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Knowledge-Based Control Systems (SC42050)

� Lecturers: - Jens Kober, lectures 1-6
- Tim de Bruin, lectures 7 & 8
- Hans Hellendoorn, lecture 9

� Assistants: Thijs Greevink
� Lectures: (9 lectures = 18 hours)

� Monday (15:45 – 17:30) in lecture hall Chip at EWI
� Wednesday (15:45 – 17:30) in lecture hall Chip at EWI

4 / 79



Knowledge-Based Control Systems (SC42050)

� Examination: (check yourself the dates and times!):
� April 20th 2018, 9:00-12:00.
� June 29th 2018, 9:00-12:00.

Exam constitutes 60% of the final grade, remaining 40% are two
assignments: Literature and Practical assignment

� To obtain the credits of this course:
Each activity must be approved.
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Practical Assignment

Objectives:

� Get additional insight through Matlab/Python implementation.

� Apply the tools to practical (simulated) problems.

The assignment consists of three problems: fuzzy control, neural
networks, and reinforcement learning.

Work in groups of two students, more information later.

Will be handed out on February 19th 2018
Report deadline April 11th 2018
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Literature Assignment

Objectives:

� gain knowledge on recent research results through literature
research

� learn to effectively use available search engines

� write a concise paper summarizing the findings

� present the results in a conference-like presentation

Deadlines – March 21st, March 28th, and April 3rd 2018
Symposium: Reserve the whole afternoon Tuesday April 3rd 2018

Work in groups of four students.

Choose subject via Brightspace ! SC42050 ! Literature assignment –
Do it this week!
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Goals and Content of the Course

knowledge-based and intelligent control systems

1 Fuzzy sets and systems

2 Data analysis and system identification

3 Knowledge based fuzzy control

4 Artificial neural networks

5 Gaussian Processes (new)

6 Control based on fuzzy and neural models

7 Basics of reinforcement learning

8 Reinforcement learning for control

9 Applications
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Course Material

� Lecture notes
� Items available for download at:

www.dcsc.tudelft.nl/˜sc42050
� Transparencies as PDF files
� Demos, examples, assignments with

Matlab/Simulink

� Brightspace

The entire content of the lectures and lec-
ture notes1 will be examined!

1Chapters marked with ‘*’ are not relevant for the exam
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Where to run Matlab

� Own PC: Campus Licence.

� Computer rooms at 3mE.

� Computer rooms of other faculties (e.g., at Drebbelweg)
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Prerequisites, Background Knowledge

� Mathematical analysis

� Linear algebra

� Basics of control systems (e.g., Control Systems)
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Motivation for

Intelligent Control
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Pro’s and Con’s of Conventional Control

+ systematic approach, mathematically elegant

+ theoretical guarantees of stability and robustness

� time-consuming, conceptually difficult

� control engineering expertise necessary

� often insufficient for nonlinear systems
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When Conventional Design Fails

� no model of the process available
! mathematical synthesis and analysis impossible
! experimental tuning may be difficult

� process (highly) nonlinear
! linear controller cannot stabilize
! performance limits
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Example: Stability Problems

d3y(t)

dt3
+

d2y(t)

dt2
+

dy(t)

dt
= y2(t)u(t)

Use Simulink to simulate a proportional controller (nlpid.m)

Conclusions:

� stability and performance depend on process output

� re-tuning the controller does not help

� nonlinear control is the only solution
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Intelligent Control

techniques motivated by human intelligence

� fuzzy systems (represent human knowledge, reasoning)

� artificial neural networks (adaptation, learning)

� genetic algorithms (optimization)

� particle swarm optimization

� etc.

� Fuzzy knowledge-based control

� Fuzzy data analysis, modeling, identification

� Learning and adaptive control (neural networks)

� Reinforcement learning
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Fuzzy Control I
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Outline

1 Fuzzy sets and set-theoretic operations

2 Fuzzy relations

3 Fuzzy systems

4 Linguistic model, approximate reasoning
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Fuzzy Sets and Fuzzy Logic

Relatively new methods for representing uncertainty and reasoning
under uncertainty.

Types of uncertainty:

� chance, randomness (stochastic)

� imprecision, vagueness, ambiguity (non-stochastic)
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Classical Set Theory

A set is a collection of objects with a common property.

Examples:

� Set of natural numbers smaller than 5: A = f1; 2; 3; 4g

� Unit disk in the complex plane: A = fz jz 2 C; jz j � 1g

� A line in R2: A = f(x; y)jax + by + c = 0; (x; y ; a; b; c) 2 Rg
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Representation of Sets

� Enumeration of elements: A = fx1; x2; : : : ; xng

� Definition by property: A = fx 2 Xjx has property Pg

� Characteristic function: �A(x) : X ! f0; 1g

�A(x) =

(
1 x is member of A
0 x is not member of A
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Set of natural numbers smaller than 5

1

1

876543 x2
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Fuzzy sets
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Why Fuzzy Sets?

� Classical sets are good for well-defined concepts (maths, programs,
etc.)

� Less suitable for representing commonsense knowledge in terms of
vague concepts such as:

� a tall person, slippery road, nice weather, . . .
� want to buy a big car with moderate consumption
� If the temperature is too low, increase heating a lot

24 / 79



Classical Set Approach

set of tall people A = fhjh � 180g

h [cm]

1

180 190170

0

A
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Logical Propositions

“John is tall” . . . true or false

John’s height: hJohn = 180:0 �A(180:0) = 1 (true)
hJohn = 179:5 �A(179:5) = 0 (false)

h [cm]

1

180 190170

0

A
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Fuzzy Set Approach

h [cm]

A

0.6

180 190170

0

1

�A(h) =

8><
>:

1 h is full member of A (h � 190)
(0; 1) h is partial member of A (170 < h < 190)
0 h is not member of A (h � 170)
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Fuzzy Logic Propositions

“John is tall” . . . degree of truth
John’s height: hJohn = 180:0 �A(180:0) = 0:6

hJohn = 179:5 �A(179:5) = 0:56
hPaul = 201:0 �A(201:0) = 1

h [cm]

A

0.6

180 190170

0

1
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Subjective and Context Dependent

h [cm]

0.6

180 190170

0

1

tall in China tall in Europe tall in NBA
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Shapes of Membership Functions

x

1

0

triangular trapezoidal bell-shaped
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Representation of Fuzzy Sets

� Pointwise as a list of membership/element pairs:

A = f�A(x1)=x1; : : : ; �A(xn)=xng = f�A(xi )=xi jxi 2 Xg

� As a list of �-level/�-cut pairs:

A = f�1=A�1 ; �2=A�2 ; : : : ; �n; A�n
g = f�i=A�i

j�i 2 (0; 1)g
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Representation of Fuzzy Sets

� Analytical formula for the membership function:

�A(x) =
1

1 + x2
; x 2 R

or more generally

�(x) =
1

1 + d(x; v)
:

d(x; v) . . . dissimilarity measure

Various shorthand notations: �A(x) : : : A(x) : : : a
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Linguistic Variable

1

t (temperature)

3020 40

base variable

linguistic
terms

linguistic variable

membership
functions

semantic
rule

0

µ

highmediumlow

TEMPERATURE

0
10

Basic requirements: coverage and semantic soundness

33 / 79



Properties of fuzzy sets
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Support of a Fuzzy Set

supp(A) = fx j�A(x) > 0g

0

1

supp( )A

x

A

support is an ordinary set
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Core (Kernel) of a Fuzzy Set

core(A) = fx j�A(x) = 1g

0

1

core( )A
x

A

core is an ordinary set
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�-cut of a Fuzzy Set

A� = fx j�A(x) > �g or A� = fx j�A(x) � �g

0

1

x

a-level
a

A
a

A

A� is an ordinary set
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Convex and Non-Convex Fuzzy Sets

0

1

a

convex non-convex

x

A B

A fuzzy set is convex , all its �-cuts are convex sets.
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Non-Convex Fuzzy Set: an Example

1

64 age [years]

high-risk age

483216

High-risk age for car insurance policy.
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Fuzzy Numbers and Singletons

0

1

fuzzy number
"about 3"

fuzzy
singleton

3 8 x

Fuzzy linear regression: y = 3̃x1 + 5̃x2
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Fuzzy set-theoretic operations
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Complement (Negation) of a Fuzzy Set

A

0

1

x

A

�Ā(x) = 1 � �A(x)
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Intersection (Conjunction) of Fuzzy Sets

0

1

x

A B

�A\B(x) = min(�A(x); �B(x))
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Other Intersection Operators (T-norms)

Probabilistic “and” (product operator):

�A\B(x) = �A(x) � �B(x)

 Lukasiewicz “and” (bounded difference):

�A\B(x) = max(0; �A(x) + �B(x) � 1)

Many other t-norms . . . [0; 1] � [0; 1] ! [0; 1]
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Union (Disjunction) of Fuzzy Sets

0

1

x

A B

�A[B(x) = max(�A(x); �B(x))
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Other Union Operators (T-conorms)

Probabilistic “or”:

�A[B(x) = �A(x) + �B(x) � �A(x) � �B(x)

 Lukasiewicz “or” (bounded sum):

�A[B(x) = min(1; �A(x) + �B(x))

Many other t-conorms . . . [0; 1] � [0; 1] ! [0; 1]
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Demo of a Matlab tool
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Fuzzy Set in Multidimensional Domains

x
y

A = f�A(x; y)=(x; y)j(x; y) 2 X � Y g
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Cylindrical Extension

x
2

A

x
1

extx2(A) =
�
�A(x1)=(x1; x2)j(x1; x2) 2 X1 � X2
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Projection

A

x
2

x
1
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Projection onto X1

A

A
1

x
2

x
1

projx1
(A) =

n
sup
x22X2

�A(x1; x2)=x1jx1 2 X1

o
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Projection onto X2

A

A
2

x
2

x
1

projx2
(A) =

n
sup
x12X1

�A(x1; x2)=x2jx2 2 X2

o
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Intersection on Cartesian Product Space
An operation between fuzzy sets are defined in different domains results
in a multi-dimensional fuzzy set.

Example: A1 \ A2 on X1 � X2:

A
2

x
2

A
1

x
1
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Fuzzy Relations

Classical relation represents the presence or absence of interaction
between the elements of two or more sets.

With fuzzy relations, the degree of association (correlation) is
represented by membership grades.

An n-dimensional fuzzy relation is a mapping

R : X1 � X2 � X3 � � � � Xn ! [0; 1]

which assigns membership grades to all n-tuples (x1; x2; : : : ; xn) from
the Cartesian product universe.
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Fuzzy Relations: Example

Example: R : x � y (“x is approximately equal to y”)

�R(x; y) = e�(x�y)2
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Relational Composition

Given fuzzy relation R defined in X � Y and fuzzy set A defined in X,
derive the corresponding fuzzy set B defined in Y :

B = A � R = projY
�
extX�Y (A) \ R

�
max-min composition:

�B(y) = max
x

�
min

�
�A(x); �R(x; y)

��
Analogous to evaluating a function.
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Graphical Interpretation: Crisp Function

x

y

x

y
crisp argument interval argument
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Graphical Interpretation: Interval Function

crisp argument

x

y

interval argument

x

y
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Graphical Interpretation: Fuzzy Relation

x

y

x

y

crisp argument fuzzy argument
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Max-Min Composition: Example

�B(y) = max
x

�
min

�
�A(x); �R(x; y)

��
; 8y

�
1:0 0:4 0:1 0:0 0:0

�
�

2
66666664

0:0 0:0 0:0 0:4 0:8

0:0 0:1 1:0 0:2 0:0

0:0 1:0 0:0 0:0 0:0

0:0 0:9 0:0 0:0 0:0

0:0 0:0 0:8 0:3 0:0

3
77777775

=

�
0:0 0:1 0:4 0:4 0:8

�
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Fuzzy Systems
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Fuzzy Systems

� Systems with fuzzy parameters

y = 3̃x1 + 5̃x2

� Fuzzy inputs and states

ẋ(t) = Ax(t) + Bu(t); x(0) = 2̃

� Rule-based systems

If the heating power is high

then the temperature will increase fast
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Rule-based Fuzzy Systems

� Linguistic (Mamdani) fuzzy model

If x is A then y is B

� Fuzzy relational model

If x is A then y is B1(0:1); B2(0:8)

� Takagi–Sugeno fuzzy model

If x is A then y = f (x)
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Linguistic Model

If x is A then y is B
x is A – antecedent (fuzzy proposition)
y is B – consequent (fuzzy proposition)

Compound propositions (logical connectives, hedges):
If x1 is very big and x2 is not small
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Multidimensional Antecedent Sets

A1 \ A2 on X1 � X2:

A
2

x
2

A
1

x
1
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Partitioning of the Antecedent Space
A

2
  
1

A
2
  
3

A
2
  
2

A11 A1  3A1  2 A11

A
2
  
1

A1  3

A
2
  
3

A1  2

A
2
  
2

x2

x1

x2

x1

other connectivesconjunctive
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Inference Mechanism

Given the if-then rules and an input fuzzy set, deduce the corresponding
output fuzzy set.

� Formal approach based on fuzzy relations.

� Simplified approach (Mamdani inference).

� Interpolation (additive fuzzy systems).
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Formal Approach

1 Represent each if–then rule as a fuzzy relation.

2 Aggregate these relations in one relation representative for the

entire rule base.

3 Given an input, use relational composition to derive the

corresponding output.
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Modus Ponens Inference Rule

Classical logic

if x is A then y is B
x is A

y is B

Fuzzy logic

if x is A then y is B
x is A0

y is B0
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Relational Representation of Rules

If–then rules can be represented as a relation, using implications or
conjunctions.

Classical implication

A B A! B (:A _ B)

0 0 1

0 1 1

1 0 0

1 1 1

AnB 0 1

0 1 1

1 0 1

R : f0; 1g � f0; 1g ! f0; 1g
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Relational Representation of Rules

If–then rules can be represented as a relation, using implications or
conjunctions.

Conjunction

A B A ^ B

0 0 0

0 1 0

1 0 0

1 1 1

AnB 0 1

0 0 0

1 0 1

R : f0; 1g � f0; 1g ! f0; 1g
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Fuzzy Implications and Conjunctions

Fuzzy implication is represented by a fuzzy relation:

R : [0; 1] � [0; 1] ! [0; 1]

�R(x; y) = I(�A(x); �B(y))

I(a; b) – implication function
“classical” Kleene–Diene I(a; b) = max(1 � a; b)

 Lukasiewicz I(a; b) = min(1; 1 � a + b)
T-norms Mamdani I(a; b) = min(a; b)

Larsen I(a; b) = a � b
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Inference With One Rule

1 Construct implication relation:

�R(x; y) = I(�A(x); �B(y))

2 Use relational composition to derive B0 from A0:

B0 = A0 � R
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Graphical Illustration

�R(x; y) = min
�
�A(x); �B(y)

�
�B0(y) = max

x

�
min

�
�A0(x); �R(x; y)

��

R
A B

= min( , )

x

y

A
B

A’

min(A’,R)

max(min(A’,R))

x

y

R

B

B’

µ

A
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Inference With Several Rules

1 Construct implication relation for each rule i :

�Ri
(x; y) = I(�Ai

(x); �Bi
(y))

2 Aggregate relations Ri into one:

�R(x; y) = aggr(�Ri
(x; y))

The aggr operator is the minimum for implications and the
maximum for conjunctions.

3 Use relational composition to derive B0 from A0:

B0 = A0 � R
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Example: Conjunction

1 Each rule
If x̃ is Ai then ỹ is Bi

is represented as a fuzzy relation on X � Y :

Ri = Ai � Bi �Ri
(x ; y) = �Ai

(x) ^ �Bi
(y)

2 The entire rule base’s relation is the union:

R =
K[
i=1

Ri �R(x ; y) = max
1�i�K

[�Ri
(x ; y)]

3 Given an input value A0 the output value B0 is:

B0 = A0 � R �B0(y) = max
X

[�A0(x) ^ �R(x ; y)]
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Example: Conjunction, Aggregation

1 Each rule
If x̃ is Ai then ỹ is Bi
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Example: Conjunction, Aggregation, and Composition
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Example: Modeling of Liquid Level

F
o  u  t

h

F
in

- If Fin is Zero then h is Zero

- If Fin is Med then h is Med

- If Fin is Large then h is Med

Zero Medium

10

1

3
h

2

Zero LargeMedium

0

1

10020

Fin

40 8060
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R1 If Flow is Zero then Level is Zero
Z

er
o

M
ed
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1

h

m

Zero LargeMedium
1

Fin

m

Fin

R1
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R2 If Flow is Medium then Level is Medium
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Zero LargeMedium
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m

Fin

R2

73 / 79



R3 If Flow is Large then Level is Medium
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Zero LargeMedium
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m

Fin
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Aggregated Relation
Z
er
o

M
ed
iu
m

1

h

�

Zero LargeMedium
1

Fin
�

Fin

R1

R2
R3
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Simplified Approach

1 Compute the match between the input and the antecedent
membership functions (degree of fulfillment).

2 Clip the corresponding output fuzzy set for each rule by using the
degree of fulfillment.

3 Aggregate output fuzzy sets of all the rules into one fuzzy set.

This is called the Mamdani or max-min inference method.

74 / 79



Water Tank Example
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Mamdani Inference: Example
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Mamdani Inference: Example
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Given a crisp (numerical) input (Fin).
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If Fin is Zero then . . .
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Determine the degree of fulfillment (truth) of the first rule.
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If Fin is Zero then h is Zero
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Clip consequent membership function of the first rule.
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If Fin is Medium then . . .

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Determine the degree of fulfillment (truth) of the second rule.
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If Fin is Medium then h is Medium
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Clip consequent membership function of the second rule.
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Aggregation
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Combine the result of the two rules (union).
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Defuzzification

conversion of a fuzzy set to a crisp value

y' y

(a) center of gravity

y' y

(b) mean of maxima
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Center-of-Gravity Method

y0 =

FX
j=1

�B0(yj)yj

FX
j=1

�B0(yj)
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Defuzzification
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Compute a crisp (numerical) output of the model (center-of-gravity
method).
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