
Reinforcement Learning
Part II: RL Using Function Approximation

Jens Kober Ivo Grondman Robert Babuška

Knowledge-Based Control Systems (SC42050)

Cognitive Robotics

3mE, Delft University of Technology, The Netherlands

28-02-2018

Outline

1 Introduction

2 Q-iteration

3 Dealing with continuous spaces
Approximating the Q-function

Fuzzy Q-iteration

Actor-critic methods

4 More examples

2 / 50

Principle of RL

Controller Process

action u

state x

Reward function
reward r

� Interact with a system through states and actions

� Receive rewards as performance feedback

This lecture: approximate RL – continuous states & actions

3 / 50

Principle of RL

Controller Process

action u

state x

Reward function
reward r

� Interact with a system through states and actions

� Receive rewards as performance feedback

This lecture: approximate RL – continuous states & actions

3 / 50

Recall: Solution of the RL Problem

� Q-function Q� of policy �

� Optimal Q-function Q� = max� Q
�

Satisfies Bellman optimality equation:

Q�(x; u) = �(x; u) +
 max
u0

Q�(f (x; u); u0)

� Optimal policy �� – greedy in Q�:

��(x) = arg max
u

Q�(x; u)

4 / 50

Recall: Solution of the RL Problem

� Q-function Q� of policy �

� Optimal Q-function Q� = max� Q
�

Satisfies Bellman optimality equation:

Q�(x; u) = �(x; u) +
 max
u0

Q�(f (x; u); u0)

� Optimal policy �� – greedy in Q�:

��(x) = arg max
u

Q�(x; u)

4 / 50

Recall: Solution of the RL Problem

� Q-function Q� of policy �

� Optimal Q-function Q� = max� Q
�

Satisfies Bellman optimality equation:

Q�(x; u) = �(x; u) +
 max
u0

Q�(f (x; u); u0)

� Optimal policy �� – greedy in Q�:

��(x) = arg max
u

Q�(x; u)

4 / 50

Types of RL Algorithms

By path to optimal solution

1 Off-policy – find Q�, use it to compute ��

2 On-policy – find Q�, improve �, repeat

By level of interaction with the process

1 Online – learn by interacting with the process

2 Offline – data collected in advance (Monte-Carlo methods)

By model knowledge

1 Model-free – no f and �, only transition data (RL)

2 Model-based – f and � known (dynamic programming)

3 Model-learning – estimate f and � from transition data

5 / 50

Types of RL Algorithms

By path to optimal solution

1 Off-policy – find Q�, use it to compute ��

2 On-policy – find Q�, improve �, repeat

By level of interaction with the process

1 Online – learn by interacting with the process

2 Offline – data collected in advance (Monte-Carlo methods)

By model knowledge

1 Model-free – no f and �, only transition data (RL)

2 Model-based – f and � known (dynamic programming)

3 Model-learning – estimate f and � from transition data

5 / 50

Types of RL Algorithms

By path to optimal solution

1 Off-policy – find Q�, use it to compute ��

2 On-policy – find Q�, improve �, repeat

By level of interaction with the process

1 Online – learn by interacting with the process

2 Offline – data collected in advance (Monte-Carlo methods)

By model knowledge

1 Model-free – no f and �, only transition data (RL)

2 Model-based – f and � known (dynamic programming)

3 Model-learning – estimate f and � from transition data

5 / 50

1 Introduction

2 Q-iteration

3 Dealing with continuous spaces
Fuzzy Q-iteration

4 More examples

6 / 50

Offline, Model-based Solution: Q-iteration (Discrete)

� Bellman optimality equation:

Q�(x; u) = �(x; u) +
 max
u0

Q�(f (x; u); u0)

Turn it into an iterative update:

Q-iteration

repeat at each iteration `

for all x; u do
Q`+1(x; u) �(x; u) +
 maxu0 Q`(f (x; u); u0)

end for
until convergence to Q�

� Once Q� available: ��(x) = arg maxu Q
�(x; u)

7 / 50

Offline, Model-based Solution: Q-iteration (Discrete)

� Bellman optimality equation:

Q�(x; u) = �(x; u) +
 max
u0

Q�(f (x; u); u0)

Turn it into an iterative update:

Q-iteration

repeat at each iteration `

for all x; u do
Q`+1(x; u) �(x; u) +
 maxu0 Q`(f (x; u); u0)

end for
until convergence to Q�

� Once Q� available: ��(x) = arg maxu Q
�(x; u)

7 / 50

Offline, Model-based Solution: Q-iteration (Discrete)

� Bellman optimality equation:

Q�(x; u) = �(x; u) +
 max
u0

Q�(f (x; u); u0)

Turn it into an iterative update:

Q-iteration

repeat at each iteration `

for all x; u do
Q`+1(x; u) �(x; u) +
 maxu0 Q`(f (x; u); u0)

end for
until convergence to Q�

� Once Q� available: ��(x) = arg maxu Q
�(x; u)

7 / 50

Q-iteration Convergence

� Each update is a contraction with factor
:

kQ`+1 � Q�k
1
�
 kQ` � Q�k

1

) Q-iteration monotonically converges to Q�

8 / 50

Cleaning Robot: Q-iteration Demo

Discount factor:
 = 0:5

9 / 50

Cleaning Robot: Q-iteration Progress

Q`+1(x; u) �(x; u) +
 max
u0

Q`(f (x; u); u0)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0:5 ; 0 0 ; 2:5 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0:25 0:5 ; 1:25 0:25 ; 2:5 1:25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0:625 0:5 ; 1:25 0:625 ; 2:5 1:25 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0:625 0:5 ; 1:25 0:625 ; 2:5 1:25 ; 5 0 ; 0

�
�

� �1 1 1 1 �

V
� 0 1 1:25 2:5 5 0

Note: Q` = Q(x; left) ; Q(x; right)

10 / 50

Classical Q-function is a Table

� Separate Q-value for each x and u

0 1 .5 0.625 1.25 0

0 0.625 1.25 2.5 5 0

� In real-life control, X, U continuous!
Tabular representation impossible

) need to approximate the Q-function

11 / 50

Classical Q-function is a Table

� Separate Q-value for each x and u

0 1 .5 0.625 1.25 0

0 0.625 1.25 2.5 5 0

� In real-life control, X, U continuous!
Tabular representation impossible

) need to approximate the Q-function

11 / 50

Classical Q-function is a Table

� Separate Q-value for each x and u

0 1 .5 0.625 1.25 0

0 0.625 1.25 2.5 5 0

� In real-life control, X, U continuous!
Tabular representation impossible

) need to approximate the Q-function

11 / 50

1 Introduction

2 Q-iteration

3 Dealing with continuous spaces
Approximating the Q-function

Fuzzy Q-iteration

Actor-critic methods

4 More examples

12 / 50

Q-function Approximation

� In real-life control, X, U continuous

) approximate Q-function bQ must be used

� Policy is greedy in bQ, computed on demand for given x :

�(x) = arg max
u

bQ(x; u)

13 / 50

Q-function Approximation (cont’d)

� One option: use linearly parameterized approximation

bQ =
NX
i=1

�i�i (x; u)

with �i (x; u) : X � U 7! R.

� �(x) = arg maxu
bQ(x; u) is now a continuous optimization

procedure!

� Approximator must ensure efficient arg max solution

14 / 50

Q-function Approximation (cont’d)

� One option: use linearly parameterized approximation

bQ =
NX
i=1

�i�i (x; u)

with �i (x; u) : X � U 7! R.

� �(x) = arg maxu
bQ(x; u) is now a continuous optimization

procedure!

� Approximator must ensure efficient arg max solution

14 / 50

Q-function Approximation (cont’d)

� One option: use linearly parameterized approximation

bQ =
NX
i=1

�i�i (x; u)

with �i (x; u) : X � U 7! R.

� �(x) = arg maxu
bQ(x; u) is now a continuous optimization

procedure!

� Approximator must ensure efficient arg max solution

14 / 50

Approximating Over the Action Space

� Approximator must ensure efficient “arg max” solution

) Typically: action discretization

� Choose M discrete actions u1; : : : ; uM 2 U

Solve “arg max” by explicit enumeration

� Example: grid discretization

15 / 50

Approximating Over the Action Space

� Approximator must ensure efficient “arg max” solution

) Typically: action discretization

� Choose M discrete actions u1; : : : ; uM 2 U

Solve “arg max” by explicit enumeration

� Example: grid discretization

15 / 50

Approximating Over the State Space

� Typically: basis functions

�1; : : : ; �N : X ! [0; 1]

� Usually normalized:
P

i �i (x) = 1

� E.g., fuzzy approximation, RBF network approximation

16 / 50

Approximating Over the State Space

� Typically: basis functions

�1; : : : ; �N : X ! [0; 1]

� Usually normalized:
P

i �i (x) = 1

� E.g., fuzzy approximation,

RBF network approximation

16 / 50

Approximating Over the State Space

� Typically: basis functions

�1; : : : ; �N : X ! [0; 1]

� Usually normalized:
P

i �i (x) = 1

� E.g., fuzzy approximation, RBF network approximation

16 / 50

Q-function Approximation Using Basis Functions

Given:

1 N basis functions �1; : : : ; �N

2 M discrete actions u1; : : : ; uM

Store:

3 N �M matrix of parameters �

(one for each pair basis function–discrete action)

Approximate Q-function

bQ�(x; uj) =
NX
i=1

�i (x)�i ;j

= [�1(x) : : : �N(x)]

264�1;j...
�N;j

375

17 / 50

Q-function Approximation Using Basis Functions

Given:

1 N basis functions �1; : : : ; �N

2 M discrete actions u1; : : : ; uM

Store:

3 N �M matrix of parameters �

(one for each pair basis function–discrete action)

Approximate Q-function

bQ�(x; uj) =
NX
i=1

�i (x)�i ;j

= [�1(x) : : : �N(x)]

264�1;j...
�N;j

375

17 / 50

Q-function Approximation Using Basis Functions

Given:

1 N basis functions �1; : : : ; �N

2 M discrete actions u1; : : : ; uM

Store:

3 N �M matrix of parameters �

(one for each pair basis function–discrete action)

Approximate Q-function

bQ�(x; uj) =
NX
i=1

�i (x)�i ;j = [�1(x) : : : �N(x)]

264�1;j...
�N;j

375

17 / 50

Policy from Approximate Q-function

� Recall optimal policy:

��(x) = arg max
u

Q�(x; u)

� Policy with discretized actions:

b��(x) = arg max
uj ; j=1;:::;M

bQ��(x; uj)

(�� = converged parameter matrix)

18 / 50

Fuzzy Approximator

� Basis functions: pyramidal membership functions (MFs)
= cross-product of triangular MFs

� Each MF i has core (center) xi

� �i ;j can be seen as bQ(xi ; uj)

19 / 50

Fuzzy Q-iteration

Recall classical Q-iteration:

repeat at each iteration `

for all x; u do
Q`+1(x; u) = �(x; u) +
maxu0Q`(f (x; u); u0)

end for
until convergence

Fuzzy Q-iteration

repeat at each iteration `

for all cores xi , discrete actions uj do
�`+1;i ;j = �(xi ; uj) +
maxj 0 bQ�`(f (xi ; uj); uj 0)

end for
until convergence

20 / 50

Another Example: Inverted Pendulum Swing-up

� x = [angle �; velocity �̇]T

� u = voltage

� �(x; u) = �xT
"

5 0
0 0:1

#
x � uT 1u

� Discount factor
 = 0:98

� Goal: stabilize pointing up

� Insufficient actuation) need to swing back & forth

21 / 50

Inverted Pendulum: Near-optimal Solution

Left: Q-function for u = 0 Right: policy

22 / 50

Inverted Pendulum: Fuzzy Q-iteration Demo

MFs: 41� 21 equidistant grid
Discretization: 5 actions, logarithmically spaced around 0

23 / 50

Inverted Pendulum: Fuzzy Q-iteration Demo

Demo

24 / 50

1 Introduction

2 Q-iteration

3 Dealing with continuous spaces
Approximating the Q-function

Fuzzy Q-iteration

Actor-critic methods

4 More examples

25 / 50

Ingredients

Actor

Critic

Process

Rewardr

x

x

u

�

� Explicitly separated value function and policy

� Actor = control policy �(x)

� Critic = state value function V (x)

26 / 50

Continuous Action/State Space

To deal with continuity:

� Actor parameterized in ': �̂(x; ')

� Critic parameterized in �: V̂ (x; �)

Parameters ' and � have finite size, but approximate functions on
continuous (infinitely large) spaces!

27 / 50

Algorithm

On-policy: find Q�, improve �, repeat

1 Take Bellman equation for V �, at some xk :

V �(x) = �(x; �(x)) +
V �(f (x; �(x)))

2 Take temporal difference ∆:

∆ = �(x; �(x)) +
V �(f (x; �(x)))� V �(x)

3 Use sample (xk ; uk ; xk+1; rk+1) at each step k and parameterized
V :

∆k = rk+1 +
V̂ �(xk+1; �k)� V̂ �(xk ; �k)

Note: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

28 / 50

Algorithm

On-policy: find Q�, improve �, repeat

1 Take Bellman equation for V �, at some xk :

V �(x) = �(x; �(x)) +
V �(f (x; �(x)))

2 Take temporal difference ∆:

∆ = �(x; �(x)) +
V �(f (x; �(x)))� V �(x)

3 Use sample (xk ; uk ; xk+1; rk+1) at each step k and parameterized
V :

∆k = rk+1 +
V̂ �(xk+1; �k)� V̂ �(xk ; �k)

Note: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

28 / 50

Algorithm

On-policy: find Q�, improve �, repeat

1 Take Bellman equation for V �, at some xk :

V �(x) = �(x; �(x)) +
V �(f (x; �(x)))

2 Take temporal difference ∆:

∆ = �(x; �(x)) +
V �(f (x; �(x)))� V �(x)

3 Use sample (xk ; uk ; xk+1; rk+1) at each step k and parameterized
V :

∆k = rk+1 +
V̂ �(xk+1; �k)� V̂ �(xk ; �k)

Note: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

28 / 50

Algorithm (cont’d)

4 Use ∆k for critic update:

�k+1 = �k + �c∆k
@V̂ (x; �)

@�

�����x=xk
�=�k

�c > 0: learning rate of critic

� ∆k > 0, i.e., rk+1 +
V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) old estimate too low, increase V̂ .

� ∆k < 0, i.e., rk+1 +
V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) old estimate too high, decrease V̂ .

29 / 50

Algorithm (cont’d)

4 Use ∆k for critic update:

�k+1 = �k + �c∆k
@V̂ (x; �)

@�

�����x=xk
�=�k

�c > 0: learning rate of critic

� ∆k > 0, i.e., rk+1 +
V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) old estimate too low, increase V̂ .

� ∆k < 0, i.e., rk+1 +
V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) old estimate too high, decrease V̂ .

29 / 50

Algorithm (cont’d)

Recall: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

5 Use ∆k and exploration term ũk for actor update:

'k+1 = 'k + �a∆k ũk
@�̂(x; ')

@'

����x=xk
'='k

�a 2 (0; 1]: learning rate of actor

� Product ∆k ũk determines sign in update

� ∆k > 0, i.e., rk+1 +
V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) ũk had positive effect. Move in direction of uk .

� ∆k < 0, i.e., rk+1 +
V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) ũk had negative effect. Move away from uk .

30 / 50

Algorithm (cont’d)

Recall: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

5 Use ∆k and exploration term ũk for actor update:

'k+1 = 'k + �a∆k ũk
@�̂(x; ')

@'

����x=xk
'='k

�a 2 (0; 1]: learning rate of actor

� Product ∆k ũk determines sign in update

� ∆k > 0, i.e., rk+1 +
V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) ũk had positive effect. Move in direction of uk .

� ∆k < 0, i.e., rk+1 +
V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) ũk had negative effect. Move away from uk .

30 / 50

Algorithm (cont’d)

Recall: uk = �̂(xk ; 'k) + ũk , �̂ = actor, ũk = exploration

5 Use ∆k and exploration term ũk for actor update:

'k+1 = 'k + �a∆k ũk
@�̂(x; ')

@'

����x=xk
'='k

�a 2 (0; 1]: learning rate of actor

� Product ∆k ũk determines sign in update

� ∆k > 0, i.e., rk+1 +
V̂ �(xk+1; �k) > V̂ �(xk ; �k)
) ũk had positive effect. Move in direction of uk .

� ∆k < 0, i.e., rk+1 +
V̂ �(xk+1; �k) < V̂ �(xk ; �k)
) ũk had negative effect. Move away from uk .

30 / 50

Complete Actor-Critic Algorithm

Actor-critic

for every trial do
initialize x0, choose initial action u0 = ũ0
repeat for each step k

apply uk , measure xk+1, receive rk+1

choose next action uk+1 = �̂(xk+1; 'k) + ũk+1

∆k = rk+1 + V̂ (xk+1; �k)� V̂ (xk ; �k)

�k+1 = �k + �c∆k
@V̂ (x;�)

@�

����x=xk
�=�k

'k+1 = 'k + �a∆k ũk
@�̂(x;')

@'

���x=xk
'='k

until terminal state
end for

31 / 50

Pendulum Swing-up Learning

Figure: Solution to pendulum swing-up problem.

32 / 50

Radial Basis Functions

bf (x) = �T e�(x)

where e�(x) is a column vector with the value of normalized RBFs:

e�i (x) =
�i (x)P
j �j(x)

with �i (x) = e�
1
2
(x�ci)

TB�1(x�ci)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

x

φ
(x

)

33 / 50

Evolution of a Policy

Figure: Value function and policy in learning phase.

34 / 50

Policy After Saturation

Figure: Trajectory of pendulum.

35 / 50

Example: Inverted Pendulum

36 / 50

Cascade Control Scheme

37 / 50

PD Control

38 / 50

Reinforcement Learning

39 / 50

Reinforcement Learning: Final Performance

40 / 50

Critic and Actor Surfaces

critic actor

41 / 50

1 Introduction

2 Q-iteration

3 Dealing with continuous spaces
Fuzzy Q-iteration

4 More examples

42 / 50

Example: Walking Robot Leo (Erik Schuitema)

https://youtu.be/SBf5-eF-EIw

43 / 50

https://youtu.be/SBf5-eF-EIw

Example: Autonomous Helicopter

https://youtu.be/VCdxqn0fcnE

44 / 50

https://youtu.be/VCdxqn0fcnE

Mixed Model-Based and Model-Free: Dyna

� Experience is usually costly to obtain.

� Sometimes, a priori information on the environment is available
(though perhaps uncertain).

� Use experience, but also learn from the model.

45 / 50

Mixed Model-Based and Model-Free: Dyna

� Experience is usually costly to obtain.

� Sometimes, a priori information on the environment is available
(though perhaps uncertain).

� Use experience, but also learn from the model.

45 / 50

Mixed Model-Based and Model-Free: Dyna

� Experience is usually costly to obtain.

� Sometimes, a priori information on the environment is available
(though perhaps uncertain).

� Use experience, but also learn from the model.

45 / 50

Example: Cart-Pole Swing-up (Marc P. Deisenroth)

https://youtu.be/XiigTGKZfks

46 / 50

https://youtu.be/XiigTGKZfks

Types of RL Algorithms

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

1 Actor-critic – learn value function and policy

2 Critic-only – learn value function

3 Actor-only – learn policy

47 / 50

Types of RL Algorithms

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

1 Actor-critic – learn value function and policy

2 Critic-only – learn value function

3 Actor-only – learn policy

47 / 50

Types of RL Algorithms

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

1 Actor-critic – learn value function and policy

2 Critic-only – learn value function

3 Actor-only – learn policy

47 / 50

Types of RL Algorithms

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

1 Actor-critic – learn value function and policy

2 Critic-only – learn value function

3 Actor-only – learn policy

47 / 50

Example: Ball-in-a-Cup

https://youtu.be/qtqubguikMk

48 / 50

https://youtu.be/qtqubguikMk

Summary

� Reinforcement learning =
optimal, adaptive, model-free control

� Real-life RL: continuous states and actions
– approximation required

� Effective algorithms for approximate RL,
able to solve complex tasks from scratch

49 / 50

More Videos

� https://youtu.be/SH3bADiB7uQ

� https://youtu.be/2NLN-6fMWXI

� https://youtu.be/C63avx1YCF4

� https://youtu.be/W_gxLKSsSIE

� https://youtu.be/6ovzs1KSkJE

� https://youtu.be/8Thdf_7j4dI

� https://youtu.be/nM1HTp_P3lY

� http://www.cs.utexas.edu/~AustinVilla/?p=research/

learned_walk

50 / 50

https://youtu.be/SH3bADiB7uQ
https://youtu.be/2NLN-6fMWXI
https://youtu.be/C63avx1YCF4
https://youtu.be/W_gxLKSsSIE
https://youtu.be/6ovzs1KSkJE
https://youtu.be/8Thdf_7j4dI
https://youtu.be/nM1HTp_P3lY
http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk
http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk

	Introduction
	Q-iteration
	Dealing with continuous spaces
	Approximating the Q-function
	Actor-critic methods

	More examples
	Appendix
	Conclusion

	anm2:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

