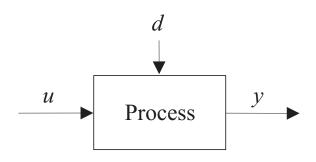
# Conventional Control A Refresher



#### Process to Be Controlled



y : variable to be controlled (output)

u: manipulated variable (control input)

d : disturbance (input that cannot be influenced)

dynamic system

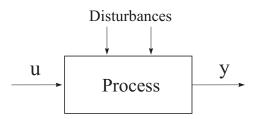
• technical (man-made) system

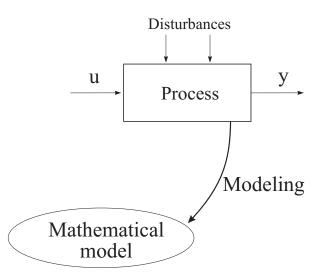
- technical (man-made) system
- natural environment

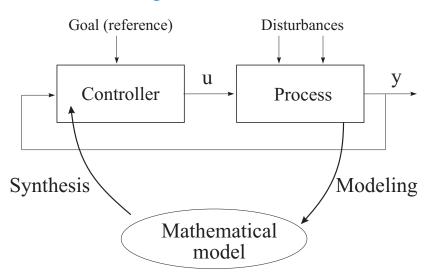
- technical (man-made) system
- natural environment
- organization (company, stock exchange)

- technical (man-made) system
- natural environment
- organization (company, stock exchange)
- human body

- technical (man-made) system
- natural environment
- organization (company, stock exchange)
- human body
- •







#### How to Obtain Models?

- physical (mechanistic) modeling
  - first principles → differential equations (linear or nonlinear)
  - 2 linearization around an operating point
- system identification
  - measure input-output data
  - 2 postulate model structure (linear-nonlinear)
  - 3 estimate model parameters from data (least squares)

# Modeling of Dynamic Systems

x(t) ... state of the system

summarizes all history such that if we know x(t) we can predict its development in time,  $\dot{x}(t)$ , for any input u(t)

linear state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

# Modeling of Dynamic Systems

x(t) ... state of the system

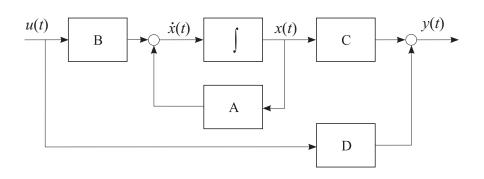
summarizes all history such that if we know x(t) we can predict its development in time,  $\dot{x}(t)$ , for any input u(t)

linear state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

#### Continuous-Time State-Space Model

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  
 $y(t) = Cx(t) + Du(t)$ 

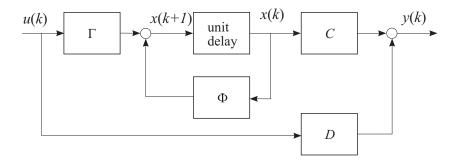


#### Discrete-Time State-Space Model

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$
  
$$y(k) = Cx(k) + Du(k)$$

## Discrete-Time State-Space Model

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$
  
$$y(k) = Cx(k) + Du(k)$$



#### Input-Output Models

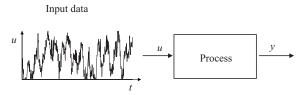
Continuous time:

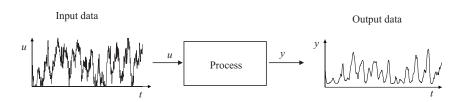
$$y^{(n)}(t) = f\left(y^{(n-1)}(t), \dots, y^{(1)}(t), y(t), u^{(n-1)}(t), \dots, u^{(1)}(t), u(t)\right)$$

Discrete time:

$$y(k+1) = f(y(k), y(k-1), ..., y(k-n_y+1), ..., u(k), u(k-1), ..., u(k-n_u+1))$$







$$u(1), u(2), \ldots, u(N)$$
  $y(1), y(2), \ldots, y(N)$ 

#### Given data set

$$\{(u(k), y(k)) \mid k = 1, 2, ..., N\}:$$

1 Postulate model structure, e.g.:

$$\hat{y}(k+1) = ay(k) + bu(k)$$

Given data set

$$\{(u(k), y(k)) \mid k = 1, 2, ..., N\}:$$

1 Postulate model structure, e.g.:

$$\hat{y}(k+1) = ay(k) + bu(k)$$

2 Form regression equations:

$$y(2) = ay(1) + bu(1)$$
  
 $y(3) = ay(2) + bu(2)$   
 $\vdots$   
 $y(N) = ay(N-1) + bu(N-1)$ 

in a matrix form:  $\mathbf{y} = \boldsymbol{\varphi}[a \ b]^T$ 

3. Solve the equations for [a b] (least-squares solution):

$$y = \varphi[a \ b]^T$$

3. Solve the equations for [a b] (least-squares solution):

$$\mathbf{y} = \boldsymbol{\varphi}[\mathbf{a} \ \mathbf{b}]^T$$
  
 $\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi}[\mathbf{a} \ \mathbf{b}]^T$ 

3. Solve the equations for [a b] (least-squares solution):

$$y = \varphi[a \ b]^T$$

$$\varphi^T y = \varphi^T \varphi[a \ b]^T$$

$$[a \ b]^T = [\varphi^T \varphi]^{-1} \varphi^T y$$

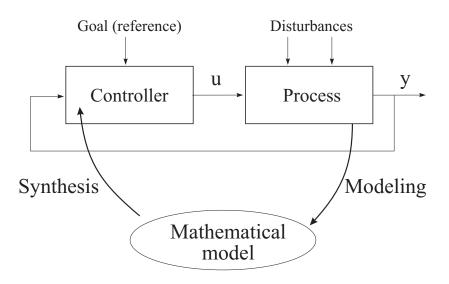
3. Solve the equations for [a b] (least-squares solution):

$$y = \varphi[a \ b]^T$$

$$\varphi^T y = \varphi^T \varphi[a \ b]^T$$

$$[a \ b]^T = [\varphi^T \varphi]^{-1} \varphi^T y$$

Numerically better methods are available (in MATLAB [a b] =  $\varphi \setminus y$ ).



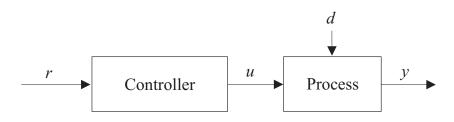
#### Design Procedure

- Criterion (goal)
  - stabilize an unstable process
  - suppress influence of disturbances
  - improve performance (e.g., speed of response)
- Structure of the controller
- Parameters of the controller (tuning)

#### Taxonomy of Controllers

- Presence of feedback: feedforward, feedback, 2-DOF
- Type of feedback: output, state
- Presence of dynamics: static, dynamic
- Dependence on time: fixed, adaptive
- Use of models: model-free, model-based

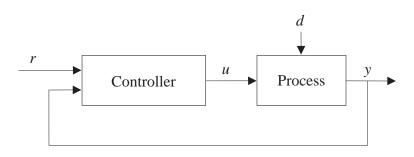
#### Feedforward Control



#### Controller:

- (dynamic) inverse of process model
- cannot stabilize unstable processes
- cannot suppress the effect of d
- sensitive to uncertainty in the model

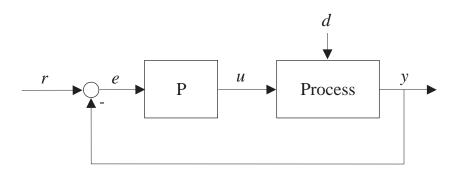
#### Feedback Control



#### Controller:

- dynamic or static (≠ inverse of process)
- can stabilize unstable processes (destabilize stable ones!)
- can suppress the effect of d

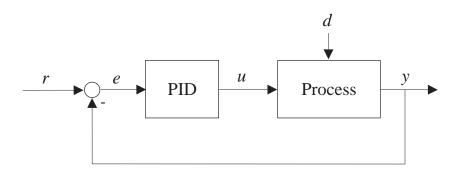
# **Proportional Control**



#### Controller:

• static gain P: u(t) = Pe(t)

#### PID Control

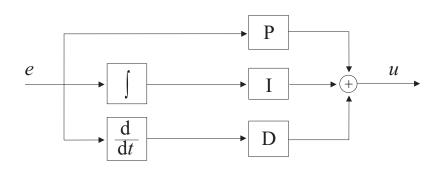


#### Controller:

- dynamic:  $u(t) = Pe(t) + I \int_0^t e(\tau) d\tau + D \frac{de(t)}{dt}$
- P, I and D are the proportional, integral and derivative gains, respectively

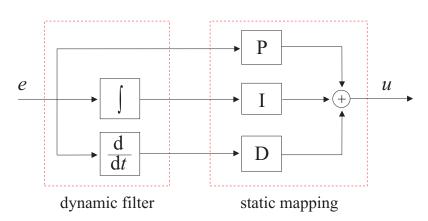
#### PID Control: Internal View

$$u(t) = Pe(t) + I \int_0^t e(\tau)d\tau + D\frac{de(t)}{dt}$$

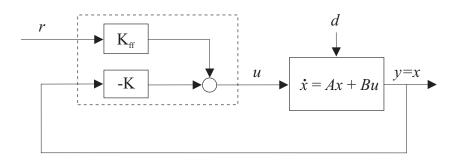


#### PID Control: Internal View

$$u(t) = Pe(t) + I \int_0^t e(\tau) d\tau + D \frac{de(t)}{dt}$$



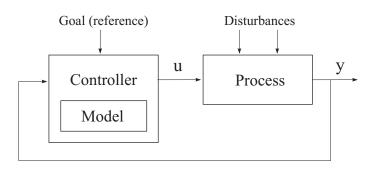
#### State Feedback



#### Controller:

- static: u(t) = Kx(t)
- K can be computed such that (A + BK) is stable
- $K_{\rm ff}$  takes care of the (unity) gain from r to y

#### Model-Based Control



- state observer
- model-based predictive control
- adaptive control