
Practical Assignment for Knowledge-Based Control Systems
(SC42050)

Introduction

This assignment based on MATLAB and Python is a compulsory part of the course Knowledge-Based
Control Systems (SC42050). It will be graded and the mark counts for 20% in the final grade of the course
(the exam grade is 60% of the final grade, and the literature assignment grade is 20%). The assignment is
carried out in groups of two1 students, and should take around 25 hours per person to solve, depending on
your experience with MATLAB, Simulink, and Python. You can start signing up on Monday 19 February
2018. The assignment must be worked out in the form of a short written report (in English, one report per
group), to be delivered along with the corresponding MATLAB/Simulink/Python software by Wednesday
11 April 2018, 12:00 (noon) at the latest. Please drop the report in the dedicated box placed in front of
the DCSC secretariat2. Do not forget to include your names and student numbers on the title page of
the report. Note that it is strictly forbidden to take over results from other students or make your results
available to others.

Use MATLAB version 6.5 or higher and mention the version you used. Please include in your report
complete listings of the MATLAB code (functions and scripts), Simulink models, and Python code that
you developed for solving the assignment problems. In addition to that, please send your report in a
PDF format and your software as a ZIP file by e-mail with the subject “SC42050 Practical Assignment
submission” to the course assistant Thijs Greevink (T.Greevink@student.tudelft.nl).

Please post your questions on the Brightspace discussion forum3. On Wednesday 28 March 2018 from
15:45 to 17:30, there will be a question hours session for the Practical Assignment in IO-PC hall 1
(ENTER). You can bring your own computer here with you, or use the computers in the computer room.

The assignment consists of three problems. In the first one, you are asked to design in Simulink a fuzzy
supervisor to improve the performance of a linear controller. The second problem concerns data-driven
black-box modeling using a feedforward neural network. The third problem is based on reinforcement
learning. For the first problem, each group will receive their own process simulation model.

To receive the files for the problems, send an e-mail to T.Greevink@student.tudelft.nl with the subject
“[SC42050] Practical Assignment sign-up”. Please mention the (first and last) names of the two members
of your group, your student numbers, and your e-mail addresses.

Matlab programming

Strive for a compact and elegant MATLAB code, use functions where suitable, avoid loops (for, while,
etc.) and also if-then constructs at places where you can easily use vector and matrix operations. Search
for “vectorization” in Matlab help for helpful tips on the proper MATLAB programming style.

If you are unfamiliar with programming in Matlab, here are some pointers that should help you to quickly
learn the basics. To access the Matlab documentation, type doc at the command line. A good place to start
is the “Getting Started” node of the Matlab documentation. Focus especially on “Matrices and Arrays”
and “Programming”. A minimal knowledge of “Graphics” is required in order to present your results in a
graphical form. For a more in-depth introduction, see “Mathematics” > “Matrices and Linear Algebra”,
and under this node: “Matrices in Matlab” and “Solving Linear Systems of Equations”.4

1If you absolutely cannot find a partner, you may work alone. Note that groups of three or more students are not allowed.
2For students enrolled in TU Eindhoven or UTwente, it is not necessary to submit a printed copy.
3Students from TU Eindhoven or UTwente can send an email to the course assistant instead.
4These pointers assume the documentation structure in Matlab 7.3. While the the structure may vary in other versions, you

should still be able to easily find these topics.
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Problem 1. Fuzzy supervisory control

A nonlinear dynamic process is controlled by a linear controller. As the closed-loop behavior is not
satisfactory, you are asked to design a fuzzy supervisor to improve the performance. Typically, the settling
time and the overshoot of the closed-loop system must be maintained within specified limits for a given
setpoint range. You will find the actual required values in the Simulink models you will receive.

The process model is a ‘black-box’, so you cannot inspect the equations, but you are allowed to carry out
any open-loop or closed-loop simulation experiments in order to learn more about its properties. To design
the supervisor, it is also possible (but not compulsory) to use the MATLAB’s trimming and linearization
functions trim and linmod. In the report, include the rule base, the membership functions and other
parameters of the supervisor. Explain the rationale behind the rule base (inputs, membership functions,
etc.) and the method you used to tune the parameters. Compare the closed-loop performance before and
after introducing the supervisor. Discuss the results.

A set of functions implementing fuzzy inference in MATLAB and an example of using them within
a Simulink model will be sent along with the assignment. You may use these functions, but it is not
compulsory. Also if you think that your ideas cannot be realized with these functions, feel free to
implement you own methods.

Problem 2. Bicycle rental prediction in TensorFlow

In this assignment you will be asked to predict the number of bicycles that will be rented out, based
on weather and seasonal data. This will be done by training a neural network using TensorFlow, a
computational library. A Python script is provided, to which you will make changes to improve the
predictions.

Installing TensorFlow

The assignment requires Python 3, TensorFlow, and matplotlib to be installed. See the installation
instructions on the respective websites, we provide some tips below. If you encounter any problems,
Google is your friend, ask fellow students for help (this is encouraged for this step, and this step only), or
post a question on the Brightspace discussion forum.

Intallation tips

Windows If you are using Windows, you might first have to install Python 3 first. Tensorflow requires the
64-bit version of Python (Windows x86-64). Unfortunately, the standard download page links to
the 32-bit version. So download it from the version specific page. Using the option “Add Python 3.X
to PATH” is recommended to be able to call pip3 and python from any directory. Afterwards, open
the Windows Command Prompt and use pip3 install --upgrade tensorflow to install the
CPU version of TensorFlow and pip3 install --upgrade matplotlib to install matplotlib.

Mac 1. Download Xcode from the app store.

2. Install Homebrew by executing the following command in the terminal: ruby -e "$(curl
-fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

3. Install Python 3: brew install python3

4. Use the steps here to install the Python 3 version of TensorFlow with the following exception:
For step 3, use the command python3 -m venv directoryOfYourChoice instead. This
will prevent issues with matplotlib.

5. install matplotlib with pip3 install --upgrade matplotlib

Linux Python 3 should already be installed. Use the instructions here to install the Python 3 CPU version
of TensorFlow. Then use pip3 install --upgrade matplotlib to install matplotlib.
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If you installed TensorFlow in a virtual environment, make sure it is still activated
source YourPreviouslyChosenDirectory\bin\activate
when running the exercise files.

Testing the script

The assignment comes with a Python script: bicycle_predictor.py and a dataset: hour.csv. There
is also a Readme.txt file which describes the dataset.

Test if your TensorFlow installation was successful by running the script. This can be done by extracting
the exercise files bicycle_predictor.py and hour.csv to a directory and using the following terminal
command5 form that directory:

python bicycle_predictor.py

You should get a list of training and validation errors per episode in the terminal as well as a plot resembling
Figure 1. Close the plot to return to the terminal.

Figure 1: Expected output of bicycle_predictor.py

Improving the model

When the script is working, it is time to improve it. Open the bicycle_predictor.py file in your
favorite editor and read through it to get a basic understanding of how it works.

Task 2.1 “Look ma, without any features!”

• On line 75 and above of the python script you can see that the loss is defined as the mean absolute
error between the network predictions and the true number of bicycles (The regularization term is
set to zero for now on line 8). On lines 87 - 97 you can additionally see that the prediction of the
network currently does not depend on any input, as the inputs are multiplied by zero. As a result,
when the network is trained it learns to output a single value (the bias). To what property of the
dataset does the output of the network converge?

• Change line 75 so that the mean squared error is used as the training criterion instead (and keep
it like that for the rest of the assignment). To what property of the dataset does the output of the
network converge now?

5Depending on your installation, the command python might default to Python 2, then use py -3 bicycle_predictor.py
(Windows) or python3 bicycle_predictor.py (Linux & Mac)
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Task 2.2. Linear regression

Change the create_neural_network function starting on line 84 such that the prediction of the number
of bicycles is an affine function of the input features (by removing the multiplication with zero). Note down
the validation performance (mean absolute error in bicycles) that you get. How would that performance
change when adding additional linear layers or changing the number of units in the currently used layer?
Explain your answer.

Task 2.3. Nonlinear regression

Change the function further to use a ReLU (Rectified Linear Unit) activation function for the hidden
layer. Run the script and use the image it generates to discuss whether you think the model might be
under-fitting or over-fitting. What does your conclusion mean for the number of training iterations and the
model complexity? Should you increase or decrease them to get better validation performance?

Task 2.4 Going deep

Change the create_neural_network function further so that you get a neural network with two hidden
ReLU layers. How does this change the performance?

You could also make the activation function in the final layer ReLU instead of linear. This would prevent
the model from predicting that a negative number of bicycles is rented out. However, under some
conditions this might prevent the model from learning anything. Why is that? And what would be an
alternative to the ReLU activation that prevents this phenomenon?

Task 2.5. Hyper-parameters

At the start of the Python file several hyper-parameters are defined. Change these hyper-parameters and
the neural network architecture such that the mean absolute validation error is around 30 bikes. Report
and motivate the changes you make.

Optional Bonus question

Even though the neural network might predict the number of rented out bicycles fairly accurately on most
days, it still makes large errors on other days. Use the largest_data_point_errors function of the
BicycleRentalPredictor class to see for which dates your network makes the largest mistakes. Can
you use the knowledge that the rental data is from Washington DC to explain one of these mistakes?

Problem 3. Reinforcement Learning

Most of the theory needed to answer the questions in this assignment can be found in the book “Re-
inforcement Learning: an Introduction” by Sutton and Barto (S&B), Chapters 1, 2, 3, 4 and 6. An
online HTML version of this book can be found here: http://incompleteideas.net/book/ebook/
the-book.html. You can also look at the lecture slides.

The goal of this exercise is to have a robot soccer player swing up a ball with its arm, even though the
torque it can apply to its shoulder joint is not enough to do this in one go. This is called the “underactuated
pendulum swing-up” problem. By answering the theoretical questions and implementing their solutions
you will construct a temporal difference reinforcement learning solution to this problem using the tabular
SARSA(0) algorithm.

The Matlab code for this exercise contains five main files:

4

http://incompleteideas.net/book/ebook/the-book.html
http://incompleteideas.net/book/ebook/the-book.html


assignment.m Main function. Run it to learn and test your controller.
assignment_verify.m Verification harness. Run it after implementing each question to verify

your code.
swingup.m Implements the SARSA learning loop described in S&B (Section 6.4,

Figure 6.9), and a testing loop. The file is partly incomplete and your
task is to complete it (search for TODO).

swingup_initial_state.m Sets the initial state of the arm as a slightly perturbed bottom position.
body_straight.m Simulates the dynamics of the body.

In this problem, you will go through questions and implementation tasks which eventually will lead the
robot to perform an arm swing-up.

θO
Figure 2: The angle θ is equal to 0 when arm is in the bottom position and is equal to π
in the upright position.

Task 3.1. Understanding the code

Read assignment.m and swingup.m. Note how the swingup function can be used it three settings:
learning, testing and verification. Compare the structure of the learning part to Figure 6.9 from the
textbook.

a) How many simulation steps are executed in a trial?

Now run assignment_verify.m. This will report any basic errors in your code.

b) What does it report?

c) Find the source of the error. Why is this value not correct? Think about what it means in terms of
the learning algorithm.

Task 3.2. Setting the learning parameters

Look at the get_parameters function in swingup.m and set the random action rate to 0.1, and the
learning rate to 0.25.

a) Learning is faster with higher learning rates. Why would we want to keep it low anyway?

b) Set the position discretization such that there is exactly one state for every π/15 rad.

c) Assuming that the velocity stays in the interval [−5π, 5π] rad s−1, set the velocity discretization
such that there is exactly one state for every π/3 rad s−1.

Set the action discretization to 5 actions. Set the amount of trials to 2000.

Run assignment_verify to make sure that you didn’t make any obvious mistakes.
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Task 3.3. Initialization

The initial values in your Q table can be very important for the exploration behavior, and there are therefore
many ways of initializing them (see S&B, Section 2.7). This is done in the init_Q function.

a) Pick a method and give a short argumentation for your choice.

b) Implement your choice. The Q table should be of size N ×M × O, where N is the number of
position states, M is the number of velocity states, and O is the number of actions.

Run assignment_verify to find obvious mistakes.

Task 3.4. Discretization

In Task 3.2, you determined the amount of position and velocity states that your Q table can hold, and the
amount of actions the agent can choose from. The state discretization is done in the discretize_state
function.

a) Implement the position discretization. The input may be outside the interval [0, 2π], so be sure
to wrap the state around (hint: use the mod function). The resulting state must be in the range
[1, par.pos_states]. This means that π (the “up” direction) will be in the middle of the range.
See the pendulum model shown in Figure 2.

b) Implement the velocity discretization. Even though we assume that the values will not exceed the
range [−5π, 5π], they must be clipped to that range to avoid errors. The resulting state must be in
the range [1, par.vel_states]. This means that zero velocity will be in the middle of the range.

c) What would happen if we clip the velocity range too soon, say at [−2π, 2π]?

Now you need to specify how the actions are turned into torque values, in the take_action function.

d) The allowable torque is in the range [−par.maxtorque, par.maxtorque]. Distribute the actions
uniformly over this range. This means that zero torque will be in the middle of the range.

Run assignment_verify, and look at the plots of continuous vs. discretized position. Are they what
you would expect?

Task 3.5. Reward and termination

Now you should determine the reward function, which is implemented in observe_reward.

a) What is the simplest reward function that you can devise, given that we want the system to balance
the pendulum at the top?

b) Implement observe_reward.

Run assignment_verify, and verify in the lower left plot that you have indeed implemented the reward
function you wanted.

You also need to specify when a trial is finished. While we could learn to continually balance the pendulum,
in this exercise we will only learn to swing up into a balanced state. The trial can therefore be ended when
that goal state is reached.

c) Implement is_terminal.

Run assignment_verify, and verify that your termination criterion is correct.
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Task 3.6. The policy and learning update

It is time to implement the action selection algorithm in execute_policy. See S&B, Sections 2.2 and
6.4.

a) Implement the greedy action selection algorithm.

b) Modify the chosen action according to the ε-greedy policy. Hint: use the rand and randi functions.

c) Finally, implement the SARSA update rule in update_Q.

d) Do we use eligibility traces in the update_Q?

Run assignment_verify a final time to check for errors. The result should be similar to Figure 3.
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Figure 3: Output of assignment_verify after completing Tasks 3.1-3.6.

Task 3.7. Make it work

Finally, use Figure 6.9 from S&B and complete all the code of the learning section in swingup (initializa-
tions of outer and inner loops, calculation of torque, learning and termination). Basically you need to call
all functions prepared in Tasks 3.3-3.6 in a right order. Also make sure that initial state is always slightly
perturbed, i.e., that swingup_initial_state.m is used for initialization.

It is time to see how your learning algorithm behaves! Run assignment.m and check the progress. A
successful run looks somewhat like Figure 4.

a) How many simulations steps on average does a swing-up take (after learning has finished)? Will it
be wise to reduce the number of steps per trial during learning?
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b) Large parts of the policy in the upper-right graph are quite noisy. What reasons can you name?

c) Test your code with greedy and ε-greedy policies. Which method allows the algorithm to converge
faster and which method results in a higher cumulative reward (on average)? Explain the reason.

d) Try several values of discount rate, spanned across the [0, 1] interval. What discount rate allows the
algorithm to converge faster? Explain the reason.
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Figure 4: Output of a successful run of assignment.m
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