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Announcement

MATLAB/SIMULINK assignment

@ Hard-copy of assignment available during the break
@ Work in groups of two
@ Due date: Tuesday 10 April, 2012 @ 12:00 (noon!)
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Principle of RL

state x

@ Interact with a system through states and actions
@ Receive rewards as performance feedback
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Principle of RL

state x

@ Interact with a system through states and actions
@ Receive rewards as performance feedback

This lecture: approximate RL — continuous states & actions
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Outline

@ Introduction

@ Dealing with continuous spaces

@ Approximating the Q-function
@ Fuzzy Q-iteration

@ Actor-critic methods
@ Model Learning Actor-Critic

Q Demo of walking robot
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Introduction

Recall: Solution of the RL problem

@ Q-function Q™ of policy 7
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Introduction

Recall: Solution of the RL problem

@ Q-function Q™ of policy 7

@ Optimal Q-function Q* = max, Q™
Satisfies Bellman optimality equation:

Q*(x, u) = p(x, u) +y Max Q" (F(x, u), )
u/
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Introduction

Recall: Solution of the RL problem

@ Q-function Q™ of policy 7

@ Optimal Q-function Q* = max, Q™
Satisfies Bellman optimality equation:

Q*(x, u) = p(x, u) +y Max Q" (F(x, u), )
u/

@ Optimal policy 7* — greedy in Q*:

7 (x) = argmax Q*(x, u)
u
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Introduction

Why approximation?

@ Classical RL — tabular representation of Q-functions:
separate Q-value for each x and u
@ Example: cleaning robot

0 1 5 |1 0.625 | 1.25
00625 |125| 25 5 |0

o
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Introduction

Why approximation? (cont'd)

@ Tabular representation contains | X| - |U| elements.

@ In real-life control, X, U continuous!
Tabular representation impossible

= need to approximate the Q-function
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Dealing with continuous spaces
@000000000000000

Approximating the Q-function

e Dealing with continuous spaces

@ Approximating the Q-function
@ Fuzzy Q-iteration

3
TUDelft



Dealing with continuous spaces
0@00000000000000

Q-function approximation

@ In real-life control, X, U continuous
= approximate Q-function Q must be used

@ Policy is greedy in (5, computed on demand for given x:

m(X) = arg max @(X, u)
u
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Dealing with continuous spaces
00@0000000000000

Q-function approximation (cont'd)

@ One option: use linearly parameterized approximation
N
Q=> bigi(x,u)
i=1

with ¢;(x,u) : X x U — R.
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Dealing with continuous spaces
00@0000000000000

Q-function approximation (cont'd)

@ One option: use linearly parameterized approximation
N
Q=" 6igi(x,u)
i=1
with ¢;(x,u) : X x U — R.

@ 7(x) = argmax, Q(x, u) is now a continuous optimization
procedure!
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Dealing with continuous spaces
00@0000000000000

Q-function approximation (cont'd)

@ One option: use linearly parameterized approximation
N
Q=" 6igi(x,u)
i=1
with ¢;(x,u) : X x U — R.
@ 7(x) = argmax, f)(x, u) is now a continuous optimization

procedure!
@ Approximator must ensure efficient arg max solution
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Approximating over the action space
@ Approximator must ensure efficient “arg max” solution

= Typically: action discretization

@ Choose M discrete actions uq,...,upy € U
Solve “arg max” by explicit enumeration
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Dealing with continuous spaces
000@000000000000

Approximating over the action space

@ Approximator must ensure efficient “arg max” solution
= Typically: action discretization

@ Choose M discrete actions uq,...,upy € U
Solve “arg max” by explicit enumeration

@ Example: grid discretization

z +—+— “"”
| action space
Ut + 4+ + +
Upem === — oo e e e +0
ut o+ + + +
. A -
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Dealing with continuous spaces
0000@00000000000

Approximating over the state space

@ Typically: basis functions
¢1,--, 0N X = [0,00)

@ Usually normalized: ", ¢i(x) =1
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Dealing with continuous spaces
0000@00000000000

Approximating the Q-function

Approximating over the state space

@ Typically: basis functions
¢17"'7¢N X% [0700)

@ Usually normalized: ", ¢i(x) =1
@ E.g., fuzzy approximation,

i

/

0 ‘\ 0
Lo 0N
N\ ‘\/\
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Dealing with continuous spaces
0000@00000000000

Approximating the Q-function

Approximating over the state space

@ Typically: basis functions

$1,---, 0N 2 X — [0,00)

@ Usually normalized: ", ¢i(x) =1
@ E.g., fuzzy approximation, RBF network approximation

0
/o‘o‘
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Linear Q-function approximation

Given:
@ N basis functions ¢1, ..., on
© M discrete actions uy, ..., Uy
Store:

@ N x M matrix of parameters 0
(one for each pair basis function—discrete action)

3
TUDelft



Introduction Dealing with continuous spaces Demo of walking robot

00000@0000000000!

Linear Q-function approximation

Given:
@ N basis functions ¢1, ..., on
© M discrete actions uy, ..., Uy
Store:

@ N x M matrix of parameters 0
(one for each pair basis function—discrete action)

Approximate Q-function

Q' (x,u) = Z¢,

3
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Introduction Dealing with continuous spaces

00000@0000000000!

Linear Q-function approximation

Given:
@ N basis functions ¢1, ..., on
© M discrete actions uy, ..., Uy
Store:

@ N x M matrix of parameters 0
(one for each pair basis function—discrete action)

Approximate Q-function
91’/'
Q& (x,u) = Z¢, i = [91(%). on(0)]

On,j
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Dealing with continuous spaces
00000080000 00000

Policy from approximate Q-function

@ Recall optimal policy:

7 (x) = argmax Q*(x, u)
u

@ Policy with discretized actions:

7*(x) = argmax Q" (x, u)
uj, j:1....,M

(9* = converged parameter matrix)
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Introduction Dealing with continuous spaces Demo of walk

0000000@00000000!

Offline, off-policy: Q-iteration, discrete case

@ Turn Bellman optimality equation:
Q*(x,u) = p(x,u) +~ymax Q*(f(x,u), )
u/

into an iterative update:

Q-iteration
repeat at each iteration ¢
for all x,u do
Qé—H (X> U) = p(X, U) + 7y max, Oé(f(x> U), U/)
end for
until convergence to Q*
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Introduction Dealing with continuous spaces Demo of walk

0000000@00000000!

Offline, off-policy: Q-iteration, discrete case

@ Turn Bellman optimality equation:
Q*(x,u) = p(x,u) +~ymax Q*(f(x,u), )
u/

into an iterative update:

Q-iteration
repeat at each iteration ¢
for all x,u do
Qé—H (X> U) = p(X, U) + 7y max, Oé(f(x> U), U/)
end for
until convergence to Q*

@ Once Q* available: 7*(x) = argmax, Q*(x, u) .
TUDelft



Dealing with continuous spaces
00000000 e0000000

Approximating the Q-function

Cleaning robot: Q-iteration demo

Discount factor: v = 0.5

Q-iteration, ell=2

:

state, x

—e—Q-Q*

o N »_O

1 2
iteration, ell

o
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Dealing with continuous spaces
0000000000 00000

Cleaning robot: Q-iteration (cont'd)

Qui1(x, U) < p(x,u) +~ max Qu(f(x,u),u")

x=0 x =1 x=2 x=3 x=4 x=5
Q 0;0 0;0 0;0 0;0 0:;0 0:;0
(@] 0;0 1;0 0;0 0;0 0;5 0;0
Q 0;0 1;0 05;0 0;25 0;5 0;0
Q 0;0 1,025 05;125 025;25 125;5 00
Q 0;0 1;0625 05;125 0.625;25 125;5 0;0
Q 0;0 1;0625 05;125 0625;25 125;5 0;0
T« A1 i 1 1
v* 0 1 1.25 25 5 0

Note: Q, = Q(x, left); Q(x, right)
1,! Delft



Dealing with continuous spaces
0000000000 e00000

Approximating the Q-function

Fuzzy approximator

@ Basis functions: pyramidal membership functions (MFs)
= cross-product of triangular MFs

N

N
VAW 00
PO
/

4

/

@ Each MF / has core (center) x;

@ ¢;; can be seen as Q(x;, u;)
'FUDeIft



Introduction Dealing with continuous spaces Demo of walking robot

Fuzzy Q-iteration

Recall classical Q-iteration:

Qui1(x,u) max, Q u

Fuzzy Q-iteration

repeat at each iteration /¢
for all cores x;, discrete actions u; do

Or11,ij = p(Xi, Uj) + v maxy Q%(f(x;, uj), uy)
end for
until convergence
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Dealing with continuous spaces

000000000000 e000

Approximating the Q-function

Another example: Inverted pendulum swing-up

@ x = [angle a, velocity &]*
@ u = voltage

5 0
0 0.1

@ Discount factor v = 0.98

Op(X,U):—XT[ }x—uﬁu

@ Goal: stabilize pointing up
@ Insufficient actuation = need to swing back & forth
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Dealing with continuous spaces
0000000000000 e00

Inverted pendulum: Near-optimal solution

Left: Q-function for u =0

Right: policy

ha,a') V]

o' [rad/s]

o [rad/s]

o [rad]

0
o [rad]
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Dealing with continuous spaces
0000000000000 0e0

Approximating the Q-function

Inverted pendulum: Fuzzy Q-iteration demo

MFs: 41 x 21 equidistant grid
Discretization: 5 actions, logarithmically spaced around 0

[ ! 1 1 u ]
T T T T
-3 0 3
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Dealing with continuous spaces
0000000000000 00e

Approximating the Q-function

Inverted pendulum: Fuzzy Q-iteration demo

Demo

Fuzzy Q-iteration, ell=20 (o)

Qoa',0)

— O%ie1 " O

ell
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Dealing with continuous spaces
900000000000 000000

Actor-critic methods

e Dealing with continuous spaces

@ Actor-critic methods
@ Model Learning Actor-Critic

3
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Dealing with continuous spaces
0O@0000000000000000

Ingredients
> Critic [« - Reward [«
v0 —
> Actor 4 > Process X
X

@ Explicitly separated value function and policy
@ Actor = control policy m(x)
@ Critic = state value function V(x)

3
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Dealing with continuous spaces
00@000000000000000

Continuous action/state space

To deal with continuity:
@ Actor parameterized in ¢: 7(X, ¢)
e Critic parameterized in 6: V(x, 6)

Parameters ¢ and 6 have finite size, but approximate functions
on continuous (infinitely large) spaces!

3
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Dealing with continuous spaces
000@00000000000000

Remarks on lecture notes

Paragraph 9.4.6 has some peculiarities:
@ Equation (9.49) should not contain uy
@ Time indices k and /i are used in a confusing way
@ Reward not usually rx € {0, —1}, but any value

3
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Dealing with continuous spaces
000@00000000000000

Remarks on lecture notes

Paragraph 9.4.6 has some peculiarities:
@ Equation (9.49) should not contain uy
@ Time indices k and /i are used in a confusing way
@ Reward not usually rx € {0, —1}, but any value

Terminology:
@ “Performance Evaluation Unit” = reward function
@ “Control Unit” = actor (i.e. the policy)
@ “Stochastic Action Modifier” = exploration
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Dealing with continuous spaces
0O000@0000000000000

Algorithm

On-policy: find Q™, improve 7, repeat
@ Take Bellman equation for V™, at some x:

VT(x) = p(x, m(x)) + v V7 (f(x, m(x)))

3
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Dealing with continuous spaces
0O000@0000000000000

Algorithm

On-policy: find Q™, improve 7, repeat
@ Take Bellman equation for V™, at some x:

VT(x) = p(x,7(x)) + vV (f(x,7(X)))
© Take temporal difference A:

A = p(x, m(x)) + VT (f(x, 7(x))) = V()

3
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Dealing with continuous spaces
0O000@0000000000000

Algorithm

On-policy: find Q™, improve 7, repeat
@ Take Bellman equation for V™, at some x:

VT(x) = p(x,7(x)) + vV (f(x,7(X)))
© Take temporal difference A:
A = p(x,w(x)) + YV (F(x, 7(x))) — V7 (x)

© Use sample (xk, Uk, Xk11, k1) at each step k and
parameterized V:

Ak = Mot + V™ (Xierr, 0) — V™ (X, 0k)

~ ~ ~ . ~
Note: ux = #(xk, pk) + Uk, T = actor, Uy = exploration TUDelft



Dealing with continuous spaces
0O0000e000000000000

Algorithm (cont’d)

© Use A, for critic update:

aV(x,0)

Ok+1 = Ok + aclg 90

ac > 0: learning rate of critic

3
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Dealing with continuous spaces
0O0000e000000000000

Algorithm (cont’d)

© Use A, for critic update:

aV(x,0)

Ok+1 = Ok + aclg 90

ac > 0: learning rate of critic

@ Ny >0= repq+ fAy\A/’T(ka ,0k) > V7 (xy, 0k): old estimate
too low, increase V.

® Ay < 0= kgt + V™ (Xirr, 0k) < V™ (X, 0k): old estimate
too high, decrease V.

3
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Dealing with continuous spaces
0O00000e00000000000

Algorithm (cont’d)

Recall: vy = #(xk, pk) + Uk, & = actor, Uy = exploration
@ Use A, and exploration term &y for actor update:

or (X, p)

= Al
Pkr1 = Pk + aglgUy Do |x—x,

ag € (0,1]: learning rate of actor

3
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Dealing with continuous spaces
0O00000e00000000000

Algorithm (cont’d)

Recall: vy = #(xk, pk) + Uk, & = actor, Uy = exploration
@ Use A, and exploration term &y for actor update:

or (X, p)

= Al
Pkr1 = Pk + aal Uy Do |x—x,

ag € (0,1]: learning rate of actor

@ Product A, determines sign in update

3
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Dealing with continuous spaces
0O00000e00000000000

Algorithm (cont’d)

Recall: vy = #(xk, pk) + Uk, & = actor, Uy = exploration
@ Use A, and exploration term &y for actor update:

or (X, p)

= Al
Pkr1 = Pk + aglgUy Do |x—x,

ag € (0,1]: learning rate of actor

@ Product Ak i, determines sign in update
@ Ay >0=rei1+ 'y\A/’T(Xk+1,9k) > \,\/W(Xk,gk)i Uy had
positive effect on performance. Move in direction of uy.
0 Ak <0=rgyq+ ’Y\A/W(Xk+1,9k) < \A/W(Xk,gk)i i, had
negative effect on performance. Move away from uy. .
TUDelft



Introduction i co 1u0us spaces Demo of walking robot

slelelele]elelo]ele] lolo]elelelelelole]e)

Complete actor-critic algorithm

Actor-critic

for every trial do
initialize xo, choose initial action uy = iy
repeat for each step k
apply ugx, measure X 1, receive ri,
choose next action uy1 = (Xkt1, k) + k1
Ay = et + V(X 06) — V(xk, 0k)

aV(x,0
Ok+1 = Ok + acDg ( ) X=X
=0y
~  Om(X,
Pt = Pk + aalg Ui % X=x
o=k

until terminal state
end for

3
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Dealing with continuous spaces
0000000 0e000000000

Radial Basis Functions

7(x) = 6"5(x)
where ¢(x) is a column vector with the value of normalized
RBFs:

~ o 9ilx) , () — a-x—e) B (x—c)
¢,(X) - Z] ¢](X) Wlth ¢/(X) =€

3
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Dealing with continuous spaces
000000000 e00000000

Actor-critic methods

Evolution of a policy

Value function Policy

1000

-1200

xdot

Figure: Value function and policy in learning phase.
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Dealing with continuous spaces
0000000000000 0000

Actor-critic methods

Policy after saturation

Value function Policy

25 . 3
t
- o
T
T
2
200
1
-400
g o 3 o
* T 600 *
HhH
® HH I
1 -
07 -800
15
1000 2
20
SdRd i aayaan
ngaman:
SRR
251 T T 1200 3
3 2 A o 1
X X

Figure: Trajectory of pendulum.
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Dealing with continuous spaces
00000000000 e000000

Final policy

Figure: Solution to pendulum swing-up problem.
fuDelft



Introduction i continuous spaces Demo of walking robot

0000000000000 0e00000

Model Learning Actor-Critic

Main idea
Use a learned process model to get a more efficient policy
update.

> Critic [« P Reward [«

{0 —
u X
> Actor > Process
X

5
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Introduction Deallng wnh contlnuous spaces

)O00000000000e00000

Model Learning Actor-Critic

Main idea
Use a learned process model to get a more efficient policy
update.
> Critic [« P Reward [«
‘:' _ #
u X
> Actor > Process
A
x i .
B Process Model [<

5
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Dealing with continuous spaces
0000000000000 e0000

Model Learning Actor-Critic (2)

@ Process model X’ = f(x, u) provides g—z. This allows the
actor update

oV of or

Vet = Ukt g By

@ Critic update is the original TD update

oV
9k+1 = Hk + acék%

@ Process model update e.qg. by fitting (supervised learning!).
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Dealing with continuous spaces
0000000000000 0e000

Local Linear Regression

@ LLR is function approximator for actor, critic and process
model

@ Memory-based: memory samples are input/output pairs.

@ Approximation of output by regression on k nearest
neighbours.

@ Example (k = 4):
y o« ®

3
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Dealing with continuous spaces
0000000000000 0e000

Local Linear Regression

@ LLR is function approximator for actor, critic and process
model

@ Memory-based: memory samples are input/output pairs.

@ Approximation of output by regression on k nearest
neighbours.

@ Example (k = 4):
y o« ®
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Dealing with continuous spaces
0000000000000 0e000

Local Linear Regression

@ LLR is function approximator for actor, critic and process
model

@ Memory-based: memory samples are input/output pairs.

@ Approximation of output by regression on k nearest
neighbours.

@ Example (k = 4):
y o« ®
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Dealing with continuous spaces
0000000000000 0e000

Local Linear Regression

@ LLR is function approximator for actor, critic and process
model

@ Memory-based: memory samples are input/output pairs.

@ Approximation of output by regression on k nearest
neighbours.

@ Example (k = 4):
y o« ®

~ °
Yor----- 7‘./
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Dealing with continuous spaces
000000000000 000e00

Memories involved

Three LLR memories used:
@ Actor u = 7(x), with samples | x | u |.
e Critic /(x), with samples [ x|V }

@ Process model X' = f(x, u), with samples [ x u | X' ],
where x’ is the next state given by the dynamics of the
system.

3
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Dealing with continuous spaces
000000000000 0000e0

Actor-critic methods

Inverted pendulum: Model Learning Actor-Critic

Left: Optimal policy Right: Policy obtained with MLAC
h(oa') V1

-3

0 0
o [rad] angle [rad]
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Introduction i i i Demo of walking

0000000000000 000000e

Model Learning Actor-Critic in action

One trial of the Model Learning Actor-Critic algorithm

Critic Reward: -62
o o
-10
T
-40
0 2 o0 2 4 6 8 1
ingle [rad] Time [s]
Actor Time: 00:05
o
5
angle [rad]

5
TUDelft



Demo of walking robot

e Demo of walking robot

3
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Demo of walking robot

Demo: Q-learning for walking robot (Erik Schuitema)

The Q-learning algorithm from the previous lecture can be
adapted for continuous states/actions too

5
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Conclusion

Take-home message

(Approximate) Reinforcement Learning =
Learn how to optimally control
complex systems, possibly from scratch

5
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