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1 Introduction

This is a draft document. If you find mistakes, or if you find ways to improve the answers
here proposed, please send an email to J.Kober@tudelft.nl.

Small rewards in the final grade of the course will be granted only to the first student
that notifies a mistake, or only to the first that proposes a good suggestion for an answer.
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2 Fuzzy Sets and Relations

1. What is the difference between the membership function of an ordinary set and of a
fuzzy set?

Answer: The membership function of an ordinary set is a mapping from the univer-
sal set to the set {0, 1}, while in the case of a fuzzy set it is a mapping to the closed
interval [0, 1].

2. Consider fuzzy set C defined by its membership function µC(x) : R→ [0, 1]: µC(x) =
1/(1 + |x|). Compute the α-cut of C for α = 0.5.

Answer: Given, set C is a fuzzy set and the membership function will lie in the
interval {0, 1}. The α-cut is the list of elements that belong to the set which obeys
(2.1).

C0.5 = {x | µC(x) ≥ 0.5} (2.1)

1

1 + |x|
≥ 0.5

|x| ≤ 1

−1 ≤ x ≤ 1

This implies that α-cut of C belongs to the interval [−1, 1] for α = 0.5.

Whereas, the strict α-cut is given by (2.2).

C0.5 = {x | µC(x) > 0.5} (2.2)

Hence, the strict α-cut of C for α = 0.5 lies in the interval (−1, 1).

3. Consider fuzzy sets A and B such that core(A)∩ core(B) = ∅. Is fuzzy set C = A∩B
normal? What condition must hold for the supports of A and B such that card(C) > 0
always holds?

Answer: A fuzzy set is said to be normal if at-least one element x in the domain
X have membership degree of 1. The core of the fuzzy set is a crisp subset of X
consisting of all elements with membership grades equal to one as given by

core(A) = {x | µA(x) = 1, x ∈ X}

3



2 Fuzzy Sets and Relations

If the core(A) ∩ core(B) = ∅ implies that no elements in A and B have membership
degree 1. Therefore, the fuzzy set C = A ∩B is not normal.

The support of a fuzzy set A is the crisp subset of X whose elements all have nonzero
membership grades.

supp(A) = {x | µA(x) > 0, x ∈ X}

The cardinality of a fuzzy set C is the sum of the membership degrees. Hence, it
must hold that supp(A) ∩ supp(B) ̸= ∅, otherwise the intersection A ∩B would be
empty and the cardinality of an empty set is zero.

4. Consider fuzzy set A defined in X × Y with X = {x1, x2}, Y = {y1, y2}:

A = {0.1/(x1, y1), 0.2/(x1, y2), 0.7/(x2, y1), 0.9/(x2, y2)}

Compute the projections of A onto X and Y .

Answer: The projections are:

projX(A) = {max(0.1, 0.2)/x1, max(0.7, 0.9)/x2} = {0.2/x1, 0.9/x2} ,
projY (A) = {max(0.1, 0.7)/y1, max(0.2, 0.9)/y2} = {0.7/y1, 0.9/y2} .

5. Compute the cylindrical extension of fuzzy set A = {0.3/x1, 0.4/x2} into the Carte-
sian product domain {x1, x2} × {y1, y2}.

Answer: The cylindrical extension is:

ext(A) = {0.3/(x1, y1), 0.3/(x1, y2), 0.4/(x2, y1), 0.4/(x2, y2)}.

6. For fuzzy sets A = {0.1/x1, 0.6/x2} and B = {1/y1, 0.7/y2} compute the union
A ∪B and the intersection A ∩B. Use the Zadeh’s operators (max, min).

Answer:

a)

A ∪B = {max(0.1, 1)/(x1, y1),max(0.1, 0.7)/(x1, y2),

max(0.6, 1)/(x2, y1),max(0.6, 0.7)/(x2, y2)}
= {1/(x1, y1), 0.7/(x1, y2), 1/(x2, y1), 0.7/(x2, y2)}

b)

A ∩B = {min(0.1, 1)/(x1, y1),min(0.1, 0.7)/(x1, y2),

min(0.6, 1)/(x2, y1),min(0.6, 0.7)/(x2, y2)}
= {0.1/(x1, y1), 0.1/(x1, y2), 0.6/(x2, y1), 0.6/(x2, y2)}
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7. Given is a fuzzy relation R : X × Y → [0, 1]:

R =

y1 y2 y3
x1 0.7 0.3 0.1
x2 0.4 0.8 0.2
x3 0.1 0.2 0.9

and a fuzzy set A = {0.1/x1, 1/x2, 0.4/x3}. Compute fuzzy set B = A ◦R, where ‘◦’
is the max-min composition operator.

Answer: Fuzzy subset B of Y can be induced by A through the composition of A
and R:

B = projY R ∩ extX×Y (A)

The composition can be regarded in two phases:

• combination (intersection)

• projection

A is a fuzzy set with membership function µA(x) and R is a fuzzy relation with
membership function µR(x, y):

µB(y) = sup
x

(min (µA(x), µR(x, y)))

where the cylindrical extension of A into X ×Y is implicit and sup and min represent
the projection and combination phase, respectively. Here, it can be re-written as
follows,

µB(y) = max
x

(min (µA(x), µR(x, y)))

µB(y) =

0.11
0.4


︸ ︷︷ ︸
µA(y)

◦

0.7 0.3 0.1
0.4 0.8 0.2
0.1 0.2 0.9


︸ ︷︷ ︸

µR(x,y)

µB(y) = max
x

0.1 0.1 0.1
0.4 0.8 0.2
0.1 0.2 0.4


︸ ︷︷ ︸
(min(µA(y),µR(x,y))

µB(y) =
[
0.4 0.8 0.4

]︸ ︷︷ ︸
maxx(min(µA(y),µR(x,y))

B = {0.4/y1, 0.8/y2, 0.4/y3}

8. Prove that the following De Morgan law (A ∪B) = Ā ∩ B̄ is true for fuzzy sets A
and B, when using the Zadeh’s operators for union, intersection and complement.
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2 Fuzzy Sets and Relations

Answer: Using membership functions, we have:

(A ∪B) = 1−max(µA, µB),

Ā ∩ B̄ = min(1− µA, 1− µB) .

Further, realizing that max(α, β) = −min(−α,−β) and min(α + γ, β + γ) =
min(α, β)+γ, we obtain 1−max(µA, µB) = 1+min(−µA,−µB) = min(1−µA, 1−µB)
which concludes the proof.
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3 Fuzzy Systems

1. Give a definition of a linguistic variable. What is the difference between linguistic
variables and linguistic terms?

Answer: A linguistic variable L is defined as the quintuple L = (x,A, X, g,m),
where x is the base variable, A = {A1, A2, . . . , AN} is the set of linguistic terms, X
is the domain of x, g is a syntactic rule for generating linguistic terms and m is a
semantic rule that assigns to each linguistic term a fuzzy set in X. The difference
between linguistic variables and linguistic terms is clear from this definition.

2. The minimum t-norm can be used to represent if-then rules in a similar way as fuzzy
implications. It is however not an implication function. Explain why. Give at least
one example of a function that is a proper fuzzy implication.

Answer: Clearly, the truth table of a t-norm (which is a conjunction operator) is
different than that of an implication (even for Boolean logic, which can be seen as a
special case fuzzy logic):

a b a ∧ b a→ b
0 0 0 1
0 1 0 1
1 0 0 0
1 1 1 1

This has consequences for logical inference (using the modus ponens rule, for instance).
With the conjunction, when a∧ b is true and a is true (the last row of the table), one
can infer that also b must be true. Conversely, when a∧ b is true and b is true, also a
must be true (again the last row of the table). With the implication, however, the
latter case does not hold. When a→ b is true and b is true, nothing can be inferred
about a (a can be both true and false, see the second and fourth row of the table).

One particular fuzzy implication function can be obtained from the definition of the
material implication a → b = ā ∨ b by using the Zadeh’s complement and union
operators: a→ b = max(1− a, b). It is easy to verify that this function satisfies the
truth table for implications. Another example is the Łukasiewicz implication, which
is obtained in the same way by using the Łukasiewicz (bold) union operator.

3. Consider a rule If x is A then y is B with fuzzy sets A = {0.1/x1, 0.4/x2, 1/x3}
and B = {0/y1, 1/y2, 0.2/y3}. Compute the fuzzy relation R that represents the
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3 Fuzzy Systems

truth value of this fuzzy rule. Use first the minimum t-norm and then the Łukasiewicz
implication. Discuss the difference in the results.

Answer: Using the minimum t-norm, the following relation is obtained:

Rm =


0 0.1 0.1

0 0.4 0.2

0 1 0.2


Using the Łukasiewicz implication, the following relation is obtained:

Rl =


0.9 1 1

0.6 1 0.8

0 1 0.2


When µA(x) is high or 1, both Rm and Rl are similar to µB(y) as nothing can be
inferred using only the information of x (third row of both matrices). When the
µA(x) is low or 0, Rm tends to have low values and Rl higher values (first row of
both matrices). For the minimum t-norm, if µA(x) is low, it doesn’t matter µB(y),
the fuzzy relation will have a low value because of the and operation. In the case of
Łukasiewicz implication, if µA(x) is low, independent of µB(y), the fuzzy relation will
have high value as the implication will always be true.

For minimum t-norm, µA ∧ µB does not hold if either µA or µB or both µA and µB

does not hold, which is why the first column of Rm is 0. For implication function,
µA → µB holds true if µB is true, independent of µA, which is why the second column
of Rl is 1.

4. Explain the steps of the Mamdani (max-min) inference algorithm for a linguistic
fuzzy system with one (crisp) input and one (fuzzy) output. Apply these steps to the
following rule base:

1) If x is A1 then y is B1,

2) If x is A2 then y is B2,

with
A1 = {0.1/1, 0.6/2, 1/3}, A2 = {0.9/1, 0.4/2, 0/3},
B1 = {1/4, 1/5, 0.3/6}, B2 = {0.1/4, 0.9/5, 1/6},

State the inference in terms of equations. Compute the output fuzzy set B′ for x = 2.

Answer: a) The Mamdani algorithm for a rule base with K rules:

1) For each rule, compute the degree of fulfillment by: βi = µAi
(x), i = 1, . . . , K.

2) For each rule, derive the output fuzzy sets B′
i: µB′

i
(y) = βi ∧ µBi

(y), y ∈ Y .
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3) Aggregate the output fuzzy sets B′
i: µB′(y) = max1≤i≤K µB′

i
(y), y ∈ Y .

b) Applying to the given rules and fuzzy sets:

1) Degrees of fulfillment:

β1 = µA1(2) = 0.6

β2 = µA2(2) = 0.4

2) Individual consequent fuzzy sets:

B′
1 = β1 ∧B1 = {0.6/4, 0.6/5, 0.3/6}

B′
2 = β2 ∧B2 = {0.1/4, 0.4/5, 0.4/6}

3) Aggregated consequent fuzzy set:

B′ = B′
1 ∪B′

2 = {0.6/4, 0.6/5, 0.4/6}

5. Define the center-of-gravity and the mean-of-maxima defuzzification methods. Apply
them to the fuzzy set B = {0.1/1, 0.2/2, 0.7/3, 1/4} and compare the numerical
results.

Answer: The center-of-gravity method:

cog(B′) =

F∑
j=1

µB′(yj) yj

F∑
j=1

µB′(yj)

where F is the number of elements yj in Y (continuous domains must be discretized).
The mean-of-maxima method:

mom(B′) = cog{y | µB′(y) = max
y∈Y

µB′(y)} .

The numerical results are: ycog = (0.1+0.4+2.1+4)/(0.1+0.2+0.7+1) = 6.6/2 = 3.3
and ymom = 4.

6. Consider the following Takagi–Sugeno rules:

1) If x is A1 and y is B1 then z1 = x+ y + 1

2) If x is A2 and y is B1 then z2 = 2x+ y + 1

3) If x is A1 and y is B2 then z3 = 2x+ 3y

4) If x is A2 and y is B2 then z4 = 2x+ 5

Give the formula to compute the output z and compute the value of z for x = 1,
y = 4 and the antecedent fuzzy sets

A1 = {0.1/1, 0.6/2, 1/3}, A2 = {0.9/1, 0.4/2, 0/3},
B1 = {1/4, 1/5, 0.3/6}, B2 = {0.1/4, 0.9/5, 1/6} .
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3 Fuzzy Systems

Answer: a) The output is given by

z =
β1(x+ y + 1) + β2(2x+ y + 1) + β3(2x+ 3y) + β4(2x+ 5)

β1 + β2 + β3 + β4

with
β1 = µA1(x) ∧ µB1(y), β2 = µA2(x) ∧ µB1(y)
β3 = µA1(x) ∧ µB2(y), β4 = µA2(x) ∧ µB2(y)

Other t-norms can be used as well.

b) Fill out x = 1 and y = 4 in the antecedent fuzzy sets to obtain the required
membership functions (by taking the µAi at /1 and µBi at /4) for calculation of
the degrees of fulfillment (βi). The degrees of fulfillment are (using the minimum
operator):

β1 = 0.1, β2 = 0.9 β3 = 0.1, β4 = 0.1

which gives

z =
0.6 + 6.3 + 1.4 + 0.7

0.1 + 0.9 + 0.1 + 0.1
=

9

1.2
= 7.5

7. Consider an unknown dynamic system y(k + 1) = f
(
y(k), u(k)

)
. Give an example of

a singleton fuzzy model that can be used to approximate this system. What are the
free parameters in this model?

Answer: a) A possible rule base is:

1) If y(k) is A1 and u(k) is B1 then y(k + 1) = c1

2) If y(k) is A2 and u(k) is B1 then y(k + 1) = c2

3) If y(k) is A1 and u(k) is B2 then y(k + 1) = c3

4) If y(k) is A2 and u(k) is B2 then y(k + 1) = c4

You need to also define the operators and and then .

b) The free parameters are the membership functions A1, A2, B1, B2, and the
consequent parameters c1 to c4. The membership functions are usually chosen as
some functions (exponential, triangular, etc.) parameterized by a small number of
parameters (centers, spreads, etc.).
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4 Fuzzy Clustering

1. State the definitions and discuss the differences of fuzzy and non-fuzzy (hard) par-
titions. Give an example of a fuzzy and non-fuzzy partition matrix. What are the
advantages of fuzzy clustering over hard clustering?

Answer: With N being the number of data samples and c the number of clusters,
the hard partition is defined by:

µik ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ k ≤ N,

with
c∑

i=1

µik = 1, 1 ≤ k ≤ N, and 0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c .

The fuzzy partition is defined by:

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N,

with
c∑

i=1

µik = 1, 1 ≤ k ≤ N, and 0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c .

One example of fuzzy partition matrix is:

Uf =

[
1.0 1.0 1.0 0.8 0.5 0.5 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.5 0.5 0.8 1.0 1.0 1.0

]
.

One example of non-fuzzy partition matrix is:

Un =

[
1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

]
.

In hard partitioning, each data point is assigned to one cluster; the data points cannot
be part of more than one cluster. In fuzzy clustering, data points get a membership
value assigned to all clusters. This means every data point is part of every cluster
(though it may be infinitesimally small in most clusters). In the example above, hard
partitioning (Un) groups z1 to z6 together, as well as z7 to z10. Since the data points
must either be part of subsets A1 or A2, some information is lost in the process of
clustering (a data point that is mostly part of A1 is now seen as completely part
of A1) . Looking at fuzzy clustering (Uf above), one can see that point z4 to z7
are not completely part of either set, but rather somewhat part of both sets. More
information is preserved in this form of clustering, which is exactly the advantage of
fuzzy clustering over hard partitioning.
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4 Fuzzy Clustering

Another limitation of hard partitioning is when a data point (z) is equally part of
two classes A1 and A2, and therefore cannot be fully assigned to either one. Fuzzy
partitioning amounts for this limitation as well by assigning the membership value
0.5 to both classes.

Defining a data point as partly in one or multiple clusters can let you maintain extra
information about the data point which can be used afterwards. For instance when
classifying objects seen by an intelligent vehicles, pedestrians are important to find
as these can start moving into the path of the vehicle and you most certainly do not
want the vehicle to hit the pedestrian. By applying fuzzy partitioning, the degree of
an object being part of the pedestrian cluster can represent some kind of ‘degree of
probability’ of the object being a pedestrian and this can put flags around objects
that have for instance an 40% chance of being a pedestrian. These objects can than
be monitored more closely by the car and would otherwise be discarded as not being
a pedestrian (while 40% of the times, it is).

(Draft answer).

2. State mathematically at least two different distance norms used in fuzzy clustering.
Explain the differences between them.

Answer: Distance norms have the following form:

D2
ik = (zk − vi)

TA(zk − vi).

A common choice is the standard Euclidean norm:

D2
ik = (zk − vi)

T (zk − vi).

Another choice is using as A a diagonal matrix that accounts for different variances
in the directions of the coordinate axes of Z:

A =


(1/σ1)

2 0 · · · 0
0 (1/σ2)

2 · · · 0
...

... . . . ...
0 0 · · · (1/σn)

2

 .

This matrix induces a diagonal norm on Rn.

Finally, A can be defined as the inverse of the covariance matrix of Z: A = R−1,
with

R =
1

N

N∑
k=1

(zk − z̄)(zk − z̄)T .

Here z̄ denotes the mean of the data. In this case, A induces the Mahalanobis norm
on Rn.

The norm influences the clustering criterion by changing the measure of dissimilarity.
The Euclidean norm induces hyperspherical clusters (surfaces of constant membership
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are hyperspheres). Both the diagonal and the Mahalanobis norm generate hyper-
ellipsoidal clusters. With the diagonal norm, the axes of the hyperellipsoids are
parallel to the coordinate axes, while with the Mahalanobis norm the orientation of
the hyperellipsoid is arbitrary.

A common limitation of clustering algorithms based on a fixed distance norm is that
such a norm forces the objective function to prefer clusters of a certain shape even if
they are not present in the data and inclusion of a pre-defined volume per cluster (ρi).
Without any prior knowledge, it is simply fixed at 1 for each cluster. A drawback
is that in that case the GK algorithm is only able to find clusters of approximately
equal volumes. (Draft answer)

3. Name two fuzzy clustering algorithms and explain how they differ from each other.

Answer: Fuzzy C-means clustering and Gustafson-Kessel algorithm.

From the membership level curves, the FCM algorithm imposes a circular shape. If
the clusters have different shape, it is of no help to use another fixed A. Generally,
different matrices Ai are required to capture the different shapes of the clusters, but
usually there is no guideline as to how to choose them a priori. In Gustafson-Kessel
algorithm, these matrices can be adapted by using estimates of the data covariance.
(Draft answer).

4. State the fuzzy c-mean functional and explain all symbols.

Answer: The stationary points of the objective function in the FCM can be found
by adjoining the constraints to J by means of Lagrange multipliers:

J̄(Z;U,V,λ) =
c∑

i=1

N∑
k=1

(µik)
mD2

ikA +
N∑
k=1

λk

[
c∑

i=1

µik − 1

]
,

the number of clusters is c, the ‘fuzziness’ exponent is m, the cluster index is i, k is
the sample index.

The data matrix Z contains all the samples (columns). The number of columns of Z is
the number of samples N , and the number of rows corresponds to the dimensionality
of a single sample.

The fuzzy partition matrix U contains the membership degrees to each fuzzy subset
(row) of each sample (column), µik is the membership degrees of sample k to cluster i.

The prototype matrix V contains a parametrization for each cluster. A cluster is
defined by its center (mean of the cluster’s samples). It is represented in the same
space as a the samples in Z (dimension n).

The Lagrange multiplier λk ensures that the constraint (between square brackets) on
the sum of the memberships is fulfilled (for each sample) when minimizing J .

Finally, D2
ikA is the squared inner-product distance norm (based on the cluster

prototypes vi, observations zk, and norm-inducing matrix A) such as the Euclidean
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4 Fuzzy Clustering

or Mahalonobis distance e.g., defined as

D2
ikA = ∥zk − vi∥2A = (zk − vi)

TA(zk − vi).

(Draft answer).

5. Outline the steps required in the initialization and execution of the fuzzy c-means
algorithm. What is the role and the effect of the user-defined parameters in this
algorithm?

Answer: Initialization:

Before using the FCM algorithm, the following parameters must be specified: the
number of clusters, c, the ‘fuzziness’ exponent, m, the termination tolerance, ϵ, and
the norm-inducing matrix, A. Moreover, the fuzzy partition matrix, U, must be
initialized. The choices for these parameters are now described one by one.

The number of clusters c is the most important parameter, in the sense that the
remaining parameters have less influence on the resulting partition. When clustering
real data without any a priori information about the structures in the data, one
usually has to make assumptions about the number of underlying clusters.

The weighting exponent m is a rather important parameter as well, because it
significantly influences the fuzziness of the resulting partition. As m approaches one
from above, the partition becomes hard (µik ∈ {0, 1}) and vi are ordinary means of
the clusters. As m→∞, the partition becomes completely fuzzy (µik = 1/c) and the
cluster means are all equal to the mean of Z. These limit properties are independent
of the optimization method used. Usually, m = 2 is initially chosen.

The FCM algorithm stops iterating when the norm of the difference between U in two
successive iterations is smaller than the termination parameter ϵ. For the maximum
norm maxik(|µ(l)

ik − µ
(l−1)
ik |), the usual choice is ϵ = 0.001, even though ϵ = 0.01 works

well in most cases, while drastically reducing the computing times.

The shape of the clusters is determined by the choice of the matrix A in the distance
measure. A common choice is A = I, which gives the standard Euclidean norm.

Execution: Algorithm 4.1

(Draft answer)
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Algorithm 4.1 Fuzzy c-means (FCM).

Given the data set Z, choose the number of clusters 1 < c < N , the weighting exponent
m > 1, the termination tolerance ϵ > 0 and the norm-inducing matrix A. Initialize the
partition matrix randomly, such that U(0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute the cluster prototypes (means):

v
(l)
i =

N∑
k=1

(
µ
(l−1)
ik

)m
zk

N∑
k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the distances:

D2
ikA = (zk − v

(l)
i )TA(zk − v

(l)
i ), 1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 3: Update the partition matrix:
for 1 ≤ k ≤ N

if DikA > 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1
c∑

j=1

(DikA/DjkA)2/(m−1)

,

otherwise

µ
(l)
ik = 0 if DikA > 0, and µ

(l)
ik ∈ [0, 1] with

c∑
i=1

µ
(l)
ik = 1 .

until ∥U(l) −U(l−1)∥ < ϵ.
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5 Construction Techniques for Fuzzy
Systems

1. Explain the steps one should follow when designing a knowledge-based fuzzy model.
One of the strengths of fuzzy systems is their ability to integrate prior knowledge
and data. Explain how this can be done.

Answer: In order to design a knowledge-based fuzzy model, one must:

• Select the input and output variables, the structure of the rules, and the inference
and defuzzification methods.

• Decide on the number of linguistic terms for each variable and define the
corresponding membership functions.

• Formulate the available knowledge in terms of fuzzy if-then rules.

• Validate the model. If the model does not meet the expected performance,
iterate on the above design steps.

Integrating of prior knowledge brings together the partly knowledge (data driven)
and partly unknown parts. Including the prior knowledge could be done by means of
the least-squares estimation of consequents or of template-based modeling. (Draft
answer).

2. Consider a singleton fuzzy model y = f(x) with the following two rules:

1) If x is Small then y = b1, 2) If x is Large then y = b2 .

and membership functions as given in Figure 5.1.

Large

0.25

0.5

1

0.75

0

1

976543 x2

m

108

Small

Figure 5.1: Membership functions.

Furthermore, the following data set is given:
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5 Construction Techniques for Fuzzy Systems

x1 = 1, y1 = 3
x2 = 5, y2 = 4.5

Compute the consequent parameters b1 and b2 such that the model gives the least
summed squared error on the above data. What is the value of this summed squared
error?

Answer: The degrees of fulfillment are:

β1(x1) = 1, β2(x1) = 0 β1(x2) = 0.25, β2(x2) = 0.25

For each sample in the data set, we can write one equation with two unknown
parameters:

y1 =
β1(x1) · b1 + β2(x1) · b2

β1(x1) + β2(x1)
, y2 =

β1(x2) · b1 + β2(x2) · b2
β1(x2) + β2(x2)

After filling the data in, we get: b1 = 3 and b2 = 6.

3 =
1b1 + 0b2
1 + 0

=
b1
1

b1 = 3

4.5 =
0.25b1 + 0.25b2
0.25 + 0.25

=
0.25 · 3 + 0.25b2

0.5
=

0.75 + 0.25b2
0.5

2.25 = 0.75 + 0.25b2

1.5 = 0.25b2

b2 = 6

Obviously, the summed squared error is zero (two parameters, two independent data
samples available).

3. Consider the following fuzzy rules with singleton consequents:

1) If x is A1 and y is B1 then z = c1, 3) If x is A1 and y is B2 then z = c3,

2) If x is A2 and y is B1 then z = c2, 4) If x is A2 and y is B2 then z = c4 .

Draw a scheme of the corresponding neuro-fuzzy network. What are the free (ad-
justable parameters in this network? What methods can be used to optimize these
parameters by using input–output data?

Answer: The nodes in the first layer compute the membership degree of the inputs
in the antecedent fuzzy sets. The product nodes Π in the second layer represent the
antecedent conjunction operator. The normalization node N and the summation
node Σ realize the fuzzy-mean operator

z =

∑K
i=1 βici∑K
i=1 βi

.
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Figure 5.2: A neuro-fuzzy network with four rules.

By using smooth (e.g., Gaussian) antecedent membership functions

µAij
(xj; cij, σij) = exp

(
−
(
xj − cij
2σij

)2
)
,

the cij and σij parameters can be adjusted by gradient-descent learning algorithms,
such as back-propagation.

(Draft answer)

4. Give a general equation for a NARX (Nonlinear AutoRegressive with eXogenous
input) model. Explain all symbols. Give an example of a some NARX model of your
choice.

Answer: The general equation for a NARX model is defined as:

y(k+1) = f(y(k), y(k−1), . . . , y(k−ny+1), u(k), u(k−1), . . . , u(k−nu+1)) .

Here y(k), . . . , y(k−ny+1) and u(k), . . . , u(k−nu+1) denote the past model outputs
and inputs respectively and ny, nu are integers related to the order of the dynamic
system. For example, a singleton fuzzy model of a dynamic system may consist of
rules of the following form:

Ri : If y(k) is Ai1 and y(k − 1) is Ai2 and . . . y(k − n+ 1) is Ain

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . u(k −m+ 1) is Bim

then y(k + 1) is ci .

5. Explain the term semi-mechanistic (hybrid) modeling. What do you understand
under the terms “structure selection” and “parameter estimation” in case of such a
model?

Answer: Semi-mechanistic modeling is a type of modeling that uses a priori
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5 Construction Techniques for Fuzzy Systems

knowledge of the system (or the working of its parts). With information available
about a system, the blackbox that encompasses the nonlinearities and unknowns will
get less complex. The main advantage of semi-mechanistic modeling is that there will
be no time wasted on estimation of the parts of the system that are already known.

Structure Selection: The structure determines the flexibility of the model in the
approximation of (unknown) mappings. Normally, a model with a rich structure
approximates complicated functions well, but is not very robust (i.e. it will not
perform well on another data set from the same structure). Now, if there is some
prior knowledge of the internal system, there will be less unknown data, which means
the unknown mapping can be approximated better. Thus, the use of semi-mechanistic
modeling will keep the richness of the structure while enhancing the generalization
properties.

Parameter Estimation: With the training data, the parameters are estimated and
tuned. The available knowledge will increase the granularity of the model. This is
logical, if the entire system would be known, the detail would be infinitely high. The
more you know, the more detailed your model will be. In short, there is a better
parameter estimation when using semi-mechanistic modeling compared to normal
modeling.

(Draft answer)
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6 Knowledge-Based Fuzzy Control

1. There are various ways to parameterize nonlinear models and controllers. Name at
least three different parameterizations and explain how they differ from each other.

Answer:

• For instance fuzzy systems, multi-layer neural networks, radial basis function
networks, polynomials, look-up tables.
• The differ in their approximation power (number of parameters versus approx-

imation accuracy), the way they are constructed (purely from data, based on
prior knowledge, combination of data and prior knowledge), memory and CPU
time requirements, etc.

2. Draw a control scheme with a fuzzy PD (proportional-derivative) controller, including
the process. Explain the internal structure of the fuzzy PD controller, including the
dynamic filter(s), rule base, etc.

Answer: a) The control scheme is given below:

r

d

u
PD Process

ye

-

b) The internal structure of the controller is:

e

e

. u

d/dt

Rule base
(static map)

c) This is an example of a possible rule base:

ė
NB NS ZE PS PB

NB NB NB NS NS ZE
NS NB NS NS ZE PS

e ZE NS NS ZE PS PS
PS NS ZE PS PS PB
PB ZE PS PS PB PB
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6 Knowledge-Based Fuzzy Control

d) The design parameters are the rules, the membership functions and possibly also
scaling factors in the inputs and in the output of the static map given by the inference
system.

3. Give an example of a rule base and the corresponding membership functions for a
fuzzy PI (proportional-integral) controller. What are the design parameters of this
controller and how can you determine them?

Answer: An example of a rule base for a fuzzy PI controller is:

R1 : If e is Low then P = PLow and I = ILow

R2 : If e is High then P = PHigh and I = IHigh

or in the Takagi–Sugeno fuzzy way

R1 : If e is Low then u1 = PLowe+ ILow

∫
e dt

R2 : If e is High then u2 = PHighe+ IHigh

∫
e dt

Possible membership functions can be seen in Figure 6.1.

High

0.25

0.5

�
Low

e

0.75

0

1

31.5

Figure 6.1: Membership functions Low and High

The design parameters are the membership functions Low and High and the consequent
parameters PLow, ILow and PHigh, IHigh. They can be determined by linearizing the
process at different operating points and use a Bode-, Nyquist- or root locus plot to
tune the PI controller at the different operating points. The control values found
during tuning have to be incorporated in the membership functions and consequent
parameters. Fine tuning of these functions and parameters will in the end give an
optimal solution.

(Draft answer)

4. State in your own words a definition of a fuzzy controller. How do fuzzy controllers
differ from linear controllers, such as PID or state-feedback control? For what kinds
of processes have fuzzy controllers the potential of providing better performance than
linear controllers?

Answer:
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a) A fuzzy controller is a controller that contains a (nonlinear) mapping that has
been defined by using fuzzy if-then rules. Fuzzy controllers include if-then logic
as to enable the system to be controlled in a smooth way.

b) Fuzzy controllers are nonlinear and are typically designed by using knowledge
in the form of if–then rules. Conventional controllers are linear and are usually
designed by means of mathematical methods (pole placement, root locus, for
instance). Fuzzy controllers enable the inclusion of expert knowledge and
are therefore very suitable as supervisory controller/in case of nonlinearities,
changing environment, etc.

c) Fuzzy controllers have the potential of providing better performance than con-
ventional controllers for nonlinear processes or when the controller is tuned by
a non-expert in control. Linear has mathematical methods (root locus, pole
placement).

5. a) Give an example of several rules of a Takagi–Sugeno fuzzy controller. b) What are
the design parameters of this controller? c) Give an example of a process to which
you would apply this controller.

Answer:

a) An example of a rule base is:

R1 : If r is Low then u1 = PLowe+ ILow

∫
e dt

R2 : If r is High then u2 = PHighe+ IHigh

∫
e dt

b) The design parameters are the membership functions Low and High and the
consequent parameters PLow, ILow and PHigh, IHigh.

c) This controller would typically be applied to a process whose parameters change
with the operating point (reference).
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6 Knowledge-Based Fuzzy Control

6. Is special fuzzy-logic hardware always needed to implement a fuzzy controller? Ex-
plain your answer.

Answer: No, special hardware is not necessarily needed. One can use an available
software package and generate C or machine code that can be run on a variety of
general-purpose micro-controllers, PCs, etc.
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7 Artificial Neural Networks

1. What has been the original motivation behind artificial neural networks? Give at
least two examples of control engineering applications of artificial neural networks.

Answer: The motivation has been to imitate biological neural networks, namely
their learning and adaptation capabilities and parallel information processing. To
imitate human learning, one: where no prior knowledge is present (new environment)
and two: to overcome complex problems (pattern recognition and image processing).
From a mathematical point of view, artificial neural nets are effective function
approximators. As such, they are being used in a variety of engineering applications,
including systems identification, adaptive control, or classification.

2. Draw a block diagram and give the formulas for an artificial neuron. Explain all
terms and symbols.

Answer: An artificial neuron is schematically depicted in the figure below:

..
.

x1

xp

x2

w1

wp

w2
z

v

The inputs xi, i = 1, 2, . . . , p are first multiplied by weights wi and summed to obtain
the activation z:

z =

p∑
i=1

wixi = wTx .

The output v of the neuron then obtained by passing z through the activation function
σ, which can be, for instance, the tangent hyperbolic function:

v = σ(z) =
1− exp(−2z)
1 + exp(−2z)

3. Give at least three examples of activation functions.

Answer: Examples of activation functions are: threshold function (hard limiter),
saturated linear function, sigmoidal function, tangent hyperbolic, etc. An important
property of the activation function is that it maps the activation z ∈ (−∞,∞) onto
the interval [0, 1] or [−1, 1]. Therefore, it is also called a squeezing function.
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7 Artificial Neural Networks

4. Explain the term “training” of a neural network.

Answer: Training adjusts weights as to minimize an error cost function. Training
is the adaptation of weights in a network such that a certain goal is achieved. In a
multi-layer neural networks, for instance, the goal is to minimize the error between
the desired output and the actual network output. By training, the network learns to
approximate a certain function from examples of input–output data pairs.

5. What are the steps of the backpropagation algorithm? With what neural network
architecture is this algorithm used?

Answer: The backpropagation training proceeds in two steps:

a) Feedforward computation: given the network inputs xi, the network outputs are
computed, proceeding through the hidden layer(s).

b) Weight adaptation: the output of the network is compared to the desired output.
The difference of these two values, the error e, is used to adjust the weights
in the network. The weights are adjusted such that the following sum-squared
error cost function decreases:

J(w) =
1

2

l∑
j=1

e2j

where l is the number of output neurons and w are the weights. The weight
update rule is derived from the general gradient-descent formula:

w(n+ 1) = w(n)− α(n)∇J(w(n)),

where w(n) is the weights vector at iteration n, α(n) is a (variable) learning
rate and ∇J(w) is the Jacobian:

∇J(w) =

[
∂J(w)

∂w1

,
∂J(w)

∂w2

, . . . ,
∂J(w)

∂wM

]T
.

The backpropagation algorithm is used with a multi-layer neural network. The
algorithm uses the first-order gradient to adapt the weight. There is no feedback
involved in the neural network, so backpropagation algorithms are used in
feedforward networks.

6. Explain the difference between first-order and second-order gradient optimization.

Answer: First-order methods use the first term of the Taylor series expansion of
the objective function (the gradient or Jacobian). Second-order gradient methods use
the second term (the curvature) as well:

J(w) ≈ J(w0) +∇J(w0)
T (w −w0) +

1

2
(w −w0)

TH(w0)(w −w0),

26



The matrix H(w0) is called the Hessian and it’s inverse appears in the weight update
formula as the step size of the gradient descent. Therefore, second-order methods
generally require fewer iterations (take larger steps on flat cost function surfaces).

7. Derive the backpropagation rule for an output neuron with a sigmoidal activation
function.

Answer: Consider the output neuron

y = σ (z) with z =

p∑
j=1

wjvj

and the cost function (for one data point):

J =
1

2
e2, with e = d− y

The Jacobian is:
∂J

∂wj

=
∂J

∂e
· ∂e
∂y
· ∂y
∂z
· ∂z

∂wj

computing the partial derivatives:

∂J

∂e
= e,

∂e

∂y
= −1, ∂y

∂z
= σ(z)′,

∂z

∂wj

= vj

we obtain:

∂J

∂wo
jl

= −vjeσ(z)′ .

The backpropagation update law for the output weights directly follows:

wj(n+ 1) = wj(n) + α(n)vjeσ(z)
′,

where α(n) is the learning rate (step size).

8. What are the differences between a multi-layer feedforward neural network and the
radial basis function network?

Answer: The differences are: the activation function (radial basis function vs. a
squeezing function), in an RBF network, the only adjustable weights are the output
ones, the input weights are unity (the spreads and centers of the basis functions can
be adjusted instead), an RBF network only has one layer of neurons.

9. Consider a dynamic system y(k + 1) = f
(
y(k), y(k − 1), u(k), u(k − 1)

)
, where the

function f is unknown. Suppose, we wish to approximate f by a neural network
trained by using a sequence of N input–output data samples measured on the unknown
system, {(u(k), y(k))|k = 0, 1, . . . , N}.
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7 Artificial Neural Networks

a) Choose a neural network architecture, draw a scheme of the network and define
its inputs and outputs.

b) What are the free parameters that must be trained (optimized) such that the
network fits the data well?

c) Define a cost function for the training (by a formula) and name examples of two
methods you could use to train the network’s parameters.

Answer:

a) One possibility is to choose a radial basis function network:

y(k-1)

u(k-1)

y(k)

w
1

w
3

S
y(k+1)

u(k)

w
2

d

d

d

Another possibility would be a multilayer neural net. In the above scheme, the
‘d’ block denotes the delay operator. The output of the network is the predicted
output of the dynamic system y(k + 1). The inputs of the network are y(k),
y(k− 1) (obtained by delaying the output) and u(k), u(k− 1), where u(k) is the
given input to the dynamic system and u(k − 1) is the one step delayed value of
this input.

b) The weights wi and the parameters of the radial basis functions (centers and
widths).

c) The sum of squared errors J =
∑N

i=1

[
yd(k + 1) − y(k + 1)

]2, where yd(k + 1)
are the measured data and y(k + 1) is the network’s output. For the output
weights, one can use the least squares method and for the parameters of the
basis functions a first-order or second-order gradient-descent method (back-
propagation or Levenberg-Marquardt, for instance). Fuzzy clustering techniques
can be used to initialize the centers and spreads.
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8 Control Based on Fuzzy and
Neural Models

1. Draw a general scheme of a feedforward control scheme where the controller is based
on an inverse model of the dynamic process. Describe the blocks and signals in the
scheme.

Answer: The objective of inverse control is to compute for the current state the
control input, such that the system’s output at the next sampling instant is equal
to the desired (reference) output. This can be achieved if the process model can be
inverted according to:

u(k) = f−1(x(k), r(k + 1))

where the state x(k) = [ŷ(k), . . . , u(k − 1), . . .]T can be updated by using the output
of the model as shown in the figure below.

Process
u

d

Inverse model

Model

yFilter
rw

y^

The reference-shaping filter generates the desired dynamics in order to avoid peaks in
the control action for step-wise references.

2. Consider a first-order affine Takagi–Sugeno model:

Ri If y(k) is Ai then y(k + 1) = aiy(k) + biu(k) + ci

Derive the formula for the controller based on the inverse of this model, i.e., u(k) =
f(r(k + 1), y(k)), where r is the reference to be followed.

Answer: Denote λi(y(k)) is the normalized degree of fulfillment of the rules:

λi(y(k)) =
µAi

(y(k))∑K
j=1 µAj

(y(k))
.

The output of the model is:

y(k + 1) =

(
K∑
i=1

λi(y(k))ai

)
y(k) +

(
K∑
i=1

λi(y(k))bi

)
u(k) +

K∑
i=1

λi(y(k))ci .
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8 Control Based on Fuzzy and Neural Models

After substituting r(k + 1) for y(k + 1)

y(k + 1) = aiy(k) + biu(k) + ci

r(k + 1) = aiy(k) + biu(k) + ci

biu(k) = r(k + 1)− ai(y)− ci

u(k) =
r(k + 1)− ai(y)− ci

bi

the inverse model directly follows:

u(k) =

r(k + 1)−
K∑
i=1

λi(y(k))aiy(k)−
K∑
i=1

λi(y(k))ci

K∑
i=1

λi(y(k))bi

.

3. Explain the concept of predictive control. Give a formula for a typical cost function
and explain all the symbols.

Answer: In predictive control a model is used to predict the process output at
future discrete time instants over some prediction horizon. The sequence of future
control actions is computed by minimizing an objective function which penalized the
difference between the predicted output and the desired output (the reference). Only
the first control action of the obtained sequence is applied to the process, the horizon
is moved one step forward and the optimization is repeated. Usually, the following
quadratic cost function is applied:

J =

Hp∑
i=1

∥(r(k + i)− ŷ(k + i))∥2Pi
+

Hc∑
i=1

∥(∆u(k + i− 1))∥2Qi
.

The first term penalizes the variations of the process output around the reference,
while the second is a penalty on the control effort. Pi and Qi are positive definite
weighting matrices that specify the relative importance of two terms.

4. What is the principle of indirect adaptive control? Draw a block diagram of a typical
indirect control scheme and explain the functions of all the blocks.

Answer: In indirect adaptive control, a process model is adapted on-line and the
controller’s parameters are derived from the parameters of the model. The figure
below depicts a control scheme in which the consequent parameters of a fuzzy model
are adapted on-line (by means of recursive least squares). The controller is obtained
by inverting the fuzzy model.

5. Explain the idea of internal model control (IMC).
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Answer: The IMC scheme is depicted in the figure below. It consists of a controller,
which is the inverse of the process model, the model itself, and a feedback filter.

The purpose of the process model working in parallel with the process is to subtract
the effect of the control action u from the process output. If the predicted output
ym and the measured output y are equal, the error e is zero and the controller works
in an open-loop configuration. If a disturbance d acts on the process output, the
feedback signal e is equal to that disturbance and is not affected by the effects of
the control action. This signal is subtracted from the reference r. With a perfect
process model, the IMC scheme is hence able to cancel the effect of unmeasured
output-additive disturbances. The feedback filter is introduced in order to filter out
the measurement noise.
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9 Reinforcement Learning

1. Prove mathematically that the discounted sum of immediate rewards

Rk =
∞∑
n=0

γnrk+n+1

is indeed finite when 0 ≤ γ < 1. Assume that the agent always receives an immediate
reward of -1. Compute Rk when γ = 0.2 and γ = 0.95. Compare your results and
give a brief interpretation of this difference.

Answer: The limit is computed using the sum of a geometric series:

Rk =
∞∑
n=0

γnrk+n+1 = r
1

1− γ

This sum is finite for |γ| < 1, so it is finite as well for 0 ≤ γ < 1. With r = −1,
we find that for γ = 0.2, Rk = −1.25 and for γ = 0.95, Rk = −20. The agent thus
expects a much larger negative reward when γ is closer to 1. One can say that the
agent is much more concerned with the long-term rewards when the discount rate is
close to 1.

2. Explain the difference between the V -value function and the Q-value function and
give an advantage of both.

Answer: The V -value function and Q-value function are defined for following a
policy π as follows:

V π(s) = Eπ{Rk|sk = s}
Qπ(s, a) = Eπ{Rk|sk = s, ak = a}

Note that a policy is a mapping from states to actions, π(S)→ A, with S the state
space and A the action space. The greedy policy π can easily be derived from the
Q-value function by

π(s) = argmax
a

Q(s, a),

because it stores values associated with state-action pairs. A V -value function stores
only values associated with states. The advantage of V -value functions is thus that it
consumes much less memory than Q-value functions. On the other hand, to derive
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9 Reinforcement Learning

the greedy policy from a V -value function is much more tedious than it is for Q-value
functions. The greedy policy is derived by first rewriting it into a Q-value function:

Q(s, a) = E{rk+1 + γV (sk+1)|sk = s, ak = a}

and then applying the equation of the greedy policy π derived from the Q-value
function. For practical applications this comes down to directly using Q-value
functions.

3. Explain the difference between on-policy and off-policy learning.

Answer: In on-policy learning, the update of the parameters (V -, or Q-values)
is done by taking into account the actual action that is applied to the process. In
off-policy this is not necessarily the case. E.g. in Q-learning, the update is performed
by considering the greedy action, which is due to exploration not necessarily the same
as the action that is applied to the process.

4. Is actor-critic reinforcement learning an on-policy or off-policy method? Explain you
answer.

Answer: The update rule for the actor is given as

ϕk+1 = ϕk + αa∆k[ak − aπk ]
∂π̂(sk, ϕk)

∂ϕk

= ϕk + αa∆kãk
∂π̂(sk, ϕk)

∂ϕk

,

where ϕk is a vector of adjustable parameters, αa the learning rate, ∆k the temporal
difference error, aπk the action according to the current policy π, and ak the applied
control action including exploration ãk. The update rule thus includes the applied
control action and can thus be considered to be an on-policy learning method.

5. Describe the tabular algorithm for Q(λ)-learning, using replacing traces to update
the eligibility trace.

Answer: The algorithm is as follows:

Algorithm 9.1 Q(λ)-learning
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a) Initialize Q(s, a) = 0 and e(s, a) = 0, for all s, a.

b) Repeat (for each episode):

i. Initialize s, a.

ii. Repeat (for each step of the episode):

Apply action a to the process. Observe the immediate reward r and the
new state s′.

Determine the next action a∗ according to the policy by

a∗ ← argmax
b

Q(s′, b) (break ties randomly)

Modify the action according to your exploration strategy to a′.

Compute:

δ ← r + γQ(s′, a∗)−Q(s, a)

e(s, a) ← 1

For all s, a:
Q(s, a)← Q(s, a) + αδe(s, a)

If a′ = a∗ then e(s, a)← γλe(s, a) else e(s, a)← 0.

s← s′, a← a′

35


	Introduction
	Fuzzy Sets and Relations
	Fuzzy Systems
	Fuzzy Clustering
	Construction Techniques for Fuzzy Systems
	Knowledge-Based Fuzzy Control
	Artificial Neural Networks
	Control Based on Fuzzy and Neural Models
	Reinforcement Learning

