Process to Be Controlled

d
Conventional Control ¢
A Refresher L> Process L»

y : variable to be controlled (output)
u : manipulated variable (control input)
d : disturbance (input that cannot be influenced)

dynamic system
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Examples of “Processes” Classical Control Design
Goal (reference) Disturbances

® technical (man-made) system Controller u Process y _
® natural environment A
* organization (company, stock exchange) \ l
® human body
. . .

Synthesis Modeling

Mathematical
model
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How to Obtain Models?

® physical (mechanistic) modeling
@ first principles — differential equations
(linear or nonlinear)
@ linearization around an operating point
® system identification

@ measure input—output data

@ postulate model structure (linear—nonlinear)
© estimate model parameters from data (least squares)

Modeling of Dynamic Systems

x(t) ...state of the system

summarizes all history such that if we know x(t) we can predict its
development in time, x(t), for any input u(t)

linear state-space model:

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

fupeitt 52
Continuous-Time State-Space Model
x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)
u(?) . () J x(t) »(®)
A
fupeitt 72
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Discrete-Time State-Space Model

x(k +1) dx (k) + Tu(k)
y(k) = Cx(k)+ Du(k)

u(k) (kD ) ¥B) y(k)
T delay g ¢
(0]
D
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Input—Output Models

Continuous time:

() = £ (Y0, .y D (), y(2), u (), ., u D (2), u(n))

Discrete time:

y(k+1) = f(y(k),y(k=1),...,y(k=n, +1),...,

u(k), u(k —1),... u(k — ny + 1))

i3
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System Identification

Given data set
{(u(k),y(k)) | k=1,2,..., N}:

@ Postulate model structure, e.g.:
y(k+ 1) = ay(k) + bu(k)
® Form regression equations:
y(2) = ay(1)+ bu(1)
y(3) = ay(2)+ bu(2)

y(N). = ay(N-1)+ bu(N-1)

in a matrix form: y = [a b]"

L7
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System ldentification
Input data Output data
u y
- Process -
1 1
u(1), u(2),...,u(N) y(1),y(2),...,y(N)
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System Identification

3. Solve the equations for [a b] (least-squares solution):
y = elab]
o'y = ¢ plab]”
[ab]" = (o 0] e"y

Numerically better methods are available
(in MaTLAB [a b] = ¢ \ ).

5
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Classical Control Design

l

| |

Goal (reference) Disturbances

u y
—| Controller Process >
i |
Synthesis Modeling
Mathematical
model
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Taxonomy of Controllers

Type of feedback: output, state

Presence of dynamics: static, dynamic

® Dependence on time: fixed, adaptive

Use of models: model-free, model-based

L7
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Presence of feedback: feedforward, feedback, 2-DOF

Design Procedure

e Criterion (goal)

® stabilize an unstable process
® suppress influence of disturbances
® improve performance (e.g., speed of response)

® Structure of the controller

® Parameters of the controller (tuning)

3
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Feedforward Control

— Controller —»  Process |——»

Controller:
® (dynamic) inverse of process model
® cannot stabilize unstable processes
® cannot suppress the effect of d

® sensitive to uncertainty in the model

5
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Feedback Control

d
r
> u y
Controller »  Process >
Controller:

® dynamic or static (# inverse of process)
® can stabilize unstable processes (destabilize stable ones!)

® can suppress the effect of d

3
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Proportional Control

d
u
r»_ebP—>Proce$ y»

Controller:
* static gain P: u(t) = Pe(t)

PID Control
d
r e u
»O—» PID ——» Process y
Controller:
® dynamic: u(t) = Pe(t) + Ifot e(t)dT + Dd;(tt)
e P, I and D are the proportional, integral and derivative gains,
respectively

L7
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PID Control: Internal View

u(t) = Pe(t) + I [ e(r)dt + D)

v

]
!

‘CL~—.
)

static mapping

dynamic filter

5
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State Feedback Model-Based Control

d Goal (reference) Disturbances
%= Ax + Bu Y Controller Process
Model

Controller:
e static: u(t) = Kx(t) ® state observer
® K can be computed such that (A + BK) is stable ® model-based predictive control

* Ky takes care of the (unity) gain from r to y ¢ adaptive control
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