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Abstract— This paper presents identification of both network  network topology describing the way the different systems
connected systems as well as distributed systems governeyl b gre connected. This approach assumes all system inputs and

PDEs in the framework of distributed optimization via the ; ; ; ;
< Alternating Direction Method of Multipliers. This approac h outputs in the network t(.) be.aval.lable’ but it avoids th_e
( 'opens first the possibility to identify distributed models n a problems related to the |dent|f|cat!0n of local systems in
(] 'global manner using all available data sequences and second & large network topology when using only the local input
the possibility for a distributed implementation. The latter will  and output data. In order to derive consistent estimates wit

@ make the application to large scale complex systems posshl these local identification methods, identification methods
In addition to outlining a new large scale identification mehod, developed for the identification under closed loop openatio
illustrations are shown for identifying both network connected
systems and discretized PDEs. have t(_) be used, [6] . ) ) ] ) o

In this paper we describe for the first time the identification

—i I. INTRODUCTION of distributed 2D systems and/or network connected systems

~—— Control of distributed systems has recently received Q the framewqu Of_ dist.ributed optimizatiqn _methods such
renewed interest. To just name a few examples we mentié}y the Alternating p'r?Ct'on Method of Mu]tlpllers (ADMM)
(/) 121, [5], [9], [10]. The interest stems from the challenging[3_]' We express dlstrlbut(_ad systems as _mter_conne_ctlons of
- applications that arose through the increase in dimentiipna simple systems, a_nd We_lnFrod_uce artificial signals in order
8 of the systems to be controlled. Such increase is stimulat&y Make the resulting optimization problem have a separable
—by various developments, such as network communicati jective fungt|on. Th? use of ADMM.enabIes us to solye
enabling the operation of network connected systems and p.rc?blem In a distributed computational manner leading
the increase in number of actuators and sensors for contrifl. eff|C|ent_ solutions for large scale problem_s. i
= An example of a network connected systems is formation '€ outline of the paper as follows. In Section Il we define
< flying, [8], and an example of large scale sensor and actuatte distributed identification problem. The generic framekl\_/
systems is the ongoing development of the new Europe&’ﬁOposed allows us to both address prob!ems where all input
Extreme Large telescope where both the primary mirror g1 output measurements of systems in a given network
- well as the secondary mirror are devices with a number §pPOl0gy areknown as well as cases with a number of the
sensors and actuators in the order of @ more, [7]. interaction variablesmissing. The latter occurs e.g in the

g A more recent development in the design of distributeffiéntification of systems governed by PDEs. In Section il
controllers is the renewed interest in distributed optatign e the problem is put on a generic form, which is suitable

- '‘methods from the middle of the previous century, such e{Qr making use of the ADM,M a}lgorithm in .Sect.ion IV. The
> reported in [3]. distributed implementation is discussed briefly in Sectbn

>< ' Despite this vast interest and despite numerous develgpection Vi illustrates the methodology for identifying ARX
" ‘ments in the area of distributed controller synthesis, appr MCJ€ls connected in a feedback topology. The application

@© priate modeling tools for deriving the necessary modelsifro for |der_1t|fy|ng discretized PDESf IS d|_scusse_d in Sectm_h Vi
measured data sequences are still rather scarce. Moslsresbllume”_Cal results are summan_zed in Section ,V”I‘, F'n"?l”y'
are restricted to the identification of transfer functiomghe 1 Section IX conclusions are given together with direcsion
area of identification of two dimensional (2D) systems therfP" future research.
is the work of [4] and more recently [1]. The last approach
was developed to overcome the difficulty in applying trans-
fer function estimation methods that relied on the impulse We are interested in distributed system identification of
response of the system. The approach taken was to sobsgstems that are sparsely interconnected and where we do
the distributed identification problem as a whole using theot measure all inputs and outputs of the system. To fix the

ideas consider systems described by

Il. IDENTIFICATION PROBLEM
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We assume that we measure the goodness of a parafinetefhen it holds that
for describing relationship between andy; with a function — —
fi(yi,u, 8). For the purpose of the remaining part of this u(k) = 1yo(K) + 2y2(K) + Buo(k)

paper we will consider We letx(k) = y2(k). Then we may write

N _ 2
fi(yi,ui, 8) = [lall2 y(K) = Pryo(K) + Pox(K)
However, it should be easy to extend the result to other norrwe introduce

such as the nuclear norm. y(k)
We will assume that the systems are interconnected ac- z(k) = L’(k)}
cording to
We also letzy(k) = (yo(K), up(K)). From this it follows that
u(k) = Ty(k)+Buo(k) 0
P P
o) = Cv @ =[]+ [ Sa
where we assume that only(k) € R™ and yo(k) € R ~ —

are measured. Hera(k) = (u(k),...,um(k)) and y(k) = A ®

(y1(K), --.,ym(K)). We will also assume that has full row We now introduce a permutation mati@x such that
rank and that here exists a permutation maRisuch that yi(K)
CP= [l 0]. We also assume thdf’ B| has only 0-1

entries and that it has at least one non-zero entry in each (k)
row. The remaining signals are just given implicitly by the Qz(k) = :

above equations. Notice that we do not assume that they are ym (K)
uniquely defined by these equations. However, we need to um (K)

make the assumption that they are uniquely defined from t

h
optimization problem We also letyo = (Yo(1)...--.Yo(N)), to = (Uo(L). ..., o(N)),

) 2 = (Yo,Uo), Xi = (X1(1),...,%(N)), X = (X1,..., %), A=

A)® Iy, andB = (QB) ® Iy, Then it holds that

ngfi(yi,ui,G.), st @12 and 6=EB8, (QA) @I, an (QB) @I, Then it holds tha
i=

i
e z=Ax+Bz

wherey = (ya,..,ym), U= (Us,....Un), 0 = (Bn,..6), oo Bz in (3). From this we realize tha is a sparse

B € R" and E € R%", with q= yM,q. The solution of . 0 . g
. o I .. matrix containing only 0O—1 entries, and that it is a very spar
this problem will jointly minimize the goodness of the fltmatrix it [ is sparse. Moreover, it follows tha has full

of the parameter§. We also restrict the parameters of the A
different sub-models to be related to one another by im}gpsir?ommn rank, sincé?, has full column rank.
the constraintd = E6y, where E has full column rank. IV. ALTERNATING DIRECTION METHODS OF
This is typically the case for models that come from spatial MULTIPLIERS

discretization of partial differential equations. We maly o

course generalize the above problem by taking some other'Ve now define the augmented Lagrangian for the opti-

linear combinations of the functionfs. mization problem in[(B):

I1l. OPTIMIZATION PROBLEM Lo(X,60,20,A,1) = f(z0)+A"(z—Ax—b)
i imizati + uT(6—-Efp)
We will now cast the above problem as an optimization

problem on the form 4 gHZ*AX* b|2
minimize,gx e, f(z0) P 0_E6nI12
subject to z=Ax+b (3) L oz

60 =E6

whereA € R(M PN and s e RY. We will from now on assume
where A ¢ RMPNIN has full column rank. To this thatf is bi-convexinz and 6. Hence there might be several

end we immediately defing = (y;,u;) and let f(z 6) = local optima to the optimization problem. The Alternating
lefi (Vi, Ui, 8), wherez= (z Zuv,|) c R(M+P)N Wi'[h m= Method of Multipliers (ADMM) can often successfully be
I= ) ) ’ R

zM m andp:zM pi. Lety(k) be defined via applied to these type of problems. However, there is no
=1 =1 guarantee for convergence even to local optima. The method
)71(k)] perform alternating optimization steps where we need to
k) =Py(k) = [P -
y(k) = Py(k) [ ' Pz] [yz(k) solve miny g, » L, for fixed 8 and miry L, for fixed (x, 6o, 2).

Both these problems are convex, and moreover we will see
that they can be solved by solving linear system of equations
L There are also trivial steps in whi¢h , u) and possibly also
Fr=[r1 M]=[TP TR p are updated.

where CP, = |. Because of thig/;(k) has dimensiom =
Zi“il pi — po- We define



TABLE |

We will now justify the bi-convexity assumption by mak- ADMM ALGORITHM

ing the assumption tha¥; (y;, u;, &, 6) is linear in the signals

such that we may express as 1) Setx=0,6=0,z=b, A =0, u=0,p=1 andfy to a good guess.
2) Update(x,6o,2) := argmirk‘éOin(ﬁ,Bo,ZGJ\).
& ="Ti(6)z 3) Updated := argming Lo (x, 60, 8,A).
o . . 4) Update(A, ) := (A +p(z— Ax—Db),u +p(6 — EB).
for some matrixXT; which depends linearly o&. Then 5) Terminazte ifiro]l2 < & and [rall2 < &g (see [BIIR)). Otherwise, go
to step 2.

fi(z,8)=ITi(6)zl3

From now on we will suppress th&-dependence if;. _ )

We first consider the case of optimizing with respect tdYypPical values for the relative and absolute tolergnces are
(X, 80,2), which separates into two independent optimizatiofrel = 102 andéaps= 10(_3- The vectorgyrey andprev in (9)
problems, one fofx, z) and one forfy. For & the augmented are the values of and 6 in the previous iteration.

Lagrangian is strictly convex, and hence the unique minimum !nstéad of a using a fixed penalty paramegerone can

is given by the solution of vary p to improve the speed of convergence. An example
of such a scheme is to adaptat the end of each ADMM
9Ly =E"u+pET(6—EB) =0 iteration as follows [3]
7}
9% 0 Il > w2
or equivalently of p:=1{ p/t Irall2 > ulroll2
PETEGy = ET(lJ +p0) (4) p otherwise.

. . . . This scheme depends on parametgrs> 1, T > 1 (for
Before we continue with the other variables we realize thaéxample =10 aF;]dr —2) P s (

if u is initialized as zero, then the fact that u+ pE' (6 —

E8y) = 0 together with the updated rule fqr in Table[] V. DISTRIBUTED IMPLEMENTATION

implies thatE™ u = 0, and hence[{4) may be simplified o We have so far seen that the equations for upda€ing
in (@) can be carried out distributively ovee1,...,M by

T _eT
E'EG-E'0 ®) solving
Then for (x,z) we get with similar arguments the equations: oL, af;
aL 26 — o POt H—p(ES)
2| _ {ZTTT +pl —pA} H . '
= “PAT PATAL X = 228 T(@)2 08+ i~ p(EG) = O
A—pb !
* {—AT(A —pb)] =0 6) because%e—eT andT(0) are block diagonal. In the right hand

. side we are however interested in explaining the téEsy);
whereT = blkdiag(Ti). further. It is not uncommon thd is an incidence matrix of

Vge no://vv turn _ourrl]nterrt]est tods_olvmgf] ﬂlmLLp for fixed ,q165 and ones describing what componenéfs related
(x,60,2). We notice that the gradient of the Lagrangian withy"eo ch component i, We write

respect tof is given by

=]

oLy of .
20 %+p9+u—pE90 E=|:
e’ Ewm

= 2—T(0)z+pb —pEBG=0 7
00 (6)z+p0+ 1 —pES 0 where the partitioning is done conformable with the parti-

which should be zero for the optim@l SinceT is linear in ~ tioning of 6. In a graph setting we consider each component
0 the above equation is a linear system of equations. Notic¥ 6o to be represented by its index in the vertex $gt=
that 25 is block diagonal, and hence the above equationsl,---,do} C Z and each component & to be represented

96 o ) )
distribute nicely ovei. We will later on for a specific model DY its index in the vertex seti = {1,...,qi} C Z. Theith
derive more explicit equations for updatiiy graph has a directed edges 7o x ¥ if and only (Ei)e = 1.

We summarize the ADMM algorithm in Tablg 1. The We denote the set of all edges of the graphdy It then
residuals and tolerances in the stopping criterion in step fgllows that we may write

are defined as follows [3]: oe’ _
255 T(8)z+p8 +Hi—p6 =0
rh = (z—Ax—b,06—Eb) (8) 3 |
rg = p(AT(Zprev*Z),ET(eprev* 9)) (9) Where 9|,_k = 6o, if_ (j,!() € &y and zero otherwise. Hence
& — /(m+pNtae (10) for eachi information is needed only from the components
P P 9Eabs of 6 that are definingg;.
+  &emax{||(AX,E6o)|2, [|(z. 0)ll2,[bll2} (11) We will now discuss how alsd}5) anfl (6) distribute over

&4 VAN T eaps+ et | (ATAET )2, (12) i. First we consider{5). The out degrelg;(j) of a vertex



j € % is the number of edges that emerges from it in grapivherek=1,... N andi = 1,2,3. We letg = (a,b;) € R4,
&g . It follows that and we defineGy such that we may tak& =1, i.e. the
ETE — diag(do(] parameters of the models are not constrained in any way.
= j 9(do(j)) The interconnection matrices are given by

where do(j) = M, doi(j). We now realize that we can 0 0 - 1
updated each component fig using the formula r=41 0 0|; B=|0
1 01 O 0
60 =7+~ 6; ' . .
0. do(j) i kéga b 1€7%0 Moreover we measure all outputs, i@= 1. We may write
We see that we only sum over those componentsfof & =di6 +vyi

which are defined byj j, and that the computations can 0 0 ) )
be performed locally for each component @f where ®; = (S Sy Su S ul, whereSis a shift ma-
We now consider{6). We notice that we can first solve 1ix. Hence [[7) may be equivalently written as

PAT (1 —p2TTT +pl) ) Ax=—AT (1 —p(2TTT +pI) H)r (@Td+pl) 0 =pEGy— u — 2Py
(13) : - S
with respect tax, wherer = A — pb. Then we can solve where ® = blkdiag ®;. The distributed version is
2T T +pl)z = p(AX)i — 1y (14) (7P +pl) 8 =p6 — i —2Dyy;, i=1,....M

with respect ta; for i =1,...,M. The latter equation clearly We remark that for this example the dimensiof the x-
distributes overi for the left hand side, and for the right variable is zero.

hand side we are interested in what information aboiliat

is needed for each blodk i.e. what(Ax); is. We remember V||, DISCRETIZEDPARTIAL DIFFERENTIAL EQUATION

that A= (QA) ® In, thatA is a zero one matrix, and th& _ _ _
is a permutation matrix. Henok is also a zero one matrix. e will also consider a model that comes from a spatial

We IetA:QA, and we partition it as discretization of a partial differential equation, which i
- defined as
~ (k-1)
A_ | - ) AT | YilK— — hT .
A= WK+ @) A3 = OTum ra®. =1 M
M

whereuy (k), um(k) € R3, ua(k), um_1(k) € R*, andui(k) €

R® for i = 3,...,M —2, and wherey;(k), (k) € R. The
dimensions ofa and b; are compatible with the signal
(2TiTTi +pl)z :p(A@IN)x—ri, i=1,...,M dimensions. The inputs are partially feedbacks from the
neighboring systems according to

where the partitioning is done conformable with Then
(AX)i = (A ® In)x, and hence we may rewrite{14) as

Hence we are able to update eagclocally with information

only from those components afwhich are used to explain (U1 (K) ]
z. wmk) = | y2(K) (17)
We now turn our interest to-wardg_{13) and defiie= | ya(k) |
| —p(2T"Ti 4+ pl)~* and X = blkdiag X;. We then realize [ya(k) T
that ATXA = yM (ATXA) ® Iy, and hence Uo2(K)
) up(k) = ya(k) (18)
1 M - M - 3
X=—= <21A-T>QA) > Alx| oty or [ Ya(k) |
P i= i= Yi—2(K)
We see that we need global information in order to carry out . o yi’.l(k) -
. . u(k) = u,i(k)|, i=3,....M=2 (19)
the update ok. However, we also realize that the matrix that - 1(K)
needs to be inverted only has dimensignvhich is typically g&l(k)
low. i+2
ym-3(K)
VI. FEEDBACK CONNECTION OFARX-MODELS _2(k
. . . . o . um-1(k) = UYM 2(&) (20)
In this section we will give a description of a simple OM-1
feedback connection of three ARX models: L ym(K)
ym-2(K)
vilk) + aayi(k—1)+azy(k-2) (15) ) = [ym_1(k) (21)
+ bi,lU(k— 1) + bi‘yzu(k— 2)=¢g (k) (16) _UO!M(k)




whereug (k) are measured inputs. This defines the matricesinction with standard deviatioo = 1. Then the closed loop
' and B. Moreover we measure every second outp(k), signals have been computed from the equations
ie.

el (blkdiag (Ty;) + blkdiag (Tui)(T @ In))y = (27)
el (— blkdiag (Ty;)(B® In)) Up+ € (28)
C=| : u=(Iny+ (B@In)uo (29)
&2 o= (C®IN)y (30)

eu

The value ofN has been 300. We have used the default
wheres is theith unit vector with abuse of notation. We will settings for the ADMM algorithm as detailed above. The
also assume thal > 5 and thatM is an odd integer. We let initial guess for6, was the zero vector.

6 = (20,bo) € R®, 6 = (a,bi) € R*"™. We then define the  \we repeated the optimization 100 times. The mean value

constraintsg; = ap and of the estimated parameters were
b1 = bo (22) mg, — [-14988 07013 —0.0964 00965"
bo(k) = T’; bo (23) mg, = [-1.4934 06923 —0.1068 0107]}T
el mg, = [-14897 06896 —0.1105 01084"
. _ T P
bik) = T’z bo, 1=3.....M=2 " (24) ith standard deviations
L 3_
el ] 0g, = [0.0371 00385 00321 00313T
bu_1(k) = ‘% bo (25) 0g, = [0.0457 00473 00342 00349]T
e
ei Og, = [0.0435 00408 00476 0047:%T
Ex We see that the model parameters are estimated accurately.
bu(k) = |el|bo (26)
el | B. Discretized Partial Differential Equation
whereg is theith unit vector inR®. This define<E, and the The dynamical system con_sidered has baga (0.7,0.9)
overall model. We now define andbp = (0.5,-0.5,0.5). The inputug has been taken as a
sequence of independehtl-variables. The error vecteras
o =[Sy Sy -UT] been generated from a zero mean normal density function

with standard deviatiow = 1. Then the closed loop signals
WhereSiS a Sh|ft ma’[riX Of Compatible dimension a.nd Wherq"lave been Computed in the same Way as for the previous
U is such thaS™u; = veqU) with vecbeing the vectoriza- example. The value oN has been 100 and the value of
tion operator. Herés has different dimension depending onp has been 15. We have used the default settings for the
where it appears. Then ADMM algorithm as detailed above except feg = 101
andéeaps= 104, which provided good enough solutions. The

& =P+ initial guess for@y was the true value of its components

and hence{7) may be equivalently written as perturbed with a value drawn from a zero mean normal
density with standard deviation 0.1.

(¢TCD+pI) 6 =pE6y— u—2dy We repeated the optimization 10 times and we report in

Table[ll computational time, and the number of iterations in
the ADMM algorithm for the different runs. The mean value
(CDiTCDi +pl)6 = P8 — i —20y, i=1,....M of the estimated parameters were

where ® = blkdiag ®;. The distributed version is

T
VIII. N UMERICAL EXPERIMENTS mg, = [0.7017 08950 04958 —0.4966 04957

All implementations have been carried out in MATLAB With standard deviation
R2013b. The computations have been run on an Intel Core T
i5 CPU M 250 4 GHz with 4 GB of RAM. 9 = (00075 Q0110 Q0212 Q0089 Q008G

. It is seen that the proposed algorithm computes good esti-
A. Feedback Connection of ARX-Models mates of the true parameters in reasonable time. It should be

All ARX models have been defined a = (—1.5,0.7) stressed that we have not made use of parallel or distributed
andb; = (—0.1,0.1) for i = 1,2, 3. The inputup has been implementations. Hence the computational times should be
taken as a sequence of independefitvariables. The error possible to decrease significantly. It should also be ndtad t
vectore has been generated from a zero mean normal densttye our results relay on a good initial guessBaf



TABLE Il
ITERATIONS AND TIME

Run nr_| 1 2 3 4 5 6 7 8 9 10
Iterations 177 107 77 135 34 84 306 95 177 105
Time (s) | 5159 306.2 219.4 406.6 106.8 246.3 3164.8 2625 496.9 305.9

IX. SUMMARY

To summarize it looks like it should be possible to solve
identification problems of interconnected systems where we
do not measure all input or output signals in a distributed
way. An open question is how much need to be measured
to have a unique solution. Also can this framework be used
to solve identification problems for state space descrigtio
when one impose structure on the system matrices? Our
framework addresses as a special case distributed estimati
of signals by assuming th& is known. We admit that in
case no good guess of the true parameters are available
to initialize the ADMM algorithm, it may fail to find the
global optimal solution. It may instead be trapped in a local
minimum. Future research will investigate the possibitity
use continuation methods to remedy this flaw.
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