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Traffic flow on freeways is a complex process that often is described
by a set of highly nonlinear, dynamic equations in the form of a macro-
scopic traffic flow model. However, some of the existing macroscopic
models have been found to exhibit instabilities in their behavior and
often do not track real traffic data correctly. On the other hand, micro-
scopic traffic flow models can yield more detailed and accurate repre-
sentations of traffic flow but are computationally intensive and
typically not suitable for real-time implementation. Nevertheless, such
implementations are likely to be necessary for development and appli-
cation of advanced traffic control concepts in intelligent vehicle-
highway systems. The development of a multilayer feed-forward
artificial neural network model to address the freeway traffic system
identification problem is presented. The solution of this problem is
viewed as an essential element of an effort to build an improved free-
way traffic flow model for the purpose of developing real-time predic-
tive control strategies for dynamic traffic systems. To study the initial
feasibility of the proposed neural network approach for traffic system
identification, a three-layer feed-forward neural network model has
been developed to emulate an improved version of a well-known
higher-order continuum traffic model. Simulation results show that the
neural network model can capture the traffic dynamics of this model
quite closely. Future research will attempt to attain similar levels of
performance using real traffic data.

Traffic control systems are a significant tool for facilitating the full
utilization of available capacity (1). Advanced traffic control tech-
nologies may lead to more efficient use of existing freeway systems,
thereby reducing traffic congestion, delay, emissions, and energy
consumption, and improving safety. Freeway traffic system identi-
fication is essential to the study of improved traffic control strate-
gies. Identifying such a system generally involves two steps:
determining the form of the system model, and deriving the optimal
parameter set for the model. Once the system model is known, for
example, an adaptive controller can be designed to control ramp
meters and components of traveler information systems, such as
changeable message signs, to achieve desired traffic conditions.
However, existing system identification techniques developed in
recent decades are based on linear time-invariant systems with
unknown parameters and cannot be directly applied to freeway
traffic flow systems.

Traffic flow on freeways is a complex process that is often
described by a set of highly nonlinear, dynamic equations, in the
form of a macroscopic traffic flow model. However, some of the
existing macroscopic models have been found to exhibit instabili-
ties in their behavior and often do not track real traffic data correctly
(2). On the other hand, microscopic traffic flow models can yield
more detailed and accurate representations of traffic flow, but they

are computationally intensive and typically not suitable for real-time
implementation. Nevertheless, such implementations are likely to
be necessary for the development and application of advanced
traffic control concepts in intelligent vehicle-highway systems.

In this paper, the authors present the development of a multilayer
feed-forward artificial neural network (ANN) model to address the
freeway traffic system identification problem. The solution of this
problem is viewed as an essential element in an effort to build an
improved freeway traffic flow model for the purpose of developing
real-time predictive control strategies for dynamic traffic systems.
To study the initial feasibility of the proposed neural network
approach for traffic system identification, a three-layer feed-
forward neural network model has been developed to emulate an
improved version of a well-known higher-order continuum traffic
model.

ANNs are parallel distributed processing architectures that com-
bine computational and knowledge representation methods. ANNs
have been used widely for pattern recognition problems in recent
years (3,4). They have also been applied successfully to the area of
transportation (5–8). The major advantages of an ANN include the
following:

• An ANN scheme can perform highly nonlinear mappings
between input and output spaces, thus having the potential of
capturing the nonlinear, dynamic features of traffic flow systems.

• Highly parallel connections between ANN processing ele-
ments allow faster processing speed.

• ANNs have a greater degree of robustness than many conven-
tional schemes because the computation is distributed among many
processing elements.

• The ANN approach is nonparametric. It makes no assump-
tions about the functional form of the underlying distribution of the
input data.

All these features of an ANN scheme make it a good candidate for
traffic systems identification.

Subsequent sections of the paper define the problem in more
detail and discuss the form of the system model selected for this
study, the ANN approach to freeway traffic modeling, the ANN
training process, and the results of a number of simulation test cases.

PROBLEM DEFINITION

A dynamic system generally can be represented by the following
differential equation:

d
dt
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where f and g are static nonlinear mappings defined as f: Rn × Rm →
Rn and g: Rn → Rp. The vector x(t) denotes the system states at time
t. The states of a system are determined by its states at time t0 < t and
the input vector u(t) that is defined over the time interval [t0, t]. The
output vector y(t) is defined by the state of the system at time t.

In the case of traffic flow, several models are described by a set
of nonlinear dynamic equations. The basic model is the hydrody-
namic model formulated by Lighthill and Whitham (9). The model
states that the traffic flow rate q, traffic density ρ, and space mean
speed v observe the following equations:

where q, ρ, and v are functions in the time and space domain, and c
is the net ramp inflow (ramp inflow–ramp outflow) rate per unit
length of freeway.

An extension to the basic model generates the so-called higher-
order continuum flow models (10). In addition to the three afore-
mentioned equations, the higher-order continuum models have a
momentum equation (11) that captures the speed dynamics.

If we discretize the traffic system equations, they can be written
as

where

k = time index;
j = section index, as shown in Figure 1;

∆t = time increment;
∆xj = length of jth section;
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Equations 7 and 8 are the dynamic density equation and the speed
equation, respectively. Equation 9 represents the fundamental
relationship in traffic flow.

If we define a state vector xT
j

and an input vector uT
j

and an output vector yT
j

then the traffic flow for section j can be described by the following
discrete system equations:

Figure 2 shows schematically the concept of system identifica-
tion. Once the system identification model is known, the freeway
traffic system identification problem is to find a set of parameters
such that when the bounded inputs uj(k) are presented to both the
system and the identification model, the outputs ŷj(k+ 1) of the iden-
tification model will approximate the outputs yj(k+ 1) of the system.
This may be achieved by minimizing the total error between ŷj(k+ 1)
and yj(k + 1), for example,

minimize

where ek = ŷj(k) – yj(k).

SELECTION OF TRAFFIC FLOW MODELS
FOR TRAFFIC SYSTEM IDENTIFICATION

To study the feasibility of the proposed neural network approach,
the higher-order continuum model given by Equations 3–6 is used to
simulate the traffic system. There are several realizations of the
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FIGURE 1 Section of freeway.
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FIGURE 2 System identification.

momentum equation given by Chen et al. (6); notably, the models
of Payne (12) and of Philips (13). Payne’s momentum equation has
the following form:

where µ and T are parameters and ve is equilibrium speed.
On the basis of earlier work by Prigogine (14), Philips developed

a family of Boltzman-type statistical traffic models (14–16). One of
the Philips models has the following momentum equation:

where

v = mean speed,
ve(ρ) = equilibrium speed-density relation,
λ(ρ) = delay coefficient, and
P(ρ) = traffic pressure function.

Papageorgiou et al. (17) added to Payne’s model a lane drop term
and a term that takes account of merging effects in the presence of
entry ramps. The resulting discrete momentum equation is

where

k = time index,
j = freeway section index,

∆ = section length,
λ = number of lanes in a freeway section,
v = speed,
ρ = density,
r = ramp entry rate,

ρcr = critical density, and
T, µ, τ, η, φ, δ, K = constant parameters.
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The term

accounts for ramp merging effects, and

for lane drop effects, where η = 0 if λ j ≤ λ j+1 and η = 1 otherwise.
The equilibrium speed above is

where vf is the free-flow speed on a freeway.
The aforementioned dynamic traffic models, particularly

Payne’s model, appear to be the most realistic models developed
(2) and have been used by a number of researchers (11,17–19) in
freeway traffic modeling and control studies. However, it has been
reported in some studies that both Payne’s and Philips’ models
exhibit instabilities and do not track real traffic data correctly
(2,20). It has also been reported that Payne’s model may exhibit
poor performance at freeway lane drops (21). A recent study (22)
indicates that using some numerical schemes can improve the per-
formance of Payne’s model at bottleneck situations, but these
schemes do not address the problems that may be inherent in the
formulation of the model.

Papageorgiou’s model tries to overcome the aforementioned
problems by adding the two additional terms. The model was 
calibrated on the basis of real data (23) and successfully imple-
mented for a stretch of freeway in Paris (17). Therefore, the
authors decided to use Papageorgiou’s model as the system 
model, along with the parameters provided by Papageorgiou 
et al. (17).

ANN APPROACH FOR TRAFFIC MODELING

Figure 3 illustrates the architecture of a multilayer feed-forward
neural network. It consists of an input layer of K neurons, one hid-
den layer of M1 neurons, and another hidden layer of M2 neurons,
and an output layer of N neurons. The input layer and first hidden
layer are connected by a set of a weights W1, the two hidden layers
are connected by a set of weights W2, and the second hidden layer
and output layer are connected by a set of weights W3. The input-
output relationship of this neural network can be described by the
following equation:

where

Φ = nonlinear operator, normally a sigmoid type function
such as Φ(x) = α /[1 + exp(–x)];

U = input vector;
θ1, θ2, θ3 = vectors of thresholds for first hidden layer, second

hidden layer, and output layer, respectively.
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Because of the operator’s nonlinearity and the network’s multilayer
structure, this type of network can perform highly nonlinear
mappings.

The weight matrices W1, W2, and W3 and threshold vectors θ1, θ2,
and θ3 are adjusted by a learning rule called backpropagation, which
is a gradient descent method to minimize the output error with
respect to the weights and thresholds (3).

In this application, the inputs and outputs of the network are
determined according to the traffic flow model used. There are two
dynamic equations to be modeled in the traffic flow system. Equa-
tion 7 is linear with respect to its inputs [qj –1, qj, rj, sj]. A simple two-
layer feed-forward network can capture such a linear relationship,
and so the authors do not use a neural network to learn this rela-
tionship. Their focus is on the nonlinear, dynamic relationship given
in Equation 6 specifically, its realization given by Equation 14. The
input vector u(k) to this neural network is [vj –1(k), vj(k), ρj(k), ρj+1(k),

rj(k)] and the output vector ŷ(k + 1) = [vj(k + 1)]. As a result, the
number of neurons in the input layer is K = 5, and in the output layer
N = 1.

The learning process is depicted in Figure 4. Inputs are presented
to both the traffic flow model based on Equation 14 and the neural
network model. The output produced by both models is compared,
and the error is fed back to the neural network model, which updates
its weights and thresholds on the basis of the backpropagation learn-
ing rule.

Once the neural network is trained, it should be able to produce
outputs that are close to those of the traffic model.

To teach the neural network model the relationship given in
Equation 14, the authors developed a macroscopic simulation based
on Papageorgiou’s model. The results of the simulation are then fed to
the neural network. A hypothetical freeway section shown in Figure 5
was used for this study.

FIGURE 4 Traffic system identification by neural networks.

FIGURE 3 ANN structure.

FIGURE 5 Freeway configuration for neural network training.
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The freeway section is mostly four lanes, with two lane drops.
Each section is 0.5 km long. The simulation time increment T is
15 sec. The boundary conditions are defined by assuming that the
speed and density of the beginning section are identical to those of
its immediately downstream section, and that the end section is free
of congestion during the whole period.

The parameters present in Equation 14 are taken from Papageor-
giou et al. (17). They are follows: vf = 90 km/hr; ρcr = 37.3
veh/km/lane; µ = 35 km2/hr; τ = 36 sec; φ= 2, δ= 0.8; K = 13 veh/km.

The system was first initialized to moderate traffic conditions.
Then various traffic conditions were generated by varying the
ramp volumes and generating random incidents. The entry ramp
volume was a random variable that ranged from 120 to 1,800 vehi-
cles per hour. The exit ramp volume was determined by a diver-
sion factor that varied randomly from 0.05 to 0.20 (although the
exit ramp volume was limited to not exceed the average freeway
volume per lane). It was assumed that incident occurrence fol-
lowed a Poisson distribution. The distributions of incident dura-
tion and number of lanes blocked were estimated. By generating
random inputs, the authors attempted to cover the whole input and
output space and establish the nonlinear mapping between inputs
and outputs.

In normal practice, the inputs and outputs to a neural network are
scaled to the range of [0,1] or [–1, + 1]. Because a mapping-
preserving transformation for a nonlinear relationship is difficult to
find, the authors have not scaled their inputs and outputs to avoid
distorting the original relationship.

During the training process, the authors experimented with the
number of hidden neurons. The results were compared with (M1,
M2) = (5,5), (10,10), and (20,20) and no significant difference in
the network performance was found. However, increasing the
number of hidden neurons increases computational time, thus it
was decided to use five neurons in each of the two hidden layers,
M1 = M2 = 5.

The neural network model was trained for 10 million iterations
based on the traffic states of Sections 5,6,7,8, and 9. Those five sec-

tions were chosen because they had different geometrical features
and were less influenced by the boundary conditions. Computa-
tionally, it required about 6 hr to complete the 10 million iteration
training on a SUN SPARC IPX computer. But once the network
was trained, it took much less than 1 sec to simulate 1 hr of traffic
for a single section on the same computer, which means that the
ANN model can simulate 1 hr of traffic for 60 sections [about 15 mi
(24 km)] in less than 1 min.

TEST RESULTS

Once the neural network was trained, it was applied to Sections 6,
7, and 8 under different traffic conditions for performance evalua-
tion. These traffic conditions included two demand patterns for the
four entry ramps (each demand pattern applied to all the entry
ramps, but the magnitude of demand at each ramp may vary), and
one incident. The output of the neural network model was com-
pared against that of Papageorgiou’s model, and the relative errors
were plotted. The following three test cases are illustrative of the
network’s capabilities.

Demand Pattern 1: Entry Ramp Volume Is 
Step Function

In this case the entry ramp demand pattern in Figure 6 was
presented to both the neural network and Papageorgiou’s model,
for the freeway section. The speed patterns for the three Sections
6, 7, and 8 are shown in the top halves of Figures 7, 8, and 9. The
relative errors are shown at the bottom of Figures 7, 8, and 9.
These results show that the output from the neural network 
model [y(k + 1)] closely matches that of Papageorgiou’s model
[yd(k + 1)]. Except at a few points, the relative error is within
5 percent. It is noted that higher errors normally appear at either
the lowest or the highest speed. This is probably due to not enough

FIGURE 6 Entry ramp Demand Pattern 1 (step function).
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FIGURE 7 Speed (top) and error (bottom) for Section 6
(Demand Pattern 1).

FIGURE 8 Speed (top) and error (bottom) for Section 7
(Demand Pattern 1).

data in these ranges being generated and presented during the
training process.

Demand Pattern 2: Entry Ramp Volume Is 
Random with a Trend

In this case, the ramp demand pattern in Figure 10 was presented to
both the neural network model and Papageorgiou’s model. The
results are depicted in Figures 11, 12, and 13. The neural network
model obtained better results for Sections 7 and 8 than Section 6,
although all the results appear to be satisfactory. The results clearly
show that the neural network model captures the nonlinearity
embedded in Papageorgiou’s model.

Incident Conditions

The authors created an incident that blocked two lanes at Section 7
for 10 min, with the ramp input pattern as shown in Figure 14. The
network was tested based on data from Section 6, which is immedi-
ately upstream of the incident section. The traffic volume of Section

6 is shown in Figure 15. The test results are shown in Figure 16. The
neural network model followed the rapid drop in speed created by
the incident closely.

CONCLUSIONS

In this paper the authors presented the development of a multilayer
feed-forward ANN model to address the freeway traffic system
identification problem. The solution of this problem is viewed as an
essential element in an effort to build an improved freeway traffic
flow model for the purpose of developing real-time predictive con-
trol strategies for dynamic traffic systems. To study the initial fea-
sibility of the proposed neural network approach for traffic system
identification, a three-layer feed-forward neural network model has
been developed to emulate an improved version of a well-known
higher-order continuum traffic model. Simulation results show that
the proposed ANN model not only captures the traffic dynamics of
the higher-order continuum traffic model quite closely, but also is
computationally efficient for real-time implementation. Future
research will attempt to attain similar levels of performance using
real traffic data.



FIGURE 9 Speed (top) and error (bottom) for Section 8
(Demand Pattern 1).

FIGURE 11 Speed (top) and error (bottom) for Section 6
(Demand Pattern 2).

FIGURE 10 Entry ramp Demand Pattern 2.



FIGURE 12 Speed (left) and error (right ) for Section 7 (Demand Pattern 2).

FIGURE 13 Speed (left) and error (right ) for Section 8 (Demand Pattern 2).

FIGURE 14 Entry ramp Demand Pattern 3 (with incident).
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