
Reinforcement Learning
Part II: RL Using Function Approximation

Jens Kober Ivo Grondman Robert Babuška
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Principle of RL

Controller Process

action u

state x

Reward function
reward r

� Interact with a system through states and actions

� Receive rewards as performance feedback

This lecture: approximate RL – continuous states & actions
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Recall: Solution of the RL Problem

� Q-function Q� of policy �

� Optimal Q-function Q� = max� Q
�

Satisfies Bellman optimality equation:

Q�(x; u) = �(x; u) +  max
u0

Q�(f (x; u); u0)

� Optimal policy �� – greedy in Q�:

��(x) = arg max
u

Q�(x; u)

4 / 50



Recall: Solution of the RL Problem

� Q-function Q� of policy �

� Optimal Q-function Q� = max� Q
�

Satisfies Bellman optimality equation:

Q�(x; u) = �(x; u) +  max
u0

Q�(f (x; u); u0)

� Optimal policy �� – greedy in Q�:

��(x) = arg max
u

Q�(x; u)

4 / 50



Recall: Solution of the RL Problem

� Q-function Q� of policy �

� Optimal Q-function Q� = max� Q
�

Satisfies Bellman optimality equation:

Q�(x; u) = �(x; u) +  max
u0

Q�(f (x; u); u0)

� Optimal policy �� – greedy in Q�:

��(x) = arg max
u

Q�(x; u)

4 / 50



Types of RL Algorithms

By path to optimal solution

1 Off-policy – find Q�, use it to compute ��

2 On-policy – find Q�, improve �, repeat

By level of interaction with the process

1 Online – learn by interacting with the process

2 Offline – data collected in advance (Monte-Carlo methods)

By model knowledge

1 Model-free – no f and �, only transition data (RL)

2 Model-based – f and � known (dynamic programming)

3 Model-learning – estimate f and � from transition data
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Offline, Model-based Solution: Q-iteration (Discrete)

� Bellman optimality equation:

Q�(x; u) = �(x; u) +  max
u0

Q�(f (x; u); u0)

Turn it into an iterative update:

Q-iteration

repeat at each iteration `

for all x; u do
Q`+1(x; u) �(x; u) +  maxu0 Q`(f (x; u); u0)

end for
until convergence to Q�

� Once Q� available: ��(x) = arg maxu Q
�(x; u)
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Q-iteration Convergence

� Each update is a contraction with factor :

kQ`+1 � Q�k
1
�  kQ` � Q�k

1

) Q-iteration monotonically converges to Q�
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Cleaning Robot: Q-iteration Demo

Discount factor:  = 0:5
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Cleaning Robot: Q-iteration Progress

Q`+1(x; u) �(x; u) +  max
u0

Q`(f (x; u); u0)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0:5 ; 0 0 ; 2:5 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0:25 0:5 ; 1:25 0:25 ; 2:5 1:25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0:625 0:5 ; 1:25 0:625 ; 2:5 1:25 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0:625 0:5 ; 1:25 0:625 ; 2:5 1:25 ; 5 0 ; 0

�
�

� �1 1 1 1 �

V
� 0 1 1:25 2:5 5 0

Note: Q` = Q(x; left) ; Q(x; right)
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Classical Q-function is a Table

� Separate Q-value for each x and u

0 1 .5 0.625 1.25 0

0 0.625 1.25 2.5 5 0

� In real-life control, X, U continuous!
Tabular representation impossible

) need to approximate the Q-function
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Q-function Approximation

� In real-life control, X, U continuous

) approximate Q-function bQ must be used

� Policy is greedy in bQ, computed on demand for given x :

�(x) = arg max
u

bQ(x; u)
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Q-function Approximation (cont’d)

� One option: use linearly parameterized approximation

bQ =
NX
i=1

�i�i (x; u)

with �i (x; u) : X � U 7! R.

� �(x) = arg maxu
bQ(x; u) is now a continuous optimization

procedure!

� Approximator must ensure efficient arg max solution
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Approximating Over the Action Space

� Approximator must ensure efficient “arg max” solution

) Typically: action discretization

� Choose M discrete actions u1; : : : ; uM 2 U

Solve “arg max” by explicit enumeration

� Example: grid discretization
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Approximating Over the State Space

� Typically: basis functions

�1; : : : ; �N : X ! [0; 1]

� Usually normalized:
P

i �i (x) = 1

� E.g., fuzzy approximation, RBF network approximation
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Q-function Approximation Using Basis Functions

Given:

1 N basis functions �1; : : : ; �N

2 M discrete actions u1; : : : ; uM

Store:

3 N �M matrix of parameters �

(one for each pair basis function–discrete action)

Approximate Q-function

bQ�(x; uj) =
NX
i=1

�i (x)�i ;j

= [�1(x) : : : �N(x)]

264�1;j...
�N;j

375
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Policy from Approximate Q-function

� Recall optimal policy:

��(x) = arg max
u

Q�(x; u)

� Policy with discretized actions:

b��(x) = arg max
uj ; j=1;:::;M

bQ��(x; uj)

(�� = converged parameter matrix)
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Fuzzy Approximator

� Basis functions: pyramidal membership functions (MFs)
= cross-product of triangular MFs

� Each MF i has core (center) xi

� �i ;j can be seen as bQ(xi ; uj)
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Fuzzy Q-iteration

Recall classical Q-iteration:

repeat at each iteration `

for all x; u do
Q`+1(x; u) = �(x; u) + maxu0Q`(f (x; u); u0)

end for
until convergence

Fuzzy Q-iteration

repeat at each iteration `

for all cores xi , discrete actions uj do
�`+1;i ;j = �(xi ; uj) + maxj 0 bQ�`(f (xi ; uj); uj 0)

end for
until convergence
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Another Example: Inverted Pendulum Swing-up

� x = [angle �; velocity �̇]T

� u = voltage

� �(x; u) = �xT
"

5 0
0 0:1

#
x � uT 1u

� Discount factor  = 0:98

� Goal: stabilize pointing up

� Insufficient actuation ) need to swing back & forth
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Inverted Pendulum: Near-optimal Solution

Left: Q-function for u = 0 Right: policy
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Inverted Pendulum: Fuzzy Q-iteration Demo

MFs: 41� 21 equidistant grid
Discretization: 5 actions, logarithmically spaced around 0
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Inverted Pendulum: Fuzzy Q-iteration Demo

Demo
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Ingredients

Actor

Critic

Process

Rewardr

x

x

u

�

� Explicitly separated value function and policy

� Actor = control policy �(x)

� Critic = state value function V (x)
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Continuous Action/State Space

To deal with continuity:

� Actor parameterized in ': �̂(x; ')

� Critic parameterized in �: V̂ (x; �)

Parameters ' and � have finite size, but approximate functions on
continuous (infinitely large) spaces!
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Algorithm

On-policy: find Q�, improve �, repeat

1 Take Bellman equation for V �, at some xk :

V �(x) = �(x; �(x)) + V �(f (x; �(x)))

2 Take temporal difference ∆:

∆ = �(x; �(x)) + V �(f (x; �(x)))� V �(x)

3 Use sample (xk ; uk ; xk+1; rk+1) at each step k and parameterized
V :

∆k = rk+1 + V̂ �(xk+1; �k)� V̂ �(xk ; �k)

Note: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration
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28 / 50



Algorithm

On-policy: find Q�, improve �, repeat

1 Take Bellman equation for V �, at some xk :

V �(x) = �(x; �(x)) + V �(f (x; �(x)))

2 Take temporal difference ∆:

∆ = �(x; �(x)) + V �(f (x; �(x)))� V �(x)

3 Use sample (xk ; uk ; xk+1; rk+1) at each step k and parameterized
V :

∆k = rk+1 + V̂ �(xk+1; �k)� V̂ �(xk ; �k)
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Algorithm (cont’d)

4 Use ∆k for critic update:

�k+1 = �k + �c∆k
@V̂ (x; �)

@�

�����x=xk
�=�k

�c > 0: learning rate of critic

� ∆k > 0, i.e., rk+1 + V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) old estimate too low, increase V̂ .

� ∆k < 0, i.e., rk+1 + V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) old estimate too high, decrease V̂ .
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Algorithm (cont’d)

Recall: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

5 Use ∆k and exploration term ũk for actor update:

'k+1 = 'k + �a∆k ũk
@�̂(x; ')

@'

����x=xk
'='k

�a 2 (0; 1]: learning rate of actor

� Product ∆k ũk determines sign in update

� ∆k > 0, i.e., rk+1 + V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) ũk had positive effect. Move in direction of uk .

� ∆k < 0, i.e., rk+1 + V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) ũk had negative effect. Move away from uk .
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) ũk had negative effect. Move away from uk .

30 / 50



Algorithm (cont’d)
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Complete Actor-Critic Algorithm

Actor-critic

for every trial do
initialize x0, choose initial action u0 = ũ0
repeat for each step k

apply uk , measure xk+1, receive rk+1

choose next action uk+1 = �̂(xk+1; 'k) + ũk+1

∆k = rk+1 + V̂ (xk+1; �k)� V̂ (xk ; �k)

�k+1 = �k + �c∆k
@V̂ (x;�)

@�

����x=xk
�=�k

'k+1 = 'k + �a∆k ũk
@�̂(x;')

@'

���x=xk
'='k

until terminal state
end for
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Pendulum Swing-up Learning

Figure: Solution to pendulum swing-up problem.
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Radial Basis Functions

bf (x) = �T e�(x)

where e�(x) is a column vector with the value of normalized RBFs:

e�i (x) =
�i (x)P
j �j(x)

with �i (x) = e�
1
2
(x�ci )

TB�1(x�ci )

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

x

φ
(x

)
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Evolution of a Policy

Figure: Value function and policy in learning phase.
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Policy After Saturation

Figure: Trajectory of pendulum.
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Example: Inverted Pendulum
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Cascade Control Scheme
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PD Control
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Reinforcement Learning
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Reinforcement Learning: Final Performance
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Critic and Actor Surfaces

critic actor
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Example: Walking Robot Leo (Erik Schuitema)

https://youtu.be/SBf5-eF-EIw
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Example: Autonomous Helicopter

https://youtu.be/VCdxqn0fcnE
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Mixed Model-Based and Model-Free: Dyna

� Experience is usually costly to obtain.

� Sometimes, a priori information on the environment is available
(though perhaps uncertain).

� Use experience, but also learn from the model.
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Example: Cart-Pole Swing-up (Marc P. Deisenroth)

https://youtu.be/XiigTGKZfks
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Types of RL Algorithms

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

1 Actor-critic – learn value function and policy

2 Critic-only – learn value function

3 Actor-only – learn policy
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Example: Ball-in-a-Cup

https://youtu.be/qtqubguikMk
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Summary

� Reinforcement learning =
optimal, adaptive, model-free control

� Real-life RL: continuous states and actions
– approximation required

� Effective algorithms for approximate RL,
able to solve complex tasks from scratch
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More Videos

� https://youtu.be/SH3bADiB7uQ

� https://youtu.be/2NLN-6fMWXI

� https://youtu.be/C63avx1YCF4

� https://youtu.be/W_gxLKSsSIE

� https://youtu.be/6ovzs1KSkJE

� https://youtu.be/8Thdf_7j4dI

� https://youtu.be/nM1HTp_P3lY

� http://www.cs.utexas.edu/~AustinVilla/?p=research/

learned_walk
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