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Batch Crystallization
Process Description

Separation and purification process of industrial interest.
A solution is cooled down, solid material (crystals) produced.

1 Hot solution fed into the vessel.

2 Cool to seeding temperature.

3 Introduce seeds.

4 Cool to final temperature.
Crystal growth (and nucleation).

5 Remove final product.
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Batch Crystallization
Modeling

Process (after seeding) described by

Temperature Dynamics (linear, known or easy to estimate)

Crystallization Dynamics (nonlinear PDE, parametric + structural
uncertainties possible)

Temperature
Dynamics

Crystallization 
Dynamics

T C

Batch crystallizer

J
T
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Batch Crystallization
Modeling

Input

Jacket temperature TJ

Measured Output

Vessel Temperature T

Concentration C

Control Output

Supersaturation
S = C − Cs(T )

Temperature
Dynamics

Crystallization 
Dynamics

T C

Batch crystallizer
T
J

S
( )

s
C C T

T

Disturbances

Low frequency disturbance on the input

White measurement noise on the outputs
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Batch Crystallization
Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line.
In some cases, T control does not satisfy all requirements.

PI
Controller
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Batch crystallizer

Advanced strategies in literature. They rely on on-line measurements.
Not always available in practice.

Alternative approach based on Iterative Learning Control.
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Iterative Learning Control
Control Scheme

ILC control strategy. Tr
k updated from batch to batch.

Can use measurements available at the end of the batch.

Built on top of the standard industrial T control.
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Objective for batch k: tracking of supersaturation profile Sk .
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Iterative Learning Control
General Idea

Based on an additive correction of a nominal model from Tr to S.

Ŝ(Tr ) nominal model

Ŝk(Tr ) , Ŝ(Tr ) + αk corrected model

Note:

Tr ,α vectors of samples ∈ RN (N = batch length)

α can compensate the nominal model for

model mismatch (along a particular trajectory)

effect of repetitive disturbances
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Iterative Learning Control
Correction vector

How to obtain the correction vector?

In principle, “match” the last measurement.

αk = S̃k − Ŝ(Tr ) = model error

Due to disturbances on S̃k , might not be a good solution.

Take into account the deviation from αk−1.

αk = arg min
α∈RN

‖S̃k − (Ŝ(Tr ) + α)‖2Qα
+ ‖α−αk−1‖2Sα
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Iterative Learning Control
Algorithm

Steps of the ILC algorithm. At each batch k:

1 Tr
k is set as the input to the PI controller, the batch is executed.

S̃k is estimated from measurements.

2 An additive correction of the nominal model is performed:
Ŝk(Tr ) , Ŝ(Tr ) + αk .

3 The corrected model is used to design Tr
k+1 for the next batch:

Tr
k+1 = arg min

Tr∈RN
‖Sk+1 − Ŝk(Tr )‖2 + λ‖Tr − Tr

k‖2
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Simulation Results
Scenario

Objective: tracking of a constant set-point S = 2.5 g/L

N = 20 batches

Tr
k updated from batch to batch using ILC
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Simulation Results
Cases

Simulation study in four cases
Case 1: No disturbances, parametric model mismatch
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Simulation Results
Cases

Simulation study in four cases
Case 2: Disturbances + parametric model mismatch
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Simulation Results
Cases

Simulation study in four cases
Case 3: No disturbances, structural model mismatch
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Simulation Results
Cases

Simulation study in four cases
Case 4: Disturbances + structural model mismatch
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Simulation Results
Cases 1 & 2
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Simulation Results
Cases 2 & 4
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0 90 180
10

20

30

40
Batch 1

Time (min)

T
e

m
p

e
ra

tu
re

 (
C

)

0 90 180
10

20

30

40
Batch 2

0 90 180
10

20

30

40
Batch 10

0 90 180
10

20

30

40
Batch 20

0 90 180
1

2

3

Time (min)S
u

p
e

rs
a

tu
ra

ti
o

n
 (

g
/L

)

0 90 180
1

2

3

0 90 180
1

2

3

0 90 180
1

2

3

0 90 180

−0.5

0

0.5

1

Time (min)

α
 (

g
/L

)

0 90 180

−0.5

0

0.5

1

0 90 180

−0.5

0

0.5

1

0 90 180

−0.5

0

0.5

1

Case 4

0 90 180
10

20

30

40
Batch 1

Time (min)

T
e

m
p

e
ra

tu
re

 (
C

)

0 90 180
10

20

30

40
Batch 2

0 90 180
10

20

30

40
Batch 10

0 90 180
10

20

30

40
Batch 20

0 90 180
1

2

3

Time (min)S
u

p
e

rs
a

tu
ra

ti
o

n
 (

g
/L

)

0 90 180
1

2

3

0 90 180
1

2

3

0 90 180
1

2

3

0 90 180

−0.5

0

0.5

1

Time (min)

α
 (

g
/L

)

0 90 180

−0.5

0

0.5

1

0 90 180

−0.5

0

0.5

1

0 90 180

−0.5

0

0.5

1

Marco Forgione (TU Delft) Iterative Techniques ACC 2012 17 / 21



Outline

1 Batch Crystallization

2 Iterative Learning Control

3 Simulation Results

4 Conclusions

Marco Forgione (TU Delft) Iterative Techniques ACC 2012 18 / 21



Conclusions

An Iterative Learning Control scheme for batch cooling crystallization.

Can use measurements available at the end of a batch.

Built on top of standard T control

Can cope with model mismatches and disturbances.

Future/current work

Practical implementation.

Control more properties (growth rate, CSD).

Improve the tuning of the algorithm.

Comparison with parametric estimation.
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Thank you.
Questions?
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