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1. Introduction

This chapter gives a brief introduction to the subject of the book and presents an outline
of the different chapters. Included is also information about the expected background of
the reader. Finally, the Web and Matlab support of the present material is described.

1.1. Conventional Control

Conventional control-theoretic approaches are based on mathematical models, typically
using differential and difference equations. For such models, methods and procedures for
the design, formal analysis and verification of control systems have been developed. These
methods, however, can only be applied to a relatively narrow class of models (linear models
and some specific types of nonlinear models) and definitely fall short in situations when no
mathematical model of the process is available. Even if a detailed physical model can in
principle be obtained, an effective rapid design methodology is desired that does not rely
on the tedious physical modeling exercise. These considerations have led to the search for
alternative approaches.

1.2. Intelligent Control

The term ‘intelligent control’ has been introduced some three decades ago to denote a
control paradigm with considerably more ambitious goals than typically used in conventional
control. While conventional control methods require more or less detailed knowledge about
the process to be controlled, an intelligent system should be able to autonomously control
complex, poorly understood processes such that some pre-specified goal can be achieved.
It should also cope with unanticipated changes in the process or its environment, learn
from past experience, actively acquire and organize knowledge about the surrounding world
and plan its future behavior. Given these highly ambitious goals, clearly motivated by the
wish to replicate the most prominent capabilities of our human brain, it is perhaps not so
surprising that no truly intelligent control system has been implemented to date.

Currently, the term ‘intelligent’ is often used to collectively denote techniques originating
from the field of artificial intelligence (AI), which are intended to replicate some of the key
components of intelligence, such as reasoning, learning, etc. Among these techniques are
artificial neural networks, expert systems, fuzzy logic systems, qualitative models, genetic
algorithms and various combinations of these tools. While in some cases, these techniques
really add some truly intelligent features to the system, in other situations they are merely
used as an alternative way to represent a fixed nonlinear control law, process model or
uncertainty. Although in the latter these methods do not explicitly contribute to a higher
degree of machine intelligence, they are still useful. They enrich the area of control by

1



1. Introduction

employing alternative representation schemes and formal methods to incorporate extra
relevant information that cannot be used in the standard control-theoretic framework of
differential and difference equations.

Two important tools covered in this textbook are fuzzy control systems and artificial
neural networks. Fuzzy control is an example of a rule-based representation of human
knowledge and the corresponding deductive processes. Artificial neural networks can realize
complex learning and adaptation tasks by imitating the function of biological neural systems.
The following section gives a brief introduction into these two subjects and, in addition,
the basic principle of genetic algorithms is outlined.

1.3. Overview of Techniques

Fuzzy logic systems describe relations by means of if–then rules, such as ‘if heating valve
is open then temperature is high.’ The ambiguity (uncertainty) in the definition of the
linguistic terms (e.g., high temperature) is represented by using fuzzy sets, which are sets
with overlapping boundaries, see Figure 1.1. In the fuzzy set framework, a particular domain
element can simultaneously belong to several sets (with different degrees of membership).
For instance, t = 20◦C belongs to the set of High temperatures with membership 0.4 and
to the set of Medium temperatures with membership 0.2. This gradual transition from
membership to non-membership facilitates a smooth outcome of the reasoning (deduction)
with fuzzy if–then rules; in fact a kind of interpolation.

15 30 t [°C]

1

0

High

25

Low
m

Medium

0.2

0.4

20

Figure 1.1.: Partitioning of the temperature domain into three fuzzy sets.

Fuzzy logic systems are a suitable framework for representing qualitative knowledge,
either provided by human experts (knowledge-based fuzzy control) or automatically acquired
from data (rule induction, learning). In the latter case, fuzzy clustering algorithms are
often used to partition data into groups of similar objects. Fuzzy sets and if–then rules
are then induced from the obtained partitioning, see Figure 1.2. In this way, a compact,
qualitative summary of a large amount of possibly high-dimensional data is generated. To
increase the flexibility and representational power, local regression models can be used in
the conclusion part of the rules (the so-called Takagi–Sugeno fuzzy system).
Artificial Neural Networks are simple models imitating the function of biological neural
systems. While in fuzzy logic systems, information is represented explicitly in the form of if–
then rules, in neural networks, it is implicitly ‘coded’ in the network and its parameters. In
contrast to knowledge-based techniques, no explicit knowledge is needed for the application
of neural nets. Their main strength is the ability to learn complex functional relations by
generalizing from a limited amount of training data. Neural nets can be used, for instance,

2
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Figure 1.2.: Fuzzy clustering can be used to extract qualitative if–then rules from numerical
data.

as (black-box) models for nonlinear, multivariable static and dynamic systems and can be
trained by using input–output data observed on the system.

y2

x3

y1

x2

x1

Figure 1.3.: Multi-layer artificial neural network.

Figure 1.3 shows the most common artificial feedforward neural network, which consists
of several layers of simple nonlinear processing elements called neurons, inter-connected
through adjustable weights. The information relevant to the input–output mapping of
the net is stored in these weights. There are many other network architectures, such as
multi-layer recurrent nets, Hopfield networks, or self-organizing maps. Neural networks
and fuzzy systems are often combined in neuro-fuzzy systems, which effectively integrate
qualitative rule-based techniques with data-driven learning.

Genetic algorithms are randomized optimization techniques inspired by the principles
of natural evolution and survival of the fittest. Candidate solutions to the problem at hand
are coded as strings of binary or real numbers. The fitness (quality, performance) of the
individual solutions is evaluated by means of a fitness function, which is defined externally
by the user or another higher-level algorithm. The fittest individuals in the population of
solutions are reproduced, using genetic operators like the crossover and mutation. In this
way, a new, generation of fitter individuals is obtained and the whole cycle starts again
(Figure 1.4). Genetic algorithms proved to be effective in searching high-dimensional spaces
and have found applications in a large number of domains, including the optimization of
model or controller structures, the tuning of parameters in nonlinear systems, etc. Genetic
algorithms are not addressed in this course.
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Population

0110001001
0010101110
1100101011

Genetic Operators

Fitness Function

Best individuals

Crossover
Mutation

Figure 1.4.: Genetic algorithms are based on a simplified simulation of the natural evolution
cycle.

1.4. Organization of the Book

The material is organized in eight chapters. In Chapter 2, the basics of fuzzy set theory are
explained. Chapter 3 then presents various types of fuzzy systems and their application
in dynamic modeling. Fuzzy set techniques can be useful in data analysis and pattern
recognition. To this end, Chapter 4 presents the basic concepts of fuzzy clustering, which
can be used as data-driven techniques for the construction of fuzzy models from data.
These data-driven construction techniques are addressed in Chapter 5. Controllers can
also be designed without using a process model. Chapter 6 is devoted to model-free
knowledge-based design of fuzzy controllers. In Chapter 7, artificial neural networks are
explained in terms of their architectures and training methods. Neural and fuzzy models
can be used to design a controller or can become part of a model-based control scheme, as
explain in Chapter 9. Reinforcement learning control is the subject of Chapter 10.

Three appendices have been included to provide background material on ordinary set
theory (Appendix A), Matlab code for some of the presented methods and algorithms
(Appendix B) and a list of symbols used throughout the text (Appendix C).

It has been one of the author’s aims to present the new material (fuzzy and neural
techniques, reinforcement learning) in such a way that no prior knowledge about these
subjects is required for an understanding of the text. It is assumed, however, that the
reader has some basic knowledge of mathematical analysis (univariate and multivariate
functions), linear algebra (system of linear equations, least-square solution) and systems
and control theory (dynamic systems, state-feedback, PID control, linearization). Sections
marked with an asterisk (*) present additional material, which is not compulsory for the
examination.

1.5. WEB and Matlab Support

The material presented in the book is supported by a Web page containing basic infor-
mation about the course ‘Knowledge-Based Control Systems’ (SC42050) given at the
Delft University of Technology, as well as a number of items for download (Matlab
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tools and demos, handouts of lecture transparencies, a sample exam). The URL is
(http://dcsc.tudelft.nl/~sc42050). Students following the course are encouraged to
install Matlab via the campus licence on their own computers.

1.6. Further Reading

Sources cited throughout the text provide pointers to the literature relevant to the specific
subjects addressed. Some general books on intelligent control and its various ingredients
include the following ones (among many others):

• Harris, C. J., Moore, C., and Brown, M. (1993). Intelligent Control, Aspects of Fuzzy
Logic and Neural Nets. World Scientific, Singapore

• Haykin, S. (1994). Neural Networks. Macmillan Maxwell International, New York

• Jang, J.-S. R., Sun, C.-T., and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing;
a Computational Approach to Learning and Machine Intelligence. Prentice-Hall,
Upper Saddle River

• Klir, G. J. and Yuan, B. (1995). Fuzzy sets and fuzzy logic; theory and applications.
Prentice Hall

• Passino, K. M. and Yurkovich, S. (1998). Fuzzy Control. Addison-Wesley, Mas-
sachusetts, USA

• Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA

• Zurada, J. M., Marks II, R. J., and Robinson, C. J., editors (1994). Computational
Intelligence: Imitating Life. IEEE Press, Piscataway, NJ
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2. Fuzzy Sets and Relations

This chapter provides a basic introduction to fuzzy sets, fuzzy relations and operations
with fuzzy sets. For a more comprehensive treatment see, for instance, (Klir and Folger,
1988; Zimmermann, 1996; Klir and Yuan, 1995).

Zadeh (1965) introduced fuzzy set theory as a mathematical discipline, although the
underlying ideas had already been recognized earlier by philosophers and logicians (Pierce,
Russel, Łukasiewicz, among others). A comprehensive overview is given in the introduction
of the “Readings in Fuzzy Sets for Intelligent Systems”, edited by Dubois et al. (1993). A
broader interest in fuzzy sets started in the seventies with their application to control and
other technical disciplines.

2.1. Fuzzy Sets

In ordinary (non fuzzy) set theory, elements either fully belong to a set or are fully excluded
from it. Recall, that the membership µA(x) of x of a classical set A, as a subset of the
universe X, is defined by:1

µA(x) =

{
1, iff x ∈ A,
0, iff x ̸∈ A .

(2.1)

This means that an element x is either a member of set A (µA(x) = 1) or not (µA(x) = 0).
This strict classification is useful in the mathematics and other sciences that rely on precise
definitions. Ordinary set theory complements bi-valent logic in which a statement is either
true or false. While in mathematical logic the emphasis is on preserving formal validity
and truth under any and every interpretation, in many real-life situations and engineering
problems, the aim is to preserve information in the given context. In these situations, it
may not be quite clear whether an element belongs to a set or not.

For example, if set A represents PCs which are too expensive for a student’s budget, then
it is obvious that this set has no clear boundaries. Of course, it could be said that a PC
priced at $2500 is too expensive, but what about PCs priced at $2495 or $2502? Are those
PCs too expensive or not? Clearly, a boundary could be determined above which a PC
is too expensive for the average student, say $2500, and a boundary below which a PC is
certainly not too expensive, say $1000. Between those boundaries, however, there remains
a vague interval in which it is not quite clear whether a PC is too expensive or not. In this
interval, a grade could be used to classify the price as partly too expensive. This is where
fuzzy sets come in: sets of which the membership has grades in the unit interval [0,1].

A fuzzy set is a set with graded membership in the real interval: µA(x) ∈ [0, 1]. That is,
elements can belong to a fuzzy set to a certain degree. As such, fuzzy sets can be used for

1A brief summary of basic concepts related to ordinary sets is given in Appendix A.
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1

25001000

m

0
price [$]

too expensive

Figure 2.1.: Fuzzy set A representing PCs too expensive for a student’s budget.

mathematical representations of vague concepts, such as low temperature, fairly tall person,
expensive car, etc.

Definition 2.1 (Fuzzy Set) A fuzzy set A on universe (domain) X is a set defined by
the membership function µA(x) which is a mapping from the universe X into the unit
interval:

µA(x) : X → [0, 1] . (2.2)

F(X) denotes the set of all fuzzy sets on X.

If the value of the membership function, called the membership degree (or grade), equals
one, x belongs completely to the fuzzy set. If it equals zero, x does not belong to the set.
If the membership degree is between 0 and 1, x is a partial member of the fuzzy set:

µA(x)


= 1 x is a full member of A
∈ (0, 1) x is a partial member of A
= 0 x is not member of A

(2.3)

In the literature on fuzzy set theory, ordinary (nonfuzzy) sets are usually referred to as
crisp (or hard) sets. Various symbols are used to denote membership functions and degrees,
such as µA(x), A(x) or just a.

Example 2.1 (Fuzzy Set) Figure 2.1 depicts a possible membership function of a fuzzy
set representing PCs too expensive for a student’s budget.

According to this membership function, if the price is below $1000 the PC is certainly
not too expensive, and if the price is above $2500 the PC is fully classified as too expensive.
In between, an increasing membership of the fuzzy set too expensive can be seen. It is
not necessary that the membership linearly increases with the price, nor that there is a
non-smooth transition from $1000 to $2500. Note that in engineering applications the
choice of the membership function for a fuzzy set is rather arbitrary.

�

2.2. Properties of Fuzzy Sets

To establish the mathematical framework for computing with fuzzy sets, a number of
properties of fuzzy sets need to be defined. This section gives an overview of only the ones
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2.2. Properties of Fuzzy Sets

that are strictly needed for the rest of the book. They include the definitions of the height,
support, core, α-cut and cardinality of a fuzzy set. In addition, the properties of normality
and convexity are introduced. For a more complete treatment see (Klir and Yuan, 1995).

2.2.1. Normal and Subnormal Fuzzy Sets

We learned that the membership of elements in fuzzy sets is a matter of degree. The height
of a fuzzy set is the largest membership degree among all elements of the universe. Fuzzy
sets whose height equals one for at least one element x in the domain X are called normal
fuzzy sets. The height of subnormal fuzzy sets is thus smaller than one for all elements in
the domain. Formally we state this by the following definitions.

Definition 2.2 (Height) The height of a fuzzy set A is the supremum of the membership
grades of elements in A:

hgt(A) = sup
x∈X

µA(x) . (2.4)

For a discrete domain X, the supremum (the least upper bound) becomes the maximum
and hence the height is the largest degree of membership for all x ∈ X.

Definition 2.3 (Normal Fuzzy Set) A fuzzy set A is normal if ∃x ∈ X such that
µA(x) = 1. Fuzzy sets that are not normal are called subnormal. The operator norm(A)
denotes normalization of a fuzzy set, i.e., A′ = norm(A)⇔ µA′(x) = µA(x)/ hgt(A), ∀x.

2.2.2. Support, Core and α-cut

Support, core and α-cut are crisp sets obtained from a fuzzy set by selecting its elements
whose membership degrees satisfy certain conditions.

Definition 2.4 (Support) The support of a fuzzy set A is the crisp subset of X whose
elements all have nonzero membership grades:

supp(A) = {x | µA(x) > 0} . (2.5)

Definition 2.5 (Core) The core of a fuzzy set A is a crisp subset of X consisting of all
elements with membership grades equal to one:

core(A) = {x | µA(x) = 1} . (2.6)

In the literature, the core is sometimes also denoted as the kernel, ker(A). The core of a
subnormal fuzzy set is empty.

Definition 2.6 (α-Cut) The α-cut Aα of a fuzzy set A is the crisp subset of the universe
of discourse X whose elements all have membership grades greater than or equal to α:

Aα = {x | µA(x) ≥ α}, α ∈ [0, 1] . (2.7)

The α-cut operator is also denoted by α-cut(A) or α-cut(A,α). The value α is called the
α-level.

An α-cut Aα is strict if µA(x) ̸= α for each x ∈ Aα, i.e.,

Aα = {x | µA(x) > α}, α ∈ [0, 1] . (2.8)
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0

1

core( )A

supp( )A

m

x

a-level

a

A
a

A

Figure 2.2.: Core, support and α-cut of a fuzzy set.

Figure 2.2 depicts the core, support and α-cut of a fuzzy set.
The core and support of a fuzzy set can also be defined by means of α-cuts:

core(A) = 1-cut(A) (2.9)
supp(A) = strict 0-cut(A) (2.10)

2.2.3. Convexity and Cardinality

Membership function may be unimodal (with one global maximum) or multimodal (with
several maxima). Unimodal fuzzy sets are called convex fuzzy sets. Convexity can also be
defined in terms of α-cuts:

Definition 2.7 (Convex Fuzzy Set) A fuzzy set defined in Rn is convex if each of its
α-cuts is a convex set.

Figure 2.3 gives an example of a convex and non-convex fuzzy set.

0

non-convex

1

A
m

x

a

B

convex

Figure 2.3.: The core of a non-convex fuzzy set is a non-convex (crisp) set.

Example 2.2 (Non-convex Fuzzy Set) Figure 2.4 gives an example of a non-convex
fuzzy set representing “high-risk age” for a car insurance policy. Drivers who are too young
or too old present higher risk than middle-aged drivers.

�
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1

64 age [years]

m
high-risk age

483216

Figure 2.4.: A fuzzy set defining “high-risk age” for a car insurance policy is an example of
a non-convex fuzzy set.

Definition 2.8 (Cardinality) Let A = {µA(xi) | i = 1, 2, . . . , n} be a finite discrete fuzzy
set. The cardinality of this fuzzy set is defined as the sum of the membership degrees:

|A| =
n∑

i=1

µA(xi) . (2.11)

Cardinality is also denoted by card(A).

2.3. Representations of Fuzzy Sets

There are several ways to define (or represent in a computer) a fuzzy set: through an
analytic description of its membership function µA(x) = f(x), as a list of the domain
elements and their membership degrees or by means of α-cuts. These possibilities are
discussed below.

2.3.1. Similarity-based Representation

Fuzzy sets are often defined by means of the (dis)similarity of the considered object x to a
given prototype v of the fuzzy set

µ(x) =
1

1 + d(x, v)
. (2.12)

Here, d(x, v) denotes a dissimilarity measure which in metric spaces is typically a distance
measure (such as the Euclidean distance). The prototype is a full member (typical element)
of the set. Elements whose distance from the prototype goes to zero have membership
grades close to one. As the distance grows, the membership decreases. As an example,
consider the membership function:

µA(x) =
1

1 + x2
, x ∈ R,

representing “approximately zero” real numbers.
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2.3.2. Parametric Functional Representation

Various forms of parametric membership functions are often used:

• Trapezoidal membership function:

µ(x; a, b, c, d) = max

(
0,min

(x− a

b− a
, 1,

d− x

d− c

))
, (2.13)

where a, b, c and d are the coordinates of the trapezoid’s apexes. When b = c, a
triangular membership function is obtained.

• Piece-wise exponential membership function:

µ(x; cl, cr, wl, wr) =


exp(−(x−cl

2wl
)2), if x < cl,

exp(−(x−cr
2wr

)2), if x > cr,

1, otherwise,
(2.14)

where cl and cr are the left and right shoulder, respectively, and wl, wr are the left
and right width, respectively. For cl = cr and wl = wr the Gaussian membership
function is obtained.

Figure 2.5 shows examples of triangular, trapezoidal and bell-shaped (exponential)
membership functions. A special fuzzy set is the singleton set (fuzzy set representation of a
number) defined by:

µA(x) =

{
1, if x = x0,
0, otherwise . (2.15)

0

1
triangular trapezoidal bell-shaped singleton

m

x

Figure 2.5.: Different shapes of membership functions.

Another special set is the universal set, whose membership function equals one for all
domain elements:

µA(x) = 1, ∀x . (2.16)

Finally, the term fuzzy number is sometimes used to denote a normal, convex fuzzy set
which is defined on the real line.
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2.3. Representations of Fuzzy Sets

2.3.3. Point-wise Representation

In a discrete set X = {xi | i = 1, 2, . . . , n}, a fuzzy set A may be defined by a list of ordered
pairs: membership degree/set element:

A = {µA(x1)/x1, µA(x2)/x2, . . . , µA(xn)/xn} = {µA(x)/x | x ∈ X}, (2.17)

Normally, only elements x ∈ X with non-zero membership degrees are listed. The following
alternatives to the above notation can be encountered:

A = µA(x1)/x1 + · · ·+ µA(xn)/xn =
n∑

i=1

µA(xi)/xi (2.18)

for finite domains, and

A =

∫
X

µA(x)/x (2.19)

for continuous domains. Note that rather than summation and integration, in this context,
the

∑
, + and

∫
symbols represent a collection (union) of elements.

A pair of vectors (arrays in computer programs) can be used to store discrete membership
functions:

x = [x1, x2, . . . , xn], µ = [µA(x1), µA(x2), . . . , µA(xn)] . (2.20)

Intermediate points can be obtained by interpolation. This representation is often used
in commercial software packages. For an equidistant discretization of the domain it is
sufficient to store only the membership degrees µ.

2.3.4. Level Set Representation

A fuzzy set can be represented as a list of α levels (α ∈ [0, 1]) and their corresponding
α-cuts:

A = {α1/Aα1 , α2/Aα2 , . . . , αn/Aαn} = {α/Aαn | α ∈ (0, 1)}, (2.21)

The range of α must obviously be discretized. This representation can be advantageous as
operations on fuzzy subsets of the same universe can be defined as classical set operations on
their level sets. Fuzzy arithmetic can thus be implemented by means of interval arithmetic,
etc. In multidimensional domains, however, the use of the level-set representation can be
computationally involved.

Example 2.3 (Fuzzy Arithmetic) Using the level-set representation, results of arith-
metic operations with fuzzy numbers can be obtained as a collection standard arithmetic
operations on their α-cuts. As an example consider addition of two fuzzy numbers A and
B defined on the real line:

A+B = {α/(Aαn +Bαn) | α ∈ (0, 1)}, (2.22)

where Aαn +Bαn is the addition of two intervals.
�
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2. Fuzzy Sets and Relations

2.4. Operations on Fuzzy Sets

Definitions of set-theoretic operations such as the complement, union and intersection can
be extended from ordinary set theory to fuzzy sets. As membership degrees are no longer
restricted to {0, 1} but can have any value in the interval [0, 1], these operations cannot be
uniquely defined. It is clear, however, that the operations for fuzzy sets must give correct
results when applied to ordinary sets (an ordinary set can be seen as a special case of a
fuzzy set).

This section presents the basic definitions of fuzzy intersection, union and complement,
as introduced by Zadeh. General intersection and union operators, called triangular norms
(t-norms) and triangular conorms (t-conorms), respectively, are given as well. In addition,
operations of projection and cylindrical extension, related to multi-dimensional fuzzy sets,
are given.

2.4.1. Complement, Union and Intersection

Definition 2.9 (Complement of a Fuzzy Set) Let A be a fuzzy set in X. The com-
plement of A is a fuzzy set, denoted Ā, such that for each x ∈ X:

µĀ(x) = 1− µA(x) . (2.23)

Figure 2.6 shows an example of a fuzzy complement in terms of membership functions.
Besides this operator according to Zadeh, other complements can be used. An example is

0

1

m

x

_
A A

Figure 2.6.: Fuzzy set and its complement Ā in terms of their membership functions.

the λ-complement according to Sugeno (1977):

µĀ(x) =
1− µA(x)

1 + λµA(x)
(2.24)

where λ > 0 is a parameter.

Definition 2.10 (Intersection of Fuzzy Sets) Let A and B be two fuzzy sets in X.
The intersection of A and B is a fuzzy set C, denoted C = A∩B, such that for each x ∈ X:

µC(x) = min
(
µA(x), µB(x)

)
. (2.25)

The minimum operator is also denoted by ‘∧’, i.e., µC(x) = µA(x) ∧ µB(x). Figure 2.7
shows an example of a fuzzy intersection in terms of membership functions.
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A BÇ

A B

min

0

1

m

x

Figure 2.7.: Fuzzy intersection A ∩B in terms of membership functions.

Definition 2.11 (Union of Fuzzy Sets) Let A and B be two fuzzy sets in X. The union
of A and B is a fuzzy set C, denoted C = A ∪B, such that for each x ∈ X:

µC(x) = max
(
µA(x), µB(x)

)
. (2.26)

The maximum operator is also denoted by ‘∨’, i.e., µC(x) = µA(x) ∨ µB(x). Figure 2.8
shows an example of a fuzzy union in terms of membership functions.

max

0

1

m

x

A BÈ

A B

Figure 2.8.: Fuzzy union A ∪B in terms of membership functions.

2.4.2. T -norms and T -conorms

Fuzzy intersection of two fuzzy sets can be specified in a more general way by a binary
operation on the unit interval, i.e., a function of the form:

T : [0, 1]× [0, 1]→ [0, 1] (2.27)

In order for a function T to qualify as a fuzzy intersection, it must have appropriate
properties. Functions known as t-norms (triangular norms) possess the properties required
for the intersection. Similarly, functions called t-conorms can be used for the fuzzy union.

Definition 2.12 (t-Norm/Fuzzy Intersection) A t-norm T is a binary operation on
the unit interval that satisfies at least the following axioms for all a, b, c ∈ [0, 1] (Klir and
Yuan, 1995):

T (a, 1) = a (boundary condition),
b ≤ c implies T (a, b) ≤ T (a, c) (monotonicity),
T (a, b) = T (b, a) (commutativity),
T (a, T (b, c)) = T (T (a, b), c) (associativity) .

(2.28)
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Some frequently used t-norms are:
standard (Zadeh) intersection: T (a, b) = min(a, b)
algebraic product (probabilistic intersection): T (a, b) = ab
Łukasiewicz (bold) intersection: T (a, b) = max(0, a+ b− 1)

The minimum is the largest t-norm (intersection operator). For our example shown in
Figure 2.7 this means that the membership functions of fuzzy intersections A ∩B obtained
with other t-norms are all below the bold membership function (or partly coincide with it).

Definition 2.13 (t-Conorm/Fuzzy Union) A t-conorm S is a binary operation on the
unit interval that satisfies at least the following axioms for all a, b, c ∈ [0, 1] (Klir and Yuan,
1995):

S(a, 0) = a (boundary condition),
b ≤ c implies S(a, b) ≤ S(a, c) (monotonicity),
S(a, b) = S(b, a) (commutativity),
S(a, S(b, c)) = S(S(a, b), c) (associativity) .

(2.29)

Some frequently used t-conorms are:
standard (Zadeh) union: S(a, b) = max(a, b),
algebraic sum (probabilistic union): S(a, b) = a+ b− ab,
Łukasiewicz (bold) union: S(a, b) = min(1, a+ b) .

The maximum is the smallest t-conorm (union operator). For our example shown in
Figure 2.8 this means that the membership functions of fuzzy unions A ∪B obtained with
other t-conorms are all above the bold membership function (or partly coincide with it).

2.4.3. Projection and Cylindrical Extension

Projection reduces a fuzzy set defined in a multi-dimensional domain (such as R2 to a
fuzzy set defined in a lower-dimensional domain (such as R). Cylindrical extension is the
opposite operation, i.e., the extension of a fuzzy set defined in low-dimensional domain into
a higher-dimensional domain. Formally, these operations are defined as follows:

Definition 2.14 (Projection of a Fuzzy Set) Let U ⊆ U1 × U2 be a subset of a Carte-
sian product space, where U1 and U2 can themselves be Cartesian products of lower-
dimensional domains. The projection of fuzzy set A defined in U onto U1 is the mapping
projU1

: F(U)→ F(U1) defined by

projU1
(A) =

{
sup
U2

µA(u)/u1

∣∣∣u1 ∈ U1

}
. (2.30)

The projection mechanism eliminates the dimensions of the product space by taking the
supremum of the membership function for the dimension(s) to be eliminated.

Example 2.4 (Projection) Assume a fuzzy set A defined in U ⊂ X × Y × Z with
X = {x1, x2}, Y = {y1, y2} and Z = {z1, z2}, as follows:

A = {µ1/(x1, y1, z1), µ2/(x1, y2, z1), µ3/(x2, y1, z1),

µ4/(x2, y2, z1), µ5/(x2, y2, z2)} (2.31)
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Let us compute the projections of A onto X, Y and X × Y :

projX(A) = {max(µ1, µ2)/x1, max(µ3, µ4, µ5)/x2} , (2.32)
projY (A) = {max(µ1, µ3)/y1, max(µ2, µ4, µ5)/y2} , (2.33)

projX×Y (A) = {µ1/(x1, y1), µ2/(x1, y2),

µ3/(x2, y1), max(µ4, µ5)/(x2, y2)} . (2.34)

�

Projections from R2 to R can easily be visualized, see Figure 2.9.

m

x

projection onto x
projection onto y

y

A
B

A B´

Figure 2.9.: Example of projection from R2 to R .

Definition 2.15 (Cylindrical Extension) Let U ⊆ U1 × U2 be a subset of a Cartesian
product space, where U1 and U2 can themselves be Cartesian products of lower-dimensional
domains. The cylindrical extension of fuzzy set A defined in U1 onto U is the mapping
extU : F(U1)→ F(U) defined by

extU(A) =
{
µA(u1)/u

∣∣∣u ∈ U
}

. (2.35)

Cylindrical extension thus simply replicates the membership degrees from the existing
dimensions into the new dimensions. Figure 2.10 depicts the cylindrical extension from R
to R2.

It is easy to see that projection leads to a loss of information, thus for A defined in
Xn ⊂ Xm (n < m) it holds that:

A = projXn(extXm(A)), (2.36)

but
A ̸= extXm(projXn(A)) . (2.37)

Verify this for the fuzzy sets given in Example 2.4 as an exercise.
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A

x

cylindrical extension

µ

y

Figure 2.10.: Example of cylindrical extension from R to R2.

2.4.4. Operations on Cartesian Product Domains

Set-theoretic operations such as the union or intersection applied to fuzzy sets defined in
different domains result in a multi-dimensional fuzzy set in the Cartesian product of those
domains. The operation is in fact performed by first extending the original fuzzy sets into
the Cartesian product domain and then computing the operation on those multi-dimensional
sets.

Example 2.5 (Cartesian-Product Intersection) Consider two fuzzy sets A1 and A2

defined in domains X1 and X2, respectively. The intersection A1 ∩ A2, also denoted by
A1 × A2 is given by:

A1 × A2 = extX2(A1) ∩ extX1(A2) . (2.38)

This cylindrical extension is usually considered implicitly and it is not stated in the notation:

µA1×A2(x1, x2) = µA1(x1) ∧ µA2(x2) . (2.39)

Figure 2.11 gives a graphical illustration of this operation.

�

2.4.5. Linguistic Hedges *

Fuzzy sets can be used to represent qualitative linguistic terms (notions) like “short”, “long”,
“expensive”, etc. in terms of membership functions define in numerical domains (distance,
price, etc.).

By means of linguistic hedges (linguistic modifiers) the meaning of these terms can be
modified without redefining the membership functions. Examples of hedges are: very,
slightly, more or less, rather, etc. Hedge “very”, for instance, can be used to change
“expensive” to “very expensive”.

Two basic approaches to the implementation of linguistic hedges can be distinguished:
powered hedges and shifted hedges. Powered hedges are implemented by functions operating
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Figure 2.11.: Cartesian-product intersection.

on the membership degrees of the linguistic terms (Zimmermann, 1996). For instance, the
hedge very squares the membership degrees of the term which meaning it modifies, i.e.,
µvery A(x) = µ2

A(x). Shifted hedges (Lakoff, 1973), on the other hand, shift the membership
functions along their domains. Combinations of the two approaches have been proposed as
well (Novák, 1989; Novák, 1996).

Example 2.6 Consider three fuzzy sets Small , Medium and Big defined by triangular
membership functions. Figure 2.12 shows these membership functions (solid line) along
with modified membership functions “more or less small”, “nor very small” and “rather big”
obtained by applying the hedges in Table 2.1. In this table, A stands for the fuzzy sets and

linguistic hedge operation linguistic hedge operation
very A µ2

A more or less A
√
µA

not very A 1− µ2
A rather A int (µA)

Table 2.1.: Linguistic hedges

“int” denotes the contrast intensification operator given by:

int (µA) =

{
2µ2

A, µA ≤ 0.5
1− 2(1− µA)

2 otherwise.

�

2.5. Fuzzy Relations

A fuzzy relation is a fuzzy set in the Cartesian product X1×X2×· · ·×Xn. The membership
grades represent the degree of association (correlation) among the elements of the different
domains Xi.
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Figure 2.12.: Reference fuzzy sets and their modifications by some linguistic hedges.
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Figure 2.13.: Fuzzy relation µR(x, y) = e−(x−y)2 .

Definition 2.16 (Fuzzy Relation) An n-ary fuzzy relation is a mapping

R : X1 ×X2 × · · · ×Xn → [0, 1], (2.40)

which assigns membership grades to all n-tuples (x1, x2, . . . , xn) from the Cartesian product
X1 ×X2 × · · · ×Xn.

For computer implementations, R is conveniently represented as an n-dimensional array:
R = [ri1,i2,...,in ].

Example 2.7 (Fuzzy Relation) Consider a fuzzy relation R describing the relationship
x ≈ y (“x is approximately equal to y”) by means of the following membership function
µR(x, y) = e−(x−y)2 . Figure 2.13 shows a mesh plot of this relation.

�

2.6. Relational Composition

The composition is defined as follows (Zadeh, 1973): suppose there exists a fuzzy relation
R in X × Y and A is a fuzzy set in X. Then, fuzzy subset B of Y can be induced by A
through the composition of A and R:

B = A ◦R . (2.41)
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2.6. Relational Composition

The composition is defined by:

B = projY
(
R ∩ extX×Y (A)

)
. (2.42)

The composition can be regarded in two phases: combination (intersection) and projection.
Zadeh proposed to use sup-min composition. Assume that A is a fuzzy set with membership
function µA(x) and R is a fuzzy relation with membership function µR(x, y):

µB(y) = sup
x

(
min

(
µA(x), µR(x, y)

))
, (2.43)

where the cylindrical extension of A into X × Y is implicit and sup and min represent the
projection and combination phase, respectively. In a more general form of the composition,
a t-norm T is used for the intersection:

µB(y) = sup
x

(
T
(
µA(x), µR(x, y)

))
. (2.44)

Example 2.8 (Relational Composition) Consider a fuzzy relation R which represents
the relationship “x is approximately equal to y”:

µR(x, y) = max(1− 0.5 · |x− y|, 0) . (2.45)

Further, consider a fuzzy set A “approximately 5”:

µA(x) = max(1− 0.5 · |x− 5|, 0) . (2.46)

Suppose that R and A are discretized with x, y = 0, 1, 2, . . ., in [0, 10]. For a discrete set
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2. Fuzzy Sets and Relations

max is equivalent to sup. Then, the composition is:

µB(y) =

µA(x)︷ ︸︸ ︷(
0 0 0 0 1

2
1 1

2
0 0 0 0

)
◦

µR(x, y)︷ ︸︸ ︷

1 1
2

0 0 0 0 0 0 0 0 0
1
2

1 1
2

0 0 0 0 0 0 0 0
0 1

2
1 1

2
0 0 0 0 0 0 0

0 0 1
2

1 1
2

0 0 0 0 0 0
0 0 0 1

2
1 1

2
0 0 0 0 0

0 0 0 0 1
2

1 1
2

0 0 0 0
0 0 0 0 0 1

2
1 1

2
0 0 0

0 0 0 0 0 0 1
2

1 1
2

0 0
0 0 0 0 0 0 0 1

2
1 1

2
0

0 0 0 0 0 0 0 0 1
2

1 1
2

0 0 0 0 0 0 0 0 0 1
2

1


=

= max
x

min
(
µA(x), µR(x, y)

)︷ ︸︸ ︷

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

2
1
2

1
2

0 0 0 0 0
0 0 0 0 1

2
1 1

2
0 0 0 0

0 0 0 0 0 1
2

1
2

1
2

0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


=

=

max
x

(
min

(
µA(x), µR(x, y)

))
︷ ︸︸ ︷(
0 0 0 1

2
1
2

1 1
2

1
2

0 0 0
)

This resulting fuzzy set, defined in Y can be interpreted as “approximately 5”. Note,
however, that it is broader (more uncertain) than the set from which it was induced. This
is because the uncertainty in the input fuzzy set was combined with the uncertainty in the
relation.

�

2.7. Summary and Concluding Remarks

Fuzzy sets are sets without sharp boundaries: membership of a fuzzy set is a real number
in the interval [0, 1]. Various properties of fuzzy sets and operations on fuzzy sets have
been introduced. Relations are multi-dimensional fuzzy sets where the membership grades
represent the degree of association (correlation) among the elements of the different domains.
The composition of relations, using projection and cylindrical extension is an important
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2.8. Problems

concept for fuzzy logic and approximate reasoning, which are addressed in the following
chapter.

2.8. Problems

1. What is the difference between the membership function of an ordinary set and of a
fuzzy set?

2. Consider fuzzy set C defined by its membership function µC(x) : R→ [0, 1]: µC(x) =
1/(1 + |x|). Compute the α-cut of C for α = 0.5.

3. Consider fuzzy sets A and B such that core(A)∩ core(B) = ∅. Is fuzzy set C = A∩B
normal? What condition must hold for the supports of A and B such that card(C) > 0
always holds?

4. Consider fuzzy set A defined in X × Y with X = {x1, x2}, Y = {y1, y2}:

A = {0.1/(x1, y1), 0.2/(x1, y2), 0.7/(x2, y1), 0.9/(x2, y2)}

Compute the projections of A onto X and Y .

5. Compute the cylindrical extension of fuzzy set A = {0.3/x1, 0.4/x2} into the Cartesian
product domain {x1, x2} × {y1, y2}.

6. For fuzzy sets A = {0.1/x1, 0.6/x2} and B = {1/y1, 0.7/y2} compute the union
A ∪B and the intersection A ∩B. Use the Zadeh’s operators (max, min).

7. Given is a fuzzy relation R : X × Y → [0, 1]:

R =

y1 y2 y3 y4
x1 0.7 0.3 0.1 0.5
x2 0.4 0.8 0.2 1.0
x3 0.1 0.2 0.9 0.9

and a fuzzy set A = {0.1/x1, 1.0/x2, 0.4/x3}. Compute fuzzy set B = A ◦R, where
‘◦’ is the max-min composition operator.

8. Prove that the following De Morgan law (A ∪B) = Ā ∩ B̄ is true for fuzzy sets A
and B, when using the Zadeh’s operators for union, intersection and complement.
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3. Fuzzy Systems

A static or dynamic system which makes use of fuzzy sets and of the corresponding
mathematical framework is called a fuzzy system. Fuzzy sets can be involved in a system1

in a number of ways, such as:

• In the description of the system. A system can be defined, for instance, as a collection
of if-then rules with fuzzy predicates, or as a fuzzy relation. An example of a fuzzy
rule describing the relationship between a heating power and the temperature trend
in a room may be:

If the heating power is high then the temperature will increase fast.

• In the specification of the system’s parameters. The system can be defined by an
algebraic or differential equation, in which the parameters are fuzzy numbers instead
of real numbers. As an example consider an equation: y = 3̃x1 + 5̃x2, where 3̃ and 5̃
are fuzzy numbers “about three” and “about five”, respectively, defined by membership
functions. Fuzzy numbers express the uncertainty in the parameter values.

• The input, output and state variables of a system may be fuzzy sets. Fuzzy inputs can
be readings from unreliable sensors (“noisy” data), or quantities related to human
perception, such as comfort, beauty, etc. Fuzzy systems can process such information,
which is not the case with conventional (crisp) systems.

A fuzzy system can simultaneously have several of the above attributes. Fuzzy systems can
be regarded as a generalization of interval-valued systems, which are in turn a generalization
of crisp systems. This relationship is depicted in Figure 3.1 which gives an example of a
crisp function and its interval and fuzzy generalizations. The evaluation of the function for
crisp, interval and fuzzy data is schematically depicted.

A function f : X → Y can be regarded as a subset of the Cartesian product X × Y ,
i.e., as a relation. The evaluation of the function for a given input proceeds in three steps
(Figure 3.1):

1. Extend the given input into the product space X × Y (vertical dashed lines).

2. Find the intersection of this extension with the relation (intersection of the vertical
dashed lines with the function).

3. Project this intersection onto Y (horizontal dashed lines).

1Under “systems” we understand both static functions and dynamic systems. For the sake of simplicity,
most examples in this chapter are static systems.
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Figure 3.1.: Evaluation of a crisp, interval and fuzzy function for crisp, interval and fuzzy
arguments.

This procedure is valid for crisp, interval and fuzzy functions and data. Remember this
view, as it will help you to understand the role of fuzzy relations in fuzzy inference.

Most common are fuzzy systems defined by means of if-then rules: rule-based fuzzy
systems. In the rest of this text we will focus on these systems only. Fuzzy systems can
serve different purposes, such as modeling, data analysis, prediction or control. In this text
a fuzzy rule-based system is simply called a fuzzy model, regardless of its eventual purpose.

3.1. Rule-Based Fuzzy Systems

In rule-based fuzzy systems, the relationships between variables are represented by means
of fuzzy if–then rules in the following general form:

If antecedent proposition then consequent proposition.

Fuzzy propositions are statements like “x is big”, where “big” is a linguistic label, defined by
a fuzzy set on the universe of discourse of variable x. Linguistic labels are also referred to
as fuzzy constants, fuzzy terms or fuzzy notions. Linguistic modifiers (hedges) can be used
to modify the meaning of linguistic labels. For example, the linguistic modifier very can be
used to change “x is big” to “x is very big”.

The antecedent proposition is always a fuzzy proposition of the type “x is A” where x
is a linguistic variable and A is a linguistic constant (term). Depending on the particular
structure of the consequent proposition, three main types of models are distinguished:

• Linguistic fuzzy model (Zadeh, 1973; Mamdani, 1977), where both the antecedent
and consequent are fuzzy propositions. Singleton fuzzy model is a special case where
the consequents are singleton sets (real constants).
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3.2. Linguistic model

• Fuzzy relational model (Pedrycz, 1984; Yi and Chung, 1993), which can be regarded as
a generalization of the linguistic model, allowing one particular antecedent proposition
to be associated with several different consequent propositions via a fuzzy relation.

• Takagi–Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985), where the consequent is
a crisp function of the antecedent variables rather than a fuzzy proposition.

These types of fuzzy models are detailed in the subsequent sections.

3.2. Linguistic model

The linguistic fuzzy model (Zadeh, 1973; Mamdani, 1977) has been introduced as a way to
capture qualitative knowledge in the form of if–then rules:

Ri : If x is Ai then y is Bi, i = 1, 2, . . . , K . (3.1)

Here x is the input (antecedent) linguistic variable, and Ai are the antecedent linguistic
terms (labels). Similarly, y is the output (consequent) linguistic variable and Bi are the
consequent linguistic terms. The values of x (y) are generally fuzzy sets, but since a real
number is a special case of a fuzzy set (singleton set), these variables can also be real-valued
(vectors). The linguistic terms Ai (Bi) are always fuzzy sets

3.2.1. Linguistic Terms and Variables

Linguistic terms can be seen as qualitative values (information granulae) used to describe
a particular relationship by linguistic rules. Typically, a set of N linguistic terms A =
{A1, A2, . . . , AN} is defined in the domain of a given variable x. Because this variable
assumes linguistic values, it is called a linguistic variable. To distinguish between the
linguistic variable and the original numerical variable, the latter one is called the base
variable.

Definition 3.1 (Linguistic Variable) A linguistic variable L is defined as a quintuple
(Klir and Yuan, 1995):

L = (x,A, X, g,m), (3.2)
where x is the base variable (at the same time the name of the linguistic variable), A =
{A1, A2, . . . , AN} is the set of linguistic terms, X is the domain (universe of discourse)
of x, g is a syntactic rule for generating linguistic terms and m is a semantic rule that
assigns to each linguistic term its meaning (a fuzzy set in X).

Example 3.1 (Linguistic Variable) Figure 3.2 shows an example of a linguistic variable
“temperature” with three linguistic terms “low”, “medium” and “high”. The base variable is
the temperature given in appropriate physical units.

�

It is usually required that the linguistic terms satisfy the properties of coverage and semantic
soundness (Pedrycz, 1995).

27



3. Fuzzy Systems
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Figure 3.2.: Example of a linguistic variable “temperature” with three linguistic terms.

Coverage

Coverage means that each domain element is assigned to at least one fuzzy set with a
nonzero membership degree, i.e.,

∀x ∈ X, ∃i, µAi
(x) > 0 . (3.3)

Alternatively, a stronger condition called ϵ-coverage may be imposed:

∀x ∈ X, ∃i, µAi
(x) > ϵ, ϵ ∈ (0, 1) . (3.4)

For instance, the membership functions in Figure 3.2 satisfy ϵ-coverage for ϵ = 0.5.
Clustering algorithms used for the automatic generation of fuzzy models from data, presented
in Chapter 4 impose yet a stronger condition:

N∑
i=1

µAi
(x) = 1, ∀x ∈ X, (3.5)

meaning that for each x, the sum of membership degrees equals one. Such a set of
membership functions is called a (fuzzy partition). Chapter 4 gives more details.

Semantic Soundness

Semantic soundness is related to the linguistic meaning of the fuzzy sets. Usually, Ai

are convex and normal fuzzy sets, which are sufficiently disjoint, and the number N of
subsets per variable is small (say nine at most). The number of linguistic terms and the
particular shape and overlap of the membership functions are related to the granularity of
the information processing within the fuzzy system, and hence also to the level of precision
with which a given system can be represented by a fuzzy model. For instance, trapezoidal
membership functions, such as those given in Figure 3.2, provide some kind of “information
hiding” for data within the cores of the membership functions (e.g., temperatures between
0 and 5 degrees cannot be distinguished, since all are classified as “low” with degree 1).
Well-behaved mappings can be accurately represented with a very low granularity.
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3.2. Linguistic model

Membership functions can be defined by the model developer (expert), using prior
knowledge, or by experimentation, which is a typical approach in knowledge-based fuzzy
control (Driankov et al., 1993). In this case, the membership functions are designed such
that they represent the meaning of the linguistic terms in the given context. When input–
output data of the system under study are available, methods for constructing or adapting
the membership functions from data can be applied, see Chapter 5.

Example 3.2 (Linguistic Model) Consider a simple fuzzy model which qualitatively
describes how the heating power of a gas burner depends on the oxygen supply (assuming a
constant gas supply). We have a scalar input, the oxygen flow rate (x), and a scalar output,
the heating power (y). Define the set of antecedent linguistic terms: A = {Low ,OK ,High},
and the set of consequent linguistic terms: B = {Low ,High}. The qualitative relationship
between the model input and output can be expressed by the following rules:

R1 : If O2 flow rate is Low then heating power is Low .
R2 : If O2 flow rate is OK then heating power is High.
R3 : If O2 flow rate is High then heating power is Low .

The meaning of the linguistic terms is defined by their membership functions, depicted in
Figure 3.3. The numerical values along the base variables are selected somewhat arbitrarily.
Note that no universal meaning of the linguistic terms can be defined. For this example, it
will depend on the type and flow rate of the fuel gas, type of burner, etc. Nevertheless, the
qualitative relationship expressed by the rules remains valid.

75501 32 00 100

LowOK

O flow rate [m /h]2

3

25

Low HighHigh

heating power [kW]

11

Figure 3.3.: Membership functions.

�

3.2.2. Inference in the Linguistic Model

Inference in fuzzy rule-based systems is the process of deriving an output fuzzy set given
the rules and the inputs. The inference mechanism in the linguistic model is based on the
compositional rule of inference (Zadeh, 1973).

Each rule in (3.1) can be regarded as a fuzzy relation (fuzzy restriction on the simultaneous
occurrences of values x and y): R : (X × Y )→ [0, 1] computed by

µR(x,y) = I(µA(x), µB(y)) . (3.6)
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3. Fuzzy Systems

For the ease of notation the rule subscript i is dropped. The I operator can be either a
fuzzy implication, or a conjunction operator (a t-norm). Note that I(·, ·) is computed on
the Cartesian product space X × Y , i.e., for all possible pairs of x and y.

Fuzzy implications are used when the rule (3.1) is regarded as an implication Ai → Bi,
i.e., “Ai implies Bi”. In classical logic this means that if A holds, B must hold as well
for the implication to be true. Nothing can, however, be said about B when A does not
hold, and the relationship also cannot be inverted. When using a conjunction, A ∧B, the
interpretation of the if-then rules is “it is true that A and B simultaneously hold”. This
relationship is symmetric (nondirectional) and can be inverted.

Examples of fuzzy implications are the Łukasiewicz implication given by:

I
(
µA(x), µB(y)

)
= min

(
1, 1− µA(x) + µB(y)

)
, (3.7)

or the Kleene–Diene implication:

I
(
µA(x), µB(y)

)
= max

(
1− µA(x), µB(y)

)
. (3.8)

Examples of t-norms are the minimum, often, not quite correctly, called the Mamdani
“implication”,

I
(
µA(x), µB(y)

)
= min

(
µA(x), µB(y)

)
, (3.9)

or the product, also called the Larsen “implication”,

I
(
µA(x), µB(y)

)
= µA(x) · µB(y) . (3.10)

More details about fuzzy implications and the related operators can be found, for instance,
in (Klir and Yuan, 1995; Lee, 1990a,b; Jager, 1995).

The inference mechanism is based on the generalized modus ponens rule:

If x is A then y is B
x is A′

y is B′

Given the if-then rule and the fact the “x is A′”, the output fuzzy set B′ is derived by the
relational max-t composition (Klir and Yuan, 1995):

B′ = A′ ◦R . (3.11)

For the minimum t-norm, the max-min composition is obtained:

µB′(y) = max
X

(
min
X,Y

(
µA′(x), µR(x,y)

))
. (3.12)

Figure 3.4(a) shows an example of fuzzy relation R computed by (3.9). Figure 3.4(b)
illustrates the inference of B′, given the relation R and the input A′, by means of the max-
min composition (3.12). One can see that the obtained B′ is subnormal, which represents
the uncertainty in the input (A′ ̸= A). The relational calculus must be implemented in
discrete domains. Let us give an example.
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(b) Fuzzy inference.

Figure 3.4.: (a) Fuzzy relation representing the rule “ If x is A then y is B”, (b) the
compositional rule of inference.

Example 3.3 (Compositional Rule of Inference) Consider a fuzzy rule

If x is A then y is B

with the fuzzy sets:

A = {0/1, 0.1/2, 0.4/3, 0.8/4, 1/5},
B = {0/− 2, 0.6/− 1, 1/0, 0.6/1, 0/2} .

Using the minimum t-norm (Mamdani “implication”), the relation RM representing the
fuzzy rule is computed by (3.9):

RM =



0 0 0 0 0

0 0.1 0.1 0.1 0

0 0.4 0.4 0.4 0

0 0.6 0.8 0.6 0

0 0.6 1 0.6 0


. (3.13)

The rows of this relational matrix correspond to the domain elements of A and the columns
to the domain elements of B. Now consider an input fuzzy set to the rule:

A′ = {0/1, 0.2/2, 0.8/3, 1/4, 0.1/5} . (3.14)
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3. Fuzzy Systems

The application of the max-min composition (3.12), B′
M = A′ ◦ RM , yields the following

output fuzzy set:
B′

M = {0/− 2, 0.6/− 1, 0.8/0, 0.6/1, 0/2} . (3.15)

By applying the Łukasiewicz fuzzy implication (3.7), the following relation is obtained:

RL =



1 1 1 1 1

0.9 1 1 1 0.9

0.6 1 1 1 0.6

0.2 0.8 1 0.8 0.2

0 0.6 1 0.6 0


. (3.16)

Using the max-t composition, where the t-norm is the Łukasiewicz (bold) intersection (see
Definition 2.12), the inferred fuzzy set B′

L = A′ ◦RL equals:

B′
L = {0.4/− 2, 0.8/− 1, 1/0, 0.8/1, 0.4/2} . (3.17)

Note the difference between the relations RM and RL, which are also depicted in Figure 3.5.
The implication is false (zero entries in the relation) only when A holds and B does not.
When A does not hold, the truth value of the implication is 1 regardless of B. The t-norm,
however, is false whenever either A or B or both do not hold, and thus represents a
bi-directional relation (correlation).
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(a) Minimum t-norm.
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(b) Łukasiewicz implication.

Figure 3.5.: Fuzzy relations obtained by applying a t-norm operator (minimum) and a fuzzy
implication (Łukasiewicz).

This difference naturally influences the result of the inference process. Since the input
fuzzy set A′ is different from the antecedent set A, the derived conclusion B′ is in both cases
“less certain” than B. The difference is that, with the fuzzy implication, this uncertainty is
reflected in the increased membership values for the domain elements that have low or zero
membership in B, which means that these output values are possible to a greater degree.
However, the t-norm results in decreasing the membership degree of the elements that have
high membership in B, which means that these outcomes are less possible. This influences
the properties of the two inference mechanisms and the choice of suitable defuzzification
methods, as discussed later on.

�
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3.2. Linguistic model

The entire rule base (3.1) is represented by aggregating the relations Ri of the individual
rules into a single fuzzy relation. If Ri’s represent implications, R is obtained by an
intersection operator:

R =
K⋂
i=1

Ri, that is, µR(x,y) = min
1≤i≤K

µRi
(x,y) . (3.18)

If I is a t-norm, the aggregated relation R is computed as a union of the individual relations
Ri:

R =
K⋃
i=1

Ri, that is, µR(x,y) = max
1≤i≤K

µRi
(x,y) . (3.19)

The output fuzzy set B′ is inferred in the same way as in the case of one rule, by using the
compositional rule of inference (3.11).

The above representation of a system by the fuzzy relation is called a fuzzy graph, and the
compositional rule of inference can be regarded as a generalized function evaluation using
this graph (see Figure 3.1). The fuzzy relation R, defined on the Cartesian product space
of the system’s variables X1 ×X2 × · · ·Xp × Y is a possibility distribution (restriction) of
the different input–output tuples (x1, x2, . . . , xp, y). An α-cut of R can be interpreted as a
set of input–output combinations possible to a degree greater or equal to α.

Example 3.4 Let us compute the fuzzy relation for the linguistic model of Example 3.2.
First we discretize the input and output domains, for instance: X = {0, 1, 2, 3} and
Y = {0, 25, 50, 75, 100}. The (discrete) membership functions are given in Table 3.1 for the
antecedent linguistic terms, and in Table 3.2 for the consequent terms.

Table 3.1.: Antecedent membership functions.
domain element

linguistic term 0 1 2 3
Low 1.0 0.6 0.0 0.0
OK 0.0 0.4 1.0 0.4
High 0.0 0.0 0.1 1.0

Table 3.2.: Consequent membership functions.
domain element

linguistic term 0 25 50 75 100
Low 1.0 1.0 0.6 0.0 0.0
High 0.0 0.0 0.3 0.9 1.0

The fuzzy relations Ri corresponding to the individual rule, can now be computed by
using (3.9). For rule R1, we have R1 = Low×Low , for rule R2, we obtain R2 = OK ×High,
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and finally for rule R3, R3 = High×Low . The fuzzy relation R, which represents the entire
rule base, is the union (element-wise maximum) of the relations Ri:

R1 =


1.0 1.0 0.6 0 0
0.6 0.6 0.6 0 0
0 0 0 0 0
0 0 0 0 0



R2 =


0 0 0 0 0
0 0 0.3 0.4 0.4
0 0 0.3 0.9 1.0
0 0 0.3 0.4 0.4



R3 =


0 0 0 0 0
0 0 0 0 0
0.1 0.1 0.1 0 0
1.0 1.0 0.6 0 0





R =


1.0 1.0 0.6 0 0
0.6 0.6 0.6 0.4 0.4
0.1 0.1 0.3 0.9 1.0
1.0 1.0 0.6 0.4 0.4

 . (3.20)

These steps are illustrated in Figure 3.6. For better visualization, the relations are computed
with a finer discretization by using the membership functions of Figure 3.3. This example
can be run under Matlab by calling the script ling.
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Figure 3.6.: Fuzzy relations R1, R2, R3 corresponding to the individual rules, and the
aggregated relation R corresponding to the entire rule base.

Now consider an input fuzzy set to the model, A′ = [1, 0.6, 0.3, 0], which can be denoted
as Somewhat Low flow rate, as it is close to Low but does not equal Low . The result of
max-min composition is the fuzzy set B′ = [1, 1, 0.6, 0.4, 0.4], which gives the expected
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3.2. Linguistic model

approximately Low heating power. For A′ = [0, 0.2, 1, 0.2] (approximately OK ), we obtain
B′ = [0.2, 0.2, 0.3, 0.9, 1], i.e., approximately High heating power. Verify these results as
an exercise. Figure 3.7 shows the fuzzy graph for our example (contours of R, where the
shading corresponds to the membership degree).

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Figure 3.7.: A fuzzy graph for the linguistic model of Example 3.4. Darker shading corre-
sponds to higher membership degree. The solid line is a possible crisp function
representing a similar relationship as the fuzzy model.

�

3.2.3. Max-min (Mamdani) Inference

We have seen that a rule base can be represented as a fuzzy relation. The output of a
rule-based fuzzy model is then computed by the max-min relational composition. It can
be shown that for fuzzy implications with crisp inputs, and for t-norms with both crisp
and fuzzy inputs, the reasoning scheme can be simplified, bypassing the relational calculus
(Jager, 1995). This is advantageous, as the discretization of domains and storing of the
relation R can be avoided. For the t-norm, the simplification results in the well-known
scheme, in the literature called the max-min or Mamdani inference, as outlined below.

Suppose an input fuzzy value x = A′, for which the output value B′ is given by the
relational composition:

µB′(y) = max
X

[µA′(x) ∧ µR(x,y)] . (3.21)

After substituting for µR(x,y) from (3.19), the following expression is obtained:

µB′(y) = max
X

{
µA′(x) ∧ max

1≤i≤K
[µAi

(x) ∧ µBi
(y)]

}
. (3.22)

Since the max and min operation are taken over different domains, their order can be
changed as follows:

µB′(y) = max
1≤i≤K

{
max
X

[µA′(x) ∧ µAi
(x)] ∧ µBi

(y)
}
. (3.23)

Denote βi = maxX [µA′(x) ∧ µAi
(x)] the degree of fulfillment of the ith rule’s antecedent.

The output fuzzy set of the linguistic model is thus:

µB′(y) = max
1≤i≤K

[βi ∧ µBi
(y)], y ∈ Y . (3.24)

The max-min (Mamdani) algorithm, is summarized in Algorithm 3.1 and visualized in
Figure 3.8.
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Algorithm 3.1 Mamdani (max-min) inference

1. Compute the degree of fulfillment for each rule by: βi = max
X

[µA′(x) ∧ µAi
(x)],

1 ≤ i ≤ K . Note that for a singleton set (µA′(x) = 1 for x = x0 and µA′(x) = 0
otherwise) the equation for βi simplifies to βi = µAi

(x0).

2. Derive the output fuzzy sets B′
i: µB′

i
(y) = βi ∧ µBi

(y), y ∈ Y, 1 ≤ i ≤ K .

3. Aggregate the output fuzzy sets B′
i: µB′(y) = max

1≤i≤K
µB′

i
(y), y ∈ Y .

B '2
b2

model:

If is then isx A y B3 3

If is then isx A y B1 1
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Step 2Step 1
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0

1

0
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Figure 3.8.: A schematic representation of the Mamdani inference algorithm.

Example 3.5 Let us take the input fuzzy set A′ = [1, 0.6, 0.3, 0] from Example 3.4 and
compute the corresponding output fuzzy set by the Mamdani inference method. Step 1
yields the following degrees of fulfillment:

β1 = max
X

[µA′(x) ∧ µA1(x)] = max ([1, 0.6, 0.3, 0] ∧ [1, 0.6, 0, 0]) = 1.0,

β2 = max
X

[µA′(x) ∧ µA2(x)] = max ([1, 0.6, 0.3, 0] ∧ [0, 0.4, 1, 0.4]) = 0.4,

β3 = max
X

[µA′(x) ∧ µA3(x)] = max ([1, 0.6, 0.3, 0] ∧ [0, 0, 0.1, 1]) = 0.1 .

In step 2, the individual consequent fuzzy sets are computed:

B′
1 = β1 ∧B1 = 1.0 ∧ [1, 1, 0.6, 0, 0] = [1, 1, 0.6, 0, 0],

B′
2 = β2 ∧B2 = 0.4 ∧ [0, 0, 0.3, 0.9, 1] = [0, 0, 0.3, 0.4, 0.4],

B′
3 = β3 ∧B3 = 0.1 ∧ [1, 1, 0.6, 0, 0] = [0.1, 0.1, 0.1, 0, 0] .
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3.2. Linguistic model

Finally, step 3 gives the overall output fuzzy set:

B′ = max
1≤i≤K

µB′
i
= [1, 1, 0.6, 0.4, 0.4],

which is identical to the result from Example 3.4. Verify the result for the second input
fuzzy set of Example 3.4 as an exercise.

�

From a comparison of the number of operations in examples 3.4 and 3.5, it may seem that
the saving with the Mamdani inference method with regard to relational composition is not
significant. This is, however, only true for a rough discretization (such as the one used in
Example 3.4) and for a small number of inputs (one in this case). Note that the Mamdani
inference method does not require any discretization and thus can work with analytically
defined membership functions. It also can make use of learning algorithms, as discussed in
Chapter 5.

3.2.4. Defuzzification

The result of fuzzy inference is the fuzzy set B′. If a crisp (numerical) output value is
required, the output fuzzy set must be defuzzified. Defuzzification is a transformation that
replaces a fuzzy set by a single numerical value representative of that set. Figure 3.9 shows
two most commonly used defuzzification methods: the center of gravity (COG) and the
mean of maxima (MOM).

y' y

(a) Center of gravity.

y' y

(b) Mean of maxima.

Figure 3.9.: The center-of-gravity and the mean-of-maxima defuzzification methods.

The COG method calculates numerically the y coordinate of the center of gravity of the
fuzzy set B′:

y′ = cog(B′) =

F∑
j=1

µB′(yj) yj

F∑
j=1

µB′(yj)

(3.25)

where F is the number of elements yj in Y . Continuous domain Y thus must be discretized
to be able to compute the center of gravity.

The MOM method computes the mean value of the interval with the largest membership
degree:

mom(B′) = cog{y | µB′(y) = max
y∈Y

µB′(y)} . (3.26)
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The COG method is used with the Mamdani max-min inference, as it provides interpolation
between the consequents, in proportion to the height of the individual consequent sets.
This is necessary, as the Mamdani inference method itself does not interpolate, and the
use of the MOM method in this case results in a step-wise output. The MOM method is
used with the inference based on fuzzy implications, to select the “most possible” output.
The inference with implications interpolates, provided that the consequent sets sufficiently
overlap (Jager, 1995). The COG method cannot be directly used in this case, because the
uncertainty in the output results in an increase of the membership degrees, as shown in
Example 3.3. The COG method would give an inappropriate result.

To avoid the numerical integration in the COG method, a modification of this approach
called the fuzzy-mean defuzzification is often used. The consequent fuzzy sets are first
defuzzified, in order to obtain crisp values representative of the fuzzy sets, using for instance
the mean-of-maxima method: bj = mom(Bj). A crisp output value is then computed by
taking a weighted mean of bj’s:

y′ =

M∑
j=1

ωj bj

M∑
j=1

ωj

(3.27)

where M is the number of fuzzy sets Bj and ωj is the maximum of the degrees of fulfillment
βi over all the rules with the consequent Bj. In terms of the aggregated fuzzy set B′, ωj

can be computed by ωj = µB′(bj). This method ensures linear interpolation between the
bj’s, provided that the antecedent membership functions are piece-wise linear. This is not
the case with the COG method, which introduces a nonlinearity, depending on the shape of
the consequent functions (Jager et al., 1992). Because the individual defuzzification is done
off line, the shape and overlap of the consequent fuzzy sets have no influence, and these
sets can be directly replaced by the defuzzified values (singletons), see also Section 3.3. In
order to at least partially account for the differences between the consequent fuzzy sets,
the weighted fuzzy-mean defuzzification can be applied:

y′ =

M∑
j=1

γj Sj bj

M∑
j=1

γj Sj

, (3.28)

where Sj is the area under the membership function of Bj . An advantage of the fuzzy-mean
methods (3.27) and (3.28) is that the parameters bj can be estimated by linear estimation
techniques as shown in Chapter 5.

Example 3.6 Consider the output fuzzy set B′ = [0.2, 0.2, 0.3, 0.9, 1] from Example 3.4,
where the output domain is Y = [0, 25, 50, 75, 100]. The defuzzified output obtained by
applying formula (3.25) is:

y′ =
0.2 · 0 + 0.2 · 25 + 0.3 · 50 + 0.9 · 75 + 1 · 100

0.2 + 0.2 + 0.3 + 0.9 + 1
= 72.12 .

The heating power of the burner, computed by the fuzzy model, is thus 72.12 W.
�
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3.2.5. Fuzzy Implication versus Mamdani Inference

A natural question arises: Which inference method is better, or in which situations should
one method be preferred to the other? To find an answer, a detailed analysis of the
presented methods must be carried out, which is outside the scope of this presentation.
One of the distinguishing aspects, however, can be demonstrated by using an example.

Example 3.7 (Advantage of Fuzzy Implications) Consider a rule base of Figure 3.10.
Rules R1 and R2 represent a simple monotonic (approximately linear) relation between two
variables.

then y isR1: If x is zero zero

then y isR3: If x is small not small

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

then y isR2: If x is large large

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

Figure 3.10.: The considered rule base.

This may be, for example, a rule-based implementation of a proportional control law.
Rule R3, “If x is small then y is not small”, represents a kind of “exception” from the simple
relationship defined by interpolation of the previous two rules. In terms of control, such
a rule may deal with undesired phenomena, such as static friction. For instance, when
controlling an electrical motor with large Coulomb friction, it does not make sense to apply
low current if it is not sufficient to overcome the friction, since in that case the motor only
consumes energy. These three rules can be seen as a simple example of combining general
background knowledge with more specific information in terms of exceptions.

Figure 3.11(a) shows the result for the Mamdani inference method with the COG
defuzzification. One can see that the Mamdani method does not work properly. The reason
is that the interpolation is provided by the defuzzification method and not by the inference
mechanism itself. The presence of the third rule significantly distorts the original, almost
linear characteristic, also in the region of x where R1 has the greatest membership degree.
The purpose of avoiding small values of y is not achieved.

Figure 3.11(b) shows the result of logical inference based on the Łukasiewicz implication
and MOM defuzzification. One can see that the third rule fulfills its purpose, i.e., forces
the fuzzy system to avoid the region of small outputs (around 0.25) for small input values
(around 0.25). The exact form of the input–output mapping depends on the choice of the
particular inference operators (implication, composition), but the overall behavior remains
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(a) Mamdani inference.
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(b) Inference with Łukasiewicz impli-
cation.

Figure 3.11.: Input-output mapping of the rule base of Figure 3.10 for two different inference
methods. Markers ’o’ denote the defuzzified output of rules R1 and R2 only,
markers ’+’ denote the defuzzified output of the entire rule base.

unchanged.
�

It should be noted, however, that the implication-based reasoning scheme imposes certain
requirements on the overlap of the consequent membership functions, which may be hard
to fulfill in the case of multi-input rule bases (Jager, 1995). In addition, this method must
generally be implemented using fuzzy relations and the compositional rule of inference,
which increases the computational demands.

3.2.6. Rules with Several Inputs, Logical Connectives

So far, the linguistic model was presented in a general manner covering both the SISO
and MIMO cases. In the MIMO case, all fuzzy sets in the model are defined on vector
domains by multivariate membership functions. It is, however, usually, more convenient
to write the antecedent and consequent propositions as logical combinations of fuzzy
propositions with univariate membership functions. Fuzzy logic operators (connectives),
such as the conjunction, disjunction and negation (complement), can be used to combine
the propositions.

The connectives and and or are implemented by t-norms and t-conorms, respectively.
There are an infinite number of t-norms and t-conorms, but in practice only a small number
of operators are used. Table 3.3 lists the three most common ones.

The choice of t-norms and t-conorms for the logical connectives depends on the meaning
and on the context of the propositions. The max and min operators proposed by Zadeh
ignore redundancy, i.e., the combination (conjunction or disjunction) of two identical fuzzy
propositions will represent the same proposition:

µA∩A(x) = µA(x) ∧ µA(x) = µA(x), (3.29)
µA∪A(x) = µA(x) ∨ µA(x) = µA(x) . (3.30)

This does not hold for other t-norms and t-conorms. However, when fuzzy propositions are
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Table 3.3.: Frequently used operators for the and and or connectives.
and or name
min(a, b) max(a, b) Zadeh
max(a+ b− 1, 0) min(a+ b, 1) Łukasiewicz
ab a+ b− ab probability

not equal, but they are correlated or interactive, the use of other operators than min and
max can be justified.

If the propositions are related to different universes, a logical connective result in a
multivariable fuzzy set. Consider the following proposition:

P : x1 is A1 and x2 is A2

where A1 and A2 have membership functions µA1(x1) and µA2(x2). The proposition p can
then be represented by a fuzzy set P with the membership function:

µP (x1, x2) = T(µA1(x1), µA2(x2)), (3.31)

where T is a t-norm which models the and connective. A combination of propositions is
again a proposition.

Negation within a fuzzy proposition is related to the complement of a fuzzy set. For a
proposition

P : x is not A

the standard complement results in:

µP (x) = 1− µA(x)

Most common is the conjunctive form of the antecedent, which is given by:

Ri : If x1 is Ai1 and x2 is Ai2 and . . . and xp is Aip then y is Bi,

i = 1, 2, . . . , K . (3.32)

Note that the above model is a special case of (3.1), as the fuzzy set Ai in (3.1) is obtained
as the Cartesian product conjunction of fuzzy sets Aij: Ai = Ai1 × Ai2 × · · · × Aip. Hence,
for a crisp input, the degree of fulfillment (step 1 of Algorithm 3.1) is given by:

βi = µAi1
(x1) ∧ µAi2

(x2) ∧ · · · ∧ µAip
(xp), 1 ≤ i ≤ K . (3.33)

A set of rules in the conjunctive antecedent form divides the input domain into a lattice of
fuzzy hyperboxes, parallel with the axes. Each of the hyperboxes is a Cartesian product-
space intersection of the corresponding univariate fuzzy sets. This is shown in Figure 3.12a.
The number of rules in the conjunctive form, needed to cover the entire domain, is given
by:

K = Πp
i=1Ni,

where p is the dimension of the input space and Ni is the number of linguistic terms of the
ith antecedent variable.
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Figure 3.12.: Different partitions of the antecedent space. Gray areas denote the overlapping
regions of the fuzzy sets.

By combining conjunctions, disjunctions and negations, various partitions of the an-
tecedent space can be obtained, the boundaries are, however, restricted to the rectangular
grid defined by the fuzzy sets of the individual variables, see Figure 3.12b. As an example
consider the rule antecedent covering the lower left corner of the antecedent space in this
figure:

If x1 is not A13 and x2 is A21 then . . .

The degree of fulfillment of this rule is computed using the complement and intersection
operators:

β = [1− µA13(x1)] ∧ µA21(x2) . (3.34)

The antecedent form with multivariate membership functions (3.1) is the most general one,
as there is no restriction on the shape of the fuzzy regions. The boundaries between these
regions can be arbitrarily curved and oblique to the axes, as depicted in Figure 3.12c. Also
the number of fuzzy sets needed to cover the antecedent space may be much smaller than
in the previous cases. Hence, for complex multivariable systems, this partition may provide
the most effective representation. Note that the fuzzy sets A1 to A4 in Figure 3.12c still
can be projected onto X1 and X2 to obtain an approximate linguistic interpretation of the
regions described.

3.2.7. Rule Chaining *

So far, only a one-layer structure of a fuzzy model has been considered. In practice, however,
an output of one rule base may serve as an input to another rule base. This results in
a structure with several layers and chained rules. This situation occurs, for instance, in
hierarchical models or controller which include several rule bases. Hierarchical organization
of knowledge is often used as a natural approach to complexity reduction. A large rule base
with many input variables may be split into several interconnected rule bases with fewer
inputs. As an example, suppose a rule base with three inputs, each with five linguistic
terms. Using the conjunctive form (3.32), 125 rules have to be defined to cover all the input
situations. Splitting the rule base in two smaller rule bases, as depicted in Figure 3.13,
results in a total of 50 rules.

Another example of rule chaining is the simulation of dynamic fuzzy systems, where a
cascade connection of rule bases results from the fact that a value predicted by the model at
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Figure 3.13.: Cascade connection of two rule bases.

time k is used as an input at time k + 1. As an example, consider a nonlinear discrete-time
model

x̂(k + 1) = f
(
x̂(k), u(k)

)
, (3.35)

where f is a mapping realized by the rule base, x̂(k) is a predicted state of the process at
time k (at the same time it is the state of the model), and u(k) is an input. At the next
time step we have:

x̂(k + 2) = f
(
x̂(k + 1), u(k + 1)

)
= f

(
f
(
x̂(k), u(k)

)
, u(k + 1)

)
, (3.36)

which gives a cascade chain of rules.
The hierarchical structure of the rule bases shown in Figure 3.13 requires that the

information inferred in Rule base A is passed to Rule base B. This can be accomplished by
defuzzification at the output of the first rule base and subsequent fuzzification at the input
of the second rule base. A drawback of this approach is that membership functions have to
be defined for the intermediate variable and that a suitable defuzzification method must be
chosen. If the values of the intermediate variable cannot be verified by using data, there
is no direct way of checking whether the choice is appropriate or not. Also, the fuzziness
of the output of the first stage is removed by defuzzification and subsequent fuzzification.
This method is used mainly for the simulation of dynamic systems, such as (3.36), when
the intermediate variable serves at the same time as a crisp output of the system.

Another possibility is to feed the fuzzy set at the output of the first rule base directly
(without defuzzification) to the second rule base. An advantage of this approach is that
it does not require any additional information from the user. However, in general, the
relational composition must be carried out, which requires discretization of the domains
and a more complicated implementation. In the case of the Mamdani max-min inference
method, the reasoning can be simplified, since the membership degrees of the output fuzzy
set directly become the membership degrees of the antecedent propositions where the
particular linguistic terms occur. Assume, for instance, that inference in Rule base A results
in the following aggregated degrees of fulfillment of the consequent linguistic terms B1 to
B5 :

ω = [0/B1, 0.7/B2, 0.1/B3, 0/B4, 0/B5].

The membership degree of the propositions “If y is B2” in rule base B is thus 0.7, the
membership degree of the propositions “If y is B3” is 0.1, and the propositions with the
remaining linguistic terms have the membership degree equal to zero.
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3.3. Singleton Model

A special case of the linguistic fuzzy model is obtained when the consequent fuzzy sets Bi

are singleton sets. These sets can be represented as real numbers bi, yielding the following
rules:

Ri : If x is Ai then y = bi, i = 1, 2, . . . , K . (3.37)

This model is called the singleton model. Contrary to the linguistic model, the number
of distinct singletons in the rule base is usually not limited, i.e., each rule may have its
own singleton consequent. For the singleton model, the COG defuzzification results in the
fuzzy-mean method:

y =

K∑
i=1

βi bi

K∑
i=1

βi

. (3.38)

Note that here all the K rules contribute to the defuzzification, as opposed to the method
given by eq. (3.27). This means that if two rules which have the same consequent singleton
are active, this singleton counts twice in the weighted mean (3.38). When using (3.27),
each consequent would count only once with a weight equal to the larger of the two degrees
of fulfillment. Note that the singleton model can also be seen as a special case of the
Takagi–Sugeno model, presented in Section 3.5.

An advantage of the singleton model over the linguistic model is that the consequent
parameters bi can easily be estimated from data, using least-squares techniques. The
singleton fuzzy model belongs to a general class of general function approximators, called
the basis functions expansion, (Friedman, 1991) taking the form:

y =
K∑
i=1

φi(x)bi . (3.39)

Most structures used in nonlinear system identification, such as artificial neural networks,
radial basis function networks, or splines, belong to this class of systems. In the singleton
model, the basis functions φi(x) are given by the (normalized) degrees of fulfillment of
the rule antecedents, and the constants bi are the consequents. Multilinear interpolation
between the rule consequents is obtained if:

• the antecedent membership functions are trapezoidal, pairwise overlapping and the
membership degrees sum up to one for each domain element,

• the product operator is used to represent the logical and connective in the rule
antecedents.

A univariate example is shown in Figure 3.14a.
Clearly, a singleton model can also represent any given linear mapping of the form:

y = kTx+ q =

p∑
i=1

kixi + q . (3.40)
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Figure 3.14.: Singleton model with triangular or trapezoidal membership functions results
in a piecewise linear input-output mapping (a), of which a linear mapping is
a special case (b).

In this case, the antecedent membership functions must be triangular. The consequent
singletons can be computed by evaluating the desired mapping (3.40) for the cores aij of
the antecedent fuzzy sets Aij (see Figure 3.14b):

bi =

p∑
j=1

kjaij + q . (3.41)

This property is useful, as the (singleton) fuzzy model can always be initialized such that it
mimics a given (perhaps inaccurate) linear model or controller and can later be optimized.

3.4. Relational Model

Fuzzy relational models (Pedrycz, 1985, 1993) encode associations between linguistic terms
defined in the system’s input and output domains by using fuzzy relations. The individual
elements of the relation represent the strength of association between the fuzzy sets. Let us
first consider the already known linguistic fuzzy model which consists of the following rules:

Ri : If x1 is Ai,1 and . . . and xn is Ai,n then y is Bi, i = 1, 2, . . . , K . (3.42)

Denote Aj the set of linguistic terms defined for an antecedent variable xj:

Aj = {Aj,l | l = 1, 2, . . . , Nj}, j = 1, 2, . . . , n,

where µAj,l
(xj) : Xj → [0, 1]. Similarly, the set of linguistic terms defined for the consequent

variable y is denoted by:
B = {Bl | l = 1, 2, . . . ,M},

with µBl
(y) : Y → [0, 1]. The key point in understanding the principle of fuzzy relational

models is to realize that the rule base (3.42) can be represented as a crisp relation S
between the antecedent term sets Aj and the consequent term sets B:

S : A1 ×A2 × · · · × An × B → {0, 1} . (3.43)
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By denoting A = A1 × A2 × · · · × An the Cartesian space of the antecedent linguistic
terms, (3.43) can be simplified to S : A× B → {0, 1}. Note that if rules are defined for all
possible combinations of the antecedent terms, K = card(A). Now S can be represented as
a K ×M matrix, constrained to only one nonzero element in each row.

Example 3.8 (Relational Representation of a Rule Base) Consider a fuzzy model
with two inputs, x1, x2, and one output, y. Define two linguistic terms for each in-
put: A1 = {Low , High}, A2 = {Low , High}, and three terms for the output: B =
{Slow , Moderate, Fast}. For all possible combinations of the antecedent terms, four rules
are obtained (the consequents are selected arbitrarily):

If x1 is Low and x2 is Low then y is Slow
If x1 is Low and x2 is High then y is Moderate
If x1 is High and x2 is Low then y is Moderate
If x1 is High and x2 is High then y is Fast .

In this example, A = {(Low ,Low), (Low ,High), (High,Low), (High,High)}. The above
rule base can be represented by the following relational matrix S:

y
x1 x2 Slow Moderate Fast
Low Low 1 0 0
Low High 0 1 0
High Low 0 1 0
High High 0 0 1

�

The fuzzy relational model is nothing else than an extension of the above crisp relation S
to a fuzzy relation R = [ri,j]:

R : A× B → [0, 1] . (3.44)

Each rule now contains all the possible consequent terms, each with its own weighting
factor, given by the respective element rij of the fuzzy relation (Figure 3.15). This weighting
allows the model to be fine-tuned more easily for instance to fit data.

It should be stressed that the relation R in (3.44) is different from the relation (3.18)
encoding linguistic if–then rules. The latter relation is a multidimensional membership
function defined in the product space of the input and output domains, whose each element
represents the degree of association between the individual crisp elements in the antecedent
and consequent domains. In fuzzy relational models, however, the relation represents
associations between the individual linguistic terms.

Example 3.9 (Relational model) Using the linguistic terms of Example 3.8, a fuzzy
relational model can be defined, for instance, by the following relation R:
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Figure 3.15.: Fuzzy relation as a mapping from input to output linguistic terms.

y
x1 x2 Slow Moderate Fast
Low Low 0.9 0.2 0.0
Low High 0.0 1.0 0.0
High Low 0.0 0.8 0.2
High High 0.0 0.1 0.8

The elements ri,j describe the associations between the combinations of the antecedent
linguistic terms and the consequent linguistic terms. This implies that the consequents
are not exactly equal to the predefined linguistic terms, but are given by their weighted
combinations. Note that the sum of the weights does not have to equal one. In terms of
rules, this relation can be interpreted as:

If x1 is Low and x2 is Low then y is Slow (0.9), y is Mod. (0.2), y is Fast (0.0)
If x1 is Low and x2 is High then y is Slow (0.0), y is Mod. (1.0), y is Fast (0.0)
If x1 is High and x2 is Low then y is Slow (0.0), y is Mod. (0.8), y is Fast (0.2)
If x1 is High and x2 is High then y is Slow (0.0), y is Mod. (0.1), y is Fast (0.8).

The numbers in parentheses are the respective elements ri,j of R.
�

The inference is based on the relational composition (2.43) of the fuzzy set representing
the degrees of fulfillment βi and the relation R. It is given in the following algorithm.

Algorithm 3.2 Inference in fuzzy relational model.

47
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1. Compute the degree of fulfillment by:

βi = µAi1
(x1) ∧ · · · ∧ µAip

(xp), i = 1, 2, . . . , K . (3.45)

(Other intersection operators, such as the product, can be applied as well.)

2. Apply the relational composition ω = β ◦R, given by:

ωj = max
1≤i≤K

(
βi ∧ rij

)
, j = 1, 2, . . . ,M . (3.46)

3. Defuzzify the consequent fuzzy set by:

y =

M∑
l=1

ωl · bl
M∑
l=1

ωl

(3.47)

where bl are the centroids of the consequent fuzzy sets Bl computed by applying some
defuzzification method such as the center-of-gravity (3.25) or the mean-of-maxima
(3.26) to the individual fuzzy sets Bl.

Note that if R is crisp, the Mamdani inference with the fuzzy-mean defuzzification (3.27)
is obtained.

Example 3.10 (Inference) Suppose, that for the rule base of Example 3.8, the following
membership degrees are obtained:

µLow(x1) = 0.9, µHigh(x1) = 0.2, µLow(x2) = 0.6, µHigh(x2) = 0.3,

for some given inputs x1 and x2. To infer y, first apply (3.45) to obtain β. Using the
product t-norm, the following values are obtained:

β1 = µLow(x1) · µLow(x2) = 0.54 β2 = µLow(x1) · µHigh(x2) = 0.27

β3 = µHigh(x1) · µLow(x2) = 0.12 β4 = µHigh(x1) · µHigh(x2) = 0.06

Hence, the degree of fulfillment is: β =
[
0.54 0.27 0.12 0.06

]
. Now we apply (3.46) to

obtain the output fuzzy set ω:

ω = β ◦R =
[
0.54 0.27 0.12 0.06

]
◦


0.9 0.2 0.0
0.0 1.0 0.0
0.0 0.8 0.2
0.0 0.1 0.8

 =
[
0.54 0.27 0.12

]
. (3.48)

Finally, by using (3.47), the defuzzified output y is computed:

y =
0.54 cog(Slow) + 0.27 cog(Moderate) + 0.12 cog(Fast)

0.54 + 0.27 + 0.12
. (3.49)

�
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The main advantage of the relational model is that the input–output mapping can be
fine-tuned without changing the consequent fuzzy sets (linguistic terms). In the linguistic
model, the outcomes of the individual rules are restricted to the grid given by the centroids
of the output fuzzy sets, which is not the case in the relational model, see Figure 3.16.
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Figure 3.16.: A possible input–output mapping of a fuzzy relational model.

For this additional degree of freedom, one pays by having more free parameters (elements
in the relation). If no constraints are imposed on these parameters, several elements in a
row of R can be nonzero, which may hamper the interpretation of the model. Furthermore,
the shape of the output fuzzy sets has no influence on the resulting defuzzified value, since
only centroids of these sets are considered in defuzzification.

It is easy to verify that if the antecedent fuzzy sets sum up to one and the bounded-sum–
product composition is used, a relational model can be computationally replaced by an
equivalent model with singleton consequents (Voisin et al., 1995).

Example 3.11 (Relational and Singleton Model) Fuzzy relational model:

If x is A1 then y is B1 (0.8), y is B2 (0.1), y is B3 (0.0) .

If x is A2 then y is B1 (0.6), y is B2 (0.2), y is B3 (0.0) .

If x is A3 then y is B1 (0.5), y is B2 (0.7), y is B3 (0.0) .

If x is A4 then y is B1 (0.0), y is B2 (0.1), y is B3 (0.9),

can be replaced by the following singleton model:

If x is A1 then y = (0.8b1 + 0.1b2)/(0.8 + 0.1),

If x is A2 then y = (0.6b1 + 0.2b2)/(0.6 + 0.2),

If x is A3 then y = (0.5b1 + 0.7b2)/(0.5 + 0.7),

If x is A4 then y = (0.1b2 + 0.9b3)/(0.1 + 0.9),
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3. Fuzzy Systems

where bj are defuzzified values of the fuzzy sets Bj, bj = cog(Bj).
�

If also the consequent membership functions form a partition, a singleton model can
conversely be expressed as an equivalent relational model by computing the membership
degrees of the singletons in the consequent fuzzy sets Bj. These membership degrees then
become the elements of the fuzzy relation:

R =


µB1(b1) µB2(b1) . . . µBM

(b1)
µB1(b2) µB2(b2) . . . µBM

(b2)
...

...
...

...
µB1(bK) µB2(bK) . . . µBM

(bK)

 . (3.50)

Clearly, the linguistic model is a special case of the fuzzy relational model, with R being a
crisp relation constrained such that only one nonzero element is allowed in each row of R
(each rule has only one consequent).

3.5. Takagi–Sugeno Model

The Takagi–Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985), on the other hand, uses
crisp functions in the consequents. Hence, it can be seen as a combination of linguistic
and mathematical regression modeling in the sense that the antecedents describe fuzzy
regions in the input space in which the consequent functions are valid. The TS rules have
the following form:

Ri : If x is Ai then yi = fi(x), i = 1, 2, . . . , K . (3.51)

Contrary to the linguistic model, the input x is a crisp variable (linguistic inputs are in
principle possible, but would require the use of the extension principle (Zadeh, 1975) to
compute the fuzzy value of yi). The functions fi are typically of the same structure, only
the parameters in each rule are different. Generally, fi is a vector-valued function, but for
the ease of notation we will consider a scalar fi in the sequel. A simple and practically
useful parameterization is the affine (linear in parameters) form, yielding the rules:

Ri : If x is Ai then yi = aT
i x+ bi, i = 1, 2, . . . , K, (3.52)

where ai is a parameter vector and bi is a scalar offset. This model is called an affine TS
model. Note that if ai = 0 for each i, the singleton model (3.37) is obtained.

3.5.1. Inference in the TS Model

The inference formula of the TS model is a straightforward extension of the singleton model
inference (3.38):

y =

K∑
i=1

βiyi

K∑
i=1

βi

=

K∑
i=1

βi(a
T
i x+ bi)

K∑
i=1

βi

. (3.53)
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3.5. Takagi–Sugeno Model

When the antecedent fuzzy sets define distinct but overlapping regions in the antecedent
space and the parameters ai and bi correspond to a local linearization of a nonlinear
function, the TS model can be regarded as a smoothed piece-wise approximation of that
function, see Figure 3.17.
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Figure 3.17.: Takagi–Sugeno fuzzy model as a smoothed piece-wise linear approximation of
a nonlinear function.

3.5.2. TS Model as a Quasi-Linear System

The affine TS model can be regarded as a quasi-linear system (i.e., a linear system with
input-dependent parameters). To see this, denote the normalized degree of fulfillment by

γi(x) =
βi(x)

K∑
j=1

βj(x)

. (3.54)

Here we write βi(x) explicitly as a function x to stress that the TS model is a quasi-linear
model of the following form:

y =

(
K∑
i=1

γi(x)a
T
i

)
x+

K∑
i=1

γi(x)bi = aT (x)x+ b(x) . (3.55)

The ‘parameters’ a(x), b(x) are convex linear combinations of the consequent parameters
ai and bi, i.e.:

a(x) =
K∑
i=1

γi(x)ai, b(x) =
K∑
i=1

γi(x)bi . (3.56)

In this sense, a TS model can be regarded as a mapping from the antecedent (input) space
to a convex region (polytope) in the space of the parameters of a quasi-linear system, as
schematically depicted in Figure 3.18.

This property facilitates the analysis of TS models in a framework similar to that of
linear systems. Methods have been developed to design controllers with desired closed loop
characteristics (Filev, 1996) and to analyze their stability (Tanaka and Sugeno, 1992; Zhao,
1995; Tanaka et al., 1996).
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Figure 3.18.: A TS model with affine consequents can be regarded as a mapping from the
antecedent space to the space of the consequent parameters.

3.6. Dynamic Fuzzy Systems *

In system modeling and identification one often deals with the approximation of dynamic
systems. Time-invariant dynamic systems are in general modeled as static functions, by
using the concept of the system’s state. Given the state of a system and given its input, we
can determine what the next state will be. In the discrete-time setting we can write

x(k + 1) = f(x(k),u(k)), (3.57)

where x(k) and u(k) are the state and the input at time k, respectively, and f is a static
function, called the state-transition function. Fuzzy models of different types can be
used to approximate the state-transition function. As the state of a process is often
not measured, input-output modeling is often applied. The most common is the NARX
(Nonlinear AutoRegressive with eXogenous input) model:

y(k+1) = f(y(k), y(k−1), . . . , y(k−ny+1), u(k), u(k−1), . . . , u(k−nu+1)) . (3.58)

Here y(k), . . . , y(k−ny +1) and u(k), . . . , u(k−nu+1) denote the past model outputs and
inputs respectively and ny, nu are integers related to the order of the dynamic system. For
example, a singleton fuzzy model of a dynamic system may consist of rules of the following
form:

Ri : If y(k) is Ai1 and y(k − 1) is Ai2 and . . . y(k − n+ 1) is Ain

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . u(k −m+ 1) is Bim

then y(k + 1) is ci . (3.59)

In this sense, we can say that the dynamic behavior is taken care of by external dynamic
filters added to the fuzzy system, see Figure 3.19. In (3.59), the input dynamic filter is a
simple generator of the lagged inputs and outputs, and no output filter is used.

A dynamic TS model is a sort of parameter-scheduling system. It has in its consequents
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Figure 3.19.: A generic fuzzy system with fuzzification and defuzzification units and external
dynamic filters.

linear ARX models whose parameters are generally different in each rule:

Ri : If y(k) is Ai1 and y(k − 1) is Ai2 and . . . y(k − ny + 1) is Ainy

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . u(k − nu + 1) is Binu

then y(k + 1) =

ny∑
j=1

aijy(k − j + 1) +
nu∑
j=1

biju(k − j + 1) + ci . (3.60)

Besides these frequently used input–output systems, fuzzy models can also represent
nonlinear systems in the state-space form:

x(k + 1) = g(x(k),u(k))

y(k) = h(x(k))

where state transition function g maps the current state x(k) and the input u(k) into a new
state x(k+1). The output function h maps the state x(k) into the output y(k). An example
of a rule-based representation of a state-space model is the following Takagi–Sugeno model:

If x(k) is Ai and u(k) is Bi then
{

x(k + 1) = Aix(k) +Biu(k) + ai

y(k) = Cix(k) + ci
(3.61)

for i = 1, . . . , K. Here Ai, Bi, Ci, ai and ci are matrices and vectors of appropriate
dimensions, associated with the ith rule.

The state-space representation is useful when the prior knowledge allows us to model the
system from first principles such as mass and energy balances. In literature, this approach
is called white-box state-space modeling (Ljung, 1987). If the state is directly measured on
the system, or can be reconstructed from other measured variables, both g and h can be
approximated by using nonlinear regression techniques. An advantage of the state-space
modeling approach is that the structure of the model is related to the structure of the
real system, and, consequently, also the model parameters are often physically relevant.
This is usually not the case in the input-output models. In addition, the dimension of the
regression problem in state-space modeling is often smaller than with input–output models,
since the state of the system can be represented with a vector of a lower dimension than
the regression (3.58).

Since fuzzy models are able to approximate any smooth function to any degree of
accuracy, (Wang, 1992) models of type (3.59), (3.60) and (3.61) can approximate any
observable and controllable modes of a large class of discrete-time nonlinear systems
(Leonaritis and Billings, 1985).
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3.7. Summary and Concluding Remarks

This chapter has reviewed four different types of rule-based fuzzy models: linguistic
(Mamdani-type) models, fuzzy relational models, singleton and Takagi–Sugeno models. A
major distinction can be made between the linguistic model, which has fuzzy sets in both
the rule antecedents and consequents of the rules, and the TS model, where the consequents
are (crisp) functions of the input variables. Fuzzy relational models can be regarded as an
extension of linguistic models, which allow for different degrees of association between the
antecedent and the consequent linguistic terms.

3.8. Problems

1. Give a definition of a linguistic variable. What is the difference between linguistic
variables and linguistic terms?

2. The minimum t-norm can be used to represent if-then rules in a similar way as fuzzy
implications. It is however not an implication function. Explain why. Give at least
one example of a function that is a proper fuzzy implication.

3. Consider a rule If x is A then y is B with fuzzy sets A = {0.1/x1, 0.4/x2, 1/x3}
and B = {0/y1, 1/y2, 0.2/y3}. Compute the fuzzy relation R that represents the
truth value of this fuzzy rule. Use first the minimum t-norm and then the Łukasiewicz
implication. Discuss the difference in the results.

4. Explain the steps of the Mamdani (max-min) inference algorithm for a linguistic
fuzzy system with one (crisp) input and one (fuzzy) output. Apply these steps to the
following rule base:

1) If x is A1 then y is B1,

2) If x is A2 then y is B2,

with
A1 = {0.1/1, 0.6/2, 1/3}, A2 = {0.9/1, 0.4/2, 0/3},
B1 = {1/4, 1/5, 0.3/6}, B2 = {0.1/4, 0.9/5, 1/6},

State the inference in terms of equations. Compute the output fuzzy set B′ for x = 2.

5. Define the center-of-gravity and the mean-of-maxima defuzzification methods. Apply
them to the fuzzy set B = {0.1/1, 0.2/2, 0.7/3, 1/4} and compare the numerical
results.

6. Consider the following Takagi–Sugeno rules:

1) If x is A1 and y is B1 then z1 = x+ y + 1

2) If x is A2 and y is B1 then z2 = 2x+ y + 1

3) If x is A1 and y is B2 then z3 = 2x+ 3y

4) If x is A2 and y is B2 then z4 = 2x+ 5
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Give the formula to compute the output z and compute the value of z for x = 1,
y = 4 and the antecedent fuzzy sets

A1 = {0.1/1, 0.6/2, 1/3}, A2 = {0.9/1, 0.4/2, 0/3},
B1 = {1/4, 1/5, 0.3/6}, B2 = {0.1/4, 0.9/5, 1/6} .

7. Consider an unknown dynamic system y(k + 1) = f
(
y(k), u(k)

)
. Give an example of

a singleton fuzzy model that can be used to approximate this system. What are the
free parameters in this model?
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4. Fuzzy Clustering

Clustering techniques are mostly unsupervised methods that can be used to organize
data into groups based on similarities among the individual data items. Most clustering
algorithms do not rely on assumptions common to conventional statistical methods, such
as the underlying statistical distribution of data, and therefore they are useful in situations
where little prior knowledge exists. The potential of clustering algorithms to reveal the
underlying structures in data can be exploited in a wide variety of applications, including
classification, image processing, pattern recognition, modeling and identification.

This chapter presents an overview of fuzzy clustering algorithms based on the c-means
functional. Readers interested in a deeper and more detailed treatment of fuzzy clustering
may refer to the classical monographs by Duda and Hart (1973), Bezdek (1981) and Jain
and Dubes (1988). A more recent overview of different clustering algorithms can be found
in (Bezdek and Pal, 1992).

4.1. Basic Notions

The basic notions of data, clusters and cluster prototypes are established and a broad
overview of different clustering approaches is given.

4.1.1. The Data Set

Clustering techniques can be applied to data that are quantitative (numerical), qualitative
(categorical), or a mixture of both. In this chapter, the clustering of quantitative data is
considered. The data are typically observations of some physical process. Each observation
consists of n measured variables, grouped into an n-dimensional column vector zk =
[z1k, . . . , znk]

T , zk ∈ Rn. A set of N observations is denoted by Z = {zk | k = 1, 2, . . . , N},
and is represented as an n×N matrix:

Z =


z11 z12 · · · z1N
z21 z22 · · · z2N
...

... . . . ...
zn1 zn2 · · · znN

 . (4.1)

In the pattern-recognition terminology, the columns of this matrix are called patterns or
objects, the rows are called the features or attributes, and Z is called the pattern or data
matrix. The meaning of the columns and rows of Z depends on the context. In medical
diagnosis, for instance, the columns of Z may represent patients, and the rows are then
symptoms, or laboratory measurements for these patients. When clustering is applied to
the modeling and identification of dynamic systems, the columns of Z may contain samples
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of time signals, and the rows are, for instance, physical variables observed in the system
(position, pressure, temperature, etc.). In order to represent the system’s dynamics, past
values of these variables are typically included in Z as well.

4.1.2. Clusters and Prototypes

Various definitions of a cluster can be formulated, depending on the objective of clustering.
Generally, one may accept the view that a cluster is a group of objects that are more similar
to one another than to members of other clusters (Bezdek, 1981; Jain and Dubes, 1988).
The term “similarity” should be understood as mathematical similarity, measured in some
well-defined sense. In metric spaces, similarity is often defined by means of a distance norm.
Distance can be measured among the data vectors themselves, or as a distance from a data
vector to some prototypical object (prototype) of the cluster. The prototypes are usually
not known beforehand, and are sought by the clustering algorithms simultaneously with
the partitioning of the data. The prototypes may be vectors of the same dimension as the
data objects, but they can also be defined as “higher-level” geometrical objects, such as
linear or nonlinear subspaces or functions.

Data can reveal clusters of different geometrical shapes, sizes and densities as demon-
strated in Figure 4.1. While clusters (a) are spherical, clusters (b) to (d) can be characterized
as linear and nonlinear subspaces of the data space. The performance of most clustering
algorithms is influenced not only by the geometrical shapes and densities of the individual
clusters, but also by the spatial relations and distances among the clusters. Clusters can
be well-separated, continuously connected to each other, or overlapping each other.

c)

a) b)

d)

Figure 4.1.: Clusters of different shapes and dimensions in R2. After (Jain and Dubes,
1988).

4.1.3. Overview of Clustering Methods

Many clustering algorithms have been introduced in the literature. Since clusters can
formally be seen as subsets of the data set, one possible classification of clustering methods
can be according to whether the subsets are fuzzy or crisp (hard).

Hard clustering methods are based on classical set theory, and require that an object
either does or does not belong to a cluster. Hard clustering means partitioning the data
into a specified number of mutually exclusive subsets.
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Fuzzy clustering methods, however, allow the objects to belong to several clusters
simultaneously, with different degrees of membership. In many situations, fuzzy clustering
is more natural than hard clustering. Objects on the boundaries between several classes
are not forced to fully belong to one of the classes, but rather are assigned membership
degrees between 0 and 1 indicating their partial membership. The discrete nature of the
hard partitioning also causes difficulties with algorithms based on analytic functionals,
since these functionals are not differentiable.

Another classification can be related to the algorithmic approach of the different techniques
(Bezdek, 1981).

• Agglomerative hierarchical methods and splitting hierarchical methods form new clusters
by reallocating memberships of one point at a time, based on some suitable measure
of similarity.

• With graph-theoretic methods, Z is regarded as a set of nodes. Edge weights between
pairs of nodes are based on a measure of similarity between these nodes.

• Clustering algorithms may use an objective function to measure the desirability of
partitions. Nonlinear optimization algorithms are used to search for local optima of
the objective function.

The remainder of this chapter focuses on fuzzy clustering with objective function. These
methods are relatively well understood, and mathematical results are available concerning
the convergence properties and cluster validity assessment.

4.2. Hard and Fuzzy Partitions

The concept of fuzzy partition is essential for cluster analysis, and consequently also for
the identification techniques that are based on fuzzy clustering. Fuzzy and possibilistic
partitions can be seen as a generalization of hard partition which is formulated in terms of
classical subsets.

4.2.1. Hard Partition

The objective of clustering is to partition the data set Z into c clusters (groups, classes).
For the time being, assume that c is known, based on prior knowledge, for instance. Using
classical sets, a hard partition of Z can be defined as a family of subsets {Ai | 1 ≤ i ≤ c} ⊂
P(Z)1 with the following properties (Bezdek, 1981):

c⋃
i=1

Ai = Z, (4.2a)

Ai ∩ Aj = ∅, 1 ≤ i ̸= j ≤ c, (4.2b)
∅ ⊂ Ai ⊂ Z, 1 ≤ i ≤ c . (4.2c)

1P(Z) is the power set of Z.
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Equation (4.2a) means that the union subsets Ai contains all the data. The subsets must
be disjoint, as stated by (4.2b), and none of them is empty nor contains all the data in Z
(4.2c). In terms of membership (characteristic) functions, a partition can be conveniently
represented by the partition matrix U = [µik]c×N . The ith row of this matrix contains
values of the membership function µi of the ith subset Ai of Z. It follows from (4.2) that
the elements of U must satisfy the following conditions:

µik ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.3a)
c∑

i=1

µik = 1, 1 ≤ k ≤ N, (4.3b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.3c)

Note that we have “strict” inequalities in (4.3c) as we need to avoid that a single cluster
has all the elements belonging to it (< N) and to avoid that a cluster has no element at all
(0 <).

The space of all possible hard partition matrices for Z, called the hard partitioning space
(Bezdek, 1981), is thus defined by

Mhc =

{
U ∈ Rc×N

∣∣∣µik ∈ {0, 1},∀i, k;
c∑

i=1

µik = 1,∀k; 0 <
N∑
k=1

µik < N,∀i

}
.

Example 4.1 Hard partition. Let us illustrate the concept of hard partition by a simple
example. Consider a data set Z = {z1, z2, . . . , z10}, shown in Figure 4.2.

z1

z3

z4 z5

z6

z7

z8

z10

z9

z2

Figure 4.2.: A data set in R2.

A visual inspection of this data may suggest two well-separated clusters (data points
z1 to z4 and z7 to z10 respectively), one point in between the two clusters (z5), and an
“outlier” z6. One particular partition U ∈Mhc of the data into two subsets (out of the 210

possible hard partitions) is

U =

[
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

]
.
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4.2. Hard and Fuzzy Partitions

The first row of U defines point-wise the characteristic function for the first subset of Z,
A1, and the second row defines the characteristic function of the second subset of Z, A2.
Each sample must be assigned exclusively to one subset (cluster) of the partition. In this
case, both the boundary point z5 and the outlier z6 have been assigned to A1. It is clear
that a hard partitioning may not give a realistic picture of the underlying data. Boundary
data points may represent patterns with a mixture of properties of data in A1 and A2, and
therefore cannot be fully assigned to either of these classes, or do they constitute a separate
class. This shortcoming can be alleviated by using fuzzy and possibilistic partitions as
shown in the following sections.

�

4.2.2. Fuzzy Partition

Generalization of the hard partition to the fuzzy case follows directly by allowing µik to
attain real values in [0, 1]. Conditions for a fuzzy partition matrix, analogous to (4.3) are
given by (Ruspini, 1970):

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.4a)
c∑

i=1

µik = 1, 1 ≤ k ≤ N, (4.4b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.4c)

The ith row of the fuzzy partition matrix U contains values of the ith membership function
of the fuzzy subset Ai of Z. Equation (4.4b) constrains the sum of each column to 1, and
thus the total membership of each zk in Z equals one. The fuzzy partitioning space for Z
is the set

Mfc =

{
U ∈ Rc×N

∣∣∣µik ∈ [0, 1], ∀i, k;
c∑

i=1

µik = 1,∀k; 0 <
N∑
k=1

µik < N,∀i

}
.

Example 4.2 Fuzzy partition.Consider the data set from Example 4.1. One of the
infinitely many fuzzy partitions in Z is:

U =

[
1.0 1.0 1.0 0.8 0.5 0.5 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.5 0.5 0.8 1.0 1.0 1.0

]
.

The boundary point z5 has now a membership degree of 0.5 in both classes, which correctly
reflects its position in the middle between the two clusters. Note, however, that the outlier
z6 has the same pair of membership degrees, even though it is further from the two clusters,
and thus can be considered less typical of both A1 and A2 than z5. This is because condition
(4.4b) requires that the sum of memberships of each point equals one. It can be, of course,
argued that three clusters are more appropriate in this example than two. In general,
however, it is difficult to detect outliers and assign them to extra clusters. The use of
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4. Fuzzy Clustering

possibilistic partition, presented in the next section, overcomes this drawback of fuzzy
partitions.

�

4.2.3. Possibilistic Partition

A more general form of fuzzy partition, the possibilistic partition,2 can be obtained by
relaxing the constraint (4.4b). This constraint, however, cannot be completely removed,
in order to ensure that each point is assigned to at least one of the fuzzy subsets with
a membership greater than zero. Equation (4.4b) can be replaced by a less restrictive
constraint ∀k, ∃i, µik > 0. The conditions for a possibilistic fuzzy partition matrix are:

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.5a)
∃i, µik > 0, ∀k, (4.5b)

0 <

N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.5c)

Analogously to the previous cases, the possibilistic partitioning space for Z is the set

Mpc =

{
U ∈ Rc×N

∣∣∣µik ∈ [0, 1],∀i, k; ∀k, ∃i, µik > 0; 0 <
N∑
k=1

µik < N,∀i

}
.

Example 4.3 Possibilistic partition. An example of a possibilistic partition matrix for
our data set is:

U =

[
1.0 1.0 1.0 1.0 0.5 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.2 1.0 1.0 1.0 1.0

]
.

As the sum of elements in each column of U ∈Mfc is no longer constrained, the outlier has
a membership of 0.2 in both clusters, which is lower than the membership of the boundary
point z5, reflecting the fact that this point is less typical for the two clusters than z5.

�

4.3. Fuzzy c-Means Clustering

Most analytical fuzzy clustering algorithms (and also all the algorithms presented in
this chapter) are based on optimization of the basic c-means objective function, or some
modification of it. Hence we start our discussion with presenting the fuzzy c-means
functional.

2The term “possibilistic” (partition, clustering, etc.) has been introduced in (Krishnapuram and Keller,
1993). In the literature, the terms “constrained fuzzy partition” and “unconstrained fuzzy partition” are
also used to denote partitions (4.4) and (4.5), respectively.
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4.3. Fuzzy c-Means Clustering

4.3.1. The Fuzzy c-Means Functional

A large family of fuzzy clustering algorithms is based on minimization of the fuzzy c-means
functional formulated as (Dunn, 1974; Bezdek, 1981):

J(Z;U,V) =
c∑

i=1

N∑
k=1

(µik)
m∥zk − vi∥2A (4.6a)

where
U = [µik] ∈Mfc (4.6b)

is a fuzzy partition matrix of Z,

V = [v1,v2, . . . ,vc], vi ∈ Rn (4.6c)

is a vector of cluster prototypes (centers), which have to be determined,

D2
ikA = ∥zk − vi∥2A = (zk − vi)

TA(zk − vi) (4.6d)

is a squared inner-product distance norm, and

m ∈ [1,∞) (4.6e)

is a parameter which determines the fuzziness of the resulting clusters. The value of the
cost function (4.6a) can be seen as a measure of the total variance of zk from vi.

4.3.2. The Fuzzy c-Means Algorithm

The minimization of the c-means functional (4.6a) represents a nonlinear optimization
problem that can be solved by using a variety of methods, including iterative minimization,
simulated annealing or genetic algorithms. The most popular method is a simple Picard
iteration through the first-order conditions for stationary points of (4.6a), known as the
fuzzy c-means (FCM) algorithm.

The stationary points of the objective function (4.6a) can be found by adjoining the
constraint (4.4b) to J by means of Lagrange multipliers:

J̄(Z;U,V,λ) =
c∑

i=1

N∑
k=1

(µik)
mD2

ikA +
N∑
k=1

λk

[
c∑

i=1

µik − 1

]
, (4.7)

and by setting the gradients of J̄ with respect to U, V and λ to zero. It can be shown
that if D2

ikA > 0,∀i, k and m > 1, then (U,V) ∈Mfc × Rn×c may minimize (4.6a) only if

µik =
1

c∑
j=1

(DikA/DjkA)2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.8a)

and

vi =

N∑
k=1

(µik)
mzk

N∑
k=1

(µik)m
; 1 ≤ i ≤ c . (4.8b)

63



4. Fuzzy Clustering

This solution also satisfies the remaining constraints (4.4a) and (4.4c). Equations (4.8) are
first-order necessary conditions for stationary points of the functional (4.6a). The FCM
(Algorithm 4.1) iterates through (4.8a) and (4.8b). Sufficiency of (4.8) and the convergence
of the FCM algorithm is proven in (Bezdek, 1980). Note that (4.8b) gives vi as the weighted
mean of the data items that belong to a cluster, where the weights are the membership
degrees. That is why the algorithm is called “c-means”.

Algorithm 4.1 Fuzzy c-means (FCM).

Given the data set Z, choose the number of clusters 1 < c < N , the weighting exponent
m > 1, the termination tolerance ϵ > 0 and the norm-inducing matrix A. Initialize the
partition matrix randomly, such that U(0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute the cluster prototypes (means):

v
(l)
i =

N∑
k=1

(
µ
(l−1)
ik

)m
zk

N∑
k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the distances:

D2
ikA = (zk − v

(l)
i )TA(zk − v

(l)
i ), 1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 3: Update the partition matrix:
for 1 ≤ k ≤ N

if DikA > 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1
c∑

j=1

(DikA/DjkA)2/(m−1)

,

otherwise

µ
(l)
ik

{
= 0 if DikA > 0

∈ [0, 1] if DikA = 0
with

c∑
i=1

µ
(l)
ik = 1 .

until ∥U(l) −U(l−1)∥ < ϵ.

Some remarks should be made:

1. The FCM algorithm converges to a local minimum of the c-means functional (4.6a).
Hence, different initializations may lead to different results.
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4.3. Fuzzy c-Means Clustering

2. While steps 1 and 2 are straightforward, step 3 is a bit more complicated, as a
singularity in FCM occurs when DikA = 0 for some zk and one or more vi. In this
case, the membership degree in (4.8a) cannot be computed. When this happens (rare
in practice), zero membership is assigned to the clusters for which DikA > 0 and the
memberships are distributed arbitrarily among the clusters for which DikA = 0, such
that the constraint in (4.4b) is satisfied.

3. The alternating optimization scheme used by FCM loops through the estimates
U(l−1) → V(l) → U(l) and terminates as soon as ∥U(l) −U(l−1)∥ < ϵ. Alternatively,
the algorithm can be initialized with V(0), loop through V(l−1) → U(l) → V(l), and
terminate on ∥V(l) − V(l−1)∥ < ϵ. The error norm in the termination criterion is
usually chosen as maxik(|µ(l)

ik − µ
(l−1)
ik |). Different results may be obtained with the

same values of ϵ, since the termination criterion used in Algorithm 4.1 requires that
more parameters become close to one another.

4.3.3. Parameters of the FCM Algorithm

Before using the FCM algorithm, the following parameters must be specified: the number of
clusters, c, the ‘fuzziness’ exponent, m, the termination tolerance, ϵ, and the norm-inducing
matrix, A. Moreover, the fuzzy partition matrix, U, must be initialized. The choices for
these parameters are now described one by one.

Number of Clusters

The number of clusters c is the most important parameter, in the sense that the remaining
parameters have less influence on the resulting partition. When clustering real data
without any a priori information about the structures in the data, one usually has to make
assumptions about the number of underlying clusters. The chosen clustering algorithm
then searches for c clusters, regardless of whether they are really present in the data or not.
Two main approaches to determining the appropriate number of clusters in data can be
distinguished:

1. Validity measures. Validity measures are scalar indices that assess the goodness of
the obtained partition. Clustering algorithms generally aim at locating well-separated
and compact clusters. When the number of clusters is chosen equal to the number of
groups that actually exist in the data, it can be expected that the clustering algorithm
will identify them correctly. When this is not the case, misclassifications appear, and
the clusters are not likely to be well separated and compact. Hence, most cluster
validity measures are designed to quantify the separation and the compactness of
the clusters. However, as Bezdek (1981) points out, the concept of cluster validity is
open to interpretation and can be formulated in different ways. Consequently, many
validity measures have been introduced in the literature, see (Bezdek, 1981; Gath
and Geva, 1989; Pal and Bezdek, 1995) among others. For the FCM algorithm, the
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4. Fuzzy Clustering

Xie-Beni index (Xie and Beni, 1991)

χ(Z;U,V) =

c∑
i=1

N∑
k=1

µm
ik ∥ zk − vi ∥2

c ·min
i ̸=j

(
∥ vi − vj ∥2

) (4.9)

has been found to perform well in practice. This index can be interpreted as the ratio
of the total within-group variance and the separation of the cluster centers. The best
partition minimizes the value of χ(Z;U,V).

2. Iterative merging or insertion of clusters. The basic idea of cluster merging is to
start with a sufficiently large number of clusters, and successively reduce this number
by merging clusters that are similar (compatible) with respect to some well-defined
criteria (Krishnapuram and Freg, 1992; Kaymak and Babuška, 1995). One can also
adopt an opposite approach, i.e., start with a small number of clusters and iteratively
insert clusters in the regions where the data points have low degree of membership in
the existing clusters (Gath and Geva, 1989).

Fuzziness Parameter

The weighting exponent m is a rather important parameter as well, because it significantly
influences the fuzziness of the resulting partition. As m approaches one from above, the
partition becomes hard (µik ∈ {0, 1}) and vi are ordinary means of the clusters. As m→∞,
the partition becomes completely fuzzy (µik = 1/c) and the cluster means are all equal to
the mean of Z. These limit properties of (4.6) are independent of the optimization method
used (Pal and Bezdek, 1995). Usually, m = 2 is initially chosen.

Termination Criterion

The FCM algorithm stops iterating when the norm of the difference between U in two
successive iterations is smaller than the termination parameter ϵ. For the maximum norm
maxik(|µ(l)

ik −µ
(l−1)
ik |), the usual choice is ϵ = 0.001, even though ϵ = 0.01 works well in most

cases, while drastically reducing the computing times.

Norm-Inducing Matrix

The shape of the clusters is determined by the choice of the matrix A in the distance
measure (4.6d). A common choice is A = I, which gives the standard Euclidean norm:

D2
ik = (zk − vi)

T (zk − vi). (4.10)

Another choice for A is a diagonal matrix that accounts for different variances in the
directions of the coordinate axes of Z:

A =


(1/σ1)

2 0 · · · 0
0 (1/σ2)

2 · · · 0
...

... . . . ...
0 0 · · · (1/σn)

2

 . (4.11)
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4.3. Fuzzy c-Means Clustering

This matrix induces a diagonal norm on Rn. Finally, A can be defined as the inverse of the
covariance matrix of Z: A = R−1, with

R =
1

N

N∑
k=1

(zk − z̄)(zk − z̄)T . (4.12)

Here z̄ denotes the mean of the data. In this case, A induces the Mahalanobis norm on Rn.
The norm influences the clustering criterion by changing the measure of dissimilarity.

The Euclidean norm induces hyperspherical clusters (surfaces of constant membership are
hyperspheres). Both the diagonal and the Mahalanobis norm generate hyperellipsoidal
clusters. With the diagonal norm, the axes of the hyperellipsoids are parallel to the
coordinate axes, while with the Mahalanobis norm the orientation of the hyperellipsoid is
arbitrary, as shown in Figure 4.3.

+

Diagonal normEuclidean norm

+ +

Mahalonobis norm

Figure 4.3.: Different distance norms used in fuzzy clustering.

A common limitation of clustering algorithms based on a fixed distance norm is that
such a norm forces the objective function to prefer clusters of a certain shape even if they
are not present in the data. This is demonstrated by the following example.

Example 4.4 Fuzzy c-means clustering. Consider a synthetic data set in R2, which
contains two well-separated clusters of different shapes, as depicted in Figure 4.4. The
samples in both clusters are drawn from the normal distribution. The standard deviation
for the upper cluster is 0.2 for both axes, whereas in the lower cluster it is 0.2 for the
horizontal axis and 0.05 for the vertical axis. The FCM algorithm was applied to this data
set. The norm-inducing matrix was set to A = I for both clusters, the weighting exponent
to m = 2, and the termination criterion to ϵ = 0.01. The algorithm was initialized with
a random partition matrix and converged after 4 iterations. From the membership level
curves in Figure 4.4, one can see that the FCM algorithm imposes a circular shape on both
clusters, even though the lower cluster is rather elongated.

Note that it is of no help to use another A, since the two clusters have different shapes.
Generally, different matrices Ai are required, but there is no guideline as to how to choose
them a priori. In Section 4.4, we will see that these matrices can be adapted by using
estimates of the data covariance. A partition obtained with the Gustafson–Kessel algorithm,
which uses such an adaptive distance norm, is presented in Example 4.5.

�

67



4. Fuzzy Clustering
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Figure 4.4.: The fuzzy c-means algorithm imposes a spherical shape on the clusters, regard-
less of the actual data distribution. The dots represent the data points, ‘+’ are
the cluster means. Also shown are level curves of the clusters. Dark shading
corresponds to membership degrees around 0.5.

Initial Partition Matrix

The partition matrix is usually initialized at random, such that U ∈ Mfc. A simple
approach to obtain such U is to initialize the cluster centers vi at random and compute
the corresponding U by (4.8a) (i.e., by using the third step of the FCM algorithm).

4.3.4. Extensions of the Fuzzy c-Means Algorithm

There are several well-known extensions of the basic c-means algorithm:

• Algorithms using an adaptive distance measure, such as the Gustafson–Kessel algo-
rithm (Gustafson and Kessel, 1979) and the fuzzy maximum likelihood estimation
algorithm (Gath and Geva, 1989).

• Algorithms based on hyperplanar or functional prototypes, or prototypes defined
by functions. They include the fuzzy c-varieties (Bezdek, 1981), fuzzy c-elliptotypes
(Bezdek et al., 1981), and fuzzy regression models (Hathaway and Bezdek, 1993).

• Algorithms that search for possibilistic partitions in the data, i.e., partitions where
the constraint (4.4b) is relaxed.

In the following sections we will focus on the Gustafson–Kessel algorithm.

4.4. Gustafson–Kessel Algorithm *

Gustafson and Kessel (1979) extended the standard fuzzy c-means algorithm by employing
an adaptive distance norm, in order to detect clusters of different geometrical shapes in
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one data set. Each cluster has its own norm-inducing matrix Ai, which yields the following
inner-product norm:

D2
ikAi

= (zk − vi)
TAi(zk − vi) . (4.13)

The matrices Ai are used as optimization variables in the c-means functional, thus allowing
each cluster to adapt the distance norm to the local topological structure of the data. The
objective functional of the GK algorithm is defined by:

J(Z;U,V, {Ai}) =
c∑

i=1

N∑
k=1

(µik)
mD2

ikAi
(4.14)

This objective function cannot be directly minimized with respect to Ai, since it is linear
in Ai. To obtain a feasible solution, Ai must be constrained in some way. The usual way
of accomplishing this is to constrain the determinant of Ai:

|Ai| = ρi, ρi > 0, ∀i . (4.15)

Allowing the matrix Ai to vary with its determinant fixed corresponds to optimizing the
cluster’s shape while its volume remains constant. By using the Lagrange-multiplier method,
the following expression for Ai is obtained (Gustafson and Kessel, 1979):

Ai = [ρi det(Fi)]
1/nF−1

i , (4.16)

where Fi is the fuzzy covariance matrix of the ith cluster given by

Fi =

N∑
k=1

(µik)
m(zk − vi)(zk − vi)

T

N∑
k=1

(µik)m
. (4.17)

Note that the substitution of (4.16) and (4.17) into (4.13) gives a generalized squared
Mahalanobis distance norm, where the covariance is weighted by the membership degrees
in U. The GK algorithm is given in Algorithm 4.2 and its Matlab implementation can be
found in the Appendix. The GK algorithm is computationally more involved than FCM,
since the inverse and the determinant of the cluster covariance matrix must be calculated
in each iteration.
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Algorithm 4.2 Gustafson–Kessel (GK) algorithm.

Given the data set Z, choose the number of clusters 1 < c < N , the weighting exponent
m > 1 and the termination tolerance ϵ > 0 and the cluster volumes ρi. Initialize the
partition matrix randomly, such that U(0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute cluster prototypes (means):

v
(l)
i =

∑N
k=1

(
µ
(l−1)
ik

)m
zk∑N

k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the cluster covariance matrices:

Fi =

∑N
k=1

(
µ
(l−1)
ik

)m (
zk − v

(l)
i

)(
zk − v

(l)
i

)T
∑N

k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 3: Compute the distances:

D2
ikAi

=
(
zk − v

(l)
i

)T [
[ρi det(Fi)]

1/nF−1
i

] (
zk − v

(l)
i

)
,

1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 4: Update the partition matrix:
for 1 ≤ k ≤ N

if DikAi
> 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1∑c
j=1(DikAi

/DjkAi
)2/(m−1)

,

otherwise

µ
(l)
ik

{
= 0 if DikAi

> 0

∈ [0, 1] if DikAi
= 0

with
c∑

i=1

µ
(l)
ik = 1 .

until ∥U(l) −U(l−1)∥ < ϵ.

4.4.1. Parameters of the Gustafson–Kessel Algorithm *

The same parameters must be specified as for the FCM algorithm (except for the norm-
inducing matrix A, which is adapted automatically): the number of clusters c, the ‘fuzziness’
exponent m, the termination tolerance ϵ. Additional parameters are the cluster volumes ρi.
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4.4. Gustafson–Kessel Algorithm *

Without any prior knowledge, ρi is simply fixed at 1 for each cluster. A drawback of the
this setting is that due to the constraint (4.15), the GK algorithm only can find clusters of
approximately equal volumes.

4.4.2. Interpretation of the Cluster Covariance Matrices *

The eigenstructure of the cluster covariance matrix Fi provides information about the
shape and orientation of the cluster. The ratio of the lengths of the cluster’s hyperellipsoid
axes is given by the ratio of the square roots of the eigenvalues of Fi. The directions of
the axes are given by the eigenvectors of Fi, as shown in Figure 4.5. The GK algorithm
can be used to detect clusters along linear subspaces of the data space. These clusters are
represented by flat hyperellipsoids, which can be regarded as hyperplanes. The eigenvector
corresponding to the smallest eigenvalue determines the normal to the hyperplane, and can
be used to compute optimal local linear models from the covariance matrix.

v

√λ1

√λ2

φ2

φ1

Figure 4.5.: Equation (z− v)TF−1(x− v) = 1 defines a hyperellipsoid. The length of the
jth axis of this hyperellipsoid is given by

√
λj and its direction is spanned by

φj, where λj and φj are the jth eigenvalue and the corresponding eigenvector
of F, respectively.

Example 4.5 Gustafson–Kessel algorithm. The GK algorithm was applied to the
data set from Example 4.4, using the same initial settings as the FCM algorithm. Figure 4.4
shows that the GK algorithm can adapt the distance norm to the underlying distribution of
the data. One nearly circular cluster and one elongated ellipsoidal cluster are obtained. The
shape of the clusters can be determined from the eigenstructure of the resulting covariance
matrices Fi. The eigenvalues of the clusters are given in Table 4.1.

Table 4.1.: Eigenvalues of the cluster covariance matrices for clusters in Figure 4.6.
cluster λ1 λ2

√
λ1/
√
λ2

upper 0.0352 0.0310 1.0666
lower 0.0482 0.0028 4.1490

One can see that the ratios given in the last column reflect quite accurately the ratio of
the standard deviations in each data group (1 and 4 respectively). For the lower cluster, the
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4. Fuzzy Clustering

unitary eigenvector corresponding to λ2, φ2 = [0.0134, 0.9999]T , can be seen as a normal to
a line representing the second cluster’s direction, and it is, indeed, nearly parallel to the
vertical axis.

−1 −0.5 0 0.5 1

   1

 0.5

   0

−0.5

  −1

Figure 4.6.: The Gustafson–Kessel algorithm can detect clusters of different shape and
orientation. The points represent the data, ‘+’ are the cluster means. Also
shown are level curves of the clusters. Dark shading corresponds to membership
degrees around 0.5.

�

4.5. Summary and Concluding Remarks

Fuzzy clustering is a powerful unsupervised method for the analysis of data and construction
of models. In this chapter, an overview of the most frequently used fuzzy clustering
algorithms has been given. It has been shown that the basic c-means iterative scheme can
be used in combination with adaptive distance measures to reveal clusters of various shapes.
The choice of the important user-defined parameters, such as the number of clusters and
the fuzziness parameter, has been discussed.

4.6. Problems

1. State the definitions and discuss the differences of fuzzy and non-fuzzy (hard) par-
titions. Give an example of a fuzzy and non-fuzzy partition matrix. What are the
advantages of fuzzy clustering over hard clustering?

2. State mathematically at least two different distance norms used in fuzzy clustering.
Explain the differences between them.

3. Name two fuzzy clustering algorithms and explain how they differ from each other.

4. State the fuzzy c-mean functional and explain all symbols.
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5. Outline the steps required in the initialization and execution of the fuzzy c-means
algorithm. What is the role and the effect of the user-defined parameters in this
algorithm?
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5. Construction Techniques for
Fuzzy Systems

Two common sources of information for building fuzzy systems are prior knowledge and data
(measurements). Prior knowledge tends to be of a rather approximate nature (qualitative
knowledge, heuristics), which usually originates from “experts”, i.e., process designers,
operators, etc. In this sense, fuzzy models can be regarded as simple fuzzy expert systems
(Zimmermann, 1987).

For many processes, data are available as records of the process operation or special
identification experiments can be designed to obtain the relevant data. Building fuzzy
models from data involves methods based on fuzzy logic and approximate reasoning, but
also ideas originating from the field of neural networks, data analysis and conventional
systems identification. The acquisition or tuning of fuzzy models by means of data is
usually termed fuzzy systems identification.

Two main approaches to the integration of knowledge and data in a fuzzy model can be
distinguished:

1. The expert knowledge expressed in a verbal form is translated into a collection
of if–then rules. In this way, a certain model structure is created. Parameters
in this structure (membership functions, consequent singletons or parameters of
the TS consequents) can be fine-tuned using input-output data. The particular
tuning algorithms exploit the fact that at the computational level, a fuzzy model
can be seen as a layered structure (network), similar to artificial neural networks, to
which standard learning algorithms can be applied. This approach is usually termed
neuro-fuzzy modeling.

2. No prior knowledge about the system under study is initially used to formulate the
rules, and a fuzzy model is constructed from data. It is expected that the extracted
rules and membership functions can provide an a posteriori interpretation of the
system’s behavior. An expert can confront this information with his own knowledge,
can modify the rules, or supply new ones, and can design additional experiments in
order to obtain more informative data. This approach can be termed rule extraction.
Fuzzy clustering is one of the techniques that are often applied.(Yoshinari et al., 1993;
Nakamori and Ryoke, 1994; Babuška and Verbruggen, 1997)

These techniques, of course, can be combined, depending on the particular application. In
the sequel, we describe the main steps and choices in the knowledge-based construction of
fuzzy models, and the main techniques to extract or fine-tune fuzzy models by means of
data.
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5.1. Structure and Parameters

With regard to the design of fuzzy (and also other) models, two basic items are distinguished:
the structure and the parameters of the model. The structure determines the flexibility of
the model in the approximation of (unknown) mappings. The parameters are then tuned
(estimated) to fit the data at hand. A model with a rich structure is able to approximate
more complicated functions, but, at the same time, has worse generalization properties.
Good generalization means that a model fitted to one data set will also perform well on
another data set from the same process. In fuzzy models, structure selection involves the
following choices:

• Input and output variables. With complex systems, it is not always clear which
variables should be used as inputs to the model. In the case of dynamic systems, one
also must estimate the order of the system. For the input-output NARX (nonlinear
autoregressive with exogenous input) model (3.58) this means to define the number
of input and output lags ny and nu, respectively. Prior knowledge, insight in the
process behavior and the purpose of modeling are the typical sources of information
for this choice. Sometimes, automatic data-driven selection can be used to compare
different choices in terms of some performance criteria.

• Structure of the rules. This choice involves the model type (linguistic, singleton,
relational, Takagi-Sugeno) and the antecedent form (refer to Section 3.2.6). Important
aspects are the purpose of modeling and the type of available knowledge.

• Number and type of membership functions for each variable. This choice determines
the level of detail (granularity) of the model. Again, the purpose of modeling and
the detail of available knowledge, will influence this choice. Automated, data-driven
methods can be used to add or remove membership functions from the model.

• Type of the inference mechanism, connective operators, defuzzification method. These
choices are restricted by the type of fuzzy model (Mamdani, TS). Within these
restrictions, however, some freedom remains, e.g., as to the choice of the conjunction
operators, etc. To facilitate data-driven optimization of fuzzy models (learning),
differentiable operators (product, sum) are often preferred to the standard min and
max operators.

After the structure is fixed, the performance of a fuzzy model can be fine-tuned by
adjusting its parameters. Tunable parameters of linguistic models are the parameters of
antecedent and consequent membership functions (determine their shape and position) and
the rules (determine the mapping between the antecedent and consequent fuzzy regions).
In fuzzy relational models, this mapping is encoded in the fuzzy relation. Takagi-Sugeno
models have parameters in antecedent membership functions and in the consequent functions
(a and b for the affine TS model).

5.2. Knowledge-Based Design

To design a (linguistic) fuzzy model based on available expert knowledge, the following
steps can be followed:
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1. Select the input and output variables, the structure of the rules, and the inference
and defuzzification methods.

2. Decide on the number of linguistic terms for each variable and define the corresponding
membership functions.

3. Formulate the available knowledge in terms of fuzzy if-then rules.

4. Validate the model (typically by using data). If the model does not meet the expected
performance, iterate on the above design steps.

This procedure is very similar to the heuristic design of fuzzy controllers (Section 6.3.4). It
should be noted that the success of the knowledge-based design heavily depends on the
problem at hand, and the extent and quality of the available knowledge. For some problems,
it may lead fast to useful models, while for others it may be a very time-consuming and
inefficient procedure (especially manual fine-tuning of the model parameters). Therefore, it
is useful to combine the knowledge based design with a data-driven tuning of the model
parameters. The following sections review several methods for the adjustment of fuzzy
model parameters by means of data.

5.3. Data-Driven Acquisition and Tuning of Fuzzy
Models

The strong potential of fuzzy models lies in their ability to combine heuristic knowledge
expressed in the form of rules with information obtained from measured data. Various
estimation and optimization techniques for the parameters of fuzzy models are presented
in the sequel.

Assume that a set of N input-output data pairs {(xi, yi) | i = 1, 2, . . . , N} is available
for the construction of a fuzzy system. Recall that xi ∈ Rp are input vectors and yi are
output scalars. Denote X ∈ RN×p a matrix having the vectors xT

k in its rows, and y ∈ RN

a vector containing the outputs yk:

X = [x1, . . . ,xN ]
T , y = [y1, . . . , yN ]

T . (5.1)

In the following sections, the estimation of consequent and antecedent parameters is
addressed.

5.3.1. Least-Squares Estimation of Consequents

The defuzzification formulas of the singleton and TS models are linear in the consequent
parameters, ai, bi (see (3.38) and (3.53), respectively). Hence, these parameters can be
estimated from the available data by least-squares techniques. Denote Γi ∈ RN×N the
diagonal matrix having the normalized membership degree γi(xk) as its kth diagonal
element. By appending a unitary column to X, the extended matrix Xe = [X,1] is created.
Further, denote X′ the matrix in RN×K(p+1) composed of the products of matrices Γi and
Xe

X′ = [Γ1Xe, Γ2Xe, . . . , ΓKXe] . (5.2)
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The consequent parameters ai and bi are lumped into a single parameter vector θ ∈ RK(p+1):

θ =
[
aT
1 , b1, a

T
2 , b2, . . . , a

T
K , bK

]T
. (5.3)

Given the data X, y, (3.53) now can be written in a matrix form, y = X′θ + ϵ. It is well
known that this set of equations can be solved for the parameter θ by:

θ =
[
(X′)TX′]−1

(X′)Ty . (5.4)

This is an optimal least-squares solution which gives the minimal prediction error, and as
such is suitable for prediction models. At the same time, however, it may bias the estimates
of the consequent parameters as parameters of local models. If an accurate estimate of
local model parameters is desired, a weighted least-squares approach applied per rule may
be used:

[aT
i , bi]

T =
[
XT

e ΓiXe

]−1
XT

e Γiy . (5.5)

In this case, the consequent parameters of individual rules are estimated independently of
each other, and therefore are not “biased” by the interactions of the rules. By omitting ai

for all 1 ≤ i ≤ K, and by setting Xe = 1, (5.4) and (5.5) directly apply to the singleton
model (3.37).

5.3.2. Template-Based Modeling *

With this approach, the domains of the antecedent variables are simply partitioned into a
specified number of equally spaced and shaped membership functions. The rule base is
then established to cover all the combinations of the antecedent terms. The consequent
parameters are estimated by the least-squares method.

Example 5.1 Consider a nonlinear dynamic system described by a first-order difference
equation:

y(k + 1) = y(k) + u(k)e−3|y(k)| . (5.6)

We use a stepwise input signal to generate with this equation a set of 300 input–output
data pairs (see Figure 5.2(a)). Suppose that it is known that the system is of first order
and that the nonlinearity of the system is only caused by y, the following TS rule structure
can be chosen:

If y(k) is Ai then y(k + 1) = aiy(k) + biu(k) . (5.7)

Assuming that no further prior knowledge is available, seven equally spaced triangular
membership functions, A1 to A7, are defined in the domain of y(k), as shown in Figure 5.1(a).

The consequent parameters can be estimated by the least-squares method. Figure 5.1(b)
shows a plot of the parameters ai, bi against the cores of the antecedent fuzzy sets Ai. Also
plotted is the linear interpolation between the parameters (dashed line) and the true system
nonlinearity (solid line). The interpolation between ai and bi is linear, since the membership
functions are piece-wise linear (triangular). One can observe that the dependence of
the consequent parameters on the antecedent variable approximates quite accurately
the system’s nonlinearity, which gives the model a certain transparency. Their values,
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Figure 5.1.: (a) Equidistant triangular membership functions designed for the output y(k);
(b) comparison of the true system nonlinearity (solid line) and its approximation
in terms of the estimated consequent parameters (dashed line).

aT = [1.00, 1.00, 1.00, 0.97, 1.01, 1.00, 1.00] and bT = [0.01, 0.05, 0.20, 0.81, 0.20, 0.05, 0.01]T ,
indicate the strong input nonlinearity and the linear dynamics of (5.6). Validation of the
model in simulation using a different data set is given in Figure 5.2(b).
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Figure 5.2.: Identification data set (a), and performance of the model on a validation data
set (b). Solid line: process, dashed-dotted line: model.

�

The transparent local structure of the TS model facilitates the combination of local models
obtained by parameter estimation and linearization of known mechanistic (white-box)
models. If measurements are available only in certain regions of the process’ operating
domain, parameters for the remaining regions can be obtained by linearizing a (locally
valid) mechanistic model of the process. Suppose that this model is given by y = f(x).
Linearization around the center ci of the ith rule’s antecedent membership function yields
the following parameters of the affine TS model (3.52):

ai =
df

dx

∣∣∣∣
x=ci

, bi = f(ci) . (5.8)

A drawback of the template-based approach is that the number of rules in the model may
grow very fast. If no knowledge is available as to which variables cause the nonlinearity of
the system, all the antecedent variables are usually partitioned uniformly. However, the
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complexity of the system’s behavior is typically not uniform. Some operating regions can
be well approximated by a single model, while other regions require rather fine partitioning.
In order to obtain an efficient representation with as few rules as possible, the membership
functions must be placed such that they capture the non-uniform behavior of the system.
This often requires that system measurements are also used to form the membership
functions, as discussed in the following sections.

5.3.3. Neuro-Fuzzy Modeling *

We have seen that parameters that are linearly related to the output can be (optimally)
estimated by least-squares methods. In order to optimize also the parameters which are
related to the output in a nonlinear way, training algorithms known from the area of
neural networks and nonlinear optimization can be employed. These techniques exploit
the fact that, at the computational level, a fuzzy model can be seen as a layered structure
(network), similar to artificial neural networks. Hence, this approach is usually referred to
as neuro-fuzzy modeling (Jang and Sun, 1993; Brown and Harris, 1994; Jang, 1993).

Figure 5.3 gives an example of a singleton fuzzy model with two rules represented as a
network. The rules are:

If x1 is A11 and x2 is A21 then y = b1.

If x1 is A12 and x2 is A22 then y = b2.

The nodes in the first layer compute the membership degree of the inputs in the antecedent
fuzzy sets. The product nodes Π in the second layer represent the antecedent conjunction
operator. The normalization node N and the summation node Σ realize the fuzzy-mean
operator (3.38).

b1

A12

A22

A11

Π

Π

N

Σ

x1

A21

y

b2x2

N

Figure 5.3.: An example of a singleton fuzzy model with two rules represented as a (neuro-
fuzzy) network.

By using smooth (e.g., Gaussian) antecedent membership functions

µAij
(xj; cij, σij) = exp

(
−
(
xj − cij
2σij

)2
)
, (5.9)

the cij and σij parameters can be adjusted by gradient-descent learning algorithms, such as
back-propagation (see Section 7.4).
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5.3.4. Construction Through Fuzzy Clustering

Identification methods based on fuzzy clustering originate from data analysis and pattern
recognition, where the concept of graded membership is used to represent the degree to
which a given object, represented as a vector of features, is similar to some prototypical
object. The degree of similarity can be calculated using a suitable distance measure. Based
on the similarity, feature vectors can be clustered such that the vectors within a cluster
are as similar (close) as possible, and vectors from different clusters are as dissimilar as
possible (see Chapter 4).

Figure 5.4 gives an example of a data set in R2 clustered into two groups with prototypes
v1 and v2, using the Euclidean distance measure. Fuzzy if-then rules can be extracted by
projecting the clusters onto the axes.
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2
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Figure 5.4.: Rule-based interpretation of fuzzy clusters.

The prototypes can also be defined as linear subspaces, (Bezdek, 1981) or the clusters can
be ellipsoids with adaptively determined elliptical shape (Gustafson–Kessel algorithm, see
Section 4.4). From such clusters, the antecedent membership functions and the consequent
parameters of the Takagi–Sugeno model can be extracted (Figure 5.5):

If x is A1 then y = a1x+ b1,

If x is A2 then y = a2x+ b2 .

Each obtained cluster is represented by one rule in the Takagi–Sugeno model. The
membership functions for fuzzy sets A1 and A2 are generated by point-wise projection of
the partition matrix onto the antecedent variables. These point-wise defined fuzzy sets are
then approximated by a suitable parametric function. The consequent parameters for each
rule are obtained as least-squares estimates (5.4) or (5.5).

Example 5.2 Consider a nonlinear function y = f(x) defined piece-wise by:

y = 0.25x, for x ≤ 3
y = (x− 3)2 + 0.75, for 3 < x ≤ 6
y = 0.25x+ 8.25, for x > 6

(5.10)
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Figure 5.5.: Hyperellipsoidal fuzzy clusters.

Figure 5.6(a) shows a plot of this function evaluated in 50 samples uniformly distributed
over x ∈ [0, 10]. Zero-mean, uniformly distributed noise with amplitude 0.1 was added to y.
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(a) A nonlinear function (5.10).
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Figure 5.6.: Approximation of a static nonlinear function using a Takagi–Sugeno (TS) fuzzy
model.

The data set {(xi, yi) | i = 1, 2, . . . , 50} was clustered into four hyperellipsoidal clusters.
The upper plot of Figure 5.6(b) shows the local linear models obtained through clustering,
the bottom plot shows the corresponding fuzzy partition. In terms of the TS rules, the
fuzzy model is expressed as:

X1 : If x is C1 then y = 0.29x− 0.03
X2 : If x is C2 then y = 2.27x− 7.21
X3 : If x is C3 then y = 4.78x− 19.18
X4 : If x is C4 then y = 0.26x+ 8.15

Note that the consequents of X1 and X4 almost exactly correspond to the first and third
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equation (5.10). Consequents of X2 and X3 are approximate tangents to the parabola
defined by the second equation of (5.10) in the respective cluster centers.

�

5.3.5. Input–output Dynamic Systems *

The principle of identification in the product space extends to input–output dynamic
systems in a straightforward way. In this case, the product space is formed by the regressors
(lagged input and output data) and the regressand (the output to be predicted). As an
example, assume a second-order NARX model y(k + 1) = f (y(k), y(k − 1), u(k), u(k − 1)).
With the set of available measurements, S = {(u(j), y(j)) | j = 1, 2, . . . , Nd}, the regressor
matrix and the regressand vector are:

X =


y(2) y(1) u(2) u(1)

y(3) y(2) u(3) u(2)

...
...

...
...

y(Nd−1) y(Nd−2) u(Nd−1) y(Nd−2)

 , y =


y(3)

y(4)

...

y(Nd)

 .

In this example, N = Nd − 2. The unknown nonlinear function y = f(x) represents a
nonlinear (hyper)surface in the product space: (X × Y ) ⊂ Rp+1. This surface is called
the regression surface. The available data represents a sample from the regression surface.
By clustering the data, local linear models can be found that approximate the regression
surface.

Example 5.3 For low-order systems, the regression surface can be visualized. As an
example, consider a series connection of a static dead-zone/saturation nonlinearity with a
first-order linear dynamic system:

y(k + 1) = 0.6y(k) + w(k), (5.11a)

where w = f(u) is given by:

w =


0, −0.3 ≤ u ≤ 0.3,
u, 0.3 ≤ |u| ≤ 0.8,
0.8 sign(u), 0.8 ≤ |u|.

(5.11b)

The input-output description of the system using the NARX model (3.58) can be seen as a
surface in the space (U × Y × Y ) ⊂ R3, as shown in Figure 5.7(a). As another example,
consider a state-space system (Chen and Billings, 1989):

x(k + 1) = x(k) + u(k),

y(k) = exp(−x(k)) . (5.12)

For this system, an input–output regression model y(k + 1) = y(k) exp(−u(k)) can be
derived. The corresponding regression surface is shown in Figure 5.7(b). Note that if the
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Figure 5.7.: Regression surfaces of two nonlinear dynamic systems.

measurements of the state of this system are available, the state and output mappings in
(5.12) can be approximated separately, yielding one two-variate linear and one univariate
nonlinear problem, which can be solved more easily.

�

Example 5.4 (Identification of an Autoregressive System) Consider a time series
generated by a nonlinear autoregressive system defined by (Ikoma and Hirota, 1993):

y(k + 1) = f(y(k)) + ϵ(k), f(y) =


2y − 2, 0.5 ≤ y
−2y, −0.5 < y < 0.5
2y + 2, y ≤ −0.5

(5.13)

Here, ϵ(k) is an independent random variable of N(0, σ2) with σ = 0.3. From the generated
data x(k) k = 0, . . . , 200, with an initial condition x(0) = 0.1, the first 100 points are used
for identification and the rest for model validation. By means of fuzzy clustering, a TS
affine model with three reference fuzzy sets will be obtained. It is assumed that the only
prior knowledge is that the data was generated by a nonlinear autoregressive system:

y(k + 1) = f
(
y(k), y(k − 1), . . . , y(k − p+ 1)

)
= f

(
x(k)

)
, (5.14)

where p is the system’s order. Here x(k) = [y(k), y(k − 1), . . . , y(k − p + 1)]T is the
regression vector and y(k + 1) is the response variable. The matrix Z is constructed from
the identification data:

Z =


y(p) y(p+ 1) · · · y(N − 1)

· · · · · · · · · · · ·

y(1) y(2) · · · y(N − p)

y(p+ 1) y(p+ 2) · · · y(N)

 . (5.15)
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To identify the system we need to find the order p and to approximate the function f by a
TS affine model. The order of the system and the number of clusters can be determined by
means of a cluster validity measure which attains low values for “good” partitions (Babuška,
1998). This validity measure was calculated for a range of model orders p = 1, 2 . . . , 5 and
number of clusters c = 2, 3 . . . , 7. The results are shown in a matrix form in Figure 5.8(b).
The optimum (printed in boldface) was obtained for p = 1 and c = 3 which corresponds to
(5.13). In Figure 5.8(a) the validity measure is plotted as a function of c for orders p = 1, 2.
Note that this function may have several local minima, of which the first is usually chosen
in order to obtain a simple model with few rules.
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Figure 5.8.: The validity measure for different model orders and different number of clusters.

Figure 5.9(a) shows the projection of the obtained clusters onto the variable y(k) for the
correct system order p = 1 and the number of clusters c = 3.
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Figure 5.9.: Result of fuzzy clustering for p = 1 and c = 3. Part (a) shows the membership
functions obtained by projecting the partition matrix onto y(k). Part (b)
gives the cluster prototypes vi, the orientation of the eigenvectors Φi and the
direction of the affine consequent models (lines).

Figure 5.9(b) shows also the cluster prototypes:

V =

[
−0.772 −0.019 0.751

0.405 0.098 −0.410

]
.

From the cluster covariance matrices given below one can already see that the variance
in one direction is higher than in the other one, thus the hyperellipsoids are flat and the
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model can be expected to represent a functional relationship between the variables involved
in clustering:

F1 =

[
0.057 0.099

0.099 0.249

]
, F2 =

[
0.063 −0.099

−0.099 0.224

]
, F3 =

[
0.065 0.107

0.107 0.261

]
.

This is confirmed by examining the eigenvalues of the covariance matrices:

λ1,1 = 0.015, λ1,2 = 0.291,

λ2,1 = 0.017, λ2,2 = 0.271,

λ3,1 = 0.018, λ3,2 = 0.308.

One can see that for each cluster one of the eigenvalues is an order of magnitude smaller that
the other one. By using least-squares estimation, we derive the parameters ai and bi of the
affine TS model shown below. Piecewise exponential membership functions (2.14) are used
to define the antecedent fuzzy sets. These functions were fitted to the projected clusters A1

to A3 by numerically optimizing the parameters cl, cr, wl and wr. The result is shown by
dashed lines in Figure 5.9(a). After labeling these fuzzy sets Negative, About zero and
Positive, the obtained TS models can be written as:

If y(k) is Negative then y(k + 1) = 2.371y(k) + 1.237
If y(k) is About zero then y(k + 1) = −2.109y(k) + 0.057
If y(k) is Positive then y(k + 1) = 2.267y(k)− 2.112

The estimated consequent parameters correspond approximately to the definition of the line
segments in the deterministic part of (5.13). Also the partition of the antecedent domain is
in agreement with the definition of the system.

�

5.4. Semi-Mechanistic Modeling *

With physical insight in the system, nonlinear transformations of the measured signals can
be involved. When modeling, for instance, the relation between the room temperature and
the voltage applied to an electric heater, the power signal is computed by squaring the
voltage, since it is the heater power rather than the voltage that causes the temperature
to change (Lindskog and Ljung, 1994). This new variable is then used in a linear black-
box model instead of the voltage itself. The motivation for using nonlinear regressors in
nonlinear models is not to waste effort (rules, parameters, etc.) on estimating facts that
are already known.

Another approach is based on a combination of white-box and black-box models. In many
systems, such as chemical and biochemical processes, the modeling task can be divided
into two subtasks: modeling of well-understood mechanisms based on mass and energy
balances (first-principle modeling), and approximation of partially known relationships such
as specific reaction rates. A number of hybrid modeling approaches have been proposed that
combine first principles with nonlinear black-box models, e.g., neural networks (Psichogios
and Ungar, 1992; Thompson and Kramer, 1994) or fuzzy models (Babuška et al., 1999).
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5.4. Semi-Mechanistic Modeling *

A neural network or a fuzzy model is typically used as a general nonlinear function
approximator that “learns” the unknown relationships from data and serves as a predictor
of unmeasured process quantities that are difficult to model from first principles.

Data from batch experiments
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Figure 5.10.: Application of the semi-mechanistic modeling approach to a Penicillin G
conversion process.

As an example, consider the modeling of a fed-batch stirred bioreactor described by the
following equations derived from the mass balances (Psichogios and Ungar, 1992):

dX
dt

= η(·)X − F

V
X (5.16a)

dS
dt

= −k1η(·)X +
F

V
[Si − S] (5.16b)

dV
dt

= F (5.16c)

where X is the biomass concentration, S is the substrate concentration, V is the reactor’s
volume, F is the inlet flow rate, k1 is the substrate to cell conversion coefficient, and Si is
the inlet feed concentration. These mass balances provide a partial model. The kinetics
of the process are represented by the specific growth rate η(·) which accounts for the
conversion of the substrate to biomass, and it is typically a complex nonlinear function of
the process variables. Many different models have been proposed to describe this function,
but choosing the right model for a given process may not be straightforward. The hybrid
approach is based on an approximation of η(·) by a nonlinear (black-box) model from
process measurements and incorporates the identified nonlinear relation in the white-box
model. The data can be obtained from batch experiments, for which F = 0, and (5.16a)
reduces to the expression:

dX
dt

= η(·)X, (5.17)

where η(·) appears explicitly. This model is then used in the white-box model given by (5.16)
for both batch and fed-batch regimes. An example of an application of the semi-mechanistic
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5. Construction Techniques for Fuzzy Systems

approach is the modeling of enzymatic Penicillin G conversion (Babuška et al., 1999), see
Figure 5.10.

5.5. Summary and Concluding Remarks

Fuzzy modeling is a framework in which different modeling and identification methods are
combined, providing, on the one hand, a transparent interface with the designer or the
operator and, on the other hand, a flexible tool for nonlinear system modeling and control.
The rule-based character of fuzzy models allows for a model interpretation in a way that
is similar to the one humans use to describe reality. Conventional methods for statistical
validation based on numerical data can be complemented by the human expertise, that
often involves heuristic knowledge and intuition.

5.6. Problems

1. Explain the steps one should follow when designing a knowledge-based fuzzy model.
One of the strengths of fuzzy systems is their ability to integrate prior knowledge
and data. Explain how this can be done.

2. Consider a singleton fuzzy model y = f(x) with the following two rules:

1) If x is Small then y = b1, 2) If x is Large then y = b2 .

and membership functions as given in Figure 5.11.
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Figure 5.11.: Membership functions.

Furthermore, the following data set is given:

x1 = 1, y1 = 3
x2 = 5, y2 = 4.5

Compute the consequent parameters b1 and b2 such that the model gives the least
summed squared error on the above data. What is the value of this summed squared
error?

3.
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5.6. Problems

Consider the following fuzzy rules with singleton consequents:

1) If x is A1 and y is B1 then z = c1, 3) If x is A1 and y is B2 then z = c3,

2) If x is A2 and y is B1 then z = c2, 4) If x is A2 and y is B2 then z = c4 .

Draw a scheme of the corresponding neuro-fuzzy network. What are the free (ad-
justable parameters in this network? What methods can be used to optimize these
parameters by using input–output data?

4. Give a general equation for a NARX (Nonlinear AutoRegressive with eXogenous
input) model. Explain all symbols. Give an example of a some NARX model of your
choice.

5. Explain the term semi-mechanistic (hybrid) modeling. What do you understand
under the terms “structure selection” and “parameter estimation” in case of such a
model?
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6. Knowledge-Based Fuzzy Control

The principles of knowledge-based fuzzy control are presented along with an overview of
the basic fuzzy control schemes. Emphasis is put on the heuristic design of fuzzy controllers.
Model-based design is addressed in Chapter 9.

Automatic control belongs to the application areas of fuzzy set theory that have attracted
most attention. In 1974, the first successful application of fuzzy logic to control was
reported (Mamdani, 1974). Control of cement kilns was an early industrial application
(Holmblad and Østergaard, 1982). Since the first consumer product using fuzzy logic was
marketed in 1987, the use of fuzzy control has increased substantially. A number of CAD
environments for fuzzy control design have emerged together with VLSI hardware for fast
execution. Fuzzy control is being applied to various systems in the process industry (Froese,
1993; Santhanam and Langari, 1994; Tani et al., 1994), consumer electronics (Hirota, 1993;
Bonissone, 1994), automatic train operation (Yasunobu and Miyamoto, 1985) and traffic
systems in general (Hellendoorn, 1993), and in many other fields (Hirota, 1993; Terano
et al., 1994).

In this chapter, first the motivation for fuzzy control is given. Then, different fuzzy
control concepts are explained: Mamdani, Takagi–Sugeno and supervisory fuzzy control.
Finally, software and hardware tools for the design and implementation of fuzzy controllers
are briefly addressed.

6.1. Motivation for Fuzzy Control

Conventional control theory uses a mathematical model of a process to be controlled and
specifications of the desired closed-loop behaviour to design a controller. This approach
may fall short if the model of the process is difficult to obtain, (partly) unknown, or highly
nonlinear. The design of controllers for seemingly easy everyday tasks such as driving a
car or grasping a fragile object continues to be a challenge for robotics, while these tasks
are easily performed by human beings. Yet, humans do not use mathematical models nor
exact trajectories for controlling such processes.

Many processes controlled by human operators in industry cannot be automated using
conventional control techniques, since the performance of these controllers is often inferior to
that of the operators. One of the reasons is that linear controllers, which are commonly used
in conventional control, are not appropriate for nonlinear plants. Another reason is that
humans aggregate various kinds of information and combine control strategies, that cannot
be integrated into a single analytic control law. The underlying principle of knowledge-based
(expert) control is to capture and implement experience and knowledge available from
experts (e.g., process operators). A specific type of knowledge-based control is the fuzzy
rule-based control, where the control actions corresponding to particular conditions of the
system are described in terms of fuzzy if-then rules. Fuzzy sets are used to define the
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6. Knowledge-Based Fuzzy Control

meaning of qualitative values of the controller inputs and outputs such small error, large
control action.

The early work in fuzzy control was motivated by a desire to

• mimic the control actions of an experienced human operator (knowledge-based part)

• obtain smooth interpolation between discrete outputs that would normally be obtained
(fuzzy logic part)

Since then the application range of fuzzy control has widened substantially. However, the
two main motivations still persevere. The linguistic nature of fuzzy control makes it possible
to express process knowledge concerning how the process should be controlled or how the
process behaves. The interpolation aspect of fuzzy control has led to the viewpoint where
fuzzy systems are seen as smooth function approximation schemes.

In most cases a fuzzy controller is used for direct feedback control. However, it can
also be used on the supervisory level as, e.g., a self-tuning device in a conventional PID
controller. Also, fuzzy control is no longer only used to directly express a priori process
knowledge. For example, a fuzzy controller can be derived from a fuzzy model obtained
through system identification. Therefore, only a very general definition of fuzzy control can
be given:

Definition 6.1 (Fuzzy Controller) A fuzzy controller is a controller that contains a
(nonlinear) mapping that has been defined by using fuzzy if-then rules.

6.2. Fuzzy Control as a Parameterization of
Controller’s Nonlinearities

The key issues in the above definition are the nonlinear mapping and the fuzzy if-then rules.
Increased industrial demands on quality and performance over a wide range of operating
regions have led to an increased interest in nonlinear control methods during recent years.
The advent of ‘new’ techniques such as fuzzy control, neural networks, wavelets, and hybrid
systems has amplified the interest.

Nonlinear control is considered, e.g., when the process that should be controlled is
nonlinear and/or when the performance specifications are nonlinear. Basically all real
processes are nonlinear, either through nonlinear dynamics or through constraints on states,
inputs and other variables. Two basic approaches can be followed:

• Design through nonlinear modeling. Nonlinear techniques can be used for process
modeling. The derived process model can serve as the basis for model-based control
design. The model may be used off-line during the design or on-line, as a part of the
controller (see Chapter 9).

• Model-free nonlinear control. Nonlinear techniques can also be used to design the
controller directly, without any process model. Nonlinear elements can be used in
the feedback or in the feedforward path. In practice the nonlinear elements are often
combined with linear filters.
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6.2. Fuzzy Control as a Parameterization of Controller’s Nonlinearities

A variety of methods can be used to define nonlinearities. They include analytical equations,
fuzzy systems, sigmoidal neural networks, splines, radial basis functions, wavelets, locally
linear models/controllers, discrete switching logic, lookup tables, etc. These methods
represent different ways of parameterizing nonlinearities, see Figure 6.1.
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Figure 6.1.: Different parameterizations of nonlinear controllers.

Many of these methods have been shown to be universal function approximators for
certain classes of functions. This means that they are capable of approximating a large
class of functions are thus equivalent with respect to which nonlinearities that they can
generate. Hence, it is of little value to argue whether one of the methods is better than the
others if one considers only the closed loop control behavior. From the process’ point of
view it is the nonlinearity that matters and not how the nonlinearity is parameterized.

However, besides the approximation properties there are other important issues to
consider. One of them is the efficiency of the approximation method in terms of the number
of parameters needed to approximate a given function. Of great practical importance
is whether the methods are local or global. Local methods allow for local adjustments.
Examples of local methods are radial basis functions, splines, and fuzzy systems. How
well the methods support the generation of nonlinearities from input/output data, i.e.,
identification/learning/training, is also of large interest. Another important issue is the
availability of analysis and synthesis methods; how transparent the methods are, i.e., how
readable the methods are and how easy it is to express prior process knowledge; the
computational efficiency of the method; the availability of computer tools; and finally,
subjective preferences such as how comfortable the designer/operator is with the method,
and the level of training needed to use and understand the method.

Fuzzy logic systems appear to be favorable with respect to most of these criteria. They
are universal approximators and, if certain design choices are made, the approximation is
reasonably efficient. Depending on how the membership functions are defined the method
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6. Knowledge-Based Fuzzy Control

can be either global or local. It has similar estimation properties as, e.g., sigmoidal neural
networks. Fuzzy logic systems can be very transparent and thereby they make it possible
to express prior process knowledge well. A number of computer tools are available for fuzzy
control implementation.

Fuzzy control can thus be regarded from two viewpoints. The first one focuses on the
fuzzy if-then rules that are used to locally define the nonlinear mapping and can be seen as
the user interface part of fuzzy systems. The second view consists of the nonlinear mapping
that is generated from the rules and the inference process (Figure 6.2).

Figure 6.2.: The views of fuzzy systems. Fuzzy rules (left) are the user interface to the
fuzzy system. They define a nonlinear mapping (right) which is the eventual
input–output representation of the system.

The rules and the corresponding reasoning mechanism of a fuzzy controller can be of the
different types introduced in Chapter 3. Most often used are

• Mamdani (linguistic) controller with either fuzzy or singleton consequents. This type
of controller is usually used as a direct closed-loop controller.

• Takagi–Sugeno (TS) controller, typically used as a supervisory controller.

These two controllers are described in the following sections.

6.3. Mamdani Controller

Mamdani controller is usually used as a feedback controller. Since the rule base represents
a static mapping between the antecedent and the consequent variables, external dynamic
filters must be used to obtain the desired dynamic behavior of the controller (Figure 6.3).

The control protocol is stored in the form of if–then rules in a rule base which is a part
of the knowledge base. While the rules are based on qualitative knowledge, the membership
functions defining the linguistic terms provide a smooth interface to the numerical process
variables and the set-points. The fuzzifier determines the membership degrees of the
controller input values in the antecedent fuzzy sets. The inference mechanism combines
this information with the knowledge stored in the rules and determines what the output of
the rule-based system should be. In general, this output is again a fuzzy set. For control
purposes, a crisp control signal is required. The defuzzifier calculates the value of this crisp
signal from the fuzzy controller outputs.
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Figure 6.3.: Fuzzy controller in a closed-loop configuration (top panel) consists of dynamic
filters and a static map (middle panel). The static map is formed by the
knowledge base, inference mechanism and fuzzification and defuzzification
interfaces.

From Figure 6.3 one can see that the fuzzy mapping is just one part of the fuzzy controller.
Signal processing is required both before and after the fuzzy mapping.

6.3.1. Dynamic Pre-Filters *

The pre-filter processes the controller’s inputs in order to obtain the inputs of the static
fuzzy system. It will typically perform some of the following operations on the input signals:

Signal Scaling

It is often convenient to work with signals on some normalized domain, e.g., [−1, 1]. This
is accomplished by normalization gains which scale the input into the normalized domain
[−1, 1]. Values that fall outside the normalized domain are mapped onto the appropriate
endpoint.

Dynamic Filtering

In a fuzzy PID controller, for instance, linear filters are used to obtain the derivative and
the integral of the control error e. Nonlinear filters are found in nonlinear observers, and in
adaptive fuzzy control where they are used to obtain the fuzzy system parameter estimates.

Feature Extraction

Through the extraction of different features numeric transformations of the controller inputs
are performed. These transformations may be Fourier or wavelet transforms, coordinate
transformations or other basic operations performed on the fuzzy controller inputs.

95



6. Knowledge-Based Fuzzy Control

6.3.2. Dynamic Post-Filters *

The post-filter represents the signal processing performed on the fuzzy system’s output to
obtain the actual control signal. Operations that the post-filter may perform include:

Signal Scaling

A denormalization gain can be used which scales the output of the fuzzy system to the
physical domain of the actuator signal.

Dynamic Filtering

In some cases, the output of the fuzzy system is the increment of the control action. The
actual control signal is then obtained by integrating the control increments. Of course,
other forms of smoothing devices and even nonlinear filters may be considered.

This decomposition of a controller to a static map and dynamic filters can be done for most
classical control structures. To see this, consider a PID (Proportional-Integral-Differential)
described by the following equation:

u(t) = Pe(t) + I

∫ t

0

e(τ)dτ +D
de(t)
dt

, (6.1)

where u(t) is the control signal fed to the process to be controlled and e(t) = r(t)− y(t)
is the error signal: the difference between the desired and measured process output. A
computer implementation of a PID controller can be expressed as a difference equation:

uPID[k] = uPID[k − 1] + kIe[k] + kP∆e[k] + kD∆
2e[k] (6.2)

with:

∆e[k] = e[k]− e[k − 1]

∆2e[k] = ∆e[k]−∆e[k − 1]

The discrete-time gains kP , kI and kD are for a given sampling period derived from the
continuous time gains P , I and D. Equation (6.1) is linear function (geometrically a
hyperplane):

u =
3∑

i=1

aixi, (6.3)

where x1 = e(t), x2 =
∫ t

0
e(τ)dτ , x3 =

de(t)
dt

and the ai parameters are the P, I and D gains.
The linear form (6.3) can be generalized to a nonlinear function:

u = f(x) (6.4)

In the case of a fuzzy logic controller, the nonlinear function f is represented by a fuzzy
mapping. Clearly, fuzzy controllers analogous to linear P, PI, PD or PID controllers can be
designed by using appropriate dynamic filters such as differentiators and integrators.
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6.3. Mamdani Controller

6.3.3. Rule Base

Mamdani fuzzy systems are quite close in nature to manual control. The controller is
defined by specifying what the output should be for a number of different input signal
combinations. Each input signal combination is represented as a rule of the following form:

Ri : If x1 is Ai1 . . . and xn is Ain then u is Bi, i = 1, 2, . . . , K . (6.5)

Also other logical connectives and operators may be used, e.g., or and not. In Mamdani
fuzzy systems the antecedent and consequent fuzzy sets are often chosen to be triangular
or Gaussian. It is also common that the input membership functions overlap in such a way
that the membership values of the rule antecedents always sum up to one. In this case, and
if the rule base is on conjunctive form, one can interpret each rule as defining the output
value for one point in the input space. The input space point is the point obtained by
taking the centers of the input fuzzy sets and the output value is the center of the output
fuzzy set. The fuzzy reasoning results in smooth interpolation between the points in the
input space, see Figure 6.4.
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Figure 6.4.: Left: The membership functions partition the input space. Middle: Each rule
defines the output value for one point or area in the input space. Right: The
fuzzy logic interpolates between the constant values.

With this interpretation a Mamdani system can be viewed as defining a piecewise constant
function with extensive interpolation. Depending on which inference methods that is used
different interpolations are obtained. By proper choices it is even possible to obtain linear
or multilinear interpolation. This is often achieved by replacing the consequent fuzzy sets
by singletons. In such a case, inference and defuzzification are combined into one step, see
Section 3.3, Equation (3.38).

Example 6.1 (Fuzzy PD Controller) Consider a fuzzy counterpart of a linear PD (pro-
portional-derivative) controller. The rule base has two inputs – the error e, and the error
change (derivative) ė, and one output – the control action u. An example of one possible
rule base is:
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ė
NB NS ZE PS PB

NB NB NB NS NS ZE
NS NB NS NS ZE PS

e ZE NS NS ZE PS PS
PS NS ZE PS PS PB
PB ZE PS PS PB PB

Five linguistic terms are used for each variable, (NB – Negative big, NS – Negative small,
ZE – Zero, PS – Positive small and PB – Positive big). Each entry of the table defines one
rule, e.g. R23: “If e is NS and ė is ZE then u is NS”. Figure 6.5 shows the resulting control
surface obtained by plotting the inferred control action u for discretized values of e and ė.
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Figure 6.5.: Fuzzy PD control surface.

In fuzzy PD control, a simple difference ∆e = e(k)− e(k − 1) is often used as a (poor)
approximation for the derivative.

�

6.3.4. Design of a Fuzzy Controller

Determine Inputs and Outputs

In this step, one needs basic knowledge about the character of the process dynamics (stable,
unstable, stationary, time-varying, etc.), the character of the nonlinearities, the control
objectives and the constraints. The plant dynamics together with the control objectives
determine the dynamics of the controller, e.g., a PI, PD or PID type fuzzy controller.

In order to compensate for the plant nonlinearities, time-varying behavior or other
undesired phenomena, other variables than error and its derivative or integral may be used
as the controller inputs. Typically, it can be the plant output(s), measured or reconstructed
states, measured disturbances or other external variables. It is, however, important to
realize that with an increasing number of inputs, the complexity of the fuzzy controller
(i.e., the number of linguistic terms and the total number of rules) increases drastically.
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6.3. Mamdani Controller

For practical reasons, it is useful to recognize the influence of different variables and to
decompose a fuzzy controller with many inputs into several simpler controllers with fewer
inputs, working in parallel or in a hierarchical structure (see Section 3.2.7).

It is also important to realize that contrary to linear control, there is a difference between
the incremental and absolute form of a fuzzy controller. An absolute form of a fuzzy PD
controller, for instance, realizes a mapping u = f(e, ė), while its incremental form is a
mapping u̇ = f(ė, ë). With the incremental form, the possibly nonlinear control strategy
relates to the rate of change of the control action while with the absolute form to the action
itself. It has direct implications for the design of the rule base and also to some general
properties of the controller. For instance, the output of a fuzzy controller in an absolute
form is limited by definition, which is not true for the incremental form.

Another issue to consider is whether the fuzzy controller will be the first automatic
controller in the particular application, or whether it will replace or complement an existing
controller. In the latter case, the choice of the fuzzy controller structure may depend on
the configuration of the current controller. Summarizing, we stress that this step is the
most important one, since an inappropriately chosen structure can jeopardize the entire
design, regardless of the rules or the membership functions.

Define Membership Functions and Scaling Factors

As shown in Figure 6.6, the linguistic terms, their membership functions and the domain
scaling factors are a part of the fuzzy controller knowledge base.

Data base

Fuzzification module

Data base

Scaling
factors

Membership
functions

Scaling

Knowledge base

Fuzzifier

Defuzzification module

Scaling
factors

Defuzzifier

Membership
functions

Scaling
Inference
engine

Rule base

Figure 6.6.: Different modules of the fuzzy controller and the corresponding parts in the
knowledge base.

First, the designer must decide, how many linguistic terms per input variable will be
used. The number of rules needed for defining a complete rule base increases exponentially
with the number of linguistic terms per input variable. In order to keep the rule base
maintainable, the number of terms per variable should be low. On the other hand, with few
terms, the flexibility in the rule base is restricted with respect to the achievable nonlinearity
in the control mapping.

The number of terms should be carefully chosen, considering different settings for different
variables according to their expected influence on the control strategy. A good choice may
be to start with a few terms (e.g. 2 or 3 for the inputs and 5 for the outputs) and increase
these numbers when needed. The linguistic terms have usually some meaning, i.e., they
express magnitudes of some physical variables, such as Small, Medium, Large, etc. For
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interval domains symmetrical around zero, the magnitude is combined with the sign, e.g.,
Positive small or Negative medium.

The membership functions may be a part of the expert’s knowledge, e.g., the expert
knows approximately what a “High temperature” means (in a particular application).
If such knowledge is not available, membership functions of the same shape, uniformly
distributed over the domain can be used as an initial setting and can be tuned later.
For computational reasons, triangular and trapezoidal membership functions are usually
preferred to bell-shaped functions.

Generally, the input and output variables are defined on restricted intervals of the real line.
For simplification of the controller design, implementation and tuning, it is, however, more
convenient to work with normalized domains, such as intervals [−1, 1]. Scaling factors are
then used to transform the values from the operating ranges to these normalized domains.
Scaling factors can be used for tuning the fuzzy controller gains too, similarly as with a
PID.

Design the Rule Base

The construction of the rule base is a crucial aspect of the design, since the rule base
encodes the control protocol of the fuzzy controller. Several methods of designing the
rule base can be distinguished. One is based entirely on the expert’s intuitive knowledge
and experience. Since in practice it may be difficult to extract the control skills from the
operators in a form suitable for constructing the rule base, this method is often combined
with the control theory principles and a good understanding of the system’s dynamics.
Another approach uses a fuzzy model of the process from which the controller rule base
is derived. Often, a “standard” rule base is used as a template. Such a rule base mimics
the working of a linear controller of an appropriate type (for a PD controller has a typical
form shown in Example 6.1. Notice that the rule base is symmetrical around its diagonal
and corresponds to a linear form u = Pe+Dė. The gains P and D can be defined by a
suitable choice of the scaling factors.

Tune the Controller

The tuning of a fuzzy controller is often compared to the tuning of a PID, stressing the
large number of the fuzzy controller parameters, compared to the 3 gains of a PID. Two
remarks are appropriate here. First, a fuzzy controller is a more general type of controller
than a PID, capable of controlling nonlinear plants for which linear controller cannot be
used directly, or improving the control of (almost) linear systems beyond the capabilities
of linear controllers. For that, one has to pay by defining and tuning more controller
parameters. Secondly, in case of complex plants, there is often a significant coupling among
the effects of the three PID gains, and thus the tuning of a PID may be a very complex
task. In fuzzy control, on the other hand, the rules and membership functions have local
effects which is an advantage for control of nonlinear systems. For instance, non-symmetric
control laws can be designed for systems exhibiting non-symmetric dynamic behaviour,
such as thermal systems.

The scope of influence of the individual parameters of a fuzzy controller differs. The
scaling factors, which determine the overall gain of the fuzzy controller and also the relative
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gains of the individual controller inputs, have the most global effect. Notice, that changing
a scaling factor also scales the possible nonlinearity defined in the rule base, which may not
be desirable. The effect of the membership functions is more localized. A modification of a
membership function, say Small, for a particular variable, influences only those rules, that
use this term is used. Most local is the effect of the consequents of the individual rules. A
change of a rule consequent influences only that region where the rule’s antecedent holds.

As we already know, fuzzy inference systems are general function approximators, i.e.,
they can approximate any smooth function to any degree of accuracy. This means that a
linear controller is a special case of a fuzzy controller, considered from the input–output
functional point of view. Therefore, a fuzzy controller can be initialized by using an
existing linear control law, which considerably simplifies the initial tuning phase while
simultaneously guaranteeing a “minimal” performance of the fuzzy controller. The rule
base or the membership functions can then be modified further in order to improve the
system’s performance or to eliminate influence of some (local) undesired phenomena like
friction, etc. The following example demonstrates this approach.

Example 6.2 (Fuzzy Friction Compensation) In this example we will develop a fuzzy
controller for a simulation of DC motor which includes a simplified model of static friction.
This example is implemented in Matlab/Simulink (fricdemo.m). Figure 6.7 shows a
block diagram of the DC motor.

1

angle
J.s+b

1

Load

s

1
Friction

L.s+R

K(s)

Armature

K

1

voltage

Figure 6.7.: DC motor with friction.

First, a linear proportional controller is designed by using standard methods (root locus,
for instance). Then, a proportional fuzzy controller is developed that exactly mimics a
linear controller. The two controllers have identical responses and both suffer from a steady
state error due to the friction. Special rules are added to the rule bases in order to reduce
this error. The linear and fuzzy controllers are compared by using the block diagram in
Figure 6.8.

The fuzzy control rules that mimic the linear controller are:

If error is Zero
then control input is Zero;

If error is Positive Big
then control input is Positive Big;

If error is Negative Big
then control input is Negative Big;

The control result achieved with this controller is shown in Figure 6.9.
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Figure 6.8.: Block diagram for the comparison of proportional linear and fuzzy controllers.
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Figure 6.9.: Response of the linear controller to step changes in the desired angle.

Two additional rules are included to prevent the controller from generating a small
control action whenever the control error is small. Such a control action obviously does not
have any influence on the motor, as it is not able to overcome the friction.

If error is Negative Small
then control input is NOT Negative Small;

If error is Positive Small
then control input is NOT Positive Small;

Membership functions for the linguistic terms “Negative Small” and “Positive Small” have
been derived from the result in Figure 6.9. Łukasiewicz implication is used in order to
properly handle the not operator (see Example 3.7 for details). The control result achieved
with this fuzzy controller is shown in Figure 6.10 Note that the steady-state error has
almost been eliminated.

Other than fuzzy solutions to the friction problem include PI control and sliding-mode
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6.3. Mamdani Controller
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Figure 6.10.: Comparison of the linear controller (dashed-dotted line) and the fuzzy con-
troller (solid line).

control. The integral action of the PI controller will introduce oscillations in the loop
and thus deteriorate the control performance. The reason is that the friction nonlinearity
introduces a discontinuity in the loop. The sliding-mode controller is robust with regard to
nonlinearities in the process. It also reacts faster than the fuzzy controller, but at the cost
of violent control actions (Figure 6.11).
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Figure 6.11.: Comparison of the fuzzy controller (dashed-dotted line) and a sliding-mode
controller (solid line).
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6. Knowledge-Based Fuzzy Control

6.4. Takagi–Sugeno Controller

Takagi–Sugeno (TS) fuzzy controllers are close to gain scheduling approaches. Several
linear controllers are defined, each valid in one particular region of the controller’s input
space. The total controller’s output is obtained by selecting one of the controllers based on
the value of the inputs (classical gain scheduling), or by interpolating between several of
the linear controllers (fuzzy gain scheduling, TS control), see Figure 6.12.

Inputs

fuzzy scheduling

Controller 1

Controller 2

Controller K
Outputs

Figure 6.12.: The TS fuzzy controller can be seen as a collection of several local controllers
combined by a fuzzy scheduling mechanism.

When TS fuzzy systems are used it is common that the input fuzzy sets are trapezoidal.
Each fuzzy set determines a region in the input space where, in the linear case, the output
is determined by a linear function of the inputs. Fuzzy logic is only used to interpolate in
the cases where the regions in the input space overlap. Such a TS fuzzy system can be
viewed as piecewise linear (affine) function with limited interpolation. An example of a TS
control rule base is

R1 : If r is Low then u1 = PLowe+DLowė

R2 : If r is High then u2 = PHighe+DHighė (6.6)

Note here that the antecedent variable is the reference r while the consequent variables are
the error e and its derivative ė. The controller is thus linear in e and ė, but the parameters
of the linear mapping depend on the reference:

u =
µLow(r)u1 + µHigh(r)u2

µLow(r) + µHigh(r)

=
µLow(r)

(
PLowe+DLowė

)
+ µHigh(r)

(
PHighe+DHighė

)
µLow(r) + µHigh(r)

(6.7)

If the local controllers differ only in their parameters, the TS controller is a rule-based
form of a gain-scheduling mechanism. On the other hand, heterogeneous control (Kuipers
and Aström, 1994) can employ different control laws in different operating regions. In the
latter case, e.g., time-optimal control for dynamic transitions can be combined with PI(D)
control in the vicinity of setpoints. Therefore, the TS controller can be seen as a simple
form of supervisory control.

6.5. Fuzzy Supervisory Control

A fuzzy inference system can also be applied at a higher, supervisory level of the control
hierarchy. A supervisory controller is a secondary controller which augments the existing
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6.5. Fuzzy Supervisory Control

controller so that the control objectives can be met which would not be possible without
the supervision. A supervisory controller can, for instance, adjust the parameters of a
low-level controller according to the process information (Figure 6.13).

Fuzzy Supervisor

external signals

u
Process

y
Classical
controller

Figure 6.13.: Fuzzy supervisory control.

In this way, static or dynamic behavior of the low-level control system can be modified
in order to cope with process nonlinearities or changes in the operating or environmental
conditions. An advantage of a supervisory structure is that it can be added to already
existing control systems. Hence, the original controllers can always be used as initial
controllers for which the supervisory controller can be tuned for improving the performance.
A supervisory structure can be used for implementing different control strategies in a single
controller. An example is choosing proportional control with a high gain, when the system is
very far from the desired reference signal and switching to a PI-control in the neighborhood
of the reference signal. Because the parameters are changed during the dynamic response,
supervisory controllers are in general nonlinear.

Many processes in the industry are controlled by PID controllers. Despite their advan-
tages, conventional PID controllers suffer from the fact that the controller must be re-tuned
when the operating conditions change. This disadvantage can be reduced by using a fuzzy
supervisor for adjusting the parameters of the low-level controller. A set of rules can be
obtained from experts to adjust the gains P and D of a PD controller, for example based
on the current set-point r. The rules may look like:

If process output is High
then reduce proportional gain Slightly and

increase derivative gain Moderately.

The TS controller can be interpreted as a simple version of supervisory control. For
instance, the TS rules (6.6) can be written in terms of Mamdani or singleton rules that have
the P and D parameters as outputs. These are then passed to a standard PD controller at
a lower level.

Example 6.3 A supervisory fuzzy controller has been applied to pressure control in a
laboratory fermenter, depicted in Figure 6.14.

The volume of the fermenter tank is 40 l, and normally it is filled with 25 l of water. At
the bottom of the tank, air is fed into the water at a constant flow-rate, kept constant by a
local mass-flow controller. The air pressure above the water level is controlled by an outlet
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Figure 6.14.: Left: experimental setup; right: nonlinear steady-state characteristic.

valve at the top of the tank. With a constant input flow-rate, the system has a single input,
the valve position, and a single output, the air pressure. Because of the underlying physical
mechanisms, and because of the nonlinear characteristic of the control valve, the process
has a nonlinear steady-state characteristic, shown in Figure 6.14, as well as a nonlinear
dynamic behavior.

P

u

I

r e
PI controller

+ y

-
Process

Fuzzy
supervisor

Figure 6.15.: The supervisory fuzzy control scheme.

A single-input, two-output supervisor shown in Figure 6.15 was designed. The input
of the supervisor is the valve position u(k) and the outputs are the proportional and the
integral gain of a conventional PI controller. The supervisor updates the PI gains at each
sample of the low-level control loop (5 s).

The domain of the valve position (0–100%) was partitioned into four fuzzy sets (‘Small’,
‘Medium’, ‘Big’ and ‘Very Big’), see the membership functions in Figure 6.16.

60 7570

0.5

65
0

1

u(k)

m
Small BigMedium Very Big

Figure 6.16.: Membership functions for u(k).

The PI gains P and I associated with each of the fuzzy sets are given as follows:

Gains \u(k) Small Medium Big Very big
P 190 170 155 140
I 150 90 70 50
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6.6. Operator Support *

The P and I values were found through simulations in the respective regions of the valve
positions. The overall output of the supervisor is computed as a weighted mean of the local
gains.

The supervisory fuzzy controller, tested and tuned through simulations, was applied to
the process directly (without further tuning), under the nominal conditions. The real-time
control results are shown in Figure 6.17.
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Figure 6.17.: Real-time control result of the supervisory fuzzy controller.
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6.6. Operator Support *

Despite all the advances in the automatic control theory, the degree of automation in many
industries (such as chemical, biochemical or food industry) is quite low. Though basic
automatic control loops are usually implemented, human operators must supervise and
coordinate their function, set or tune the parameters and also control the process manually
during the start-up, shut-down or transition phases. These types of control strategies
cannot be represented in an analytical form but rather as if-then rules. By implementing
the operator’s expertise, the resulting fuzzy controller can be used as a decision support
for advising less experienced operators (taking advantage of the transparent knowledge
representation in the fuzzy controller). In this way, the variance in the quality of different
operators is reduced, which leads to the reduction of energy and material costs, etc. The
fuzzy system can simplify the operator’s task by extracting relevant information from a
large number of measurements and data. A suitable user interface needs to be designed
for communication with the operators. The use of linguistic variables and a possible
explanation facility in terms of these variables can improve the man–machine interface.
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6. Knowledge-Based Fuzzy Control

6.7. Software and Hardware Tools *

Since the development of fuzzy controllers relies on intensive interaction with the designer,
special software tools have been introduced by various software (SW) and hardware (HW)
suppliers such as Omron, Siemens, Aptronix, Inform, National Semiconductors, etc. Most
of the programs run on a PC, under Windows, some of them are available also for UNIX
systems. See http://www.isis.ecs.soton.ac.uk/resources/nfinfo/ for an extensive
list.

Fuzzy control is also gradually becoming a standard option in plant-wide control systems,
such as the systems from Honeywell. Most software tools consist of the following blocks.

6.7.1. Project Editor *

The heart of the user interface is a graphical project editor that allows the user to build
a fuzzy control system from basic blocks. Input and output variables can be defined and
connected to the fuzzy inference unit either directly or via pre-processing or post-processing
elements such as dynamic filters, integrators, differentiators, etc. The functions of these
blocks are defined by the user, using the C language or its modification. Several fuzzy
inference units can be combined to create more complicated (e.g., hierarchical or distributed)
fuzzy control schemes.

6.7.2. Rule Base and Membership Functions *

The rule base and the related fuzzy sets (membership functions) are defined using the rule
base and membership function editors. The rule base editor is a spreadsheet or a table
where the rules can be entered or modified. The membership functions editor is a graphical
environment for defining the shape and position of the membership functions. Figure 6.18
gives an example of the various interface screens of FuzzyTech.

6.7.3. Analysis and Simulation Tools *

After the rules and membership functions have been designed, the function of the fuzzy
controller can be tested using tools for static analysis and dynamic simulation. Input values
can be entered from the keyboard or read from a file in order to check whether the controller
generates expected outputs. The degree of fulfillment of each rule, the adjusted output
fuzzy sets, the results of rule aggregation and defuzzification can be displayed on line or
logged in a file. For a selected pair of inputs and a selected output the control surface
can be examined in two or three dimensions. Some packages also provide function for
automatic checking of completeness and redundancy of the rules in the rule base. Dynamic
behavior of the closed loop system can be analyzed in simulation, either directly in the
design environment or by generating a code for an independent simulation program (e.g.,
Simulink).

108

https://web.archive.org/web/20001110113100/http://www.isis.ecs.soton.ac.uk/resources/nfinfo/


6.7. Software and Hardware Tools *

Figure 6.18.: Interface screens of FuzzyTech (Inform).

6.7.4. Code Generation and Communication Links *

Once the fuzzy controller is tested using the software analysis tools, it can be used for
controlling the plant either directly from the environment (via computer ports or analog
inputs/outputs), or through generating a run-time code. Most of the programs generate a
standard C-code and also a machine code for a specific hardware, such as microcontrollers
or programmable logic controllers (PLCs). In this way, existing hardware can be also
used for fuzzy control. Besides that, specialized fuzzy hardware is marketed, such as fuzzy
control chips (both analog and digital, see Figure 6.19) or fuzzy coprocessors for PLCs.

Figure 6.19.: Fuzzy inference chip (Siemens).
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6.8. Summary and Concluding Remarks

A fuzzy logic controller can be seen as a small real-time expert system implementing a part of
human operator’s or process engineer’s expertise. From the control engineering perspective,
a fuzzy controller is a nonlinear controller. In many implementations a PID-like controller
is used, where the controller output is a function of the error signal and its derivatives.
The applications in the industry are also increasing. Major producers of consumer goods
use fuzzy logic controllers in their designs for consumer electronics, dishwashers, washing
machines, automatic car transmission systems etc., even though this fact is not always
advertised.

Fuzzy control is a new technique that should be seen as an extension to existing control
methods and not their replacement. It provides an extra set of tools which the control
engineer has to learn how to use where it makes sense. Nonlinear and partially known
systems that pose problems to conventional control techniques can be tackled using fuzzy
control. In this way, the control engineering is a step closer to achieving a higher level of
automation in places where it has not been possible before.

In the academic world a large amount of research is devoted to fuzzy control. The focus
is on analysis and synthesis methods. For certain classes of fuzzy systems, e.g., linear
Takagi-Sugeno systems, many concepts results have been developed.

6.9. Problems

1. There are various ways to parameterize nonlinear models and controllers. Name at
least three different parameterizations and explain how they differ from each other.

2. Draw a control scheme with a fuzzy PD (proportional-derivative) controller, including
the process. Explain the internal structure of the fuzzy PD controller, including the
dynamic filter(s), rule base, etc.

3. Give an example of a rule base and the corresponding membership functions for a
fuzzy PI (proportional-integral) controller. What are the design parameters of this
controller and how can you determine them?

4. State in your own words a definition of a fuzzy controller. How do fuzzy controllers
differ from linear controllers, such as PID or state-feedback control? For what kinds
of processes have fuzzy controllers the potential of providing better performance than
linear controllers?

5. a) Give an example of several rules of a Takagi–Sugeno fuzzy controller. b) What are
the design parameters of this controller? c) Give an example of a process to which
you would apply this controller.
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6.9. Problems

6. Is special fuzzy-logic hardware always needed to implement a fuzzy controller? Explain
your answer.
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7. Artificial Neural Networks

7.1. Introduction

The relevant subject matter for the neural network part of the course is discussed in
the lectures. If you would like to read more on the concepts covered in the slides, some
additional resources are suggested below. Use the slides as a guide when reading this
material, as the sources below often cover more, and sometimes cover less than the slides.

Below we refer to chapters from (Goodfellow et al., 2016). A free online version of this
book is available here http://www.deeplearningbook.org/.

7.2. Simple Networks and Approximation Properties

Lecture 1. Most of this material is covered in Sections 6.0–6.4 of the book.

7.3. Deep Learning

Lecture 1. See Section 1.0 of the book. If you want to know more than is covered in the
course about representation learning, have a look at Section 15.

7.4. Training

Lecture 1. See the relevant parts of Sections 8.0–8.3 and 8.5–8.6 of the book.

7.5. Regularization

Lecture 2. See Sections 5.0–5.3 of the book, as well as Sections 7.0, 7.1, 7.4 and 7.12.

7.6. Specialized Network Architectures

Lecture 2. See Sections 10.0–10.2.2 of the book for recurrent networks and Sections 9.0–9.3
for convolutional networks.

7.7. Semi Supervised & Unsupervised Learning

Lecture 2. For supervised and unsupervised learning see Section 5.1.3. For auto-encoders
see Sections 14.0–14.3 .
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7. Artificial Neural Networks

7.8. Problems

1. What has been the original motivation behind artificial neural networks? Give at
least two examples of control engineering applications of artificial neural networks.

2. Draw a block diagram and give the formulas for an artificial neuron. Explain all
terms and symbols.

3. Give at least three examples of activation functions.

4. Explain the term “training” of a neural network.

5. What are the steps of the backpropagation algorithm? With what neural network
architecture is this algorithm used?

6. Use the backpropagation rule to derive the derivative of the squared error cost with
respect to the weights of an output neuron with an (unspecified) activation function
σ.
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8. Gaussian Processes

8.1. Introduction

The relevant subject matter for the Gaussian processes part of the course is discussed in
the lectures. If you would like to read more on the concepts covered in the slides, some
additional resources are suggested below. Use the slides as a guide when reading this
material, as the sources below often cover more, and sometimes cover less than the slides.

The standard text book on Gaussian processes (GPs) is (Rasmussen and Williams, 2005), a
free online version of this book is available here http://www.gaussianprocess.org/gpml/.
A short introduction can be found in (MacKay, 2002), a free online version of this book is
available here http://www.inference.org.uk/mackay/itila/book.html

8.2. Gaussian Distributions & Inference

These topics are discussed in Appendices A.1 and A.2 of (Rasmussen and Williams, 2005).

8.3. A Different View on Normal Distributions

The representation of rolled-out normal distributions is briefly described in Chapter 1
(Rasmussen and Williams, 2005). Both books give a derivation of Gaussian process starting
from standard linear regression methods (Chapter 2.1 (Rasmussen and Williams, 2005) and
Chapter 45.2 (MacKay, 2002)).

8.4. Function Space View

A definition of Gaussian processes as well es noise-free and noisy predictions are detailed in
Chapter 2.2 (Rasmussen and Williams, 2005) and Chapter 45.3 (MacKay, 2002) respectively.

8.5. Kernels

Various kernels and ways of constructing kernels are explained in Chapter 4.2 (Rasmussen
and Williams, 2005) and Chapter 45.4 (MacKay, 2002). The hyperparameters of squared-
exponential kernels are described in Chapter 2.3 (Rasmussen and Williams, 2005).

8.6. Bayesian Optimization

The tutorial (Brochu et al., 2010) provides a detailed introduction.
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8. Gaussian Processes

8.7. Problems

1. The predictive distribution of a Gaussian Process for f∗ is defined as:

p(f∗|X,X∗,y,θK , σ
2) = N (f∗|µ∗,Σ∗)

with
µ∗ = KX∗,X

(
KX,X + σ2I

)−1
y

and
Σ∗ = KX∗,X∗ + σ2I−KX∗,X

(
KX,X + σ2I

)−1
KX,X∗ .

Explain all the symbols involved in the equations.

2. What is the dimension of µ∗, Σ∗, X, KX∗,X∗ , KX,X∗ and KX,X if X∗ ∈ R10×3 and
y ∈ R100×1?

3. Show mathematically that the distribution of the training outputs has no influence
on the variance of the predictions. For example for X1 = [ 1 2 2 3 ]′ and y1 =
[ 0 1 1 2 ]′ the predictive covariance Σ∗ for X∗ = [ 1 1.5 2 2.5 3 ]′ is identical
as in the case X2 = [ 1 2 2 3 ]′ and y2 = [ 0 0 2 2 ]′. This seems counter-
intuitive, what kind of uncertainty does Σ∗ represent?
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9. Model-Based Control

This chapter addresses the design of a nonlinear controller based on an available model (e.g.,
fuzzy or neural) of the process to be controlled. Some presented techniques are generally
applicable, i.e., they do not require specific types of models (predictive control, feedback
linearization). Others are based on specific features of fuzzy models (gain scheduling,
analytic inverse).

9.1. Inverse Control

The simplest approach to model-based design a controller for a nonlinear process is inverse
control. It can be applied to a class of systems that are open-loop stable (or that are
stabilizable by feedback) and whose inverse is stable as well, i.e., the system does not
exhibit nonminimum phase behavior.

For simplicity, the approach is here explained for SISO models without transport delay
from the input to the output. The available neural or fuzzy model can be written as a
general nonlinear model:

y(k + 1) = f
(
x(k), u(k)

)
. (9.1)

The inputs of the model are the current state x(k) = [y(k), . . . , y(k − ny + 1), u(k −
1), . . . , u(k− nu +1)]T and the current input u(k). The model predicts the system’s output
at the next sample time, y(k + 1). The function f represents the nonlinear mapping of the
fuzzy or neural model.

The objective of inverse control is to compute for the current state x(k) the control input
u(k), such that the system’s output at the next sampling instant is equal to the desired
(reference) output r(k+ 1). This can be achieved if the process model (9.1) can be inverted
according to:

u(k) = f−1(x(k), r(k + 1)) . (9.2)

Here, the reference r(k + 1) was substituted for y(k + 1). The inverse model can be used
as an open-loop feedforward controller, or as an open-loop controller with feedback of the
process’ output (called open-loop feedback controller). The difference between the two
schemes is the way in which the state x(k) is updated.

9.1.1. Open-Loop Feedforward Control

The state x(k) of the inverse model (9.2) is updated using the output of the model (9.1),
see Figure 9.1. As no feedback from the process output is used, stable control is guaranteed
for open-loop stable, minimum-phase systems. However, a model-plant mismatch or a
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9. Model-Based Control

disturbance d will cause a steady-state error at the process output. This error can be
compensated by some kind of feedback, using, for instance, the IMC scheme presented in
Section 9.1.5.

Besides the model and the controller, the control scheme contains a reference-shaping filter.
This is usually a first-order or a second-order reference model, whose task is to generate
the desired dynamics and to avoid peaks in the control action for step-like references.

Process
u

d

Inverse model

Model

yFilter
rw

y^

Figure 9.1.: Open-loop feedforward inverse control.

9.1.2. Open-Loop Feedback Control

The input x(k) of the inverse model (9.2) is updated using the output of the process
itself, see Figure 9.2. The controller, in fact, operates in an open loop (does not use the
error between the reference and the process output), but the current output y(k) of the
process is used at each sample to update the internal state x(k) of the controller. This
can improve the prediction accuracy and eliminate offsets. At the same time, however,
the direct updating of the model state may not be desirable in the presence of noise or a
significant model–plant mismatch, in which cases it can cause oscillations or instability.
Also this control scheme contains the reference-shaping filter.

d

u
Inverse model Process

yFilter
rw

Figure 9.2.: Open-loop feedback inverse control.

9.1.3. Computing the Inverse

Generally, it is difficult to find the inverse function f−1 in an analytical from. It can,
however, always be found by numerical optimization (search). Define an objective function:

J(u(k)) = (r(k + 1)− f(x(k), u(k)))2 . (9.3)

The minimization of J with respect to u(k) gives the control corresponding to the inverse
function (9.2), if it exists, or the best approximation of it otherwise. A wide variety
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9.1. Inverse Control

of optimization techniques can be applied (such as Newton or Levenberg-Marquardt).
This approach directly extends to MIMO systems. Its main drawback, however, is the
computational complexity due to the numerical optimization that must be carried out
on-line.

Some special forms of (9.1) can be inverted analytically. Examples are an input-affine
Takagi–Sugeno (TS) model and a singleton model with triangular membership functions
for u(k).

Affine TS Model

Consider the following input–output Takagi–Sugeno (TS) fuzzy model:

Ri : If y(k) is Ai1 and . . . and y(k − ny + 1) is Ainy and
u(k − 1) is Bi2 and . . . and u(k − nu + 1) is Binu then

yi(k+1) =

ny∑
j=1

aijy(k−j+1) +
nu∑
j=1

biju(k−j+1) + ci, (9.4)

where i = 1, . . . , K are the rules, Ail, Bil are fuzzy sets, and aij , bij , ci are crisp consequent
(then-part) parameters. Denote the antecedent variables, i.e., the lagged outputs and inputs
(excluding u(k)), by:

x(k) = [y(k), y(k − 1), . . . , y(k − ny + 1), u(k − 1), . . . , u(k − nu + 1)] . (9.5)

The output y(k + 1) of the model is computed by the weighted mean formula:

y(k + 1) =

∑K
i=1 βi(x(k))yi(k + 1)∑K

i=1 βi(x(k))
, (9.6)

where βi is the degree of fulfillment of the antecedent given by:

βi(x(k)) = µAi1
(y(k)) ∧ . . . ∧ µAiny

(y(k − ny + 1)) ∧
µBi2

(u(k − 1)) ∧ . . . ∧ µBinu
(u(k − nu + 1)) . (9.7)

As the antecedent of (9.4) does not include the input term u(k), the model output y(k + 1)
is affine in the input u(k). To see this, denote the normalized degree of fulfillment

λi(x(k)) =
βi(x(k))∑K
j=1 βj(x(k))

, (9.8)

and substitute the consequent of (9.4) and the λi of (9.8) into (9.6):

y(k + 1) =
K∑
i=1

λi(x(k))

[
ny∑
j=1

aijy(k − j + 1) +
nu∑
j=2

biju(k − j + 1) + ci

]
+

+
K∑
i=1

λi(x(k))bi1u(k) (9.9)
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9. Model-Based Control

This is a nonlinear input-affine system which can in general terms be written as:

y(k + 1) = g (x(k)) + h(x(k))u(k) . (9.10)

Given the goal that the model output at time step k + 1 should equal the reference output,
y(k + 1) = r(k + 1), the corresponding input, u(k), is computed by a simple algebraic
manipulation:

u(k) =
r(k + 1)− g (x(k))

h(x(k))
. (9.11)

In terms of eq. (9.9) we obtain the eventual inverse-model control law:

u(k) =
r(k + 1)−

∑K
i=1 λi(x(k))

[∑ny

j=1 aijy(k − j + 1) +
∑nu

j=2 biju(k − j + 1) + ci

]
∑K

i=1 λi(x(k))bi1
. (9.12)

Singleton Model

Consider a SISO singleton fuzzy model. In this section, the rule index is omitted, in order to
simplify the notation. The considered fuzzy rule is then given by the following expression:

If y(k) is A1 and y(k − 1) is A2 and . . . and y(k − ny + 1) is Any

and u(k) is B1 and . . . and u(k − nu + 1) is Bnu (9.13)
then y(k + 1) is c,

where A1, . . . , Any and B1, . . . , Bnu are fuzzy sets and c is a singleton, see (3.37). Use
the state vector x(k) introduced in (9.5), containing the nu − 1 past inputs, the ny − 1
past outputs and the current output, i.e., all the antecedent variables in (9.13). The
corresponding fuzzy sets are composed into one multidimensional state fuzzy set X, by
applying a t-norm operator on the Cartesian product space of the state variables: X =
A1 × · · · × Any × B2 × · · · × Bnu . To simplify the notation, substitute B for B1.
Rule (9.13) now can be written by:

If x(k) is X and u(k) is B then y(k + 1) is c . (9.14)

Note that the transformation of (9.13) into (9.14) is only a formal simplification of the rule
base which does not change the order of the model dynamics, since x(k) is a vector and X
is a multidimensional fuzzy set. Let M denote the number of fuzzy sets Xi defined for the
state x(k) and N the number of fuzzy sets Bj defined for the input u(k). Assume that the
rule base consists of all possible combinations of sets Xi and Bj, the total number of rules
is then K = MN . The entire rule base can be represented as a table:

u(k)
x(k) B1 B2 . . . BN

X1 c11 c12 . . . c1N
X2 c21 c22 . . . c2N
...

...
...

...
...

XM cM1 cM2 . . . cMN

(9.15)
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9.1. Inverse Control

By using the product t-norm operator, the degree of fulfillment of the rule antecedent βij(k)
is computed by:

βij(k) = µXi
(x(k)) · µBj

(u(k)) (9.16)

The output y(k+1) of the model is computed as an average of the consequents cij weighted
by the normalized degrees of fulfillment βij:

y(k + 1) =

∑M
i=1

∑N
j=1 βij(k) · cij∑M

i=1

∑N
j=1 βij(k)

=

=

∑M
i=1

∑N
j=1 µXi

(x(k)) · µBj
(u(k)) · cij∑M

i=1

∑N
j=1 µXi

(x(k)) · µBj
(u(k))

. (9.17)

Example 9.1 Consider a fuzzy model of the form y(k + 1) = f(y(k), y(k − 1), u(k))
where two linguistic terms { low , high} are used for y(k) and y(k − 1) and three terms
{ small , medium, large} for u(k). The complete rule base consists of 2× 2× 3 = 12 rules:

If y(k) is low and y(k − 1) is low and u(k) is small then y(k + 1) is c11

If y(k) is low and y(k − 1) is low and u(k) is medium then y(k + 1) is c12

. . .

If y(k) is high and y(k − 1) is high and u(k) is large then y(k + 1) is c43

In this example x(k) = [y(k), y(k−1)], Xi ∈ {(low× low), (low×high), (high× low), (high×
high)}, M = 4 and N = 3. The rule base is represented by the following table:

u(k)
x(k) small medium large

X1 (low × low) c11 c12 c13
X2 (low × high) c21 c22 c23
X3 (high × low) c31 c32 c33
X4 (high × high) c41 c42 c43

(9.18)

�

The inversion method requires that the antecedent membership functions µBj
(u(k)) are

triangular and form a partition, i.e., fulfill:

N∑
j=1

µBj
(u(k)) = 1 . (9.19)

The basic idea is the following. For each particular state x(k), the multivariate mapping
(9.1) is reduced to a univariate mapping

y(k + 1) = fx(u(k)), (9.20)
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9. Model-Based Control

where the subscript x denotes that fx is obtained for the particular state x. From this
mapping, which is piecewise linear, the inverse mapping u(k) = f−1

x (r(k + 1)) can be easily
found, provided the model is invertible. This invertibility is easy to check for univariate
functions. First, using (9.19), the output equation of the model (9.17) simplifies to:

y(k + 1) =

∑M
i=1

∑N
j=1 µXi

(x(k)) · µBj
(u(k)) · cij∑M

i=1

∑N
j=1 µXi

(x(k))µBj
(u(k))

=
M∑
i=1

N∑
j=1

λi(x(k)) · µBj
(u(k)) · cij

=
N∑
j=1

µBj
(u(k))

M∑
i=1

λi(x(k)) · cij . (9.21)

where λi(x(k)) is the normalized degree of fulfillment of the state part of the antecedent:

λi(x(k)) =
µXi

(x(k))∑K
j=1 µXj

(x(k))
. (9.22)

As the state x(k) is available, the latter summation in (9.21) can be evaluated, yielding:

y(k + 1) =
N∑
j=1

µBj
(u(k))cj, (9.23)

where

cj =
M∑
i=1

λi(x(k)) · cij . (9.24)

This is an equation of a singleton model with input u(k) and output y(k + 1):

If u(k) is Bj then y(k + 1) is cj(k), j = 1, . . . , N . (9.25)

Each of the above rules is inverted by exchanging the antecedent and the consequent, which
yields the following rules:

If r(k + 1) is cj(k) then u(k) is Bj j = 1, . . . , N . (9.26)

Here, the reference r(k + 1) was substituted for y(k + 1). Since cj(k) are singletons, it
is necessary to interpolate between the consequents cj(k) in order to obtain u(k). This
interpolation is accomplished by fuzzy sets Cj with triangular membership functions:

µC1(r) = max
(
0,min(1,

c2 − r

c2 − c1
)
)
, (9.27a)

µCj
(r) = max

(
0,min(

r − cj−1

cj − cj−1

,
cj+1 − r

cj+1 − cj
)
)
, 1 < j < N, (9.27b)

µCN
(r) = max

(
0,min(

r − cN−1

cN − cN−1

, 1)
)
. (9.27c)
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9.1. Inverse Control

The output of the inverse controller is thus given by:

u(k) =
N∑
j=1

µCj

(
r(k + 1)

)
bj, (9.28)

where bj are the cores of Bj. The inversion is thus given by equations (9.22), (9.27) and
(9.28). It can be verified that the series connection of the controller and the inverse model,
shown in Figure 9.3, gives an identity mapping (perfect control)

y(k + 1) = fx(u(k)) = fx

(
f−1
x

(
r(k + 1)

))
= r(k + 1), (9.29)

when u(k) exists such that r(k + 1) = f
(
x(k), u(k)

)
. When no such u(k) exists, the

difference ∣∣∣r(k + 1)− fx

(
f−1
x

(
r(k + 1)

))∣∣∣
is the least possible. The proof is left as an exercise.

u k( )Inverted fuzzy
model

r k+( 1) y k+( 1)Fuzzy
model

x( )k

Figure 9.3.: Series connection of the fuzzy model and the controller based on the inverse of
this model.

Apart from the computation of the membership degrees, both the model and the controller
can be implemented using standard matrix operations and linear interpolations, which
makes the algorithm suitable for real-time implementation.

y

u

ci1

ci3

ci4

B3 B4
B1 B2

ci2

Figure 9.4.: Example of a noninvertible singleton model.

For a noninvertible rule base (see Figure 9.4), a set of possible control commands can be
found by splitting the rule base into two or more invertible parts. For each part, a control
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9. Model-Based Control

action is found by inversion. Among these control actions, only one has to be selected,
which requires some additional criteria, such as minimal control effort (minimal u(k) or
|u(k)− u(k − 1)|, for instance).

The invertibility of the fuzzy model can be checked in run-time, by checking the mono-
tonicity of the aggregated consequents cj with respect to the cores of the input fuzzy sets
bj, see eq. (9.24). This is useful, since nonlinear models can be noninvertible only locally,
resulting in a kind of exception in the inversion algorithm. Moreover, for models adapted
on line, this check is necessary.

Example 9.2 Consider the fuzzy model from Example 9.1, which is, for convenience,
repeated below:

u(k)
x(k) small medium large

X1(low × low) c11 c12 c13
X2(low × high) c21 c22 c23
X3(high × low) c31 c32 c33
X4(high × high) c41 c42 c43

Given the state x(k) = [y(k), y(k − 1)], the degree of fulfillment of the first antecedent
proposition “x(k) is Xi”, is calculated as µXi

(x(k)). For X2, for instance, µX2(x(k)) =
µlow(y(k)) · µhigh(y(k − 1)). Using (9.24), one obtains the cores cj(k):

cj(k) =
4∑

i=1

µXi
(x(k))cij, j = 1, 2, 3 . (9.30)

An example of membership functions for fuzzy sets Cj, obtained by eq. (9.27), is shown in
Figure 9.5:

µ C1

c1(k)

C2 C3

c2(k) c3(k)

Figure 9.5.: Fuzzy partition created from c1(k), c2(k) and c3(k).

Assuming that b1 < b2 < b3, the model is (locally) invertible if c1 < c2 < c3 or if
c1 > c2 > c3. In such a case, the following rules are obtained:

1) If r(k + 1) is C1(k) then u(k) is B1

2) If r(k + 1) is C2(k) then u(k) is B2

3) If r(k + 1) is C3(k) then u(k) is B3

Otherwise, if the model is not invertible, e.g., c1 > c2 < c3, the above rule base must be
split into two rule bases. The first one contains rules 1 and 2, and the second one rules 2
and 3.

�
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9.1. Inverse Control

9.1.4. Inverting Models with Transport Delays

For models with input delays y(k + 1) = f
(
x(k), u(k − nd)

)
, the inversion cannot be

applied directly, as it would give a control action u(k), nd steps delayed. In order to
generate the appropriate value u(k), the model must be inverted nd − 1 samples ahead, i.e.,
u(k) = f−1(r(k + nd + 1),x(k + nd)), where

x(k + nd) = [y(k + nd), . . . , y(k + 1), . . .

y(k − ny + nd + 1), u(k − 1), . . . , u(k − nu + 1)]T .

The unknown values, y(k + 1), . . . , y(k + nd), are predicted recursively using the model:

y(k + i) = f
(
x(k + i− 1), u(k − nd + i− 1)

)
,

x(k + i) = [y(k + i), . . . , y(k − ny + i+ 1), u(k − nd + i− 1), . . .

u(k − nu − nd + i+ 1)]T

for i = 1, . . . , nd.

9.1.5. Internal Model Control

Disturbances acting on the process, measurement noise and model-plant mismatch cause
differences in the behavior of the process and of the model. In open-loop control, this
results in an error between the reference and the process output. The internal model control
scheme (Economou et al., 1986) is one way of compensating for this error.

Figure 9.6 depicts the IMC scheme, which consists of three parts: the controller based on
an inverse of the process model, the model itself, and a feedback filter. The control system
(dashed box) has two inputs, the reference and the measurement of the process output, and
one output, the control action.

u
Inverse model

e

-

Feedback

filter

Process

Model

y
d

dp

r

ym

-

Figure 9.6.: Internal model control scheme.

The purpose of the process model working in parallel with the process is to subtract the
effect of the control action from the process output. If the predicted and the measured
process outputs are equal, the error e is zero and the controller works in an open-loop
configuration. If a disturbance d acts on the process output, the feedback signal e is equal
to the influence of the disturbance and is not affected by the effects of the control action.
This signal is subtracted from the reference. With a perfect process model, the IMC scheme
is hence able to cancel the effect of unmeasured output-additive disturbances.
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9. Model-Based Control

The feedback filter is introduced in order to filter out the measurement noise and to
stabilize the loop by reducing the loop gain for higher frequencies. With nonlinear systems
and models, the filter must be designed empirically.

9.2. Model-Based Predictive Control

Model-based predictive control (MBPC) is a general methodology for solving control
problems in the time domain. It is based on three main concepts:

1. A model is used to predict the process output at future discrete time instants, over a
prediction horizon.

2. A sequence of future control actions is computed over a control horizon by minimizing
a given objective function.

3. Only the first control action in the sequence is applied, the horizons are moved towards
the future and optimization is repeated. This is called the receding horizon principle.

Because of the optimization approach and the explicit use of the process model, MBPC
can realize multivariable optimal control, deal with nonlinear processes, and can efficiently
handle constraints.

9.2.1. Prediction and Control Horizons

The future process outputs are predicted over the prediction horizon Hp using a model of
the process. The predicted output values, denoted ŷ(k + i) for i = 1, . . . , Hp, depend on
the state of the process at the current time k and on the future control signals u(k + i) for
i = 0, . . . , Hc − 1, where Hc ≤ Hp is the control horizon. The control signal is manipulated
only within the control horizon and remains constant afterwards, i.e., u(k+i) = u(k+Hc−1)
for i = Hc, . . . , Hp − 1, see Figure 9.7.

predicted process output ŷ

k + Hp

past

control horizon

prediction horizon

reference r

future

k + Hc

k

time

present
time

past process output y control input u

Figure 9.7.: The basic principle of model-based predictive control.
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9.2. Model-Based Predictive Control

9.2.2. Objective Function

The sequence of future control signals u(k + i) for i = 0, 1, . . . , Hc − 1 is usually computed
by optimizing the following quadratic cost function (Clarke et al., 1987):

J =

Hp∑
i=1

∥(r(k + i)− ŷ(k + i))∥2Pi
+

Hc∑
i=1

∥(∆u(k + i− 1))∥2Qi
. (9.31)

The first term accounts for minimizing the variance of the process output from the reference,
while the second term represents a penalty on the control effort (related, for instance, to
energy). The latter term can also be expressed by using u itself. Pi and Qi are positive
definite weighting matrices that specify the importance of two terms in (9.31) relative to
each other and to the prediction step. Additional terms can be included in the cost function
to account for other control criteria.

For systems with a dead time of nd samples, only outputs from time k+nd are considered
in the objective function, because outputs before this time cannot be influenced by the
control signal u(k). Similar reasoning holds for nonminimum phase systems.

“Hard” constraints, e.g., level and rate constraints of the control input, process output,
or other process variables can be specified as a part of the optimization problem:

umin ≤ u ≤ umax,
∆umin ≤ ∆u ≤ ∆umax,
ymin ≤ ŷ ≤ ymax,
∆ymin ≤ ∆ŷ ≤ ∆ymax.

(9.32)

The variables denoted by upper indices min and max are the lower and upper bounds on
the signals, respectively.

9.2.3. Receding Horizon Principle

Only the control signal u(k) is applied to the process. At the next sampling instant, the
process output y(k + 1) is available and the optimization and prediction can be repeated
with the updated values. This is called the receding horizon principle. The control action
u(k + 1) computed at time step k + 1 will be generally different from the one calculated at
time step k, since more up-to-date information about the process is available. This concept
is similar to the open-loop control strategy discussed in Section 9.1. Also here, the model
can be used independently of the process, in a pure open-loop setting.

A neural or fuzzy model acting as a numerical predictor of the process’ output can be
directly integrated in the MBPC scheme shown in Figure 9.8. The IMC scheme is usually
employed to compensate for the disturbances and modeling errors, see Section 9.1.5.

9.2.4. Optimization in MBPC

The optimization of (9.31) generally requires nonlinear (non-convex) optimization. The
following main approaches can be distinguished.
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Figure 9.8.: A nonlinear model in the MBPC scheme with an internal model and a feedback
to compensate for disturbances and modeling errors.

Iterative Optimization Algorithms

This approach includes methods such as the Nelder-Mead method or sequential quadratic
programming (SQP). For longer control horizons (Hc), these algorithms usually converge to
local minima. This result in poor solutions of the optimization problem and consequently
poor performance of the predictive controller. A partial remedy is to find a good initial
solution, for instance, by grid search (Fischer and Isermann, 1998). This is, however, only
efficient for small-size problems.

Linearization Techniques

A viable approach to NPC is to linearize the nonlinear model at each sampling instant
and use the linearized model in a standard predictive control scheme (Mutha et al., 1997;
Roubos et al., 1999). Depending on the particular linearization method, several approaches
can be used:

• Single-Step Linearization. The nonlinear model is linearized at the current time
step k and the obtained linear model is used through the entire prediction horizon.
This method is straightforward and fast in its implementation. However, for highly
nonlinear processes in conjunction with long prediction horizons, the single-step
linearization may give poor results. This deficiency can be remedied by multi-step
linearization.

• Multi-Step Linearization The nonlinear model is first linearized at the current time
step k. The obtained control input u(k) is then used to predict ŷ(k + 1) and the
nonlinear model is then again linearized around this future operating point. This
procedure is repeated until k +Hp. In this way, a more accurate approximation of
the nonlinear model is obtained, which is especially useful for longer horizons. The
cost one has to pay are increased computational costs.

For both the single-step and multi-step linearization, a correction step can be employed
by using a disturbance vector (Peterson et al., 1992). For the linearized model, the
optimal solution of (9.31) is found by the following quadratic program:

min
∆u

{
1

2
∆uTH∆u+ cT∆u

}
, (9.33)
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9.2. Model-Based Predictive Control

where: {
H = 2(Ru

TPRu +Q)
c = 2[Ru

TPT (RxAx(k)− r+ d)]T .
(9.34)

Matrices Ru, Rx and P are constructed from the matrices of the linearized system
and from the description of the constraints. The disturbance d can account for the
linearization error when it is computed as a difference between the output of the
nonlinear model and the linearized model.

• Feedback Linearization Also feedback linearization techniques (exact or approximate)
can be used within NPC. There are two main differences between feedback linearization
and the two operating-point linearization methods described above:

– The feedback-linearized process has time-invariant dynamics. This is not the
case with the process linearized at operating points. Thus, for the latter one,
the tuning of the predictive controller may be more difficult.

– Feedback linearization transforms input constraints in a nonlinear way. This is
a clear disadvantage, as the quadratic program (9.33) requires linear constraints.
Some solutions to this problem have been suggested (Oliveira et al., 1995; Botto
et al., 1996).

• Discrete Search Techniques Another approach which has been used to address the opti-
mization in NPC is based on discrete search techniques such as dynamic programming
(DP), branch-and-bound (B&B) methods (Lawler and Wood, 1966; Sousa et al., 1997),
genetic algorithms (GAs) (Onnen et al., 1997), etc. The basic idea is to discretize the
space of the control inputs and to use a smart search technique to find a (near) global
optimum in this space. Figure 9.9 illustrates the basic idea of these techniques for the
control space discretized into N alternatives: u(k + i− 1) ∈ {ωj | j = 1, 2, . . . , N}.
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Figure 9.9.: Tree-search optimization applied to predictive control.

It is clear that the number of possible solutions grows exponentially with Hc and with
the number of control alternatives. To avoid the search of this huge space, various
“tricks” are employed by the different methods. Dynamic programming relies on
storing the intermediate optimal solutions in memory. The B&B methods use upper
and lower bounds on the solution in order to cut branches that certainly do not lead
to an optimal solution. Genetic algorithms search the space in a randomized manner.
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9. Model-Based Control

Example 9.3 (Control of an Air-Conditioning Unit) Nonlinear predictive control of
temperature in an air-conditioning system (Sousa et al., 1997) is shown here as an example.
A nonlinear predictive controller has been developed for the control of temperature in a
fan coil, which is a part of an air-conditioning system. Hot or cold water is supplied to
the coil through a valve. In the unit, outside air is mixed with return air from the room.
The mixed air is blown by the fan through the coil where it is heated up or cooled down
(Figure 9.10(a)).
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Figure 9.10.: The air-conditioning unit (a) and validation of the TS model (solid line –
measured output, dashed line – model output).

This process is highly nonlinear (mainly due to the valve characteristics) and is difficult to
model in a mechanistic way. Using nonlinear identification, however, a reasonably accurate
model can be obtained within a short time. In the study reported in (Sousa et al., 1997), a
TS fuzzy model was constructed from process measurements by means of fuzzy clustering.
The obtained model predicts the supply temperature Ts by using rules of the form:

If T̂s(k) is Ai1 and Tm(k) is Ai2 and u(k) is A13 and u(k − 1) is A14

then T̂s(k + 1) = aT
i [T̂s(k) Tm(k) u(k) u(k − 1)]T + bi

The identification data set contained 800 samples, collected at two different times of day
(morning and afternoon). A sampling period of 30s was used. The excitation signal
consisted of a multi-sinusoidal signal with five different frequencies and amplitudes, and of
pulses with random amplitude and width. A separate data set, which was measured on
another day, is used to validate the model. Figure 9.10(b) compares the supply temperature
measured and recursively predicted by the model.

A model-based predictive controller was designed which uses the B&B method. The
controller uses the IMC scheme of Figure 9.11 to compensate for modeling errors and
disturbances. The controller’s inputs are the setpoint, the predicted supply temperature
T̂s, and the filtered mixed-air temperature Tm. The error signal, e(k) = Ts(k)− T̂s(k), is
passed through a first-order low-pass digital filter F1. A similar filter F2 is used to filter
Tm. Both filters were designed as Butterworth filters, the cut-off frequency was adjusted
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Figure 9.11.: Implementation of the fuzzy predictive control scheme for the fan-coil using
an IMC structure.

empirically, based on simulations, in order to reliably filter out the measurement noise, and
to provide fast responses.

Figure 9.12 shows some real-time results obtained for Hc = 2 and Hp = 4.
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Figure 9.12.: Real-time response of the air-conditioning system. Solid line – measured
output, dashed line – reference.

�

9.3. Adaptive Control

Processes whose behavior changes in time cannot be sufficiently well controlled by controllers
with fixed parameters. Adaptive control is an approach where the controller’s parameters are
tuned on-line in order to maintain the required performance despite (unforeseen) changes
in the process. There are many different way to design adaptive controllers. They can be
divided into two main classes:

• Indirect adaptive control. A process model is adapted on-line and the controller’s
parameters are derived from the parameters of the model.
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9. Model-Based Control

• Direct adaptive control. No model is used, the parameters of the controller are directly
adapted.

One particular example of indirect adaptive control is presented below. Reinforcement
learning, discussed in the next chapter, is an example of a direct adaptive control method.

Indirect Adaptive Control On-line adaptation can be applied to cope with the mismatch
between the process and the model. In many cases, a mismatch occurs as a consequence of
(temporary) changes of process parameters. To deal with these phenomena, especially if
their effects vary in time, the model can be adapted in the control loop. Since the control
actions are derived by inverting the model on line, the controller is adjusted automatically.
Figure 9.13 depicts the IMC scheme with on-line adaptation of the consequent parameters
in the fuzzy model.
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Figure 9.13.: Adaptive model-based control scheme.

Since the model output given by eq. (9.17) is linear in the consequent parameters,
standard recursive least-squares algorithms can be applied to estimate the consequent
parameters from data. It is assumed that the rules of the fuzzy model are given by (9.13)
and the consequent parameters are indexed sequentially by the rule number. The column
vector of the consequents is denoted by c(k) = [c1(k), c2(k), . . . , cK(k)]

T , where K is the
number of rules. The normalized degrees of fulfillment denoted by γi(k) are computed by:

γi(k) =
βi(k)∑K
j=1 βj(k)

, i = 1, 2, . . . , K . (9.35)

They are arranged in a column vector γ(k) = [γ1(k), γ2(k), . . . , γK(k)]
T . The consequent

vector c(k) is updated recursively by:

c(k) = c(k − 1) +
P(k − 1)γ(k)

λ+ γT (k)P(k − 1)γ(k)

[
y(k)− γT (k)c(k − 1)

]
, (9.36)

where λ is a constant forgetting factor, which influences the tracking capabilities of the
adaptation algorithm. The smaller the λ, the faster the consequent parameters adapt, but
the algorithm is more sensitive to noise. Therefore, the choice of λ is problem dependent.
The covariance matrix P(k) is updated as follows:

P(k) =
1

λ

[
P(k − 1)− P(k − 1)γ(k)γT (k)P(k − 1)

λ+ γT (k)P(k − 1)β(k)

]
. (9.37)

The initial covariance is usually set to P(0) = α · I, where I is a K ×K identity matrix
and α is a large positive constant.
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9.4. Summary and Concluding Remarks

Several methods to develop nonlinear controllers that are based on an available fuzzy or
neural model of the process under consideration have been presented. They include inverse
model control, predictive control and two adaptive control techniques. Internal model
control scheme can be used as a general method for rejecting output-additive disturbances
and minor modeling errors in inverse and predictive control.

9.5. Problems

1. Draw a general scheme of a feedforward control scheme where the controller is based
on an inverse model of the dynamic process. Describe the blocks and signals in the
scheme.

2. Consider a first-order affine Takagi–Sugeno model:

Ri If y(k) is Ai then y(k + 1) = aiy(k) + biu(k) + ci

Derive the formula for the controller based on the inverse of this model, i.e., u(k) =
f(r(k + 1), y(k)), where r is the reference to be followed.

3. Explain the concept of predictive control. Give a formula for a typical cost function
and explain all the symbols.

4. What is the principle of indirect adaptive control? Draw a block diagram of a typical
indirect control scheme and explain the functions of all the blocks.

5. Explain the idea of internal model control (IMC).
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10. Reinforcement Learning

10.1. Introduction

Reinforcement Learning (RL) is a method of machine learning, which is able to solve
complex optimization and control tasks in an interactive manner. In the RL setting, there
is an agent and an environment, which are explicitly separated one from another. The
environment represents the system in which a task is defined. For example, the environment
can be a maze, in which the task is to find the shortest path to the exit. The agent is a
decision maker, whose goal it is to accomplish the task.

In RL this problem is solved by letting the agent interact with the environment. Each
action of the agent changes the state of the environment. The environment responds by
giving the agent a reward for what it has done. The value of this reward indicates to the
agent how good or how bad its action was in that particular state. Based on this reward,
the agent adapts its behavior. The agent then observes the state of the environment and
determines what action it should perform next. In this way, the agent learns to act, such
that its reward is maximized. It is obvious that the behavior of the agent strongly depends
on the rewards it receives; the problem to be solved is implicitly defined by these rewards.

It is important to notice that contrary to supervised-learning (see Chapter 7), there is no
teacher that would guide the agent to the goal. Neither is the learning completely unguided,
like in unsupervised-learning (see Chapter 4). RL is very similar to the way humans and
animals learn. By trying out different actions and learning from our mistakes, we are
able to solve complex tasks, such as riding a bike, or playing the game of chess. There
are examples of tasks that are very hard, or even impossible to be solved by hand-coded
software routines. In principle, RL is capable of solving such complex tasks.

Example 10.1 Humans are able optimize their behavior in a particular environment
without knowing an accurate model of that environment. Many learning tasks consist of
repeated trials followed by a reward or punishment. Each trial can be a dynamic sequence
of actions while the performance evaluation (reinforcement) is only received at the end.

Consider, for instance, that you are learning to play tennis. The control trials are your
attempts to correctly hit the ball. In supervised learning you would have a teacher who
would evaluate your performance from time to time and would tell you how to change your
strategy in order to improve yourself. The advise might be very detailed in terms of how to
change the grip, how to approach the balls, etc.

In reinforcement learning, on the other hand, the role of the teacher is only to tell
you whether a particular shot was OK (reward) or not (punishment). It is left to you to
determine the appropriate corrections in your strategy (you would not pay such a teacher,
of course).
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10. Reinforcement Learning

It is important to realize that each trial can be a dynamic sequence of actions (approach
the ball, take a stand, hit the ball) while the actual reinforcement is only received at the
end. Therefore, a large number of trials may be needed to figure out which particular
actions were correct and which must be adapted.

�

This chapter describes the basic concepts of RL. First, in Section 10.2, we formalize the
environment and the agent and discuss the basic mechanisms that underlie the learning. In
Section 10.3, reinforcement learning methods for problems where the agent knows a model
of the environment are discussed. Section 10.4 deals with problems where such a model is
not available to the agent. The important concept of exploration is discussed in greater
detail in Section 10.5. Section 10.6 presents a brief overview of some applications of RL
and highlights two applications where RL is used to control a dynamic system. Please note
that sections denoted with a star * are for the interested reader only and should not be
studied by heart for this course.

10.2. The Reinforcement Learning Model

10.2.1. The Environment

In RL, the main components are the agent and the environment. The agent is defined as
the learner and decision maker and the environment as everything that is outside of the
agent. Let the state of the environment be represented by a state variable x(t) that changes
over time. For RL however, the state variable is considered to be observed in discrete time
only: xk, for k = 1, 2 . . ..1 The reason for this is that the most RL algorithms work in
discrete time and that the most research has been done for discrete time RL. Furthermore,
traditional RL algorithms require the state of the environment to be perceived by the agent
as quantized. In accordance with the notations in RL literature, this quantized state is
denoted as sk ∈ S, where S is the set of possible states of the environment (state space)
and k the index of discrete time.

The state of the environment can be observed by the agent. Based on this observation,
the agent determines an action to take. This action alters the state of the environment
and gives rise to the reward, which the environment provides to the agent. A distinction
is made between the reward that is immediately received at the end of time step k, and
the total reward received by the agent over a period of time. This immediate reward is a
scalar denoted by rk ∈ R. The total reward is some function of the immediate rewards
Rk = f(. . . , rk−1, rk, rk+1, . . .).

10.2.2. The Agent

As has just been mentioned, the agent can influence the state by performing an action
for which it receives an immediate reward. This action ak ∈ A, with A the set of possible
actions, is translated to the physical input to the environment uk. This uk can be continuous
valued, where ak can only take values from the set A. In the same way, the physical output

1To simplify the notation in this chapter, the time index k is typeset as a lower subscript.
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of the environment yk, is observed by the agent as the state sk. There is a distinction
between the cases when this observed state has a one-to-one relation to the actual state of
the environment and when it is not. In the latter case, these environments are said to be
partially observable. RL in partially observable environments is outside the scope of this
chapter.

The learning task of the agent is to find an optimal mapping from states to actions. This
mapping sk → ak is called the policy . A policy that defines a deterministic mapping is
denoted by πk(s). A policy that gives a probability distribution over states and actions is
denoted as Πk(s, a).

The interaction between the environment and the agent is depicted in Figure 10.1. Here,
T is the transition function, modeling the environment, R is the reward function, defining
the reward in relation to the state of the environment and q−1 is the one-step delay operator.
The environment is considered to have the Markov property, which is the subject of the
next section.

Environment

T

R

Agent

q−1

action ak

reward rk+1

state sk+1

sk

Figure 10.1.: The interaction between the environment and the agent in reinforcement
learning.

10.2.3. The Markov Property

The environment is described by a mapping from a state to a new state given an input,
sk+1 = f(sk, ak). Note that both the state s and action a are generally vectors. In RL,
it is often easier to regard this mapping as a probability distribution over the current
quantized state and the new quantized state given an action. If also the immediate reward
is considered that follows after such a transition, the mapping sk, ak → sk+1, rk+1 results.
This probability distribution can be denoted as

P{sk+1, rk+1 | sk, ak, rk, sk−1, ak−1, . . . , r1, s0, a0}, (10.1)

where P{x | y} is the probability of x given that y has occurred.
This is the general state, action transition model of the environment that defines the

probability of transition to a certain new state s′ with a certain immediate reward, given
the complete sequence of current state, action and all past states and actions. When the
environment is described by a state signal that summarizes all past sensations compactly,
yet in such a way that all relevant information is retained, the environment is said to have
the Markov property (Sutton and Barto, 1998). The probability distribution (10.1) can
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then be denoted as
P{sk+1, rk+1 | sk, ak}. (10.2)

An RL task that satisfies the Markov property is called a Markov Decision Process (MDP).
In that case, one-step dynamics are sufficient to predict the next state and immediate
reward. For any state s, action a and next state s′, the state transition probability function

Pa
ss′ = P{sk+1 = s′ | sk = s, ak = a} (10.3)

and the expected value of the next reward,

Ra
ss′ = E{rk+1 | sk = s, ak = a, sk+1 = s′} (10.4)

are the two functions that completely specify the most important aspects of a finite MDP.
The MDP assumes that the agent observes the complete state of the environment. In

Figure 10.1, this is depicted as the direct link between the state of the environment and the
agent. In practice however, this is never possible. First of all, sensor limitations, such as its
range, and sensor noise distort the observations. Second, in some tasks, such as an agent
navigating its way trough a maze, the agent has to extract in what kind of state it is, such
as “a corridor” or “a T-crossing” (Bakker, 2004) based on observations. It can therefore be
impossible for the agent to distinguish between two or more possible states. In these cases,
the environment may still have the Markov property, but the agent only observes a part of
it. An RL task that is based on this assumption is called Partially Observable MDP, or
POMDP .

10.2.4. The Reward Function

The task of the agent is to maximize some measure of long-term reward . The long-term
reward at time step k, also called the return, is some monotonically increasing function of
all the immediate rewards received after k. With the immediate reward after an action at
time step k denoted as rk+1, one way of computing the return Rk is to simply sum all the
received immediate rewards following the actions that eventually lead to the goal:

Rk = rk+1 + rk+2 + . . .+ rN =
N∑

n=0

rn+k+1. (10.5)

This measure of long-term reward assumes a finite horizon; i.e., the goal is reached in at
most N steps. The RL task is then called episodic, or ending in a terminal state. When an
RL task is not episodic, it is continuing and the sum in eq. (10.5) would become infinite.
To prevent this, the rewards that are further in future are discounted:

Rk = rk+1 + γrk+2 + γ2rk+3 + . . . =
∞∑
n=0

γnrk+n+1, (10.6)

where 0 ≤ γ < 1 is the discount rate (Sutton and Barto, 1998).
There are many ways of interpreting γ. One could interpret γ as the probability of living

another step, as the uncertainty about future events or as some rate of interest in future
events (Kaelbing et al., 1996). Apart from intuitive justification, the dominant reason of
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using a discount rate is that it mathematically bounds the sum: when γ < 1 and {rk} is
bounded, Rk is finite (Sutton and Barto, 1998). Also for episodic tasks, discounting future
rewards is a good idea for the same (intuitive) reasons as mentioned above. The expression
for the return is then

Rk = rk+1 + γrk+2 + γ2rk+3 + . . .+ γK−1rk+K =
K−1∑
n=0

γnrk+n+1. (10.7)

The next section shows how the return can be processed to make decisions about which
action the agent should take in a certain state.

10.2.5. The Value Function

In the previous section, the return was expressed as some combination of the future
immediate rewards. Naturally, the agent operating in a causal environment does not know
these future rewards in advance. Accordingly, it does not know for sure if a chosen policy
will indeed result in maximizing the return. The agent can, however, determine its policy
based on the expected return. Value functions define for each state or state-action pair the
expected return and thus express how good it is to be in that state following policy π, or
to perform a certain action in that state. The state-value function for an agent in state s
following a deterministic policy π is defined for discounted rewards as:

V π(s) = Eπ{Rk | sk = s} = Eπ{
∞∑
n=0

γnrk+n+1 | sk = s}, (10.8)

where Eπ{. . .} denotes the expected value of its argument given that the agent follows a
policy π. In a similar manner, the action-value function for an agent in state s performing
an action a and following the policy π afterwards is defined as:

Qπ(s, a) = Eπ{Rk | sk = s, ak = a} = Eπ{
∞∑
n=0

γnrk+n+1 | sk = s, ak = a}. (10.9)

Now, the notion of optimal policy π∗ can be formalized as the policy that maximizes the
value functions. Denote by V ∗(s) and Q∗(s, a) the optimal state-value and action-value
function in the state s respectively:

V ∗(s) = max
π

V π(s) (10.10)

and
Q∗(s, a) = max

π
Qπ(s, a). (10.11)

In RL methods and algorithms, either V (s) or Q(s, a) is used. They are never used
simultaneously. The optimal policy π∗ is defined as the argument that maximizes either
eq. (10.10) or (10.11). The agent has a set of parameters, that keeps track of these state-
values, or action-values in each state. In classical RL, this set of parameters is a table,
in which every state or state-action pair is associated with a value. Knowing the value
functions, the task of the agent in RL can be described as learning a policy that maximizes
the state-value function or the action-value function.
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10.2.6. The Policy

The policy has already been defined as a mapping from states to actions (sk → ak). Two
types of policy have been distinguished, namely the deterministic policy πk(s) and the
stochastic policy Πk(s, a). In most RL methods, the policy is deterministic. The most
straightforward way of determining the policy is to assign the action to each state that
maximizes the action-value, also called Q-value. This is called the greedy policy. By always
following a greedy policy during learning, it is highly unlikely for the agent to find the
optimal solution to the RL task. During learning, the agent can also follow a non-greedy
policy. This is called exploration. In this way, it is able to explore parts of its environment
where potentially better solutions to the problem may be found. This is the subject of
Section 10.5. When the learning has converged to the optimal value function, the solution
is presented in terms of a greedy policy:

π(s) = argmax
a′∈A

Q∗(s, a′). (10.12)

The stochastic policy is actually a mapping from state-action pairs to a probability that
this action will be chosen in that state. Effectively, when only the outcome of this policy is
regarded, there is again a mapping from states to actions. It is important to remember
that this mapping is not fixed. Each time the policy is called, it can output a different
action, because of the probability distribution underlying it.

An example of a stochastic policy is reinforcement comparison (Sutton and Barto, 1998).
This method differs from the methods that are discussed in this chapter, because it does
not use value functions. It maintains a measure for the preference of a certain action in
each state, pk(s, a). This preference is updated at each time step according to the deviation
of the immediate reward w.r.t. the average of the reward received in that state so far r̄k(s).

r̄k+1(s) = r̄k(s) + α(rk(s)− r̄k(s)), (10.13)

where 0 < α ≤ 1 is a static learning rate.
This updated average reward is used to determine the way in which the preferences

should be adapted.
pk+1(s, a) = pk(s, a) + β(rk(s)− r̄k(s)), (10.14)

with β a positive step size parameter.
The policy is some function of these preferences, like e.g.

Πk(s, a) =
epk(s,a)∑
b e

pk(s,b)
. (10.15)

There exist methods to determine policies that are effectively in between stochastic and
deterministic policies. E.g. in pursuit methods (Sutton and Barto, 1998), the policy is
stochastic during learning, but converges to a deterministic policy towards the end of the
learning. These methods will not be discussed here any further. In the sequel, we focus on
deterministic policies.

The next sections discuss reinforcement learning for both the case when the agent has
no model of the environment and when it has.
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10.3. Model Based Reinforcement Learning

Reinforcement learning methods assume that the environment can be described by a
Markovian decision process (MDP). A process is an MDP when the next state of the
environment only depends on its current state and input (see eq. (10.2)). Here it is assumed
that the complete state can be observed by the agent. When this is not the case, the
process is called an POMDP. In this section, RL methods are discussed that assume an
MDP with a known model (i.e. a known state transition, and reward function).

10.3.1. Bellman Optimality

Solution techniques for MDP that use an exact model of the environment are known as
dynamic programming (DP). DP is based on the Bellman equations that give recursive
relations of the value functions. For state-values this corresponds to

V π(s) = Eπ

{
∞∑
n=0

γnrk+n+1 | sk = s

}
(10.16)

= Eπ

{
rk+1 + γ

∞∑
n=0

γnrk+n+2 | sk = s′

}
(10.17)

=
∑
a

Π(s, a)
∑
s′

Pa
ss′

[
Ra

ss′ + γEπ

{
∞∑
n=0

γnrk+n+2 | sk = s′

}]
(10.18)

=
∑
a

Π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s′)] , (10.19)

with Π(s, a) the probability of performing action a in state s while following policy π, and
Pa

ss′ and Ra
ss′ the state-transition probability function (10.3) and the expected value of the

next immediate reward (10.4), respectively.
With (10.16) substituted in (10.10) and (10.12) an expression called the Bellman opti-

mality equation can be derived (Sutton and Barto, 1998):

V ∗(s) = max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV ∗(s′)] , (10.20)

for state-values where s′ denotes the next state and

Q∗(s, a) =
∑
s′

Pa
ss′

[
Ra

ss′ + γmax
a′

Q∗(s′, a′)
]
, (10.21)

for action-values.
Eq. (10.20) is a system of n equations in n unknowns, when n is the dimension of the

state-space. Eq. (10.21) is a system of n×na equations in n×na unknowns, where na is the
number of actions in the action set. One can solve these equations when the dynamics of
the environment are known (Pa

ss′ and Ra
ss′). This corresponds to knowing the world model

a priori. When either V ∗(s) or Q∗(s, a) has been found, the optimal policy simply consists
in taking the action a in each state s encountered for which Q∗(s, a) is the highest or results
in the highest expected direct reward plus discounted state value V ∗(s). The beauty is that
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a one-step-ahead search yields the long-term optimal actions, since V ∗(s′) incorporates
the expected long-term reward in a local and immediate quantity. The next two sections
present two methods for solving (10.20), called policy iteration and value iteration.

10.3.2. Policy Iteration

Policy iteration consists of alternately performing a policy evaluation and a policy improve-
ment step. In the policy evaluation step, the algorithm starts with the current policy and
computes its value function by iterating the following update rule:

Vn+1(s) = Eπ {rk+1 + γVn(sk+1) | sk = s} (10.22)

=
∑
a

Π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γVn(s
′)] , (10.23)

where π denotes the deterministic policy that is followed. Π(s, a) is a matrix with
Π(s, π(s)) = 1 and zeros elsewhere.

This equation is an update rule derived from the Bellman equation for V π (10.16). The
sequence {Vn} is guaranteed to converge to V π as n→∞ and γ < 1. For episodic tasks, γ
can also be 1 (Sutton and Barto, 1998).

When V π has been found, it is used to improve the policy. For this, the action value
function for the current policy, Qπ(s, a) has to be computed from V π in a similar way as in
eq. (10.21). The new policy is computed greedily:

π′(s) = argmax
a

Qπ(s, a) (10.24)

= argmax
a

E {rk+1 + γV π(sk+1) | sk = s, ak = a} (10.25)

= argmax
a

∑
s′

Pa
ss′ [Ra

ss′ + γV π(s′)] . (10.26)

Sutton and Barto (1998) show in the policy improvement theorem that the new policy π′

is better or as good as the old policy π. From alternating between policy evaluation and
policy improvement steps (10.23) and (10.26) respectively, the optimal value function V ∗

and the optimal policy π∗ are guaranteed to result. The general case of policy iteration,
called general policy iteration is depicted in Figure 10.2.

Evaluation

Improvement

π V

π V

V V

π greedy(V )

* *

.

.

.

*

Figure 10.2.: General Policy Iteration.
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Because the best policy resulting from this value function can already be the optimal
policy even when V n has not fully converged to V π, it is wise to stop when the difference
between two consecutive updates is smaller than some specific threshold ϵ, also called the
Bellman residual . When choosing this bound wisely, this process may still result in an
optimal policy, but much faster than without the bound. The resulting non-optimal V π is
then bounded by (Kaelbing et al., 1996):

V π(s) ≥ V ∗(s)− 2γϵ

1− γ
. (10.27)

Policy iteration can converge faster to the optimal policy and value function when policy
improvement starts with the value function of the previous policy. It uses only a few
evaluation- improvement iterations to converge. A drawback is that it requires many sweeps
over the complete state-space, which is computationally very expensive. A method that is
much faster per iteration, but requires more iterations to converge is value iteration. This
is the subject of the next section.

10.3.3. Value Iteration

Value iteration performs only one sweep over the state-space for the current optimal policy
in the policy evaluation step. Instead of iterating until Vn converges to V π, the process is
truncated after one update. It uses the Bellman optimality equation (10.20) as an update
rule:

Vn+1(s) = max
a

E {rk+1 + γVn(sk+1) | sk = s, ak = a} (10.28)

= max
a

∑
s′

Pa
ss′ [Ra

ss′ + γVn(s
′)] . (10.29)

The policy improvement step is the same as with policy iteration. The iteration is stopped
when the change in value function is smaller than some specific ϵ. In some situations, ϵ has
to be very small to get to the optimal policy. In these cases, value iteration needs many
iterations. According to (Wiering, 1999), value iteration outperforms policy iteration in
terms of number of iterations needed.

10.4. Model Free Reinforcement Learning

In the previous section, methods have been discussed for solving the reinforcement learning
task. These methods assume that there is an explicit model of the environment available
for the agent. In real-world application, however, the agent typically has no such model. A
way for the agent to solve the problem, is to first learn a model of the environment and
then apply the methods from the previous section, like value iteration. Another way is to
use what are called emphtemporal difference methods. These RL methods do not require a
model of the environment to be available to the agent. Model free reinforcement learning is
the subject of this section.
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10.4.1. The Reinforcement Learning Task

Before discussing temporal difference methods, it is important to know the structure of any
RL task. A schematic is depicted in Figure 10.3.

Time step

Trial

yesyes

no

no

start end

Initialization

Reset Pendulum

RL Algorithm Goal reached? Test Policy

Record Performance

Convergence?

Figure 10.3.: The reinforcement learning scheme.

At the start of learning, all parameters and value functions are initialized. There are
a number of trials or episodes in which the learning takes place. In general, one speaks
about trials. Only when the trial explicitly ends in a terminal state, the trial can also be
called an episode. In each trial, the learning consists of a number of time steps. An episode
ends when one of the terminal states has been reached. The policy that led to this state
is evaluated. Whenever it is determined that the learning has converged, the learning is
stopped. The learning can also be stopped when the number of trials exceeds a certain
maximum, or when there is no change in the policy for some number of times in a row.

10.4.2. Temporal Difference

In Temporal Difference (TD) learning methods (Sutton and Barto, 1998), the agent processes
the immediate rewards it receives at each time step, thereby learning from each action. A
learning rate (α) determines the importance of the new estimate of the value function over
the old estimate. The simplest TD update rule is as follows:

V (sk)← (1− αk)V (sk) + αk [rk+1 + γV (sk+1)] , (10.30)

or put in a different way as:

V (sk)← V (sk) + αk [rk+1 + γV (sk+1)− V (sk)] , (10.31)

where αk(a) is the learning-rate used to process the reward received after the kth time
step. From the second expression, the TD-error is the part between the brackets. Here,
the learning rate determines how strong the TD-error determines the new prediction of
the value function V (sk). In the limit, V will converge to the value-function belonging to
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the optimal policy V π∗ when α is annealed properly. Convergence is guaranteed when αk

satisfies the conditions
∞∑
k=1

αk =∞ (10.32)

and
∞∑
k=1

α2
k <∞, (10.33)

With αk = α a constant learning rate, the second condition is not met. In that case,
the value function constantly changes when new rewards are received. For nonstationary
problems, this is desirable. For stationary problems, this choice of learning rate might
still results in the agent to find the optimal policy, as α is chosen small enough that it
still changes the nearly converged value function, but does not affect the policy. The first
condition is to ensure that the learning rate is large enough to overcome initial conditions
or random fluctuations (Sutton and Barto, 1998). There are no general rules for choosing
an appropriate learning-rate in a certain application.

With the most basic TD update (10.31), V (sk) is only updated after receiving the new
reward rk+1. At the next time step, the agent is in the state sk+1. When it performs an
action for which it receives an immediate reward rk+2, this reward in turn is only used to
update V (sk+1). It would be reasonable to also update V (sk), since this state was also
responsible for receiving the reward rk+2 two time steps later. The same can be said about
all other state-values preceding V (sk). It is reasonable to say that immediate rewards
should change the values in all states that were visited in order to get to the current state.
Wisely, states further away in the past should be credited less than states that occurred
more recently. How the credit for a reward should best be distributed is called the credit
assignment problem. A basic method in reinforcement learning is to combine the so called
eligibility traces (Sutton and Barto, 1998) with TD-learning. This is the subject of the next
section.

10.4.3. Eligibility Traces *

Eligibility traces mark the parameters that are responsible for the current event and
therefore eligible for chance. An extra variable, called the eligibility trace is associated with
each state, indicating how eligible it is for a change when a new reinforcing event comes
available. The eligibility trace for state s at discrete time k is denoted as ek(s) ∈ R+. At
each time step in the trial, the eligibility traces for all states decay by a factor γλ, where γ
is still the discount rate and λ is a new parameter, called the trace-decay parameter (Sutton
and Barto, 1998). The eligibility trace for the state just visited can be incremented by 1,

ek(s) =

{
γλek−1(s) if s ̸= sk
γλek−1(s) + 1 if s = sk

, (10.34)

for all nonterminal states s, which is called accumulating traces . Another way of changing
the trace in the state just visited is to set it to 1,

ek(s) =

{
γλek−1(s) if s ̸= sk
1 if s = sk

, (10.35)
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which is called replacing traces . The method of accumulating traces is known to suffer from
convergence problems, therefore replacing traces is used almost always in the literature to
update the eligibility traces.

The reinforcement event that leads to updating the values of the states is the 1-step TD
error,

δk = rk+1 + γVk(sk+1)− Vk(sk). (10.36)

The elements of the value function (10.31) are then updated by an amount of

∆Vk(s) = αδkek(s), (10.37)

for all s.
Eligibility traces bridge the gap from single-step TD to methods that wait until the end

of the episode when all the reward has been received and the values of the states can be
updated all together. Such methods are known as Monte Carlo (MC) methods. These
methods are not very efficient in the way they process information. During an episode,
the agent is performing guesses on what action to take in each state 2. It is blind for the
immediate rewards received during the episode. The value of λ in TD(λ) determines the
trade-off between MC methods and 1-step TD. In particular TD(0) is the 1-step TD and
TD(1) is MC learning.

Three particular popular implementations of TD are Watkins’ Q-learning, SARSA and
actor-critic RL. The next three sections discuss these RL algorithms.

10.4.4. Q-learning

Basic TD learning learns the state-values, rather than action-values. As discussed in
Section 10.2.6, action-values are used to derive the greedy actions directly. Deriving
the greedy actions from a state-value function is computationally more expensive. This
advantage of action-values comes with a higher memory consumption, as values need to be
stored for all state-action pairs instead of only for all states. Still for control applications
in particular, action-values are much more convenient than state-values. An algorithm that
learns Q-values is Watkins’ Q-learning (Watkins and Dayan, 1992). This algorithm is a so
called off-policy TD control algorithm as it learns the action-values that are not necessarily
on the policy that it is following. In its simplest form, 1-step Q-learning is defined by

Q(sk, ak)← Q(sk, ak) + α
[
rk+1 + γmax

a
Q(sk+1, a)−Q(sk, ak)

]
. (10.38)

Thus, in the next state sk+1, the maximum action value is used independently of the
policy actually followed. To guarantee convergence, all state-action pairs need to be visited
continually. This is a general assumption for all reinforcement learning methods.

In order to incorporate eligibility traces with Q-learning, a trace should be associated
with each state-action pair rather than with states as in TD(λ)-learning. For the off-policy
nature of Q-learning, incorporating eligibility traces in Q-learning needs special attention.
State-action pairs are only eligible for change when they are followed by greedy actions.

2Hence the name Monte Carlo. It resembles the way gamblers play in the casino’s of which this capital of
Monaco is famous for.
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Eligibility traces, thus only work up to the moment when an explorative action is taken.
Whenever this happens, the eligibility trace is reset to zero. The algorithm is given as:

Qk+1(s, a) = Qk(s, a) + αδkek(s, a), ∀s, a (10.39)

where
δk = rk+1 + γmax

a′
Qk(sk+1, a

′)−Qk(sk, ak) (10.40)

Clearly, cutting of the traces every time an explorative action is chosen, takes away much of
the advantages of using eligibility traces. Especially when explorative actions are frequent,
as it is in early trials, Q(λ)-learning will not be much faster than regular Q-learning. An
algorithm that combines eligibility traces more efficiently with Q-learning is Peng’s Q(λ),
however its implementation is much more complex compared to the implementation of
Watkins’ Q(λ). For this reason, Peng’s Q(λ) will not be described. According to Sutton
and Barto (1998), the development of Q(λ)-learning has been one of the most important
breakthroughs in RL.

10.4.5. SARSA

Like Q-learning, SARSA learns state-action values rather than state values. The 1-step
SARSA update rule is defined as:

Q(sk, ak)← Q(sk, ak) + α [rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)] . (10.41)

The SARSA update needs information about the current and next state-action pair. It thus
updates over the policy that it decides to take. For this reason, as opposed to Q-learning,
SARSA is an on-policy method. In a similar way as with Q-learning, eligibility traces can
be incorporated to SARSA. However, as SARSA is an on-policy method, the trace does
not need to be reset to zero when an explorative action is taken.

10.4.6. Actor-Critic Methods

The actor-critic RL methods have been introduced to deal with continuous state and
continuous action spaces (recall that Q-learning works for a discrete MDP). The value
function and the policy are separated. The value function is represented by the so-called
critic. The role of the critic is to predict the outcome of a particular control action in a
particular state of the process.

The control policy is represented separately from the critic and is adapted by comparing
the reward actually received to the one predicted by the critic. A block diagram of a
classical actor-critic scheme (Barto et al., 1983; Anderson, 1987) is depicted in Figure 10.4.
It consists of a reward, the critic and the actor, which are detailed in the subsequent
sections.

Reward

This block provides the reward function rk, also called external reinforcement.
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Critic Reward

Actor Process
s

sa

∆

r

Figure 10.4.: The actor-critic learning scheme.

Critic

The task of the critic is to predict the expected future reinforcement r the process will
receive being in the current state and following the current control policy. This prediction
is then used to obtain a more informative signal, called the internal reinforcement, which is
involved in the adaptation of the critic and the actor. The critic is trained to predict the
future value function V (sk) for the current process state sk. Denote V̂ (sk) the prediction
of V (sk). To derive the adaptation law for the critic, we rewrite the equation for the value
function as:

V (sk) =
∞∑
n=0

γnrk+n+1 = rk+1 + γV (sk+1) . (10.42)

To train the critic, we need to compute its prediction error ∆k = V (sk) − V̂ (sk). The
true value function V (sk) is unknown, but it can be approximated by replacing V (sk+1) in
(10.42) by its prediction V̂ (sk+1). This gives an estimate of the prediction error:

∆k = V (sk)− V̂ (sk) = rk+1 + γV̂ (sk+1)− V̂ (sk) . (10.43)

As ∆k is computed using two consecutive values V̂ (sk) and V̂ (sk+1), and is the temporal
difference that was already described in Section 10.4.2. Note that both V̂ (sk) and V̂ (sk+1)
are known at time k, since V̂ (sk+1) is a prediction obtained for the current process state.
The temporal difference error serves as the internal reinforcement signal, see Figure 10.4.
The temporal difference can be directly used to adapt the critic. Let the critic be represented
by a neural network or a fuzzy system

V̂ (sk+1) = V̂ (sk+1, θk), (10.44)

where θk is a vector of adjustable parameters. To update θk, a gradient-descent learning
rule is used:

θk+1 = θk + αc∆k
∂V̂ (sk, θk)

∂θk
, (10.45)

where αc > 0 is the critic’s learning rate.

Actor

When the critic is trained to predict the future system’s performance (the value function),
the actor (i.e., the policy) can be adapted in order to establish an optimal mapping between
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the system states and the control actions. The temporal difference is used to adapt the
actor as follows:

Given a certain state sk, the control action aπk is calculated using the current policy
π(sk). This action is not applied to the process, but it is modified to obtain ak by adding
exploration ãk to it. The exploration ãk can, for example, be a random value from N(0, σ).
After the modified action ak is sent to the process, the temporal difference ∆k is calculated.
If the actual performance is better than the predicted one, the actor is adapted toward the
modified control action ak.

Let the actor be represented by a neural network or a fuzzy system

ak = aπk + ãk = π̂(sk, ϕk) + ãk, (10.46)

where ϕk is a vector of adjustable parameters. To update ϕk, the following learning rule is
used:

ϕk+1 = ϕk + αa∆kãk
∂π̂(sk, ϕk)

∂ϕk

, (10.47)

where αa > 0 is the actor’s learning rate.

10.5. Exploration

10.5.1. Exploration vs. Exploitation

When the agent always chooses the action that corresponds to the highest action value or
leads to a new state with the highest value, it will find a solution, but not necessarily the
optimal solution. The reason for this is that some state-action combinations have never been
evaluated, as they did not correspond to the highest value at that time. In RL, exploration
is explained as the need of the agent to try out suboptimal actions in its environment, as
for to guarantee that it learns the optimal policy instead of some suboptimal one. This
sounds paradoxical; the need for choosing suboptimal actions, in order to learn an optimal
policy. But then realize that exploration is not a concept solely for the RL framework. In
real life, exploration is an every-day experience. For human beings, as well as most animals,
exploration is our curiosity that drives us to know more about our own environment. This
might have some negative immediate effects, such as pain and time delay, but whenever we
explore, we hope to gain more long-term reward than we would have experienced without
it (practice makes perfect!).

Example 10.2 Imagine you find yourself a new job and you have to move to a new town
for it. Since you are not yet familiar with the road network, you consult an online route
planner to find out the best way to drive to your office. For days and weeks, you follow
this route, but at a moment you get annoyed by the large number of traffic lights that you
encounter. For some reason, these traffic lights appear to always make you stop. You start
wondering if there could be no faster way to drive. You decide to turn left in a street, but
after some time, you realize that this street does not take you to your office. The next day,
you decide to stick to your safe route, although it might take you a little longer. Then, at
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one moment, when the traffic is highly annoying and you are already late for work, you
decide to take another chance and take a street to the right. To your surprise, you find
that although this road is a little longer, it is much more quiet and takes you to your office
really fast. You have found yourself a better policy for driving to your office. From now on,
you will take this route and sometimes explore to find perhaps even faster ways.

�

An explorative action thus might only appear to be suboptimal. At that time, the action
was suboptimal, but when the policy converges to the optimal policy, it can prove to be
optimal. Exploitation is using the current knowledge for taking actions. This is observed
in real-life when we have practiced a particular task long enough to be satisfied with the
resulting reward. Typically, the older a person gets (the longer he or she operates in his or
her environment) the more he or she will exploit his or her knowledge rather than explore
alternatives. Exploration is especially important when the agent acts in an environment
in which the system dynamics change over time. At all times, the issue is whether to
exploit already gained knowledge or to explore unknown regions of state-space. This issue
is known as the exploration vs. exploitation dilemma. How an agent can exploit its current
knowledge about the values functions and still explore a fraction of the time is the subject
of this section.

10.5.2. Undirected Exploration

Undirected exploration is the most basic form of exploration. Random action selection
is used to let the agent deviate from the current optimal policy in the hope of finding a
policy that is closer to the real optimum. There are some different undirected exploration
techniques that will now be described.

ϵ-greedy

In ϵ-greedy action selection, there is a probability of ϵ of selecting a random action instead of
the one with the highest Q-value. This method is slow, since also actions that do not appear
promising will eventually be explored, but it is guaranteed to lead to the optimal policy
in the long run. During the course of learning, the value of ϵ can be annealed (gradually
decreased) to ensure that after a certain period of time there is no more exploration, but
only greedy action selection.

Max-Boltzmann *

With Max-Boltzmann, or soft-max exploration, there is also a possibility of ϵ to choose
an action at random, but then according to a special probability function, known as the
Boltzmann-Gibbs probability density function. The probability P{a | s} of selecting an
action a given state s and Q-values Q(s, i) for all i ∈ A is computed as follows:

P{a | s} = eQ(s,a)/τ∑
i e

Q(s,i)/τ
, (10.48)
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where τ is a ‘temperature’ variable, which is used for annealing the amount of exploration.
High values for τ causes all actions to be nearly equiprobable, whereas low values for τ
cause greater differences in the probabilities.

When the Q-values for different actions in one state are all nearly the same, the possibilities
of choosing each action are also almost equal. This results in strong exploration. When the
differences between these Q-values are larger, the amount of exploration will be lower, since
the probability of choosing the greedy action is significantly higher than that of choosing
an explorative action. This undirected exploration strategy corresponds to the intuition
that one should explore when the current best option is not expected to be much better
than the alternatives. Still, because exploration decreases when some actions are regarded
to be much better than some other actions that were not yet tried, there is no guarantee
that it leads to finding the optimal policy.

Optimistic Initial Values *

Another (very simple) exploration strategy is to initialize the Q-function with high values,
i.e., values at the upper bound of the optimal Q-function. When an action is taken, the
corresponding Q-value will decrease to a value closer to the optimal value. The next time
the agent is in that state, it will choose an action amongst the ones never taken, since these
correspond to the highest Q-values. This strategy thus guarantees that all actions will be
explored in every state. It results in initial high exploration. On the other hand, learning
might take a very long time this way as all state-action pairs and thus many policies will
be evaluated.

10.5.3. Directed Exploration *

In directed exploration, an exploration reward function is created that assigns rewards
to trying out particular parts of the state space. The exploration is thus not completely
random, as in undirected exploration. A higher level system determines in parallel to the
learning and decision making, which parts of the state space should be explored. This
section will discuss some of these higher level systems of directed exploration.

Frequency Based Exploration

Reward-based exploration means that a reward function, denoted as RE(s, a, s′) (Wiering,
1999) assigns rewards for trying out different parts of the state space. Based on these
rewards, the exploration that is chosen is expected to result in a maximum increase of
experience.

For the frequency based approach, the action that has been executed least frequently
will be selected for exploration. The reward function is then:

RE(s, a, si) = −
Cs(a)

KC

, ∀i, (10.49)

where Cs(a) is the local counter, counting the number of times the action a is taken in
state s. KC is a scaling constant. The exploration rewards are treated in the same way as
normal rewards are. They can also be discounted, so the resulted exploration behavior can
be quite complex (Wiering, 1999).
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Recency Based Exploration

In recency based exploration, the exploration reward is based on the time since that action
was last executed. The reward function is:

RE(s, a, si) =
−k
KT

, ∀i, (10.50)

where k is the global time counter, indicating the discrete time at the current step. KT is a
scaling constant. According to Wiering (1999), this exploration reward rule is especially
valuable when the agent interacts with a changing environment.

Error Based Exploration

The error based reward function chooses actions that lead to strongly increasing Q-values.
The reward rule is defined as follows:

RE(sk, a, sk+1) = Qk+1(sk, ak)−Qk(sk, ak)−KP , (10.51)

where Qk(sk, ak) denotes the Q-value of the state-action pair before the update and
Qk+1(sk, ak) the one after the last update, which was computed before computing this
exploration reward. The constant KP ensures that the exploration reward is always negative
(Wiering, 1999).

10.5.4. Dynamic Exploration *

A novel exploration method, proposed in (van Ast and Babuška, 2006), is called dynamic
exploration. It is inspired by the observation that in real-world RL problems, long sequences
of the same action must often be selected in order to reach the goal. Dynamic exploration
selects with a higher probability the action that has been chosen in the previous time step.
It has been shown that for typical gridworld search problems, this strategy speeds up the
convergence of learning considerably. The general form of dynamic exploration is given by:

P (sk, ak) = f(sk, ak−1, ak−2, . . .), (10.52)

where P (sk, ak) is the probability of choosing action a in state s at the discrete time step k.

Example 10.3 We regard as an illustration the grid-search problem in Figure 10.5.
The agent’s goal is to find the shortest path from the start cell S to the goal cell G. In

every state, the agent can choose between the actions North, East, South and West. Free
states are white and blocked states are grey. In free states, the agent receives a reward of
−1, in the blocked states the reward is −5 (and stays in the previous state) and at reaching
the goal, it receives +10. Note that for efficient exploration, the agent must take relatively
long sequences of identical actions. We refer to these states as long-path states. Still, at
some crucial states, called the switch states, the agent must select different actions.

�
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S

G

Figure 10.5.: Example of a grid-search problem with a high proportion of long-path states.

The states belong to long paths when the optimal policy selects the same action as in
the state one time step before. The states belong to switch states when the optimal pol-
icy selects actions that are not the same as in the state one time step before. We will denote:

S Set of all states in the quantized state-space
sk ∈ S One particular state at time step k
Sl ⊂ S Set of long-path states
Ss ⊂ S Set of switch states

It holds that Sl ∪ Ss = S and Sl ∩ Ss = ∅. Further, denote |S| the number of elements
in S. The basic idea of dynamic exploration is that for realistic, real-world problems
|Sl| > |Ss|. If we define p = |Sl|

|S| , this means that p > 0.5. In many real-world applications
of RL, the agent needs to select long sequences of the same action in order to reach the
goal state. With exploration strategies where pure random action selection is used, the
agent might waste a lot of time on parts of the state-space where long sequences of the
same action are required. With dynamic exploration, the action selection is dynamic, i.e.,
depends on previously chosen actions. With a probability of ϵ, an explorative action is
chosen according to the following probability distribution:

P (sk, ak) = f(sk, ak−1, ak−2, . . .), (10.53)

where P (sk, ak) is the probability of choosing action a in state s at the discrete time step k.
A particular implementation of this function is:

P{ak | sk, ak−1} =
{

(1− β)Π(sk, ak) + β if ak = ak−1

(1− β)Π(sk, ak) if ak ̸= ak−1
, (10.54)

with β a weighting factor, 0 ≤ β ≤ 1 and Π(sk, ak) a soft-max policy:

Π(sk, ak) =
eQ(sk,ak)∑N
b eQ(sk,bk)

, (10.55)

where N denotes the total number of actions.
The parameter β can be thought of as an inertia. For instance, in a gridworld, the agent

favors to continue its movement in the direction it is moving. Note that the general case of
eq. (10.54) with β = 0 results in the max-Boltzmann exploration rule with a temperature
parameter τ = 1.

153



10. Reinforcement Learning

Example 10.4 In this example we use the RL method of Q-learning, which is discussed
in Section 10.4.4. We evaluate the performance of dynamic exploration compared to max-
Boltzmann exploration (where β = 0) for random gridworlds with 20% of the states blocked.
Random gridworlds are more general than the illustrative gridworld from Figure 10.5. They
are an abstraction of the various robot navigation tasks used in the literature, such as in
(Thrun, 1992; Wiering, 1999; Bakker, 2002). Figure 10.6 shows an example of a random
gridworld with 20% blocked states.

S

G

Figure 10.6.: Example of a 10× 10 random gridworld with 20% blocked states.

We simulated two cases of gridworlds: with and without noise. A noisy environment is
modeled by the transition probability, i.e. the probability that the agent moves according
to its chosen action. The learning algorithm is plain tabular Q-learning with the rewards
as specified above. The discounting factor is γ = 0.95 and the eligibility trace decay factor
λ = 0.5. The learning rate is α = 1. An explorative action is chosen with probability
ϵ = 0.1. The learning stops after 9 trials, as for this problem, the agent always converges
to the optimal policy within this many trials. The results are presented in Figure 10.7.
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(a) Transition probability = 1.
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(b) Transition probability = 0.8.

Figure 10.7.: Learning time vs. β for 100 simulations.

It shows that the maximum improvement occurs for β = 1. The average maximal
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improvements are 23.4% and 17.6% for the noiseless and the noise environment respectively.
�

In the example and in (van Ast and Babuška, 2006) it has been shown that for grid search
problems, β = 1, or full dynamic exploration is the optimal choice. It has been shown
that a simple implementation of eq. (10.52) can considerably shorten the learning time
compared to undirected exploration. Its main advantages compared to directed exploration
(Wiering, 1999) are its straightforward implementation, lower complexity and applicability
to Q-learning.

10.6. Applications

In the literature, many examples can be found in which RL was successfully applied. Most
of these applications are test-benches for new analysis or algorithms, but some are also
real-world problems. They can be divided into three categories:

• control problems

• grid-search problems

• games

In each of these categories, both test-problems and real-world problems are found. Test-
problems are in general simplifications of real-world problems.

Robot control is especially popular for RL, but applications are also found for elevator
dispatching (Sutton and Barto, 1998) and other problems in which planning is the central
issue. For robot control, applications like swimming (Coulom, 2002) and the walking of a
six legged machine (Kirchner, 1998) are found. More common problems are generally used
as test-problem and include all kinds of variations of pendulum problems. Examples of
these are the acrobot (Boone, 1997), the double pendulum (Randlov et al., 2000), single
pendulum swing-up and balance (Perkins and Barto., 2001) and rotational pendulums, like
the Furuta pendulum (Aamodt, 1997).

Mazes provide less exciting problems, but they are especially useful for RL, because one
can often determine the optimal policy by inspecting the maze. Eventually, real-world maze
problems can be found in adaptive routing on the internet, or other shortest path problems.
In his Ph.D. thesis, Bakker (2004) uses all kinds of mazes for his RL algorithms. In (van
Ast and Babuška, 2006) random mazes are used to demonstrate dynamic exploration.

RL has also been successfully applied to games. The most well known and exciting
application is that of an agent that learned to play backgammon at a master level (Tesauro,
1994). Another problem, that is used as test-problem is Tic Tac Toe (Sutton and Barto,
1998).

The remainder of this section treats two applications that are typically illustrative to
reinforcement learning for control. The first one is the pendulum swing-up and balance
problem, where we will apply Q-learning. The second application is the inverted pendulum
controlled by actor-critic RL.
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10.6.1. Pendulum Swing-Up and Balance

The pendulum swing-up and balance problem is a challenging control problem for RL. In
this problem, a pole is attached to a pivot point. At this pivot point, a motor can exert a
torque to the pole. This torque causes the pole to rotate around the pivot point. However,
the amount of torque is limited in such way, that it does not provide enough force to move
the pendulum to its upside-down position. In order to do so, it must gain energy by making
the pendulum swing back and forth until it reaches the top. This is the first control task.
The second control task is to keep the pendulum stable in its upside-down position.

The task is difficult for the RL agent for two reasons. The first is that it needs to perform
an exact sequence of actions in order to swing-up and balance the pendulum. With a
different sequence, it might never be able to complete the task. The second difficulty is
that the agent can hardly value the effect of its actions before the goal is reached. This
difficulty is known as delayed reward.

The pendulum problem is a simplification of more complex robot control problems. Its
behavior can be easily investigated, while RL is still challenging.

The System Dynamics

The pendulum is modeled by the non-linear state equations in eq. (10.56).

Jω̇ = Ku−mgR sin(θ)− bω, (10.56)

with the angle (θ) and the angular velocity (ω) as the state variables and u the input.
The constants J,K, g, R and b are not explained in detail. It is easy to verify that its
equilibria are (θ, ω) = (0, 0)

∧
(π, 0). By linearizing the non-linear state equations around

its equilibria it can be found that the first equilibrium is stable, while the second one is
unstable.

The pendulum is depicted in Figure 10.8(a). It also shows the conventions for the state
variables.

Quantization of the State Variables

In order to use classical RL methods, the state variables needs to be quantized. Equal bin
size will used to quantize the state variable θ. Figure 10.8(b) shows a particular quantization
of the angle. The bins are positioned in such way that both equilibria fall in one bin and
not at the boundary of two neighboring bins. The other state variable ω is quantized with
boundaries from the set Sω:

Sω = {−9, . . . , 9}[ rad s−1], (10.57)

where in place of the dots, the boundaries will be equally separated. The quantization is as
follows:

sω =


1 for ω ≤ S1

ω,
i for S i

ω < ω < S i+1
ω , i = 2, 3, . . . , N − 1

N for ω ≥ SN
ω ,

(10.58)

where S i
ω is the i-th element of the set Sω that contains N elements.
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Figure 10.8.: The pendulum swing-up and balance problem.

The Action Set

The pendulum swing-up problem is a typical under-actuated problem, i.e. the torque
applied to it is too small to directly swing-up the pendulum. The learning agent should
therefore learn to swing the pendulum back and forth, thereby accumulating (potential
and kinetic) energy. As most RL algorithms are designed for discrete-time control, a gap
has to be bridged between the learning algorithm and the continuous-time dynamics of the
pendulum. A regular way of doing this is to associate actions with applying torques. This
can be either at a low-level, where each action is directly associated with a torque, or at a
higher level, where an action is associated with a control law, which in turn determines
the torque. Several different actions can be defined, which are shown in Table 10.1. The
parameter µ is the maximum torque that can be applied.

a1: +µ
a2: 0
a3: −µ
a4: sign (ω)µ
a5: 1 · (π − θ)

Table 10.1.: Possible actions for the pendulum problem

A possible action set can be All = {a1, a2, a3} (low-level action set) representing constant
maximal torque in both directions, corresponding to bang-bang control, with the possibility
to exert no torque at all. An other, higher level, action set can consist of the other two
actions Ahl = {a4, a5}. In this set, a4 is to accumulate energy to swing the pendulum in
the direction of the unstable equilibrium and a5 is to balance it with a proportional gain of
1. It can be proven that a4 is the most efficient way to destabilize the pendulum. In this
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problem we make sure that also the control output of Ahl is limited to ±µ.
It makes a great difference for the RL agent which action set it can use. As long sequences

of positive or negative maximum torques are necessary to complete the task, it is very
unlikely for an RL agent to find the correct sequence of low-level actions, especially with a
fine state quantization. On the other hand, the higher level action set makes the problem
somewhat easier, since the agent effectively only has to learn how to switch between the
two actions in the set. Furthermore, the control laws make the system symmetrical in the
angle.

In order to design the higher level action set, the dynamics of the system needed to be
known in advance. The low-level action set is much more basic to design. Prior knowledge
in the action set is thus expected to improve RL performance.

The Reward Function

The reward function is also a very important part of reinforcement learning. Since it
essentially tells the agent what it should accomplish, the success of the learning strongly
depends on it. The reward function determines in each state what reward it provides to
the agent. For the pendulum, there are three kinds of states, namely:

• The goal state

• Four trap states

• The other states

We define a trap state as a state in which the torque is cancelled by the gravitational force,
making the pendulum balance at a different angle than θ = π, or θ = 0. These angles can
be easily derived from the non-linear state equation in eq. (10.56). A good reward function
for a time optimal problem assigns positive or zero reward to the agent in the goal state
and negative rewards in both the trap state and the other states. Intuitively, one would
also reward the agent for getting in the trap state more negatively than for getting to one
of the other states. A possible reward function like this can be:

• R = +10 in the goal state

• R = −10 in the trap state

• R = −1 anywhere else

Some prior knowledge could be incorporated in the design of the reward function. E.g. a
reward function that assigns reward proportional to the potential energy of the pendulum
would also make the agent favor to swing-up the pendulum. A reward function like this is:

R(θ) = − cos(θ), (10.59)

where the reward is thus dependent on the angle. One should however always be very
careful in shaping the reward function in this way. In (Sutton and Barto, 1998) the authors
warn the designer of the RL task by saying that the reward function should only tell the
agent what it should do and not how.
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10.6. Applications

In the experiment, we use the low-level action set All. The discount factor is chosen to
be γ = 0.95 and the method of replacing traces is used with a trace decay factor of λ = 0.9.
Furthermore, standard ϵ-greedy is the exploration strategy with a constant ϵ = 0.01. The
learning is stopped when there is no change in the policy in 10 subsequent trials.

Results

During the course of learning, the agent may find policies that are sub-optimal before
learning the optimal one. Figure 10.9 shows the behavior of two policies, one in the middle
of the learning and one from the end.
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(a) Behavior in the middle of the learning.
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(b) Behavior at the end of the learning.

Figure 10.9.: Behavior of the agent during the course of the learning.

The learning curves, showing the number of iterations and the accumulated reward per
trial are shown in Figure 10.10. These experiments show that Q(λ)-learning is able to find
a (near-)optimal policy for the pendulum control problem.
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(a) Number of episodes per trial.
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(b) Total reward per trial.

Figure 10.10.: Learning performance for the pendulum resulting in an optimal policy.
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10.6.2. Inverted Pendulum

In this problem, reinforcement learning is used to learn a controller for the inverted
pendulum, which is a well-known benchmark problem. The aim is to learn to balance
the pendulum in its upright position by accelerating the cart left and right as depicted in
Figure 10.11.

x

u (force)

a

Figure 10.11.: The inverted pendulum.

The system has one input u, the acceleration of the cart, and two outputs, the position
of the cart x and the pendulum angle α. When a mathematical or simulation model of
the system is available, it is not difficult to design a controller. Figure 10.12 shows a block
diagram of a cascaded PD controller that has been tuned by a trial and error procedure on
a Simulink model of the system (invpend.mdl). Figure 10.13 shows a response of the PD
controller to steps in the position reference.

Reference Position
 controller Inverted

 pendulum
Angle

 controller

Figure 10.12.: Cascade PD control of the inverted pendulum.

For the RL experiment, the inner controller is made adaptive, while the PD position
controller remains in place. The goal is to learn to stabilize the pendulum, given a completely
void initial strategy (random actions).

The critic is represented by a singleton fuzzy model with two inputs, the current angle αk

and the current control signal uk. Seven triangular membership functions are used for each
input. The membership functions are fixed and the consequent parameters are adaptive.
The initial value is −1 for each consequent parameter.

The controller is also represented by a singleton fuzzy model with two inputs, the current
angle αk and its derivative dα

dt k
. Five triangular membership functions are used for each

input. The membership functions are fixed and the consequent parameters are adaptive.
The initial value is 0 for each consequent parameter. The initial control strategy is thus
completely determined by the stochastic action modifier (it is thus random). This, of
course, yields an unstable controller. After several control trials (the pendulum is reset to
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Figure 10.13.: Performance of the PD controller.

its vertical position after each failure), the RL scheme learns how to control the system
(Figure 10.14).

Note that up to about 20 seconds, the controller is not able to stabilize the system. After
about 20 to 30 failures, the performance rapidly improves and eventually it approaches the
performance of the well-tuned PD controller (Figure 10.15). To produce this result, the
final controller parameters were fixed and the noise was switched off.

Figure 10.16 shows the final surfaces of the critic and of the controller. Note that the
critic highly rewards states when α = 0 and u = 0. States where both α and u are negative
are penalized, as they lead to failures (control action in the wrong direction). States where
α is negative but u is positive (and vice versa) are evaluated in between the above two
extremes. These control actions should lead to an improvement (control action in the right
direction).

10.7. Conclusions

This chapter introduced the concept of reinforcement learning (RL). The basic principle of
RL, where the agent interacts with an environment from which it only receives rewards
have been discussed. The agent uses a value function to process these rewards in such a
way that it improves its policy for solving the RL problem. This value function assigns
values to states, or to state-action pairs. These values indicate what action should be
taken in each state to solve the RL problem. When an explicit model of the environment
is provided to the agent, the Bellman optimality equations can be solved by dynamic
programming methods, such as value iteration and policy iteration. When this model is
not available, methods of temporal difference have to be used. Several of these methods,
like Q-learning, SARSA and the actor-critic architecture have been discussed. When acting
in an unknown environment, it important for the agent to effectively explore. Different
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Figure 10.14.: The learning progress of the RL controller.
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Figure 10.15.: The final performance the adapted RL controller (no exploration).
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Figure 10.16.: The final surface of the critic (left) and of the controller (right).

exploration methods, like undirected, directed and dynamic exploration have been discussed.
Three problems have been discussed, namely the random gridworld, the pendulum swing-up
and balance and the inverted pendulum. Other researchers have obtained good results from
applying RL to many tasks, ranging from riding a bike to playing backgammon.

10.8. Problems

1. Prove mathematically that the discounted sum of immediate rewards

Rk =
∞∑
n=0

γnrk+n+1

is indeed finite when 0 ≤ γ < 1. Assume that the agent always receives an immediate
reward of -1. Compute Rk when γ = 0.2 and γ = 0.95. Compare your results and
give a brief interpretation of this difference.

2. Explain the difference between the V -value function and the Q-value function and
give an advantage of both.

3. Explain the difference between on-policy and off-policy learning.

4. Is actor-critic reinforcement learning an on-policy or off-policy method? Explain you
answer.

5. Describe the tabular algorithm for Q(λ)-learning, using replacing traces to update
the eligibility trace.
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A. Ordinary Sets and Membership
Functions

This appendix is a refresher on basic concepts of the theory of ordinary1 (as opposed to
fuzzy) sets. The basic notation and terminology will be introduced.

Definition A.1 (Set) A set is a collection of objects with a certain property. The indi-
vidual objects are referred to as elements or members of the set.

Sets are denoted by upper-case letters and their elements by lower-case letters. The
expression “x is an element of set A” is written as x ∈ A. The letter X denotes the universe
of discourse (the universal set). This set contains all the possible elements in a particular
context, from which sets can be formed. An important universal set is the Euclidean vector
space Rn for some n ∈ N. This is the space of all n-tuples of real numbers. There several
ways to define a set:

• By specifying the properties satisfied by the members of the set:

A = {x | P (x)},

where the vertical bar | means “such that” and P (x) is a proposition which is true
for all elements of A and false for remaining elements of the universal set X. As an
example consider a set I of natural numbers greater than or equal to 2 and lower
than 7: I = {x | x ∈ N, 2 ≤ x < 7}.

• By listing all its elements (only for finite sets):

A = {x1, x2, . . . , xn} . (A.1)

The set I of natural numbers greater than or equal to 2 and less than 7 can be written
as: I = {2, 3, 4, 5, 6}.

• By using a membership (characteristic, indicator) function, which equals one for the
members of A and zero otherwise. As this definition is very useful in conventional set
theory and essential in fuzzy set theory, we state it in the following definition.

Definition A.2 (Membership Function of an Ordinary Set) The membership func-
tion of the set A in the universe X (denoted by µA(x)) is a mapping from X to the set
{0,1}: µA(x) : X → {0, 1}, such that:

µA(x) =

{
1, x ∈ A,
0, x ̸∈ A .

(A.2)

1Ordinary (nonfuzzy) sets are also referred to as crisp sets. In various contexts, the term crisp is used as
an opposite to fuzzy.
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The membership function is also called the characteristic function or the indicator function.
We will see later that operations on sets, like the intersection or union, can be conveniently

defined by means of algebraic operations on the membership functions of these sets. Also
in function approximation and modeling, membership functions are useful as shown in the
following example.

Example A.1 (Local Regression) A common approach to the approximation of com-
plex nonlinear functions is to write them as a concatenation of simpler functions fi, valid
locally in disjunct2 sets Ai, i = 1, 2, . . . , n:

y =


f1(x), if x ∈ A1,
f2(x), if x ∈ A2,

...
...

fn(x), if x ∈ An .

(A.3)

By using membership functions, this model can be written in a more compact form:

y =
n∑

i=1

µAi
(x)fi(x) . (A.4)

Figure A.1 gives an example of a nonlinear function approximated by a concatenation of
three local linear segments that valid local in subsets of X defined by their membership
functions.

y =
3∑

i=1

µAi
(x)(aix+ bi) (A.5)

x

y

x

m

A
1

y =
 a

x +
 b

1

1

1

A
2

y = a x + b
2

2

y = a x + b
3 3

A
3

Figure A.1.: Example of a piece-wise linear function.

�
2Disjunct sets have an empty intersection.
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The number of elements of a finite set A is called the cardinality of A and is denoted by
card(A). A family of all subsets of a given set A is called the power set of A; denoted by
P(A).

The basic operations of sets are the complement, the union and the intersection.

Definition A.3 (Complement) The (absolute) complement Ā of A is the set of all
members of the universal set X which are not members of A:

Ā = {x | x ∈ X and x ̸∈ A} .

Definition A.4 (Union) The union of sets A and B is the set containing all elements
that belong either to A or to B or to both A and B:

A ∪B = {x | x ∈ A or x ∈ B} .

The union operation can also be defined for a family of sets {Ai | i ∈ I}:⋃
i∈I

Ai = {x | x ∈ Ai for some i ∈ I} .

Definition A.5 (Intersection) The intersection of sets A and B is the set containing
all elements that belong to both A and B:

A ∩B = {x | x ∈ A and x ∈ B} .

The intersection can also be defined for a family of sets {Ai | i ∈ I}:⋂
i∈I

Ai = {x | x ∈ Ai for all i ∈ I} .

Table A.1 lists the result of the above set-theoretic operations in terms of membership
degrees.

Table A.1.: Set-theoretic operations in classical set theory.
A B A ∩B A ∪B Ā
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Definition A.6 (Cartesian Product) The Cartesian product of sets A and B is the set
of all ordered pairs:

A×B = {⟨a, b⟩ | a ∈ A, b ∈ B} .

Note that if A ̸= B and A ̸= ∅, B ̸= ∅, then A×B ̸= B × A. The Cartesian product of a
family {A1, A2, . . . , An} is the set of all n-tuples ⟨a1, a2, . . . , an⟩ such that ai ∈ Ai for every
i = 1, 2, . . . , n. It is written as A1 × A2 × · · · × An. Thus,

A1 × A2 × · · · × An = {⟨a1, a2, . . . , an⟩ | ai ∈ Ai for every i = 1, 2, . . . , n} .

The Cartesian products A× A, A× A× A, etc., are denoted by A2, A3, etc., respectively.
Subsets of Cartesian products are called relations.
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B. MATLAB Code

The Matlab code given in this appendix can be downloaded from the Web page (http:
//www.dcsc.tudelft.nl/~sc42050) or requested from the author at the following address:

Prof. Robert Babuška
Cognitive Robotics
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
tel: +31 15 2785117, fax: +31 15 2786679
e-mail: R.Babuska@tudelft.nl
http://www.dcsc.tudelft.nl/~rbabuska

B.1. Fuzzy Set Class

A set of functions are available which define a new class “fset” (fuzzy set) under Matlab
and provide various methods for this class, including: display as a point-wise list, plot of
the membership function (plot), intersection due to Zadeh (min), algebraic intersection (*
or prod) and a number of other operations. For illustration, a few of these functions are
listed below.

B.1.1. Fuzzy Set Class Constructor

Fuzzy sets are represented as structures with two fields (vectors): the domain elements
(dom) and the corresponding membership degrees (mu):

function A = fset(dom ,mu)
% constructor for a fuzzy set

if isa(mu,'fset'), A = mu; return; end;
A.mu = mu;
A.dom = dom;
A = class(A,'fset');

B.1.2. Set-Theoretic Operations

Set-theoretic operations are implemented as operations on the membership degree vectors,
assuming, of course, that the domains are equal. Examples are the Zadeh’s intersection:
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B. MATLAB Code

function c = and(a,b)
% Intersection of fuzzy sets (min)

c = a; c.mu = min(a.mu,b.mu);

or the algebraic (probabilistic) intersection:

function c = mtimes(a,b)
% Algebraic intersection of fuzzy sets

c = a; c.mu = a.mu .* b.mu;

The reader is encouraged to implement other operators and functions and to compare
the results on some sample fuzzy sets. Fuzzy sets can easily be defined using parametric
membership functions (such as the trapezoidal one, mftrap) or any other analytic function,
see example1 and example2.
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B.2. Gustafson–Kessel Clustering Algorithm

B.2. Gustafson–Kessel Clustering Algorithm

Follows a simple Matlab function which implements the Gustafson–Kessel algorithm of
Chapter 4. The FCM algorithm presented in the same chapter can be obtained by simply
modifying the distance function to the Euclidean norm.
function [U,V,F] = gk(Z,c,m,tol)
% Clustering with fuzzy covariance matrix (Gustafson -Kessel algorithm)
%
% [U,V,F] = GK(Z,c,m,tol)
%--------------------------------------------------
% Input: Z ... N by n data matrix
% c ... number of clusters
% m ... fuzziness exponent (m > 1)
% tol ... termination tolerance (tol > 0)
%--------------------------------------------------
% Output: U ... fuzzy partition matrix
% V ... cluster means (centers)
% F ... cluster covariance matrices

%----------------- prepare matrices ----------------------------------
[N,n] = size(Z); % data size
N1 = ones(N,1); n1 = ones(n,1); c1 = ones(1,c); % aux. variables
U = zeros(N,c); % partition matrix
d = U; % distance matrix
F = zeros(n,n,c); % covariance matrix
%----------------- initialize U --------------------------------------
minZ = c1 '*min(Z); maxZ = c1 '*max(Z); % data limits
V = minZ + (maxZ - minZ).*rand(c,n); % random centers
for j = 1 : c,

ZV = Z - N1*V(j,:);
d(:,j) = sum((ZV.^2) ')'; % distances

end;
d = (d+1e-100) .^( -1/(m-1)); % inverse dist.
U0 = (d ./ (sum(d') '*c1)); % part. matrix
%----------------- iterate --------------------------------------------
while max(max(U0-U)) > tol % no convergence

U = U0; Um = U.^m; sumU = sum(Um); % aux. vars
V = (Um '*Z)./(n1*sumU)'; % clust. centers
for j = 1 : c, % for all clusters

ZV = Z - N1*V(j,:); % auxiliary var
f = n1*Um(:,j) '.*ZV '*ZV/sumU(j); % cov. matrix
d(:,j)=sum(ZV*(det(f)^(1/n)*inv(f)).*ZV ,2); % distances

end;
d = (d+1e-100) .^( -1/(m-1)); % inverse dist.
U0 = (d ./ (sum(d') '*c1)); % part. matrix

end
%----------------- create final F and U -------------------------------
U = U0; Um = U.^m; sumU = n1*sum(Um);
for j = 1 : c,

ZV = Z - N1*V(j,:);
F(:,:,j) = n1*Um(:,j) '.*ZV '*ZV/sumU(1,j);

end;
%----------------- end of function ------------------------------------
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C. Symbols and Abbreviations

Printing Conventions Lower case characters in bold print denote column vectors. For
example, x and a are column vectors. A row vector is denoted by using the transpose
operator, for example xT and aT . Lower case characters in italic denote elements of vectors
and scalars. Upper case bold characters denote matrices, for instance, X is a matrix.
Upper case italic characters such as A denote crisp and fuzzy sets. Upper case calligraphic
characters denote families (sets) of sets.

No distinction is made between variables and their values, hence x may denote a variable
or its value, depending on the context. No distinction is made either between a function
and its value, e.g., µ may denote both a membership function and its value (a membership
degree). Superscripts are sometimes used to index variables rather than to denote a power
or a derivative. Where confusion could arise, the upper index is enclosed in parentheses.
For instance, in fuzzy clustering µ

(l)
ik denotes the ikth element of a fuzzy partition matrix,

computed at the lth iteration. (µ(l)
ik )

m denotes the mth power of this element. A hat denotes
an estimate (such as ŷ).

Mathematical symbols

A, B, . . . fuzzy sets
A, B, . . . families (sets) of fuzzy sets
A,B,C,D system matrices
F cluster covariance matrix
F(X) set of all fuzzy sets on X
I identity matrix of appropriate dimensions
K number of rules in a rule base
Mfc fuzzy partitioning space
Mhc hard partitioning space
Mpc possibilistic partitioning space
N number of items (data samples, linguistic terms, etc.)
P(A) power set of A
O(·) the order of
R fuzzy relation
R set of real numbers
Ri ith rule in a rule base
U = [µik] fuzzy partition matrix
V matrix containing cluster prototypes (means)
X matrix containing input data (regressors)
X, Y domains (universes) of variables x and y
Z data (feature) matrix
a, b consequent parameters in a TS model
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c number of clusters
d(·, ·) distance measure
m weighting exponent (determines fuzziness of the partition)
n dimension of the vector [xT , y]
p dimension of x
u(k), y(k) input and output of a dynamic system at time k
v cluster prototype (center)
x(k) state of a dynamic system
x regression vector
y output (regressand)
y vector containing output data (regressands)
z data vector
β degree of fulfillment of a rule
φ eigenvector of F
γ normalized degree of fulfillment
λ eigenvalue of F
µ, µ(·) membership degree, membership function
µi,k membership of data vector zk into cluster i
τ time constant
0 matrix of appropriate dimensions with all entries equal to zero
1 matrix of appropriate dimensions with all entries equal to one

Operators:

∩ (fuzzy) set intersection (conjunction)
∪ (fuzzy) set union (disjunction)
∧ intersection, logical AND, minimum
∨ union, logical OR, maximum
XT transpose of matrix X
Ā complement (negation) of A
∂ partial derivative
◦ sup-t (max-min) composition
⟨x,y⟩ inner product of x and y
card(A) cardinality of (fuzzy) set A
cog(A) center of gravity defuzzification of fuzzy set A
core(A) core of fuzzy set A
det determinant of a matrix
diag diagonal matrix
ext(A) cylindrical extension of A
hgt(A) height of fuzzy set A
mom(A) mean of maxima defuzzification of fuzzy set A
norm(A) normalization of fuzzy set A
proj(A) point-wise projection of A
rank(X) rank of matrix X
supp(A) support of fuzzy set A
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Abbreviations

ANN artificial neural network
B&B branch-and-bound technique
BP backpropagation
COG center of gravity
FCM fuzzy c-means
FLOP floating point operations
GK Gustafson–Kessel algorithm
MBPC model-based predictive control
MIMO multiple–input, multiple–output
MISO multiple–input, single–output
MNN multi-layer neural network
MOM mean of maxima
(N)ARX (nonlinear) autoregressive with exogenous input
P(ID) proportional (integral derivative controller)
RBF(N) radial basis function (network)
RL reinforcement learning
SISO single–input, single–output
SQP sequential quadratic programming
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Q-function, 139
Q-learning, 146
α-cut, 9

A
actor, 148
actor-critic, 147
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critic, 148

adaptation, 132
adaptive control, 131

indirect, 132
aggregation, 33
air-conditioning control, 130
algorithm

fuzzy c-means, 64
Gustafson–Kessel, 70
Mamdani inference, 36
relational inference, 47

antecedent, 26
space, 42

artificial neural network, 113
ARX model, 53
autoregressive system, 84

B
basis function expansion, 44
Bellman

equations, 141
optimality, 141
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C
c-means functional, 63
Cartesian product, 16–19, 167
chaining of rules, 42
characteristic function, 165
cluster, 58

covariance matrix, 71
fuzziness coefficient, 63

hyperellipsoidal, 67
prototype, 63
validity measures, 65

complement, 14, 167
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composition, 20, 21
compositional rule of inference, 29, 31
conjunctive form, 41
connectives, 40
consequent, 26, 50
contrast intensification, 19
control horizon, 126
core, 9
coverage, 27
credit assignment problem, 145
critic, 148
cylindrical extension, 17

D
data-driven modeling, 77
defuzzification, 37

center of gravity, 37
fuzzy-mean, 38, 44
mean of maxima, 37
weighted fuzzy mean, 38

degree of fulfillment, 35, 42
discounting, 138
distance norm, 58, 63
dynamic

fuzzy system, 52, 78
modeling, 83

E
eligibility trace, 145, 147

accumulating traces, 145
replacing traces, 146

episodic task, 138
example

air-conditioning control, 130
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friction compensation, 101
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inverted pendulum, 160
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pressure control, 105

exploration, 149
ϵ-greedy, 150
directed exploration, 151
dynamic exploration, 152
error based, 152
frequency based, 151
max-Boltzmann, 150
optimistic initial values, 151
recency based, 152
undirected exploration, 150

F
first-principle modeling, 86
friction compensation, 101
fuzziness exponent, 63
fuzzy

c-means algorithm, 62
clustering, 81
covariance matrix, 69
expert system, 75
graph, 33
identification, 75
implication, 30, 39
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partition matrix, 63
proposition, 26
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set, 8
system, 25

fuzzy control
chip, 109
design, 98
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knowledge-based, 91
Mamdani, 94
proportional derivative, 97
software, 108
supervisory, 94, 104
Takagi–Sugeno, 94, 104

fuzzy model
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inference
linguistic model, 29
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Takagi–Sugeno, 50
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knowledge base, 99
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fuzzy control, 91
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controller, 94
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Markov property, 137
max-min composition, 32
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point-wise defined, 13
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model-based predictive control, 126
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Monte Carlo, 146
multivariable systems, 40
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NARX model, 52, 83
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network, 80

nonlinear control, 92
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O
objective function, 127
on-line adaptation, 132
optimization
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partition
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Picard iteration, 63
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policy iteration, 142
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prediction horizon, 126
predictive control, 126
pressure control, 105
projection, 16

R
recursive least squares, 132
regression

local, 166
surface, 83

reinforcement comparison, 140
reinforcement learing

environment, 136
reinforcement learning, 135

Q-function, 139
Q-learning, 146
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applications, 155
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on-policy, 147
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reinforcement comparison, 140
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temporal difference, 144
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relational
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state-space modeling, 53
supervisory control, 104
support, 9

T
t-conorm, 16
t-norm, 15
Takagi–Sugeno

controller, 94
inference, 50
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temporal difference, 144

U
union, 15, 167

V
V-value function, 139
value iteration, 143

188


	Introduction
	Conventional Control
	Intelligent Control
	Overview of Techniques
	Organization of the Book
	WEB and Matlab Support
	Further Reading
	Acknowledgements

	Fuzzy Sets and Relations
	Fuzzy Sets
	Properties of Fuzzy Sets
	Normal and Subnormal Fuzzy Sets
	Support, Core and alpha-cut
	Convexity and Cardinality

	Representations of Fuzzy Sets
	Similarity-based Representation
	Parametric Functional Representation
	Point-wise Representation
	Level Set Representation

	Operations on Fuzzy Sets
	Complement, Union and Intersection
	T-norms and T-conorms
	Projection and Cylindrical Extension
	Operations on Cartesian Product Domains
	Linguistic Hedges *

	Fuzzy Relations
	Relational Composition
	Summary and Concluding Remarks
	Problems

	Fuzzy Systems
	Rule-Based Fuzzy Systems
	Linguistic model
	Linguistic Terms and Variables
	Inference in the Linguistic Model
	Max-min (Mamdani) Inference
	Defuzzification
	Fuzzy Implication versus Mamdani Inference
	Rules with Several Inputs, Logical Connectives
	Rule Chaining *

	Singleton Model
	Relational Model
	Takagi–Sugeno Model
	Inference in the TS Model
	TS Model as a Quasi-Linear System

	Dynamic Fuzzy Systems *
	Summary and Concluding Remarks
	Problems

	Fuzzy Clustering
	Basic Notions
	The Data Set
	Clusters and Prototypes
	Overview of Clustering Methods

	Hard and Fuzzy Partitions
	Hard Partition
	Fuzzy Partition
	Possibilistic Partition

	Fuzzy c-Means Clustering
	The Fuzzy c-Means Functional
	The Fuzzy c-Means Algorithm
	Parameters of the FCM Algorithm
	Extensions of the Fuzzy c-Means Algorithm

	Gustafson–Kessel Algorithm *
	Parameters of the Gustafson–Kessel Algorithm *
	Interpretation of the Cluster Covariance Matrices *

	Summary and Concluding Remarks
	Problems

	Construction Techniques for Fuzzy Systems
	Structure and Parameters
	Knowledge-Based Design
	Data-Driven Acquisition and Tuning of Fuzzy Models
	Least-Squares Estimation of Consequents
	Template-Based Modeling *
	Neuro-Fuzzy Modeling *
	Construction Through Fuzzy Clustering
	Input–output Dynamic Systems *

	Semi-Mechanistic Modeling *
	Summary and Concluding Remarks
	Problems

	Knowledge-Based Fuzzy Control
	Motivation for Fuzzy Control
	Fuzzy Control as a Parameterization of Controller's Nonlinearities
	Mamdani Controller
	Dynamic Pre-Filters *
	Dynamic Post-Filters *
	Rule Base
	Design of a Fuzzy Controller

	Takagi–Sugeno Controller
	Fuzzy Supervisory Control
	Operator Support *
	Software and Hardware Tools *
	Project Editor *
	Rule Base and Membership Functions *
	Analysis and Simulation Tools *
	Code Generation and Communication Links *

	Summary and Concluding Remarks
	Problems

	Artificial Neural Networks
	Introduction
	Simple Networks and Approximation Properties
	Deep Learning
	Training
	Regularization
	Specialized Network Architectures
	Semi Supervised & Unsupervised Learning
	Problems

	Gaussian Processes
	Introduction
	Gaussian Distributions & Inference
	A Different View on Normal Distributions
	Function Space View
	Kernels
	Bayesian Optimization
	Problems

	Model-Based Control
	Inverse Control
	Open-Loop Feedforward Control
	Open-Loop Feedback Control
	Computing the Inverse
	Inverting Models with Transport Delays
	Internal Model Control

	Model-Based Predictive Control
	Prediction and Control Horizons
	Objective Function
	Receding Horizon Principle
	Optimization in MBPC

	Adaptive Control
	Summary and Concluding Remarks
	Problems

	Reinforcement Learning
	Introduction
	The Reinforcement Learning Model
	The Environment
	The Agent
	The Markov Property
	The Reward Function
	The Value Function
	The Policy

	Model Based Reinforcement Learning
	Bellman Optimality
	Policy Iteration
	Value Iteration

	Model Free Reinforcement Learning
	The Reinforcement Learning Task
	Temporal Difference
	Eligibility Traces *
	Q-learning
	SARSA
	Actor-Critic Methods

	Exploration
	Exploration vs. Exploitation
	Undirected Exploration
	Directed Exploration *
	Dynamic Exploration *

	Applications
	Pendulum Swing-Up and Balance
	Inverted Pendulum

	Conclusions
	Problems

	Ordinary Sets and Membership Functions
	MATLAB Code
	Fuzzy Set Class
	Fuzzy Set Class Constructor
	Set-Theoretic Operations

	Gustafson–Kessel Clustering Algorithm

	Symbols and Abbreviations
	References
	Index

