
Introduction Dealing with continuous spaces Demo of walking robot

Reinforcement Learning
Part II: RL using function approximation

Ivo Grondman Robert Babuška

Knowledge-Based Control Systems
2012-03-07

Introduction Dealing with continuous spaces Demo of walking robot

Announcement

MATLAB/SIMULINK assignment

Hard-copy of assignment available during the break
Work in groups of two
Due date: Tuesday 10 April, 2012 @ 12:00 (noon!)

Introduction Dealing with continuous spaces Demo of walking robot

Principle of RL

Controller Process

action u

state x

Reward function
reward r

Interact with a system through states and actions
Receive rewards as performance feedback

This lecture: approximate RL – continuous states & actions

Introduction Dealing with continuous spaces Demo of walking robot

Principle of RL

Controller Process

action u

state x

Reward function
reward r

Interact with a system through states and actions
Receive rewards as performance feedback

This lecture: approximate RL – continuous states & actions

Introduction Dealing with continuous spaces Demo of walking robot

Outline

1 Introduction

2 Dealing with continuous spaces
Approximating the Q-function

Fuzzy Q-iteration
Actor-critic methods

Model Learning Actor-Critic

3 Demo of walking robot

Introduction Dealing with continuous spaces Demo of walking robot

Recall: Solution of the RL problem

Q-function Qπ of policy π

Optimal Q-function Q∗ = maxπ Qπ

Satisfies Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γmax
u′

Q∗(f (x ,u),u′)

Optimal policy π∗ – greedy in Q∗:

π∗(x) = arg max
u

Q∗(x ,u)

Introduction Dealing with continuous spaces Demo of walking robot

Recall: Solution of the RL problem

Q-function Qπ of policy π

Optimal Q-function Q∗ = maxπ Qπ

Satisfies Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γmax
u′

Q∗(f (x ,u),u′)

Optimal policy π∗ – greedy in Q∗:

π∗(x) = arg max
u

Q∗(x ,u)

Introduction Dealing with continuous spaces Demo of walking robot

Recall: Solution of the RL problem

Q-function Qπ of policy π

Optimal Q-function Q∗ = maxπ Qπ

Satisfies Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γmax
u′

Q∗(f (x ,u),u′)

Optimal policy π∗ – greedy in Q∗:

π∗(x) = arg max
u

Q∗(x ,u)

Introduction Dealing with continuous spaces Demo of walking robot

Why approximation?

Classical RL – tabular representation of Q-functions:
separate Q-value for each x and u
Example: cleaning robot

0 1 .5 0.625 1.25 0
0 0.625 1.25 2.5 5 0

Introduction Dealing with continuous spaces Demo of walking robot

Why approximation? (cont’d)

Tabular representation contains |X | · |U| elements.
In real-life control, X , U continuous!
Tabular representation impossible

⇒ need to approximate the Q-function

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

1 Introduction

2 Dealing with continuous spaces
Approximating the Q-function

Fuzzy Q-iteration
Actor-critic methods

Model Learning Actor-Critic

3 Demo of walking robot

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Q-function approximation

In real-life control, X , U continuous
⇒ approximate Q-function Q̂ must be used

Policy is greedy in Q̂, computed on demand for given x :

π(x) = arg max
u

Q̂(x ,u)

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Q-function approximation (cont’d)

One option: use linearly parameterized approximation

Q̂ =
N∑

i=1

θiφi(x ,u)

with φi(x ,u) : X × U 7→ R.

π(x) = arg maxu Q̂(x ,u) is now a continuous optimization
procedure!
Approximator must ensure efficient arg max solution

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Q-function approximation (cont’d)

One option: use linearly parameterized approximation

Q̂ =
N∑

i=1

θiφi(x ,u)

with φi(x ,u) : X × U 7→ R.

π(x) = arg maxu Q̂(x ,u) is now a continuous optimization
procedure!
Approximator must ensure efficient arg max solution

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Q-function approximation (cont’d)

One option: use linearly parameterized approximation

Q̂ =
N∑

i=1

θiφi(x ,u)

with φi(x ,u) : X × U 7→ R.

π(x) = arg maxu Q̂(x ,u) is now a continuous optimization
procedure!
Approximator must ensure efficient arg max solution

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Approximating over the action space

Approximator must ensure efficient “arg max” solution

⇒ Typically: action discretization

Choose M discrete actions u1, . . . ,uM ∈ U
Solve “arg max” by explicit enumeration

Example: grid discretization

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Approximating over the action space

Approximator must ensure efficient “arg max” solution

⇒ Typically: action discretization

Choose M discrete actions u1, . . . ,uM ∈ U
Solve “arg max” by explicit enumeration

Example: grid discretization

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Approximating over the state space

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

Usually normalized:
∑

i φi(x) = 1

E.g., fuzzy approximation, RBF network approximation

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Approximating over the state space

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

Usually normalized:
∑

i φi(x) = 1

E.g., fuzzy approximation, RBF network approximation

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Approximating over the state space

Typically: basis functions

φ1, . . . , φN : X → [0,∞)

Usually normalized:
∑

i φi(x) = 1

E.g., fuzzy approximation, RBF network approximation

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Linear Q-function approximation

Given:
1 N basis functions φ1, . . . , φN

2 M discrete actions u1, . . . ,uM

Store:
3 N ×M matrix of parameters θ

(one for each pair basis function–discrete action)

Approximate Q-function

Q̂θ(x ,uj) =
N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]

θ1,j
...
θN,j



Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Linear Q-function approximation

Given:
1 N basis functions φ1, . . . , φN

2 M discrete actions u1, . . . ,uM

Store:
3 N ×M matrix of parameters θ

(one for each pair basis function–discrete action)

Approximate Q-function

Q̂θ(x ,uj) =
N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]

θ1,j
...
θN,j



Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Linear Q-function approximation

Given:
1 N basis functions φ1, . . . , φN

2 M discrete actions u1, . . . ,uM

Store:
3 N ×M matrix of parameters θ

(one for each pair basis function–discrete action)

Approximate Q-function

Q̂θ(x ,uj) =
N∑

i=1

φi(x)θi,j = [φ1(x) . . . φN(x)]

θ1,j
...
θN,j



Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Policy from approximate Q-function

Recall optimal policy:

π∗(x) = arg max
u

Q∗(x ,u)

Policy with discretized actions:

π̂∗(x) = arg max
uj , j=1,...,M

Q̂θ∗(x ,uj)

(θ∗ = converged parameter matrix)

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Offline, off-policy: Q-iteration, discrete case

Turn Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γmax
u′

Q∗(f (x ,u),u′)

into an iterative update:

Q-iteration
repeat at each iteration `

for all x ,u do
Q`+1(x ,u)← ρ(x ,u) + γmaxu′ Q`(f (x ,u),u′)

end for
until convergence to Q∗

Once Q∗ available: π∗(x) = arg maxu Q∗(x ,u)

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Offline, off-policy: Q-iteration, discrete case

Turn Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γmax
u′

Q∗(f (x ,u),u′)

into an iterative update:

Q-iteration
repeat at each iteration `

for all x ,u do
Q`+1(x ,u)← ρ(x ,u) + γmaxu′ Q`(f (x ,u),u′)

end for
until convergence to Q∗

Once Q∗ available: π∗(x) = arg maxu Q∗(x ,u)

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Cleaning robot: Q-iteration demo

Discount factor: γ = 0.5

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Cleaning robot: Q-iteration (cont’d)

Q`+1(x ,u)← ρ(x ,u) + γmax
u′

Q`(f (x ,u),u′)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 2.5 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.25 ; 2.5 1.25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
π∗ ∗ −1 1 1 1 ∗
V ∗ 0 1 1.25 2.5 5 0

Note: Q` = Q(x , left) ; Q(x , right)

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Fuzzy approximator

Basis functions: pyramidal membership functions (MFs)
= cross-product of triangular MFs

Each MF i has core (center) xi

θi,j can be seen as Q̂(xi ,uj)

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Fuzzy Q-iteration

Recall classical Q-iteration:
repeat at each iteration `

for all x ,u do
Q`+1(x ,u) = ρ(x ,u) + γmaxu′ Q`(f (x ,u),u′)

end for
until convergence

Fuzzy Q-iteration
repeat at each iteration `

for all cores xi , discrete actions uj do
θ`+1,i,j = ρ(xi ,uj) + γmaxj ′ Q̂θ`(f (xi ,uj),uj ′)

end for
until convergence

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Another example: Inverted pendulum swing-up

x = [angle α, velocity α̇]T

u = voltage

ρ(x ,u) = −xT
[
5 0
0 0.1

]
x − uT 1u

Discount factor γ = 0.98

Goal: stabilize pointing up
Insufficient actuation⇒ need to swing back & forth

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Inverted pendulum: Near-optimal solution

Left: Q-function for u = 0 Right: policy

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Inverted pendulum: Fuzzy Q-iteration demo

MFs: 41× 21 equidistant grid
Discretization: 5 actions, logarithmically spaced around 0

Introduction Dealing with continuous spaces Demo of walking robot

Approximating the Q-function

Inverted pendulum: Fuzzy Q-iteration demo

Demo

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

1 Introduction

2 Dealing with continuous spaces
Approximating the Q-function

Fuzzy Q-iteration
Actor-critic methods

Model Learning Actor-Critic

3 Demo of walking robot

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Ingredients

Actor

Critic

Process

Rewardr

x

x

u
δ

Explicitly separated value function and policy
Actor = control policy π(x)

Critic = state value function V (x)

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Continuous action/state space

To deal with continuity:
Actor parameterized in ϕ: π̂(x , ϕ)

Critic parameterized in θ: V̂ (x , θ)

Parameters ϕ and θ have finite size, but approximate functions
on continuous (infinitely large) spaces!

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Remarks on lecture notes

Paragraph 9.4.6 has some peculiarities:
Equation (9.49) should not contain uk

Time indices k and i are used in a confusing way
Reward not usually rk ∈ {0,−1}, but any value

Terminology:
“Performance Evaluation Unit” = reward function
“Control Unit” = actor (i.e. the policy)
“Stochastic Action Modifier” = exploration

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Remarks on lecture notes

Paragraph 9.4.6 has some peculiarities:
Equation (9.49) should not contain uk

Time indices k and i are used in a confusing way
Reward not usually rk ∈ {0,−1}, but any value

Terminology:
“Performance Evaluation Unit” = reward function
“Control Unit” = actor (i.e. the policy)
“Stochastic Action Modifier” = exploration

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm

On-policy: find Qπ, improve π, repeat
1 Take Bellman equation for Vπ, at some xk :

Vπ(x) = ρ(x , π(x)) + γVπ(f (x , π(x)))

2 Take temporal difference ∆:

∆ = ρ(x , π(x)) + γVπ(f (x , π(x)))− Vπ(x)

3 Use sample (xk ,uk , xk+1, rk+1) at each step k and
parameterized V :

∆k = rk+1 + γV̂π(xk+1, θk)− V̂π(xk , θk)

Note: uk = π̂(xk , ϕk) + ũk , π̂ = actor, ũk = exploration

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm

On-policy: find Qπ, improve π, repeat
1 Take Bellman equation for Vπ, at some xk :

Vπ(x) = ρ(x , π(x)) + γVπ(f (x , π(x)))

2 Take temporal difference ∆:

∆ = ρ(x , π(x)) + γVπ(f (x , π(x)))− Vπ(x)

3 Use sample (xk ,uk , xk+1, rk+1) at each step k and
parameterized V :

∆k = rk+1 + γV̂π(xk+1, θk)− V̂π(xk , θk)

Note: uk = π̂(xk , ϕk) + ũk , π̂ = actor, ũk = exploration

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm

On-policy: find Qπ, improve π, repeat
1 Take Bellman equation for Vπ, at some xk :

Vπ(x) = ρ(x , π(x)) + γVπ(f (x , π(x)))

2 Take temporal difference ∆:

∆ = ρ(x , π(x)) + γVπ(f (x , π(x)))− Vπ(x)

3 Use sample (xk ,uk , xk+1, rk+1) at each step k and
parameterized V :

∆k = rk+1 + γV̂π(xk+1, θk)− V̂π(xk , θk)

Note: uk = π̂(xk , ϕk) + ũk , π̂ = actor, ũk = exploration

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm (cont’d)

4 Use ∆k for critic update:

θk+1 = θk + αc∆k
∂V̂ (x , θ)

∂θ

∣∣∣∣∣x=xk
θ=θk

αc > 0: learning rate of critic

∆k > 0⇒ rk+1 + γV̂π(xk+1, θk) > V̂π(xk , θk): old estimate
too low, increase V̂ .
∆k < 0⇒ rk+1 + γV̂π(xk+1, θk) < V̂π(xk , θk): old estimate
too high, decrease V̂ .

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm (cont’d)

4 Use ∆k for critic update:

θk+1 = θk + αc∆k
∂V̂ (x , θ)

∂θ

∣∣∣∣∣x=xk
θ=θk

αc > 0: learning rate of critic

∆k > 0⇒ rk+1 + γV̂π(xk+1, θk) > V̂π(xk , θk): old estimate
too low, increase V̂ .
∆k < 0⇒ rk+1 + γV̂π(xk+1, θk) < V̂π(xk , θk): old estimate
too high, decrease V̂ .

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm (cont’d)

Recall: uk = π̂(xk , ϕk) + ũk , π̂ = actor, ũk = exploration
5 Use ∆k and exploration term ũk for actor update:

ϕk+1 = ϕk + αa∆k ũk
∂π̂(x , ϕ)

∂ϕ

∣∣∣∣x=xk
ϕ=ϕk

αa ∈ (0,1]: learning rate of actor

Product ∆k ũk determines sign in update
∆k > 0⇒ rk+1 + γV̂π(xk+1, θk) > V̂π(xk , θk): ũk had
positive effect on performance. Move in direction of uk .
∆k < 0⇒ rk+1 + γV̂π(xk+1, θk) < V̂π(xk , θk): ũk had
negative effect on performance. Move away from uk .

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm (cont’d)

Recall: uk = π̂(xk , ϕk) + ũk , π̂ = actor, ũk = exploration
5 Use ∆k and exploration term ũk for actor update:

ϕk+1 = ϕk + αa∆k ũk
∂π̂(x , ϕ)

∂ϕ

∣∣∣∣x=xk
ϕ=ϕk

αa ∈ (0,1]: learning rate of actor

Product ∆k ũk determines sign in update
∆k > 0⇒ rk+1 + γV̂π(xk+1, θk) > V̂π(xk , θk): ũk had
positive effect on performance. Move in direction of uk .
∆k < 0⇒ rk+1 + γV̂π(xk+1, θk) < V̂π(xk , θk): ũk had
negative effect on performance. Move away from uk .

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Algorithm (cont’d)

Recall: uk = π̂(xk , ϕk) + ũk , π̂ = actor, ũk = exploration
5 Use ∆k and exploration term ũk for actor update:

ϕk+1 = ϕk + αa∆k ũk
∂π̂(x , ϕ)

∂ϕ

∣∣∣∣x=xk
ϕ=ϕk

αa ∈ (0,1]: learning rate of actor

Product ∆k ũk determines sign in update
∆k > 0⇒ rk+1 + γV̂π(xk+1, θk) > V̂π(xk , θk): ũk had
positive effect on performance. Move in direction of uk .
∆k < 0⇒ rk+1 + γV̂π(xk+1, θk) < V̂π(xk , θk): ũk had
negative effect on performance. Move away from uk .

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Complete actor-critic algorithm

Actor-critic
for every trial do

initialize x0, choose initial action u0 = ũ0
repeat for each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1 = π̂(xk+1, ϕk) + ũk+1
∆k = rk+1 + V̂ (xk+1, θk)− V̂ (xk , θk)

θk+1 = θk + αc∆k
∂V̂ (x ,θ)
∂θ

∣∣∣x=xk
θ=θk

ϕk+1 = ϕk + αa∆k ũk
∂π̂(x ,ϕ)
∂ϕ

∣∣∣x=xk
ϕ=ϕk

until terminal state
end for

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Radial Basis Functions

f̂ (x) = θTφ̃(x)

where φ̃(x) is a column vector with the value of normalized
RBFs:

φ̃i(x) =
φi(x)∑
j φj(x)

with φi(x) = e−
1
2 (x−ci)

TB−1(x−ci)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

x

φ
(x

)

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Evolution of a policy

Figure: Value function and policy in learning phase.

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Policy after saturation

Figure: Trajectory of pendulum.

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Final policy

Figure: Solution to pendulum swing-up problem.

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Model Learning Actor-Critic

Main idea
Use a learned process model to get a more efficient policy
update.

Actor

Critic

Process

Rewardr

x

x

u

Process Model

δ

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Model Learning Actor-Critic

Main idea
Use a learned process model to get a more efficient policy
update.

Actor

Critic

Process

Rewardr

x

x

u

Process Model

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Model Learning Actor-Critic (2)

Process model x ′ = f̂ (x ,u) provides ∂ f̂
∂u . This allows the

actor update

ϑk+1 = ϑk + αa
∂V
∂x

∂ f̂
∂u

∂π

∂ϑ

Critic update is the original TD update

θk+1 = θk + αcδk
∂V
∂θ

Process model update e.g. by fitting (supervised learning!).

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Local Linear Regression

LLR is function approximator for actor, critic and process
model
Memory-based: memory samples are input/output pairs.
Approximation of output by regression on k nearest
neighbours.
Example (k = 4):

u

y

uq

ŷq

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Local Linear Regression

LLR is function approximator for actor, critic and process
model
Memory-based: memory samples are input/output pairs.
Approximation of output by regression on k nearest
neighbours.
Example (k = 4):

u

y

uq

ŷq

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Local Linear Regression

LLR is function approximator for actor, critic and process
model
Memory-based: memory samples are input/output pairs.
Approximation of output by regression on k nearest
neighbours.
Example (k = 4):

u

y

uq

ŷq

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Local Linear Regression

LLR is function approximator for actor, critic and process
model
Memory-based: memory samples are input/output pairs.
Approximation of output by regression on k nearest
neighbours.
Example (k = 4):

u

y

uq

ŷq

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Memories involved

Three LLR memories used:
Actor u = π(x), with samples

[
x u

]
.

Critic V̂ (x), with samples
[

x V̂
]
.

Process model x ′ = f̂ (x ,u), with samples
[

x u x ′
]
,

where x ′ is the next state given by the dynamics of the
system.

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Inverted pendulum: Model Learning Actor-Critic

Left: Optimal policy Right: Policy obtained with MLAC

−3 −2 −1 0 1 2 3
−30

−20

−10

0

10

20

30

angle [rad]

an
gu

la
r v

el
oc

ity
 [r

ad
/s

]

 3

0

−3

Introduction Dealing with continuous spaces Demo of walking robot

Actor-critic methods

Model Learning Actor-Critic in action

One trial of the Model Learning Actor-Critic algorithm

Introduction Dealing with continuous spaces Demo of walking robot

1 Introduction

2 Dealing with continuous spaces

3 Demo of walking robot

Introduction Dealing with continuous spaces Demo of walking robot

Demo: Q-learning for walking robot (Erik Schuitema)

The Q-learning algorithm from the previous lecture can be
adapted for continuous states/actions too

Conclusion

Take-home message

(Approximate) Reinforcement Learning =
Learn how to optimally control

complex systems, possibly from scratch

	Introduction
	Dealing with continuous spaces
	Approximating the Q-function
	Actor-critic methods

	Demo of walking robot
	Appendix

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	anm2:

