
Lecture 5: Artificial Neural Networks 2

Tim de Bruin Robert Babuška

t.d.debruin@tudelft.nl

Knowledge-Based Control Systems (SC42050)
Delft Center for Systems and Control

3mE, Delft University of Technology, The Netherlands

27-02-2017

Recap artificial neural networks part 1

..
.

x1

xp

x2

w1

wp

w2

z
v

y1

y2

1

z

σ()z

0

-1

z

σ()z

0

1

z

σ()z

0

1

Foward pass:

y = f(x; w)
output

network structure

input

input

weights

weights

nonlinearity

2 / 49

Recap artificial neural networks part 1

Backward pass: calculate ∇W J and use it in an optimization
algorithm to iteratively update the weights of the network to minimize
the loss J.

..
.

x1

xp

x2

w1

wp

w2

z
v

J(y,t)

target output

network output

Loss function
J/ y1

J/ y2

J/ v
J/ z

J/ w

J/ v1

3 / 49

Outline

Last lecture:

1 Introduction to artificial neural networks

2 Simple networks & approximation properties

3 Deep Learning

4 Optimization

This lecture:

1 Regularization & Validation

2 Specialized network architectures

3 Beyond supervised learning

4 Examples

4 / 49

Outline

1 Regularization & Validation

2 Specialized structures

3 Semi supervised & unsupervised learning

4 Examples

5 / 49

Approximation error vs. number of parameters

number of parameters

training data

a
p

p
ro

xi
m

a
ti

o
n

er
ro

r

J

6 / 49

Approximation error vs. number of parameters

number of parameters

training data

a
p

p
ro

xi
m

a
ti

o
n

er
ro

r

J

new data

7 / 49

Underfitting

x

y

8 / 49

Good fit

x

y

9 / 49

Overfitting

x

y

10 / 49

Validation

System: y = f (x) or y(k + 1) = f (x(k),u(k))
Model: ŷ = F (x; θ) or ŷ(k + 1) = F (x(k),u(k); θ)

True criterion:
I = ∫

X
∥f (x) − F (x)∥dx (1)

Usually cannot be computed as f (x) is not available,
use available data to numerically compute (??)

❼ use a validation set

❼ cross-validation (randomize)

11 / 49

Validation Data Set

x

training data

y validation data

12 / 49

Cross-Validation

❼ Regularity criterion (for two data sets):

RC =
1

2

⎡⎢⎢⎢⎣
1

NA

NA

∑
i=1

(yA(i) − ŷAB (i))2 + 1

NB

NB

∑
i=1

(yB(i) − ŷBA (i))2
⎤⎥⎥⎥⎦

❼ v -fold cross-validation

13 / 49

Some Common Criteria

❼ Mean squared error (root mean square error):

MSE =
1

N

N

∑
i=1

(y(i) − ŷ(i))2

❼ Variance accounted for (VAF):

VAF = 100% ⋅ [1 − var(y − ŷ)
var(y)]

❼ Check the correlation of the residual y − ŷ to u, y and itself.

14 / 49

Test set

The validation set is used to select the right hyper-parameters.

❼ Structure of the network

❼ Cost function

❼ Optimization parameters

❼ ...

What might go wrong?

15 / 49

Test set

The validation set is used to select the right hyper-parameters.

❼ Structure of the network

❼ Cost function

❼ Optimization parameters

❼ ...

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been
over-fitted to the validation set.

15 / 49

Regularization

Regularization: Any strategy that attempts to improve the test
performance, but not the training performance

❼ Limit model capacity (smaller network)

❼ Early stopping of the optimization algorithm

❼ Penalizing large weights (1 or 2 norm)

❼ Ensembles (dropout)

❼ ...

16 / 49

Weight penalties

Cost function: Jr(y , t,w) = J∗(y , t) + λ∣∣w∣∣pp

❼ p = 1: L1 ∶ Leads to
0-weights (sparsity,
feature selection)

❼ p = 2: L2 ∶ Leads to
small weights
Demo - Overfitting

Demo - L1 regularization

Demo - L2 regularization
L1

L2

w*

w1

w2

=

=0

17 / 49

Model ensembles

What if we train multiple models instead of one?

For k models, where the errors made are zero mean, normally
distributed, with variance v = E[ǫ2i], covariance c = E[ǫiǫj]. The
variance of the ensemble is:

E

⎡⎢⎢⎢⎢⎣
(1
k
∑
i

ǫi)
2⎤⎥⎥⎥⎥⎦
=

1

k2
E

⎡⎢⎢⎢⎢⎣
∑
i

⎛
⎝ǫ

2
i +∑

j≠i

ǫiǫj
⎞
⎠

⎤⎥⎥⎥⎥⎦
=

1

k
v +

k − 1

k
c

When the errors are not fully correlated (c < v), the variance will reduce.

18 / 49

Dropout

Practical approximation of an automatic ensemble method. During
training, drop out units (neurons) with probability p. During testing use
all units, multiply weights by (1 − p).

x1 x2

...

y1 y2 y3

x1 x2

...

y1 y2 y3

x1

...

y1 y2 y3

randomly drop units during each training update, creating a

new network (with shared parameters) every time.
To use the network, include all units

but scale weights.

=

19 / 49

More data

The best regularization strategy is more real data

Spend time on getting a dataset and think about the biases it contains.

20 / 49

Data augmentation

Sometimes existing data can be transformed to get more data.
Noise can be added to inputs, weights, outputs (what do these do,
respectively?) Make noise realistic.

" Over tting " " Over tting " " Over tting "

,

21 / 49

Outline

1 Regularization & Validation

2 Specialized structures
Recurrent Neural Networks
Convolutional Neural Networks

3 Semi supervised & unsupervised learning

4 Examples

22 / 49

Prior knowledge for simplification

Use prior knowledge to limit the model search space

Sacrifice some potential accuracy to gain a lot of simplicity

Example from control theory

Reality: y(t) = f (x ,u, t), ẋ = g(x ,u, t)
Usual LTI approximation: y = Cx +Du, ẋ = Ax +Bu

23 / 49

Neural network analog

Predict yt given yt−n, ..., yt−1,ut−n, ...,ut

Strategy so far:

yt-4

ut-4

yt-3

ut-3

yt-2

ut-2

y t-1

ut-1

ut

y t

Feedforward

network

24 / 49

Neural network analog

Lets assume y(t) = f (x(t), t) and x(t) = g(x(t − 1),u(t), t):

ut-4 ut-3 ut-2 ut-1 ut

xt-4 xt-3 xt-2 xt-1 xt

yt-4 yt-3 yt-2 yt-1 yt

w1
i

w1
h w2

h w3
h w4

h

w1
o w2

o w3
o w4

o w5
o

w2
i w3

i w4
i w5

i

25 / 49

Weight sharing: temporal invariance

Lets add temporal invariance:
y(t) = f (x(t)) and x(t) = g(x(t − 1),u(t));
w1 = w2 = w3 = w4 = w5 = w

ut-4 ut-3 ut-2 ut-1

xt-4 xt-3 xt-2 xt-1

yt-4 yt-3 yt-2 yt-1

w1
i

w1
h w2

h w3
h w4

h

w1
o w2

o w3
o w4

o

w2
i w3

i w4
i

ut

xt

yt

w5
o

w5
i

ut

xt

yt

wo

wi

wh

Recurrent

Neural

Network

(RNN)

Significant reduction in the number of parameters w

26 / 49

RNN training: Back Propagation Through Time (BPTT)

1 Make n copies of the network, calculate y1, . . . , yn

2 Start at time step n and propagate the loss backwards through the
unrolled networks

3 Update the weights based on the average gradient of the network
copies: ∇wJ =

1
n ∑

n
i=1∇wi

J

ut-4 ut-3 ut-2 ut-1

xt-4 xt-3 xt-2 xt-1

yt-4 yt-3 yt-2 yt-1

w1
h w2

h w3
h w4

h

w1
o w2

o w3
o w4

o

w4
i

ut

xt

yt

w5
o

w5
i

ut

xt

yt

wo

wi

wh

✁yt J✁yt-1 J✁yt-1 J✁yt-1 J✁yt-1 J

w2
i w3

iw1
i

27 / 49

The exploding / vanishing gradients problem

Scalar case with no input: xn = w
n
⋅ x0

For w < 1, xn → 0, for w > 1, xn →∞.
This makes it hard to learn long term dependencies.

1 2 3 4 5 1 2 3 4 5Time

Input

Hidden

Output

RNN some memory control?

28 / 49

Gating

One more network component:
Element-wise multiplication of activations ⊗

Example: LSTM memory cell

M

memory cell

input gate

forget

gate

output gate

29 / 49

Weight sharing: spatial equivariance

How to process grid like information (eg. images)? So far:

..............................

6

..............................

6

entirely di✁erent!

30 / 49

Weight sharing: spatial equivariance

We want spatial invariance /
equivariance.

❼ Share pieces of network
(eg our 6 feature detector).

❼ Copy the part of the network
across the input space, enforce
that the weights remain equal.

W1 W2 W3 W4

w1 = w2 = w3 = w4 = w

31 / 49

Convolution

❼ Instead of thinking of copying
parts of the network over the
inputs, we can think of the
same operation as sliding a
network part over the input.

❼ Step 1: Convolution:
S(i , j) = (I ∗K)(i , j) =
∑m∑n I (m,n)K(i −m, j − n)

K (Kernel)

I (Input)

S (feature map)

32 / 49

Convolutional layer

❼ Step 1: Convolution:
S(i , j) = (I ∗K)(i , j) =
∑m∑n I (m,n)K(i −m, j − n)

❼ Step 2: Detector stage:

nonlinearities on top of the
feature map

What if we want invariance?

K (Kernel)

I (Input)

S (feature map)

nonlinearities

33 / 49

Pooling

❼ Step 1: Convolution:
S(i , j) = (I ∗K)(i , j) =
∑m∑n I (m,n)K(i −m, j − n)

❼ Step 2: Detector stage:

nonlinearities on top of the
feature map

❼ Step 3 (optional) Pooling:
Take some function (eg max)
of an area

K (Kernel)

I (Input)

S (feature map)

nonlinearities

pooling

34 / 49

Outline

1 Regularization & Validation

2 Specialized structures

3 Semi supervised & unsupervised learning

4 Examples

35 / 49

Additional training criteria

Inputs x are often much easier to
obtain than targets t.

❼ For deep networks, many of
the earlier layers perform very
general functions (e.g. edge
detection).

❼ These layers can be trained on
different tasks for which there
is data.

H
A
P
P
Y

S
A
D

MORE

GENERAL

MORE

TASK

SPECIFIC

36 / 49

Additional training criteria

Previous lecture: data clustered around a (or some) low dimensional
manifold(s) embedded in the high dimensional input space.

space of all

images

faces

manifold

Can we learn a mapping to this manifold with only input data x?

37 / 49

Additional training criteria - auto encoders

❼ Unsupervised Learning (UL):
find some structure in input
data without extra
information(e.g. clustering).

❼ Auto Encoders (AE) do this by
reconstructing their input(t = x).

x n

m

x n^

Compressed

representation

38 / 49

Additional training criteria: regularization and optimization

Auxiliary training objectives can be
added

❼ Because they are easier and
allow the optimization to make
faster initial progress.

❼ To force the network to keep
more generic features, as a
regularization technique.

H
A
P
P
Y

S
A
D

M
A
L
E

F
E
M
A
L
E

39 / 49

Generative models

Auto-Encoders consist of
two parts:

❼ Encoder: compresses
the input, useful feature
hierarchy for later
supervised tasks.

❼ Decoder:

decompresses the input,
can be used as a
generative model.

x n

m

x n^

Compressed

representation

decoder

encoder

40 / 49

Outline

1 Regularization & Validation

2 Specialized structures

3 Semi supervised & unsupervised learning

4 Examples

41 / 49

Applications of neural nets

❼ Black-box modeling of systems from input-output data.

❼ Reconstruction (estimation) – soft sensors.

❼ Classification.

❼ Neurocomputing.

❼ Neurocontrol.

42 / 49

Example: object recognition

winner 2016

Demo - movie

43 / 49

Example: control from images

1

1S. Levine, C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of deep visuomotor policies”. In: Journal of

Machine Learning Research 17.39, pp. 1–40

44 / 49

Radial basis function network

.

.

.
.
.
.

w1

wn
xp

x1

.

.

.

yw2

45 / 49

Radial basis function network

Input–output mapping:

y =
n

∑
i=1

wie
−

(x−ci)
2

s2
i

n, ci and si are usually fixed (determined a priori)
wi estimated by least squares

Notice similarity with the singleton fuzzy model.

46 / 49

Least-squares estimate of weights

Given Aij and a set of input–output data:

{⟨xk , yk⟩ ∣ k = 1,2, . . . ,N}

1 Compute the output of the neurons:

zki = e
−

(xk−ci)
2

s2
i , k = 1,2, . . . ,N, i = 1,2, . . . ,n

The output is linear in the weights:

y = Zw

2 Least-squares estimate:

w = [ZTZ]
−1

ZTy

47 / 49

Neuro–fuzzy learning

If x1 Is A11 and x2 is A21 then y = b1

If x1 is A12 and x2 is A22 then y = b2

consequent
prameters

weighted
sum

normalized
degree of

fulfillment

A2

A 2

A2

A11

b1

N
x1

y

b2x2

N

b1

b2

1

1

2

mebership
functions

antecedent
connectives

48 / 49

Summary

(Over-)fitting training data can be easy, we want to generalize to new
data.

❼ Use separate validation and test data-sets to measure
generalization performance.

❼ Use regularization strategies to prevent over-fitting.

❼ Use prior knowledge to make specific network structures that limit
the model search space and the number of weights needed (e.g.
RNN, CNN).

❼ Be aware of the biases and accidental regularities contained in the
dataset.

49 / 49

