
Matlab and Simulink for Modeling and Control

Robert Babuška and Stefano Stramigioli

November 1999

Delft University of Technology

Delft Control Laboratory
Faculty of Information Technology and Systems

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands

1 Introduction

With the help of two examples, a DC motor and a magnetic levitation system, the use of MATLAB and
Simulink for modeling, analysis and control design is demonstrated. It is assumed that the reader already
has basic knowledge of MATLAB and Simulink. The main focus is on the use of the Control System Toolbox
functions. We recommend the reader to try the commands out directly in MATLAB while reading this text. The
examples have been implemented by the authors and can be downloaded fromhttp://lcewww.et.tudelft.nl/˜et4092.
The implementation is done in MATLAB version 5.3 and has also been tested in version 5.2.

2 Modeling a DC Motor

In this example we will learn how to develop a linear model for a DC motor, how to analyze the model under
MATLAB (poles and zeros, frequency response, time-domain response, etc.), how to design a controller, and
how to simulate the open-loop and closed-loop systems under SIMULINK.

2.1 Physical System

Consider a DC motor, whose electric circuit of the armature and the free body diagram of the rotor are shown
in Figure 1.

V

T
J

R L

+

Vb = Kω

bω
-

+

-

Figure 1: Schematic representation of the considered DC motor.

The rotor and the shaft are assumed to be rigid. Consider the following values for the physical parameters:

moment of inertia of the rotor J =0.01 kg· m2

damping (friction) of the mechanical system b =0.1 Nms
(back-)electromotive force constant K =0.01 Nm/A
electric resistance R = 1 Ω
electric inductance L = 0.5 H

The input is the armature voltageV in Volts (driven by a voltage source). Measured variables are the angular
velocity of the shaftω in radians per second, and the shaft angleθ in radians.

2.2 System Equations

The motor torque,T , is related to the armature current,i, by a constant factorK:

T = Ki . (1)

The back electromotive force (emf),Vb, is related to the angular velocity by:

Vb = Kω = K
dθ

dt
. (2)

1

From Figure 1 we can write the following equations based on the Newton’s law combined with the Kirchhoff’s
law:

J
d2θ

dt2
+ b

dθ

dt
= Ki, (3)

L
di

dt
+ Ri = V − K

dθ

dt
. (4)

2.3 Transfer Function

Using the Laplace transform, equations (3) and (4) can be written as:

Js2θ(s) + bsθ(s) = KI(s), (5)

LsI(s) + RI(s) = V (s) − Ksθ(s), (6)

wheres denotes the Laplace operator. From (6) we can expressI(s):

I(s) =
V (s) − Ksθ(s)

R + Ls
, (7)

and substitute it in (5) to obtain:

Js2θ(s) + bsθ(s) = K
V (s) − Ksθ(s)

R + Ls
. (8)

This equation for the DC motor is shown in the block diagram in Figure 2.

VelocityTorque
Armature

T s()

Load

Back emf

Voltage Angle

w()sV s() +

-

1

Js + b

q()s

K
V sb()

K

Ls + R

1

s

Figure 2: A block diagram of the DC motor.

From equation (8), the transfer function from the input voltage,V (s), to the output angle,θ, directly follows:

Ga(s) =
θ(s)
V (s)

=
K

s[(R + Ls)(Js + b) + K2]
. (9)

From the block diagram in Figure 2, it is easy to see that the transfer function from the input voltage,V (s), to
the angular velocity,ω, is:

Gv(s) =
ω(s)
V (s)

=
K

(R + Ls)(Js + b) + K2
. (10)

3 MATLAB Representation

The above transfer function can be entered into Matlab by defining the numerator and denominator polyno-
mials, using the conventions of the MATLAB’s Control Toolbox. The coefficients of a polynomial ins are

2

entered in a descending order of the powers ofs.

Example:The polynomialA = 3s3 + 2s + 10 is in MATLAB entered as:A = [3 0 2 10] .

Furthermore, we will make use of the functionconv(A,B), which computes the product (convolution) of the
polynomialsA andB. Open the M-filemotor.m. It already contains the definition of the motor constants:

J=0.01;
b=0.1;
K=0.01;
R=1;
L=0.5;

The transfer function (9) can be entered in MATLAB in a number of different ways.

1. As Ga(s) can be expressed asGv(s) · 1
s , we can enter these two transfer functions separately and

combine them in series:

aux = tf(K,conv([L R],[J b]))
Gv = feedback(aux,K);
Ga = tf(1,[1 0])*Gv;

Here, we made use of the functionfeedbackto create a feedback connection of two transfer functions
and the multiplication operator* , which isoverloadedby the LTI class of theControl System Toolbox
such that is computes the product of two transfer functions.

2. Instead of using convolution, the first of the above three commands can be replaced by the product of
two transfer functions:

aux = tf(K,[L R])*tf(1,[J b]);

3. Another possibility (perhaps the most convenient one) is to define the transfer function in a symbolic
way. First introduce a system representing the Laplace operators (differentiator) and then enter the
transfer function as an algebraic expression:

s = tf([1 0],1);
Gv = K/((L*s + R)*(J*s + b) + Kˆ2);
Ga = Gv/s;

It is convenient to label the inputs and outputs by the names of the physical variables they represent:

Gv.InputName = ’Voltage’;
Gv.OutputName = ’Velocity’;
Ga.InputName = ’Voltage’;
Ga.OutputName = ’Angle’;

Now by calling motor from the workspace, we have both the velocity (Gv) and the position (Ga) transfer
functions defined in the workspace.

3.1 Exercises

1. ConvertGv andGainto their respective state-space (functionss) and zero-pole-gain (functionzpk) rep-
resentations.

2. What are the poles and zeros of the system? Is the system stable? Why?

3. How can you use MATLAB to find out whether the system is observable and controllable?

3

4 Analysis

TheControl System Toolboxoffers a variety of functions that allow us to examine the system’s characteristics.

4.1 Time-Domain and Frequency Responses

As we may want plot the responses for the velocity and angle in one figure, it convenient to group the two
transfer functions into a single system with one input, the voltage, and two outputs, the velocity and the angle:

G = [Gv; Ga];

Another way is to first convertGa into its state-space representation and then add one extra output being equal
to the second state (the velocity):

G = ss(Ga);
set(G,’c’,[0 1 0 ; 0 0 1],’d’,[0;0],’OutputName’,{’Velocity’;’Angle’});

Note that this extension of the state-space model with an extra output has to be done in onesetcommand in
order to keep the dimensions consistent.
Now, we can plot the step, impulse and frequency responses of the motor model:

figure(1); step(G);
figure(2); impulse(G);
figure(3); bode(G);

You should get the plots given in Figure 3 and Figure 4.

Time (sec.)

A
m

pl
itu

de

Step Response

0

0.02

0.04

0.06

0.08

0.1
From: Voltage

T
o:

 V
el

oc
ity

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

T
o:

 A
ng

le

Time (sec.)

A
m

pl
itu

de

Impulse Response

0

0.05

0.1

0.15

0.2
From: Voltage

T
o:

 V
el

oc
ity

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

T
o:

 A
ng

le

Figure 3: Step and impulse response.

4.2 Exercise

1. Simulate and plot in MATLAB the time response of the velocity and of the angle for an input signal
cos 2πt, wheret goes from 0 to 5 seconds.

4

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

Bode Diagrams

−100

−50

0
From: Voltage

−200

−100

0

T
o:

 V
el

oc
ity

−200

0

200

10
−2

10
−1

10
0

10
1

10
2

−400

−200

0

T
o:

 A
ng

le

Figure 4: Bode diagram.

5 Control Design

Let us design a PID feedback controller to control the velocity of the DC motor. Recall that the transfer
function of a PID controller is:

C(s) =
U(s)
E(s)

= Kp +
Ki

s
+ Kds =

Kds
2 + Kps + Ki

s
, (11)

whereu is the controller output (in our case the voltageV), e = uc − y is the controller input (the control
error), andKp, Kd, Ki are the proportional, derivative and integral gains, respectively. A block diagram of
the closed-loop system is given in Figure 5.

r
DC Motor

Velocity

V
Voltage

ωe+

−
PID

Figure 5: Closed-loop system with a PID controller.

5.1 Proportional Control

First, try a simple proportional controller with some estimated gain, say, 100. To compute the closed-loop
transfer function, use thefeedbackcommand. Add the following lines to your m-file:

Kp = 100;
Gc = feedback(Gv*Kp,1);
Gc.InputName = ’Desired velocity’;

5

HereGc is the closed-loop transfer function. To see the step response of the closed-loop system, enter:

figure(4); step(Gc,0:0.01:2);

You should get the plot given in Figure 6:

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
From: Desired velocity

T
o:

 V
el

oc
ity

Figure 6: Closed-loop step response with a P controller.

To eliminate the steady-state error, an integral action must be used. To reduce the overshoot, a derivative
action can be employed. In the following section, a complete PID controller is designed.

5.2 PID Control

Let us try a PID controller. Edit your M-file so that it contains the following commands:

Kp = 1;
Ki = 0.8;
Kd = 0.3;
C = tf([Kd Kp Ki],[1 0]);
rlocus(Ga*C);
Kp = rlocfind(Ga*C);
Gc = feedback(Ga*C*Kp,1);
figure(9); step(Gc,0:0.01:5)

The rlocusandrlocfind functions are used to select the overall gain of the PID controller, such that the con-
troller is stable and has the desired location of the poles (within the defined ratio among theKp, Ki andKd

constants). If the design is not satisfactory, this ratio can be changed, of course. We should obtain a plot
similar to the one in Figure 7:

5.3 Exercise

1. Use the root locus and the Nyquist criterion to find out for what value of the gainKp the proportional
controller for the angleGa(s) becomes unstable.

6

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
o:

 A
ng

le

Figure 7: Closed-loop step response with a PID controller.

6 SIMULINK Model

The block diagram from Figure 2 can be directly implemented in SIMULINK, as shown in the figure Figure 8:

omega

To Workspace

t

To Workspace Clock

angular
speed

s
1

Step Input

Ls+R
K(s)

Armature

Js+b
1

Load

+
−

K theta

To Workspace

angle

Figure 8: SIMULINK block diagram of the DC motor.

Set the simulation parameters and run the simulation to see the step response. Compare with the response in
Figure 3. Save the file under a new name and remove the position integrator along with the ‘Graph’ and ‘To
Workspace’ blocks. Group the block describing the DC motor into a single block and add a PID controller
according to Figure 5. The corresponding SIMULINK diagram is given in Figure 9. Experiment with the
controller. Compare the responses with those obtained previously in MATLAB .

7 Obtaining MATLAB Representation from a SIMULINK Model

From a SIMULINK diagram, a MATLAB representation (state space, transfer function, etc.) can be obtained.
The ‘Inport’ and ‘Outport’ blocks must be added to the SIMULINK diagram, as shown in Figure 10.
Then we can use thelinmod command to obtain a state-space representation of the diagram:

[A,B,C,D] = linmod(’filename’);

wherefilenameis the name of the SIMULINK file.

7

DC motor

omega

To Workspace

angular
speed

Step Input
+

−

Sum

PID

Clock

t

To Workspace

Figure 9: SIMULINK block diagram of the DC motor with a PID controller.

s
1

Ls+R
K(s)

Armature

Js+b
1

Load

+
−

K

1
Outport

1
Inport

Figure 10: SIMULINK block diagram of the DC motor with ‘Inport’ and ‘Outport’ blocks.

7.1 Exercise

1. Convert the four matricesA, B C andD into a corresponding state space LTI object. Convert this one
into a transfer function and compare the result with the transfer function entered previously in MATLAB .

8 Linearization of Nonlinear Simulink Model

In this section, we will use an example of a highly nonlinear system to show how to linearize a nonlinear
Simulink model and extract the linearized model to MATLAB for control design purposes.

8.1 Magnetic Levitation System

Magnetic levitation as a friction-less support for high-speed trains, in bearings of low-energy motors, etc. It
consists of an electromagnet which is attracted to an object made of a magnetic material (such as a rail). The
control goal is to keep the air gap between this material and the electromagnet constant by controlling the
current in the coil. A schematic drawing is given in Figure 11.

Rail

Airgap z

Current i

FR

Fgrav Fdist

Computer

D-A

A-D

Figure 11:Schematic drawing of the magnetic levitation system.

The position and the motion of the object in the magnetic field are dependent on the forces that act on it.
These forces are:(i) the gravitational force,(ii) the electromagnetic force, and(iii) a disturbance force. The

8

dynamic equation of the system is derived from the basic lawF = ma,

d2

dt2
y(t) =

1
m

(Fgrav + Fdist − FR), (12)

whereFgrav = mg, Fdist is an unknown disturbance, and the electromagnetic force is

FR =
µ0N

2Ai2(t)
2y2(t)

= Kmag
i2(t)
y2(t)

. (13)

In our example, we useKmag = 17.8 µH andm = 8 kg.

8.2 Nonlinear Simulink Model

The nonlinear equation (12) is implemented in a Simulink model given in Figure 12.

y’y’’

1
Air gaps

1
s

1

u2 Kmag/m

1/m

1/u^2

g

Check limits

2
Disturbance

force

1
Current

Figure 12: Nonlinear Simulink model (bearing.mdl) of the magnetic levitation system.

8.3 Linearization

Let us linearize the nonlinear model around an operating pointy0 = 2 mm. There are two possibilities to
linearize a nonlinear model:

• Analytically: by hand or using symbolic maths software such as Mathematica, Maple or the Symbolic
Toolbox of MATLAB .

• Numericallyby applying thetrim andlinmod functions of MATLAB .

The second possibility will be explored here (you can do the first one as an exercise). Let us use the following
script (lin.m):

params; % a script with definition of system’s parameters
file = ’bearing’; % nonlinear Simulink model to be linearized
u0 = [10; 0]; % initial input guess [input; disturbance]
y0 = 0.002; % initial output guess
x0 = [y0 0]’; % initial state guess
[x0,u0]=trim(file,x0,u0,y0,[],[2],[]);
[A,B,C,D] = linmod(file,x0,u0);
sys = ss(A,B,C,D); % make an LTI object

9

Thetrim function numerically searches for an equilibrium of the nonlinear system. A reasonable initial guess
(x0, u0 andy0) must be provided. The additional parameters of this function are indices of the inputs, states
and outputs that are not free to vary during the search. A typical example of such a variable is the state variable
corresponding to the operating point.
Thelinmod function extracts the matrices of a linear model obtained by numerical linearization at the equilib-
rium. Once this model is available, it can be used for analysis or control design.

8.4 Exercise

1. Choose another operating point and extract a linear model at that point. Compare to the model obtained
above in terms their gains, poles and zeros.

9 Concluding Remarks

The authors hope that this text has been useful and would appreciate receiving feedback from you. Let us
know if you have found any errors and omissions or if you have suggestions for improvements. Send them
preferable by e-mail to:R.Babuska@ITS.TUDelft.NL.

10

