Lecture 5: Artificial Neural Networks 2

Tim de Bruin Robert Babuska
t.d.debruin@tudelft.nl

Knowledge-Based Control Systems (SC42050)
Delft Center for Systems and Control

3mE, Delft University of Technology, The Netherlands

27-02-2017

5
TUDelft

Recap artificial neural networks part 1

Foward pass:
¥, input\

input x — f
v, —output/y f(X, W)

weights
network structure

5
TUDelft

Recap artificial neural networks part 1

Backward pass: calculate Vi J and use it in an optimization
algorithm to iteratively update the weights of the network to minimize
the loss J.

Loss function target output

J(y,t)

network output

5
TUDelft

Outline

Last lecture:
@ Introduction to artificial neural networks
® Simple networks & approximation properties
® Deep Learning
O Optimization

This lecture:
@ Regularization & Validation
® Specialized network architectures
© Beyond supervised learning

@ Examples

5
TUDelft 4/ 49

Outline

@ Regularization & Validation

3
TUDelft

Approximation error vs. number of parameters

A

<

approximation error

training data

number of parameters

3
TUDelft 6/49

Approximation error vs. number of parameters

A

<

approximation error

training data

number of parameters

<3
TUDelft 7/49

Underfitting

A

3
TUDelft

Good fit

3
TUDelft

Overfitting

A

3 /
TUDelft 10V/A49

Validation

System: y =f(x) or y(k+1)="r(x(k),u(k))
Model: y=F(x;0) or y(k+1)=F(x(k),u(k);6)

True criterion:

1= [1Fx) - F(x)ax (1)

Usually cannot be computed as f(x) is not available,
use available data to numerically compute (?7?)

e use a validation set

o cross-validation (randomize)

3
TUDelft 11 /.49

Validation Data Set

@ training data

¥ =+ validation data

3
TUDelft 12/749

Cross-Validation
* Regularity criterion (for two data sets):

RC -2 [i %A:(yf*(i) O %f(y’a(f) —?B<f>>2]
2| NaA B Ng i3 8

o v-fold cross-validation

e
TUDelft 13 /49

Some Common Criteria

* Mean squared error (root mean square error):
Lh oy
MSE = =3 (v(1) - 9(0))
i=1
* Variance accounted for (VAF):

VAF = 100% - [1 _varly =) —y)]
var(y)

e Check the correlation of the residual y — y to u, y and itself.

e
TUDelft 14 /49

Test set

The validation set is used to select the right hyper-parameters.
o Structure of the network
o Cost function
e Optimization parameters

What might go wrong?

5
TUDelft 15 / 49

Test set

The validation set is used to select the right hyper-parameters.
o Structure of the network
o Cost function
e Optimization parameters

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been
over-fitted to the validation set.

5
TUDelft 15 / 49

Regularization

Regularization: Any strategy that attempts to improve the test
performance, but not the training performance

¢ Limit model capacity (smaller network)

Early stopping of the optimization algorithm

Penalizing large weights (1 or 2 norm)

Ensembles (dropout)

%
TUDelft 16 / 49

Weight penalties

Cost function: J,(y, t,w) = J*(y,t) + A||wl5

w2

e p=1: L!': Leads to
O-weights (sparsity,
feature selection)

e p=2: [?: Leads to
small weights

w1
Demo - Overfitting

Demo - L1 regularization

Demo - L2 regularization

e
TUDelft 17/ 49

https://tinyurl.com/jbsdtro
https://tinyurl.com/zav85ql
https://tinyurl.com/zvsbodq

Model ensembles

What if we train multiple models instead of one?

For k models, where the errors made are zero mean, normally
distributed, with variance v = E[€?], covariance ¢ = E[e;¢;]. The
variance of the ensemble is:

[(Zﬂ)]—i]E[ZI:(e +,§€EJ)] L,k

When the errors are not fully correlated (¢ < v), the variance will reduce.

%
TUDelft 18/ 49

Dropout

Practical approximation of an automatic ensemble method. During
training, drop out units (neurons) with probability p. During testing use
all units, multiply weights by (1 - p).

yl y2 y3 yl

x1
randomly drop units during each training update, creating a To use the network, include all units
new network (with shared parameters) every time. but scale weights.

3
TUDelft

More data

The best regularization strategy is more real data

Spend time on getting a dataset and think about the biases it contains.

%
TUDelft 20/ 49

Data augmentation

Sometimes existing data can be transformed to get more data.
Noise can be added to inputs, weights, outputs (what do these do,
respectively?) Make noise realistic.

£ g\&’é“\% B c\:ﬁgo

Overfitting 0N)
(2 g
—» OV <
/\ ’
" Overfitting " " Overfitting " " Overfitting "

3
TUDelft

Outline

@® Specialized structures
Recurrent Neural Networks
Convolutional Neural Networks

3
TUDelft 22/ 49

Prior knowledge for simplification

Use prior knowledge to limit the model search space

Sacrifice some potential accuracy to gain a lot of simplicity

Example from control theory
Reality: y(t)="f(x,u,t), x=g(x,u,t)

Usual LTI approximation: y=Cx+ Du, x=Ax+ Bu

%
TUDelft 23 /49

Neural network analog

Predict y; given Yi_pny .oy Vi-1, Ur—py ..y Ut

Strategy so far:

Feedforward
network

3
TUDelft

Neural network analog

Lets assume y(t) = f(x(t),t) and x(t) = g(x(t-1),u(t),t):

e
TUDelft 25/ 49

Weight sharing: temporal invariance

Lets add temporal invariance:
y(t) = f(x(t)) and x(t) = g(x(t - 1), u(t));

W1 =W2 =W3 =Wy4 =Wz =W

Yia Yi3 Y2 Ye1 Yt Yt
Recurrent
Neural
A& Network
h (RNN)

Significant reduction in the number of parameters w

%
TUDelft 26 /49

RNN training: Back Propagation Through Time (BPTT)

@ Make n copies of the network, calculate yi,...,yn

@ Start at time step n and propagate the loss backwards through the
unrolled networks

® Update the weights based on the average gradient of the network
copies: VyJ=1%7, vy, J

+Vyt 1) +V‘/t 1) +VYt 1) +Vy(J
Ya Yi3 Yi2 Y1 Yt

%
TUDelft 27/ 49

The exploding / vanishing gradients problem

Scalar case with no input: x, = w" - xg
For w < 1,x" - 0, for w>1,x" — co.
This makes it hard to learn long term dependencies.

some memory control?

RNN
e O Q@O @O
Hidden 5
1 2 3 4 5 1 2 3 4 5

Time

i3
TUDelft

Gating

One more network component:
Element-wise multiplication of activations ®

Example: LSTM memory cell

L/ output gateT
/ S

><j>input gate
memory cell
/TN

3
TUDelft 29 / 49

Weight sharing: spatial equivariance

How to process grid like information (eg. images)? So far:

6 6

i

<<entirely different!>

%
TUDelft 30/49

Weight sharing: spatial equivariance

W WORE Vo W

We want spatial invariance /
equivariance. |

e Share pieces of network
(eg our 6 feature detector). \ \
e Copy the part of the network \
across the input space, enforce
that the weights remain equal.

W1 =W2 =W3 =Wy =W

%
TUDelft 31/ 49

Convolution

e Instead of thinking of copying
parts of the network over the
inputs, we can think of the
same operation as sliding a
network part over the input.

o Step 1: Convolution:
S(3ig) = (I« K)(i,j) = | (input)
Zmznl(m,n)K(i—m,J’_n)

y <—K (Kernel)

3
TUDelft -

Convolutional layer

¢ Step 1: Convolution: nonneartes—»ﬁ

5(i,j) = (1= K)(i,j) =
ZmZnI(m7n)K(i_maj_n) /
o Step 2: Detector stage: S (feature map)—>

nonlinearities on top of the

feature map
I (Input)
What if we want /nvariance?
-<—K (Kernel)

TU Delft 33 /49

Pooling

pooling —>

e Step 1: Convolution:
53i,4) = (I« K)(i,j) =
Zman(mvn)K(i_maj_n) i

o Step 2: Detector stage: S (feature map) —>,
nonlinearities on top of the |
feature map

nonlinearities —>

o Step 3 (optional) Pooling: I (Input)
Take some function (eg max)
of an area

<<—K (Kernel)

5
TUDelft 34 / 49

Outline

© Semi supervised & unsupervised learning

7
TUDelft 35 / 49

Additional training criteria

Inputs x are often much easier to
obtain than targets t.

MORE
o For deep networks, many of TASK
the earlier layers perform very SPECIFIC
general functions (e.g. edge
detection).
e These layers can be trained on MORE
. . GENERAL
different tasks for which there
is data.

e
TUDelft 36 /49

Additional training criteria

Previous lecture: data clustered around a (or some) low dimensional
manifold(s) embedded in the high dimensional input space.

space of all

?& / images

GEERLEREEE |, foces

manifold

Can we learn a mapping to this manifold with only input data x?

5
TUDelft

Additional training criteria -

¢ Unsupervised Learning (UL):
find some structure in input
data without extra
information(e.g. clustering).

¢ Auto Encoders (AE) do this by
reconstructing their input

(t=x).

auto encoders

x>

>| | [—>M

[

Compressed 5 Rm

representation :AF]

[]

f

x € RN

e
TUDelft 38 /49

Additional training criteria: regularization and optimization

Auxiliary training objectives can be
added

¢ Because they are easier and
allow the optimization to make
faster initial progress.

e To force the network to keep

more generic features, as a
regularization technique.

e
TUDelft 39 /49

Generative models

Auto-Encoders consist of

two parts: b GT RN
e Encoder: compresses \
. decoder T
the input, useful feature |
hierarchy for later IRAm Compressed
. representation

supervised tasks. ——

o Decoder: encoder ‘ T]
decompresses the input, ‘ I ‘
can be used as a xERD

generative model.

5
TUDelft 40 / 49

Outline

@ Examples

3 /
TUDelft /A4

Applications of neural nets

Black-box modeling of systems from input-output data.

Reconstruction (estimation) — soft sensors.

Classification.
o Neurocomputing.

e Neurocontrol.

e
TUDelft 42/ 49

Example: object recognition

v

DELFTROBOTICS

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

. water 0.91
pencil cup 1.00ct tape 0.62

’; dvd 0.96
TUDelft
i i duct tape 0.94 .
Robotics Institute P doks 0.40
tghigt .87
toothbrush - 0.77 P
outlet plugs 0.60

[

-

- ;;S.u?t'le{ P ugs 1.00

c

winner 2016

Demo - movie

'FUDeIft 4317849

https://www.youtube.com/watch?v=W_sFDpq_zvs

Example: control from images

1S. Levine, C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of deep visuomotor policies”.

i3
TUDelft

Radial basis function network

K
W2

RN

3
TUDelft

Radial basis function network

Input—output mapping:

(x—¢;)?
Sl

n
y=) we 9
i-1

n, ¢; and s; are usually fixed (determined a priori)
w; estimated by least squares

Notice similarity with the singleton fuzzy model.

e
TUDelft 46/ 49

Least-squares estimate of weights

Given Aj; and a set of input—output data:
{(Xk,yk) | k = 1,2,. ,N}
@ Compute the output of the neurons:

_@ic,rf
Zyi = € i s k:1,2,...,N, i=1,2,...7n

The output is linear in the weights:
y=2Zw

@ Least-squares estimate:

w=[27z]"'z7y

e
TUDelft 47/ 49

Neuro—fuzzy learning

If x; Is A11 and xp is Ap; then y = by

If x1 is A1p and xp is Ay then y = by

normalized
mebership antecedent degree of consequent weighted
functions connectives fulfillment prameters sum

5
TUDelft

Summary

(Over-)fitting training data can be easy, we want to generalize to new
data.

o Use separate validation and test data-sets to measure
generalization performance.

o Use regularization strategies to prevent over-fitting.

e Use prior knowledge to make specific network structures that limit
the model search space and the number of weights needed (e.g.
RNN, CNN).

e Be aware of the biases and accidental regularities contained in the
dataset.

i3
TUDelft 49 /49

	Regularization & Validation
	Specialized structures
	Recurrent Neural Networks
	Convolutional Neural Networks

	Semi supervised & unsupervised learning
	Examples

