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Distributed System Identification with ADMM ∗

Anders Hansson1 and Michel Verhaegen2

Abstract— This paper presents identification of both network
connected systems as well as distributed systems governed by
PDEs in the framework of distributed optimization via the
Alternating Direction Method of Multipliers. This approac h
opens first the possibility to identify distributed models in a
global manner using all available data sequences and second
the possibility for a distributed implementation. The latter will
make the application to large scale complex systems possible.
In addition to outlining a new large scale identification method,
illustrations are shown for identifying both network connected
systems and discretized PDEs.

I. I NTRODUCTION

Control of distributed systems has recently received a
renewed interest. To just name a few examples we mention
[2], [5], [9], [10]. The interest stems from the challenging
applications that arose through the increase in dimensionality
of the systems to be controlled. Such increase is stimulated
by various developments, such as network communication
enabling the operation of network connected systems and/or
the increase in number of actuators and sensors for control.
An example of a network connected systems is formation
flying, [8], and an example of large scale sensor and actuator
systems is the ongoing development of the new European
Extreme Large telescope where both the primary mirror as
well as the secondary mirror are devices with a number of
sensors and actuators in the order of 104 or more, [7].

A more recent development in the design of distributed
controllers is the renewed interest in distributed optimization
methods from the middle of the previous century, such as
reported in [3].

Despite this vast interest and despite numerous develop-
ments in the area of distributed controller synthesis, appro-
priate modeling tools for deriving the necessary models from
measured data sequences are still rather scarce. Most results
are restricted to the identification of transfer functions.In the
area of identification of two dimensional (2D) systems there
is the work of [4] and more recently [1]. The last approach
was developed to overcome the difficulty in applying trans-
fer function estimation methods that relied on the impulse
response of the system. The approach taken was to solve
the distributed identification problem as a whole using the
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University, Linköping, Swedenanders.g.hansson@liu.se

2Michel Verhaegen is with Delft Center for Systems and Control, Delft
University, Delft, The Netherlandsm.verhaegen@tudelft.nl

network topology describing the way the different systems
are connected. This approach assumes all system inputs and
outputs in the network to be available, but it avoids the
problems related to the identification of local systems in
a large network topology when using only the local input
and output data. In order to derive consistent estimates with
these local identification methods, identification methods
developed for the identification under closed loop operation
have to be used, [6] .

In this paper we describe for the first time the identification
of distributed 2D systems and/or network connected systems
in the framework of distributed optimization methods such
as the Alternating Direction Method of Multipliers (ADMM)
[3]. We express distributed systems as interconnections of
simple systems, and we introduce artificial signals in order
to make the resulting optimization problem have a separable
objective function. The use of ADMM enables us to solve
the problem in a distributed computational manner leading
to efficient solutions for large scale problems.

The outline of the paper as follows. In Section II we define
the distributed identification problem. The generic framework
proposed allows us to both address problems where all input
and output measurements of systems in a given network
topology areknown as well as cases with a number of the
interaction variablesmissing. The latter occurs e.g in the
identification of systems governed by PDEs. In Section III
the the problem is put on a generic form, which is suitable
for making use of the ADMM algorithm in Section IV. The
distributed implementation is discussed briefly in SectionV.
Section VI illustrates the methodology for identifying ARX
models connected in a feedback topology. The application
for identifying discretized PDEs is discussed in Section VII.
Numerical results are summarized in Section VIII. Finally,
in Section IX conclusions are given together with directions
for future research.

II. I DENTIFICATION PROBLEM

We are interested in distributed system identification of
systems that are sparsely interconnected and where we do
not measure all inputs and outputs of the system. To fix the
ideas consider systems described by

Si(yi,ui,ei,θi) = 0, i = 1, . . . ,M,

where Si is a possibly nonlinear mapping of the pa-
rameter vectorθi ∈ Rqi , the input signal vectorui =
(ui(1), . . . ,ui(N)), whereui(k)∈Rmi , the output signal vector
yi =(yi(1), . . . ,yi(N)), whereyi(k)∈Rpi , and the error vector
ei = (ei(1), . . . ,ei(N)), whereei(k) ∈ Rpi .
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We assume that we measure the goodness of a parameterθi

for describing relationship betweenui andyi with a function
fi(yi,ui,θi). For the purpose of the remaining part of this
paper we will consider

fi(yi,ui,θi) = ‖ei‖2
2

However, it should be easy to extend the result to other norms
such as the nuclear norm.

We will assume that the systems are interconnected ac-
cording to

u(k) = Γy(k)+Bu0(k) (1)

y0(k) = Cy(k) (2)

where we assume that onlyu0(k) ∈ Rm0 and y0(k) ∈ Rp0

are measured. Hereu(k) = (u1(k), . . . ,uM(k)) and y(k) =
(y1(k), . . . ,yM(k)). We will also assume thatC has full row
rank and that here exists a permutation matrixP such that
CP =

[
I 0

]
. We also assume that

[
Γ B

]
has only 0–1

entries and that it has at least one non-zero entry in each
row. The remaining signals are just given implicitly by the
above equations. Notice that we do not assume that they are
uniquely defined by these equations. However, we need to
make the assumption that they are uniquely defined from the
optimization problem

min
y,u,θ

M

∑
i=1

fi(yi,ui,θi), s. t. (1−2) and θ = Eθ0,

where y = (y1, . . . ,yM), u = (u1, . . . ,uM), θ = (θ1, . . . ,θM),
θ0 ∈ Rr and E ∈ Rq×r, with q = ∑M

i=1 qi. The solution of
this problem will jointly minimize the goodness of the fit
of the parametersθ . We also restrict the parameters of the
different sub-models to be related to one another by imposing
the constraintθ = Eθ0, where E has full column rank.
This is typically the case for models that come from spatial
discretization of partial differential equations. We may of
course generalize the above problem by taking some other
linear combinations of the functionsfi.

III. O PTIMIZATION PROBLEM

We will now cast the above problem as an optimization
problem on the form

minimize(z,θ ,x,θ0) f (z,θ )
subject to z = Ax+ b

θ = Eθ0

(3)

where A ∈ R(m+p)N×nN has full column rank. To this
end we immediately definezi = (yi,ui) and let f (z,θ ) =
∑M

i=1 fi(yi,ui,θi), wherez = (z1, . . . ,zM) ∈R(m+p)N with m =

∑M
i=1 mi and p = ∑M

i=1 pi. Let ȳ(k) be defined via

y(k) = Pȳ(k) =
[
P1 P2

]
[

ȳ1(k)
ȳ2(k)

]

whereCP1 = I. Because of this ¯y2(k) has dimensionn =

∑M
i=1 pi − p0. We define

Γ̄ =
[
Γ̄1 Γ̄2

]
=
[
ΓP1 ΓP2

]

Then it holds that

u(k) = Γ̄1y0(k)+ Γ̄2ȳ2(k)+Bu0(k)

We let x(k) = ȳ2(k). Then we may write

y(k) = P1y0(k)+P2x(k)

We introduce

z(k) =

[
y(k)
u(k)

]

We also letz0(k) = (y0(k),u0(k)). From this it follows that

z(k) =

[
P2

Γ̄2

]

︸︷︷ ︸

Ā

x(k)+

[
P1 0
Γ̄1 B

]

︸ ︷︷ ︸

B̄

z0(k)

We now introduce a permutation matrixQ such that

Qz(k) =










y1(k)
u1(k)

...
yM(k)
uM(k)










We also lety0 = (y0(1), . . . ,y0(N)), u0 = (u0(1), . . . ,u0(N)),
z0 = (y0,u0), xi = (x1(1), . . . ,xi(N)), x = (x1, . . . ,xn), A =
(QĀ)⊗ IN, andB = (QB̄)⊗ IN , Then it holds that

z = Ax+Bz0

Henceb = Bz0 in (3). From this we realize thatA is a sparse
matrix containing only 0–1 entries, and that it is a very sparse
matrix if Γ is sparse. Moreover, it follows thatA has full
column rank, sinceP2 has full column rank.

IV. A LTERNATING DIRECTION METHODS OF

MULTIPLIERS

We now define the augmented Lagrangian for the opti-
mization problem in (3):

Lρ(x,θ0,z,θ ,λ ,µ) = f (z,θ )+λ T (z−Ax− b)

+ µT (θ −Eθ0)

+
ρ
2
‖z−Ax− b‖2

2

+
ρ
2
‖θ −Eθ0‖2

2

whereλ ∈R(m+p)N andµ ∈Rq. We will from now on assume
that f is bi-convex inz andθ . Hence there might be several
local optima to the optimization problem. The Alternating
Method of Multipliers (ADMM) can often successfully be
applied to these type of problems. However, there is no
guarantee for convergence even to local optima. The method
perform alternating optimization steps where we need to
solve min(x,θ0,z) Lρ for fixedθ and minθ Lρ for fixed(x,θ0,z).
Both these problems are convex, and moreover we will see
that they can be solved by solving linear system of equations.
There are also trivial steps in which(λ ,µ) and possibly also
ρ are updated.



We will now justify the bi-convexity assumption by mak-
ing the assumption thatSi(yi,ui,ei,θi) is linear in the signals
such that we may expressei as

ei = Ti(θi)zi

for some matrixTi which depends linearly onθi. Then

fi(zi,θi) = ‖Ti(θi)zi‖2
2

From now on we will suppress theθi-dependence inTi.
We first consider the case of optimizing with respect to

(x,θ0,z), which separates into two independent optimization
problems, one for(x,z) and one forθ0. Forθ0 the augmented
Lagrangian is strictly convex, and hence the unique minimum
is given by the solution of

∂Lρ

∂θ0
= ET µ +ρET (θ −Eθ0) = 0

or equivalently of

ρET Eθ0 = ET (µ +ρθ ) (4)

Before we continue with the other variables we realize that
if µ is initialized as zero, then the fact thatET µ +ρET (θ −
Eθ0) = 0 together with the updated rule forµ in Table I
implies thatET µ = 0, and hence (4) may be simplified to

ET Eθ0 = ET θ (5)

Then for(x,z) we get with similar arguments the equations:
[

∂Lρ
∂ z

∂Lρ
∂x

]

=

[
2T T T +ρI −ρA
−ρAT ρAT A

][
z
x

]

+

[
λ −ρb

−AT (λ −ρb)

]

= 0 (6)

whereT = blkdiag(Ti).
We now turn our interest to solving min(θ) Lρ for fixed

(x,θ0,z). We notice that the gradient of the Lagrangian with
respect toθ is given by

∂Lρ

∂θ
=

∂ f
∂θ

+ρθ + µ −ρEθ0

= 2
∂eT

∂θ
T (θ )z+ρθ + µ −ρEθ0 = 0 (7)

which should be zero for the optimalθ . SinceT is linear in
θ the above equation is a linear system of equations. Notice
that ∂eT

∂θ is block diagonal, and hence the above equations
distribute nicely overi. We will later on for a specific model
derive more explicit equations for updatingθ .

We summarize the ADMM algorithm in Table I. The
residuals and tolerances in the stopping criterion in step 5
are defined as follows [3]:

rp = (z−Ax− b,θ −Eθ0) (8)

rd = ρ(AT (zprev− z),ET (θprev−θ )) (9)

εp =
√

(m+ p)N+ qεabs (10)

+ εrel max{‖(Ax,Eθ0)‖2,‖(z,θ )‖2,‖b‖2} (11)

εd =
√

nN + rεabs+ εrel‖(AT λ ,ET µ)‖2, (12)

TABLE I

ADMM ALGORITHM

1) Setx = 0, θ0 = 0, z = b, λ = 0, µ = 0, ρ = 1 andθ0 to a good guess.
2) Update(x,θ0,z) := argmin̂x,θ̂0,ẑ

Lρ (x̂, θ̂0, ẑ,θ ,λ).
3) Updateθ := argmin,θ̂ Lρ(x,θ0,z, θ̂ ,λ).
4) Update(λ ,µ) := (λ +ρ(z−Ax−b),µ +ρ(θ −Eθ0).
5) Terminate if‖rp‖2 ≤ εp and‖rd‖2 ≤ εd (see (8)–(12)). Otherwise, go

to step 2.

Typical values for the relative and absolute tolerances are
εrel = 10−3 andεabs= 10−6. The vectorszprev andθprev in (9)
are the values ofz andθ in the previous iteration.

Instead of a using a fixed penalty parameterρ , one can
vary ρ to improve the speed of convergence. An example
of such a scheme is to adaptρ at the end of each ADMM
iteration as follows [3]

ρ :=







τρ ‖rp‖2 > µ‖rd‖2

ρ/τ ‖rd‖2 > µ‖rp‖2

ρ otherwise.

This scheme depends on parametersµ > 1, τ > 1 (for
example,µ = 10 andτ = 2).

V. D ISTRIBUTED IMPLEMENTATION

We have so far seen that the equations for updatingθ
in (7) can be carried out distributively overi = 1, . . . ,M by
solving

∂Lρ

∂θi
=

∂ fi

∂θi
+ρθi + µi −ρ(Eθ0)i

= 2
∂eT

i

∂θi
Ti(θi)zi +ρθi+ µi −ρ(Eθ0)i = 0

because∂eT

∂θ andT (θ ) are block diagonal. In the right hand
side we are however interested in explaining the term(Eθ0)i

further. It is not uncommon thatE is an incidence matrix of
zeros and ones describing what component ofθ0 is related
to each component inθ . We write

E =






E1
...

EM






where the partitioning is done conformable with the parti-
tioning of θ . In a graph setting we consider each component
of θ0 to be represented by its index in the vertex setV0 =
{1, . . . ,q0} ⊂ Z and each component ofθi to be represented
by its index in the vertex setVi = {1, . . . ,qi} ⊂ Z. The ith
graph has a directed edgee ∈ V0×Vi if and only (Ei)e = 1.
We denote the set of all edges of the graph byEθi . It then
follows that we may write

2
∂eT

i

∂θi
Ti(θi)zi +ρθi + µi −ρθ̄i = 0

where θ̄i,k = θ0, j if ( j,k) ∈ Eθi and zero otherwise. Hence
for eachi information is needed only from the components
of θ0 that are definingθi.

We will now discuss how also (5) and (6) distribute over
i. First we consider (5). The out degreed0,i( j) of a vertex



j ∈ V0 is the number of edges that emerges from it in graph
Eθi . It follows that

ET E = diag
j
(d0( j))

where d0( j) = ∑M
i=1 d0,i( j). We now realize that we can

updated each component inθ0 using the formula

θ0, j =
1

d0( j) ∑
( j,k)∈Eθi

θi,k, j ∈ V0

We see that we only sum over those components ofθ
which are defined byθ0, j, and that the computations can
be performed locally for each component ofθ0.

We now consider (6). We notice that we can first solve

ρAT (I −ρ(2TT T +ρI)−1)Ax=−AT (I−ρ(2TT T +ρI)−1)r
(13)

with respect tox, wherer = λ −ρb. Then we can solve

(2T T
i Ti +ρI)zi = ρ(Ax)i − ri (14)

with respect tozi for i = 1, . . . ,M. The latter equation clearly
distributes overi for the left hand side, and for the right
hand side we are interested in what information aboutx that
is needed for each blocki, i.e. what(Ax)i is. We remember
that A = (QĀ)⊗ IN , that Ā is a zero one matrix, and thatQ
is a permutation matrix. HenceA is also a zero one matrix.
We let Ã = QĀ, and we partition it as

Ã =






Ã1
...

ÃM






where the partitioning is done conformable withz. Then
(Ax)i = (Ãi ⊗ IN)x, and hence we may rewrite (14) as

(2T T
i Ti +ρI)zi = ρ(Ãi ⊗ IN)x− ri, i = 1, . . . ,M

Hence we are able to update eachzi locally with information
only from those components ofx which are used to explain
zi.

We now turn our interest to-wards (13) and defineXi =
I − ρ(2T T

i Ti + ρI)−1 and X = blkdiag Xi. We then realize
that AT XA = ∑M

i=1(Ã
T
i XiÃi)⊗ IN , and hence

x =− 1
ρ











(
M

∑
i=1

ÃT
i XiÃi

)−1 M

∑
i=1

ÃT
i Xi



⊗ IN






r

We see that we need global information in order to carry out
the update ofx. However, we also realize that the matrix that
needs to be inverted only has dimensionn, which is typically
low.

VI. FEEDBACK CONNECTION OFARX-M ODELS

In this section we will give a description of a simple
feedback connection of three ARX models:

yi(k) + ai,1yi(k−1)+ ai,2y(k−2) (15)

+ bi,1u(k−1)+ bi,2u(k−2) = ei(k) (16)

wherek = 1, . . . ,N and i = 1,2,3. We letθi = (ai,bi) ∈ R4,
and we defineθ0 such that we may takeE = I, i.e. the
parameters of the models are not constrained in any way.
The interconnection matrices are given by

Γ =





0 0 −1
1 0 0
0 1 0



 ; B =





1
0
0





Moreover we measure all outputs, i.e.C = I. We may write

ei = Φiθi + yi

whereΦi =
[
Syi S2yi Sui S2ui

]
, whereS is a shift ma-

trix. Hence (7) may be equivalently written as
(
ΦT Φ+ρI

)
θ = ρEθ0− µ −2Φy

whereΦ = blkdiag Φi. The distributed version is
(
ΦT

i Φi +ρI
)

θi = ρθ̄i − µi−2Φiyi, i = 1, . . . ,M

We remark that for this example the dimensionn of the x-
variable is zero.

VII. D ISCRETIZEDPARTIAL DIFFERENTIAL EQUATION

We will also consider a model that comes from a spatial
discretization of a partial differential equation, which is
defined as

yi(k)+ (ai)
T
[

yi(k−1)
yi(k−2)

]

= (bi)
T ui(k)+ ei(k), i = 1, . . . ,M

whereu1(k), uM(k) ∈ R3, u2(k), uM−1(k) ∈ R4, andui(k) ∈
R5 for i = 3, . . . ,M − 2, and whereyi(k), ei(k) ∈ R. The
dimensions ofai and bi are compatible with the signal
dimensions. The inputs are partially feedbacks from the
neighboring systems according to

u1(k) =





u0,1(k)
y2(k)
y3(k)



 (17)

u2(k) =







y1(k)
u0,2(k)
y3(k)
y4(k)







(18)

ui(k) =









yi−2(k)
yi−1(k)
u0,i(k)
yi+1(k)
yi+2(k)









, i = 3, . . . ,M−2 (19)

uM−1(k) =







yM−3(k)
yM−2(k)

u0,M−1(k)
yM(k)







(20)

uM(k) =





yM−2(k)
yM−1(k)
u0,M(k)



 (21)



whereu0,i(k) are measured inputs. This defines the matrices
Γ and B. Moreover we measure every second outputyi(k),
i.e.

C =










eT
1

eT
3
...

eT
M−2
eT

M










whereei is theith unit vector with abuse of notation. We will
also assume thatM ≥ 5 and thatM is an odd integer. We let
θ0 = (a0,b0) ∈ R5, θi = (ai,bi) ∈ R2+mi . We then define the
constraintsai = a0 and

b1 = b0 (22)

b2(k) =

[
eT

2
I3

]

b0 (23)

bi(k) =





eT
3

eT
2

I3



b0, i = 3, . . . ,M−2 (24)

bM−1(k) =







eT
3

eT
2

eT
1

eT
2







b0 (25)

bM(k) =





eT
2

eT
1

eT
2



b0 (26)

whereei is theith unit vector inR3. This definesE, and the
overall model. We now define

Φi =
[
Syi S2yi −UT

]

whereS is a shift matrix of compatible dimension and where
U is such thatSmiui = vec(U) with vec being the vectoriza-
tion operator. HereS has different dimension depending on
where it appears. Then

ei = Φiθi + yi

and hence (7) may be equivalently written as
(
ΦT Φ+ρI

)
θ = ρEθ0− µ −2Φy

whereΦ = blkdiag Φi. The distributed version is
(
ΦT

i Φi +ρI
)

θi = ρθ̄i − µi−2Φiyi, i = 1, . . . ,M

VIII. N UMERICAL EXPERIMENTS

All implementations have been carried out in MATLAB
R2013b. The computations have been run on an Intel Core
i5 CPU M 250 4 GHz with 4 GB of RAM.

A. Feedback Connection of ARX-Models

All ARX models have been defined asai = (−1.5,0.7)
and bi = (−0.1,0.1) for i = 1,2,3. The inputu0 has been
taken as a sequence of independent±1-variables. The error
vectore has been generated from a zero mean normal density

function with standard deviationσ = 1. Then the closed loop
signals have been computed from the equations

(blkdiag(Ty,i)+blkdiag(Tu,i)(Γ⊗ IN))y = (27)

(−blkdiag(Tu,i)(B⊗ IN))u0+ e (28)

u = (Γ⊗ IN)y+(B⊗ IN)u0 (29)

y0 = (C⊗ IN)y (30)

The value ofN has been 300. We have used the default
settings for the ADMM algorithm as detailed above. The
initial guess forθ0 was the zero vector.

We repeated the optimization 100 times. The mean value
of the estimated parameters were

mθ1 =
[
−1.4988 0.7013 −0.0964 0.0965

]T

mθ2 =
[
−1.4934 0.6923 −0.1068 0.1071

]T

mθ3 =
[
−1.4897 0.6896 −0.1105 0.1084

]T

with standard deviations

σθ1 =
[
0.0371 0.0385 0.0321 0.0315

]T

σθ2 =
[
0.0457 0.0473 0.0342 0.0349

]T

σθ3 =
[
0.0435 0.0408 0.0476 0.0473

]T

We see that the model parameters are estimated accurately.

B. Discretized Partial Differential Equation

The dynamical system considered has beena0 = (0.7,0.9)
and b0 = (0.5,−0.5,0.5). The inputu0 has been taken as a
sequence of independent±1-variables. The error vectore has
been generated from a zero mean normal density function
with standard deviationσ = 1. Then the closed loop signals
have been computed in the same way as for the previous
example. The value ofN has been 100 and the value of
M has been 15. We have used the default settings for the
ADMM algorithm as detailed above except forεrel = 10−1

andεabs= 10−4, which provided good enough solutions. The
initial guess forθ0 was the true value of its components
perturbed with a value drawn from a zero mean normal
density with standard deviation 0.1.

We repeated the optimization 10 times and we report in
Table II computational time, and the number of iterations in
the ADMM algorithm for the different runs. The mean value
of the estimated parameters were

mθ0 =
[
0.7017 0.8950 0.4958 −0.4966 0.4957

]T

with standard deviation

σθ0 =
[
0.0075 0.0110 0.0212 0.0089 0.0086

]T

It is seen that the proposed algorithm computes good esti-
mates of the true parameters in reasonable time. It should be
stressed that we have not made use of parallel or distributed
implementations. Hence the computational times should be
possible to decrease significantly. It should also be noted that
the our results relay on a good initial guess ofθ0.



TABLE II

ITERATIONS AND T IME

Run nr 1 2 3 4 5 6 7 8 9 10
Iterations 177 107 77 135 34 84 306 95 177 105
Time (s) 515.9 306.2 219.4 406.6 106.8 246.3 3164.8 262.5 496.9 305.9

IX. SUMMARY

To summarize it looks like it should be possible to solve
identification problems of interconnected systems where we
do not measure all input or output signals in a distributed
way. An open question is how much need to be measured
to have a unique solution. Also can this framework be used
to solve identification problems for state space descriptions
when one impose structure on the system matrices? Our
framework addresses as a special case distributed estimation
of signals by assuming thatθ is known. We admit that in
case no good guess of the true parameters are available
to initialize the ADMM algorithm, it may fail to find the
global optimal solution. It may instead be trapped in a local
minimum. Future research will investigate the possibilityto
use continuation methods to remedy this flaw.
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