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Abstract— An Iterative Learning Control (ILC) algorithm
for supersaturation control in batch cooling crystallization is
presented in this paper. The ILC controller is combined with a
PI controller in order to reject the disturbances present in the
thermal dynamics as much as possible. Convergence and ro-
bustness properties of the proposed ILC+PI control scheme are
investigated. The simulation studies reveal that the controller
is well capable of tracking a predetermined supersaturation
trajectory in the presence of model imperfections, measurement
noise and actuation deficiencies.

I. INTRODUCTION

Crystallization can be defined as a phase change in which a
solid crystalline product is obtained from a solution [1]. The
crystalline material is formed from the fluid phase, making
crystallization a core separation and purification technology
in the pharmaceutical, food and fine chemical industries [2].
Crystallization processes are often operated in batch mode.
Batch processes are particularly convenient when production
volumes are low, when isolation is necessary, and when
frequent changeovers are required. In this paper we restrict
our attention to batch cooling crystallization, which is the
most widely applied crystallization method.

The current practice in operation of industrial batch cool-
ing crystallization processes is to control the temperature
inside the crystallizer to follow a desired profile during the
batch [3]. The process variable that can be manipulated
to influence the temperature inside the crystallizer is the
temperature of a jacket on the crystallizer. Since accurate
on-line temperature measurements can readily be obtained,
the temperature is usually controlled in a closed-loop setting.
In this configuration, the desired crystallizer temperature is
given as reference trajectory of a feedback loop. This strategy
is known as T-control in literature [3]. Due to disturbances
affecting the jacket temperature and model uncertainties,
such a closed-loop configuration is essential in order to
follow the temperature profile accurately.

However, even when temperature is accurately controlled,
the final product of a batch might not show the expected
characteristics. Furthermore, the result might not be repro-
ducible from one batch to the other. Even though temperature
is an important process variable, it is not the one most closely
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related to the crystallization dynamics. The variable having
the most direct influence on the basic phenomena occurring
in crystallization is the supersaturation, often defined in terms
of solute concentration.

Feedback control strategies in which the jacket tempera-
ture is computed based on on-line measurements of the solute
concentration in order to follow a given supersaturation
profile have been widely investigated (see e.g. [4] and [5]).
In literature, they are known as C-control strategies [3]. In
general, C-control was shown to give better performance
compared to T-control, particularly in terms of reproducibil-
ity of the final product. A condition for the implementation
of C-control is obviously that accurate on-line concentration
measurements are available.

At laboratory scale, the use of technologies such as ATR-
FTIR spectroscopy for measurements of concentration has
already been proven (see e.g. [6]), and C-control has been
succesfully implemented. However, at full industrial scale,
the robustness and precision of such measurements requires
further investigation. In those cases, accurate concentration
measurements can only be obtained from laboratory analysis
of samples collected throughout the batch and are only
available at the end of a batch. This makes on-line C-control
not yet feasible in an industrial environment.

In such a situation where concentration measurements are
only available off-line, we can nevertheless achieve supersat-
uration tracking by using the information batchwise. Iterative
Learning Control (ILC) is known to be an effective way to
improve the tracking performance of uncertain dynamical
systems that operate repetitively [7]. In ILC, measurements
are collected after each iteration (in our case after each batch)
to improve the tracking performance at the next iteration (in
our case the tracking of a supersaturation profile).

A well-known drawback of ILC is nevertheless the inabil-
ity to cope efficiently with unknown disturbances that are
different from iteration to iteration. Consequently, an ILC
approach alone might not be sufficient to control supersatu-
ration in the crystallizer in presence of system disturbances.

In this paper, we propose a novel control strategy to
track efficiently a supersaturation profile under the presence
of unknown disturbances and process uncertainties. This
strategy, inspired by the master-slave configuration, exploits
the fact that concentration measurements are only available
offline, but temperature measurements are readily available
online. In fact, our strategy combines a slave temperature
feedback controller and a master ILC algorithm.

Based on the desired supersaturation profile and the off-
line concentration measurements from the previous batches,



the ILC algorithm computes after each batch an improved
profile T r for the temperature in the crystallizer. This profile
is then used in the next batch as a new reference for the
(slave) feedback loop. The controller in this feedback loop
is designed to reject the system disturbances as efficiently
and as fast as possible to decrease their influence on the
supersaturation control. This improves the tracking efficiency
of the ILC algorithm.

The ILC algorithm used in this paper is based on the so-
called two-step procedure [8]. After each batch, the available
model of the dynamics between the temperature reference T r

and the supersaturation is adapted in a non-parametric way
based on the measurements collected during the previous
batch. The next temperature reference is then obtained by
minimizing a quadratic criterion involving the tracking error
for the supersaturation as well as a regularization term in
order to avoid large modifications of T r from batch to batch.
Such an approach is called Quadratically Optimal Design or
Q-ILC [9].

The ILC algorithm presented in this paper is based on a
nonlinear first-principles nonlinear model of crystallization.
In the literature, another applications of ILC for supersatu-
ration control was presented in [10]. In comparison with the
latter contribution, the advantage of our approach is twofold.
First, the master-slave configuration which is an asset in
the presence of disturbances. Second, the use of the first-
principles model in the algorithm as opposed to a linearized
model used in [10], which is a good approximation of the
dynamics only along the time-varying working point.

II. MODEL OF BATCH COOLING CRYSTALLIZATION

Under the assumptions of well-mixed suspension, no
breackage and agglomeration, and nucleation occurring at
negligible size only, the dynamics of a batch crystallization
process are described by the Population Balance Equation
(PBE) [11]:

∂n(L, t)

∂t
= −

∂
(
Gn(L, t)

)
∂L

n(0, t) =
B

G

(1)

where n(L, t) is the Crystal Size Distribution (CSD), repre-
senting the number density of crystals with length L at time
t, divided by the total volume of the crystallizer V . B and G
are terms representing the birth of new crystals (nucleation)
and the growth of existing crystal respectively. B and G are,
in general, functions of the temperature T , the CSD and the
supersaturation S. This last quantity is the difference between
the actual solute concentration in the liquid phase C, and the
equilibrium concentration given by the solubility Cs(T ):

S = C − Cs(T ). (2)

At this point let us define for convenience the i-th moment
of the CSD as

mi(t) ,
∫ ∞

0

Lin(L, t) dL. (3)

The concentration C is a static function of the third moment
m3, due to the crystal mass balance:

C = C0 − 10−3ρckv(m3(t)−m3(0)) (4)

where C0 is the initial concentration, ρc is the crystal density
and kv is the shape factor of the crystals. The solubility line
Cs(T ) can be approximated as a low-order polynomial in T :

Cs(T ) = a0 + a1T + a2T
2 + a3T

3. (5)

Several models for B and G have been proposed in
literature: a common choice for control applications, which
gives a reasonable fit to experimental data, is given by [11]:

B = kbm3S
b G = kgS

g (6)

where kb, kg, b, g are kinetic parameters.
Adopting this model, the time evolution of the moments

of the CSD can be exactly expressed by a set of differential
equations known as the moment equations [12]:

dm0

dt
= B

dmi

dt
= iGmi−1 i = 1, 2, 3.

(7)

The temperature dynamics, ignoring the heat of crystalliza-
tion, are described as

dT

dt
=
UA(TJ − T )

ρcpV
(8)

where U is the heat-transfer coefficient, A is the heat-transfer
area, ρ is the density of the slurry and cp is the heat capacity
of the slurry. TJ , the jacket temperature, is considered as the
input variable of the system. Dynamic equations (7) and (8),
together with kinetic expressions (6), the mass balance (4),
the expression of the solubility line (5) and the definition
(2) of supersaturation form, together with a given initial
condition, a solvable set of Differential Algebraic Equa-
tions (DAEs). These DAEs can be transformed to Ordinary
Differential Equations (ODEs) via direct substitution. The
parameters of the model are reported in the Appendix I.

In our simulation environment, the outputs of the system
are the reactor temperature T (t) and the solute concentration
C(t). They are collected at a sampling rate ts = 5s.

A. Disturbances and model uncertainty

Measurements C̃(t) and T̃ (t) of C(t) and T (t) are as-
sumed to be corrupted by additive measurement noise eC
and eT respectively. eC and eT are modeled as realizations of
independent white gaussian variables with standard deviation
0.1 oC and 0.4 g/L respectively.

The jacket temperature TJ is perturbed by a low-frequency
disturbance modeled as an autoregressive stochastic process
of order 1 with standard deviation σAR = 0.25 oC :

δT (t+ 1) = aδT (t) + e(t) (9)

where a = 0.9895 and e(t) is white gaussian noise with vari-
ance σ2

e = σ2
AR(1−a2). The noise realizations eC , eT , δT are

different for each batch since the disturbances are assumed
to have a non-reproducible nature.



The dynamics of the process are assumed to be exactely
described by the equations previously introduced. However,
the kinetic parameters θ =

[
kb b kg g

]>
in (6) are not

usually known accurately. In this work, we will assume that
the actual value θ0 lies in a given box region Θ centered
around a nominal θ̂. The width of the region is ±10% of the
nominal values of each parameter:

0.9θ̂i ≤ θ0,i ≤ 1.1θ̂i i = 1 . . . 4. (10)

The other parameters of the model are assumed to be known
exactly.

B. Discrete finite-time representation

Consider the system in a finite-time span and with a fixed-
step integration scheme, for a given initial condition. Define
N as the number of samples corresponding to a batch. Then,
the output vector S ∈ RN containing the supersaturation at
the sampling time is a nonlinear static function of the input
vector TJ ∈ RN of the jacket temperature. This function
depends on the parameters θ:

S = FSTJ
(TJ; θ). (11)

A Runge-Kutta scheme with sampling time td = 5s is used
for discretization of the continous time equations of the
model (note that we choose td = ts for simplicity).

In the following, we shall adopt the bold-face notation for
vectors in RN , while FY U (·) has to be interpreted as the
function from the input vector U to the output vector Y.

III. ITERATIVE LEARNING CONTROL FOR BATCH
CRYSTALLIZATION

We devise in this section an ILC scheme for supersatura-
tion control of the cooling crystallization system described in
the previous section. Taking a look at the model equations,
the jacket temperature TJ may be considered as the input,
and therefore we could design an ILC scheme based on TJ
directly.

However, due to the presence of disturbances on the
temperature dynamics, we prefer to design a PI temperature
controller for the crystallizer temperature T and to use the
set point of the controller T r as input for the ILC algorithm.

The overall ILC+PI control scheme is sketched in Figure
1. The two rightmost blocks represent the batch crystallizer,
whose dynamics is conceptually split into two parts: the
temperature dynamics corresponding to equation (8) and the
crystallization dynamics corresponding to equation (7). The
two leftmost blocks represent the control system: the PI
temperature controller and the ILC controller, which drives
the reference of the latter. The signals coming and departing
from the ILC block are updated off-line only (i.e. from one
batch to the other), and are indicated by dashed lines. All
other signals are represented by continuous lines because
their value is updated during the same batch, at sampling
time ts.

The temperature controller design is based on the temper-
ature dynamics (8) and the specifications of the disturbances
eT and δT .

PI
Controller

Temperature
Dynamics
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Controller
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Fig. 1. The overall ILC+PI control scheme

Given the first order dynamics, a PI controller is consid-
ered to be sufficient. This PI controller is determined by the
transfer function

C(s) = KP +
KI

s
(12)

where KP and KI are set to

KP =
ρcpV

tclUA
KI =

1

tcl
. (13)

tcl is a free parameter which is the time constant of the
closed-loop system. A small time constant is beneficial for
the rejection of the noise δT , while it is detrimental to the
rejection of eT . An appropriate choice is thus the result of
a trade-off between different objectives; in our case, tcl =
2 min was found to give a good result.

A discrete time version of this PI controller with sampling
time ts is implemented in the simulation model.

In order to test the robustness of the proposed scheme, the
model used by the ILC algorithm is based on the response
from T to S with nominal value θ̂ for the kinetic parameters

Ŝ = FST (Tr; θ̂) = Ŝ(Tr) (14)

while the true dynamics of the system are governed by

S = FST r (Tr; θ0) = S(Tr). (15)

We consider the problem of following a desired supersat-
uration trajectory S as closely as possible in Nit iterations
(batches).

To design the nonlinear iterative learning controller, we
employ the strategy discussed in [8]. At each iteration k of
the algorithm, the following steps are executed:

1) The temperature profile Tr
k is set as the input to the

temperature controller of the true system and the noisy
measurements C̃k, T̃k are collected.

2) Low-pass filtering is applied to the measurements and
supersaturation S̃k is computed via Equation (2).

3) A correction vector is computed as

αk+1 =arg min
α∈RN

‖S̃k−(Ŝ
(
Tr
k)+α

)
‖2+Sα‖α−αk‖2

(16)

where Sα is the iteration-dependent scalar:

Sα =


0, k = 0

1, k ∈ [1 . . . 4]

5, k ≥ 5

(17)



and a corrected model

Sck+1(Tr) = Ŝ(Tr) + αk+1 (18)

is found.
4) The corrected model is used to compute the tempera-

ture profile for the next iteration

Tr
k+1 = arg min

Tr∈RN
‖S−Sck+1(Tr)‖2+λ‖Tr

k+1−Tk‖2

(19)
where λ is the iteration-dependent scalar:

λ =

{
0, k ∈ [0 . . . 10]

1, k ∈ [11 . . . 20]
(20)

The initial temperature profile is found as the solution of the
following min-max optimization problem

Tr
1 = arg min

T∈RN
max
θ∈Θ
‖FST (T, θ)− S‖2 (21)

where Θ is the uncertainty region defined in (10).
Sα and λ are free tuning parameters of the algorithm; the

choice implemented in this paper was found to give a good
trade-off between rapid convergence and noise attenuation.

Optimization problems (19) and (21) are solved numeri-
cally using the active-set algorithm of the Matlab function
fmincon. Model equations are integrated at each step of
the optimization in order to evaluate the objective function.
The gradient of the objective function with respect to the
input is obtained via finite differences. In order to reduce the
dimensionality of the problem, Tr is sub-parametrized as the
integral of a piecewise linear signal passing through np =
40 equally spaced time instants. This kind of optimization
strategy is known as single shooting in literature, and was
applied to similar problems in [13].

In general, there is not a definitive guarantee that the
numerical solution of such Nonlinear Optimization Problems
(NLPs) would converge to a global optimum since the
optimization algorithm may be trapped in different local
optima depending on the initial guess. A similar event would
have a negative influence on the performance of the ILC
scheme. However, in the case presented in this paper this
situation does not seem to occur. The influence of the
initial guess on the optimization result is always very small
and most likely caused by the numerical tolerance on the
termination condition of the optimizer. A minor impact on
the performance of the ILC scheme is however given by the
sub-parametrization of the input, as discussed in the next
section.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the ILC
algorithm described in the previous section on four different
test cases. For all cases, Nit = 20 iterations of the algorithm
are executed. In a real setup, each iteration of the algorithm
corresponds to the execution of a batch of duration tf =
180 min. The tracking problem is always the same: to attain
a constant supersaturation level S(t) = 2.5 g/L throughout
the batch, starting from the temperature T0 = 38 oC and
concentration C0 = Cs(T0) + 2.5 g/L at time t0 = 0.
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Fig. 2. Case 1: iterations 1,2,5,20

The true parameter θ0 is kept the same for all cases;
however, the algorithm has no information about θ0 as it
is designed based on the nominal value θ̂.

Case 1

In this simulation, disturbances eC , eT and δT are set
to 0. Temperature, supersaturation and the vector α for
iterations 1, 2, 5 and 20 are shown in Figure 2. The algorithm
converges in a few iterations close to the set-point despite the
model-plant mismatch. Convergence is essentially achieved
at the third batch and the solution is stable in the following
iterations. Also the vector α converges to a fixed value.

Case 2

In this simulation, the presence of the disturbances eC ,
eT and δT is taken into account. Results for the simulation
are shown in Figure 3. The performance of the algorithm
remains very good and the effect of disturbances is attenuated
as expected by the PI controller. Note that the effect of such
disturbances on the output S is larger at the beginning of
the batch (high temperature) and decreases towards the end
(low temperature). Indeed, the sensitivity of the output S to
temperature fluctuations is larger at high temperature due to
the higher steepness of the solubility line (5).

Note also that the vector α is much smoothened from
iteration 5 to 20 owing to the Sα term in (16) and still shows
a similar shape as in Case 1.

Case 3

In this simulation, the presence of structural model-plant
mismatches is considered. The process is assumed to gener-
ate a significant amount of heat, sufficient to influence the
temperature dynamics. This can be modeled by modifying
equation (8) to

dT

dt
=
UA(TJ − T )

ρcpV
− 3ρckv∆HGm2

ρcp
(22)

where ∆H is the crystallization heat. Furthermore, a differ-
ent model of the nucleation dynamics is assumed for the real
system, i.e. the birth rate B is modified to

B = kbm2S
g. (23)



0 90 180
10

20

30

40
Iteration 1

Time (min)

T
e
m

p
e
ra

tu
re

 (
C

)

0 90 180
10

20

30

40
Iteration 2

Time (min)
0 90 180

10

20

30

40
Iteration 5

0 90 180
10

20

30

40
Iteration 20

Time (min)

0 90 180
2

2.5

3

Time (min)S
u
p
e
rs

a
tu

ra
ti
o
n
 (

g
/L

)

0 90 180
2

2.5

3

Time (min)
0 90 180

2

2.5

3

Time (min)
0 90 180

2

2.5

3

Time (min)

0 90 180

−0.5

0

α
 (

g
/L

)

Time (min)
0 90 180

−0.5

0

Time (min)
0 90 180

−0.5

0

Time (min)
0 90 180

−0.5

0

Time (min)

Fig. 3. Case 2: iterations 1,2,5,20
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Fig. 4. Case 3: iterations 1,2,5,20

However, no information about this difference in behavior
is used by the algorithm. The results of this simulation are
reported in Figure 4. The algorithm can cope with this kind
of structural uncertainty very well; almost the same tracking
performance as in Case 1 is achieved. Note that the vector
α converges to a value that is different from Case 1. This
is reasonable, as a different model correction is required in
this case to cope with the different mismatch.

Case 4

In this simulation, the structural mismatch as in Case 3
and the disturbances as in Case 2 are considered altogether.
The results of this simulation are shown in Figure 5. Again,
the achieved tracking result is satisfactory. The vector α also
converges to a similar value as in Case 3 as expected.

Overall Results

The Root Mean Square Error (RMSE) of the supersatura-
tion tracking error is plotted against the iteration number
for all cases in Figure 6. In all cases, a good tracking
result is mostly achieved already at the third iteration and
the RMSE of the tracking error at iteration 20 is less than
0.1 g/L. In Cases 1 and 3 the RMSE seems to converge
to a very small value that is however not exactly 0, even
though perfect tracking would be in principle possible. This
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Fig. 5. Case 4: iterations 1,2,5,20
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Fig. 6. RMSE of the tracking error vs. iteration number

small residual error is the combined effect of the input sub-
parametrization used for the solution of (19) and of the
inexact model correction performed in ILC. In Cases 2 and
4 the RMSE seems to converge to a slightly higher value,
mainly due to the effect of the disturbances. For Case 2,
simulations with 100 different realization of the parameter
vector θ0 were performed. The RMSE at the iteration 20 has
an average of 0.08 and standard deviation 0.02 g/L.

For sake of comparison with pure open loop control, the
PI controller was removed and the optimal solution was
implemented direcly on TJ . Even under the assumption of
perfect knowledge of the dynamics, the RMSE is about
0.4 g/L in this case due to the effect of the disturbance δT .

V. CONCLUSION

We have presented an ILC strategy for supersaturation
control in batch cooling crystallization. Coupled with a PI
temperature controller, the proposed scheme shows good
convergence properties and robustness with respect to dis-
turbances and model uncertainties. The performance level
evaluated in terms of RMSE of the supersaturation tracking
error is very good in all the cases analyzed. Most likely,
such a control scheme is appropriate for many industrial
crystallization processes.

The ILC strategy much resembles an Iterative Identifica-
tion Control (IIC) approach in which at each iteration



Name Description Value Units
ρc Crystal density 1130 Kg/m3

kv Crystal shape factor 1 -
T0 Initial temperature 38 oC
ρ Slurry density 789 Kg/m3

cp Slurry heat capacity 4185 J /(oC Kg)
V Crystallyzer volume 0.905 m3

UA Product heat-transfer area 1.49 · 105 J /(min oC)
a0 Coefficient 0 solubility 27.8428 ·10−3 Kg/L
a1 Coefficient 1 solubility 2.0891 · 10−3 Kg/(L oC)
a2 Coefficient 2 solubility −0.0311·10−3 Kg/(L oC2)
a3 Coefficient 3 solubility 0.0017 · 10−3 Kg/(L oC3)
∆H Crystallization heat −3000 · 103 J/Kg
kb Nucleation parameter 1.057 · 1013 1/(m3 min)
b Nucleation exponent 1.7 -
kg Growth parameter 5.0 · 10−4 m /min
g Growth exponent 1.1 -

TABLE I
PARAMETERS OF THE MODEL

1) we perform a parameter identification step, eventually
propagating the information of the previous batches as
an a priori term in a Bayesian framework;

2) we compute the optimal input based on the new model
and implement it in the real system.

The main differences in the ILC strategy are:
• we do not make direct use of statistical hypotheses

(while we formulate IIC in a stochastic setting);
• we consider the model update to be valid in a neigh-

borhood of the current trajectory only.
• we update a set of additional parameters α, instead of

the physical model parameters.
The update used in ILC is likely to cope with under-

modelling better than IIC due to the flexibility given by the
vector α. However, noise handling and tuning of the learning
weights il not straightforward in the ILC case.

In the future, the ILC algorithm could be introduced in
a stochastic setting in order to make the tuning procedure
more rigorous.

APPENDIX I
MODEL DETAILS

A. Parameters

Model parameters are reported in Table I. For the uncertain
parameters, the nominal value θ̂ is presented.

B. Initialization

An initial distribution, leading to initial values of the
moments, has to be given in order to start the simulations.

In this work we assume that the CSD at time 0 n0(L) has
the shape of the positive part of a parabola centered at the
mean size L0 = 40 µm and having width vs = 20 µm:

n0(L) = max
(
0, a(L− (L0 + vs))(L− (L0 − vs))

)
. (24)

The constant a is found such that the total mass of crystal
in the initial distribution is equal to Ms = 1Kg:

Ms = ρckvV

∫ ∞
0

L3n0(L) dL. (25)

The initial moments are obtained according to (3):

mi(0) = [1.328× 1011, 5.314× 106, 223.2, 0.0098] (26)

C. Rescaling

For numerical reason, the model is modified by rescaling
crystal number by a factor sN and crystal length by a factor
sL in the software implementation.

In the new variables, the rescaled CSD n′(L′, t) is ex-
pressed in (# · sN/(m3 · sLm) with sN = 10−10 and sL =
104. The original moments mi are in 1:1 correspondence
with the rescaled moments m′i according to the formula

m′i = sNs
i
Lmi (27)

System equations can be adapted in the rescaled variables
by modifying the kinetic parameters:

k′g = sLkg k′b =
kb
s3
L

(28)

and mass balances involving m3, according to (27). The
initial state has also to be adapted, again according to (27).

Adopting this transformation, all the model states are kept
in the same numerical range (approximately 0 to 100). This is
particularly useful when the model is used for optimization.
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