness is ignored and we only have static relations between the motion
degrees of freedom and the aerodynamic forces. This is a valid assumption if the
reduced frequency is considered to be small. For the quasi-steady aerodynamic
model we have the following aerodynamic forces:

L = q2
[
0, V 2, V, q6V

]





h
α

ḣ
α̇



+ q3V
2β, (4.24a)

M = q4
[
0, V 2, V, q6V

]





h
α

ḣ
α̇



+ q5V
2β, (4.24b)

with:

q2 = ρbspclα,

q3 = ρbclβsp,

q4 = ρb2spcmα,

q5 = ρb2cmβsp,

q6 =

[
1

2
− a

]
b,

with V the free stream velocity, ρ the air density, a is the nondimensionalized
distance from the midchord to the elastic axis, sp is the span, clα and cmα are
the lift and moment coefficients per angle of attack, and clβ and cmβ are lift and
moment coefficients per control surface deflection β.

If we substitute (4.24a) and (4.24b) in (4.23) we obtain a model that describes
the aeroelastics of a ‘smart’ rotor blade. The dynamics is depending on the free
stream velocity. If we assume that we can measure the plunge and pitch motion
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of the blade we obtain the following continuous time LPV model:





ḣ
α̇

ḧ
α̈



 =
(
A1 +A2V +A3V

2
)





h
α

ḣ
α̇



+B3V
2β (4.25a)

[
h
α

]
= C1





h
α

ḣ
α̇



 (4.25b)

with:

A1 =





0 0 1 0
0 0 0 1

Iα

q1
kh

−mwxαb
q1

kα
Iα

q1
ch

−mwxαb
q1

cα
−mwxαb

q1
kh

mt

q1
kα

−mwxαb
q1

ch
mt

q1
cα



 ,

A2 =





0 0 0 0
0 0 0 0

0 0 Iα

q1
q2 + mwxαb

q1
q4

Iα

q1
q2q6 + mwxαb

q1
q4q6

0 0 −mwxαb
q1

q2 + −mt

q1
q4

−mwxαb
q1

q2q6 + −mt

q1
q4q6



 ,

A3 =





0 0 0 0
0 0 0 0

0 Iα

q1
q2 + mwxαb

q1
q4 0 0

0 −mwxαb
q1

q2 + −mt

q1
q4 0 0



 ,

B3 =





0
0

Iα

q1
q3 + mwxαb

q1
q5

−mwxαb
q1

q3 + −mt

q1
q5



 ,

C1 =

[
1 0 0 0
0 1 0 0

]
.

The parameters used are given in Table 4.4.

4.9.2 Discretization

The LPV system given in (4.25a) and (4.25b) is used to obtain the input, output,
and scheduling sequence for the identification algorithm. We assume that the
scheduling variable V can be chosen arbitrarily. The LPV identification algorithms
introduced in this chapter are valid for discrete time systems and the modeling so
far is done in continuous time. The ‘nice’ affine LPV structure that we have in
continuous time will be lost if we convert it to discrete time as highlighted in Tóth
et al. (2008). In this example we use Tustin discretization, which for this model is
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Table 4.4: Numerical values of the model parameters of the simple flutter
model (Lee and Singh 2007).

parameter value parameter value

b 0.135 m a −0.6847 -
kh 2844.4 N/m kα 2.84 N/m
ch 27.43 Ns/m cα 0.036× Ns/m
cmα −1.1599 - clα 6.28 -
cmβ −0.635 - clβ 3.358 -
mw 2.049 kg mt 12.387 kg

Iα 0.0558 kgm2 xα 0.3314 -

ρ 1.225 kg/m3 sp 1 m

given by:

Ad

(
V, V 2,

1

V
, · · ·

)
=

(
I +

T2

2
A(V, V 2)

)(
I − Ts

2
A(V, V 2)

)−1

,

Bd

(
V, V 2,

1

V
, · · ·

)
=

√
Ts

(
I − Ts

2
A(V, V 2)

)−1

B(V 2),

Cd

(
V, V 2,

1

V
, · · ·

)
=

√
TsC

(
I − Ts

2
A(V, V 2)

)−1

,

Dd

(
V, V 2,

1

V
, · · ·

)
=

Ts
2
C

(
I − Ts

2
A(V, V 2)

)−1

B(V 2),

where Ts is the sample time. There are two important things we would like to
stress at this point. The first is that in the continuous time representation of the
system the output equation is parameter-invariant. After discretization, the out-
put equation is depending on the scheduling because in the discretization formula
the continuous time matrices A and C are used for computing the discrete time
system matrices: Cd and Dd. The second issue is that we lose the affine LPV
structure. This is caused by the fact that in the discretization formula we have
an inverse of the parameter dependent A matrix. The main conclusion is that we
completely lose the ‘nice’ affine LPV structure with parameter-invariant output
equation. However, still we have the freedom to force an affine model on the data
we obtain. In the sequel we try to identify the LPV model with an affine LPV
model with parameter-varying output equation on data generated by the Tustin
discretized model.

In this example we use a sampling time of 0.08 s. The pole trajectory in the
continuous time and discrete time, for a wind speed going from 0 m/s to 14 m/s,
is given in Figure 4.6 and Figure 4.7. In these figures we clearly see that the system
becomes unstable. Consequently, to do system identification we have to apply
feedback control. The focus of this chapter is on identification and not on control
that is why we use a finite-horizon state-feedback controller (Ogata 1995) that
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Figure 4.6: Poles of the continuous
time LPV model for dif-
ferent wind speeds.
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Figure 4.7: Poles of the discrete time
LPV model for different
wind speeds.

stabilizes the system.

4.9.3 Simulation results

For the identification algorithm we use the following wind signal:

Vk = 5 + 3 sin

(
2π

10
kTs

)
+ 2 cos

(
12π

10
kTs

)
+ wk,

with wk a white noise with var(1). On the actuator, the flap β, we apply a white
noise sequence with unit variance. With these two signals we can simulate the dy-
namic system given by (4.25a)-(4.25b) and discretized using the described Tustin
discretization method. To investigate the sensitivity of the identification algorithm
with respect to output and process noise, a Monte-Carlo simulation with 100 runs
was carried out. For each of the 100 simulations a different realization of the input
uk and scheduling µk is used. We added process and measurement noise with a
Signal-to-Noise Ratio (SNR) of 40dB. We collect 2500 data points for each trial.

For the identification procedure we assume to have the following affine sche-
duling sequence:

µk =
[
1, Vk, V 2

k

]T
.

All the signals are scaled such that they have a variance of 1. Concerning the
identification, we observed that we obtain the best results if we assume parameter-
varying A, B, D, and K matrices. We used the kernel version of the LPV-PBSIDopt

algorithm with p = 3 and we select the first 140 rows of ZT0 Z0. The collected
scaled data uk, yk, and µk is then used in the proposed identification algorithm.

For this example we do not use the VAF but we look at the Bode plots for a
frozen parameter because for meaningful VAF values the system under consid-
eration must be asymptotically stable, otherwise a small error will give low VAF
values due to the increasing or decreasing characteristic of the outputs. In Fig-
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Figure 4.8: Bode diagrams of the original transfer functions (dashed) and the
identified transfer functions of the experiment with the highest mean
correlation coefficients (solid). The transfer functions of the other
99 experiments are within the gray confidence region. The deter-
mine the Bode diagram, the free stream velocity is fixed at the values
V = {2, 6, 10, 14}.
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Figure 4.9: Bode diagrams of the original transfer functions (dashed) and the
identified transfer functions of the experiment with the highest mean
correlation coefficients (solid). The transfer functions of the other
99 experiments are within the gray confidence region. The deter-
mine the bode diagram, the free stream velocity is fixed at the values
V = {2, 6, 10, 14}.
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ure 4.8 and 4.9 the Bode plots for the pitch position and plunge position, respec-
tively, are presented for 4 frozen values of the free stream velocity, V = 2, V = 6,
V = 10, and V = 14. In these figures the dashed line represents the ‘real’ sys-
tem and the solid line the fit with the highest correlation coefficients (Seber 1984;
Krzanowski 1988) between the ‘real’ states and the identified states. The gray area
represents the interval in which the other 99 estimates are located. We see that we
have ‘good’ fits with a small variance (the gray area is small).

4.10 Conclusion

In this chapter we presented an open-loop and closed-loop LPV subspace identi-
fication method, which is an extension of Predictor-Based Subspace IDentification
(PBSID) algorithms. This methodology from closed-loop LTI subspace identifi-
cation is used to formulate the input-output behavior of an LPV system. From
this input-output behavior the LPV equivalent of the Markov parameters can be
estimated. We showed that with this estimate the product between the extended
observability matrix and state sequence can be reconstructed and an SVD can be
used to estimate the state sequence and consequently the system matrices. The
‘curse of dimensionality’ in subspace LPV identification appeared and the ker-
nel method was proposed. A computationally efficient representation of the ker-
nel is presented, which makes the approach numerical attractive. Furthermore,
we showed that if there is structure in the scheduling, then the computational
complexity reduces even more. The algorithm was illustrated with three simula-
tion examples. Furthermore, we applied the algorithm on a simple ‘smart’ rotor
model.





5 CHAPTER

Conclusions & Recommendations

T
he drive to make wind energy more attractive and competitive to
fossil fuel power plants will provide an enormous stimulus for tech-

nological breakthroughs. One such advance, potentially to be realized on
the next generation of wind turbines, is the ‘smart’ rotor. In this thesis we
have demonstrated the potential of using ‘smart’ surfaces along the span
of a wind turbine blade for load reduction and developed a methodology
for deriving mathematical models to tune model based controllers for op-
timizing turbine performance. Although these topics may be considered
too complex to be implemented on existing wind turbines, so was indi-
vidual pitch control 20 years ago. The conclusions and recommendations
relating to the two different topics are now discussed separately.

5.1 ‘Smart’ rotor concept

5.1.1 Conclusions

In the first part of this thesis a novel control concept is introduced to change the
force profile on wind turbine blades using local control devices to copy the spa-
tially distributed nature of turbulence. The success of distributed load reduction
greatly depends on the selection of appropriate sensors that measure the loads and
a controller that manipulates the measured signals and generates an actuation sig-
nal. This overall combination of sensors, actuators, and control is defined as the
‘smart’ rotor concept. We contribute in this thesis to the development of this new
concept by showing the feasibility of the ‘smart’ rotor under realistic wind turbine
conditions (i.e. realistic disturbances, feedback control, and load measurements).

We developed an experimental model and a theoretical model of a ‘smart’ ro-
tor blade by scaling down the dynamics of a representative wind turbine blade
using the reduced frequency and applied a trailing edge flap as control device. In
the root, strain sensors are added to facilitate feedback control. The pitch system
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is used to impose realistic disturbances. In the wind tunnel it is shown that, when
the disturbance is known, perfect cancellation can be realized; however, due to
actuator saturation the reduction in the amplitude was limited to 90%. In real life
the disturbance is not known and feedback control is required. For this situation
we used experimental modeling to validate the theoretical model and designed
a feedback controller using a loop-shaping technique. The feedback controllers
have been tested on the experimental setup for different load cases. With a sinu-
soidal disturbance we showed that it is possible to reduce the amplitudes by 90%
at the first eigenfrequency of the blade. In the second case a step was applied on
the pitch, to simulate a gust, and it was shown that the oscillation corresponding
to the first mode was almost completely removed. In the last case a noise signal
with a spectrum representative of turbulence was applied, and it was shown that
the 1P disturbance was reduced by 37% while the 3P frequency was reduced by
55%. The success of this proof of concept should help aerodynamicists and struc-
tural experts to embrace control engineering much earlier in their design cycle,
and utilize it as a lever to create additional design freedom.

5.1.2 Recommendations

The ‘smart’ rotor is a technology for the future and faces a number of challenges
before the concept will be adopted by the wind industry. We focused on the ca-
pability to do load reduction around the 1P and 3P frequencies and on damping
enhancement of the first flapping mode. However, it is desirable to also look at
distributed control with more actuators and sensors to further reduce the loads
and take into account other vibration modes. Furthermore, the work presented is
for a non-rotating blade, which does not guarantee that the load reduction capa-
bilities of this concept can be extended to the loads in the drive train, for example.
Within the UPWIND (2008) project, a rotating experiment will be performed to
show the feasibility of a rotating ‘smart’ rotor.

After a successful rotating study the concept should be scaled towards a ‘real’
wind turbine. The up-scalability of the actuator concept used in this thesis is ques-
tionable for obvious reasons: voltage requirements, robustness, linearity, etc. The
big challenge for the scaling of the ‘smart’ rotor concept is the robust design of
actuators which have at least the same reliability as the current state-of-the-art.

Naturally, there are also challenges for control. The first is already mentioned:
the use of distributed control 1 to react on turbulence in a more detailed way. The
challenge for control is the development of efficient robust control design method-
ologies for this concept. Finally, we discussed LPV system identification for LPV
controller synthesis. This controller methodology should certainly be applied on
the ‘smart’ rotor because the gains are strongly dependent on the operational po-
sition of the wind turbine. This, in combination with the intended high number of
actuators and sensors, requires significant advances in computationally efficient
algorithms (see Rice and Verhaegen (2008, 2009) for recent developments).

1The interested reader is referred to Bamieh et al. (2002); D’Andrea and Dullerud (2003); Langbort
et al. (2004) and references therein.
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5.2 LPV system identification

5.2.1 Conclusions

To enable model based controller synthesis for a variable speed ‘smart’ rotor, we
developed tools to obtain experimental models by nonlinear system identifica-
tion. We suggested the use of the Linear Parameter-Varying (LPV) framework be-
cause wind turbine dynamics are dependent on the operational condition (rotor
speed, rotor position, pitch angle). We introduced two novel LPV identification
frameworks for coping with periodically varying dynamics and arbitrarily vary-
ing dynamics, respectively. Although this work is introduced from a wind turbine
perspective it can also be used for other applications.

The conclusions with respect to the LPV identification framework can be sum-
marized as follows:

Periodic scheduling In the case of periodic dynamics we developed open and
closed-loop LPV system identification approaches where we exploit the pe-
riodicity of the dynamics. The obtained LPV model is then valid for arbi-
trary scheduling sequences as well. We used LTI predictor-based subspace
identification techniques to identify a number of observability matrices and
state sequences which are identified in different state bases. We showed that
by formulating an intersection problem, the states can be reconstructed in a
global state basis from which the system matrices can be estimated. The al-
gorithm is first demonstrated on two simple test examples. The first shows
the effectiveness of the periodic LPV algorithm. The second illustrates that
the performance of the algorithm is affected by the choice of the scheduling
sequence. Finally, we applied the approach successfully on a virtual model
of the rotational dynamics of a horizontal axis wind turbine.

Arbitrary scheduling In the case of arbitrarily parameter-dependent dynamics
an open and closed-loop LPV subspace identification method was devel-
oped. The methodology from LTI predictor-based subspace identification
is used to formulate the input-output behavior of an LPV system. From
this input-output behavior the LPV equivalent of the Markov parameters
can be estimated. We showed that with this estimate the product between
the extended observability matrix and state sequence can be reconstructed.
From this product the state and consequently the system matrices can be es-
timated. The ‘curse of dimensionality’ in subspace LPV identification reared
its ugly head but we showed that by exploiting structure in the problem, this
complexity problem can be circumvented. Some features of the algorithm
were demonstrated on three simulation examples in which we showed the
effect of a number of algorithm parameters (e.g. window size, regulariza-
tion). Finally, we applied the algorithm on a virtual ‘smart’ rotor model to
emphasize the application towards the new generation of wind turbines.
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5.2.2 Recommendations

In the fundamental part of this thesis we focused mainly on the development
of the actual identification algorithms, not the details of how to choose the past
and future window, the scheduling sequence, or the regularization parameter (al-
though we indicated with a number of examples the effects of the different param-
eters). It is of practical interest to have a detailed study on how these parameters
should be chosen.

With respect to the ‘curse of dimensionality’ of the different algorithms, we
explored the field of selecting a small number of kernels and showed the potential
of this approach. Still, research is required on how to select the kernels and we
believe that answers can be found in the field of Support Vector Machines (SVM).

In our development, we assumed that the scheduling vector was known ex-
actly. However, for wind turbines (and most other LPV systems) the scheduling
sequence is measured and consequently contains a stochastic component. To in-
clude this in the identification framework is a topic for future research.

The identification approach was motivated from a control perspective; we
would like to use the obtained models for controller synthesis. Moreover, the first
step of the presented algorithm, the identification of the LPV Markov parameters,
can also serve as the first step for data-driven LPV control, a promising adaptive
control scheme.

Finally, we suggested LPV system identification as a kind of gray-box sys-
tem identification. Yet, in our current LPV framework we can only use a limited
amount of prior knowledge. It would be of interest to make the next step and use
all the prior knowledge in the identification procedure.



A APPENDIX

Controller details of the experimental
‘smart’ rotor

In Chapter 2 a rather brief description of the controller is given, although the em-
phasis of that particular chapter is not on controller design, in this appendix we
present some additional details with respect to the final controller design.
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Figure A.1: The controller (gray) and the open loop (black) dynamics represented
by their Bode Plot, for a wind speed of 45 m/s.
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In Figure A.1 the open loop Bode plot and a Bode plot of the controller are
presented. In this plot it is clearly shown that we added an inverted notch at
the 1P frequency and a normal notch at the second flapping frequency. The in-
verted notch at the 1P frequency is added to have disturbance attenuation for
the 1P load while the second notch is added for stability reasons (to have a suf-
ficient amount of gain margin). The derivative-action is added to increase the
phase margin around the cross-over frequency. The controller is manually tuned
using traditional loop-shaping techniques. We ended up with a phase margin of
46.3 degrees (at 17.4 Hz) and a gain margin of 5.53 dB (at 49.8 Hz), which are con-
sidered to be appropriate numbers to have a sufficient amount of robustness. In
Figure A.2 we present the open and closed loop bode plots and we clearly see that
we have disturbance rejection capabilities in the frequency range of interest (1P,
3P, first flapping mode).
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B APPENDIX

LTI predictor-based subspace
identification

This appendix deals with the identification of LTI systems using predictor-based
subspace identification algorithms1. The notation and the basic idea presented
in this section is also used in Section 3.3 and Section 4.4 where we deal with
predictor-based LPV identification.

It is well known that the projector type of subspace algorithms (e.g. MOESP
(Verhaegen and Dewilde 1992) and N4SID (Van Overschee and De Moor 1996))
give biased estimates if the identification data is generated under closed-loop con-
ditions. The main reason for the bias is the constraint that the noise, ek, and the
input, uk, should be uncorrelated. This assumption is clearly violated if there
is a feedback loop present (as clearly explained by Ljung and McKelvey (1996)).
Predictor-based subspace identification (e.g. PBSID (Chiuso and Picci 2005) and
SSARX (Jansson 2005)) methods do not suffer from this drawback. These methods
use high order ARX models to remove the correlation between the input and noise
sequence. We introduce in this appendix two closely related LTI predictor-based
identification schemes, which are used extensively throughout this thesis: PBSID
and PBSIDopt.

Predictors

The first objective of the predictor-based algorithms is to reconstruct the state se-
quence up to a similarity transformation. The state xk+p is given by:

xk+p = Ãpxk +
[
Ãp−1B, Ãp−2B, · · · , B

]
︸ ︷︷ ︸

Kp

zpk,

1Observe that for m = 1 and µ
(1)
k

= 1 ∀k the model structure presented in (3.1a)-(3.1b) or (4.1a)-
(4.1b) is actually an LTI system.
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with B =
[
B̃,K

]
. The key approximation in this algorithm is that we assume that

Ãj ≈ 0 for all j ≥ p. It can be shown that if the system in (4.2a)-(4.2b) is uniformly
exponentially stable, the approximation error can be made arbitrarily small by
making p large (Knudsen 2001; Chiuso and Picci 2005; Chiuso 2007). With this
assumption the state xk+p is approximately given by:

xk+p ≈
[
Ãp−1B, Ãp−2B, · · · , B

]
︸ ︷︷ ︸

Kp

zpk. (B.1)

In a number of other LTI subspace methods it is well known to make this step (e.g.
N4SID, SSARX, PBSID, PBSIDopt ). The input-output behavior is now approxi-
mately given by:






yk+p ≈ C
[
Ãp−1B, Ãp−2B, · · · , B

]
︸ ︷︷ ︸

Kp

zpk +Duk+p + ek+p := y
(p)
k+p

yk+p+1 ≈ C
[
ÃKp, B

]
︸ ︷︷ ︸

Kp+1

zp+1
k +Duk+p+1 + ek+p+1

...

yk+p+f−1 ≈ C
[
ÃKp+f−2, B

]
︸ ︷︷ ︸

Kp+f−1

zp+f−1
k +Duk+p+f−1 + ek+p+f−1

.

Now we define the stacked matrices Ui, Yi, and Zi:

Ui =
[
up+i, · · · , uN−f+i+1

]
, (B.2a)

Yi =
[
yp+i, · · · , yN−f+i+1

]
, (B.2b)

Zi =
[
zp+i0 , · · · , zp+iN−p−f

]
, (B.2c)

for all i ∈ {0, · · · , f − 1}. If the matrix
[
ZTi , UTi

]T
for all i ∈ {0, · · · , f − 1} has

full row rank the matricesCKp+i andD can be estimated by solving the following
linear regression problem:

min
CKp+i,D

||Yi − CKp+iZi −DUi||2F , (B.3)

for all i ∈ {0, · · · , f −1} and where || · · · ||F represents the Frobenius norm (Golub
and Loan 1996). For finite p the solution of this linear problem will be biased
due the approximation made in (B.1). In the LTI literature a number of papers
appeared that studied the effect of the window size and although they proved the
asymptotic properties of the algorithms (if p → ∞ the bias disappears) it is hard
to quantify the effect for finite p (Knudsen 2001; Chiuso and Picci 2005; Chiuso
2007).
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Extended observability times controllability

The product KpZ0 that represents by definition the state sequence, X , can not be
estimated directly. In the predictor-based identification algorithms CKp+i is used
to construct the extended observability matrix times the extended controllability
matrix. This matrix is given by (we assume f = p):

ΓfKp =





CÃp−1B CÃp−2B · · · CB

CÃpB CÃp−1B · · · CÃB
...

...
. . .

...

CÃp+f−2B CÃp+f−3B · · · CÃp−1B




. (B.4)

This particular matrix is constructed in the PBSID algorithm. The following upper
block triangular matrix is used in the PBSIDopt algorithm (we assume f = p):

ΓfKp ≈





CÃp−1B CÃp−2B · · · CB

0 CÃp−1B · · · CÃB
. . .

...

0 CÃp−1B




. (B.5)

The zeros appear in this equation based on the approximation that Ãj ≈ 0 for
all j ≥ p. Observe that from the linear regression problems formulated in (B.3)
we only need the solution for i = 0, because from the first row in (B.5) we can
construct the other rows.

From the constructed matrix ΓfKp, either the PBSID or PBSIDopt way, we can
compute ΓfKpZ0 which equals by definition the extended observability matrix
times the state sequence, ΓfX . By computing a Singular Value Decomposition
(SVD) of this estimate we can estimate the state sequence and the order of the
system. We will use the following SVD:

Γ̂fKpZ0 =
[
U U⊥

] [ Σn 0
0 Σ

] [
V
V⊥

]
, (B.6)

where Σn is the diagonal matrix containing the n largest singular values and V is
the corresponding row space. Note that we can find the largest singular values by
detecting a gap between the singular values (Verhaegen and Verdult 2007). The
state is now estimated by:

X̂ = ΣnV . (B.7)

It is well known that when the state, input, and output are known the system ma-
trices can be estimated (Verhaegen and Verdult 2007). First we use (4.1b), which
is now a linear relation in C and D and where ek represents the innovation pro-
cess. From this equation an estimate can be found of the C and D matrix while
also the noise sequence can be estimated. The estimated noise sequence is used to
transform (4.1a) (for m=1) into a linear expression depending on A, B, and K and
consequently all the system matrices can be estimated.
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Summary of the LTI algorithms

The described algorithms can be summarized by the following two algorithms:

Algorithm B.1 (PBSIDopt)
The PBSIDopt algorithm can be summarized as follows:

1. Create the matrices Ui, Yi, and Zi using (B.2a), (B.2b), and (B.2c) for
i = 0,

2. Solve the linear problem given in (B.3) for i = 0,

3. Construct ΓfKpZ0 using (B.2c) and (B.5),

4. Compute the state sequence using (B.6) and (B.7),

5. With the estimated state, use the linear relations (4.1a)-(4.1b) to obtain the
system matrices (for m=1).

Algorithm B.2 ( PBSID)
The PBSID algorithm can be summarized as follows:

1. Create the matrices Ui, Yi, and Zi using (B.2a), (B.2b), and (B.2c) for all
i ∈ {0, · · · , f − 1},

2. Solve the linear problem given in (B.3) for all i ∈ {0, · · · , f − 1},

3. Construct ΓfKpZ0 using (B.2c) and (B.4),

4. Compute the state sequence using (B.6) and (B.7),

5. With the estimated state, use the linear relations (4.1a)-(4.1b) to obtain the
system matrices (for m=1).
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Kernels for different model structures

In Chapter 4 we derived an LPV identification scheme for the model struc-
ture given in (4.1a)-(4.1b). In Section 4.6 we discussed different model
structures. In this appendix the kernel algorithm is given for all of the
mentioned algorithms.

The model structures presented in Chapter 4 can be summarized using the fol-
lowing table where: pv= parameter-varying, c=constant.

Model B K C D µk
(4.1a)-(4.1b) pv pv c c µk Parameter-invariant output eq.

(4.18a)-(4.18b) pv c pv pv µk Parameter-varying output eq.
(4.20a)-(4.20b) pv pv pv pv µk Parameter-varying output eq.
(4.22a)-(4.22b) c c/pv c c uk Bilinear model

The consequences for the presented identification approach are already discussed
in Section 4.6. In this section we give the kernel driven LPV identification algo-
rithm for the different model structures in a generalized framework.

The kernels are now given by:

(
Zi,j

)T
Z0,j =

(
p−j−1∏

v=ConstB

µT
Ñ+v+j−i

µÑ+v+j

)(
uT
Ñ+j−i

uÑ+j

)
+

· · ·
(

p−j−1∏

v=ConstK

µT
Ñ+v+j−i

µÑ+v+j

)(
yT
Ñ+j−i

yÑ+j

)
, (C.1)

where ConstB = 1 if B is constant and a similar definition holds for ConstK and
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later for ConstC and ConstD . In a similar way we can define 1:

ZTi Zi =

p+i−1∑

j=0








p+i−1∏

v=j+ConstB

µT
Ñ+v

µÑ+v




(
uT
Ñ+j

uÑ+j

)


+ ...

p+i−1∑

j=0








p+i−1∏

v=j+ConstK

µT
Ñ+v

µÑ+v




(
yT
Ñ+j

yÑ+j

)


 , (C.2)

and

Z
T

i Zi =

p+i−1∑

j=0








p+i−ConstC∏

v=j+ConstB

µT
Ñ+v

µÑ+v




(
uT
Ñ+j

uÑ+j

)


+ ...

p+i−1∑

j=0








p+i−ConstC∏

v=j+ConstK

µT
Ñ+v

µÑ+v




(
yT
Ñ+j

yÑ+j

)


 , (C.3)

and

QTi Qi =

(
1−ConstD∏

v=1

µT
Ñ+p+i

µÑ+p+i

)(
uT
Ñ+p+i

uÑ+p+i

)
. (C.4)

We replace the linear problem given in (4.13) by:

min
αi

‖αi‖F with Yi − αi

[
Z
T

i Zi +QTi Qi

]
= 0, (C.5)

Algorithm C.1 (LPV-identification (kernel))
The algorithm can be summarized as follows:

1. Select the model structure you want to identify (select µk, ConstB ,
ConstC , ConstD , and ConstK ) and the identification algorithm,

2. Create the matrices
(
Zi,j

)T
Zi,j , ZTi Zi, Z

T

i Zi, and QTi Qi using (C.1)-
(C.4),

3. Solve the linear problem given in (C.5). If desired regularized,

4. Construct ΓfKpZ0 using (4.15) or (4.16) for LPV-PBSIDopt or LPV-
PBSID, respectively,

5. Compute the state sequence using (4.11) and (4.12),

6. With the estimated state, the selected model structure is linear in the un-
knowns and consequently the system matrices can be estimated.

1 We define
∏0

a=1 = 1
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Tóth, R., P. S. C. Heuberger and P. M. J. Van Den Hof (2007). LPV system identifi-
cation with globally fixed orthonormal basis functions. In Proceedings of the 46th

IEEE Conference on Decision and Control (CDC), New Orleans, USA.

Troldborg, N. (2005). Computational study of the Riso-B1-18 airfoil with a hinged
flap providing variable trailing edge geometry. Wind Engineering 29(2), 89–113.

UPWIND (2008). UpWind project site. Available from Internet:
http://www.upwind.eu/. Last visited 19 June 2008.

van Baars, G. E. and P. M. M. Bongers (1992). Wind turbine control design and
implementation based on experimental models. In Proceedings of the 31st IEEE
Conference on Decision and Control (CDC), Tucson, Arizona, USA.

van Baars, G. E. and P. M. M. Bongers (1994). Closed loop system identification
of an industrial wind turbine system: Experiment design and first validation
results. In Proceedings of the 33rd IEEE Conference on Decision and Control (CDC),
Lake Buena Vista, Florida, USA.

van Baars, G. E., H. Mosterd and P. M. M. Bongers (1993). Extension to standard
system identification of detailed dynamics of a flexible wind turbine. In Pro-
ceedings of the 32nd IEEE Conference on Decision and Control (CDC), San Antonio,
Texas, USA, pp. 3514–3519.

van Dam, C. P., R. Chow, J.R. Zayas and D. A. Berg (2007). Computational investi-
gations of small deploying tabs and flaps for aerodynamic load control. Journal
of Physics, Conference series: The Science of Making Torque from Wind 75(012027).

Van den Hof, P. M. J. (2004). System identification, lecture notes.

Van den Hof, P. M. J. and R. J. P. Schrama (1995). Identification and control –
closed-loop issues. Automatica 31(12), 1751–1770.

van der Hooft, E.L., P. Schaak and T.G. van Engelen (2003). Wind turbine control
algorithms. Technical Report DOWEC-F1W1-EH-030094/0, ECN.

van der Hooft, E. L. and T.G. van Engelen (2004). Estimated wind speed feed
forward control. In Proceedings of the European Wind Energy Conference (EWEC),
London, England.

http://www.upwind.eu/


Bibliography 137

van der Hooft, E. L. and T. G. van Engelen (2003). Feed forward control of esti-
mated wind speed. Technical report ECN-C03-137, Energy research Center of
the Netherlands.

van der Tempel, J. (2006). Design of support structure for offshore wind turbines. Ph.
D. thesis, Delft University of Technology.

van Engelen, T.G. (2006). Design model and load reduction assessment for multi-
rotational mode individual pitch control. In Proceedings of the European Wind
Energy Conference (EWEC), Athens, Greece.

van Engelen, T. (2007). Control design based on aero-hydro-servo-elastic linear
models from TURBU (ECN). In Proceedings of the European Wind Energy Confer-
ence (EWEC), Milan, Italy.

van Engelen, T., H. Markou, T. Buhl and B. Marrant (2007). Morphological study
of aeroelastic control concepts for wind turbines. Technical report, Energy Re-
search Center (ECN).

van Engelen, T.G. and E.L. van der Hooft (2004). Dynamic inflow compensation
for pitch controlled wind turbines. In Proceedings of the European Wind Energy
Conference (EWEC), London, England.

van Kuik, G.A.M., Th. van Holten and M. Verhaegen (2003). STW project proposal:
Smart dynamic rotor control of large offshore windturbines. Research proposal,
University of technology.

Van Overschee, P. and B. De Moor (1996). Subspace Identification for linear systems.
Kluwer Academic Publishers.

van Wingerden, J. W. (2004a). Analytical modeling of piezoelectric actuated me-
chanical structures; literature survey. Technical Report CTB 534-04-1266, Philips
Applied Technologies.

van Wingerden, J. W. (2004b). Control of flexible motion systems using piezoelec-
tric over-actuation. Technical Report CTB 534-04-1610, Philips Applied Tech-
nologies.

van Wingerden, J. W., F. Felici and M. Verhaegen (2007). Subspace identifica-
tion of MIMO LPV systems using piecewise constant scheduling sequence with
hard/soft switching. In Proceedings of the European Control Conference (ECC), Kos,
Greece.

van Wingerden, J. W., I. Houtzager, F. Felici and M. Verhaegen (2008a). Closed-
loop identification of the time-varying dynamics of variable-speed wind tur-
bines. To appear in International Journal of Robust and Nonlinear Control, special
issue on Wind turbines: New challenges and advanced control solutions -(-), –.

van Wingerden, J. W., I. Houtzager, F. Felici and M. Verhaegen (2008b). Closed-
loop identification of the time-varying dynamics of variable-speed wind tur-
bines. In Proceedings of the 17th IFAC world congress, Seoul, South-Korea.



138 Bibliography

van Wingerden, J. W., A.W. Hulskamp, T. Barlas, B. Marrant, G. A. M. Van Kuik,
D-P. Molenaar and M. Verhaegen (2008). On the proof of concept of a ‘smart’
wind turbine rotor blade for load alleviation. Wind Energy 11(3), 265–280.

van Wingerden, J. W. and M. Verhaegen (2007). Subspace identification of bilin-
ear systems using a dedicated input sequence. In Proceedings of the 46th IEEE
Conference on Decision and Control (CDC), New Orleans, USA.

van Wingerden, J. W. and M. Verhaegen (2008a). Subspace identification of MIMO
LPV systems: the PBSID approach. In Proceedings of the 47th IEEE Conference on
Decision and Control (CDC), Cancun, Mexico.

van Wingerden, J. W. and M. Verhaegen (2008b). Subspace identification of mul-
tivariable LPV systems: a novel approach. In Proceedings of the IEEE Multi-
conference on Systems and Control (MSC), San Antonio, USA.

van Wingerden, J. W. and M. Verhaegen (2009). Subspace identification of Bilinear
and LPV systems for open and closed loop data. To appear in Automatica -(-), –.

Varga, A. (2005). On solving discrete-time periodic Riccati equations. In Proceed-
ings of the 16th IFAC World Congress, Prague, Czech Republic.

Verdult, V. (2002). Nonlinear system identification; A state-space approach. Ph.D. the-
sis, University of Twente.

Verdult, V., N. Bergboer and M. Verhaegen (2003). Identification of fully param-
eterized linear and nonlinear state-space systems by projected gradient search.
In Proceedings of the IFAC symposium on system identification (SYSID), Rotterdam,
The Netherlands.

Verdult, V., L. Ljung and M. Verhaegen (2002). Identification of composite local
linear state-space models using a projected gradient search. International Journal
of Control 75(16), 1385–1398.

Verdult, V. and M. Verhaegen (2000). Identification of multivariable linear
parameter-varying systems based on subspace techniques. In Proceedings of the
39th IEEE Conference on Decision and Control (CDC), Sydney, Australia.

Verdult, V. and M. Verhaegen (2001). Identification of multivariable bilinear state-
space systems based on subspace techniques and separable least squares opti-
mization. International Journal of Control 74(18), 1824–1836.

Verdult, V. and M. Verhaegen (2002). Subspace identification of multivariable lin-
ear parameter-varying systems. Automatica 38(5), 805–814.

Verdult, V. and M. Verhaegen (2004). Subspace identification of piecewise linear
systems. In Proceedings of the 43rd IEEE Conference on Decision and Control (CDC),
Atlantis, Paradise Island, Bahamas,USA.

Verdult, V. and M. Verhaegen (2005). Kernel methods for subspace identification
of multivariable LPV and bilinear systems. Automatica 41(9), 1557–1565.



Bibliography 139

Verdult, V., M. Verhaegen, C.T. Chou and M. Lovera (1998). Efficient and system-
atic identification of MIMO bilinear state-space models. In Proceedings of the 37th

IEEE Conference on Decision and Control (CDC), Tampa, Florida, USA.

Verhaegen, M. (1994). Identification of the deterministic part of MIMO state-space
models given in innovations form from input-output data. Automatica 30(1),
61–74.

Verhaegen, M. and P. Dewilde (1992). Subspace model identification part 1: The
output-error state-space model identification class of algorithms. International
Journal of Control 56(5), 1187–1210.

Verhaegen, M. and V. Verdult (2007). Filtering and System Identification: An intro-
duction. Cambridge University Press.

Verhaegen, M. and X. Yu (1995). A class of subspace model identification algo-
rithms to identify periodically and arbitrarily time varying systems. Automat-
ica 31(2), 201–216.

Wei, X. (2006). Adaptive LPV techniques for Diesel engines. Ph. D. thesis, Johannes
Kepler University.

Wijnheijmer, F., G. Naus, W. Post, M. Steinbuch and P. Teerhuis (2006). Modelling
and LPV control of an electro-hydraulic servo system. In Proceedings of the 2006
IEEE International Conference on Control Applications (CCA), Munich, Germany.

Witteveen, J. A. S., S. Sarkar and H. Bijl (2007). Modeling physical uncertainties
in dynamic stall induced fluid-structure interaction of turbine blades using ar-
bitrary polynomial chaos. Computer and Structures 85(11-14), 866–878.

WMC (2008). The Knowledge Centre WMC (Wind turbine, Materials and Con-
structions). Available from Internet: http://www.wmc.eu/. Last visited 22
January 2008.

Wright, A. D. (2004). Modern control design for flexible wind turbines. Ph. D. thesis,
National Renewable Energy Laboratory.

Wu, F. and K. Dong (2006). Gain-scheduling control of LFT systems using
parameter-dependent Lyapunov functions. Automatica 42(1), 39–50.

WWEA (2008). World Wide Energy Association (WWEA). Available from Internet:
http://www.wwindea.org/. Last visited 14 February 2008.

Yoo, K-Y. and H-K. Rhee (2002). LF-LPV input/output data-based predictive con-
troller design for nonlinear systems. AIChE journal 48(9), 1981–1990.

Zayas, J.R., C. P. van Dam, R. Chow, J.P. Baker and E.A. Mayda (2006). Active
aerodynamic load control for wind turbine blades. In Proceedings of the European
Wind Energy Conference (EWEC), Athens, Greece.

Zeng, Y and S. N. Singh (1998). Output feedback variable structure adaptive con-
trol of an aeroelastic system. Journal of Guidance, Control and Dynamics 21(6),
830–837.

http://www.wmc.eu/
http://www.wwindea.org/


140 Bibliography

Zhou, K., J.C. Doyle and K. Glover (1996). Robust and optimal control. New Jersey:
Upper Saddle River.



List of Abbreviations

1P once-per-revolution

2-D 2-dimensional

3-D 3-dimensional

3P three-times-per-revolution

ADC Analog to Digital Converter

ARX Auto-Regressive with eXogenous input

CCA Canonical Correlation Analysis

CFD Computational Fluid Dynamics

DAC Digital to Analog Converter

FP First Principles

GCV Generalized Cross Validation

HAWT Horizontal Axis Wind Turbine

IO Input-Output

IPC Individual Pitch Control

LFT Linear Fractional Transformation

LPV Linear Parameter-Varying

LS Least Squares

LTI Linear Time-Invariant

LTV Linear Time-Varying

MEM-tabs Micro-Electro-Mechanical translational tabs

MIMO Multi-Input Multi-Output

OE Output Error

PBSID Predictor-Based Subspace IDentification

PSD Power Spectral Density

PZT Piezoelectric patches

141



142 List of Abbreviations

SISO Single-Input Single-Output

SLS Separable Least Squares

SMI Subspace Model Identification

SNR Signal-to-Noise Ratio

SSARX State-Space Auto-Regressive with eXogenous input

SVD Singular Value Decomposition

SVM Support Vector Machines

Tikh Tikhonov Regularization

VAF Variance-Accounted-For



Summary

Control of Wind Turbines with ‘Smart’ Rotors: Proof of Concept & LPV
Subspace Identification

Jan-Willem van Wingerden

Active control is becoming more and more important for the wind energy commu-
nity. If we compare the ‘old’ stall regulated turbines with today’s individual pitch
controlled turbines we see that the loads can be considerably reduced, leading to
lighter or larger turbines. However, limited actuator bandwidth and component
fatigue impose significant constraints on the pitch system. Furthermore, with the
trend to go offshore it is of interest to increase the rotor diameter as much as pos-
sible because the foundation costs of offshore wind turbines amount to a large
part of the total costs. Due to the increasing size of wind turbines and the limita-
tions of individual pitch control, it is thus necessary to look ahead to new control
concepts which can impose a force profile matching the distributed nature of tur-
bulence, and guarantee an economic lifetime of 20 years for the next generation of
offshore wind turbines (diameter over 150 meters).

One novel concept is to use multiple control devices that locally change the
force profile on the wind turbine blade to copy the spatially distributed nature
of turbulence. The success of distributed load reduction greatly depends on the
selection of appropriate sensors that measure the loads and a controller that ma-
nipulates the measured signals and generates an actuation signal. This overall
combination of sensors, actuators, and control is defined as the ‘smart’ rotor con-
cept. We contribute in this thesis to the development of this new concept by show-
ing the feasibility of the ‘smart’ rotor under realistic wind turbine conditions (i.e.
realistic disturbances, feedback control, and load measurements). In the wind tun-
nel we showed, on our designed experimental setup, that when the disturbance
is known, perfect cancellation of the disturbance can be realized. However, un-
der realistic circumstances the disturbance is not known and feedback control is
required. For this situation we showed the broadband load reduction capabili-
ties of the ‘smart’ rotor for different load cases (e.g. with a sinusoidal disturbance
we showed that we can reduce the amplitudes by 90% at the first eigenfrequency
of the blade). The success of this proof of concept should help aerodynamicists
and structural experts to embrace control engineering much earlier in their design
cycle, and utilize it as a lever to create additional design freedom.
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Besides demonstrating the proof of concept of the ‘smart’ rotor, we developed
tools to obtain experimental models by introducing novel subspace Linear Parameter-
Varying system identification algorithms. The motivation for this is that in industry
it is common practice to use first principles models to optimize controllers. How-
ever, such models are directly calibrated with measured data which is often of
very limited use for model based controller design. It is well known that first
principles models often have a large number of tunable parameters leading to a
nonconvex, time-consuming, calibration process. Furthermore, the obtained mod-
els may be too complex for controller synthesis (high-order, nonlinear, etc.). One
of the most promising solutions is the application of system identification.

In our experiment the dynamics can be considered to be Linear Time-Invariant
(LTI) due to the constant wind speed. However, ‘real’ wind turbines are nonlinear
systems and their dynamics are time-varying. This time-variation is character-
ized by: rotor speed, pitch position, and rotor position, etc., which are all measur-
able quantities. For the identification of such systems, computationally efficient
schemes are still lacking. In this thesis we addressed this problem by developing
novel algorithms for the identification of parameter-dependent dynamics. We de-
veloped linear parameter-varying identification frameworks that cope with either
periodically varying dynamics or arbitrarily parameter-varying dynamics. Both
frameworks can handle data generated in open-loop and closed-loop. Although
this work is introduced from a wind turbine perspective, it can also be used for
other applications.



Samenvatting

Het Regelen van Windturbines met een ‘Slimme’ Rotor: Proof of Concept &
LPV Subspace Identificatie

Jan-Willem van Wingerden

H
et actief regelen van windturbines wordt steeds belangrijker voor de wind-
energiegemeenschap. Als we bijvoorbeeld de ‘oude’ op overtrek geregelde

turbines vergelijken met de huidige bladhoekgeregelde turbines, zien we dat de
belastingen aanzienlijk verminderd zijn. Dit resulteert in lichtere en grotere tur-
bines. Echter, door de gelimiteerde bandbreedte van de benodigde actuatoren en
de vermoeiingsbelastingen op de verschillende componenten zijn de grenzen van
de bladhoekregeling bereikt. Toch wil men naar grotere windturbines, vanwege
het feit dat steeds meer windturbines in zee gezet worden. De kostprijs van deze
turbines wordt in grote mate bepaald door de funderingskosten. Door de toene-
mende grootte van windturbines, waardoor ook de belastingen toenemen, en de
beperkingen van de bladhoekregelingen is het noodzakelijk om andere concepten
te onderzoeken. Met een nieuw concept moet een economische levensduur van
20 jaar gewaarborgd worden voor de nieuwe generatie windturbines (met een
diameter groter dan 150 m).

Het meest veelbelovende concept maakt gebruik van een aantal regelbare flap-
jes die lokaal op het blad de liftkrachten kunnen regelen en zodoende het krach-
tenspel op de windturbine kunnen beı̈nvloeden. Dit dient op een zodanige manier
te gebeuren dat de turbine zich aanpast aan het gedistribueerde gedrag van de
verstoringen (b.v. turbulentie). Het succes van dit concept hangt grotendeels af
van de keuze voor de sensor die de verstoring waarneemt en van de regelaar
die het gemeten signaal manipuleert om vervolgens de flapjes uit te sturen. Een
rotor uitgerust met dergelijke sensoren, flapjes en regelaars valt onder de noe-
mer ‘slimme’ rotor. In dit proefschrift wordt bijgedragen aan de ontwikkeling
van een ‘slimme’ rotor, door experimenteel aan te tonen dat onder realistische
omstandigheden dit concept werkt. In de windtunnel hebben we laten zien dat
als de verstoring bekend is, deze compleet kan worden onderdrukt. Onder re-
alistische omstandigheden is dit niet het geval en terugkoppelregelingen dienen
dan te worden gebruikt. Voor deze situatie zijn een aantal belastingscenario’s
gedefinieerd en er wordt getoond dat de verstoringen breedbandig kunnen wor-
den onderdrukt. (b.v. bij een sinusverstoring met dezelfde frequentie als de eigen
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trillingfrequentie van het rotorblad, konden de amplitudes met 90% gereduceerd
worden). Tevens laat deze studie zien dat het van essentieel belang is om regel-
technici in een vroeg stadium te betrekken bij het ontwerp van een dergelijk multi-
disciplinair concept.

Naast het demonstreren van de haalbaarheid van het ‘slimme’ rotor concept,
zijn er ook nieuwe methodes ontwikkeld om uit meetdata wiskundige model-
len te schatten met variërende parameters. De motivering voor de ontwikkeling
van een dergelijke methode komt voort uit het feit dat in de windindustrie deze
modellen worden opgesteld aan de hand van fysische wetten. Deze modellen
worden gekalibreerd met gemeten data en zijn meestal niet direct bruikbaar voor
modelgebaseerd regelen. Deze modellen bevatten namelijk een hoog aantal on-
bekende parameters en het kalibreren is uiterst tijdrovend en is een niet-convex
optimalisatieproces. Verder zijn deze modellen doorgaans toegespitst op belast-
ingsberekeningen, in plaats van regelaarontwerp, waardoor de modellen te com-
plex zijn (niet lineair, hoge orde, etc.). Eén van de veelbelovende oplossingen is
het gebruik maken van modelleringstechnieken gebaseerd op meetdata: systeem-
identificatie.

Tijdens de windtunnelexperimenten waren de stromingscondities constant,
waardoor er gebruik kon worden gemaakt van lineaire tijdinvariante systeem-
identificatietechnieken. Echter, in werkelijkheid zijn deze stromingscondities tijds-
variant. Deze tijdsvariatie kan geparameteriseerd worden in de rotorsnelheid,
rotorpositie en bladhoek. Voor de identificatie van dergelijke systemen bestaan
er nog geen efficiënte identificatietechnieken. In dit proefschrift zijn er efficiënte
identificatietechnieken ontwikkeld, gebaseerd op subspace identificatie, die om
kunnen gaan met dergelijke Lineair Parameter Variërende (LPV) dynamica. Door
het uitbuiten van de structuur in de parametervariatie en de datamatrices zijn er
twee nieuwe identificatiemethodes ontwikkeld. Beide methodes kunnen omgaan
met data verkregen uit zowel open- als gesloten-lus experimenten. Hoewel dit
werk uit het perspectief van de windenergie is gemotiveerd, hebben de identifi-
catiemethodes een veel breder toepassingsgebied.
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