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Chapter 1

Introduction

This book is a companion to the textbook “Filtering and System Identification,
An Introduction” by Michel Verhaegen and Vincent Verdult. It describes and il-
lustrates the use of Matlab programs for a number of algorithms presented in the
textbook. The Matlab programs, bundled in a toolbox, can be found as down-
load on the publishers website. The goal of this companion book is twofold.
First, it helps to clarify some of the theoretical matter of the textbook using ex-
amples. Second, it describes how to perform many of the filtering and system
identification operations using the toolbox software.

Chapters 2, 3 and 4 are companions to Chapters 8, 9 and 10 in the textbook.
Chapter 2 describes parametric model identification and Chapter 3 describes
subspace identification methods. These two chapters treat numerical methods
both in the time domain and the frequency domain. Although, the textbook
mostly deals with the time domain, we present also the frequency domain, be-
cause this extension is almost straightforward.

Chapter 4 provides a framework into which both topics fit. Chapter 5 of this
companion book contains a comprehensive overview of the toolbox software,
including a detailed reference page for every toolbox function.

1.1 How to use this book

It is assumed that the user of this book also has the textbook at his disposal, as
references to equations, examples, sections and page-numbers in the textbook
are often made. The theory in the textbook is assumed to be prior knowledge,
although the examples in this companion book are designed to help one to bet-
ter understand the theory. It is therefore recommended to read a section in the
textbook, and to perform the examples in the corresponding section in this com-
panion book after wards.

In order to repeat and understand the examples in this companion book, it
is highly recommended to have MATLAB 6 or higher at one’s disposal, since
MATLAB commands are often used throughout the text. A MATLAB toolbox
is provided on a CD-ROM or as download located on the publishers website.
Section 1.2 contains more information on installing and using this toolbox.

3



4 Chapter 1 Introduction

Whenever a standard MATLAB command or a command from the toolboxMATLAB
function

name
provided with this book is used for the first time, its name is printed in a bold
typeface in the margin.

A number of the MATLAB examples in this companion book use input and
output data sequences from a linear system. In many of these cases, a data-
file is provided so that the user can repeat the experiment himself to gain more
understanding and confidence in using the toolbox software. If a data-file is
available, a CD-ROM icon is shown in the margin. In the text near this CD-ROM
icon, the filename of the datafile is mentioned.

1.2 Toolbox Software Features

The toolbox software provided with this book provides subspace identification
and parametric model estimation functions for linear time-invariant (LTI) state-
space models, based on both time-domain measurements and frequency response
function (FRF) measurements.

The subspace identification framework uses comparatively simple linear al-
gebra steps and operates in a noniterative way. This has the advantage of not re-
quiring an initial model estimate. In addition, the time-domain subspace identi-
fication framework allows multiple individually recorded input-output batches
—possible under different operating conditions— to be concatenated. The frequency-
domain subspace identification framework also allows concatenation when esti-
mating discrete-time models.

The results from the subspace identification framework can be used as ini-
tial estimates for the parametric model estimation framework. Models can be
optimized based on both time-domain and frequency-domain measurements.
The parametric estimation framework provides a simple one-command way of
optimizing models. Both output-error and innovation model estimation is sup-
ported in a transparent way. In addition, the efficient handling of very large
datasets and the maximum likelihood identification of state-space models is sup-
ported. These last two features provide interesting possibilities, but explaining
them falls outside the scope of this book. However, the function reference pages
in the final chapter of this book do show the use of these features.

In addition to these main two functionalities —subspace identification and
parametric model estimation— the toolbox contains a host of small utilities that
can be used to facilitate tasks ranging from model parameterization to model
validation.

1.3 Toolbox Software and Hardware Requirements

The toolbox software is targeted at MATLAB version 6 (Release 12) or higher
without requiring any additional MATLAB toolboxes to function. However, the
toolbox also works on MATLAB version 5 (Release 11). It should be noted that
although the toolbox software itself does not depend on other toolboxes, some
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of the examples in this book do require additional toolboxes. These toolboxes
are the MATLAB Control Systems Toolbox [1] and the MATLAB Identification
Toolbox [2]. If an example depends on one of these toolboxes, this fact will be
clearly noted in the text.

A number of numerical calculation functions have been implemented as MAT-
LAB executables (MEX-files) for efficiency reasons. These MEX-files are avail-
able for Microsoft Windows and Linux on Intel-compatible CPUs. For platforms
for which no MEX-files are available, corresponding MATLAB-scripts (M-files)
provide the same functionality —although much slower— in a manner transpar-
ent to the user. Also the sourcecodes can be compiled for your specific architec-
ture, if the BLAS, LAPACK and SLICOT libraries are avalaible.

The hardware requirements for using the toolbox software are the same as
those for using MATLAB itself. On platforms for which no MEX-files are avail-
able, only the platform and CPU independent M-files of the toolbox are executed
by MATLAB itself. The Linux MEX-files for MATLAB 5 require, like MATLAB
itself, at least an Intel 80486 compatible CPU, while those for MATLAB 6 require
at least an Intel Pentium compatible CPU. The Microsoft Windows MEX-files
run on both MATLAB 5 and MATLAB 6 for Windows, and have therefore been
targeted at the hardware requirements for MATLAB 5. This means that at least
an Intel 80486 compatible CPU is required.

Section 5.2 contains details on how to install the toolbox software on a local
system.

1.4 Acknowledgments

The toolbox software is based mainly of the Subspace Model Identification (SMI)
toolbox version 1.0 [3], which has been developed by Michel Verhaegen, Tung
Chou, Bert Haverkamp and Vincent Verdult of the Delft University of Technol-
ogy, as well as by David Westwick of the Boston University. However, the con-
ceptual framework for parametric model estimation has inherited some features
of the SMI toolbox version 2.0 [4], which Bert Haverkamp developed during his
PhD research and which is based on SMI version 1.0. Niek Bergboer extended
the software to its current state during a temporary project at the SCE group at
the University of Twente in Enschede.

1.5 Disclaimer

THE TOOLBOX SOFTWARE IS PROVIDED BY THE AUTHORS ”AS IS” AND ”WITH

ALL FAULTS.” THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES

OF ANY KIND CONCERNING THE TITLE TO THE SOFTWARE, QUALITY, SAFETY

OR SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUD-

ING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. FURTHER,

THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,
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ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR MA-

TERIALS CONCERNING THE SOFTWARE. IN NO EVENT WILL THE AUTHORS BE

LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUEN-

TIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF THE AUTHORS HAVE

BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

1.6 License Agreement

• You are allowed to use the toolbox software for noncom-
mercial (academic) research and educational purposes
free of charge.

• You are not allowed to commercialize the software.

• If the use of the toolbox software is an essential part of
a published work, you must give proper reference to the
toolbox and its authors.

• If you wish to use the toolbox software for commercial
projects, an additional agreement with the authors must
be made.

1.7 Lines of Communication

The authors wish to establish an open line of communication with the users of
both this companion book and the toolbox software. We strongly encourage all
users to email the authors with comments and suggestions for this and future
editions of both the companion book and the toolbox software. In this way we
can keep improving our work and keep you informed of any interesting news
concerning the book or software.

Delft Center for Systems and Control
Michel Verhaegen, m.verhaegen@moesp.org
Ivo Houtzager, i.houtzager@tudelft.nl
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Chapter 2

Parametric Model Estimation

After studying this chapter you can:

• obtain the various LTI state-space model parameterizations, cov-
ered in Chapters 7 and 8 of the textbook, using the toolbox func-
tions dss2th , dth2ss , css2th and cth2ss .

• define a cost-criterion, or cost-function for the parametric estima-
tion of models based on time-domain and frequency-domain data.

• perform a numerical parameter search using the Moré-Hebden
Levenberg-Marquardt algorithm in the lmmore toolbox function.

• perform parametric identification of an LTI state-space model
based on time-domain data using the doptlti toolbox function.

• perform parametric identification of an LTI state-space model
based on frequency response function (FRF) data using the
foptlti toolbox function.

9



10 Chapter 2 Parametric Model Estimation

2.1 Introduction

This chapter is a companion to Chapters 7 and 8 of the textbook. In this chap-
ter, we illustrate some of the theoretical concepts using simple examples that
the reader can repeat himself using MATLAB and the toolbox software. In Sec-
tion 2.2, the parameterization of MIMO state-space models will be covered, as
well as the conversion of a parameter vector into a corresponding state-space
model. In Section 2.3, different parameterizations will be used to identify state-
space models based on time-domain measurements. In Section 2.4 a different
approach is taken: rather than using time-domain measurements, frequency re-
sponse function (FRF) measurements are taken as a starting point for state-space
model identification.

2.2 Parameterizing MIMO State-Space Models

In this section the various model parameterizations derived in Section 7.3 of the
textbook will be clarified by means of a number of examples. First, a canoni-
cal form for systems having one output are covered. Then, the output normal
form, tridiagonal and full parameterizations are covered. The emphasis lies on
illustrating the theory and showing how the toolbox can be used to obtain the
parameterization in a quick and convenient way. Finally, the use of the toolbox
to convert parameter vectors back into their corresponding state-space models
is covered for multiple input, multiple output (MIMO) systems. This means that
a parameter vector θ for a given parameterization is converted back into a state-
space model (A, B, C, D).

2.2.1 Canonical Forms for Systems with One Output

In Section 7.3 of the textbook we covered the observer canonical form for sys-
tems having one output. For systems with one output, the C-matrix is a row
vector. The essential step then is the realization that there always exists a similar-
ity transformation of a state-space model such that the C-vector is transformed
into the first unit vector. Furthermore, the A-matrix is transformed such that it
contains only n free parameters.

In this section we will use a fourth-order system from [1] with the D matrix
equal to zero. The system is defined as follows:

A =





−0.6129 0 0.0645 0
0 0.7978 0 −0.4494

−6.4516 0 −0.7419 0
0 0.4494 0 0.8876



 , B =





0.0323
0.8989
0.1290
0.2247



 ,

C =
[
9.6774 0.1124 1.6129 0.4719

]
, D = 0.

(2.1)
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The system is converted into observer canonical form. According to Subsec-
tion 3.4.4 of the textbook, the observer canonical form of a fourth-order system
is given by

x(k + 1) =





0 0 0 −a0

1 0 0 −a1

0 1 0 −a2

0 0 1 −a3



x(k) +





c0

c1

c2

c3



u(k),

y(k) =
[
0 0 0 1

]
x(k).

Such that,

y(k) =
cn−1q

n−1 + · · · + c1q + c0

qn + an−1qn−1 + · · · + a1q + a0
u(k).

In order to build this state-space model, we first need the transfer function
polynomials corresponding to (2.1). The MATLAB Control Systems Toolbox [2]
functions ss , tf and tfdata are used to this end as follows: ss

tf
tfdata[num,den]=tfdata(tf(ss(A,B,C,D,-1)));

The variables numand den are cell arrays, such that num{1} contains [cn, cn−1, . . . , c0]
and den{1} contains [1, an−1, an, . . . , a0]. These polynomials can be used to
build the state-space model corresponding to (2.1) in observer canonical form
as follows:

>> n=4;
>> At=[[zeros(1,n-1);eye(n-1)],flipud(-den{1}(2:n+1) ’)]
At =

0 0 0 -0.7925
1.0000 0 0 0.2347

0 1.0000 0 0.5025
0 0 1.0000 0.3306

>> Bt=flipud(num{1}(2:n+1)’)
Bt =

0.0989
0.4859

-0.4881
0.7277

>> Ct=[zeros(1,n-1),1]
Ct =

0 0 0 1
>> Dt=0;
Dt =

0

We can subsequently verify that the model (AT , BT , CT , DT ) indeed has the
same input-output behavior as the original model. This is equivalent to saying
that the transfer functions of the original and transformed systems should be
equal. The MATLAB Control Systems Toolbox functions tf and ss are used to
calculate these transfer functions as follows:
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>> tf(ss(A,B,C,D,-1))
Transfer function:

0.7277 zˆ3 - 0.4881 zˆ2 + 0.4859 z + 0.09886
-------------------------------------------------
zˆ4 - 0.3306 zˆ3 - 0.5025 zˆ2 - 0.2347 z + 0.7925
Sampling time: unspecified

>> tf(ss(At,Bt,Ct,Dt,-1))
Transfer function:

0.7277 zˆ3 - 0.4881 zˆ2 + 0.4859 z + 0.09886
-------------------------------------------------
zˆ4 - 0.3306 zˆ3 - 0.5025 zˆ2 - 0.2347 z + 0.7925
Sampling time: unspecified

The transfer functions are indeed equal.

2.2.2 The Output Normal Form

In this section we will illustrate the output normal parameterization using the
same example from [3] that is used Section 7.3.1 of the textbook. Consider the
second-order state-space model defined by the quadruple of system matrices
[A, B, C, D] equal to:

A =

[
1.5 −0.7
1 0

]
, B =

[
1
0

]
,

C =
[

1 0.5
]
, D = 0.

(2.2)

We will use this model at numerous places in this companion book as it
serves as a simple yet interesting system. In Example 7.5 on page 194 of the
textbook, we show how to derive the two parameters that parameterize the pair
(A, C) of an output normal form of the system (2.2). However, rather than hav-
ing to do this tedious work manually, we can use the toolbox-function dss2thdss2th
(see manual on page 124) to obtain the output normal parameters. This function
name is an abbreviation of “Discrete-time State-Space To Theta conversion”. The
input parameters to dss2th are the (A, C)-pair and the string ’on’ . The latter
is an abbreviation of “output normal”.

>> th=dss2th(A,C,’on’)
th =

0.8824
-0.7000

This parameter vector contains indeed the two parameters derived in Exam-
ple 7.5 on page 194 of the textbook. We can also obtain the similarity transfor-
mation T that was used to transform the (A, C)-pair into lower triangular form.
Note that this similarity transformation is denoted (TtTh) in the example in the
textbook. The similarity transformation is obtained as the third output argument
of dss2th :

>> [th,params,T]=dss2th(A,C,’on’)



2.2 Parameterizing MIMO State-Space Models 13

The output argument params is a structure that contains information on
the parameterized system that could not be put in the parameter vector itself.
This structure contains the system dimensions, which matrices are parameter-
ized and what type of parameterization has been used. We can subsequently
check that T is indeed the correct similarity transformation by calculating the
transformed CT = CT and AT = T−1AT and verifying that [CT

T AT
T ]T indeed is

lower-triangular.

>> [C * T;T\A * T]
ans =

0.7141 0
0.6176 0.4706

-0.3294 0.8824

After parameterizing the (A, C)-pair, the next step in the output normal pa-
rameterization is to transform B, after which B and D can be appended to the
parameter vector. The transformed B is given by:

>> T\B
ans =

1.4003
4.1133

The D matrix does not change under the similarity transformation, and will
remain 0. It can thus simply be appended to be parameter vector. However,
rather than appending the B and D matrices to the output normal parameter
vector manually, the entire process can be automated using one single call to the
dss2th parameterization function in which all matrices are passed. Again, the
string ’on’ indicates that an output normal parameterization should be used:

>> th=dss2th(A,B,C,D,’on’)
th =

0.8824
-0.7000

1.4003
4.1133

0

The number of parameters is nℓ+nm+ℓm = 5 which is the minimal number
of parameters necessary to parameterize the state-space model.

2.2.3 The Tridiagonal Form

The toolbox function dss2th can be used for the tridiagonal parameterization
as well, which will be shown in this section. However, the second-order system
introduced in the previous section will not be used here, since the A matrix of a
second-order system is 2 × 2 and thus by definition already tridiagonal.

A more educational example is the parameterization of a fourth-order sys-
tem, since in this case the effect of the tridiagonalization can be inspected visu-
ally. Like in the SISO observer canonical form example, the model (2.1) is used.
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The entire model can be parameterized in a single call to the dss2th param-
eterization function. We will also request the similarity transformation T that
was used to transform A into tridiagonal form. The last input argument is now
’tr’ , which indicates that a tridiagonal parameterization is requested.

>> [th,params,T]=dss2th(A,B,C,D,’tr’);

It is straightforward to check that this transformation indeed converts A into
tridiagonal form by looking at the transformed matrix AT = T−1AT :

>> T\A * T
ans=

-0.6774 0.6418 0 0
-0.6418 -0.6774 0 0

0 0 0.8427 0.4472
0 0 -0.4472 0.8427

The number of parameters in the vector θ equals 3n− 2 + nℓ + ℓn + nm = 19,
which is 10 more than the minimum number nℓ + ℓn + nm = 9. This represents
an excess of 3n − 2 = 10 parameters, making the parameter mapping surjec-
tive. During a numerical search for the optimal parameter value, this means that
regularization needs to be applied.

2.2.4 The Full Parameterization

In the full parameterization, the model is not transformed at all. Rather, the
system matrices are simply vectorized as follows:

θ = vec

([
A B
C D

])
. (2.3)

The simplicity of this parameterization is easily seen when parameterizing
the second-order model (2.2) that was also used in the output normal form in
Section 2.2.2. The call to dss2th is the same as in the output normal and tridi-
agonal parameterization cases, except for the last input argument, which now is
’fl’ to indicate that a full parameterization is requested:

>> th=dss2th(A,B,C,D,’fl’)
th =

1.5000
1.0000
1.0000

-0.7000
0

0.5000
1.0000

0
0

It is clear that the elements of A, B, C and D are simply stacked in order to
obtain the parameter vector θ:
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θ = vec

([
A B
C D

])
= vec








1.5 −0.7 1
1 0 0

1 0.5 0







 .

Like the tridiagonal parameterization, this full parameterization is surjective:
it is overparameterized. In the tridiagonal case, this over-parameterization is
taken care of using regularization in the numerical parameter search. However,
in the full parameterization described in this section, we have a more elegant
method at our disposal. The gradient projection described in the textbook, which
is based on [4, 5], is used to confine the possible parameter updates to the direc-
tions that do not correspond to similarity transformations on the system. The
calculation of this projection will be illustrated in Example 2.5 on page 23.

2.2.5 Converting a Parameter Vector into a Corresponding Sta te-
Space Model

In a numerical search algorithm we need to be able to calculate for the current
parameter estimate θ the value of the cost function

JN (θ) =
1

N

N−1∑

k=0

‖y(k) − ŷ(k, θ)‖2
2,

with ŷ(k, θ) the output of the model. As shown in Section 8.2.3 of the textbook,
this involves simulating a system that corresponds to the current value of θ. How
this simulation takes place will be covered in the next section. In this section, we
will discuss how to obtain the state-space model that corresponds to the current
value of θ.

Whereas the dss2th function converts a state-space model into parameter
vector, the “Discrete-time Theta To State-Space conversion” function dth2ss dth2ss
(see manual on page 126) does the opposite: it converts a parameter vector into
a state-space model. We will now show how to use this function, taking the out-
put normal parameterization of the system (2.2) on page 12 as an example. The
function works completely analogous for the other parameterizations. We will
first derive the output normal parameter vector including the params structure
and similarity transformation:

>> [th,params,T]=dss2th(A,B,C,D,’on’);

Subsequently, we will convert the parameter vector back into a state-space
model. Note that dth2ss needs the same extra information that dss2th put
into the params structure in order to perform the correct conversion:

>> [A2,B2,C2,D2]=dth2ss(th,params)
A2 =

0.6176 0.4706
-0.3294 0.8824

B2 =
1.4003
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4.1133
C2 =

0.7141 0
D2 =

0

At first sight, it might seem that the conversion went wrong, since the model
shown here is not the same as the model (2.2) that was parameterized in the first
place. However, the difference is just a similarity transformation. This means
that the above model is equivalent to the original model in terms of input-output
behavior, but that the similarity transformation that was used to parameterize
the model has not been taken into account in the conversion.

If required, the inverse of the similarity transformation that was used to pa-
rameterize the model can be applied to the model corresponding to the parame-
ter vector, yielding the original model (2.2):

>> [A2,B2,C2,D2]=dth2ss(th,params,T)
A2 =

1.5000 -0.7000
1.0000 -0.0000

B2 =
1.0000
0.0000

C2 =
1.0000 0.5000

D2 =
0

2.2.6 Parameterizing continuous-time models

Up till now, all models involved have been discrete-time models. However, in
the frequency-domain framework of section 2.4 it is possible to identify continuous-
time models as well. However, the output normal parameterization is defined
in a different way for continuous-time models [3]. Therefore, continuous-time
counterparts of dss2th and dth2ss are included in the toolbox: these are the
functions css2th (see manual on page 94) and cth2ss (see manual on page 96).css2th

cth2ss

2.3 Identifying State-Space Models of Known Order in
the Time Domain

In this section we will show how to identify state-space models based on an
initial model estimate and time-domain measurements. An initial model is re-
quired to start up the identification procedure. In Chapter 3 we will see that
subspace identification methods can be used to generate an initial model.

The cost function JN (θ), which serves as a model mismatch criterion, will be
discussed first for both output error models and prediction error models. Then,
the numerical parameter estimation itself is discussed.
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2.3.1 The Cost Function and its Gradient

The optimal parameter value θ̂ is found by minimizing a cost function

JN (θ) =
1

N

N−1∑

k=0

||y(k) − ŷ(k, θ)||22.

The estimated output ŷ(k, θ) corresponding to the current value θ of the pa-
rameters can be defined in two different ways. The first corresponds to the
output-error problem of Chapter 7 of the textbook. The estimated output ŷ(k, θ)
in the output-error problem is obtained from the predictor

x̂(k + 1, θ) = A(θ)x̂(k, θ) + B(θ)u(k), (2.4)

ŷ(k, θ) = C(θ)x̂(k, θ) + D(θ)u(k). (2.5)

The second way of defining the estimated output is by using the one step
ahead predictor as in the prediction error problem of Chapter 8 of the textbook.
Given a suitably parameterized Kalman gain K(θ), the predicted output is then
obtained as follows:

x̂(k + 1, θ) = (A(θ) − K(θ)C(θ)) x̂(k, θ)

+ (B(θ) − K(θ)D(θ)) u(k) + K(θ)y(k),
(2.6)

ŷ(k, θ) = C(θ)x̂(k, θ) + D(θ)u(k). (2.7)

Regardless of which of these definitions is used, a second-order approxima-
tion of the cost function is made in Section 7.5 of the textbook:

JN (θ) ≈ JN (θ(i)) + J ′
N (θ(i))

(
θ − θ(i)

)
+

1

2

(
θ − θ(i)

)T

J ′′
N (θ(i))

(
θ − θ(i)

)
. (2.8)

Furthermore, an error-vector EN (θ) is defined, which is built up of the mis-
matches between the model output and the measured output ǫ(k, θ) = y(k) −
ŷ(k, θ):

EN (θ) =





ǫ(0, θ)
ǫ(1, θ)

...
ǫ(N − 1, θ)




.

In addition the Jacobian, or gradient, ΨN (θ) of this error-vector is defined:

ΨN (θ) =
∂EN (θ)

∂θT
=





∂ǫ(0,θ)
∂θT

∂ǫ(1,θ)
∂θT

...
∂ǫ(N−1,θ)

∂θT




.

Both the error-vector EN (θ) and the Jacobian ΨN (θ) are required to perform
a numerical minimization of the cost function. The next section on numerical
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parameter estimation will show how EN (θ) and ΨN (θ) are obtained using the
toolbox function dfunlti (see manual on page 103). This name is an abbrevia-dfunlti
tion of “Discrete-time cost Function for LTI systems”.

Example 2.1 (Calculating an error-vector and its Jacobian)

The second-order system (2.2) will be an example in this case. The parameter
vector θ will be taken equal to the actual output normal parameter vector of
the system. The input signal u(k) is a unit-variance Gaussian white-noise signal
having N = 1024 samples. The output y(k) is simulated based on the actual
system and the input signal u(k). The system matrices and signals described
above can be loaded from the file examples/SysData2ndOrder.mat on the
CD-ROM; they can be used to repeat the experiments in this example.

The following code-fragment will first parameterize the model in the output
normal form after which both the error-vector EN (θ) and its Jacobian ΨN (θ) are
obtained. The toolbox function dfunlti is used to this end. This function needs
the current parameter vector and the measured input and output signals. In ad-
dition, it needs the params structure generated by dss2th in order to determine
the problem dimensions and properties.

>> [th,params]=dss2th(A,B,C,D,’on’);
>> [EN,PsiN]=dfunlti(th,u,y,params);

Following the conventions in the textbook, the costs for a given θ can be
calculated as ET

NEN/(2N). Since in this example θ equals the parameter vector
of the true system, the costs are very small, which can be verified as follows:

>> VN=EN’* EN/(2 * N)
VN =

2.4086e-29

This value is almost zero, but not exactly due to numerical round-off errors
in the computer. The exact value one obtains when repeating this experiment
may vary on different CPU architectures and operating systems.

The Jacobian ΨN (θ) contains 9 columns; one for each of the parameters. The
ith column equals −∂ŷ(k, θ)/∂θi. In other words, it shows the negative error
vector differentiated with respect to θi. The signals for i = 1, . . . , 9 have been
plotted in Figure 2.1. The large oscillating signal corresponds to the first column
in ΨN (θ). The fact that this signal is rather large illustrates that the sensitivity of
the error-vector —and thus that of the costs— to the first output normal param-
eter is large.

Note that Figure 2.1 shows that the Jacobian ΨN is not zero in the global
minimum of the cost function. This is expected, since only the gradient ΨNEN

of the costs must be zero at a minimum.

2.3.2 Numerical Parameter Estimation

This section will show how the actual numerical parameter estimation can be
done using the toolbox software. Section 7.5 of the textbook covers both the
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Figure 2.1: Signals in the Jacobian matrix ΨN (θ).

Gauss-Newton search method and the steepest-descent method. If the parame-
ter vector at iteration i is given by θ(i), then the parameter vector for the Gauss-
Newton method at iteration (i + 1) is given as follows:

θ(i+1) = θ(i) − µ(i)
(
ΨN (θ(i))T ΨN (θ(i))

)−1
ΨN (θ(i))T EN (θ(i)). (2.9)

For the steepest-descent method, the parameter vector at iteration (i + 1) is the
following:

θ(i+1) = θ(i) − µ(i)ΨN (θ(i))T EN (θ(i)). (2.10)

The advantage of the Gauss-Newton update is that the parameter search con-
verges quadratically if the search is performed near a minimum in the cost func-
tion. However, Gauss-Newton updates are based on approximating the cost
function by a quadratic function. In practice, the cost function is generally non-
quadratic, and this may result in the iterative Gauss-Newton update process to
become unstable. The steepest-descent method, on the other hand, does not de-
pend on the cost function being close to quadratic.The steepest-descent method
attempts to update the parameters in the opposite direction of the gradient of
the cost function. Its stability depends on the choice of the step size that is used
in the update direction. The disadvantage of the steepest-descent method is that
it converges slowly.

One would therefore like to use a method that uses the “safer” slower conver-
gent steepest-descent updates in areas where the cost function behaves in a non-
quadratic way, and that uses the “faster”. Gauss-Newton updates wherever the
cost function is close to quadratic. Such methods, which basically are methods
in-between the Gauss-Newton and the steepest-descent method, indeed exist
and are called Levenberg-Marquardt methods. In Levenberg-Marquardt meth-
ods, the inversion of the matrix

(
ΨN (θ(i))T ΨN (θ(i))

)
is regularized by adding
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a constant λ times the identity to the matrix product before inversion. The
Levenberg-Marquardt update can be written as follows:

θ(i+1) = θ(i) − µ(i)
(
ΨN (θ(i))T ΨN (θ(i)) + λ(i)I

)−1
ΨN (θ(i))T EN (θ(i)). (2.11)

It should be noted at this point that for λ ↓ 0, the above expression ap-
proaches a Gauss-Newton update. For λ → ∞, the regularization starts to
dominate the matrix that is to be inverted, and the above expression approaches
(1/λ(i)) times a steepest-descent update. A Levenberg-Marquardt method thus
indeed is a method in-between Gauss-Newton and steepest-descent. The di-
vision between Gauss-Newton and steepest-descent behavior roughly lies at
λ(i) = ‖ΨT

NΨN‖2.
There exist several different Levenberg-Marquardt methods, and they dif-

fer in how the regularization parameter λ(i) is determined. In the toolbox soft-
ware provided with this book, a trust-region based Moré-Hebden Levenberg-
Marquardt implementation is used [6], which determines λ(i) such that the up-
dated parameter lies in a region of the cost function, around the current estimate
θ(i), that is “trusted” to be sufficiently quadratic. The toolbox function lmmorelmmore
(see manual on page 144) implements this Moré-Hebden method.

Example 2.2 (Parameter-optimization)

The functions dss2th , dth2ss and lmmore together provide enough func-
tionality to identify a state-space model. This example will show how to use
these functions to identify the system (2.2).

The input signal u(k) has N = 1024 samples and is a unit-variance Gaussian
white-noise signal. The output signal y(k) is simulated in a noise-free fashion
given the input signal u(k) and the system matrices. The system matrices and
signals described above can be loaded from the file examples/SysData2ndOrder.
mat on the CD-ROM; they can be used to repeat the experiments in this example.

We will first parameterize a disturbed system in order to obtain an initial pa-
rameter estimate th0 that does not already coincides with the cost function’s
global minimum. However, the disturbance is chosen such that th0 does not lie
too far away from the true parameter value, since in that case one might end up
in a local minimum.

>> [th0,params]=dss2th(A+0.1,B,C,D,’on’);

Subsequently, the numerical parameter search function lmmore is used to
find the optimal parameter vector th1 . The function lmmore has to be told
which cost function to use, and this is done in the toolbox function dfunlti . In
addition, the initial estimate th0 and some default matrices are passed, as well
as the arguments that are passed on to the cost function dfunlti :

>> th1=lmmore(’dfunlti’,th0,[],[],[],u,y,params)
Optimization terminated successfully:

Search direction less than tolX
Optimization terminated successfully:
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Gradient in the search direction less than tolFun
th1 =

0.8824
-0.7000

1.4003
4.1133
0.0000

The two messages state the reason why the optimization terminated success-
fully. A quick inspection of the optimized vector th1 shows that it is equal to the
output normal parameter vector that was obtained in Section 2.2.2. A next step
might be to convert this parameter vector back into an optimized state-space
model using the function dth2ss :

>> [A2,B2,C2,D2]=dth2ss(th1,params)
A2 =

0.6176 0.4706
-0.3294 0.8824

B2 =
1.4003
4.1133

C2 =
0.7141 0

D2 =
1.2485e-16

The toolbox function lmmore has been made syntax-compatible with the
MATLAB 6 Optimization Toolbox function lsqnonlin . lsqnonlin

Although the optimization method in the previous example is rather straight-
forward, a wrapper-function “Discrete-time Optimization of LTI models”, or
doptlti (see manual on page 113), is available in the toolbox. In addition to doptlti
providing a one-command optimization, this function provides extra function-
ality such as optimizing innovation models, unstable models and performing
maximum likelihood optimizations.

Example 2.3 (Automated state-space model optimization)

The results obtained in the previous example can be obtained in one simple
call to the doptlti wrapper-function as follows. Again, the datafile examples/
SysData2ndOrder.mat on the CD-ROM can be used.

>> [A2,B2,C2,D2]=doptlti(u,y,A,B,C,D,[],[],’on’)
Optimization terminated successfully:

Search direction less than tolX
Optimization terminated successfully:

Gradient in the search direction less than tolFun
A2 =

0.6176 0.4706
-0.3294 0.8824

B2 =
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1.4003
4.1133

C2 =
0.7141 0

D2 =
1.2485e-16

When comparing these results to those in Example 2.2, it is clear that the
resulting model is exactly the same.

Whereas the examples up to this point have mainly shown how to perform
certain operations in MATLAB, the next example will graphically show how the
parameter search in an optimization is carried out.

Example 2.4 (Graphical parameter search)

Figure 2.2 shows an actual parameter search for a slightly different system.
A first-order SISO system was used here since its output-normal parameter vec-
tors contains 3 elements. This is the maximum that can be visualized in three
dimensions. The system is given by the following matrices:

A = 0.9048, B = 0.2500, C = 0.3807, D = 0.

The input signal is a unit-variance Gaussian white-noise signal having N =
512 samples. The noise-free output signal is simulated given the input signal
and the system matrices. Figure 2.2 shows level-contours (iso-surfaces) for the
cost function. The black line shows the parameter search: each cross shows the
parameter vector value for a given iteration.

In addition to providing a one-command LTI model optimization facility, the
doptlti wrapper function also supports the optimization of innovation mod-
els. This implies that a prediction error identification is performed. A demon-
stration of these capabilities will be postponed until Section 2.3.4. The next sec-
tion described the issues in using a full parameterization when identifying mod-
els.

2.3.3 Identifying Fully Parameterized State-Space Models

When using the full parameterization, the cost function calculation is a little dif-
ferent from that in Example 2.1. As stated in the textbook, the full parameteri-
zation is surjective, and a gradient projection is carried out in order to counter-
act this fact. The theory for this projection is described in Section 7.5.4 of the
textbook, and its implication is described here. At every iteration, a unitary ma-
trix U2 is calculated that restricts parameters updates to directions that lie in its
column space. In this way, only parameter updates that do not correspond to
similarity transformations of the state-space model are allowed. The parameter-
update rule (2.11) is modified as follows when incorporating the gradient pro-
jection:
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Figure 2.2: Contour-surfaces of the cost function and optimization trajectory in
the parameter space Example 2.4. The translucent shapes represent surfaces on
which the cost function is constant; the inner surfaces correspond to low costs
while the outer surfaces correspond to high costs. From the small roughly spher-
ical surface at the left to the outer cylindrical surface, the costs are 0.05, 0.1, 1, 5
and 12 respectively. The parameter-search is started at the cross on the lower end
of the black line (high value of the cost function), and it converges to the global
minimum (low value of the cost function) on the left side of the figure.

θ(i+1) = θ(i) − µ(i)U2(θ
(i))Φ(θ(i))−1U2(θ

(i))T ΨN (θ(i))T EN (θ(i)), (2.12)

with
Φ(θ(i)) = U2(θ

(i))T ΨN (θ(i))T ΨN (θ(i))U2(θ
(i)) + λ(i)I.

In this so-called projected gradient method, the product ΨNU2 is calculated.
Because of the well-chosen set of directions in U2, this product ΨNU2 is regular.
The product is calculated directly, rather than first calculating ΨN and multiply-
ing by U2 later, for efficiency reasons.

Using (2.12), the lmmore optimization function is able to calculate parameter
updates based on EN , ΨNU2 and U2. The next example will show how this triple
of matrices is calculated using the dfunlti toolbox function.

Example 2.5 (Calculating an error-vector and its projected Jacobian)

In this example, the same system and data as in Example 2.1 is used. How-
ever, we will now use the full parameterization. This changes the syntax of the
cost function dfunlti as three output parameters are now returned: the error-
vector EN , its projected Jacobian ΨNU2 and a matrix U2. The three arguments are
obtained from dfunlti as follows:

>> [th,params]=dss2th(A,B,C,D,’fl’);
>> [EN,PsiNU2,U2]=dfunlti(th,u,y,params);
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A visual inspection of the U2 matrix shows that its size if 9 × 5. This is what
one would expect: there is a total of 9 parameters, from which n2 = 4 degrees of
freedom correspond to similarity transformation. The columns of U2 correspond
to the remaining 5 directions in the parameter space. It is also apparent that the
entries of the D-matrix —the 9th parameter in this case— are not influenced by
similarity transformations at all.

U2 =
-0.0648 -0.4762 0.6973 -0.1867 0

0.3261 0.2634 -0.0778 -0.3119 0
0.1342 0.4039 0.3917 0.3351 0

-0.5086 -0.2104 0.2428 0.1622 0
0.7580 -0.3926 0.1490 -0.0332 0

-0.0598 0.2321 0.1842 -0.3968 0
0.1043 0.5199 0.4838 0.1367 0
0.1539 -0.1346 -0.0712 0.7429 0

0 0 0 0 1.0000

2.3.4 Identification of Innovation-Type State-Space Models

This section describes additional capabilities of the doptlti LTI state-space
model optimization function in the toolbox software. The following two exam-
ples will show how to identify innovation models and how to identify unstable
models.

Example 2.6 (Identifying an innovation model)

In this example we will optimize an innovation model. The data is gener-
ated by the same second-order model that was used previously in Example 2.2.
However, noise is added as follows:

x(k + 1) = Ax(k) + Bu(k) + w(k),

y(k) = Cx(k) + Du(k) + v(k),

with w(k) and v(k) zero-mean random sequences with covariance matrices

E

[
w(k)
v(k)

] [
w(j)T v(j)T

]
=

[
Q S
ST R

]
∆(k−j) =





[
10−2 10−4

10−4 10−2

] [
0
0

]

[
0 0

]
10−2



∆(k−j).

A total of N = 2048 samples of input-output data are generated. These
signals can be loaded from the datafile examples/SysInnovData2ndOrder.
mat on the CD-ROM. They can be used to repeat the experiments in this exam-
ple.

Given the covariances of the noises, a Kalman gain K can be calculated us-
ing the function dlqe (from the MATLAB Control Systems Toolbox [2]). Notedlqe
that dlqe also supports systems in which x(k + 1) = Ax(k) + Bu(k) + Gw(k).
However, in our case G = I2:
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>> K=dlqe(A,eye(2),C,Q,R)
K =

0.6693
0.3417

First we will try to fit a normal output error state-space model to this data.
We take a disturbed version of the actual system as initial estimate and optimize
this model. Note that in this example we will use the full parameterization.
This is indicated by either passing ’fl’ as parameterization type to doptlti ,
or by not specifying any parameterization type at all; doptlti uses the full
parameterization by default. We will choose the latter option:

>> [Ao,Bo,Co,Do]=doptlti(u,y,A+0.1,B,C,D);
Optimization terminated:

Relative decrease of cost function less than TolFun

It should be noted at this point that the same results would have been ob-
tained with the output normal or tridiagonal parameterization. However, the
full parameterization usually is slightly more accurate, and the syntax is simpler
since no parameterization type needs to be specified.

A prediction error model is optimized by simply adding a nonempty Kalman
gain matrix K to the parameter list as follows:

>> [Ak,Bk,Ck,Dk,x0k,Kk]=doptlti(u,y,A+0.1,B,C,D,[],K );
Optimization terminated:

Relative decrease of cost function less than TolFun

Note that following the calling syntax specification on page 113, the param-
eter order is A, B, C, D, x0 and K. That is why an empty matrix “[] ” has to be
passed between D and K; the initial state is assumed to be zero. For the output
parameters the same ordering applies.

The estimated models can now be assessed using the variance accounted for
(VAF) figure of merit as described in Chapter 10 of the textbook. First the output
the output error and the innovation model are calculated, after which the toolbox
function vaf (see manual on page 157) is used to calculate their VAFs: vaf

>> yo=dlsim(Ao,Bo,Co,Do,u);
>> yk=dlsim(Ak-Kk * Ck,[Bk-Kk * Dk Kk],Ck,[Dk 0],[u y]);
>> vaf(y,yo)
ans =

98.4387
>> vaf(y,yk)
ans =

99.6534

It is clear that the innovation model calculates a better one-step ahead pre-
diction of the system’s output than the output error model.
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If a model is unstable, then the calculation of the error-vector and the Jaco-
bian presents a problem; both are simulated and will contain entries with ex-
treme large magnitudes. The same problem may exist for the measured data
itself if the actual system is unstable. However, we will assume that unstable
systems are captured in a feed-forward or feedback control system such that the
measured input and output sequences are finite.

Another problem is that output normal parameters can be calculated for the
pair (A, C) only if this pair corresponds to a stable model. However, it is readily
proven that for any observable pair (A, C), a matrix K can be found such that
the eigenvalues of (A − KC) lie within the unit circle. Therefore, the innovation
form model can be stabilized.

An immediate problem in this approach is that the matrix K now is no longer
a proper Kalman-gain, that is, there is no relation to the noise properties any-
more. This causes the optimization problem with respect to the entries of the
K-matrix to become ill-conditioned. The doptlti function therefore provides
the possibility for supplying a matrix K that stabilizes A, but which is not opti-
mized itself in the parameter search. In other words: the entries of K are fixed.
This of course is only possible if the dynamics matrix of the optimized model,
namely (Ao − KCo), is stable as well. If the initial guess is good, then generally
both the initial (A − KC) and the final (Ao − KCo) will be stable. The following
example shows how to use this feature.

Example 2.7 (Identifying a marginally stable model)

Models encountered in the process industry often contain integrators. These
system modes have poles at z = 1 and thus correspond to marginally stable
models. In order to show the optimization of such a model, the second-order
model (2.2) used throughout this chapter will be extended by adding an inte-
grator at the input. This yields the following quadruple of state-space matrices
(A, B, C, D):

A =




1.5 −0.7 1
1 0 0
0 0 1



 , B =




0
0
1



 ,

C =
[
1 0.5 0

]
, D = 0.

We will assume that our initial model estimate is disturbed, such that the
disturbed Ap matrix equals the actual A matrix plus an additional 0.01 on all
elements. First, a K-matrix that stabilizes (Ap−KC) will be calculated using the
function place (from the MATLAB Control Systems Toolbox [2]). The stabilizedplace
poles will be placed at z = 0.7 and z = 0.7e±0.1jπ.

>> thepoles=[0.7 0.7 * exp(j * pi * 0.1) 0.7 * exp(-j * pi * 0.1)];
>> K=place((A+1e-2)’,C’,thepoles)’
place: ndigits= 15
K =

0.3198
0.3575
0.0461
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The system’s input signal u(k) has N = 512 samples and is a unit-variance
Gaussian white-noise signal. The output signal y(k) is simulated in a noise-free
fashion based on the input signal u(k) and the undisturbed actual system matri-
ces. These signals can be loaded from the datafile examples/SysData3rdOrder.
mat on the CD-ROM if one wishes to repeat the experiments in this example.

We need to tell doptlti that we wish to keep the K matrix constant. This is
accomplished by passing an optimset options structure to doptlti (see man- doptlti
ual on page 113). This options structure can be used to modify the optimization
function’s behavior. If MATLAB 6 is installed, this structure can be made using
the optimset function. If an older version of MATLAB is used, the toolbox optimset
function mkoptstruc (see manual on page 150) provides a very rudimentary mkoptstruc
work-alike. After creating a structure, the field options.OEMStable is set to
’on’ to indicate that a stabilized output error model is optimized:

>> options=mkoptstruc;
>> options.OEMStable=’on’;

The options variable should then be specified as an additional parameter
to doptlti as follows:

>> [A2,B2,C2,D2,x02,K2]=doptlti(u,y,A+0.01,B,C,D,[], K,[],options);
Optimization terminated successfully:

Search direction less than tolX
Optimization terminated successfully:

Gradient in the search direction less than tolFun

We can now check whether the optimization has indeed converged to the
marginally stable system. To this end, the eigenvalues of the optimized model
are compared to those of the actual system:

>> eig(A2)-eig(A)
ans =

1.0e-15 *
0.1110 + 0.0555i
0.1110 - 0.0555i
0.2220

It is clear that the eigenvalues of the marginally stable system have been iden-
tified very accurately; the difference between the estimated and actual eigenval-
ues lies in the same order of magnitude as the machine precision ǫP = 2 · 10−16.
It should be noted at this point that the differences calculated above are due to
rounding errors in the computer. The differences may vary between different
CPU types and operating systems.

The options.OEMStable feature prevented any simulation problem be-
cause of instability, while keeping the problem well-conditioned by fixing the
entries of the K-matrix.
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2.4 Identifying State-Space Models of Known Order in
the Frequency Domain

The previous section dealt with the optimization of state-space models based
on time-domain measurements. In many cases this is convenient, since time-
signal measurements can generally be obtained using relatively simple equip-
ment. However, the time-domain framework requires all the samples to be
equidistant in time. Stiff systems, that have both very slow and very fast modes,
are difficult to handle in this respect: one needs a long measurement time to cap-
ture the slow modes, and a high sampling frequency to capture to fast modes.
The result is that one needs very large data batches, which make the optimiza-
tion computationally burdensome.

Another alternative is to use measurements of a system’s frequency response
function (FRF). This implies choosing a suitable set of frequencies, after which
the FRF is measured for all input-output combinations at these frequencies. Since
both magnitude and phase response are measured, the FRF is a complex-valued
function; see Chapter 3 of the textbook. The advantage of these frequency-
domain measurements is that the frequencies do not need to be equidistant. For
stiff systems, this implies that one can use a loosely-spaced frequency-grid of
just a small number of points. The system can be accurately identified by addi-
tionally clustering a larger number of frequencies around the interesting system
modes. This keeps the amount of measurement data small. Another advantage
of the frequency-domain framework is that it allows for the optimization of both
discrete-time and continuous-time models.

In contrast to the time-domain method, the FRF method described in this
section only handles output error models. The discrete-time model structure is
given by

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

The continuous-time model structure is given by

dx(t)

dt
= Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

Despite the differences in description in the time-domain, discrete-time and continuous-
time models can be described in practically the same way in the frequency do-
main. For a given system with state-space matrices (A, B, C, D), the complex-
valued FRF is given by

H(ξi) = C(ξiIn − A)−1B + D. (2.13)

In this expression ξi denotes the ith complex frequency. Given FRF mea-
surements for discrete-time systems at actual radial frequencies ωi, the complex
frequencies are given by

ξi = ejωiT ,
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in which T is the sampling time to which the desired state-space model should
correspond. These complex frequencies correspond to those used by the discrete-
time Fourier transformation (DTFT) discussed in Section 3.3.2 of the textbook.
Given FRF measurements for continuous-time systems at actual radial frequen-
cies ωi, the complex frequencies are given by

ξi = jωi.

The next section will describe how a cost function is defined for FRF-based
model optimizations. Subsequently, a numerical parameter estimation example
is shown.

2.4.1 The Cost Function and its Gradient

Like in the time-domain, frequency-domain optimization is done by minimizing
a cost function. However, the FRF is a complex matrix H(ξi) ∈ C

ℓ×m. Since the
FRF is assumed to be measured at N frequencies, the FRF will consists of N ma-
trices H(ξi) ∈ C

ℓ×m. Because it is a complex matrix, and the cost function JN (θ)
used for parameter identification is taken to be real valued, special precautions
have to be taken.

First, all the FRF matrices are vectorized. Then, following the strategy for
complex functions proposed in [7], the real and imaginary parts of the result-
ing vector are stacked. Finally, the elements of this real vector are squared and
summed to obtain the actual costs. This gives rise to the following cost function:

JN (θ) =
1

N

N∑

i=1

∥∥∥H(ξi) − Ĥ(ξi, θ)
∥∥∥

2

F

=
1

N

N∑

i=1

ℓ∑

p=1

m∑

q=1

| Hp,q(ξi) − Ĥp,q(ξi, θ) |
2

=
1

N

N∑

i=1

ℓ∑

p=1

m∑

q=1

{
Re

(
Hp,q(ξi) − Ĥp,q(ξi, θ)

)2

+ Im
(
Hp,q(ξi) − Ĥp,q(ξi, θ)

)2
}

.

(2.14)

The predicted FRF Ĥ(ξi, θ) is obtained from the system matrices that correspond
to the current parameter vector.

Ĥ(ξi, θ) = C(θ)(ξiIn − A(θ))−1B(θ) + D(θ). (2.15)

Like in the time-domain framework discussed in Section 2.3, a second-order ap-
proximation of the cost function is made, and an error-vector EN (θ) and its Jaco-
bian ΨN (θ) are defined. We will now show how these quantities are calculated
using the toolbox function ffunlti (see manual on page 139). This name is ffunlti
an abbreviation of “Frequency-domain cost Function for LTI models”. Like in
the time-domain optimization framework, the output normal, tridiagonal and
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m

ℓ H(ξ1)

H(ξN )

Figure 2.3: Layout of the 3D-array returned by ltifrf .

full parameterization types can be used. In this section we will use the output
normal parameterization as an example.

The second-order system (2.2) will be an example in this case. The parameter
vector θ will be taken equal to the actual output normal parameter vector of the
system. A total of N = 512 complex frequencies are distributed over the upper
part of the unit circle in the complex plane. The corresponding FRF is calculated
in a noise-free fashion. This frequency-vector and FRF can be loaded from the
datafile examples/SysData2ndOrder.mat on the CD-ROM. The following
code-fragment will first parameterize the model in the output normal form af-
ter which both the error-vector EN (θ) and its Jacobian ΨN (θ) are obtained. The
toolbox function ffunlti is used to this end. This function needs the current
parameter vector, the measured FRF and the frequencies at which it is measured.
In addition, it needs the params structure generated by dss2th in order to de-
termine certain dimensions and properties. The measured FRF is stored in the
MATLAB 3D-array H, which is formatted as shown in Figure 2.3. The complex
frequencies are stored in a MATLAB vector w:

>> [th,params]=dss2th(A,B,C,D,’on’);
>> [EN,PsiN]=ffunlti(th,H,w,params);

As the parameter vector th corresponds to the actual system, the costs should
be very small. This can be verified by calculating the costs ET

NEN/(2N) at the
current parameter vector th :

>> VN=EN’* EN/(2 * N)
VN =

2.2232e-29

This value of the cost function is very small. Ideally, it would have been zero,
but it is slightly different from zero because of rounding errors in the computer.
The exact value may vary between different CPU types and operating systems.
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2.4.2 Numerical Parameter Estimation

This section will show how the actual numerical parameter estimation based on
frequency-domain data can be carried out using the toolbox software. Like in
the time-domain framework, the Moré-Hebden Levenberg-Marquardt parame-
ter search algorithm implemented in lmmore is used.

The functions dss2th , dth2ss , ffunlti and lmmore together would pro-
vide enough functionality to identify a state-space model based on FRF data.
The procedure is fully analogous to the one used in Example 2.2 on page 20 for
time-domain data. The only line of code that needs to be changed is the call
to lmmore , because lmmore needs to be told to use the frequency-domain cost
function ffunlti and the frequency-domain data from Hand w:

>> th1=lmmore(’ffunlti’,th0,[],[],[],H,w,params)

In this section, we will show an example in which a continuous-time model is
optimized.

Example 2.8 (Continuous-time state-space model optimization)

In this example a continuous-time state-space model will be identified. The
following state-space model defined by the quadruple of system matrices (A, B, C, D)
will be considered [8]:

A =





0 1 0 0 0 0
−1 −0.2 0 0 0 0

0 0 0 1 0 0
0 0 −25 −0.5 0 0
0 0 0 0 0 1
0 0 0 0 −9 −0.12




, B =





0
1
0
1
0
1




,

C =
[
1 0 1 0 1 0

]
, D = 0.

(2.16)

The FRF is calculated at N = 512 frequencies uniformly spaced in the band
[0.01, 9] rad/s. This frequency-vector and FRF can be loaded from the datafile
examples/SysCData6thOrder.mat on the CD-ROM in order to repeat the
experiments in this example.

We will first parameterize a disturbed system that is close to the actual system.
The parameter vector will then be optimized. Since this is a continuous-time
system, the continuous-time css2th parameterization function has to be used:

>> [th0,params]=css2th(A+1e-2,B,C,D,’on’);

The parameter search function lmmore is subsequently used to find the opti-
mal parameter vector th1 . The information that is passed to lmmore is similar to
the information used in Example 2.2: namely, (1) which cost function to use, (2)
the FRF and the frequencies at which it is measured and (3) the params struc-
ture that was generated by css2th . In addition, an extra parameter ’cont’
is passed to indicate to ffunlti that continuous-time model is used. This is
important since the definition of the output normal form is different between
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continuous-time and discrete-time models [3]. In addition, the optimization
framework’s internal stability checking functions differ between discrete-time
and continuous-time models.

>> th1=lmmore(’ffunlti’,th0,[],[],[],H,w,params,[],’ cont’)
Optimization terminated successfully:

Gradient in the search direction less than tolFun
th1 =

1.2806
4.1200
2.5751
1.9805
2.0680
1.8383

-0.0000
0.5686
0.1207
1.3174
0.0425
0.9721
0.0000

We can verify that this parameter vector is indeed the right one because the
developed parameterization of the output normal form is unique. We will sub-
tract the output normal parameter vector corresponding to the undisturbed sys-
tem and take the norm of this vector: this norm should be very small:

>> norm(th1-css2th(A,B,C,D,’on’))
ans =

2.7405e-09

Ideally, one would like to see a value in the order of 10−15 here. However,
although the output normal parameterization is unique, it is not the most ac-
curate of the available parameterizations. The above value is sufficiently small.
Like in the time-domain case, we can subsequently use cth2ss to convert the
optimized parameter vector back into a model:

>> [A2,B2,C2,D2]=cth2ss(th1,params);

The shape of the cost function is shown in Figure 2.4. It is clear that apart
from the global minimum, there exist strong local minima. This example illus-
trates that a good initial model guess is of paramount importance.

Like in the time-domain case, an optimization wrapper function is incor-
porated in the toolbox. The “Frequency-domain Optimization of LTI models”
function foptlti (see manual on page 141) can be used as a one-command op-foptlti
timization for both continuous-time and discrete-time state-space models. For
the model in the above example, the entire optimization can be performed using
only one command:
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Figure 2.4: Shape of the cost function JN (θ). Parameters θ1 and θ2 are varied.
These parameters correspond to the pair (A, C) of the output normal parameter-
ization.

>> [A2,B2,C2,D2]=foptlti(H,w,A+1e-2,B,C,D,’on’,[],’c ont’);
Optimization terminated successfully:

Gradient in the search direction less than tolFun
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Chapter 3

Subspace Model Identification

After studying this chapter you can:

• implement a simple MOESP subspace algorithm in less than 20
lines of MATLAB code.

• perform time-domain subspace identification in MATLAB us-
ing the toolbox functions dordpi , dordpo , dmodpi , dmodpo,
dac2bd and dinit .

• concatenate time-domain data batches from different experiments
to identify discrete-time state-space models.

• identify discrete-time state-space models based on frequency-
domain data using the toolbox functions fdordom , fdmodom and
fac2bd .

• identify continuous-time state-space models based on frequency-
domain data using the toolbox functions fcordom , fcmodom and
fac2bd .

• concatenate frequency-domain data batches from different experi-
ments to identify discrete-time state-space models.

35
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3.1 Introduction

This chapter is a companion to Chapter 9 of the textbook. In this chapter, we
illustrate how subspace identification can be performed within MATLAB using
the toolbox software. In Section 3.2 we will show that the simple linear algebra
steps of Ordinary MOESP can be implemented in less than 20 lines of MATLAB
code. Section 3.3 explains how PI-MOESP and PO-MOESP subspace identifi-
cation can be carried out using the toolbox software. Section 3.4 describes an
extension of the subspace methods that can be used to identify discrete-time and
continuous-time state-space models based on frequency response function (FRF)
measurements.

3.2 Subspace Identification using Arbitrary Inputs: Or-
dinary MOESP

This section will illustrate the Ordinary MOESP subspace algorithm that has
been developed in Section 9.2.4 of the textbook. Although the theory will be
summarized in this section, it should be stressed that the emphasis will not be
on the theory. Rather, given the fact that the algorithm steps in subspace iden-
tification are linear algebra operations, we will show how an Ordinary MOESP
algorithm can be implemented in just a few lines of MATLAB code. Although
a MIMO case is more or less equivalent from the theoretical point of view, a
MIMO implementation contains a rather large number of practical details that
would distract us from the simplicity of the Ordinary MOESP algorithm. There-
fore, we will confine ourselves to a SISO implementation and leave the MIMO
implementation as an exercise to the reader.

Step 1: Data Compression and Order Estimation

The Ordinary MOESP algorithm is a linear subspace identification algorithm
that identifies systems based on measured input and output data, where the
input data can be arbitrary, provided that it is sufficiently exciting.

The algorithm’s starting point is the data equation which, for a noise-free
case, can be written as

Y0,s,N = OsX0,N + TsU0,S,N . (3.1)

The next step is to project the output Hankel matrix Y0,s,N onto the orthogonal
complement of the row space of the input Hankel matrix U0,s,N , which cancels
the second term on the right-hand side of the data equation:

Y0,s,NΠ⊥
U0,s,N

= OsX0,NΠ⊥
U0,s,N

. (3.2)

As we have shown in (9.21) on page 265 of the textbook, this projection can be
efficiently implemented by using an RQ-factorization
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[
U0,s,N

Y0,s,N

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
, (3.3)

after which the R22 matrix theoretically has the same column space as the un-
known extended observability matrix Os. The order of the system is determined
from the rank of R22. This rank is obtained from the following singular value
decomposition:

R22 = UnΣnV T
n . (3.4)

Step 2: Estimation of A and C

The order n is taken equal to the number of “large” singular values, while the
“small” singular values are attributed to noise or round-off errors. It has been
shown in Lemma 9.3 on page 268 of the textbook, that under the appropriate
noise conditions, the matrix Un forms a consistent estimate of the system’s ex-
tended observability matrix Os up to an unknown similarity transformation. The

Â and Ĉ estimates are then obtained exploiting the shift-structure of Os:

Â = Un(1 : (s − l)ℓ, :)†Un(ℓ + 1 : sℓ, :), (3.5)

Ĉ = Un(1 : ℓ, :). (3.6)

Step 3: Estimation of B, D and the Initial State.

Technically, only steps 1 and 2 are specific to Ordinary MOESP subspace identifi-
cation. The estimation of the B and D matrices is done using a method common
to Ordinary MOESP, PI-MOESP and PO-MOESP. The estimation of the B and D
matrices and the initial state is a least squares regression problem of which the
solution is given by




x0

vec(B̂)

vec(D̂)



 = Φ†Y0,N,1.

The regression matrix Φ and data vector Y0,N,1 are given by:

Φ =





C 0 u(1)T ⊗ Iℓ

CA u(1)T ⊗ C u(2)T ⊗ Iℓ

...
...

...

CAN−1
∑N−2

τ=0 u(τ + 1)T ⊗ CAN−2−τ u(N)T ⊗ Iℓ




,

Y0,N,1 =





y(1)
y(2)

...
y(N)




.
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The next two examples will show how the above three steps of Ordinary
MOESP subspace identification can be implemented in a few lines of MATLAB
code for a SISO system.

Example 3.1 (Simple Ordinary MOESP implementation: Steps 1 and 2)

We will now show how the Ordinary MOESP algorithm can be implemented
in MATLAB for a SISO system. The MATLAB implementation will be posed
first, after which a line-by-line walk-through of the code is given.

Given an input sequence u and output sequence y , both of length N, and a
block-size parameter s , the following code-fragment implements steps 1 and 2
of the Ordinary MOESP algorithm: it estimates A and C based on time-domain
measurements:

U=hankel(u(1:s),u(s:N));
Y=hankel(y(1:s),y(s:N));
R=(triu(qr([U;Y]’)))’;
[Un,Sn,Vn]=svd(R(s+1:2 * s,s+1:2 * s));
A=Un(1:s-1,1:n)\Un(2:s,1:n);
C=Un(1,1:n);

The first major “step” in Ordinary MOESP subspace identification consists
of three components that together correspond to the first four lines of MATLAB
code in the above implementation.

The first component is the formation of the Hankel matrices U0,s,N and Y0,s,N .
In the MATLAB implementation, these matrices are called U and Y. Two imme-
diate problems are that MATLAB matrix indices start at 1 rather than 0, and that
the theoretical definition of the Hankel matrices requires N + s − 1 samples to
be available, while only N are available in practice. We therefore create Hankel
matrices U1,s,N−s+1 and Y1,s,N−s+1, which solves both problems. The MATLAB
function hankel is used for the formation of the Hankel matrices. This is shown
in the first two lines of the MATLAB implementation.

The second component is the projection onto the orthogonal complement
of the row-space of U1,s,N−s+1. This is theoretically accomplished using a RQ-
factorization, but MATLAB provides only a QR-factorization function, so the
following factorization is carried out in practice:

[
UT

1,s,N−s+1 Y T
1,s,N−s+1

]
=

[
Q1 Q2

] [
R11 R12

0 R22

]
. (3.7)

It should be noted as this point that only the R-matrix of this factorization
is needed. MATLAB can be told not to form the Q matrix explicitly. As Q is
a large matrix of size Nℓ × Nℓ, not calculating Q saves a considerable amount
of storage space and calculation time. If MATLAB’s qr function is called withqr
one output argument, it will call the LAPACK function DGEQRFinternally. This
returns a full matrix of which the upper triangle equals the required R-factor.
The function triu is used to retrieve this upper-triangular part, after which thetriu
entire R-factor has to be transposed in order to correspond to the R-matrix of an
RQ-factorization. The third line of the MATLAB implementation performs this
action.
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The final component in the first step in Ordinary MOESP is the singular value
decomposition of the R22 matrix. This decomposition is performed in a straight-
forward way by MATLAB’s internal svd function. As the algorithm described in svd
this section is a SISO algorithm, the expression R(s+1:2 * s,s+1:2 * s) equals
the R22 matrix. The fourth line of the MATLAB implementation performs this
decomposition.

The second step in Ordinary MOESP is the estimation of A and C. How-
ever, the system order has to be selected first by inspecting the singular val-
ues. A more detailed example on how to estimate the order will be given in
Section 3.3.2. However in this case we will assume that this order is n. Subse-
quently, A and C, which are are called A and C in MATLAB, are obtained exactly
as shown in the theory above. Lines 5 and 6 of the MATLAB implementation
perform this estimation.

The next example will show how the third step of Ordinary MOESP, the es-
timation of B and D, can be implemented. It should again be noted that the
implementation can be programmed in just a few lines of MATLAB code.

Example 3.2 (Simple estimation of B and D)

Given an input sequence u and output sequence y, both of length N , and
the A and C estimates obtained earlier, the following code-fragment estimates B
and D for SISO systems.

Phi=zeros(N,n+1);
for i=1:n,

dB=zeros(n,1);
dB(i,1)=1;
Phi(:,i)=dltisim(A,dB,C,0,u);

end;
Phi(:,i+1)=u;
BD=Phi\y;
B=BD(1:n);
D=BD(n+1);

Estimating B and D from the regression problem start with setting up the
matrices for this problem. In the MIMO case, this procedure is rather involved.
However, in the SISO case the Φ matrix simplifies considerably. If we, in ad-
dition, assume that the initial state is zero, then the Φ matrix and regression
problem reduce to

Φ =





0 u(1)
u(1)C u(2)

...
...∑N−2

τ=0 u(τ + 1)CAN−2−τ u(N)




,

[
B̂

D̂

]
= Φ†Y0,N,1.
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Filling the first block-column of Φ is the most complicated part of practically
estimating B and D. However, a closer inspection of each of the block-columns
reveals that its ith column is the output of an LTI system with D = 0 and B
equal to zero except for its ith element. The function dltisim (see manual ondltisim
page 108) can be used to simulate these auxiliary systems. The for -loop in the
MATLAB implementation fills the first block-column of Φ.

Filling the last block-column of Φ is a simple matter of copying the input sig-
nal u to this column. The remaining code-lines in the MATLAB implementation
solve the least squares problem and extract the B and Dmatrices.

We have thus shown that estimating the B and D matrices of a SISO system
is possible in just 10 lines of MATLAB code. Obviously, the MIMO case is more
involved.

3.3 Subspace Identification with Instrumental Variables

In the previous section we have shown that the implementation of a basic sub-
space identification algorithm can be done in a few lines of MATLAB code.
However, in practice the code in the previous section is not used. First, be-
cause one often wishes to identify MIMO systems. Second because the Ordi-
nary MOESP algorithm is not used extensively in practice because of the limited
noise-conditions under which it delivers consistent model estimates. Finally
the code given in the previous section contains no checks or usable function-
interfaces.

The toolbox software contains efficient routines to perform both PI-MOESP
[1] and PO-MOESP [2] subspace identification, for which the theory is described
in Sections 9.5 and 9.6 of the textbook. This section contains a brief tutorial on
how to use these toolbox functions, as well as a number of examples.

3.3.1 General Subspace Identification Procedure

Figure 3.1 shows the general steps that have to be taken in order to identify a
discrete-time state-space model using the PI-MOESP or PO-MOESP algorithms.
Subspace identification in the toolbox is built up of four parts: the order estima-
tion, the estimation of A and C, the estimation of B and D and the estimation of
the initial state x0.

The order estimation functions compress the data and obtain singular values
based on which the required model order can be determined. The functions per-
forming these tasks have names containing “ord ” in the toolbox. The dordpodordpo
(see manual on page 119) function, for example, performs a “Discrete-time Or-
der estimation for PO-MOESP”. The function dordpi (see manual on page 117)dordpi
function does the same for PI-MOESP. In addition to the measured input and
output signals, the “ord ” functions need a model structure specification. How-
ever, in the toolbox framework this structure specification reduced to just one
scalar: an upper bound s on the order of the system. A call to an “ord ” function
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Figure 3.1: Flow-graph for PI-MOESP and PO-MOESP time-domain subspace

identification using the toolbox software. Note that a Kalman gain estimate K̂
can be obtained only in the PO-MOESP algorithm; the PI-MOESP algorithm is
an output error algorithm that does not provide a Kalman gain estimate.
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yields a singular value vector S and a compressed data matrix R. The selection
of the model order is done based on the singular values stored in S. A number
of simple examples on order selection are given in this section, Section 3.4 and
in Example 9.4 on page 270 of the textbook. A more elaborate example is pro-
vided in the case study in Section 4.6. The “ord ” functions allow multiple data
batches from separate experiments to be concatenated. This functionality will be
discussed in Section 3.3.3.

Once the data has been compressed, the “mod” functions estimate the A and

C matrices from the extended observability matrix estimate Ôs that is part of the
compressed data matrix R. The dmodpo (see manual on page 110) and dmodpidmodpo

dmodpi (see manual on page 109) function perform these tasks for PO-MOESP and PI-
MOESP respectively. The user should specify the desired model order n. In
PO-MOESP, a Kalman gain K can be estimated as well. It should be noted that R
matrices are incompatible among the different algorithms, that is dmodpo cannot
be used on an Rmatrix generated by dordpi : dmodpi should be used for that.

Once the estimates Â and Ĉ have been calculated, the matrices B and D can
be estimated. For time-domain subspace identification either the function dac2bdac2b
(see manual on page 98) or the function dac2bd (see manual on page 100) candac2bd
be used. The first function assumes that D is known to be zero and estimates
only B. The second function estimates both B and D. Like the “ord ”-functions,
the dac2b and dac2bd function can be used with multiple data batches. This
functionality will be discussed in Section 3.3.3. Note that dac2b and dac2bd
can be used with both PI-MOESP and PO-MOESP.

Finally, the user may wish to estimate the initial state x0. The function dinitdinit
(see manual on page 106) can be used for this purpose. It needs all system matrix

estimates Â, B̂, Ĉ, D̂ and a data batch u, y.

3.3.2 Using the Toolbox Software: PI-MOESP

In this section we will give an example of how the subspace identification frame-
work in the toolbox software is used in a practical situation. The PI-MOESP
scheme functions dordpi and dmodpi will be used to estimate A and C, after
which dac2bd and dinit are used to estimate B, D and the initial state. Finally,
a simple model validation is performed.

First we generate data for the second-order system (2.2) on page 12. A pseudo-
random binary sequence will be generated as identification input using the tool-
box function prbn (see manual on page 152). A pseudo-random binary se-prbn
quence, or PRBN, is an often-used identification input signal. The theory behind
this kind of signal is described in [3]. In rather loose terms, samples of a PRBN
are either 0 or 1, and after each sample there is a certain probability ρ ∈ [0, 1] that
the signal switches state (from 0 to 1 or from 1 to 0). In the following example
ρ is set to 0.1 in order to get a signal that changes state rather infrequently and
which therefore mainly contains signal energy in the lower frequency range.

>> A=[1.5 -0.7;1 0]; B=[1;0]; C=[1 0.5]; D=0;
>> u=prbn(300,0.1)-0.5;
>> y=dltisim(A,B,C,D,u);
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Figure 3.2: Input and disturbed output signals of the system.

In order to make the example more realistic, the output signal is disturbed
by colored measurement noise such that a 20 dB SNR is obtained. The b and
a vectors correspond to the numerator and denominator polynomials of a low-
pass filter.

>> b=[0.17 0.50 0.50 0.17];
>> a=[1.0 0 0.33 0];
>> y=y+0.1 * std(y) * filter(b,a,randn(300,1));

The generated input and output signals are shown in Figure 3.2. The exact data
sequences used in this example can be loaded from the datafile examples/
PI-MOESP-tutorial.mat on the CD-ROM.

We will now try to identify the system from the generated data set by assum-
ing the following state-space model structure:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) + Du(k) + v(k).

This model, in which v(k) is a colored noise signal, falls within the class of mod-
els for which PI-MOESP can provide consistent estimates, as was illustrated in
Section 9.5 of the textbook. In identifying this model we will use the general
flow-graph that was shown in Figure 3.1.

Step 1: Data Compression and Order Estimation

In this first step we use the “ord ” function —dordpi in this PI-MOESP case— in
order to compress the available data and to generate a model order estimate. The
only model structure selection parameter that we need to pass is the block-size
s , which should be larger than the expected system order. We will use the rather
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Figure 3.3: Singular values generated by dordpi PI-MOESP data compression
function.

high value s=10 in this example in order to show the order selection mechanism
more clearly.

>> s=10;
>> [S,R]=dordpi(u,y,s);

The function dordpi returns a vector S containing singular values based
on which the model order can be determined. In addition, a compressed data
matrix R is returned that is used by dmodpi to estimate A and C in the next step.
The singular values in S are plotted in Figure 3.3 using the following command:

>> semilogy(1:10,S,’x’)

In a noise-free case, only the first n singular values would have been nonzero.
However, the singular values that would have been zero are now disturbed be-
cause of the noise. Still, a gap is visible between singular values 2 and 3, and so
the model order will be chosen equal to n=2 .

Step 2: Estimation of A and C

In this step we will obtain estimates for A and C. As the A and C variables
have already been defined, we will call the estimates for A and C, Ae and Ce
respectively. The function dmodpi is used to determine Ae and Ce based on
the R matrix from dordpi and the model order n determined from the singular
value plot.

>> n=2;
>> [Ae,Ce]=dmodpi(R,n);
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Figure 3.4: The error signal y(k) − ŷ(k).

Step 3: Estimation of B, D and the Initial State.

Once estimates Ae and Ce for A and C have been determined, the toolbox func-
tion dac2bd will be used to estimate B and D, as Be and De respectively. The
function dac2bd requires the estimates for A and C and the measured input-
output data.

Subsequently, the toolbox function dinit is used to obtain the initial state
x0 corresponding to the current data set. This function needs estimates for all
system matrices as well as the measured input-output data.

>> [Be,De]=dac2bd(Ae,Ce,u,y);
>> x0e=dinit(Ae,Be,Ce,De,u,y);

Model Validation

The quality of the model (Ae,Be,Ce,De) that has been identified will now be
assessed. To this end, we will compare the output predicted by the identified
model to the measured output signal. As a figure of merit, we use the vari-
ance accounted for (VAF), which is described in more detail in Section 4.5.4. If
the model is good, the VAF should be close to 100%. The following code frag-
ment simulated the estimated model using the measured input signal in order
to obtain the estimated output ye . Subsequently, the VAF is calculated using the
toolbox function vaf (see manual on page 157). vaf

>> ye=dltisim(Ae,Be,Ce,De,u,x0e);
>> vaf(y,ye)
ans =

99.4479

It is clear that the estimated model described the actual system behavior well.
The error signal y(k) − ŷ(k) is plotted in Figure 3.4. This error is very small
compared to the output signal in Figure 3.2.

3.3.3 Using the Toolbox Software with Multiple Data Sets.

In this section we show how the toolbox software can be used with multiple
data batches that each result from a separate experiment on the same system.
This functionality is important for two reasons. First, rather than performing
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one large experiment on a system, a number of experiments that are uncon-
nected in time can be performed. Second, very large data batches can be split
into smaller batches in order to prevent excessive memory usage. It should be
noted that although PO-MOESP is used in this multiple-batch experiment, the
toolbox-functions for PI-MOESP can also be used with multiple batches in ex-
actly the same way as the PO-MOESP functions. A flow-graph example for two
data batches is given in Figure 3.5. In general, the “ord ”-functions deliver a
vector S containing the singular values and a compressed data matrix R. This
data matrix can be used to estimate A and C using the “mod”-function immedi-
ately. However, it can also be used as the fourth input argument in a next call to
the “ord ”-function with an additional data batch. This mechanism is shown for
two data batches in Figure 3.5. However, an arbitrary number of batches can be
concatenated in this way.

The B,D-estimation functions dac2b(d) can also be used with multiple data
batches. The mechanism is different from that of the “ord ”-functions; all data
batches can be processed in one call to dac2b(d) . Again, the mechanism is
shown graphically in Figure 3.5 for two batches.

The system under consideration in this section is a three degree-of-freedom
mass spring system stated in [4]. In this article, the following state-space model
is derived:

A =





0.9856 0.1628 0 0 0 0
−0.1628 0.9856 0 0 0 0

0 0 0.8976 0.4305 0 0
0 0 −0.4305 0.8976 0 0
0 0 0 0 0.8127 0.5690
0 0 0 0 −0.5690 0.8127




,

B =
[

0.0011 0.0134 −0.0016 −0.0072 0.0011 0.0034
]T

,

C =

[
1.5119 0 2 0 1.5119 0
1.3093 0 0 0 −1.3093 0

]
.

The system’s D-matrix is assumed to be zero. In addition, the covariance ma-
trices of the process noise and measurement noise are given by Q and R respec-
tively:

Q = 10−4 · diag
([

0.0242 3.5920 0.0534 1.034 0.0226 0.2279
])

,

R = 10−2 · diag
([

2.785 2.785
])

.

The problem defined as such falls within the class of innovation model prob-
lems, for which the PO-MOESP algorithm provides consistent estimates [2]. The
toolbox functions dordpo and dmodpo are used to perform the data compres-
sion and estimation of A and C.

Three batches of input-output data are generated. The first input batch u1(k)
is a pink-noise signal. The second batch u2(k) is a multi-sine input and the third
batch u3(k) is a pseudo-random binary sequence. A fourth pink-noise batch
u4(k) is used for validation purposes. Figure 3.6 shows the input signals of the
first three batches.
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Figure 3.5: Flow-graph for multiple-batch PI-MOESP and PO-MOESP time-
domain subspace identification using the toolbox software. This example shows

the concatenation of two data batches. Note that a Kalman gain estimate K̂ can
be obtained only in the PO-MOESP algorithm; the PI-MOESP algorithm is an
output error algorithm that does not provide a Kalman gain estimate.
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Figure 3.6: Three input sequences for the system.

The output batches corresponding to the four input batches are generated
using the system matrices shown above. The system is excited by both the gen-
erated data batches ui(k) and a process noise signal wi(k) with covariance matrix
Q. The output measurement noise signal vi(k) has covariance matrix R. The in-
put and noise-signals for the first batch are generated using the following MAT-
LAB code:

u1 = filter(b,a,randn(N,1));
w1 = randn(N,6) * sqrt(Q);
v1 = randn(N,2) * sqrt(R);

The input and output signals for the four data batches can be loaded from
the datafile examples/PO-MOESP-tutorial.mat on the CD-ROM.
We will now fit a state-space model onto the generated data.

Step 1: Data Compression and Order Estimation

The toolbox function dordpo is used to compress the available data and to pro-
vide a model order estimate. Because the three input-output batches have been
obtained in unconnected experiments, the data cannot just be concatenated and
fed to dordpo ; since the data batches are unconnected, we would introduce two
discontinuities in the system’s state sequence.

Rather, we use dordpo ’s capability to take these discontinuities into account.
Initially, only the first data batch u1 ,y1 is supplied to dordpo together with a
block-size s=12 . This yields a singular value vector S1 and a data matrix R1.
The second data batch is concatenated by supplying the batch u2 ,y2 and s=12 to
dordpo , with R1 as a fourth input argument. In this way, dordpo does concatenate
the data batches while taking the state discontinuity into account. The same
procedure is then followed for the third data batch.

Prior to identification, the signals are again detrended.
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Figure 3.7: Singular values after adding each of the three data batches.

>> u1=detrend(u1); y1=detrend(y1);
>> u2=detrend(u2); y2=detrend(y2);
>> u3=detrend(u3); y3=detrend(y3);
>> [S1,R1]=dordpo(u1,y1,12);
>> [S2,R2]=dordpo(u2,y2,12,R1);
>> [S3,R3]=dordpo(u3,y3,12,R2);

After each call to dordpo we can observe the singular value vector to ac-
tually see the increasing amount of information on the system: The singular
values after adding each of the three batches are shown in Figure 3.7. After the
first batch, the sixth singular value is still buried in noise, but after the second
and third batches the gap between dynamics-related and noise-related singular
values becomes larger, and it becomes more clear that the model order should
be n=6 .

Step 2: Estimation of A and C

In theory, each of the data matrices R1, R2 and R3 could be used to estimate the
A and C matrices. This provides us with a convenient mechanism, since after
adding any data batch we can look at the singular value gap and decide that
we have obtained enough information to move on to the estimation of A and C.
On the other hand, we may decide to add another batch. In this case we will
use the data matrix R3, because it contains information on all three data batches
and therefore is more informative than R1 or R2: these last two batches contains
information on only one and two batches respectively.

>> [Ae,Ce]=dmodpo(R3,6);
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Step 3: Estimation of B and D.

When estimating B and D based on multiple data batches, there exists a con-
catenation problem like in data compression step: the state is discontinuous in
the transition from one batch to another.

Multiple data batches can be concatenated in one single call to the dac2bd
function as follows:

>> [Be,De]=dac2bd(Ae,Ce,u1,y1,u2,y2,u3,y3);

This concatenation mechanism is different from the one used in the data com-
pression step in that there are no intermediate results for B and D after adding
the first and second batch. However, one should realize that in the data com-
pression step, one does not know beforehand how many data batches will be
required, so that one should be able to continue estimating A and C after adding
any batch. When estimating B and D, one already knows how many data

batches are used, so one (B̂,D̂) estimate is calculated based on all data batches.

Model Validation

Now that an estimated model (Ae,Be,Ce,De) is available, it would seem nat-
ural to simulate the output of this model based on the validation input batch,
and to compare this prediction to the actual output. However, the system under
consideration in this section is only marginally stable. Because of the noise, the
poles of the estimated model are not exactly equal to those of the actual system.
Because the actual system poles are so close to the unit circle edge, it is in fact
non unlikely that the estimated poles are just outside the unit circle because of
the disturbances. This would mean that the estimated model is unstable, and
simulation would result in an unbounded output signal. Figure 3.8 illustrates
how close to the unit circle edge the actual system poles lie.

Simulating an unstable model in order to obtain a predicted output is impos-
sible since the predicted output would become infinite. However, it is possible
to use a one step ahead predictor to obtain the model output. In this way, the
following stable model is simulated:

x̂(k + 1) = (Â − K̂Ĉ)x̂(k) + (B̂ − K̂D̂)u(k) + K̂y(k), (3.8)

y(k) = Ĉx̂(k) + D̂u(k). (3.9)

Obviously, we need a proper Kalman gain estimate K̂ to simulate this innovation
model. This Kalman gain is obtained from dmodpo as follows:

>> [Ae,Ce,Ke]=dmodpo(R3,6);

It should be noted at this point that the Ae and Ce matrices are equal to those
estimated before: these matrices are independent of whether a Kalman gain is
requested. The last element of information needed to simulate the predicted out-
put is the initial state of the validation batch. This initial state is obtained using
the dinit function on the validation batch. Since we will simulate an innova-
tion model, the initial state corresponding to the innovation model is estimated.
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Figure 3.8: Estimated pole locations (×) and true pole locations (+).

It should again be stressed at this point that in order to validate the model, we
use a fourth validation batch rather than one of the three batches based on which
the model was identified. The main reason for using a separate validation batch
is that it reduces the chance of over-fitting the model; a concept which is ex-
plained in more detail in Section 4.5.3.

>> x04e=dinit([Ae-Ke * Ce],[Be-Ke * De],Ce,[De zeros(2,2)],[u4 y4],y4);
>> yek=dltisim(Ae-Ke * Ce,[Be-Ke * De Ke],Ce,[De zeros(2,2)],...

[u4 y4],x04e);

We calculate the VAF between y4 and yek in order to validate the estimated
model:

>> vaf(y4,yek)
ans =

66.9799
50.2648

These VAF values are surprisingly low. However, this does not imply that
the estimated model is bad; if noise-levels are high compared to the signals, the
maximum attainable VAF will be low, even if the model matrices would be ex-
actly equal to the actual system matrices.

Another way the assess the estimated model’s quality is by using the resid-
ual test in Section 4.5.1. The residual y4 − yek should be white. The output
signal y(k) and error signal ǫ(k) = y4-yek are plotted in Figure 3.9. The auto-
correlation of the residuals on the first and second output is shown in Figure 3.10.
The auto-correlation function more or less equals a pulse for the two residuals.
The estimated model is valid.

gijsvanderveen
Text Box
x04e=dinit(Ae-Ke*Ce,[Be-Ke*De Ke],Ce,[De zeros(2)],[u4 y4],y4);
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Figure 3.9: The output signals and error signal ǫ(k) = y(k)− ŷ(k) corresponding
to the fourth data batch. The top two signals are the two output signals of the
fourth batch. The bottom two signals are the two prediction errors.
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Figure 3.10: The output signals and error signal ǫ(k) = y(k)−ŷ(k) corresponding
to the fourth data batch. The top two signals are the two output signals of the
fourth batch. The bottom two signals are the two prediction errors.
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3.4 Subspace Identification in the Frequency Domain

The subspace algorithms and implementation discussed in the previous section
all dealt with time-domain measurements. The subspace implementation dis-
cussed in this section identifies models based on frequency response function
(FRF) measurements. Although measuring a system’s FRF usually is a more
complex operation than measuring time-series, the FRF approach has a number
of advantages, as was already discussed in Section 2.4. To be able to use the
frequency domain subspace identification methods in the toolbox, when instead
of FRF measurements, input and output spectra are available, the FRF needs to
be estimated from these spectra first.This can however only be done if the input
spectrum matrix is nonsingular at each of the measured frequencies.

It is possible to estimate the FRF from measured input-output data. To this
end, the MATLAB Identification Toolbox [5] functions spa and etfe can be spa

etfeused.

3.4.1 Identifying Discrete-Time Models

The toolbox software provides a number of MATLAB functions that enable the
identification of discrete-time state-space models from FRF data. Figure 3.11
shows how a state-space model is obtained starting from data. When com-
paring this flowchart to Figure 3.1, it is obvious that the general method is the
same. Like in the time-domain, multiple data batches can be concatenated. This
method is very similar to that of the time-domain case in Figure 3.5, and it is
shown in Figure 3.12.

First there is an “ord ” function that compresses the data. This function per-
forms a frequency-domain compression of data in an Ordinary MOESP like fash-
ion, hence the name fdordom (see manual on page 137). The inputs to fdordom fdordom
are a vector of complex frequencies w, the FRF measurements H and an upper
bound s on the model order. The outputs of fdordom are a vector of singular
values and a compressed data matrix R. Like in the time-domain case, multiple
data batches can be concatenated using this R-matrix. A “mod” function is subse-

quently used to obtain the estimates Â and Ĉ from the estimate of the extended

observability matrix estimate Ôs that is incorporated in the data matrix R. The
user needs to specify the desired system order n as well.

Example 3.3 (Estimating A and C from FRF data)

In this example we will identify the second-order model (2.2) on page 12.
First, a dataset is generated. As the model is discrete-time, we need to spec-
ify complex frequencies on to unit circle. We will specify N = 512 frequencies
equidistantly spaced on the upper part of the unit circle and calculate the cor-
responding FRF using the toolbox function ltifrf (see manual on page 148). ltifrf
containing the FRF, as shown in Figure 2.3 on page 30. In this case, the array has
dimensions 1 × 1 × 512. In practice, H will be measured using a network ana-
lyzer. These measurements are assumed to be disturbed by a Gaussian random
variable, which is emulated by adding white noise to the calculated FRF.
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Figure 3.11: Flow-graph for frequency-domain subspace identification of
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3.4 Subspace Identification in the Frequency Domain 55

Start

User interaction

Estimated model

fdordom

fdordom

fdmodom

Dataset 1 Dataset 2

fac2b(d)

End

H1, w1 H2, w2

s

S1

S2

n

R1

R2

Â, Ĉ
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Figure 3.13: Singular values for the frequency-domain subspace identification
example.

>> w=exp(j * pi * linspace(0,1,512)).’;
>> H=ltifrf(A,B,C,D,[],w,[]);
>> H=H+0.3 * randn(1,1,512);

The frequency-vector and disturbed FRF data can be loaded from the datafile
examples/FDDiscSub.mat on the CD-ROM. The first step in the identifica-
tion is the data compression, for which the fdordom function is called. As we
assume that we don’t know the system order in advance, we will choose a rather
large upper bound s = 8:

>> [S,R]=fdordom(H,w,8);

A plot of the eight singular values in the vector S is shown in Figure 3.13.
From the singular value plot it is clear that the system order n should be chosen

equal to two. The next step is to obtain the estimates Â and Ĉ using the function
fdmodom (see manual on page 134):fdmodom

>> [Ae,Ce]=fdmodom(R,2);

At this point we would like to assess the quality of the estimated Ae and Ce
matrices. However, we cannot just compare Ae and Ce to A and C, since sub-
space identification estimates the state-space matrices up to an unknown simi-
larity transformation. As the eigenvalues of a state-space model’s A matrix are
invariant under such a transformation, we can assess Ae by comparing its eigen-
values to those of A.

>> eig(Ae)-eig(A)
ans =

1.0e-03 *
-0.8792 + 0.7270i
-0.8792 - 0.7270i
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There is a clear difference between the eigenvalues of Ae and A, which is
caused by the noise that was added to the FRF “measurement”. However, this
difference is small.

After having obtained the Â and Ĉ estimates, the B and D matrices can be es-
timated. To this end, the functions fac2b (see manual on page 129) and fac2bd fac2b

fac2bd(see manual on page 131) can be used. The former will assume that D is zero, and
estimates only B. The latter estimates both B and D. Like in the time-domain
implementation, multiple data batches can be concatenated in estimating B and
D.

Example 3.4 (Estimating B and D from FRF data)

This example is a continuation of the previous example. Again, the datafile
examples/FDDiscSub.mat on the CD-ROM can be used. Given the estimates
Â and Ĉ, called Ae and Ce in MATLAB, the function fac2bd can be used to
obtain estimates B̂ and D̂ as follows:

>> [Be,De]=fac2bd(Ae,Ce,H,w)
Be =

-0.1634
-0.0849

De =
0.0102

The De estimate can be assessed in a straightforward way, since a system’s
D matrix is invariant under the similarity transformation that is inherent to sub-
space identification. We know that the actual D = 0 and we can thus conclude
that the estimated De is rather close to its expected value.

In order to assess all the model matrices, we can compare the frequency-
responses of the actual system and the estimated model. Figure 3.14 shows the
transfer function of the actual system and of the estimated model. It is clear that
the differences are very small. The MATLAB commands for plotting this figure
are the following:

>> Ha=ltifrf(A,B,C,D,[],w,[]);
>> He=ltifrf(Ae,Be,Ce,De,[],w,[]);
>> f=linspace(0,0.5,512);
>> subplot(2,1,1);
>> semilogy(f,abs(Ha(:)),f,abs(He(:)),’--’);
>> subplot(2,1,2);
>> plot(f,unwrap(angle(H(:))),f,unwrap(angle(He(:))) ,’--’);

First, the FRF for the actual and estimated system matrices is calculated us-
ing the ltifrf toolbox function. Then a 512-point discrete frequency grid f ∈
[0, 0.5] is calculated, corresponding to frequencies ranging from 0 to 0.5 times
the sampling frequency. The absolute values of the measured and estimated
FRF are plotted on this frequency axis using a logarithmic y-axis. Subsequently,
the phase is plotted. Note that the unwrap function is used to prevent jumps in unwrap
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Figure 3.14: Transfer functions of the actual system (solid) and the estimated
model (dashed) resulting from frequency-domain subspace identification.

the phase from −π to π. In all cases, the notation H(:) is used to convert the 3D
FRF array into a vector.

3.4.2 Identifying Continuous-Time Models

In this section we will show how the frequency-domain subspace identifica-
tion functions in the toolbox can be used to identify continuous-time state-space
models. The mechanism is basically the same as in the discrete-time case in
Figure 3.11. However, in contrast to the mechanism shown in Figure 3.12, mul-
tiple data batches are not supported when identifying continuous-time mod-
els. This is not an implementation shortcoming but an algorithm shortcom-
ing; the continuous-time algorithm uses Forsythe-recursions [6] to prevent ill-
conditioning in the data-compression stage. These Forsythe-recursions do not
allow the concatenation of multiple batches. The second character of the function
names for the “ord ” and “mod” function are a “c” to indicate that the functions
generate data suitable for estimating continuous-time models.

Example 3.5 (Identifying a continuous-time model)

In this example we will identify the continuous-time system (2.16) from [6].
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Figure 3.15: Singular values for the continuous-time frequency-domain sub-
space identification example.

This system is repeated here for convenience:

A =





0 1 0 0 0 0
−1 −0.2 0 0 0 0

0 0 0 1 0 0
0 0 −25 −0.5 0 0
0 0 0 0 0 1
0 0 0 0 −9 −0.12




, B =





0
1
0
1
0
1





C =
[
1 0 1 0 1 0

]
, D = 0.

The FRF is calculated on an equidistant frequency-grid of N = 900 points in the
frequency-band [0.01, 9] rad/s. A disturbance is subsequently added to the FRF:

>> w=j * (0.01:0.01:9)’;
>> H=ltifrf(A,B,C,D,[],w,[]);
>> H=H+0.01 * randn(1,1,900);

This frequency-vector and FRF can be loaded from the datafile examples/
FDContSub.mat on the CD-ROM. The first step in identifying this model is the
compression of data in order to generate an order-estimate. Since we are dealing
with a continuous-time model here, the continuous-time compression function
fcordom (see manual on page 135) is used. The upper bound s on the model fcordom
order, or block-size, is chosen equal to 16 in this case.

>> [S,R]=fcordom(H,w,16);

The 16 singular values that are returned by fcordom are plotted in Fig-

ure 3.15. It is obvious that a 6th order model should be identified. The Â
and Ĉ matrices corresponding to a 6th order model can be obtained using the
continuous-time “mod” function fcmodom (see manual on page 133). This func- fcmodom
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Figure 3.16: Transfer functions of the actual system (solid) and the estimated
model (dashed) resulting from continuous-time frequency-domain subspace
identification.

tion needs the data matrix R that was obtained using fcordom and the desired
model order.

>> [Ae,Ce]=fcmodom(R,6);

The next step is the determination of the B̂ and D̂ estimates. Like for the
discrete-time system in Example 3.4, the functions fac2b and fac2bd can be
used to this end.

>> [Be,De]=fac2bd(Ae,Ce,H,w)
Be =

0.0075
-0.0063
-0.0043
-0.0052

0.0057
0.0147

De =
0.0020

The De matrix can be directly compared with the actual system’s D-matrix,
since a state-space model’s D matrix is invariant under the similarity transfor-
mation that is inherent to subspace identification. The matrix De should be 0,
and is indeed very small.

The actual system and estimated model can be compared by comparing their
frequency response functions. These are plotted in Figure 3.16. The magnitude
of the difference between the actual and estimated FRF is shown in Figure 3.17.
The MATLAB commands for this plot and the previous are similar to those used
in the discrete-time case on page 57. When comparing Figures 3.16 and 3.17, it
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Figure 3.17: Magnitude of the difference between the actual and estimated FRF.

is clear that the magnitude of the error is much smaller than the FRF magnitude
itself. We can therefore conclude that a good model has been estimated.
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Chapter 4

The Identification Cycle

After studying this chapter you can:

• use MATLAB to generate commonly used identification input sig-
nals.

• remove trends and spikes from measured signals.

• use prefiltering to improved data for identification.

• estimate and remove delays from measured data.

• select the model structure in identification procedures.

• validate identified models.

63
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4.1 Introduction

This chapter is a companion to Chapter 10 of the textbook. In this chapter we
show some of the practical considerations in the identification cycle. This mainly
concerns how certain operations are performed using MATLAB and the toolbox
software. The textbook itself covers the theoretical and engineering background.

The identification cycle is discussed in the textbook, and is displayed in Fig-
ure 4.1 for convenience. The most important message that is conveyed by this
figure is that identifying a system is an inherently iterative process. None of the
steps —the experiment design, the experiment itself, the choice of model struc-
ture and the model fitting itself— should be taken for granted. Rather, the result
of each step should be inspected carefully, and the consequences for each of the
other steps should be considered.

Section 4.2 contains a number of practical notes to accompany the theoretical
background on experiment design covered in Section 10.2 of the textbook. In
Section 4.3 the practical points of data preprocessing in MATLAB are covered.
Section 4.4 shows how model structures can be selected in a number of identi-
fication schemes. Section 4.5 shows how an estimated model can be validated
using MATLAB and toolbox functions.

Finally, Section 4.6 shows a case-study example in which all concepts dis-
cussed in this chapter are illustrated.

4.2 Experiment Design

In this section the design of an identification experiment will be illustrated. The
theory and many guidelines on experiment as described in Section 10.2 of the
textbook, and the textbook should be consulted for most of the decisions. In this
section we will show how to generate the various input signals discussed in the
textbook.

Figure 4.2 contains the identification input sequences that have been dis-
cussed in the textbook. On the left hand side, the inputs and their characteristic
parameters are shown. On the right hand side, the MATLAB code to generate
signals with these characteristics is shown. It is important to note that while the
textbook describes the theoretical properties of the various signals, the code that
is shown here is very practically oriented. We assume that the user wishes to
generate an input sequence of N samples, with the discrete-time vector t rang-
ing from 1 up to and including N .

The signal generation commands that are shown do not require any MAT-
LAB toolboxes to be installed. An exception is the last command: prbn (seeprbn
manual on page 152). It is a function that is part of the toolbox software pro-
vided with this book. The frequency sweep can also be generated using the
chirp function, provided that the Signal Processing Toolbox [1] is installed.chirp
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Figure 4.2: Different types of standard input sequences used in system identi-
fication. The characteristic parameters are shown visually in the figures on the
left. The code on the right shown how to generate these signals in MATLAB.
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4.3 Data Preprocessing

This section will illustrate the issues in data preprocessing that were covered in
Section 10.3 of the textbook. Data obtained from an actual system may have been
sampled at too high a sampling frequency. In addition, the data may contain un-
wanted trends or spikes. Data may be prefiltered based on prior knowledge of
the disturbance spectra in order to obtain more accurate models. Finally, data
from different experiments can be concatenated to increase the amount of avail-
able information.

4.3.1 Decimation

Selecting a sampling frequency for measuring data sequences is an important
step in identification. In Section 10.2.1 of the textbook we explained that if a
system has a bandwidth of interest of ωB rad/s, a rough engineering rule is to
take the sampling frequency fs = 10ωB/2π Hz. However, in practice one might
not know the bandwidth of interest in advance. In that case, one can first sample
a signal at a high sampling frequency, after which one can find the bandwidth of
interest by inspecting the signal’s spectrum. Once the bandwidth of interest has
been found, one can either install an analog anti-aliasing filter and measure the
signals at a lower sampling frequency, or one can digitally resample the already
measured sequence.

When resampling a sampled time-signal at a lower sampling frequency, one
has to use a digital low-pass filter to prevent aliasing. In addition, such a filter
causes delays, and these have to be taken into account as well. The MATLAB
Signal Processing Toolbox [1] function resample takes care of both issues. If resample
one wishes to resample the signal x at one-fifth the original sampling frequency
to obtain the signal y , the following MATLAB command can be used:

>> y=resample(x,1,5);

In this command, the numbers 1 and 5 indicate that the signal should be re-
sampled at 1/5 times the original sampling frequency. Any other pair of integers
p and q can be used to resample the signal at p/q times the original sampling
frequency.

4.3.2 Detrending and Shaving

As described in Section 10.3.2 of the textbook, a system’s behavior can be lin-
earized around a certain operating point, or offset, (u, y). Usually, these off-
sets are unknown, and there are two ways to deal with their presence. The first
method —subtracting estimates of these offsets from the input-output data—
will be described in this section. The second method —incorporating the offset
into the model as an unknown parameter— will not be treated in the section.
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A widely used method to estimate offsets is to calculate the sample mean of
the measured sequences:

y =
1

N

N∑

k=1

y(k), u =
1

N

N∑

k=1

u(k).

Although the toolbox software does not include functions for this, MATLAB it-
self contains a function that detrends data by subtracting the sample mean. The
function detrend is convenient since it processes both univariate and multi-detrend
variable signals. Removing a sample mean y from a signal y is accomplished as
follows:

>> yd=detrend(y,’constant’);

In addition to removing an unknown offset from a signal, detrend also al-
low the removal of linear trends from signals. These may be caused by amplifiers
in the measurement setup that suffer from an offset drift. In order to remove lin-
ear trends, the following command can be used:

>> yd=detrend(y);

The removal of unknown offsets and/or linear trends from signals can be
seen as a special case of signal prefiltering. A more general case of signal pre-
filtering for SISO systems is considered in the next section.

However, before continuing it should be noted that actually measured sig-
nals often contain spikes and other artifacts due to temporary sensor failures or
other unforeseen external influences. As these artifacts do not correspond to the
underlying system dynamics, they should be removed before starting the iden-
tification. A method to “shave” spikes off signals has been developed in [2], and
has been implemented in the toolbox function shave (see manual on page 155).shave

Since the function shave correctly handles signals with rather complex trends,
it should preferably be called before using the detrend function. However, in
contrast to detrend , shave only supports univariate signals. This means that
in the multivariable case, shave should be used on each of the signal compo-
nents separately.

A full calling syntax specification for shave can be found on page 155.

Example 4.1 (Shaving and detrending a signal)

In this example we show the practical use of the functions shave and detrend
in removing artifacts and trends from signals. The starting point of this example
is a signal on which a trend and two large spikes have been superposed. This
signal can be loaded from the datafile examples/ShaveData.mat on the CD-
ROM. The function shave is used without output arguments, which generates
Figure 4.3.

>> shave(y,3);
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Figure 4.3: The result of removing spikes from a signal using shave .

The additional argument “3” specifies the width of the amplitude band in
which signals are considered to be actual signals rather than artifacts. The band
between the curving lines above and below the signal in Figure 4.3 represents
the band of signal-values that are assumed to be “good”. Samples outside this
band are assumed to be spikes, and these are removed and replaced by a linear
interpolation of the neighboring samples. The band of “good” samples follows
the trend of the signal. Selecting the bandwidth, “3” in this case, it a matter
of trial and error. On the one hand, one might take a very small value. This
produces a very smooth signal, but also removes a lot more than just the spike
artifacts. On the other hand, a very large value does not destroy the actual signal,
but does not remove spikes either. In practice, the bandwidth should be selected
such that obvious spikes are removed while most of the signal is retained. From
a visual inspection of the result it is clear that there is a strong trend present in
the signal. This trend is removed using the function detrend , after first having
obtained the shaved signal:

>> ys=shave(y,3);
>> yd=detrend(ys);

The detrended signal yd is plotted in Figure 4.4.

4.3.3 Prefiltering the Data

In addition to removing spikes and trends from signals, signals related to SISO
systems can be prefiltered in order to reduce the influence of noise in certain
areas of the spectrum. As explained in Section 10.3.3 of the textbook, prefilter-
ing can be used for two reasons. First, if the disturbance’s frequency-band is
known, the filtering may be specified such that this frequency-band does not
have a large influence in the identification algorithm’s cost function. Second, the
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Figure 4.4: The result of removing a linear trend from the shaved signal.

filtering can be chosen such that the mismatch between the system’s and model’s
transfer function is minimized in certain important areas of the spectrum, while
the mismatch may be larger in other areas.

Example 4.2 (Prefiltering)

In this example we use data from the system (2.2) on page 12 to illustrate the
effect of prefiltering data batches. The input to the system is a N = 4096 sample
unit-variance Gaussian white-noise signal. The output y(k) of the system consist
of a deterministic part simulated by dltisim (see manual on page 108), and adltisim
stochastic part which is generated by feeding a unit-variance Gaussian white-
noise signal through a fifth-order Butterworth high-pass filter with a cut-off at
0.25 times the sampling frequency. The signals are generated using the following
MATLAB commands. Note that the function butter from the MATLAB Signalbutter
Processing Toolbox [1] is used. The function filter is part of the standardfilter
MATLAB installation.

>> u=randn(4096,1);
>> ynf=dltisim(A,B,C,D,u);
>> [bn,an]=butter(5,2 * 0.25,’high’,randn(4096,1));
>> v=filter(bn,an,e);
>> y=ynf+v;

The above signals can be loaded from the datafile examples/PrefilterData.
mat on the CD-ROM. Singular values for the data are obtained using the PI-
MOESP subspace identification algorithm discussed in the previous chapter. These
singular values are plotted in the top halve of Figure 4.5. The required model or-
der is unclear.

However, in this example the useful signal and the disturbance can be sep-
arated because the signal has signal power mainly in the low frequencies while
the noise contains mostly high frequencies. This can be seen by plotting the
spectrum of the signal as follows:

>> spectrum(y,[],[],[],[],1);

The spectrum has been plotted in Figure 4.6. The high-frequency content
is mainly due to noise. A low-pass filter will thus remove most of the noise
while retaining most of the actual signal. Therefore, the input and output signal
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Figure 4.5: The effect of prefiltering on the estimated model order.

are fed through a third-order Butterworth low-pass filter with a cut-off at 0.15
times the sampling frequency. A low-pass filter is chosen because we know that
the disturbance resides mainly in the higher frequency-region. A low-pass fil-
ter therefore removes much of this disturbance. On the other hand, we should
not choose the cut-off frequency of the prefilter too low, since in that case in-
formation corresponding to the system’s dynamics is lost. The system (2.2) has
poles in z = 0.8367e±0.1462jπ. This implies that its peak magnitude response
lies at 0.1462/2 times the sampling frequency. A low-pass filter with a cut-off
frequency at 0.15 times the sampling frequency therefore is unlikely to destroy
information corresponding to the system’s dynamics. The signals are prefiltered
using the following MATLAB commands:

>> [bf,af]=butter(3,2 * 0.15);
>> uf=filter(bf,af,u);
>> yf=filter(bf,af,y);

The singular values for the filtered data are also obtained using PI-MOESP,
and these are plotted in the lower halve of Figure 4.5. It is clear that the model
order should be chosen equal to n = 2.

Subsequently, the Â matrix estimates are calculated based on both the unfil-
tered and the filtered data. These eigenvalues are compared with the true sys-
tem’s eigenvalues. The results as obtained in MATLAB are:

unfiltered_diff =
1.0e-03 *
0.3223 - 0.2717i
0.3223 + 0.2717i

filtered_diff =
1.0e-04 *
0.1509 + 0.2409i
0.1509 - 0.2409i
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Figure 4.6: The power spectrum of the disturbed output signal.

It is clear that prefiltering the data has made the eigenvalue estimates sub-
stantially more accurate.

4.3.4 Concatenation of Data Batches

As stated in the textbook, it might be important to concatenate data batches col-
lected from several experiments. In this way, all available information extracted
from the system is used. However, as these data batches are usually uncon-
nected, the initial state of the previous batch does not correspond to the final
state of the current batch, which makes pasting data batches together a nontriv-
ial job.

All time-domain subspace data compression functions —dordpi (see man-dordpi
ual on page 117),dordpo (see manual on page 119) and dordrs (see manual ondordpo

dordrs page 122)— and B/D estimation function —dac2b (see manual on page 98) and
dac2b dac2bd (see manual on page 100)— contain mechanisms that correctly take this

dac2bd state-discontinuity into account [3, Chap. 2 and Sec. 5.4]. Section 3.3.3 contains
an example on how to concatenate batches for these algorithms.

In frequency-domain identification, data batches can be more easily concate-
nated, since FRFs at different frequencies can be calculated independently from
one another. However, proper care has to be taken in internal weighting rou-
tines. The discrete-time model frequency-domain data compression function
fdordom (see manual on page 137) correctly takes these issues into account. Thefdordom
B/D estimation functions fac2b (see manual on page 129) and fac2bd (seefac2b

fac2bd manual on page 131) also take proper care when concatenating batches. How-
ever, when estimating continuous-time models using the functions fcordomfcordom
(see manual on page 135) and fac2b /fac2bd , concatenating batches is possible
neither in the data compression routines nor in the B/D estimation functions.
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The state-space optimization framework does not support the concatenation
of unrelated data batches in the time-domain function doptlti (see manual on doptlti
page 113). In the frequency-domain, the data batches can be concatenated before
providing them as measurement data to the optimization function foptlti (see foptlti
manual on page 141).

4.4 Model Structure Selection

An important decision in the system identification cycle is the determination of
a model structure. Structure in this respect concerns both delays (“dead time”)
and the description of the model’s dynamic behavior. We will first show how
delay-estimation can be carried out. Then, the selection of dynamics structure
in both the identification of ARMAX models and the subspace identification of
state-space models is illustrated.

4.4.1 Delay Estimation

The delay in a SISO system is obtained from the data by estimating the system’s
impulse response. We will show that this is a linear regression problem which
can be easily solved within MATLAB. The system’s impulse response will be
modeled as a finite impulse response (FIR). Although a state-space model gener-
ally has in infinite impulse response (IIR), this IIR can be approximated by a FIR
by taking the order m sufficiently large. An mth order FIR model is given by the
following equation:

y(k) = h0u(k) + h1u(k − 1) + · · · + hmu(k − m). (4.1)

This one relation between the output signal and input signal does not yield suf-
ficient information to estimate the hi. However, we can stack the above equation
at different time-instances such that as available data is used. This yields the
following Toeplitz-system from which the hi can be solved:





u(m + 1) u(m) · · · u(1)
u(m + 2) u(m + 1) · · · u(2)

...
...

. . .
...

u(N) u(N − 1) · · · u(N − m)









h0

h1
...

hm




=





y(m + 1)
y(m + 2)

...
y(N)




.

In a MATLAB program, the m + 1 coefficients hi of an mth-order FIR can be
estimated as follows:

>> h=toeplitz(u(m+1:N),u(m+1:-1:1)) \ y(m+1:N);

Given the hi, we can visually inspect at which sample instant the impulse
response starts to deviate from zero significantly. The earlier samples, which are
more or less equal to zero, are caused by the delay present in the system. If the
delay is denoted d, it can be removed from the measured signals as follows:
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>> d=2;
>> u=u(1:N-d);
>> y=y(d+1:N);

If this code is used in a MATLAB script, one should take into account that all
signals will have only N − d samples after removing the delay.

4.4.2 Structure Selection in ARMAX Models

After removing a system’s delay from the measured input-output sequences, its
structure can be estimated. In this section we will illustrate Example 10.11 on
page 330 of the textbook. We will mainly show which MATLAB commands can
be used to reproduce the results of this textbook example. Note that in order to
use the commands of this section in MATLAB, the System Identification Toolbox
[4] and the Control Systems Toolbox [5] are required.

First, the actual data generating ARMAX model is defined, along with the
1000-sample dataset as described in the textbook. The numerator and denom-
inator of the deterministic system will be called sysnum and sysden respec-
tively. The numerator and denominator of the stochastic system will be called
noinum and noiden respectively. The input to both is a N = 1000 sample long
unit-variance Gaussian white-noise sequence.

>> sysnum=[1];
>> sysden=[1 -0.95];
>> noinum=[1 -0.8];
>> noiden=[1 -0.95];
>> u=randn(1000,1);
>> e=randn(1000,1);
>> y=dlsim(sysnum,sysden,u)+dlsim(noinum,noiden,e);

The resulting input and output data sequences can be loaded from the datafile
examples/ARMAX-example.mat on the CD-ROM. We will approximate this
second-order ARMAX model with a 21th-order ARX model. For this to be pos-
sible, the C(q) polynomial —called noinum in the MATLAB code— must be
Hurwitz. Whether its roots indeed lie within the unit circle can be checked using
the roots function:roots

>> roots(noinum)
ans =

0.8000

We conclude that C(q) is indeed Hurwitz, and proceed to estimating a 21th-
order ARX model. For this step, the Identification Toolbox function arx will bearx
used. The function iddata is used to generate a data structure suitable for theiddata
arx function. The vector [21 21 0] denotes that 21th-order ARX polynomials
A(q) and B(q) should be estimated, and that the delay should be 0.

>> ARXmodel=arx(iddata(y,u),[21 21 0]);
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The poles and zeros of this model can be plotted using the pzmap command, pzmap
which yields a figure similar to Figure 10.10 on page 332 of the textbook. The
structure selection now proceeds by visual inspection of the poles and zeros;
poles and zeros that practically cancel each other are assumed to be caused by the
overparameterization in the high-order model. Only poles and zeros that do not
overlap are assumed to correspond to actual system dynamics. Figure 10.10 on
page 332 of the textbook shows that there is only one pole which is not canceled
by a zero, and thus the system order is taken equal to 1. The noncanceling pole
provides an accurate estimate of the actual system pole in z = 0.95, which can
be verified by looking at the real roots of the A(q)-polynomial:

>> TheRoots=roots(ARXmodel.A);
>> TheRoots(imag(TheRoots)==0)
ans =

0.9495

The actual ARMAX model can be identified using the armax function in the armax
Identification Toolbox. We will specify first-order polynomials for A(q), B(q)
and C(q), while the delay is assumed to be zero. This yields the options-vector
[1, 1, 1, 0].

>> ARMAXmodel=armax(iddata(y,u),[1 1 1 0])
Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + C(q)e(t)
A(q) = 1 - 0.9655 qˆ-1
B(q) = 0.7987
C(q) = 1 - 0.8713 qˆ-1
Estimated using ARMAX
Loss function 1.96054 and FPE 1.97238
Sampling interval: 1

The actual system polynomials are A(q) = 1 − 0.95q−1, B(q) = 1 and C(q) =
1 − 0.8q−1. The identification has thus yielded a moderately accurate model.

4.4.3 Structure Selection in Subspace Identification

Whereas structure selection for ARMAX models is a rather complex operation,
it is much simpler for subspace identification. Like in the ARMAX case, a delay
first needs to be eliminated from the signals. Subsequently, the only parameter
that needs to be supplied to the first data compression “ord ” function is the
block size s . This block-size limits the model order to a maximum of s − 1. The
block size s thus needs to be chosen larger than the expected model order.

The singular values from the data compression step can then be used to de-
termine the required model order. Examples of this procedure can be found in
Section 3.3.2 and in Example 9.4 on page 270 of the textbook. A more involved
procedure can be found in the case-study in Section 4.6.
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4.5 Model Validation

In this section, the model validation methods introduced in Section 10.5 of the
textbook will be illustrated. First the MATLAB commands needed to perform
the auto-correlation and cross-correlation tests will be given. Then, the cross-
validation test will be described. Finally, the MATLAB commands needed to
calculate the VAF for will be explained.

4.5.1 Auto-correlation Test

The auto-correlation test, as well as the cross-correlation test in the next section,
fall within the class of residual tests. These tests are applicable to innovation
models (5.55)–(5.56) on page 138 of the textbook, in which an optimal model
means that the variance of the one-step ahead predictor error ǫ̂(k, θ) is minimal.
This error is defined as:

ǫ̂(k, θ) = y(k) − ŷ(k, θ). (4.2)

In the textbook we explained that if the system under consideration falls within
the model class defined by a certain innovation model, the properties of ǫ̂(k, θ)
for θ equal to the global optimum calculated using data from an open-loop exper-
iment should be the following:

1. The sequence ǫ̂(k, θ) is a zero-mean white-noise sequence.

2. The sequence ǫ̂(k, θ) is independent of the input sequence u(k).

The vector ǫ̂(k, θ) is defined as the difference between the actually measured
output y(k) and the innovation model output ŷ(k, θ) from (2.6)–(2.7). This model
can be simulated using the toolbox function dltisim .

Example 4.3 (Obtaining a residual vector)

Given an arbitrary innovation state-space model defined by the matrices
(A, B, C, D, K), a residual vector ǫ(k) can be obtained using the toolbox func-
tion dltisim to simulate an innovation model:

>> epsilon=dltisim(A-K * C,B-K * D,C,[D zeros(l,l)],[u y]);

For MIMO systems, the residuals ǫ̂1(k, θ) to ǫ̂ℓ(k, θ) for each of the outputs
are stored in the columns of the matrix epsilon .

Given the residual vector ǫ̂(k, θ) for each of the outputs, the whiteness of
the residual can be checked by calculating its auto-correlation function. This is
done using the MATLAB Signal Processing Toolbox function xcorr . The func-xcorr
tion xcorr calculates the cross-correlation between two signals, and the cross-
correlation of ǫ̂(k, θ) and ǫ̂(k, θ) equals an auto-correlation. The auto-correlation
is a signal of length 2N+1, corresponding to the auto-correlation from lag −N up
to and including lag +N . However, in practice one assesses a signal’s whiteness

gijsvanderveen
Text Box
epsilon=dltisim(A-K*C,[B-K*D K],C,[D -eye(l)],[u y])
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based on a smaller lag-interval of say −d to +d. The function xcorr supports
the calculation of limited lag-intervals by specifying d as a third input argument.
The auto-correlation vector ac can therefore be calculated as follows:

>> ac=xcorr(epsilon,epsilon,d);

The auto-correlation should look like a pulse signal, as shown in the lower
left plot of Figure 10.14 on page 339 of the textbook. A plot can be made using
the following MATLAB commands:

>> plot(-d:d,ac);

For a model having more than one output, the auto-correlation function can
be calculated analogously for each of the vectors epsilon1 to epsilonl .

4.5.2 Cross-Correlation Test

Like the auto-correlation test, the cross-correlation test is a residual test that
can be used on innovation state-space models. In fact, the cross-correlation test
checks the second property of the residual specified in the previous section: the
residual should be independent of the input signal u(k). The same residual vec-
tor epsilon as calculated in the previous section can be reused here. Again, the
xcorr function is used to calculate the cross-correlation between the residual
and the input signal as follows:

>> xc=xcorr(epsilon,u,d);

This command yields the cross-correlation xc from lag −d to up and includ-
ing lag +d. The auto-correlation should be very small, as shown in the lower
right plot of Figure 10.14 on page 339 of the textbook. A plot can be made using
the following MATLAB commands:

>> plot(-d:d,xc);

For MIMO systems, this situation is more involved, since the residual for
each of the outputs should be uncorrelated with each of the inputs. This involves
calculating the cross-correlation for each of the ℓm input-output combinations.

4.5.3 Cross-Validation Test

The residual tests discussed so far, as well the the variance accounted for dis-
cussed in the next section, do not make sure the model adequately describes the
system dynamics. This is a consequence of overfitting. In case of overfitting
the model complexity or the number of model parameters has become so large
with respect to the length of the data sequence that the predicted output very
accurately matches the the identification data. On a different data set, such an
overfitted model may not predict the output well. This allows the detection of
overfitting.
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Therefore, a measured data batch is usually split into an identification part
and a validation part. The identification is then performed on the first part (say
the first 2/3 of all samples), after which the tests described in this section can be
reevaluated on the second part (the remaining 1/3 of all samples) of the mea-
sured data. In MATLAB code, this is done as follows, assuming that N samples
of input-output data u/y are available.

>> u_id=u(1:floor(2 * N/3),:);
>> y_id=y(1:floor(2 * N/3),:);

A model should now be identified based on u id and y id .

>> u_val=u(floor(2 * N/3)+1:N,:);
>> y_val=y(floor(2 * N/3)+1:N,:);

The output should now be predicted with u val as input signal. How this
prediction is carried out depends on which model type has been identified. As-
suming that a state-space model (A, B, C, D) has been identified, the estimated
validation output ye val is calculated as follows:

>> ye_val=dltisim(A,B,C,D,u_val);

Having obtained a prediction for the validation output, the tests in this sec-
tion should be performed again.

4.5.4 Variance Accounted For

The variance accounted for (VAF) is a scaled variant of the cost function JN (θ)
that is throughout both the textbook and this companion book. It is defined as

VAF (y(k), ŷ(k, θ)) =




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1

N

N∑
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2

1

N
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‖y(k)‖2
2




100%. (4.3)

In practice, the VAF is calculated for each output separately. For an output
signal y(k) having ℓ components, the VAF for the ith output is given by

VAFi (yi(k), ŷi(k, θ)) =




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1

N

N∑
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| yi(k) − ŷi(k, θ) |2

1

N

N∑

k=1

| yi(k) |2




100%. (4.4)

VAFs for all components of an output signal can be conveniently calculated
using the toolbox function vaf (see manual on page 157). This function requiresvaf
the measured output y(k) and the predicted output ŷ(k), which are called y and
ye in the following MATLAB code:
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>> vaf(y,ye)

The case-study in the next section shows a practical example of using the
VAF.

4.6 Case Study: Identifying an Acoustical Duct

In this section we show how the subspace identification framework from Chap-
ter 3 can be used together with the parametric model estimation framework from
Chapter 2 to yield a very accurate model. In essence, subspace identification will
be used to obtain an accurate initial model estimate, which is then refined using
parametric optimization.

The system under consideration will be the 19th-order ARX model in Ta-
ble 8.1 on page 244 of the textbook. This model describes an acoustical duct. The
goal is to fit a relatively low-order state-space model to data of this “system”.
The input and output data for the case-study in this section can be loaded from
the datafile examples/CaseStudy.mat on the CD-ROM.

4.6.1 Experiment Design

Since the system model already is a discrete-time model, no sampling frequency
needs to be chosen. Since we will be conducting the experiment under white
output measurement noise conditions, and the model is rather complex, we will
take N = 10000 samples. As we need a persistently exciting input signal, we
will choose a unit-variance Gaussian white-noise signal.

4.6.2 The Experiment

The “experiment”, between quotes because a model is actually simulated rather
than measuring data from a physical system, will be described in this section.
A white measurement noise is added to the system’s output such that a SNR
of 20 dB is attained. The following MATLAB code describes the “experiment”.
Note that the Control Systems Toolbox function dlsim is used to simulate the dlsim
ARX model. The variables num and den are assumed to contain the 19th-order
model’s numerator and denominator polynomials. The vectors numand den are
equal to the second and first column of Table 8.1 on page 244 of the textbook
respectively.

>> N=10000;
>> u=randn(N,1);
>> y=dlsim(num,den,u)+1e-1 * std(y) * randn(size(y));

4.6.3 Data Preprocessing

In this section we preprocess the data. Decimation is unnecessary in this case
since we have the luxury of knowing beforehand that the 19th-order model is
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sampled properly. In practice, of course, one does not have this luxury! Subse-
quently, the data should be detrended. Although the data would normally have
to be shaved, shaving is not necessary in this case: we obtained the data through
simulation, so no spikes due to sensor failures or unforeseen external influences
are present. Detrending the data is done as follows:

>> u=detrend(u);
>> y=detrend(y);

4.6.4 Model Structure Selection

The system under consideration is an acoustical duct. The fact that sound trav-
els through this duct at a finite speed, implies that we can expect a delay to be
present in the system.

The delay is obtained from the data by estimating the system’s impulse re-
sponse. To this end, the theory and MATLAB commands from Section 4.4.1 are
used to estimate a 250th-order FIR model.

The resulting impulse response estimate ĥk is shown in Figure 4.7. If we
assume that there is no direct feed-through, then the delay d should be taken
equal to 2. This assumption corresponds to the D matrix of the system being
zero, which for discrete-time systems often is a valid assumption.
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Figure 4.7: The estimated impulse response weights ĥk for the acoustical duct.
All weights (top-halve) and the first few weights (bottom-halve).

Rather than estimating an unnecessarily complex state-space model, in which
the delays are modeled as states, we will shift the output sequence y(k) two sam-
ples back in time, so that a more simple state-space model can be estimated. The
MATLAB code from Section 4.4.1 is used with d = 2 to remove the delay.

Now that the delay has been removed from the signals, the second part of the
model structure should be selected: its order. In subspace identification the only
selection that has to be made prior to starting the identification is the selection of
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a block-size s which should be two or three times larger than the expected model
order. Therefore, in this case we will choose s = 60.

4.6.5 Fitting the Model to the Data

With the preliminary steps completed, the actual identification can take place.
We will use PO-MOESP to identify the model using the dordpo -function:

>> [S,R]=dordpo(u,y,60);

The singular values in the vector S have been plotted in Figure 4.8. Looking
purely at the “gaps” in the singular values, one could choose a model order of 2,
5, 8, 10, 12 or 16.
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Figure 4.8: The singular values for the acoustical duct data obtained using PO-
MOESP.

From the singular value plot alone it is not immediately obvious which of the
orders should be chosen. Since the final goal of the identification is to produce a
model that predicts the measured output best, we wish to identify a model that
produces a good VAF, while not being overly complex. In order to determine
which model order we should choose, we identify a model for each system order
n = 1 to n = 16. Note that the same Rmatrix from dordpo can be used to obtain
the pair (A, C) of all these models. For a given model order n, the corresponding
model and VAF are calculated using the toolbox functions dmodpo, dac2bd and
vaf :

>> [Ai,Ci]=dmodpo(R,n);
>> [Bi,Di]=dac2bd(Ai,Ci,u,y);
>> yi=dltisim(Ai,Bi,Ci,Di,u);
>> vaf(y,yi)

The VAFs for the different model orders have been plotted in Figure 4.9. The
lowest possible model order for which a good VAF (that is, > 90%) is obtained
apparently is n = 6.
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Figure 4.9: The variance accounted for at different model order estimated using
PO-MOESP.

The obtained model of order n = 6 will be refined using the optimization
framework function doptlti :

>> [Ao,Bo,Co,Do]=doptlti(u,y,Ai,Bi,Ci,Di);
>> yo=dltisim(Ao,Bo,Co,Do,u);

4.6.6 Model Validation

In the preceding sections we have estimated two models: an initial model (Ai, Bi,
Ci, Di) and an optimized model (Ao, Bo, Co, Do). We now wish to validate these
models using the techniques described in Section 10.5 of the textbook. In the
cross-validation and auto-correlation approaches, the model is accepted as a
good model if the residual is white and uncorrelated with the input signal. How-
ever, these approaches do assume that the estimated model is complex enough
to describe all relevant system dynamics. In this case, we deliberately estimated
a rather low-order model. Therefore, we can expect the residual to be nonwhite
even though the low-order model is optimal. The auto-correlation and cross-
correlation functions have been calculated using the MATLAB function xcorr
using the following MATLAB code:

>> maxlag=1000;
>> aci=xcorr(y-yi,y-yi,maxlag);
>> aco=xcorr(y-yo,y-yo,maxlag);
>> xci=xcorr(y-yi,u,maxlag);
>> xco=xcorr(y-yo,u,maxlag);

Figure 4.10 shows the resulting functions. As expected, the auto-correlation
functions are nonwhite due to the unmodeled dynamics. For the same reason,
the cross-correlation functions are nonzero. However, there is more that can
be said about these functions. Figure 4.11 shows the spectrum of the prediction
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error. From this figure we can conclude that the residual of the optimized model
is considerable “whiter” in the low frequency range.
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Figure 4.10: Auto-correlation functions of ŷ(k) − y(k) and the cross-correlation
functions between ŷ(k) − y(k) and u(k) for both the PO-MOESP model and the
optimized model.

The auto-correlation and cross-correlation approaches that have been used
in the above treatment share the property that their results are unique to a given
data set. We will now compare the actual system’s frequency response function
(FRF) to that of the initial and optimized models. The result is shown in Fig-
ure 4.12. It is clear that the optimized model corresponds much better to the
actual system behavior especially in the lower frequency-range and the first two
oscillating modes.

Subsequently, the variance accounted for between the estimated and actual
output signals can be calculated:

>> vaf(y,yi)
ans =

93.7969
>> vaf(y,yo)
ans =

95.8464

It is clear that the subspace identification yielded an already satisfactory
model. However, this model has been improved significantly using the opti-
mization framework.

Finally, a cross-validation check is performed. To this end, a fresh data set
is generated for the actual system, the PO-MOESP model and the optimized
model. Note that since the estimated models describe the system without delay,
the delay first has to be removed from the actual system data before a cross-
validation can be performed. The actual cross-validation is performed by calcu-
lating the variance accounted for.
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Figure 4.11: Spectra of the prediction errors of ŷ(k) − y(k) for both the PO-
MOESP model (solid) and the optimized model (dashed).

>> uv=randn(N,1);
>> yv=dlsim(dense,numse,uv);
>> d=2;
>> uv=uv(1:N-d);
>> yv=yv(d+1:N);
>> yvi=dltisim(Ai,Bi,Ci,Di,uv);
>> yvo=dltisim(Ao,Bo,Co,Do,uv);
>> vaf(yv,yvi)
ans =

93.4893
>> vaf(yv,yvo)
ans =

95.5700

We can thus draw the conclusion that the estimated models describe the ac-
tual system sufficiently well. Although the PO-MOESP model is good, the opti-
mized model is significantly better.
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Figure 4.12: The magnitude of the frequency response function (FRF) for the
actual system (solid), the initial PO-MOESP model (dotted) and the optimized
model (dashed).
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Chapter 5

Toolbox Software Manual

After studying this chapter you can:

• obtain and install the toolbox software.

• look up the manual page of each toolbox function.

87
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5.1 Introduction

This chapter provides an installation and user’s guide for the toolbox software.
Section 5.2 explains how to obtain and install the software on a computer sys-
tem. Section 5.3 provides an overview of the toolbox functions and a detailed
reference page for every toolbox function.

5.2 Obtaining and Installing the Toolbox Software

The toolbox software is available on a CD-ROM provided with this book or as
download from the publishers website. Two compressed files have been put in
the toolbox directory on the CD-ROM; one for Windows and one for Linux (Fe-
dora). Installing the toolbox is a two-step process. In the first step, the software
is copied to the appropriate directory on the local system. In the second step, the
directory to which the toolbox was copied is added to the MATLAB path so that
the toolbox functions can be used from M-files in any directory.

The toolbox software can be installed system-wide, which makes it available
to all users on the system. However, administrative privileges are required to
do this. On Windows 95/98/Millennium systems this generally is no problem
since any user is allowed to write files anywhere on the system. On Windows
NT/2000/XP and on UNIX an ordinary user is generally not allowed to write
to system directories, and the toolbox should be installed as “administrator” or
“root”.

Alternatively, the toolbox can be installed on a per-user basis. In this sce-
nario, a user copies the toolbox to a directory in which he is allowed to write;
generally his home-directory. After this, the toolbox directory can be added to
the MATLAB path in a personal startup-file.

The next two sections describe the installation process on UNIX and Win-
dows.

5.2.1 Installation on Linux

Copying the toolbox files to the right location on the local file-system is done in
almost the same way in a system-wide and per-user installation, the only dif-
ference being the directory to which the files are copied. In the system-wide
case this generally is a directory with a name similar to /usr/local/matlab/
toolbox , whereas in the per-user case a directory /home/username/toolbox
is suggested. In both cases, one should change the directory to one of those men-
tioned above, and issue the following command to unpack the toolbox:

tar xzf /home/username/LTIToolbox-2.0-Linux.tar.gz

Note that on UNIX systems other than Linux, the GNU tar command gtar
must be used rather than tar .
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The second installation step concerns adding the toolbox directory to MAT-
LAB’s search-path. In the system-wide case, the following line should be added
to /usr/local/matlab/toolbox/local/pathdef.m :

matlabroot,’/toolbox/LTIToolbox’,...

In the per-user installation, the following line should be added to /home/
username/matlab/startup.m :

addpath /home/username/toolbox/LTIToolbox;

5.2.2 Installation on Windows

A decompression utility like for example WinZip can be used to decompress
the toolbox zip-file LTIToolbox-2.0-Windows.zip to the appropriate di-
rectory. In a system-wide installation, this directory-name will be similar to
C:\MATLAB\toolbox . In a per-user installation, this directory can reside any-
where as long as the user is allowed to write to the location at hand.

Adding the toolbox directory to MATLAB’s search-path can be done in either
the pathdef.m or startup.m files in the same way as in the Linux-installation.
However, both files reside in the MATLAB-tree (for example C:\MATLAB\toolbox\
local ) under Windows. This means that a per-user path is not possible. If the
user has no write-permission in the MATLAB-tree either the systems administra-
tor should be contacted, or the following command should be issued each time
MATLAB is started:

addpath C:\toolbox\LTIToolbox

Obviously, the directory-name in the above command should be replaced
with the directory in which the toolbox was actually installed.

5.3 Toolbox Overview and Function Reference

0.4pt0pt
The toolbox software is based partly on the SMI-1.0 toolbox, and forms a

superset of most of its functionality. Some function names and their syntax are
changed to make them more consistent with the current function capabilities. Ta-
ble 5.1 lists which functions have become obsolete, and which functions should
be used instead. Table 5.2 lists all functions that are part of the toolbox software.

0.4pt0.4pt 0pt0pt
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Table 5.1: Depreciated functions from SMI-1.0 and their equivalent in the new
toolbox (if any).

SMI-1.0 Description New Description See page

dgnlisls Separable Least
Squares optimization
of discrete-time LTI
systems

doptlti Least Squares
optimization of
discrete-time LTI
systems

113

gnlisls Separable Least
Squares optimization
of continuous-time LTI
systems

- - -

gnwisls Separable Least
Squares optimization
of continuous-time
Wiener systems

- - -

dsmisim LTI system simulation dltisim LTI system simulation 108
ss2thon State-space to Output

Normal
parameterization

css2th Continuous-time
parameterization of
state-space systems

94

th2sson Output Normal
parameter vector to
state-space conversion

cth2ss Continuous-time
parameter vector
state-space conversion

96

tchebest Estimate static
nonlinear behavior

- - -

tchebsim Simulate static
nonlinear behavior

- - -
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Table 5.2: List of functions in the toolbox software.

Time-domain subspace identification in discrete-time

Function Description See page

dordpi PI-MOESP preprocessing and order estimation 117
dordpo PO-MOESP preprocessing and order estimation 119
dordrs RS-MOESP preprocessing and order estimation 122
dmodpi PI-MOESP estimation of A and C 109
dmodpo PO-MOESP estimation of A, C and K 110
dmodrs RS-MOESP estimation of A and C 112
dac2b Estimation of B 98
dac2bd Estimation of B and D 100
dinit Estimation of the initial state 106

Frequency-domain subspace identification

fdordom Discrete-time preprocessing and order estimation 137
fcordom Continuous-time preprocessing and order estimation 135
fdmodom Discrete-time estimation of A and C 134
fcmodom Continuous-time estimation of A and C 133
fac2b Estimation of B 129
fac2bd Estimation of B and D 131

Time-domain parametric model refinement

doptlti User-level LTI model optimization driver 113
dfunlti Cost-function for doptlti 103

Frequency-domain parametric model refinement

foptlti User-level LTI model optimization driver 141
ffunlti Cost-function for foptlti 139

Common function for parametric model refinement

dss2th Parameterization of discrete-time LTI models 124
css2th Parameterization of continuous-time LTI models 94
dth2ss Parameter vector to discrete-time LTI model conversion 126
cth2ss Parameter vector to continuous-time LTI model conversion 96
simlns Local parameter subspace calculation 153
lmmore Moré-Hebden Levenberg-Marquardt optimization 144

Maximum likelihood utilities

destmar Multivariable AR model estimation 102
cholicm Calculations of a Cholesky factor of the inverse covariance matrix

of a multivariable AR noise model
92

Low-level simulation and calculation facilities

ltiitr State trajectory calculation 147
ltifrf Frequency response function (FRF) calculation 148

Miscellaneous utilities

prbn Pseudo random binary sequence generation 152
shave Peak and outlier removal 155
vaf Variance-accounted-for calculation 157
example Toolbox usage example 128
mkoptstruc Optimization options generation 150
optim5to6 Translation of MATLAB 5 to MATLAB 6 optimization options 151
dltisim Simulation of discrete-time LTI state-space systems 108
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Purpose
Calculates a Cholesky-factor of the inverse covariance matrix (ICM)
of a multivariable autoregressive process.

Syntax

C=cholicm(Af,Ab,Sf,Sb,N)

Description
The Inverse Covariance Matrix S of a multivariable autoregressive
noise process according to [1] is calculated. A Cholesky factor C is
returned such that CT C = S

The noise model contains a causal and an auticausal part, both of
which describe the actual noise v(k). If e(k) is a Gaussian white in-
novation, the model is given by:

v(k) =
⇀
e (k)−

⇀

A1 v(k − 1) − ...−
⇀

Ad v(k − d),

v(k) =
↼
e (k)−

↼

A1 v(k + 1) − ...−
↼

Ad v(k + d).

Arrows ⇀ denote the causal (Forward) components while arrows ↼

denote the anti-causal (Backward) ones.

The multivariable noise model can be obtained using the destmar
function.

Inputs

Af An ℓ×ℓd matrix containing the causal part of the noise

process.
⇀

A= [
⇀

A1
⇀

A2 · · ·
⇀

Ad].

Ab An ℓ× ℓd matrix containing the anti-causal part of the

noise process.
↼

A= [
↼

A1
↼

A2 · · ·
↼

Ad].

Sf An ℓ × ℓ matrix describing the covariance E[
⇀
e

⇀
e

T
]

Sb An ℓ × ℓ matrix describing the covariance E[
↼
e

↼
e

T
]

N The number of samples.

Outputs

C A Cholesky factor of the ICM. This matrix is stored in
LAPACK/BLAS band-storage; its size is (d + 1)ℓ×N ,
and the bottom row contains the diagonal of C. The
row above contains a zero, and then the first super-
diagonal of C. The row above contains two zeros, and
then the second superdiagonal, etc. The top row con-
tains (d + 1)ℓ − 1 zeros, and then the ((d + 1)ℓ − 1)th

superdiagonal.
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Limitations
A covariance matrix of a stationary process is always positive defi-

nite. However, it is very well possible to specify filter coefficients
⇀

A,
↼

A and covariances
⇀

S and
↼

S such that the theoretical ICM calculated
per [1] is not positive definite. In such cases, no Cholesky factor can
be calculated, and an identity matrix will be returned along with a
warning message. The filter should be checked and adjusted in these
cases.

Algorithm
The upper-triangular block-band of a sparse banded inverse covari-
ance matrix according to [1] is filled. A direct sparse Cholesky factor-
ization is subsequently performed using MATLAB’s internal chol
function.

Used By
doptlti

See Also
doptlti , destmar

References

[1] B. David, Parameter Estimation in Nonlinear Dynamical Systems
with Correlated Noise. PhD thesis, Université Catholique de Lou-
vain, Louvain-La-Neuve, Belgium, 2001.
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Purpose
Converts a continuous-time LTI state-space model into a parameter
vector.

Syntax

[theta,params,T] = css2th(A,C,partype)
[theta,params,T] = css2th(A,B,C,partype)
[theta,params,T] = css2th(A,B,C,D,partype)
[theta,params,T] = css2th(A,B,C,D,x0,partype)
[theta,params,T] = css2th(A,B,C,D,x0,K,partype)

Description
This function converts a continuous-time LTI state-space model into
a parameter vector that describes the model. Model structure:

ẋ(t) = Ax(t) + Bu(t) + Ke(t),

y(t) = Cx(t) + Du(t) + e(t).

Inputs

A,B,C,D System matrices describing the state space system. The
B and D matrices are optional and can be left out or
passed as an empty matrix to indicate it is not part of
the model.

x0 (optional) Initial state.

K (optional) Kalman gain.

partype This string specifies the type of parameterization that
is used to parameterize the state space model. Three
types of parameterization are supported:
’on’ Output Normal parametrization.
’tr’ Tridiagonal parametrization.
’fl’ Full parametrization.

Rules for input parameters:

The final parameter should always be the parametriza-
tion type. The order for the parameters prior to partype
is A,B,C,D,x0,K . The only exception is A,C , when
only those are to be parametrized.
All parameters after A,B,C and before partype are
optional. If the last one is not to be parametrized it
can be omitted. If any other is not to be parametrized,
an empty matrix should be passed.
(A,B,C,partype) thus is equivalent to (A,B,C,
[],[],[],partype) However, (A,B,C,[],x0,partype)
cannot be abbreviated.
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Outputs

theta Parameters vector describing the system.
params A structure that contains the dimension parameters of

the system, such as the order, the number of inputs
and whether D, x0 or K is present.

T Transformation matrix between the input state space
system and the state space system in the form described
by theta .

Remarks
This function is based on the SMI Toolbox 2.0 function css2th , copy-
right c© 1996 Johan Bruls. Support for the omission of D, x0 and/or
K has been added, as well as support for the full parametrization.

Algorithm
The model parametrization for the output normal form and the tridi-
agonal parametrization is carried out according to [1]. The full model
parametrization is a simple vectorization of the system matrices. In
its most general form, the parameter vector is given by

θ =




vec

([
A B
C D

])

vec(K)
x0



 .

Used By
foptlti

See Also
cth2ss , dss2th

References

[1] B. Haverkamp, Subspace Method Identification, Theory and Practice.
PhD thesis, Delft University of Technology, Delft, The Nether-
lands, 2000.
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Purpose
Converts a parameter vector into a continuous-time LTI state-space
model.

Syntax

[A,C] = cth2ss(theta,params)
[A,B,C] = cth2ss(theta,params)
[A,B,C,D] = cth2ss(theta,params)
[A,B,C,D,x0] = cth2ss(theta,params)
[A,B,C,D,x0,K] = cth2ss(theta,params)

Description
This function converts a parameter vector that describes a continuous-
time state space model into the state space matrices of that model.
Model structure:

ẋ(t) = Ax(t) + Bu(t) + Ke(t),

y(t) = Cx(t) + Du(t) + e(t).

Inputs

theta Parameter vector describing the system.
params A structure that contains the dimension parameters of

the system, such as the order, the number of inputs
and whether D, x0 or K is present in the model.

T Transformation matrix to be applied to the state space
system that is constructed from theta. This transfor-
mation might come from the function css2th .

Outputs

A,B,C,D System matrices describing the state space system. If
theta does not contain parameters for D, this matrix
will be returned as an empty matrix.

x0 Initial condition. If theta does not contain parame-
ters for x0 , this vector will be returned as an empty
matrix.

K Kalman gain. If theta does not contain parameters
for K, this vector will be returned as an empty matrix.

Remarks
This function is based on the SMI Toolbox 2.0 function cth2ss , copy-
right c© 1996 Johan Bruls. Support for the omission of D, x0 and/or
K has been added, as well as support for the full parametrization.

Algorithm
See css2th on page 94.
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Used By
foptlti , ffunlti

See Also
css2th , dth2ss
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Purpose
Estimates the B matrices in discrete-time LTI state-space models from
input-output measurements. D is assumed to be zero.

Syntax

B=dac2b(A,C,u,y)
B=dac2b(A,C,u1,y1,...,up,yp)

Description
This function estimates the B matrix corresponding to a discrete-time
LTI state-space model. The estimate is based on the measured input-
output data sequences, and on the A and C matrices, which are pos-
sibly estimated using dmodpo, dmodpi or dmodrs . The D matrix is
assumed to be zero. Several data batches can be concatenated.

Inputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.
u,y The measured input-output data from the system to

be identified.
Multiple data batches can be specified by appending
additional u,y pairs to the parameter list.

Outputs

B The state-space model’s B matrix.

Algorithm
Estimating B and the initial state x0 from input-output data and A
and C is a linear regression [1]:

[
x0

vec(B̂)

]
= Φ†θ.

The regression matrix Φ and data matrix θ are given by:

Φ =





C 0
CA u(1)T ⊗ C

...
...

CAN−1
∑N−2

τ=0 u(τ + 1)T ⊗ CAN−2−τ




,

θ =





y(1)
y(2)

...
y(N)




.

The function ltiitr is used to efficiently fill the regression matrix
Φ.



dac2b 99

Used By
This is a top-level function that is used directly by the user.

Uses Functions
ltiitr

See Also
dac2bd , dmodpo, dmodpi , dmodrs , ltiitr .

References

[1] B. Haverkamp, Subspace Method Identification, Theory and Practice.
PhD thesis, Delft University of Technology, Delft, The Nether-
lands, 2000.
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Purpose
Estimates the B and D matrices in discrete-time LTI state-space mod-
els from input-output measurements.

Syntax

[B,D]=dac2bd(A,C,u,y)
[B,D]=dac2bd(A,C,u1,y1,...,up,yp)

Description
This function estimates the B and D matrices corresponding to a
discrete-time LTI state-space model. The estimate is based on the
measured input-output data sequences, and on the A and C matri-
ces, which are possibly estimated using dmodpo, dmodpi or dmodrs .
Several data batches can be concatenated.

Inputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.
u,y The measured input-output data from the system to

be identified.
Multiple data batches can be specified by appending
additional u,y pairs to the parameter list.

Outputs

B The state-space model’s B matrix.
D The state-space model’s D matrix.

Algorithm
Estimating B, D and the initial state x0 from input-output data and
A and C is a linear regression [1]:




x0

vec(B̂)

vec(D̂)



 = Φ†θ.

The regression matrix Φ and data matrix θ are given by:

Φ =





C 0 u(1)T ⊗ Iℓ

CA u(1)T ⊗ C u(2)T ⊗ Iℓ

...
...

...

CAN−1
∑N−2

τ=0 u(τ + 1)T ⊗ CAN−2−τ u(N)T ⊗ Iℓ




,

θ =





y(1)
y(2)

...
y(N)




.

The function ltiitr is used to efficiently fill the regression matrix
Φ.
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Used By
This is a top-level function that is used directly by the user.

Uses Functions
ltiitr

See Also
dac2b , dmodpo, dmodpi , dmodrs , ltiitr .

References

[1] B. Haverkamp, Subspace Method Identification, Theory and Practice.
PhD thesis, Delft University of Technology, Delft, The Nether-
lands, 2000.
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Purpose
Fits a multivariable autoregressive model to a time-series.

Syntax

[Af,Ab,Sf,Sb]=destmar(v,d)

Description
This function fits a multivariable autoregressive model to a time-
series v(k). The model-structure is

v(k) =
⇀
e (k)−

⇀

A1 v(k − 1) − ...−
⇀

Ad v(k − d),

v(k) =
↼
e (k)−

↼

A1 v(k + 1) − ...−
↼

Ad v(k + d),

in which
⇀
e (k) and

↼
e (k) are innovation sequences with covariance

matrices
⇀

S and
↼

S respectively. The fitting is performed according to
[1].

Inputs

v The time-series, a N × ℓ matrix for a signal having N
samples and which is ℓ-dimensional.

d The desired order d of the AR model.

Outputs

Af,Ab The coefficient matrices
⇀

A and
↼

A of the causal and an-
ticausal model.

Sf,Sb The covariance matrices
⇀

S and
↼

S of the causal and an-
ticausal innovations.

Algorithm
A direct Hankel-matrix based estimation of the AR model is per-
formed according to [1].

Used By
This is a top-level function that is used directly by the user.

See Also
cholicm , doptlti

References

[1] B. David, Parameter Estimation in Nonlinear Dynamical Systems
with Correlated Noise. PhD thesis, Université Catholique de Lou-
vain, Louvain-La-Neuve, Belgium, 2001.
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Purpose
Calculates the cost-function information for doptlti .

Syntax

[epsilon]=dfunlti(th,u,y,params)
[epsilon,psi]=dfunlti(th,u,y,params)
[epsilon,psi,U2]=dfunlti(th,u,y,params)

[epsilon]=dfunlti(th,u,y,params,options,OptType,...
sigman,filtera,CorrD)

[epsilon,psi]=dfunlti(th,u,y,params,options,...
OptType,sigman,filtera,CorrD)

[epsilon,psi,U2]=dfunlti(th,u,y,params,options,...
OptType,sigman,filtera,CorrD)

Description
This function implements the cost-fuction for doptlti . It is not
meant for standalone use.

Inputs

th Parameter vector describing the system
u,y The input and output data of the system to be opti-

mized.
params A structure that contains the dimension parameters of

the system, such as the order, the number of inputs,
whether D, x0 or K is present in the model.

options (optional) An optimset compatible options-structure.
The fields options.RFactor , options.LargeScale ,
options.Manifold and options.BlockSize should
have been added by doptlti .

OptType (optional) Indicates what kind of weighted least squares
or maximum likelihood optimization is being performed:

• ’no mle’ implies a nonlinear (weighted) least squares
optimization.

• ’uncorr’ implies a maximum likelihood optimiza-
tion without correlation among the output pertur-
bances [1].

• ’flcorr’ implies a maximum likelihood optimiza-
tion with correlated output perturbances [2].

sigman (optional) If OptType is ’no mle’ , this can be a vec-
tor of size 1 × ℓ that indicates the standard deviation
of the perturbance of each of the outputs.
If OptType is ’uncorr’ , this should be a vector of
size 1 × ℓ that indicates the standard deviation of the
white noise innovations for the output perturbance
AR model.
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If OptType is ’flcorr’ , this should be a Cholesky
factor of the AR process’ inverse covariance matrix,
as obtained by cholicm .

filtera (optional) If OptType is ’uncorr’ , this should be the
A-polynomial of a dth order AR noise model. The first
element should be 1, and the other elements should be
d filter coefficients. In the multi-output case filtera
should be a matrix having max(di) + 1 rows and ℓ
columns. If a certain output noise model has a lower
order, then the coefficient vector should be padded
with NaNs.

CorrD (optional) If OptType is ’uncorr’ , this should be a
correction matrix for the lower-right part of the ICM’s
Cholesky-factor. No details will be provided here.

Outputs

epsilon Output of the cost function, which is the square of the
error between the output and the estimated output.

psi Jacobian ΨN of epsilon, ΨNU2 if the full parametriza-
tion is used.

U2 Left null-space of Manifold matrix for the full parametriza-
tion [3].

Algorithm
The formation of the error-vector is done by simple simulation of the
current model:

x̂(k + 1; θ) = A(θ)x̂(k; θ) + B(θ)u(k),

ŷ(k; θ) = C(θ)x̂(k; θ) + D(θ)u(k).

The error-vector EN ∈ R
Nℓ is build up such that its ith blockrow

consists of y(k) − ŷ(k; θ). Note that this example corresponds to the
error-vector of an output error model in which no output weighting
is applied. For innovation models and maximum likelihood correc-
tions, the error-vector is different from the one shown above.

The Jacobian is formed by simulation as well [4]. This is a special
case of the Jacobian for LPV systems that has been described in [3].
A QR-factorization is used to obtain its left null-space.

Used By
doptlti (via lmmore )

Uses Functions
dth2ss , ltiitr , simlns

See Also
ffunlti

References
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Purpose
Estimates the initial state, given estimated discrete-time state-space
system matrices and a batch of measured input-output data.

Syntax

x0=dinit(A,B,C,D,u,y)

Description
This function estimates the initial state for a measured input-output
batch of a discrete-time LTI state-space model. The estimate is based
on the measured input-output data sequences, and on the A, B, C
and D matrices, which are possibly estimated using any of the sub-
space identification functions.

Inputs

A,B,C,D The discrete-time LTI state-space model.

u,y The measured input-output data from the system to
be identified.

Outputs

x0 The estimated initial state.

Algorithm
Estimating the initial state x0 from input-output data and the system
matrices is a linear regression [1]:

x0 = Φ†θ.

The regression matrix Φ and data matrix θ are given by

Φ =





C
CA

...
CAN−1




,

θ =





y(1) − ŷ(1)
y(2) − ŷ(2)

...
y(N) − ŷ(N)




,

in which ŷ(k) is simulated using the estimated system matrices and
the measured input u(k). The function ltiitr is used to efficiently
calculate ŷ(k).

Used By
This is a top-level function that is used directly by the user.
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Uses Functions
ltiitr

See Also
dac2b , dac2bd , ltiitr .

References

[1] B. Haverkamp, Subspace Method Identification, Theory and Practice.
PhD thesis, Delft University of Technology, Delft, The Nether-
lands, 2000.
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Purpose
Simulates a discrete-time LTI state-space system.

Syntax

y=dltisim(A,B,C,D,u)
[y,x]=dltisim(A,B,C,D,u,x0)

Description
This function simulates a discrete-time LTI state-space system. The
model structure is the following:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

An optional initial state can be specified.

Inputs

A,B,C,D An LTI state-space system’s matrices.
u An N × m matrix containing N samples of the m in-

puts.
x0 (optional) The initial state, an n × 1 vector.

Outputs

y The computed output sequence, an N × ℓ matrix.
x (optional) The computed state, an N × n matrix.

Algorithm
A direct iteration of the system’s state-transition equation is used to
obtain the state-trajectory for all time-instants. The function ltiitr
is used to this end.

Uses Functions
ltiitr

See Also
ltiitr , dsim
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Purpose
Estimates the A and C matrix in a discrete-time state-space model
from time-domain data that was preprocessed by dordpi .

Syntax

[A,C]=dmodpi(R,n)

Description
This function estimates the A and C matrices corresponding to an
nth order discrete-time LTI state-space model. The compressed data
matrix R from the preprocessor function dordpi is used to this end.

Inputs

R A compressed data matrix containing information about
the measured data, as well as information regarding
the system dimensions.

n The desired model order n.

Outputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.

Algorithm
The data matrix obtained with dordpi contains the weighted left
singular vectors of the R32 matrix (see page 117). The first n of these
vectors form an estimate Ôs of the system’s extended observability
matrix:

Os =





C
CA

...
CAs−1




.

The estimates Â and Ĉ are obtained by linear regression:

Ĉ = Ôs(1 : ℓ, :),

Â = Ôs(1 : (s − 1)ℓ, :)†Ôs(ℓ + 1 : sℓ, :).

Used By
This is a top-level function that is used directly by the user.

See Also
dordpi , dordpo , dmodpo, dordrs , dmodrs
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Purpose
Estimates the A and C matrices and the Kalman gain in a discrete-
time state-space model from time-domain data that was preprocessed
by dordpo .

Syntax

[A,C]=dmodpo(R,n)
[A,C,K]=dmodpo(R,n)

Description
This function estimates the A and C matrices corresponding to an
nth order discrete-time LTI state-space model. A Kalman gain can be
estimated as well. The compressed data matrix R from the prepro-
cessor function dordpo is used to this end.

Inputs

R A compressed data matrix containing information about
the measured data, as well as information regarding
the system dimensions.

n The desired model order n.

Outputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.
K Kalman gain matrix.

Remarks
The data matrix Rgenerated by the M-file implementation of dordpo
is incompatible with the Rmatrix generated by the MEX-implementation
of dordpo . Therefore, either the M-files should be used for both
dordpo and dmodpo, or the MEX-files should be used for both func-
tions.

The MEX-implementation of dmodpo uses the IB01BD function from
the SLICOT library.

The MEX-implementation may generate the following warning:

Warning: Covariance matrices are too small:
returning K=0

This implies that there is not enough information available to reliably
estimate a Kalman gain. K = 0 is returned for stability reasons in this
case.

Algorithm
The data matrix obtained with dordpo contains the weighted left
singular vectors of the R32 matrix (see page 119). The first n of these
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vectors form an estimate Ôs of the system’s extended observability
matrix:

Os =





C
CA

...
CAs−1




.

The estimates Â and Ĉ are obtained by linear regression:

Ĉ = Ôs(1 : ℓ, :),

Â = Ôs(1 : (s − 1)ℓ, :)†Ôs(ℓ + 1 : sℓ, :).

The optional Kalman gain is calculated based on estimated noise co-
variance matrices [1].

Used By
This is a top-level function that is used directly by the user.

See Also
dordpo , dordpi , dmodpi , dordrs , dmodrs

References

[1] M. Verhaegen, “Identification of the deterministic part of MIMO
state space models given in innovations form from input-output
data,” Automatica, vol. 30, no. 1, pp. 61–74, 1994.
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Purpose
Estimates the A and C matrix in a discrete-time state-space model
from time-domain data that was preprocessed by dordrs .

Syntax

[A,C]=dmodrs(R)

Description
This function estimates the A and C matrices corresponding to an
nth order discrete-time LTI state-space model. The compressed data
matrix R from the preprocessor function dordrs is used to this end.
As n is determined from the x matrix that was passed to dordrs , it
does not have to be specified here.

Inputs

R A compressed data matrix containing information about
the measured data, as well as information regarding
the system dimensions.

Outputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.

Algorithm
The data matrix obtained with dordrs contains the weighted left
singular vectors of the R32 matrix (see page 122). The first n of these
vectors form an estimate Ôs of the system’s extended observability
matrix:

Os =





C
CA

...
CAs−1




.

The estimates Â and Ĉ are obtained by linear regression:

Ĉ = Ôs(1 : ℓ, :),

Â = Ôs(1 : (s − 1)ℓ, :)†Ôs(ℓ + 1 : sℓ, :).

Used By
This is a top-level function that is used directly by the user.

See Also
dordrs , dordpo , dmodpo, dordpi , dmodpi
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Purpose
Performs a nonlinear least squares or maximum likelihood optimiza-
tion of a discrete time LTI state space model.

Syntax

[A,B,C,D]=doptlti(u,y,A,B,C,D)
[A,B,C,D,x0,K,options]=doptlti(u,y,A,B,C,D,x0,K,...

partype,options,sigman,nmodel)

Description
This function performs a nonlinear least squares optimization of a
discrete time linear state space system model with structure

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

The function also supports innovation models:

x(k + 1) = Ax(k) + Bu(k) + Ke(k),

y(k) = Cx(k) + Du(k) + e(k).

First, the state space matrices are parameterized. The output nor-
mal parametrization, the tridiagonal parametrization and the full
parametrization can be used.

The parameterized model is optimized using the supplied lmmore
Levenberg-Marquardt function. The matrices A, B, and C are always
returned. If needed, D, the initial state and a Kalman gain can also
be optimized.

Inputs

u,y The input and output data of the system to be opti-
mized.

A,B,C,D Initial estimates of the system matrices A, B, C and D.
x0 (optional) The initial state
K (optional) Kalman gain
partype (optional) This parameter specifies the type of param-

eterization that is used to parameterize the state space
model. Three types of parameterization are supported:
’on’ Output Normal parametrization.
’tr’ Tridiagonal parametrization.
’fl’ Full parametrization.

options (optional) Input parameters that are passed on directy
to the optimization function. These options may be
compatible with the optimset options from the MAT-
LAB 6 Optimization Toolbox[1]. Alternatively, a MAT-
LAB 5 Optimization Toolbox compatible foptions
vector may be specified.
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There are a number of fields in addition to the normal
fields in the options structure. These are described
in detail in the remarks section below.

sigman (optional) The function of this parameters depends on
its format:

1. If sigman is a 1 × ℓ vector, the output errors will
be weighted by the inverse of these factors. In a
weighted least squares estimation, sigman should
contain the standard deviations of the noise on
each of the outputs.
In a maximum likelihood estimation which assumes
no correlation between the noise on different out-
puts [2], sigman should contain the standard de-
viations of the white-noise signals which, when
put through the AR filter specified by nmodel ,
generates the output measure- ment noise.

2. If sigman is an ℓ × 2ℓ matrix, a maximum like-
lihood estimation which does support correlation
between the output noises will be carried out [3].
The nmodel parameter must be specified in this
case.
sigman should be [

⇀

S
↼

S], in which
⇀

S is the covari-
ance matrix of the multivariable white noise se-
quence that is put through the causal filter

⇀

A (see

nmodel ).
↼

S is the covariance matrix of the white
noise sequence that will be put through the anti-

causal filter
↼

A.

nmodel (optional) The specification of the AR noise model.
This should be either a matrix of size d× ℓ, or a matrix
of size 2ℓ × ℓd, for an AR model of order d.
In the first output case nmodel should be a matrix
having a number of rows equal to the highest noise-
model order on any of the outputs. The matrix should
have ℓ columns. If a certain output noise model has a
lower order, then pad the coefficient vector with NaNs.

In the second case, filtera should be [
⇀

A;
↼

A] in which
⇀

A

specifies the causal AR filter, and
↼

A specifies the anti-
causal AR filter, as obtained using cholicm .

Outputs

A,B,C,D System matrices of the optimized linear model. If the
Dmatrix is not estimated, it will be empty.

x0 Estimate of the initial state. If the x0 matrix is not
estimated, it will be returned empty.

K Estimate of the Kalman gain. If the K matrix is not
estimated, it will be returned empty.
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options Output parameters from the Optimization Toolbox.
See foptions or optimset .

Remarks
An extra field options.Manifold may be set to ’on’ if the full
parametrization is used. The Manifold field indicates whether the
search direction should be confined to directions in which the cost-
function changes. If options.Manifold is not set, doptlti will
set it to ’off’ for the output normal and tridiagonal parametriza-
tions, and to ’on’ for the full parametrization.

Another new field that can be set is the options.BlockSize field.
The value Nb of the BlockSize field indicates that the Jacobian in
the cost-function is build up Nb block-rows at a time rather than all
at once [4]. This option is mainly interesting in tight-memory sit-
uations or for problems with a very large number of samples. If
options.BlockSize is set to Nb, the fields options.RFactor
and options.LargeScale are set to ’on’ automatically. A rule
of thumb is that the Jacobian-calculation requires about 24(p + 1 +
Nbℓ)(p + 1) bytes of computer memory, in which p is the number of
free parameters. For the full parametrization, this is the number of
parameters after a manifold-projection.

If the model is unstable one can use the innovation description. This
implies choosing a K such that (A−KC) is stable. The first option is
to just specify K in the parameter list. This starts a prediction error
optimization in which K is optimized as well. Faster convergence
can be obtained by restricting K to a fixed value. To this end, the
field options.OEMStable should be set to ’on’ , in addition to
specifying K in the parameter list.

This optimization function has been targeted at MATLAB version 6
or higher. However, the function will run on MATLAB version 5
using a compatibility kludge. This kludge implies that the options
input parameter can either be a MATLAB 6 optimset -structure, or
a MATLAB 5 compatible foptions -vector. However, the latter is
discouraged since it does not allow the Manifold , LargeScale ,
RFactor , BlockSize and OEMStable fields to be set.

Limitations
The doptlti -function is a non-linear optimization. This implies that
there is the inherent risk of ending up in a local minimum, rather
than in the cost-function’s global minimum. Therefore, a well-chosen
initial model should be used. If the optimization gets stuck in a local
minimum nontheless, a different initial model should be tried.

An initial estimate can be obtained by using the time-domain sub-
space identification functions in this toolbox. The relevant functions
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are dordpo , dmodpo, dordpi , dmodpi , dordrs , dmodrs , dac2b
and dac2bd .

Used By
This is a top-level function that is used directly by the user.

Uses Functions
lmmore , dss2th , dth2ss , dfunlti , cholicm

See Also
foptlti , optimset , foptions , mkoptstruc

References

[1] The MathWorks Inc., Natick, Massachusetts, Optimization Toolbox
User’s Guide, version 2.1 (release 12) ed., Sept. 2000.

[2] B. David and G. Bastin, “An estimator of the inverse covariance
matrix and its application to ML parameter estimation in dynam-
ical systems,” Automatica, vol. 37, no. 1, pp. 99–106, 2001.

[3] B. David, Parameter Estimation in Nonlinear Dynamical Systems
with Correlated Noise. PhD thesis, Université Catholique de Lou-
vain, Louvain-La-Neuve, Belgium, 2001.

[4] N. Bergboer, V. Verdult, and M. Verhaegen, “An efficient im-
plementation of maximum likelihood identification of LTI state-
space models by local gradient search,” in Proceedings of the 41st
IEEE Conference on Decision and Control, (Las Vegas, Nevada), Dec.
2002.
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Purpose
Preprocesses time-domain data for PI-MOESP subspace identifica-
tion of discrete-time LTI state-space models. Delivers an order-estimate.

Syntax

[S,R]=dordpi(u,y,s)
[S,R]=dordpi(u,y,s,Rold)

Description
This function performs the initial data compression for PI-MOESP
subspace identification based on measured input-output data [1]. In
addition, it delivers information usuable for determining the required
model order. The model structure is the following

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k) + v(k).

Here, v(k) is zero-mean noise of arbitary color, independent of the
noise-free input u(k). Several data batches can be concatenated, as
shown below. This function acts as a preprocessor to dmodpi .

Inputs

u,y The measured input and output data of the system to
be identified.

s The block-size parameter. This scalar should be > n.
Rold (optional) The data-matrix resulting from a previous

call to dordpi .

Outputs

S The first s singular values of the rank-deficient R32

matrix (see below).
R A compressed data matrix containing information about

the measured data, as well as information regarding
the system dimensions.

Algorithm
The discrete-time data compression algorithm in [1] is used. The fol-
lowing RQ-factorization is made:




Us+1,s,N−2s+1

U1,s,N−2s+1

Ys+1,s,N−2s+1



 =




R11 0 0
R21 R22 0
R31 R32 R33








Q1

Q2

Q3



 .

The meaning of the various matrices can be found in the cited arti-
cle. A weighted SVD of the R32 matrix is made, and its left singular
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vectors are appended to the R-matrix. Its first s singular values are
returned in S.

Used By
This is a top-level function that is used directly by the user.

See Also
dmodpi , dordpo , dmodpo, dordrs , dmodrs

References

[1] M. Verhaegen, “Identification of the deterministic part of MIMO
state space models given in innovations form from input-output
data,” Automatica, vol. 30, no. 1, pp. 61–74, 1994.
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Purpose
Preprocesses time-domain data for PO-MOESP subspace identifica-
tion of discrete-time state-space models. Delivers an order-estimate.

Syntax

[S,R]=dordpo(u,y,s)
[S,R]=dordpo(u,y,s,Rold)

Description
This function performs the initial data compression for PO-MOESP
subspace identification based on measured input-output data [1]. In
addition, it delivers information usuable for determining the required
model order. The model structure is the following:

x(k + 1) = Ax(k) + Bu(k) + w(k),

y(k) = Cx(k) + Du(k) + v(k).

Here, w(k) and v(k) are zero-mean white noise sequences, indepen-
dent of the noise-free input u(k). Several data batches can be con-
catenated, as shown below. This function acts as a preprocessor to
dmodpo.

Inputs

u,y The measured input and output data of the system to
be identified.

s The block-size parameter. This scalar should be > n.
Rold (optional) The data-matrix resulting from a previous

call to dordpo .

Outputs

S The first s singular values of the rank-deficient R32

matrix (see below).
R A compressed data matrix containing information about

the measured data, as well as information regarding
the system dimensions.

Remarks
The data matrix Rgenerated by the M-file implementation of dordpo
is incompatible with the Rmatrix generated by the MEX-implementation
of dordpo . Therefore, either the M-files should be used for both
dordpo and dmodpo, or the MEX-files should be used for both func-
tions.

The MEX-implementation of dordpo uses the IB01MD and IB01ND
functions from the SLICOT library.
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The MEX-implementation may return the warning:

Warning: Cholesky failed: using QR for this and any
subsequent batches

This implies that a fast Cholesky algorithm failed and that the func-
tion has fallen back onto a slower QR algorithm. This warning does
not imply that results are invalid; the results can be used without
problems.

Algorithm
The discrete-time data compression algorithm in [1] is used. In the
M-file implementation, the following RQ-factorization is made:





Us+1,s,N−2s+1[
U1,s,N−2s+1

Y1,s,N−2s+1

]

Ys+1,s,N−2s+1



 =




R11 0 0
R21 R22 0
R31 R32 R33








Q1

Q2

Q3



 .

The meaning of the various matrices can be found in the cited article.
In the MEX-implementation, the following Cholesky-factorization is
attempted first:





Us+1,s,N−2s+1[
U1,s,N−2s+1

Y1,s,N−2s+1

]

Ys+1,s,N−2s+1









Us+1,s,N−2s+1[
U1,s,N−2s+1

Y1,s,N−2s+1

]

Ys+1,s,N−2s+1





T

=




R11 0 0
R21 R22 0
R31 R32 R33








R11 0 0
R21 R22 0
R31 R32 R33




T

.

If this factorization fails, the algorithm falls back on the above RQ-
factorization. In all cases, a weighted SVD of the R32 matrix is made,
and its left singular vectors are appended to the R-matrix. Its first s
singular values are returned in S.

Used By
This is a top-level function that is used directly by the user.

Uses Functions
SLICOT-functions IB01MD and IB01ND .

LAPACK-function DPOTRF.

(All built into the executable)
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See Also
dmodpo, dordpi , dmodpi , dordrs , dmodrs

References

[1] M. Verhaegen, “Identification of the deterministic part of MIMO
state space models given in innovations form from input-output
data,” Automatica, vol. 30, no. 1, pp. 61–74, 1994.
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Purpose
Preprocesses time-domain data for the iterative Reconstructed State
RS-MOESP algorithm to identify discrete-time state-space models.
Delivers an order-estimate.

Syntax

[S,R]=dordpo(u,y,x,s)
[S,R]=dordpo(u,y,x,s,Rold)

Description
This function performs the initial data compression for RS-MOESP
subspace identification based on measured input-output data and a
reconstructed state from a previous model estimate [1]. In addition,
it delivers information usuable for determining the required model
order. The model structure is the following:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k) + v(k).

Here, v(k) is zero-mean noise of arbitary color, independent of the
noise-free input u(k). Several data batches can be concatenated, as
shown below. This function acts as a preprocessor to dmodrs .

Inputs

u,y The measured input and output data of the system to
be identified.

x The reconstructed state. This state can be obtained
by simulating the state-equation belonging the the the
previous model estimate’s Â and B̂ matrices:

x(k + 1) = Âx(k) + B̂u(k)

This initial model can be obtained by e.g. PI-MOESP.
s The block-size parameter. This scalar should be > n.
Rold (optional) The data-matrix resulting from a previous

call to dordrs .

Outputs

S The first s singular values of the rank-deficient R32

matrix (see below).
R A compressed data matrix containing information about

the measured data, as well as information regarding
the system dimensions.

Algorithm
The discrete-time data compression algorithm in [1] is used. The fol-
lowing RQ-factorization is made:
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



Us+1,s,N−2s+1[
U1,s,N−2s+1

X1,s,N−2s+1

]

Ys+1,s,N−2s+1



 =




R11 0 0
R21 R22 0
R31 R32 R33








Q1

Q2

Q3



 .

The meaning of the various matrices can be found in the cited arti-
cle. A weighted SVD of the R32 matrix is made, and its left singular
vectors are appended to the R-matrix. Its first s singular values are
returned in S.

Used By
This is a top-level function that is used directly by the user.

See Also
dmodrs , dordpo , dmodpo, dordpi , dmodpi

References

[1] M. Verhaegen, “Subspace model identification part 3. Analysis of
the ordinary output-error state-space model identification algo-
rithm,” International Journal of Control, vol. 56, no. 3, pp. 555–586,
1993.
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Purpose
Converts a discrete-time LTI state-space model into a parameter vec-
tor.

Syntax

[theta,params,T] = dss2th(A,C,partype)
[theta,params,T] = dss2th(A,B,C,partype)
[theta,params,T] = dss2th(A,B,C,D,partype)
[theta,params,T] = dss2th(A,B,C,D,x0,partype)
[theta,params,T] = dss2th(A,B,C,D,x0,K,partype)

Description
This function converts a discrete-time LTI state-space model into a
parameter vector that describes the model. Model structure:

x(k + 1) = Ax(k) + Bu(k) + Ke(k),

y(k) = Cx(k) + Du(k) + e(k).

Inputs

A,B,C,D System matrices describing the state space system. The
B and D matrices are optional and can be left out or
passed as an empty matrix to indicate it is not part of
the model.

x0 (optional) Initial state.

K (optional) Kalman gain.

partype This parameter specifies the type of parameterization
that is used to parameterize the state space model.
Three types of parameterization are supported:
’on’ Output Normal parametrization.
’tr’ Tridiagonal parametrization.
’fl’ Full parametrization.

Rules for input parameters:

The final parameter should always be the parametriza-
tion type. The order for the parameters prior to partype
is A,B,C,D,x0,K . The only exception is A,C , when
only those are to be parametrized.
All parameters after A,B,C and before partype are
optional. If the last one is not to be parametrized it
can be omitted. If any other is not to be parametrized,
an empty matrix should be passed.
(A,B,C,partype) thus is equivalent to (A,B,C,
[],[],[],partype) However, (A,B,C,[],x0,partype)
cannot be abbreviated.
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Outputs

theta Parameters vector describing the system.
params A structure that contains the dimension parameters of

the system, such as the order, the number of inputs
and whether D, x0 or K is present.

T Transformation matrix between the input state space
system and the state space system in the form described
by theta .

Remarks
This function is based on the SMI Toolbox 2.0 function dss2th , copy-
right c© 1996 Johan Bruls. Support for the omission of D, x0 and/or
K has been added, as well as support for the full parametrization.

Algorithm
See css2th on page 94.

Used By
doptlti , foptlti

See Also
dth2ss , css2th
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Purpose
Converts a parameters vector into a discrete-time LTI state-space model.

Syntax

[A,C] = dth2ss(theta,params)
[A,B,C] = dth2ss(theta,params)
[A,B,C,D] = dth2ss(theta,params)
[A,B,C,D,x0] = dth2ss(theta,params)
[A,B,C,D,x0,K] = dth2ss(theta,params)

Description
This function converts a parameter vector that describes a discrete-
time state space model into the state space matrices of that model.
Model structure:

x(k + 1) = Ax(k) + Bu(k) + Ke(k),

y(k) = Cx(k) + Du(k) + e(k).

Inputs

theta Parameter vector describing the system.

params A structure that contains the dimension parameters of
the system, such as the order, the number of inputs
and whether D, x0 or K is present in the model.

T Transformation matrix to be applied to the state space
system that is constructed from theta. This transfor-
mation might come from the function dss2th .

Outputs

A,B,C,D System matrices describing the state space system. If
theta does not contain parameters for D, this matrix
will be returned as an empty matrix.

x0 Initial condition. If theta does not contain parame-
ters for x0 , this vector will be returned as an empty
matrix.

K Kalman gain. If theta does not contain parameters
for K, this vector will be returned as an empty matrix.

Remarks
This function is based on the SMI Toolbox 2.0 function dth2ss , copy-
right c© 1996 Johan Bruls. Support for the omission of D, x0 and/or
K has been added, as well as support for the full parametrization.

Algorithm
See css2th on page 94.
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Used By
doptlti , foptlti , dfunlti , ffunlti

See Also
dss2th , cth2ss
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Purpose
Shows an example on how to use the toolbox functions.

Syntax

example

Description
This example shows how to use the subspace identifications func-
tions, as well as the nonlinear least squares and maximum likelihood
optimization function. The test object is a 4th-order steam engine
model that has 2 inputs and 2 outputs.

Inputs

None

Outputs

None

Remarks
This script uses the datafile example.mat .

Used By
This is a top-level function that is used directly by the user.
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Purpose
Estimates the B matrix in discrete-time and continuous-time state-
space models from frequency response function (FRF) data, the D
matrix is assumed to be zero.

Syntax

B=fac2b(A,C,H,w)
B=fac2b(A,C,H1,w1,...,Hp,wp)

Description
This function estimates the B matrix corresponding to a discrete-time
or continuous-time LTI state-space model. The estimate is based on
the measured frequency response function (FRF) data, and on the
A and C matrices, which are possibly estimated using fdmodom or
fcmodom . The D matrix is assumed to be zero. Several data batches
can be concatenated, though this is possible for discrete-time models
only.

Inputs

A The state-space model’s A matrix.

C The state-space model’s C matrix.

H The measured frequency response function (FRF). This
should be a matrix which follows the convention of
MATLAB 6; it should be ℓ×m×N in which H(:,:,i)
contains the complex FRF at the ith complex frequency.

w Vector of complex frequencies at which the FRF is mea-
sured. Although the function can operate using arbi-
trary complex frequencies, the following two choices
are rather standard for discrete and continuous time
models respectively:

w = ejω

w = jω

For discrete-time models, multiple data batches can
be concatenated by appending additional H,w pairs to
the parameter list.

Outputs

B The state-space model’s B matrix.

R A compressed data matrix that can be used to concate-
nate another data batch in a subsequent call to fac2b
(discrete-time models only).

Algorithm
Estimating B from the frequency response function (FRF) data and
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A and C is a linear regression [1]:

B̂ =

[
Re(Φ)
Im(Φ)

]† [
Re(θ)
Im(θ)

]
.

The complex regression matrix Φ and data matrix θ are given by:

Φ =





Ĉ(ξ1 − Â)
−1

Ĉ(ξ2 − Â)
−1

...

Ĉ(ξN − Â)
−1




,

θ =





G1

G2
...

GN




.

The function ltifrf is used to efficiently fill the regression matrix
Φ.

Used By
This is a top-level function that is used directly by the user.

Uses Functions
ltifrf

See Also
fac2bd , fdmodom, fcmodom , ltifrf .

References

[1] T. McKelvey, H. Akçay, and L. Ljung, “Subspace-based multivari-
able system identification from frequency response data,” IEEE
Transactions on Automatic Control, vol. 41, pp. 960–979, July 1996.
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Purpose
Estimates the B and D matrices in discrete-time and continuous-time
state-space models from frequency response function (FRF) data.

Syntax

[B,D]=fac2bd(A,C,H,w)
[B,D]=fac2bd(A,C,H1,w1,...,Hp,wp)

Description
This function estimates the B and D matrices corresponding to a
discrete-time or continuous-time LTI state-space model. The esti-
mate is based on the measured frequency response function (FRF)
data, and on the A and C matrices, which are possibly estimated us-
ing fdmodom or fcmodom . Several data batches can be concatenated,
though this is possible for discrete-time models only.

Inputs

A The state-space model’s A matrix.

C The state-space model’s C matrix.

H The measured frequency response function (FRF). This
should be a matrix which follows the convention of
MATLAB 6; it should be ℓ×m×N in which H(:,:,i)
contains the complex FRF at the ith complex frequency.

w Vector of complex frequencies at which the FRF is mea-
sured. Although the function can operate using arbi-
trary complex frequencies, the following two choices
are rather standard for discrete and continuous time
models respectively:

w = ejω

w = jω

For discrete-time models, multiple data batches can
be concatenated by appending additional H,w pairs to
the parameter list.

Outputs

B The state-space model’s B matrix.

D The state-space model’s D matrix.

Algorithm
Estimating B and D from the frequency response function (FRF) data
and A and C is a linear regression [1]:

[
B̂

D̂

]
=

[
Re(Φ)
Im(Φ)

]† [
Re(θ)
Im(θ)

]
.
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The complex regression matrix Φ and data matrix θ are given by:

Φ =





Ĉ(ξ1 − Â)
−1

Iℓ

Ĉ(ξ2 − Â)
−1

Iℓ

...
...

Ĉ(ξN − Â)
−1

Iℓ




,

θ =





G1

G2
...

GN




.

The function ltifrf is used to efficiently fill the regression matrix
Φ.

Used By
This is a top-level function that is used directly by the user.

Uses Functions
ltifrf

See Also
fac2b , fdmodom, fcmodom , ltifrf .

References

[1] T. McKelvey, H. Akçay, and L. Ljung, “Subspace-based multivari-
able system identification from frequency response data,” IEEE
Transactions on Automatic Control, vol. 41, pp. 960–979, July 1996.
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Purpose
Estimates the A and C matrix in a continuous-time state-space model
from frequency response function (FRF) data that was preprocessed
by fcordom .

Syntax

[A,C]=fcmodom(R,n)

Description
This function estimates the A and C matrices corresponding to an
nth order discrete-time LTI state-space model. The compressed data
matrix R from the preprocessor function fcordom is used to this
end.

Inputs

R A compressed data matrix containing information about
the measured data, as well as information regarding
the system dimensions.

n The desired model order n.

Outputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.

Algorithm
The data matrix obtained with fcordom contains the weighted left
singular vectors of a matrix similar to the R22 matrix (see page 137).
Unlike in the discrete-time case, the first n of these vectors do not
form a direct estimate Ôs of the extended observability matrix. Rather,
a generalized matrix Ôs,⊥ is estimated because of the Forsythe-recursions

in the data-compression step. The Â and Ĉ estimates are extracted
such that this generalized shift-structure is taken into account [1].

Used By
This is a top-level function that is used directly by the user.

See Also
fcordom , fdmodom

References

[1] R. Pintelon, “Frequency domain subspace system identifica-
tion using non-parametric noise models,” in Proceedings of the
40th IEEE Conference on Decision and Control, (Orlando, Florida),
pp. 3916–3921, Dec. 2001.
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Purpose
Estimates the A and C matrix in a discrete-time state-space model
from frequency response function (FRF) data that was preprocessed
by fdordom .

Syntax

[A,C]=fdmodom(R,n)

Description
This function estimates the A and C matrices corresponding to an
nth order discrete-time LTI state-space model. The compressed data
matrix R from the preprocessor function fdordom is used to this
end.

Inputs

R A compressed data matrix containing information about
the measured data, as well as information regarding
the system dimensions.

n The desired model order n.

Outputs

A The state-space model’s A matrix.
C The state-space model’s C matrix.

Algorithm
The data matrix obtained with fdordom contains the weighted left
singular vectors of the R22 matrix (see page 137). The first n of these
vectors form an estimate Ôs of the system’s extended observability
matrix:

Os =





C
CA

...
CAs−1




.

The estimates Â and Ĉ are obtained by linear regression:

Ĉ = Ôs(1 : ℓ, :),

Â = Ôs(1 : (s − 1)ℓ, :)†Ôs(ℓ + 1 : sℓ, :).

Used By
This is a top-level function that is used directly by the user.

See Also
fdordom , fcmodom
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Purpose
Preprocesses frequency-domain data for frequency-domain subspace
identification of continuous-time state-space models.

Syntax

[S,R]=fcordom(H,w,s)

Description
This function performs the initial data compression for continuous-
time subspace identification based on measured frequency reponse
function (FRF) data. In addition, it delivers information usuable for
determining the required model order. The model structure is the
following:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

This function acts as a preprocessor to fcmodom . Unlike in the discrete-
time case, concatenating multiple data batches are not supported.

Inputs

H The measured frequency response function (FRF). This
should be a matrix which follows the convention of
MATLAB 6; it should be ℓ×m×N in which H(:,:,i)
contains the complex FRF at the ith complex frequency.

w Vector of complex frequencies at which the FRF is mea-
sured:

w = jω.

s The block-size parameter. This scalar should be > n.

Outputs

S The first s singular values of the rank-deficient R22

matrix (see below).
R A compressed data matrix containing information about

the measured data, as well as information regarding
the system dimensions.

Remarks
The MEX-implementation may generate the following warning:

Cholesky-factorization failed; falling back on
QR-factorization.

This implies that the fast Cholesky-algorithm failed. The function
has automatically fallen back onto a slower QR-algorithm. Results
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from fcordom can be used without problems if this warning ap-
pears.

Algorithm
The continuous-time data compression algorithm in [1] is used. The
same factorizations as in the discrete-time function fdordom on page 137
are used. However, the W and G matrices are formed by Forsythe-
recursions to prevents ill-conditioning because the complex frequen-
cies are not of unit magnitude [1, 2].

A weighted SVD of the R22 matrix is made, and its left singular vec-
tors are appended to the R-matrix. Its first s singular values are re-
turned in S.

Used By
This is a top-level function that is used directly by the user.

Uses Functions
LAPACK-functions DPOTRF, DGEQRF, DGESVD, DTRTRS.

BLAS-functions DTRMMand DGEMM.

(All built into the executable)

See Also
fcmodom , fdordom

References

[1] P. van Overschee and B. De Moor, “Continuous-time fre-
quency domain subspace system identification,” Signal Process-
ing, vol. 52, no. 2, pp. 179–194, 1996.

[2] R. Pintelon, “Frequency domain subspace system identifica-
tion using non-parametric noise models,” in Proceedings of the
40th IEEE Conference on Decision and Control, (Orlando, Florida),
pp. 3916–3921, Dec. 2001.
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Purpose
Preprocesses frequency-domain data for frequency-domain subspace
identification of discrete-time state-space models. Delivers an order-
estimate.

Syntax

[S,R]=fdordom(H,w,s)
[S,R]=fdordom(H,w,s,Rold)

Description
This function performs the initial data compression for discrete-time
subspace identification based on measured frequency reponse func-
tion (FRF) data. In addition, it delivers information usuable for de-
termining the required model order. The model structure is the fol-
lowing:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

Several data batches can be concatenated, as shown below. This func-
tion acts as a preprocessor to fdmodom.

Inputs

H The measured frequency response function (FRF). This
should be a matrix which follows the convention of
MATLAB 6; it should be ℓ×m×N in which H(:,:,i)
contains the complex FRF at the ith complex frequency.

w Vector of complex frequencies at which the FRF is mea-
sured.

w = ejω.

s The block-size parameter. This scalar should be > n.

Rold (optional) The data-matrix resulting from a previous
call to fdordom .

Outputs

S The first s singular values of the rank-deficient R22

matrix (see below).

R A compressed data matrix containing information about
the measured data, as well as information regarding
the system dimensions.

Remarks
The MEX-implementation may generate the following warning:
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Cholesky-factorization failed; falling back on
QR-factorization.

This implies that the fast Cholesky-algorithm, as described in the al-
gorithm section below, failed. The function has automatically fallen
back onto a slower QR-algorithm. Results from fdordom can be
used without problems if this warning appears.

Algorithm
The discrete-time data compression algorithm in [1] is used. In the
M-file implementation, the following RQ-factorization is made:

[
W
G

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
.

The meaning of the various matrices can be found in the cited article.
In the MEX-implementation, the following Cholesky-factorization is
attempted first:

[
W
G

] [
W
G

]T

=

[
R11 0
R21 R22

] [
R11 0
R21 R22

]T

.

If this factorization fails, the algorithm falls back on the above RQ-
factorization. In all cases, a weighted SVD of the R22 matrix is made,
and its left singular vectors are appended to the R-matrix. Its first s
singular values are returned in S.

Used By
This is a top-level function that is used directly by the user.

Uses Functions
LAPACK-functions DPOTRF, DGEQRF, DGESVD, DTRTRS.

BLAS-function DTRMM.

(All built into the executable)

See Also
fdmodom, fcordom

References

[1] T. McKelvey, H. Akçay, and L. Ljung, “Subspace-based multivari-
able system identification from frequency response data,” IEEE
Transactions on Automatic Control, vol. 41, pp. 960–979, July 1996.
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Purpose
Calculates cost-function information for foptlti .

Syntax

[epsilon]=ffunlti(th,H,params,timing)
[epsilon,psi]=ffunlti(th,H,params,timing)
[epsilon,psi,U2]=ffunlti(th,H,params,timing)

Description
This function implements the costfuction for the foptlti frequency
domain optimization framework. It is not meant for standalone use.

Inputs

th Parameter vector describing the system.
H The frequency response function of the system to be

optimized: an array of size ℓ×m×N in which H(:,:,i)
contains the complex FRF at the ith complex frequency.

w Complex frequencies at which the FRF is measured.
params A structure that contains the dimension parameters of

the system, such as the order, the number of inputs,
whether D, x0 or K is present in the model.

timing Either ’cont’ or ’disc’ , indicating that the sup-
plied model is continuous of discrete time. Note that
this influences only the way in which the output nor-
mal parametrization is built. The user is responsible
for supplying suitable frequency data.

Outputs

epsilon Output of the costfunction, which is the square of the
error between the actual and predicted vectorized fre-
quency response function.

psi Jacobian of epsilon .
U2 Left null-space of Manifold matrix for the full parametriza-

tion [1].

Algorithm
The formation of the error-vector is done bu calculating the FRF of
the current model:

Ĥ(ξk; θ) = C(θ)(ξkIn − A(θ))−1B(θ) + D(θ).

The error-vector EN ∈ R
2Nℓm is build up such that its ith blockrow

consists of vec(Ĥ(ξi, θ) − H(ξi)), in which the real and imaginary
components have been interleaved.

The Jacobian is formed efficiently by calculating FRFs as well. The
formation of the Manifold matrix is performed according to [1]. A
QR-factorization is used to obtain its left null-space.
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Used By
foptlti (via lmmore )

Uses Functions
dth2ss , cth2ss , ltifrf

See Also
dfunlti

References

[1] L. H. Lee and K. Poolla, “Identification of linear parameter-
varying systems using nonlinear programming,” Journal of Dy-
namic Systems, Measurement and Control, vol. 121, pp. 71–78, Mar.
1999.
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Purpose
Performs a frequency-domain nonlinear least squares optimization
of an LTI state-space model.

Syntax

[A,B,C,D]=foptlti(H,w,A,B,C,D)
[A,B,C,D,options]=foptlti(H,w,A,B,C,D,model,partype ,...

options)

Description
This function performs a nonlinear least squares optimization of a
discrete or continuous time linear state space model based on fre-
quency reponse data. The model structure is the following:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).

First, the state space matrices are parameterized. The output nor-
mal parametrization, the tridiagonal parametrization and the full
parametrization can be used.

The parameterized model is optimized using the supplied lmmore
Levenberg-Marquardt function. The matrices A,B, C and D are re-
turned.

Inputs

H The measured frequency response function (FRF). This
should be a matrix which follows the convention of
MATLAB 6; it should be ℓ×m×N in which H(:,:,i)
contains the complex FRF at the ith complex frequency.

w Vector of complex frequencies at which the FRF is mea-
sured. Although the function can operate using arbi-
trary complex frequencies, the following two choices
are rather standard for discrete and continuous time
models respectively:

w = ejω,

w = jω.

A,B,C,D Initial estimates of the system matrices A, B, C and D.
partype (optional) This parameter specifies the type of param-

eterization that is used to parameterize the state space
model. Three types of parameterization are supported:
’on’ Output Normal parametrization.
’tr’ Tridiagonal parametrization.
’fl’ Full parametrization.
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options (optional) Input parameters that are passed on directy
to the optimization function. These options may be
compatible with the optimset options from the MAT-
LAB 6 Optimization Toolbox[1]. Alternatively, a MAT-
LAB 5 Optimization Toolbox compatible foptions
vector may be specified.
There are a number of fields in addition to the normal
fields in the options structure. These are described
in detail in the remarks section below.

timing Must be either ’cont’ or ’disc’ to specify that the
model is continuous or discrete time. Note that this
changes only the stability check and the output normal
parametrization. It is up to the user to supply suitable
frequency data.

Outputs

A,B,C,D System matrices of the optimized linear model. If the
D matrix is not estimated, it will be returned empty.

options Output parameters from the Optimization Toolbox.
See foptions or optimset .

Remarks
An extra field options.Manifold may be set to ’on’ if the full
parametrization is used. The Manifold field indicates whether the
search direction should be confined to directions in which the cost-
function changes.

If options.Manifold is not set, foptlti will set it to ’off’ for
the output normal and tridiagonal parametrizations, and to ’on’ for
the full parametrization. See foptions or optimset for more in-
formation.

Another new field that can be set is the options.BlockSize field.
The value Nb of the BlockSize field indicates that the Jacobian in
the cost-function is build up Nb block-rows at a time rather than all
at once [2]. This option is mainly interesting in tight-memory sit-
uations or for problems with a very large number of samples. If
options.BlockSize is set to Nb, the fields options.RFactor
and options.LargeScale are set to ’on’ automatically. A rule
of thumb is that the Jacobian-calculation requires about 24(p + 1 +
2Nbℓm)(p + 1) bytes of computer memory, in which p is the number
of free parameters. For the full parametrization, this is the number
of parameters after an optional Manifold-projection.

This optimization function has been targeted at MATLAB version 6
or higher. However, the function will run on MATLAB version 5
using a compatibility kludge. This kludge implies that the options



foptlti 143

input parameter can either be a MATLAB 6 optimset -structure, or
a MATLAB 5 compatible foptions -vector. However, the latter is
discouraged since it does not allow the Manifold , LargeScale ,
RFactor and BlockSize fields to be set.

Used By
This is a top-level function that is used directly by the user.

Uses Functions
lmmore , dss2th , dth2ss , css2th , cth2ss , ffunlti

See Also
lsqnonlin , lmmore , optimset , foptions , mkoptstruc

References

[1] The MathWorks Inc., Natick, Massachusetts, Optimization Toolbox
User’s Guide, version 2.1 (release 12) ed., Sept. 2000.

[2] N. Bergboer, V. Verdult, and M. Verhaegen, “An efficient im-
plementation of maximum likelihood identification of LTI state-
space models by local gradient search,” in Proceedings of the 41st
IEEE Conference on Decision and Control, (Las Vegas, Nevada), Dec.
2002.
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Purpose
Performs a Moré-Hebden Levenberg-Marquardt optimization

Syntax

x=lmmore(’func’,xinit,lb,ub,options,arg2,...)
[x,resnorm,residual,exitflag,output,lambda,

jacobian]=lmmore(’func’,xinit,lb,ub,options,...
arg2,...)

Description
This function is a Moré-Hebden implementation of the Levenberg-
Marquardt nonlinear least-squares optimization algorithm. The func-
tion is interface-compatible with the lsqnonlin -function from the
MATLAB 6 Optimization Toolbox.

Inputs

’func’ The cost-function that is to be used.
xinit The parameter-vector’s starting point in the non-linear

optimization.
lb Lower-bound on the parameters. This value is not

used.
ub Upper-bound on the parameters. This value is not

used.
options A MATLAB 6 compatible optimset -structure that con-

tains options for the optimization algorithm [1]. In
addition, a number of extra fields may be present. See
the Remarks section below for more information.

arg2 This will be passed as second argument to the cost-
function ’func’ . Arguments 3 to N may be appended
after arg2 .

Outputs

x Result of the optimization. The solution x is guaran-
teed to have an equal or smaller cost than xinit .
All other parameters are compatible with the MAT-
LAB 6 lsqnonlin function.

Remarks
The interface to lmmore has been made compatible with the lsqnonlin
optimization function in the MATLAB 6 Optimization Toolbox. Note
that although a lower and upper bound are given (consistent with
lsqnonlin ’s interface), they are not used internally.

This optimization implementation supports overparametrized cost-
functions. If options.Manifold (not part of optimset ’s normal
structure) is passed and set to ’on’ , lmmore expects the cost- func-
tion to be able to return three arguments: an error-vector EN , a Jaco-
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bian ΨNU2 and a projection matrix U2. The columns of this matrix U2

must form an orthonormal basis of the subspace in which the cost-
function does not change because of over-parametrization.

This optimization implementation supports cost-functions that re-
turn the R-factor of the (projected) Jacobian ΨN and the error-vector
EN :

[ΨN EN ] = QR,

[ΨNU2 EN ] = QR.

Cost-functions may use this functionality, e.g. to build up the R-
factor in such a way that less memory is required. In order to use this
feature with costfunctions that support it, the field options.RFactor
should be set to ’on’ .

Algorithm
This function implements a Moré-Hebden trust-region based Levenberg-
Marquardt optimization according to [2, chap. 10],[3].

In addition, this function supports projected gradients according to
[4, 5].

Used By
doptlti , foptlti

Uses Functions
dfunlti , ffunlti

See Also
lsqnonlin , optimset

References

[1] The MathWorks Inc., Natick, Massachusetts, Optimization Toolbox
User’s Guide, version 2.1 (release 12) ed., Sept. 2000.

[2] J. E. Dennis and R. B. Schnabel, Numerical Methods for Un-
constrained Optimization and Nonlinear Equations. New Jersey:
Prentice-Hall, 1983.

[3] J. J. Moré, “The Levenberg-Marquardt algorithm: Implemen-
tation and theory,” in Numerical Analysis (G. A. Watson, ed.),
vol. 630 of Lecture Notes in Mathematics, pp. 106–116, Springer
Verlag, 1978.
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[4] N. Bergboer, V. Verdult, and M. Verhaegen, “An efficient im-
plementation of maximum likelihood identification of LTI state-
space models by local gradient search,” in Proceedings of the 41st
IEEE Conference on Decision and Control, (Las Vegas, Nevada), Dec.
2002.

[5] L. H. Lee and K. Poolla, “Identification of linear parameter-
varying systems using nonlinear programming,” Journal of Dy-
namic Systems, Measurement and Control, vol. 121, pp. 71–78, Mar.
1999.



ltiitr 147

Purpose
Calculates an LTI state-trajectory.

Syntax

x=ltiitr(A,B,u,w,x0)

Description
In its most general setting, this function iterates the state equation of
an linear time-invariant (LTI) system. It computes the state x(k) for
k = 1, 2, . . . , N satisfying the LTI state equation:

x(k + 1) = Ax(k) + Bu(k) + w(k).

This function is used internally by dfunlti , dac2b , dac2bd , dinit
and dltisim . It is not meant for stand-alone use.

Inputs

A An LTI state-transition matrix of size n × n
B An LTI input matrix of size n × m. If s > 0 and B ∈

R
n×m, the system is assumed to be Bilinear.

p (optional) An N×s matrix containing the time varying
parameters.

u A N×m matrix containing N samples of the m inputs.
w (optional) A N×n matrix containing the process noise.
x0 (optional) The initial state, an n × 1 vector.

Outputs

x The computed state, an N × n matrix.

Algorithm
A direct iteration of the system’s state-transition equation is used to
obtain the state-trajectory for all time-instants.

Used By
dfunlti , dac2b , dac2bd , dinit , dltisim

See Also
dfunlti , dac2b , dac2bd , dinit , dltisim
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Purpose
Calculates an LTI Frequency Response Function

Syntax

H = ltifrf(A,B,C,[],[],w,outopt)
H = ltifrf(A,B,C,D,[],w,outopt)
H = ltifrf([],[],[],D,[],w,outopt)
H = ltifrf(A,B,C,[],dA,w,outopt)

Description
ltifrf will return the Frequency Response Function (FRF) of a linear
time-invariant state-space model, evaluated at the complex frequen-
cies provided in w:

H = C(wIn − A)−1B + D.

This function is used internally by ffunlti , fac2b and fac2bd . It
is not meant for stand-alone use.

Inputs

A State-space model matrix A.
B State-space model matrix B.
C State-space model matrix C.
D (optional) State-space model matrix D.
dA (optional) Calculates the change in FRF given the de-

viation dA in A. D and dA are mutually exclusive.
w Vector of complex frequencies. ejω for discrete-time

systems and jω for continuous-time systems.
outopt Controls how H will be returned (see below).

Outputs

H The FRF. Usually a 3D-array of size ℓ × m × N .
However, if outopt is non-empty and 1, H will be a
vector of size ℓmN × 1.
If outopt is non-empty and 2, H will be a matrix of
size ℓ × mN .

Algorithm
The state-space model is first transformed such that its state-transistion
matrix A is in upper-Hessenberg form. The matrix (wIn − A)−1B is
subsequently solved by an efficient upper-Hessenberg solver in SLI-
COT, after which premultiplication by C and addition of D yields
the FRF. This approach follows [1].

If a deviation δA in A is given, the FRF deviation is given by:

δH = C(wIn − A)−1δA(wIn − A)−1B.
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Again, the model is transformed so that A has upper-Hessenberg
form, after which the SLICOT Hessenberg solver is used to obtain
(ωIn − A)−1B and (ωIn − A)−1δA. Multiplication then yeilds the
FRF deviation.

Used By
ffunlti , fac2b , fac2bd .

Uses Functions
SLICOT-functions MB02RZ, MB02SZ, TB05AD.

LAPACK-functions DGEHRDand DORMHR.

(All built into the executable)

See Also
ffunlti , fac2b , fac2bd .

References

[1] A. J. Laub, “Efficient multivariable frequency response calcula-
tions,” IEEE Transactions on Automatic Control, vol. 26, pp. 407–
408, Apr. 1981.
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Purpose
Creates a MATLAB 6-compatible optimset -structure

Syntax

optstruc=mkoptstruc

Description
This function provides a MATLAB 6 optimset work-alike. It gen-
erates an empty optimset -structure that can be passed to the high-
level doptlti or foptlti function, or to the lower-level lmmore
function.

Note that this function only generates a default optimset -structure.
It is not capable to option-merging like the MATLAB 6 optimset
function. It is recommended to use optimset if running MATLAB
6.

Inputs

None

Outputs

optstruc A default optimset -structure

Used By
optim5to6

See Also
optimset
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Purpose
Translates a foptions -vector into an optimset -structure.

Syntax

options=optim5to6(fopts)

Description
This function translates a MATLAB 5 optimization options vector —
as generated using foptions — into a MATLAB 6 compatible optimset -
structure. Translated fields are:

1 Display

2 TolX

3 TolFun

9 Jacobian

14 MaxFunEval

Inputs

fopts A MATLAB 5 compatible foptions -vector

Outputs

options A MATLAB 6 compatible optimset -structure

Remarks
MATLAB 5 uses a default parameter and function tolerance of 10−4.
This is indicated by the second and third element of fopts , that are
10−4 in the default case.

MATLAB 6 uses a default value of 10−6 for both tolerances, but set-
ting the tolerances to 10−6 if the fopts vector contains the default
values is impossible: there is no way of telling whether the user used
the default values or that he actually specified 10−4 as tolerance.

Consequently, the tolerances are copied verbatim, and there will thus
be different results in an optimization when using a default foptions-
vector or a default optimset-structure.

Uses Functions
mkoptstruc

See Also
foptions , optimset , mkoptstruc
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Purpose
Produces a pseudo-random binary sequency suitable as identifica-
tion input.

Syntax

y=prbn(N,rate)

Description
This function produces a binary sequence, with values 0 and 1. The
chance of switching from level is given by the parameter rate . rate=0
yields a constant value 0. rate=1 gives an signal that changes be-
tween 0 and 1 at every time-instant. Any value in between results
in a random binary sequence. This kind of testsignal has been de-
scribed in [1].

Inputs

N The number of samples.
rate (optional) Probability of the signal changing level at

each time-instant. The default value is 0.5.

Outputs

y Pseudo-random binary noise.

Used By
This is a top-level function that is used directly by the user.

References

[1] H. J. A. F. Tulleken, “Generalized binary noise test-signal con-
cept for improved identification-experiment design,” Automatica,
vol. 26, no. 1, pp. 37–49, 1990.
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Purpose
Calculates the left null-space of the basis of similarity transforma-
tions.

Syntax

U2=simlns(A,B,C,[],[],[])
U2=simlns(A,B,C,K,fD,fx)

Description
The function simlns calculates the left null-space of an LTI system’s
similarity map Mθ. In the most general case, when A, B, C, D, K
and x0 are part of the parameter vector, this matrix is given by [1]:

Mθ =




In

0m×n

0ℓ×n



 ⊗

[
A
C

]
−




AT

BT

KT



 ⊗

[
In

0ℓ×n

]
. (5.1)

A QR-factorization is used to obtain the left null-space.

This function is used internally by dfunlti and ffunlti and is not
meant for stand-alone use.

Inputs

A,B,C System matrices describing the LTI State Space sys-
tem.

K (optional) Kalman gain, specify as empty matrix when
not present.

fD (optional) specifies whether D is part of the parameter
vector, specify as empty, 0 or 1.

fx (optional) specifies whether x0 is part of the parame-
ter vector, specify as empty, 0 or 1.

Outputs

U2 The left null-space of the similarity map.

Remarks
Specifying fx=1 only causes an n×n identify-matrix to be appended
to the lower right of the left null-space matrix; in a non-linear op-
timization, applying the left null-space ensures that the state-basis
does not change. It thus does not have to be projected.

Algorithm
The manifold matrix Mθ is calculated according to [1]. A QR-factorization
is used subsequently to obtain the left null-space.

Used By
dfunlti , ffunlti
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References

[1] L. H. Lee and K. Poolla, “Identification of linear parameter-
varying systems using nonlinear programming,” Journal of Dy-
namic Systems, Measurement and Control, vol. 121, pp. 71–78, Mar.
1999.
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Purpose
Reduces spikes in measured signals.

Syntax

shave(x)
y=shave(x)
y=shave(x,factor,Wn,lolim,uplim)

Description
This function is used for reducing spikes in a measured signal. The
spikes are shaved using the method in [1].

If no output argument is specified, a figure containing the original
signal and shaved signal is drawn. The figure also contains the band
(see “Algorithm” below). Detected spikes are indicated with crosses.

Inputs

x The signal to be shaved.
factor (optional) Multiplication factor which determines the

width of the detection band. When the detection is
poor, this factor should be changed. The default value
is 2.

Wn (optional) Cut-off frequency of the low-pass filter used
for trend determination. It must be in the range 0.0 <
Wn < 1.0, with 1.0 corresponding to half the sample
rate. Its default value is 0.01.

lolim,uplim (optional) The signal x will be clipped to the band
[lolim, uplim] before the shaving starts.

Outputs

y The shaved signal.

Algorithm
The spike removal algorithm developed in [1] is used. This algorithm
can be summarized as follows:

• The trend in the signal x is calculated using a fourth-order But-
terworth filter.

• The standard deviation of the trend-corrected, clipped signal is
calculated.

• The detection band is defined by the signal trend plus and mi-
nus a certain factor times the standard deviation. All samples
outside this band are regarded as spikes, and are replaced using
linear interpolation.

Used By
This is a top-level function that is used directly by the user.
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Netherlands, 1987.
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Purpose
Calculates the Variance Accounted For between two signals.

Syntax

v=vaf(y,ye)

Description
The function vaf calculates the Variance Accounted For between
two signals. The VAF between y and ŷ for the ith component is de-
fined as

VAFi =

(
1 −

var(yi − ŷi)

var(yi)

)
· 100%. (5.2)

The VAF of two signals that are the same is 100%. If they differ, the
VAF will be lower. If y and ŷ have multiple columns, the VAF is
calculated for every column in y and ŷ seperately.

The VAF is often used to verify the correctness of a model, by com-
paring the real output with the estimated output of the model.

Inputs

y The measured output y(k).
ye The estimated output ŷ(k).

Outputs

v The Variance Accounted For as defined above.

Used By
This is a top-level function that is used directly by the user.
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MATLAB functions that are part of the toolbox software have both normal and bold
page numbers. The bold page number refers to the function manual page. Normal page
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