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Abstract—An Experiment Design framework for dynamical
systems which execute multiple batches is presented in this paper.
After each batch, a model of the system dynamics is refined using
the measured data. This model is used to synthesize the controller
that will be applied in the next batch. Excitation signals may
be injected into the system during each batch. From one hand,
perturbing the system worsens the control performance during
the current batch. On the other hand, the more informative
data set will lead to a better identified model for the following
batches. The role of Experiment Design is to choose the proper
excitation signals in order to optimize a certain performance
criterion defined on the set of batches that is scheduled. A total
cost is defined in terms of the excitation and the application cost
altogether. The excitation signals are designed by minimizing
the total cost in a worst case sense. The Experiment Design is
formulated as a Convex Optimization problem which can be
solved efficiently using standard algorithms. The applicability of
the method is demonstrated in a simulation study.

I. INTRODUCTION

In many practical applications a dynamical system performs
a certain operation repetitively over time. Examples are batch
processes in the chemical industry and movements of some
manipulators in robotics. According to the field, a single
operation of the system is called “iteration”, “run” , “pass”’
or “batch”. We will stick to this last term in this paper.

A possible model-based control strategy for this kind of
systems involves two steps for each batch. Firstly, data from
the previous batch are used to refine a model of the system
dynamics (iterative identification step). Secondly, the model is
used in order to determine the control action for the next batch
(controller design step). There is not a widespread name for
this strategy in literature. In a previous contribution [1], the
authors referred to it as Iterative Identification Control (IIC)
and applied it to the control of a batch crystallization process.

The reasoning of IIC can be extended if we consider that
we could have two distinct objectives for each batch. From
one hand, we want to follow an application-specific control
objective for the batch. In practice, an economical value may
be directly linked to this objective. On the other hand, we
may want to excite the system dynamics in order to perform
an effective identification with the data collected during the
batch. Exciting the system normally leads to a decrease in
the control performance during the current batch. However, a
reward for this price will be gained in the following batches.
The more accurate model of the dynamics will be used in order
to design a more effective control action. Thus, the application
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cost will decrease. The user of the system should carefully plan
his experiments in order to maximize the profits for the set of
batches which is scheduled by weighting the identification and
the control objectives in a proper fashion.

The task of designing excitation signals which guarantee
some properties of the identified model is known as Experi-
ment Design [2]. Several frameworks for Experiment Design
have been considered in literature. The classical approach is
to look for an input that minimizes a certain control-oriented
measure of the quality of the identified model. Constraints
on the excitation signals are often considered in terms of the
maximum input/output power allowed during the identification
phase [3], [4].

It has been observed that one should spend excitation
effort only if he really needs it for his particular application.
For this reason, it is usually more sensible to aim for a
certain performance level and spend the minimum excitation
cost in order to achieve it rather than fixing the excitation
cost in advance. While in the classical approach the control
performance is minimized under a constraint on the maximum
perturbation allowed, in the least costly approach [5] the
perturbation is minimized under a constraint on the guaranteed
control performance.

In some cases it is difficult even to specify a target perfor-
mance level. Furthermore, there is not always a clear distinc-
tion between the identification and the control experiments.
Consider the batch system case: the user is just interested to
satisfy a certain control objective as closely as possible for a
set of batches. He is allowed to introduce excitation signals in
each batch and he should make his choice based on the price
that he has to pay during the current batch and the reward that
he will gain in the following ones.

In this paper we develop a novel approach to Experiment
Design that is suitable for such situations. A total cost is de-
fined in terms of excitation and the application cost altogether.
The total cost measures a “distance” between the optimal
loop that we would design having a perfect knowledge of the
true system and the experimental loop which is achieved in
practice, in which the controller design is based on the best
model available and an excitation signal may be applied. In
fact, the total cost we use is the power of the output difference
between these two controlled systems. The excitation signals
are designed by minimizing the total cost in a worst-case
sense.

Note that our approach goes beyond a multi-objective op-
timization of the excitation cost and the application cost. The
contributions of the two terms are “dimensionally equivalent”
and can be added up without any weighting factor in our total
cost. As a consequence, there are no tuning parameters to be
adjusted in our algorithm.
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Fig. 1. Design Loop

In this work, the Experiment Design framework is applied
to a batch control problem. The iterative identification is
performed adopting a Bayesian approach and the controller
design according to a nominal H2 criterion.

The rest of this paper is organized as follows. In Section
II the framework is discussed in details. In Section III the
Experiment Design is posed as a Convex Optimization Prob-
lem and transformed to a SemiDefinite Program (SDP) for the
numerical solution. The framework is applied to a simulation
study in Section IV and conclusions are drawn in Section V.

II. THE FRAMEWORK

A real system So is operated over k = 1, 2, . . . , n batches
in a closed-loop configuration. So is the discrete-time linear
time-invariant system

y = Go(z)u+Ho(z)e (1)

where u is the input, e is white noise with variance σ2
e and

y is the output. Go and Ho are stable discrete-time transfer
functions; Ho is monic and minimum phase.
So is known to belong to a certain model set M∗

parametrized by a model structure M = {M(θ), θ ∈ Rp}
where θ is the model parameter. A parametric model M(θ)
belonging to M is defined as y = G(z, θ)u + H(z, θ)e.
The model structure satisfies the common properties usually
assumed in identification (e.g. Definition 4.3 of [6]). We also
assume that the real system So is described in the model
structure M by one and only one parameter vector θo, i.e.
∃!θo | So =M(θo).

An initial, possibly rough model M1 = M(θ̂1) is known
to the user. After each batch k, the input/output data from the
plant are collected and used together with the previous model
in order to identify an improved modelMk+1. We will refer to
the selection ofMk+1 as the iterative identification procedure.

The controller Ck for the batch k is chosen based on a
certain specification on the design loop [Ck Mk] (Figure 1).
Ck is determined based on the model Mk: Ck = C(Mk)
where C is the controller design procedure. With a slight
notational abuse, we will use also the syntax C(θ̂k) instead
of C(Mk).

The controller Ck will be applied in the next batch on the
experimental loop [Ck So]. Furthermore, an excitation signal
rk may be applied as shown in Figure 2. The excitation signal
rk is determined in the experiment design procedure. Let us
define at this point the optimal loop as [Co So] with Co =
C(So) (Figure 3).





o

G


o
H

0

r

,el er
u

e

v
,el er

y
ˆ( )
k

C 

Fig. 2. Experimental Loop
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Fig. 3. Optimal Loop

This is the loop that the user would design with the perfect
knowledge of the real system So at hand. Achieving the
optimal loop is not possible in practice because the perfect
knowledge of the real system is never available. A feasible
objective is to minimize in some sense a distance between the
optimal loop and the experimental loop mesured by a certain
function T . The objective J of the Experiment Design is to
minimize the sum of T over the n batches

J =

n∑
k=1

Tk (2)

and the decision variables are the excitation signals rk. Differ-
ent constraints may also be taken into account, as described
later in this paper. The objective J is in general a random
variable. For this reason, the optimization has to be considered
in a stochastic sense. In particular, we will consider the
worst case performance when the true system belongs to an
uncertainty set with a specified probability level α.

In the following subsection we will describe in details the
iterative identification and controller design procedures, the
function T and the worst case settings.

A. Iterative Identification Procedure

A Bayesian Approach is followed in order to construct the
parameter estimate θ̂k+1. At the end of each batch k, the data
zk = {uk(t), yk(t), t = 1 . . . N} are collected. Let θ̂k be the
parameter estimate obtained with the data up to the batch k−1.
Assuming that θ̂k is normally distributed as

θ̂k ∼ N (θo, R
−1
k ) (3)

we can estimate θ̂k+1 as the maximum a posteriori [7] of the
probability distribution of the model parameter given the new
data zk. From the Bayes equations we derive

θ̂k+1 = arg min
θ∈Rp

1

σ2
e

N∑
t=1

ε2k(t, θ) + (θ − θ̂k)>Rk(θ − θ̂k)

(4)



where εk(t, θ) = H(z, θ)−1(yk(t)−G(z, θ)uk(t)).
The parameter vector θ̂k+1 is asymptotically normally dis-

tributed around θo, i.e.

θ̂k+1 ∼ N (θo, R
−1
k+1) with Rk+1 = Rk + Ik (5)

where Ik is the so-called information matrix. We will suppose
that we do not know the variance of the initial parameter θ̂1
and set R1 = 0.

The information matrix Ik depends on the particular ex-
citation signal rk. We will consider excitation signals whose
spectrum has structure [5]

Φrk(ω) = Rk(0) + 2

m∑
j=1

Rk(j) cos(jω) (6)

satisfying the positivity constraint

Φrk(ω) ≥ 0 ∀ω. (7)

Let us define here for notational convenience the aggregate
variable Rk , {Rk(0) . . . Rk(m)} containing the coeffi-
cients of the excitation spectra for the batch k.Following the
reasoning of [5], Ik may be written as a linear function of Rk

Ik = M̄(θo) +

m∑
j=1

Mj(θo, σ
2
e)Rk(j) (8)

where the matrix coefficients M̄ and Mj are functions of the
true parameter θo and the noise variance σ2

e .

B. Controller Design

Given the parameter estimate θ̂k, the controller for the batch
k is designed according to a nominal H2 criterion

Ck = C(θ̂k) = arg min
K

JK (9)

with

JK =

∥∥∥∥∥∥
H(θ̂k)

1+KG(θ̂k)√
γKH(θ̂k)

1+KG(θ̂k)

∥∥∥∥∥∥
2

H2

. (10)

This criterion is equivalent to minimizing the weighted sum
of the output power E[y2dl,e] and the input power E[u2dl,e] of
the design loop driven by e in batch k (Figure 1).

JK = E[y2dl,e] + γE[u2dl,e]. (11)

In the last formula, E is the generalized expectation operator
defined in [6]. For ease of notation here and in the following
we do not indicate the dependence of time signals such as
ydl,e and udl,e on the batch number k.

C. Total Cost, Application Cost, Excitation Cost

In order to measure the distance between the optimal loop
and the experimental loop, we define the total cost Tk for the
batch k as

Tk , E[(yol,e − yel,er)2]. (12)

In this formula yol,e is the output of the optimal loop driven
by e and yel,er is the output of the experimental loop driven
by both e and r (Figures 3 and 2).

Since r and e are independent, we can split Tk in two parts
Tk︷ ︸︸ ︷

E[(yol,e − yel,er)2] =

Vk︷ ︸︸ ︷
E[(yol,e − yel,e)2] +

Ek︷ ︸︸ ︷
E[y2el,r] (13)

where yel,e is the output of the experimental loop driven by
the noise term e only and yel,r is the output of the same loop
driven by the excitation term r only:

yel,e =
Ho

1 + C(θ̂k)Go
e, yel,r =

Go

1 + C(θ̂k)Go
r. (14)

The term Vk in (13) is called application cost and represents
the cost that is paid due to the use of the controller C(θ̂k)
instead of the optimal controller Co. The term Ek is called
excitation cost and is paid due to the introduction of the
excitation signal rk.

Using Parseval relation we can write Vk as

Vk =

∥∥∥∥∥ H(θo)

1 + C(θ̂k)G(θo)
− H(θo)

1 + C(θo)G(θo)

∥∥∥∥∥
2

H2

σ2
e (15)

This is a nonlinear function of the true parameter θo, the
parameter estimate θ̂k and the noise variance σ2

e . Note that
Vk seen as a function of θ̂k has a global minimum in θ̂k = θo.
Expanding Vk in the variable θ̂k locally around θo we get

Vk =
1

2
(θ̂k − θo)>V ′′(θ̂k − θo) +O

(∥∥∥θo − θ̂k∥∥∥3) . (16)

The Hessian V ′′ of the application cost will be here computed
numerically using finite differences. A second order approxi-
mation of Vk obtained by ignoring the last term in (16) will
be used to formulate the Experiment Design Problem.

Using the Parseval relation we can also write Ek as

Ek =
1

2π

∫ π

−π

∣∣∣∣∣ G(eiω, θo)

1 + C(eiω, θ̂k)G(eiω, θo)

∣∣∣∣∣
2

Φrk(ω) dω . (17)

When the spectrum of rk has the structure (6), Ek can be
written as a linear function of Rk [5]

Ek = c0(θo)Rk(0) +
m∑
j=1

ci(θo)Rk(j). (18)

D. Worst Case Settings

Let us consider the parameter set

Dk =
{
θ | (θ − θo)>Rk(θ − θo) ≤ χ2

α(p)

}
(19)

where χ2
α(p) is the α-percentile of the χ2 distribution with p

degrees of freedom. Due to (5), we have that

θ̂k ∈ Dk with probability α. (20)

We define the worst case application cost V wc
k with probability

≥ α for the batch k as

V wc
k , max

θ̂k∈Dk

Vk. (21)

This is the maximum application cost on an uncertainty
ellipsoid in which θ̂k lays with probability α. Accepting the



second order approximation for the Vk and following the
reasoning of [8], we can compute V wc

k as

V wc
k = min

λ

1

λ
such that Rk ≥ λ

V ′′χ2
α(p)

2
. (22)

Note that Rk depends on true parameter θo through the
coefficients M̄,Mj . Since θo is unknown, the estimate θ̂1 will
be used in order to set the Experiment Design problem.

The excitation cost is considered in our settings in a nominal
sense (i.e. not in a worst-case sense) in order to limit the
problem complexity. We consider the excitation cost on the
design loop available in batch 1, which is a function of θ̂1

Ẽk = c0(θ̂1)Rk(0) +

m∑
j=1

ci(θ̂1)Rk(j). (23)

We define the worst case total cost as

Twc
k , V wc

k + Ẽk. (24)

For the first batch V wc
1 cannot be computed in our settings

since the covariance of θ̂1 is not specified. Note that even if
this covariance were given, we could not influence V wc

1 in the
Experiment Design.

For these reasons, we define the objective to be minimized
as

Jwc , Ẽ1 +

n∑
i=2

Twc
i =

n∑
i=2

V wc
i +

n∑
i=1

Ẽi. (25)

Let us define the aggregate variableR , {R1,R2, . . . ,Rn}
containing the coefficients describing the spectra of all the
excitation signals. Our Experiment Design problem is finally

Ro = arg min
R

Jwc (26)

III. EXPERIMENT DESIGN PROBLEM

Using the results from Section II, we are able to formulate
the Experiment Design Problem (26) as the following Convex
Optimization Problem

Ro, λo, Qo = arg min
R,λ,Q

w.c. application cost︷ ︸︸ ︷
n∑
k=2

1

λk
+

excitation cost︷ ︸︸ ︷
n∑
k=1

Ẽk s.t.

(27)

Ẽk = 2c0(θ̂1)Rk(0) +

m∑
j=1

ci(θ̂1)Rk(j) (28)

Rk︷ ︸︸ ︷
Rk−1 + M̄(θ̂1) +

m∑
j=0

Mj(θ̂1, σ
2
e)Rk−1(j) ≥ λk

χ2
α(n)V ′′

2

for k = 2, . . . , n (29)
λk ≥ 0 for k = 2, . . . , n (30)[
Qk −A>QkA C>k −A>QkB
Ck −B>QkA Dk +D>k −B>QkB

]
≥ 0

for k = 1, . . . , n (31)

with

A =

[
0 0

Im−1 0

]
, B =

[
1 0 . . . 0

]
Ck =

[
Rk(1) Rk(2) . . . Rk(m)

]
, Dk =

Rk(0)

2
,

(32)

and Qk = Q>k symmetric matrix variables of proper size. For
notational convenience we also defined the aggregate variables
λ , {λ2, λ3, . . . , λn} and Q , {Q1, Q2, . . . , Qn}.

The objective function (27) is the sum of the worst case
application costs 1

λk
and the excitation costs Ẽk. Equation

(29) is used to compute the worst case application cost 1
λk

for
each batch. Equation (31) guarantees the positivity constraint
(7) as an application of the positive-real lemma as shown for
instance in [9]. The problem (27-31) is a minimization of
a convex function in the variables R, λ,Q subject to Linear
Matrix Inequality (LMI) constraints.

We can proof that there exists an optimal solution to this
problem which has all the excitation concentrated in the first
batch, i.e. Rok = 0 for k > 1.

Theorem 1: There is an optimal solution {Ro, λo, Qo} to
the problem (27-31) such that Rk = 0 for k > 1.

Proof: The proof is performed ad absurdum. Let us
assume that there exists an optimal solution with {Ro, λo, Qo}
such that Rok 6= 0 for some k > 1. Let Jo be the ob-
jective value computed on this solution. Then, there exists
another feasible solution {R′, λ′, Q′} with R′ = {Ro1 +
Ro2 + . . .Ron, 0, . . . , 0} which has objective value J ′ ≤ Jo.
Thus, {Ro, λo, Qo} cannot be the only optimal solution to the
problem.

Feasibility of {R′, λ′, Q′} is obvious. Indeed, the spectrum
corresponding to R′1 is the sum the of the positive spectra
corresponding to Ro1,Ro2, . . . ,Ron. Thus, it is also positive and
feasible. As a consequence, there exists a feasible solution
{R′, λ,Q′} for some λ.

Proving that J ′ ≤ Jo is a bit more involved. We need to
consider the two terms constituing the objective funciton (27)
separately. The excitation cost is clearly the same in the two
cases due to the linearity of Equation (28).

In order to show that the worst case application cost is lower
for R′ it is sufficient to write the matrices Rk in both situation
and observe that R′k ≥ Rok. Since

∑m
j=0MjRoi (j) ≥ 0, ∀i, we

have indeed that R′k = (k− 1)M̄ +
∑n−1
i=1

∑m
j=0MjRoi (j) ≥

Rok = (k − 1)M̄ +
∑k−1
i=1

∑m
j=0MjRoi (j). This implies that

there exists λ′ such that {R′, λ′, Q′} is feasible and λ′i ≥
λoi , ∀i.

The interpretation of Theorem 1 is that when it is possible
to excite the system, it is convenient to do it already during
the first batch. Indeed, the price to be paid for the excitation
is the same, while the benefit of having a better model will
be enjoyed for all the following batches.

However, Theorem 1 does not hold if we consider interest-
ing modifications of our problem formulation, for instance by
giving different weights to the batches or by setting constraints
to some variables. We will present relevant constraints for the
Experiment Design problem in the following subsection.



A. Additional Constraints

It may be desirable to consider some constraint in the
Experiment Design problem. For instance, an upper bound on
the excitation cost Ẽk can be set with

Ẽk ≤ Ē, k = 1 . . . n. (33)

The reasons for doing so may be to satisfy safety limits and
avoid to operate in regions far away from the usual working
point. Similar constraints may be set on the application and/or
on the total cost as well, according to the need of the user.
Including this kind of constraints the optimal excitation is
not necessarly concentrated in the first batch as it was the
unconstrained case.

B. Formulation as SemiDefinite Program

It is possible to transform the problem (27-31) to the
SDP form, i.e. a linear objective function subject to a set
of LMI constraints. For this class of problems, a number of
efficient algorithms has been developed and is implemented in
commonly available software packages [10], [11].

Introducing the additional slack variables tk ≥ 0 we can
write the equivalent SDP problem

Ro, λo, Qo, to = arg min
R,λ,Q,t

n∑
k=2

tk +

n∑
k=1

Ẽk s.t. (34)

(28), (29), (31)[
λk 1
1 tk

]
≥ 0 for k = 2, . . . , n (35)

where we defined the aggregate variable t , {t2, t3, . . . , tn}.
Note that the additional set of LMIs (35) guarantees the
conditions λk ≥ 0, tk ≥ 0 and tk ≥ 1

λk
simultaneously.

IV. SIMULATION STUDY

The Experiment Design framework is applied to a simula-
tion study. We consider the true system So

y =

Go(z)︷ ︸︸ ︷
0.8z−1

1− 0.9854z−1 + 0.8187z−2
u+

Ho(z)︷ ︸︸ ︷
1

1− 0.6z−1
e (36)

with noise variance σ2
e = 1. A Box-Jenkins (BJ) model

structure M = {M(θ), θ ∈ R6} is assumed. A model M(θ)
in the structure is defined as

y =

G(z,θ)︷ ︸︸ ︷
θ1z
−1 + θ2z

−2

1 + θ5z−1 + θ6z−2
u(t) +

H(z,θ)︷ ︸︸ ︷
1 + θ3z

−1

1 + θ4z−1
e. (37)

The initial model is M(θ̂1) with

θ̂1 = [0.6489 −0.67 −0.0103 −0.6008 −1.332 0.847]>.

The parameter γ of the controller design (10) is 0.1, the
confidence level α in (19) is 0.99 and the FIR structure (6) for
the excitation signal is chosen with m = 5. The total number
of batches is n = 10 and each batch has length N = 1000. The
constraints (33) on the excitation cost is used with Ē = 0.03.
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The LMI Lab toolbox [10] is used to obtain the numerical
solution of the Experiment Design problem formulated in the
SDP form.

The optimal spectra of the excitation signal for the first
three batches Φr1,Φ

r
2,Φ

r
3 are reported in Figure 4. These

spectra have approximately the same shape. However, Φr3 has
a smaller amplitude compared to Φr1 and Φr2. In fact, the
amplitude of the first two spectra are limited by the constraint
on the excitation power. This constraint is not active on the
third spectrum. The optimal spectra for the following batches
are zero up to numerical precision.

Excitation signal r1, r2, r3 with spectra Φr1,Φ
r
2,Φ

r
3 are gen-

erated and n = 10 batches are simulated applying the iterative
identification/controller design framework. The excitation sig-
nal r1, r2, r3 are applied during the batches 1, 2, 3 respectively.

In Figure 5 we present the worst case application cost V wc
k

computed in the Experiment Design together with the appli-
cation cost Vk that is achieved in the simulation (as computed
from (15)). As expected, Vk decreases significantly in the
initial batches owing to the improving parameter estimates
obtained with the iterative identification procedure. In the
following batches, Vk remains very small. Vk is always smaller
than the worst case performance V wc

k . Note that the sequence
of Vk obtained is just a single realization of a stochastic
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process which depends on the particular noise realizations.
If we repeat the experiment many times, we expect however
the realizations of Vk to be lower than the bound V wc

k in the
99% of the cases.

In Figure 6 the experimental total cost T ek defined as

T ek ,
1

N

N∑
t=1

(yol,e(t)− yel,er(t))2 (38)

is reported. Note that T ek is a finite-time approximation of the
actual total cost defined in (12). T ek decreases from batch to
batch and is close to zero in batch 4. However, the constraint
on the maximum excitation power is not satisfied in the
simulation. Note for instance that the total experimental cost
for the first batch is T e1 = 0.16, while the application cost is
V1 = 0.035. This means that the actual excitation power was
0.125. Due to the violation of the constraint on the excitation
power, T ek is also larger than the theoretical worst case Twc

k

for the batches 2 and 3.
The violation is possible because the excitation power is

computed based on the initial model estimate in our Exper-
iment Design formulation. Therefore, the constraint is not
guaranteed to be satisfied when the excitation signals are
applied on experimental loop. Possible techniques to insure
robustness of the constraints with respect to the uncertainty of
the initial model estimate are discussed in the conclusions.

V. CONCLUSION

We have presented an Experiment Design framework for
systems performing multiple batches. After each batch, exper-
imental data are collected and used to refine a model of the
system dynamics. Subsequently, the model is used in order
to design the controller for the next batch. The role of the
Experiment Design is to generate the excitation signals for
each batch in order to minimize a total cost defined over the
set of batches that is scheduled.

The Experiment Design problem has been formulated as a
Convex Optimization problem which can be solved efficiently.
The applicability of the method has been verified in a simu-
lation study.

A limitation of our approach is that the Experiment Design
is based on an initial model estimate. This may give poor
results when the initial estimate is far from the true system. A
possible way to alleviate this problem is to perform the Ex-
periment Design in an adaptive fashion. Before the execution
of the first batch, we design the excitation signals for all the
following batches. However, we only apply the first excitation
signal in the first batch. When the first batch is completed,
we perform the iterative identification procedure and we use
the model obtained in order to formulate a new Experiment
Design problem considering the remaining batches. Again only
the first excitation signal computed is applied in the next batch,
and so on and so forth up to the last batch. One can appreciate
the analogy with the concept of Receding Horizon which is
common in Model Predictive Control algorithms.

Another limitation is that the excitation cost is considered
only in a nominal sense in our formulation. Ideally we would
like to evaluate this term in a robust sense, as it is done for
the application cost. A strategy to achieve this could be to
grid the parameter space and consider the nominal problem
on a finite number of points. Randomized algorithms could be
applied in order draw the grid points, avoiding the curse of
dimensionality typical of the deterministic methods.
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