## Lecture 1: Introduction & Fuzzy Control I

Jens Kober Robert Babuška

Knowledge-Based Control Systems (SC42050)

Cognitive Robotics

3mE, Delft University of Technology, The Netherlands

12-02-2018



## Lecture Outline

- General information about the course
- 2 Introduction
- § Fuzzy control I

# **Course Information**



# Knowledge-Based Control Systems (SC42050)

- Lecturers: Jens Kober, lectures 1-6
  - Tim de Bruin, lectures 7 & 8
  - Hans Hellendoorn, lecture 9
- Assistants: Thijs Greevink
- Lectures: (9 lectures = 18 hours)
  - Monday (15:45 17:30) in lecture hall Chip at EWI
  - Wednesday (15:45 17:30) in lecture hall Chip at EWI

# Knowledge-Based Control Systems (SC42050)

- Examination: (check yourself the dates and times!):
  - April 20th 2018, 9:00-12:00.
  - June 29th 2018, 9:00-12:00.

Exam constitutes 60% of the final grade, remaining 40% are two assignments: Literature and Practical assignment

 To obtain the credits of this course: Each activity must be approved.

## Practical Assignment

### Objectives:

- Get additional insight through Matlab/Python implementation.
- Apply the tools to practical (simulated) problems.

The assignment consists of three problems: fuzzy control, neural networks, and reinforcement learning.

Work in groups of two students, more information later.

Will be handed out on February 19th 2018 Report deadline April 11th 2018

## Literature Assignment

### Objectives:

- gain knowledge on recent research results through literature research
- learn to effectively use available search engines
- write a concise paper summarizing the findings
- present the results in a conference-like presentation

Deadlines – March 21st, March 28th, and April 3rd 2018 Symposium: Reserve the whole afternoon Tuesday April 3rd 2018

Work in groups of four students.

Choose subject via Brightspace  $\rightarrow$  SC42050  $\rightarrow$  Literature assignment – Do it this week!

## Goals and Content of the Course

## knowledge-based and intelligent control systems

- Fuzzy sets and systems
- 2 Data analysis and system identification
- 3 Knowledge based fuzzy control
- 4 Artificial neural networks
- Gaussian Processes (new)
- 6 Control based on fuzzy and neural models
- Basics of reinforcement learning
- 8 Reinforcement learning for control
- Opplications

## Course Material



- Lecture notes
- Items available for download at: www.dcsc.tudelft.nl/~sc42050
  - Transparencies as PDF files
  - Demos, examples, assignments with Matlab/Simulink
- Brightspace

The entire content of the lectures and lecture notes<sup>1</sup> will be examined!

<sup>&</sup>lt;sup>1</sup>Chapters marked with '\*' are not relevant for the exam

### Where to run Matlab

- Own PC: Campus Licence.
- Computer rooms at 3mE.
- Computer rooms of other faculties (e.g., at Drebbelweg)

# Prerequisites, Background Knowledge

- Mathematical analysis
- Linear algebra
- Basics of control systems (e.g., Control Systems)

# Motivation for Intelligent Control



## Pro's and Con's of Conventional Control

- + systematic approach, mathematically elegant
- + theoretical guarantees of stability and robustness
- time-consuming, conceptually difficult
- control engineering expertise necessary
- often insufficient for nonlinear systems

# When Conventional Design Fails

- no model of the process available
  - → mathematical synthesis and analysis impossible
  - ightarrow experimental tuning may be difficult
- process (highly) nonlinear
  - → linear controller cannot stabilize
  - $\rightarrow$  performance limits

## Example: Stability Problems

$$\frac{d^3y(t)}{dt^3} + \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = y^2(t)u(t)$$

Use Simulink to simulate a proportional controller (nlpid.m)

## **Example: Stability Problems**

$$\frac{d^3y(t)}{dt^3} + \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = y^2(t)u(t)$$

Use Simulink to simulate a proportional controller (nlpid.m)

#### Conclusions:

- stability and performance depend on process output
- re-tuning the controller does not help
- nonlinear control is the only solution

## Intelligent Control

## techniques motivated by human intelligence

- fuzzy systems (represent human knowledge, reasoning)
- artificial neural networks (adaptation, learning)
- genetic algorithms (optimization)
- particle swarm optimization
- etc.

## Intelligent Control

### techniques motivated by human intelligence

- fuzzy systems (represent human knowledge, reasoning)
- artificial neural networks (adaptation, learning)
- genetic algorithms (optimization)
- particle swarm optimization
- etc.

- Fuzzy knowledge-based control
- Fuzzy data analysis, modeling, identification
- Learning and adaptive control (neural networks)
- Reinforcement learning

# **Fuzzy Control I**



## Outline

- Fuzzy sets and set-theoretic operations
- Puzzy relations
- § Fuzzy systems
- 4 Linguistic model, approximate reasoning

# Fuzzy Sets and Fuzzy Logic

Relatively new methods for representing uncertainty and reasoning under uncertainty.

### Types of uncertainty:

- chance, randomness (stochastic)
- imprecision, vagueness, ambiguity (non-stochastic)

A set is a collection of objects with a common property.

A set is a collection of objects with a common property.

## Examples:

• Set of natural numbers smaller than 5:  $A = \{1, 2, 3, 4\}$ 

A set is a collection of objects with a common property.

### Examples:

- Set of natural numbers smaller than 5:  $A = \{1, 2, 3, 4\}$
- Unit disk in the complex plane:  $A = \{z | z \in \mathbb{C}, |z| \le 1\}$

A set is a collection of objects with a common property.

## Examples:

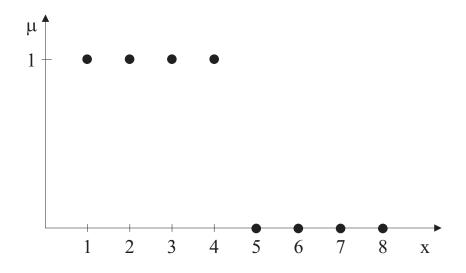
- Set of natural numbers smaller than 5:  $A = \{1, 2, 3, 4\}$
- Unit disk in the complex plane:  $A = \{z | z \in \mathbb{C}, |z| \le 1\}$
- A line in  $\mathbb{R}^2$ :  $A = \{(x, y) | ax + by + c = 0, (x, y, a, b, c) \in \mathbb{R}\}$

## Representation of Sets

- Enumeration of elements:  $A = \{x_1, x_2, \dots, x_n\}$
- Definition by property:  $A = \{x \in X | x \text{ has property } P\}$
- Characteristic function:  $\mu_A(x): X \to \{0, 1\}$

$$\mu_A(x) = \begin{cases} 1 & x \text{ is member of } A \\ 0 & x \text{ is not member of } A \end{cases}$$

## Set of natural numbers smaller than 5

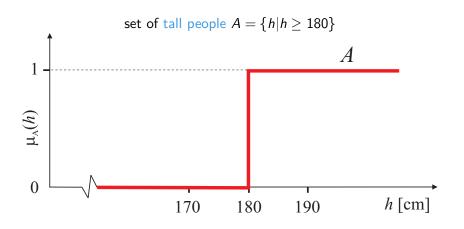


# **Fuzzy sets**

# Why Fuzzy Sets?

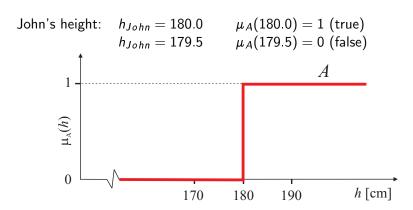
- Classical sets are good for well-defined concepts (maths, programs, etc.)
- Less suitable for representing commonsense knowledge in terms of vague concepts such as:
  - a tall person, slippery road, nice weather, ...
  - want to buy a big car with moderate consumption
  - If the temperature is too low, increase heating a lot

# Classical Set Approach

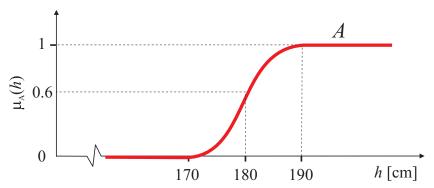


# Logical Propositions

"John is tall" ... true or false



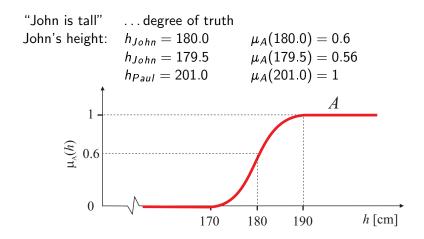
# Fuzzy Set Approach



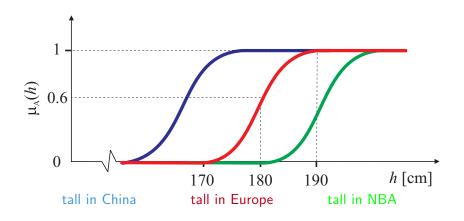
$$\mu_A(h) = \left\{ egin{array}{l} 1 \ (0,1) \ 0 \end{array} 
ight.$$

h is full member of A  $(h \ge 190)$ h is partial member of A (170 < h < 190)h is not member of A  $(h \le 170)$ 

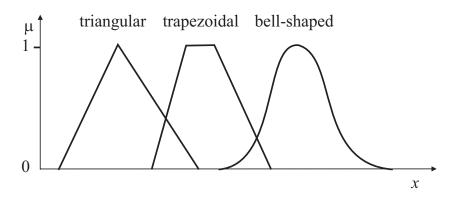
# Fuzzy Logic Propositions



## Subjective and Context Dependent



# Shapes of Membership Functions



## Representation of Fuzzy Sets

Pointwise as a list of membership/element pairs:

$$A = \{\mu_A(x_1)/x_1, \dots, \mu_A(x_n)/x_n\} = \{\mu_A(x_i)/x_i | x_i \in X\}$$

• As a list of  $\alpha$ -level/ $\alpha$ -cut pairs:

$$A = \{\alpha_1/A_{\alpha_1}, \ \alpha_2/A_{\alpha_2}, \ \dots, \alpha_n, A_{\alpha_n}\} = \{\alpha_i/A_{\alpha_i} | \alpha_i \in (0,1)\}$$

### Representation of Fuzzy Sets

Analytical formula for the membership function:

$$\mu_A(x) = \frac{1}{1+x^2}, \quad x \in \mathbb{R}$$

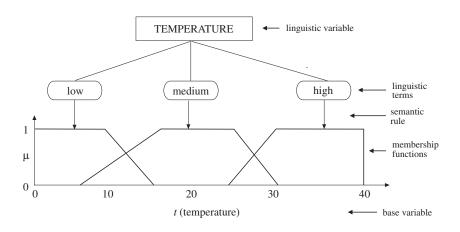
or more generally

$$\mu(x) = \frac{1}{1 + d(x, v)}.$$

d(x, v) . . . dissimilarity measure

Various shorthand notations:  $\mu_A(x) \dots A(x) \dots a$ 

### Linguistic Variable

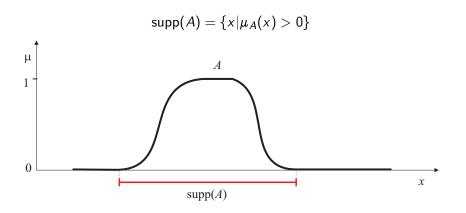


Basic requirements: coverage and semantic soundness

# Properties of fuzzy sets

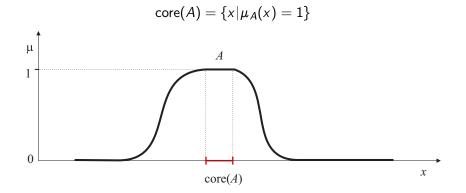


# Support of a Fuzzy Set



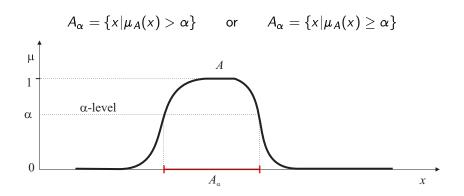
support is an ordinary set

# Core (Kernel) of a Fuzzy Set



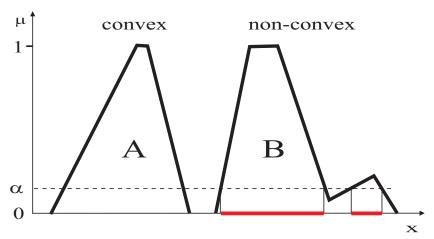
core is an ordinary set

#### $\alpha$ -cut of a Fuzzy Set



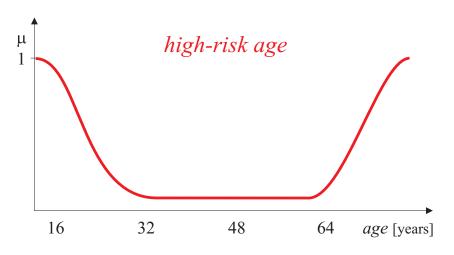
 $A_{\alpha}$  is an ordinary set

### Convex and Non-Convex Fuzzy Sets



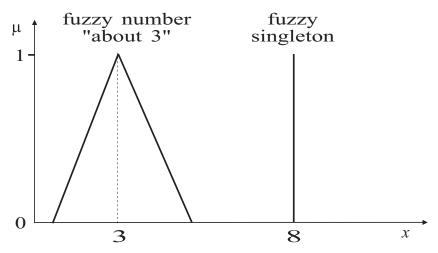
A fuzzy set is **convex**  $\Leftrightarrow$  all its  $\alpha$ -cuts are convex sets.

### Non-Convex Fuzzy Set: an Example



High-risk age for car insurance policy.

# Fuzzy Numbers and Singletons

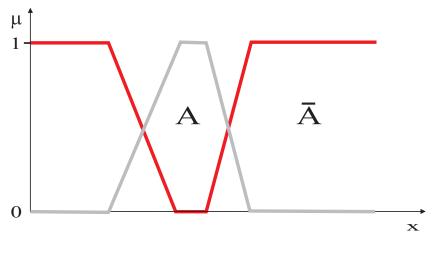


Fuzzy linear regression:  $y = \tilde{3}x_1 + \tilde{5}x_2$ 

# **Fuzzy set-theoretic operations**

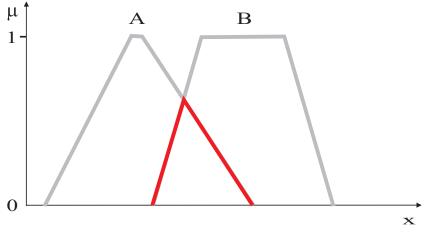


# Complement (Negation) of a Fuzzy Set



$$\mu_{\bar{A}}(x) = 1 - \mu_A(x)$$

# Intersection (Conjunction) of Fuzzy Sets



$$\mu_{A\cap B}(x)=\min(\mu_A(x),\mu_B(x))$$

# Other Intersection Operators (T-norms)

Probabilistic "and" (product operator):

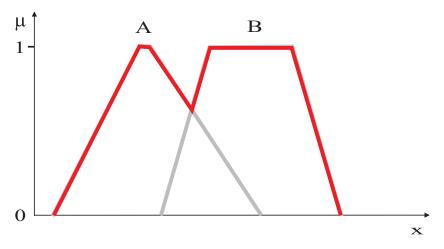
$$\mu_{A\cap B}(x) = \mu_A(x) \cdot \mu_B(x)$$

Łukasiewicz "and" (bounded difference):

$$\mu_{A\cap B}(x)=\max(0,\mu_A(x)+\mu_B(x)-1)$$

Many other t-norms  $\dots [0,1] \times [0,1] \rightarrow [0,1]$ 

# Union (Disjunction) of Fuzzy Sets



$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

# Other Union Operators (T-conorms)

Probabilistic "or":

$$\mu_{A\cup B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Łukasiewicz "or" (bounded sum):

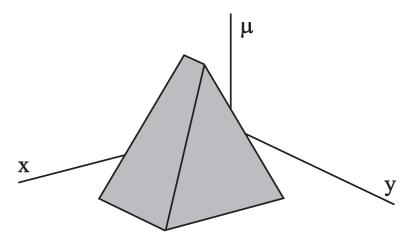
$$\mu_{A\cup B}(x)=\min(1,\mu_A(x)+\mu_B(x))$$

Many other t-conorms  $\dots [0,1] \times [0,1] \rightarrow [0,1]$ 

# Demo of a Matlab tool

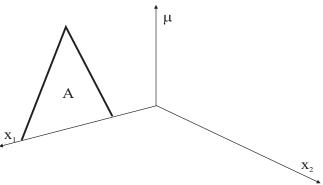


### Fuzzy Set in Multidimensional Domains



$$A = \{ \mu_A(x, y) / (x, y) | (x, y) \in X \times Y \}$$

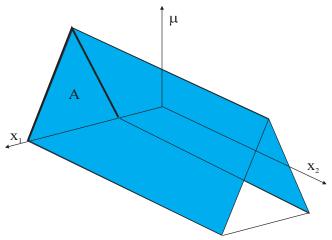
# Cylindrical Extension



# Cylindrical Extension

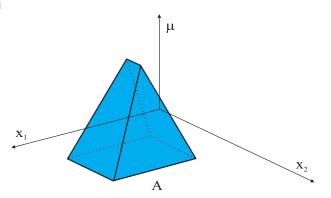


# Cylindrical Extension

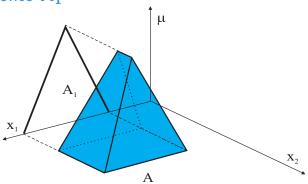


$$\operatorname{ext}_{x_2}(A) = \{ \mu_A(x_1)/(x_1, x_2) | (x_1, x_2) \in X_1 \times X_2 \}$$

# Projection

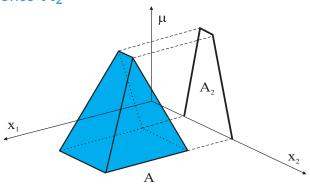


# Projection onto X<sub>1</sub>



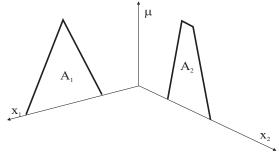
$$\operatorname{proj}_{x_1}(A) = \left\{ \sup_{x_2 \in X_2} \mu_A(x_1, x_2) / x_1 | x_1 \in X_1 \right\}$$

# Projection onto X<sub>2</sub>

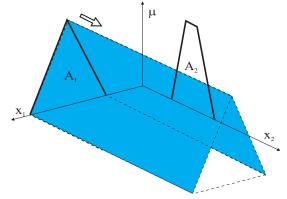


$$\operatorname{proj}_{x_2}(A) = \left\{ \sup_{x_1 \in X_1} \mu_A(x_1, x_2) / x_2 | x_2 \in X_2 \right\}$$

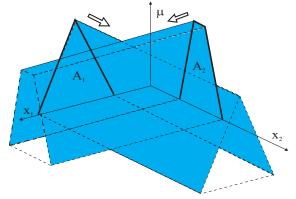
An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.



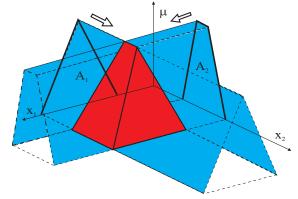
An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.



An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.



An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.



#### **Fuzzy Relations**

Classical relation represents the presence or absence of interaction between the elements of two or more sets.

With fuzzy relations, the degree of association (correlation) is represented by membership grades.

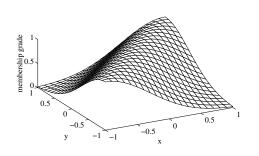
An n-dimensional fuzzy relation is a mapping

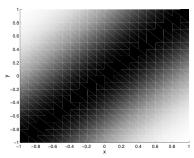
$$R: X_1 \times X_2 \times X_3 \cdots \times X_n \rightarrow [0, 1]$$

which assigns membership grades to all *n*-tuples  $(x_1, x_2, ..., x_n)$  from the Cartesian product universe.

# Fuzzy Relations: Example

Example:  $R: x \approx y$  ("x is approximately equal to y")  $\mu_R(x, y) = e^{-(x-y)^2}$ 





#### Relational Composition

Given fuzzy relation R defined in  $X \times Y$  and fuzzy set A defined in X, derive the corresponding fuzzy set B defined in Y:

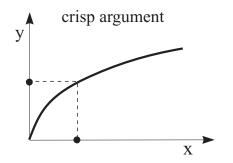
$$B = A \circ R = \operatorname{proj}_{Y}(\operatorname{ext}_{X \times Y}(A) \cap R)$$

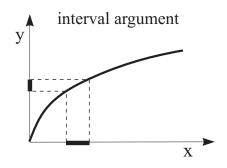
max-min composition:

$$\mu_B(y) = \max_{x} \left( \min(\mu_A(x), \mu_R(x, y)) \right)$$

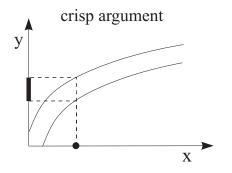
Analogous to evaluating a function.

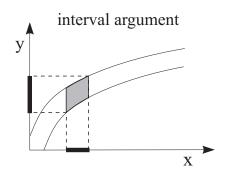
## Graphical Interpretation: Crisp Function



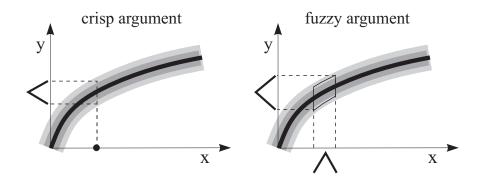


#### Graphical Interpretation: Interval Function





# Graphical Interpretation: Fuzzy Relation



### Max-Min Composition: Example

$$\mu_{B}(y) = \max_{x} \left( \min(\mu_{A}(x), \mu_{R}(x, y)) \right), \quad \forall y$$

$$\begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.4 & 0.8 \\ 0.0 & 0.1 & 1.0 & 0.2 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.9 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.8 & 0.3 & 0.0 \end{bmatrix} =$$

### Max-Min Composition: Example

$$\mu_{B}(y) = \max_{x} \left( \min(\mu_{A}(x), \mu_{R}(x, y)) \right), \quad \forall y$$

$$\begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.4 & 0.8 \\ 0.0 & 0.1 & 1.0 & 0.2 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.9 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.8 & 0.3 & 0.0 \end{bmatrix} = \begin{bmatrix} 0.0 & 0.1 & 0.4 & 0.4 & 0.8 \end{bmatrix}$$

# **Fuzzy Systems**



#### Fuzzy Systems

Systems with fuzzy parameters

$$y = \tilde{3}x_1 + \tilde{5}x_2$$

Fuzzy inputs and states

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = \tilde{2}$$

Rule-based systems

**If** the heating power is high **then** the temperature will increase fast

#### Rule-based Fuzzy Systems

• Linguistic (Mamdani) fuzzy model

If 
$$x$$
 is  $A$  then  $y$  is  $B$ 

Fuzzy relational model

If x is A then y is 
$$B_1(0.1)$$
,  $B_2(0.8)$ 

• Takagi-Sugeno fuzzy model

If 
$$x$$
 is  $A$  then  $y = f(x)$ 

### Linguistic Model

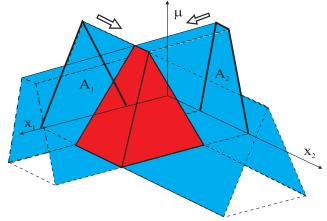
```
If x is A then y is B
x is A - antecedent (fuzzy proposition)
y is B - consequent (fuzzy proposition)
```

#### Linguistic Model

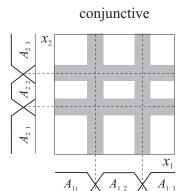
```
    If x is A then y is B
    x is A - antecedent (fuzzy proposition)
    y is B - consequent (fuzzy proposition)
    Compound propositions (logical connectives, hedges):
    If x<sub>1</sub> is very big and x<sub>2</sub> is not small
```

#### Multidimensional Antecedent Sets

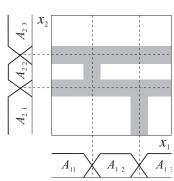
 $A_1 \cap A_2$  on  $X_1 \times X_2$ :



# Partitioning of the Antecedent Space



#### other connectives



#### Inference Mechanism

Given the if-then rules and an input fuzzy set, deduce the corresponding output fuzzy set.

- Formal approach based on fuzzy relations.
- Simplified approach (Mamdani inference).
- Interpolation (additive fuzzy systems).

#### Formal Approach

- 1 Represent each if-then rule as a fuzzy relation.
- 2 Aggregate these relations in one relation representative for the entire rule base.
- 3 Given an input, use relational composition to derive the corresponding output.

#### Modus Ponens Inference Rule

Classical logic

Fuzzy logic

### Relational Representation of Rules

**If—then** rules can be represented as a *relation*, using implications or conjunctions.

#### Classical implication

| Α | В | $A \rightarrow B \ (\neg A \lor B)$ |
|---|---|-------------------------------------|
| 0 | 0 | 1                                   |
| 0 | 1 | 1                                   |
| 1 | 0 | 0                                   |
| 1 | 1 | 1                                   |

| $A \setminus B$ | 0 | 1 |
|-----------------|---|---|
| 0               | 1 | 1 |
| 1               | 0 | 1 |

$$\textit{R} \colon \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

### Relational Representation of Rules

**If—then** rules can be represented as a *relation*, using implications or conjunctions.

# Conjunction

| Α | В | $A \wedge B$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 0 | 0            |
| 1 | 1 | 1            |

| $A \setminus B$ | 0 | 1 |
|-----------------|---|---|
| 0               | 0 | 0 |
| 1               | 0 | 1 |

$$\textit{R} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

### Fuzzy Implications and Conjunctions

Fuzzy implication is represented by a fuzzy relation:

$$R \colon [0, 1] \times [0, 1] \to [0, 1]$$

$$\mu_R(x,y) = I(\mu_A(x), \mu_B(y))$$

#### I(a, b) – implication function

| "classical" | Kleene–Diene | $I(a, b) = \max(1 - a, b)$        |
|-------------|--------------|-----------------------------------|
|             | Łukasiewicz  | $\mathrm{I}(a,b) = \min(1,1-a+b)$ |
| T-norms     | Mamdani      | $I(a,b) = \min(a,b)$              |
|             | Larsen       | $\mathrm{I}(a,b)=a\cdotb$         |

#### Inference With One Rule

Construct implication relation:

$$\mu_R(x, y) = I(\mu_A(x), \mu_B(y))$$

#### Inference With One Rule

1 Construct implication relation:

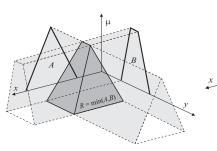
$$\mu_R(x, y) = I(\mu_A(x), \mu_B(y))$$

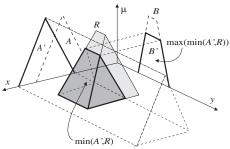
2 Use relational composition to derive B' from A':

$$B' = A' \circ R$$

#### **Graphical Illustration**

$$\mu_R(x,y) = \min(\mu_A(x),\mu_B(y)) \quad \mu_{B'}(y) = \max_x \Bigl(\min\bigl(\mu_{A'}(x),\mu_R(x,y)\bigr)\Bigr)$$





#### Inference With Several Rules

**1** Construct implication relation for each rule *i*:

$$\mu_{R_i}(x, y) = I(\mu_{A_i}(x), \mu_{B_i}(y))$$

2 Aggregate relations  $R_i$  into one:

$$\mu_R(x, y) = \operatorname{aggr}(\mu_{R_i}(x, y))$$

The aggr operator is the minimum for implications and the maximum for conjunctions.

3 Use relational composition to derive B' from A':

$$B' = A' \circ R$$

### **Example: Conjunction**

Each rule

If 
$$\tilde{x}$$
 is  $A_i$  then  $\tilde{y}$  is  $B_i$ 

is represented as a fuzzy relation on  $X \times Y$ :

$$R_i = A_i \times B_i$$
  $\mu_{R_i}(\mathbf{x}, \mathbf{y}) = \mu_{A_i}(\mathbf{x}) \wedge \mu_{B_i}(\mathbf{y})$ 

# Example: Conjunction, Aggregation

Each rule

If 
$$\tilde{x}$$
 is  $A_i$  then  $\tilde{y}$  is  $B_i$ 

is represented as a fuzzy relation on  $X \times Y$ :

$$R_i = A_i \times B_i$$
  $\mu_{R_i}(\mathbf{x}, \mathbf{y}) = \mu_{A_i}(\mathbf{x}) \wedge \mu_{B_i}(\mathbf{y})$ 

2 The entire rule base's relation is the union:

$$R = \bigcup_{i=1}^K R_i \quad \mu_R(\mathbf{x}, \mathbf{y}) = \max_{1 \leq i \leq K} [\mu_{R_i}(\mathbf{x}, \mathbf{y})]$$

# Example: Conjunction, Aggregation, and Composition

Each rule

If 
$$\tilde{x}$$
 is  $A_i$  then  $\tilde{y}$  is  $B_i$ 

is represented as a fuzzy relation on  $X \times Y$ :

$$R_i = A_i \times B_i$$
  $\mu_{R_i}(\mathbf{x}, \mathbf{y}) = \mu_{A_i}(\mathbf{x}) \wedge \mu_{B_i}(\mathbf{y})$ 

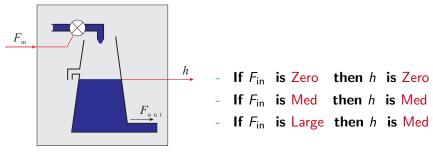
2 The entire rule base's relation is the union:

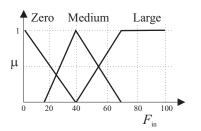
$$R = \bigcup_{i=1}^K R_i \quad \mu_R(\mathbf{x}, \mathbf{y}) = \max_{1 \leq i \leq K} [\mu_{R_i}(\mathbf{x}, \mathbf{y})]$$

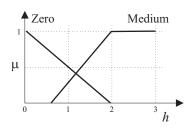
3 Given an input value A' the output value B' is:

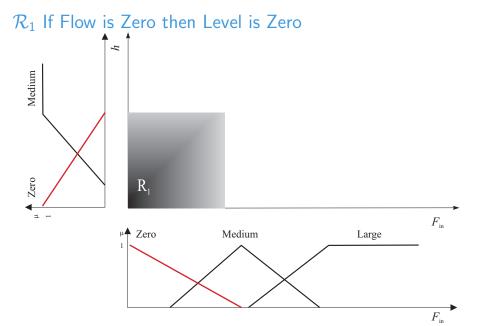
$$B' = A' \circ R$$
  $\mu_{B'}(\mathbf{y}) = \max_{\mathbf{X}} [\mu_{A'}(\mathbf{x}) \wedge \mu_R(\mathbf{x}, \mathbf{y})]$ 

# Example: Modeling of Liquid Level

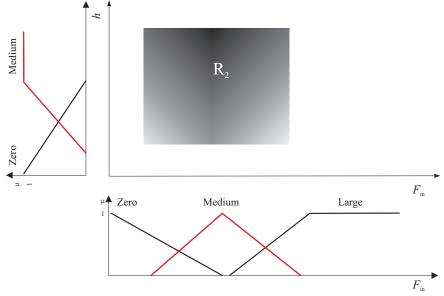




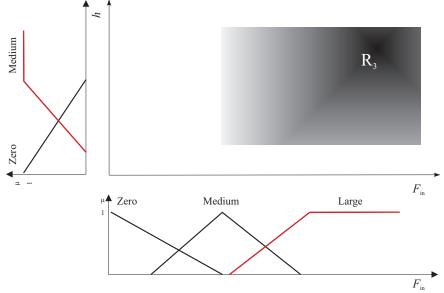


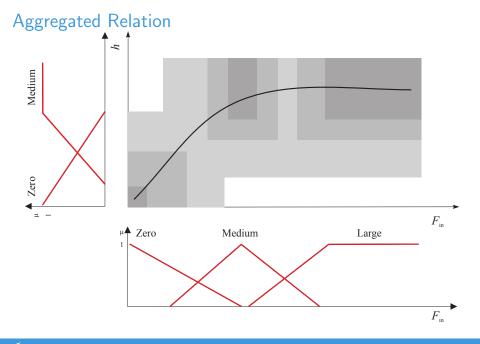


# $\mathcal{R}_2$ If Flow is Medium then Level is Medium



# $\mathcal{R}_3$ If Flow is Large then Level is Medium



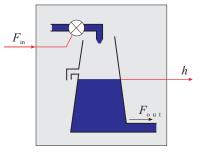


#### Simplified Approach

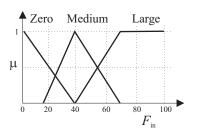
- Ompute the match between the input and the antecedent membership functions (degree of fulfillment).
- 2 Clip the corresponding output fuzzy set for each rule by using the degree of fulfillment.
- 3 Aggregate output fuzzy sets of all the rules into one fuzzy set.

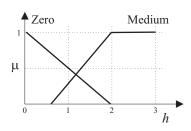
This is called the *Mamdani* or *max-min* inference method.

#### Water Tank Example

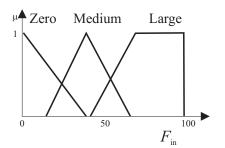


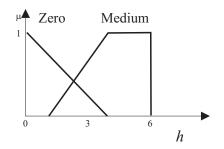
If F<sub>in</sub> is Zero then h is Zero
If F<sub>in</sub> is Med then h is Med
If F<sub>in</sub> is Large then h is Med



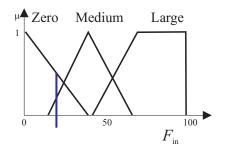


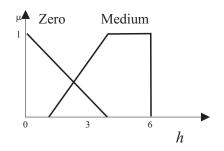
# Mamdani Inference: Example





# Mamdani Inference: Example





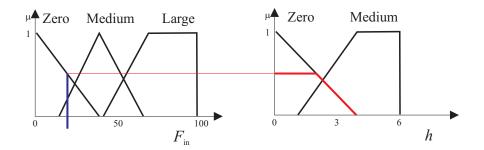
Given a crisp (numerical) input  $(F_{in})$ .

#### If $F_{in}$ is Zero then . . .



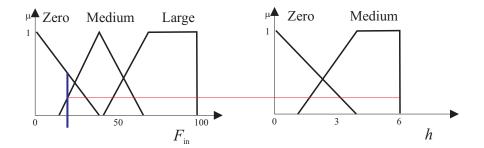
Determine the degree of fulfillment (truth) of the first rule.

#### If $F_{in}$ is Zero then h is Zero



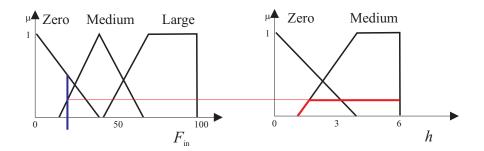
Clip consequent membership function of the first rule.

#### If $F_{in}$ is Medium then . . .



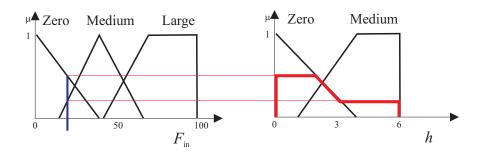
Determine the degree of fulfillment (truth) of the second rule.

#### If $F_{in}$ is Medium then h is Medium



Clip consequent membership function of the second rule.

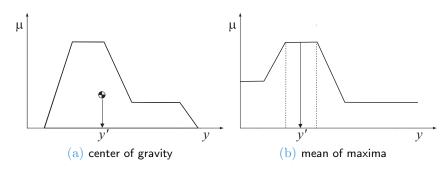
### Aggregation



Combine the result of the two rules (union).

#### Defuzzification

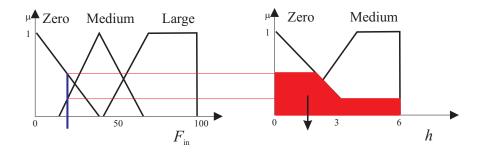
conversion of a fuzzy set to a crisp value



# Center-of-Gravity Method

$$y_0 = rac{\displaystyle\sum_{j=1}^F \mu_{B'}(y_j) y_j}{\displaystyle\sum_{j=1}^F \mu_{B'}(y_j)}$$

#### Defuzzification



Compute a crisp (numerical) output of the model (center-of-gravity method).