Artificial Neural Networks 2

Tim de Bruin Robert Babuška t.d.debruin@tudelft.nl

Knowledge-Based Control Systems (SC42050) Cognitive Robotics
3 mE , Delft University of Technology, The Netherlands

07-03-2018

TuDelft

Recap artificial neural networks part 1

Backward pass: calculate $\nabla_{W} J$ and use it in an optimization algorithm to iteratively update the weights of the network to minimize the loss J.

Recap artificial neural networks part 1

TuDelft

Outline

Last lecture:
(1) Introduction to artificial neural networks
(2) Simple networks \& approximation properties
(3) Deep Learning
(4) Optimization

This lecture:
(1) Regularization \& Validation
(2) Specialized network architectures
(3) Beyond supervised learning
(4) Examples

Outline

(1) Regularization \& Validation
(2) Specialized structures

3 (Semi) Unsupervised Learning \& Reinforcement Learning
(4) Examples

TUDelfit
fiUDelft
6/49

Approximation error vs. number of parameters
Underfitting

Good fit

fiudelif
fiUDelif
$10 / 49$

Validation Data Set

Cross-Validation

- Regularity criterion (for two data sets):

$$
R C=\frac{1}{2}\left[\frac{1}{N_{A}} \sum_{i=1}^{N_{A}}\left(y^{A}(i)-\hat{y}_{B}^{A}(i)\right)^{2}+\frac{1}{N_{B}} \sum_{i=1}^{N_{B}}\left(y^{B}(i)-\hat{y}_{A}^{B}(i)\right)^{2}\right]
$$

- v-fold cross-validation

Test set

The validation set is used to select the right hyper-parameters.

- Structure of the network
- Cost function
- Optimization parameters
- ...

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been over-fitted to the validation set.

Some Common Criteria

- Mean squared error (root mean square error):

$$
M S E=\frac{1}{N} \sum_{i=1}^{N}(y(i)-\hat{y}(i))^{2}
$$

- Variance accounted for (VAF):

$$
\operatorname{VAF}=100 \% \cdot\left[1-\frac{\operatorname{var}(y-\hat{y})}{\operatorname{var}(y)}\right]
$$

- Check the correlation of the residual $y-\hat{y}$ to u, y and itself.

Regularization

Regularization: Any strategy that attempts to improve the test performance, but not the training performance

- Limit model capacity (smaller network)
- Early stopping of the optimization algorithm
- Penalizing large weights (1 or 2 norm)
- Ensembles (dropout)
- ...

Weight penalties

Cost function: $J_{r}(y, t, \mathbf{w})=J^{*}(y, t)+\lambda\|\mathbf{w}\|_{p}^{p}$

- $p=1: L^{1}$: Leads to 0 -weights (sparsity, feature selection)
- $p=2: L^{2}$: Leads to small weights
Demo - Overfiting
Demo - L1 regularization
Demo - L2 regularization

TUDelft

Dropout

Practical approximation of an automatic ensemble method. During training, drop out units (neurons) with probability p. During testing use all units, multiply weights by $(1-p)$.

Model ensembles

What if we train multiple models instead of one?

For k models, where the errors made are zero mean, normally distributed, with variance $v=\mathbb{E}\left[\epsilon_{i}^{2}\right]$, covariance $c=\mathbb{E}\left[\epsilon_{i} \epsilon_{j}\right]$. The variance of the ensemble is:

$$
\mathbb{E}\left[\left(\frac{1}{k} \sum_{i} \epsilon_{i}\right)^{2}\right]=\frac{1}{k^{2}} \mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2}+\sum_{j \neq i} \epsilon_{i} \epsilon_{j}\right)\right]=\frac{1}{k} v+\frac{k-1}{k} c
$$

When the errors are not fully correlated ($c<v$), the variance will reduce.

More data

The best regularization strategy is more real data
Spend time on getting a dataset and think about the biases it contains.

Data augmentation

Sometimes existing data can be transformed to get more data. Noise can be added to inputs, weights, outputs (what do these do, respectively?) Make noise realistic.

fiudelif

Prior knowledge for simplification

Use prior knowledge to limit the model search space
Sacrifice some potential accuracy to gain a lot of simplicity

Example from control theory
Reality: $y(t)=f(x, u, t), \quad \dot{x}=g(x, u, t)$
Usual LTI approximation: $\quad y=C x+D u, \quad \dot{x}=A x+B u$

Outline

1) Resularization \& Validation

(2) Specialized structures

Recurrent Neural Networks

Convolutional Neural Networks

3 (Semi) Unsupervised Learning \& Reinforcement Learning
(4) Examples

Neural network analog

Predict y_{t} given $y_{t-n}, \ldots, y_{t-1}, u_{t-n}, \ldots, u_{t}$
Strategy so far:

Neural network analog

Lets assume $y(t)=f(x(t), t)$ and $x(t)=g(x(t-1), u(t), t)$:

TUDelft

RNN training: Back Propagation Through Time (BPTT)
(1) Make n copies of the network, calculate y_{1}, \ldots, y_{n}
(2) Start at time step n and propagate the loss backwards through the unrolled networks
(3) Update the weights based on the average gradient of the network copies: $\nabla_{w} J=\frac{1}{n} \sum_{i=1}^{n} \nabla_{w_{i}} J$

Weight sharing: temporal invariance

Lets add temporal invariance:
$y(t)=f(x(t))$ and $x(t)=g(x(t-1), u(t))$;
$\mathbf{w}_{\mathbf{1}}=\mathbf{w}_{\mathbf{2}}=\mathbf{w}_{\mathbf{3}}=\mathbf{w}_{\mathbf{4}}=\mathbf{w}_{\mathbf{5}}=\mathbf{w}$

Significant reduction in the number of parameters \mathbf{w}
fiudelif

The exploding / vanishing gradients problem

Scalar case with no input: $x_{n}=w^{n} \cdot x_{0}$
For $w<1, x^{n} \rightarrow 0$, for $w>1, x^{n} \rightarrow \infty$.
This makes it hard to learn long term dependencies.

Output

Gating

One more network component:
Element-wise multiplication of activations \otimes
Example: LSTM memory cell

T̂UDelft

Weight sharing: spatial equivariance

We want spatial invariance / equivariance.

- Share pieces of network (eg our 6 feature detector).
- Copy the part of the network across the input space, enforce that the weights remain equal.

$\mathbf{w}_{\mathbf{1}}=\mathbf{w}_{\mathbf{2}}=\mathbf{w}_{\mathbf{3}}=\mathbf{w}_{\mathbf{4}}=\mathbf{w}$

Weight sharing: spatial equivariance

How to process grid like information (eg. images)? So far:

TUDelft

Convolution

- Instead of thinking of copying parts of the network over the inputs, we can think of the same operation as sliding a network part over the input.
- Step 1: Convolution: $S(i, j)=(I * K)(i, j)=$ $\sum_{m} \sum_{n} I(m, n) K(i-m, j-n)$

Convolutional layer

- Step 1: Convolution: $S(i, j)=(I * K)(i, j)=$ $\sum_{m} \sum_{n} I(m, n) K(i-m, j-n)$
- Step 2: Detector stage: nonlinearities on top of the feature map

What if we want invariance?

Outline

1) Regularization \& Validation
2. Specialized structures
(3) (Semi) Unsupervised Learning \& Reinforcement Learning

Pooling

- Step 1: Convolution: $S(i, j)=(I * K)(i, j)=$ $\sum_{m} \sum_{n} I(m, n) K(i-m, j-n)$
- Step 2: Detector stage: nonlinearities on top of the feature map
- Step 3 (optional) Pooling: Take some function (eg max) of an area

TUDelft

NN training: so far, we have seen supervised learning

From SL to RL

So far: get a database of inputs x and target outputs t, minimize some loss between network predictions $y(x, \theta)$ and the targets t by adapting the network parameters θ :

TUDelft

From SL to RL

DQN example: get a database of inputs x and target outputs t, minimize some loss between network predictions $Q(x, \theta)$ and the targets t by adapting the network parameters θ :

- Data $\left\{\mathrm{x}, \mathrm{u}, \mathrm{x}^{\prime}, \mathrm{r}\right\}$ is collected on-line by following the exploration policy and stored in a buffer.
- $t(x, a)=r+\gamma \max _{a} Q\left(x^{\prime}, \theta^{-}\right)$: target network with parameters θ^{-} that slowly track θ for stability.

RL with function approximation

Didn't we do this last week?

```
Approximating Over the State Space
- Typically: basis functions
\[
\phi_{1}, \ldots, \phi_{N}: x \rightarrow[0,1]
\]
- Usually normalized: \(\sum_{i} \phi_{i}(x)=1\)
- E.g., fuzzy approximation, RBF network approximation
```



```
TUDOAlit

Global function approximation makes things trickier but potentially more useful, especially for high-dimensional state-spaces.
fiUDelft

\section*{Additional training criteria}

Inputs \(x\) are often much easier to obtain than targets \(t\).
- For deep networks, many of the earlier layers perform very general functions (e.g. edge detection).
- These layers can be trained on different tasks for which there is data.


\section*{Additional training criteria}

Previous lecture: data clustered around a (or some) low dimensional manifold(s) embedded in the high dimensional input space.


1
Can we learn a mapping to this manifold with only input data \(x\) ?
D. P. Kingma and M. Welling (2013). "Auto-encoding variational bayes". In: arXiv preprint arXiv:1312.6114

T̛UDelft

\section*{Additional training criteria: regularization and optimization}

Auxiliary training objectives can be added
- Because they are easier and allow the optimization to make faster initial progress.
- To force the network to keep more generic features, as a regularization technique.



Example: object recognition

\(\qquad\)

\section*{Applications of neural nets}
- Black-box modeling of systems from input-output data.
- Reconstruction (estimation) - soft sensors.
- Classification
- Neurocomputing
- Neurocontrol

Example: control from images


2
\({ }^{2}\) S. Levine, C. Finn, T. Darrell, and P. Abbeel (2016). "End-to-end training of deep visuomotor policies". In: Journal of

\section*{Summary}
(Over-)fitting training data can be easy, we want to generalize to new data.
- Use separate validation and test data-sets to measure generalization performance.
- Use regularization strategies to prevent over-fitting.
- Use prior knowledge to make specific network structures that limit the model search space and the number of weights needed (e.g. RNN, CNN).
- Be aware of the biases and accidental regularities contained in the dataset.```

