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A Refresher
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y : variable to be controlled (output)

u : manipulated variable (control input)

d : disturbance (input that cannot be influenced)

dynamic system
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How to Obtain Models?

• physical (mechanistic) modeling

1. first principles → differential equations

(linear or nonlinear)

2. linearization around an operating point

• system identification

1. measure input–output data

2. postulate model structure (linear–nonlinear)

3. estimate model parameters from data (least squares)

Modeling of Dynamic Systems

x(t) . . . state of the system

summarizes all history such that if we know x(t) we can

predict its development in time, ẋ(t), for any input u(t)

linear state-space model:

ẋ(t) = Ax(t) + Bu(t)
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Continuous-Time State-Space Model

ẋ(t) = Ax(t) +Bu(t)
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Input–Output Models

Continuous time:

y(n)(t) = f
(

y(n−1)(t), . . . , y(1)(t), y(t), u(n−1)(t), . . . , u(1)(t), u(t)
)

Discrete time:

y(k + 1) = f (y(k), y(k − 1), . . . , y(k − ny + 1), . . . ,

u(k), u(k − 1), . . . , u(k − nu + 1))
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Given data set {(u(k), y(k)) | k = 1, 2, . . . , N}:

1. Postulate model structure, e.g.:

ŷ(k + 1) = ay(k) + bu(k)

2. Form regression equations:

y(2) = ay(1) + bu(1)

y(3) = ay(2) + bu(2)
...

y(N ) = ay(N−1) + bu(N−1)

in a matrix form: y = ϕ[a b]T
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System Identification

3. Solve the equations for [a b] (least-squares solution):

y = ϕ[a b]T

ϕ
Ty = ϕ

T
ϕ[a b]T

[a b]T = [ϕT
ϕ]−1

ϕ
Ty

Numerically better methods are available

(in Matlab [a b] = ϕ \ y).
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Design Procedure

•Criterion (goal)

– stabilize an unstable process

– suppress influence of disturbances

– improve performance (e.g., speed of response)

• Structure of the controller

• Parameters of the controller (tuning)



Taxonomy of Controllers

• Presence of feedback: feedforward, feedback, 2-DOF

• Type of feedback: output, state

• Presence of dynamics: static, dynamic

•Dependence on time: fixed, adaptive

•Use of models: model-free, model-based

Feedforward Control
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Controller:

• (dynamic) inverse of process model

• cannot stabilize unstable processes

• cannot suppress the effect of d

• sensitive to uncertainty in the model

Feedback Control
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Controller:

• dynamic or static (6= inverse of process)

• can stabilize unstable processes (destabilize stable ones!)

• can suppress the effect of d

Proportional Control
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Controller:

• static gain P : u(t) = Pe(t)



PID Control
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Controller:

• dynamic: u(t) = Pe(t) + I
∫ t
0 e(τ )dτ +D

de(t)
dt

• P , I and D are the proportional, integral and derivative

gains, respectively

PID Control: Internal View

u(t) = Pe(t) + I
∫ t
0 e(τ )dτ +D

de(t)
dt
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PID Control: Internal View

u(t) = Pe(t) + I
∫ t
0 e(τ )dτ +D

de(t)
dt

dynamic filter static mapping

P

D

e u

d
dt

I +

State Feedback

K
ff
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Controller:

• static: u(t) = Kx(t)

•K can be computed such that (A + BK) is stable

•Kff takes care of the (unity) gain from r to y
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• state observer

•model-based predictive control

• adaptive control

Motivation for Intelligent Control

Pro’s and Con’s of Conventional Control

+ systematic approach, mathematically elegant

+ theoretical guarantees of stability and robustness

− time-consuming, conceptually difficult

− control engineering expertise necessary

− often insufficient for nonlinear systems

Additional Aspects

• control is a multi-disciplinary subject

• human factor may be very important

– pilot

– plant operator

– user interface (e.g., consumer products)

• quest for higher machine itelligence



When Conventional Design Fails

• no model of the process available

→ mathematical synthesis and analysis impossible

→ experimental tuning may be difficult

• process (highly) nonlinear

→ linear controller cannot stabilize

→ performance limits

Example: Stability Problems

d3y(t)

dt3
+
d2y(t)

dt2
+
dy(t)

dt
= y2(t)u(t)

Use Simulink to simulate a proportional controller (nlpid.m)

Example: Stability Problems

d3y(t)

dt3
+
d2y(t)

dt2
+
dy(t)

dt
= y2(t)u(t)

Use Simulink to simulate a proportional controller (nlpid.m)

Conclusions:

• stability and performance depend on process output

• re-tuning the controller does not help

• nonlinear control is the only solution

Intelligent Control

techniques motivated by human intelligence

• fuzzy systems (represent human knowledge, reasoning)

• artificial neural networks (adaptation, learning)

• genetic algorithms (optimization).

⇒ computational intelligence, soft computing



Knowledge Representation by If–Then Rules
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Artificial Neural Networks

Function approximation by imitating biological neural networks.
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Learning, adaptation, optimization.

Genetic Algorithms

Population

0110001001
0010101110
1100101011

Genetic Operators

Fitness Function

Best individuals

Crossover
Mutation

Optimization by imitating natural evolution.

Intelligent Control

• Fuzzy knowledge-based control

• Fuzzy data analysis, modeling, identification

• Learning and adaptive control (neural networks)

•Reinforcement learning
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Implementation

Fuzzy
controller

Fuzzy if-then
rules

Fuzzy Sets and Fuzzy Logic

Relatively new methods for representing uncertainty and

reasoning under uncertainty.

Types of uncertainty:

• chance, randomness (stochastic)

• imprecision, vagueness, ambiguity (non-stochastic)



Vagueness in If–Then Rules

If temperature in the burning zone is OK, and

oxygen percentage in the exhaust gases is Low, and

temperature at the back-end is High,

then reduce fuel Slightly and reduce fan speed Moderately.

Fuzzy Sets and Fuzzy Logic

Proposed in 1965 by L.A. Zadeh

(Fuzzy Sets, Information Control, vol. 8, pp. 338–353)

• generalization of ordinary set theory

• ’70 first applications, fuzzy control
(Mamdani)

• ’80 industrial applications, train op-
eration, pattern recognition

• ’90 consumer products, cars, special
HW, SW.

The term “fuzzy logic” often also denotes fuzzy sets theory

and its applications (e.g., fuzzy logic control).

Applications of Fuzzy Sets

multi-criteria optimization
mathematical programming
....

Classification,
clustering

Fuzzy Decision
Making

Approximate
reasoning
expert systems
....

Fuzzy Logic
& AI

Fuzzy Set Theory

fuzzy signal processingfuzzy modeling fuzzy control

identification
validation
....

control design
applications
....

noise cancellation
image processing
...

Fuzzy
Systems

fuzzy measures
fuzzy relations
fuzzy topology
....

Fuzzy
Mathematics


